Power flows and Mechanical Intensities in structural finite element analysis
NASA Technical Reports Server (NTRS)
Hambric, Stephen A.
1989-01-01
The identification of power flow paths in dynamically loaded structures is an important, but currently unavailable, capability for the finite element analyst. For this reason, methods for calculating power flows and mechanical intensities in finite element models are developed here. Formulations for calculating input and output powers, power flows, mechanical intensities, and power dissipations for beam, plate, and solid element types are derived. NASTRAN is used to calculate the required velocity, force, and stress results of an analysis, which a post-processor then uses to calculate power flow quantities. The SDRC I-deas Supertab module is used to view the final results. Test models include a simple truss and a beam-stiffened cantilever plate. Both test cases showed reasonable power flow fields over low to medium frequencies, with accurate power balances. Future work will include testing with more complex models, developing an interactive graphics program to view easily and efficiently the analysis results, applying shape optimization methods to the problem with power flow variables as design constraints, and adding the power flow capability to NASTRAN.
NASA Technical Reports Server (NTRS)
Jaggers, R. F.
1974-01-01
An optimum powered explicit guidance algorithm capable of handling all space shuttle exoatospheric maneuvers is presented. The theoretical and practical basis for the currently baselined space shuttle powered flight guidance equations and logic is documented. Detailed flow diagrams for implementing the steering computations for all shuttle phases, including powered return to launch site (RTLS) abort, are also presented. Derivation of the powered RTLS algorithm is provided, as well as detailed flow diagrams for implementing the option. The flow diagrams and equations are compatible with the current powered flight documentation.
Throttling capability of a 30 kW class ammonia arcjet
NASA Technical Reports Server (NTRS)
Goodfellow, K. D.; Polk, J. E.
1991-01-01
The throttling capabilities of a 30 kW class ammonia arcjet and its compatibility with a breadboard power conditioning unit (PCU) were tested in two series of tests. The first series was performed to determine the performance and operating characteristics of the arcjet and the PCU over a range of power levels and propellant flow rates. The power levels for the tests were nominally between 10 and 30 kW, with some operation below 10 kW at the lower flow rates. The ammonia flow rates varied between 0.16 and 0.35 g/s. The second series of tests was an extensive investigation of operation below 12 kW using three cathode spacings. The ammonia flow rates were between 0.115 and 0.335 g/s. Operation of the arcjet from 1.5 kW up to the 30 kW design point was demonstrated with the PCU.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dall'Anese, Emiliano; Simonetto, Andrea; Dhople, Sairaj
This paper focuses on power distribution networks featuring inverter-interfaced distributed energy resources (DERs), and develops feedback controllers that drive the DER output powers to solutions of time-varying AC optimal power flow (OPF) problems. Control synthesis is grounded on primal-dual-type methods for regularized Lagrangian functions, as well as linear approximations of the AC power-flow equations. Convergence and OPF-solution-tracking capabilities are established while acknowledging: i) communication-packet losses, and ii) partial updates of control signals. The latter case is particularly relevant since it enables asynchronous operation of the controllers where DER setpoints are updated at a fast time scale based on local voltagemore » measurements, and information on the network state is utilized if and when available, based on communication constraints. As an application, the paper considers distribution systems with high photovoltaic integration, and demonstrates that the proposed framework provides fast voltage-regulation capabilities, while enabling the near real-time pursuit of solutions of AC OPF problems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dall'Anese, Emiliano; Simonetto, Andrea; Dhople, Sairaj
This paper focuses on power distribution networks featuring inverter-interfaced distributed energy resources (DERs), and develops feedback controllers that drive the DER output powers to solutions of time-varying AC optimal power flow (OPF) problems. Control synthesis is grounded on primal-dual-type methods for regularized Lagrangian functions, as well as linear approximations of the AC power-flow equations. Convergence and OPF-solution-tracking capabilities are established while acknowledging: i) communication-packet losses, and ii) partial updates of control signals. The latter case is particularly relevant since it enables asynchronous operation of the controllers where DER setpoints are updated at a fast time scale based on local voltagemore » measurements, and information on the network state is utilized if and when available, based on communication constraints. As an application, the paper considers distribution systems with high photovoltaic integration, and demonstrates that the proposed framework provides fast voltage-regulation capabilities, while enabling the near real-time pursuit of solutions of AC OPF problems.« less
High voltage pulse ignition of mercury discharge hollow cathodes
NASA Technical Reports Server (NTRS)
Wintucky, E. G.
1973-01-01
A high voltage pulse generated by a capacitor discharge into a step-up transformer has been demonstrated capable of consistently igniting hollow cathode mercury discharges at propellant flows and heater power levels much below those required by conventional cathode starting. Results are presented for 3.2-mm diameter enclosed and open keeper cathodes. Starting characteristics are shown to depend on keeper voltage, mercury flow rate, heater power, keeper orifice size, emissive materials, and electrode to which the pulse is applied. This starting technique has been used to start a cathode over 10,000 times without any degradation of starting capability.
Ultra high bypass Nacelle aerodynamics inlet flow-through high angle of attack distortion test
NASA Technical Reports Server (NTRS)
Larkin, Michael J.; Schweiger, Paul S.
1992-01-01
A flow-through inlet test program was conducted to evaluate inlet test methods and determine the impact of the fan on inlet separation when operating at large angles of attack. A total of 16 model configurations of approximately 1/6 scale were tested. A comparison of these flow-through results with powered data indicates the presence of the fan increased separation operation 3 degrees to 4 degrees over the flow through inlet. Rods and screens located at the fan face station, that redistribute the flow, achieved simulation of the powered-fan results for separation angle of attack. Concepts to reduce inlet distortion and increase angle of attack capability were also evaluated. Vortex generators located on the inlet surface increased inlet angle of attack capability up to 2 degrees and reduced inlet distortion in the separated region. Finally, a method of simulating the fan/inlet aerodynamic interaction using blockage sizing method has been defined. With this method, a static blockage device used with a flow-through model will approximate the same inlet onset of separation angle of attack and distortion pattern that would be obtained with an inlet model containing a powered fan.
Flow reversal power limit for the HFBR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Lap Y.; Tichler, P.R.
The High Flux Beam Reactor (HFBR) undergoes a buoyancy-driven reversal of flow in the reactor core following certain postulated accidents. Uncertainties about the afterheat removal capability during the flow reversal has limited the reactor operating power to 30 MW. An experimental and analytical program to address these uncertainties is described in this report. The experiments were single channel flow reversal tests under a range of conditions. The analytical phase involved simulations of the tests to benchmark the physical models and development of a criterion for dryout. The criterion is then used in simulations of reactor accidents to determine a safemore » operating power level. It is concluded that the limit on the HFBR operating power with respect to the issue of flow reversal is in excess of 60 MW.« less
High power gas laser - Applications and future developments
NASA Technical Reports Server (NTRS)
Hertzberg, A.
1977-01-01
Fast flow can be used to create the population inversion required for lasing action, or can be used to improve laser operation, for example by the removal of waste heat. It is pointed out that at the present time all lasers which are capable of continuous high-average power employ flow as an indispensable aspect of operation. High power laser systems are discussed, taking into account the gasdynamic laser, the HF supersonic diffusion laser, and electric discharge lasers. Aerodynamics and high power lasers are considered, giving attention to flow effects in high-power gas lasers, aerodynamic windows and beam manipulation, and the Venus machine. Applications of high-power laser technology reported are related to laser material working, the employment of the laser in controlled fusion machines, laser isotope separation and photochemistry, and laser power transmission.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salko, Robert K; Sung, Yixing; Kucukboyaci, Vefa
The Virtual Environment for Reactor Applications core simulator (VERA-CS) being developed by the Consortium for the Advanced Simulation of Light Water Reactors (CASL) includes coupled neutronics, thermal-hydraulics, and fuel temperature components with an isotopic depletion capability. The neutronics capability employed is based on MPACT, a three-dimensional (3-D) whole core transport code. The thermal-hydraulics and fuel temperature models are provided by the COBRA-TF (CTF) subchannel code. As part of the CASL development program, the VERA-CS (MPACT/CTF) code system was applied to model and simulate reactor core response with respect to departure from nucleate boiling ratio (DNBR) at the limiting time stepmore » of a postulated pressurized water reactor (PWR) main steamline break (MSLB) event initiated at the hot zero power (HZP), either with offsite power available and the reactor coolant pumps in operation (high-flow case) or without offsite power where the reactor core is cooled through natural circulation (low-flow case). The VERA-CS simulation was based on core boundary conditions from the RETRAN-02 system transient calculations and STAR-CCM+ computational fluid dynamics (CFD) core inlet distribution calculations. The evaluation indicated that the VERA-CS code system is capable of modeling and simulating quasi-steady state reactor core response under the steamline break (SLB) accident condition, the results are insensitive to uncertainties in the inlet flow distributions from the CFD simulations, and the high-flow case is more DNB limiting than the low-flow case.« less
High voltage pulse ignition of mercury discharge hollow cathodes
NASA Technical Reports Server (NTRS)
Wintucky, E. G.
1973-01-01
A high voltage pulse generated by a capacitor discharge into a step-up transformer has been demonstrated capable of consistently igniting hollow cathode mercury discharges at propellant flows and heater power levels much below those required by conventional cathode starting. Results are presented for 3.2-mm diameter enclosed and open keeper cathodes. Starting characteristics are shown to depend on keeper voltage, mercury flow rate, heater power, keeper orifice size, emissive materials, and electrode to which the pulse is applied. This starting technique has been used to start a cathode over 10,000 times without any degradation of starting capability. The starting reliability, propellant and power savings offered by the high voltage pulse start should favorably impact performance of electron bombardment thrusters in missions requiring many on-off duty cycles.
An integrated power/attitude control system /IPACS/ for space vehicle application
NASA Technical Reports Server (NTRS)
Anderson, W. W.; Keckler, C. R.
1973-01-01
An integrated power and attitude control system (IPACS) concept with potential application to a broad class of space missions is discussed. The concept involves the storage and supply on demand of electrical energy in rotating flywheels while simultaneously providing control torques by controlled precession of the flywheels. The system is thus an alternative to the storage batteries used on present spacecraft while providing similar capability for attitude control as that represented by a control moment gyroscope (CMG) system. Potential IPACS configurations discussed include single- and double-rotor double-gimbal IPACS units. Typical sets of control laws which would manage the momentum and energy exchange between the IPACS and a typical space vehicle are discussed. Discussion of a simulation of a typical potential IPACS configuration and candidate mission concerned with pointing capability, power supply and demand flow, and discussion of the interactions between stabilization and control requirements and power flow requirements are presented.
Regularized lattice Boltzmann model for immiscible two-phase flows with power-law rheology
NASA Astrophysics Data System (ADS)
Ba, Yan; Wang, Ningning; Liu, Haihu; Li, Qiang; He, Guoqiang
2018-03-01
In this work, a regularized lattice Boltzmann color-gradient model is developed for the simulation of immiscible two-phase flows with power-law rheology. This model is as simple as the Bhatnagar-Gross-Krook (BGK) color-gradient model except that an additional regularization step is introduced prior to the collision step. In the regularization step, the pseudo-inverse method is adopted as an alternative solution for the nonequilibrium part of the total distribution function, and it can be easily extended to other discrete velocity models no matter whether a forcing term is considered or not. The obtained expressions for the nonequilibrium part are merely related to macroscopic variables and velocity gradients that can be evaluated locally. Several numerical examples, including the single-phase and two-phase layered power-law fluid flows between two parallel plates, and the droplet deformation and breakup in a simple shear flow, are conducted to test the capability and accuracy of the proposed color-gradient model. Results show that the present model is more stable and accurate than the BGK color-gradient model for power-law fluids with a wide range of power-law indices. Compared to its multiple-relaxation-time counterpart, the present model can increase the computing efficiency by around 15%, while keeping the same accuracy and stability. Also, the present model is found to be capable of reasonably predicting the critical capillary number of droplet breakup.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dall'Anese, Emiliano; Simonetto, Andrea
This paper considers distribution networks featuring inverter-interfaced distributed energy resources, and develops distributed feedback controllers that continuously drive the inverter output powers to solutions of AC optimal power flow (OPF) problems. Particularly, the controllers update the power setpoints based on voltage measurements as well as given (time-varying) OPF targets, and entail elementary operations implementable onto low-cost microcontrollers that accompany power-electronics interfaces of gateways and inverters. The design of the control framework is based on suitable linear approximations of the AC power-flow equations as well as Lagrangian regularization methods. Convergence and OPF-target tracking capabilities of the controllers are analytically established. Overall,more » the proposed method allows to bypass traditional hierarchical setups where feedback control and optimization operate at distinct time scales, and to enable real-time optimization of distribution systems.« less
Vibrational Power Flow Analysis of Rods and Beams
NASA Technical Reports Server (NTRS)
Wohlever, James Christopher; Bernhard, R. J.
1988-01-01
A new method to model vibrational power flow and predict the resulting energy density levels in uniform rods and beams is investigated. This method models the flow of vibrational power in a manner analogous to the flow of thermal power in a heat conduction problem. The classical displacement solutions for harmonically excited, hysteretically damped rods and beams are used to derive expressions for the vibrational power flow and energy density in the rod and beam. Under certain conditions, the power flow in these two structural elements will be shown to be proportional to the energy density gradient. Using the relationship between power flow and energy density, an energy balance on differential control volumes in the rod and beam leads to a Poisson's equation which models the energy density distribution in the rod and beam. Coupling the energy density and power flow solutions for rods and beams is also discussed. It is shown that the resonant behavior of finite structures complicates the coupling of solutions, especially when the excitations are single frequency inputs. Two coupling formulations are discussed, the first based on the receptance method, and the second on the travelling wave approach used in Statistical Energy Analysis. The receptance method is the more computationally intensive but is capable of analyzing single frequency excitation cases. The traveling wave approach gives a good approximation of the frequency average of energy density and power flow in coupled systems, and thus, is an efficient technique for use with broadband frequency excitation.
NASA Astrophysics Data System (ADS)
Venkateswara Rao, B.; Kumar, G. V. Nagesh; Chowdary, D. Deepak; Bharathi, M. Aruna; Patra, Stutee
2017-07-01
This paper furnish the new Metaheuristic algorithm called Cuckoo Search Algorithm (CSA) for solving optimal power flow (OPF) problem with minimization of real power generation cost. The CSA is found to be the most efficient algorithm for solving single objective optimal power flow problems. The CSA performance is tested on IEEE 57 bus test system with real power generation cost minimization as objective function. Static VAR Compensator (SVC) is one of the best shunt connected device in the Flexible Alternating Current Transmission System (FACTS) family. It has capable of controlling the voltage magnitudes of buses by injecting the reactive power to system. In this paper SVC is integrated in CSA based Optimal Power Flow to optimize the real power generation cost. SVC is used to improve the voltage profile of the system. CSA gives better results as compared to genetic algorithm (GA) in both without and with SVC conditions.
Advanced Power Sources for Space Missions
1989-01-01
Range indicate that extremely high power levels hav- ing fast time-ramping capabilities must be provided during the tests. Only highly efficient prime...system efficiency results from advantages in thermal storage versus battery storage and from the increased conversion efficiency of a solar-dynamic... thermal manage- ment, power flow, and voltage levels, and may be in the same power range already experienced in the very- high -power radar and fusion
A water-powered Energy Harvesting system with Bluetooth Low Energy interface
NASA Astrophysics Data System (ADS)
Kroener, M.; Allinger, K.; Berger, M.; Grether, E.; Wieland, F.; Heller, S.; Woias, P.
2016-11-01
This paper reports the design, and testing of a water turbine generator system for typical flow rates in domestic applications, with an integrated power management and a Bluetooth low energy (BLE) based RF data transmission interface. It is based on a commercially available low cost hydro generator. The generator is built into a housing with optimized reduced fluidic resistance to enable operation with flow rates as low as 6 l/min. The power management combines rectification, buffering, defined start-up, and circuit protection. An MSP430FR5949 microcontroller is used for data acquisition and processing. The data are transmitted via RF, using a Bluegiga BLE112 module in advertisement mode, to a PC where the measured flow rate is stored and displayed. The transmission rate of the wireless sensor node (WSN) is set to 1 Hz if enough power is available, which is the case for flow rates above 5.5 l/min. The electronics power demand is calculated to be 340 μW in average, while the generator is capable of delivering more than 200 mW for flow rates above 15 l/min.
System performance predictions for Space Station Freedom's electric power system
NASA Technical Reports Server (NTRS)
Kerslake, Thomas W.; Hojnicki, Jeffrey S.; Green, Robert D.; Follo, Jeffrey C.
1993-01-01
Space Station Freedom Electric Power System (EPS) capability to effectively deliver power to housekeeping and user loads continues to strongly influence Freedom's design and planned approaches for assembly and operations. The EPS design consists of silicon photovoltaic (PV) arrays, nickel-hydrogen batteries, and direct current power management and distribution hardware and cabling. To properly characterize the inherent EPS design capability, detailed system performance analyses must be performed for early stages as well as for the fully assembled station up to 15 years after beginning of life. Such analyses were repeatedly performed using the FORTRAN code SPACE (Station Power Analysis for Capability Evaluation) developed at the NASA Lewis Research Center over a 10-year period. SPACE combines orbital mechanics routines, station orientation/pointing routines, PV array and battery performance models, and a distribution system load-flow analysis to predict EPS performance. Time-dependent, performance degradation, low earth orbit environmental interactions, and EPS architecture build-up are incorporated in SPACE. Results from two typical SPACE analytical cases are presented: (1) an electric load driven case and (2) a maximum EPS capability case.
NASA Astrophysics Data System (ADS)
Le, Tuyen Quang; Lee, Kwang-Soo; Park, Jin-Soon; Ko, Jin Hwan
2014-06-01
In this study, flow-driven rotor simulations with a given load are conducted to analyze the operational characteristics of a vertical-axis Darrieus turbine, specifically its self-starting capability and fluctuations in its torque as well as the RPM. These characteristics are typically observed in experiments, though they cannot be acquired in simulations with a given tip speed ratio (TSR). First, it is shown that a flow-driven rotor simulation with a two-dimensional (2D) turbine model obtains power coefficients with curves similar to those obtained in a simulation with a given TSR. 3D flowdriven rotor simulations with an optimal geometry then show that a helical-bladed turbine has the following prominent advantages over a straight-bladed turbine of the same size: an improvement of its self-starting capabilities and reduced fluctuations in its torque and RPM curves as well as an increase in its power coefficient from 33% to 42%. Therefore, it is clear that a flow-driven rotor simulation provides more information for the design of a Darrieus turbine than a simulation with a given TSR before experiments.
Numerical model of solar dynamic radiator for parametric analysis
NASA Technical Reports Server (NTRS)
Rhatigan, Jennifer L.
1989-01-01
Growth power requirements for Space Station Freedom will be met through addition of 25 kW solar dynamic (SD) power modules. Extensive thermal and power cycle modeling capabilities have been developed which are powerful tools in Station design and analysis, but which prove cumbersome and costly for simple component preliminary design studies. In order to aid in refining the SD radiator to the mature design stage, a simple and flexible numerical model was developed. The model simulates heat transfer and fluid flow performance of the radiator and calculates area mass and impact survivability for many combinations of flow tube and panel configurations, fluid and material properties, and environmental and cycle variations.
NASA Technical Reports Server (NTRS)
Wester, Gene W. (Inventor)
1980-01-01
A unity power factor converter capable of effecting either inversion (dc-to-dc) or rectification (ac-to-dc), and capable of providing bilateral power control from a DC source (or load) through an AC transmission line to a DC load (or source) for power flow in either direction, is comprised of comparators for comparing the AC current i with an AC signal i.sub.ref (or its phase inversion) derived from the AC ports to generate control signals to operate a switch control circuit for high speed switching to shape the AC current waveform to a sine waveform, and synchronize it in phase and frequency with the AC voltage at the AC ports, by selectively switching the connections to a series inductor as required to increase or decrease the current i.
Fluid Flow Nozzle Energy Harvesters
NASA Technical Reports Server (NTRS)
Sherrit, Stewart; Lee, Hyeong Jae; Walkenmeyer, Phillip; Winn, Tyler; Tosi, Luis Phillipe; Colonius, Tim
2015-01-01
Power generation schemes that could be used downhole in an oil well to produce about 1 Watt average power with long-life (decades) are actively being developed. A variety of proposed energy harvesting schemes could be used to extract energy from this environment but each of these has their own limitations that limit their practical use. Since vibrating piezoelectric structures are solid state and can be driven below their fatigue limit, harvesters based on these structures are capable of operating for very long lifetimes (decades); thereby, possibly overcoming a principle limitation of existing technology based on rotating turbo-machinery. An initial survey identified that spline nozzle configurations can be used to excite a vibrating piezoelectric structure in such a way as to convert the abundant flow energy into useful amounts of electrical power. This paper presents current flow energy harvesting designs and experimental results of specific spline nozzle/ bimorph design configurations which have generated suitable power per nozzle at or above well production analogous flow rates. Theoretical models for non-dimensional analysis and constitutive electromechanical model are also presented in this paper to optimize the flow harvesting system.
Fluid flow nozzle energy harvesters
NASA Astrophysics Data System (ADS)
Sherrit, Stewart; Lee, Hyeong Jae; Walkemeyer, Phillip; Winn, Tyler; Tosi, Luis Phillipe; Colonius, Tim
2015-04-01
Power generation schemes that could be used downhole in an oil well to produce about 1 Watt average power with long-life (decades) are actively being developed. A variety of proposed energy harvesting schemes could be used to extract energy from this environment but each of these has their own limitations that limit their practical use. Since vibrating piezoelectric structures are solid state and can be driven below their fatigue limit, harvesters based on these structures are capable of operating for very long lifetimes (decades); thereby, possibly overcoming a principle limitation of existing technology based on rotating turbo-machinery. An initial survey [1] identified that spline nozzle configurations can be used to excite a vibrating piezoelectric structure in such a way as to convert the abundant flow energy into useful amounts of electrical power. This paper presents current flow energy harvesting designs and experimental results of specific spline nozzle/ bimorph design configurations which have generated suitable power per nozzle at or above well production analogous flow rates. Theoretical models for non-dimensional analysis and constitutive electromechanical model are also presented in this paper to optimize the flow harvesting system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Huaiguang; Zhang, Yingchen; Muljadi, Eduard
In this paper, a short-term load forecasting approach based network reconfiguration is proposed in a parallel manner. Specifically, a support vector regression (SVR) based short-term load forecasting approach is designed to provide an accurate load prediction and benefit the network reconfiguration. Because of the nonconvexity of the three-phase balanced optimal power flow, a second-order cone program (SOCP) based approach is used to relax the optimal power flow problem. Then, the alternating direction method of multipliers (ADMM) is used to compute the optimal power flow in distributed manner. Considering the limited number of the switches and the increasing computation capability, themore » proposed network reconfiguration is solved in a parallel way. The numerical results demonstrate the feasible and effectiveness of the proposed approach.« less
NASA Astrophysics Data System (ADS)
Baharin, Nuraida'Aadilia; Arzami, Amir Afiq; Singh, Baljit; Remeli, Muhammad Fairuz; Tan, Lippong; Oberoi, Amandeep
2017-04-01
In this study, a thermoelectric generator heat exchanger system was designed and simulated for electricity generation from solar pond. A thermoelectric generator heat exchanger was studied by using Computational Fluid Dynamics to simulate flow and heat transfer. A thermoelectric generator heat exchanger designed for passive in-pond flow used in solar pond for electrical power generation. A simple analysis simulation was developed to obtain the amount of electricity generated at different conditions for hot temperatures of a solar pond at different flow rates. Results indicated that the system is capable of producing electricity. This study and design provides an alternative way to generate electricity from solar pond in tropical countries like Malaysia for possible renewable energy applications.
NASA Astrophysics Data System (ADS)
Pasam, Gopi Krishna; Manohar, T. Gowri
2016-09-01
Determination of available transfer capability (ATC) requires the use of experience, intuition and exact judgment in order to meet several significant aspects in the deregulated environment. Based on these points, this paper proposes two heuristic approaches to compute ATC. The first proposed heuristic algorithm integrates the five methods known as continuation repeated power flow, repeated optimal power flow, radial basis function neural network, back propagation neural network and adaptive neuro fuzzy inference system to obtain ATC. The second proposed heuristic model is used to obtain multiple ATC values. Out of these, a specific ATC value will be selected based on a number of social, economic, deregulated environmental constraints and related to specific applications like optimization, on-line monitoring, and ATC forecasting known as multi-objective decision based optimal ATC. The validity of results obtained through these proposed methods are scrupulously verified on various buses of the IEEE 24-bus reliable test system. The results presented and derived conclusions in this paper are very useful for planning, operation, maintaining of reliable power in any power system and its monitoring in an on-line environment of deregulated power system. In this way, the proposed heuristic methods would contribute the best possible approach to assess multiple objective ATC using integrated methods.
NASA Technical Reports Server (NTRS)
Walowit, Jed A.
1994-01-01
A viewgraph presentation is made showing the capabilities of the computer code SPIRALI. Overall capabilities of SPIRALI include: computes rotor dynamic coefficients, flow, and power loss for cylindrical and face seals; treats turbulent, laminar, Couette, and Poiseuille dominated flows; fluid inertia effects are included; rotor dynamic coefficients in three (face) or four (cylindrical) degrees of freedom; includes effects of spiral grooves; user definable transverse film geometry including circular steps and grooves; independent user definable friction factor models for rotor and stator; and user definable loss coefficients for sudden expansions and contractions.
Available Transfer Capability Determination Using Hybrid Evolutionary Algorithm
NASA Astrophysics Data System (ADS)
Jirapong, Peeraool; Ongsakul, Weerakorn
2008-10-01
This paper proposes a new hybrid evolutionary algorithm (HEA) based on evolutionary programming (EP), tabu search (TS), and simulated annealing (SA) to determine the available transfer capability (ATC) of power transactions between different control areas in deregulated power systems. The optimal power flow (OPF)-based ATC determination is used to evaluate the feasible maximum ATC value within real and reactive power generation limits, line thermal limits, voltage limits, and voltage and angle stability limits. The HEA approach simultaneously searches for real power generations except slack bus in a source area, real power loads in a sink area, and generation bus voltages to solve the OPF-based ATC problem. Test results on the modified IEEE 24-bus reliability test system (RTS) indicate that ATC determination by the HEA could enhance ATC far more than those from EP, TS, hybrid TS/SA, and improved EP (IEP) algorithms, leading to an efficient utilization of the existing transmission system.
Computations of unsteady multistage compressor flows in a workstation environment
NASA Technical Reports Server (NTRS)
Gundy-Burlet, Karen L.
1992-01-01
High-end graphics workstations are becoming a necessary tool in the computational fluid dynamics environment. In addition to their graphic capabilities, workstations of the latest generation have powerful floating-point-operation capabilities. As workstations become common, they could provide valuable computing time for such applications as turbomachinery flow calculations. This report discusses the issues involved in implementing an unsteady, viscous multistage-turbomachinery code (STAGE-2) on workstations. It then describes work in which the workstation version of STAGE-2 was used to study the effects of axial-gap spacing on the time-averaged and unsteady flow within a 2 1/2-stage compressor. The results included time-averaged surface pressures, time-averaged pressure contours, standard deviation of pressure contours, pressure amplitudes, and force polar plots.
Real-Time Aerodynamic Flow and Data Visualization in an Interactive Virtual Environment
NASA Technical Reports Server (NTRS)
Schwartz, Richard J.; Fleming, Gary A.
2005-01-01
Significant advances have been made to non-intrusive flow field diagnostics in the past decade. Camera based techniques are now capable of determining physical qualities such as surface deformation, surface pressure and temperature, flow velocities, and molecular species concentration. In each case, extracting the pertinent information from the large volume of acquired data requires powerful and efficient data visualization tools. The additional requirement for real time visualization is fueled by an increased emphasis on minimizing test time in expensive facilities. This paper will address a capability titled LiveView3D, which is the first step in the development phase of an in depth, real time data visualization and analysis tool for use in aerospace testing facilities.
Miniature piezo electric vacuum inlet valve
Keville, Robert F.; Dietrich, Daniel D.
1998-03-24
A miniature piezo electric vacuum inlet valve having a fast pulse rate and is battery operated with variable flow capability. The low power (<1.6 watts), high pulse rate (<2 milliseconds), variable flow inlet valve is utilized for mass spectroscopic applications or other applications where pulsed or continuous flow conditions are needed. The inlet valve also has a very minimal dead volume of less than 0.01 std/cc. The valve can utilize, for example, a 12 Vdc input/750 Vdc, 3 mA output power supply compared to conventional piezo electric valves which require preloading of the crystal drive mechanism and 120 Vac, thus the valve of the present invention is smaller by a factor of three.
Capabilities and Testing of the Fission Surface Power Primary Test Circuit (FSP-PTC)
NASA Technical Reports Server (NTRS)
Garber, Anne E.
2007-01-01
An actively pumped alkali metal flow circuit, designed and fabricated at the NASA Marshall Space Flight Center, is currently undergoing testing in the Early Flight Fission Test Facility (EFF-TF). Sodium potassium (NaK), which was used in the SNAP-10A fission reactor, was selected as the primary coolant. Basic circuit components include: simulated reactor core, NaK to gas heat exchanger, electromagnetic (EM) liquid metal pump, liquid metal flowmeter, load/drain reservoir, expansion reservoir, test section, and instrumentation. Operation of the circuit is based around a 37-pin partial-array core (pin and flow path dimensions are the same as those in a full core), designed to operate at 33 kWt. NaK flow rates of greater than 1 kg/sec may be achieved, depending upon the power applied to the EM pump. The heat exchanger provides for the removal of thermal energy from the circuit, simulating the presence of an energy conversion system. The presence of the test section increases the versatility of the circuit. A second liquid metal pump, an energy conversion system, and highly instrumented thermal simulators are all being considered for inclusion within the test section. This paper summarizes the capabilities and ongoing testing of the Fission Surface Power Primary Test Circuit (FSP-PTC).
NASA Technical Reports Server (NTRS)
Havens, Vance; Ragaller, Dana
1988-01-01
Management of two-phase fluid and control of the heat transfer process in microgravity is a technical challenge that must be addressed for an orbital Organic Rankine Cycle (ORC) application. A test program was performed in 1-g that satisfactorily demonstrated the two-phase management capability of the rotating fluid management device (RFMD) and shear-flow condenser. Operational tests of the RFMD and shear flow condenser in adverse gravity orientations, confirmed that the centrifugal forces in the RFMD and the shear forces in the condenser were capable of overcoming gravity forces. In a microgravity environment, these same forces would not have to compete against gravity and would therefore be dominant. The specific test program covered the required operating range of the Space Station Solar Dynamic Rankine Cycle power system. Review of the test data verified that: fluid was pumped from the RFMD in all attitudes; subcooled states in the condenser were achieved; condensate was pushed uphill against gravity; and noncondensible gases were swept through the condenser.
Modeling of turbulent separated flows for aerodynamic applications
NASA Technical Reports Server (NTRS)
Marvin, J. G.
1983-01-01
Steady, high speed, compressible separated flows modeled through numerical simulations resulting from solutions of the mass-averaged Navier-Stokes equations are reviewed. Emphasis is placed on benchmark flows that represent simplified (but realistic) aerodynamic phenomena. These include impinging shock waves, compression corners, glancing shock waves, trailing edge regions, and supersonic high angle of attack flows. A critical assessment of modeling capabilities is provided by comparing the numerical simulations with experiment. The importance of combining experiment, numerical algorithm, grid, and turbulence model to effectively develop this potentially powerful simulation technique is stressed.
Zhu, Xiuping; Kim, Taeyoung; Rahimi, Mohammad; Gorski, Christopher A; Logan, Bruce E
2017-02-22
Salinity gradient energy can be directly converted into electrical power by using reverse electrodialysis (RED) and other technologies, but reported power densities have been too low for practical applications. Herein, the RED stack performance was improved by using 2,6-dihydroxyanthraquinone and ferrocyanide as redox couples. These electrolytes were then used in a flow battery to produce an integrated RED stack and flow battery (RED-FB) system capable of capturing, storing, and discharging salinity gradient energy. Energy captured from the RED stack was discharged in the flow battery at a maximum power density of 3.0 kW m -2 -anode, which was similar to the flow batteries charged by electrical power and could be used for practical applications. Salinity gradient energy captured from the RED stack was recovered from the electrolytes as electricity with 30 % efficiency, and the maximum energy density of the system was 2.4 kWh m -3 -anolyte. The combined RED-FB system overcomes many limitations of previous approaches to capture, store, and use salinity gradient energy from natural or engineered sources. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Flow reversal power limit for the HFBR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, L.Y.; Tichler, P.R.
The High Flux Beam Reactor (HFBR) is a pressurized heavy water moderated and cooled research reactor that began operation at 40 MW. The reactor was subsequently upgraded to 60 MW and operated at that level for several years. The reactor undergoes a buoyancy-driven reversal of flow in the reactor core following certain postulated accidents. Questions which were raised about the afterheat removal capability during the flow reversal transition led to a reactor shutdown and subsequent resumption of operation at a reduced power of 30 MW. An experimental and analytical program to address these questions is described in this report. Themore » experiments were single channel flow reversal tests under a range of conditions. The analytical phase involved simulations of the tests to benchmark the physical models and development of a criterion for dryout. The criterion is then used in simulations of reactor accidents to determine a safe operating power level. It is concluded that the limit on the HFBR operating power with respect to the issue of flow reversal is in excess of 60 MW. Direct use of the experimental results and an understanding of the governing phenomenology supports this conclusion.« less
NASA Astrophysics Data System (ADS)
Kondylis, Georgios P.; Vokas, Georgios A.; Anastasiadis, Anestis G.; Konstantinopoulos, Stavros A.
2017-02-01
The main purpose of this paper is to examine the technological feasibility of a small autonomous network, with electricity storage capability, which is completely electrified by wind energy. The excess energy produced, with respect to the load requirements, is sent to the batteries for storage. When the energy produced by the wind generator is not sufficient, load's energy requirement is covered by the battery system, ensuring, however, that voltage, frequency and other system characteristics are within the proper boundaries. For the purpose of this study, a Voltage Oriented Control system has been developed in order to monitor the autonomous operation and perform the energy management of the network. This system manages the power flows between the load and the storage system by properly controlling the Pulse Width Modulation pulses in the converter, thus ensuring power flows are adequate and frequency remains under control. The experimental results clearly indicate that a stand-alone wind energy system based on battery energy storage system is feasible and reliable. This paves the way for fully renewable and zero emission energy schemes.
Study of an engine flow diverter system for a large scale ejector powered aircraft model
NASA Technical Reports Server (NTRS)
Springer, R. J.; Langley, B.; Plant, T.; Hunter, L.; Brock, O.
1981-01-01
Requirements were established for a conceptual design study to analyze and design an engine flow diverter system and to include accommodations for an ejector system in an existing 3/4 scale fighter model equipped with YJ-79 engines. Model constraints were identified and cost-effective limited modification was proposed to accept the ejectors, ducting and flow diverter valves. Complete system performance was calculated and a versatile computer program capable of analyzing any ejector system was developed.
Development of Filtered Rayleigh Scattering for Accurate Measurement of Gas Velocity
NASA Technical Reports Server (NTRS)
Miles, Richard B.; Lempert, Walter R.
1995-01-01
The overall goals of this research were to develop new diagnostic tools capable of capturing unsteady and/or time-evolving, high-speed flow phenomena. The program centers around the development of Filtered Rayleigh Scattering (FRS) for velocity, temperature, and density measurement, and the construction of narrow linewidth laser sources which will be capable of producing an order MHz repetition rate 'burst' of high power pulses.
Numerical model of solar dynamic radiator for parametric analysis
NASA Technical Reports Server (NTRS)
Rhatigan, Jennifer L.
1989-01-01
Growth power requirements for Space Station Freedom will be met through addition of 25 kW solar dynamic (SD) power modules. The SD module rejects waste heat from the power conversion cycle to space through a pumped-loop, multi-panel, deployable radiator. The baseline radiator configuration was defined during the Space Station conceptual design phase and is a function of the state point and heat rejection requirements of the power conversion unit. Requirements determined by the overall station design such as mass, system redundancy, micrometeoroid and space debris impact survivability, launch packaging, costs, and thermal and structural interaction with other station components have also been design drivers for the radiator configuration. Extensive thermal and power cycle modeling capabilities have been developed which are powerful tools in Station design and analysis, but which prove cumbersome and costly for simple component preliminary design studies. In order to aid in refining the SD radiator to the mature design stage, a simple and flexible numerical model was developed. The model simulates heat transfer and fluid flow performance of the radiator and calculates area mass and impact survivability for many combinations of flow tube and panel configurations, fluid and material properties, and environmental and cycle variations. A brief description and discussion of the numerical model, it's capabilities and limitations, and results of the parametric studies performed is presented.
Miniature piezo electric vacuum inlet valve
Keville, R.F.; Dietrich, D.D.
1998-03-24
A miniature piezo electric vacuum inlet valve having a fast pulse rate and is battery operated with variable flow capability is disclosed. The low power (<1.6 watts), high pulse rate (<2 milliseconds), variable flow inlet valve is utilized for mass spectroscopic applications or other applications where pulsed or continuous flow conditions are needed. The inlet valve also has a very minimal dead volume of less than 0.01 std/cc. The valve can utilize, for example, a 12 Vdc input/750 Vdc, 3 mA output power supply compared to conventional piezo electric valves which require preloading of the crystal drive mechanism and 120 Vac, thus the valve of the present invention is smaller by a factor of three. 6 figs.
Naivar, Mark A.; Wilder, Mark E.; Habbersett, Robert C.; Woods, Travis A.; Sebba, David S.; Nolan, John P.; Graves, Steven W.
2014-01-01
Fully digital data acquisition systems for use in flow cytometry provide excellent flexibility and precision. Here, we demonstrate the development of a low cost, small, and low power digital flow cytometry data acquisition system using a single microcontroller chip with an integrated analog to digital converter (ADC). Our demonstration system uses a commercially available evaluation board making the system simple to integrate into a flow cytometer. We have evaluated this system using calibration microspheres analyzed on commercial, slow-flow, and CCD based flow cytometers. In our evaluations, our demonstration data system clearly resolves all eight peaks of a Rainbow microsphere set on both a slow-flow flow cytometer and a retrofitted BD FACScalibur, which indicates it has the sensitivity and resolution required for most flow cytometry applications. It is also capable of millisecond time resolution, full waveform collection, and selective triggering of data collection from a CCD camera. The capability of our demonstration system suggests that the use of microcontrollers for flow cytometry digital data-acquisition will be increasingly valuable for extending the life of older cytometers and provides a compelling data-system design approach for low-cost, portable flow cytometers. PMID:19852060
Naivar, Mark A; Wilder, Mark E; Habbersett, Robert C; Woods, Travis A; Sebba, David S; Nolan, John P; Graves, Steven W
2009-12-01
Fully digital data acquisition systems for use in flow cytometry provide excellent flexibility and precision. Here, we demonstrate the development of a low cost, small, and low power digital flow cytometry data acquisition system using a single microcontroller chip with an integrated analog to digital converter (ADC). Our demonstration system uses a commercially available evaluation board making the system simple to integrate into a flow cytometer. We have evaluated this system using calibration microspheres analyzed on commercial, slow-flow, and CCD-based flow cytometers. In our evaluations, our demonstration data system clearly resolves all eight peaks of a Rainbow microsphere set on both a slow-flow flow cytometer and a retrofitted BD FACScalibur, which indicates it has the sensitivity and resolution required for most flow cytometry applications. It is also capable of millisecond time resolution, full waveform collection, and selective triggering of data collection from a CCD camera. The capability of our demonstration system suggests that the use of microcontrollers for flow cytometry digital data-acquisition will be increasingly valuable for extending the life of older cytometers and provides a compelling data-system design approach for low-cost, portable flow cytometers.
NASA Astrophysics Data System (ADS)
Stens, C.; Riedelbauch, S.
2017-04-01
Due to a more fluctuating energy production caused by renewable energies such as wind and solar power, the number of changes between operating points in pumped storage power plants has increased over the last years. To further increase available regulating power, it is desirable to speed up these changes of operation conditions in Hydro units. Previous studies showed that CFD is well capable of predicting the flow phenomena in the machine under unsteady conditions for a large guide vane opening angle. The present paper investigates the benefits of nearly closed guide vanes during the transition. Results are compared between the two different angles as well as between simulation and measurement.
Nested high-resolution large-eddy simulations in WRF to support wind power
NASA Astrophysics Data System (ADS)
Mirocha, J.; Kirkil, G.; Kosovic, B.; Lundquist, J. K.
2009-12-01
The WRF model’s grid nesting capability provides a potentially powerful framework for simulating flow over a wide range of scales. One such application is computation of realistic inflow boundary conditions for large eddy simulations (LES) by nesting LES domains within mesoscale domains. While nesting has been widely and successfully applied at GCM to mesoscale resolutions, the WRF model’s nesting behavior at the high-resolution (Δx < 1000m) end of the spectrum is less well understood. Nesting LES within msoscale domains can significantly improve turbulent flow prediction at the scale of a wind park, providing a basis for superior site characterization, or for improved simulation of turbulent inflows encountered by turbines. We investigate WRF’s grid nesting capability at high mesh resolutions using nested mesoscale and large-eddy simulations. We examine the spatial scales required for flow structures to equilibrate to the finer mesh as flow enters a nest, and how the process depends on several parameters, including grid resolution, turbulence subfilter stress models, relaxation zones at nest interfaces, flow velocities, surface roughnesses, terrain complexity and atmospheric stability. Guidance on appropriate domain sizes and turbulence models for LES in light of these results is provided This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 LLNL-ABS-416482
Development of an Unmanned Air Research Vehicle for Supermaneuverability Studies
1990-03-29
VORTEX CONTROL Another emerging concept involves strake- generated vortex interactions, which improves maneuverability using non-linear lift generated by...undisturbed flow and is capable of prcJucing powerful vortex flow fields at high angles of attack. Asymmetrical vort ,;x control is feasible with actuated...control configuration, serves as an initial test vehicle for supermaneuverability analysis . Due to the relatively small scale of the UAV and the use of
Aerodynamic simulation strategies assessment for a fenestron in hover flight
NASA Astrophysics Data System (ADS)
Marino, M.; Gourdain, N.; Legras, G.; Alfano, D.
2017-06-01
The Fenestron® has a crucial antitorque function and its sizing is a key point of the Helicopter design, especially regarding thrust and power predictions. This paper reports the investigations done on a full scale Dauphin Fenestron®. The objectives are, first, to evaluate the in§uence of some numerical parameters on the performance of the Fenestron®; and then, the flow is analyzed for a high incidence pitch, for which the rotor blade can experience massive boundary layer separations. Simulations are carried out on a single blade passage model. Several parameters are benched such as grid quality, numerical schemes, and turbulence modeling. A comparison with test bench measurements is carried out to evaluate the capability of the numerical simulations to predict both global performance (thrust and power) and local flows (static pressure at the shroud and radial profiles inside the vein). The analysis demonstrates the capability of numerical simulations to accurately estimate the global performance of the Fenestron®, including at high pitch angles. However, some discrepancies remain on the local flow, especially in the vicinity of the rotor shroud. A more detailed analysis of the local flow is performed at a blade pitch angle of 35°, with a particular interest for the blade tip region.
NASA Technical Reports Server (NTRS)
Colozza, Anthony J.; George, Pat; Gambrell, Ronnie; Chapman, Chris
2013-01-01
A habitat demonstration unit (HDU) was constructed at NASA Johnson Space Center (JSC) and designed by a multicenter NASA team led out of NASA Kennedy Space Center (KSC). The HDU was subsequently utilized at the 2010 Desert Research and Technology Studies (RATS) program held at the Black Point Lava Flow in Arizona. This report describes the power system design, installation and operation for the HDU. The requirements for the power system were to provide 120 VAC, 28 VDC, and 120 VDC power to the various loads within the HDU. It also needed to be capable of providing power control and real-time operational data on the load's power consumption. The power system had to be capable of operating off of a 3 phase 480 VAC generator as well as 2 solar photovoltaic (PV) power systems. The system operated well during the 2 week Desert RATS campaign and met all of the main goals of the system. The power system is being further developed to meet the future needs of the HDU and options for this further development are discussed.
NASA Astrophysics Data System (ADS)
Kim, G. H.; Kim, A. R.; Kim, S.; Park, M.; Yu, I. K.; Seong, K. C.; Won, Y. J.
2011-11-01
Superconducting magnetic energy storage (SMES) system is a DC current driven device and can be utilized to improve power quality particularly in connection with renewable energy sources due to higher efficiency and faster response than other devices. This paper suggests a novel connection topology of SMES which can smoothen the output power flow of the wind power generation system (WPGS). The structure of the proposed system is cost-effective because it reduces a power converter in comparison with a conventional application of SMES. One more advantage of SMES in the proposed system is to improve the capability of low voltage ride through (LVRT) for the permanent magnet synchronous generator (PMSG) type WPGS. The proposed system including a SMES has been modeled and analyzed by a PSCAD/EMTDC. The simulation results show the effectiveness of the novel SMES application strategy to not only mitigate the output power of the PMSG but also improve the capability of LVRT for PMSG type WPGS.
A Numerical Study of the Effects of Curvature and Convergence on Dilution Jet Mixing
NASA Technical Reports Server (NTRS)
Holdeman, J. D.; Reynolds, R.; White, C.
1987-01-01
An analytical program was conducted to assemble and assess a three-dimensional turbulent viscous flow computer code capable of analyzing the flow field in the transition liners of small gas turbine engines. This code is of the TEACH type with hybrid numerics, and uses the power law and SIMPLER algorithms, an orthogonal curvilinear coordinate system, and an algebraic Reynolds stress turbulence model. The assessments performed in this study, consistent with results in the literature, showed that in its present form this code is capable of predicting trends and qualitative results. The assembled code was used to perform a numerical experiment to investigate the effects of curvature and convergence in the transition liner on the mixing of single and opposed rows of cool dilution jets injected into a hot mainstream flow.
A numerical study of the effects of curvature and convergence on dilution jet mixing
NASA Technical Reports Server (NTRS)
Holdeman, J. D.; Reynolds, R.; White, C.
1987-01-01
An analytical program was conducted to assemble and assess a three-dimensional turbulent viscous flow computer code capable of analyzing the flow field in the transition liners of small gas turbine engines. This code is of the TEACH type with hybrid numerics, and uses the power law and SIMPLER algorithms, an orthogonal curvilinear coordinate system, and an algebraic Reynolds stress turbulence model. The assessments performed in this study, consistent with results in the literature, showed that in its present form this code is capable of predicting trends and qualitative results. The assembled code was used to perform a numerical experiment to investigate the effects of curvature and convergence in the transition liner on the mixing of single and opposed rows of cool dilution jets injected into a hot mainstream flow.
Gourdain, P-A; Peebles, W A
2008-10-01
Reflectometry has successfully demonstrated measurements of many important parameters in high temperature tokamak fusion plasmas. However, implementing such capabilities in a high-field, large plasma, such as ITER, will be a significant challenge. In ITER, the ratio of plasma size (meters) to the required reflectometry source wavelength (millimeters) is significantly larger than in existing fusion experiments. This suggests that the flow of the launched reflectometer millimeter-wave power can be realistically analyzed using three-dimensional ray tracing techniques. The analytical and numerical studies presented will highlight the fact that the group velocity (or power flow) of the launched microwaves is dependent on the direction of wave propagation relative to the internal magnetic field. It is shown that this dependence strongly modifies power flow near the cutoff layer in a manner that embeds the local magnetic field direction in the "footprint" of the power returned toward the launch antenna. It will be shown that this can potentially be utilized to locally determine the magnetic field pitch angle at the cutoff location. The resultant beam drift and distortion due to magnetic field and relativistic effects also have significant consequences on the design of reflectometry systems for large, high-field fusion experiments. These effects are discussed in the context of the upcoming ITER burning plasma experiment.
The Pioneer 11 high-field fluxgate magnetometer
NASA Technical Reports Server (NTRS)
Acuna, M. H.; Ness, N. F.
1973-01-01
The High Field Fluxgate Magnetometer Experiment flow aboard the Pioneer 11 spacecraft to investigate Jupiter's magnetic field is described. The instrument extends the spacecraft's upper limit measurement capability by more than an order of magnitude to 17.3 gauss with minimum power and volume requirements.
Implantable physiologic controller for left ventricular assist devices with telemetry capability.
Asgari, Siavash S; Bonde, Pramod
2014-01-01
Rotary type left ventricular assist devices have mitigated the problem of durability associated with earlier pulsatile pumps and demonstrated improved survival. However, the compromise is the loss of pulsatility due to continuous flow and retained percutaneous driveline leading to increased mortality and morbidity. Lack of pulsatility is implicated in increased gastrointestinal bleeding, aortic incompetence, and diastolic hypertension. We present a novel, wirelessly powered, ultra-compact, implantable physiologic controller capable of running a left ventricular assist device in a pulsatile mode with wireless power delivery. The schematic of our system was laid out on a circuit board to wirelessly receive power and run a left ventricular assist device with required safety and backup measures. We have embedded an antenna and wireless network for telemetry. Multiple signal processing steps and controlling algorithm were incorporated. The controller was tested in in vitro and in vivo experiments. The controller drove left ventricular assist devices continuously for 2 weeks in an in vitro setup and in vivo without any failure. Our controller is more power efficient than the current Food and Drug Administration-approved left ventricular assist device controllers. When used with electrocardiography synchronization, the controller allowed on-demand customization of operation with instantaneous flow and revolutions per minute changes, resulting in a pulsatile flow with adjustable pulse pressure. Our test results prove the system to be remarkably safe, accurate, and efficient. The unique combination of wireless powering and small footprint makes this system an ideal totally implantable physiologic left ventricular assist device system. Copyright © 2014 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.
Space station electrical power distribution analysis using a load flow approach
NASA Technical Reports Server (NTRS)
Emanuel, Ervin M.
1987-01-01
The space station's electrical power system will evolve and grow in a manner much similar to the present terrestrial electrical power system utilities. The initial baseline reference configuration will contain more than 50 nodes or busses, inverters, transformers, overcurrent protection devices, distribution lines, solar arrays, and/or solar dynamic power generating sources. The system is designed to manage and distribute 75 KW of power single phase or three phase at 20 KHz, and grow to a level of 300 KW steady state, and must be capable of operating at a peak of 450 KW for 5 to 10 min. In order to plan far into the future and keep pace with load growth, a load flow power system analysis approach must be developed and utilized. This method is a well known energy assessment and management tool that is widely used throughout the Electrical Power Utility Industry. The results of a comprehensive evaluation and assessment of an Electrical Distribution System Analysis Program (EDSA) is discussed. Its potential use as an analysis and design tool for the 20 KHz space station electrical power system is addressed.
Asadnia, Mohsen; Kottapalli, Ajay Giri Prakash; Miao, Jianmin; Warkiani, Majid Ebrahimi; Triantafyllou, Michael S
2015-10-06
Using biological sensors, aquatic animals like fishes are capable of performing impressive behaviours such as super-manoeuvrability, hydrodynamic flow 'vision' and object localization with a success unmatched by human-engineered technologies. Inspired by the multiple functionalities of the ubiquitous lateral-line sensors of fishes, we developed flexible and surface-mountable arrays of micro-electromechanical systems (MEMS) artificial hair cell flow sensors. This paper reports the development of the MEMS artificial versions of superficial and canal neuromasts and experimental characterization of their unique flow-sensing roles. Our MEMS flow sensors feature a stereolithographically fabricated polymer hair cell mounted on Pb(Zr(0.52)Ti(0.48))O3 micro-diaphragm with floating bottom electrode. Canal-inspired versions are developed by mounting a polymer canal with pores that guide external flows to the hair cells embedded in the canal. Experimental results conducted employing our MEMS artificial superficial neuromasts (SNs) demonstrated a high sensitivity and very low threshold detection limit of 22 mV/(mm s(-1)) and 8.2 µm s(-1), respectively, for an oscillating dipole stimulus vibrating at 35 Hz. Flexible arrays of such superficial sensors were demonstrated to localize an underwater dipole stimulus. Comparative experimental studies revealed a high-pass filtering nature of the canal encapsulated sensors with a cut-off frequency of 10 Hz and a flat frequency response of artificial SNs. Flexible arrays of self-powered, miniaturized, light-weight, low-cost and robust artificial lateral-line systems could enhance the capabilities of underwater vehicles. © 2015 The Author(s).
Asadnia, Mohsen; Kottapalli, Ajay Giri Prakash; Miao, Jianmin; Warkiani, Majid Ebrahimi; Triantafyllou, Michael S.
2015-01-01
Using biological sensors, aquatic animals like fishes are capable of performing impressive behaviours such as super-manoeuvrability, hydrodynamic flow ‘vision’ and object localization with a success unmatched by human-engineered technologies. Inspired by the multiple functionalities of the ubiquitous lateral-line sensors of fishes, we developed flexible and surface-mountable arrays of micro-electromechanical systems (MEMS) artificial hair cell flow sensors. This paper reports the development of the MEMS artificial versions of superficial and canal neuromasts and experimental characterization of their unique flow-sensing roles. Our MEMS flow sensors feature a stereolithographically fabricated polymer hair cell mounted on Pb(Zr0.52Ti0.48)O3 micro-diaphragm with floating bottom electrode. Canal-inspired versions are developed by mounting a polymer canal with pores that guide external flows to the hair cells embedded in the canal. Experimental results conducted employing our MEMS artificial superficial neuromasts (SNs) demonstrated a high sensitivity and very low threshold detection limit of 22 mV/(mm s−1) and 8.2 µm s−1, respectively, for an oscillating dipole stimulus vibrating at 35 Hz. Flexible arrays of such superficial sensors were demonstrated to localize an underwater dipole stimulus. Comparative experimental studies revealed a high-pass filtering nature of the canal encapsulated sensors with a cut-off frequency of 10 Hz and a flat frequency response of artificial SNs. Flexible arrays of self-powered, miniaturized, light-weight, low-cost and robust artificial lateral-line systems could enhance the capabilities of underwater vehicles. PMID:26423435
Ma, Z.; Mehos, M.; Glatzmaier, G.; ...
2015-05-01
Concentrating solar power (CSP) is an effective way to convert solar energy into electricity with an economic energy-storage capability for grid-scale, dispatchable renewable power generation. However, CSP plants need to reduce costs to be competitive with other power generation methods. Two ways to reduce CSP cost are to increase solar-to-electric efficiency by supporting a high-efficiency power conversion system, and to use low-cost materials in the system. The current nitrate-based molten-salt systems have limited potential for cost reduction and improved power-conversion efficiency with high operating temperatures. Even with significant improvements in operating performance, these systems face challenges in satisfying the costmore » and performance targets. This paper introduces a novel CSP system with high-temperature capability that can be integrated into a high-efficiency CSP plant and that meets the low-cost, high-performance CSP targets. Unlike a conventional salt-based CSP plant, this design uses gas/solid, two-phase flow as the heat-transfer fluid (HTF); separated solid particles as storage media; and stable, inexpensive materials for the high-temperature receiver and energy storage containment. We highlight the economic and performance benefits of this innovative CSP system design, which has thermal energy storage capability for base-load power generation.« less
Sharp Interface Tracking in Rotating Microflows of Solvent Extraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glimm, James; Almeida, Valmor de; Jiao, Xiangmin
2013-01-08
The objective of this project is to develop a specialized sharp interface tracking simulation capability for predicting interaction of micron-sized drops and bubbles in rotating flows relevant to optimized design of contactor devices used in solvent extraction processes of spent nuclear fuel reprocessing. The primary outcomes of this project include the capability to resolve drops and bubbles micro-hydrodynamics in solvent extraction contactors, determining from first principles continuum fluid mechanics how micro-drops and bubbles interact with each other and the surrounding shearing fluid for realistic flows. In the near term, this effort will play a central role in providing parameters andmore » insight into the flow dynamics of models that average over coarser scales, say at the millimeter unit length. In the longer term, it will prove to be the platform to conduct full-device, detailed simulations as parallel computing power reaches the exaflop level. The team will develop an accurate simulation tool for flows containing interacting droplets and bubbles with sharp interfaces under conditions that mimic those found in realistic contactor operations. The main objective is to create an off-line simulation capability to model drop and bubble interactions in a domain representative of the averaged length scale. The technical approach is to combine robust interface tracking software, subgrid modeling, validation quality experiments, powerful computational hardware, and a team with simulation modeling, physical modeling and technology integration experience. Simulations will then fully resolve the microflow of drops and bubbles at the microsecond time scale. This approach is computationally intensive but very accurate in treating important coupled physical phenomena in the vicinity of interfaces. The method makes it possible to resolve spatial scales smaller than the typical distance between bubbles and to model some non-equilibrium thermodynamic features such as finite critical tension in cavitating liquids« less
NASA Technical Reports Server (NTRS)
Kemp, N. H.; Root, R. G.; Wu., P. K. S.; Caledonia, G. E.; Pirri, A. N.
1976-01-01
CW laser heated rocket propulsion was investigated in both the flowing core and stationary core configurations. The laser radiation considered was 10.6 micrometers, and the working gas was unseeded hydrogen. The areas investigated included initiation of a hydrogen plasma capable of absorbing laser radiation, the radiation emission properties of hot, ionized hydrogen, the flow of hot hydrogen while absorbing and radiating, the heat losses from the gas and the rocket performance. The stationary core configuration was investigated qualitatively and semi-quantitatively. It was found that the flowing core rockets can have specific impulses between 1,500 and 3,300 sec. They are small devices, whose heating zone is only a millimeter to a few centimeters long, and millimeters to centimeters in radius, for laser power levels varying from 10 to 5,000 kW, and pressure levels of 3 to 10 atm. Heat protection of the walls is a vital necessity, though the fraction of laser power lost to the walls can be as low as 10% for larger powers, making the rockets thermally efficient.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shahidehpour, Mohammad
Integrating 20% or more wind energy into the system and transmitting large sums of wind energy over long distances will require a decision making capability that can handle very large scale power systems with tens of thousands of buses and lines. There is a need to explore innovative analytical and implementation solutions for continuing reliable operations with the most economical integration of additional wind energy in power systems. A number of wind integration solution paths involve the adoption of new operating policies, dynamic scheduling of wind power across interties, pooling integration services, and adopting new transmission scheduling practices. Such practicesmore » can be examined by the decision tool developed by this project. This project developed a very efficient decision tool called Wind INtegration Simulator (WINS) and applied WINS to facilitate wind energy integration studies. WINS focused on augmenting the existing power utility capabilities to support collaborative planning, analysis, and wind integration project implementations. WINS also had the capability of simulating energy storage facilities so that feasibility studies of integrated wind energy system applications can be performed for systems with high wind energy penetrations. The development of WINS represents a major expansion of a very efficient decision tool called POwer Market Simulator (POMS), which was developed by IIT and has been used extensively for power system studies for decades. Specifically, WINS provides the following superiorities; (1) An integrated framework is included in WINS for the comprehensive modeling of DC transmission configurations, including mono-pole, bi-pole, tri-pole, back-to-back, and multi-terminal connection, as well as AC/DC converter models including current source converters (CSC) and voltage source converters (VSC); (2) An existing shortcoming of traditional decision tools for wind integration is the limited availability of user interface, i.e., decision results are often text-based demonstrations. WINS includes a powerful visualization tool and user interface capability for transmission analyses, planning, and assessment, which will be of great interest to power market participants, power system planners and operators, and state and federal regulatory entities; and (3) WINS can handle extended transmission models for wind integration studies. WINS models include limitations on transmission flow as well as bus voltage for analyzing power system states. The existing decision tools often consider transmission flow constraints (dc power flow) alone which could result in the over-utilization of existing resources when analyzing wind integration. WINS can be used to assist power market participants including transmission companies, independent system operators, power system operators in vertically integrated utilities, wind energy developers, and regulatory agencies to analyze economics, security, and reliability of various options for wind integration including transmission upgrades and the planning of new transmission facilities. WINS can also be used by industry for the offline training of reliability and operation personnel when analyzing wind integration uncertainties, identifying critical spots in power system operation, analyzing power system vulnerabilities, and providing credible decisions for examining operation and planning options for wind integration. Researches in this project on wind integration included (1) Development of WINS; (2) Transmission Congestion Analysis in the Eastern Interconnection; (3) Analysis of 2030 Large-Scale Wind Energy Integration in the Eastern Interconnection; (4) Large-scale Analysis of 2018 Wind Energy Integration in the Eastern U.S. Interconnection. The research resulted in 33 papers, 9 presentations, 9 PhD degrees, 4 MS degrees, and 7 awards. The education activities in this project on wind energy included (1) Wind Energy Training Facility Development; (2) Wind Energy Course Development.« less
A Fully Directional Universal Power Electronic Interface for EV, HEV, and PHEV Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onar, Omer C
2012-01-01
This study focuses on a universal power electronic interface that can be utilized in any type of the electric vehicles, hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEVs). Basically, the proposed converter interfaces the energy storage device of the vehicle with the motor drive and the external charger, in case of PHEVs. The proposed converter is capable of operating in all directions in buck or boost modes with a noninverted output voltage (positive output voltage with respect to the input) and bidirectional power flow.
Design of a High Voltage Power Supply Providing a Force Field for a Fluid Experiment
NASA Astrophysics Data System (ADS)
Herty, Frank
2005-05-01
As part of the GeoFlow fluid experiment an ac high voltage power supply (HVPS) is used to establish high electrical fields on fluids based on silicon oil. The non- conductive fluid is encapsulated between two spherical electrodes. This experiment cell assembly acts essentially as a capacitive load.The GeoFlow HVPS is an integrated ac high voltage source capable to provide up to 10kVRMS on capacitive loads up to 100pF.This paper presents major design challenges and solutions regarding the high voltage transformer and its driver electronics. Particular high voltage problems like corona effects and dielectric losses are discussed and countermeasures are presented.
Smurthwaite, Cameron A; Hilton, Brett J; O'Hanlon, Ryan; Stolp, Zachary D; Hancock, Bryan M; Abbadessa, Darin; Stotland, Aleksandr; Sklar, Larry A; Wolkowicz, Roland
2014-01-01
The discovery of the green fluorescent protein from Aequorea victoria has revolutionized the field of cell and molecular biology. Since its discovery a growing panel of fluorescent proteins, fluorophores and fluorescent-coupled staining methodologies, have expanded the analytical capabilities of flow cytometry. Here, we exploit the power of genetic engineering to barcode individual cells with genes encoding fluorescent proteins. For genetic engineering, we utilize retroviral technology, which allows for the expression of ectopic genetic information in a stable manner in mammalian cells. We have genetically barcoded both adherent and nonadherent cells with different fluorescent proteins. Multiplexing power was increased by combining both the number of distinct fluorescent proteins, and the fluorescence intensity in each channel. Moreover, retroviral expression has proven to be stable for at least a 6-month period, which is critical for applications such as biological screens. We have shown the applicability of fluorescent barcoded multiplexing to cell-based assays that rely themselves on genetic barcoding, or on classical staining protocols. Fluorescent genetic barcoding gives the cell an inherited characteristic that distinguishes it from its counterpart. Once cell lines are developed, no further manipulation or staining is required, decreasing time, nonspecific background associated with staining protocols, and cost. The increasing number of discovered and/or engineered fluorescent proteins with unique absorbance/emission spectra, combined with the growing number of detection devices and lasers, increases multiplexing versatility, making fluorescent genetic barcoding a powerful tool for flow cytometry-based analysis. © 2013 International Society for Advancement of Cytometry.
NASA Astrophysics Data System (ADS)
Lee, Hyeong Jae; Sherrit, Stewart; Tosi, Luis Phillipe; Colonius, Tim
2016-04-01
Cantilever type piezoelectric harvesters, such as bimorphs, are typically used for vibration induced energy harvesting. However, a major drawback of a piezoelectric bimorph is its brittle nature in harsh environments, precipitating short life-times as well as output power degradation. The emphasis in this work is to design robust, highly efficient piezoelectric harvesters that are capable of generating electrical power in the milliwatt range. Various harvesters were modeled, designed and prototyped, and the flextensional actuator based harvester, where the metal cantilever is mounted and coupled between two flextensional actuators, was found to be a viable alternative to the cantilever type piezoelectric harvesters. Preliminary tests show that these devices equipped with 5x5x36 mm two piezoelectric PZT stacks can produce greater than 50 mW of power under air flow induced vibrations.
Flow Energy Piezoelectric Bimorph Nozzle Harvester
NASA Technical Reports Server (NTRS)
Sherrit, Stewart; Lee, Hyeong Jae; Kim, Namhyo; Sun, Kai; Corbett, Gary; Walkemeyer, Phillip; Hasenoehrl, Jennifer; Hall, Jeffery L.; Colonius, Tim; Tosi, Luis Phillipe;
2014-01-01
There is a need for a long-life power generation scheme that could be used downhole in an oil well to produce 1 Watt average power. There are a variety of existing or proposed energy harvesting schemes that could be used in this environment but each of these has its own limitations. The vibrating piezoelectric structure is in principle capable of operating for very long lifetimes (decades) thereby possibly overcoming a principle limitation of existing technology based on rotating turbo-machinery. In order to determine the feasibility of using piezoelectrics to produce suitable flow energy harvesting, we surveyed experimentally a variety of nozzle configurations that could be used to excite a vibrating piezoelectric structure in such a way as to enable conversion of flow energy into useful amounts of electrical power. These included reed structures, spring mass-structures, drag and lift bluff bodies and a variety of nozzles with varying flow profiles. Although not an exhaustive survey we identified a spline nozzle/piezoelectric bimorph system that experimentally produced up to 3.4 mW per bimorph. This paper will discuss these results and present our initial analyses of the device using dimensional analysis and constitutive electromechanical modeling. The analysis suggests that an order-of-magnitude improvement in power generation from the current design is possible.
Flow energy piezoelectric bimorph nozzle harvester
NASA Astrophysics Data System (ADS)
Sherrit, Stewart; Lee, Hyeong Jae; Walkemeyer, Phillip; Hasenoehrl, Jennifer; Hall, Jeffrey L.; Colonius, Tim; Tosi, Luis Phillipe; Arrazola, Alvaro; Kim, Namhyo; Sun, Kai; Corbett, Gary
2014-04-01
There is a need for a long-life power generation scheme that could be used downhole in an oil well to produce 1 Watt average power. There are a variety of existing or proposed energy harvesting schemes that could be used in this environment but each of these has its own limitations. The vibrating piezoelectric structure is in principle capable of operating for very long lifetimes (decades) thereby possibly overcoming a principle limitation of existing technology based on rotating turbo-machinery. In order to determine the feasibility of using piezoelectrics to produce suitable flow energy harvesting, we surveyed experimentally a variety of nozzle configurations that could be used to excite a vibrating piezoelectric structure in such a way as to enable conversion of flow energy into useful amounts of electrical power. These included reed structures, spring mass-structures, drag and lift bluff bodies and a variety of nozzles with varying flow profiles. Although not an exhaustive survey we identified a spline nozzle/piezoelectric bimorph system that experimentally produced up to 3.4 mW per bimorph. This paper will discuss these results and present our initial analyses of the device using dimensional analysis and constitutive electromechanical modeling. The analysis suggests that an order-of-magnitude improvement in power generation from the current design is possible.
Design and modeling of a light powered biomimicry micropump
NASA Astrophysics Data System (ADS)
Sze, Tsun-kay Jackie; Liu, Jin; Dutta, Prashanta
2015-06-01
The design of compact micropumps to provide steady flow has been an on-going challenge in the field of microfluidics. In this work, a novel micropump concept is introduced utilizing bacteriorhodopsin and sugar transporter proteins. The micropump utilizes light energy to activate the transporter proteins, which create an osmotic pressure gradient and drive the fluid flow. The capability of the bio inspired micropump is demonstrated using a quasi 1D numerical model, where the contributions of bacteriorhodopsin and sugar transporter proteins are taken care of by appropriate flux boundary conditions in the flow channel. Proton flux created by the bacteriorhodopsin proteins is compared with experimental results to obtain the appropriate working conditions of the proteins. To identify the pumping capability, we also investigate the influences of several key parameters, such as the membrane fraction of transporter proteins, membrane proton permeability and the presence of light. Our results show that there is a wide bacteriorhodopsin membrane fraction range (from 0.2 to 10%) at which fluid flow stays nearly at its maximum value. Numerical results also indicate that lipid membranes with low proton permeability can effectively control the light source as a method to turn on/off fluid flow. This capability allows the micropump to be activated and shut off remotely without bulky support equipment. In comparison with existing micropumps, this pump generates higher pressures than mechanical pumps. It can produce peak fluid flow and shutoff head comparable to other non-mechanical pumps.
Asia Pacific Research Initiative for Sustainable Energy Systems 2011 (APRISES11)
2017-09-29
created during a single run , highlighting rapid prototyping capabilities. NRL’s overall goal was to evaluate whether 3D printed metallic bipolar plates...varying the air flow to evaluate the effect on peak power. These runs are displayed in Figure 2.1.17. The reactants were connected in co-flow with the...way valve allows the operator to either run the gas through a humidifier (PermaPure Model FCl 25-240-7) or a bypass loop. On the humidifier side of
NASA Technical Reports Server (NTRS)
Banks, Daniel W.
2008-01-01
Infrared thermography is a powerful tool for investigating fluid mechanics on flight vehicles. (Can be used to visualize and characterize transition, shock impingement, separation etc.). Updated onboard F-15 based system was used to visualize supersonic boundary layer transition test article. (Tollmien-Schlichting and cross-flow dominant flow fields). Digital Recording improves image quality and analysis capability. (Allows accurate quantitative (temperature) measurements, Greater enhancement through image processing allows analysis of smaller scale phenomena).
Woskov, Paul P.; Cohn, Daniel R.; Titus, Charles H.; Surma, Jeffrey E.
1997-01-01
Microwave-induced plasma for continuous, real time trace element monitoring under harsh and variable conditions. The sensor includes a source of high power microwave energy and a shorted waveguide made of a microwave conductive, high temperature capability refractory material communicating with the source of the microwave energy to generate a plasma. The high power waveguide is constructed to be robust in a hot, hostile environment. It includes an aperture for the passage of gases to be analyzed and a spectrometer is connected to receive light from the plasma. Provision is made for real time in situ calibration. The spectrometer disperses the light, which is then analyzed by a computer. The sensor is capable of making continuous, real time quantitative measurements of desired elements, such as the heavy metals lead and mercury. The invention may be incorporated into a high temperature process device and implemented in situ for example, such as with a DC graphite electrode plasma arc furnace. The invention further provides a system for the elemental analysis of process streams by removing particulate and/or droplet samples therefrom and entraining such samples in the gas flow which passes through the plasma flame. Introduction of and entraining samples in the gas flow may be facilitated by a suction pump, regulating gas flow, gravity or combinations thereof.
NASA Astrophysics Data System (ADS)
Komatsu, Y.; Brus, G.; Kimijima, S.; Szmyd, J. S.
2012-11-01
The present paper reports the experimental study on the dynamic behavior of a solid oxide fuel cell (SOFC). The cell stack consists of planar type cells with standard power output 300W. A Major subject of the present study is characterization of the transient response to the electric current change, assuming load-following operation. The present studies particularly focus on fuel provision control to the load change. Optimized fuel provision improves power generation efficiency. However, the capability of SOFC must be restricted by a few operative parameters. Fuel utilization factor, which is defined as the ratio of the consumed fuel to the supplied fuel is adopted for a reference in the control scheme. The fuel flow rate was regulated to keep the fuel utilization at 50%, 60% and 70% during the current ramping. Lower voltage was observed with the higher fuel utilization, but achieved efficiency was higher. The appropriate mass flow control is required not to violate the voltage transient behavior. Appropriate fuel flow manipulation can contribute to moderate the overshoot on the voltage that may appear to the current change. The overshoot on the voltage response resulted from the gradual temperature behavior in the SOFC stack module.
Natural circulation decay heat removal from an SP-100, 550 kWe power system for a lunar outpost
NASA Technical Reports Server (NTRS)
El-Genk, Mohamed S.; Xue, Huimin
1992-01-01
This research investigated the decay heat removal from the SP-100 reactor core of a 550-kWe power system for a lunar outpost by natural circulation of lithium coolant. A transient model that simulates the decay heat removal loop (DHRL) of the power system was developed and used to assess the system's decay heat removal capability. The effects of the surface area of the decay heat rejection radiator, the dimensions of the decay heat exchanger (DHE) flow duct, the elevation of the DHE, and the diameter of the rise and down pipes in the DHRL on the decay heat removal capability were examined. Also, to determine the applicability of test results at earth gravity to actual system performance on the lunar surface, the effect of the gravity constant (1 g and 1/6 g) on the thermal behavior of the system after shutdown was investigated.
NASA Technical Reports Server (NTRS)
Greene, Benton R.; Clemens, Noel T.; Varghese, Philip L.; Bouslog, Stanley A.; Del Papa, Steven V.
2017-01-01
With the development of new manned spaceflight capabilities including NASA's Orion capsule and the Space-X Dragon capsule, there is a renewed importance of understanding the dynamics of ablative thermal protection systems. To this end, a new inductively coupled plasma torch facility is being developed at UT-Austin. The torch operates on argon and/or air at plasma powers up to 50 kW. In the present configuration the flow issues from a low-speed subsonic nozzle and the hot plume is characterized using slug calorimetry and emission spectroscopy. Preliminary measurements using emission spectroscopy have indicated that the torch is capable of producing an air plasma with a temperature between 6,000 K and 8,000 K depending on the power and flow settings and an argon plasma with a temperature of approximately 12,000 K. The operation envelope was measured, and heat flux measured for every point within the envelope using both a slug calorimeter and a Gardon gauge heat flux sensor. The torch was found to induce a stagnation point heat flux of between 90 and 225 W/sq cm.
AC HTS Transmission Cable for Integration into the Future EHV Grid of the Netherlands
NASA Astrophysics Data System (ADS)
Zuijderduin, R.; Chevtchenko, O.; Smit, J. J.; Aanhaanen, G.; Melnik, I.; Geschiere, A.
Due to increasing power demand, the electricity grid of the Netherlands is changing. The future grid must be capable to transmit all the connected power. Power generation will be more decentralized like for instance wind parks connected to the grid. Furthermore, future large scale production units are expected to be installed near coastal regions. This creates some potential grid issues, such as: large power amounts to be transmitted to consumers from west to east and grid stability. High temperature superconductors (HTS) can help solving these grid problems. Advantages to integrate HTS components at Extra High Voltage (EHV) and High Voltage (HV) levels are numerous: more power with less losses and less emissions, intrinsic fault current limiting capability, better control of power flow, reduced footprint, etc. Today's main obstacle is the relatively high price of HTS. Nevertheless, as the price goes down, initial market penetration for several HTS components is expected by year 2015 (e.g.: cables, fault current limiters). In this paper we present a design of intrinsically compensated EHV HTS cable for future grid integration. Discussed are the parameters of such cable providing an optimal power transmission in the future network.
Validation of a CFD Methodology for Variable Speed Power Turbine Relevant Conditions
NASA Technical Reports Server (NTRS)
Ameri, Ali A.; Giel, Paul W.; McVetta, Ashlie B.
2013-01-01
Analysis tools are needed to investigate aerodynamic performance of Variable-Speed Power Turbines (VSPT) for rotorcraft applications. The VSPT operates at low Reynolds numbers (transitional flow) and over a wide range of incidence. Previously, the capability of a published three-equation turbulence model to predict accurately the transition location for three-dimensional heat transfer problems was assessed. In this paper, the results of a post-diction exercise using a three-dimensional flow in a transonic linear cascade comprising VSPT blading are presented. The measured blade pressure distributions and exit total pressure and flow angles for two incidence angles corresponding to cruise (i = 5.8deg) and takeoff (i = -36.7deg) were used for this study. For the higher loading condition of cruise and the negative incidence condition of takeoff, overall agreement with data may be considered satisfactory but areas of needed improvement are also indicated.
Self-actuating reactor shutdown system
Barrus, Donald M.; Brummond, Willian A; Peterson, Leslie F.
1988-01-01
A control system for the automatic or self-actuated shutdown or "scram" of a nuclear reactor. The system is capable of initiating scram insertion by a signal from the plant protection system or by independent action directly sensing reactor conditions of low-flow or over-power. Self-actuation due to a loss of reactor coolant flow results from a decrease of pressure differential between the upper and lower ends of an absorber element. When the force due to this differential falls below the weight of the element, the element will fall by gravitational force to scram the reactor. Self-actuation due to high neutron flux is accomplished via a valve controlled by an electromagnet and a thermionic diode. In a reactor over-power, the diode will be heated to a change of state causing the electromagnet to be shorted thereby actuating the valve which provides the changed flow and pressure conditions required for scramming the absorber element.
Power and energy ratios in mechanical CVT drive control
NASA Astrophysics Data System (ADS)
Balakin, P. D.; Stripling, L. O.
2017-06-01
Being based on the principle of providing the systems with adaptation property to the real parameters and operational condition, the mechanical system capable to control automatically the components of convertible power is offered and this allows providing stationary operation of the vehicle engine in the terms of variable external loading. This is achieved by drive control integrated in the power transmission, which implements an additional degree of freedom and operates on the basis of the laws of motion, with the energy of the main power flow by changing automatically the kinematic characteristics of the power transmission, this system being named CVT. The power and energy ratios found allow performing the necessary design calculations of the sections and the links of the mechanical CVT scheme.
An investigation of two phase flow pressure drops in a reduced acceleration environment
NASA Astrophysics Data System (ADS)
Wheeler, Montgomery W.; Best, Frederick R.; Reinarts, Thomas R.
1993-01-01
Thermal systems for space applications based on two phase flow have several advantages over single phase systems. Two phase thermal energy management and dynamic power conversion system advantages include the capability of achieving high specific power levels. Before two phase systems for space applications can be designed effectively, knowledge of the flow behavior in a reduced acceleration environment is necessary. To meet these needs, two phase flow experiments were conducted aboard the National Aeronautic and Space Administration's KC-135 using R12 as the working fluid. Annular flow two phase pressure drops were measured through 10.41-mm ID 1.251-m long glass tubing during periods with acceleration levels in the range ±0.05 G. The experiments were conducted with emphasis on achieving data with a high level of accuracy. The reduced acceleration annular flow pressure drops were compred with pressure drops measured in a 1-G environment for similar flow conditions. The reduced acceleration pressure drops were found to be 45% greater than the 1-G pressure drops. In addition, the reduced acceleration annular flow interfacial friction factors were compared with models for vertical up-flow in a 1-G environment. The reduced acceleration interfacial friction factor data was not predicted by the 1-G models.
Preliminary results in the NASA Lewis H2-O2 combustion MHD experiment
NASA Technical Reports Server (NTRS)
Smith, J. M.
1979-01-01
MHD (magnetohydrodynamic) power generation experiments were carried out in the NASA Lewis Research Center cesium-seeded H2-O2 combustion facility. This facility uses a neon-cooled cryomagnet capable of producing magnetic fields in excess of 5 tesla. The effects of power takeoff location, generator loading, B-field strength, and electrode breakdown on generator performance are discussed. The experimental data is compared to a theory based on one-dimensional flow with heat transfer, friction, and voltage drops.
Hydration heat of alkali activated fine-grained ceramic
NASA Astrophysics Data System (ADS)
Jerman, Miloš; Černý, Robert
2017-07-01
Early-age hydration heat of alkali activated ceramic dust is studied as a function of silicate modulus. A mixture of sodium hydroxide and water glass is used as alkali activator. The measurements are carried out using a large-volume isothermal heat flow calorimeter which is capable of detecting even very small values of specific heat power. Experimental results show that the specific hydration heat power of alkali activated fine-ground ceramic is very low and increases with the decreasing silicate modulus of the mix.
NASA Technical Reports Server (NTRS)
Hanley, G. M.
1980-01-01
An evolutionary Satellite Power Systems development plan was prepared. Planning analysis was directed toward the evolution of a scenario that met the stated objectives, was technically possible and economically attractive, and took into account constraining considerations, such as requirements for very large scale end-to-end demonstration in a compressed time frame, the relative cost/technical merits of ground testing versus space testing, and the need for large mass flow capability to low Earth orbit and geosynchronous orbit at reasonable cost per pound.
Use of Transition Modeling to Enable the Computation of Losses for Variable-Speed Power Turbine
NASA Technical Reports Server (NTRS)
Ameri, Ali A.
2012-01-01
To investigate the penalties associated with using a variable speed power turbine (VSPT) in a rotorcraft capable of vertical takeoff and landing, various analysis tools are required. Such analysis tools must be able to model the flow accurately within the operating envelope of VSPT. For power turbines low Reynolds numbers and a wide range of the incidence angles, positive and negative, due to the variation in the shaft speed at relatively fixed corrected flows, characterize this envelope. The flow in the turbine passage is expected to be transitional and separated at high incidence. The turbulence model of Walters and Leylek was implemented in the NASA Glenn-HT code to enable a more accurate analysis of such flows. Two-dimensional heat transfer predictions of flat plate flow and two-dimensional and three-dimensional heat transfer predictions on a turbine blade were performed and reported herein. Heat transfer computations were performed because it is a good marker for transition. The final goal is to be able to compute the aerodynamic losses. Armed with the new transition model, total pressure losses for three-dimensional flow of an Energy Efficient Engine (E3) tip section cascade for a range of incidence angles were computed in anticipation of the experimental data. The results obtained form a loss bucket for the chosen blade.
Custom Unit Pump Development for the EVA PLSS
NASA Technical Reports Server (NTRS)
Schuller, Michael; Kurwitz, Cable; Little, Frank; Oinuma, Ryoji; Larsen, Ben; Goldman, Jeff; Reinis, Filip; Trevino, Luis
2010-01-01
This paper describes the effort by the Texas Engineering Experiment Station (TEES) and Honeywell for NASA to design and test a pre-flight prototype pump for use in the Extra-vehicular activity (EVA) portable life support subsystem (PLSS). Major design decisions were driven by the need to reduce the pump s mass, power, and volume compared to the existing PLSS pump. In addition, the pump must accommodate a much wider range of abnormal conditions than the existing pump, including vapor/gas bubbles and increased pressure drop when employed to cool two suits simultaneously. A positive displacement, external gear type pump was selected because it offers the most compact and highest efficiency solution over the required range of flow rates and pressure drops. An additional benefit of selecting a gear pump design is that it is self priming and capable of ingesting non-condensable gas without becoming air locked. The chosen pump design consists of a 28 V DC, brushless, seal-less, permanent magnet motor driven, external gear pump that utilizes a Honeywell development that eliminates the need for magnetic coupling. The pump design was based on existing Honeywell designs, but incorporated features specifically for the PLSS application, including all of the key features of the flight pump. Testing at TEES verified that the pump meets the design requirements for range of flow rates, pressure drop, power consumption, working fluid temperature, operating time, gas ingestion, and restart capability under both ambient and vacuum conditions. The pump operated at 40 to 240 lbm/hr flow rate, 35 to 100 oF pump temperature, and 5 to 10 psid pressure rise. Power consumption of the pump controller at the nominal operating point in both ambient and vacuum conditions was 9.5 W, which was less than the 12 W predicted. Gas ingestion capabilities were tested by injecting 100 cc of air into the fluid line; the pump operated normally throughout this test.
NASA Astrophysics Data System (ADS)
Hakim, Lukmanul; Kubokawa, Junji; Yorino, Naoto; Zoka, Yoshifumi; Sasaki, Yutaka
Advancements have been made towards inclusion of both static and dynamic security into transfer capability calculation. However, to the authors' knowledge, work on considering corrective controls into the calculation has not been reported yet. Therefore, we propose a Total Transfer Capability (TTC) assessment considering transient stability corrective controls. The method is based on the Newton interior point method for nonlinear programming and transfer capability is approached as a maximization of power transfer with both static and transient stability constraints are incorporated into our Transient Stability Constrained Optimal Power Flow (TSCOPF) formulation. An interconnected power system is simulated to be subjected to a severe unbalanced 3-phase 4-line to ground fault and following the fault, generator and load are shed in a pre-defined sequence to mimic actual corrective controls. In a deregulated electricity market, both generator companies and large load customers are encouraged to actively participate in maintaining power system stability as corrective controls upon agreement of compensation for being shed following a disturbance. Implementation of this proposal on the actual power system operation should be carried out through combining it with the existing transient stabilization controller system. Utilization of these corrective controls results in increasing TTC as suggested in our numerical simulation. As Lagrange multipliers can also describe sensitivity of both inequality and equality constraints to the objective function, then selection of which generator or load to be shed can be carried out on the basis of values of Lagrange multipliers of its respective generator's rotor angle stability and active power balance equation. Hence, the proposal in this paper can be utilized by system operator to assess the maximum TTC for specific loads and network conditions.
NASA Astrophysics Data System (ADS)
James, S. C.; Jones, C.; Roberts, J.
2013-12-01
Power generation with marine hydrokinetic (MHK) turbines is receiving growing global interest. Because of reasonable investment, maintenance, reliability, and environmental friendliness, this technology can contribute to national (and global) energy markets and is worthy of research investment. Furthermore, in remote areas, small-scale MHK energy from river, tidal, or ocean currents can provide a local power supply. The power-generating capacity of MHK turbines will depend, among other factors, upon the turbine type and number and the local flow velocities. There is an urgent need for deployment of practical, accessible tools and techniques to help the industry optimize MHK array layouts while establishing best sitting and design practices that minimize environmental impacts. Sandia National Laboratories (SNL) has modified the open-source flow and transport Environmental Fluid Dynamics Code (EFDC) to include the capability of simulating the effects of MHK power production. Upon removing energy (momentum) from the system, changes to the local and far-field flow dynamics can be estimated (e.g., flow speeds, tidal ranges, flushing rates, etc.). The effects of these changes on sediment dynamics and water quality can also be simulated using this model. Moreover, the model can be used to optimize MHK array layout to maximize power capture and minimize environmental impacts. Both a self-paced tutorial and in-depth training course have been developed as part of an outreach program to train academics, technology developers, and regulators in the use and application of this software. This work outlines SNL's outreach efforts using this modeling framework as applied to two specific sites where MHK turbines have been deployed.
Development and Capabilities of ISS Flow Boiling and Condensation Experiment
NASA Technical Reports Server (NTRS)
Nahra, Henry; Hasan, Mohammad; Balasubramaniam, R.; Patania, Michelle; Hall, Nancy; Wagner, James; Mackey, Jeffrey; Frankenfield, Bruce; Hauser, Daniel; Harpster, George;
2015-01-01
An experimental facility to perform flow boiling and condensation experiments in long duration microgravity environment is being designed for operation on the International Space Station (ISS). This work describes the design of the subsystems of the FBCE including the Fluid subsystem modules, data acquisition, controls, and diagnostics. Subsystems and components are designed within the constraints of the ISS Fluid Integrated Rack in terms of power availability, cooling capability, mass and volume, and most importantly the safety requirements. In this work we present the results of ground-based performance testing of the FBCE subsystem modules and test module which consist of the two condensation modules and the flow boiling module. During this testing, we evaluated the pressure drop profile across different components of the fluid subsystem, heater performance, on-orbit degassing subsystem, heat loss from different modules and components, and performance of the test modules. These results will be used in the refinement of the flight system design and build-up of the FBCE which is manifested for flight in late 2017-early 2018.
Millimeter-scale liquid metal droplet thermal switch
NASA Astrophysics Data System (ADS)
Yang, Tianyu; Kwon, Beomjin; Weisensee, Patricia B.; Kang, Jin Gu; Li, Xuejiao; Braun, Paul; Miljkovic, Nenad; King, William P.
2018-02-01
Devices capable of actively controlling heat flow have been desired by the thermal management community for decades. The need for thermal control has become particularly urgent with power densification resulting in devices with localized heat fluxes as high as 1 kW/cm2. Thermal switches, capable of modulating between high and low thermal conductances, enable the partitioning and active control of heat flow pathways. This paper reports a millimeter-scale thermal switch with a switching ratio >70, at heat fluxes near 10 W/cm2. The device consists of a silicone channel filled with a reducing liquid or vapor and an immersed liquid metal Galinstan slug. Galinstan has a relatively high thermal conductivity (≈16.5 W/mK at room temperature), and its position can be manipulated within the fluid channel, using either hydrostatic pressure or electric fields. When Galinstan bridges the hot and cold reservoirs (the "ON" state), heat flows across the channel. When the hot and cold reservoirs are instead filled with the encapsulating liquid or vapor (the "OFF" state), the cross-channel heat flow significantly reduces due to the lower thermal conductivity of the solution (≈0.03-0.6 W/mK). We demonstrate switching ratios as high as 15.6 for liquid filled channels and 71.3 for vapor filled channels. This work provides a framework for the development of millimeter-scale thermal switches and diodes capable of spatial and temporal control of heat flows.
Multi-megawatt power system trade study
NASA Astrophysics Data System (ADS)
Longhurst, Glen R.; Schnitzler, Bruce G.; Parks, Benjamin T.
2002-01-01
A concept study was undertaken to evaluate potential multi-megawatt power sources for nuclear electric propulsion. The nominal electric power requirement was set at 15 MWe with an assumed mission profile of 120 days at full power, 60 days in hot standby, and another 120 days of full power, repeated several times for 7 years of service. Two configurations examined were (1) a gas-cooled reactor based on the NERVA Derivative design, operating a closed cycle Brayton power conversion system; and (2) a molten metal-cooled reactor based on SP-100 technology, driving a boiling potassium Rankine power conversion system. This study considered the relative merits of these two systems, seeking to optimize the specific mass. Conclusions were that either concept appeared capable of reaching the specific mass goal of 3-5 kg/kWe estimated to be needed for this class of mission, though neither could be realized without substantial development in reactor fuels technology, thermal radiator mass and volume efficiency, and power conversion and distribution electronics and systems capable of operating at high temperatures. The gas-Brayton system showed a specific mass advantage (3.17 vs 6.43 kg/kWe for the baseline cases) under the set of assumptions used and eliminated the need to deal with two-phase working fluid flows in the microgravity environment of space. .
NASA Astrophysics Data System (ADS)
Mahamood, Rasheedat M.; Akinlabi, Esther T.
2016-03-01
Ti6Al4V is an important Titanium alloy that is mostly used in many applications such as: aerospace, petrochemical and medicine. The excellent corrosion resistance property, the high strength to weight ratio and the retention of properties at high temperature makes them to be favoured in most applications. The high cost of Titanium and its alloys makes their use to be prohibitive in some applications. Ti6Al4V can be cladded on a less expensive material such as steel, thereby reducing cost and providing excellent properties. Laser Metal Deposition (LMD) process, an additive manufacturing process is capable of producing complex part directly from the 3-D CAD model of the part and it also has the capability of handling multiple materials. Processing parameters play an important role in LMD process and in order to achieve desired results at a minimum cost, then the processing parameters need to be properly controlled. This paper investigates the role of processing parameters: laser power, scanning speed, powder flow rate and gas flow rate, on the material utilization efficiency in laser metal deposited Ti6Al4V. A two-level full factorial design of experiment was used in this investigation, to be able to understand the processing parameters that are most significant as well as the interactions among these processing parameters. Four process parameters were used, each with upper and lower settings which results in a combination of sixteen experiments. The laser power settings used was 1.8 and 3 kW, the scanning speed was 0.05 and 0.1 m/s, the powder flow rate was 2 and 4 g/min and the gas flow rate was 2 and 4 l/min. The experiments were designed and analyzed using Design Expert 8 software. The software was used to generate the optimized process parameters which were found to be laser power of 3.2 kW, scanning speed of 0.06 m/s, powder flow rate of 2 g/min and gas flow rate of 3 l/min.
1982-06-01
turbines that are capable of developing large amounts of thrust or power has motivated a continuing drive to obtain more ac- curate predictions of the flow...O - ps4 .. 8. OLU .ju J I.- .oqct 0 i CCU (J O4 a0.12 0. O.-4q ry ~WCLn Cc 43- cc . 49 0- 1W - 0.a- 4tWO U .-. NQ ujc0W - a~U .1 0U 0 0 *M o-% Ow a%.N
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tryggvason, Gretar; Bolotnov, Igor; Fang, Jun
2017-03-30
Direct numerical simulation (DNS) has been regarded as a reliable data source for the development and validation of turbulence models along with experiments. The realization of DNS usually involves a very fine mesh that should be able to resolve all relevant turbulence scales down to Kolmogorov scale [1]. As the most computationally expensive approach compared to other CFD techniques, DNS applications used to be limited to flow studies at very low Reynolds numbers. Thanks to the tremendous growth of computing power over the past decades, the simulation capability of DNS has now started overlapping with some of the most challengingmore » engineering problems. One of those examples in nuclear engineering is the turbulent coolant flow inside reactor cores. Coupled with interface tracking methods (ITM), the simulation capability of DNS can be extended to more complicated two-phase flow regimes. Departure from nucleate boiling (DNB) is the limiting critical heat flux phenomena for the majority of accidents that are postulated to occur in pressurized water reactors (PWR) [2]. As one of the major modeling and simulation (M&S) challenges pursued by CASL, the prediction capability is being developed for the onset of DNB utilizing multiphase-CFD (M-CFD) approach. DNS (coupled with ITM) can be employed to provide closure law information for the multiphase flow modeling at CFD scale. In the presented work, research groups at NCSU and UND will focus on applying different ITM to different geometries. Higher void fraction flow analysis at reactor prototypical conditions will be performed, and novel analysis methods will be developed, implemented and verified for the challenging flow conditions.« less
Developments in Coastal Ocean Modeling
NASA Astrophysics Data System (ADS)
Allen, J. S.
2001-12-01
Capabilities in modeling continental shelf flow fields have improved markedly in the last several years. Progress is being made toward the long term scientific goal of utilizing numerical circulation models to interpolate, or extrapolate, necessarily limited field measurements to provide additional full-field information describing the behavior of, and providing dynamical rationalizations for, complex observed coastal flow. The improvement in modeling capabilities has been due to several factors including an increase in computer power and, importantly, an increase in experience of modelers in formulating relevant numerical experiments and in analyzing model results. We demonstrate present modeling capabilities and limitations by discussion of results from recent studies of shelf circulation off Oregon and northern California (joint work with Newberger, Gan, Oke, Pullen, and Wijesekera). Strong interactions between wind-forced coastal currents and continental shelf topography characterize the flow regimes in these cases. Favorable comparisons of model and measured alongshore currents and other variables provide confidence in the model-produced fields. The dependence of the mesoscale circulation, including upwelling and downwelling fronts and flow instabilities, on the submodel used to parameterize the effects of small scale turbulence, is discussed. Analyses of model results to provide explanations for the observed, but previously unexplained, alongshore variability in the intensity of coastal upwelling, which typically results in colder surface water south of capes, and the observed development in some locations of northward currents near the coast in response to the relaxation of southward winds, are presented.
Installation of a Low Flow Unit at the Abiquiu Hydroelectric Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jack Q. Richardson
2012-06-28
Final Technical Report for the Recovery Act Project for the Installation of a Low Flow Unit at the Abiquiu Hydroelectric Facility. The Abiquiu hydroelectric facility existed with two each 6.9 MW vertical flow Francis turbine-generators. This project installed a new 3.1 MW horizontal flow low flow turbine-generator. The total plant flow range to capture energy and generate power increased from between 250 and 1,300 cfs to between 75 and 1,550 cfs. Fifty full time equivalent (FTE) construction jobs were created for this project - 50% (or 25 FTE) were credited to ARRA funding due to the ARRA 50% project costmore » match. The Abiquiu facility has increased capacity, increased efficiency and provides for an improved aquatic environment owing to installed dissolved oxygen capabilities during traditional low flow periods in the Rio Chama. A new powerhouse addition was constructed to house the new turbine-generator equipment.« less
NASA Astrophysics Data System (ADS)
Karavosov, R. K.; Prozorov, A. G.
2012-01-01
We have investigated the spectra of pressure pulsations in the near field of the open working section of the wind tunnel with a vortex flow behind the tunnel blower formed like the flow behind the hydroturbine of a hydraulic power plant. We have made a comparison between the measurement data for pressure pulsations and the air stream velocity in tunnels of the above type and in tunnels in which a large-scale vortex structure behind the blower is not formed. It has been established that the large-scale vortex formation in the incompressible medium behind the blade system in the wind tunnel is a source of narrow-band acoustic radiation capable of exciting resonance self-oscillations in the tunnel channel.
Two-phase adiabatic pressure drop experiments and modeling under micro-gravity conditions
NASA Astrophysics Data System (ADS)
Longeot, Matthieu J.; Best, Frederick R.
1995-01-01
Thermal systems for space applications based on two phase flow have several advantages over single phase systems. Two phase thermal energy management and dynamic power conversion systems have the capability of achieving high specific power levels. However, before two phase systems for space applications can be designed effectively, knowledge of the flow behavior in a ``0-g'' acceleration environment is necessary. To meet this need, two phase flow experiments were conducted by the Interphase Transport Phenomena Laboratory Group (ITP) aboard the National Aeronautics and Space Administration's (NASA) KC-135, using R12 as the working fluid. The present work is concerned with modeling of two-phase pressure drop under 0-g conditions, for bubbly and slug flow regimes. The set of data from the ITP group includes 3 bubbly points, 9 bubbly/slug points and 6 slug points. These two phase pressure drop data were collected in 1991 and 1992. A methodology to correct and validate the data was developed to achieve high levels of confidence. A homogeneous model was developed to predict the pressure drop for particular flow conditions. This model, which uses the Blasius Correlation, was found to be accurate for bubbly and bubbly/slug flows, with errors not larger than 28%. For slug flows, however, the errors are greater, attaining values up to 66%.
POD Analysis of Jet-Plume/Afterbody-Wake Interaction
NASA Astrophysics Data System (ADS)
Murray, Nathan E.; Seiner, John M.; Jansen, Bernard J.; Gui, Lichuan; Sockwell, Shuan; Joachim, Matthew
2009-11-01
The understanding of the flow physics in the base region of a powered rocket is one of the keys to designing the next generation of reusable launchers. The base flow features affect the aerodynamics and the heat loading at the base of the vehicle. Recent efforts at the National Center for Physical Acoustics at the University of Mississippi have refurbished two models for studying jet-plume/afterbody-wake interactions in the NCPA's 1-foot Tri-Sonic Wind Tunnel Facility. Both models have a 2.5 inch outer diameter with a nominally 0.5 inch diameter centered exhaust nozzle. One of the models is capable of being powered with gaseous H2 and O2 to study the base flow in a fully combusting senario. The second model uses hi-pressure air to drive the exhaust providing an unheated representative flow field. This unheated model was used to acquire PIV data of the base flow. Subsequently, a POD analysis was performed to provide a first look at the large-scale structures present for the interaction between an axisymmetric jet and an axisymmetric afterbody wake. PIV and Schlieren data are presented for a single jet-exhaust to free-stream flow velocity along with the POD analysis of the base flow field.
Mechanism of emergence of intense vibrations of turbines on the Sayano-Shushensk hydro power plant
NASA Astrophysics Data System (ADS)
Kurzin, V. B.; Seleznev, V. S.
2010-07-01
It is demonstrated that the level of vibrations of turbines on the Sayano-Shushensk hydro power plant is enhanced by the capability of a compressible fluid to perform its own hydroacoustic oscillations (which can be unstable) in the turbine duct. Based on the previously obtained results of solving the problem of natural hydroacoustic oscillations in the turbine duct and some ideas about turbine interaction with an unsteady compressible fluid flow, results of full-scale studies of turbine vibrations and seismic monitoring of the dam of the Sayano-Shushensk hydro power plant before and during the accident are analyzed.
A large-eddy simulation based power estimation capability for wind farms over complex terrain
NASA Astrophysics Data System (ADS)
Senocak, I.; Sandusky, M.; Deleon, R.
2017-12-01
There has been an increasing interest in predicting wind fields over complex terrain at the micro-scale for resource assessment, turbine siting, and power forecasting. These capabilities are made possible by advancements in computational speed from a new generation of computing hardware, numerical methods and physics modelling. The micro-scale wind prediction model presented in this work is based on the large-eddy simulation paradigm with surface-stress parameterization. The complex terrain is represented using an immersed-boundary method that takes into account the parameterization of the surface stresses. Governing equations of incompressible fluid flow are solved using a projection method with second-order accurate schemes in space and time. We use actuator disk models with rotation to simulate the influence of turbines on the wind field. Data regarding power production from individual turbines are mostly restricted because of proprietary nature of the wind energy business. Most studies report percentage drop of power relative to power from the first row. There have been different approaches to predict power production. Some studies simply report available wind power in the upstream, some studies estimate power production using power curves available from turbine manufacturers, and some studies estimate power as torque multiplied by rotational speed. In the present work, we propose a black-box approach that considers a control volume around a turbine and estimate the power extracted from the turbine based on the conservation of energy principle. We applied our wind power prediction capability to wind farms over flat terrain such as the wind farm over Mower County, Minnesota and the Horns Rev offshore wind farm in Denmark. The results from these simulations are in good agreement with published data. We also estimate power production from a hypothetical wind farm in complex terrain region and identify potential zones suitable for wind power production.
Rolling scheduling of electric power system with wind power based on improved NNIA algorithm
NASA Astrophysics Data System (ADS)
Xu, Q. S.; Luo, C. J.; Yang, D. J.; Fan, Y. H.; Sang, Z. X.; Lei, H.
2017-11-01
This paper puts forth a rolling modification strategy for day-ahead scheduling of electric power system with wind power, which takes the operation cost increment of unit and curtailed wind power of power grid as double modification functions. Additionally, an improved Nondominated Neighbor Immune Algorithm (NNIA) is proposed for solution. The proposed rolling scheduling model has further improved the operation cost of system in the intra-day generation process, enhanced the system’s accommodation capacity of wind power, and modified the key transmission section power flow in a rolling manner to satisfy the security constraint of power grid. The improved NNIA algorithm has defined an antibody preference relation model based on equal incremental rate, regulation deviation constraints and maximum & minimum technical outputs of units. The model can noticeably guide the direction of antibody evolution, and significantly speed up the process of algorithm convergence to final solution, and enhance the local search capability.
1985-09-01
Transducers capable of measuring electro-hydraulic control system which fore-aft and vertical load on a driven controls the brake system to deactivate tire...power. * axle allows design of all load-carrying - System logic power. ENGINE I EXTERNAL COMPARTMENT COMPONENTS CAB Brake Levelin system I trans... brake con- The TWS DAS was designed to 1) pro- trol system . vide onboard data sampling and filtering, A simplified truck operational flow chart 2) make
Requirements for Large Eddy Simulation Computations of Variable-Speed Power Turbine Flows
NASA Technical Reports Server (NTRS)
Ameri, Ali A.
2016-01-01
Variable-speed power turbines (VSPTs) operate at low Reynolds numbers and with a wide range of incidence angles. Transition, separation, and the relevant physics leading to them are important to VSPT flow. Higher fidelity tools such as large eddy simulation (LES) may be needed to resolve the flow features necessary for accurate predictive capability and design of such turbines. A survey conducted for this report explores the requirements for such computations. The survey is limited to the simulation of two-dimensional flow cases and endwalls are not included. It suggests that a grid resolution necessary for this type of simulation to accurately represent the physics may be of the order of Delta(x)+=45, Delta(x)+ =2 and Delta(z)+=17. Various subgrid-scale (SGS) models have been used and except for the Smagorinsky model, all seem to perform well and in some instances the simulations worked well without SGS modeling. A method of specifying the inlet conditions such as synthetic eddy modeling (SEM) is necessary to correctly represent the inlet conditions.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-19
... pumping capability of 28,000 cfs. Water flowing through the turbines is discharged via the draft tubes... reversible pump-turbine units in the powerhouse. The power plant is constructed of concrete and is 133 feet wide and 600 feet long. It houses eight Francis turbines each equipped with a 100-MW generator. The...
Mobile flow cytometer for mHealth.
Balsam, Joshua; Bruck, Hugh Alan; Rasooly, Avraham
2015-01-01
Flow cytometry is used for cell counting and analysis in numerous clinical and environmental applications. However flow cytometry is not used in mHealth mainly because current flow cytometers are large, expensive, power-intensive devices designed to operate in a laboratory. Their design results in a lack of portability and makes them unsuitable for mHealth applications. Another limitation of current technology is the low volumetric throughput rates that are not suitable for rapid detection of rare cells.To address these limitations, we describe here a novel, low-cost, mobile flow cytometer based on wide-field imaging with a webcam for large volume and high throughput fluorescence detection of rare cells as a simulation for circulating tumor cells (CTCs) detection. The mobile flow cytometer uses a commercially available webcam capable of 187 frames per second video capture at a resolution of 320 × 240 pixels. For fluorescence detection, a 1 W 450 nm blue laser is used for excitation of Syto-9 fluorescently stained cells detected at 535 nm. A wide-field flow cell was developed for large volume analysis that allows for the linear velocity of target cells to be lower than in conventional hydrodynamic focusing flow cells typically used in cytometry. The mobile flow cytometer was found to be capable of detecting low concentrations at flow rates of 500 μL/min, suitable for rare cell detection in large volumes. The simplicity and low cost of this device suggests that it may have a potential clinical use for mHealth flow cytometry for resource-poor settings associated with global health.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oktamuliani, Sri, E-mail: srioktamuliani@ymail.com; Su’ud, Zaki, E-mail: szaki@fi.itb.ac.id
A preliminary study designs SPINNOR (Small Power Reactor, Indonesia, No On-Site Refueling) liquid metal Pb-Bi cooled fast reactors, fuel (U, Pu)N, 150 MWth have been performed. Neutronic calculation uses SRAC which is designed cylindrical core 2D (R-Z) 90 × 135 cm, on the core fuel composed of heterogeneous with percentage difference of PuN 10, 12, 13% and the result of calculation is effective neutron multiplication 1.0488. Power density distribution of the output SRAC is generated for thermal hydraulic calculation using Delphi based on Pascal language that have been developed. The research designed a reactor that is capable of natural circulation atmore » inlet temperature 300 °C with variation of total mass flow rate. Total mass flow rate affect pressure drop and temperature outlet of the reactor core. The greater the total mass flow rate, the smaller the outlet temperature, but increase the pressure drop so that the chimney needed more higher to achieve natural circulation or condition of the system does not require a pump. Optimization of the total mass flow rate produces optimal reactor design on the total mass flow rate of 5000 kg/s with outlet temperature 524,843 °C but require a chimney of 6,69 meters.« less
2-D and 3-D mixing flow analyses of a scramjet-afterbody configuration
NASA Technical Reports Server (NTRS)
Baysal, Oktay; Eleshaky, Mohamed E.; Engelund, Walter C.
1989-01-01
A cold simulant gas study of propulsion/airframe integration for a hypersonic vehicle powered by a scramjet engine is presented. The specific heat ratio of the hot exhaust gases are matched by utilizing a cold mixture of argon and Freon-12. Solutions are obtained for a hypersonic corner flow and a supersonic rectangular flow in order to provide the upstream boundary conditions. The computational test examples also provide a comparison of this flow with that of air as the expanding supersonic jet, where the specific heats are assumed to be constant. It is shown that the three-dimensional computational fluid capabilities developed for these types of flow may be utilized to augment the conventional wind tunnel studies of scramjet afterbody flows using cold simulant exhaust gases, which in turn can help in the design of a scramjet internal-external nozzle.
Micro-fabricated DC comparison calorimeter for RF power measurement.
Neji, Bilel; Xu, Jing; Titus, Albert H; Meltzer, Joel
2014-10-27
Diode detection and bolometric detection have been widely used to measure radio frequency (RF) power. However, flow calorimeters, in particular micro-fabricated flow calorimeters, have been mostly unexplored as power meters. This paper presents the design, micro-fabrication and characterization of a flow calorimeter. This novel device is capable of measuring power from 100 μW to 200 mW. It has a 50-Ohm load that is heated by the RF source, and the heat is transferred to fluid in a microchannel. The temperature change in the fluid is measured by a thermistor that is connected in one leg of a Wheatstone bridge. The output voltage change of the bridge corresponds to the RF power applied to the load. The microfabricated device measures 25.4 mm × 50.8 mm, excluding the power supplies, microcontroller and fluid pump. Experiments demonstrate that the micro-fabricated sensor has a sensitivity up to 22 × 10⁻³ V/W. The typical resolution of this micro-calorimeter is on the order of 50 μW, and the best resolution is around 10 μW. The effective efficiency is 99.9% from 0−1 GHz and more than 97.5% at frequencies up to 4 GHz. The measured reflection coefficient of the 50-Ohm load and coplanar wave guide is less than −25 dB from 0−2 GHz and less than −16 dB at 2−4 GHz.
Parameter scaling toward high-energy density in a quasi-steady flow Z-pinch
NASA Astrophysics Data System (ADS)
Hughes, M. C.; Shumlak, U.; Nelson, B. A.; Golingo, R. P.; Claveau, E. L.; Doty, S. A.; Forbes, E. G.; Kim, B.; Ross, M. P.
2016-10-01
Sheared axial flows are utilized by the ZaP Flow Z-Pinch Experiment to stabilize MHD instabilities. The pinches formed are 50 cm long with radii ranging from 0.3 to 1.0 cm. The plasma is generated in a coaxial acceleration region, similar to a Marshall gun, which provides a steady supply of plasma for approximately 100 us. The power to the plasma is partially decoupled between the acceleration and pinch assembly regions through the use of separate power supplies. Adiabatic scaling of the Bennett relation gives targets for future devices to reach high-energy density conditions or fusion reactors. The applicability of an adiabatic assumption is explored and work is done experimentally to clarify the plasma compression process, which may be more generally polytropic. The device is capable of a much larger parameter space than previous machine iterations, allowing flexibility in the initial conditions of the compression process to preserve stability. This work is supported by DoE FES and NNSA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, L.K.; Mohr, D.; Planchon, H.P.
This article discusses a series of successful loss-of-flow-without-scram tests conducted in Experimental Breeder Reactor-II (EBR-II), a metal-fueled, sodium-cooled fast reactor. These May 1985 tests demonstrated the capability of the EBR to reduce reactor power passively during a loss of flow and to maintain reactor temperatures within bounds without any reliance on an active safety system. The tests were run from reduced power to ensure that temperatures could be maintained well below the fuel-clad eutectic temperature. Good agreement was found between selected test data and pretest predictions made with the EBR-II system analysis code NATDEMO and the hot channel analysis codemore » HOTCHAN. The article also discusses safety assessments of the tests as well as modifications required on the EBR-II reactor safety system for conducting required on the EBR-II reactor safety system for the conducting the tests.« less
NASA Astrophysics Data System (ADS)
Galevskiy, G. V.; Rudneva, V. V.; Galevskiy, S. G.; Tomas, K. I.; Zubkov, M. S.
2016-08-01
The three-jet direct-flow plasma reactor with a channel diameter of 0.054 m was studied in terms of service life, thermal, technical, and functional capabilities. It was established that the near-optimal combination of thermal efficiency, required specific enthalpy of the plasma-forming gas and its mass flow rate is achieved at a reactor power of 150 kW. The bulk temperature of plasma flow over the rector of 12 gauges long varies within 5500÷3200 K and the wall temperature within 1900÷850 K, when a cylinder from zirconium dioxide of 0.005 m thick is used to thermally insulate the reactor. The specific electric power reaches a high of 1214 MW/m3. The rated service life of electrodes is 4700 hours for a copper anode and 111 hours for a tungsten cathode. The projected contamination of carbides and borides with elec-trode-erosion products doesn't exceed 0.0001% of copper and 0.00002% of tungsten.
Modeling and design of light powered biomimicry micropump utilizing transporter proteins
NASA Astrophysics Data System (ADS)
Liu, Jin; Sze, Tsun-Kay Jackie; Dutta, Prashanta
2014-11-01
The creation of compact micropumps to provide steady flow has been an on-going challenge in the field of microfluidics. We present a mathematical model for a micropump utilizing Bacteriorhodopsin and sugar transporter proteins. This micropump utilizes transporter proteins as method to drive fluid flow by converting light energy into chemical potential. The fluid flow through a microchannel is simulated using the Nernst-Planck, Navier-Stokes, and continuity equations. Numerical results show that the micropump is capable of generating usable pressure. Designing parameters influencing the performance of the micropump are investigated including membrane fraction, lipid proton permeability, illumination, and channel height. The results show that there is a substantial membrane fraction region at which fluid flow is maximized. The use of lipids with low membrane proton permeability allows illumination to be used as a method to turn the pump on and off. This capability allows the micropump to be activated and shut off remotely without bulky support equipment. This modeling work provides new insights on mechanisms potentially useful for fluidic pumping in self-sustained bio-mimic microfluidic pumps. This work is supported in part by the National Science Fundation Grant CBET-1250107.
Sediment-transport characteristics of Cane Creek, Lauderdale County, Tennessee
Carey, W.P.
1993-01-01
An investigation of the sediment-transport characteristics of Cane Creek in Lauderdale County, Tennessee, was conducted from 1985-88 to evaluate the potential for channel erosion induced by modifications (realignment and enlargement) and the potential ability of different flows to move bed and bank stabilizing material. Frequently occurring flows in Cane Creek are capable of moving sand-size material (0.0625 - 4.0 millimeters). During floods that equal or exceed the 2-year flood, Cane Creek is capable of moving very coarse gravel (32 - 64 millimeters). Boundary-shear values at bridges, where flow contractions occur, correspond to critical diameters in excess of 100 millimeters. Thus, the areas near bridges, where channel stability is most critical, are the areas where erosive power is greatest. Deepening and widening of Cane Creek has exposed large areas of channel boundary that are a significant source of raindrop-detached sediment during the early stages of a storm before stream flow increases signifi- cantly. This causes suspended-sediment concentration to peak while the flow hydrograph is just beginning to rise. For basins like Cane Creek, where runoff events commonly last less than a day and where variation in discharge and sediment concentrations are large, an estimate of sediment yield based on periodic observations of instantaneous values is subject to considerable uncertainty.
Characterization of a High Current, Long Life Hollow Cathode
NASA Technical Reports Server (NTRS)
VanNoord, Jonathan L.; Kamhawi, Hani; McEwen, Heather K.
2006-01-01
The advent of higher power spacecraft makes it desirable to use higher power electric propulsion thrusters such as ion thrusters or Hall thrusters. Higher power thrusters require cathodes that are capable of producing higher currents. One application of these higher power spacecraft is deep-space missions that require tens of thousands of hours of operation. This paper presents the approach used to design a high current, long life hollow cathode assembly for that application, along with test results from the corresponding hollow cathode. The design approach used for the candidate hollow cathode was to reduce the temperature gradient in the insert, yielding a lower peak temperature and allowing current to be produced more uniformly along the insert. The lower temperatures result in a hollow cathode with increased life. The hollow cathode designed was successfully operated at currents from 10 to 60 A with flow rates of 5 to 19 sccm with a maximum orifice temperature measured of 1100 C. Data including discharge voltage, keeper voltage, discharge current, flow rates, and orifice plate temperatures are presented.
A static investigation of yaw vectoring concepts on two-dimensional convergent-divergent nozzles
NASA Technical Reports Server (NTRS)
Berrier, B. L.; Mason, M. L.
1983-01-01
The flow-turning capability and nozzle internal performance of yaw-vectoring nozzle geometries were tested in the NASA Langley 16-ft Transonic wind tunnel. The concept was investigated as a means of enhancing fighter jet performance. Five two-dimensional convergent-divergent nozzles were equipped for yaw-vectoring and examined. The configurations included a translating left sidewall, left and right sidewall flaps downstream of the nozzle throat, left sidewall flaps or port located upstream of the nozzle throat, and a powered rudder. Trials were also run with 20 deg of pitch thrust vectoring added. The feasibility of providing yaw-thrust vectoring was demonstrated, with the largest yaw vector angles being obtained with sidewall flaps downstream of the nozzle primary throat. It was concluded that yaw vector designs that scoop or capture internal nozzle flow provide the largest yaw-vector capability, but decrease the thrust the most.
NASA Technical Reports Server (NTRS)
Rubbert, P. E.
1978-01-01
The commercial airplane builder's viewpoint on the important issues involved in the development of improved computational aerodynamics tools such as powerful computers optimized for fluid flow problems is presented. The primary user of computational aerodynamics in a commercial aircraft company is the design engineer who is concerned with solving practical engineering problems. From his viewpoint, the development of program interfaces and pre-and post-processing capability for new computational methods is just as important as the algorithms and machine architecture. As more and more details of the entire flow field are computed, the visibility of the output data becomes a major problem which is then doubled when a design capability is added. The user must be able to see, understand, and interpret the results calculated. Enormous costs are expanded because of the need to work with programs having only primitive user interfaces.
Microgravity Combustion Science and Fluid Physics Experiments and Facilities for the ISS
NASA Technical Reports Server (NTRS)
Lauver, Richard W.; Kohl, Fred J.; Weiland, Karen J.; Zurawski, Robert L.; Hill, Myron E.; Corban, Robert R.
2001-01-01
At the NASA Glenn Research Center, the Microgravity Science Program supports both ground-based and flight experiment research in the disciplines of Combustion Science and Fluid Physics. Combustion Science research includes the areas of gas jet diffusion flames, laminar flames, burning of droplets and misting fuels, solids and materials flammability, fire and fire suppressants, turbulent combustion, reaction kinetics, materials synthesis, and other combustion systems. The Fluid Physics discipline includes the areas of complex fluids (colloids, gels, foams, magneto-rheological fluids, non-Newtonian fluids, suspensions, granular materials), dynamics and instabilities (bubble and drop dynamics, magneto/electrohydrodynamics, electrochemical transport, geophysical flows), interfacial phenomena (wetting, capillarity, contact line hydrodynamics), and multiphase flows and phase changes (boiling and condensation, heat transfer, flow instabilities). A specialized International Space Station (ISS) facility that provides sophisticated research capabilities for these disciplines is the Fluids and Combustion Facility (FCF). The FCF consists of the Combustion Integrated Rack (CIR), the Fluids Integrated Rack (FIR) and the Shared Accommodations Rack and is designed to accomplish a large number of science investigations over the life of the ISS. The modular, multiuser facility is designed to optimize the science return within the available resources of on-orbit power, uplink/downlink capacity, crew time, upmass/downmass, volume, etc. A suite of diagnostics capabilities, with emphasis on optical techniques, will be provided to complement the capabilities of the subsystem multiuser or principal investigator-specific experiment modules. The paper will discuss the systems concept, technical capabilities, functionality, and the initial science investigations in each discipline.
Parametric investigations of plasma characteristics in a remote inductively coupled plasma system
NASA Astrophysics Data System (ADS)
Shukla, Prasoon; Roy, Abhra; Jain, Kunal; Bhoj, Ananth
2016-09-01
Designing a remote plasma system involves source chamber sizing, selection of coils and/or electrodes to power the plasma, designing the downstream tubes, selection of materials used in the source and downstream regions, locations of inlets and outlets and finally optimizing the process parameter space of pressure, gas flow rates and power delivery. Simulations can aid in spatial and temporal plasma characterization in what are often inaccessible locations for experimental probes in the source chamber. In this paper, we report on simulations of a remote inductively coupled Argon plasma system using the modeling platform CFD-ACE +. The coupled multiphysics model description successfully address flow, chemistry, electromagnetics, heat transfer and plasma transport in the remote plasma system. The SimManager tool enables easy setup of parametric simulations to investigate the effect of varying the pressure, power, frequency, flow rates and downstream tube lengths. It can also enable the automatic solution of the varied parameters to optimize a user-defined objective function, which may be the integral ion and radical fluxes at the wafer. The fast run time coupled with the parametric and optimization capabilities can add significant insight and value in design and optimization.
Static investigation of several yaw vectoring concepts on nonaxisymmetric nozzles
NASA Technical Reports Server (NTRS)
Mason, M. L.; Berrier, B. L.
1985-01-01
A test has been conducted in the static test facility of the Langley 16-Foot Transonic Tunnel to determine the flow-turning capability and the effects on nozzle internal performance of several yaw vectoring concepts. Nonaxisymmetric convergent-divergent nozzles with throat areas simulating dry and afterburning power settings and single expansion ramp nozzles with a throat area simulating a dry power setting were modified for yaw thrust vectoring. Forward-thrust and pitch-vectored nozzle configurations were tested with each yaw vectoring concept. Four basic yaw vectoring concepts were investigated on the nonaxisymmetric convergent-divergent nozzles: (1) translating sidewall; (2) downstream (of throat) flaps; (3) upstream (of throat) port/flap; and (4) powered rudder. Selected combinations of the rudder with downstream flaps or upstream port/flap were also tested. A single yaw vectoring concept, post-exit flaps, was investigated on the single expansion ramp nozzles. All testing was conducted at static (no external flow) conditions and nozzle pressure ratios varied from 2.0 up to 10.0.
A 400-kWe high-efficiency steam turbine for industrial cogeneration
NASA Technical Reports Server (NTRS)
Leibowitz, H. M.
1982-01-01
An advanced state-of-the-art steam turbine-generator developed to serve as the power conversion subsystem for the Department of Energy's Sandia National Laboratories' Solar Total-Energy Project (STEP) is described. The turbine-generator, which is designed to provide 400-kW of net electrical power, represents the largest turbine-generator built specifically for commercial solar-powered cogeneration. The controls for the turbine-generator incorporate a multiple, partial-arc entry to provide efficient off-design performance, as well as an extraction control scheme to permit extraction flow regulation while maintaining 110-spsig pressure. Normal turbine operation is achieved while synchronized to a local utility and in a stand-alone mode. In both cases, the turbine-generator features automatic load control as well as remote start-up and shutdown capability. Tests totaling 200 hours were conducted to confirm the integrity of the turbine's mechanical structure and control function. Performance tests resulted in a measured inlet throttle flow of 8,450 pounds per hour, which was near design conditions.
Modeling sediment concentration in debris flow by Tsallis entropy
NASA Astrophysics Data System (ADS)
Singh, Vijay P.; Cui, Huijuan
2015-02-01
Debris flow is a natural hazard that occurs in landscapes having high slopes, such as mountainous areas. It can be so powerful that it destroys whatever comes in its way, that is, it can kill people and animals; decimate roads, bridges, railway tracks, homes and other property; and fill reservoirs. Owing to its frequent occurrence, it is receiving considerable attention these days. Of fundamental importance in debris flow modeling is the determination of concentration of debris (or sediment) in the flow. The usual approach to determining debris flow concentration is either empirical or hydraulic. Both approaches are deterministic and therefore say nothing about the uncertainty associated with the sediment concentration in the flow. This paper proposes to model debris flow concentration using the Tsallis entropy theory. Verification of the entropy-based distribution of debris flow concentration using the data and equations reported in the literature shows that the Tsallis entropy-proposed model is capable of mimicking the field observed concentration and has potential for practical application.
A Laminar Flow-Based Microfluidic Tesla Pump via Lithography Enabled 3D Printing.
Habhab, Mohammed-Baker; Ismail, Tania; Lo, Joe Fujiou
2016-11-23
Tesla turbine and its applications in power generation and fluid flow were demonstrated by Nicholas Tesla in 1913. However, its real-world implementations were limited by the difficulty to maintain laminar flow between rotor disks, transient efficiencies during rotor acceleration, and the lack of other applications that fully utilize the continuous flow outputs. All of the aforementioned limits of Tesla turbines can be addressed by scaling to the microfluidic flow regime. Demonstrated here is a microscale Tesla pump designed and fabricated using a Digital Light Processing (DLP) based 3D printer with 43 µm lateral and 30 µm thickness resolutions. The miniaturized pump is characterized by low Reynolds number of 1000 and a flow rate of up to 12.6 mL/min at 1200 rpm, unloaded. It is capable of driving a mixer network to generate microfluidic gradient. The continuous, laminar flow from Tesla turbines is well-suited to the needs of flow-sensitive microfluidics, where the integrated pump will enable numerous compact lab-on-a-chip applications.
Anthropology, knowledge-flows and global health.
Feierman, S; Kleinman, A; Stewart, K; Farmer, D; Das, V
2010-01-01
Global health programmes are damaged by blockages in the upward flow of information from localities and regional centres about realities of professional practice and about patients' lives and conditions of treatment. Power differentials between local actors and national or international decision-makers present further obstacles to effective action. Anthropological research and action, in its most effective current forms, make important contributions to these issues. This research often continues over the long term, intensively. It can be multi-sited, studying actors at local, national and international levels simultaneously. It studies the relative knowledge and power of impoverished patients and global decision-makers, all within a single frame. By doing so, anthropological research is capable of providing new and important insights on the diverse meanings of patient decision-making, informed consent, non-compliance, public health reporting, the building of political coalitions for health and many other issues.
Design of a miniature flow cell for in situ x-ray imaging of redox flow batteries
NASA Astrophysics Data System (ADS)
Jervis, Rhodri; Brown, Leon D.; Neville, Tobias P.; Millichamp, Jason; Finegan, Donal P.; Heenan, Thomas M. M.; Brett, Dan J. L.; Shearing, Paul R.
2016-11-01
Flow batteries represent a possible grid-scale energy storage solution, having many advantages such as scalability, separation of power and energy capabilities, and simple operation. However, they can suffer from degradation during operation and the characteristics of the felt electrodes are little understood in terms of wetting, compression and pressure drops. Presented here is the design of a miniature flow cell that allows the use of x-ray computed tomography (CT) to study carbon felt materials in situ and operando, in both lab-based and synchrotron CT. Through application of the bespoke cell it is possible to observe felt fibres, electrolyte and pore phases and therefore enables non-destructive characterisation of an array of microstructural parameters during the operation of flow batteries. Furthermore, we expect this design can be readily adapted to the study of other electrochemical systems.
Streak Imaging Flow Cytometer for Rare Cell Analysis.
Balsam, Joshua; Bruck, Hugh Alan; Ossandon, Miguel; Prickril, Ben; Rasooly, Avraham
2017-01-01
There is a need for simple and affordable techniques for cytology for clinical applications, especially for point-of-care (POC) medical diagnostics in resource-poor settings. However, this often requires adapting expensive and complex laboratory-based techniques that often require significant power and are too massive to transport easily. One such technique is flow cytometry, which has great potential for modification due to the simplicity of the principle of optical tracking of cells. However, it is limited in that regard due to the flow focusing technique used to isolate cells for optical detection. This technique inherently reduces the flow rate and is therefore unsuitable for rapid detection of rare cells which require large volume for analysis.To address these limitations, we developed a low-cost, mobile flow cytometer based on streak imaging. In our new configuration we utilize a simple webcam for optical detection over a large area associated with a wide-field flow cell. The new flow cell is capable of larger volume and higher throughput fluorescence detection of rare cells than the flow cells with hydrodynamic focusing used in conventional flow cytometry. The webcam is an inexpensive, commercially available system, and for fluorescence analysis we use a 1 W 450 nm blue laser to excite Syto-9 stained cells with emission at 535 nm. We were able to detect low concentrations of stained cells at high flow rates of 10 mL/min, which is suitable for rapidly analyzing larger specimen volumes to detect rare cells at appropriate concentration levels. The new rapid detection capabilities, combined with the simplicity and low cost of this device, suggest a potential for clinical POC flow cytometry in resource-poor settings associated with global health.
Giddings, J C
1989-10-20
A simple analysis, first presented twenty years ago, showed that the effectiveness of a field-driven separation like electrophoresis, as expressed by the maximum number of theoretical plates (N), is given by the dimensionless ratio of two energies N = -delta mu ext/2RT in which -delta mu ext is the electrical potential energy drop of a charged species and RT is the thermal energy (R is the gas constant and T is the absolute temperature). Quantity -delta mu ext is the product of the force F acting on the species and the path length X of separation. The exceptional power of electrophoresis, for which often N approximately 10(6), can be traced directly to the enormous magnitude of the electrical force F. This paper explores the fundamentals underlying several different means for utilizing these powerful electrical forces for separation, including capillary zone electrophoresis, gel electrophoresis, isoelectric focusing, electrical field-flow fractionation and split-flow thin continuous separation cells. Remarkably, the above equation and its relatives are found to describe the approximate performance of all these diverse electrically driven systems. Factors affecting both the resolving power and separation speed of the systems are addressed; from these considerations some broad optimization criteria emerge. The capabilities of the different methods are compared using numerical examples.
Optimal Regulation of Virtual Power Plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dall Anese, Emiliano; Guggilam, Swaroop S.; Simonetto, Andrea
This paper develops a real-time algorithmic framework for aggregations of distributed energy resources (DERs) in distribution networks to provide regulation services in response to transmission-level requests. Leveraging online primal-dual-type methods for time-varying optimization problems and suitable linearizations of the nonlinear AC power-flow equations, we believe this work establishes the system-theoretic foundation to realize the vision of distribution-level virtual power plants. The optimization framework controls the output powers of dispatchable DERs such that, in aggregate, they respond to automatic-generation-control and/or regulation-services commands. This is achieved while concurrently regulating voltages within the feeder and maximizing customers' and utility's performance objectives. Convergence andmore » tracking capabilities are analytically established under suitable modeling assumptions. Simulations are provided to validate the proposed approach.« less
New strategies for SHM based on a multichannel wireless AE node
NASA Astrophysics Data System (ADS)
Godinez-Azcuaga, Valery; Ley, Obdulia
2014-03-01
This paper discusses the development of an Acoustic Emission (AE) wireless node and its application for SHM (Structural Health Monitoring). The instrument development was planned for applications monitoring steel and concrete bridges components. The final product, now commercially available, is a sensor node which includes multiple sensing elements, on board signal processing and analysis capabilities, signal conditioning electronics, power management circuits, wireless data transmission element and energy harvesting unit. The sensing elements are capable of functioning in both passive and active modes, while the multiple parametric inputs are available for connecting various sensor types to measure external characteristics affecting the performance of the structure under monitoring. The output of all these sensors are combined and analyzed at the node in order to minimize the data transmission rate, which consumes significant amount of power. Power management circuits are used to reduce the data collection intervals through selective data acquisition strategies and minimize the sensor node power consumption. This instrument, known as the 1284, is an excellent platform to deploy SHM in the original bridge applications, but initial prototypes has shown significant potential in monitoring composite wind turbine blades and composites mockups of Unmanned Autonomous Vehicles (UAV) components; currently we are working to extend the use of this system to fields such as coal flow, power transformer, and off-shore platform monitoring.
Darling, Robert M.; Gallagher, Kevin G.; Kowalski, Jeffrey A.; ...
2014-11-01
Energy storage is increasingly seen as a valuable asset for electricity grids composed of high fractions of intermittent sources, such as wind power or, in developing economies, unreliable generation and transmission services. However, the potential of batteries to meet the stringent cost and durability requirements for grid applications is largely unquantified. We investigate electrochemical systems capable of economically storing energy for hours and present an analysis of the relationships among technological performance characteristics, component cost factors, and system price for established and conceptual aqueous and nonaqueous batteries. We identified potential advantages of nonaqueous flow batteries over those based on aqueousmore » electrolytes; however, new challenging constraints burden the nonaqueous approach, including the solubility of the active material in the electrolyte. Requirements in harmony with economically effective energy storage are derived for aqueous and nonaqueous systems. The attributes of flow batteries are compared to those of aqueous and nonaqueous enclosed and hybrid (semi-flow) batteries. Flow batteries are a promising technology for reaching these challenging energy storage targets owing to their independent power and energy scaling, reliance on facile and reversible reactants, and potentially simpler manufacture as compared to established enclosed batteries such as lead–acid or lithium-ion.« less
Laser velocimeter (autocovariance) buffer interface
NASA Technical Reports Server (NTRS)
Clemmons, J. I., Jr.
1981-01-01
A laser velocimeter (autocovariance) buffer interface (LVABI) was developed to serve as the interface between three laser velocimeter high speed burst counters and a minicomputer. A functional description is presented of the instrument and its unique features which allow the studies of flow velocity vector analysis, turbulence power spectra, and conditional sampling of other phenomena. Typical applications of the laser velocimeter using the LVABI are presented to illustrate its various capabilities.
Battery Technology Stores Clean Energy
NASA Technical Reports Server (NTRS)
2008-01-01
Headquartered in Fremont, California, Deeya Energy Inc. is now bringing its flow batteries to commercial customers around the world after working with former Marshall Space Flight Center scientist, Lawrence Thaller. Deeya's liquid-cell batteries have higher power capability than Thaller's original design, are less expensive than lead-acid batteries, are a clean energy alternative, and are 10 to 20 times less expensive than nickel-metal hydride batteries, lithium-ion batteries, and fuel cell options.
Implementing a Nuclear Power Plant Model for Evaluating Load-Following Capability on a Small Grid
NASA Astrophysics Data System (ADS)
Arda, Samet Egemen
A pressurized water reactor (PWR) nuclear power plant (NPP) model is introduced into Positive Sequence Load Flow (PSLF) software by General Electric in order to evaluate the load-following capability of NPPs. The nuclear steam supply system (NSSS) consists of a reactor core, hot and cold legs, plenums, and a U-tube steam generator. The physical systems listed above are represented by mathematical models utilizing a state variable lumped parameter approach. A steady-state control program for the reactor, and simple turbine and governor models are also developed. Adequacy of the isolated reactor core, the isolated steam generator, and the complete PWR models are tested in Matlab/Simulink and dynamic responses are compared with the test results obtained from the H. B. Robinson NPP. Test results illustrate that the developed models represents the dynamic features of real-physical systems and are capable of predicting responses due to small perturbations of external reactivity and steam valve opening. Subsequently, the NSSS representation is incorporated into PSLF and coupled with built-in excitation system and generator models. Different simulation cases are run when sudden loss of generation occurs in a small power system which includes hydroelectric and natural gas power plants besides the developed PWR NPP. The conclusion is that the NPP can respond to a disturbance in the power system without exceeding any design and safety limits if appropriate operational conditions, such as achieving the NPP turbine control by adjusting the speed of the steam valve, are met. In other words, the NPP can participate in the control of system frequency and improve the overall power system performance.
Internal Flows in Free Drops (IFFD)
NASA Technical Reports Server (NTRS)
Trinh, E. H.; Sadhal, Satwindar S.; Thomas, D. A.; Crouch, R. K.
1998-01-01
Within the framework of an Earth-based research task investigating the internal flows within freely levitated drops, a low-gravity technology development experiment has been designed and carried out within the NASA Glovebox facility during the STS-83 and STS-94 Shuttle flights (MSL-1 mission). The goal was narrowly defined as the assessment of the capabilities of a resonant single-axis ultrasonic levitator to stably position free drops in the Shuttle environment with a precision required for the detailed measurement of internal flows. The results of this entirely crew-operated investigation indicate that the approach is fundamentally sound, but also that the ultimate stability of the positioning is highly dependent on the residual acceleration characteristic of the Spacecraft, and to a certain extent, on the initial drop deployment of the drop. The principal results are: the measured dependence of the residual drop rotation and equilibrium drop shape on the ultrasonic power level, the experimental evaluation of the typical drop translational stability in a realistic low-gravity environment, and the semi-quantitative evaluation of background internal flows within quasi-isothermal drops. Based on these results, we conclude that the successful design of a full-scale Microgravity experiment is possible, and would allow accurate the measurement of thermocapillary flows within transparent drops. The need has been demonstrated, however, for the capability for accurately deploying the drop, for a quiescent environment, and for precise mechanical adjustments of the levitator.
Power system voltage stability and agent based distribution automation in smart grid
NASA Astrophysics Data System (ADS)
Nguyen, Cuong Phuc
2011-12-01
Our interconnected electric power system is presently facing many challenges that it was not originally designed and engineered to handle. The increased inter-area power transfers, aging infrastructure, and old technologies, have caused many problems including voltage instability, widespread blackouts, slow control response, among others. These problems have created an urgent need to transform the present electric power system to a highly stable, reliable, efficient, and self-healing electric power system of the future, which has been termed "smart grid". This dissertation begins with an investigation of voltage stability in bulk transmission networks. A new continuation power flow tool for studying the impacts of generator merit order based dispatch on inter-area transfer capability and static voltage stability is presented. The load demands are represented by lumped load models on the transmission system. While this representation is acceptable in traditional power system analysis, it may not be valid in the future smart grid where the distribution system will be integrated with intelligent and quick control capabilities to mitigate voltage problems before they propagate into the entire system. Therefore, before analyzing the operation of the whole smart grid, it is important to understand the distribution system first. The second part of this dissertation presents a new platform for studying and testing emerging technologies in advanced Distribution Automation (DA) within smart grids. Due to the key benefits over the traditional centralized approach, namely flexible deployment, scalability, and avoidance of single-point-of-failure, a new distributed approach is employed to design and develop all elements of the platform. A multi-agent system (MAS), which has the three key characteristics of autonomy, local view, and decentralization, is selected to implement the advanced DA functions. The intelligent agents utilize a communication network for cooperation and negotiation. Communication latency is modeled using a user-defined probability density function. Failure-tolerant communication strategies are developed for agent communications. Major elements of advanced DA are developed in a completely distributed way and successfully tested for several IEEE standard systems, including: Fault Detection, Location, Isolation, and Service Restoration (FLISR); Coordination of Distributed Energy Storage Systems (DES); Distributed Power Flow (DPF); Volt-VAR Control (VVC); and Loss Reduction (LR).
Thermofluid Modeling of Fuel Cells
NASA Astrophysics Data System (ADS)
Young, John B.
2007-01-01
Fuel cells offer the prospect of silent electrical power generation at high efficiency with near-zero pollutant emission. Many materials and fabrication problems have now been solved and attention has shifted toward system modeling, including the fluid flows that supply the cells with hydrogen and oxygen. This review describes the current thermofluid modeling capabilities for proton exchange membrane fuel cells (PEMFCs) and solid oxide fuel cells (SOFCs), the most promising candidates for commercial exploitation. Topics covered include basic operating principles and stack design, convective-diffusive flow in porous solids, special modeling issues for PEMFCs and SOFCs, and the use of computational fluid dynamics (CFD) methods.
A comprehensive approach to reactive power scheduling in restructured power systems
NASA Astrophysics Data System (ADS)
Shukla, Meera
Financial constraints, regulatory pressure, and need for more economical power transfers have increased the loading of interconnected transmission systems. As a consequence, power systems have been operated close to their maximum power transfer capability limits, making the system more vulnerable to voltage instability events. The problem of voltage collapse characterized by a severe local voltage depression is generally believed to be associated with inadequate VAr support at key buses. The goal of reactive power planning is to maintain a high level of voltage security, through installation of properly sized and located reactive sources and their optimal scheduling. In case of vertically-operated power systems, the reactive requirement of the system is normally satisfied by using all of its reactive sources. But in case of different scenarios of restructured power systems, one may consider a fixed amount of exchange of reactive power through tie lines. Reviewed literature suggests a need for optimal scheduling of reactive power generation for fixed inter area reactive power exchange. The present work proposed a novel approach for reactive power source placement and a novel approach for its scheduling. The VAr source placement technique was based on the property of system connectivity. This is followed by development of optimal reactive power dispatch formulation which facilitated fixed inter area tie line reactive power exchange. This formulation used a Line Flow-Based (LFB) model of power flow analysis. The formulation determined the generation schedule for fixed inter area tie line reactive power exchange. Different operating scenarios were studied to analyze the impact of VAr management approach for vertically operated and restructured power systems. The system loadability, losses, generation and the cost of generation were the performance measures to study the impact of VAr management strategy. The novel approach was demonstrated on IEEE 30 bus system.
Development of a smart type motor operated valve for nuclear power plants
NASA Astrophysics Data System (ADS)
Kim, Chang-Hwoi; Park, Joo-Hyun; Lee, Dong-young; Koo, In-Soo
2005-12-01
In this paper, the design concept of the smart type motor operator valve for nuclear power plant was described. The development objective of the smart valve is to achieve superior accuracy, long-term reliability, and ease of use. In this reasons, developed smart valve has fieldbus communication such as deviceNet and Profibus-DP, auto-tuning PID controller, self-diagnostics, and on-line calibration capabilities. And also, to achieve pressure, temperature, and flow control with internal PID controller, the pressure sensor and transmitter were included in this valve. And, temperature and flow signal acquisition port was prepared. The developed smart valve will be performed equipment qualification test such as environment, EMI/EMC, and vibration in Korea Test Lab. And, the valve performance is tested in a test loop which is located in Seoul National University Lab. To apply nuclear power plant, the software is being developed according to software life cycle. The developed software is verified by independent software V and V team. It is expected that the smart valve can be applied to an existing NPPs for replacing or to a new nuclear power plants. The design and fabrication of smart valve is now being processed.
A Laminar Flow-Based Microfluidic Tesla Pump via Lithography Enabled 3D Printing
Habhab, Mohammed-Baker; Ismail, Tania; Lo, Joe Fujiou
2016-01-01
Tesla turbine and its applications in power generation and fluid flow were demonstrated by Nicholas Tesla in 1913. However, its real-world implementations were limited by the difficulty to maintain laminar flow between rotor disks, transient efficiencies during rotor acceleration, and the lack of other applications that fully utilize the continuous flow outputs. All of the aforementioned limits of Tesla turbines can be addressed by scaling to the microfluidic flow regime. Demonstrated here is a microscale Tesla pump designed and fabricated using a Digital Light Processing (DLP) based 3D printer with 43 µm lateral and 30 µm thickness resolutions. The miniaturized pump is characterized by low Reynolds number of 1000 and a flow rate of up to 12.6 mL/min at 1200 rpm, unloaded. It is capable of driving a mixer network to generate microfluidic gradient. The continuous, laminar flow from Tesla turbines is well-suited to the needs of flow-sensitive microfluidics, where the integrated pump will enable numerous compact lab-on-a-chip applications. PMID:27886051
Parametric Time-Dependent Navier-Stokes Computations for a YAV-8B Harrier in Ground Effect
NASA Technical Reports Server (NTRS)
Chaderjian, Neal M.; Pandya, Shishir; Ahmad, Jasim; Murman, Scott; Kwak, Dochan (Technical Monitor)
2002-01-01
The Harrier Jump Jet has the distinction of being the only powered-lift aircraft in the free world to achieve operational status and to have flown in combat. This V/STOL aircraft can take-off and land vertically or utilize very short runways by directing its four exhaust nozzles towards the ground. Transition to forward flight is achieved by rotating these nozzles into a horizontal position. Powered-lift vehicles have certain advantages over conventional strike fighters. Their V/STOL capabilities allow for safer carrier operations, smaller carrier size, and quick reaction time for troop support. Moreover, they are not dependent on vulnerable land-based runways. The AV-8A Harrier first entered service in the British Royal Air Force (RAF) during 1969, and the U.S. Marine Corps (USMC) in 1971. The AV-8B was a redesign to achieve improved payload capacity, range, and accuracy. This modified design first entered service with the USMC and RAF in 1985. The success and unique capabilities of the Harrier has prompted the design of a powered-lift version of the Joint Strike Fighter (JSF). The flowfield for the Harrier near the ground during low-speed or hover flight operations is very complex and time-dependent. A sketch of this flowfield is shown. Warm air from the fan is exhausted from the front nozzles, while a hot air/fuel mixture from the engine is exhausted from the rear nozzles. These jets strike the ground and move out radially forming a ground jet-flow. The ambient freestream, due to low-speed forward flight or - headwind during hover, opposes the jet-flow. This interaction causes the flow to separate and form a ground vortex. The multiple jets also interact with each other near the ground and form an upwash or jet fountain, which strikes the underside of the fuselage. If the aircraft is sufficiently close to the ground, the inlet can ingest ground debris and hot gases from the fountain and ground vortex. This Hot Gas Ingestion (HGI) can cause a sudden loss of thrust (powered lift), and the vehicle may crash. The high-speed jet flow along the ground can also entrain the ambient flow, resulting in a low pressure region underneath the vehicle. The accompanied loss of lift is referred to as the suckdown effect. The ground vortex may also be highly unsteady, dramatically changing its size and position with time at low frequencies, e.g., 1 Hz.
NASA Technical Reports Server (NTRS)
DiSalvo, Roberto; Deaconu, Stelu; Majumdar, Alok
2006-01-01
One of the goals of this program was to develop the experimental and analytical/computational tools required to predict the flow of non-Newtonian fluids through the various system components of a propulsion system: pipes, valves, pumps etc. To achieve this goal we selected to augment the capabilities of NASA's Generalized Fluid System Simulation Program (GFSSP) software. GFSSP is a general-purpose computer program designed to calculate steady state and transient pressure and flow distributions in a complex fluid network. While the current version of the GFSSP code is able to handle various systems components the implicit assumption in the code is that the fluids in the system are Newtonian. To extend the capability of the code to non-Newtonian fluids, such as silica gelled fuels and oxidizers, modifications to the momentum equations of the code have been performed. We have successfully implemented in GFSSP flow equations for fluids with power law behavior. The implementation of the power law fluid behavior into the GFSSP code depends on knowledge of the two fluid coefficients, n and K. The determination of these parameters for the silica gels used in this program was performed experimentally. The n and K parameters for silica water gels were determined experimentally at CFDRC's Special Projects Laboratory, with a constant shear rate capillary viscometer. Batches of 8:1 (by weight) water-silica gel were mixed using CFDRC s 10-gallon gelled propellant mixer. Prior to testing the gel was allowed to rest in the rheometer tank for at least twelve hours to ensure that the delicate structure of the gel had sufficient time to reform. During the tests silica gel was pressure fed and discharged through stainless steel pipes ranging from 1", to 36", in length and three diameters; 0.0237", 0.032", and 0.047". The data collected in these tests included pressure at tube entrance and volumetric flowrate. From these data the uncorrected shear rate, shear stress, residence time, and viscosity were evaluated using formulae for non-Newtonian, power law fluids. The maximum shear rates (corrected for entrance effects) obtained in the rheometer with the current setup were in the 150,000 to 170,000sec- range. GFSSP simulations were performed with a flow circuit simulating the capillary rheometer and using Power Law gel viscosity coefficients from the experimental data. The agreement between the experimental data and the simulated flow curves was within +/-4% given quality entrance effect data.
NASA Astrophysics Data System (ADS)
Bijeljic, Branko; Icardi, Matteo; Prodanović, Maša
2018-05-01
Substantial progress has been made over last few decades on understanding the physics of multiphase flow and reactive transport phenomena in subsurface porous media. Confluence of advances in experimental techniques (including micromodels, X-ray microtomography, Nuclear Magnetic Resonance (NMR)) as well as computational power have made it possible to observe static and dynamic multi-scale flow, transport and reactive processes, thus stimulating development of new generation of modelling tools from pore to field scale. One of the key challenges is to make experiment and models as complementary as possible, with continuously improving experimental methods in order to increase predictive capabilities of theoretical models across scales. This creates need to establish rigorous benchmark studies of flow, transport and reaction in porous media which can then serve as the basis for introducing more complex phenomena in future developments.
NASA Astrophysics Data System (ADS)
McLarty, Dustin Fogle
Distributed energy systems are a promising means by which to reduce both emissions and costs. Continuous generators must be responsive and highly efficiency to support building dynamics and intermittent on-site renewable power. Fuel cell -- gas turbine hybrids (FC/GT) are fuel-flexible generators capable of ultra-high efficiency, ultra-low emissions, and rapid power response. This work undertakes a detailed study of the electrochemistry, chemistry and mechanical dynamics governing the complex interaction between the individual systems in such a highly coupled hybrid arrangement. The mechanisms leading to the compressor stall/surge phenomena are studied for the increased risk posed to particular hybrid configurations. A novel fuel cell modeling method introduced captures various spatial resolutions, flow geometries, stack configurations and novel heat transfer pathways. Several promising hybrid configurations are analyzed throughout the work and a sensitivity analysis of seven design parameters is conducted. A simple estimating method is introduced for the combined system efficiency of a fuel cell and a turbine using component performance specifications. Existing solid oxide fuel cell technology is capable of hybrid efficiencies greater than 75% (LHV) operating on natural gas, and existing molten carbonate systems greater than 70% (LHV). A dynamic model is calibrated to accurately capture the physical coupling of a FC/GT demonstrator tested at UC Irvine. The 2900 hour experiment highlighted the sensitivity to small perturbations and a need for additional control development. Further sensitivity studies outlined the responsiveness and limits of different control approaches. The capability for substantial turn-down and load following through speed control and flow bypass with minimal impact on internal fuel cell thermal distribution is particularly promising to meet local demands or provide dispatchable support for renewable power. Advanced control and dispatch heuristics are discussed using a case study of the UCI central plant. Thermal energy storage introduces a time horizon into the dispatch optimization which requires novel solution strategies. Highly efficient and responsive generators are required to meet the increasingly dynamic loads of today's efficient buildings and intermittent local renewable wind and solar power. Fuel cell gas turbine hybrids will play an integral role in the complex and ever-changing solution to local electricity production.
Study of Hydrokinetic Turbine Arrays with Large Eddy Simulation
NASA Astrophysics Data System (ADS)
Sale, Danny; Aliseda, Alberto
2014-11-01
Marine renewable energy is advancing towards commercialization, including electrical power generation from ocean, river, and tidal currents. The focus of this work is to develop numerical simulations capable of predicting the power generation potential of hydrokinetic turbine arrays-this includes analysis of unsteady and averaged flow fields, turbulence statistics, and unsteady loadings on turbine rotors and support structures due to interaction with rotor wakes and ambient turbulence. The governing equations of large-eddy-simulation (LES) are solved using a finite-volume method, and the presence of turbine blades are approximated by the actuator-line method in which hydrodynamic forces are projected to the flow field as a body force. The actuator-line approach captures helical wake formation including vortex shedding from individual blades, and the effects of drag and vorticity generation from the rough seabed surface are accounted for by wall-models. This LES framework was used to replicate a previous flume experiment consisting of three hydrokinetic turbines tested under various operating conditions and array layouts. Predictions of the power generation, velocity deficit and turbulence statistics in the wakes are compared between the LES and experimental datasets.
Silicon Nanophotonics for Many-Core On-Chip Networks
NASA Astrophysics Data System (ADS)
Mohamed, Moustafa
Number of cores in many-core architectures are scaling to unprecedented levels requiring ever increasing communication capacity. Traditionally, architects follow the path of higher throughput at the expense of latency. This trend has evolved into being problematic for performance in many-core architectures. Moreover, the trends of power consumption is increasing with system scaling mandating nontraditional solutions. Nanophotonics can address these problems, offering benefits in the three frontiers of many-core processor design: Latency, bandwidth, and power. Nanophotonics leverage circuit-switching flow control allowing low latency; in addition, the power consumption of optical links is significantly lower compared to their electrical counterparts at intermediate and long links. Finally, through wave division multiplexing, we can keep the high bandwidth trends without sacrificing the throughput. This thesis focuses on realizing nanophotonics for communication in many-core architectures at different design levels considering reliability challenges that our fabrication and measurements reveal. First, we study how to design on-chip networks for low latency, low power, and high bandwidth by exploiting the full potential of nanophotonics. The design process considers device level limitations and capabilities on one hand, and system level demands in terms of power and performance on the other hand. The design involves the choice of devices, designing the optical link, the topology, the arbitration technique, and the routing mechanism. Next, we address the problem of reliability in on-chip networks. Reliability not only degrades performance but can block communication. Hence, we propose a reliability-aware design flow and present a reliability management technique based on this flow to address reliability in the system. In the proposed flow reliability is modeled and analyzed for at the device, architecture, and system level. Our reliability management technique is superior to existing solutions in terms of power and performance. In fact, our solution can scale to thousand core with low overhead.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Xiaoliang; Nie, Zimin; Luo, Qingtao
Redox flow batteries (RFBs) are capable of reversible conversion between electricity and chemical energy. Potential RFB applications resolve around mitigating the discrepancy between electricity production and consumption to improve the stability and utilization of the power infrastructure and tackling the intermittency of renewables such as photovoltaics or wind turbines to enable their reliable integration [1, 2]. Because the energy is stored in externally contained liquid electrolytes and the energy conversion reactions take place at the electrodes, RFBs hold a unique capability to separate energy and power and thus possess considerable design flexibility to meet either energy management driven or powermore » rating oriented grid applications, which is considered to be a unparalleled advantage over conventional solid-state secondary batteries [3]. Other advantages of RFBs include fast response to load changes, high round-trip efficiency, long calender and cycle lives, safe operations, tolerance to deep discharge, etc. [4]. Among various flow battery chemistries, all-vanadium redox flow battery (VRB) was invented by Maria Skyllas-Kazacos at the University of New South Wales in the 1980s [5, 6] and have attracted substantial attention in both research and industrial communities today [7, 8]. A well-recognized advantage that makes VRB stands out among other redox chemistries is the reduced crossover contamination ascribed to employing four different oxidation states of the same vanadium element as the two redox couples. Recently, great progress has led to remarkably improved energy density of VRB by using sulfuric-chloric mixed acid supporting electrolytes that were stable at 2.5M vanadium and had wider operational temperature window of -5~50oC [9], compared with the traditional sulfuric acid VRB system [10].« less
High Performance Computing for Modeling Wind Farms and Their Impact
NASA Astrophysics Data System (ADS)
Mavriplis, D.; Naughton, J. W.; Stoellinger, M. K.
2016-12-01
As energy generated by wind penetrates further into our electrical system, modeling of power production, power distribution, and the economic impact of wind-generated electricity is growing in importance. The models used for this work can range in fidelity from simple codes that run on a single computer to those that require high performance computing capabilities. Over the past several years, high fidelity models have been developed and deployed on the NCAR-Wyoming Supercomputing Center's Yellowstone machine. One of the primary modeling efforts focuses on developing the capability to compute the behavior of a wind farm in complex terrain under realistic atmospheric conditions. Fully modeling this system requires the simulation of continental flows to modeling the flow over a wind turbine blade, including down to the blade boundary level, fully 10 orders of magnitude in scale. To accomplish this, the simulations are broken up by scale, with information from the larger scales being passed to the lower scale models. In the code being developed, four scale levels are included: the continental weather scale, the local atmospheric flow in complex terrain, the wind plant scale, and the turbine scale. The current state of the models in the latter three scales will be discussed. These simulations are based on a high-order accurate dynamic overset and adaptive mesh approach, which runs at large scale on the NWSC Yellowstone machine. A second effort on modeling the economic impact of new wind development as well as improvement in wind plant performance and enhancements to the transmission infrastructure will also be discussed.
A Mechanical Power Flow Capability for the Finite Element Code NASTRAN
1989-07-01
perimental methods. statistical energy analysis , the finite element method, and a finite element analog-,y using heat conduction equations. Experimental...weights and inertias of the transducers attached to an experimental structure may produce accuracy problems. Statistical energy analysis (SEA) is a...405-422 (1987). 8. Lyon, R.L., Statistical Energy Analysis of Dynamical Sistems, The M.I.T. Press, (1975). 9. Mickol, J.D., and R.J. Bernhard, "An
Underwater energy harvesting from a turbine hosting ionic polymer metal composites
NASA Astrophysics Data System (ADS)
Cellini, Filippo; Pounds, Jason; Peterson, Sean D.; Porfiri, Maurizio
2014-08-01
In this study, we explore the possibility of energy harvesting from fluid flow through a turbine hosting ionic polymer metal composites (IPMCs). Specifically, IPMC harvesters are embedded in the blades of a small-scale vertical axis water turbine to convert flow kinetics into electrical power via low-frequency flow-induced IPMC deformations. An in-house fabricated Savonius-Darrieus hybrid active turbine with three IPMCs is tested in a laboratory water tunnel to estimate the energy harvesting capabilities of the device as a function of the shunting electrical load. The turbine is shown to harvest a few nanowatt from a mean flow of 0.43\\;m\\;{{s}^{-1}} for shunting resistances in the range 100-1000\\;\\Omega . To establish a first understanding of the energy harvesting device, we propose a quasi-static hydroelastic model for the bending of the IPMCs and we utilize a black-box model to study their electromechanical response.
NASA Astrophysics Data System (ADS)
Lewis, B. J.; Cimbala, J. M.; Wouden, A. M.
2014-03-01
At their best efficiency point (BEP), hydroturbines operate at very high efficiency. However, with the ever-increasing penetration of alternative electricity generation, it has become common to operate hydroturbines at off-design conditions in order to maintain stability in the electric power grid. This paper demonstrates a method for improving hydroturbine performance during off-design operation by injecting water through slots at the trailing edges of the wicket gates. The injected water causes a change in bulk flow direction at the inlet of the runner. This change in flow angle from the wicket gate trailing-edge jets provides the capability of independently varying the flow rate and swirl angle through the runner, which in current designs are both determined by the wicket gate opening angle. When properly tuned, altering the flow angle results in a significant improvement in turbine efficiency during off-design operation.
SHEAR ACCELERATION IN EXPANDING FLOWS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rieger, F. M.; Duffy, P., E-mail: frank.rieger@mpi-hd.mpg.de, E-mail: peter.duffy@ucd.ie
Shear flows are naturally expected to occur in astrophysical environments and potential sites of continuous non-thermal Fermi-type particle acceleration. Here we investigate the efficiency of expanding relativistic outflows to facilitate the acceleration of energetic charged particles to higher energies. To this end, the gradual shear acceleration coefficient is derived based on an analytical treatment. The results are applied to the context of the relativistic jets from active galactic nuclei. The inferred acceleration timescale is investigated for a variety of conical flow profiles (i.e., power law, Gaussian, Fermi–Dirac) and compared to the relevant radiative and non-radiative loss timescales. The results exemplifymore » that relativistic shear flows are capable of boosting cosmic-rays to extreme energies. Efficient electron acceleration, on the other hand, requires weak magnetic fields and may thus be accompanied by a delayed onset of particle energization and affect the overall jet appearance (e.g., core, ridge line, and limb-brightening).« less
Bismuth Propellant Feed System Development at NASA-MSFC
NASA Technical Reports Server (NTRS)
Polzin, Kurt A.
2007-01-01
NASA-MSFC has been developing liquid metal propellant feed systems capable of delivering molten bismuth at a prescribed mass flow rate to the vaporizer of an electric thruster. The first such system was delivered to NASA-JPL as part of the Very High Isp Thruster with Anode Layer (VHITAL) program. In this system, the components pictured were placed in a vacuum chamber and heated while the control electronics were located outside the chamber. The system was successfully operated at JPL in conjunction with a propellant vaporizer, and data was obtained demonstrating a new liquid bismuth flow sensing technique developed at MSFC. The present effort is aimed at producing a feed-system for use in conjunction with a bismuth-fed Hall thruster developed by Busek Co. Developing this system is more ambitious, however, in that it is designed to self-contain all the control electronics inside the same vacuum chamber as an operating bismuth-fed thruster. Consequently, the entire system, including an on-board computer, DC-output power supplies, and a gas-pressurization electro-pneumatic regulator, must be designed to survive a vacuum environment and shielded to keep bismuth plasma from intruding on the electronics and causing a shortcircuit. In addition, the hot portions of the feed system must be thermally isolated from the electronics to avoid failure due to high heat loads. This is accomplished using a thermal protection system (TPS) consisting of multiple layers of aluminum foil. The only penetrations into the vacuum chamber are an electrically isolated (floating) 48 VDC line and a fiberoptic line. The 48 VDC provides power for operation of the power supplies and electronics co-located with the system in the vacuum chamber. The fiberoptic Ethernet connection is used to communicate user-input control commands to the on-board computer and transmit real-time data back to the external computer. The partially assembled second-generation system is shown. Before testing at Busek, a more detailed flow sensor calibration will be performed to accurately quantify the flow monitoring capabilities. This effort is funded under a Technology Innovation Program (TIP) award from NASA-MSFC's Technology Transfer office and performed under SAA8-061060.
Long Duration Hot Hydrogen Exposure of Nuclear Thermal Rocket Materials
NASA Technical Reports Server (NTRS)
Litchford, Ron J.; Foote, John P.; Hickman, Robert; Dobson, Chris; Clifton, Scooter
2007-01-01
An arc-heater driven hyper-thermal convective environments simulator was recently developed and commissioned for long duration hot hydrogen exposure of nuclear thermal rocket materials. This newly established non-nuclear testing capability uses a high-power, multi-gas, wall-stabilized constricted arc-heater to .produce high-temperature pressurized hydrogen flows representative of nuclear reactor core environments, excepting radiation effects, and is intended to serve as a low cost test facility for the purpose of investigating and characterizing candidate fuel/structural materials and improving associated processing/fabrication techniques. Design and engineering development efforts are fully summarized, and facility operating characteristics are reported as determined from a series of baseline performance mapping runs and long duration capability demonstration tests.
Description and calibration of the Langley unitary plan wind tunnel
NASA Technical Reports Server (NTRS)
Jackson, C. M., Jr.; Corlett, W. A.; Monta, W. J.
1981-01-01
The two test sections of the Langley Unitary Plan Wind Tunnel were calibrated over the operating Mach number range from 1.47 to 4.63. The results of the calibration are presented along with a a description of the facility and its operational capability. The calibrations include Mach number and flow angularity distributions in both test sections at selected Mach numbers and tunnel stagnation pressures. Calibration data are also presented on turbulence, test-section boundary layer characteristics, moisture effects, blockage, and stagnation-temperature distributions. The facility is described in detail including dimensions and capacities where appropriate, and example of special test capabilities are presented. The operating parameters are fully defined and the power consumption characteristics are discussed.
Application of Nearly Linear Solvers to Electric Power System Computation
NASA Astrophysics Data System (ADS)
Grant, Lisa L.
To meet the future needs of the electric power system, improvements need to be made in the areas of power system algorithms, simulation, and modeling, specifically to achieve a time frame that is useful to industry. If power system time-domain simulations could run in real-time, then system operators would have situational awareness to implement online control and avoid cascading failures, significantly improving power system reliability. Several power system applications rely on the solution of a very large linear system. As the demands on power systems continue to grow, there is a greater computational complexity involved in solving these large linear systems within reasonable time. This project expands on the current work in fast linear solvers, developed for solving symmetric and diagonally dominant linear systems, in order to produce power system specific methods that can be solved in nearly-linear run times. The work explores a new theoretical method that is based on ideas in graph theory and combinatorics. The technique builds a chain of progressively smaller approximate systems with preconditioners based on the system's low stretch spanning tree. The method is compared to traditional linear solvers and shown to reduce the time and iterations required for an accurate solution, especially as the system size increases. A simulation validation is performed, comparing the solution capabilities of the chain method to LU factorization, which is the standard linear solver for power flow. The chain method was successfully demonstrated to produce accurate solutions for power flow simulation on a number of IEEE test cases, and a discussion on how to further improve the method's speed and accuracy is included.
Jung, E M; Kubale, R; Jungius, K-P; Jung, W; Lenhart, M; Clevert, D-A
2006-01-01
To investigate the dynamic value of contrast medium-enhanced ultrasonography with Optison for appraisal of the vascularization of hepatic tumors using harmonic imaging, 3D-/power Doppler and B-flow. 60 patients with a mean age of 56 years (range 35-76 years) with 93 liver tumors, including histopathologically proven hepatocellular carcinoma (HCC) [15 cases with 20 lesions], liver metastases of colorectal tumors [17 cases with 33 lesions], metastases of breast cancer [10 cases with 21 lesions] and hemangiomas [10 cases with 19 lesions] were prospectively investigated by means of multislice CT as well as native and contrast medium-enhanced ultrasound using a multifrequency transducer (2.5-4 MHz, Logig 9, GE). B scan was performed with additional color and power Doppler, followed by a bolus injection of 0.5 ml Optison. Tumor vascularization was evaluated with coded harmonic angio (CHA), pulse inversion imaging with power Doppler, 3D power Doppler and in the late phase (>5 min) with B-flow. In 15 cases with HCC, i.a. DSA was performed in addition. The results were also correlated with MRT and histological findings. Compared to spiral-CT/MRT, only 72/93 (77%) of the lesions could be detected in the B scan, 75/93 (81%) with CHA and 93/93 (100%) in the pulse inversion mode. Tumor vascularization was detectable in 43/93 (46%) of lesions with native power Doppler, in 75/93 (81%) of lesions after administering contrast medium in the CHA mode, in 81/93 (87%) of lesions in the pulse inversion mode with power Doppler and in 77/93 (83%) of lesions with contrast-enhanced B-flow. Early arterial and capillary perfusion was best detected with CHA, particularly in 20/20 (100%) of the HCC lesions, allowing a 3D reconstruction. 3D power Doppler was especially useful in investigating the tumor margins. Up to 20 min after contrast medium injection, B-flow was capable of detecting increased metastatic tumor vascularization in 42/54 (78%) of cases and intratumoral perfusion in 17/20 (85%) of HCC cases. All 19 hemangiomas were correctly classified by phase inversion imaging. Contrast medium-enhanced ultrasound investigation of liver tumors with Optison allowed reliable detection of tumor foci and, in most cases, appraisal of tumor vascularization. The time available for evaluation of tumor margin vascularization was substantially longer in B-flow.
Coupled reactor kinetics and heat transfer model for heat pipe cooled reactors
NASA Astrophysics Data System (ADS)
Wright, Steven A.; Houts, Michael
2001-02-01
Heat pipes are often proposed as cooling system components for small fission reactors. SAFE-300 and STAR-C are two reactor concepts that use heat pipes as an integral part of the cooling system. Heat pipes have been used in reactors to cool components within radiation tests (Deverall, 1973); however, no reactor has been built or tested that uses heat pipes solely as the primary cooling system. Heat pipe cooled reactors will likely require the development of a test reactor to determine the main differences in operational behavior from forced cooled reactors. The purpose of this paper is to describe the results of a systems code capable of modeling the coupling between the reactor kinetics and heat pipe controlled heat transport. Heat transport in heat pipe reactors is complex and highly system dependent. Nevertheless, in general terms it relies on heat flowing from the fuel pins through the heat pipe, to the heat exchanger, and then ultimately into the power conversion system and heat sink. A system model is described that is capable of modeling coupled reactor kinetics phenomena, heat transfer dynamics within the fuel pins, and the transient behavior of heat pipes (including the melting of the working fluid). This paper focuses primarily on the coupling effects caused by reactor feedback and compares the observations with forced cooled reactors. A number of reactor startup transients have been modeled, and issues such as power peaking, and power-to-flow mismatches, and loading transients were examined, including the possibility of heat flow from the heat exchanger back into the reactor. This system model is envisioned as a tool to be used for screening various heat pipe cooled reactor concepts, for designing and developing test facility requirements, for use in safety evaluations, and for developing test criteria for in-pile and out-of-pile test facilities. .
Plasma Propulsion Testing Capabilities at Arnold Engineering Development Center
NASA Technical Reports Server (NTRS)
Polzin, Kurt A.; Dawbarn, Albert; Moeller, Trevor
2007-01-01
This paper describes the results of a series of experiments aimed at quantifying the plasma propulsion testing capabilities of a 12-ft diameter vacuum facility (12V) at USAF-Arnold Engineering Development Center (AEDC). Vacuum is maintained in the 12V facility by cryogenic panels lining the interior of the chamber. The pumping capability of these panels was shown to be great enough to support plasma thrusters operating at input electrical power >20 kW. In addition, a series of plasma diagnostics inside the chamber allowed for measurement of plasma parameters at different spatial locations, providing information regarding the chamber's effect on the global plasma thruster flowfield. The plasma source used in this experiment was Hall thruster manufactured by Busek Co. The thruster was operated at up to 20 kW steady-state power in both a lower current and higher current mode. The vacuum level in the chamber never rose above 9 x 10(exp -6) torr during the course of testing. Langmuir probes, ion flux probes, and Faraday cups were used to quantify the plasma parameters in the chamber. We present the results of these measurements and estimates of pumping speed based on the background pressure level and thruster propellant mass flow rate.
Wind Tunnel Testing of Powered Lift, All-Wing STOL Model
NASA Technical Reports Server (NTRS)
Collins, Scott W.; Westra, Bryan W.; Lin, John C.; Jones, Gregory S.; Zeune, Cal H.
2008-01-01
Short take-off and landing (STOL) systems can offer significant capabilities to warfighters and, for civil operators thriving on maximizing efficiencies they can improve airspace use while containing noise within airport environments. In order to provide data for next generation systems, a wind tunnel test of an all-wing cruise efficient, short take-off and landing (CE STOL) configuration was conducted in the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) 14- by 22-foot Subsonic Wind Tunnel. The test s purpose was to mature the aerodynamic aspects of an integrated powered lift system within an advanced mobility configuration capable of CE STOL. The full-span model made use of steady flap blowing and a lifting centerbody to achieve high lift coefficients. The test occurred during April through June of 2007 and included objectives for advancing the state-of-the-art of powered lift testing through gathering force and moment data, on-body pressure data, and off-body flow field measurements during automatically controlled blowing conditions. Data were obtained for variations in model configuration, angles of attack and sideslip, blowing coefficient, and height above ground. The database produced by this effort is being used to advance design techniques and computational tools for developing systems with integrated powered lift technologies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Punit; Nestmann, Franz
2010-09-15
A detailed experimental investigation of the effects of exit blade geometry on the part-load performance of low-head, axial flow propeller turbines is presented. Even as these turbines find important applications in small-scale energy generation using micro-hydro, the relationship between the layout of blade profile, geometry and turbine performance continues to be poorly characterized. The experimental results presented here help understand the relationship between exit tip angle, discharge through the turbine, shaft power, and efficiency. The modification was implemented on two different propeller runners and it was found that the power and efficiency gains from decreasing the exit tip angle couldmore » be explained by a theoretical model presented here based on classical theory of turbomachines. In particular, the focus is on the behaviour of internal parameters like the runner loss coefficient, relative flow angle at exit, mean axial flow velocity and net tangential flow velocity. The study concluded that the effects of exit tip modification were significant. The introspective discussion on the theoretical model's limitation and test facility suggests wider and continued experimentation pertaining to the internal parameters like inlet vortex profile and exit swirl profile. It also recommends thorough validation of the model and its improvement so that it can be made capable for accurate characterization of blade geometric effects. (author)« less
Development of software to improve AC power quality on large spacecraft
NASA Technical Reports Server (NTRS)
Kraft, L. Alan
1991-01-01
To insure the reliability of a 20 kHz, AC power system on spacecraft, it is essential to analyze its behavior under many adverse operating conditions. Some of these conditions include overloads, short circuits, switching surges, and harmonic distortions. Harmonic distortions can cause malfunctions in equipment that the power system is supplying, and during extreme distortions such as voltage resonance, it can cause equipment and insulation failures due to the extreme peak voltages. HARMFLO, a power flow computer program, which was capable of analyzing harmonic conditions on three phase, balanced, 60 Hz, AC power systems, was modified to analyze single phase, 20 kHz, AC power systems. Since almost all of the equipment used on spacecraft power systems is electrically different from equipment used on terrestrial power systems, it was also necessary to develop mathematical models for the equipment to be used on the spacecraft. The results are that (1) the harmonic power now has a model of a single phase, voltage controlled, full wave rectifier; and (2) HARMFLO was ported to the SUN workstation platform.
Design and Build of Reactor Simulator for Fission Surface Power Technology Demonstrator Unit
NASA Technical Reports Server (NTRS)
Godfroy, Thomas; Dickens, Ricky; Houts, Michael; Pearson, Boise; Webster, Kenny; Gibson, Marc; Qualls, Lou; Poston, Dave; Werner, Jim; Radel, Ross
2011-01-01
The Nuclear Systems Team at NASA Marshall Space Flight Center (MSFC) focuses on technology development for state of the art capability in non-nuclear testing of nuclear system and Space Nuclear Power for fission reactor systems for lunar and Mars surface power generation as well as radioisotope power systems for both spacecraft and surface applications. Currently being designed and developed is a reactor simulator (RxSim) for incorporation into the Technology Demonstrator Unit (TDU) for the Fission Surface Power System (FSPS) Program, which is supported by multiple national laboratories and NASA centers. The ultimate purpose of the RxSim is to provide heated NaK to a pair of Stirling engines in the TDU. The RxSim includes many different systems, components, and instrumentation that have been developed at MSFC while working with pumped NaK systems and in partnership with the national laboratories and NASA centers. The main components of the RxSim are a core, a pump, a heat exchanger (to mimic the thermal load of the Stirling engines), and a flow meter for tests at MSFC. When tested at NASA Glenn Research Center (GRC) the heat exchanger will be replaced with a Stirling power conversion engine. Additional components include storage reservoirs, expansion volumes, overflow catch tanks, safety and support hardware, instrumentation (temperature, pressure, flow) for data collection, and power supplies. This paper will discuss the design and current build status of the RxSim for delivery to GRC in early 2012.
Design and Build of Reactor Simulator for Fission Surface Power Technology Demonstrator Unit
NASA Astrophysics Data System (ADS)
Godfroy, T.; Dickens, R.; Houts, M.; Pearson, B.; Webster, K.; Gibson, M.; Qualls, L.; Poston, D.; Werner, J.; Radel, R.
The Nuclear Systems Team at Marshall Space Flight Center (MSFC) focuses on technology development for state of the art capability in non-nuclear testing of nuclear system and Space Nuclear Power for fission reactor systems for lunar and mars surface power generation as well as radioisotope power systems for both spacecraft and surface applications. Currently being designed and developed is a reactor simulator (RxSim) for incorporation into the Technology Demonstrator Unit (TDU) for the Fission Surface Power System (FSPS) Program which is supported by multiple national laboratories and NASA centers. The ultimate purpose of the RxSim is to provide heated NaK to a pair of Stirling engines in the TDU. The RxSim includes many different systems, components, and instrumentation that have been developed at MSFC while working with pumped NaK systems and in partnership with the national laboratories and NASA centers. The main components of the RxSim are a core, a pump, a heat exchanger (to mimic the thermal load of the Stirling engines), and a flow meter when being tested at MSFC. When tested at GRC the heat exchanger will be replaced with a Stirling power conversion engine. Additional components include storage reservoirs, expansion volumes, overflow catch tanks, safety and support hardware, instrumenta- tion (temperature, pressure, flow) data collection, and power supplies. This paper will discuss the design and current build status of the RxSim for delivery to GRC in early 2012.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onar, Omer C; Tang, Lixin; Chinthavali, Madhu Sudhan
2014-01-01
Wireless Power Transfer (WPT) technology is a novel research area in the charging technology that bridges the utility and the automotive industries. There are various solutions that are currently being evaluated by several research teams to find the most efficient way to manage the power flow from the grid to the vehicle energy storage system. There are different control parameters that can be utilized to compensate for the change in the impedance due to variable parameters such as battery state-of-charge, coupling factor, and coil misalignment. This paper presents the implementation of an active front-end rectifier on the grid side formore » power factor control and voltage boost capability for load power regulation. The proposed SiC MOSFET based single phase active front end rectifier with PFC resulted in >97% efficiency at 137mm air-gap and >95% efficiency at 160mm air-gap.« less
Heat And Mass Transfer Analysis of a Film Evaporative MEMS Tunable Array
NASA Astrophysics Data System (ADS)
O'Neill, William J.
This thesis details the heat and mass transfer analysis of a MEMs microthruster designed to provide propulsive, attitude control and thermal control capabilities to a cubesat. This thruster is designed to function by retaining water as a propellant and applying resistive heating in order to increase the temperature of the liquid-vapor interface to either increase evaporation or induce boiling to regulate mass flow. The resulting vapor is then expanded out of a diverging nozzle to produce thrust. Because of the low operating pressure and small length scale of this thruster, unique forms of mass transfer analysis such as non-continuum gas flow were modeled using the Direct Simulation Monte Carlo method. Continuum fluid/thermal simulations using COMSOL Multiphysics have been applied to model heat and mass transfer in the solid and liquid portions of the thruster. The two methods were coupled through variables at the liquid-vapor interface and solved iteratively by the bisection method. The simulations presented in this thesis confirm the thermal valving concept. It is shown that when power is applied to the thruster there is a nearly linear increase in mass flow and thrust. Thus, mass flow can be regulated by regulating the applied power. This concept can also be used as a thermal control device for spacecraft.
A fast response miniature probe for wet steam flow field measurements
NASA Astrophysics Data System (ADS)
Bosdas, Ilias; Mansour, Michel; Kalfas, Anestis I.; Abhari, Reza S.
2016-12-01
Modern steam turbines require operational flexibility due to renewable energies’ increasing share of the electrical grid. Additionally, the continuous increase in energy demand necessitates efficient design of the steam turbines as well as power output augmentation. The long turbine rotor blades at the machines’ last stages are prone to mechanical vibrations and as a consequence time-resolved experimental data under wet steam conditions are essential for the development of large-scale low-pressure steam turbines. This paper presents a novel fast response miniature heated probe for unsteady wet steam flow field measurements. The probe has a tip diameter of 2.5 mm, and a miniature heater cartridge ensures uncontaminated pressure taps from condensed water. The probe is capable of providing the unsteady flow angles, total and static pressure as well as the flow Mach number. The operating principle and calibration procedure are described in the current work and a detailed uncertainty analysis demonstrates the capability of the new probe to perform accurate flow field measurements under wet steam conditions. In order to exclude any data possibly corrupted by droplets’ impact or evaporation from the heating process, a filtering algorithm was developed and implemented in the post-processing phase of the measured data. In the last part of this paper the probe is used in an experimental steam turbine test facility and measurements are conducted at the inlet and exit of the last stage with an average wetness mass fraction of 8.0%.
Dynamic Stall Suppression Using Combustion-Powered Actuation (COMPACT)
NASA Technical Reports Server (NTRS)
Matalanis, Claude G.; Bowles, Patrick O.; Jee, Solkeun; Min, Byung-Young; Kuczek, Andrzej E.; Croteau, Paul F.; Wake, Brian E.; Crittenden, Thomas; Glezer, Ari; Lorber, Peter F.
2016-01-01
Retreating blade stall is a well-known phenomenon that limits rotorcraft speed, maneuverability, and efficiency. Airfoil dynamic stall is a simpler problem, which demonstrates many of the same flow phenomena. Combustion Powered Actuation (COMPACT) is an active flow control technology, which at the outset of this work, had been shown to mitigate static and dynamic stall at low Mach numbers. The attributes of this technology suggested strong potential for success at higher Mach numbers, but such experiments had never been conducted. The work detailed in this report documents a 3-year effort focused on assessing the effectiveness of COMPACT for dynamic stall suppression at freestream conditions up to Mach 0.5. The work done has focused on implementing COMPACT on a high-lift rotorcraft airfoil: the VR-12. This selection was made in order to ensure that any measured benefits are over and above the capabilities of state-of-the-art high-lift rotorcraft airfoils. The detailed Computational Fluid Dynamics (CFD) simulations, wind-tunnel experiments, and system-level modeling conducted have shown the following: (1) COMPACT, in its current state of development, is capable of reducing the adverse effects of deep dynamic stall at Mach numbers up to 0.4; (2) The two-dimensional (2D) CFD results trend well compared to the experiments; and (3) Implementation of the CFD results into a system-level model suggest that significant rotor-level benefits are possible.
Surface phenomena revealed by in situ imaging: studies from adhesion, wear and cutting
NASA Astrophysics Data System (ADS)
Viswanathan, Koushik; Mahato, Anirban; Yeung, Ho; Chandrasekar, Srinivasan
2017-03-01
Surface deformation and flow phenomena are ubiquitous in mechanical processes. In this work we present an in situ imaging framework for studying a range of surface mechanical phenomena at high spatial resolution and across a range of time scales. The in situ framework is capable of resolving deformation and flow fields quantitatively in terms of surface displacements, velocities, strains and strain rates. Three case studies are presented demonstrating the power of this framework for studying surface deformation. In the first, the origin of stick-slip motion in adhesive polymer interfaces is investigated, revealing a intimate link between stick-slip and surface wave propagation. Second, the role of flow in mediating formation of surface defects and wear particles in metals is analyzed using a prototypical sliding process. It is shown that conventional post-mortem observation and inference can lead to erroneous conclusions with regard to formation of surface cracks and wear particles. The in situ framework is shown to unambiguously capture delamination wear in sliding. Third, material flow and surface deformation in a typical cutting process is analyzed. It is shown that a long-standing problem in the cutting of annealed metals is resolved by the imaging, with other benefits such as estimation of energy dissipation and power from the flow fields. In closure, guidelines are provided for profitably exploiting in situ observations to study large-strain deformation, flow and friction phenomena at surfaces that display a variety of time-scales.
Parallel ALLSPD-3D: Speeding Up Combustor Analysis Via Parallel Processing
NASA Technical Reports Server (NTRS)
Fricker, David M.
1997-01-01
The ALLSPD-3D Computational Fluid Dynamics code for reacting flow simulation was run on a set of benchmark test cases to determine its parallel efficiency. These test cases included non-reacting and reacting flow simulations with varying numbers of processors. Also, the tests explored the effects of scaling the simulation with the number of processors in addition to distributing a constant size problem over an increasing number of processors. The test cases were run on a cluster of IBM RS/6000 Model 590 workstations with ethernet and ATM networking plus a shared memory SGI Power Challenge L workstation. The results indicate that the network capabilities significantly influence the parallel efficiency, i.e., a shared memory machine is fastest and ATM networking provides acceptable performance. The limitations of ethernet greatly hamper the rapid calculation of flows using ALLSPD-3D.
DOE Office of Scientific and Technical Information (OSTI.GOV)
SCHNEIDER,LARRY X.
2000-06-01
The National Hypersonic Wind Tunnel program requires an unprecedented electron beam source capable of 1--2 MeV at a beam power level of 50--100 MW. Direct-current electron accelerator technology can readily generate high average power beams to approximately 5 MeV at output efficiencies greater than 90%. However, due to the nature of research and industrial applications, there has never been a requirement for a single module with an output power exceeding approximately 500 kW. Although a 50--100 MW module is a two-order extrapolation from demonstrated power levels, the scaling of accelerator components appears reasonable. This paper presents an evaluation of componentmore » and system issues involved in the design of a 50--100 MW electron beam accelerator system with precision beam transport into a high pressure flowing air environment.« less
Feasibility and operating costs of an air cycle for CCHP in a fast food restaurant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perez-Blanco, Horacio; Vineyard, Edward
This work considers the possibilities of an air-based Brayton cycle to provide the power, heating and cooling needs of fast-food restaurants. A model of the cycle based on conventional turbomachinery loss coefficients is formulated. The heating, cooling and power capabilities of the cycle are extracted from simulation results. Power and thermal loads for restaurants in Knoxville, TN and in International Falls, MN, are considered. It is found that the cycle can meet the loads by setting speed and mass flow-rate apportionment between the power and cooling functional sections. The associated energy costs appear elevated when compared to the cost ofmore » operating individual components or a more conventional, absorption-based CHP system. Lastly, a first-order estimate of capital investments is provided. Suggestions for future work whereby the operational costs could be reduced are given in the conclusions.« less
Feasibility and operating costs of an air cycle for CCHP in a fast food restaurant
Perez-Blanco, Horacio; Vineyard, Edward
2016-05-06
This work considers the possibilities of an air-based Brayton cycle to provide the power, heating and cooling needs of fast-food restaurants. A model of the cycle based on conventional turbomachinery loss coefficients is formulated. The heating, cooling and power capabilities of the cycle are extracted from simulation results. Power and thermal loads for restaurants in Knoxville, TN and in International Falls, MN, are considered. It is found that the cycle can meet the loads by setting speed and mass flow-rate apportionment between the power and cooling functional sections. The associated energy costs appear elevated when compared to the cost ofmore » operating individual components or a more conventional, absorption-based CHP system. Lastly, a first-order estimate of capital investments is provided. Suggestions for future work whereby the operational costs could be reduced are given in the conclusions.« less
Natural Circulation Level Optimization and the Effect during ULOF Accident in the SPINNOR Reactors
NASA Astrophysics Data System (ADS)
Abdullah, Ade Gafar; Su'ud, Zaki; Kurniadi, Rizal; Kurniasih, Neny; Yulianti, Yanti
2010-12-01
Natural circulation level optimization and the effect during loss of flow accident in the 250 MWt MOX fuelled small Pb-Bi Cooled non-refueling nuclear reactors (SPINNOR) have been performed. The simulation was performed using FI-ITB safety code which has been developed in ITB. The simulation begins with steady state calculation of neutron flux, power distribution and temperature distribution across the core, hot pool and cool pool, and also steam generator. When the accident is started due to the loss of pumping power the power distribution and the temperature distribution of core, hot pool and cool pool, and steam generator change. Then the feedback reactivity calculation is conducted, followed by kinetic calculation. The process is repeated until the optimum power distribution is achieved. The results show that the SPINNOR reactor has inherent safety capability against this accident.
Automatic Learning of Fine Operating Rules for Online Power System Security Control.
Sun, Hongbin; Zhao, Feng; Wang, Hao; Wang, Kang; Jiang, Weiyong; Guo, Qinglai; Zhang, Boming; Wehenkel, Louis
2016-08-01
Fine operating rules for security control and an automatic system for their online discovery were developed to adapt to the development of smart grids. The automatic system uses the real-time system state to determine critical flowgates, and then a continuation power flow-based security analysis is used to compute the initial transfer capability of critical flowgates. Next, the system applies the Monte Carlo simulations to expected short-term operating condition changes, feature selection, and a linear least squares fitting of the fine operating rules. The proposed system was validated both on an academic test system and on a provincial power system in China. The results indicated that the derived rules provide accuracy and good interpretability and are suitable for real-time power system security control. The use of high-performance computing systems enables these fine operating rules to be refreshed online every 15 min.
Heat removal capability of divertor coaxial tube assembly
NASA Astrophysics Data System (ADS)
Shibui, Masanao; Nakahira, Masataka; Tada, Eisuke; Takatsu, Hideyuki
1994-05-01
To deal with high power flowing in the divertor region, an advanced divertor concept with gas target has been proposed for use in ITER/EDA. The concept uses a divertor channel to remove the radiated power while allowing neutrals to recirculate. Candidate channel wall designs include a tube array design where many coaxial tubes are arranged in the toroidal direction to make louver. The coaxial tube consists of a Be protection tube encases many supply tubes wound helically around a return tube. V-alloy and hardened Cu-alloy have been proposed for use in the supply and return tubes. Some coolants have also been proposed for the design including pressurized He and liquid metals, because these coolants are consistent with the selection of coolants for the blanket and also meet the requirement of high temperature operation. In the coaxial tube design, the coolant area is restricted and brittle Be material is used under severe thermal cyclings. Thus, to obtain the coaxial tube with sufficient safety margin for the expected fusion power excursion, it is essential to understand its applicability limit. The paper discusses heat removal capability of the coaxial tube and recommends some design modifications.
Design and testing of a high power spacecraft thermal management system
NASA Technical Reports Server (NTRS)
Mccabe, Michael E., Jr.; Ku, Jentung; Benner, Steve
1988-01-01
The design and test results are presented of an ammonia hybrid capillary pumped loop thermal control system which could be used for heat acquisition and transport on future large space platforms and attached payloads, such as those associated with the NASA Space Station. The High Power Spacecraft Thermal Management System (HPSTM) can operate as either a passive, capillary pumped two phase thermal control system, or, when additional pressure head is required, as a mechanically pumped loop. Testing has shown that in the capillary mode, the HPSTM evaporators can acquire a total heat load of between 600 W and 24 kW, transported over 10 meters, at a maximum heat flux density of 4.3 W/sq cm. With the mechanical pump circulating the ammonia, a heat acquisition potential of 52 kW was demonstrated for 15 minutes without an evaporator failure. These results represent a significant improvement over the maximum transport capability previously displayed in other capillary systems. The HPSTM system still retains the proven capillary capabilities of heat load sharing and flow control between evaporator plates, rapid power cycling, and nonuniform heating in both the capillary and hybrid operating modes.
Laboratory Tests of Multiplex Detection of PCR Amplicons Using the Luminex 100 Flow Analyzer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venkateswaran, K.S.; Nasarabadi, S.; Langlois, R.G.
2000-05-05
Lawrence Livermore National Laboratory (LLNL) demonstrated the power of flow cytometry in detecting the biological agents simulants at JFT III. LLNL pioneered in the development of advanced nucleic acid analyzer (ANM) for portable real time identification. Recent advances in flow cytometry provide a means for multiplexed nucleic acid detection and immunoassay of pathogenic microorganisms. We are presently developing multiplexed immunoassays for the simultaneous detection of different simulants. Our goal is to build an integrated instrument for both nucleic acid analysis and immuno detection. In this study we evaluated the Luminex LX 100 for concurrent identification of more than one PCRmore » amplified product. ANAA has real-time Taqman fluorescent detection capability for rapid identification of field samples. However, its multiplexing ability is limited by the combination of available fluorescent labels. Hence integration of ANAA with flow cytometry can give the rapidity of ANAA amplification and the multiplex capability of flow cytometry. Multiplexed flow cytometric analysis is made possible using a set of fluorescent latex microsphere that are individually identified by their red and infrared fluorescence. A green fluorochrome is used as the assay signal. Methods were developed for the identification of specific nucleic acid sequences from Bacillus globigii (Bg), Bacillus thuringensis (Bt) and Erwinia herbicola (Eh). Detection sensitivity using different reporter fluorochromes was tested with the LX 100, and also different assay formats were evaluated for their suitability for rapid testing. A blind laboratory trial was carried out December 22-27, 1999 to evaluate bead assays for multiplex identification of Bg and Bt PCR products. This report summarizes the assay development, fluorochrome comparisons, and the results of the blind trial conducted at LLNL for the laboratory evaluation of the LX 100 flow analyzer.« less
A MEMS Electrochemical Bellows Actuator for Fluid Metering Applications
Sheybani, Roya; Gensler, Heidi; Meng, Ellis
2013-01-01
We present a high efficiency wireless MEMS electrochemical bellows actuator capable of rapid and repeatable delivery of boluses for fluid metering and drug delivery applications. Nafion®-coated Pt electrodes were combined with Parylene bellows filled with DI water to form the electrolysis-based actuator. The performance of actuators with several bellows configurations was compared for a range of applied currents (1-10 mA). Up to 75 boluses were delivered with an average pumping flow rate of 114.40 ± 1.63 μL/min. Recombination of gases into water, an important factor in repeatable and reliable actuation, was studied for uncoated and Nafion®-coated actuators. Real-time pressure measurements were conducted and the effects of temperature, physiological back pressure, and drug viscosity on delivery performance were investigated. Lastly, we present wireless powering of the actuator using a class D inductive powering system that allowed for repeatable delivery with less than 2% variation in flow rate values. PMID:22833156
Composite Matrix Regenerator for Stirling Engines
NASA Technical Reports Server (NTRS)
Knowles, Timothy R.
1997-01-01
This project concerns the design, fabrication and testing of carbon regenerators for use in Stirling power convertors. Radial fiber design with nonmetallic components offers a number of potential advantages over conventional steel regenerators: reduced conduction and pressure drop losses, and the capability for higher temperature, higher frequency operation. Diverse composite fabrication methods are explored and lessons learned are summarized. A pulsed single-blow test rig has been developed that has been used for generating thermal effectiveness data for different flow velocities. Carbon regenerators have been fabricated by carbon vapor infiltration of electroflocked preforms. Performance data in a small Stirling engine are obtained. Prototype regenerators designed for the BP-1000 power convertor were fabricated and delivered to NASA-Lewis.
Aquantis C-Plane Ocean Current Turbine Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fleming, Alex
The Aquantis 2.5 MW Ocean Current Generation Device technology developed by Dehlsen Associates, LLC (DA) is a derivation of wind power generating technology (a means of harnessing a slow moving fluid) adapted to the ocean environment. The Aquantis Project provides an opportunity for accelerated technological development and early commercialization, since it involves the joining of two mature disciplines: ocean engineering and wind turbine design. The Aquantis Current Plane (C-Plane) technology is an ocean current turbine designed to extract kinetic energy from a current flow. The technology is capable of achieving competitively priced, continuous, base-load, and reliable power generation from amore » source of renewable energy not before possible in this scale or form.« less
NASA Technical Reports Server (NTRS)
Booth, David; Flegel, Ashlie
2015-01-01
A computational assessment of the aerodynamic performance of the midspan section of a variable-speed power-turbine blade is described. The computation comprises a periodic single blade that represents the 2-D Midspan section VSPT blade that was tested in the NASA Glenn Research Center Transonic Turbine Blade Cascade Facility. A commercial, off-the-shelf (COTS) software package, Pointwise and CFD++, was used for the grid generation and RANS and URANS computations. The CFD code, which offers flexibility in terms of turbulence and transition modeling options, was assessed in terms of blade loading, loss, and turning against test data from the transonic tunnel. Simulations were assessed at positive and negative incidence angles that represent the turbine cruise and take-off design conditions. The results indicate that the secondary flow induced at the positive incidence cruise condition results in a highly loaded case and transitional flow on the blade is observed. The negative incidence take-off condition is unloaded and the flow is very two-dimensional. The computational results demonstrate the predictive capability of the gridding technique and COTS software for a linear transonic turbine blade cascade with large incidence angle variation.
Heat Transfer Measurements and Predictions on a Power Generation Gas Turbine Blade
NASA Technical Reports Server (NTRS)
Giel, Paul W.; Bunker, Ronald S.; VanFossen, G. James; Boyle, Robert J.
2000-01-01
Detailed heat transfer measurements and predictions are given for a power generation turbine rotor with 129 deg of nominal turning and an axial chord of 137 mm. Data were obtained for a set of four exit Reynolds numbers comprised of the design point of 628,000, -20%, +20%, and +40%. Three ideal exit pressure ratios were examined including the design point of 1.378, -10%, and +10%. Inlet incidence angles of 0 deg and +/-2 deg were also examined. Measurements were made in a linear cascade with highly three-dimensional blade passage flows that resulted from the high flow turning and thick inlet boundary layers. Inlet turbulence was generated with a blown square bar grid. The purpose of the work is the extension of three-dimensional predictive modeling capability for airfoil external heat transfer to engine specific conditions including blade shape, Reynolds numbers, and Mach numbers. Data were obtained by a steady-state technique using a thin-foil heater wrapped around a low thermal conductivity blade. Surface temperatures were measured using calibrated liquid crystals. The results show the effects of strong secondary vortical flows, laminar-to-turbulent transition, and also show good detail in the stagnation region.
NASA Technical Reports Server (NTRS)
Booth, David T.; Flegel, Ashlie B.
2015-01-01
A computational assessment of the aerodynamic performance of the midspan section of a variable-speed power-turbine blade is described. The computation comprises a periodic single blade that represents the 2-D Midspan section VSPT blade that was tested in the NASA Glenn Research Center Transonic Turbine Blade Cascade Facility. A commercial, off-the-shelf (COTS) software package, Pointwise and CFD++, was used for the grid generation and RANS and URANS computations. The CFD code, which offers flexibility in terms of turbulence and transition modeling options, was assessed in terms of blade loading, loss, and turning against test data from the transonic tunnel. Simulations were assessed at positive and negative incidence angles that represent the turbine cruise and take-off design conditions. The results indicate that the secondary flow induced at the positive incidence cruise condition results in a highly loaded case and transitional flow on the blade is observed. The negative incidence take-off condition is unloaded and the flow is very two-dimensional. The computational results demonstrate the predictive capability of the gridding technique and COTS software for a linear transonic turbine blade cascade with large incidence angle variation.
Paper pump for passive and programmable transport
Wang, Xiao; Hagen, Joshua A.; Papautsky, Ian
2013-01-01
In microfluidic systems, a pump for fluid-driving is often necessary. To keep the size of microfluidic systems small, a pump that is small in size, light-weight and needs no external power source is advantageous. In this work, we present a passive, simple, ultra-low-cost, and easily controlled pumping method based on capillary action of paper that pumps fluid through conventional polymer-based microfluidic channels with steady flow rate. By using inexpensive cutting tools, paper can be shaped and placed at the outlet port of a conventional microfluidic channel, providing a wide range of pumping rates. A theoretical model was developed to describe the pumping mechanism and aid in the design of paper pumps. As we show, paper pumps can provide steady flow rates from 0.3 μl/s to 1.7 μl/s and can be cascaded to achieve programmable flow-rate tuning during the pumping process. We also successfully demonstrate transport of the most common biofluids (urine, serum, and blood). With these capabilities, the paper pump has the potential to become a powerful fluid-driving approach that will benefit the fielding of microfluidic systems for point-of-care applications. PMID:24403999
NASA Astrophysics Data System (ADS)
Zhao, Ming-fu; Hu, Xin-Yu; Shao, Yun; Luo, Bin-bin; Wang, Xin
2008-10-01
This article analyses nowadays in common use of football robots in China, intended to improve the football robots' hardware platform system's capability, and designed a football robot which based on DSP core controller, and combined Fuzzy-PID control algorithm. The experiment showed, because of the advantages of DSP, such as quickly operation, various of interfaces, low power dissipation etc. It has great improvement on the football robot's performance of movement, controlling precision, real-time performance.
A Review of High Thrust, High Delta-V Options for Microsatellite Missions
2009-06-25
millinewtons of thrust. Pushing the limits of microsatellite capability is the Hall thruster design of Berti, et al.23 and Biagioni , et al.,24...of thrust with an Isp greater than 1000 s. Biagioni , et al. further specify that their thruster weighs 0.6 kg and that the power and flow control...Sept. 2002, AIAA-2002-5714. 23Berti, M., Biagioni , L., Cesari, U., Saverdi, M., and Andrenucci, M., “Development and Preliminary Characterization of a
2011-02-01
expected, with increased loading (or reduced axial -chord to pitch ratio for a given turning). In addition to minimizing design-point loss due to...5 Figure 2. Computed loading diagrams and Reynolds lapse rates for aft- (L1A) and mid- loaded (L1M) LPT blading (Clark et al., 2009...reference 22 in Welch, 2010) accomplishing the same 95° flow turning at high aerodynamic loading (Z = 1.34). .................8 Figure 3. Computed 2-D
Energy management strategy based on fuzzy logic for a fuel cell hybrid bus
NASA Astrophysics Data System (ADS)
Gao, Dawei; Jin, Zhenhua; Lu, Qingchun
Fuel cell vehicles, as a substitute for internal-combustion-engine vehicles, have become a research hotspot for most automobile manufacturers all over the world. Fuel cell systems have disadvantages, such as high cost, slow response and no regenerative energy recovery during braking; hybridization can be a solution to these drawbacks. This paper presents a fuel cell hybrid bus which is equipped with a fuel cell system and two energy storage devices, i.e., a battery and an ultracapacitor. An energy management strategy based on fuzzy logic, which is employed to control the power flow of the vehicular power train, is described. This strategy is capable of determining the desired output power of the fuel cell system, battery and ultracapacitor according to the propulsion power and recuperated braking power. Some tests to verify the strategy were developed, and the results of the tests show the effectiveness of the proposed energy management strategy and the good performance of the fuel cell hybrid bus.
Energy harvesting concepts for small electric unmanned systems
NASA Astrophysics Data System (ADS)
Qidwai, Muhammad A.; Thomas, James P.; Kellogg, James C.; Baucom, Jared N.
2004-07-01
In this study, we identify and survey energy harvesting technologies for small electrically powered unmanned systems designed for long-term (>1 day) time-on-station missions. An environmental energy harvesting scheme will provide long-term, energy additions to the on-board energy source. We have identified four technologies that cover a broad array of available energy sources: solar, kinetic (wind) flow, autophagous structure-power (both combustible and metal air-battery systems) and electromagnetic (EM) energy scavenging. We present existing conceptual designs, critical system components, performance, constraints and state-of-readiness for each technology. We have concluded that the solar and autophagous technologies are relatively matured for small-scale applications and are capable of moderate power output levels (>1 W). We have identified key components and possible multifunctionalities in each technology. The kinetic flow and EM energy scavenging technologies will require more in-depth study before they can be considered for implementation. We have also realized that all of the harvesting systems require design and integration of various electrical, mechanical and chemical components, which will require modeling and optimization using hybrid mechatronics-circuit simulation tools. This study provides a starting point for detailed investigation into the proposed technologies for unmanned system applications under current development.
Design and development of an unconventional VTOL micro air vehicle: The Cyclocopter
NASA Astrophysics Data System (ADS)
Benedict, Moble; Chopra, Inderjit
2012-06-01
This paper discusses the systematic experimental and vehicle design/development studies conducted at the University of Maryland which culminated in the development of the first flying Cyclocopter in the history. Cyclocopter is a novel Vertical Take-Off and Landing (VTOL) aircraft, which utilizes cycloidalrotors (cyclorotors), a revolutionary horizontal axis propulsion concept, that has many advantages such as higher aerodynamic efficiency, maneuverability and high-speed forward flight capability when compared to a conventional helicopter rotor. The experimental studies included a detailed parametric study to understand the effect of rotor geometry and blade kinematics on cyclorotor hover performance. Based on the experimental results, higher blade pitch angles were found to improve thrust and increase the power loading (thrust per unit power) of the cyclorotor. Asymmetric pitching with higher pitch angle at the top than at the bottom produced better power loading. The chordwise optimum pitching axis location was observed to be around 25-35% of the blade chord. Because of the flow curvature effects, the cycloidal rotor performance was a strong function of the chord/radius ratio. The optimum chord/radius ratios were extremely high, around 0.5-0.8, depending on the blade pitching amplitude. A flow field investigation was also conducted using Particle Image Velocimetry (PIV) to unravel the physics behind thrust production of a cyclorotor. PIV studies indicated evidence of a stall delay as well as possible increases in lift on the blades from the presence of a leading edge vortex. The goal of all these studies was to understand and optimize the performance of a micro-scale cyclorotor so that it could be used in a flying vehicle. An optimized cyclorotor was used to develop a 200 gram cyclocopter capable of autonomous stable hover using an onboard feedback controller.
Dynamic power flow controllers
Divan, Deepakraj M.; Prasai, Anish
2017-03-07
Dynamic power flow controllers are provided. A dynamic power flow controller may comprise a transformer and a power converter. The power converter is subject to low voltage stresses and not floated at line voltage. In addition, the power converter is rated at a fraction of the total power controlled. A dynamic power flow controller controls both the real and the reactive power flow between two AC sources having the same frequency. A dynamic power flow controller inserts a voltage with controllable magnitude and phase between two AC sources; thereby effecting control of active and reactive power flows between two AC sources.
Verification and Calibration of a Reduced Order Wind Farm Model by Wind Tunnel Experiments
NASA Astrophysics Data System (ADS)
Schreiber, J.; Nanos, E. M.; Campagnolo, F.; Bottasso, C. L.
2017-05-01
In this paper an adaptation of the FLORIS approach is considered that models the wind flow and power production within a wind farm. In preparation to the use of this model for wind farm control, this paper considers the problem of its calibration and validation with the use of experimental observations. The model parameters are first identified based on measurements performed on an isolated scaled wind turbine operated in a boundary layer wind tunnel in various wind-misalignment conditions. Next, the wind farm model is verified with results of experimental tests conducted on three interacting scaled wind turbines. Although some differences in the estimated absolute power are observed, the model appears to be capable of identifying with good accuracy the wind turbine misalignment angles that, by deflecting the wake, lead to maximum power for the investigated layouts.
An Overview of Power Capability Requirements for Exploration Missions
NASA Technical Reports Server (NTRS)
Davis, Jose M.; Cataldo, Robert L.; Soeder, James F.; Manzo, Michelle A.; Hakimzadeh, Roshanak
2005-01-01
Advanced power is one of the key capabilities that will be needed to achieve NASA's missions of exploration and scientific advancement. Significant gaps exist in advanced power capabilities that are on the critical path to enabling human exploration beyond Earth orbit and advanced robotic exploration of the solar system. Focused studies and investment are needed to answer key development issues for all candidate technologies before down-selection. The viability of candidate power technology alternatives will be a major factor in determining what exploration mission architectures are possible. Achieving the capabilities needed to enable the CEV, Moon, and Mars missions is dependent on adequate funding. Focused investment in advanced power technologies for human and robotic exploration missions is imperative now to reduce risk and to make informed decisions on potential exploration mission decisions beginning in 2008. This investment would begin the long lead-time needed to develop capabilities for human exploration missions in the 2015 to 2030 timeframe. This paper identifies some of the key technologies that will be needed to fill these power capability gaps. Recommendations are offered to address capability gaps in advanced power for Crew Exploration Vehicle (CEV) power, surface nuclear power systems, surface mobile power systems, high efficiency power systems, and space transportation power systems. These capabilities fill gaps that are on the critical path to enabling robotic and human exploration missions. The recommendations address the following critical technology areas: Energy Conversion, Energy Storage, and Power Management and Distribution.
Flame dynamics in a micro-channeled combustor
NASA Astrophysics Data System (ADS)
Hussain, Taaha; Markides, Christos N.; Balachandran, Ramanarayanan
2015-01-01
The increasing use of Micro-Electro-Mechanical Systems (MEMS) has generated a significant interest in combustion-based power generation technologies, as a replacement of traditional electrochemical batteries which are plagued by low energy densities, short operational lives and low power-to-size and power-to-weight ratios. Moreover, the versatility of integrated combustion-based systems provides added scope for combined heat and power generation. This paper describes a study into the dynamics of premixed flames in a micro-channeled combustor. The details of the design and the geometry of the combustor are presented in the work by Kariuki and Balachandran [1]. This work showed that there were different modes of operation (periodic, a-periodic and stable), and that in the periodic mode the flame accelerated towards the injection manifold after entering the channels. The current study investigates these flames further. We will show that the flame enters the channel and propagates towards the injection manifold as a planar flame for a short distance, after which the flame shape and propagation is found to be chaotic in the middle section of the channel. Finally, the flame quenches when it reaches the injector slots. The glow plug position in the exhaust side ignites another flame, and the process repeats. It is found that an increase in air flow rate results in a considerable increase in the length (and associated time) over which the planar flame travels once it has entered a micro-channel, and a significant decrease in the time between its conversion into a chaotic flame and its extinction. It is well known from the literature that inside small channels the flame propagation is strongly influenced by the flow conditions and thermal management. An increase of the combustor block temperature at high flow rates has little effect on the flame lengths and times, whereas at low flow rates the time over which the planar flame front can be observed decreases and the time of existence of the chaotic flame increases. The frequency of re-ignition of successive flames decreases at higher flow rates and increases at higher temperatures. The data and results from this study will not only help the development of new micro-power generation devices, but they will also serve as a validation case for combustion models capable of predicting flame behavior in the presence of strong thermal and flow boundary layers, a situation common to many industrial applications.
Dragojević, Tanja; Hollmann, Joseph L.; Tamborini, Davide; Portaluppi, Davide; Buttafava, Mauro; Culver, Joseph P.; Villa, Federica; Durduran, Turgut
2017-01-01
Speckle contrast optical spectroscopy (SCOS) measures absolute blood flow in deep tissue, by taking advantage of multi-distance (previously reported in the literature) or multi-exposure (reported here) approach. This method promises to use inexpensive detectors to obtain good signal-to-noise ratio, but it has not yet been implemented in a suitable manner for a mass production. Here we present a new, compact, low power consumption, 32 by 2 single photon avalanche diode (SPAD) array that has no readout noise, low dead time and has high sensitivity in low light conditions, such as in vivo measurements. To demonstrate the capability to measure blood flow in deep tissue, healthy volunteers were measured, showing no significant differences from the diffuse correlation spectroscopy. In the future, this array can be miniaturized to a low-cost, robust, battery operated wireless device paving the way for measuring blood flow in a wide-range of applications from sport injury recovery and training to, on-field concussion detection to wearables. PMID:29359106
Natural snowfall reveals large-scale flow structures in the wake of a 2.5-MW wind turbine.
Hong, Jiarong; Toloui, Mostafa; Chamorro, Leonardo P; Guala, Michele; Howard, Kevin; Riley, Sean; Tucker, James; Sotiropoulos, Fotis
2014-06-24
To improve power production and structural reliability of wind turbines, there is a pressing need to understand how turbines interact with the atmospheric boundary layer. However, experimental techniques capable of quantifying or even qualitatively visualizing the large-scale turbulent flow structures around full-scale turbines do not exist today. Here we use snowflakes from a winter snowstorm as flow tracers to obtain velocity fields downwind of a 2.5-MW wind turbine in a sampling area of ~36 × 36 m(2). The spatial and temporal resolutions of the measurements are sufficiently high to quantify the evolution of blade-generated coherent motions, such as the tip and trailing sheet vortices, identify their instability mechanisms and correlate them with turbine operation, control and performance. Our experiment provides an unprecedented in situ characterization of flow structures around utility-scale turbines, and yields significant insights into the Reynolds number similarity issues presented in wind energy applications.
Performance study of a data flow architecture
NASA Technical Reports Server (NTRS)
Adams, George
1985-01-01
Teams of scientists studied data flow concepts, static data flow machine architecture, and the VAL language. Each team mapped its application onto the machine and coded it in VAL. The principal findings of the study were: (1) Five of the seven applications used the full power of the target machine. The galactic simulation and multigrid fluid flow teams found that a significantly smaller version of the machine (16 processing elements) would suffice. (2) A number of machine design parameters including processing element (PE) function unit numbers, array memory size and bandwidth, and routing network capability were found to be crucial for optimal machine performance. (3) The study participants readily acquired VAL programming skills. (4) Participants learned that application-based performance evaluation is a sound method of evaluating new computer architectures, even those that are not fully specified. During the course of the study, participants developed models for using computers to solve numerical problems and for evaluating new architectures. These models form the bases for future evaluation studies.
Space shuttle booster multi-engine base flow analysis
NASA Technical Reports Server (NTRS)
Tang, H. H.; Gardiner, C. R.; Anderson, W. A.; Navickas, J.
1972-01-01
A comprehensive review of currently available techniques pertinent to several prominent aspects of the base thermal problem of the space shuttle booster is given along with a brief review of experimental results. A tractable engineering analysis, capable of predicting the power-on base pressure, base heating, and other base thermal environmental conditions, such as base gas temperature, is presented and used for an analysis of various space shuttle booster configurations. The analysis consists of a rational combination of theoretical treatments of the prominent flow interaction phenomena in the base region. These theories consider jet mixing, plume flow, axisymmetric flow effects, base injection, recirculating flow dynamics, and various modes of heat transfer. Such effects as initial boundary layer expansion at the nozzle lip, reattachment, recompression, choked vent flow, and nonisoenergetic mixing processes are included in the analysis. A unified method was developed and programmed to numerically obtain compatible solutions for the various flow field components in both flight and ground test conditions. Preliminary prediction for a 12-engine space shuttle booster base thermal environment was obtained for a typical trajectory history. Theoretical predictions were also obtained for some clustered-engine experimental conditions. Results indicate good agreement between the data and theoretical predicitons.
A Noninvasive and Real-Time Method for Circulating Tumor Cell Detection by In Vivo Flow Cytometry.
Wei, Xunbin; Zhou, Jian; Zhu, Xi; Yang, Xinrong; Yang, Ping; Wang, Qiyan
2017-01-01
The quantification of circulating tumor cells (CTCs) has been considered a potentially powerful tool in cancer diagnosis and prognosis, as CTCs have been shown to appear very early in cancer development. Great efforts have been made to develop methods that were less invasive and more sensitive to detect CTCs earlier. There is growing evidence that CTC clusters have greater metastatic potential than single CTCs. Therefore, the detection of CTC clusters is also important. This chapter is aimed to introduce a noninvasive technique for CTCs detection named in vivo flow cytometry (IVFC), which has been demonstrated to be capable of monitoring CTCs dynamics continuously. Furthermore, IVFC could be helpful for CTC cluster enumeration.
Custom Unit Pump Design and Testing for the EVA PLSS
NASA Technical Reports Server (NTRS)
Schuller, Michael; Kurwitz, Cable; Goldman, Jeff; Morris, Kim; Trevino, Luis
2009-01-01
This paper describes the effort by the Texas Engineering Experiment Station (TEES) and Honeywell for NASA to design and test a pre-flight prototype pump for use in the Extra-vehicular activity (EVA) portable life support subsystem (PLSS). Major design decisions were driven by the need to reduce the pump s mass, power, and volume compared to the existing PLSS pump. In addition, the pump must accommodate a much wider range of abnormal conditions than the existing pump, including vapor/gas bubbles and increased pressure drop when employed to cool two suits simultaneously. A positive displacement, external gear type pump was selected because it offers the most compact and highest efficiency solution over the required range of flow rates and pressure drops. An additional benefit of selecting a gear pump design is that it is self priming and capable of ingesting non-condensable gas without becoming air locked. The chosen pump design consists of a 28 V DC, brushless, sealless, permanent magnet motor driven, external gear pump that utilizes a Honeywell development that eliminates the need for magnetic coupling. Although the planned flight unit will use a sensorless motor with custom designed controller, the pre-flight prototype to be provided for this project incorporates Hall effect sensors, allowing an interface with a readily available commercial motor controller. This design approach reduced the cost of this project and gives NASA more flexibility in future PLSS laboratory testing. The pump design was based on existing Honeywell designs, but incorporated features specifically for the PLSS application, including all of the key features of the flight pump. Testing at TEES verified that the pump meets the design requirements for range of flow rates, pressure drop, power consumption, working fluid temperature, operating time, gas ingestion , and restart capability under both ambient and vacuum conditions. The pump operated between 40 and 240 lbm/hr flowrate, 35 to 100 F pump temperature range, and 5 to 10 psid pressure rise. Power consumption of the pump controller at the nominal operating point in both ambient and vacuum conditions was 9.5 W, which was less than the 12 W predicted. Gas ingestion capabilities were tested by injecting 100 cc of air into the fluid line; the pump operated normally throughout this test. The test results contained a number of anomalies, specifically power increases and a few flow stoppages, that prompted TEES and Honeywell to disassemble and inspect the pump. Inspection indicated contamination in the pump and fit issues may have played roles in the observed anomalies. Testing following reassembly indicated that the performance of the pump 1) matched both the predicted performance values, 2) the performance values measured prior to disassembly, and 3) was free of the anomalies noted in the pre-disassembly testing.
NASA Astrophysics Data System (ADS)
Peng, Di; Wang, Shaofei; Liu, Yingzheng
2016-04-01
Fast pressure-sensitive paint (PSP) is very useful in flow diagnostics due to its fast response and high spatial resolution, but its applications in low-speed flows are usually challenging due to limitations of paint's pressure sensitivity and the capability of high-speed imagers. The poor signal-to-noise ratio in low-speed cases makes it very difficult to extract useful information from the PSP data. In this study, unsteady PSP measurements were made on a flat plate behind a cylinder in a low-speed wind tunnel (flow speed from 10 to 17 m/s). Pressure fluctuations (Δ P) on the plate caused by vortex-plate interaction were recorded continuously by fast PSP (using a high-speed camera) and a microphone array. Power spectrum of pressure fluctuations and phase-averaged Δ P obtained from PSP and microphone were compared, showing good agreement in general. Proper orthogonal decomposition (POD) was used to reduce noise in PSP data and extract the dominant pressure features. The PSP results reconstructed from selected POD modes were then compared to the pressure data obtained simultaneously with microphone sensors. Based on the comparison of both instantaneous Δ P and root-mean-square of Δ P, it was confirmed that POD analysis could effectively remove noise while preserving the instantaneous pressure information with good fidelity, especially for flows with strong periodicity. This technique extends the application range of fast PSP and can be a powerful tool for fundamental fluid mechanics research at low speed.
The design of a wind tunnel VSTOL fighter model incorporating turbine powered engine simulators
NASA Technical Reports Server (NTRS)
Bailey, R. O.; Maraz, M. R.; Hiley, P. E.
1981-01-01
A wind-tunnel model of a supersonic VSTOL fighter aircraft configuration has been developed for use in the evaluation of airframe-propulsion system aerodynamic interactions. The model may be employed with conventional test techniques, where configuration aerodynamics are measured in a flow-through mode and incremental nozzle-airframe interactions are measured in a jet-effects mode, and with the Compact Multimission Aircraft Propulsion Simulator which is capable of the simultaneous simulation of inlet and exhaust nozzle flow fields so as to allow the evaluation of the extent of inlet and nozzle flow field coupling. The basic configuration of the twin-engine model has a geometrically close-coupled canard and wing, and a moderately short nacelle with nonaxisymmetric vectorable exhaust nozzles near the wing trailing edge, and may be converted to a canardless configuration with an extremely short nacelle. Testing is planned to begin in the summer of 1982.
NASA Technical Reports Server (NTRS)
Farral, Joseph F.; Seshan, P. K.; Rohatgi, Naresh K.
1991-01-01
This paper describes the Generic Modular Flow Schematic (GMFS) architecture capable of encompassing all functional elements of a physical/chemical life support system (LSS). The GMFS can be implemented to synthesize, model, analyze, and quantitatively compare many configurations of LSSs, from a simple, completely open-loop to a very complex closed-loop. The GMFS model is coded in ASPEN, a state-of-the-art chemical process simulation program, to accurately compute the material, heat, and power flow quantities for every stream in each of the subsystem functional elements (SFEs) in the chosen configuration of a life support system. The GMFS approach integrates the various SFEs and subsystems in a hierarchical and modular fashion facilitating rapid substitutions and reconfiguration of a life support system. The comprehensive ASPEN material and energy balance output is transferred to a systems and technology assessment spreadsheet for rigorous system analysis and trade studies.
A static data flow simulation study at Ames Research Center
NASA Technical Reports Server (NTRS)
Barszcz, Eric; Howard, Lauri S.
1987-01-01
Demands in computational power, particularly in the area of computational fluid dynamics (CFD), led NASA Ames Research Center to study advanced computer architectures. One architecture being studied is the static data flow architecture based on research done by Jack B. Dennis at MIT. To improve understanding of this architecture, a static data flow simulator, written in Pascal, has been implemented for use on a Cray X-MP/48. A matrix multiply and a two-dimensional fast Fourier transform (FFT), two algorithms used in CFD work at Ames, have been run on the simulator. Execution times can vary by a factor of more than 2 depending on the partitioning method used to assign instructions to processing elements. Service time for matching tokens has proved to be a major bottleneck. Loop control and array address calculation overhead can double the execution time. The best sustained MFLOPS rates were less than 50% of the maximum capability of the machine.
Insoo Kim; Bhagat, Yusuf A
2016-08-01
The standard in noninvasive blood pressure (BP) measurement is an inflatable cuff device based on the oscillometric method, which poses several practical challenges for continuous BP monitoring. Here, we present a novel ultra-wide band RF Doppler radar sensor for next-generation mobile interface for the purpose of characterizing fluid flow speeds, and for ultimately measuring cuffless blood flow in the human wrist. The system takes advantage of the 7.1~10.5 GHz ultra-wide band signals which can reduce transceiver complexity and power consumption overhead. Moreover, results obtained from hardware development, antenna design and human wrist modeling, and subsequent phantom development are reported. Our comprehensive lab bench system setup with a peristaltic pump was capable of characterizing various speed flow components during a linear velocity sweep of 5~62 cm/s. The sensor holds potential for providing estimates of heart rate and blood pressure.
Molecular Sieve Bench Testing and Computer Modeling
NASA Technical Reports Server (NTRS)
Mohamadinejad, Habib; DaLee, Robert C.; Blackmon, James B.
1995-01-01
The design of an efficient four-bed molecular sieve (4BMS) CO2 removal system for the International Space Station depends on many mission parameters, such as duration, crew size, cost of power, volume, fluid interface properties, etc. A need for space vehicle CO2 removal system models capable of accurately performing extrapolated hardware predictions is inevitable due to the change of the parameters which influences the CO2 removal system capacity. The purpose is to investigate the mathematical techniques required for a model capable of accurate extrapolated performance predictions and to obtain test data required to estimate mass transfer coefficients and verify the computer model. Models have been developed to demonstrate that the finite difference technique can be successfully applied to sorbents and conditions used in spacecraft CO2 removal systems. The nonisothermal, axially dispersed, plug flow model with linear driving force for 5X sorbent and pore diffusion for silica gel are then applied to test data. A more complex model, a non-darcian model (two dimensional), has also been developed for simulation of the test data. This model takes into account the channeling effect on column breakthrough. Four FORTRAN computer programs are presented: a two-dimensional model of flow adsorption/desorption in a packed bed; a one-dimensional model of flow adsorption/desorption in a packed bed; a model of thermal vacuum desorption; and a model of a tri-sectional packed bed with two different sorbent materials. The programs are capable of simulating up to four gas constituents for each process, which can be increased with a few minor changes.
10 MW Supercritical CO2 Turbine Test
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turchi, Craig
2014-01-29
The Supercritical CO2 Turbine Test project was to demonstrate the inherent efficiencies of a supercritical carbon dioxide (s-CO2) power turbine and associated turbomachinery under conditions and at a scale relevant to commercial concentrating solar power (CSP) projects, thereby accelerating the commercial deployment of this new power generation technology. The project involved eight partnering organizations: NREL, Sandia National Laboratories, Echogen Power Systems, Abengoa Solar, University of Wisconsin at Madison, Electric Power Research Institute, Barber-Nichols, and the CSP Program of the U.S. Department of Energy. The multi-year project planned to design, fabricate, and validate an s-CO2 power turbine of nominally 10 MWemore » that is capable of operation at up to 700°C and operates in a dry-cooled test loop. The project plan consisted of three phases: (1) system design and modeling, (2) fabrication, and (3) testing. The major accomplishments of Phase 1 included: Design of a multistage, axial-flow, s-CO2 power turbine; Design modifications to an existing turbocompressor to provide s-CO2 flow for the test system; Updated equipment and installation costs for the turbomachinery and associated support infrastructure; Development of simulation tools for the test loop itself and for more efficient cycle designs that are of greater commercial interest; Simulation of s-CO2 power cycle integration into molten-nitrate-salt CSP systems indicating a cost benefit of up to 8% in levelized cost of energy; Identification of recuperator cost as a key economic parameter; Corrosion data for multiple alloys at temperatures up to 650ºC in high-pressure CO2 and recommendations for materials-of-construction; and Revised test plan and preliminary operating conditions based on the ongoing tests of related equipment. Phase 1 established that the cost of the facility needed to test the power turbine at its full power and temperature would exceed the planned funding for Phases 2 and 3. Late in Phase 1 an opportunity arose to collaborate with another turbine-development team to construct a shared s-CO2 test facility. The synergy of the combined effort would result in greater facility capabilities than either separate project could produce and would allow for testing of both turbine designs within the combined budgets of the two projects. The project team requested a no-cost extension to Phase 1 to modify the subsequent work based on this collaborative approach. DOE authorized a brief extension, but ultimately opted not to pursue the collaborative facility and terminated the project.« less
Identifying hidden voice and video streams
NASA Astrophysics Data System (ADS)
Fan, Jieyan; Wu, Dapeng; Nucci, Antonio; Keralapura, Ram; Gao, Lixin
2009-04-01
Given the rising popularity of voice and video services over the Internet, accurately identifying voice and video traffic that traverse their networks has become a critical task for Internet service providers (ISPs). As the number of proprietary applications that deliver voice and video services to end users increases over time, the search for the one methodology that can accurately detect such services while being application independent still remains open. This problem becomes even more complicated when voice and video service providers like Skype, Microsoft, and Google bundle their voice and video services with other services like file transfer and chat. For example, a bundled Skype session can contain both voice stream and file transfer stream in the same layer-3/layer-4 flow. In this context, traditional techniques to identify voice and video streams do not work. In this paper, we propose a novel self-learning classifier, called VVS-I , that detects the presence of voice and video streams in flows with minimum manual intervention. Our classifier works in two phases: training phase and detection phase. In the training phase, VVS-I first extracts the relevant features, and subsequently constructs a fingerprint of a flow using the power spectral density (PSD) analysis. In the detection phase, it compares the fingerprint of a flow to the existing fingerprints learned during the training phase, and subsequently classifies the flow. Our classifier is not only capable of detecting voice and video streams that are hidden in different flows, but is also capable of detecting different applications (like Skype, MSN, etc.) that generate these voice/video streams. We show that our classifier can achieve close to 100% detection rate while keeping the false positive rate to less that 1%.
Incipient motion in gravel bed rivers due to energetic turbulent flow events
NASA Astrophysics Data System (ADS)
Valyrakis, Manousos
2013-04-01
This contribution reviews recent developments and contributions in the field of incipient motion and entrainment of coarse sediment grains due to the action of near bed turbulent flows. Specifically, traditional shear based spatio-temporally averaged concepts and instantaneous stress tensor criteria are contrasted to the newly proposed flow event based impulse and energy criteria. The energy criterion, suggests that only sufficiently energetic turbulent events can remove a particle from its resting position on the bed surface and result on its entrainment downstream. While the impulse and energy criteria are interconnected through the energy-impulse equation, the later appears to be more versatile and appropriate for generalising to sediment transport. These flow event based criteria have a sound physical basis for describing the intermittent character of particle entrainment as inherited by near boundary turbulence at near threshold conditions. These criteria can be derived from fundamental laws of physics such as Newtonian classical mechanics and the Lagrange equations respectively. The energetic events that are capable of performing geomorphic work at the scale of individual particles are shown to follow a power law, meaning that more energetic events (capable of removing larger stones) are expected to occur less frequently. In addition, this paper discusses the role of the coefficient of energy transfer efficiency introduced in the energy equation for particle entrainment. A preliminary investigation from analysis of a series of mobile grain flume experiments illustrates that different signatures of turbulence or sequence of flow structures may have different effectiveness towards particle transport. Characteristic cases of specific energetic flow events and the associated particle response are shown and classified with regard to the time required for complete entrainment. Finally these findings are commented with respect to the implications for sediment transport.
Resonant AC power system proof-of-concept test program
NASA Technical Reports Server (NTRS)
Wappes, Loran J.
1986-01-01
Proof-of-concept testing was performed on a 20-kHz, resonant power system breadboard from 1981 through 1985. The testing began with the evaluation of a single, 1.0-kW resonant inverter and progressed to the testing of breadboard systems with higher power levels and more capability. The final breadboard configuration tested was a 25.0-kW breadboard with six inverters providing power to three user-interface modules over a 50-meter, 20-kHz bus. The breadboard demonstrated the ability to synchronize multiple resonant inverters to power a common bus. Single-phase and three-phase 20-kHz power distribution was demonstrated. Simple conversion of 20-kHz to dc and variable-frequency ac was demonstrated as was bidirectional power flow between 20-kHz and dc. Steady state measurements of efficiency, power-factor tolerance, and conducted emissions and conducted susceptibility were made. In addition, transient responses were recorded for such conditions as start up, shut down, load changes. The results showed the 20-kHz resonant system to be a desirable technology for a spacecraft power management and distribution system with multiple users and a utility-type bus.
8- by 6-Foot Supersonic Wind Tunnel's Original Design
1949-07-21
Aerial view of the 8- by 6-Foot Supersonic Wind Tunnel in its original configuration at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. The 8- by 6 was the laboratory’s first large supersonic wind tunnel. It was also the NACA’s most powerful supersonic tunnel, and its first facility capable of running an engine at supersonic speeds. The 8- by 6-foot tunnel has been used to study inlets and exit nozzles, fuel injectors, flameholders, exit nozzles, and controls on ramjet and turbojet propulsion systems. The 8- by 6 was originally an open-throat and non-return tunnel. This meant that the supersonic air flow was blown through the test section and out the other end into the atmosphere. In this photograph, the three drive motors in the structure at the left supplied power to the seven-stage axial-flow compressor in the light-colored structure. The air flow passed through flexible walls which were bent to create the desired speed. The test article was located in the 8- by 6-foot stainless steel test section located inside the steel pressure chamber at the center of this photograph. The tunnel dimensions were then gradually increased to slow the air flow before it exited into the atmosphere. The large two-story building in front of the tunnel was used as office space for the researchers.
An engine trade study for a supersonic STOVL fighter-attack aircraft, volume 1
NASA Technical Reports Server (NTRS)
Beard, B. B.; Foley, W. H.
1982-01-01
The best main engine for an advanced STOVL aircraft flight demonstrator was studied. The STOVL aircraft uses ejectors powered by engine bypass flow together with vectored core exhaust to achieve vertical thrust capability. Bypass flow and core flow are exhausted through separate nozzles during wingborne flight. Six near term turbofan engines were examined for suitability for this aircraft concept. Fan pressure ratio, thrust split between bypass and core flow, and total thrust level were used to compare engines. One of the six candidate engines was selected for the flight demonstrator configuration. Propulsion related to this aircraft concept was studied. A preliminary candidate for the aircraft reaction control system for hover attitude control was selected. A mathematical model of transfer of bypass thrust from ejectors to aft directed nozzle during the transition to wingborne flight was developed. An equation to predict ejector secondary air flow rate and ram drag is derived. Additional topics discussed include: nozzle area control, ejector to engine inlet reingestion, bypass/core thrust split variation, and gyroscopic behavior during hover.
Power flow control using quadrature boosters
NASA Astrophysics Data System (ADS)
Sadanandan, Sandeep N.
A power system that can be controlled within security constraints would be an advantage to power planners and real-time operators. Controlling flows can lessen reliability issues such as thermal limit violations, power stability problems, and/or voltage stability conditions. Control of flows can also mitigate market issues by reducing congestion on some lines and rerouting power to less loaded lines or onto preferable paths. In the traditional control of power flows, phase shifters are often used. More advanced methods include using Flexible AC Transmission System (FACTS) Controllers. Some examples include Thyristor Controlled Series Capacitors, Synchronous Series Static Compensators, and Unified Power Flow Controllers. Quadrature Boosters (QBs) have similar structures to phase-shifters, but allow for higher voltage magnitude during real power flow control. In comparison with other FACTS controllers QBs are not as complex and not as expensive. The present study proposes to use QBs to control power flows on a power system. With the inclusion of QBs, real power flows can be controlled to desired scheduled values. In this thesis, the linearized power flow equations used for power flow analysis were modified for the control problem. This included modifying the Jacobian matrix, the power error vector, and calculating the voltage injected by the quadrature booster for the scheduled real power flow. Two scenarios were examined using the proposed power flow control method. First, the power flow in a line in a 5-bus system was modified with a QB using the method developed in this thesis. Simulation was carried out using Matlab. Second, the method was applied to a 30-bus system and then to a 118-bus system using several QBs. In all the cases, the calculated values of the QB voltages led to desired power flows in the designated line.
NASA Technical Reports Server (NTRS)
Singh, Bhim S.
2003-01-01
NASA is preparing to undertake science-driven exploration missions. The NASA Exploration Team's vision is a cascade of stepping stones. The stepping-stone will build the technical capabilities needed for each step with multi-use technologies and capabilities. An Agency-wide technology investment and development program is necessary to implement the vision. The NASA Exploration Team has identified a number of areas where significant advances are needed to overcome all engineering and medical barriers to the expansion of human space exploration beyond low-Earth orbit. Closed-loop life support systems and advanced propulsion and power technologies are among the areas requiring significant advances from the current state-of-the-art. Studies conducted by the National Academy of Science's National Research Council and Workshops organized by NASA have shown that multiphase flow and phase change play a crucial role in many of these advanced technology concepts. Lack of understanding of multiphase flow, phase change, and interfacial phenomena in the microgravity environment has been a major hurdle. An understanding of multiphase flow and phase change in microgravity is, therefore, critical to advancing many technologies needed. Recognizing this, the Office of Biological and Physical Research (OBPR) has initiated a strategic research thrust to augment the ongoing fundamental research in fluid physics and transport phenomena discipline with research especially aimed at understanding key multiphase flow related issues in propulsion, power, thermal control, and closed-loop advanced life support systems. A plan for integrated theoretical and experimental research that has the highest probability of providing data, predictive tools, and models needed by the systems developers to incorporate highly promising multiphase-based technologies is currently in preparation. This plan is being developed with inputs from scientific community, NASA mission planners and industry personnel. The fundamental research in multiphase flow and phase change in microgravity is aimed at developing better mechanistic understanding of pool boiling and ascertaining the effects of gravity on heat transfer and the critical heat flux. Space flight experiments conducted in space have shown that nucleate pool boiling can be sustained under certain conditions in the microgravity environment. New space flight experiments are being developed to provide more quantitative information on pool boiling in microgravity. Ground-based investigations are also being conducted to develop mechanistic models for flow and pool boiling. An overview of the research plan and roadmap for the strategic research in multiphase flow and phase change as well as research findings from the ongoing program will be presented.
Integration of HTS Cables in the Future Grid of the Netherlands
NASA Astrophysics Data System (ADS)
Zuijderduin, R.; Chevtchenko, O.; Smit, J. J.; Aanhaanen, G.; Melnik, I.; Geschiere, A.
Due to increasing power demand, the electricity grid of the Netherlands is changing. The future transmission grid will obtain electrical power generated by decentralized renewable sources, together with large scale generation units located at the coastal region. In this way electrical power has to be distributed and transmitted over longer distances from generation to end user. Potential grid issues like: amount of distributed power, grid stability and electrical loss dissipation merit particular attention. High temperature superconductors (HTS) can play an important role in solving these grid problems. Advantages to integrate HTS components at transmission voltages are numerous: more transmittable power together with less emissions, intrinsic fault current limiting capability, lower ac loss, better control of power flow, reduced footprint, less magnetic field emissions, etc. The main obstacle at present is the relatively high price of HTS conductor. However as the price goes down, initial market penetration of several HTS components (e.g.: cables, fault current limiters) is expected by year 2015. In the full paper we present selected ways to integrate EHV AC HTS cables depending on a particular future grid scenario in the Netherlands.
Integration of image capture and processing: beyond single-chip digital camera
NASA Astrophysics Data System (ADS)
Lim, SukHwan; El Gamal, Abbas
2001-05-01
An important trend in the design of digital cameras is the integration of capture and processing onto a single CMOS chip. Although integrating the components of a digital camera system onto a single chip significantly reduces system size and power, it does not fully exploit the potential advantages of integration. We argue that a key advantage of integration is the ability to exploit the high speed imaging capability of CMOS image senor to enable new applications such as multiple capture for enhancing dynamic range and to improve the performance of existing applications such as optical flow estimation. Conventional digital cameras operate at low frame rates and it would be too costly, if not infeasible, to operate their chips at high frame rates. Integration solves this problem. The idea is to capture images at much higher frame rates than he standard frame rate, process the high frame rate data on chip, and output the video sequence and the application specific data at standard frame rate. This idea is applied to optical flow estimation, where significant performance improvements are demonstrate over methods using standard frame rate sequences. We then investigate the constraints on memory size and processing power that can be integrated with a CMOS image sensor in a 0.18 micrometers process and below. We show that enough memory and processing power can be integrated to be able to not only perform the functions of a conventional camera system but also to perform applications such as real time optical flow estimation.
Power and Scour: Laboratory simulations of tsunami-induced scour
NASA Astrophysics Data System (ADS)
Todd, David; McGovern, David; Whitehouse, Richard; Harris, John; Rossetto, Tiziana
2017-04-01
The world's coastal regions are becoming increasingly urbanised and densely populated. Recent major tsunami events in regions such as Samoa (2007), Indonesia (2004, 2006, 2010), and Japan (2011) have starkly highlighted this effect, resulting in catastrophic loss of both life and property, with much of the damage to buildings being reported in EEFIT mission reports following each of these events. The URBANWAVES project, led by UCL in collaboration with HR Wallingford, brings the power of the tsunami to the laboratory for the first time. The Pneumatic Tsunami Simulator is capable of tsimulating both idealised and real-world tsunami traces at a scale of 1:50. Experiments undertaken in the Fast Flow Facility at HR Wallingford using square and rectangular buildings placed on a sediment bed have allow us to measure, for the first time under laboratory conditions, the variations in the flow field around buildings produced by tsunami waves as a result of the scour process. The results of these tests are presented, providing insight into the process of scour development under different types of tsunami, giving a glimpse into the power of tsunamis that have already occurred, and helping us to inform the designs of future buildings so that we can be better prepared to analyse and design against these failure modes in the future. Additional supporting abstracts include Foster et al., on tsunami induced building loads; Chandler et al., on the tsunami simulation concept and McGovern et al., on the simulation of tsunami-driven scour and flow fields.
Preliminary validation of a new magnetic wireless blood pump.
Kim, Sung Hoon; Ishiyama, Kazushi; Hashi, Shuichiro; Shiraishi, Yasuyuki; Hayatsu, Yukihiro; Akiyama, Masatoshi; Saiki, Yoshikatsu; Yambe, Tomoyuki
2013-10-01
In general, a blood pump must be small, have a simple configuration, and have sufficient hydrodynamic performance. Herein, we introduce new mechanisms for a wireless blood pump that is small and simple and provides wireless and battery-free operation. To achieve wireless and battery-free operation, we implement magnetic torque and force control methods that use two external drivers: an external coil and a permanent magnet with a DC-motor, respectively. Power harvesting can be used to drive an electronic circuit for wireless monitoring (the observation of the pump conditions and temperature) without the use of an internal battery. The power harvesting will be used as a power source to drive other electronic devices, such as various biosensors with their driving circuits. To have both a compact size and sufficient pumping capability, the fully magnetic impeller has five stages and each stage includes four backward-curved blades. The pump has total and inner volumes of 20 and 9.8 cc, respectively, and weighs 52 g. The pump produces a flow rate of approximately 8 L/min at 80 mm Hg and the power generator produces 0.3 W of electrical power at 120 Ω. The pump also produces a minimum flow rate of 1.5 L/min and a pressure of 30 mm Hg for circulation at a maximum distance of 7.5 cm. © 2013 Wiley Periodicals, Inc. and International Center for Artificial Organs and Transplantation.
47 CFR 95.649 - Power capability.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 5 2010-10-01 2010-10-01 false Power capability. 95.649 Section 95.649... SERVICES Technical Regulations Certification Requirements § 95.649 Power capability. No CB, R/C, LPRS, FRS, MedRadio, MURS, or WMTS unit shall incorporate provisions for increasing its transmitter power to any...
47 CFR 95.649 - Power capability.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 5 2011-10-01 2011-10-01 false Power capability. 95.649 Section 95.649... SERVICES Technical Regulations Certification Requirements § 95.649 Power capability. No CB, R/C, LPRS, FRS, MedRadio, MURS, or WMTS unit shall incorporate provisions for increasing its transmitter power to any...
NASA Astrophysics Data System (ADS)
Wang, Yujie; Pan, Rui; Liu, Chang; Chen, Zonghai; Ling, Qiang
2018-01-01
The battery power capability is intimately correlated with the climbing, braking and accelerating performance of the electric vehicles. Accurate power capability prediction can not only guarantee the safety but also regulate driving behavior and optimize battery energy usage. However, the nonlinearity of the battery model is very complex especially for the lithium iron phosphate batteries. Besides, the hysteresis loop in the open-circuit voltage curve is easy to cause large error in model prediction. In this work, a multi-parameter constraints dynamic estimation method is proposed to predict the battery continuous period power capability. A high-fidelity battery model which considers the battery polarization and hysteresis phenomenon is presented to approximate the high nonlinearity of the lithium iron phosphate battery. Explicit analyses of power capability with multiple constraints are elaborated, specifically the state-of-energy is considered in power capability assessment. Furthermore, to solve the problem of nonlinear system state estimation, and suppress noise interference, the UKF based state observer is employed for power capability prediction. The performance of the proposed methodology is demonstrated by experiments under different dynamic characterization schedules. The charge and discharge power capabilities of the lithium iron phosphate batteries are quantitatively assessed under different time scales and temperatures.
Qualification of CASMO5 / SIMULATE-3K against the SPERT-III E-core cold start-up experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grandi, G.; Moberg, L.
SIMULATE-3K is a three-dimensional kinetic code applicable to LWR Reactivity Initiated Accidents. S3K has been used to calculate several international recognized benchmarks. However, the feedback models in the benchmark exercises are different from the feedback models that SIMULATE-3K uses for LWR reactors. For this reason, it is worth comparing the SIMULATE-3K capabilities for Reactivity Initiated Accidents against kinetic experiments. The Special Power Excursion Reactor Test III was a pressurized-water, nuclear-research facility constructed to analyze the reactor kinetic behavior under initial conditions similar to those of commercial LWRs. The SPERT III E-core resembles a PWR in terms of fuel type, moderator,more » coolant flow rate, and system pressure. The initial test conditions (power, core flow, system pressure, core inlet temperature) are representative of cold start-up, hot start-up, hot standby, and hot full power. The qualification of S3K against the SPERT III E-core measurements is an ongoing work at Studsvik. In this paper, the results for the 30 cold start-up tests are presented. The results show good agreement with the experiments for the reactivity initiated accident main parameters: peak power, energy release and compensated reactivity. Predicted and measured peak powers differ at most by 13%. Measured and predicted reactivity compensations at the time of the peak power differ less than 0.01 $. Predicted and measured energy release differ at most by 13%. All differences are within the experimental uncertainty. (authors)« less
Push-pull switching power amplifier
NASA Technical Reports Server (NTRS)
Cuk, Slobodan M. (Inventor)
1980-01-01
A true push-pull switching power amplifier is disclosed utilizing two dc-to-dc converters. Each converter is comprised of two inductances, one inductance in series with a DC source and the other inductor in series with the output load, and an electrical energy transferring device with storage capability, namely storage capacitance, with suitable switching means between the inductances to obtain DC level conversion, where the switching means allows bidirectional current (and power) flow, and the switching means of one dc-to-dc converter is driven by the complement of a square-wave switching signal for the other dc-to-dc converter for true push-pull operation. For reduction of current ripple, the inductances in each of the two converters may be coupled, and with proper design of the coupling, the ripple can be reduced to zero at either the input or the output, but preferably the output.
High geothermal energy utilization geothermal/fossil hybrid power cycle: a preliminary investigation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grijalva, R. L.; Sanemitsu, S. K.
1978-11-01
Combining geothermal and fossil fuel energy into the so-called hybrid cycle is compared with a state-of-the-art double-flash geothermal power cycle using resources which vary from 429/sup 0/K (312/sup 0/F) to 588/sup 0/K (598/sup 0/F). It is demonstrated that a hybrid plant can compete thermodynamically with the combined output from both a fossil-fired and a geothermal plant operating separately. Economic comparison of the hybrid and double-flash cycles is outlined, and results are presented that indicate the performance of marginal hydrothermal resources may be improved enough to compete with existing power cycles on a cost basis. It is also concluded that onmore » a site-specific basis a hybrid cycle is capable of complementing double-flash cycles at large-capacity resources, and can operate in a cycling load mode at constant geothermal fluid flow rate.« less
ISSA/TSS power preliminary design
NASA Technical Reports Server (NTRS)
Main, John A.
1996-01-01
A projected power shortfall during the initial utilization flights of the International Space Station Alpha (ISSA) has prompted an inquiry into the use of the Tethered Satellite System (TSS) to provide station power. The preliminary design of the combined ISSA/TSS system is currently underway in the Preliminary Design Office at the Marshall Space Flight Center. This document focuses on the justification for using a tether system on space station, the physical principles behind such a system, and how it might be operated to best utilize its capabilities. The basic components of a simple DC generator are a magnet of some type and a conductive wire. Moving the wire through the magnetic field causes forces to be applied to the electric charges in the conductor, and thus current is induced to flow. This simple concept is the idea behind generating power with space-borne tether systems. The function of the magnet is performed by the earth's magnetic field, and orbiting a conductive tether about the earth effectively moves the tether through the field.
Experimental Optimisation of the Thermal Performance of Impinging Synthetic Jet Heat Sinks
NASA Astrophysics Data System (ADS)
Marron, Craig; Persoons, Tim
2014-07-01
Zero-net-mass flow synthetic jet devices offer a potential solution for energy- efficient cooling of medium power density electronic components. There remains an incomplete understanding of the interaction of these flows with extended surfaces, which prevents the wider implementation of these devices in the field. This study examines the effect of the main operating parameters on the heat transfer rate and electrical power consumption for a synthetic jet cooled heat sink. Three different heat sink geometries are tested. The results find that a modified sink with a 14 × 14 pin array with the central 6 × 6 pins removed provides superior cooling to either a fully pinned sink or flat plate. Furthermore each heat sink is found to have its own optimum jet orifice-to-sink spacing for heat transfer independent of flow conditions. The optimum heat transfer for the modified sink is H = 34 jet diameters. The effect of frequency on heat transfer is also studied. It is shown that heat transfer increases superlinearly with frequency at higher stroke lengths. The orientation of the impingement surface with respect to gravity has no effect on the heat transfer capabilities of the tested device. These tests are the starting point for further investigation into enhanced synthetic jet impingement surfaces. The equivalent axial fan cooled pinned heat sink (Malico Inc. MFP40- 18) has a thermal resistance of 1.93K/W at a fan power consumption of 0.12W. With the modified pinned heat sink, a synthetic jet at Re = 911, L0/D = 10, H/D = 30 provides a thermal resistance of 2.5K/W at the same power consumption.
The flow of power law fluids in elastic networks and porous media.
Sochi, Taha
2016-02-01
The flow of power law fluids, which include shear thinning and shear thickening as well as Newtonian as a special case, in networks of interconnected elastic tubes is investigated using a residual-based pore scale network modeling method with the employment of newly derived formulae. Two relations describing the mechanical interaction between the local pressure and local cross-sectional area in distensible tubes of elastic nature are considered in the derivation of these formulae. The model can be used to describe shear dependent flows of mainly viscous nature. The behavior of the proposed model is vindicated by several tests in a number of special and limiting cases where the results can be verified quantitatively or qualitatively. The model, which is the first of its kind, incorporates more than one major nonlinearity corresponding to the fluid rheology and conduit mechanical properties, that is non-Newtonian effects and tube distensibility. The formulation, implementation, and performance indicate that the model enjoys certain advantages over the existing models such as being exact within the restricting assumptions on which the model is based, easy implementation, low computational costs, reliability, and smooth convergence. The proposed model can, therefore, be used as an alternative to the existing Newtonian distensible models; moreover, it stretches the capabilities of the existing modeling approaches to reach non-Newtonian rheologies.
Numerical investigation and experimental development on VM-PT cryocooler operating below 4 K
NASA Astrophysics Data System (ADS)
Zhang, Tong; Pan, Changzhao; Zhou, Yuan; Wang, Junjie
2016-12-01
Vuilleumier coupling pulse tube (VM-PT) cryocooler is a novel kind of cryocooler capable of attaining liquid helium temperature which had been experimentally verified. Depending on different coupling modes and phase shifters, VM-PT cryocooler can be designed in several configurations. This paper presents a numerical investigation on three typical types of VM-PT cryocoolers, which are gas-coupling mode with room temperature phase shifter (GCRP), gas-coupling mode with cold phase shifter (GCCP) and thermal-coupling mode with cold phase shifter (TCCP). Firstly, three configurations are optimized on operating parameters to attain lower no-load temperature. Then, based on the simulation results, distributions of acoustic power, enthalpy flow, pressure wave, and volume flow rate are presented and discussed to better understand the energy flow characteristics and coupling mechanism. Meanwhile, analyses of phase relationship and exergy loss are also performed. Furthermore, a GCCP experimental system with optimal comprehensive performance among three configurations was built and tested. Experimental results showed good consistency with the simulations. Finally, a no-load temperature of 3.39 K and cooling power of 9.75 mW at 4.2 K were obtained with a pressure ratio of 1.7, operating frequency of 1.22 Hz and mean pressure of 1.5 MPa.
NASA Astrophysics Data System (ADS)
Bower, Ward
2011-09-01
An overview of the activities and progress made during the US DOE Solar Energy Grid Integration Systems (SEGIS) solicitation, while maintaining reliability and economics is provided. The SEGIS R&D opened pathways for interconnecting PV systems to intelligent utility grids and micro-grids of the future. In addition to new capabilities are "value added" features. The new hardware designs resulted in smaller, less material-intensive products that are being viewed by utilities as enabling dispatchable generation and not just unpredictable negative loads. The technical solutions enable "advanced integrated system" concepts and "smart grid" processes to move forward in a faster and focused manner. The advanced integrated inverters/controllers can now incorporate energy management functionality, intelligent electrical grid support features and a multiplicity of communication technologies. Portals for energy flow and two-way communications have been implemented. SEGIS hardware was developed for the utility grid of today, which was designed for one-way power flow, for intermediate grid scenarios, AND for the grid of tomorrow, which will seamlessly accommodate managed two-way power flows as required by large-scale deployment of solar and other distributed generation. The SEGIS hardware and control developed for today meets existing standards and codes AND provides for future connections to a "smart grid" mode that enables utility control and optimized performance.
Clarke, David J; Stokes, Adam A; Langridge-Smith, Pat; Mackay, C Logan
2010-03-01
We have developed an automated quench-flow microreactor which interfaces directly to an electrospray ionization (ESI) mass spectrometer. We have used this device in conjunction with ESI Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) to demonstrate the potential of this approach for studying the mechanistic details of enzyme reactions. For the model system chosen to test this device, namely, the pre-steady-state hydrolysis of p-nitrophenyl acetate by the enzyme chymotrypsin, the kinetic parameters obtained are in good agreement with those in the literature. To our knowledge, this is the first reported use of online quench-flow coupled with FTICR MS. Furthermore, we have exploited the power of FTICR MS to interrogate the quenched covalently bound enzyme intermediate using top-down fragmentation. The accurate mass capabilities of FTICR MS permitted the nature of the intermediate to be assigned with high confidence. Electron capture dissociation (ECD) fragmentation allowed us to locate the intermediate to a five amino acid section of the protein--which includes the known catalytic residue, Ser(195). This experimental approach, which uniquely can provide both kinetic and chemical details of enzyme mechanisms, is a potentially powerful tool for studies of enzyme catalysis.
NASA Astrophysics Data System (ADS)
Roselyn, J. Preetha; Devaraj, D.; Dash, Subhransu Sekhar
2013-11-01
Voltage stability is an important issue in the planning and operation of deregulated power systems. The voltage stability problems is a most challenging one for the system operators in deregulated power systems because of the intense use of transmission line capabilities and poor regulation in market environment. This article addresses the congestion management problem avoiding offline transmission capacity limits related to voltage stability by considering Voltage Security Constrained Optimal Power Flow (VSCOPF) problem in deregulated environment. This article presents the application of Multi Objective Differential Evolution (MODE) algorithm to solve the VSCOPF problem in new competitive power systems. The maximum of L-index of the load buses is taken as the indicator of voltage stability and is incorporated in the Optimal Power Flow (OPF) problem. The proposed method in hybrid power market which also gives solutions to voltage stability problems by considering the generation rescheduling cost and load shedding cost which relieves the congestion problem in deregulated environment. The buses for load shedding are selected based on the minimum eigen value of Jacobian with respect to the load shed. In the proposed approach, real power settings of generators in base case and contingency cases, generator bus voltage magnitudes, real and reactive power demands of selected load buses using sensitivity analysis are taken as the control variables and are represented as the combination of floating point numbers and integers. DE/randSF/1/bin strategy scheme of differential evolution with self-tuned parameter which employs binomial crossover and difference vector based mutation is used for the VSCOPF problem. A fuzzy based mechanism is employed to get the best compromise solution from the pareto front to aid the decision maker. The proposed VSCOPF planning model is implemented on IEEE 30-bus system, IEEE 57 bus practical system and IEEE 118 bus system. The pareto optimal front obtained from MODE is compared with reference pareto front and the best compromise solution for all the cases are obtained from fuzzy decision making strategy. The performance measures of proposed MODE in two test systems are calculated using suitable performance metrices. The simulation results show that the proposed approach provides considerable improvement in the congestion management by generation rescheduling and load shedding while enhancing the voltage stability in deregulated power system.
The rationale and design features for the 40 by 80/80 by 120 foot wind tunnel
NASA Technical Reports Server (NTRS)
Mort, K. W.; Kelly, M. W.; Hickey, D. H.
1976-01-01
A substantial increase in the test capability of full scale wind tunnels is considered. In order to determine the most cost effective means for providing this desired increase in test capability, a series of design studies were conducted of various new facilities as well as of major modifications to the existing 40- by 80-foot wind tunnel. The most effective trade between test capability and facility cost was provided by repowering the existing 40 by 80 foot wind tunnel to increase the maximum speed from 200 knots to 300 knots and by the addition of a new 80- by 120-foot test section having a 110 knot maximum speed. The design of the facility is described with special emphasis on the unique features, such as the drive system which absorbs nearly four times the power without an increase in noise, and the large flow diversion devices required to interface the two test sections to a single drive.
Conversion of the trace elements Zn, Cd, and Pb in the combustion of near-Moscow coals
DOE Office of Scientific and Technical Information (OSTI.GOV)
E.V. Samuilov; L.N. Lebedeva; L.S. Pokrovskaya
A model for the conversion of trace elements in the combustion of near-Moscow coals based on a complex approach combining the capabilities of geochemistry, chemical thermodynamics, phase analysis, and chemical kinetics is proposed. The conversion of the trace elements Zn, Cd, and Pb as the constituents of near-Moscow coal in the flow of coal combustion products along the line of the P-59 boiler at the Ryazanskaya Thermal Power Plant was calculated. Experimental data were used in the development of the model and in calculations.
Continuation Power Flow with Variable-Step Variable-Order Nonlinear Predictor
NASA Astrophysics Data System (ADS)
Kojima, Takayuki; Mori, Hiroyuki
This paper proposes a new continuation power flow calculation method for drawing a P-V curve in power systems. The continuation power flow calculation successively evaluates power flow solutions through changing a specified value of the power flow calculation. In recent years, power system operators are quite concerned with voltage instability due to the appearance of deregulated and competitive power markets. The continuation power flow calculation plays an important role to understand the load characteristics in a sense of static voltage instability. In this paper, a new continuation power flow with a variable-step variable-order (VSVO) nonlinear predictor is proposed. The proposed method evaluates optimal predicted points confirming with the feature of P-V curves. The proposed method is successfully applied to IEEE 118-bus and IEEE 300-bus systems.
Studies of oxygen-helium discharges for use in electric oxygen-iodine lasers
NASA Astrophysics Data System (ADS)
Zimmerman, Joseph William
In recent work, the performance of the Electric Oxygen-Iodine Laser (ElectricOIL), developed in partnership by researchers at the University of Illinois and CU Aerospace, has been greatly improved through systematic study of various components of this new laser technology. One major contribution to the advancement of ElectricOIL technology has been the development of electric discharges capable of producing significant flow rates of the precursor electronically-excited molecular oxygen, O2(a1Delta). O2(a 1Delta) serves as an energy reservoir in the laser system, pumping atomic iodine by near-resonant energy transfer producing gain and laser on the I(2P1/2) → I(2P3/2 ) transition at 1315 nm. Initial experimental work with radio-frequency discharges showed the importance of controlling O-atom flow rates to reduce quenching losses of energy stored in O2(a1Delta), and determined proper selection of the helium diluent ratio and specific power deposition (power per O2 flow rate). Further experimental investigations with transverse capacitive radio-frequency discharges in O2/He/NO mixtures in the pressure range of 1-100 Torr and power range of 0.1-1.2 kW have indicated that O2(a1Delta) production is a strong function of geometry (transverse gap), excitation frequency, and pressure. These parameters along with gas flow mixture dictate the current density at which the discharge operates, and its modal characteristics (normal vs. abnormal, homogeneous vs. inhomogeneous). A key result is that to encourage efficient O2(a1Delta) production these parameters should be selected in order to promote a homogeneous (low current density) discharge. The discharge behavior is characterized using terminal current-voltage-characteristics, microwave interferometer measurements, and plasma emission intensity measurements. Numerous spectroscopic measurements of O2(a1Delta), oxygen atoms, and discharge excited states are made in order to describe the discharge performance dependent on various parameters. The influence of NO on O-atom flow rates and O2(a1Delta) production is investigated. Progress of laser power extraction since initial reports in 2005 is overviewed.
Seals Code Development Workshop
NASA Technical Reports Server (NTRS)
Hendricks, Robert C. (Compiler); Liang, Anita D. (Compiler)
1996-01-01
Seals Workshop of 1995 industrial code (INDSEAL) release include ICYL, GCYLT, IFACE, GFACE, SPIRALG, SPIRALI, DYSEAL, and KTK. The scientific code (SCISEAL) release includes conjugate heat transfer and multidomain with rotordynamic capability. Several seals and bearings codes (e.g., HYDROFLEX, HYDROTRAN, HYDROB3D, FLOWCON1, FLOWCON2) are presented and results compared. Current computational and experimental emphasis includes multiple connected cavity flows with goals of reducing parasitic losses and gas ingestion. Labyrinth seals continue to play a significant role in sealing with face, honeycomb, and new sealing concepts under investigation for advanced engine concepts in view of strict environmental constraints. The clean sheet approach to engine design is advocated with program directions and anticipated percentage SFC reductions cited. Future activities center on engine applications with coupled seal/power/secondary flow streams.
Design and Analysis of a Turbopump for a Conceptual Expander Cycle Upper-Stage Engine
NASA Technical Reports Server (NTRS)
Dorney, Daniel J.; Rothermel, Jeffry; Griffin, Lisa W.; Thornton, Randall J.; Forbes, John C.; Skelly, Stephen E.; Huber, Frank W.
2006-01-01
As part of the development of technologies for rocket engines that will power spacecraft to the Moon and Mars, a program was initiated to develop a conceptual upper stage engine with wide flow range capability. The resulting expander cycle engine design employs a radial turbine to allow higher pump speeds and efficiencies. In this paper, the design and analysis of the pump section of the engine are discussed. One-dimensional meanline analyses and three-dimensional unsteady computational fluid dynamics simulations were performed for the pump stage. Configurations with both vaneless and vaned diffusers were investigated. Both the meanline analysis and computational predictions show that the pump will meet the performance objectives. Additional details describing the development of a water flow facility test are also presented.
Evaluation of Particle Image Velocimetry Measurement Using Multi-wavelength Illumination
NASA Astrophysics Data System (ADS)
Lai, HC; Chew, TF; Razak, NA
2018-05-01
In past decades, particle image velocimetry (PIV) has been widely used in measuring fluid flow and a lot of researches have been done to improve the PIV technique. Many researches are conducted on high power light emitting diode (HPLED) to replace the traditional laser illumination system in PIV. As an extended work to the research in PIV illumination system, two high power light emitting diodes (HPLED) with different wavelength are introduced as PIV illumination system. The objective of this research is using dual colours LED to directly replace laser as illumination system in order for a single frame to be captured by a normal camera instead of a high speed camera. Dual colours HPLEDs PIV are capable with single frame double pulses mode which able to plot the velocity vector of the particles after correlation. An illumination system is designed and fabricated and evaluated by measuring water flow in a small tank. The results indicates that HPLEDs promises a few advantages in terms of cost, safety and performance. It has a high potential to be develop into an alternative for PIV in the near future.
The minimum control authority of a system of actuators with applications to Gravity Probe-B
NASA Technical Reports Server (NTRS)
Wiktor, Peter; Debra, Dan
1991-01-01
The forcing capabilities of systems composed of many actuators are analyzed in this paper. Multiactuator systems can generate higher forces in some directions than in others. Techniques are developed to find the force in the weakest direction. This corresponds to the worst-case output and is defined as the 'minimum control authority'. The minimum control authority is a function of three things: the actuator configuration, the actuator controller and the way in which the output of the system is limited. Three output limits are studied: (1) fuel-flow rate, (2) power, and (3) actuator output. The three corresponding actuator controllers are derived. These controllers generate the desired force while minimizing either fuel flow rate, power or actuator output. It is shown that using the optimal controller can substantially increase the minimum control authority. The techniques for calculating the minimum control authority are applied to the Gravity Probe-B spacecraft thruster system. This example shows that the minimum control authority can be used to design the individual actuators, choose actuator configuration, actuator controller, and study redundancy.
Laser Doppler systems in pollution monitoring
NASA Technical Reports Server (NTRS)
Miller, C. R.; Sonnenschein, C. M.; Herget, W. F.; Huffaker, R. M.
1976-01-01
The paper reports on a program undertaken to determine the feasibility of using a laser Doppler velocimeter (LDV) to measure smoke-stack gas exit velocity, particulate concentration, and mass flow. Measurements made with a CO2 laser Doppler radar system at a coal-burning power plant are compared with in-stack measurements made by a pitot tube. The operational principles of a LDV are briefly described along with the system employed in the present study. Data discussed include typical Doppler spectra from smoke-stack effluents at various laser elevation angles, the measured velocity profile across the stack exit, and the LDV-measured exit velocity as a function of the exit velocity measured by the in-stack instrument. The in-stack velocity is found to be about 14% higher than the LDV velocity, but this discrepancy is regarded as a systematic error. In general, linear relationships are observed between the laser data, the exit velocity, and the particulate concentration. It is concluded that an LDV has the capability of determining both the mass concentration and the mass flow from a power-plant smoke stack.
Drag reduction in a turbulent channel flow using a passivity-based approach
NASA Astrophysics Data System (ADS)
Heins, Peter; Jones, Bryn; Sharma, Atul
2013-11-01
A new active feedback control strategy for attenuating perturbation energy in a turbulent channel flow is presented. Using a passivity-based approach, a controller synthesis procedure has been devised which is capable of making the linear dynamics of a channel flow as close to passive as is possible given the limitations on sensing and actuation. A controller that is capable of making the linearized flow passive is guaranteed to globally stabilize the true flow. The resulting controller is capable of greatly restricting the amount of turbulent energy that the nonlinearity can feed back into the flow. DNS testing of a controller using wall-sensing of streamwise and spanwise shear stress and actuation via wall transpiration acting upon channel flows with Reτ = 100 - 250 showed significant reductions in skin-friction drag.
Zhang, Binbin; Chen, Jun; Jin, Long; Deng, Weili; Zhang, Lei; Zhang, Haitao; Zhu, Minhao; Yang, Weiqing; Wang, Zhong Lin
2016-06-28
Wireless traffic volume detectors play a critical role for measuring the traffic-flow in a real-time for current Intelligent Traffic System. However, as a battery-operated electronic device, regularly replacing battery remains a great challenge, especially in the remote area and wide distribution. Here, we report a self-powered active wireless traffic volume sensor by using a rotating-disk-based hybridized nanogenerator of triboelectric nanogenerator and electromagnetic generator as the sustainable power source. Operated at a rotating rate of 1000 rpm, the device delivered an output power of 17.5 mW, corresponding to a volume power density of 55.7 W/m(3) (Pd = P/V, see Supporting Information for detailed calculation) at a loading resistance of 700 Ω. The hybridized nanogenerator was demonstrated to effectively harvest energy from wind generated by a moving vehicle through the tunnel. And the delivered power is capable of triggering a counter via a wireless transmitter for real-time monitoring the traffic volume in the tunnel. This study further expands the applications of triboelectric nanogenerators for high-performance ambient mechanical energy harvesting and as sustainable power sources for driving wireless traffic volume sensors.
Testing of Lightweight Fuel Cell Vehicles System at Low Speeds with Energy Efficiency Analysis
NASA Astrophysics Data System (ADS)
Mustaffa, Muhammad Rizuwan B.; Mohamed, Wan Ahmad Najmi B. Wan
2013-12-01
A fuel cell vehicle power train mini test bench was developed which consists of a 1 kW open cathode hydrogen fuel cell, electric motor, wheel, gearing system, DC/DC converter and vehicle control system (VCS). Energy efficiency identification and energy flow evaluation is a useful tool in identifying a detail performance of each component and sub-systems in a fuel cell vehicle system configuration. Three artificial traction loads was simulated at 30 kg, 40 kg and 50 kg force on a single wheel drive configuration. The wheel speed range reported here covers from idle to 16 km/h (low speed range) as a preliminary input in the research work frame. The test result shows that the system efficiency is 84.5 percent when the energy flow is considered from the fuel cell to the wheel and 279 watts of electrical power was produced by the fuel cell during that time. Dynamic system responses was also identified as the load increases beyond the motor traction capabilities where the losses at the converter and motor controller increased significantly as it tries to meet the motor traction power demands. This work is currently being further expanded within the work frame of developing a road-worthy fuel cell vehicle.
Role of natural gas in electric generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
VanScant, J.W.; Mespelli, K.L.
1995-08-01
The natural-gas industry must overcome significant operating, market, regulatory, and institutional barriers to meet projected demand growth between 1994 and 2005, according to Jeffrey W> VanSant, vice president the New England Power Company, and Kristine L. Mespelli, a fuel analyst with New England Power. An 85-percent increase in gas use for electric generation is expected to account for most of the overall growth in gas demand during the decade, as environmental policies increasingly favor the use of gas instead of other fossil fuels. Recent changes in the natural gas industry have posed challenges to power producers, however. For instance, restructuringmore » of pipeline services in 1992 caused more tightly controlled flow rates which are incompatible with the variable flow needs of electric generators. Another barrier to increased natural-gas use is its relatively undeveloped market, compared to coal and oil markets. In fact, say VanSant and Mespelli, the gas market in many consuming regions is characterized both by a lack of price transparency and limited access to buyers and sellers. Electric utilities can help make gas a viable fuel by maximizing dual-fuel capability, pooling gas purchases, building new business relationships, and improving electronic information networks to make transactions easier and faster.« less
NASA Astrophysics Data System (ADS)
Mateo, Cherry May R.; Yamazaki, Dai; Kim, Hyungjun; Champathong, Adisorn; Vaze, Jai; Oki, Taikan
2017-10-01
Global-scale river models (GRMs) are core tools for providing consistent estimates of global flood hazard, especially in data-scarce regions. Due to former limitations in computational power and input datasets, most GRMs have been developed to use simplified representations of flow physics and run at coarse spatial resolutions. With increasing computational power and improved datasets, the application of GRMs to finer resolutions is becoming a reality. To support development in this direction, the suitability of GRMs for application to finer resolutions needs to be assessed. This study investigates the impacts of spatial resolution and flow connectivity representation on the predictive capability of a GRM, CaMa-Flood, in simulating the 2011 extreme flood in Thailand. Analyses show that when single downstream connectivity (SDC) is assumed, simulation results deteriorate with finer spatial resolution; Nash-Sutcliffe efficiency coefficients decreased by more than 50 % between simulation results at 10 km resolution and 1 km resolution. When multiple downstream connectivity (MDC) is represented, simulation results slightly improve with finer spatial resolution. The SDC simulations result in excessive backflows on very flat floodplains due to the restrictive flow directions at finer resolutions. MDC channels attenuated these effects by maintaining flow connectivity and flow capacity between floodplains in varying spatial resolutions. While a regional-scale flood was chosen as a test case, these findings should be universal and may have significant impacts on large- to global-scale simulations, especially in regions where mega deltas exist.These results demonstrate that a GRM can be used for higher resolution simulations of large-scale floods, provided that MDC in rivers and floodplains is adequately represented in the model structure.
NASA Technical Reports Server (NTRS)
Bard, Steven (Inventor); Wu, Jiunn-Jeng (Inventor); Trimble, Curtis A. (Inventor)
1992-01-01
A Joule-Thomson cryogenic refrigeration system capable of achieving high temperature stabilities in the presence of varying temperature, atmospheric pressure, and heat load is provided. The Joule-Thomson cryogenic refrigeration system includes a demand flow Joule-Thomson expansion valve disposed in a cryostat of the refrigeration system. The expansion valve has an adjustable orifice that controls the flow of compressed gas therethrough and induces cooling and partial liquefaction of the gas. A recuperative heat exchanger is disposed in the cryostat and coupled to the expansion valve. A thermostatically self-regulating mechanism is disposed in the cryostat and coupled to the J-T expansion valve. The thermostatically self-regulating mechanism automatically adjusts the cross sectional area of the adjustable valve orifice in response to environmental temperature changes and changes in power dissipated at a cold head. A temperature sensing and adjusting mechanism is coupled to a cold head for adjusting the temperature of the cold head in response to the change in heat flow in the cold head. The temperature sensing and adjusting mechanism comprises a temperature sensitive diode, a wound wire heater, and an electrical feedback control circuit coupling the diode to the heater. An absolute pressure relief valve is interposed between the output of the cryostat and an exhaust port for maintaining a constant exhaust temperature in the refrigerating system, independent of the changes in atmospheric pressure.
NASA Astrophysics Data System (ADS)
Bard, Steven; Wu, Jiunn-Jeng; Trimble, Curtis A.
1992-06-01
A Joule-Thomson cryogenic refrigeration system capable of achieving high temperature stabilities in the presence of varying temperature, atmospheric pressure, and heat load is provided. The Joule-Thomson cryogenic refrigeration system includes a demand flow Joule-Thomson expansion valve disposed in a cryostat of the refrigeration system. The expansion valve has an adjustable orifice that controls the flow of compressed gas therethrough and induces cooling and partial liquefaction of the gas. A recuperative heat exchanger is disposed in the cryostat and coupled to the expansion valve. A thermostatically self-regulating mechanism is disposed in the cryostat and coupled to the J-T expansion valve. The thermostatically self-regulating mechanism automatically adjusts the cross sectional area of the adjustable valve orifice in response to environmental temperature changes and changes in power dissipated at a cold head. A temperature sensing and adjusting mechanism is coupled to a cold head for adjusting the temperature of the cold head in response to the change in heat flow in the cold head. The temperature sensing and adjusting mechanism comprises a temperature sensitive diode, a wound wire heater, and an electrical feedback control circuit coupling the diode to the heater. An absolute pressure relief valve is interposed between the output of the cryostat and an exhaust port for maintaining a constant exhaust temperature in the refrigerating system, independent of the changes in atmospheric pressure.
Microfluidic Imaging Flow Cytometry by Asymmetric-detection Time-stretch Optical Microscopy (ATOM).
Tang, Anson H L; Lai, Queenie T K; Chung, Bob M F; Lee, Kelvin C M; Mok, Aaron T Y; Yip, G K; Shum, Anderson H C; Wong, Kenneth K Y; Tsia, Kevin K
2017-06-28
Scaling the number of measurable parameters, which allows for multidimensional data analysis and thus higher-confidence statistical results, has been the main trend in the advanced development of flow cytometry. Notably, adding high-resolution imaging capabilities allows for the complex morphological analysis of cellular/sub-cellular structures. This is not possible with standard flow cytometers. However, it is valuable for advancing our knowledge of cellular functions and can benefit life science research, clinical diagnostics, and environmental monitoring. Incorporating imaging capabilities into flow cytometry compromises the assay throughput, primarily due to the limitations on speed and sensitivity in the camera technologies. To overcome this speed or throughput challenge facing imaging flow cytometry while preserving the image quality, asymmetric-detection time-stretch optical microscopy (ATOM) has been demonstrated to enable high-contrast, single-cell imaging with sub-cellular resolution, at an imaging throughput as high as 100,000 cells/s. Based on the imaging concept of conventional time-stretch imaging, which relies on all-optical image encoding and retrieval through the use of ultrafast broadband laser pulses, ATOM further advances imaging performance by enhancing the image contrast of unlabeled/unstained cells. This is achieved by accessing the phase-gradient information of the cells, which is spectrally encoded into single-shot broadband pulses. Hence, ATOM is particularly advantageous in high-throughput measurements of single-cell morphology and texture - information indicative of cell types, states, and even functions. Ultimately, this could become a powerful imaging flow cytometry platform for the biophysical phenotyping of cells, complementing the current state-of-the-art biochemical-marker-based cellular assay. This work describes a protocol to establish the key modules of an ATOM system (from optical frontend to data processing and visualization backend), as well as the workflow of imaging flow cytometry based on ATOM, using human cells and micro-algae as the examples.
NASA Technical Reports Server (NTRS)
Mcardle, Jack G.; Esker, Barbara S.
1993-01-01
Many conceptual designs for advanced short-takeoff, vertical landing (ASTOVL) aircraft need exhaust nozzles that can vector the jet to provide forces and moments for controlling the aircraft's movement or attitude in flight near the ground. A type of nozzle that can both vector the jet and vary the jet flow area is called a vane nozzle. Basically, the nozzle consists of parallel, spaced-apart flow passages formed by pairs of vanes (vanesets) that can be rotated on axes perpendicular to the flow. Two important features of this type of nozzle are the abilities to vector the jet rearward up to 45 degrees and to produce less harsh pressure and velocity footprints during vertical landing than does an equivalent single jet. A one-third-scale model of a generic vane nozzle was tested with unheated air at the NASA Lewis Research Center's Powered Lift Facility. The model had three parallel flow passages. Each passage was formed by a vaneset consisting of a long and a short vane. The longer vanes controlled the jet vector angle, and the shorter controlled the flow area. Nozzle performance for three nominal flow areas (basic and plus or minus 21 percent of basic area), each at nominal jet vector angles from -20 deg (forward of vertical) to +45 deg (rearward of vertical) are presented. The tests were made with the nozzle mounted on a model tailpipe with a blind flange on the end to simulate a closed cruise nozzle, at tailpipe-to-ambient pressure ratios from 1.8 to 4.0. Also included are jet wake data, single-vaneset vector performance for long/short and equal-length vane designs, and pumping capability. The pumping capability arises from the subambient pressure developed in the cavities between the vanesets, which could be used to aspirate flow from a source such as the engine compartment. Some of the performance characteristics are compared with characteristics of a single-jet nozzle previously reported.
Code of Federal Regulations, 2010 CFR
2010-10-01
... microphones and other low power auxiliary stations capable of operating in the core TV bands. 15.216 Section... wireless microphones and other low power auxiliary stations capable of operating in the core TV bands. (a... capable of operating in the core TV bands (channels 2-51, excluding channel 37) is subject to the...
Hardware simulation of fuel cell/gas turbine hybrids
NASA Astrophysics Data System (ADS)
Smith, Thomas Paul
Hybrid solid oxide fuel cell/gas turbine (SOFC/GT) systems offer high efficiency power generation, but face numerous integration and operability challenges. This dissertation addresses the application of hardware-in-the-loop simulation (HILS) to explore the performance of a solid oxide fuel cell stack and gas turbine when combined into a hybrid system. Specifically, this project entailed developing and demonstrating a methodology for coupling a numerical SOFC subsystem model with a gas turbine that has been modified with supplemental process flow and control paths to mimic a hybrid system. This HILS approach was implemented with the U.S. Department of Energy Hybrid Performance Project (HyPer) located at the National Energy Technology Laboratory. By utilizing HILS the facility provides a cost effective and capable platform for characterizing the response of hybrid systems to dynamic variations in operating conditions. HILS of a hybrid system was accomplished by first interfacing a numerical model with operating gas turbine hardware. The real-time SOFC stack model responds to operating turbine flow conditions in order to predict the level of thermal effluent from the SOFC stack. This simulated level of heating then dynamically sets the turbine's "firing" rate to reflect the stack output heat rate. Second, a high-speed computer system with data acquisition capabilities was integrated with the existing controls and sensors of the turbine facility. In the future, this will allow for the utilization of high-fidelity fuel cell models that infer cell performance parameters while still computing the simulation in real-time. Once the integration of the numeric and the hardware simulation components was completed, HILS experiments were conducted to evaluate hybrid system performance. The testing identified non-intuitive transient responses arising from the large thermal capacitance of the stack that are inherent to hybrid systems. Furthermore, the tests demonstrated the capabilities of HILS as a research tool for investigating the dynamic behavior of SOFC/GT hybrid power generation systems.
A Location Based Communication Proposal for Disaster Crisis Management
NASA Astrophysics Data System (ADS)
Gülnerman, A. G.; Goksel, C.; Tezer, A.
2014-12-01
The most vital applications within urban applications under the title of Geographical Information system applications are Disaster applications. Especially, In Turkey the most occured disaster type Earthquakes impacts are hard to retain in urban due to greatness of area, data and effected resident or victim. Currently, communications between victims and institutions congested and collapsed, after disaster that results emergency service delay and so secondary death and desperation. To avoid these types of life loss, the communication should be established between public and institutions. Geographical Information System Technology is seen capable of data management techniques and communication tool. In this study, Life Saving Kiosk Modal Proposal designed as a communication tool based on GIS, after disaster, takes locational emegency demands, meets emergency demands over notification maps which is created by those demands,increase public solidarity by visualizing close emergency demanded area surrounded another one and gathers emergency service demanded institutions notifications and aims to increasethe capability of management. This design prosals' leading role is public. Increase in capability depends on public major contribution to disaster management by required communication infrastructure establishment. The aim is to propound public power instead of public despiration. Apart from general view of disaster crisis management approaches, Life Saving Kiosk Modal Proposal indicates preparedness and response phases within the disaster cycle and solve crisis management with the organization of design in preparedness phase, use in response phase. This resolution modal flow diagram is builded between public, communication tool (kiosk) amd response force. The software is included in communication tools whose functions, interface designs and user algorithms are provided considering the public participation. In this study, disaster crisis management with public participation and power use with data flow modal based on location is came up for discussion by comparing with the other available applications in manner of time, detail of data, required staff and expertise degree, data reality and data archive.
Investigations of the Application of CFD to Flow Expected in the Lower Plenum of the Prismatic VHTR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richard W.Johnson; Tara Gallaway; Donna P. Guillen
2006-09-01
The Generation IV (Gen IV) very high temperature reactor (VHTR) will either be a prismatic (block) or pebble bed design. However, a prismatic VHTR reference design, based on the General Atomics Gas Turbine-Modular Helium Reactor (GT-MHR) [General Atomics, 1996] has been developed for preliminary analysis purposes [MacDonald, et al., 2003]. Numerical simulation studies reported herein are based on this reference design. In the lower plenum of the prismatic reference design, the flow will be introduced by dozens of turbulent jets from the core above. The jet flow will encounter rows of columns that support the core. The flow from themore » core will have to turn ninety degrees and flow toward the exit duct as it passed through the forest of support columns. Due to the radial variation of the power density in the core, the jets will be at various temperatures at the inlet to the lower plenum. This presents some concerns, including that local hot spots may occur in the lower plenum. This may have a deleterious effect on the materials present as well as cause a variation in temperature to be present as the flow enters the power conversion system machinery, which could cause problems with the operation of the machinery. In the past, systems analysis codes have been used to model flow in nuclear reactor systems. It is recognized, however, that such codes are not capable of modeling the local physics of the flow to be able to analyze for local mixing and temperature variations. This has led to the determination that computational fluid dynamic (CFD) codes be used, which are generally regarded as having the capability of accurately simulating local flow physics. Accurate flow modeling involves determining appropriate modeling strategies needed to obtain accurate analyses. These include determining the fineness of the grid needed, the required iterative convergence tolerance, which numerical discretization method to use, and which turbulence model and wall treatment should be employed. It also involves validating the computer code and turbulence model against a series of separate and combined flow phenomena and selecting the data used for the validation. This report describes progress made to identify proper modeling strategies for simulating the lower plenum flow for the task entitled “CFD software validation of jets in crossflow,” which was designed to investigate the issues pertaining to the validation process. The flow phenomenon previously chosen to investigate is flow in a staggered tube bank because it is shown by preliminary simulations to be the location of the highest turbulence intensity in the lower plenum Numerical simulations were previously obtained assuming that the flow is steady. Various turbulence models were employed along with strategies to reduce numerical error to allow appropriate comparisons of the results. It was determined that the sophisticated Reynolds stress model (RSM) provided the best results. It was later determined that the flow is an unsteady flow wherein circulating eddies grow behind the tube and ‘peel off’ alternately from the top and the bottom of the tube. Additional calculations show that the mean velocity is well predicted when the flow is modeled as an unsteady flow. The results for U are clearly superior for the unsteady computations; the unsteady computations for the turbulence stress are similar to those for the steady calculations, showing the same trends. It is clear that strategie« less
Flame dynamics in a micro-channeled combustor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hussain, Taaha; Balachandran, Ramanarayanan, E-mail: r.balachandran@ucl.ac.uk; Markides, Christos N.
2015-01-22
The increasing use of Micro-Electro-Mechanical Systems (MEMS) has generated a significant interest in combustion-based power generation technologies, as a replacement of traditional electrochemical batteries which are plagued by low energy densities, short operational lives and low power-to-size and power-to-weight ratios. Moreover, the versatility of integrated combustion-based systems provides added scope for combined heat and power generation. This paper describes a study into the dynamics of premixed flames in a micro-channeled combustor. The details of the design and the geometry of the combustor are presented in the work by Kariuki and Balachandran [1]. This work showed that there were different modesmore » of operation (periodic, a-periodic and stable), and that in the periodic mode the flame accelerated towards the injection manifold after entering the channels. The current study investigates these flames further. We will show that the flame enters the channel and propagates towards the injection manifold as a planar flame for a short distance, after which the flame shape and propagation is found to be chaotic in the middle section of the channel. Finally, the flame quenches when it reaches the injector slots. The glow plug position in the exhaust side ignites another flame, and the process repeats. It is found that an increase in air flow rate results in a considerable increase in the length (and associated time) over which the planar flame travels once it has entered a micro-channel, and a significant decrease in the time between its conversion into a chaotic flame and its extinction. It is well known from the literature that inside small channels the flame propagation is strongly influenced by the flow conditions and thermal management. An increase of the combustor block temperature at high flow rates has little effect on the flame lengths and times, whereas at low flow rates the time over which the planar flame front can be observed decreases and the time of existence of the chaotic flame increases. The frequency of re-ignition of successive flames decreases at higher flow rates and increases at higher temperatures. The data and results from this study will not only help the development of new micro-power generation devices, but they will also serve as a validation case for combustion models capable of predicting flame behavior in the presence of strong thermal and flow boundary layers, a situation common to many industrial applications.« less
Fusible pellet transport and storage of heat
NASA Technical Reports Server (NTRS)
Bahrami, P. A.
1982-01-01
A new concept for both transport and storage of heat at high temperatures and heat fluxes is introduced and the first steps in analysis of its feasibility is taken. The concept utilizes the high energy storage capability of materials undergoing change of phase. The phase change material, for example a salt, is encapsulated in corrosion resistant sealed pellets and transported in a carrier fluid to heat source and storage. Calculations for heat transport from a typical solar collector indicate that the pellet mass flow rates are relatively small and that the required pumping power is only a small fraction of the energy transport capability of the system. Salts and eutectic salt mixtures as candidate phase change materials are examined and discussed. Finally, the time periods for melting or solidification of sodium chloride pellets is investigated and reported.
Fusible pellet transport and storage of heat
NASA Astrophysics Data System (ADS)
Bahrami, P. A.
1982-06-01
A new concept for both transport and storage of heat at high temperatures and heat fluxes is introduced and the first steps in analysis of its feasibility is taken. The concept utilizes the high energy storage capability of materials undergoing change of phase. The phase change material, for example a salt, is encapsulated in corrosion resistant sealed pellets and transported in a carrier fluid to heat source and storage. Calculations for heat transport from a typical solar collector indicate that the pellet mass flow rates are relatively small and that the required pumping power is only a small fraction of the energy transport capability of the system. Salts and eutectic salt mixtures as candidate phase change materials are examined and discussed. Finally, the time periods for melting or solidification of sodium chloride pellets is investigated and reported.
America in Space: The First Decade - Spacecraft Power
NASA Technical Reports Server (NTRS)
Corliss, William R.
1970-01-01
Electrical power is necessary for every manned and unmanned spacecraft, with the exception of a few special-purpose Earth satellites. It is the reliable flow and availability of electrical power that allows man to extend his personal ventures safely beyond the atmosphere and keeps unmanned scientific payloads serving as useful tools for space exploration and applications. Electric power is essential to space communications, guidance, control, tracking, telemetry, life-support systems, sensors, data handling and storage, and to assure the proper functioning of countless experimental and housekeeping systems and subsystems aboard operating spacecraft. It remains the task of the National Aeronautics and Space Administration, since NASA's founding in 1958, to fully investigate the chemical, nuclear and solar sources of energy and to see how best they can be converted to reliable spacecraft power. The research and technology of power-generating systems illustrates a seldom recognized goal of NASA - to assure this Nation a freedom of choice; the choice, in this case, being that of going where we wish to go in the atmosphere or in space. Technical capability is the key to such freedom. Power requirements and profiles are reviewed and power sources, including batteries, fuel cells, solar cell, RTGs and nuclear fission power plants in space, are highlighted.
Cooled variable-area radial turbine technology program
NASA Technical Reports Server (NTRS)
Large, G. D.; Meyer, L. J.
1982-01-01
The objective of this study was a conceptual evaluation and design analyses of a cooled variable-area radial turbine capable of maintaining nearly constant high efficiency when operated at a constant speed and pressure ratio over a range of flows corresponding to 50- to 100-percent maximum engine power. The results showed that a 1589K (2400 F) turbine was feasible that would satisfy a 4000-hour duty cycle life goal. The final design feasibility is based on 1988 material technology goals. A peak aerodynamic stage total efficiency of 0.88 was predicted at 100 percent power. Two candidate stators were identified: an articulated trailing-edge and a locally movable sidewall. Both concepts must be experimentally evaluated to determine the optimum configuration. A follow-on test program is proposed for this evaluation.
Rayleigh Scattering Diagnostic for Measurement of Velocity and Density Fluctuation Spectra
NASA Technical Reports Server (NTRS)
Seasholtz, Richard G.; Panda, Jayanta; Elam, Kristie A.
2002-01-01
A new molecular Rayleigh scattering based flow diagnostic is used for the first time to measure the power spectrum of gas density and radial velocity component in the plumes of high speed jets. The technique is based on analyzing the Rayleigh scattered light with a Fabry-Perot interferometer used in the static, imaging mode. The PC based data acquisition system is capable of simultaneous sampling of velocity and density at rates to 100 kHz and data record lengths to 10 million. Velocity and density power spectra and velocity-density cross spectra are presented for a subsonic jet, an underexpanded screeching jet, and for Mach 1.4 and Mach 1.8 supersonic jets. Software and hardware interfaces were developed to allow computer control of all aspects of the experiment and data acquisition.
Application of the electroosmotic effect for thrust generation
NASA Astrophysics Data System (ADS)
Hansen, Thomas Edward
The present work focuses on demonstrating the capabilities of electroosmotic pumps, (EOP) to generate thrust. An underwater glider was successfully propelled by electroosmosis for the first time published - at 0.85 inches per second. Asymmetric AC voltage pulsing proved to produce higher flow rates then equivalent DC pumps for the same average voltage. Ultra-short pulsing proved 100 nanosecond rise times in EOP are possible, which surpassed published predictions by three orders of magnitude. Theories behind efficiency losses of high power EOP were investigated. Direct measurement of effective voltage at the face of a membrane is the most accurate way to determine voltage drop across the electrolyte of an EOP. Forced convection lowered efficiency of the EOP for low voltages by preventing capacitance charging, but proved to prolong pump life during high power application.
Free radical propulsion concept
NASA Technical Reports Server (NTRS)
Hawkins, C. E.; Nakanishi, S.
1981-01-01
A free radical propulsion concept utilizing the recombination energy of dissociated low molecular weight gases to produce thrust was examined. The concept offered promise of a propulsion system operating at a theoretical impulse, with hydrogen, as high as 2200 seconds at high thrust to power ratio, thus filling the gas existing between chemical and electrostatic propulsion capabilities. Microwave energy used to dissociate a continuously flowing gas was transferred to the propellant via three body recombination for conversion to propellant kinetic energy. Power absorption by the microwave plasma discharge was in excess of 90 percent over a broad range of pressures. Gas temperatures inferred from gas dynamic equations showed much higher temperatures from microwave heating than from electrothermal heating. Spectroscopic analysis appeared to corroborate the inferred temperatures of one of the gases tested.
Minimum-dissipation scalar transport model for large-eddy simulation of turbulent flows
NASA Astrophysics Data System (ADS)
Abkar, Mahdi; Bae, Hyun J.; Moin, Parviz
2016-08-01
Minimum-dissipation models are a simple alternative to the Smagorinsky-type approaches to parametrize the subfilter turbulent fluxes in large-eddy simulation. A recently derived model of this type for subfilter stress tensor is the anisotropic minimum-dissipation (AMD) model [Rozema et al., Phys. Fluids 27, 085107 (2015), 10.1063/1.4928700], which has many desirable properties. It is more cost effective than the dynamic Smagorinsky model, it appropriately switches off in laminar and transitional flows, and it is consistent with the exact subfilter stress tensor on both isotropic and anisotropic grids. In this study, an extension of this approach to modeling the subfilter scalar flux is proposed. The performance of the AMD model is tested in the simulation of a high-Reynolds-number rough-wall boundary-layer flow with a constant and uniform surface scalar flux. The simulation results obtained from the AMD model show good agreement with well-established empirical correlations and theoretical predictions of the resolved flow statistics. In particular, the AMD model is capable of accurately predicting the expected surface-layer similarity profiles and power spectra for both velocity and scalar concentration.
LeRC NATR Free-Jet Development
NASA Technical Reports Server (NTRS)
Long-Davis, M.; Cooper, B. A.
1999-01-01
The Nozzle Acoustic Test Rig (NATR) was developed to provide additional test capabilities at Lewis needed to meet HSR program goals. The NATR is a large f ree-jet facility (free-jet diameter = 53 in.) with a design Mach number of 0.3. It is located inside a geodesic dome, adjacent to the existing Powered Lift Facility (PLF). The NATR allows nozzle concepts to be acoustically assessed for far-field (approximately 50 feet) noise characteristics under conditions simulating forward flight. An ejector concept was identified as a means of supplying the required airflow for this free-jet facility. The primary stream is supplied through a circular array of choked nozzles and the resulting low pressure in the constant, annular- area mixing section causes a "pumping" action that entrains the secondary stream. The mixed flow expands through an annular diffuser and into a plenum chamber. Once inside the plenum, the flow passes over a honeycomb/screen combination intended to remove large disturbances and provide uniform flow. The flow accelerates through an elliptical contraction section where it achieves a free-jet Mach number of up to 0.3.
NASA Technical Reports Server (NTRS)
Park, Michael A.; Krakos, Joshua A.; Michal, Todd; Loseille, Adrien; Alonso, Juan J.
2016-01-01
Unstructured grid adaptation is a powerful tool to control discretization error for Computational Fluid Dynamics (CFD). It has enabled key increases in the accuracy, automation, and capacity of some fluid simulation applications. Slotnick et al. provides a number of case studies in the CFD Vision 2030 Study: A Path to Revolutionary Computational Aerosciences to illustrate the current state of CFD capability and capacity. The authors forecast the potential impact of emerging High Performance Computing (HPC) environments forecast in the year 2030 and identify that mesh generation and adaptivity continue to be significant bottlenecks in the CFD work flow. These bottlenecks may persist because very little government investment has been targeted in these areas. To motivate investment, the impacts of improved grid adaptation technologies are identified. The CFD Vision 2030 Study roadmap and anticipated capabilities in complementary disciplines are quoted to provide context for the progress made in grid adaptation in the past fifteen years, current status, and a forecast for the next fifteen years with recommended investments. These investments are specific to mesh adaptation and impact other aspects of the CFD process. Finally, a strategy is identified to diffuse grid adaptation technology into production CFD work flows.
Upgrades at the NASA Langley Research Center National Transonic Facility
NASA Technical Reports Server (NTRS)
Paryz, Roman W.
2012-01-01
Several projects have been completed or are nearing completion at the NASA Langley Research Center (LaRC) National Transonic Facility (NTF). The addition of a Model Flow-Control/Propulsion Simulation test capability to the NTF provides a unique, transonic, high-Reynolds number test capability that is well suited for research in propulsion airframe integration studies, circulation control high-lift concepts, powered lift, and cruise separation flow control. A 1992 vintage Facility Automation System (FAS) that performs the control functions for tunnel pressure, temperature, Mach number, model position, safety interlock and supervisory controls was replaced using current, commercially available components. This FAS upgrade also involved a design study for the replacement of the facility Mach measurement system and the development of a software-based simulation model of NTF processes and control systems. The FAS upgrades were validated by a post upgrade verification wind tunnel test. The data acquisition system (DAS) upgrade project involves the design, purchase, build, integration, installation and verification of a new DAS by replacing several early 1990's vintage computer systems with state of the art hardware/software. This paper provides an update on the progress made in these efforts. See reference 1.
High-temperature zirconia microthruster with an integrated flow sensor
NASA Astrophysics Data System (ADS)
Lekholm, Ville; Persson, Anders; Palmer, Kristoffer; Ericson, Fredric; Thornell, Greger
2013-05-01
This paper describes the design, fabrication and characterization of a ceramic, heated cold-gas microthruster device made with silicon tools and high temperature co-fired ceramic processing. The device contains two opposing thrusters, each with an integrated calorimetric propellant flow sensor and a heater in the stagnation chamber of the nozzle. The exhaust from a thruster was photographed using schlieren imaging to study its behavior and search for leaks. The heater elements were tested under a cyclic thermal load and to the maximum power before failure. The nozzle heater was shown to improve the efficiency of the thruster by 6.9%, from a specific impulse of 66 to 71 s, as calculated from a decrease of the flow rate through the nozzle of 13%, from 44.9 to 39.2 sccm. The sensitivity of the integrated flow sensor was measured to 0.15 mΩ sccm-1 in the region of 0-15 sccm and to 0.04 mΩ sccm-1 above 20 sccm, with a zero-flow sensitivity of 0.27 mΩ sccm-1. The choice of yttria-stabilized zirconia as a material for the devices makes them robust and capable of surviving temperatures locally exceeding 1000 °C.
On the Conditioning of Machine-Learning-Assisted Turbulence Modeling
NASA Astrophysics Data System (ADS)
Wu, Jinlong; Sun, Rui; Wang, Qiqi; Xiao, Heng
2017-11-01
Recently, several researchers have demonstrated that machine learning techniques can be used to improve the RANS modeled Reynolds stress by training on available database of high fidelity simulations. However, obtaining improved mean velocity field remains an unsolved challenge, restricting the predictive capability of current machine-learning-assisted turbulence modeling approaches. In this work we define a condition number to evaluate the model conditioning of data-driven turbulence modeling approaches, and propose a stability-oriented machine learning framework to model Reynolds stress. Two canonical flows, the flow in a square duct and the flow over periodic hills, are investigated to demonstrate the predictive capability of the proposed framework. The satisfactory prediction performance of mean velocity field for both flows demonstrates the predictive capability of the proposed framework for machine-learning-assisted turbulence modeling. With showing the capability of improving the prediction of mean flow field, the proposed stability-oriented machine learning framework bridges the gap between the existing machine-learning-assisted turbulence modeling approaches and the demand of predictive capability of turbulence models in real applications.
Su, Hongsheng
2017-12-18
Distributed power grids generally contain multiple diverse types of distributed generators (DGs). Traditional particle swarm optimization (PSO) and simulated annealing PSO (SA-PSO) algorithms have some deficiencies in site selection and capacity determination of DGs, such as slow convergence speed and easily falling into local trap. In this paper, an improved SA-PSO (ISA-PSO) algorithm is proposed by introducing crossover and mutation operators of genetic algorithm (GA) into SA-PSO, so that the capabilities of the algorithm are well embodied in global searching and local exploration. In addition, diverse types of DGs are made equivalent to four types of nodes in flow calculation by the backward or forward sweep method, and reactive power sharing principles and allocation theory are applied to determine initial reactive power value and execute subsequent correction, thus providing the algorithm a better start to speed up the convergence. Finally, a mathematical model of the minimum economic cost is established for the siting and sizing of DGs under the location and capacity uncertainties of each single DG. Its objective function considers investment and operation cost of DGs, grid loss cost, annual purchase electricity cost, and environmental pollution cost, and the constraints include power flow, bus voltage, conductor current, and DG capacity. Through applications in an IEEE33-node distributed system, it is found that the proposed method can achieve desirable economic efficiency and safer voltage level relative to traditional PSO and SA-PSO algorithms, and is a more effective planning method for the siting and sizing of DGs in distributed power grids.
Development of a low-cost multiple diode PIV laser for high-speed flow visualization
NASA Astrophysics Data System (ADS)
Bhakta, Raj; Hargather, Michael
2017-11-01
Particle imaging velocimetry (PIV) is an optical visualization technique that typically incorporates a single high-powered laser to illuminate seeded particles in a fluid flow. Standard PIV lasers are extremely costly and have low frequencies that severely limit its capability in high speed, time-resolved imaging. The development of a multiple diode laser system consisting of continuous lasers allows for flexible high-speed imaging with a wider range of test parameters. The developed laser system was fabricated with off-the-shelf parts for approximately 500. A series of experimental tests were conducted to compare the laser apparatus to a standard Nd:YAG double-pulsed PIV laser. Steady and unsteady flows were processed to compare the two systems and validate the accuracy of the multiple laser design. PIV results indicate good correlation between the two laser systems and verifies the construction of a precise laser instrument. The key technical obstacle to this approach was laser calibration and positioning which will be discussed. HDTRA1-14-1-0070.
Propellant Feed Subsystem for a 26 kW flight arcjet propulsion system
NASA Astrophysics Data System (ADS)
Vaughan, C. E.; Morris, J. P.
1993-06-01
The USAF arcjet ATTD program demanded the development of a low-cost ammonia Propellant Feed Subsystem (PFS). A flow rate of 240 +/- 5 mg/sec during a total of ten 15-min ammonia outflows was required for the flight mission. The precision of the flow tolerance required a departure from the design of previous ammonia propellant feed systems. Since a propellant management device was not used, thermocapillary forces were explored as a means to limit outflow of liquid phase ammonia. A high energy density feedline heater with an internal wick was developed to guarantee that only gas phase propellant would reach the arcjet. A digital control algorithm was developed to implement bang-bang control of mass flow rate metered by a sonic venturi. Development tests of this system have been completed. The system is capable of continuous gas phase outflows regardless of orientation. Integrated tests with the arcjet and power conditioning unit have also been successfully completed.
Kim, Byoungsu; Takechi, Kensuke; Ma, Sichao; Verma, Sumit; Fu, Shiqi; Desai, Amit; Pawate, Ashtamurthy S; Mizuno, Fuminori; Kenis, Paul J A
2017-09-22
A primary Li-air battery has been developed with a flowing Li-ion free ionic liquid as the recyclable electrolyte, boosting power capability by promoting superoxide diffusion and enhancing discharge capacity through separately stored discharge products. Experimental and computational tools are used to analyze the cathode properties, leading to a set of parameters that improve the discharge current density of the non-aqueous Li-air flow battery. The structure and configuration of the cathode gas diffusion layers (GDLs) are systematically modified by using different levels of hot pressing and the presence or absence of a microporous layer (MPL). These experiments reveal that the use of thinner but denser MPLs is key for performance optimization; indeed, this leads to an improvement in discharge current density. Also, computational results indicate that the extent of electrolyte immersion and porosity of the cathode can be optimized to achieve higher current density. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Qualitative CFD for Rapid Learning in Industrial and Academic Applications
NASA Astrophysics Data System (ADS)
Variano, Evan
2010-11-01
We present a set of tools that allow CFD to be used at an early stage in the design process. Users can rapidly explore the qualitative aspects of fluid flow using real-time simulations that react immediately to design changes. This can guide the design process by fostering an intuitive understanding of fluid dynamics at the prototyping stage. We use an extremely stable Navier-Stokes solver that is available commercially (and free to academic users) plus a custom user interface. The code is designed for the animation and gaming industry, and we exploit the powerful graphical display capabilities to develop a unique human-machine interface. This interface allows the user to efficiently explore the flow in 3D + real time, fostering an intuitive understanding of steady and unsteady flow patterns. There are obvious extensions to use in an academic setting. The trade-offs between accuracy and speed will be discussed in the context of CFD's role in design and education.
Transitioning of power flow in beam models with bends
NASA Technical Reports Server (NTRS)
Hambric, Stephen A.
1990-01-01
The propagation of power flow through a dynamically loaded beam model with 90 degree bends is investigated using NASTRAN and McPOW. The transitioning of power flow types (axial, torsional, and flexural) is observed throughout the structure. To get accurate calculations of the torsional response of beams using NASTRAN, torsional inertia effects had to be added to the mass matrix calculation section of the program. Also, mass effects were included in the calculation of BAR forces to improve the continuity of power flow between elements. The importance of including all types of power flow in an analysis, rather than only flexural power, is indicated by the example. Trying to interpret power flow results that only consider flexural components in even a moderately complex problem will result in incorrect conclusions concerning the total power flow field.
Parametric and experimental analysis using a power flow approach
NASA Technical Reports Server (NTRS)
Cuschieri, J. M.
1990-01-01
A structural power flow approach for the analysis of structure-borne transmission of vibrations is used to analyze the influence of structural parameters on transmitted power. The parametric analysis is also performed using the Statistical Energy Analysis approach and the results are compared with those obtained using the power flow approach. The advantages of structural power flow analysis are demonstrated by comparing the type of results that are obtained by the two analytical methods. Also, to demonstrate that the power flow results represent a direct physical parameter that can be measured on a typical structure, an experimental study of structural power flow is presented. This experimental study presents results for an L shaped beam for which an available solution was already obtained. Various methods to measure vibrational power flow are compared to study their advantages and disadvantages.
Index-based reactive power compensation scheme for voltage regulation
NASA Astrophysics Data System (ADS)
Dike, Damian Obioma
2008-10-01
Increasing demand for electrical power arising from deregulation and the restrictions posed to the construction of new transmission lines by environment, socioeconomic, and political issues had led to higher grid loading. Consequently, voltage instability has become a major concern, and reactive power support is vital to enhance transmission grid performance. Improved reactive power support to distressed grid is possible through the application of relatively unfamiliar emerging technologies of "Flexible AC Transmission Systems (FACTS)" devices and "Distributed Energy Resources (DERS)." In addition to these infrastructure issues, a lack of situational awareness by system operators can cause major power outages as evidenced by the August 14, 2003 widespread North American blackout. This and many other recent major outages have highlighted the inadequacies of existing power system indexes. In this work, a novel "Index-based reactive compensation scheme" appropriate for both on-line and off-line computation of grid status has been developed. A new voltage stability index (Ls-index) suitable for long transmission lines was developed, simulated, and compared to the existing two-machine modeled L-index. This showed the effect of long distance power wheeling amongst regional transmission organizations. The dissertation further provided models for index modulated voltage source converters (VSC) and index-based load flow analysis of both FACTS and microgrid interconnected power systems using the Newton-Raphson's load flow model incorporated with multi-FACTS devices. The developed package has been made user-friendly through the embodiment of interactive graphical user interface and implemented on the IEEE 14, 30, and 300 bus systems. The results showed reactive compensation has system wide-effect, provided readily accessible system status indicators, ensured seamless DERs interconnection through new islanding modes and enhanced VSC utilization. These outcomes may contribute to optimal utilization of compensation devices and available transfer capability as well as reduce system outages through better regulation of power operating voltages.
A numerical investigation of a thermodielectric power generation system
NASA Astrophysics Data System (ADS)
Sklar, Akiva A.
The performance of a novel micro-thermodielectric power generation system was investigated in order to determine if thermodielectric power generation can be practically employed and if its performance can compete with current portable power generation technologies. Thermodielectric power generation is a direct energy conversion technology that converts heat directly into high voltage direct current. It requires dielectric (i.e., capacitive) materials whose charge storing capabilities are a function of temperature. This property can be exploited by heating these materials after they are charged; as their temperature increases, their charge storage capability decreases, forcing them to eject a portion of their surface charge. This ejected charge can then be supplied to an appropriate electronic storage device. There are several advantages associated with thermodielectric energy conversion; first, it requires heat addition at relatively low conventional power generation temperatures, i.e., less than 600 °K, and second, devices that utilize it have the potential for excellent power density and device reliability. The predominant disadvantage of using this power generation technique is that the device must operate in an unsteady manner; this can lead to substantial heat transfer losses that limit the device's thermal efficiency. The studied power generation system was designed so that the power generating components of the system (i.e., the thermodielectric materials) are integrated within a micro-scale heat exchange apparatus designed specifically to provide the thermodielectric materials with the unsteady heating and cooling necessary for efficient power generation. This apparatus is designed to utilize a liquid as a working fluid in order to maximize its heat transfer capabilities, minimize the size of the heat exchanger, and maximize the power density of the power generation system. The thermodielectric materials are operated through a power generation cycle that consists of four processes; the first process is a charging process, during which an electric field is applied to a thermodielectric material, causing it to acquire electrical charge on its surface (this process is analogous to the isentropic compression process of a Brayton cycle). The second process is a heating process in which the temperature of the dielectric material is increased via heat transfer from an external source. During this process, the thermodielectric material is forced to eject a portion of its surface charge because its charge storing capability decreases as the temperature increases; the ejected charge is intended for capture by external circuitry connected to the thermodielectric material, where it can be routed to an electrochemical storage device or an electromechanical device requiring high voltage direct current. The third process is a discharging process, during which the applied electric field is reduced to its initial strength (analogous to the isentropic expansion process of a Brayton cycle). The final process is a cooling process in which the temperature of the dielectric material is decreased via heat transfer from an external source, returning it to its initial temperature. Previously, predicting the performance of a thermodielectric power generator was hindered by a poor understanding of the material's thermodynamic properties and the effect unsteady heat transfer losses have on system performance. In order to improve predictive capabilities in this study, a thermodielectric equation of state was developed that relates the strength of the applied electric field, the amount of surface charge stored by the thermodielectric material, and its temperature. This state equation was then used to derive expressions for the material's thermodynamic states (internal energy, entropy), which were subsequently used to determine the optimum material properties for power generation. Next, a numerical simulation code was developed to determine the heat transfer capabilities of a micro-scale parallel plate heat recuperator (MPPHR), a device designed specifically to (a) provide the unsteady heating and cooling necessary for thermodielectric power generation and (b) minimize the unsteady heat transfer losses of the system. The simulation code was used to find the optimum heat transfer and heat recuperation regimes of the MPPHR. The previously derived thermodynamic equations that describe the behavior of the thermodielectric materials were then incorporated into the model for the walls of the parallel plate channel in the numerical simulation code, creating a tool capable of determining the thermodynamic performance of an MTDPG, in terms of the thermal efficiency, percent Carnot efficiency, and energy/power density. A detailed parameterization of the MTDPG with the simulation code yielded the critical non-dimensional numbers that determine the relationship between the heat exchange/recuperation abilities of the flow and the power generation capabilities of the thermodielectric materials. These relationships were subsequently used to optimize the performance of an MTDPG with an operating temperature range of 300--500 °K. The optimization predicted that the MTDPG could provide a thermal efficiency of 29.7 percent with the potential to reach 34 percent. These thermal efficiencies correspond to 74.2 and 85 percent of the Carnot efficiency, respectively. The power density of this MTDPG depends on the operating frequency and can exceed 1,000,000 W/m3.
Instrument development and field application of the in situ pH Calibrator at the Ocean Observatory
NASA Astrophysics Data System (ADS)
Tan, C.; Ding, K.; Seyfried, W. E.
2012-12-01
A novel, self-calibrating instrument for in-situ measurement of pH in deep sea environments up to 4000 m has recently been developed. The device utilizes a compact fluid delivery system to perform measurement and two-point calibration of the solid state pH sensor array (Ir|IrOx| Ag|AgCl), which is sealed in a flow cell to enhance response time. The fluid delivery system is composed of a metering pump and valves, which periodically deliver seawater samples into the flow cell to perform measurements. Similarly, pH buffer solutions can be delivered into the flow cell to calibrate the electrodes under operational conditions. Sensor signals are acquired and processed by a high resolution (0.25 mV) datalogger circuit with a size of 114 mm×31 mm×25 mm. Eight input channels are available: two high impedance sensor input channels, two low impedance sensor input channel, two thermocouple input channels and two thermistor input channels. These eight channels provide adequate measurement flexibility to enhance applications in deep sea environments. The two high impedance channels of the datalogger are especially designed with the input impedance of 1016 Ω for YSZ (yittria-stabilized zirconia) ceramic electrodes characterized by the extremely low input bias current and high resistance. Field tests have been performed in 2008 by ROV at the depth up to 3200 m. Using the continuous power supply and TCP/IP network capability of the Monterey Accelerated Research System (MARS) ocean observatory, the so-called "pH Calibrator" has the capability of long term operation up to six months. In the observatory mode, the electronics are configured with DC-DC power converter modules and Ethernet to serial module to gain access to the science port of seafloor junction box. The pH Calibrator will be deployed at the ocean observatory in October and the in situ data will be on line on the internet. The pH Calibrator presents real time pH data at high pressures and variable temperatures, while the in situ calibration capability enhances the accuracy of electrochemical measurements of seawater pH, fulfilling the need for long term objectives for marine studies.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-14
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. P-13346-001] Free Flow...: February 18, 2011. d. Submitted By: Free Flow Power Corporation (Free Flow Power), on behalf of its... Officer, Free Flow Power Corporation, 239 Causeway Street, Boston, MA 02114-2130; or at (978) 283-2822. i...
A Low-cost data-logging platform for long-term field sensor deployment in caves
NASA Astrophysics Data System (ADS)
Cruz, M. A.; Myre, J. M.; Covington, M. D.
2014-12-01
Active karst systems are notoriously inhospitable environments for humans and equipment. Caves require equipment to cope with high humidity, high velocity flows, submersion, sediment loads, and harassment from local fauna. Equipment taken into caves is often considered "consumable" due to the extreme nature of cave environments and the difficulty of transport. Further, because many interesting monitoring locations within caves can be considered remote, it is ideal for electronic monitoring platforms to require minimal maintenance of parts and power supplies. To partially address the challenge of scientifically monitoring such environments, we have developed an arduino based platform for environmental monitoring of cave systems. The arduino is a general purpose open source microcontroller that is easily programmed with only a basic knowledge of the C programming language. The arduino is capable of controlling digital and analog electronics in a modular fashion. Using this capability, we have created a platform for monitoring CO2 levels in cave systems that costs one-tenth of a comparable commercial system while using a fraction of the power. The modular nature of the arduino system allows the incorporation of additional environmental sensors in the future.
Experimental investigation of ice slurry flow pressure drop in horizontal tubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grozdek, Marino; Khodabandeh, Rahmatollah; Lundqvist, Per
2009-01-15
Pressure drop behaviour of ice slurry based on ethanol-water mixture in circular horizontal tubes has been experimentally investigated. The secondary fluid was prepared by mixing ethyl alcohol and water to obtain initial alcohol concentration of 10.3% (initial freezing temperature -4.4 C). The pressure drop tests were conducted to cover laminar and slightly turbulent flow with ice mass fraction varying from 0% to 30% depending on test conditions. Results from flow tests reveal much higher pressure drop for higher ice concentrations and higher velocities in comparison to the single phase flow. However for ice concentrations of 15% and higher, certain velocitymore » exists at which ice slurry pressure drop is same or even lower than for single phase flow. It seems that higher ice concentration delay flow pattern transition moment (from laminar to turbulent) toward higher velocities. In addition experimental results for pressure drop were compared to the analytical results, based on Poiseulle and Buckingham-Reiner models for laminar flow, Blasius, Darby and Melson, Dodge and Metzner, Steffe and Tomita for turbulent region and general correlation of Kitanovski which is valid for both flow regimes. For laminar flow and low buoyancy numbers Buckingham-Reiner method gives good agreement with experimental results while for turbulent flow best fit is provided with Dodge-Metzner and Tomita methods. Furthermore, for transport purposes it has been shown that ice mass fraction of 20% offers best ratio of ice slurry transport capability and required pumping power. (author)« less
NASA Capabilities That Could Impact Terrestrial Smart Grids of the Future
NASA Technical Reports Server (NTRS)
Beach, Raymond F.
2015-01-01
Incremental steps to steadily build, test, refine, and qualify capabilities that lead to affordable flight elements and a deep space capability. Potential Deep Space Vehicle Power system characteristics: power 10 kilowatts average; two independent power channels with multi-level cross-strapping; solar array power 24 plus kilowatts; multi-junction arrays; lithium Ion battery storage 200 plus ampere-hours; sized for deep space or low lunar orbit operation; distribution120 volts secondary (SAE AS 5698); 2 kilowatt power transfer between vehicles.
Parametric and experimental analysis using a power flow approach
NASA Technical Reports Server (NTRS)
Cuschieri, J. M.
1988-01-01
Having defined and developed a structural power flow approach for the analysis of structure-borne transmission of structural vibrations, the technique is used to perform an analysis of the influence of structural parameters on the transmitted energy. As a base for comparison, the parametric analysis is first performed using a Statistical Energy Analysis approach and the results compared with those obtained using the power flow approach. The advantages of using structural power flow are thus demonstrated by comparing the type of results obtained by the two methods. Additionally, to demonstrate the advantages of using the power flow method and to show that the power flow results represent a direct physical parameter that can be measured on a typical structure, an experimental investigation of structural power flow is also presented. Results are presented for an L-shaped beam for which an analytical solution has already been obtained. Furthermore, the various methods available to measure vibrational power flow are compared to investigate the advantages and disadvantages of each method.
A NEW CONCEPT FOR HIGH POWER RF COUPLING BETWEEN WAVEGUIDES AND RESONANT RF CAVITIES
Xu, Chen; Ben-Zvi, Ilan; Wang, Haipeng; ...
2017-01-01
Microwave engineering of high average-power (hundreds of kilowatts) devices often involves a transition from a waveguide to a device, typically a resonant cavity. This is a basic operation, which finds use in various application areas of significance to science and industry. At relatively low frequencies, L-band and below, it is convenient, sometimes essential, to couple the power between the waveguide and the cavity through a coaxial antenna, forming a power coupler. Power flow to the cavity in the fundamental mode leads to a Fundamental Power Coupler (FPC). High-order mode power generated in the cavity by a particle beam leads tomore » a high-order mode power damper. Coupling a cryogenic device, such as a superconducting cavity to a room temperature power source (or damp) leads to additional constraints and challenges. We propose a new approach to this problem, wherein the coax line element is operated in a TE11 mode rather than the conventional TEM mode. We will show that this method leads to a significant increase in the power handling capability of the coupler as well as a few other advantages. As a result, we describe the mode converter from the waveguide to the TE11 coax line, outline the characteristics and performance limits of the coupler and provide a detailed worked out example in the challenging area of coupling to a superconducting accelerator cavity.« less
A NEW CONCEPT FOR HIGH POWER RF COUPLING BETWEEN WAVEGUIDES AND RESONANT RF CAVITIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Chen; Ben-Zvi, Ilan; Wang, Haipeng
Microwave engineering of high average-power (hundreds of kilowatts) devices often involves a transition from a waveguide to a device, typically a resonant cavity. This is a basic operation, which finds use in various application areas of significance to science and industry. At relatively low frequencies, L-band and below, it is convenient, sometimes essential, to couple the power between the waveguide and the cavity through a coaxial antenna, forming a power coupler. Power flow to the cavity in the fundamental mode leads to a Fundamental Power Coupler (FPC). High-order mode power generated in the cavity by a particle beam leads tomore » a high-order mode power damper. Coupling a cryogenic device, such as a superconducting cavity to a room temperature power source (or damp) leads to additional constraints and challenges. We propose a new approach to this problem, wherein the coax line element is operated in a TE11 mode rather than the conventional TEM mode. We will show that this method leads to a significant increase in the power handling capability of the coupler as well as a few other advantages. As a result, we describe the mode converter from the waveguide to the TE11 coax line, outline the characteristics and performance limits of the coupler and provide a detailed worked out example in the challenging area of coupling to a superconducting accelerator cavity.« less
Potential for a significant deep basin geothermal system in Tintic Valley, Utah
NASA Astrophysics Data System (ADS)
Hardwick, C.; Kirby, S.
2014-12-01
The combination of regionally high heat flow, deep basins, and permeable reservoir rocks in the eastern Great Basin may yield substantial new geothermal resources. We explore a deep sedimentary basin geothermal prospect beneath Tintic Valley in central Utah using new 2D and 3D models coupled with existing estimates of heat flow, geothermometry, and shallow hydrologic data. Tintic Valley is a sediment-filled basin bounded to the east and west by bedrock mountain ranges where heat-flow values vary from 85 to over 240 mW/m2. Based on modeling of new and existing gravity data, a prominent 30 mGal low indicates basin fill thickness may exceed 2 km. The insulating effect of relatively low thermal conductivity basin fill in Tintic Valley, combined with typical Great Basin heat flow, predict temperatures greater than 150 °C at 3 km depth. The potential reservoir beneath the basin fill is comprised of Paleozoic carbonate and clastic rocks. The hydrology of the Tintic Valley is characterized by a shallow, cool groundwater system that recharges along the upper reaches of the basin and discharges along the valley axis and to a series of wells. The east mountain block is warm and dry, with groundwater levels just above the basin floor and temperatures >50 °C at depth. The west mountain block contains a shallow, cool meteoric groundwater system. Fluid temperatures over 50 °C are sufficient for direct-use applications, such as greenhouses and aquaculture, while temperatures exceeding 140°C are suitable for binary geothermal power plants. The geologic setting and regionally high heat flow in Tintic Valley suggest a geothermal resource capable of supporting direct-use geothermal applications and binary power production could be present.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-25
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 12817-002, Project No. 14083-000] Free Flow Power Corporation, Northland Power Mississippi River LLC; Notice Announcing Filing... priority is as follows: 1. Free Flow Power Corporation; Project No. 12817-002. 2. Northland Power...
Readiness of the ATLAS Trigger and Data Acquisition system for the first LHC beams
NASA Astrophysics Data System (ADS)
Vandelli, W.; Atlas Tdaq Collaboration
2009-12-01
The ATLAS Trigger and Data Acquisition (TDAQ) system is based on O(2k) processing nodes, interconnected by a multi-layer Gigabit network, and consists of a combination of custom electronics and commercial products. In its final configuration, O(20k) applications will provide the needed capabilities in terms of event selection, data flow, local storage and data monitoring. In preparation for the first LHC beams, many TDAQ sub-systems already reached the final configuration and roughly one third of the final processing power has been deployed. Therefore, the current system allows for a sensible evaluation of the performance and scaling properties. In this paper we introduce the ATLAS TDAQ system requirements and architecture and we discuss the status of software and hardware component. We moreover present the results of performance measurements validating the system design and providing a figure for the ATLAS data acquisition capabilities in the initial data taking period.
Physics and potentials of fissioning plasmas for space power and propulsion
NASA Technical Reports Server (NTRS)
Thom, K.; Schwenk, F. C.; Schneider, R. T.
1976-01-01
Fissioning uranium plasmas are the nuclear fuel in conceptual high-temperature gaseous-core reactors for advanced rocket propulsion in space. A gaseous-core nuclear rocket would be a thermal reactor in which an enriched uranium plasma at about 10,000 K is confined in a reflector-moderator cavity where it is nuclear critical and transfers its fission power to a confining propellant flow for the production of thrust at a specific impulse up to 5000 sec. With a thrust-to-engine weight ratio approaching unity, the gaseous-core nuclear rocket could provide for propulsion capabilities needed for manned missions to the nearby planets and for economical cislunar ferry services. Fueled with enriched uranium hexafluoride and operated at temperatures lower than needed for propulsion, the gaseous-core reactor scheme also offers significant benefits in applications for space and terrestrial power. They include high-efficiency power generation at low specific mass, the burnup of certain fission products and actinides, the breeding of U-233 from thorium with short doubling times, and improved convenience of fuel handling and processing in the gaseous phase.
The convertible engine: A dual-mode propulsion system
NASA Technical Reports Server (NTRS)
Mcardle, Jack G.
1988-01-01
A variable inlet guide vane (VIGV) convertible engine that could be used to power future high-speed rotorcraft was tested on an outdoor stand. The engine ran stably and smoothly in the turbofan, turboshaft, and dual (combined fan and shaft) power modes. In the turbofan mode with the VIGV open, fuel consumption was comparable to that of a conventional turbofan engine. In the turboshaft mode with the VIGV closed, fuel consumption was higher than that of present turboshaft engines because power was wasted in churning fan-tip air flow. In dynamic performance tests with a specially built digital engine control and using a waterbrake dynamometer for shaft load, the engine responded effectively to large steps in thrust command and shaft torque. Previous mission analyses of a conceptual X-wing rotorcraft capable of 400-knot cruise speed were revised to account for more fan-tip churning power loss that was originally estimated. The calculations confirm that using convertible engines rather than separate life and cruise engines would result in a smaller, lighter craft with lower fuel use and direct operating cost.
Solar updraft power generator with radial and curved vanes
NASA Astrophysics Data System (ADS)
Hafizh, Hadyan; Hamsan, Raziff; Zamri, Aidil Azlan Ahmad; Keprawi, Mohamad Fairuz Mohamad; Shirato, Hiromichi
2018-02-01
Solar radiation is the largest source of energy available on earth and the solar updraft power generator (SUPG) is a renewable energy facility capable of harnessing its abundant power. Unlike the conventional wind turbines that harness natural wind in the atmosphere and often encounter with the intermittent issue or even complete cut-off from airflow, the SUPG creates artificial wind as a result of solar-induced convective flows. However, the SUPG has an inherent low total efficiency due to the conversion of thermal energy into pressure energy. Acknowledging the low efficiency and considering its potential as a renewable energy facility, the current work aims to increase the total efficiency by installing a series of guide walls inside the collector. Two types of guide walls were used i.e. radial and curved vanes. The result with curved vanes showed that the updraft velocity is higher compare to those without vanes. About 18% and 64% improvement of updraft velocity and mechanical power were attained respectively. Furthermore, it was observed that the role of radial vanes configuration was more to produce a smooth updraft velocity profile rather than increasing the total efficiency.
A dark jet dominates the power output of the stellar black hole Cygnus X-1.
Gallo, Elena; Fender, Rob; Kaiser, Christian; Russell, David; Morganti, Raffaella; Oosterloo, Tom; Heinz, Sebastian
2005-08-11
Black holes undergoing accretion are thought to emit the bulk of their power in the X-ray band by releasing the gravitational potential energy of the infalling matter. At the same time, they are capable of producing highly collimated jets of energy and particles flowing out of the system with relativistic velocities. Here we show that the 10-solar-mass (10M(o)) black hole in the X-ray binary Cygnus X-1 (refs 3-5) is surrounded by a large-scale (approximately 5 pc in diameter) ring-like structure that appears to be inflated by the inner radio jet. We estimate that in order to sustain the observed emission of the ring, the jet of Cygnus X-1 has to carry a kinetic power that can be as high as the bolometric X-ray luminosity of the binary system. This result may imply that low-luminosity stellar-mass black holes as a whole dissipate the bulk of the liberated accretion power in the form of 'dark', radiatively inefficient relativistic outflows, rather than locally in the X-ray-emitting inflow.
High Power Light Gas Helicon Plasma Source For VASMIR
NASA Technical Reports Server (NTRS)
Squire, J. P.; Chang-Diaz, F. R.; Glover, T. W.; Jacobson, V. T.; McCaskill, G. E.; Winter, D. S.; Baity, F. W.; Carter, M. D.; Goulding, R. H.
2004-01-01
The VASIMR space propulsion development effort relies on a high power (greater than 10kW) helicon source to produce a dense flowing plasma (H, D and He) target for ion cyclotron resonance (ICR) acceleration of the ions. Subsequent expansion in an expanding magnetic field (magnetic nozzle) converts ion lunetic energy to directed momentum. This plasma source must have critical features to enable an effective propulsion device. First, it must ionize most of the input neutral flux of gas, thus producing a plasma stream with a high degree of ionization for application of ICR power. This avoids propellant waste and potential power losses due to charge exchange. Next, the plasma stream must flow into a region of high magnetic field (approximately 0.5 T) for efficient ICR acceleration. Third, the ratio of input power to plasma flux must be low, providing an energy per ion-electron pair approaching 100 eV. Lastly, the source must be robust and capable of very long life-times (years). In our helicon experiment (VX-10) we have measured a ratio of input gas to plasma flux near 100%. The plasma flows from the helicon region (B approximately 0.1 T) into a region with a peak magnetic field of 0.8 T. The energy input per ion-electron pair has been measured at 300 plus or minus 100 eV. Recent results at Oak Ridge National Laboratory (ORNL) show an enhanced efficiency mode of operation with a high power density, over 5 kW in a 5 cm diameter tube. Our helicon is presently 9 cm in diameter and operates up to 3.5 kW of input power. An upgrade to a power level of 10 kW is underway. Much of our recent work has been with a Boswell double-saddle antenna design. We are also converting the antenna design to a helical type. With these modifications, we anticipate an improvement in the ionization efficiency. This paper presents the results from scaling the helicon in the VX-10 device from 3.5 to 10 kW. We also compare the operation with a double-saddle to a helical antenna design. Finally, we discuss modeling of these configurations using ORNL's EMIR code.
NASA Technical Reports Server (NTRS)
Athavale, M. M.; Ho, Y. H.; Prezekwas, A. J.
2005-01-01
Higher power, high efficiency gas turbine engines require optimization of the seals and secondary flow systems as well as their impact on the powerstream. This work focuses on two aspects: 1. To apply the present day CFD tools (SCISEAL) to different real-life secondary flow applications from different original equipment manufacturers (OEM s) to provide feedback data and 2. Develop a computational methodology for coupled time-accurate simulation of the powerstream and secondary flow with emphasis on the interaction between the disk-cavity and rim seals flows with the powerstream (SCISEAL-MS-TURBO). One OEM simulation was of the Allison Engine Company T-56 turbine drum cavities including conjugate heat transfer with good agreement with data and provided design feedback information. Another was the GE aspirating seal where the 3-D CFD simulations played a major role in analysis and modification of that seal configuration. The second major objective, development of a coupled flow simulation capability was achieved by using two codes MS-TURBO for the powerstream and SCISEAL for the secondary flows with an interface coupling algorithm. The coupled code was tested against data from three differed configurations: 1. bladeless-rotor-stator-cavity turbine test rig, 2. UTRC high pressure turbine test rig, and, 3. the NASA Low-Speed-Air Compressor rig (LSAC) with results and limitations discussed herein.
NASA Astrophysics Data System (ADS)
Varady, M. J.; McLeod, L.; Meacham, J. M.; Degertekin, F. L.; Fedorov, A. G.
2007-09-01
Portable fuel cells are an enabling technology for high efficiency and ultra-high density distributed power generation, which is essential for many terrestrial and aerospace applications. A key element of fuel cell power sources is the fuel processor, which should have the capability to efficiently reform liquid fuels and produce high purity hydrogen that is consumed by the fuel cells. To this end, we are reporting on the development of two novel MEMS hydrogen generators with improved functionality achieved through an innovative process organization and system integration approach that exploits the advantages of transport and catalysis on the micro/nano scale. One fuel processor design utilizes transient, reverse-flow operation of an autothermal MEMS microreactor with an intimately integrated, micromachined ultrasonic fuel atomizer and a Pd/Ag membrane for in situ hydrogen separation from the product stream. The other design features a simpler, more compact planar structure with the atomized fuel ejected directly onto the catalyst layer, which is coupled to an integrated hydrogen selective membrane.
Hyperthermal Environments Simulator for Nuclear Rocket Engine Development
NASA Technical Reports Server (NTRS)
Litchford, Ron J.; Foote, John P.; Clifton, W. B.; Hickman, Robert R.; Wang, Ten-See; Dobson, Christopher C.
2011-01-01
An arc-heater driven hyperthermal convective environments simulator was recently developed and commissioned for long duration hot hydrogen exposure of nuclear thermal rocket materials. This newly established non-nuclear testing capability uses a high-power, multi-gas, wall-stabilized constricted arc-heater to produce hightemperature pressurized hydrogen flows representative of nuclear reactor core environments, excepting radiation effects, and is intended to serve as a low-cost facility for supporting non-nuclear developmental testing of hightemperature fissile fuels and structural materials. The resulting reactor environments simulator represents a valuable addition to the available inventory of non-nuclear test facilities and is uniquely capable of investigating and characterizing candidate fuel/structural materials, improving associated processing/fabrication techniques, and simulating reactor thermal hydraulics. This paper summarizes facility design and engineering development efforts and reports baseline operational characteristics as determined from a series of performance mapping and long duration capability demonstration tests. Potential follow-on developmental strategies are also suggested in view of the technical and policy challenges ahead. Keywords: Nuclear Rocket Engine, Reactor Environments, Non-Nuclear Testing, Fissile Fuel Development.
Energy Systems Test Area (ESTA). Power Systems Test Facilities
NASA Technical Reports Server (NTRS)
Situ, Cindy H.
2010-01-01
This viewgraph presentation provides a detailed description of the Johnson Space Center's Power Systems Facility located in the Energy Systems Test Area (ESTA). Facilities and the resources used to support power and battery systems testing are also shown. The contents include: 1) Power Testing; 2) Power Test Equipment Capabilities Summary; 3) Source/Load; 4) Battery Facilities; 5) Battery Test Equipment Capabilities Summary; 6) Battery Testing; 7) Performance Test Equipment; 8) Battery Test Environments; 9) Battery Abuse Chambers; 10) Battery Abuse Capabilities; and 11) Battery Test Area Resources.
78 FR 33400 - Free Flow Power Corporation; Notice Soliciting Scoping Comments
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-04
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [ Project No. 13346-003] Free Flow Power... Major License. b. Project No.: P-13346-003. c. Date filed: December 3, 2012. d. Applicant: Free Flow Power Corporation (Free Flow Power), on behalf of its subsidiary PayneBridge, LLC. e. Name of Project...
Lazarou, Stavros; Vita, Vasiliki; Ekonomou, Lambros
2018-02-01
The data of this article represent a real electricity distribution network on twenty kilovolts (20 kV) at medium voltage level of the Hellenic electricity distribution system [1]. This network has been chosen as suitable for smart grid analysis. It demonstrates moderate penetration of renewable sources and it has capability in part of time for reverse power flows. It is suitable for studies of load aggregation, storage, demand response. It represents a rural line of fifty-five kilometres (55 km) total length, a typical length for this type. It serves forty-five (45) medium to low voltage transformers and twenty-four (24) connections to photovoltaic plants. The total installed load capacity is twelve mega-volt-ampere (12 MVA), however the maximum observed load is lower. The data are ready to perform load flow simulation on Matpower [2] for the maximum observed load power on the half production for renewables. The simulation results and processed data for creating the source code are also provided on the database available at http://dx.doi.org/10.7910/DVN/1I6MKU.
NASA Astrophysics Data System (ADS)
Wang, Ting; Sheng, Meiping; Ding, Xiaodong; Yan, Xiaowei
2018-03-01
This paper presents analysis on wave propagation and power flow in an acoustic metamaterial plate with lateral local resonance. The metamaterial is designed to have lateral local resonance systems attached to a homogeneous plate. Relevant theoretical analysis, numerical modelling and application prospect are presented. Results show that the metamaterial has two complete band gaps for flexural wave absorption and vibration attenuation. Damping can smooth and lower the metamaterial’s frequency responses in high frequency ranges at the expense of the band gap effect, and as an important factor to calculate the power flow is thoroughly investigated. Moreover, the effective mass density becomes negative and unbounded at specific frequencies. Simultaneously, power flow within band gaps are dramatically blocked from the power flow contour and power flow maps. Results from finite element modelling and power flow analysis reveal the working mechanism of the flexural wave attenuation and power flow blocked within the band gaps, where part of the flexural vibration is absorbed by the vertical resonator and the rest is transformed through four-link-mechanisms to the lateral resonators that oscillate and generate inertial forces indirectly to counterbalance the shear forces induced by the vibrational plate. The power flow is stored in the vertical and lateral local resonance, as well as in the connected plate.
Power flow analysis of two coupled plates with arbitrary characteristics
NASA Technical Reports Server (NTRS)
Cuschieri, J. M.
1990-01-01
In the last progress report (Feb. 1988) some results were presented for a parametric analysis on the vibrational power flow between two coupled plate structures using the mobility power flow approach. The results reported then were for changes in the structural parameters of the two plates, but with the two plates identical in their structural characteristics. Herein, limitation is removed. The vibrational power input and output are evaluated for different values of the structural damping loss factor for the source and receiver plates. In performing this parametric analysis, the source plate characteristics are kept constant. The purpose of this parametric analysis is to determine the most critical parameters that influence the flow of vibrational power from the source plate to the receiver plate. In the case of the structural damping parametric analysis, the influence of changes in the source plate damping is also investigated. The results obtained from the mobility power flow approach are compared to results obtained using a statistical energy analysis (SEA) approach. The significance of the power flow results are discussed together with a discussion and a comparison between the SEA results and the mobility power flow results. Furthermore, the benefits derived from using the mobility power flow approach are examined.
Simultaneous Neutron and X-ray Tomography for Quantitative analysis of Geological Samples
NASA Astrophysics Data System (ADS)
LaManna, J.; Hussey, D. S.; Baltic, E.; Jacobson, D. L.
2016-12-01
Multiphase flow is a critical area of research for shale gas, oil recovery, underground CO2 sequestration, geothermal power, and aquifer management. It is critical to understand the porous structure of the geological formations in addition to the fluid/pore and fluid/fluid interactions. Difficulties for analyzing flow characteristics of rock cores are in obtaining 3D distribution information on the fluid flow and maintaining the cores in a state for other analysis methods. Two powerful non-destructive methods for obtaining 3D structural and compositional information are X-ray and neutron tomography. X-ray tomography produces information on density and structure while neutrons excel at acquiring the liquid phase and produces compositional information. These two methods can offer strong complementary information but are typically conducted at separate times and often at different facilities. This poses issues for obtaining dynamic and stochastic information as the sample will change between analysis modes. To address this, NIST has developed a system that allows for multimodal, simultaneous tomography using thermal neutrons and X-rays by placing a 90 keVp micro-focus X-ray tube 90° to the neutron beam. High pressure core holders that simulate underground conditions have been developed to facilitate simultaneous tomography. These cells allow for the control of confining pressure, axial load, temperature, and fluid flow through the core. This talk will give an overview the simultaneous neutron and x-ray tomography capabilities at NIST, the benefits of multimodal imaging, environmental equipment for geology studies, and several case studies that have been conducted at NIST.
High Power Electric Propulsion Using The VASIMR VX-200: A Flight Technology Prototype
NASA Astrophysics Data System (ADS)
Bering, Edgar, III; Longmier, Benjamin; Glover, Tim; Chang-Diaz, Franklin; Squire, Jared; Brukardt, Michael
2008-11-01
The Variable Specific Impulse Magnetoplasma Rocket (VASIMR) is a high power magnetoplasma rocket, capable of Isp/thrust modulation at constant power. The plasma is produced by a helicon discharge. The bulk of the energy is added by ion cyclotron resonance heating (ICRH.) Axial momentum is obtained by adiabatic expansion of the plasma in a magnetic nozzle. Thrust/specific impulse ratio control in the VASIMR is primarily achieved by the partitioning of the RF power to the helicon and ICRH systems, with the proper adjustment of the propellant flow. Ion dynamics in the exhaust were studied using probes, gridded energy analyzers (RPA's), microwave interferometry and optical techniques. Results are summarize from high power ICRH experiments performed on the VX-100 using argon plasma during 2007, and on the VX-200 using argon plasma during 2008. The VX-100 has demonstrated ICRH antenna efficiency >90% and a total coupling efficiency of ˜75%. The rocket performance parameters inferred by integrating the moments of the ion energy distribution corresponds to a thrust of 2 N at an exhaust velocity of 20 km/s with the VX-100 device. The new VX-200 machine is described.
Power flow controller with a fractionally rated back-to-back converter
Divan, Deepakraj M.; Kandula, Rajendra Prasad; Prasai, Anish
2016-03-08
A power flow controller with a fractionally rated back-to-back (BTB) converter is provided. The power flow controller provide dynamic control of both active and reactive power of a power system. The power flow controller inserts a voltage with controllable magnitude and phase between two AC sources at the same frequency; thereby effecting control of active and reactive power flows between the two AC sources. A transformer may be augmented with a fractionally rated bi-directional Back to Back (BTB) converter. The fractionally rated BTB converter comprises a transformer side converter (TSC), a direct-current (DC) link, and a line side converter (LSC). By controlling the switches of the BTB converter, the effective phase angle between the two AC source voltages may be regulated, and the amplitude of the voltage inserted by the power flow controller may be adjusted with respect to the AC source voltages.
NASA Astrophysics Data System (ADS)
Gendreau, Audrey
Efficient self-organizing virtual clusterheads that supervise data collection based on their wireless connectivity, risk, and overhead costs, are an important element of Wireless Sensor Networks (WSNs). This function is especially critical during deployment when system resources are allocated to a subsequent application. In the presented research, a model used to deploy intrusion detection capability on a Local Area Network (LAN), in the literature, was extended to develop a role-based hierarchical agent deployment algorithm for a WSN. The resulting model took into consideration the monitoring capability, risk, deployment distribution cost, and monitoring cost associated with each node. Changing the original LAN methodology approach to model a cluster-based sensor network depended on the ability to duplicate a specific parameter that represented the monitoring capability. Furthermore, other parameters derived from a LAN can elevate costs and risk of deployment, as well as jeopardize the success of an application on a WSN. A key component of the approach presented in this research was to reduce the costs when established clusterheads in the network were found to be capable of hosting additional detection agents. In addition, another cost savings component of the study addressed the reduction of vulnerabilities associated with deployment of agents to high volume nodes. The effectiveness of the presented method was validated by comparing it against a type of a power-based scheme that used each node's remaining energy as the deployment value. While available energy is directly related to the model used in the presented method, the study deliberately sought out nodes that were identified with having superior monitoring capability, cost less to create and sustain, and are at low-risk of an attack. This work investigated improving the efficiency of an intrusion detection system (IDS) by using the proposed model to deploy monitoring agents after a temperature sensing application had established the network traffic flow to the sink. The same scenario was repeated using a power-based IDS to compare it against the proposed model. To identify a clusterhead's ability to host monitoring agents after the temperature sensing application terminated, the deployed IDS utilized the communication history and other network factors in order to rank the nodes. Similarly, using the node's communication history, the deployed power-based IDS ranked nodes based on their remaining power. For each individual scenario, and after the IDS application was deployed, the temperature sensing application was run for a second time. This time, to monitor the temperature sensing agents as the data flowed towards the sink, the network traffic was rerouted through the new intrusion detection clusterheads. Consequently, if the clusterheads were shared, the re-routing step was not preformed. Experimental results in this research demonstrated the effectiveness of applying a robust deployment metric to improve upon the energy efficiency of a deployed application in a multi-application WSN. It was found that in the scenarios with the intrusion detection application that utilized the proposed model resulted in more remaining energy than in the scenarios that implemented the power-based IDS. The algorithm especially had a positive impact on the small, dense, and more homogeneous networks. This finding was reinforced by the smaller percentage of new clusterheads that was selected. Essentially, the energy cost of the route to the sink was reduced because the network traffic was rerouted through fewer new clusterheads. Additionally, it was found that the intrusion detection topology that used the proposed approach formed smaller and more connected sets of clusterheads than the power-based IDS. As a consequence, this proposed approach essentially achieved the research objective for enhancing energy use in a multi-application WSN.
Adaptive Q–V Scheme for the Voltage Control of a DFIG-Based Wind Power Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jinho; Seok, Jul-Ki; Muljadi, Eduard
Wind generators within a wind power plant (WPP) will produce different amounts of active power because of the wake effect, and therefore, they have different reactive power capabilities. This paper proposes an adaptive reactive power to the voltage (Q-V) scheme for the voltage control of a doubly fed induction generator (DFIG)-based WPP. In the proposed scheme, the WPP controller uses a voltage control mode and sends a voltage error signal to each DFIG. The DFIG controller also employs a voltage control mode utilizing the adaptive Q-V characteristics depending on the reactive power capability such that a DFIG with a largermore » reactive power capability will inject more reactive power to ensure fast voltage recovery. Test results indicate that the proposed scheme can recover the voltage within a short time, even for a grid fault with a small short-circuit ratio, by making use of the available reactive power of a WPP and differentiating the reactive power injection in proportion to the reactive power capability. This will, therefore, help to reduce the additional reactive power and ensure fast voltage recovery.« less
NASA Astrophysics Data System (ADS)
Alemadi, Nasser Ahmed
Deregulation has brought opportunities for increasing efficiency of production and delivery and reduced costs to customers. Deregulation has also bought great challenges to provide the reliability and security customers have come to expect and demand from the electrical delivery system. One of the challenges in the deregulated power system is voltage instability. Voltage instability has become the principal constraint on power system operation for many utilities. Voltage instability is a unique problem because it can produce an uncontrollable, cascading instability that results in blackout for a large region or an entire country. In this work we define a system of advanced analytical methods and tools for secure and efficient operation of the power system in the deregulated environment. The work consists of two modules; (a) contingency selection module and (b) a Security Constrained Optimization module. The contingency selection module to be used for voltage instability is the Voltage Stability Security Assessment and Diagnosis (VSSAD). VSSAD shows that each voltage control area and its reactive reserve basin describe a subsystem or agent that has a unique voltage instability problem. VSSAD identifies each such agent. VS SAD is to assess proximity to voltage instability for each agent and rank voltage instability agents for each contingency simulated. Contingency selection and ranking for each agent is also performed. Diagnosis of where, why, when, and what can be done to cure voltage instability for each equipment outage and transaction change combination that has no load flow solution is also performed. A security constrained optimization module developed solves a minimum control solvability problem. A minimum control solvability problem obtains the reactive reserves through action of voltage control devices that VSSAD determines are needed in each agent to obtain solution of the load flow. VSSAD makes a physically impossible recommendation of adding reactive generation capability to specific generators to allow a load flow solution to be obtained. The minimum control solvability problem can also obtain solution of the load flow without curtailing transactions that shed load and generation as recommended by VSSAD. A minimum control solvability problem will be implemented as a corrective control, that will achieve the above objectives by using minimum control changes. The control includes; (1) voltage setpoint on generator bus voltage terminals; (2) under load tap changer tap positions and switchable shunt capacitors; and (3) active generation at generator buses. The minimum control solvability problem uses the VSSAD recommendation to obtain the feasible stable starting point but completely eliminates the impossible or onerous recommendation made by VSSAD. This thesis reviews the capabilities of Voltage Stability Security Assessment and Diagnosis and how it can be used to implement a contingency selection module for the Open Access System Dispatch (OASYDIS). The OASYDIS will also use the corrective control computed by Security Constrained Dispatch. The corrective control would be computed off line and stored for each contingency that produces voltage instability. The control is triggered and implemented to correct the voltage instability in the agent experiencing voltage instability only after the equipment outage or operating changes predicted to produce voltage instability have occurred. The advantages and the requirements to implement the corrective control are also discussed.
Development Status of the Carbon Dioxide and Moisture Removal Amine Swing-Bed System (CAMRAS)
NASA Technical Reports Server (NTRS)
Papale, William; Nalette Tim; Sweterlitsch, Jeffrey
2009-01-01
Under a cooperative agreement with NASA, Hamilton Sundstrand has successfully designed, fabricated, tested and delivered three, state-of-the-art, solid amine prototype systems capable of continuous CO2 and humidity removal from a closed, habitable atmosphere. Two prototype systems (CAMRAS #1 and #2) incorporated a linear spool valve design for process flow control through the sorbent beds, with the third system (CAMRAS #3) employing a rotary valve assembly that improves system fluid interfaces and regeneration capabilities. The operational performance of CAMRAS #1 and #2 has been validated in a relevant environment, through both simulated human metabolic loads in a closed chamber and through human subject testing in a closed environment. Performance testing at Hamilton Sundstrand on CAMRAS #3, which incorporates a new valve and modified canister design, showed similar CO2 and humidity removal performance as CAMRAS #1 and #2, demonstrating that the system form can be modified within certain bounds with little to no effect in system function or performance. Demonstration of solid amine based CO2 and humidity control is an important milestone in developing this technology for human spaceflight. The systems have low power requirements; with power for air flow and periodic valve actuation and indication the sole requirements. Each system occupies the same space as roughly four shuttle non-regenerative LiOH canisters, but have essentially indefinite CO2 removal endurance provided a regeneration pathway is available. Using the solid amine based systems to control cabin humidity also eliminates the latent heat burden on cabin thermal control systems and the need for gas/liquid phase separation in a low gravity environment, resulting in additional simplification of vehicle environmental control and life support system process requirements.
Two Phase Technology Development Initiatives
NASA Technical Reports Server (NTRS)
Didion, Jeffrey R.
1999-01-01
Three promising thermal technology development initiatives, vapor compression thermal control system, electronics cooling, and electrohydrodynamics applications are outlined herein. These technologies will provide thermal engineers with additional tools to meet the thermal challenges presented by increased power densities and reduced architectural options that will be available in future spacecraft. Goddard Space Flight Center and the University of Maryland are fabricating and testing a 'proto- flight' vapor compression based thermal control system for the Ultra Long Duration Balloon (ULDB) Program. The vapor compression system will be capable of transporting approximately 400 W of heat while providing a temperature lift of 60C. The system is constructed of 'commercial off-the-shelf' hardware that is modified to meet the unique environmental requirements of the ULDB. A demonstration flight is planned for 1999 or early 2000. Goddard Space Flight Center has embarked upon a multi-discipline effort to address a number of design issues regarding spacecraft electronics. The program addressed the high priority design issues concerning the total mass of standard spacecraft electronics enclosures and the impact of design changes on thermal performance. This presentation reviews the pertinent results of the Lightweight Electronics Enclosure Program. Electronics cooling is a growing challenge to thermal engineers due to increasing power densities and spacecraft architecture. The space-flight qualification program and preliminary results of thermal performance tests of copper-water heat pipes are presented. Electrohydrodynamics (EHD) is an emerging technology that uses the secondary forces that result from the application of an electric field to a flowing fluid to enhance heat transfer and manage fluid flow. A brief review of current EHD capabilities regarding heat transfer enhancement of commercial heat exchangers and capillary pumped loops is presented. Goddard Space Flight Center research efforts applying this technique to fluid management and fluid pumping are discussed.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-29
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 13703-002] Free Flow Power.... c. Date filed: November 13, 2013. d. Applicant: Free Flow Power Missouri 2, LLC. e. Name of Project... President of Project Development, Free Flow Power Corporation, 239 Causeway Street, Suite 300, Boston, MA...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-29
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 13704-002] Free Flow Power.... c. Date Filed: November 13, 2013. d. Applicant: Free Flow Power Missouri 2, LLC. e. Name of Project... Feldman, Vice President of Project Development, Free Flow Power Corporation, 239 Causeway Street, Suite...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-29
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 13702-002] Free Flow Power.... c. Date filed: November 13, 2013. d. Applicant: Free Flow Power Missouri 2, LLC. e. Name of Project... President of Project Development, Free Flow Power Corporation, 239 Causeway Street, Suite 300, Boston, MA...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-29
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 13701-002] Free Flow Power.... c. Date filed: November 13, 2013. d. Applicant: Free Flow Power Missouri 2, LLC. e. Name of Project..., Vice President of Project Development, Free Flow Power Corporation, 239 Causeway Street, Suite 300...
Emerging needs for mobile nuclear powerplants
NASA Technical Reports Server (NTRS)
Anderson, J. L.
1972-01-01
Incentives for broadening the present role of civilian nuclear power to include mobile nuclear power plants that are compact, lightweight, and safe are examined. Specifically discussed is the growing importance of: (1) a new international cargo transportation capability, and (2) the capability for development of resources in previously remote regions of the earth including the oceans and the Arctic. This report surveys present and potential systems (vehicles, remote stations, and machines) that would both provide these capabilities and require enough power to justify using mobile nuclear reactor power plants.
Lahar infrasound associated with Volcán Villarrica's 3 March 2015 eruption
NASA Astrophysics Data System (ADS)
Johnson, Jeffrey B.; Palma, Jose L.
2015-08-01
The paroxysmal 2015 eruption of Volcán Villarrica (Chile) produced a 2.5 h long lahar, which descended more than 20 km within the Rio Correntoso/Turbio drainage and destroyed two small bridges. A three-element infrasound array 10 km from the summit, and 4 km from the lahar's closest approach, was used to study the flow's progression. Array processing using cross-correlation lag times and semblance places constraints on the lahar's dynamics, including detection of an initial flow pulse that traveled from 2 to 12 km at an average speed of 38 m/s. Subsequently, the lahar signal evolved to a relatively stationary infrasonic tremor located 10 to 12 km from the vent and adjacent to a topographic notch, through which sound may have preferentially diffracted toward the recording site. This study demonstrates the powerful capabilities of infrasound arrays for lahar study and suggests their potential application for future hazard monitoring.
COMSAC: Computational Methods for Stability and Control. Part 2
NASA Technical Reports Server (NTRS)
Fremaux, C. Michael (Compiler); Hall, Robert M. (Compiler)
2004-01-01
The unprecedented advances being made in computational fluid dynamic (CFD) technology have demonstrated the powerful capabilities of codes in applications to civil and military aircraft. Used in conjunction with wind-tunnel and flight investigations, many codes are now routinely used by designers in diverse applications such as aerodynamic performance predictions and propulsion integration. Typically, these codes are most reliable for attached, steady, and predominantly turbulent flows. As a result of increasing reliability and confidence in CFD, wind-tunnel testing for some new configurations has been substantially reduced in key areas, such as wing trade studies for mission performance guarantees. Interest is now growing in the application of computational methods to other critical design challenges. One of the most important disciplinary elements for civil and military aircraft is prediction of stability and control characteristics. CFD offers the potential for significantly increasing the basic understanding, prediction, and control of flow phenomena associated with requirements for satisfactory aircraft handling characteristics.
High density fuel qualification for a gas turbine engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macleod, J.D.; Orbanski, B.; Hastings, P.R.
1992-01-01
A program for the evaluation of gas turbine engine performance, carried out in the Engine Laboratory of the National Research Council of Canada, is described. Problems under consideration include performance alteration between JP-4 fuel and a high energy density fuel, called strategic military fuel (SMF); performance deterioration during the accelerated endurance test; and emission analysis. The T56 fuel control system is found to be capable of operation on the higher energy density fuel with no detrimental effects regarding control of the engine's normal operating regime. The deterioration of the engine performance during 150-hour endurance tests on SMF was very high,more » which was caused by an increase in turbine nozzle effective flow area and turbine blade untwist. The most significant performance losses during the endurance tests were on corrected output power, fuel flow, specific fuel consumption and compressor and turbine presure ratio. 9 refs.« less
Electrohydrodynamic convective heat transfer in a square duct.
Grassi, Walter; Testi, Daniele
2009-04-01
Laminar to weakly turbulent forced convection in a square duct heated from the bottom is strengthened by ion injection from an array of high-voltage points opposite the heated strip. Both positive and negative ion injection are activated within the working liquid HFE-7100 (C(4)F(9)OCH(3)), with transiting electrical currents on the order of 0.1 mA. Local temperatures on the heated wall are measured by liquid crystal thermography. The tests are conducted in a Reynolds number range from 510 to 12,100. In any case, heat transfer is dramatically augmented, almost independently from the flow rate. The pressure drop increase caused by the electrohydrodynamically induced flow is also measured. A profitable implementation of the technique in the design of heat sinks and heat exchangers is foreseen; possible benefits are pumping power reduction, size reduction, and heat exchange capability augmentation.
An improved heat transfer configuration for a solid-core nuclear thermal rocket engine
NASA Technical Reports Server (NTRS)
Clark, John S.; Walton, James T.; Mcguire, Melissa L.
1992-01-01
Interrupted flow, impingement cooling, and axial power distribution are employed to enhance the heat-transfer configuration of a solid-core nuclear thermal rocket engine. Impingement cooling is introduced to increase the local heat-transfer coefficients between the reactor material and the coolants. Increased fuel loading is used at the inlet end of the reactor to enhance heat-transfer capability where the temperature differences are the greatest. A thermal-hydraulics computer program for an unfueled NERVA reactor core is employed to analyze the proposed configuration with attention given to uniform fuel loading, number of channels through the impingement wafers, fuel-element length, mass-flow rate, and wafer gap. The impingement wafer concept (IWC) is shown to have heat-transfer characteristics that are better than those of the NERVA-derived reactor at 2500 K. The IWC concept is argued to be an effective heat-transfer configuration for solid-core nuclear thermal rocket engines.
Selected Performance Measurements of the F-15 Active Axisymmetric Thrust-vectoring Nozzle
NASA Technical Reports Server (NTRS)
Orme, John S.; Sims, Robert L.
1998-01-01
Flight tests recently completed at the NASA Dryden Flight Research Center evaluated performance of a hydromechanically vectored axisymmetric nozzle onboard the F-15 ACTIVE. A flight-test technique whereby strain gages installed onto engine mounts provided for the direct measurement of thrust and vector forces has proven to be extremely valuable. Flow turning and thrust efficiency, as well as nozzle static pressure distributions were measured and analyzed. This report presents results from testing at an altitude of 30,000 ft and a speed of Mach 0.9. Flow turning and thrust efficiency were found to be significantly different than predicted, and moreover, varied substantially with power setting and pitch vector angle. Results of an in-flight comparison of the direct thrust measurement technique and an engine simulation fell within the expected uncertainty bands. Overall nozzle performance at this flight condition demonstrated the F100-PW-229 thrust-vectoring nozzles to be highly capable and efficient.
De Marco, Tommaso; Ries, Florian; Guermandi, Marco; Guerrieri, Roberto
2012-05-01
Electrical impedance tomography (EIT) is an imaging technology based on impedance measurements. To retrieve meaningful insights from these measurements, EIT relies on detailed knowledge of the underlying electrical properties of the body. This is obtained from numerical models of current flows therein. The nonhomogeneous and anisotropic electric properties of human tissues make accurate modeling and simulation very challenging, leading to a tradeoff between physical accuracy and technical feasibility, which at present severely limits the capabilities of EIT. This work presents a complete algorithmic flow for an accurate EIT modeling environment featuring high anatomical fidelity with a spatial resolution equal to that provided by an MRI and a novel realistic complete electrode model implementation. At the same time, we demonstrate that current graphics processing unit (GPU)-based platforms provide enough computational power that a domain discretized with five million voxels can be numerically modeled in about 30 s.
Selected Performance Measurements of the F-15 ACTIVE Axisymmetric Thrust-Vectoring Nozzle
NASA Technical Reports Server (NTRS)
Orme, John S.; Sims, Robert L.
1999-01-01
Flight tests recently completed at the NASA Dryden Flight Research Center evaluated performance of a hydromechanically vectored axisymmetric nozzle onboard the F-15 ACTIVE. A flight-test technique whereby strain gages installed onto engine mounts provided for the direct measurement of thrust and vector forces has proven to be extremely valuable. Flow turning and thrust efficiency, as well as nozzle static pressure distributions were measured and analyzed. This report presents results from testing at an altitude of 30,000 ft and a speed of Mach 0.9. Flow turning and thrust efficiency were found to be significantly different than predicted, and moreover, varied substantially with power setting and pitch vector angle. Results of an in-flight comparison of the direct thrust measurement technique and an engine simulation fell within the expected uncertainty bands. Overall nozzle performance at this flight condition demonstrated the F100-PW-229 thrust-vectoring nozzles to be highly capable and efficient.
Metal-Free Aqueous Flow Battery with Novel Ultrafiltered Lignin as Electrolyte
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukhopadhyay, Alolika; Hamel, Jonathan; Katahira, Rui
As the number of generation sources from intermittent renewable technologies on the electric grid increases, the need for large-scale energy storage devices is becoming essential to ensure grid stability. Flow batteries offer numerous advantages over conventional sealed batteries for grid storage. In this work, for the first time, we investigated lignin, the second most abundant wood derived biopolymer, as an anolyte for the aqueous flow battery. Lignosulfonate, a water-soluble derivative of lignin, is environmentally benign, low cost and abundant as it is obtained from the byproduct of paper and biofuel manufacturing. The lignosulfonate utilizes the redox chemistry of quinone tomore » store energy and undergoes a reversible redox reaction. Here, we paired lignosulfonate with Br2/Br-, and the full cell runs efficiently with high power density. Also, the large and complex molecular structure of lignin considerably reduces the electrolytic crossover, which ensures very high capacity retention. The flowcell was able to achieve current densities of up to 20 mA/cm2 and charge polarization resistance of 15 ohm cm2. This technology presents a unique opportunity for a low-cost, metal-free flow battery capable of large-scale sustainable energy storage.« less
NASA Astrophysics Data System (ADS)
Majumder, Sambit; Majumder, Abhik; Bhaumik, Swapan
2016-07-01
The present microelectronics market demands devices with high power dissipation capabilities having enhanced cooling per unit area. The drive for miniaturizing the devices to even micro level dimensions is shooting up the applied heat flux on such devices, resulting in complexity in heat transfer and cooling management. In this paper, a method of CPU processor cooling is introduced where active and passive cooling techniques are incorporated simultaneously. A heat sink consisting of fins is designed, where water flows internally through the mini-channel fins and air flows externally. Three dimensional numerical simulations are performed for large set of Reynolds number in laminar region using finite volume method for both developing flows. The dimensions of mini-channel fins are varied for several aspect ratios such as 1, 1.33, 2 and 4. Constant temperature (T) boundary condition is applied at heat sink base. Channel fluid temperature, pressure drop are analyzed to obtain best cooling option in the present study. It has been observed that as the aspect ratio of the channel decreases Nusselt number decreases while pressure drop increases. However, Nusselt number increases with increase in Reynolds number.
Webb, R. Chad; Ma, Yinji; Krishnan, Siddharth; Li, Yuhang; Yoon, Stephen; Guo, Xiaogang; Feng, Xue; Shi, Yan; Seidel, Miles; Cho, Nam Heon; Kurniawan, Jonas; Ahad, James; Sheth, Niral; Kim, Joseph; Taylor VI, James G.; Darlington, Tom; Chang, Ken; Huang, Weizhong; Ayers, Joshua; Gruebele, Alexander; Pielak, Rafal M.; Slepian, Marvin J.; Huang, Yonggang; Gorbach, Alexander M.; Rogers, John A.
2015-01-01
Continuous monitoring of variations in blood flow is vital in assessing the status of microvascular and macrovascular beds for a wide range of clinical and research scenarios. Although a variety of techniques exist, most require complete immobilization of the subject, thereby limiting their utility to hospital or clinical settings. Those that can be rendered in wearable formats suffer from limited accuracy, motion artifacts, and other shortcomings that follow from an inability to achieve intimate, noninvasive mechanical linkage of sensors with the surface of the skin. We introduce an ultrathin, soft, skin-conforming sensor technology that offers advanced capabilities in continuous and precise blood flow mapping. Systematic work establishes a set of experimental procedures and theoretical models for quantitative measurements and guidelines in design and operation. Experimental studies on human subjects, including validation with measurements performed using state-of-the-art clinical techniques, demonstrate sensitive and accurate assessment of both macrovascular and microvascular flow under a range of physiological conditions. Refined operational modes eliminate long-term drifts and reduce power consumption, thereby providing steps toward the use of this technology for continuous monitoring during daily activities. PMID:26601309
NASA Astrophysics Data System (ADS)
Fan, Haifeng
2011-12-01
The distributed renewable energy generation and utilization are constantly growing, and are expected to be integrated with the conventional grid. The growing pressure for innovative solutions will demand power electronics to take an even larger role in future electric energy delivery and management systems, since power electronics are required for the conversion and control of electric energy by most dispersed generation systems Furthermore, power electronics systems can provide additional intelligent energy management, grid stability and power quality capabilities. Medium-voltage isolated dc-dc converter will become one of the key interfaces for grid components with moderate power ratings. To address the demand of medium voltage (MV) and high power capability for future electric energy delivery and management systems, the power electronics community and industry have been reacting in two different ways: developing semiconductor technology or directly connecting devices in series/parallel to reach higher nominal voltages and currents while maintaining conventional converter topologies; and by developing new converter topologies with traditional semiconductor technology, known as multilevel converters or modular converters. The modular approach uses the well-known, mature, and cheaper power semiconductor devices by adopting new converter topologies. The main advantages of the modular approach include: significant improvement in reliability by introducing desired level of redundancy; standardization of components leading to reduction in manufacturing cost and time; power systems can be easily reconfigured to support varying input-output specifications; and possibly higher efficiency and power density of the overall system. Input-series output-parallel (ISOP) modular configuration is a good choice to realize MV to low voltage (LV) conversion for utility application. However, challenges still remain. First of all, for the high-frequency MV utility application, the low switching loss and conduction loss are must-haves for high efficiency, while bidirectional power flow capability is a must for power management requirement. To address the demand, the phase-shift dual-halfbridge (DHB) is proposed as the constituent module of ISOP configuration for MV application. The proposed ISOP DHB converter employs zero-voltage-switching (ZVS) technique combined with LV MOSFETs to achieve low switching and conduction losses under high frequency operation, and therefore high efficiency and high power density, and bidirectional power flow as well. Secondly, a large load range of high efficiency is desired rather than only a specific load point due to the continuous operation and large load variation range of utility application, which is of high importance because of the rising energy cost. This work proposes a novel DHB converter with an adaptive commutation inductor. By utilizing an adaptive inductor as the main energy transfer element, the output power can be controlled by not only the phase shift but also the commutation inductance, which allows the circulating energy to be optimized for different load conditions to maintain ZVS under light load conditions and minimize additional conduction losses under heavy load conditions as well. As a result, the efficiency at both light and heavy load can be significantly improved compared with the conventional DHB converter, and therefore extended high-efficiency range can be achieved. In addition, current stress of switch devices can be reduced. The theoretical analysis is presented and validated by the experimental results on a 50 kHz, 1 kW dc-dc converter module. Thirdly, input-voltage sharing and output-current sharing are critical to assure the advantages of the ISOP modular configuration. To solve this issue, an identically distributed control scheme is proposed in this work. The proposed control scheme, using only one distributed voltage loop to realize both input-voltage and output-current sharing, provides plug-and-play capability, possible high-level fault tolerance, and easy implementation. Another unique advantage of the proposed ISOP DHB converter is the power rating can be easily extended further by directly connecting multiple ISOP DHB converters in input-parallel-outparallel (IPOP) while no additional control is needed. The proposed control scheme is elaborated using the large-signal average model. Further, the stability of the control schemes is analyzed in terms of the constituent modules' topology as well as the configuration, and then an important fact that the stability of control scheme depends on not only the configuration but also the constituent module topology is first revealed in this work. Finally, the simulation and experimental results of an ISOP DHB converter consisting of three modules are presented to verify the proposed control scheme and the high frequency high efficiency operation.
A bio-inspired real-time capable artificial lateral line system for freestream flow measurements.
Abels, C; Qualtieri, A; De Vittorio, M; Megill, W M; Rizzi, F
2016-06-03
To enhance today's artificial flow sensing capabilities in aerial and underwater robotics, future robots could be equipped with a large number of miniaturized sensors distributed over the surface to provide high resolution measurement of the surrounding fluid flow. In this work we show a linear array of closely separated bio-inspired micro-electro-mechanical flow sensors whose sensing mechanism is based on a piezoresistive strain-gauge along a stress-driven cantilever beam, mimicking the biological superficial neuromasts found in the lateral line organ of fishes. Aiming to improve state-of-the-art flow sensing capability in autonomously flying and swimming robots, our artificial lateral line system was designed and developed to feature multi-parameter freestream flow measurements which provide information about (1) local flow velocities as measured by the signal amplitudes from the individual cantilevers as well as (2) propagation velocity, (3) linear forward/backward direction along the cantilever beam orientation and (4) periodicity of pulses or pulse trains determined by cross-correlating sensor signals. A real-time capable cross-correlation procedure was developed which makes it possible to extract freestream flow direction and velocity information from flow fluctuations. The computed flow velocities deviate from a commercial system by 0.09 m s(-1) at 0.5 m s(-1) and 0.15 m s(-1) at 1.0 m s(-1) flow velocity for a sampling rate of 240 Hz and a sensor distance of 38 mm. Although experiments were performed in air, the presented flow sensing system can be applied to underwater vehicles as well, once the sensors are embedded in a waterproof micro-electro-mechanical systems package.
Evaluation of the Lattice-Boltzmann Equation Solver PowerFLOW for Aerodynamic Applications
NASA Technical Reports Server (NTRS)
Lockard, David P.; Luo, Li-Shi; Singer, Bart A.; Bushnell, Dennis M. (Technical Monitor)
2000-01-01
A careful comparison of the performance of a commercially available Lattice-Boltzmann Equation solver (Power-FLOW) was made with a conventional, block-structured computational fluid-dynamics code (CFL3D) for the flow over a two-dimensional NACA-0012 airfoil. The results suggest that the version of PowerFLOW used in the investigation produced solutions with large errors in the computed flow field; these errors are attributed to inadequate resolution of the boundary layer for reasons related to grid resolution and primitive turbulence modeling. The requirement of square grid cells in the PowerFLOW calculations limited the number of points that could be used to span the boundary layer on the wing and still keep the computation size small enough to fit on the available computers. Although not discussed in detail, disappointing results were also obtained with PowerFLOW for a cavity flow and for the flow around a generic helicopter configuration.
Reprint Of: Enhanced spatially-resolved trace analysis using combined SIMS-single-stage AMS
NASA Astrophysics Data System (ADS)
Grabowski, K. S.; Groopman, E. E.; Fahey, A. J.
2018-01-01
Secondary ion mass spectrometry (SIMS) provides spatially resolved trace analysis of solid materials, but can be complicated by unresolved abundant molecular isobars. By adding a 300-kV single-stage accelerator mass spectrometer (SSAMS) as a detector for a Cameca ims 4f SIMS, one can measure more abundant positive ions from the SIMS while removing molecular isobars, thus improving very low abundance trace element and isotope analysis. This paper describes important features and capabilities of such an integrated system at the Naval Research Laboratory using charge state +1 ions. Transmission loss is compared to molecule destruction as gas flow to the molecule-destruction cell increases. As most measurements tolerate more modest abundance sensitivities than for 14C analysis, a lower gas flow is acceptable, so good transmission of 20-50% for ions of interest can be maintained for a broad range of ion masses. This new instrument has measured isotope ratios for uranium, lead, rare earths, and other elements from particulates and localized regions, with molecule destruction enabling the measurement at low SIMS mass resolving power and thus high transmission, as examples will show. This new and world-unique instrument provides improved capabilities for applications in nuclear and other forensics, geochemistry, cosmochemistry, and the development of optical, electronic, multifunctional, and structural materials.
Enhanced spatially-resolved trace analysis using combined SIMS-single-stage AMS
NASA Astrophysics Data System (ADS)
Grabowski, K. S.; Groopman, E. E.; Fahey, A. J.
2017-11-01
Secondary ion mass spectrometry (SIMS) provides spatially resolved trace analysis of solid materials, but can be complicated by unresolved abundant molecular isobars. By adding a 300-kV single-stage accelerator mass spectrometer (SSAMS) as a detector for a Cameca ims 4f SIMS, one can measure more abundant positive ions from the SIMS while removing molecular isobars, thus improving very low abundance trace element and isotope analysis. This paper describes important features and capabilities of such an integrated system at the Naval Research Laboratory using charge state +1 ions. Transmission loss is compared to molecule destruction as gas flow to the molecule-destruction cell increases. As most measurements tolerate more modest abundance sensitivities than for 14C analysis, a lower gas flow is acceptable, so good transmission of 20-50% for ions of interest can be maintained for a broad range of ion masses. This new instrument has measured isotope ratios for uranium, lead, rare earths, and other elements from particulates and localized regions, with molecule destruction enabling the measurement at low SIMS mass resolving power and thus high transmission, as examples will show. This new and world-unique instrument provides improved capabilities for applications in nuclear and other forensics, geochemistry, cosmochemistry, and the development of optical, electronic, multifunctional, and structural materials.
NASA Technical Reports Server (NTRS)
Korkegi, R. H.
1983-01-01
The results of a National Research Council study on the effect that advances in computational fluid dynamics (CFD) will have on conventional aeronautical ground testing are reported. Current CFD capabilities include the depiction of linearized inviscid flows and a boundary layer, initial use of Euler coordinates using supercomputers to automatically generate a grid, research and development on Reynolds-averaged Navier-Stokes (N-S) equations, and preliminary research on solutions to the full N-S equations. Improvements in the range of CFD usage is dependent on the development of more powerful supercomputers, exceeding even the projected abilities of the NASA Numerical Aerodynamic Simulator (1 BFLOP/sec). Full representation of the Re-averaged N-S equations will require over one million grid points, a computing level predicted to be available in 15 yr. Present capabilities allow identification of data anomalies, confirmation of data accuracy, and adequateness of model design in wind tunnel trials. Account can be taken of the wall effects and the Re in any flight regime during simulation. CFD can actually be more accurate than instrumented tests, since all points in a flow can be modeled with CFD, while they cannot all be monitored with instrumentation in a wind tunnel.
Features and applications of the Groove Analysis Program (GAP)
NASA Technical Reports Server (NTRS)
Ku, Jentung; Nguyen, Tu M.; Brennan, Patrick J.
1995-01-01
An IBM Personal Computer (PC) version of the Groove Analysis program (GAP) was developed to predict the steady state heat transport capability of an axially grooved heat pipe for a specified groove geometry and working fluid. In the model, the capillary limit is determined by the numerical solution of the differential equation for momentum conservation with the appropriate boundary conditions. This governing equation accounts for the hydrodynamic losses due to friction in liquid and vapor flows and due to liquid/vapor shear interaction. Back-pumping in both 0-g and 1-g is accounted for in the boundary condition at the condenser end. Slug formation in 0-g and puddle flow in 1-g are also considered in the model. At the user's discretion, the code will perform the analysis for various fluid inventories (undercharge, nominal charge, overcharge, or a fixed fluid charge) and heat pipe elevations. GAP will also calculate the minimum required heat pipe wall thickness for pressure containment at design temperatures that are greater than or lower than the critical temperature of the working fluid. This paper discusses the theory behind the development of the GAP model. It also presents the many useful and powerful capabilities of the model. Furthermore, a correlation of flight test performance data and the predictions using GAP are presented and discussed.
Time Dependent Simulation of Turbopump Flows
NASA Technical Reports Server (NTRS)
Kiris, Cetin C.; Kwak, Dochan; Chan, William; Williams, Robert
2001-01-01
The objective of this viewgraph presentation is to enhance incompressible flow simulation capability for developing aerospace vehicle components, especially unsteady flow phenomena associated with high speed turbo pumps. Unsteady Space Shuttle Main Engine (SSME)-rig1 1 1/2 rotations are completed for the 34.3 million grid points model. The moving boundary capability is obtained by using the DCF module. MLP shared memory parallelism has been implemented and benchmarked in INS3D. The scripting capability from CAD geometry to solution is developed. Data compression is applied to reduce data size in post processing and fluid/structure coupling is initiated.
Extension of vibrational power flow techniques to two-dimensional structures
NASA Technical Reports Server (NTRS)
Cuschieri, Joseph M.
1988-01-01
In the analysis of the vibration response and structure-borne vibration transmission between elements of a complex structure, statistical energy analysis (SEA) or finite element analysis (FEA) are generally used. However, an alternative method is using vibrational power flow techniques which can be especially useful in the mid frequencies between the optimum frequency regimes for SEA and FEA. Power flow analysis has in general been used on 1-D beam-like structures or between structures with point joints. In this paper, the power flow technique is extended to 2-D plate-like structures joined along a common edge without frequency or spatial averaging the results, such that the resonant response of the structure is determined. The power flow results are compared to results obtained using FEA results at low frequencies and SEA at high frequencies. The agreement with FEA results is good but the power flow technique has an improved computational efficiency. Compared to the SEA results the power flow results show a closer representation of the actual response of the structure.
Extension of vibrational power flow techniques to two-dimensional structures
NASA Technical Reports Server (NTRS)
Cuschieri, J. M.
1987-01-01
In the analysis of the vibration response and structure-borne vibration transmission between elements of a complex structure, statistical energy analysis (SEA) or Finite Element Analysis (FEA) are generally used. However, an alternative method is using vibrational power flow techniques which can be especially useful in the mid- frequencies between the optimum frequency regimes for FEA and SEA. Power flow analysis has in general been used on one-dimensional beam-like structures or between structures with point joints. In this paper, the power flow technique is extended to two-dimensional plate like structures joined along a common edge without frequency or spatial averaging the results, such that the resonant response of the structure is determined. The power flow results are compared to results obtained using FEA at low frequencies and SEA at high frequencies. The agreement with FEA results is good but the power flow technique has an improved computational efficiency. Compared to the SEA results the power flow results show a closer representation of the actual response of the structure.
Experimental prototype of an electric elevator
NASA Astrophysics Data System (ADS)
Gaiceanu, M.; Epure, S.; Ciuta, S.
2016-08-01
The main objective is to achieve an elevator prototype powered by a three-phase voltage system via a bidirectional static power converter ac-ac with regenerating capability. In order to diminish the power size of the electric motor up to 1/3 of rated power, the elevator contains two carriages of the same weight, one serving as the payload, and the other as counterweight. Before proper operation of the static power converter, the capacitor must be charged at rated voltage via a precharge circuit. At the moment of stabilizing the DC voltage at nominal value, the AC-AC power converter can operates in the proper limits. The functions of the control structure are: the load control task, speed and torque controls. System includes transducers for current measuring, voltage sensors and encoder. As reserve power sources the hybrid battery-photovoltaic panels are used. The control voltage is modulated by implementing four types of pulse width modulations: sinusoidal, with reduced commutation, third order harmonic insertion, and the space vector modulation. Therefore, the prototype could operates with an increased efficiency, in spite of the existing ones. The experimental results confirm the well design of the chosen solution. The control solution assures bidirectional power flow control, precharge control, and load control and it is implemented on a digital signal processor. The elevator capacity is between 300-450 kg, and it is driven by using a 1.5 kW three-phase asynchronous machine.
Connolly, P.J.; Jezorek, I.G.; Prentice, E.F.
2005-01-01
We have developed detector systems for fish implanted with Passive Integrated Transponder (PIT) tags to assess their movement behavior and habitat use within fast flowing streams. Fish tested have primarily been wild anadromous and resident forms of rainbow trout Oncorhynchus mykiss and cutthroat trout O. clarki. Longitudinal arrangements of two- and six-antennas allow determination of direction of movement and efficiency of detection. Our first detector system became operational in August 2001, with subsequent improvements over time. In tests with a two-antenna system, detection efficiency of tagged, downstreammoving fish was high (96%) during low flows, but less (69%) during high flows. With an increase in the number of antennas to six, arranged in a 2x3 array, the detection efficiency of downstream-moving fish was increased to 95-100% at all flows. Detection efficiency of upstream-moving fish was high (95-100%) in both the two-and six-antenna system during all flows. Antennas were anchored to the substrate and largely spanned the bank-full width. Modifications to the methods used to anchor antennas have increased the likelihood of the system remaining intact and running at full detection capability during challenging flow and debris conditions, largely achieving our goal to have continuous monitoring of fish movement throughout an annual cycle. In August 2004, we placed a similar detector system in another watershed. Success has much relied on the quality of transceivers and electrical power. Detection of tagged fish passing our static PIT-tag detectors has produced valuable information on how selected fish species use the network of streams in a watershed. Integrating information from our detectors in tributary streams with that from detectors downstream at dams in the Columbia River has promise to be a powerful tool for monitoring movement patterns of anadromous fish species and to understanding full lifecycle fish behavior and habitat use.
Advanced Power System Analysis Capabilities
NASA Technical Reports Server (NTRS)
1997-01-01
As a continuing effort to assist in the design and characterization of space power systems, the NASA Lewis Research Center's Power and Propulsion Office developed a powerful computerized analysis tool called System Power Analysis for Capability Evaluation (SPACE). This year, SPACE was used extensively in analyzing detailed operational timelines for the International Space Station (ISS) program. SPACE was developed to analyze the performance of space-based photovoltaic power systems such as that being developed for the ISS. It is a highly integrated tool that combines numerous factors in a single analysis, providing a comprehensive assessment of the power system's capability. Factors particularly critical to the ISS include the orientation of the solar arrays toward the Sun and the shadowing of the arrays by other portions of the station.
Stream Tracker: Crowd sourcing and remote sensing to monitor stream flow intermittence
NASA Astrophysics Data System (ADS)
Puntenney, K.; Kampf, S. K.; Newman, G.; Lefsky, M. A.; Weber, R.; Gerlich, J.
2017-12-01
Streams that do not flow continuously in time and space support diverse aquatic life and can be critical contributors to downstream water supply. However, these intermittent streams are rarely monitored and poorly mapped. Stream Tracker is a community powered stream monitoring project that pairs citizen contributed observations of streamflow presence or absence with a network of streamflow sensors and remotely sensed data from satellites to track when and where water is flowing in intermittent stream channels. Citizens can visit sites on roads and trails to track flow and contribute their observations to the project site hosted by CitSci.org. Data can be entered using either a mobile application with offline capabilities or an online data entry portal. The sensor network provides a consistent record of streamflow and flow presence/absence across a range of elevations and drainage areas. Capacitance, resistance, and laser sensors have been deployed to determine the most reliable, low cost sensor that could be mass distributed to track streamflow intermittence over a larger number of sites. Streamflow presence or absence observations from the citizen and sensor networks are then compared to satellite imagery to improve flow detection algorithms using remotely sensed data from Landsat. In the first two months of this project, 1,287 observations have been made at 241 sites by 24 project members across northern and western Colorado.
10 CFR 205.373 - Application procedures.
Code of Federal Regulations, 2013 CFR
2013-01-01
... interconnection: (i) Proposed location; (ii) Required thermal capacity or power transfer capability of the... interconnection: (i) Location; (ii) Thermal capacity of power transfer capability of interconnection facilities... DEPARTMENT OF ENERGY OIL ADMINISTRATIVE PROCEDURES AND SANCTIONS Electric Power System Permits and Reports...
10 CFR 205.373 - Application procedures.
Code of Federal Regulations, 2014 CFR
2014-01-01
... interconnection: (i) Proposed location; (ii) Required thermal capacity or power transfer capability of the... interconnection: (i) Location; (ii) Thermal capacity of power transfer capability of interconnection facilities... DEPARTMENT OF ENERGY OIL ADMINISTRATIVE PROCEDURES AND SANCTIONS Electric Power System Permits and Reports...
10 CFR 205.373 - Application procedures.
Code of Federal Regulations, 2011 CFR
2011-01-01
... interconnection: (i) Proposed location; (ii) Required thermal capacity or power transfer capability of the... interconnection: (i) Location; (ii) Thermal capacity of power transfer capability of interconnection facilities... DEPARTMENT OF ENERGY OIL ADMINISTRATIVE PROCEDURES AND SANCTIONS Electric Power System Permits and Reports...
10 CFR 205.373 - Application procedures.
Code of Federal Regulations, 2012 CFR
2012-01-01
... interconnection: (i) Proposed location; (ii) Required thermal capacity or power transfer capability of the... interconnection: (i) Location; (ii) Thermal capacity of power transfer capability of interconnection facilities... DEPARTMENT OF ENERGY OIL ADMINISTRATIVE PROCEDURES AND SANCTIONS Electric Power System Permits and Reports...
Implementation of Finite Rate Chemistry Capability in OVERFLOW
NASA Technical Reports Server (NTRS)
Olsen, M. E.; Venkateswaran, S.; Prabhu, D. K.
2004-01-01
An implementation of both finite rate and equilibrium chemistry have been completed for the OVERFLOW code, a chimera capable, complex geometry flow code widely used to predict transonic flow fields. The implementation builds on the computational efficiency and geometric generality of the solver.
A variable capacitance based modeling and power capability predicting method for ultracapacitor
NASA Astrophysics Data System (ADS)
Liu, Chang; Wang, Yujie; Chen, Zonghai; Ling, Qiang
2018-01-01
Methods of accurate modeling and power capability predicting for ultracapacitors are of great significance in management and application of lithium-ion battery/ultracapacitor hybrid energy storage system. To overcome the simulation error coming from constant capacitance model, an improved ultracapacitor model based on variable capacitance is proposed, where the main capacitance varies with voltage according to a piecewise linear function. A novel state-of-charge calculation approach is developed accordingly. After that, a multi-constraint power capability prediction is developed for ultracapacitor, in which a Kalman-filter-based state observer is designed for tracking ultracapacitor's real-time behavior. Finally, experimental results verify the proposed methods. The accuracy of the proposed model is verified by terminal voltage simulating results under different temperatures, and the effectiveness of the designed observer is proved by various test conditions. Additionally, the power capability prediction results of different time scales and temperatures are compared, to study their effects on ultracapacitor's power capability.
Numerical investigation of heat transfer in parallel channels with water at supercritical pressure.
Shitsi, Edward; Kofi Debrah, Seth; Yao Agbodemegbe, Vincent; Ampomah-Amoako, Emmanuel
2017-11-01
Thermal phenomena such as heat transfer enhancement, heat transfer deterioration, and flow instability observed at supercritical pressures as a result of fluid property variations have the potential to affect the safety of design and operation of Supercritical Water-cooled Reactor SCWR, and also challenge the capabilities of both heat transfer correlations and Computational Fluid Dynamics CFD physical models. These phenomena observed at supercritical pressures need to be thoroughly investigated. An experimental study was carried out by Xi to investigate flow instability in parallel channels at supercritical pressures under different mass flow rates, pressures, and axial power shapes. Experimental data on flow instability at inlet of the heated channels were obtained but no heat transfer data along the axial length was obtained. This numerical study used 3D numerical tool STAR-CCM+ to investigate heat transfer at supercritical pressures along the axial lengths of the parallel channels with water ahead of experimental data. Homogeneous axial power shape HAPS was adopted and the heating powers adopted in this work were below the experimental threshold heating powers obtained for HAPS by Xi. The results show that the Fluid Centre-line Temperature FCLT increased linearly below and above the PCT region, but flattened at the PCT region for all the system parameters considered. The inlet temperature, heating power, pressure, gravity and mass flow rate have effects on WT (wall temperature) values in the NHT (normal heat transfer), EHT (enhanced heat transfer), DHT (deteriorated heat transfer) and recovery from DHT regions. While variation of all other system parameters in the EHT and PCT regions showed no significant difference in the WT and FCLT values respectively, the WT and FCLT values respectively increased with pressure in these regions. For most of the system parameters considered, the FCLT and WT values obtained in the two channels were nearly the same. The numerical study was not quantitatively compared with experimental data along the axial lengths of the parallel channels, but it was observed that the numerical tool STAR-CCM+ adopted was able to capture the trends for NHT, EHT, DHT and recovery from DHT regions. The heating powers used for the various simulations were below the experimentally observed threshold heating powers, but heat transfer deterioration HTD was observed, confirming the previous finding that HTD could occur before the occurrence of unstable behavior at supercritical pressures. For purposes of comparing the results of numerical simulations with experimental data, the heat transfer data on temperature oscillations obtained at the outlet of the heated channels and instability boundary results obtained at the inlet of the heated channels were compared. The numerical results obtained quite well agree with the experimental data. This work calls for provision of experimental data on heat transfer in parallel channels at supercritical pressures for validation of similar numerical studies.
Power formula for open-channel flow resistance
Chen, Cheng-lung
1988-01-01
This paper evaluates various power formulas for flow resistance in open channels. Unlike the logarithmic resistance equation that can be theoretically derived either from Prandtl's mixing-length hypothesis or von Karman's similarity hypothesis, the power formula has long had an appearance of empiricism. Nevertheless, the simplicity in the form of the power formula has made it popular among the many possible forms of flow resistance formulas. This paper reexamines the concept and rationale of the power formulation, thereby addressing some critical issues in the modeling of flow resistance.
The impact of circulation control on rotary aircraft controls systems
NASA Technical Reports Server (NTRS)
Kingloff, R. F.; Cooper, D. E.
1987-01-01
Application of circulation to rotary wing systems is a new development. Efforts to determine the near and far field flow patterns and to analytically predict those flow patterns have been underway for some years. Rotary wing applications present a new set of challenges in circulation control technology. Rotary wing sections must accommodate substantial Mach number, free stream dynamic pressure and section angle of attack variation at each flight condition within the design envelope. They must also be capable of short term circulation blowing modulation to produce control moments and vibration alleviation in addition to a lift augmentation function. Control system design must provide this primary control moment, vibration alleviation and lift augmentation function. To accomplish this, one must simultaneously control the compressed air source and its distribution. The control law algorithm must therefore address the compressor as the air source, the plenum as the air pressure storage and the pneumatic flow gates or valves that distribute and meter the stored pressure to the rotating blades. Also, mechanical collective blade pitch, rotor shaft angle of attack and engine power control must be maintained.
Multiphase flow microfluidics for the production of single or multiple emulsions for drug delivery.
Zhao, Chun-Xia
2013-11-01
Considerable effort has been directed towards developing novel drug delivery systems. Microfluidics, capable of generating monodisperse single and multiple emulsion droplets, executing precise control and operations on these droplets, is a powerful tool for fabricating complex systems (microparticles, microcapsules, microgels) with uniform size, narrow size distribution and desired properties, which have great potential in drug delivery applications. This review presents an overview of the state-of-the-art multiphase flow microfluidics for the production of single emulsions or multiple emulsions for drug delivery. The review starts with a brief introduction of the approaches for making single and multiple emulsions, followed by presentation of some potential drug delivery systems (microparticles, microcapsules and microgels) fabricated in microfluidic devices using single or multiple emulsions as templates. The design principles, manufacturing processes and properties of these drug delivery systems are also discussed and compared. Furthermore, drug encapsulation and drug release (including passive and active controlled release) are provided and compared highlighting some key findings and insights. Finally, site-targeting delivery using multiphase flow microfluidics is also briefly introduced. Copyright © 2013 Elsevier B.V. All rights reserved.
Progress towards experimental realization of extreme-velocity flow-dominated magnetized plasmas
NASA Astrophysics Data System (ADS)
Weber, T. E.; Adams, C. S.; Welch, D. R.; Kagan, G.; Bean, I. A.; Henderson, B. R.; Klim, A. J.
2017-10-01
Interactions of flow-dominated plasmas with other plasmas, neutral gases, magnetic fields, solids etc., take place with sufficient velocity that kinetic energy dominates the dynamics of the interaction (as opposed to magnetic or thermal energy, which dominates in most laboratory plasma experiments). Building upon progress made by the Magnetized Shock Experiment (MSX) at LANL, we are developing the experimental and modeling capability to increase our ultimate attainable plasma velocities well in excess of 1000 km/s. Ongoing work includes designing new pulsed power switches, triggering, and inductive adder topologies; development of novel high-speed optical diagnostics; and exploration of new numerical techniques to specifically model the unique physics of translating/stagnating flow-dominated plasmas. Furthering our understanding of the physical mechanisms of energy conversion from kinetic to other forms, such as thermal energy, non-thermal tails/accelerated populations, enhanced magnetic fields, and radiation (both continuum and line), has wide-ranging significance in basic plasma science, astrophysics, and plasma technology applications such as inertial confinement fusion and intense radiation sources. This work is supported by the U.S. Department of Energy, National Nuclear Security Administration. LA-UR-17-25786.
Overview of the GRC Stirling Convertor System Dynamic Model
NASA Technical Reports Server (NTRS)
Lewandowski, Edward J.; Regan, Timothy F.
2004-01-01
A Stirling Convertor System Dynamic Model has been developed at the Glenn Research Center for controls, dynamics, and systems development of free-piston convertor power systems. It models the Stirling cycle thermodynamics, heat flow, gas, mechanical, and mounting dynamics, the linear alternator, and the controller. The model's scope extends from the thermal energy input to thermal, mechanical dynamics, and electrical energy out, allowing one to study complex system interactions among subsystems. The model is a non-linear time-domain model containing sub-cycle dynamics, allowing it to simulate transient and dynamic phenomena that other models cannot. The model details and capability are discussed.
Identification of particle-laden flow features from wavelet decomposition
NASA Astrophysics Data System (ADS)
Jackson, A.; Turnbull, B.
2017-12-01
A wavelet decomposition based technique is applied to air pressure data obtained from laboratory-scale powder snow avalanches. This technique is shown to be a powerful tool for identifying both repeatable and chaotic features at any frequency within the signal. Additionally, this technique is demonstrated to be a robust method for the removal of noise from the signal as well as being capable of removing other contaminants from the signal. Whilst powder snow avalanches are the focus of the experiments analysed here, the features identified can provide insight to other particle-laden gravity currents and the technique described is applicable to a wide variety of experimental signals.
Neal, R.B.
1957-12-17
An improved triggered spark gap switch is described, capable of precisely controllable firing time while switching very large amounts of power. The invention in general comprises three electrodes adjustably spaced and adapted to have a large potential impressed between the outer electrodes. The central electrode includes two separate elements electrically connected togetaer and spaced apart to define a pair of spark gaps between the end electrodes. Means are provided to cause the gas flow in the switch to pass towards the central electrode, through a passage in each separate element, and out an exit disposed between the two separate central electrode elements in order to withdraw ions from the spark gap.
Automated Reduction of Data from Images and Holograms
NASA Technical Reports Server (NTRS)
Lee, G. (Editor); Trolinger, James D. (Editor); Yu, Y. H. (Editor)
1987-01-01
Laser techniques are widely used for the diagnostics of aerodynamic flow and particle fields. The storage capability of holograms has made this technique an even more powerful. Over 60 researchers in the field of holography, particle sizing and image processing convened to discuss these topics. The research program of ten government laboratories, several universities, industry and foreign countries were presented. A number of papers on holographic interferometry with applications to fluid mechanics were given. Several papers on combustion and particle sizing, speckle velocimetry and speckle interferometry were given. A session on image processing and automated fringe data reduction techniques and the type of facilities for fringe reduction was held.
Arc-Heater Facility for Hot Hydrogen Exposure of Nuclear Thermal Rocket Materials
NASA Technical Reports Server (NTRS)
Litchford, Ron J.; Foote, John P.; Wang,Ten-See; Hickman, Robert; Panda, Binayak; Dobson, Chris; Osborne, Robin; Clifton, Scooter
2006-01-01
A hyper-thermal environment simulator is described for hot hydrogen exposure of nuclear thermal rocket material specimens and component development. This newly established testing capability uses a high-power, multi-gas, segmented arc-heater to produce high-temperature pressurized hydrogen flows representative of practical reactor core environments and is intended to serve. as a low cost test facility for the purpose of investigating and characterizing candidate fueUstructura1 materials and improving associated processing/fabrication techniques. Design and development efforts are thoroughly summarized, including thermal hydraulics analysis and simulation results, and facility operating characteristics are reported, as determined from a series of baseline performance mapping tests.
Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW).
Shi, Jinjie; Ahmed, Daniel; Mao, Xiaole; Lin, Sz-Chin Steven; Lawit, Aitan; Huang, Tony Jun
2009-10-21
Here we present an active patterning technique named "acoustic tweezers" that utilizes standing surface acoustic wave (SSAW) to manipulate and pattern cells and microparticles. This technique is capable of patterning cells and microparticles regardless of shape, size, charge or polarity. Its power intensity, approximately 5x10(5) times lower than that of optical tweezers, compares favorably with those of other active patterning methods. Flow cytometry studies have revealed it to be non-invasive. The aforementioned advantages, along with this technique's simple design and ability to be miniaturized, render the "acoustic tweezers" technique a promising tool for various applications in biology, chemistry, engineering, and materials science.
Science with Constellation-X, Choice of Instrumentation
NASA Technical Reports Server (NTRS)
Hornscheimeier, Ann; White, Nicholas; Tananbaum, Harvey; Garcia, Michael; Bookbinder, Jay; Petre, Robert; Cottam, Jean
2007-01-01
The Constellation X-ray Observatory is one of the two Beyond Einstein Great Observatories and will provide a 100-fold increase in collecting area in high spectral resolving power X-ray instruments over the Chandra and XMM-Newton gratings instruments. The mission has four main science objectives which drive the requirements for the mission. This contribution to the Garmire celebration conference describes these four science areas: Black Holes, Dark Energy, Missing Baryons, and the Neutron Star Equation of State as well as the requirements flow-down that give rise to the choice of instrumentation and implementation for Constellation-X. As we show, each of these science areas place complementary constraints on mission performance parameters such as collecting area, spectral resolving power, timing resolution, and field of view. The mission's capabilities will enable a great breadth of science, and its resources will be open to the community through its General Observer program.
High Heat Flow from Enceladus' South Polar Region Measured using 10-600/cm(exp -1) Cassini/CIRS Data
NASA Technical Reports Server (NTRS)
Howett, C. J. A.; Spencer, J. R.; Pearl, J.; Segura, M.
2011-01-01
Analysis of 2008 Cassini Composite Infrared Spectrometer (CIRS) 10 to 600/cm thermal emission spectra of Enceladus shows that for reasonable assumptions about the spatial distribution of the emission and the thermophysical properties of the solar-heated background surface, which are supported by CIRS observations of background temperatures at the edge of the active region, the endogenic power of Enceladus' south polar terrain is 15.8 +/- 3.1 GW. This is significantly higher than the previous estimate of 5.8 +/- 1.9 GW. The new value represents an improvement over the previous one, which was derived from higher wave number data (600 to 1100/cm-I) and was thus only sensitive to high-temperature emission. The mechanism capable of producing such a high endogenic power remains a mystery and challenges the current models of proposed heat production.
Mean flow and noise measurements in a Mach 3.5 pilot quiet tunnel
NASA Technical Reports Server (NTRS)
Beckwith, I. E.; Moore, W. O., III
1982-01-01
The use of Mach 3.5 two-dimensional rapid expansion nozzle for wind tunnel testing at supersonic speeds and low noise conditions encountered in high altitude flights is described. The supersonic pilot quiet tunnel is located at the NASA Langley Research Center and a description of the facility is provided, along with instrumentation and noise measurement test data at 30, 50, and 75 psia. The mean pitot pressure distributions, rms noise levels, the effect of unit Reynolds number, wall waviness, wall contaminants, and the effects of closing the bleed valve are analyzed. Typical laminar and turbulent spectra are presented, along with a summary of the effect of slot throat adjustment on the power spectra. Comparisons are made of the power spectra with the bleed valve open and closed, and of the rms fluctuating pressures with levels from conventional nozzles, and the performance capabilities are evaluated for use in transition studies.
Gu, Herong; Guan, Yajuan; Wang, Huaibao; Wei, Baoze; Guo, Xiaoqiang
2014-01-01
Microgrid is an effective way to integrate the distributed energy resources into the utility networks. One of the most important issues is the power flow control of grid-connected voltage-source inverter in microgrid. In this paper, the small-signal model of the power flow control for the grid-connected inverter is established, from which it can be observed that the conventional power flow control may suffer from the poor damping and slow transient response. While the new power flow control can mitigate these problems without affecting the steady-state power flow regulation. Results of continuous-domain simulations in MATLAB and digital control experiments based on a 32-bit fixed-point TMS320F2812 DSP are in good agreement, which verify the small signal model analysis and effectiveness of the proposed method.
2015-01-01
C O R P O R A T I O N RESE ARCH BR IEF Tallying the U.S.-China Military Scorecard Relative Capabilities and the Balance of Power, 1996–2017 Over the...sources, the scorecards provide a basis for deeper public discussion of how the balance of power in Asia has evolved and the challenges the United...SUBTITLE Tallying the U.S.-China Military Scorecard : Relative Capabilities and the Balance of Power, 1996-2017 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c
NPSS Overview to TAFW Multidisciplinary Simulation Capabilities
NASA Technical Reports Server (NTRS)
Owen, Karl
2002-01-01
The Numerical Propulsion System Simulation (NPSS) is a concerted effort by NASA Glenn Research Center, the aerospace industry, and academia to develop an advanced engineering environment or integrated collection of software programs for the analysis and design of aircraft engines and, eventually, space transportation components. NPSS is now being applied by GE ground power to ground power generation with the view of expanding the capability to nontraditional power plant applications (example: fuel cells) and NPSS has an interest in in-space power and will be developing those simulation capabilities.
Implementation of Flow Tripping Capability in the USM3D Unstructured Flow Solver
NASA Technical Reports Server (NTRS)
Pandya, Mohagna J.; Abdol-Harrid, Khaled S.; Campbell, Richard L.; Frink, Neal T.
2006-01-01
A flow tripping capability is added to an established NASA tetrahedral unstructured parallel Navier-Stokes flow solver, USM3D. The capability is based on prescribing an appropriate profile of turbulence model variables to energize the boundary layer in a plane normal to a specified trip region on the body surface. We demonstrate this approach using the k-e two-equation turbulence model of USM3D. Modification to the solution procedure primarily consists of developing a data structure to identify all unstructured tetrahedral grid cells located in the plane normal to a specified surface trip region and computing a function based on the mean flow solution to specify the modified profile of the turbulence model variables. We leverage this data structure and also show an adjunct approach that is based on enforcing a laminar flow condition on the otherwise fully turbulent flow solution in user specified region. The latter approach is applied for the solutions obtained using other one- and two-equation turbulence models of USM3D. A key ingredient of the present capability is the use of a graphical user-interface tool PREDISC to define a trip region on the body surface in an existing grid. Verification of the present modifications is demonstrated on three cases, namely, a flat plate, the RAE2822 airfoil, and the DLR F6 wing-fuselage configuration.
Implementation of Flow Tripping Capability in the USM3D Unstructured Flow Solver
NASA Technical Reports Server (NTRS)
Pandya, Mohagna J.; Abdol-Hamid, Khaled S.; Campbell, Richard L.; Frink, Neal T.
2006-01-01
A flow tripping capability is added to an established NASA tetrahedral unstructured parallel Navier-Stokes flow solver, USM3D. The capability is based on prescribing an appropriate profile of turbulence model variables to energize the boundary layer in a plane normal to a specified trip region on the body surface. We demonstrate this approach using the k-epsilon two-equation turbulence model of USM3D. Modification to the solution procedure primarily consists of developing a data structure to identify all unstructured tetrahedral grid cells located in the plane normal to a specified surface trip region and computing a function based on the mean flow solution to specify the modified profile of the turbulence model variables. We leverage this data structure and also show an adjunct approach that is based on enforcing a laminar flow condition on the otherwise fully turbulent flow solution in user-specified region. The latter approach is applied for the solutions obtained using other one-and two-equation turbulence models of USM3D. A key ingredient of the present capability is the use of a graphical user-interface tool PREDISC to define a trip region on the body surface in an existing grid. Verification of the present modifications is demonstrated on three cases, namely, a flat plate, the RAE2822 airfoil, and the DLR F6 wing-fuselage configuration.
Respiratory evolution facilitated the origin of pterosaur flight and aerial gigantism.
Claessens, Leon P A M; O'Connor, Patrick M; Unwin, David M
2009-01-01
Pterosaurs, enigmatic extinct Mesozoic reptiles, were the first vertebrates to achieve true flapping flight. Various lines of evidence provide strong support for highly efficient wing design, control, and flight capabilities. However, little is known of the pulmonary system that powered flight in pterosaurs. We investigated the structure and function of the pterosaurian breathing apparatus through a broad scale comparative study of respiratory structure and function in living and extinct archosaurs, using computer-assisted tomographic (CT) scanning of pterosaur and bird skeletal remains, cineradiographic (X-ray film) studies of the skeletal breathing pump in extant birds and alligators, and study of skeletal structure in historic fossil specimens. In this report we present various lines of skeletal evidence that indicate that pterosaurs had a highly effective flow-through respiratory system, capable of sustaining powered flight, predating the appearance of an analogous breathing system in birds by approximately seventy million years. Convergent evolution of gigantism in several Cretaceous pterosaur lineages was made possible through body density reduction by expansion of the pulmonary air sac system throughout the trunk and the distal limb girdle skeleton, highlighting the importance of respiratory adaptations in pterosaur evolution, and the dramatic effect of the release of physical constraints on morphological diversification and evolutionary radiation.
Respiratory Evolution Facilitated the Origin of Pterosaur Flight and Aerial Gigantism
Claessens, Leon P. A. M.; O'Connor, Patrick M.; Unwin, David M.
2009-01-01
Pterosaurs, enigmatic extinct Mesozoic reptiles, were the first vertebrates to achieve true flapping flight. Various lines of evidence provide strong support for highly efficient wing design, control, and flight capabilities. However, little is known of the pulmonary system that powered flight in pterosaurs. We investigated the structure and function of the pterosaurian breathing apparatus through a broad scale comparative study of respiratory structure and function in living and extinct archosaurs, using computer-assisted tomographic (CT) scanning of pterosaur and bird skeletal remains, cineradiographic (X-ray film) studies of the skeletal breathing pump in extant birds and alligators, and study of skeletal structure in historic fossil specimens. In this report we present various lines of skeletal evidence that indicate that pterosaurs had a highly effective flow-through respiratory system, capable of sustaining powered flight, predating the appearance of an analogous breathing system in birds by approximately seventy million years. Convergent evolution of gigantism in several Cretaceous pterosaur lineages was made possible through body density reduction by expansion of the pulmonary air sac system throughout the trunk and the distal limb girdle skeleton, highlighting the importance of respiratory adaptations in pterosaur evolution, and the dramatic effect of the release of physical constraints on morphological diversification and evolutionary radiation. PMID:19223979
NASA Technical Reports Server (NTRS)
DeYoung, R. J.; Bergstralh, J. T.
2005-01-01
Introduction: With the anticipated development of high-capacity fission power and electric propulsion for deep-space missions, it will become possible to propose experiments that demand higher power than current technologies (e.g. radioisotope power sources) provide. Jupiter Icy Moons Orbiter (JIMO), the first mission in the Project Prometheus program, will explore the icy moons of Jupiter with a suite of high-capability experiments that take advantage of the high power levels (and indirectly, the high data rates) that fission power affords. This abstract describes two high-capability active-remote-sensing experiments that will be logical candidates for subsequent Prometheus-class missions.
Mobility power flow analysis of an L-shaped plate structure subjected to acoustic excitation
NASA Technical Reports Server (NTRS)
Cuschieri, J. M.
1989-01-01
An analytical investigation based on the Mobility Power Flow method is presented for the determination of the vibrational response and power flow for two coupled flat plate structures in an L-shaped configuration, subjected to acoustical excitation. The principle of the mobility power flow method consists of dividing the global structure into a series of subsystems coupled together using mobility functions. Each separate subsystem is analyzed independently to determine the structural mobility functions for the junction and excitation locations. The mobility functions, together with the characteristics of the junction between the subsystems, are then used to determine the response of the global structure and the power flow. In the coupled plate structure considered here, mobility power flow expressions are derived for excitation by an incident acoustic plane wave. In this case, the forces (acoustic pressures) acting on the structure are dependent on the response of the structure because of the scattered pressure component. The interaction between the structure and the fluid leads to the derivation of a corrected mode shape for the plates' normal surface velocity and also for the structure mobility functions. The determination of the scattered pressure components in the expressions for the power flow represents an additional component in the power flow balance for the source plate and the receiver plate. This component represents the radiated acoustical power from the plate structure.
MIDDLE GORGE POWER PLANT, OWENS RIVER STREAM FLOWING OVER TAIL ...
MIDDLE GORGE POWER PLANT, OWENS RIVER STREAM FLOWING OVER TAIL RACE OF POWER PLANT AND PENSTOCK HEADGATE TO LOWER GORGE CONTROL PLANT. A MINIMAL FLOW OF RIVER WATER IS REQUIRED TO MAINTAIN FISH LIFE - Los Angeles Aqueduct, Middle Gorge Power Plant, Los Angeles, Los Angeles County, CA
Power transmission by laser beam from lunar-synchronous satellite
NASA Technical Reports Server (NTRS)
Williams, M. D.; Deyoung, R. J.; Schuster, G. L.; Choi, S. H.; Dagle, J. E.; Coomes, E. P.; Antoniak, Z. I.; Bamberger, J. A.; Bates, J. M.; Chiu, M. A.
1993-01-01
The possibility of beaming power from synchronous lunar orbits (the L1 and L2 Lagrange points) to a manned long-range lunar rover is addressed. The rover and two versions of a satellite system (one powered by a nuclear reactor, the other by photovoltaics) are described in terms of their masses, geometries, power needs, missions, and technological capabilities. Laser beam power is generated by a laser diode array in the satellite and converted to 30 kW of electrical power at the rover. Present technological capabilities, with some extrapolation to near future capabilities, are used in the descriptions. The advantages of the two satellite/rover systems over other such systems and over rovers with onboard power are discussed along with the possibility of enabling other missions.
Multi-port power router and its impact on resilient power grid systems
NASA Astrophysics Data System (ADS)
Kado, Yuichi; Iwatsuki, Katsumi; Wada, Keiji
2016-02-01
We propose a Y-configuration power router as a unit cell to easily construct a power delivery system that can meet many types of user requirements. The Y-configuration power router controls the direction and magnitude of power flow among three ports regardless of DC and AC. We constructed a prototype three-way isolated DC/DC converter that is the core unit of the Y-configuration power router and tested the power flow control operation. Experimental results revealed that our methodology based on the governing equation was appropriate for the power flow control of the three-way DC/DC converter. In addition, the hexagonal distribution network composed of the power routers has the ability to easily interchange electric power between autonomous microgrid cells. We also explored the requirements for communication between energy routers to achieve dynamic adjustments of energy flow in a coordinated manner and its impact on resilient power grid systems.
Power generation systems and methods
NASA Technical Reports Server (NTRS)
Jones, Jack A. (Inventor); Chao, Yi (Inventor)
2011-01-01
A power generation system includes a plurality of submerged mechanical devices. Each device includes a pump that can be powered, in operation, by mechanical energy to output a pressurized output liquid flow in a conduit. Main output conduits are connected with the device conduits to combine pressurized output flows output from the submerged mechanical devices into a lower number of pressurized flows. These flows are delivered to a location remote of the submerged mechanical devices for power generation.
Vibration Power Flow In A Constrained Layer Damping Cylindrical Shell
NASA Astrophysics Data System (ADS)
Wang, Yun; Zheng, Gangtie
2012-07-01
In this paper, the vibration power flow in a constrained layer damping (CLD) cylindrical shell using wave propagation approach is investigated. The dynamic equations of the shell are derived with the Hamilton principle in conjunction with the Donnell shell assumption. With these equations, the dynamic responses of the system under a line circumferential cosine harmonic exciting force is obtained by employing the Fourier transform and the residue theorem. The vibration power flows inputted to the system and transmitted along the shell axial direction are both studied. The results show that input power flow varies with driving frequency and circumferential mode order, and the constrained damping layer can obviously restrict the exciting force from inputting power flow into the base shell especially for a thicker viscoelastic layer, a thicker or stiffer constraining layer (CL), and a higher circumferential mode order, can rapidly attenuate the vibration power flow transmitted along the base shell axial direction.
Gu, Herong; Guan, Yajuan; Wang, Huaibao; Wei, Baoze; Guo, Xiaoqiang
2014-01-01
Microgrid is an effective way to integrate the distributed energy resources into the utility networks. One of the most important issues is the power flow control of grid-connected voltage-source inverter in microgrid. In this paper, the small-signal model of the power flow control for the grid-connected inverter is established, from which it can be observed that the conventional power flow control may suffer from the poor damping and slow transient response. While the new power flow control can mitigate these problems without affecting the steady-state power flow regulation. Results of continuous-domain simulations in MATLAB and digital control experiments based on a 32-bit fixed-point TMS320F2812 DSP are in good agreement, which verify the small signal model analysis and effectiveness of the proposed method. PMID:24672304
Mechanical energy and power flow of the upper extremity in manual wheelchair propulsion.
Guo, Lan-Yuen; Su, Fong-Chin; Wu, Hong-Wen; An, Kai-Nan
2003-02-01
To investigate the characteristics of mechanical energy and power flow of the upper limb during wheelchair propulsion. Mechanical energy and power flow of segments were calculated. Very few studies have taken into account the mechanical energy and power flow of the musculoskeletal system during wheelchair propulsion. Mechanical energy and power flow have proven to be useful tools for investigating locomotion disorders during human gait. Twelve healthy male adults (mean age, 23.5 years) were recruited for this study. Three-dimensional kinematic and kinetic data of the upper extremity were collected during wheelchair propulsion using a Hi-Res Expert Vision system and an instrumented wheel, respectively. During the initiation of the propulsion phase, joint power is generated in the upper arm or is transferred from the trunk downward to the forearm and hand to propel the wheel forward. During terminal propulsion, joint power is transferred upward to the trunk from the forearm and upper arm. The rate of change of mechanical energy and power flow for the forearm and hand have similar patterns, but the upper arm values differ. Joint power plays an important role in energy transfer as well as the energy generated and absorbed by muscles spanning the joints during wheelchair propulsion. Energy and power flow information during wheelchair propulsion allows us to gain a better understanding of the coordination of the movement by the musculoskeletal system.
Comparison of intersecting pedestrian flows based on experiments
NASA Astrophysics Data System (ADS)
Zhang, J.; Seyfried, A.
2014-07-01
Intersections of pedestrian flows feature multiple types, varying in the numbers of flow directions as well as intersecting angles. In this article results from intersecting flow experiments with two different intersecting angles are compared. To analyze the transport capabilities the Voronoi method is used to resolve the fine structure of the resulting velocity-density relations and spatial dependence of the measurements. The fundamental diagrams of various flow types are compared and show no apparent difference with respect to the intersecting angle 90° and 180°. This result indicates that head-on conflicts of different types of flow have the same influence on the transport properties of the system, which demonstrates the high self-organization capabilities of pedestrians.
Development of software to improve AC power quality on large spacecraft
NASA Technical Reports Server (NTRS)
Kraft, L. Alan
1991-01-01
To insure the reliability of a 20 kHz, alternating current (AC) power system on spacecraft, it is essential to analyze its behavior under many adverse operating conditions. Some of these conditions include overloads, short circuits, switching surges, and harmonic distortions. Harmonic distortions can become a serious problem. It can cause malfunctions in equipment that the power system is supplying, and, during distortions such as voltage resonance, it can cause equipment and insulation failures due to the extreme peak voltages. To address the harmonic distortion issue, work was begun under the 1990 NASA-ASEE Summer Faculty Fellowship Program. Software, originally developed by EPRI, called HARMFLO, a power flow program capable of analyzing harmonic conditions on three phase, balanced, 60 Hz AC power systems, was modified to analyze single phase, 20 kHz, AC power systems. Since almost all of the equipment used on spacecraft power systems is electrically different from equipment used on terrestrial power systems, it was also necessary to develop mathematical models for the equipment to be used on the spacecraft. The modelling was also started under the same fellowship work period. Details of the modifications and models completed during the 1990 NASA-ASEE Summer Faculty Fellowship Program can be found in a project report. As a continuation of the work to develop a complete package necessary for the full analysis of spacecraft AC power system behavior, deployment work has continued through NASA Grant NAG3-1254. This report details the work covered by the above mentioned grant.
Development of Light Powered Sensor Networks for Thermal Comfort Measurement
Lee, Dasheng
2008-01-01
Recent technological advances in wireless communications have enabled easy installation of sensor networks with air conditioning equipment control applications. However, the sensor node power supply, through either power lines or battery power, still presents obstacles to the distribution of the sensing systems. In this study, a novel sensor network, powered by the artificial light, was constructed to achieve wireless power transfer and wireless data communications for thermal comfort measurements. The sensing node integrates an IC-based temperature sensor, a radiation thermometer, a relative humidity sensor, a micro machined flow sensor and a microprocessor for predicting mean vote (PMV) calculation. The 935 MHz band RF module was employed for the wireless data communication with a specific protocol based on a special energy beacon enabled mode capable of achieving zero power consumption during the inactive periods of the nodes. A 5W spotlight, with a dual axis tilt platform, can power the distributed nodes over a distance of up to 5 meters. A special algorithm, the maximum entropy method, was developed to estimate the sensing quantity of climate parameters if the communication module did not receive any response from the distributed nodes within a certain time limit. The light-powered sensor networks were able to gather indoor comfort-sensing index levels in good agreement with the comfort-sensing vote (CSV) preferred by a human being and the experimental results within the environment suggested that the sensing system could be used in air conditioning systems to implement a comfort-optimal control strategy. PMID:27873877
Test results of 3.7 GHz 500kW CW klystron for SST1 LHCD system
NASA Astrophysics Data System (ADS)
Sharma, Promod Kumar; Ambulkar, Kiran K.; Dalakoti, Shefali; Rajan Babu, N.; Parmar, Pramod R.; Virani, Chetan G.; Thakur, Arvind L.
2012-10-01
A 3.7 GHz, LHCD system aims to driving non inductive plasma current for SST1 machine. Its capability has been enhanced up to 2 MW by adding two additional klystrons, each rated for 500kW, CW power. The additional klystrons are installed and commissioned at site, for rated power, for more than 1000 seconds, before connecting them to main LHCD system. The auxiliary systems, like supporting power supply system (magnet, filament, ion pump, etc.), active heat management system, slow and fast interlock system, transmission line pressurization system, low power rf drive system, etc. are inter-connected with klystron system through VME based data acquisition and control system for remote CW operation of klystron at rated power. The calorimetric measurements, employing Pt-100 sensors, suggests that the maximum rf power (˜500kW CW) extracted from klystron is dissipated on water cooled dummy loads. The unspent DC power (˜800 kW CW) is dissipated in collector which is heavily cooled with water flowing at ˜1300 litres/min (lpm). The power loss in the klystron body remained within 20 kW. The cavity temperature, measured using J-type thermocouple, remained below 150 ^oC. The output rf power, sampled through directional couplers and measured by rf detectors shows good agreement with calorimetric measurements. A detailed description of the klystron test set up and the test results obtained during its commissioning is presented in this paper.
NASA Astrophysics Data System (ADS)
Hakkarainen, Elina; Sihvonen, Teemu; Lappalainen, Jari
2017-06-01
Supercritical carbon dioxide (sCO2) has recently gained a lot of interest as a working fluid in different power generation applications. For concentrated solar power (CSP) applications, sCO2 provides especially interesting option if it could be used both as the heat transfer fluid (HTF) in the solar field and as the working fluid in the power conversion unit. This work presents development of a dynamic model of CSP plant concept, in which sCO2 is used for extracting the solar heat in Linear Fresnel collector field, and directly applied as the working fluid in the recuperative Brayton cycle; these both in a single flow loop. We consider the dynamic model is capable to predict the system behavior in typical operational transients in a physically plausible way. The novel concept was tested through simulation cases under different weather conditions. The results suggest that the concept can be successfully controlled and operated in the supercritical region to generate electric power during the daytime, and perform start-up and shut down procedures in order to stay overnight in sub-critical conditions. Besides the normal daily operation, the control system was demonstrated to manage disturbances due to sudden irradiance changes.
Cloud-based design of high average power traveling wave linacs
NASA Astrophysics Data System (ADS)
Kutsaev, S. V.; Eidelman, Y.; Bruhwiler, D. L.; Moeller, P.; Nagler, R.; Barbe Welzel, J.
2017-12-01
The design of industrial high average power traveling wave linacs must accurately consider some specific effects. For example, acceleration of high current beam reduces power flow in the accelerating waveguide. Space charge may influence the stability of longitudinal or transverse beam dynamics. Accurate treatment of beam loading is central to the design of high-power TW accelerators, and it is especially difficult to model in the meter-scale region where the electrons are nonrelativistic. Currently, there are two types of available codes: tracking codes (e.g. PARMELA or ASTRA) that cannot solve self-consistent problems, and particle-in-cell codes (e.g. Magic 3D or CST Particle Studio) that can model the physics correctly but are very time-consuming and resource-demanding. Hellweg is a special tool for quick and accurate electron dynamics simulation in traveling wave accelerating structures. The underlying theory of this software is based on the differential equations of motion. The effects considered in this code include beam loading, space charge forces, and external magnetic fields. We present the current capabilities of the code, provide benchmarking results, and discuss future plans. We also describe the browser-based GUI for executing Hellweg in the cloud.
Control system and method for a universal power conditioning system
Lai, Jih-Sheng; Park, Sung Yeul; Chen, Chien-Liang
2014-09-02
A new current loop control system method is proposed for a single-phase grid-tie power conditioning system that can be used under a standalone or a grid-tie mode. This type of inverter utilizes an inductor-capacitor-inductor (LCL) filter as the interface in between inverter and the utility grid. The first set of inductor-capacitor (LC) can be used in the standalone mode, and the complete LCL can be used for the grid-tie mode. A new admittance compensation technique is proposed for the controller design to avoid low stability margin while maintaining sufficient gain at the fundamental frequency. The proposed current loop controller system and admittance compensation technique have been simulated and tested. Simulation results indicate that without the admittance path compensation, the current loop controller output duty cycle is largely offset by an undesired admittance path. At the initial simulation cycle, the power flow may be erratically fed back to the inverter causing catastrophic failure. With admittance path compensation, the output power shows a steady-state offset that matches the design value. Experimental results show that the inverter is capable of both a standalone and a grid-tie connection mode using the LCL filter configuration.
Using a hot dry rock geothermal reservoir for load following
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, D.W.; Duteau, R.J.
1995-01-01
Field measurements and modeling have shown the potential for using a Hot Dry Rock (HDR) geothermal reservoir for electric load following: either with Power-Peaking from a base-load operating condition, or for Pumped Storage of off-peak electric energy with a very significant thermal augmentation of the stored mechanical energy during periods of power production. For the base-load with power- peaking mode of operation, and HDR reservoir appears capable of producing over twice its nominal power output for short -- 2 to 4 hour -- periods of time. In this mode of operation, the reservoir normally would be produced under a high-backpressuremore » condition with the HDR reservoir region near the production well highly inflated. Upon demand, the production backpressure would be sharply reduced, surging the production flow. The analytical tool used in these investigations has been the transient finite element model of the an HDR reservoir called GEOCRACK, which is being developed by Professor Dan Swenson and his students at Kansas State University. This discrete-element representation of a jointed rock mass has recently been validated for transient operations using the set of cyclic reservoir operating data obtained at the end of the LTFT.« less
High-performance finite-difference time-domain simulations of C-Mod and ITER RF antennas
NASA Astrophysics Data System (ADS)
Jenkins, Thomas G.; Smithe, David N.
2015-12-01
Finite-difference time-domain methods have, in recent years, developed powerful capabilities for modeling realistic ICRF behavior in fusion plasmas [1, 2, 3, 4]. When coupled with the power of modern high-performance computing platforms, such techniques allow the behavior of antenna near and far fields, and the flow of RF power, to be studied in realistic experimental scenarios at previously inaccessible levels of resolution. In this talk, we present results and 3D animations from high-performance FDTD simulations on the Titan Cray XK7 supercomputer, modeling both Alcator C-Mod's field-aligned ICRF antenna and the ITER antenna module. Much of this work focuses on scans over edge density, and tailored edge density profiles, to study dispersion and the physics of slow wave excitation in the immediate vicinity of the antenna hardware and SOL. An understanding of the role of the lower-hybrid resonance in low-density scenarios is emerging, and possible implications of this for the NSTX launcher and power balance are also discussed. In addition, we discuss ongoing work centered on using these simulations to estimate sputtering and impurity production, as driven by the self-consistent sheath potentials at antenna surfaces.
High-performance finite-difference time-domain simulations of C-Mod and ITER RF antennas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jenkins, Thomas G., E-mail: tgjenkins@txcorp.com; Smithe, David N., E-mail: smithe@txcorp.com
Finite-difference time-domain methods have, in recent years, developed powerful capabilities for modeling realistic ICRF behavior in fusion plasmas [1, 2, 3, 4]. When coupled with the power of modern high-performance computing platforms, such techniques allow the behavior of antenna near and far fields, and the flow of RF power, to be studied in realistic experimental scenarios at previously inaccessible levels of resolution. In this talk, we present results and 3D animations from high-performance FDTD simulations on the Titan Cray XK7 supercomputer, modeling both Alcator C-Mod’s field-aligned ICRF antenna and the ITER antenna module. Much of this work focuses on scansmore » over edge density, and tailored edge density profiles, to study dispersion and the physics of slow wave excitation in the immediate vicinity of the antenna hardware and SOL. An understanding of the role of the lower-hybrid resonance in low-density scenarios is emerging, and possible implications of this for the NSTX launcher and power balance are also discussed. In addition, we discuss ongoing work centered on using these simulations to estimate sputtering and impurity production, as driven by the self-consistent sheath potentials at antenna surfaces.« less
USDA-ARS?s Scientific Manuscript database
Increasing urbanization changes runoff patterns to be flashy and instantaneous with decreased base flow. A model with the ability to simulate sub-daily rainfall–runoff processes and continuous simulation capability is required to realistically capture the long-term flow and water quality trends in w...
Study on propellant dynamics during docking
NASA Technical Reports Server (NTRS)
Feng, G. C.; Robertson, S. J.
1972-01-01
The marker-and-cell numerical technique was applied to the study of axisymmetric and two-dimensional flow of liquid in containers under low gravity conditions. The purpose of the study was to provide the capability for numerically simulating liquid propellant motion in partially filled containers during a docking maneuver in orbit. A computer program to provide this capability for axisymmetric and two-dimensional flow was completed and computations were made for a number of hypothetical flow conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hendricks, T.J.; Borkowski, C.A.; Huang, C.
1998-01-01
AMTEC (Alkali Metal Thermal-to-Electric Conversion) cell development has received increased attention and funding in the space power community because of several desirable performance characteristics compared to current radioisotope thermoelectric generation and solar photovoltaic (PV) power generation. AMTEC cell development is critically dependent upon the ability to predict thermal, fluid dynamic and electrical performance of an AMTEC cell which has many complex thermal, fluid dynamic and electrical processes and interactions occurring simultaneously. Development of predictive capability is critical to understanding the complex processes and interactions within the AMTEC cell, and thereby creating the ability to design high-performance, cost-effective AMTEC cells. Amore » flexible, sophisticated thermal/fluid/electrical model of an operating AMTEC cell has been developed using the SINDA/FLUINT analysis software. This model can accurately simulate AMTEC cell performance at any hot side and cold side temperature combination desired, for any voltage and current conditions, and for a broad range of cell design parameters involving the cell dimensions, current collector and electrode design, electrode performance parameters, and cell wall and thermal shield emissivity. The model simulates the thermal radiation network within the AMTEC cell using RadCAD thermal radiation analysis; hot side, cold side and cell wall conductive and radiative coupling; BASE (Beta Alumina Solid Electrode) tube electrochemistry, including electrode over-potentials; the fluid dynamics of the low-pressure sodium vapor flow to the condenser and liquid sodium flow in the wick; sodium condensation at the condenser; and high-temperature sodium evaporation in the wick. The model predicts the temperature profiles within the AMTEC cell walls, the BASE tube temperature profiles, the sodium temperature profile in the artery return, temperature profiles in the evaporator, thermal energy flows throughout the AMTEC cell, all sodium pressure drops from hot BASE tubes to the condenser, the current, voltage, and power output from the cell, and the cell efficiency. This AMTEC cell model is so powerful and flexible that it is used in radioisotope AMTEC power system design, solar AMTEC power system design, and combustion-driven power system design on several projects at Advanced Modular Power Systems, Inc. (AMPS). The model has been successfully validated against actual cell experimental data and its performance predictions agree very well with experimental data on PX-5B cells and other test cells at AMPS. {copyright} {ital 1998 American Institute of Physics.}« less
NASA Astrophysics Data System (ADS)
Kahveci, E. E.; Taymaz, I.
2018-03-01
In this study it was experimentally investigated the effect of mass flow rates of reactant gases which is one of the most important operational parameters of polymer electrolyte membrane (PEM) fuel cell on power density. The channel type is serpentine and single PEM fuel cell has an active area of 25 cm2. Design-Expert 8.0 (trial version) was used with four variables to investigate the effect of variables on the response using. Cell temperature, hydrogen mass flow rate, oxygen mass flow rate and humidification temperature were selected as independent variables. In addition, the power density was used as response to determine the combined effects of these variables. It was kept constant cell and humidification temperatures while changing mass flow rates of reactant gases. From the results an increase occurred in power density with increasing the hydrogen flow rates. But oxygen flow rate does not have a significant effect on power density within determined mass flow rates.
Ejector-turbine studies and experimental data. Final report, August 1, 1979-October 31, 1982
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minardi, J.E.; Lawson, M.O.; Krolak, R.V.
1982-11-01
An innovative low-power Rankine turbine concept is described which promises competitive efficiencies, low cost, significant reduction in rpm, low maintenance, and long-life operation over similarly rated turbines. The cycle uses a highly efficient two-fluid ejector which greatly lowers the turbine inlet pressure and temperature. The two-fluid ejector cycle is shown by theoretical studies to be capable of transferring energy at efficiencies in excess of 90% from a high-power flux fluid medium to a low-power flux fluid medium. The volume flow of the thermodynamic fluid can be augmented by as much as one-hundred fold. For very low-power turbine applications this couldmore » result in far-more-favorable turbine sizes and rpm. One major application for this type turbine is the heating and cooling with heat pumps. The concept permits engine cycles that cover an extremely broad range of peak temperatures, including those corresponding to stoichiometric combustion of hydrocarbon fuels, waste heat sources, and solar. Actual test data indicated ejector efficiencies as high as 85%. A two-fluid, ejector turbine was designed and tested. The turbine achieved 94% of design power. Additional data indicated that the ejector attached to the turbine operated on the supersonic branch.« less
13kW Advanced Electric Propulsion Flight System Development and Qualification
NASA Technical Reports Server (NTRS)
Jackson, Jerry; Allen, May; Myers, Roger; Soendker, Erich; Welander, Benjamin; Tolentino, Artie; Hablitzel, Sam; Yeatts, Chyrl; Xu, Steven; Sheehan, Chris;
2017-01-01
The next phase of robotic and human deep space exploration missions is enhanced by high performance, high power solar electric propulsion systems for large-scale science missions and cargo transportation. Aerojet Rocketdynes Advanced Electric Propulsion System (AEPS) program is completing development, qualification and delivery of five flight 13.3kW EP systems to NASA. The flight AEPS includes a magnetically-shielded, long-life Hall thruster, power processing unit (PPU), xenon flow controller (XFC), and intrasystem harnesses. The Hall thruster, originally developed and demonstrated by NASAs Glenn Research Center and the Jet Propulsion Laboratory, operates at input powers up to 12.5kW while providing a specific impulse over 2600s at an input voltage of 600V. The power processor is designed to accommodate an input voltage range of 95 to 140V, consistent with operation beyond the orbit of Mars. The integrated system is continuously throttleable between 3 and 13.3kW. The program has completed the system requirement review; the system, thruster, PPU and XFC preliminary design reviews; development of engineering models, and initial system integration testing. This paper will present the high power AEPS capabilities, overall program and design status and the latest test results for the 13.3kW flight system development and qualification program.
Load allocation of power plant using multi echelon economic dispatch
NASA Astrophysics Data System (ADS)
Wahyuda, Santosa, Budi; Rusdiansyah, Ahmad
2017-11-01
In this paper, the allocation of power plant load which is usually done with a single echelon as in the load flow calculation, is expanded into a multi echelon. A plant load allocation model based on the integration of economic dispatch and multi-echelon problem is proposed. The resulting model is called as Single Objective Multi Echelon Economic Dispatch (SOME ED). This model allows the distribution of electrical power in more detail in the transmission and distribution substations along the existing network. Considering the interconnection system where the distance between the plant and the load center is usually far away, therefore the loss in this model is seen as a function of distance. The advantages of this model is its capability of allocating electrical loads properly, as well as economic dispatch information with the flexibility of electric power system as a result of using multi-echelon. In this model, the flexibility can be viewed from two sides, namely the supply and demand sides, so that the security of the power system is maintained. The model was tested on a small artificial data. The results demonstrated a good performance. It is still very open to further develop the model considering the integration with renewable energy, multi-objective with environmental issues and applied to the case with a larger scale.
Imaging of blood cells based on snapshot Hyper-Spectral Imaging systems
NASA Astrophysics Data System (ADS)
Robison, Christopher J.; Kolanko, Christopher; Bourlai, Thirimachos; Dawson, Jeremy M.
2015-05-01
Snapshot Hyper-Spectral imaging systems are capable of capturing several spectral bands simultaneously, offering coregistered images of a target. With appropriate optics, these systems are potentially able to image blood cells in vivo as they flow through a vessel, eliminating the need for a blood draw and sample staining. Our group has evaluated the capability of a commercial Snapshot Hyper-Spectral imaging system, the Arrow system from Rebellion Photonics, in differentiating between white and red blood cells on unstained blood smear slides. We evaluated the imaging capabilities of this hyperspectral camera; attached to a microscope at varying objective powers and illumination intensity. Hyperspectral data consisting of 25, 443x313 hyperspectral bands with ~3nm spacing were captured over the range of 419 to 494nm. Open-source hyper-spectral data cube analysis tools, used primarily in Geographic Information Systems (GIS) applications, indicate that white blood cells features are most prominent in the 428-442nm band for blood samples viewed under 20x and 50x magnification over a varying range of illumination intensities. These images could potentially be used in subsequent automated white blood cell segmentation and counting algorithms for performing in vivo white blood cell counting.
Minich, L L; Tani, L Y; Pantalos, G M
1997-01-01
To determine the accuracy of using power-weighted mean velocities for quantitating volumetric flow across a cardiac valve, we equipped pulsatile flow-tank systems with a 25 mm porcine or a 27 mm mechanical valve with various sizes of regurgitant orifices. Forward and reverse volumetric flows were measured over a range of hemodynamic conditions using two insonating angles (0 and 45 degrees). Pulsed Doppler power-weighted mean velocity measurements were obtained simultaneously with electromagnetic or ultrasonic transit-time probe measurements. For the porcine valve, Doppler measurements correlated well with electromagnetic flow measurements for all (r = 0.75 to 0.97, p < 0.05) except the smallest (2.7 mm) orifice (r = 0.19). For the mechanical valve, power-weighted mean velocity measurements correlated well with ultrasonic transit-time measurements for each hemodynamic condition defined by pulse rate, mean arterial pressure, and insonating angle (r = 0.93 to 0.99, p < 0.01), but equations varied unpredictably. Thus, although power-weighted mean velocity volumetric flow measurements correlate well with flow probe measurements, equations vary widely as hemodynamic conditions change. Because of this variation, power-weighted mean velocity data are not useful for quantitation of volumetric flow across a cardiac valve at this time. Further investigation may show how different hemodynamic conditions affect power-weighted mean velocity measurements of volumetric flow.
A novel all-fiber optic flow cytometer technology for Point-of Care and Remote Environments
NASA Astrophysics Data System (ADS)
Mermut, Ozzy
Traditional flow cytometry designs tend to be bulky systems with a complex optical-fluidic sub-system and often require trained personnel for operation. This makes them difficult to readily translate to remote site testing applications. A new compact and portable fiber-optic flow cell (FOFC) technology has been developed at INO. We designed and engineered a specialty optical fiber through which a square hole is transversally bored by laser micromachining. A capillary is fitted into that hole to flow analyte within the fiber square cross-section for detection and counting. With demonstrated performance benchmarks potentially comparable to commercial flow cytometers, our FOFC provides several advantages compared to classic free-space con-figurations, e.g., sheathless flow, low cost, reduced number of optical components, no need for alignment (occurring in the fabrication process only), ease-of-use, miniaturization, portability, and robustness. This sheathless configuration, based on a fiber optic flow module, renders this cytometer amenable to space-grade microgravity environments. We present our recent results for an all-fiber approach to achieve a miniature FOFC to translate flow cytometry from bench to a portable, point-of-care device for deployment in remote settings. Our unique fiber approach provides the capability to illuminate a large surface with a uniform intensity distri-bution, independently of the initial shape originating from the light source, and without loss of optical power. The CVs and sensitivities are measured and compared to industry benchmarks. Finally, integration of LEDs enable several advantages in cost, compactness, and wavelength availability.
Methods of computing steady-state voltage stability margins of power systems
Chow, Joe Hong; Ghiocel, Scott Gordon
2018-03-20
In steady-state voltage stability analysis, as load increases toward a maximum, conventional Newton-Raphson power flow Jacobian matrix becomes increasingly ill-conditioned so power flow fails to converge before reaching maximum loading. A method to directly eliminate this singularity reformulates the power flow problem by introducing an AQ bus with specified bus angle and reactive power consumption of a load bus. For steady-state voltage stability analysis, the angle separation between the swing bus and AQ bus can be varied to control power transfer to the load, rather than specifying the load power itself. For an AQ bus, the power flow formulation is only made up of a reactive power equation, thus reducing the size of the Jacobian matrix by one. This reduced Jacobian matrix is nonsingular at the critical voltage point, eliminating a major difficulty in voltage stability analysis for power system operations.
Reacting Multi-Species Gas Capability for USM3D Flow Solver
NASA Technical Reports Server (NTRS)
Frink, Neal T.; Schuster, David M.
2012-01-01
The USM3D Navier-Stokes flow solver contributed heavily to the NASA Constellation Project (CxP) as a highly productive computational tool for generating the aerodynamic databases for the Ares I and V launch vehicles and Orion launch abort vehicle (LAV). USM3D is currently limited to ideal-gas flows, which are not adequate for modeling the chemistry or temperature effects of hot-gas jet flows. This task was initiated to create an efficient implementation of multi-species gas and equilibrium chemistry into the USM3D code to improve its predictive capabilities for hot jet impingement effects. The goal of this NASA Engineering and Safety Center (NESC) assessment was to implement and validate a simulation capability to handle real-gas effects in the USM3D code. This document contains the outcome of the NESC assessment.
Optimization of a rod pinch diode radiography source at 2.3 MV
NASA Astrophysics Data System (ADS)
Menge, P. R.; Johnson, D. L.; Maenchen, J. E.; Rovang, D. C.; Oliver, B. V.; Rose, D. V.; Welch, D. R.
2003-08-01
Rod pinch diodes have shown considerable capability as high-brightness flash x-ray sources for penetrating dynamic radiography. The rod pinch diode uses a small diameter (0.4-2 mm) anode rod extended through a cathode aperture. When properly configured, the electron beam born off of the aperture edge can self-insulate and pinch onto the tip of the rod creating an intense, small x-ray source. Sandia's SABRE accelerator (2.3 MV, 40 Ω, 70 ns) has been utilized to optimize the source experimentally by maximizing the figure of merit (dose/spot diameter2) and minimizing the diode impedance droop. Many diode parameters have been examined including rod diameter, rod length, rod material, cathode aperture diameter, cathode thickness, power flow gap, vacuum quality, and severity of rod-cathode misalignment. The configuration producing the greatest figure of merit uses a 0.5 mm diameter gold rod, a 6 mm rod extension beyond the cathode aperture (diameter=8 mm), and a 10 cm power flow gap to produce up to 3.5 rad (filtered dose) at 1 m from a 0.85 mm x-ray on-axis spot (1.02 mm at 3° off axis). The resultant survey of parameter space has elucidated several physics issues that are discussed.
Final Report Nucleic Acid System - Hybrid PCR and Multiplex Assay Project Phase 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koopman, R P; Langlois, R G; Nasarabadi, S
2002-04-17
This report covers phase 2 (year 2) of the Nucleic Acid System--Hybrid PCR and Multiplex Assay project. The objective of the project is to reduce to practice the detection and identification of biological warfare pathogens by the nucleic acid recognition technique of PCR (polymerase chain reaction) in a multiplex mode using flow cytometry. The Hybrid instrument consists of a flow-through PCR module capable of handling a multiplexed PCR assay, a hybridizing module capable of hybridizing multiplexed PCR amplicons and beads, and a flow cytometer module for bead-based identification, all controlled by a single computer. Multiplex immunoassay using bead-based Luminex flowmore » cytometry is available, allowing rapid screening for many agents. PCR is highly specific and complements and verifies immunoassay. It can also be multiplexed and detection provided using the bead-based Luminex flow cytometer. This approach allows full access to the speed and 100-fold multiplex capability of flow cytometry for rapid screening as well as the accuracy and specificity of PCR. This project has two principal activities: (1) Design, build and test a prototype hybrid PCR/flow cytometer with the basic capabilities for rapid, broad spectrum detection and identification, and (2) Develop and evaluate multiplex flow analysis assay protocols and reagents for the simultaneous detection of PCR products. This project requires not only building operationally functional instrumentation but also developing the chemical assays for detection of priority pathogens. This involves development and evaluation of multiplex flow analysis assay protocols and reagents for the simultaneous detection of PCR products.« less
Multi-objective optimal dispatch of distributed energy resources
NASA Astrophysics Data System (ADS)
Longe, Ayomide
This thesis is composed of two papers which investigate the optimal dispatch for distributed energy resources. In the first paper, an economic dispatch problem for a community microgrid is studied. In this microgrid, each agent pursues an economic dispatch for its personal resources. In addition, each agent is capable of trading electricity with other agents through a local energy market. In this paper, a simple market structure is introduced as a framework for energy trades in a small community microgrid such as the Solar Village. It was found that both sellers and buyers benefited by participating in this market. In the second paper, Semidefinite Programming (SDP) for convex relaxation of power flow equations is used for optimal active and reactive dispatch for Distributed Energy Resources (DER). Various objective functions including voltage regulation, reduced transmission line power losses, and minimized reactive power charges for a microgrid are introduced. Combinations of these goals are attained by solving a multiobjective optimization for the proposed ORPD problem. Also, both centralized and distributed versions of this optimal dispatch are investigated. It was found that SDP made the optimal dispatch faster and distributed solution allowed for scalability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakraborty, Sudipta
Various interconnection challenges exist when connecting distributed PV into the electrical distribution grid in terms of safety, reliability, and stability of the electric power systems. Some of the urgent areas for research, as identified by inverter manufacturers, installers and utilities, are potential for transient overvoltage from PV inverters, multi-inverter anti-islanding, impact of smart inverters on volt-VAR support, impact of bidirectional power flow, and potential for distributed generation curtailment solutions to mitigate grid stability challenges. Under this project, NREL worked with SolarCity to address these challenges through research, testing and analysis at the Energy System Integration Facility (ESIF). Inverters from differentmore » manufacturers were tested at ESIF and NREL's unique power hardware-in-the-loop (PHIL) capability was utilized to evaluate various system-level impacts. Through the modeling, simulation, and testing, this project eliminated critical barriers on high PV penetration and directly supported the Department of Energy's SunShot goal of increasing the solar PV on the electrical grid.« less
Co-Simulation for Advanced Process Design and Optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stephen E. Zitney
2009-01-01
Meeting the increasing demand for clean, affordable, and secure energy is arguably the most important challenge facing the world today. Fossil fuels can play a central role in a portfolio of carbon-neutral energy options provided CO{sub 2} emissions can be dramatically reduced by capturing CO{sub 2} and storing it safely and effectively. Fossil energy industry faces the challenge of meeting aggressive design goals for next-generation power plants with CCS. Process designs will involve large, highly-integrated, and multipurpose systems with advanced equipment items with complex geometries and multiphysics. APECS is enabling software to facilitate effective integration, solution, and analysis of high-fidelitymore » process/equipment (CFD) co-simulations. APECS helps to optimize fluid flow and related phenomena that impact overall power plant performance. APECS offers many advanced capabilities including ROMs, design optimization, parallel execution, stochastic analysis, and virtual plant co-simulations. NETL and its collaborative R&D partners are using APECS to reduce the time, cost, and technical risk of developing high-efficiency, zero-emission power plants with CCS.« less
Smart Grid Development Issues for Terrestrial and Space Applications
NASA Technical Reports Server (NTRS)
Soeder, James F.
2011-01-01
The development of the so called Smart Grid has as many definitions as individuals working in the area. Based on the technology or technologies that are of interest, be it high speed communication, renewable generation, smart meters, energy storage, advanced sensors, etc. they can become the individual defining characteristic of the Smart Grid. In reality the smart grid encompasses all of these items and quite at bit more. This discussion attempts to look at what the needs are for the grid of the future, such as the issues of increased power flow capability, use of renewable energy, increased security and efficiency and common power and data standards. It also shows how many of these issues are common with the needs of NASA for future exploration programs. A common theme to address both terrestrial and space exploration issues is to develop micro-grids that advertise the ability to enable the load leveling of large power generation facilities. However, for microgrids to realize their promise there needs to a holistic systems approach to their development and integration. The overall system integration issues are presented along with potential solution methodologies.
Smart Grid Development Issues for Terrestrial and Space Applications
NASA Technical Reports Server (NTRS)
Soeder, James F.
2014-01-01
The development of the so called Smart Grid has as many definitions as individuals working in the area. Based on the technology or technologies that are of interest, be it high speed communication, renewable generation, smart meters, energy storage, advanced sensors, etc. they can become the individual defining characteristic of the Smart Grid. In reality the smart grid encompasses all of these items and quite at bit more. This discussion attempts to look at what the needs are for the grid of the future, such as the issues of increased power flow capability, use of renewable energy, increased security and efficiency and common power and data standards. It also shows how many of these issues are common with the needs of NASA for future exploration programs. A common theme to address both terrestrial and space exploration issues is to develop micro-grids that advertise the ability to enable the load leveling of large power generation facilities. However, for microgrids to realize their promise there needs to a holistic systems approach to their development and integration. The overall system integration issues are presented along with potential solution methodologies.
Large area atmospheric-pressure plasma jet
Selwyn, Gary S.; Henins, Ivars; Babayan, Steve E.; Hicks, Robert F.
2001-01-01
Large area atmospheric-pressure plasma jet. A plasma discharge that can be operated at atmospheric pressure and near room temperature using 13.56 MHz rf power is described. Unlike plasma torches, the discharge produces a gas-phase effluent no hotter than 250.degree. C. at an applied power of about 300 W, and shows distinct non-thermal characteristics. In the simplest design, two planar, parallel electrodes are employed to generate a plasma in the volume therebetween. A "jet" of long-lived metastable and reactive species that are capable of rapidly cleaning or etching metals and other materials is generated which extends up to 8 in. beyond the open end of the electrodes. Films and coatings may also be removed by these species. Arcing is prevented in the apparatus by using gas mixtures containing He, which limits ionization, by using high flow velocities, and by properly spacing the rf-powered electrode. Because of the atmospheric pressure operation, there is a negligible density of ions surviving for a sufficiently long distance beyond the active plasma discharge to bombard a workpiece, unlike the situation for low-pressure plasma sources and conventional plasma processing methods.
Atmospheric-pressure plasma jet
Selwyn, Gary S.
1999-01-01
Atmospheric-pressure plasma jet. A .gamma.-mode, resonant-cavity plasma discharge that can be operated at atmospheric pressure and near room temperature using 13.56 MHz rf power is described. Unlike plasma torches, the discharge produces a gas-phase effluent no hotter than 250.degree. C. at an applied power of about 300 W, and shows distinct non-thermal characteristics. In the simplest design, two concentric cylindrical electrodes are employed to generate a plasma in the annular region therebetween. A "jet" of long-lived metastable and reactive species that are capable of rapidly cleaning or etching metals and other materials is generated which extends up to 8 in. beyond the open end of the electrodes. Films and coatings may also be removed by these species. Arcing is prevented in the apparatus by using gas mixtures containing He, which limits ionization, by using high flow velocities, and by properly shaping the rf-powered electrode. Because of the atmospheric pressure operation, no ions survive for a sufficiently long distance beyond the active plasma discharge to bombard a workpiece, unlike low-pressure plasma sources and conventional plasma processing methods.
NASA Astrophysics Data System (ADS)
Guo, Wenzhang; Wang, Hao; Wu, Zhengping
2018-03-01
Most existing cascading failure mitigation strategy of power grids based on complex network ignores the impact of electrical characteristics on dynamic performance. In this paper, the robustness of the power grid under a power decentralization strategy is analysed through cascading failure simulation based on AC flow theory. The flow-sensitive (FS) centrality is introduced by integrating topological features and electrical properties to help determine the siting of the generation nodes. The simulation results of the IEEE-bus systems show that the flow-sensitive centrality method is a more stable and accurate approach and can enhance the robustness of the network remarkably. Through the study of the optimal flow-sensitive centrality selection for different networks, we find that the robustness of the network with obvious small-world effect depends more on contribution of the generation nodes detected by community structure, otherwise, contribution of the generation nodes with important influence on power flow is more critical. In addition, community structure plays a significant role in balancing the power flow distribution and further slowing the propagation of failures. These results are useful in power grid planning and cascading failure prevention.
NASA Technical Reports Server (NTRS)
Polzin, Kurt A.
2016-01-01
CUBESATS are relatively new spacecraft platforms that are typically deployed from a launch vehicle as a secondary payload, providing low-cost access to space for a wide range of end-users. These satellites are comprised of building blocks having dimensions of 10x10x10 cu cm and a mass of 1.33 kg (a 1-U size). While providing low-cost access to space, a major operational limitation is the lack of a propulsion system that can fit within a CubeSat and is capable of executing high (Delta)v maneuvers. This makes it difficult to use CubeSats on missions requiring certain types of maneuvers (i.e. formation flying, spacecraft rendezvous). Recently, work has been performed investigating the use of iodine as a propellant for Hall-effect thrusters (HETs) 2 that could subsequently be used to provide a high specific impulse path to CubeSat propulsion. 3, 4 Iodine stores as a dense solid at very low pressures, making it acceptable as a propellant on a secondary payload. It has exceptionally high ?Isp (density times specific impulse), making it an enabling technology for small satellite near-term applications and providing the potential for systems-level advantages over mid-term high power electric propulsion options. Iodine flow can also be thermally regulated, subliming at relatively low temperature (< 100 C) to yield I2 vapor at or below 50 torr. At low power, the measured performance of an iodine-fed HET is very similar to that of a state-of-the-art xenon-fed thruster. Just as importantly, the current-voltage discharge characteristics of low power iodine-fed and xenon-fed thrusters are remarkably similar, potentially reducing development and qualifications costs by making it possible to use an already-qualified xenon-HET PPU in an iodine-fed system. Finally, a cold surface can be installed in a vacuum test chamber on which expended iodine propellant can deposit. In addition, the temperature doesn't have to be extremely cold to maintain a low vapor pressure in the vacuum chamber (it is under 10(exp -6) torr at -75 C), making it possible to 'cryopump' the propellant with lower-cost recirculating refrigerant-based systems as opposed to using liquid nitrogen or low temperature gaseous helium cryopanels. In the present paper, we describe the design and testing of the engineering model propellant feed system for iSAT (see Fig. 1). The feed system is based around an iodine propellant reservoir and two proportional control valves (PFCVs) that meter the iodine flow to the cathode and anode. The flow is split upstream of the PFCVs to both components can be fed from a common reservoir. Testing of the reservoir is reported to demonstrate that the design is capable of delivering the required propellant flow rates to operate the thruster. The tubing and reservoir are fabricated from hastelloy to resist corrosion by the heated gaseous iodine propellant. The reservoir, tubing, and PFCVs are heated to ensure the sublimed propellant will not re-deposit within the feed system. Heating is accomplished through a number of individual zones to control the overall power expended on heating the system and insulation is employed to minimize the amount of power used to heat the system prior to thruster operation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishii, Mamoru
The NEUP funded project, NEUP-3496, aims to experimentally investigate two-phase natural circulation flow instability that could occur in Small Modular Reactors (SMRs), especially for natural circulation SMRs. The objective has been achieved by systematically performing tests to study the general natural circulation instability characteristics and the natural circulation behavior under start-up or design basis accident conditions. Experimental data sets highlighting the effect of void reactivity feedback as well as the effect of power ramp-up rate and system pressure have been used to develop a comprehensive stability map. The safety analysis code, RELAP5, has been used to evaluate experimental results andmore » models. Improvements to the constitutive relations for flashing have been made in order to develop a reliable analysis tool. This research has been focusing on two generic SMR designs, i.e. a small modular Simplified Boiling Water Reactor (SBWR) like design and a small integral Pressurized Water Reactor (PWR) like design. A BWR-type natural circulation test facility was firstly built based on the three-level scaling analysis of the Purdue Novel Modular Reactor (NMR) with an electric output of 50 MWe, namely NMR-50, which represents a BWR-type SMR with a significantly reduced reactor pressure vessel (RPV) height. The experimental facility was installed with various equipment to measure thermalhydraulic parameters such as pressure, temperature, mass flow rate and void fraction. Characterization tests were performed before the startup transient tests and quasi-steady tests to determine the loop flow resistance. The control system and data acquisition system were programmed with LabVIEW to realize the realtime control and data storage. The thermal-hydraulic and nuclear coupled startup transients were performed to investigate the flow instabilities at low pressure and low power conditions for NMR-50. Two different power ramps were chosen to study the effect of startup power density on the flow instability. The experimental startup transient results showed the existence of three different flow instability mechanisms, i.e., flashing instability, condensation induced flow instability, and density wave oscillations. In addition, the void-reactivity feedback did not have significant effects on the flow instability during the startup transients for NMR-50. ii Several initial startup procedures with different power ramp rates were experimentally investigated to eliminate the flow instabilities observed from the startup transients. Particularly, the very slow startup transient and pressurized startup transient tests were performed and compared. It was found that the very slow startup transients by applying very small power density can eliminate the flashing oscillations in the single-phase natural circulation and stabilize the flow oscillations in the phase of net vapor generation. The initially pressurized startup procedure was tested to eliminate the flashing instability during the startup transients as well. The pressurized startup procedure included the initial pressurization, heat-up, and venting process. The startup transient tests showed that the pressurized startup procedure could eliminate the flow instability during the transition from single-phase flow to two-phase flow at low pressure conditions. The experimental results indicated that both startup procedures were applicable to the initial startup of NMR. However, the pressurized startup procedures might be preferred due to short operating hours required. In order to have a deeper understanding of natural circulation flow instability, the quasi-steady tests were performed using the test facility installed with preheater and subcooler. The effect of system pressure, core inlet subcooling, core power density, inlet flow resistance coefficient, and void reactivity feedback were investigated in the quasi-steady state tests. The experimental stability boundaries were determined between unstable and stable flow conditions in the dimensionless stability plane of inlet subcooling number and Zuber number. To predict the stability boundary theoretically, linear stability analysis in the frequency domain was performed at four sections of the natural circulation test loop. The flashing phenomena in the chimney section was considered as an axially uniform heat source. And the dimensionless characteristic equation of the pressure drop perturbation was obtained by considering the void fraction effect and outlet flow resistance in the core section. The theoretical flashing boundary showed some discrepancies with previous experimental data from the quasi-steady state tests. In the future, thermal non-equilibrium was recommended to improve the accuracy of flashing instability boundary. As another part of the funded research, flow instabilities of a PWR-type SMR under low pressure and low power conditions were investigated experimentally as well. The NuScale reactor design was selected as the prototype for the PWR-type SMR. In order to experimentally study the natural circulation behavior of NuScale iii reactor during accidental scenarios, detailed scaling analyses are necessary to ensure that the scaled phenomena could be obtained in a laboratory test facility. The three-level scaling method is used as well to obtain the scaling ratios derived from various non-dimensional numbers. The design of the ideally scaled facility (ISF) was initially accomplished based on these scaling ratios. Then the engineering scaled facility (ESF) was designed and constructed based on the ISF by considering engineering limitations including laboratory space, pipe size, and pipe connections etc. PWR-type SMR experiments were performed in this well-scaled test facility to investigate the potential thermal hydraulic flow instability during the blowdown events, which might occur during the loss of coolant accident (LOCA) and loss of heat sink accident (LOHS) of the prototype PWR-type SMR. Two kinds of experiments, normal blowdown event and cold blowdown event, were experimentally investigated and compared with code predictions. The normal blowdown event was experimentally simulated since an initial condition where the pressure was lower than the designed pressure of the experiment facility, while the code prediction of blowdown started from the normal operation condition. Important thermal hydraulic parameters including reactor pressure vessel (RPV) pressure, containment pressure, local void fraction and temperature, pressure drop and natural circulation flow rate were measured and analyzed during the blowdown event. The pressure and water level transients are similar to the experimental results published by NuScale [51], which proves the capability of current loop in simulating the thermal hydraulic transient of real PWR-type SMR. During the 20000s blowdown experiment, water level in the core was always above the active fuel assemble during the experiment and proved the safety of natural circulation cooling and water recycling design of PWR-type SMR. Besides, pressure, temperature, and water level transient can be accurately predicted by RELAP5 code. However, the oscillations of natural circulation flow rate, water level and pressure drops were observed during the blowdown transients. This kind of flow oscillations are related to the water level and the location upper plenum, which is a path for coolant flow from chimney to steam generator and down comer. In order to investigate the transients start from the opening of ADS valve in both experimental and numerical way, the cold blow-down experiment is conducted. For the cold blowdown event, different from setting both reactor iv pressure vessel (RPV) and containment at high temperature and pressure, only RPV was heated close to the highest designed pressure and then open the ADS valve, same process was predicted using RELAP5 code. By doing cold blowdown experiment, the entire transients from the opening of ADS can be investigated by code and benchmarked with experimental data. Similar flow instability observed in the cold blowdown experiment. The comparison between code prediction and experiment data showed that the RELAP5 code can successfully predict the pressure void fraction and temperature transient during the cold blowdown event with limited error, but numerical instability exists in predicting natural circulation flow rate. Besides, the code is lack of capability in predicting the water level related flow instability observed in experiments.« less
Collaborative Autonomous Unmanned Aerial - Ground Vehicle Systems for Field Operations
2007-08-31
very limited payload capabilities of small UVs, sacrificing minimal computational power and run time, adhering at the same time to the low cost...configuration has been chosen because of its high computational capabilities, low power consumption, multiple I/O ports, size, low heat emission and cost. This...due to their high power to weight ratio, small packaging, and wide operating temperatures. Power distribution is controlled by the 120 Watt ATX power
NASA Technical Reports Server (NTRS)
Balboni, John A.; Gokcen, Tahir; Hui, Frank C. L.; Graube, Peter; Morrissey, Patricia; Lewis, Ronald
2015-01-01
The paper describes the consolidation of NASA's high powered arc-jet testing at a single location. The existing plasma arc-jet wind tunnels located at the Johnson Space Center were relocated to Ames Research Center while maintaining NASA's technical capability to ground-test thermal protection system materials under simulated atmospheric entry convective heating. The testing conditions at JSC were reproduced and successfully demonstrated at ARC through close collaboration between the two centers. New equipment was installed at Ames to provide test gases of pure nitrogen mixed with pure oxygen, and for future nitrogen-carbon dioxide mixtures. A new control system was custom designed, installed and tested. Tests demonstrated the capability of the 10 MW constricted-segmented arc heater at Ames meets the requirements of the major customer, NASA's Orion program. Solutions from an advanced computational fluid dynamics code were used to aid in characterizing the properties of the plasma stream and the surface environment on the calorimeters in the supersonic flow stream produced by the arc heater.
NEXT Ion Thruster Performance Dispersion Analyses
NASA Technical Reports Server (NTRS)
Soulas, George C.; Patterson, Michael J.
2008-01-01
The NEXT ion thruster is a low specific mass, high performance thruster with a nominal throttling range of 0.5 to 7 kW. Numerous engineering model and one prototype model thrusters have been manufactured and tested. Of significant importance to propulsion system performance is thruster-to-thruster performance dispersions. This type of information can provide a bandwidth of expected performance variations both on a thruster and a component level. Knowledge of these dispersions can be used to more conservatively predict thruster service life capability and thruster performance for mission planning, facilitate future thruster performance comparisons, and verify power processor capabilities are compatible with the thruster design. This study compiles the test results of five engineering model thrusters and one flight-like thruster to determine unit-to-unit dispersions in thruster performance. Component level performance dispersion analyses will include discharge chamber voltages, currents, and losses; accelerator currents, electron backstreaming limits, and perveance limits; and neutralizer keeper and coupling voltages and the spot-to-plume mode transition flow rates. Thruster level performance dispersion analyses will include thrust efficiency.
Advanced multilateration theory, software development, and data processing: The MICRODOT system
NASA Technical Reports Server (NTRS)
Escobal, P. R.; Gallagher, J. F.; Vonroos, O. H.
1976-01-01
The process of geometric parameter estimation to accuracies of one centimeter, i.e., multilateration, is defined and applications are listed. A brief functional explanation of the theory is presented. Next, various multilateration systems are described in order of increasing system complexity. Expected systems accuracy is discussed from a general point of view and a summary of the errors is listed. An outline of the design of a software processing system for multilateration, called MICRODOT, is presented next. The links of this software, which can be used for multilateration data simulations or operational data reduction, are examined on an individual basis. Functional flow diagrams are presented to aid in understanding the software capability. MICRODOT capability is described with respect to vehicle configurations, interstation coordinate reduction, geophysical parameter estimation, and orbit determination. Numerical results obtained from MICRODOT via data simulations are displayed both for hypothetical and real world vehicle/station configurations such as used in the GEOS-3 Project. These simulations show the inherent power of the multilateration procedure.
NASA Astrophysics Data System (ADS)
Kubala, S. Z.; Borchardt, M. T.; Den Hartog, D. J.; Holly, D. J.; Jacobson, C. M.; Morton, L. A.; Young, W. C.
2016-11-01
The Thomson scattering diagnostic on MST records both equilibrium and fluctuating electron temperature with a range capability of 10 eV-5 keV. Standard operation with two modified commercial Nd:YAG lasers allows measurements at rates of 1 kHz-25 kHz. Several subsystems of the diagnostic are being improved. The power supplies for the avalanche photodiode detectors (APDs) that record the scattered light are being replaced to improve usability, reliability, and maintainability. Each of the 144 APDs will have an individual rack mounted switching supply, with bias voltage adjustable to match the APD. Long-wavelength filters (1140 nm center, 80 nm bandwidth) have been added to the polychromators to improve capability to resolve non-Maxwellian distributions and to enable directed electron flow measurements. A supercontinuum (SC) pulsed white light source has replaced the tungsten halogen lamp previously used for spectral calibration of the polychromators. The SC source combines substantial brightness produced in nanosecond pulses with a spectrum that covers the entire range of the polychromators.
NASA Astrophysics Data System (ADS)
Niwa, Yoshimitsu; Kaneko, Eiji
Vacuum circuit breakers (VCB) have been widely used for power distribution systems. Vacuum Interrupters, which are the current interruption unit, have been increased its interruption capability with the development of vacuum arc control technology by magnetic field. There are three major type electrodes: disk shaped electrodes, radial magnetic field electrodes, axial magnetic field (AMF) electrodes. In the disk shaped electrode, the vacuum arc between the electrodes is not controlled. In the AMF electrode, the vacuum arc is diffused and stabilized by an axial magnetic field, which is parallel to the arc current. In the last type of electrodes, the vacuum arc column is rotated by magnetic force generated by the current flowing in the electrodes. The interruption current and the voltage of one break VCB is increased to 100 kA, 144 kV respectively. This paper describes basic configurations and functions of VCB, vacuum arc control technology in vacuum interrupters, recent researches and applications of VCB.
Kubala, S Z; Borchardt, M T; Den Hartog, D J; Holly, D J; Jacobson, C M; Morton, L A; Young, W C
2016-11-01
The Thomson scattering diagnostic on MST records both equilibrium and fluctuating electron temperature with a range capability of 10 eV-5 keV. Standard operation with two modified commercial Nd:YAG lasers allows measurements at rates of 1 kHz-25 kHz. Several subsystems of the diagnostic are being improved. The power supplies for the avalanche photodiode detectors (APDs) that record the scattered light are being replaced to improve usability, reliability, and maintainability. Each of the 144 APDs will have an individual rack mounted switching supply, with bias voltage adjustable to match the APD. Long-wavelength filters (1140 nm center, 80 nm bandwidth) have been added to the polychromators to improve capability to resolve non-Maxwellian distributions and to enable directed electron flow measurements. A supercontinuum (SC) pulsed white light source has replaced the tungsten halogen lamp previously used for spectral calibration of the polychromators. The SC source combines substantial brightness produced in nanosecond pulses with a spectrum that covers the entire range of the polychromators.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woloshun, Keith Albert; Dale, Gregory E.; Olivas, Eric Richard
The Northstar target for Mo99 production is made up of Mo100 disks in a stack separated by coolant gaps for helium flow. A number of targets have been tested at ANL for both production of Mo99 and for thermal-hydraulic performance. These have all been with a 12 mm diameter target, even while the production goals have increased the diameter to now 29 mm. A 29 mm diameter target has been designed that is consistent with the ANL beam capabilities and the capabilities of the helium circulation system currently in use at ANL. This target is designed for 500 μA atmore » 35 MeV electrons. While the plant design calls for 42 MeV, the chosen design point is more favorable and higher power given the limits of the ANL accelerator. The intended beam spot size is 12 mm FWHM, but the thermal analysis presented herein conservatively assumed a 10 mm FWHM beam, which results in a 44% higher beam current density at beam center.« less
Multiport power router and its impact on future smart grids
NASA Astrophysics Data System (ADS)
Kado, Yuichi; Shichijo, Daiki; Wada, Keiji; Iwatsuki, Katsumi
2016-07-01
We propose a Y configuration power router as a unit cell to easily construct a power delivery system that can meet many types of user requirements. The Y configuration power router controls the direction and magnitude of power flows between three ports regardless of DC or AC. We constructed a prototype three-way isolated DC/DC converter that is the core unit of the Y configuration power router. The electrical insulation between three ports assures safety and reliability for power network systems. We then tested the operation of power flow control. The experimental results revealed that our methodology based on a governing equation was appropriate to control the power flow of the three-way DC/DC converter. In addition, a distribution network composed of power routers had the ability to easily enable interchanges of electrical power between autonomous microgrid cells. We also explored the requirements for communication between energy routers to achieve dynamic adjustments of energy flows in a coordinated manner and their impact on resilient power grid systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dall'Anese, Emiliano
Past works that focused on addressing power-quality and reliability concerns related to renewable energy resources (RESs) operating with business-as-usual practices have looked at the design of Volt/VAr and Volt/Watt strategies to regulate real or reactive powers based on local voltage measurements, so that terminal voltages are within acceptable levels. These control strategies have the potential of operating at the same time scale of distribution-system dynamics, and can therefore mitigate disturbances precipitated fast time-varying loads and ambient conditions; however, they do not necessarily guarantee system-level optimality, and stability claims are mainly based on empirical evidences. On a different time scale, centralizedmore » and distributed optimal power flow (OPF) algorithms have been proposed to compute optimal steady-state inverter setpoints, so that power losses and voltage deviations are minimized and economic benefits to end-users providing ancillary services are maximized. However, traditional OPF schemes may offer decision making capabilities that do not match the dynamics of distribution systems. Particularly, during the time required to collect data from all the nodes of the network (e.g., loads), solve the OPF, and subsequently dispatch setpoints, the underlying load, ambient, and network conditions may have already changed; in this case, the DER output powers would be consistently regulated around outdated setpoints, leading to suboptimal system operation and violation of relevant electrical limits. The present work focuses on the synthesis of distributed RES-inverter controllers that leverage the opportunities for fast feedback offered by power-electronics interfaced RESs. The overarching objective is to bridge the temporal gap between long-term system optimization and real-time control, to enable seamless RES integration in large scale with stability and efficiency guarantees, while congruently pursuing system-level optimization objectives. The design of the control framework is based on suitable linear approximations of the AC power-flow equations as well as Lagrangian regularization methods. The proposed controllers enable an update of the power outputs at a time scale that is compatible with the underlying dynamics of loads and ambient conditions, and continuously drive the system operation towards OPF-based solutions.« less
2003-10-13
04ANNUAL-524 Logistics and Capability Implications of a Bradley Fighting Vehicle with a Fuel Cell Auxiliary Power Unit Joseph Conover, Harry...used or the main engines are restarted. Integration of a solid oxide fuel cell (SOFC) auxiliary power unit into a military vehicle has the...presented which show the fuel usage and capability impacts of incorporating a fuel cell APU into the electrical system of a Bradley M2A3 Diesel
Ananth, D V N; Nagesh Kumar, G V
2016-05-01
With increase in electric power demand, transmission lines were forced to operate close to its full load and due to the drastic change in weather conditions, thermal limit is increasing and the system is operating with less security margin. To meet the increased power demand, a doubly fed induction generator (DFIG) based wind generation system is a better alternative. For improving power flow capability and increasing security STATCOM can be adopted. As per modern grid rules, DFIG needs to operate without losing synchronism called low voltage ride through (LVRT) during severe grid faults. Hence, an enhanced field oriented control technique (EFOC) was adopted in Rotor Side Converter of DFIG converter to improve power flow transfer and to improve dynamic and transient stability. A STATCOM is coordinated to the system for obtaining much better stability and enhanced operation during grid fault. For the EFOC technique, rotor flux reference changes its value from synchronous speed to zero during fault for injecting current at the rotor slip frequency. In this process DC-Offset component of flux is controlled, decomposition during symmetric and asymmetric faults. The offset decomposition of flux will be oscillatory in a conventional field oriented control, whereas in EFOC it was aimed to damp quickly. This paper mitigates voltage and limits surge currents to enhance the operation of DFIG during symmetrical and asymmetrical faults. The system performance with different types of faults like single line to ground, double line to ground and triple line to ground was applied and compared without and with a STATCOM occurring at the point of common coupling with fault resistance of a very small value at 0.001Ω. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Centrifugal and Axial Pump Design and Off-Design Performance Prediction
NASA Technical Reports Server (NTRS)
Veres, Joseph P.
1995-01-01
A meanline pump-flow modeling method has been developed to provide a fast capability for modeling pumps of cryogenic rocket engines. Based on this method, a meanline pump-flow code PUMPA was written that can predict the performance of pumps at off-design operating conditions, given the loss of the diffusion system at the design point. The design-point rotor efficiency and slip factors are obtained from empirical correlations to rotor-specific speed and geometry. The pump code can model axial, inducer, mixed-flow, and centrifugal pumps and can model multistage pumps in series. The rapid input setup and computer run time for this meanline pump flow code make it an effective analysis and conceptual design tool. The map-generation capabilities of the code provide the information needed for interfacing with a rocket engine system modeling code. The off-design and multistage modeling capabilities of PUMPA permit the user to do parametric design space exploration of candidate pump configurations and to provide head-flow maps for engine system evaluation.
SAFSIM theory manual: A computer program for the engineering simulation of flow systems
NASA Astrophysics Data System (ADS)
Dobranich, Dean
1993-12-01
SAFSIM (System Analysis Flow SIMulator) is a FORTRAN computer program for simulating the integrated performance of complex flow systems. SAFSIM provides sufficient versatility to allow the engineering simulation of almost any system, from a backyard sprinkler system to a clustered nuclear reactor propulsion system. In addition to versatility, speed and robustness are primary SAFSIM development goals. SAFSIM contains three basic physics modules: (1) a fluid mechanics module with flow network capability; (2) a structure heat transfer module with multiple convection and radiation exchange surface capability; and (3) a point reactor dynamics module with reactivity feedback and decay heat capability. Any or all of the physics modules can be implemented, as the problem dictates. SAFSIM can be used for compressible and incompressible, single-phase, multicomponent flow systems. Both the fluid mechanics and structure heat transfer modules employ a one-dimensional finite element modeling approach. This document contains a description of the theory incorporated in SAFSIM, including the governing equations, the numerical methods, and the overall system solution strategies.
Advanced natural laminar flow airfoil with high lift to drag ratio
NASA Technical Reports Server (NTRS)
Viken, Jeffrey K.; Pfenninger, Werner; Mcghee, Robert J.
1986-01-01
An experimental verification of a high performance natural laminar flow (NLF) airfoil for low speed and high Reynolds number applications was completed in the Langley Low Turbulence Pressure Tunnel (LTPT). Theoretical development allowed for the achievement of 0.70 chord laminar flow on both surfaces by the use of accelerated flow as long as tunnel turbulence did not cause upstream movement of transition with increasing chord Reynolds number. With such a rearward pressure recovery, a concave type deceleration was implemented. Two-dimensional theoretical analysis indicated that a minimum profile drag coefficient of 0.0026 was possible with the desired laminar flow at the design condition. With the three-foot chord two-dimensional model constructed for the LTPT experiment, a minimum profile drag coefficient of 0.0027 was measured at c sub l = 0.41 and Re sub c = 10 x 10 to the 6th power. The low drag bucket was shifted over a considerably large c sub l range by the use of the 12.5 percent chord trailing edge flap. A two-dimensional lift to drag ratio (L/D) was 245. Surprisingly high c sub l max values were obtained for an airfoil of this type. A 0.20 chort split flap with 60 deg deflection was also implemented to verify the airfoil's lift capabilities. A maximum lift coefficient of 2.70 was attained at Reynolds numbers of 3 and 6 million.
Non-Flow-Through Fuel Cell System Test Results and Demonstration on the SCARAB Rover
NASA Technical Reports Server (NTRS)
Scheidegger, Brianne; Burke, Kenneth; Jakupca, Ian
2012-01-01
This presentation describes the results of the demonstration of a non-flow-through PEM fuel cell as part of a power system on the SCARAB rover at the NASA Glenn Research Center. A 16-cell non-flow-through fuel cell stack from Infinity Fuel Cell and Hydrogen, Inc. was incorporated into a power system designed to act as a range extender by providing power to the SCARAB rover s hotel loads. The power system, including the non-flow-through fuel cell technology, successfully demonstrated its goal as a range extender by powering hotel loads on the SCARAB rover, making this demonstration the first to use the non-flow-through fuel cell technology on a mobile platform.
Power flow analysis of two coupled plates with arbitrary characteristics
NASA Technical Reports Server (NTRS)
Cuschieri, J. M.
1988-01-01
The limitation of keeping two plates identical is removed and the vibrational power input and output are evaluated for different area ratios, plate thickness ratios, and for different values of the structural damping loss factor for the source plate (plate with excitation) and the receiver plate. In performing this parametric analysis, the source plate characteristics are kept constant. The purpose of this parametric analysis is to be able to determine the most critical parameters that influence the flow of vibrational power from the source plate to the receiver plate. In the case of the structural damping parametric analysis, the influence of changes in the source plate damping is also investigated. As was done previously, results obtained from the mobility power flow approach will be compared to results obtained using a statistical energy analysis (SEA) approach. The significance of the power flow results are discussed together with a discussion and a comparison between SEA results and the mobility power flow results. Furthermore, the benefits that can be derived from using the mobility power flow approach, are also examined.
Supersonic Particle Impact Test Capabilities: Investigative Report
NASA Technical Reports Server (NTRS)
Rosales, Keisa
2007-01-01
NASA Johnson Space Center White Sands Test Facility (WSTF) performed particle impact flow tests to determine the maximum capabilities of the particle impact test systems in different configurations. Additional flow tests were performed to determine the target pressures at given upstream conditions to supplement the WSTF data located in ASTM Manual 36 (2000).
Code of Federal Regulations, 2014 CFR
2014-07-01
... providing a continuous record or an integrating regeneration stream flow monitoring device having an accuracy of ±10 percent or better, capable of recording the total regeneration stream mass or volumetric flow for each regeneration cycle; and a carbon-bed temperature monitoring device, capable of recording...
40 CFR 63.990 - Absorbers, condensers, and carbon adsorbers used as control devices.
Code of Federal Regulations, 2012 CFR
2012-07-01
... adsorber is used, an integrating regeneration stream flow monitoring device having an accuracy of ±10 percent or better, capable of recording the total regeneration stream mass or volumetric flow for each regeneration cycle; and a carbon bed temperature monitoring device, capable of recording the carbon bed...
40 CFR 63.990 - Absorbers, condensers, and carbon adsorbers used as control devices.
Code of Federal Regulations, 2014 CFR
2014-07-01
... adsorber is used, an integrating regeneration stream flow monitoring device having an accuracy of ±10 percent or better, capable of recording the total regeneration stream mass or volumetric flow for each regeneration cycle; and a carbon bed temperature monitoring device, capable of recording the carbon bed...
Code of Federal Regulations, 2010 CFR
2010-07-01
... providing a continuous record or an integrating regeneration stream flow monitoring device having an accuracy of ±10 percent or better, capable of recording the total regeneration stream mass or volumetric flow for each regeneration cycle; and a carbon-bed temperature monitoring device, capable of recording...
40 CFR 63.990 - Absorbers, condensers, and carbon adsorbers used as control devices.
Code of Federal Regulations, 2011 CFR
2011-07-01
... adsorber is used, an integrating regeneration stream flow monitoring device having an accuracy of ±10 percent or better, capable of recording the total regeneration stream mass or volumetric flow for each regeneration cycle; and a carbon bed temperature monitoring device, capable of recording the carbon bed...
Code of Federal Regulations, 2011 CFR
2011-07-01
... providing a continuous record or an integrating regeneration stream flow monitoring device having an accuracy of ±10 percent or better, capable of recording the total regeneration stream mass or volumetric flow for each regeneration cycle; and a carbon-bed temperature monitoring device, capable of recording...
Code of Federal Regulations, 2012 CFR
2012-07-01
... providing a continuous record or an integrating regeneration stream flow monitoring device having an accuracy of ±10 percent or better, capable of recording the total regeneration stream mass or volumetric flow for each regeneration cycle; and a carbon-bed temperature monitoring device, capable of recording...
40 CFR 63.990 - Absorbers, condensers, and carbon adsorbers used as control devices.
Code of Federal Regulations, 2013 CFR
2013-07-01
... adsorber is used, an integrating regeneration stream flow monitoring device having an accuracy of ±10 percent or better, capable of recording the total regeneration stream mass or volumetric flow for each regeneration cycle; and a carbon bed temperature monitoring device, capable of recording the carbon bed...
Code of Federal Regulations, 2013 CFR
2013-07-01
... providing a continuous record or an integrating regeneration stream flow monitoring device having an accuracy of ±10 percent or better, capable of recording the total regeneration stream mass or volumetric flow for each regeneration cycle; and a carbon-bed temperature monitoring device, capable of recording...
40 CFR 63.990 - Absorbers, condensers, and carbon adsorbers used as control devices.
Code of Federal Regulations, 2010 CFR
2010-07-01
... adsorber is used, an integrating regeneration stream flow monitoring device having an accuracy of ±10 percent or better, capable of recording the total regeneration stream mass or volumetric flow for each regeneration cycle; and a carbon bed temperature monitoring device, capable of recording the carbon bed...
Wide-Area Situational Awareness of Power Grids with Limited Phasor Measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Ning; Huang, Zhenyu; Nieplocha, Jarek
Lack of situational awareness has been identified as one of root causes for the August 14, 2003 Northeast Blackout in North America. To improve situational awareness, the Department of Energy (DOE) launched several projects to deploy Wide Area Measurement Systems (WAMS) in different interconnections. Compared to the tens of thousands of buses, the number of Phasor Measurement Units (PMUs) is quite limited and not enough to achieve the observability for the whole interconnections. To utilize the limited number of PMU measurements to improve situational awareness, this paper proposes to combine PMU measurement data and power flow equations to form amore » hybrid power flow model. Technically, a model which combines the concept of observable islands and modeling of power flow conditions, is proposed. The model is called a Hybrid Power Flow Model as it has both PMU measurements and simulation assumptions, which describes prior knowledge available about whole power systems. By solving the hybrid power flow equations, the proposed method can be used to derive power system states to improve the situational awareness of a power grid.« less
CAM-7/LTO Cells for Lithium-Ion Batteries with Rapid Charging Capability at Low Temperature
2012-04-06
TIAX’s high energy, high power CAM-7 cathode material, high rate capability lithium titanate (LTO) anode material, and a nitrile-cosolvent...employing TIAX’s high energy, high power CAM-7 cathode material, high rate capability lithium titanate (LTO) anode material, and a nitrile- cosolvent...electrolyte formulation. CAM-7 provides the highest energy content and rate capability of any market- ready cathode material. Commercially available
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clemens, Noel
This project was a combined computational and experimental effort to improve predictive capability for boundary layer flashback of premixed swirl flames relevant to gas-turbine power plants operating with high-hydrogen-content fuels. During the course of this project, significant progress in modeling was made on four major fronts: 1) use of direct numerical simulation of turbulent flames to understand the coupling between the flame and the turbulent boundary layer; 2) improved modeling capability for flame propagation in stratified pre-mixtures; 3) improved portability of computer codes using the OpenFOAM platform to facilitate transfer to industry and other researchers; and 4) application of LESmore » to flashback in swirl combustors, and a detailed assessment of its capabilities and limitations for predictive purposes. A major component of the project was an experimental program that focused on developing a rich experimental database of boundary layer flashback in swirl flames. Both methane and high-hydrogen fuels, including effects of elevated pressure (1 to 5 atm), were explored. For this project, a new model swirl combustor was developed. Kilohertz-rate stereoscopic PIV and chemiluminescence imaging were used to investigate the flame propagation dynamics. In addition to the planar measurements, a technique capable of detecting the instantaneous, time-resolved 3D flame front topography was developed and applied successfully to investigate the flow-flame interaction. The UT measurements and legacy data were used in a hierarchical validation approach where flows with increasingly complex physics were used for validation. First component models were validated with DNS and literature data in simplified configurations, and this was followed by validation with the UT 1-atm flashback cases, and then the UT high-pressure flashback cases. The new models and portable code represent a major improvement over what was available before this project was initiated.« less
Effect of Er,Cr:YSGG laser on human dentin fluid flow.
Al-Omari, Wael M; Palamara, Joseph E
2013-11-01
The aim of the current investigation was to assess the rate and magnitude of dentin fluid flow of dentinal surfaces irradiated with Er,Cr:YSGG laser. Twenty extracted third molars were sectioned, mounted, and irradiated with Er,Cr:YSGG laser at 3.5 and 4.5 W power settings. Specimens were connected to an automated fluid flow measurement apparatus (Flodec). The rate, magnitude, and direction of dentin fluid flow were recorded at baseline and after irradiation. Nonparametric Wilcoxon signed ranks repeated measure t test revealed a statistically significant reduction in fluid flow for all the power settings. The 4.5-W power output reduced the flow significantly more than the 3.5 W. The samples showed a baseline outward flow followed by inward flow due to irradiation then followed by decreased outward flow. It was concluded that Er,Cr:YSGG laser irradiation at 3.5 and 4.5 W significantly reduced dentinal fluid flow rate. The reduction was directly proportional to power output.
Performance Evaluation, Emulation, and Control of Cross-Flow Hydrokinetic Turbines
NASA Astrophysics Data System (ADS)
Cavagnaro, Robert J.
Cross-flow hydrokinetic turbines are a promising option for effectively harvesting energy from fast-flowing streams or currents. This work describes the dynamics of such turbines, analyzes techniques used to scale turbine properties for prototyping, determines and demonstrates the limits of stability for cross-flow rotors, and discusses means and objectives of turbine control. Novel control strategies are under development to utilize low-speed operation (slower than at maximum power point) as a means of shedding power under rated conditions. However, operation in this regime may be unstable. An experiment designed to characterize the stability of a laboratory-scale cross-flow turbine operating near a critically low speed yields evidence that system stall (complete loss of ability to rotate) occurs due, in part, to interactions with turbulent decreases in flow speed. The turbine is capable of maintaining 'stable' operation at critical speed for short duration (typically less than 10 s), as described by exponential decay. The presence of accelerated 'bypass' flow around the rotor and decelerated 'induction' region directly upstream of the rotor, both predicted by linear momentum theory, are observed and quantified with particle image velocimetry (PIV) measurements conducted upstream of the turbine. Additionally, general agreement is seen between PIV inflow measurements and those obtained by an advection-corrected acoustic Doppler velocimeter (ADV) further upstream. Performance of a turbine at small (prototype) geometric scale may be prone to undesirable effects due to operation at low Reynolds number and in the presence of high channel blockage. Therefore, testing at larger scale, in open water is desirable. A cross-flow hydrokinetic turbine with a projected area (product of blade span and rotor diameter) of 0.7 m2 is evaluated in open-water tow trials at three inflow speeds ranging from 1.0 m/s to 2.1 m/s. Measurements of the inflow velocity, the rotor mechanical power, and electrical power output of a complete power take-off (PTO) system are utilized to determine the rotor hydrodynamic efficiency (maximum of 17%) and total system efficiency (maximum of 9%). A lab-based dynamometry method yields individual component and total PTO efficiencies, shown to have high variability and strong influence on total system efficiency. Dynamic efficiencies of PTO components can effect the overall efficiency of a turbine system, a result from field characterization. Thus, the ability to evaluate such components and their potential effects on turbine performance prior to field deployment is desirable. Before attempting control experiments with actual turbines, hardware-in-the-loop testing on controllable motor-generator sets or electromechanical emulation machines (EEMs) are explored to better understand power take-off response. The emulator control dynamic equations are presented, methods for scaling turbine parameters are developed and evaluated, and experimental results are presented from three EEMs programmed to emulate the same cross-flow turbine. Although hardware platforms and control implementations varied, results show that each EEM is successful in emulating the turbine model at different power levels, thus demonstrating the general feasibility of the approach. However, performance of motor control under torque command, current command, or speed command differed; torque methods required accurate characterization of the motors while speed methods utilized encoder feedback and more accurately tracked turbine dynamics. In a demonstration of an EEM for evaluating a hydrokinetic turbine implementation, a controller is used to track the maximum power-point of the turbine in response to turbulence. Utilizing realistic inflow conditions and control laws, the emulator dynamic speed response is shown to agree well at low frequencies with simulation but to deviate at high frequencies. The efficacy of an electromechanical emulator as an accurate representation of a fielded turbine is evaluated. A commercial horizontally-oriented cross-flow turbine is dynamically emulated on hardware to investigate control strategies and grid integration. A representative inflow time-series with a mean of 2 m/s is generated from high-resolution flow measurements of a riverine site and is used to drive emulation. Power output during emulation under similar input and loading conditions yields agreement with field measurements to within 3% at high power, near-optimal levels. Constant tip-speed ratio and constant speed proportional plus integral control schemes are compared to optimal nonlinear control and constant resistance regulation. All controllers yield similar results in terms of overall system efficiency. The emulated turbine is more responsive to turbulent inflow than the field turbine, as the model utilized to drive emulation does not account for a smoothing effect of turbulent fluctuations over the span of the fielded turbine's rotors. The turbine has a lower inertia than the demand of an isolated grid, indicating a secondary source of power with a similar frequency response is necessary if a single turbine cannot meet the entire demand. (Abstract shortened by UMI.).
Subsonic balance and pressure investigation of a 60 deg delta wing with leading edge devices
NASA Technical Reports Server (NTRS)
Tingas, S. A.; Rao, D. M.
1982-01-01
Low supersonic wave drag makes the thin highly swept delta wing the logical choice for use on aircraft designed for supersonic cruise. However, the high-lift maneuver capability of the aircraft is limited by severe induced-drag penalties attributed to loss of potential flow leading-edge suction. This drag increase may be alleviated through leading-edge flow control to recover lost aerodynamic thrust through either retention of attached leading-edge flow to higher angles of attack or exploitation of the increased suction potential of separation-induced vortex flow. A low-speed wind-tunnel investigation was undertaken to examine the high-lift devices such as fences, chordwise slots, pylon vortex generators, leading-edge vortex flaps, and sharp leading-edge extensions. The devices were tested individually and in combinations in an attempt to improve high-alpha drag performance with a minimum of low-alpha drag penalty. This report presents an analysis of the force, moment, and static pressure data obtained in angles of attack up to 23 deg, at Mach and Reynolds numbers of 0.16 and 3.85 x 10 to the 6th power per meter, respectively. The results indicate that all the devices produced drag and longitudinal/lateral stability improvements at high lift with, in most cases, minor drag penalties at low angles of attack.
Compact Rare Earth Emitter Hollow Cathode
NASA Technical Reports Server (NTRS)
Watkins, Ronald; Goebel, Dan; Hofer, Richard
2010-01-01
A compact, high-current, hollow cathode utilizing a lanthanum hexaboride (LaB6) thermionic electron emitter has been developed for use with high-power Hall thrusters and ion thrusters. LaB6 cathodes are being investigated due to their long life, high current capabilities, and less stringent xenon purity and handling requirements compared to conventional barium oxide (BaO) dispenser cathodes. The new cathode features a much smaller diameter than previously developed versions that permit it to be mounted on axis of a Hall thruster ( internally mounted ), as opposed to the conventional side-mount position external to the outer magnetic circuit ("externally mounted"). The cathode has also been reconfigured to be capable of surviving vibrational loads during launch and is designed to solve the significant heater and materials compatibility problems associated with the use of this emitter material. This has been accomplished in a compact design with the capability of high-emission current (10 to 60 A). The compact, high-current design has a keeper diameter that allows the cathode to be mounted on the centerline of a 6- kW Hall thruster, inside the iron core of the inner electromagnetic coil. Although designed for electric propulsion thrusters in spacecraft station- keeping, orbit transfer, and interplanetary applications, the LaB6 cathodes are applicable to the plasma processing industry in applications such as optical coatings and semiconductor processing where reactive gases are used. Where current electrical propulsion thrusters with BaO emitters have limited life and need extremely clean propellant feed systems at a significant cost, these LaB6 cathodes can run on the crudest-grade xenon propellant available without impact. Moreover, in a laboratory environment, LaB6 cathodes reduce testing costs because they do not require extended conditioning periods under hard vacuum. Alternative rare earth emitters, such as cerium hexaboride (CeB6) can be used in this configuration with possibly an even longer emitter life. This cathode is specifically designed to integrate on the centerline of a high-power Hall thruster, thus eliminating the asymmetries in the plasma discharge common to cathodes previously mounted externally to the thruster s magnetic circuit. An alternative configuration for the cathode uses an external propellant feed. This diverts a fraction of the total cathode flow to an external feed, which can improve the cathode coupling efficiency at lower total mass flow rates. This can improve the overall thruster efficiency, thereby decreasing the required propellant loads for different missions. Depending on the particular mission, reductions in propellant loads can lead to mission enabling capabilities by allowing launch vehicle step-down, greater payload capability, or by extending the life of a spacecraft.
Triple Hybrid Energy Harvesting Interface Electronics
NASA Astrophysics Data System (ADS)
Uluşan, H.; Chamanian, S.; Pathirana, W. M. P. R.; Zorlu, Ö.; Muhtaroğlu, A.; Külah, H.
2016-11-01
This study presents a novel triple hybrid system that combines simultaneously generated power from thermoelectric (TE), vibration-based electromagnetic (EM) and piezoelectric (PZT) harvesters for a relatively high power supply capability. In the proposed solution each harvesting source utilizes a distinct power management circuit that generates a DC voltage suitable for combining the three parallel supplies. The circuits are designed and implemented in 180 nm standard CMOS technology, and are terminated with a schottky diode to avoid reverse current flow. The harvested AC signal from the EM harvester is rectified with a self-powered AC-DC doubler, which utilizes active diode structures to minimize the forward- bias voltage drop. The PZT interface electronics utilizes a negative voltage converter as the first stage, followed by synchronous power extraction and DC-to-DC conversion through internal switches, and an external inductor. The ultra-low voltage DC power harvested by the TE generator is stepped up through a charge-pump driven by an LC oscillator with fully- integrated center-tapped differential inductors. Test results indicate that hybrid energy harvesting circuit provides more than 1 V output for load resistances higher than 100 kΩ (10 μW) where the stand-alone harvesting circuits are not able to reach 1 V output. This is the first hybrid harvester circuit that simultaneously extracts energy from three independent sources, and delivers a single DC output.
Spaceflight Flow Cytometry: Design Challenges and Applications
NASA Technical Reports Server (NTRS)
Pappas, Dimitri; Kao, Shih-Hsin; Jeevarajan, Antony S.
2004-01-01
Future space exploration missions will require analytical technology capable of providing both autonomous medical care to the crew and investigative capabilities to researchers. While several promising candidate technologies exist for further development, flow cytometry is an attractive technology as it offers both crew health and a wide array of biochemistry and immunology assays. While flow cytometry has been widely used for cellular analysis in both clinical and research settings, the requirements for proper operation in spaceflight impose constraints on any instrument designs. The challenges of designing a spaceflight-ready flow cytometer are discussed, as well as some preliminary results using a prototype system.
NASA Technical Reports Server (NTRS)
Chow, Chuen-Yen; Ryan, James S.
1987-01-01
While the zonal grid system of Transonic Navier-Stokes (TNS) provides excellent modeling of complex geometries, improved shock capturing, and a higher Mach number range will be required if flows about hypersonic aircraft are to be modeled accurately. A computational fluid dynamics (CFD) code, the Compressible Navier-Stokes (CNS), is under development to combine the required high Mach number capability with the existing TNS geometry capability. One of several candidate flow solvers for inclusion in the CNS is that of F3D. This upwinding flow solver promises improved shock capturing, and more accurate hypersonic solutions overall, compared to the solver currently used in TNS.
Lagrangian turbulence near walls: Structures and mixing in admissible model flows
NASA Astrophysics Data System (ADS)
Ottino, J. M.
1989-05-01
The general objective of work during this period was to bridge the gap between modern ideas from dynamical systems and chaos and more traditional approaches to turbulence. In order to reach this objective we conducted theoretical and computational work on two systems: a perturbed Kelvin cat eyes flow, and prototype solutions of the Navier-Stokes equations near solid walls. The main results obtained are two-fold: production flows capable of producing complex distributions of vorticity, and constructed flow fields, based on solutions of the Navier Stokes equations, which are capable of displaying both Eulerian and Lagrangian turbulence.
NASA Astrophysics Data System (ADS)
Li, Xin; Li, Xingang; Xiao, Yao; Jia, Bin
2016-06-01
Real traffic is heterogeneous with car and truck. Due to mechanical restrictions, the car and the truck have different limited deceleration capabilities, which are important factors in safety driving. This paper extends the single lane safety driving (SD) model with limited deceleration capability to two-lane SD model, in which car-truck heterogeneous traffic is considered. A car has a larger limited deceleration capability while a heavy truck has a smaller limited deceleration capability as a result of loaded goods. Then the safety driving conditions are different as the types of the following and the leading vehicles vary. In order to eliminate the well-known plug in heterogeneous two-lane traffic, it is assumed that heavy truck has active deceleration behavior when the heavy truck perceives the forming plug. The lane-changing decisions are also determined by the safety driving conditions. The fundamental diagram, spatiotemporal diagram, and lane-changing frequency were investigated to show the effect of mechanical restriction on heterogeneous traffic flow. It was shown that there would be still three traffic phases in heterogeneous traffic condition; the active deceleration of the heavy truck could well eliminate the plug; the lane-changing frequency was low in synchronized flow; the flow and velocity would decrease as the proportion of heavy truck grows or the limited deceleration capability of heavy truck drops; and the flow could be improved with lane control measures.
VS2DRTI: Simulating Heat and Reactive Solute Transport in Variably Saturated Porous Media.
Healy, Richard W; Haile, Sosina S; Parkhurst, David L; Charlton, Scott R
2018-01-29
Variably saturated groundwater flow, heat transport, and solute transport are important processes in environmental phenomena, such as the natural evolution of water chemistry of aquifers and streams, the storage of radioactive waste in a geologic repository, the contamination of water resources from acid-rock drainage, and the geologic sequestration of carbon dioxide. Up to now, our ability to simulate these processes simultaneously with fully coupled reactive transport models has been limited to complex and often difficult-to-use models. To address the need for a simple and easy-to-use model, the VS2DRTI software package has been developed for simulating water flow, heat transport, and reactive solute transport through variably saturated porous media. The underlying numerical model, VS2DRT, was created by coupling the flow and transport capabilities of the VS2DT and VS2DH models with the equilibrium and kinetic reaction capabilities of PhreeqcRM. Flow capabilities include two-dimensional, constant-density, variably saturated flow; transport capabilities include both heat and multicomponent solute transport; and the reaction capabilities are a complete implementation of geochemical reactions of PHREEQC. The graphical user interface includes a preprocessor for building simulations and a postprocessor for visual display of simulation results. To demonstrate the simulation of multiple processes, the model is applied to a hypothetical example of injection of heated waste water to an aquifer with temperature-dependent cation exchange. VS2DRTI is freely available public domain software. © 2018, National Ground Water Association.
Advanced Capabilities for Wind Tunnel Testing in the 21st Century
NASA Technical Reports Server (NTRS)
Kegelman, Jerome T.; Danehy, Paul M.; Schwartz, Richard J.
2010-01-01
Wind tunnel testing methods and test technologies for the 21st century using advanced capabilities are presented. These capabilities are necessary to capture more accurate and high quality test results by eliminating the uncertainties in testing and to facilitate verification of computational tools for design. This paper discusses near term developments underway in ground testing capabilities, which will enhance the quality of information of both the test article and airstream flow details. Also discussed is a selection of new capability investments that have been made to accommodate such developments. Examples include advanced experimental methods for measuring the test gas itself; using efficient experiment methodologies, including quality assurance strategies within the test; and increasing test result information density by using extensive optical visualization together with computed flow field results. These points could be made for both major investments in existing tunnel capabilities or for entirely new capabilities.
Jenkins, Paul A; Song, Yun S; Brem, Rachel B
2012-01-01
Genetic exchange between isolated populations, or introgression between species, serves as a key source of novel genetic material on which natural selection can act. While detecting historical gene flow from DNA sequence data is of much interest, many existing methods can be limited by requirements for deep population genomic sampling. In this paper, we develop a scalable genealogy-based method to detect candidate signatures of gene flow into a given population when the source of the alleles is unknown. Our method does not require sequenced samples from the source population, provided that the alleles have not reached fixation in the sampled recipient population. The method utilizes recent advances in algorithms for the efficient reconstruction of ancestral recombination graphs, which encode genealogical histories of DNA sequence data at each site, and is capable of detecting the signatures of gene flow whose footprints are of length up to single genes. Further, we employ a theoretical framework based on coalescent theory to test for statistical significance of certain recombination patterns consistent with gene flow from divergent sources. Implementing these methods for application to whole-genome sequences of environmental yeast isolates, we illustrate the power of our approach to highlight loci with unusual recombination histories. By developing innovative theory and methods to analyze signatures of gene flow from population sequence data, our work establishes a foundation for the continued study of introgression and its evolutionary relevance.
Jenkins, Paul A.; Song, Yun S.; Brem, Rachel B.
2012-01-01
Genetic exchange between isolated populations, or introgression between species, serves as a key source of novel genetic material on which natural selection can act. While detecting historical gene flow from DNA sequence data is of much interest, many existing methods can be limited by requirements for deep population genomic sampling. In this paper, we develop a scalable genealogy-based method to detect candidate signatures of gene flow into a given population when the source of the alleles is unknown. Our method does not require sequenced samples from the source population, provided that the alleles have not reached fixation in the sampled recipient population. The method utilizes recent advances in algorithms for the efficient reconstruction of ancestral recombination graphs, which encode genealogical histories of DNA sequence data at each site, and is capable of detecting the signatures of gene flow whose footprints are of length up to single genes. Further, we employ a theoretical framework based on coalescent theory to test for statistical significance of certain recombination patterns consistent with gene flow from divergent sources. Implementing these methods for application to whole-genome sequences of environmental yeast isolates, we illustrate the power of our approach to highlight loci with unusual recombination histories. By developing innovative theory and methods to analyze signatures of gene flow from population sequence data, our work establishes a foundation for the continued study of introgression and its evolutionary relevance. PMID:23226196
Climatic and geomorphic controls on low flow hydrograph recession
NASA Astrophysics Data System (ADS)
Chandler, D. G.; Daley, M.; Kasaee Roodsari, B.; Shaw, S. B.; McNamara, J.
2017-12-01
Large scale operational hydrologic models should be capable of predicting seasonally low flow and stream intermittency as well as peak flow and inundation. We contrast examples of controls on low flow exerted by geomorphic and climatic setting at small catchment study sites in the Northeast and Northwest of the USA to indicate differences in hydrologic processes. Both regions accumulate winter snowpack and have an extended spring freshet, but the Reynolds Creek CZO and Dry Creek Experimental Watershed (both in Idaho mountains) experience a protracted summer drought, with occasional storms whereas precipitation free periods greater than five days are uncommon in the hilly Sleepers River (Vermont), and Yellow Barn State Forest (New York) and at Ley Creek, on a glacial plain (New York). At both Dry Creek and Reynolds Creek, headwater stream flow direction was transverse to groundwater, and below field capacity discharge was well related to either the ground water surface or corresponded to inversion of the hydraulic gradient over the depth of the soil. At all sites except Ley Creek, the headwaters became intermittent as the main tributary discharge declined, often disconnecting the surface source springs and seeps from the valley bottom stream. At the Idaho sites recession analysis for main stem was further complicated by consumptive use for irrigation and domestic wells. Modeling the recession characteristics of these various settings and across stream orders results in a variety of exponent values for power law scaling approaches that indicate the importance of site context for modeling low flow.
NASA Astrophysics Data System (ADS)
Bansemer, Robert; Schmidt-Bleker, Ansgar; van Rienen, Ursula; Weltmann, Klaus-Dieter
2017-06-01
A novel flow-driven dielectric barrier discharge concept is presented, which uses a Venturi pump to transfer plasma-generated reactive oxygen and nitrogen species from a sub-atmospheric pressure (200{--}600 {mbar}) discharge region to ambient pressure and can be operated with air. By adjusting the working pressure of the device, the plasma chemistry can be tuned continuously from an ozone ({{{O}}}3)-dominated mode to a nitrogen oxides ({{NO}}x)-only mode. The plasma source is characterized focusing on the mechanisms effecting this mode change. The composition of the device’s output gas was determined using Fourier-transform infrared spectroscopy. The results are correlated to measurements of discharge chamber pressure and temperature as well as of input power. It is found that the mode-change temperature can be controlled by the discharge chamber pressure. The source concept is capable of generating an {{NO}}x-dominated plasma chemistry at gas temperatures distinctly below 400 {{K}}. Through mixing of the processed gas stream with a second flow of pressurized air required for the operation of the Venturi pump, the resulting product gas stream remains close to room temperature. A reduced zero-dimensional reaction kinetics model with only seven reactions is capable of describing the observed pressure- and temperature-dependence of the {{{O}}}3 to {{NO}}x mode-change.
NASA Technical Reports Server (NTRS)
Wey, Thomas
2017-01-01
With advances in computational power and availability of distributed computers, the use of even the most complex of turbulent chemical interaction models in combustors and coupled analysis of combustors and turbines is now possible and more and more affordable for realistic geometries. Recent more stringent emission standards have enticed the development of more fuel-efficient and low-emission combustion system for aircraft gas turbine applications. It is known that the NOx emissions tend to increase dramatically with increasing flame temperature. It is well known that the major difficulty, when modeling the turbulence-chemistry interaction, lies in the high non-linearity of the reaction rate expressed in terms of the temperature and species mass fractions. The transport filtered density function (FDF) model and the linear eddy model (LEM), which both use local instantaneous values of the temperature and mass fractions, have been shown to often provide more accurate results of turbulent combustion. In the present, the time-filtered Navier-Stokes (TFNS) approach capable of capturing unsteady flow structures important for turbulent mixing in the combustion chamber and two different subgrid models, LEM-like and EUPDF-like, capable of emulating the major processes occurring in the turbulence-chemistry interaction will be used to perform reacting flow simulations of a selected test case. The selected test case from the Volvo Validation Rig was documented by Sjunnesson.
Probabilistic Analysis Techniques Applied to Complex Spacecraft Power System Modeling
NASA Technical Reports Server (NTRS)
Hojnicki, Jeffrey S.; Rusick, Jeffrey J.
2005-01-01
Electric power system performance predictions are critical to spacecraft, such as the International Space Station (ISS), to ensure that sufficient power is available to support all the spacecraft s power needs. In the case of the ISS power system, analyses to date have been deterministic, meaning that each analysis produces a single-valued result for power capability because of the complexity and large size of the model. As a result, the deterministic ISS analyses did not account for the sensitivity of the power capability to uncertainties in model input variables. Over the last 10 years, the NASA Glenn Research Center has developed advanced, computationally fast, probabilistic analysis techniques and successfully applied them to large (thousands of nodes) complex structural analysis models. These same techniques were recently applied to large, complex ISS power system models. This new application enables probabilistic power analyses that account for input uncertainties and produce results that include variations caused by these uncertainties. Specifically, N&R Engineering, under contract to NASA, integrated these advanced probabilistic techniques with Glenn s internationally recognized ISS power system model, System Power Analysis for Capability Evaluation (SPACE).
Design of point-of-care (POC) microfluidic medical diagnostic devices
NASA Astrophysics Data System (ADS)
Leary, James F.
2018-02-01
Design of inexpensive and portable hand-held microfluidic flow/image cytometry devices for initial medical diagnostics at the point of initial patient contact by emergency medical personnel in the field requires careful design in terms of power/weight requirements to allow for realistic portability as a hand-held, point-of-care medical diagnostics device. True portability also requires small micro-pumps for high-throughput capability. Weight/power requirements dictate use of super-bright LEDs and very small silicon photodiodes or nanophotonic sensors that can be powered by batteries. Signal-to-noise characteristics can be greatly improved by appropriately pulsing the LED excitation sources and sampling and subtracting noise in between excitation pulses. The requirements for basic computing, imaging, GPS and basic telecommunications can be simultaneously met by use of smartphone technologies, which become part of the overall device. Software for a user-interface system, limited real-time computing, real-time imaging, and offline data analysis can be accomplished through multi-platform software development systems that are well-suited to a variety of currently available cellphone technologies which already contain all of these capabilities. Microfluidic cytometry requires judicious use of small sample volumes and appropriate statistical sampling by microfluidic cytometry or imaging for adequate statistical significance to permit real-time (typically < 15 minutes) medical decisions for patients at the physician's office or real-time decision making in the field. One or two drops of blood obtained by pin-prick should be able to provide statistically meaningful results for use in making real-time medical decisions without the need for blood fractionation, which is not realistic in the field.
NASA Astrophysics Data System (ADS)
Xie, Chang; Wen, Jing; Liu, Wenying; Wang, Jiaming
With the development of intelligent dispatching, the intelligence level of network control center full-service urgent need to raise. As an important daily work of network control center, the application of maintenance scheduling intelligent arrangement to achieve high-quality and safety operation of power grid is very important. By analyzing the shortages of the traditional maintenance scheduling software, this paper designs a power grid maintenance scheduling intelligence arrangement supporting system based on power flow forecasting, which uses the advanced technologies in maintenance scheduling, such as artificial intelligence, online security checking, intelligent visualization techniques. It implements the online security checking of maintenance scheduling based on power flow forecasting and power flow adjusting based on visualization, in order to make the maintenance scheduling arrangement moreintelligent and visual.
Modeling sediment concentration of rill flow
NASA Astrophysics Data System (ADS)
Yang, Daming; Gao, Peiling; Zhao, Yadong; Zhang, Yuhang; Liu, Xiaoyuan; Zhang, Qingwen
2018-06-01
Accurate estimation of sediment concentration is essential to establish physically-based erosion models. The objectives of this study were to evaluate the effects of flow discharge (Q), slope gradient (S), flow velocity (V), shear stress (τ), stream power (ω) and unit stream power (U) on sediment concentration. Laboratory experiments were conducted using a 10 × 0.1 m rill flume under four flow discharges (2, 4, 8 and 16 L min-1), and five slope gradients (5°, 10°, 15°, 20° and 25°). The results showed that the measured sediment concentration varied from 87.08 to 620.80 kg m-3 with a mean value of 343.13 kg m-3. Sediment concentration increased as a power function with flow discharge and slope gradient, with R2 = 0.975 and NSE = 0.945. The sediment concentration was more sensitive to slope gradient than to flow discharge. The sediment concentration was well predicted by unit stream power (R2 = 0.937, NSE = 0.865), whereas less satisfactorily by flow velocity (R2 = 0.470, NSE = 0.539) and stream power (R2 = 0.773, NSE = 0.732). In addition, using the equations to simulate the measured sediment concentration of other studies, the result further indicated that slope gradient, flow discharge and unit stream power were good predictors of sediment concentration. In general, slope gradient, flow discharge and unit stream power seem to be the preferred predictors for estimating sediment concentration.
Low-cost Electromagnetic Heating Technology for Polymer Extrusion-based Additive Manufacturing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carter, William G.; Rios, Orlando; Akers, Ronald R.
To improve the flow of materials used in in polymer additive manufacturing, ORNL and Ajax Tocco created an induction system for heating fused deposition modeling (FDM) nozzles used in polymer additive manufacturing. The system is capable of reaching a temperature of 230 C, a typical nozzle temperature for extruding ABS polymers, in 17 seconds. A prototype system was built at ORNL and sent to Ajax Tocco who analyzed the system and created a finalized power supply. The induction system was mounted to a PrintSpace Altair desktop printer and used to create several test parts similar in quality to those createdmore » using a resistive heated nozzle.« less
Energy Efficient Engine Low Pressure Subsystem Flow Analysis
NASA Technical Reports Server (NTRS)
Hall, Edward J.; Lynn, Sean R.; Heidegger, Nathan J.; Delaney, Robert A.
1998-01-01
The objective of this project is to provide the capability to analyze the aerodynamic performance of the complete low pressure subsystem (LPS) of the Energy Efficient Engine (EEE). The analyses were performed using three-dimensional Navier-Stokes numerical models employing advanced clustered processor computing platforms. The analysis evaluates the impact of steady aerodynamic interaction effects between the components of the LPS at design and off-design operating conditions. Mechanical coupling is provided by adjusting the rotational speed of common shaft-mounted components until a power balance is achieved. The Navier-Stokes modeling of the complete low pressure subsystem provides critical knowledge of component aero/mechanical interactions that previously were unknown to the designer until after hardware testing.
Preliminary design of a supersonic Short-Takeoff and Vertical-Landing (STOVL) fighter aircraft
NASA Technical Reports Server (NTRS)
1990-01-01
A preliminary study of a supersonic short takeoff and vertical landing (STOVL) fighter is presented. Three configurations (a lift plus lift/cruise concept, a hybrid fan vectored thrust concept, and a mixed flow vectored thrust concept) were initially investigated with one configuration selected for further design analysis. The selected configuration, the lift plus lift/cruise concept, was successfully integrated to accommodate the powered lift short takeoff and vertical landing requirements as well as the demanding supersonic cruise and point performance requirements. A supersonic fighter aircraft with a short takeoff and vertical landing capability using the lift plus lift/cruise engine concept seems a viable option for the next generation fighter.
Simulator for concurrent processing data flow architectures
NASA Technical Reports Server (NTRS)
Malekpour, Mahyar R.; Stoughton, John W.; Mielke, Roland R.
1992-01-01
A software simulator capability of simulating execution of an algorithm graph on a given system under the Algorithm to Architecture Mapping Model (ATAMM) rules is presented. ATAMM is capable of modeling the execution of large-grained algorithms on distributed data flow architectures. Investigating the behavior and determining the performance of an ATAMM based system requires the aid of software tools. The ATAMM Simulator presented is capable of determining the performance of a system without having to build a hardware prototype. Case studies are performed on four algorithms to demonstrate the capabilities of the ATAMM Simulator. Simulated results are shown to be comparable to the experimental results of the Advanced Development Model System.
PIC simulation of the vacuum power flow for a 5 terawatt, 5 MV, 1 MA pulsed power system
NASA Astrophysics Data System (ADS)
Liu, Laqun; Zou, Wenkang; Liu, Dagang; Guo, Fan; Wang, Huihui; Chen, Lin
2018-03-01
In this paper, a 5 Terawatt, 5 MV, 1 MA pulsed power system based on vacuum magnetic insulation is simulated by the particle-in-cell (PIC) simulation method. The system consists of 50 100-kV linear transformer drive (LTD) cavities in series, using magnetically insulated induction voltage adder (MIVA) technology for pulsed power addition and transmission. The pulsed power formation and the vacuum power flow are simulated when the system works in self-limited flow and load-limited flow. When the pulsed power system isn't connected to the load, the downstream magnetically insulated transmission line (MITL) works in the self-limited flow, the maximum of output current is 1.14 MA and the amplitude of voltage is 4.63 MV. The ratio of the electron current to the total current is 67.5%, when the output current reached the peak value. When the impedance of the load is 3.0 Ω, the downstream MITL works in the self-limited flow, the maximums of output current and the amplitude of voltage are 1.28 MA and 3.96 MV, and the ratio of the electron current to the total current is 11.7% when the output current reached the peak value. In addition, when the switches are triggered in synchronism with the passage of the pulse power flow, it effectively reduces the rise time of the pulse current.
Estimating the vibration level of an L-shaped beam using power flow techniques
NASA Technical Reports Server (NTRS)
Cuschieri, J. M.; Mccollum, M.; Rassineux, J. L.; Gilbert, T.
1986-01-01
The response of one component of an L-shaped beam, with point force excitation on the other component, is estimated using the power flow method. The transmitted power from the source component to the receiver component is expressed in terms of the transfer and input mobilities at the excitation point and the joint. The response is estimated both in narrow frequency bands, using the exact geometry of the beams, and as a frequency averaged response using infinite beam models. The results using this power flow technique are compared to the results obtained using finite element analysis (FEA) of the L-shaped beam for the low frequency response and to results obtained using statistical energy analysis (SEA) for the high frequencies. The agreement between the FEA results and the power flow method results at low frequencies is very good. SEA results are in terms of frequency averaged levels and these are in perfect agreement with the results obtained using the infinite beam models in the power flow method. The narrow frequency band results from the power flow method also converge to the SEA results at high frequencies. The advantage of the power flow method is that detail of the response can be retained while reducing computation time, which will allow the narrow frequency band analysis of the response to be extended to higher frequencies.
MODFLOW 2.0: A program for predicting moderator flow patterns
NASA Astrophysics Data System (ADS)
Peterson, P. F.; Paik, I. K.
1991-07-01
Sudden changes in the temperature of flowing liquids can result in transient buoyancy forces which strongly impact the flow hydrodynamics via flow stratification. These effects have been studied for the case of potential flow of stratified liquids to line sinks, but not for moderator flow in SRS reactors. Standard codes, such as TRAC and COMMIX, do not have the capability to capture the stratification effect, due to strong numerical diffusion which smears away the hot/cold fluid interface. A related problem with standard codes is the inability to track plumes injected into the liquid flow, again due to numerical diffusion. The combined effects of buoyant stratification and plume dispersion have been identified as being important in the operation of the Supplementary Safety System which injects neutron-poison ink into SRS reactors to provide safe shutdown in the event of safety rod failure. The MODFLOW code discussed here provides transient moderator flow pattern information with stratification effects, and tracks the location of ink plumes in the reactor. The code, written in Fortran, is compiled for Macintosh II computers, and includes subroutines for interactive control and graphical output. Removing the graphics capabilities, the code can also be compiled on other computers. With graphics, in addition to the capability to perform safety related computations, MODFLOW also provides an easy tool for becoming familiar with flow distributions in SRS reactors.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-14
............ Project No. 2266-096. Sabine River Authority of Texas and Project No. 2305-020. State of Louisiana. Town of Massena Electric Department Project No. 12607-001. Free Flow Power Corporation........ Project No. 12829-001. Free Flow Power Corporation........ Project No. 12861-001. Free Flow Power Corporation...
Nuclear Thermal Rocket Element Environmental Simulator (NTREES) Upgrade Activities
NASA Technical Reports Server (NTRS)
Emrich, William J., Jr.
2014-01-01
Over the past year the Nuclear Thermal Rocket Element Environmental Simulator (NTREES) has been undergoing a significant upgrade beyond its initial configuration. The NTREES facility is designed to perform realistic non-nuclear testing of nuclear thermal rocket (NTR) fuel elements and fuel materials. Although the NTREES facility cannot mimic the neutron and gamma environment of an operating NTR, it can simulate the thermal hydraulic environment within an NTR fuel element to provide critical information on material performance and compatibility. The first phase of the upgrade activities which was completed in 2012 in part consisted of an extensive modification to the hydrogen system to permit computer controlled operations outside the building through the use of pneumatically operated variable position valves. This setup also allows the hydrogen flow rate to be increased to over 200 g/sec and reduced the operation complexity of the system. The second stage of modifications to NTREES which has just been completed expands the capabilities of the facility significantly. In particular, the previous 50 kW induction power supply has been replaced with a 1.2 MW unit which should allow more prototypical fuel element temperatures to be reached. The water cooling system was also upgraded to so as to be capable of removing 100% of the heat generated during. This new setup required that the NTREES vessel be raised onto a platform along with most of its associated gas and vent lines. In this arrangement, the induction heater and water systems are now located underneath the platform. In this new configuration, the 1.2 MW NTREES induction heater will be capable of testing fuel elements and fuel materials in flowing hydrogen at pressures up to 1000 psi at temperatures up to and beyond 3000 K and at near-prototypic reactor channel power densities. NTREES is also capable of testing potential fuel elements with a variety of propellants, including hydrogen with additives to inhibit corrosion of certain potential NTR fuel forms. Additional diagnostic upgrades included in the present NTREES set up include the addition of a gamma ray spectrometer located near the vent filter to detect uranium fuel particles exiting the fuel element in the propellant exhaust stream to provide additional information any material loss occurring during testing. Other aspects of the upgrade included reworking NTREES to reduce the operational complexity of the system despite the increased complexity of the induction heating system. To this end, many of the controls were consolidated on fewer panels. As part of this upgrade activity, the Safety Assessment (SA) and the Standard Operating Procedures (SOPs) for NTREES were extensively rewritten. The new 1.2 MW induction heater consists of three physical units consisting of a transformer, rectifier, and inverter. This multiunit arrangement facilitated increasing the flexibility of the induction heater by more easily allowing variable frequency operation. Frequency ranges between 20 and 60 kHz can be accommodated in the new induction heater allowing more representative power distributions to be generated within the test elements.
Research on high power intra-channel crosstalk attack in optical networks
NASA Astrophysics Data System (ADS)
Ren, Shuai; Zhang, Yinfa; Wang, Jingyu; Zhang, Jumei; Rao, Xuejun; Fang, Yuanyuan
2017-02-01
The mechanism of high power intra-channel crosstalk attack is analyzed theoretically and the conclusion that power of attack signal and crosstalk coefficient of optical switch are the main factors for which high power intra-channel have destructive effect on quality of legitimate signals is drawn. Effects of high power intra-channel crosstalk attack on quality of legitimate signals and its capability of attack propagation are investigated quantitatively by building the simulation system in VPI software. The results show that legitimate signals through the first and the second stage optical switch are affected by attack and legitimate signal through the third stage optical switch is almost unaffected by attack when power of original attack signal (OAS) is above 20dB more than that of legitimate signals and crosstalk coefficient of optical switch is -20dB at optical cross connect 1 (OXC1). High power intra-channel crosstalk attack has a certain capability of attack propagation. Attack capability of OAS can be propagated to OXC3 when power of OAS is 27dB more than that of legitimate signals and crosstalk coefficient of optical switch is -20dB. We also find that the secondary attack signal (SAS) does not have capability of attack propagation.
Application of Shark Skin Flow Control Techniques to Airflow
NASA Astrophysics Data System (ADS)
Morris, Jackson Alexander
Due to millions of years of evolution, sharks have evolved to become quick and efficient ocean apex predators. Shark skin is made up of millions of microscopic scales, or denticles, that are approximately 0.2 mm in size. Scales located on the shark's body where separation control is paramount (such as behind the gills or the trailing edge of the pectoral fin) are capable of bristling. These scales are hypothesized to act as a flow control mechanism capable of being passively actuated by reversed flow. It is believed that shark scales are strategically sized to interact with the lower 5% of a boundary layer, where reversed flow occurs at the onset of boundary layer separation. Previous research has shown shark skin to be capable of controlling separation in water. This thesis aims to investigate the same passive flow control techniques in air. To investigate this phenomenon, several sets of microflaps were designed and manufactured with a 3D printer. The microflaps were designed in both 2D (rectangular) and 3D (mirroring shark scale geometry) variants. These microflaps were placed in a low-speed wind tunnel in the lower 5% of the boundary layer. Solid fences and a flat plate diffuser with suction were placed in the tunnel to create different separated flow regions. A hot film probe was used to measure velocity magnitude in the streamwise plane of the separated regions. The results showed that low-speed airflow is capable of bristling objects in the boundary layer. When placed in a region of reverse flow, the microflaps were passively actuated. Microflaps fluctuated between bristled and flat states in reverse flow regions located close to the reattachment zone.
NASA Astrophysics Data System (ADS)
Li, M.; Tang, Y. B.; Bernabé, Y.; Zhao, J. Z.; Li, X. F.; Li, T.
2017-07-01
We modeled single-phase gas flow through porous media using percolation networks. Gas permeability is different from liquid permeability. The latter is only related to the geometry and topology of the pore space, while the former depends on the specific gas considered and varies with gas pressure. As gas pressure decreases, four flow regimes can be distinguished as viscous flow, slip flow, transition flow, and free molecular diffusion. Here we use a published conductance model presumably capable of predicting the flow rate of an arbitrary gas through a cylindrical pipe in the four regimes. We incorporated this model into pipe network simulations. We considered 3-D simple cubic, body-centered cubic, and face-centered cubic lattices, in which we varied the pipe radius distribution and the bond coordination number. Gas flow was simulated at different gas pressures. The simulation results showed that the gas apparent permeability kapp obeys an identical scaling law in all three lattices, kapp (z-zc)β, where the exponent β depends on the width of the pipe radius distribution, z is the mean coordination number, and zc its critical value at the percolation threshold. Surprisingly, (z-zc) had a very weak effect on the ratio of the apparent gas permeability to the absolute liquid permeability, kapp/kabs, suggesting that the Klinkenberg gas slippage correction factor is nearly independent of connectivity. We constructed models of kapp and kapp/kabs based on the observed power law and tested them by comparison with published experimental data on glass beads and other materials.
Allocation and management issues in multiple-transaction open access transmission networks
NASA Astrophysics Data System (ADS)
Tao, Shu
This thesis focuses on some key issues related to allocation and management by the independent grid operator (IGO) of unbundled services in multiple-transaction open access transmission networks. The three unbundled services addressed in the thesis are transmission real power losses, reactive power support requirements from generation sources, and transmission congestion management. We develop the general framework that explicitly represents multiple transactions undertaken simultaneously in the transmission grid. This framework serves as the basis for formulating various problems treated in the thesis. We use this comprehensive framework to develop a physical-flow-based mechanism to allocate the total transmission losses to each transaction using the system. An important property of the allocation scheme is its capability to effectively deal with counter flows that result in the presence of specific transactions. Using the loss allocation results as the basis, we construct the equivalent loss compensation concept and apply it to develop flexible and effective procedures for compensating losses in multiple-transaction networks. We present a new physical-flow-based mechanism for allocating the reactive power support requirements provided by generators in multiple-transaction networks. The allocatable reactive support requirements are formulated as the sum of two specific components---the voltage magnitude variation component and the voltage angle variation component. The formulation utilizes the multiple-transaction framework and makes use of certain simplifying approximations. The formulation leads to a natural allocation as a function of the amount of each transaction. The physical interpretation of each allocation as a sensitivity of the reactive output of a generator is discussed. We propose a congestion management allocation scheme for multiple-transaction networks. The proposed scheme determines the allocation of congestion among the transactions on a physical-flow basis. It also proposes a congestion relief scheme that removes the congestion attributed to each transaction on the network in a least-cost manner to the IGO and determines the appropriate transmission charges to each transaction for its transmission usage. The thesis provides a compendium of problems that are natural extensions of the research results reported here and appear to be good candidates for future work.
Load-Following Power Timeline Analyses for the International Space Station
NASA Technical Reports Server (NTRS)
Fincannon, James; Delleur, Ann; Green, Robert; Hojnicki, Jeffrey
1996-01-01
Spacecraft are typically complex assemblies of interconnected systems and components that have highly time-varying thermal communications, and power requirements. It is essential that systems designers be able to assess the capability of the spacecraft to meet these requirements which should represent a realistic projection of demand for these resources once the vehicle is on-orbit. To accomplish the assessment from the power standpoint, a computer code called ECAPS has been developed at NASA Lewis Research Center that performs a load-driven analysis of a spacecraft power system given time-varying distributed loading and other mission data. This program is uniquely capable of synthesizing all of the changing spacecraft conditions into a single, seamless analysis for a complete mission. This paper presents example power load timelines with which numerous data are integrated to provide a realistic assessment of the load-following capabilities of the power system. Results of analyses show how well the power system can meet the time-varying power resource demand.
PMARC - PANEL METHOD AMES RESEARCH CENTER
NASA Technical Reports Server (NTRS)
Ashby, D. L.
1994-01-01
Panel methods are moderate cost tools for solving a wide range of engineering problems. PMARC (Panel Method Ames Research Center) is a potential flow panel code that numerically predicts flow fields around complex three-dimensional geometries. PMARC's predecessor was a panel code named VSAERO which was developed for NASA by Analytical Methods, Inc. PMARC is a new program with many additional subroutines and a well-documented code suitable for powered-lift aerodynamic predictions. The program's open architecture facilitates modifications or additions of new features. Another improvement is the adjustable size code which allows for an optimum match between the computer hardware available to the user and the size of the problem being solved. PMARC can be resized (the maximum number of panels can be changed) in a matter of minutes. Several other state-of-the-art PMARC features include internal flow modeling for ducts and wind tunnel test sections, simple jet plume modeling essential for the analysis and design of powered-lift aircraft, and a time-stepping wake model which allows the study of both steady and unsteady motions. PMARC is a low-order panel method, which means the singularities are distributed with constant strength over each panel. In many cases low-order methods can provide nearly the same accuracy as higher order methods (where the singularities are allowed to vary linearly or quadratically over each panel). Low-order methods have the advantage of a shorter computation time and do not require exact matching between panels. The flow problem is solved by assuming that the body is at rest in a moving flow field. The body is modeled as a closed surface which divides space into two regions -- one region contains the flow field of interest and the other contains a fictitious flow. External flow problems, such as a wing in a uniform stream, have the external region as the flow field of interest and the internal flow as the fictitious flow. This arrangement is reversed for internal flow problems where the internal region contains the flow field of interest and the external flow field is fictitious. In either case it is assumed that the velocity potentials in both regions satisfy Laplace's equation. PMARC has extensive geometry modeling capabilities for handling complex, three-dimensional surfaces. As with all panel methods, the geometry must be modeled by a set of panels. For convenience, the geometry is usually subdivided into several pieces and modeled with sets of panels called patches. A patch may be folded over on itself so that opposing sides of the patch form a common line. For example, wings are normally modeled with a folded patch to form the trailing edge of the wing. PMARC also has the capability to automatically generate a closing tip patch. In the case of a wing, a tip patch could be generated to close off the wing's third side. PMARC has a simple jet model for simulating a jet plume in a crossflow. The jet plume shape, trajectory, and entrainment velocities are computed using the Adler/Baron jet in crossflow code. This information is then passed back to PMARC. The wake model in PMARC is a time-stepping wake model. The wake is convected downstream from the wake separation line by the local velocity flowfield. With each time step, a new row of wake panels is added to the wake at the wake separation line. PMARC also allows an initial wake to be specified if desired, or, as a third option, no wakes need be modeled. The effective presentation of results for aerodynamics problems requires the generation of report-quality graphics. PMAPP (ARC-12751), the Panel Method Aerodynamic Plotting Program, (Sterling Software), was written for scientists at NASA's Ames Research Center to plot the aerodynamic analysis results (flow data) from PMARC. PMAPP is an interactive, color-capable graphics program for the DEC VAX or MicroVAX running VMS. It was designed to work with a variety of terminal types and hardcopy devices. PMAPP is available separately from COSMIC. PMARC was written in standard FORTRAN77 using adjustable size arrays throughout the code. Redimensioning PMARC will change the amount of disk space and memory the code requires to be able to run; however, due to its memory requirements, this program does not readily lend itself to implementation on MS-DOS based machines. The program was implemented on an Apple Macintosh (using 2.5 MB of memory) and tested on a VAX/VMS computer. The program is available on a 3.5 inch Macintosh format diskette (standard media) or in VAX BACKUP format on TK50 tape cartridge or 9-track magnetic tape. PMARC was developed in 1989.
The Mars Development of a Micro-Isolation Valve
NASA Technical Reports Server (NTRS)
Mueller, Juergen; Vargo, Steven; Forgrave, John; Bame, David; Chakraborty, Indrani; Tang, William
1999-01-01
A feasibility investigation for a newly proposed microfabricated, normally-closed isolation valve was initiated. The micro-isolation valve is silicon based and relies on the principle of melting a silicon plug, opening an otherwise sealed flow passage. This valve may thus serve a similar role as a conventional pyrovalve and is intended for use in micropropulsion systems onboard future microspacecraft, having wet masses of no more than 10-20 kg, as well as in larger scale propulsion systems having only low flow rate requirements, such as ion propulsion or Hall thruster systems. Two key feasibility issues - melting of the plug and pressure handling capability - were addressed. Thermal finite element modeling showed that valves with plugs having widths between 10 and 50 gm have power requirements of only 10 . 30 Watts to open over a duration of 0.5 ms or less. Valve chips featuring 5 0 micron plugs were burst pressure tested and reached maximum pressure values o f 2900 psig (19.7 Mpa).
CVD SiC deformable mirror with monolithic cooling channels.
Ahn, Kyohoon; Rhee, Hyug-Gyo; Yang, Ho-Soon; Kihm, Hagyong
2018-04-16
We propose a novel deformable mirror (DM) for adaptive optics in high power laser applications. The mirror is made of a Silicon carbide (SiC) faceplate, and cooling channels are embedded monolithically inside the faceplate with the chemical vapor desposition (CVD) method. The faceplate is 200 mm in diameter and 3 mm in thickness, and is actuated by 137 stack-type piezoelectric transducers arranged in a square grid. We also propose a new actuator influence function optimized for modelling our DM, which has a relatively stiffer faceplate and a higher coupling ratio compared with other DMs having thin faceplates. The cooling capability and optical performance of the DM are verified by simulations and actual experiments with a heat source. The DM is proved to operate at 1 kHz without the coolant flow and 100 Hz with the coolant flow, and the residual errors after compensation are less than 30 nm rms (root-mean-square). This paper presents the design, fabrication, and optical performance of the CVD SiC DM.
Wavelet analysis methods for radiography of multidimensional growth of planar mixing layers
Merritt, Elizabeth Catherine; Doss, Forrest William
2016-07-06
The counter-propagating shear campaign is examining instability growth and its transition to turbulence in the high-energy-density physics regime using a laser-driven counter-propagating flow platform. In these experiments, we observe consistent complex break-up of and structure growth in a tracer layer placed at the shear flow interface during the instability growth phase. We present a wavelet-transform based analysis technique capable of characterizing the scale- and directionality-resolved average intensity perturbations in static radiographs of the experiment. This technique uses the complete spatial information available in each radiograph to describe the structure evolution. We designed this analysis technique to generate a two-dimensional powermore » spectrum for each radiograph from which we can recover information about structure widths, amplitudes, and orientations. Lastly, the evolution of the distribution of power in the spectra for an experimental series is a potential metric for quantifying the structure size evolution as well as a system’s evolution towards isotropy.« less
Wavelet analysis methods for radiography of multidimensional growth of planar mixing layers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merritt, E. C., E-mail: emerritt@lanl.gov; Doss, F. W.
2016-07-15
The counter-propagating shear campaign is examining instability growth and its transition to turbulence in the high-energy-density physics regime using a laser-driven counter-propagating flow platform. In these experiments, we observe consistent complex break-up of and structure growth in a tracer layer placed at the shear flow interface during the instability growth phase. We present a wavelet-transform based analysis technique capable of characterizing the scale- and directionality-resolved average intensity perturbations in static radiographs of the experiment. This technique uses the complete spatial information available in each radiograph to describe the structure evolution. We designed this analysis technique to generate a two-dimensional powermore » spectrum for each radiograph from which we can recover information about structure widths, amplitudes, and orientations. The evolution of the distribution of power in the spectra for an experimental series is a potential metric for quantifying the structure size evolution as well as a system’s evolution towards isotropy.« less
A Mars 1 Watt vortex wind energy machine
NASA Technical Reports Server (NTRS)
Ralston, Michael; Crowley, Christopher; Thomson, Ronald; Gwynne, Owen
1992-01-01
A Martian wind power generator capable of surviving impact and fulfilling the long-term (2-5 yr) low-level power requirements (1-2 W) of an unmanned surface probe is presented. Attention is given to a tornado vortex generator that was chosen on the basis of its capability to theoretically augment the available power that may be extracted for average Martian wind speeds of about 7.5 m/s. The generator offers comparable mass-to-power ratios with solar power sources.
In vivo photoacoustic flow cytometry for early malaria diagnosis.
Cai, Chengzhong; Carey, Kai A; Nedosekin, Dmitry A; Menyaev, Yulian A; Sarimollaoglu, Mustafa; Galanzha, Ekaterina I; Stumhofer, Jason S; Zharov, Vladimir P
2016-06-01
In vivo photoacoustic (PA) flow cytometry (PAFC) has already demonstrated a great potential for the diagnosis of deadly diseases through ultrasensitive detection of rare disease-associated circulating markers in whole blood volume. Here, we demonstrate the first application of this powerful technique for early diagnosis of malaria through label-free detection of malaria parasite-produced hemozoin in infected red blood cells (iRBCs) as high-contrast PA agent. The existing malaria tests using blood smears can detect the disease at 0.001-0.1% of parasitemia. On the contrary, linear PAFC showed a potential for noninvasive malaria diagnosis at an extremely low level of parasitemia of 0.0000001%, which is ∼10(3) times better than the existing tests. Multicolor time-of-flight PAFC with high-pulse repetition rate lasers at wavelengths of 532, 671, and 820 nm demonstrated rapid spectral and spatial identification and quantitative enumeration of individual iRBCs. Integration of PAFC with fluorescence flow cytometry (FFC) provided real-time simultaneous detection of single iRBCs and parasites expressing green fluorescence proteins, respectively. A combination of linear and nonlinear nanobubble-based multicolor PAFC showed capability to real-time control therapy efficiency by counting of iRBCs before, during, and after treatment. Our results suggest that high-sensitivity, high-resolution ultrafast PAFC-FFC platform represents a powerful research tool to provide the insight on malaria progression through dynamic study of parasite-cell interactions directly in bloodstream, whereas portable hand-worn PAFC device could be broadly used in humans for early malaria diagnosis. © 2016 International Society for Advancement of Cytometry. © 2016 International Society for Advancement of Cytometry.
NASA Astrophysics Data System (ADS)
Liu, Zhen; Qu, Hengliang; Shi, Hongda; Hu, Gexing; Hyun, Beom-Soo
2016-12-01
Tidal current energy is renewable and sustainable, which is a promising alternative energy resource for the future electricity supply. The straight-bladed vertical-axis turbine is regarded as a useful tool to capture the tidal current energy especially under low-speed conditions. A 2D unsteady numerical model based on Ansys-Fluent 12.0 is established to conduct the numerical simulation, which is validated by the corresponding experimental data. For the unsteady calculations, the SST model, 2×105 and 0.01 s are selected as the proper turbulence model, mesh number, and time step, respectively. Detailed contours of the velocity distributions around the rotor blade foils have been provided for a flow field analysis. The tip speed ratio (TSR) determines the azimuth angle of the appearance of the torque peak, which occurs once for a blade in a single revolution. It is also found that simply increasing the incident flow velocity could not improve the turbine performance accordingly. The peaks of the averaged power and torque coefficients appear at TSRs of 2.1 and 1.8, respectively. Furthermore, several shapes of the duct augmentation are proposed to improve the turbine performance by contracting the flow path gradually from the open mouth of the duct to the rotor. The duct augmentation can significantly enhance the power and torque output. Furthermore, the elliptic shape enables the best performance of the turbine. The numerical results prove the capability of the present 2D model for the unsteady hydrodynamics and an operating performance analysis of the vertical tidal stream turbine.
2015-09-01
unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 AGENDA 1. Non-Tactical Vehicle-to-Grid (V2G) Projects • Smart Power...Vehicle Technology Expo and the Battery Show Conference Novi, MI, 15-17 Sep 2015 2 For the Nation • Help stabilize smart grid and can generate revenue...demonstration of a smart , aggregated, ad-hoc capable, vehicle to grid (V2G) and Vehicle to Vehicle (V2V) capable fleet power system to support
Flow instability in particle-bed nuclear reactors
NASA Astrophysics Data System (ADS)
Kerrebrock, Jack L.
The particle-bed core offers mitigation of some of the problems of solid-core nuclear rocket reactors. Dividing the fuel elements into small spherical particles contained in a cylindrical bed through which the propellant flows radially, may reduce the thermal stress in the fuel elements, allowing higher propellant temperatures to be reached. The high temperature regions of the reactor are confined to the interior of cylindrical fuel assemblies, so most of the reactor can be relatively cool. This enables the use of structural and moderating materials which reduce the minimum critical size and mass of the reactor. One of the unresolved questions about this concept is whether the flow through the particle-bed will be well behaved, or will be subject to destructive flow instabilities. Most of the recent analyses of the stability of the particle-bed reactor have been extensions of the approach of Bussard and Delauer, where the bed is essentially treated as an array of parallel passages, so that the mass flow is continuous from inlet to outlet through any one passage. A more general three dimensional model of the bed is adopted, in which the fluid has mobility in three dimensions. Comparison of results of the earlier approach to the present one shows that the former does not accurately represent the stability at low Re. The more complete model presented should be capable of meeting this deficiency while accurately representing the effects of the cold and hot frits, and of heat conduction and radiation in the particle-bed. It can be extended to apply to the cylindrical geometry of particle-bed reactors without difficulty. From the exemplary calculations which were carried out, it can be concluded that a particle-bed without a cold frit would be subject to instability if operated at the high temperatures desired for nuclear rockets, and at power densities below about 4 megawatts per liter. Since the desired power density is about 40 megawatts per liter, it can be concluded that operation at design exit temperature but at reduced power could be hazardous for such a reactor. But the calculations also show that an appropriate cold frit could very likely cure the instability. More definite conclusions must await calculations for specific designs.
Flow instability in particle-bed nuclear reactors
NASA Technical Reports Server (NTRS)
Kerrebrock, Jack L.
1993-01-01
The particle-bed core offers mitigation of some of the problems of solid-core nuclear rocket reactors. Dividing the fuel elements into small spherical particles contained in a cylindrical bed through which the propellant flows radially, may reduce the thermal stress in the fuel elements, allowing higher propellant temperatures to be reached. The high temperature regions of the reactor are confined to the interior of cylindrical fuel assemblies, so most of the reactor can be relatively cool. This enables the use of structural and moderating materials which reduce the minimum critical size and mass of the reactor. One of the unresolved questions about this concept is whether the flow through the particle-bed will be well behaved, or will be subject to destructive flow instabilities. Most of the recent analyses of the stability of the particle-bed reactor have been extensions of the approach of Bussard and Delauer, where the bed is essentially treated as an array of parallel passages, so that the mass flow is continuous from inlet to outlet through any one passage. A more general three dimensional model of the bed is adopted, in which the fluid has mobility in three dimensions. Comparison of results of the earlier approach to the present one shows that the former does not accurately represent the stability at low Re. The more complete model presented should be capable of meeting this deficiency while accurately representing the effects of the cold and hot frits, and of heat conduction and radiation in the particle-bed. It can be extended to apply to the cylindrical geometry of particle-bed reactors without difficulty. From the exemplary calculations which were carried out, it can be concluded that a particle-bed without a cold frit would be subject to instability if operated at the high temperatures desired for nuclear rockets, and at power densities below about 4 megawatts per liter. Since the desired power density is about 40 megawatts per liter, it can be concluded that operation at design exit temperature but at reduced power could be hazardous for such a reactor. But the calculations also show that an appropriate cold frit could very likely cure the instability. More definite conclusions must await calculations for specific designs.
Effect of flow rate and concentration difference on reverse electrodialysis system
NASA Astrophysics Data System (ADS)
Kwon, Kilsugn; Han, Jaesuk; Kim, Daejoong
2013-11-01
Various energy conversion technologies have been developed to reduce dependency on limited fossil fuels, including wind power, solar power, hydropower, ocean power, and geothermal power. Among them, reverse electrodialysis (RED), which is one type of salinity gradient power (SGP), has received much attention due to high reliability and simplicity without moving parts. Here, we experimentally evaluated the RED performance with several parameters like flow rate of concentrated and dilute solution, concentration difference, and temperature. RED was composed of endplates, electrodes, spacers, anion exchange membrane, and cation exchange membrane. Endplates are made by a polypropylene. It included the electrodes, flow field for the electrode rinse solution, and path to supply a concentrated and dilute solution. Titanium coated by iridium and ruthenium was used as the electrode. The electrode rinse solution based on hexacyanoferrate system is used to reduce the power loss generated by conversion process form ionic current to electric current. Maximum power monotonously increases as increasing flow rate and concentration difference. Net power has optimal point because pumping power consumption increases with flow rate. This work was supported by Basic Science Research Program (Grat No. NRF-2011-0009993) through the National Research Foundation of Korea.
A Lifting Ball Valve for cryogenic fluid applications
NASA Astrophysics Data System (ADS)
Cardin, Joseph M.; Reinicke, Robert H.; Bruneau, Stephen D.
1993-11-01
Marotta Scientific Controls, Inc. has designed a Lifting Ball Valve (LBV) capable of both flow modulation and tight shutoff for cryogenic and other applications. The LBV features a thin-walled visor valving element that lifts off the seal with near axial motion before rotating completely out of the flow path. This is accomplished with a simple, robust mechanism that minimizes cost and weight. Conventional spherical rotating seats ar plagued by leakage due to 'scuffing' as the seal and seat slide against one another while opening. Cryogenic valves, which typically utilize plastic seals, are particularly susceptible to this type of damage. The seat in the LBV lifts off the seal without 'scuffing' making it immune to this failure mode. In addition, the LBV lifting mechanism is capable of applying the very high seating loads required to seal at cryogenic temperatures. These features make the LBV ideally suited for cryogenic valve applications. Another major feature of the LBV is the fact that the visor rotates completely out of the flow path. This allows for a smaller, lighter valve for a given flow capacity, especially for line sizes above one inch. The LBV is operated by a highly integrated 'wetted' DC brushless motor. The motor rotor is 'wetted' ion that it is immersed in the fluid. To ensure compatibility, the motor rotor is encased in a thin-walled CRES weldment. The motor stator is outside the fluid containment weldment and therefore is not in direct contact with the fluid. To preclude the potential for external leakage there are no static or dynamic seals or bellows across the pressure boundary. The power required to do the work of operating the valving mechanism is transmitted across the pressure boundary by electromagnetic interaction between the motor rotor and the stator. Commutation of the motor is accomplished using the output of a special 'wetted' resolver. This paper describes the design, operation, and element testing of the LBV.
Energy Systems Integration Facility to Transform U.S. Energy Infrastructure
operations center. Fully integrated with hardware-in-the-loop at power capabilities, an experimental hardware- and systems-in-the-loop capability. Hardware-in-the-Loop at Power ESIF Snapshot Cost : $135M 2013 Hardware-in-the-loop simulation is not a new concept, but adding megawatt-scale power takes
Radiation beam calorimetric power measurement system
Baker, John; Collins, Leland F.; Kuklo, Thomas C.; Micali, James V.
1992-01-01
A radiation beam calorimetric power measurement system for measuring the average power of a beam such as a laser beam, including a calorimeter configured to operate over a wide range of coolant flow rates and being cooled by continuously flowing coolant for absorbing light from a laser beam to convert the laser beam energy into heat. The system further includes a flow meter for measuring the coolant flow in the calorimeter and a pair of thermistors for measuring the temperature difference between the coolant inputs and outputs to the calorimeter. The system also includes a microprocessor for processing the measured coolant flow rate and the measured temperature difference to determine the average power of the laser beam.
Biventricular support with the Jarvik 2000 axial flow pump: a feasibility study.
Radovancevic, Branislav; Gregoric, Igor D; Tamez, Daniel; Vrtovec, Bojan; Tuzun, Egemen; Chee, Hyun Keun; Moore, Sheila; Jarvik, Robert K; Frazier, O H
2003-01-01
Patients with congestive heart failure who are supported with a left ventricular assist device (LVAD) may experience right ventricular dysfunction or failure that requires support with a right ventricular assist device (RVAD). To determine the feasibility of using a clinically available axial flow ventricular assist device as an RVAD, we implanted Jarvik 2000 pumps in the left ventricle and right atrium of two Corriente crossbred calves (approximately 100 kg each) by way of a left thoracotomy and then analyzed the hemodynamic effects in the mechanically fibrillated heart at various LVAD and RVAD speeds. Right atrial implantation of the device required no modification of either the device or the surgical technique used for left ventricular implantation. Satisfactory biventricular support was achieved during fibrillation as evidenced by an increase in mean aortic pressure from 34 mm Hg with the pumps off to 78 mm Hg with the pumps generating a flow rate of 4.8 L/min. These results indicate that the Jarvik 2000 pump, which can provide chronic circulatory support and can be powered by external batteries, is a feasible option for right ventricular support after LVAD implantation and is capable of completely supporting the circulation in patients with global heart failure.
NASA Astrophysics Data System (ADS)
Sun, Ruochen; Yuan, Huiling; Liu, Xiaoli
2017-11-01
The heteroscedasticity treatment in residual error models directly impacts the model calibration and prediction uncertainty estimation. This study compares three methods to deal with the heteroscedasticity, including the explicit linear modeling (LM) method and nonlinear modeling (NL) method using hyperbolic tangent function, as well as the implicit Box-Cox transformation (BC). Then a combined approach (CA) combining the advantages of both LM and BC methods has been proposed. In conjunction with the first order autoregressive model and the skew exponential power (SEP) distribution, four residual error models are generated, namely LM-SEP, NL-SEP, BC-SEP and CA-SEP, and their corresponding likelihood functions are applied to the Variable Infiltration Capacity (VIC) hydrologic model over the Huaihe River basin, China. Results show that the LM-SEP yields the poorest streamflow predictions with the widest uncertainty band and unrealistic negative flows. The NL and BC methods can better deal with the heteroscedasticity and hence their corresponding predictive performances are improved, yet the negative flows cannot be avoided. The CA-SEP produces the most accurate predictions with the highest reliability and effectively avoids the negative flows, because the CA approach is capable of addressing the complicated heteroscedasticity over the study basin.
NASA Astrophysics Data System (ADS)
Tian, Meng; Sun, Yueqing; Zhang, Chuanfang (John); Wang, Jitong; Qiao, Wenming; Ling, Licheng; Long, Donghui
2017-10-01
Electrochemical flow capacitor (EFC) is a promising technology for grid energy storage, which combines the fast charging/discharging capability of supercapacitors with the scalable energy capacity of flow batteries. In this study, we report a high-power-density EFC using mesoporous carbon microspheres (MCMs) as suspension electrodes. By using a simple yet effective spray-drying technique, monodispersed MCMs with average particle size of 5 μm, high BET surface area of 1150-1267 m2 g-1, large pore volume of 2-4 cm3 g-1 and controllable mesopore size of 7-30 nm have been successfully prepared. The resultant MCMs suspension electrode shows excellent stability and considerable high capacitance of 100 F g-1 and good cycling ability (86% of initial capacitance after 10000 cycles). Specially, the suspension electrode exhibits excellent rate performance with 75% capacitance retention from 2 to 100 mV s-1, significantly higher than that of microporous carbon electrodes (20∼30%), due to the developed mesoporous channels facilitating for rapid ion diffusion. In addition, the electrochemical responses on both negative and positive suspension electrodes are studied, based on which an optimal capacitance matching between them is suggested for large-scale EFC unit.
Interaction of side-by-side fluidic harvesters in fractal grid-generated turbulence
NASA Astrophysics Data System (ADS)
Ferko, Kevin; Lachendro, David; Chiappazzi, Nick; Danesh-Yazdi, Amir H.
2018-03-01
While the vast majority of the literature in energy harvesting is dedicated to resonant harvesters, non-resonant harvesters, especially those that use turbulence-induced vibration to generate energy, have not been studied in as much detail. This is especially true for grid-generated turbulence. In this paper, the interaction of two side-by-side fluidic harvesters from a passive fractal grid-generated turbulent flow is considered. The fractal grid has been shown to significantly increase the turbulence generated in the flow which is the source of the vibration of the piezoelectric beams. In this experimental study, the influence of four parameters has been investigated: Beam lengths and configurations, mean flow velocity, distance from the grid and gap between the two beams. Experimental results show that the piezoelectric harvesters in fractal grid turbulence are capable of producing at least the same amount of power as those placed in passive rectangular grids with a larger pressure loss, allowing for a potentially significant increase in the efficiency of the energy conversion process, even though more experiments are required to study the behavior of the beams in homogeneous, fractal grid-generated turbulence.
Implementation of a Water Flow Control System into the ISS'S Planned Fluids & Combustion Facility
NASA Technical Reports Server (NTRS)
Edwards, Daryl A.
2003-01-01
The Fluids and Combustion Facility (FCF) will become an ISS facility capable of performing basic combustion and fluids research. The facility consists of two independent payload racks specifically configured to support multiple experiments over the life of the ISS. Both racks will depend upon the ISS's Moderate Temperature Loop (MTL) for removing waste heat generated by the avionics and experiments operating within the racks. By using the MTL, constraints are imposed by the ISS vehicle on how the coolant resource is used. On the other hand, the FCF depends upon effective thermal control for maximizing life of the hardware and for supplying proper boundary conditions for the experiments. In the implementation of a design solution, significant factors in the selection of the hardware included ability to measure and control relatively low flow rates, ability to throttle flow within the time constraints of the ISS MTL, conserve energy usage, observe low mass and small volume requirements. An additional factor in the final design solution selection was considering how the system would respond to a loss of power event. This paper describes the method selected to satisfy the FCF design requirements while maintaining the constraints applied by the ISS vehicle.
Porter, Mark L.; Plampin, Michael; Pawar, Rajesh; ...
2014-12-31
The physicochemical processes associated with CO 2 leakage into shallow aquifer systems are complex and span multiple spatial and time scales. Continuum-scale numerical models that faithfully represent the underlying pore-scale physics are required to predict the long-term behavior and aid in risk analysis regarding regulatory and management decisions. This study focuses on benchmarking the numerical simulator, FEHM, with intermediate-scale column experiments of CO 2 gas evolution in homogeneous and heterogeneous sand configurations. Inverse modeling was conducted to calibrate model parameters and determine model sensitivity to the observed steady-state saturation profiles. It is shown that FEHM is a powerful tool thatmore » is capable of capturing the experimentally observed out ow rates and saturation profiles. Moreover, FEHM captures the transition from single- to multi-phase flow and CO 2 gas accumulation at interfaces separating sands. We also derive a simple expression, based on Darcy's law, for the pressure at which CO 2 free phase gas is observed and show that it reliably predicts the location at which single-phase flow transitions to multi-phase flow.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaffner, D. A.; Carter, T. A.; Rossi, G. D.
Continuous control over azimuthal flow and shear in the edge of the Large Plasma Device (LAPD) [W. Gekelman et al., Rev. Sci. Instr. 62, 2875 (1991)] has been achieved using a biasable limiter. This flow control has allowed a careful study of the effect of flow shear on pressure-gradient-driven turbulence and particle transport in LAPD. The combination of externally controllable shear in a turbulent plasma along with the detailed spatial diagnostic capabilities on LAPD makes the experiment a useful testbed for validation of shear suppression models. Motivated by these models, power-law fits are made to the density and radial velocitymore » fluctuation amplitudes, particle flux, density-potential crossphase, and radial correlation length. The data show a break in the trend of these quantities when the shearing rate (γ{sub s}=∂V{sub θ}/∂r) is comparable to the turbulent decorrelation rate (1/τ{sub ac}). No one model captures the trends in the all turbulent quantities for all values of the shearing rate, but some models successfully match the trend in either the weak (γ{sub s}τ{sub ac}<1) or strong (γ{sub s}τ{sub ac}>1) shear limits.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hollaway, W.R.
1991-08-01
If there is to be a next generation of nuclear power in the United States, then the four fundamental obstacles confronting nuclear power technology must be overcome: safety, cost, waste management, and proliferation resistance. The Combined Hybrid System (CHS) is proposed as a possible solution to the problems preventing a vigorous resurgence of nuclear power. The CHS combines Thermal Reactors (for operability, safety, and cost) and Integral Fast Reactors (for waste treatment and actinide burning) in a symbiotic large scale system. The CHS addresses the safety and cost issues through the use of advanced reactor designs, the waste management issuemore » through the use of actinide burning, and the proliferation resistance issue through the use of an integral fuel cycle with co-located components. There are nine major components in the Combined Hybrid System linked by nineteen nuclear material mass flow streams. A computer code, CHASM, is used to analyze the mass flow rates CHS, and the reactor support ratio (the ratio of thermal/fast reactors), IFR of the system. The primary advantages of the CHS are its essentially actinide-free high-level radioactive waste, plus improved reactor safety, uranium utilization, and widening of the option base. The primary disadvantages of the CHS are the large capacity of IFRs required (approximately one MW{sub e} IFR capacity for every three MW{sub e} Thermal Reactor) and the novel radioactive waste streams produced by the CHS. The capability of the IFR to burn pure transuranic fuel, a primary assumption of this study, has yet to be proven. The Combined Hybrid System represents an attractive option for future nuclear power development; that disposal of the essentially actinide-free radioactive waste produced by the CHS provides an excellent alternative to the disposal of intact actinide-bearing Light Water Reactor spent fuel (reducing the toxicity based lifetime of the waste from roughly 360,000 years to about 510 years).« less
Locational Marginal Pricing in the Campus Power System at the Power Distribution Level
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hao, Jun; Gu, Yi; Zhang, Yingchen
2016-11-14
In the development of smart grid at distribution level, the realization of real-time nodal pricing is one of the key challenges. The research work in this paper implements and studies the methodology of locational marginal pricing at distribution level based on a real-world distribution power system. The pricing mechanism utilizes optimal power flow to calculate the corresponding distributional nodal prices. Both Direct Current Optimal Power Flow and Alternate Current Optimal Power Flow are utilized to calculate and analyze the nodal prices. The University of Denver campus power grid is used as the power distribution system test bed to demonstrate themore » pricing methodology.« less
Mean Line Pump Flow Model in Rocket Engine System Simulation
NASA Technical Reports Server (NTRS)
Veres, Joseph P.; Lavelle, Thomas M.
2000-01-01
A mean line pump flow modeling method has been developed to provide a fast capability for modeling turbopumps of rocket engines. Based on this method, a mean line pump flow code PUMPA has been written that can predict the performance of pumps at off-design operating conditions, given the loss of the diffusion system at the design point. The pump code can model axial flow inducers, mixed-flow and centrifugal pumps. The code can model multistage pumps in series. The code features rapid input setup and computer run time, and is an effective analysis and conceptual design tool. The map generation capability of the code provides the map information needed for interfacing with a rocket engine system modeling code. The off-design and multistage modeling capabilities of the code permit parametric design space exploration of candidate pump configurations and provide pump performance data for engine system evaluation. The PUMPA code has been integrated with the Numerical Propulsion System Simulation (NPSS) code and an expander rocket engine system has been simulated. The mean line pump flow code runs as an integral part of the NPSS rocket engine system simulation and provides key pump performance information directly to the system model at all operating conditions.
Estimating Vibrational Powers Of Parts In Fluid Machinery
NASA Technical Reports Server (NTRS)
Harvey, S. A.; Kwok, L. C.
1995-01-01
In new method of estimating vibrational power associated with component of fluid-machinery system, physics of flow through (or in vicinity of) component regarded as governing vibrations. Devised to generate scaling estimates for design of new parts of rocket engines (e.g., pumps, combustors, nozzles) but applicable to terrestrial pumps, turbines, and other machinery in which turbulent flows and vibrations caused by such flows are significant. Validity of method depends on assumption that fluid flows quasi-steadily and that flow gives rise to uncorrelated acoustic powers in different parts of pump.
ARMY GAS-COOLED REACTOR SYSTEMS PROGRAM. Quarterly Progress Report, October 1-December 31, 1963
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1964-02-15
The ML-1 power plant did not operate during the report period; low power reactor physics and shielding experiments were conducted with the ML-1 reactor. Evaluation of moderate corrosion observed on aluminum parts exposed to the ML-1 shield solution indicated no loss of performance capability. Preliminary tests showed that the corrosion probably was caused by heavy metal ions or chlorides in the solution, Massive corrosion observed on the ML-1 fuel element lower spiders was attributed to sub-standard material; failure of some spiders was attributed to a combination of corrosion and sub-standard fabrication. Evaluation indicated that the upper spiders will perform satisfactorilymore » for the design lifetime. Modification, repair, and reassembly of the CSN-1A t-c set was completed. Operation demonstrated bearing stability, but showed that the turbine effective flow area was too large. A bypass flow path in the turbine was being corrected. The TCS-670 t-c set will be stored indefinitely. Since a commercial alternator will be used for the ML-1A, further development of the brushless alternator was postponed indefinitely. Evaluation revealed that the ML-1 improved precooler design was not compatible with ML-1A requirements. Operntion of the IB-17R-2 and -3 test elements in the GETR continued without incident. Preliminary design of the ML-1A power plant was initiated. Design of modifications to the GCRE facility to adapt it to testing the ML-1 reactor skid was initiated. (auth)« less
Hair-based sensors for micro-autonomous systems
NASA Astrophysics Data System (ADS)
Sadeghi, Mahdi M.; Peterson, Rebecca L.; Najafi, Khalil
2012-06-01
We seek to harness microelectromechanical systems (MEMS) technologies to build biomimetic devices for low-power, high-performance, robust sensors and actuators on micro-autonomous robot platforms. Hair is used abundantly in nature for a variety of functions including balance and inertial sensing, flow sensing and aerodynamic (air foil) control, tactile and touch sensing, insulation and temperature control, particle filtering, and gas/chemical sensing. Biological hairs, which are typically characterized by large surface/volume ratios and mechanical amplification of movement, can be distributed in large numbers over large areas providing unprecedented sensitivity, redundancy, and stability (robustness). Local neural transduction allows for space- and power-efficient signal processing. Moreover by varying the hair structure and transduction mechanism, the basic hair form can be used for a wide diversity of functions. In this paper, by exploiting a novel wafer-level, bubble-free liquid encapsulation technology, we make arrays of micro-hydraulic cells capable of electrostatic actuation and hydraulic amplification, which enables high force/high deflection actuation and extremely sensitive detection (sensing) at low power. By attachment of cilia (hair) to the micro-hydraulic cell, air flow sensors with excellent sensitivity (< few cm/s) and dynamic range (> 10 m/s) have been built. A second-generation design has significantly reduced the sensor response time while maintaining sensitivity of about 2 cm/s and dynamic range of more than 15 m/s. These sensors can be used for dynamic flight control of flying robots or for situational awareness in surveillance applications. The core biomimetic technologies developed are applicable to a broad range of sensors and actuators.