Sample records for power flow problem

  1. Development of parallel algorithms for electrical power management in space applications

    NASA Technical Reports Server (NTRS)

    Berry, Frederick C.

    1989-01-01

    The application of parallel techniques for electrical power system analysis is discussed. The Newton-Raphson method of load flow analysis was used along with the decomposition-coordination technique to perform load flow analysis. The decomposition-coordination technique enables tasks to be performed in parallel by partitioning the electrical power system into independent local problems. Each independent local problem represents a portion of the total electrical power system on which a loan flow analysis can be performed. The load flow analysis is performed on these partitioned elements by using the Newton-Raphson load flow method. These independent local problems will produce results for voltage and power which can then be passed to the coordinator portion of the solution procedure. The coordinator problem uses the results of the local problems to determine if any correction is needed on the local problems. The coordinator problem is also solved by an iterative method much like the local problem. The iterative method for the coordination problem will also be the Newton-Raphson method. Therefore, each iteration at the coordination level will result in new values for the local problems. The local problems will have to be solved again along with the coordinator problem until some convergence conditions are met.

  2. Computing the Feasible Spaces of Optimal Power Flow Problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molzahn, Daniel K.

    The solution to an optimal power flow (OPF) problem provides a minimum cost operating point for an electric power system. The performance of OPF solution techniques strongly depends on the problem’s feasible space. This paper presents an algorithm that is guaranteed to compute the entire feasible spaces of small OPF problems to within a specified discretization tolerance. Specifically, the feasible space is computed by discretizing certain of the OPF problem’s inequality constraints to obtain a set of power flow equations. All solutions to the power flow equations at each discretization point are obtained using the Numerical Polynomial Homotopy Continuation (NPHC)more » algorithm. To improve computational tractability, “bound tightening” and “grid pruning” algorithms use convex relaxations to preclude consideration of many discretization points that are infeasible for the OPF problem. Here, the proposed algorithm is used to generate the feasible spaces of two small test cases.« less

  3. Computing the Feasible Spaces of Optimal Power Flow Problems

    DOE PAGES

    Molzahn, Daniel K.

    2017-03-15

    The solution to an optimal power flow (OPF) problem provides a minimum cost operating point for an electric power system. The performance of OPF solution techniques strongly depends on the problem’s feasible space. This paper presents an algorithm that is guaranteed to compute the entire feasible spaces of small OPF problems to within a specified discretization tolerance. Specifically, the feasible space is computed by discretizing certain of the OPF problem’s inequality constraints to obtain a set of power flow equations. All solutions to the power flow equations at each discretization point are obtained using the Numerical Polynomial Homotopy Continuation (NPHC)more » algorithm. To improve computational tractability, “bound tightening” and “grid pruning” algorithms use convex relaxations to preclude consideration of many discretization points that are infeasible for the OPF problem. Here, the proposed algorithm is used to generate the feasible spaces of two small test cases.« less

  4. Regulation of Renewable Energy Sources to Optimal Power Flow Solutions Using ADMM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dall-Anese, Emiliano; Zhang, Yijian; Hong, Mingyi

    This paper considers power distribution systems featuring renewable energy sources (RESs), and develops a distributed optimization method to steer the RES output powers to solutions of AC optimal power flow (OPF) problems. The design of the proposed method leverages suitable linear approximations of the AC-power flow equations, and is based on the Alternating Direction Method of Multipliers (ADMM). Convergence of the RES-inverter output powers to solutions of the OPF problem is established under suitable conditions on the stepsize as well as mismatches between the commanded setpoints and actual RES output powers. In a broad sense, the methods and results proposedmore » here are also applicable to other distributed optimization problem setups with ADMM and inexact dual updates.« less

  5. Power flow control using quadrature boosters

    NASA Astrophysics Data System (ADS)

    Sadanandan, Sandeep N.

    A power system that can be controlled within security constraints would be an advantage to power planners and real-time operators. Controlling flows can lessen reliability issues such as thermal limit violations, power stability problems, and/or voltage stability conditions. Control of flows can also mitigate market issues by reducing congestion on some lines and rerouting power to less loaded lines or onto preferable paths. In the traditional control of power flows, phase shifters are often used. More advanced methods include using Flexible AC Transmission System (FACTS) Controllers. Some examples include Thyristor Controlled Series Capacitors, Synchronous Series Static Compensators, and Unified Power Flow Controllers. Quadrature Boosters (QBs) have similar structures to phase-shifters, but allow for higher voltage magnitude during real power flow control. In comparison with other FACTS controllers QBs are not as complex and not as expensive. The present study proposes to use QBs to control power flows on a power system. With the inclusion of QBs, real power flows can be controlled to desired scheduled values. In this thesis, the linearized power flow equations used for power flow analysis were modified for the control problem. This included modifying the Jacobian matrix, the power error vector, and calculating the voltage injected by the quadrature booster for the scheduled real power flow. Two scenarios were examined using the proposed power flow control method. First, the power flow in a line in a 5-bus system was modified with a QB using the method developed in this thesis. Simulation was carried out using Matlab. Second, the method was applied to a 30-bus system and then to a 118-bus system using several QBs. In all the cases, the calculated values of the QB voltages led to desired power flows in the designated line.

  6. Optimal Water-Power Flow Problem: Formulation and Distributed Optimal Solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dall-Anese, Emiliano; Zhao, Changhong; Zamzam, Admed S.

    This paper formalizes an optimal water-power flow (OWPF) problem to optimize the use of controllable assets across power and water systems while accounting for the couplings between the two infrastructures. Tanks and pumps are optimally managed to satisfy water demand while improving power grid operations; {for the power network, an AC optimal power flow formulation is augmented to accommodate the controllability of water pumps.} Unfortunately, the physics governing the operation of the two infrastructures and coupling constraints lead to a nonconvex (and, in fact, NP-hard) problem; however, after reformulating OWPF as a nonconvex, quadratically-constrained quadratic problem, a feasible point pursuit-successivemore » convex approximation approach is used to identify feasible and optimal solutions. In addition, a distributed solver based on the alternating direction method of multipliers enables water and power operators to pursue individual objectives while respecting the couplings between the two networks. The merits of the proposed approach are demonstrated for the case of a distribution feeder coupled with a municipal water distribution network.« less

  7. Chance-Constrained AC Optimal Power Flow: Reformulations and Efficient Algorithms

    DOE PAGES

    Roald, Line Alnaes; Andersson, Goran

    2017-08-29

    Higher levels of renewable electricity generation increase uncertainty in power system operation. To ensure secure system operation, new tools that account for this uncertainty are required. Here, in this paper, we adopt a chance-constrained AC optimal power flow formulation, which guarantees that generation, power flows and voltages remain within their bounds with a pre-defined probability. We then discuss different chance-constraint reformulations and solution approaches for the problem. Additionally, we first discuss an analytical reformulation based on partial linearization, which enables us to obtain a tractable representation of the optimization problem. We then provide an efficient algorithm based on an iterativemore » solution scheme which alternates between solving a deterministic AC OPF problem and assessing the impact of uncertainty. This more flexible computational framework enables not only scalable implementations, but also alternative chance-constraint reformulations. In particular, we suggest two sample based reformulations that do not require any approximation or relaxation of the AC power flow equations.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yijian; Hong, Mingyi; Dall'Anese, Emiliano

    This paper considers power distribution systems featuring renewable energy sources (RESs), and develops a distributed optimization method to steer the RES output powers to solutions of AC optimal power flow (OPF) problems. The design of the proposed method leverages suitable linear approximations of the AC-power flow equations, and is based on the Alternating Direction Method of Multipliers (ADMM). Convergence of the RES-inverter output powers to solutions of the OPF problem is established under suitable conditions on the stepsize as well as mismatches between the commanded setpoints and actual RES output powers. In a broad sense, the methods and results proposedmore » here are also applicable to other distributed optimization problem setups with ADMM and inexact dual updates.« less

  9. Optimal Power Flow in Multiphase Radial Networks with Delta Connections: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Changhong; Dall-Anese, Emiliano; Low, Steven H.

    This paper focuses on multiphase radial distribution networks with mixed wye and delta connections, and proposes a semidefinite relaxation of the AC optimal power flow (OPF) problem. Two multiphase power-flow models are developed to facilitate the integration of delta-connected generation units/loads in the OPF problem. The first model extends traditional branch flow models - and it is referred to as extended branch flow model (EBFM). The second model leverages a linear relationship between per-phase power injections and delta connections, which holds under a balanced voltage approximation (BVA). Based on these models, pertinent OPF problems are formulated and relaxed to semidefinitemore » programs (SDPs). Numerical studies on IEEE test feeders show that SDP relaxations can be solved efficiently by a generic optimization solver. Numerical evidences indicate that solving the resultant SDP under BVA is faster than under EBFM. Moreover, both SDP solutions are numerically exact with respect to voltages and branch flows. It is also shown that the SDP solution under BVA has a small optimality gap, while the BVA model is accurate in the sense that it reflects actual system voltages.« less

  10. Graphical models for optimal power flow

    DOE PAGES

    Dvijotham, Krishnamurthy; Chertkov, Michael; Van Hentenryck, Pascal; ...

    2016-09-13

    Optimal power flow (OPF) is the central optimization problem in electric power grids. Although solved routinely in the course of power grid operations, it is known to be strongly NP-hard in general, and weakly NP-hard over tree networks. In this paper, we formulate the optimal power flow problem over tree networks as an inference problem over a tree-structured graphical model where the nodal variables are low-dimensional vectors. We adapt the standard dynamic programming algorithm for inference over a tree-structured graphical model to the OPF problem. Combining this with an interval discretization of the nodal variables, we develop an approximation algorithmmore » for the OPF problem. Further, we use techniques from constraint programming (CP) to perform interval computations and adaptive bound propagation to obtain practically efficient algorithms. Compared to previous algorithms that solve OPF with optimality guarantees using convex relaxations, our approach is able to work for arbitrary tree-structured distribution networks and handle mixed-integer optimization problems. Further, it can be implemented in a distributed message-passing fashion that is scalable and is suitable for “smart grid” applications like control of distributed energy resources. In conclusion, numerical evaluations on several benchmark networks show that practical OPF problems can be solved effectively using this approach.« less

  11. Transitioning of power flow in beam models with bends

    NASA Technical Reports Server (NTRS)

    Hambric, Stephen A.

    1990-01-01

    The propagation of power flow through a dynamically loaded beam model with 90 degree bends is investigated using NASTRAN and McPOW. The transitioning of power flow types (axial, torsional, and flexural) is observed throughout the structure. To get accurate calculations of the torsional response of beams using NASTRAN, torsional inertia effects had to be added to the mass matrix calculation section of the program. Also, mass effects were included in the calculation of BAR forces to improve the continuity of power flow between elements. The importance of including all types of power flow in an analysis, rather than only flexural power, is indicated by the example. Trying to interpret power flow results that only consider flexural components in even a moderately complex problem will result in incorrect conclusions concerning the total power flow field.

  12. Distribution-Agnostic Stochastic Optimal Power Flow for Distribution Grids: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Kyri; Dall'Anese, Emiliano; Summers, Tyler

    2016-09-01

    This paper outlines a data-driven, distributionally robust approach to solve chance-constrained AC optimal power flow problems in distribution networks. Uncertain forecasts for loads and power generated by photovoltaic (PV) systems are considered, with the goal of minimizing PV curtailment while meeting power flow and voltage regulation constraints. A data- driven approach is utilized to develop a distributionally robust conservative convex approximation of the chance-constraints; particularly, the mean and covariance matrix of the forecast errors are updated online, and leveraged to enforce voltage regulation with predetermined probability via Chebyshev-based bounds. By combining an accurate linear approximation of the AC power flowmore » equations with the distributionally robust chance constraint reformulation, the resulting optimization problem becomes convex and computationally tractable.« less

  13. Voltage stability index based optimal placement of static VAR compensator and sizing using Cuckoo search algorithm

    NASA Astrophysics Data System (ADS)

    Venkateswara Rao, B.; Kumar, G. V. Nagesh; Chowdary, D. Deepak; Bharathi, M. Aruna; Patra, Stutee

    2017-07-01

    This paper furnish the new Metaheuristic algorithm called Cuckoo Search Algorithm (CSA) for solving optimal power flow (OPF) problem with minimization of real power generation cost. The CSA is found to be the most efficient algorithm for solving single objective optimal power flow problems. The CSA performance is tested on IEEE 57 bus test system with real power generation cost minimization as objective function. Static VAR Compensator (SVC) is one of the best shunt connected device in the Flexible Alternating Current Transmission System (FACTS) family. It has capable of controlling the voltage magnitudes of buses by injecting the reactive power to system. In this paper SVC is integrated in CSA based Optimal Power Flow to optimize the real power generation cost. SVC is used to improve the voltage profile of the system. CSA gives better results as compared to genetic algorithm (GA) in both without and with SVC conditions.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Kyri; Toomey, Bridget

    Evolving power systems with increasing levels of stochasticity call for a need to solve optimal power flow problems with large quantities of random variables. Weather forecasts, electricity prices, and shifting load patterns introduce higher levels of uncertainty and can yield optimization problems that are difficult to solve in an efficient manner. Solution methods for single chance constraints in optimal power flow problems have been considered in the literature, ensuring single constraints are satisfied with a prescribed probability; however, joint chance constraints, ensuring multiple constraints are simultaneously satisfied, have predominantly been solved via scenario-based approaches or by utilizing Boole's inequality asmore » an upper bound. In this paper, joint chance constraints are used to solve an AC optimal power flow problem while preventing overvoltages in distribution grids under high penetrations of photovoltaic systems. A tighter version of Boole's inequality is derived and used to provide a new upper bound on the joint chance constraint, and simulation results are shown demonstrating the benefit of the proposed upper bound. The new framework allows for a less conservative and more computationally efficient solution to considering joint chance constraints, specifically regarding preventing overvoltages.« less

  15. Power flows and Mechanical Intensities in structural finite element analysis

    NASA Technical Reports Server (NTRS)

    Hambric, Stephen A.

    1989-01-01

    The identification of power flow paths in dynamically loaded structures is an important, but currently unavailable, capability for the finite element analyst. For this reason, methods for calculating power flows and mechanical intensities in finite element models are developed here. Formulations for calculating input and output powers, power flows, mechanical intensities, and power dissipations for beam, plate, and solid element types are derived. NASTRAN is used to calculate the required velocity, force, and stress results of an analysis, which a post-processor then uses to calculate power flow quantities. The SDRC I-deas Supertab module is used to view the final results. Test models include a simple truss and a beam-stiffened cantilever plate. Both test cases showed reasonable power flow fields over low to medium frequencies, with accurate power balances. Future work will include testing with more complex models, developing an interactive graphics program to view easily and efficiently the analysis results, applying shape optimization methods to the problem with power flow variables as design constraints, and adding the power flow capability to NASTRAN.

  16. Analysis and experimental verification of new power flow control for grid-connected inverter with LCL filter in microgrid.

    PubMed

    Gu, Herong; Guan, Yajuan; Wang, Huaibao; Wei, Baoze; Guo, Xiaoqiang

    2014-01-01

    Microgrid is an effective way to integrate the distributed energy resources into the utility networks. One of the most important issues is the power flow control of grid-connected voltage-source inverter in microgrid. In this paper, the small-signal model of the power flow control for the grid-connected inverter is established, from which it can be observed that the conventional power flow control may suffer from the poor damping and slow transient response. While the new power flow control can mitigate these problems without affecting the steady-state power flow regulation. Results of continuous-domain simulations in MATLAB and digital control experiments based on a 32-bit fixed-point TMS320F2812 DSP are in good agreement, which verify the small signal model analysis and effectiveness of the proposed method.

  17. Analysis and Experimental Verification of New Power Flow Control for Grid-Connected Inverter with LCL Filter in Microgrid

    PubMed Central

    Gu, Herong; Guan, Yajuan; Wang, Huaibao; Wei, Baoze; Guo, Xiaoqiang

    2014-01-01

    Microgrid is an effective way to integrate the distributed energy resources into the utility networks. One of the most important issues is the power flow control of grid-connected voltage-source inverter in microgrid. In this paper, the small-signal model of the power flow control for the grid-connected inverter is established, from which it can be observed that the conventional power flow control may suffer from the poor damping and slow transient response. While the new power flow control can mitigate these problems without affecting the steady-state power flow regulation. Results of continuous-domain simulations in MATLAB and digital control experiments based on a 32-bit fixed-point TMS320F2812 DSP are in good agreement, which verify the small signal model analysis and effectiveness of the proposed method. PMID:24672304

  18. Methods of computing steady-state voltage stability margins of power systems

    DOEpatents

    Chow, Joe Hong; Ghiocel, Scott Gordon

    2018-03-20

    In steady-state voltage stability analysis, as load increases toward a maximum, conventional Newton-Raphson power flow Jacobian matrix becomes increasingly ill-conditioned so power flow fails to converge before reaching maximum loading. A method to directly eliminate this singularity reformulates the power flow problem by introducing an AQ bus with specified bus angle and reactive power consumption of a load bus. For steady-state voltage stability analysis, the angle separation between the swing bus and AQ bus can be varied to control power transfer to the load, rather than specifying the load power itself. For an AQ bus, the power flow formulation is only made up of a reactive power equation, thus reducing the size of the Jacobian matrix by one. This reduced Jacobian matrix is nonsingular at the critical voltage point, eliminating a major difficulty in voltage stability analysis for power system operations.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Kyri; Dall'Anese, Emiliano; Summers, Tyler

    This paper outlines a data-driven, distributionally robust approach to solve chance-constrained AC optimal power flow problems in distribution networks. Uncertain forecasts for loads and power generated by photovoltaic (PV) systems are considered, with the goal of minimizing PV curtailment while meeting power flow and voltage regulation constraints. A data- driven approach is utilized to develop a distributionally robust conservative convex approximation of the chance-constraints; particularly, the mean and covariance matrix of the forecast errors are updated online, and leveraged to enforce voltage regulation with predetermined probability via Chebyshev-based bounds. By combining an accurate linear approximation of the AC power flowmore » equations with the distributionally robust chance constraint reformulation, the resulting optimization problem becomes convex and computationally tractable.« less

  20. Multi-Objective Differential Evolution for Voltage Security Constrained Optimal Power Flow in Deregulated Power Systems

    NASA Astrophysics Data System (ADS)

    Roselyn, J. Preetha; Devaraj, D.; Dash, Subhransu Sekhar

    2013-11-01

    Voltage stability is an important issue in the planning and operation of deregulated power systems. The voltage stability problems is a most challenging one for the system operators in deregulated power systems because of the intense use of transmission line capabilities and poor regulation in market environment. This article addresses the congestion management problem avoiding offline transmission capacity limits related to voltage stability by considering Voltage Security Constrained Optimal Power Flow (VSCOPF) problem in deregulated environment. This article presents the application of Multi Objective Differential Evolution (MODE) algorithm to solve the VSCOPF problem in new competitive power systems. The maximum of L-index of the load buses is taken as the indicator of voltage stability and is incorporated in the Optimal Power Flow (OPF) problem. The proposed method in hybrid power market which also gives solutions to voltage stability problems by considering the generation rescheduling cost and load shedding cost which relieves the congestion problem in deregulated environment. The buses for load shedding are selected based on the minimum eigen value of Jacobian with respect to the load shed. In the proposed approach, real power settings of generators in base case and contingency cases, generator bus voltage magnitudes, real and reactive power demands of selected load buses using sensitivity analysis are taken as the control variables and are represented as the combination of floating point numbers and integers. DE/randSF/1/bin strategy scheme of differential evolution with self-tuned parameter which employs binomial crossover and difference vector based mutation is used for the VSCOPF problem. A fuzzy based mechanism is employed to get the best compromise solution from the pareto front to aid the decision maker. The proposed VSCOPF planning model is implemented on IEEE 30-bus system, IEEE 57 bus practical system and IEEE 118 bus system. The pareto optimal front obtained from MODE is compared with reference pareto front and the best compromise solution for all the cases are obtained from fuzzy decision making strategy. The performance measures of proposed MODE in two test systems are calculated using suitable performance metrices. The simulation results show that the proposed approach provides considerable improvement in the congestion management by generation rescheduling and load shedding while enhancing the voltage stability in deregulated power system.

  1. Design of Distributed Controllers Seeking Optimal Power Flow Solutions Under Communication Constraints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dall'Anese, Emiliano; Simonetto, Andrea; Dhople, Sairaj

    This paper focuses on power distribution networks featuring inverter-interfaced distributed energy resources (DERs), and develops feedback controllers that drive the DER output powers to solutions of time-varying AC optimal power flow (OPF) problems. Control synthesis is grounded on primal-dual-type methods for regularized Lagrangian functions, as well as linear approximations of the AC power-flow equations. Convergence and OPF-solution-tracking capabilities are established while acknowledging: i) communication-packet losses, and ii) partial updates of control signals. The latter case is particularly relevant since it enables asynchronous operation of the controllers where DER setpoints are updated at a fast time scale based on local voltagemore » measurements, and information on the network state is utilized if and when available, based on communication constraints. As an application, the paper considers distribution systems with high photovoltaic integration, and demonstrates that the proposed framework provides fast voltage-regulation capabilities, while enabling the near real-time pursuit of solutions of AC OPF problems.« less

  2. Design of Distributed Controllers Seeking Optimal Power Flow Solutions under Communication Constraints: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dall'Anese, Emiliano; Simonetto, Andrea; Dhople, Sairaj

    This paper focuses on power distribution networks featuring inverter-interfaced distributed energy resources (DERs), and develops feedback controllers that drive the DER output powers to solutions of time-varying AC optimal power flow (OPF) problems. Control synthesis is grounded on primal-dual-type methods for regularized Lagrangian functions, as well as linear approximations of the AC power-flow equations. Convergence and OPF-solution-tracking capabilities are established while acknowledging: i) communication-packet losses, and ii) partial updates of control signals. The latter case is particularly relevant since it enables asynchronous operation of the controllers where DER setpoints are updated at a fast time scale based on local voltagemore » measurements, and information on the network state is utilized if and when available, based on communication constraints. As an application, the paper considers distribution systems with high photovoltaic integration, and demonstrates that the proposed framework provides fast voltage-regulation capabilities, while enabling the near real-time pursuit of solutions of AC OPF problems.« less

  3. Improving the Energy Market: Algorithms, Market Implications, and Transmission Switching

    NASA Astrophysics Data System (ADS)

    Lipka, Paula Ann

    This dissertation aims to improve ISO operations through a better real-time market solution algorithm that directly considers both real and reactive power, finds a feasible Alternating Current Optimal Power Flow solution, and allows for solving transmission switching problems in an AC setting. Most of the IEEE systems do not contain any thermal limits on lines, and the ones that do are often not binding. Chapter 3 modifies the thermal limits for the IEEE systems to create new, interesting test cases. Algorithms created to better solve the power flow problem often solve the IEEE cases without line limits. However, one of the factors that makes the power flow problem hard is thermal limits on the lines. The transmission networks in practice often have transmission lines that become congested, and it is unrealistic to ignore line limits. Modifying the IEEE test cases makes it possible for other researchers to be able to test their algorithms on a setup that is closer to the actual ISO setup. This thesis also examines how to convert limits given on apparent power---as is in the case in the Polish test systems---to limits on current. The main consideration in setting line limits is temperature, which linearly relates to current. Setting limits on real or apparent power is actually a proxy for using the limits on current. Therefore, Chapter 3 shows how to convert back to the best physical representation of line limits. A sequential linearization of the current-voltage formulation of the Alternating Current Optimal Power Flow (ACOPF) problem is used to find an AC-feasible generator dispatch. In this sequential linearization, there are parameters that are set to the previous optimal solution. Additionally, to improve accuracy of the Taylor series approximations that are used, the movement of the voltage is restricted. The movement of the voltage is allowed to be very large at the first iteration and is restricted further on each subsequent iteration, with the restriction corresponding to the accuracy and AC-feasiblity of the solution. This linearization was tested on the IEEE and Polish systems, which range from 14 to 3375 buses and 20 to 4161 transmission lines. It had an accuracy of 0.5% or less for all but the 30-bus system. It also solved in linear time with CPLEX, while the non-linear version solved in O(n1.11) to O(n1.39). The sequential linearization is slower than the nonlinear formulation for smaller problems, but faster for larger problems, and its linear computational time means it would continue solving faster for larger problems. A major consideration to implementing algorithms to solve the optimal generator dispatch is ensuring that the resulting prices from the algorithm will support the market. Since the sequential linearization is linear, it is convex, its marginal values are well-defined, and there is no duality gap. The prices and settlements obtained from the sequential linearization therefore can be used to run a market. This market will include extra prices and settlements for reactive power and voltage, compared to the present-day market, which is based on real power. An advantage of this is that there is a very clear pool that can be used for reactive power/voltage support payments, while presently there is not a clear pool to take them out of. This method also reveals how valuable reactive power and voltage are at different locations, which can enable better planning of reactive resource construction. Transmission switching increases the feasible region of the generator dispatch, which means there may be a better solution than without transmission switching. Power flows on transmission lines are not directly controllable; rather, the power flows according to how it is injected and the physical characteristics of the lines. Changing the network topology changes the physical characteristics, which changes the flows. This means that sets of generator dispatch that may have previously been infeasible due to the flow exceeding line constraints may be feasible, since the flows will be different and may meet line constraints. However, transmission switching is a mixed integer problem, which may have a very slow solution time. For economic switching, we examine a series of heuristics. We examine the congestion rent heuristic in detail and then examine many other heuristics at a higher level. Post-contingency corrective switching aims to fix issues in the power network after a line or generator outage. In Chapter 7, we show that using the sequential linear program with corrective switching helps solve voltage and excessive flow issues. (Abstract shortened by UMI.).

  4. Flow of “stress power-law” fluids between parallel rotating discs with distinct axes

    DOE PAGES

    Srinivasan, Shriram; Karra, Satish

    2015-04-16

    The problem of flow between parallel rotating discs with distinct axes corresponds to the case of flow in an orthogonal rheometer and has been studied extensively for different fluids since the instrument's inception. All the prior studies presume a constitutive prescription of the fluid stress in terms of the kinematical variables. In this paper, we approach the problem from a different perspective, i.e., a constitutive specification of the symmetric part of the velocity gradient in terms of the Cauchy stress. Such an approach ensures that the boundary conditions can be incorporated in a manner quite faithful to real world experimentsmore » with the instrument. Interestingly, the choice of the boundary condition is critical to the solvability of the problem for the case of creeping/Stokes flow. Furthermore, when the no-slip condition is enforced at the boundaries, depending on the model parameters and axes offset, the fluid response can show non-uniqueness or unsolvability, features which are absent in a conventional constitutive specification. In case of creeping/Stokes flow with prescribed values of the stress, the fluid response is indeterminate. We also record the response of a particular case of the given “stress power-law” fluid; one that cannot be attained by the conventional power-law fluids.« less

  5. Convex Relaxation of OPF in Multiphase Radial Networks with Wye and Delta Connections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Changhong; Dall-Anese, Emiliano; Low, Steven

    2017-08-01

    This panel presentation focuses on multiphase radial distribution networks with wye and delta connections, and proposes a semidefinite relaxation of the AC optimal power flow (OPF) problem. Two multiphase power flow models are developed to facilitate the integration of delta-connected loads or generation resources in the OPF problem. The first model is referred to as the extended branch flow model (EBFM). The second model leverages a linear relationship between phase-to-ground power injections and delta connections that holds under a balanced voltage approximation (BVA). Based on these models, pertinent OPF problems are formulated and relaxed to semidefinite programs (SDPs). Numerical studiesmore » on IEEE test feeders show that the proposed SDP relaxations can be solved efficiently by a generic optimization solver. Numerical evidence also indicates that solving the resultant SDP under BVA is faster than under EBFM. Moreover, both SDP solutions are numerically exact with respect to voltages and branch flows. It is further shown that the SDP solution under BVA has a small optimality gap, and the BVA model is accurate in the sense that it reproduces actual system voltages.« less

  6. Development and application of an information-analytic system on the problem of flow accelerated corrosion of pipeline elements in the secondary coolant circuit of VVER-440-based power units at the Novovoronezh nuclear power plant

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Povarov, V. P.; Shipkov, A. A.; Gromov, A. F.; Kiselev, A. N.; Shepelev, S. V.; Galanin, A. V.

    2015-02-01

    Specific features relating to development of the information-analytical system on the problem of flow-accelerated corrosion of pipeline elements in the secondary coolant circuit of the VVER-440-based power units at the Novovoronezh nuclear power plant are considered. The results from a statistical analysis of data on the quantity, location, and operating conditions of the elements and preinserted segments of pipelines used in the condensate-feedwater and wet steam paths are presented. The principles of preparing and using the information-analytical system for determining the lifetime to reaching inadmissible wall thinning in elements of pipelines used in the secondary coolant circuit of the VVER-440-based power units at the Novovoronezh NPP are considered.

  7. Introducing Non-Newtonian Fluid Mechanics Computations with Mathematica in the Undergraduate Curriculum

    ERIC Educational Resources Information Center

    Binous, Housam

    2007-01-01

    We study four non-Newtonian fluid mechanics problems using Mathematica[R]. Constitutive equations describing the behavior of power-law, Bingham and Carreau models are recalled. The velocity profile is obtained for the horizontal flow of power-law fluids in pipes and annuli. For the vertical laminar film flow of a Bingham fluid we determine the…

  8. Evaluating the effects of real power losses in optimal power flow based storage integration

    DOE PAGES

    Castillo, Anya; Gayme, Dennice

    2017-03-27

    This study proposes a DC optimal power flow (DCOPF) with losses formulation (the `-DCOPF+S problem) and uses it to investigate the role of real power losses in OPF based grid-scale storage integration. We derive the `- DCOPF+S problem by augmenting a standard DCOPF with storage (DCOPF+S) problem to include quadratic real power loss approximations. This procedure leads to a multi-period nonconvex quadratically constrained quadratic program, which we prove can be solved to optimality using either a semidefinite or second order cone relaxation. Our approach has some important benefits over existing models. It is more computationally tractable than ACOPF with storagemore » (ACOPF+S) formulations and the provably exact convex relaxations guarantee that an optimal solution can be attained for a feasible problem. Adding loss approximations to a DCOPF+S model leads to a more accurate representation of locational marginal prices, which have been shown to be critical to determining optimal storage dispatch and siting in prior ACOPF+S based studies. Case studies demonstrate the improved accuracy of the `-DCOPF+S model over a DCOPF+S model and the computational advantages over an ACOPF+S formulation.« less

  9. Heat and mass transfer and hydrodynamics in swirling flows (review)

    NASA Astrophysics Data System (ADS)

    Leont'ev, A. I.; Kuzma-Kichta, Yu. A.; Popov, I. A.

    2017-02-01

    Research results of Russian and foreign scientists of heat and mass transfer in whirling flows, swirling effect, superficial vortex generators, thermodynamics and hydrodynamics at micro- and nanoscales, burning at swirl of the flow, and technologies and apparatuses with the use of whirling currents for industry and power generation were presented and discussed at the "Heat and Mass Transfer in Whirling Currents" 5th International Conference. The choice of rational forms of the equipment flow parts when using whirling and swirling flows to increase efficiency of the heat-power equipment and of flow regimes and burning on the basis of deep study of the flow and heat transfer local parameters was set as the main research prospect. In this regard, there is noticeable progress in research methods of whirling and swirling flows. The number of computational treatments of swirling flows' local parameters has been increased. Development and advancement of the up to date computing models and national productivity software are very important for this process. All experimental works are carried out with up to date research methods of the local thermoshydraulic parameters, which enable one to reveal physical mechanisms of processes: PIV and LIV visualization techniques, high-speed and infrared photography, high speed registration of parameters of high-speed processes, etc. There is a problem of improvement of researchers' professional skills in the field of fluid mechanics to set adequately mathematics and physics problems of aerohydrodynamics for whirling and swirling flows and numerical and pilot investigations. It has been pointed out that issues of improvement of the cooling system and thermal protection effectiveness of heat-power and heat-transfer equipment units are still actual. It can be solved successfully using whirling and swirling flows as simple low power consumption exposing on the flow method and heat transfer augmentation.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zamzam, Ahmed, S.; Zhaoy, Changhong; Dall'Anesey, Emiliano

    This paper examines the AC Optimal Power Flow (OPF) problem for multiphase distribution networks featuring renewable energy resources (RESs). We start by outlining a power flow model for radial multiphase systems that accommodates wye-connected and delta-connected RESs and non-controllable energy assets. We then formalize an AC OPF problem that accounts for both types of connections. Similar to various AC OPF renditions, the resultant problem is a non convex quadratically-constrained quadratic program. However, the so-called Feasible Point Pursuit-Successive Convex Approximation algorithm is leveraged to obtain a feasible and yet locally-optimal solution. The merits of the proposed solution approach are demonstrated usingmore » two unbalanced multiphase distribution feeders with both wye and delta connections.« less

  11. Vibrational Power Flow Analysis of Rods and Beams

    NASA Technical Reports Server (NTRS)

    Wohlever, James Christopher; Bernhard, R. J.

    1988-01-01

    A new method to model vibrational power flow and predict the resulting energy density levels in uniform rods and beams is investigated. This method models the flow of vibrational power in a manner analogous to the flow of thermal power in a heat conduction problem. The classical displacement solutions for harmonically excited, hysteretically damped rods and beams are used to derive expressions for the vibrational power flow and energy density in the rod and beam. Under certain conditions, the power flow in these two structural elements will be shown to be proportional to the energy density gradient. Using the relationship between power flow and energy density, an energy balance on differential control volumes in the rod and beam leads to a Poisson's equation which models the energy density distribution in the rod and beam. Coupling the energy density and power flow solutions for rods and beams is also discussed. It is shown that the resonant behavior of finite structures complicates the coupling of solutions, especially when the excitations are single frequency inputs. Two coupling formulations are discussed, the first based on the receptance method, and the second on the travelling wave approach used in Statistical Energy Analysis. The receptance method is the more computationally intensive but is capable of analyzing single frequency excitation cases. The traveling wave approach gives a good approximation of the frequency average of energy density and power flow in coupled systems, and thus, is an efficient technique for use with broadband frequency excitation.

  12. Determining the Optimal Solution for Quadratically Constrained Quadratic Programming (QCQP) on Energy-Saving Generation Dispatch Problem

    NASA Astrophysics Data System (ADS)

    Lesmana, E.; Chaerani, D.; Khansa, H. N.

    2018-03-01

    Energy-Saving Generation Dispatch (ESGD) is a scheme made by Chinese Government in attempt to minimize CO2 emission produced by power plant. This scheme is made related to global warming which is primarily caused by too much CO2 in earth’s atmosphere, and while the need of electricity is something absolute, the power plants producing it are mostly thermal-power plant which produced many CO2. Many approach to fulfill this scheme has been made, one of them came through Minimum Cost Flow in which resulted in a Quadratically Constrained Quadratic Programming (QCQP) form. In this paper, ESGD problem with Minimum Cost Flow in QCQP form will be solved using Lagrange’s Multiplier Method

  13. Optimal Power Flow Pursuit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dall'Anese, Emiliano; Simonetto, Andrea

    This paper considers distribution networks featuring inverter-interfaced distributed energy resources, and develops distributed feedback controllers that continuously drive the inverter output powers to solutions of AC optimal power flow (OPF) problems. Particularly, the controllers update the power setpoints based on voltage measurements as well as given (time-varying) OPF targets, and entail elementary operations implementable onto low-cost microcontrollers that accompany power-electronics interfaces of gateways and inverters. The design of the control framework is based on suitable linear approximations of the AC power-flow equations as well as Lagrangian regularization methods. Convergence and OPF-target tracking capabilities of the controllers are analytically established. Overall,more » the proposed method allows to bypass traditional hierarchical setups where feedback control and optimization operate at distinct time scales, and to enable real-time optimization of distribution systems.« less

  14. Flow-accelerated corrosion 2016 international conference

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Shipkov, A. A.

    2017-05-01

    The paper discusses materials and results of the most representative world forum on the problems of flow-accelerated metal corrosion in power engineering—Flow-Accelerated Corrosion (FAC) 2016, the international conference, which was held in Lille (France) from May 23 through May 27, 2016, sponsored by EdF-DTG with the support of the International Atomic Energy Agency (IAEA) and the World Association of Nuclear Operators (WANO). The information on major themes of reports and materials of the exhibition arranged within the framework of the congress is presented. The statistics on operation time and intensity of FAC wall thinning of NPP pipelines and equipment in the world is set out. The paper describes typical examples of flow-accelerated corrosion damage of condensate-feed and wet-steam pipeline components of nuclear and thermal power plants that caused forced shutdowns or accidents. The importance of research projects on the problem of flow-accelerated metal corrosion of nuclear power units coordinated by the IAEA with the participation of leading experts in this field from around the world is considered. The reports presented at the conference considered issues of implementation of an FAC mechanism in single- and two-phase flows, the impact of hydrodynamic and water-chemical factors, the chemical composition of the metal, and other parameters on the intensity and location of FAC wall thinning localized areas in pipeline components and power equipment. Features and patterns of local and general FAC leading to local metal thinning and contamination of the working environment with ferriferous compounds are considered. Main trends of modern practices preventing FAC wear of NPP pipelines and equipment are defined. An increasing role of computer codes for the assessment and prediction of FAC rate, as well as software systems of support of the NPP personnel for the inspection planning and prevention of FAC wall thinning of equipment operating in singleand two-phase flows, is accepted. Different lines of attack on the problem of FAC of pipelines and equipment components of existing and future nuclear power units are reviewed. Promising methods of nondestructive inspection of pipelines and equipment are presented.

  15. Decentralized Optimal Dispatch of Photovoltaic Inverters in Residential Distribution Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dall'Anese, Emiliano; Dhople, Sairaj V.; Johnson, Brian B.

    Summary form only given. Decentralized methods for computing optimal real and reactive power setpoints for residential photovoltaic (PV) inverters are developed in this paper. It is known that conventional PV inverter controllers, which are designed to extract maximum power at unity power factor, cannot address secondary performance objectives such as voltage regulation and network loss minimization. Optimal power flow techniques can be utilized to select which inverters will provide ancillary services, and to compute their optimal real and reactive power setpoints according to well-defined performance criteria and economic objectives. Leveraging advances in sparsity-promoting regularization techniques and semidefinite relaxation, this papermore » shows how such problems can be solved with reduced computational burden and optimality guarantees. To enable large-scale implementation, a novel algorithmic framework is introduced - based on the so-called alternating direction method of multipliers - by which optimal power flow-type problems in this setting can be systematically decomposed into sub-problems that can be solved in a decentralized fashion by the utility and customer-owned PV systems with limited exchanges of information. Since the computational burden is shared among multiple devices and the requirement of all-to-all communication can be circumvented, the proposed optimization approach scales favorably to large distribution networks.« less

  16. Dynamic ADMM for Real-Time Optimal Power Flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dall-Anese, Emiliano; Zhang, Yijian; Hong, Mingyi

    This paper considers distribution networks featuring distributed energy resources (DERs), and develops a dynamic optimization method to maximize given operational objectives in real time while adhering to relevant network constraints. The design of the dynamic algorithm is based on suitable linearization of the AC power flow equations, and it leverages the so-called alternating direction method of multipliers (ADMM). The steps of the ADMM, however, are suitably modified to accommodate appropriate measurements from the distribution network and the DERs. With the aid of these measurements, the resultant algorithm can enforce given operational constraints in spite of inaccuracies in the representation ofmore » the AC power flows, and it avoids ubiquitous metering to gather the state of noncontrollable resources. Optimality and convergence of the proposed algorithm are established in terms of tracking of the solution of a convex surrogate of the AC optimal power flow problem.« less

  17. Dynamic ADMM for Real-Time Optimal Power Flow: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dall-Anese, Emiliano; Zhang, Yijian; Hong, Mingyi

    This paper considers distribution networks featuring distributed energy resources (DERs), and develops a dynamic optimization method to maximize given operational objectives in real time while adhering to relevant network constraints. The design of the dynamic algorithm is based on suitable linearizations of the AC power flow equations, and it leverages the so-called alternating direction method of multipliers (ADMM). The steps of the ADMM, however, are suitably modified to accommodate appropriate measurements from the distribution network and the DERs. With the aid of these measurements, the resultant algorithm can enforce given operational constraints in spite of inaccuracies in the representation ofmore » the AC power flows, and it avoids ubiquitous metering to gather the state of non-controllable resources. Optimality and convergence of the propose algorithm are established in terms of tracking of the solution of a convex surrogate of the AC optimal power flow problem.« less

  18. How to Integrate Variable Power Source into a Power Grid

    NASA Astrophysics Data System (ADS)

    Asano, Hiroshi

    This paper discusses how to integrate variable power source such as wind power and photovoltaic generation into a power grid. The intermittent renewable generation is expected to penetrate for less carbon intensive power supply system, but it causes voltage control problem in the distribution system, and supply-demand imbalance problem in a whole power system. Cooperative control of customers' energy storage equipment such as water heater with storage tank for reducing inverse power flow from the roof-top PV system, the operation technique using a battery system and the solar radiation forecast for stabilizing output of variable generation, smart charging of plug-in hybrid electric vehicles for load frequency control (LFC), and other methods to integrate variable power source with improving social benefits are surveyed.

  19. Pressure driven laminar flow of a power-law fluid in a T-channel

    NASA Astrophysics Data System (ADS)

    Dyakova, O. A.; Frolov, O. Yu

    2017-10-01

    Planar flow of a non-Newtonian fluid in a T-channel is investigated. The viscosity is determined by the Ostwald-de Waele power law. Motion of the fluid is caused by pressure drop given in boundary sections of the T-channel. On the solid walls, the no slip boundary condition is used. The problem is numerically solved with using a finite difference method based on the SIMPLE procedure. As a result of this study, characteristic flow regimes have been found. Influence of main parameters on the flow pattern has been demonstrated. Criteria dependences describing basic characteristics of the flow under conditions of the present work have been shown.

  20. Real-Time Load-Side Control of Electric Power Systems

    NASA Astrophysics Data System (ADS)

    Zhao, Changhong

    Two trends are emerging from modern electric power systems: the growth of renewable (e.g., solar and wind) generation, and the integration of information technologies and advanced power electronics. The former introduces large, rapid, and random fluctuations in power supply, demand, frequency, and voltage, which become a major challenge for real-time operation of power systems. The latter creates a tremendous number of controllable intelligent endpoints such as smart buildings and appliances, electric vehicles, energy storage devices, and power electronic devices that can sense, compute, communicate, and actuate. Most of these endpoints are distributed on the load side of power systems, in contrast to traditional control resources such as centralized bulk generators. This thesis focuses on controlling power systems in real time, using these load side resources. Specifically, it studies two problems. (1) Distributed load-side frequency control: We establish a mathematical framework to design distributed frequency control algorithms for flexible electric loads. In this framework, we formulate a category of optimization problems, called optimal load control (OLC), to incorporate the goals of frequency control, such as balancing power supply and demand, restoring frequency to its nominal value, restoring inter-area power flows, etc., in a way that minimizes total disutility for the loads to participate in frequency control by deviating from their nominal power usage. By exploiting distributed algorithms to solve OLC and analyzing convergence of these algorithms, we design distributed load-side controllers and prove stability of closed-loop power systems governed by these controllers. This general framework is adapted and applied to different types of power systems described by different models, or to achieve different levels of control goals under different operation scenarios. We first consider a dynamically coherent power system which can be equivalently modeled with a single synchronous machine. We then extend our framework to a multi-machine power network, where we consider primary and secondary frequency controls, linear and nonlinear power flow models, and the interactions between generator dynamics and load control. (2) Two-timescale voltage control: The voltage of a power distribution system must be maintained closely around its nominal value in real time, even in the presence of highly volatile power supply or demand. For this purpose, we jointly control two types of reactive power sources: a capacitor operating at a slow timescale, and a power electronic device, such as a smart inverter or a D-STATCOM, operating at a fast timescale. Their control actions are solved from optimal power flow problems at two timescales. Specifically, the slow-timescale problem is a chance-constrained optimization, which minimizes power loss and regulates the voltage at the current time instant while limiting the probability of future voltage violations due to stochastic changes in power supply or demand. This control framework forms the basis of an optimal sizing problem, which determines the installation capacities of the control devices by minimizing the sum of power loss and capital cost. We develop computationally efficient heuristics to solve the optimal sizing problem and implement real-time control. Numerical experiments show that the proposed sizing and control schemes significantly improve the reliability of voltage control with a moderate increase in cost.

  1. Solution techniques for transient stability-constrained optimal power flow – Part II

    DOE PAGES

    Geng, Guangchao; Abhyankar, Shrirang; Wang, Xiaoyu; ...

    2017-06-28

    Transient stability-constrained optimal power flow is an important emerging problem with power systems pushed to the limits for economic benefits, dense and larger interconnected systems, and reduced inertia due to expected proliferation of renewable energy resources. In this study, two more approaches: single machine equivalent and computational intelligence are presented. Also discussed are various application areas, and future directions in this research area. In conclusion, a comprehensive resource for the available literature, publicly available test systems, and relevant numerical libraries is also provided.

  2. Solution techniques for transient stability-constrained optimal power flow – Part II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geng, Guangchao; Abhyankar, Shrirang; Wang, Xiaoyu

    Transient stability-constrained optimal power flow is an important emerging problem with power systems pushed to the limits for economic benefits, dense and larger interconnected systems, and reduced inertia due to expected proliferation of renewable energy resources. In this study, two more approaches: single machine equivalent and computational intelligence are presented. Also discussed are various application areas, and future directions in this research area. In conclusion, a comprehensive resource for the available literature, publicly available test systems, and relevant numerical libraries is also provided.

  3. A Survey of Distributed Optimization and Control Algorithms for Electric Power Systems

    DOE PAGES

    Molzahn, Daniel K.; Dorfler, Florian K.; Sandberg, Henrik; ...

    2017-07-25

    Historically, centrally computed algorithms have been the primary means of power system optimization and control. With increasing penetrations of distributed energy resources requiring optimization and control of power systems with many controllable devices, distributed algorithms have been the subject of significant research interest. Here, this paper surveys the literature of distributed algorithms with applications to optimization and control of power systems. In particular, this paper reviews distributed algorithms for offline solution of optimal power flow (OPF) problems as well as online algorithms for real-time solution of OPF, optimal frequency control, optimal voltage control, and optimal wide-area control problems.

  4. A Survey of Distributed Optimization and Control Algorithms for Electric Power Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molzahn, Daniel K.; Dorfler, Florian K.; Sandberg, Henrik

    Historically, centrally computed algorithms have been the primary means of power system optimization and control. With increasing penetrations of distributed energy resources requiring optimization and control of power systems with many controllable devices, distributed algorithms have been the subject of significant research interest. Here, this paper surveys the literature of distributed algorithms with applications to optimization and control of power systems. In particular, this paper reviews distributed algorithms for offline solution of optimal power flow (OPF) problems as well as online algorithms for real-time solution of OPF, optimal frequency control, optimal voltage control, and optimal wide-area control problems.

  5. An Efficacious Multi-Objective Fuzzy Linear Programming Approach for Optimal Power Flow Considering Distributed Generation.

    PubMed

    Warid, Warid; Hizam, Hashim; Mariun, Norman; Abdul-Wahab, Noor Izzri

    2016-01-01

    This paper proposes a new formulation for the multi-objective optimal power flow (MOOPF) problem for meshed power networks considering distributed generation. An efficacious multi-objective fuzzy linear programming optimization (MFLP) algorithm is proposed to solve the aforementioned problem with and without considering the distributed generation (DG) effect. A variant combination of objectives is considered for simultaneous optimization, including power loss, voltage stability, and shunt capacitors MVAR reserve. Fuzzy membership functions for these objectives are designed with extreme targets, whereas the inequality constraints are treated as hard constraints. The multi-objective fuzzy optimal power flow (OPF) formulation was converted into a crisp OPF in a successive linear programming (SLP) framework and solved using an efficient interior point method (IPM). To test the efficacy of the proposed approach, simulations are performed on the IEEE 30-busand IEEE 118-bus test systems. The MFLP optimization is solved for several optimization cases. The obtained results are compared with those presented in the literature. A unique solution with a high satisfaction for the assigned targets is gained. Results demonstrate the effectiveness of the proposed MFLP technique in terms of solution optimality and rapid convergence. Moreover, the results indicate that using the optimal DG location with the MFLP algorithm provides the solution with the highest quality.

  6. An Efficacious Multi-Objective Fuzzy Linear Programming Approach for Optimal Power Flow Considering Distributed Generation

    PubMed Central

    Warid, Warid; Hizam, Hashim; Mariun, Norman; Abdul-Wahab, Noor Izzri

    2016-01-01

    This paper proposes a new formulation for the multi-objective optimal power flow (MOOPF) problem for meshed power networks considering distributed generation. An efficacious multi-objective fuzzy linear programming optimization (MFLP) algorithm is proposed to solve the aforementioned problem with and without considering the distributed generation (DG) effect. A variant combination of objectives is considered for simultaneous optimization, including power loss, voltage stability, and shunt capacitors MVAR reserve. Fuzzy membership functions for these objectives are designed with extreme targets, whereas the inequality constraints are treated as hard constraints. The multi-objective fuzzy optimal power flow (OPF) formulation was converted into a crisp OPF in a successive linear programming (SLP) framework and solved using an efficient interior point method (IPM). To test the efficacy of the proposed approach, simulations are performed on the IEEE 30-busand IEEE 118-bus test systems. The MFLP optimization is solved for several optimization cases. The obtained results are compared with those presented in the literature. A unique solution with a high satisfaction for the assigned targets is gained. Results demonstrate the effectiveness of the proposed MFLP technique in terms of solution optimality and rapid convergence. Moreover, the results indicate that using the optimal DG location with the MFLP algorithm provides the solution with the highest quality. PMID:26954783

  7. An introduction to optimal power flow: Theory, formulation, and examples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frank, Stephen; Rebennack, Steffen

    The set of optimization problems in electric power systems engineering known collectively as Optimal Power Flow (OPF) is one of the most practically important and well-researched subfields of constrained nonlinear optimization. OPF has enjoyed a rich history of research, innovation, and publication since its debut five decades ago. Nevertheless, entry into OPF research is a daunting task for the uninitiated--both due to the sheer volume of literature and because OPF's ubiquity within the electric power systems community has led authors to assume a great deal of prior knowledge that readers unfamiliar with electric power systems may not possess. This articlemore » provides an introduction to OPF from an operations research perspective; it describes a complete and concise basis of knowledge for beginning OPF research. The discussion is tailored for the operations researcher who has experience with nonlinear optimization but little knowledge of electrical engineering. Topics covered include power systems modeling, the power flow equations, typical OPF formulations, and common OPF extensions.« less

  8. Deformation of a Capsule in a Power-Law Shear Flow

    PubMed Central

    2016-01-01

    An immersed boundary-lattice Boltzmann method is developed for fluid-structure interactions involving non-Newtonian fluids (e.g., power-law fluid). In this method, the flexible structure (e.g., capsule) dynamics and the fluid dynamics are coupled by using the immersed boundary method. The incompressible viscous power-law fluid motion is obtained by solving the lattice Boltzmann equation. The non-Newtonian rheology is achieved by using a shear rate-dependant relaxation time in the lattice Boltzmann method. The non-Newtonian flow solver is then validated by considering a power-law flow in a straight channel which is one of the benchmark problems to validate an in-house solver. The numerical results present a good agreement with the analytical solutions for various values of power-law index. Finally, we apply this method to study the deformation of a capsule in a power-law shear flow by varying the Reynolds number from 0.025 to 0.1, dimensionless shear rate from 0.004 to 0.1, and power-law index from 0.2 to 1.8. It is found that the deformation of the capsule increases with the power-law index for different Reynolds numbers and nondimensional shear rates. In addition, the Reynolds number does not have significant effect on the capsule deformation in the flow regime considered. Moreover, the power-law index effect is stronger for larger dimensionless shear rate compared to smaller values. PMID:27840656

  9. An Integrated Design approach to Power Systems: from Power Flows to Electricity Markets

    NASA Astrophysics Data System (ADS)

    Bose, Subhonmesh

    Power system is at the brink of change. Engineering needs, economic forces and environmental factors are the main drivers of this change. The vision is to build a smart electrical grid and a smarter market mechanism around it to fulfill mandates on clean energy. Looking at engineering and economic issues in isolation is no longer an option today; it needs an integrated design approach. In this thesis, I shall revisit some of the classical questions on the engineering operation of power systems that deals with the nonconvexity of power flow equations. Then I shall explore some issues of the interaction of these power flow equations on the electricity markets to address the fundamental issue of market power in a deregulated market environment. Finally, motivated by the emergence of new storage technologies, I present an interesting result on the investment decision problem of placing storage over a power network. The goal of this study is to demonstrate that modern optimization and game theory can provide unique insights into this complex system. Some of the ideas carry over to applications beyond power systems.

  10. Energy configuration optimization of submerged propeller in oxidation ditch based on CFD

    NASA Astrophysics Data System (ADS)

    Wu, S. Y.; Zhou, D. Q.; Zheng, Y.

    2012-11-01

    The submerged propeller is presented as an important dynamic source in oxidation ditch. In order to guarantee the activated sludge not deposit, it is necessary to own adequate drive power. Otherwise, it will cause many problems such as the awful mixed flow and the great consuming of energy. At present, carrying on the installation optimization of submerged propeller in oxidation ditch mostly depends on experience. So it is necessary to use modern design method to optimize the installation position and number of submerged propeller, and to research submerged propeller flow field characteristics. The submerged propeller internal flow is simulated by using CFD software FLUENT6.3. Based on Navier-Stokes equations and standard k - ɛ turbulence model, the flow was simulated by using a SIMPLE algorithm. The results indicate that the submerged propeller installation position change could avoid the condition of back mixing, which caused by the strong drive. Besides, the problem of sludge deposit and the low velocity in the bend which caused by the drive power attenuation could be solved. By adjusting the submerged propeller number, the least power density that the mixing drive needed could be determined and saving energy purpose could be achieved. The study can provide theoretical guidance for optimize the submerged propeller installation position and determine submerged propeller number.

  11. Application of the mobility power flow approach to structural response from distributed loading

    NASA Technical Reports Server (NTRS)

    Cuschieri, J. M.

    1988-01-01

    The problem of the vibration power flow through coupled substructures when one of the substructures is subjected to a distributed load is addressed. In all the work performed thus far, point force excitation was considered. However, in the case of the excitation of an aircraft fuselage, distributed loading on the whole surface of a panel can be as important as the excitation from directly applied forces at defined locations on the structures. Thus using a mobility power flow approach, expressions are developed for the transmission of vibrational power between two coupled plate substructures in an L configuration, with one of the surfaces of one of the plate substructures being subjected to a distributed load. The types of distributed loads that are considered are a force load with an arbitrary function in space and a distributed load similar to that from acoustic excitation.

  12. Load Forecasting Based Distribution System Network Reconfiguration -- A Distributed Data-Driven Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Huaiguang; Zhang, Yingchen; Muljadi, Eduard

    In this paper, a short-term load forecasting approach based network reconfiguration is proposed in a parallel manner. Specifically, a support vector regression (SVR) based short-term load forecasting approach is designed to provide an accurate load prediction and benefit the network reconfiguration. Because of the nonconvexity of the three-phase balanced optimal power flow, a second-order cone program (SOCP) based approach is used to relax the optimal power flow problem. Then, the alternating direction method of multipliers (ADMM) is used to compute the optimal power flow in distributed manner. Considering the limited number of the switches and the increasing computation capability, themore » proposed network reconfiguration is solved in a parallel way. The numerical results demonstrate the feasible and effectiveness of the proposed approach.« less

  13. Identification of spatially-localized initial conditions via sparse PCA

    NASA Astrophysics Data System (ADS)

    Dwivedi, Anubhav; Jovanovic, Mihailo

    2017-11-01

    Principal Component Analysis involves maximization of a quadratic form subject to a quadratic constraint on the initial flow perturbations and it is routinely used to identify the most energetic flow structures. For general flow configurations, principal components can be efficiently computed via power iteration of the forward and adjoint governing equations. However, the resulting flow structures typically have a large spatial support leading to a question of physical realizability. To obtain spatially-localized structures, we modify the quadratic constraint on the initial condition to include a convex combination with an additional regularization term which promotes sparsity in the physical domain. We formulate this constrained optimization problem as a nonlinear eigenvalue problem and employ an inverse power-iteration-based method to solve it. The resulting solution is guaranteed to converge to a nonlinear eigenvector which becomes increasingly localized as our emphasis on sparsity increases. We use several fluids examples to demonstrate that our method indeed identifies the most energetic initial perturbations that are spatially compact. This work was supported by Office of Naval Research through Grant Number N00014-15-1-2522.

  14. On Application of the Ostwald-de Waele Model to Description of Non-Newtonian Fluid Flow in the Nip of Counter-Rotating Rolls

    NASA Astrophysics Data System (ADS)

    Shapovalov, V. M.

    2018-05-01

    The accuracy of the Ostwald-de Waele model in solving the problem of roll flow has been assessed by comparing with the "reference" solution for an Ellis fluid. As a result of the analysis, it has been shown that the model based on a power-law equation leads to substantial distortions of the flow pattern.

  15. On the theory of Heiser and Shercliff experiment. Part 1: MHD flow in an open channel in strong uniform magnetic field

    NASA Astrophysics Data System (ADS)

    Molokov, S. Y.; Allen, J. E.

    Magnetohydrodynamic (MHD) flows of viscous incompressible fluid in strong magnetic fields parallel to a free surface of fluid are investigated. The problem of flow in an open channel due to a moving side wall in uniform magnetic field is considered, and treated by means of matched asymptotic expansions method. The flow region is divided into various subregions and leading terms of asymptotic expansions as M tends towards infinity (M is the Hartmann number) of solutions of correspondent problems in each subregion are obtained. An exact analytic solution of equations governing the free-surface layer of thickness of order M to the minus 1/2 power is obtained.

  16. Application of Multi-Objective Human Learning Optimization Method to Solve AC/DC Multi-Objective Optimal Power Flow Problem

    NASA Astrophysics Data System (ADS)

    Cao, Jia; Yan, Zheng; He, Guangyu

    2016-06-01

    This paper introduces an efficient algorithm, multi-objective human learning optimization method (MOHLO), to solve AC/DC multi-objective optimal power flow problem (MOPF). Firstly, the model of AC/DC MOPF including wind farms is constructed, where includes three objective functions, operating cost, power loss, and pollutant emission. Combining the non-dominated sorting technique and the crowding distance index, the MOHLO method can be derived, which involves individual learning operator, social learning operator, random exploration learning operator and adaptive strategies. Both the proposed MOHLO method and non-dominated sorting genetic algorithm II (NSGAII) are tested on an improved IEEE 30-bus AC/DC hybrid system. Simulation results show that MOHLO method has excellent search efficiency and the powerful ability of searching optimal. Above all, MOHLO method can obtain more complete pareto front than that by NSGAII method. However, how to choose the optimal solution from pareto front depends mainly on the decision makers who stand from the economic point of view or from the energy saving and emission reduction point of view.

  17. The flow of a power-law fluid in the near-wake of a flat plate

    NASA Astrophysics Data System (ADS)

    Zhou, Min; Ladeinde, Foluso; Bluestein, Danny

    2006-08-01

    The analysis of the near-wake flow downstream of a flat plate is reported in this paper for the case of a non-Newtonian (power-law) constitutive model. To our knowledge, the present paper is the first to address this problem, as previous work on near-wakes has been limited to the use of a Newtonian model. The motivation for this work comes from the biomedical engineering problem of blood flow around the bileaflet of a mechanical heart valve. In the present paper, the series method has been used to calculate the flow near the centerline of the wake, while an asymptotic method has been used for larger distances from the centerline. The effects of power-law inlet conditions on the wake flow are reported for various values of the power-law index n, within the range 0.7≤n ≤1.3. The present analysis has been successfully validated by comparing the results for n =1 to the near-wake results by Goldstein [Proc. Cambridge Philos. Soc. 26, 1 (1930)]. We generalized the equations for arbitrary values of n, without any special considerations for n =1. Therefore, the accurate results observed for n =1 validate our procedure as a whole. The first major finding is that a fluid with smaller n develops faster downstream, such that decreasing n leads to monotonically increasing velocities compared to fluids with large n values. Another finding is that the non-Newtonian effects become more significant as the downstream distance increases. Finally, these effects tend to be more pronounced in the vicinity of the wake centerline compared to larger y locations.

  18. Electric Transport Traction Power Supply System With Distributed Energy Sources

    NASA Astrophysics Data System (ADS)

    Abramov, E. Y.; Schurov, N. I.; Rozhkova, M. V.

    2016-04-01

    The paper states the problem of traction substation (TSS) leveling of daily-load curve for urban electric transport. The circuit of traction power supply system (TPSS) with distributed autonomous energy source (AES) based on photovoltaic (PV) and energy storage (ES) units is submitted here. The distribution algorithm of power flow for the daily traction load curve leveling is also introduced in this paper. In addition, it illustrates the implemented experiment model of power supply system.

  19. Regulation of Dynamical Systems to Optimal Solutions of Semidefinite Programs: Algorithms and Applications to AC Optimal Power Flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dall'Anese, Emiliano; Dhople, Sairaj V.; Giannakis, Georgios B.

    2015-07-01

    This paper considers a collection of networked nonlinear dynamical systems, and addresses the synthesis of feedback controllers that seek optimal operating points corresponding to the solution of pertinent network-wide optimization problems. Particular emphasis is placed on the solution of semidefinite programs (SDPs). The design of the feedback controller is grounded on a dual e-subgradient approach, with the dual iterates utilized to dynamically update the dynamical-system reference signals. Global convergence is guaranteed for diminishing stepsize rules, even when the reference inputs are updated at a faster rate than the dynamical-system settling time. The application of the proposed framework to the controlmore » of power-electronic inverters in AC distribution systems is discussed. The objective is to bridge the time-scale separation between real-time inverter control and network-wide optimization. Optimization objectives assume the form of SDP relaxations of prototypical AC optimal power flow problems.« less

  20. Improved Evolutionary Programming with Various Crossover Techniques for Optimal Power Flow Problem

    NASA Astrophysics Data System (ADS)

    Tangpatiphan, Kritsana; Yokoyama, Akihiko

    This paper presents an Improved Evolutionary Programming (IEP) for solving the Optimal Power Flow (OPF) problem, which is considered as a non-linear, non-smooth, and multimodal optimization problem in power system operation. The total generator fuel cost is regarded as an objective function to be minimized. The proposed method is an Evolutionary Programming (EP)-based algorithm with making use of various crossover techniques, normally applied in Real Coded Genetic Algorithm (RCGA). The effectiveness of the proposed approach is investigated on the IEEE 30-bus system with three different types of fuel cost functions; namely the quadratic cost curve, the piecewise quadratic cost curve, and the quadratic cost curve superimposed by sine component. These three cost curves represent the generator fuel cost functions with a simplified model and more accurate models of a combined-cycle generating unit and a thermal unit with value-point loading effect respectively. The OPF solutions by the proposed method and Pure Evolutionary Programming (PEP) are observed and compared. The simulation results indicate that IEP requires less computing time than PEP with better solutions in some cases. Moreover, the influences of important IEP parameters on the OPF solution are described in details.

  1. Distributed Optimal Power Flow of AC/DC Interconnected Power Grid Using Synchronous ADMM

    NASA Astrophysics Data System (ADS)

    Liang, Zijun; Lin, Shunjiang; Liu, Mingbo

    2017-05-01

    Distributed optimal power flow (OPF) is of great importance and challenge to AC/DC interconnected power grid with different dispatching centres, considering the security and privacy of information transmission. In this paper, a fully distributed algorithm for OPF problem of AC/DC interconnected power grid called synchronous ADMM is proposed, and it requires no form of central controller. The algorithm is based on the fundamental alternating direction multiplier method (ADMM), by using the average value of boundary variables of adjacent regions obtained from current iteration as the reference values of both regions for next iteration, which realizes the parallel computation among different regions. The algorithm is tested with the IEEE 11-bus AC/DC interconnected power grid, and by comparing the results with centralized algorithm, we find it nearly no differences, and its correctness and effectiveness can be validated.

  2. The shallow water equations as a hybrid flow model for the numerical and experimental analysis of hydro power stations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ostermann, Lars; Seidel, Christian

    2015-03-10

    The numerical analysis of hydro power stations is an important method of the hydraulic design and is used for the development and optimisation of hydro power stations in addition to the experiments with the physical submodel of a full model in the hydraulic laboratory. For the numerical analysis, 2D and 3D models are appropriate and commonly used.The 2D models refer mainly to the shallow water equations (SWE), since for this flow model a large experience on a wide field of applications for the flow analysis of numerous problems in hydraulic engineering already exists. Often, the flow model is verified bymore » in situ measurements. In order to consider 3D flow phenomena close to singularities like weirs, hydro power stations etc. the development of a hybrid fluid model is advantageous to improve the quality and significance of the global model. Here, an extended hybrid flow model based on the principle of the SWE is presented. The hybrid flow model directly links the numerical model with the experimental data, which may originate from physical full models, physical submodels and in-situ measurements. Hence a wide field of application of the hybrid model emerges including the improvement of numerical models and the strong coupling of numerical and experimental analysis.« less

  3. Reactive power planning under high penetration of wind energy using Benders decomposition

    DOE PAGES

    Xu, Yan; Wei, Yanli; Fang, Xin; ...

    2015-11-05

    This study addresses the optimal allocation of reactive power volt-ampere reactive (VAR) sources under the paradigm of high penetration of wind energy. Reactive power planning (RPP) in this particular condition involves a high level of uncertainty because of wind power characteristic. To properly model wind generation uncertainty, a multi-scenario framework optimal power flow that considers the voltage stability constraint under the worst wind scenario and transmission N 1 contingency is developed. The objective of RPP in this study is to minimise the total cost including the VAR investment cost and the expected generation cost. Therefore RPP under this condition ismore » modelled as a two-stage stochastic programming problem to optimise the VAR location and size in one stage, then to minimise the fuel cost in the other stage, and eventually, to find the global optimal RPP results iteratively. Benders decomposition is used to solve this model with an upper level problem (master problem) for VAR allocation optimisation and a lower problem (sub-problem) for generation cost minimisation. Impact of the potential reactive power support from doubly-fed induction generator (DFIG) is also analysed. Lastly, case studies on the IEEE 14-bus and 118-bus systems are provided to verify the proposed method.« less

  4. Similar solutions for viscous hypersonic flow over a slender three-fourths-power body of revolution

    NASA Technical Reports Server (NTRS)

    Lin, Chin-Shun

    1987-01-01

    For hypersonic flow with a shock wave, there is a similar solution consistent throughout the viscous and inviscid layers along a very slender three-fourths-power body of revolution The strong pressure interaction problem can then be treated by the method of similarity. Numerical calculations are performed in the viscous region with the edge pressure distribution known from the inviscid similar solutions. The compressible laminar boundary-layer equations are transformed into a system of ordinary differential equations. The resulting two-point boundary value problem is then solved by the Runge-Kutta method with a modified Newton's method for the corresponding boundary conditions. The effects of wall temperature, mass bleeding, and body transverse curvature are investigated. The induced pressure, displacement thickness, skin friction, and heat transfer due to the previously mentioned parameters are estimated and analyzed.

  5. Computational simulations of supersonic magnetohydrodynamic flow control, power and propulsion systems

    NASA Astrophysics Data System (ADS)

    Wan, Tian

    This work is motivated by the lack of fully coupled computational tool that solves successfully the turbulent chemically reacting Navier-Stokes equation, the electron energy conservation equation and the electric current Poisson equation. In the present work, the abovementioned equations are solved in a fully coupled manner using fully implicit parallel GMRES methods. The system of Navier-Stokes equations are solved using a GMRES method with combined Schwarz and ILU(0) preconditioners. The electron energy equation and the electric current Poisson equation are solved using a GMRES method with combined SOR and Jacobi preconditioners. The fully coupled method has also been implemented successfully in an unstructured solver, US3D, and convergence test results were presented. This new method is shown two to five times faster than the original DPLR method. The Poisson solver is validated with analytic test problems. Then, four problems are selected; two of them are computed to explore the possibility of onboard MHD control and power generation, and the other two are simulation of experiments. First, the possibility of onboard reentry shock control by a magnetic field is explored. As part of a previous project, MHD power generation onboard a re-entry vehicle is also simulated. Then, the MHD acceleration experiments conducted at NASA Ames research center are simulated. Lastly, the MHD power generation experiments known as the HVEPS project are simulated. For code validation, the scramjet experiments at University of Queensland are simulated first. The generator section of the HVEPS test facility is computed then. The main conclusion is that the computational tool is accurate for different types of problems and flow conditions, and its accuracy and efficiency are necessary when the flow complexity increases.

  6. Performance Assessment of the Commercial CFD Software for the Prediction of the Reactor Internal Flow

    NASA Astrophysics Data System (ADS)

    Lee, Gong Hee; Bang, Young Seok; Woo, Sweng Woong; Kim, Do Hyeong; Kang, Min Ku

    2014-06-01

    As the computer hardware technology develops the license applicants for nuclear power plant use the commercial CFD software with the aim of reducing the excessive conservatism associated with using simplified and conservative analysis tools. Even if some of CFD software developer and its user think that a state of the art CFD software can be used to solve reasonably at least the single-phase nuclear reactor problems, there is still limitation and uncertainty in the calculation result. From a regulatory perspective, Korea Institute of Nuclear Safety (KINS) is presently conducting the performance assessment of the commercial CFD software for nuclear reactor problems. In this study, in order to examine the validity of the results of 1/5 scaled APR+ (Advanced Power Reactor Plus) flow distribution tests and the applicability of CFD in the analysis of reactor internal flow, the simulation was conducted with the two commercial CFD software (ANSYS CFX V.14 and FLUENT V.14) among the numerous commercial CFD software and was compared with the measurement. In addition, what needs to be improved in CFD for the accurate simulation of reactor core inlet flow was discussed.

  7. Particle and flow field holography: A critical survey

    NASA Technical Reports Server (NTRS)

    Trolinger, James D.

    1987-01-01

    A brief background is provided for the fields of particle and flow visualization holography. A summary of methods currently in use is given, followed by a discussion of more recent and unique applications. The problem of data reduction is discussed. A state of the art summary is then provided with a prognosis of the future of the field. Particle and flow visualization holography are characterized as powerful tools currently in wide use and with significant untapped potential.

  8. Chance-Constrained AC Optimal Power Flow for Distribution Systems With Renewables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DallAnese, Emiliano; Baker, Kyri; Summers, Tyler

    This paper focuses on distribution systems featuring renewable energy sources (RESs) and energy storage systems, and presents an AC optimal power flow (OPF) approach to optimize system-level performance objectives while coping with uncertainty in both RES generation and loads. The proposed method hinges on a chance-constrained AC OPF formulation where probabilistic constraints are utilized to enforce voltage regulation with prescribed probability. A computationally more affordable convex reformulation is developed by resorting to suitable linear approximations of the AC power-flow equations as well as convex approximations of the chance constraints. The approximate chance constraints provide conservative bounds that hold for arbitrarymore » distributions of the forecasting errors. An adaptive strategy is then obtained by embedding the proposed AC OPF task into a model predictive control framework. Finally, a distributed solver is developed to strategically distribute the solution of the optimization problems across utility and customers.« less

  9. Silicon Nanophotonics for Many-Core On-Chip Networks

    NASA Astrophysics Data System (ADS)

    Mohamed, Moustafa

    Number of cores in many-core architectures are scaling to unprecedented levels requiring ever increasing communication capacity. Traditionally, architects follow the path of higher throughput at the expense of latency. This trend has evolved into being problematic for performance in many-core architectures. Moreover, the trends of power consumption is increasing with system scaling mandating nontraditional solutions. Nanophotonics can address these problems, offering benefits in the three frontiers of many-core processor design: Latency, bandwidth, and power. Nanophotonics leverage circuit-switching flow control allowing low latency; in addition, the power consumption of optical links is significantly lower compared to their electrical counterparts at intermediate and long links. Finally, through wave division multiplexing, we can keep the high bandwidth trends without sacrificing the throughput. This thesis focuses on realizing nanophotonics for communication in many-core architectures at different design levels considering reliability challenges that our fabrication and measurements reveal. First, we study how to design on-chip networks for low latency, low power, and high bandwidth by exploiting the full potential of nanophotonics. The design process considers device level limitations and capabilities on one hand, and system level demands in terms of power and performance on the other hand. The design involves the choice of devices, designing the optical link, the topology, the arbitration technique, and the routing mechanism. Next, we address the problem of reliability in on-chip networks. Reliability not only degrades performance but can block communication. Hence, we propose a reliability-aware design flow and present a reliability management technique based on this flow to address reliability in the system. In the proposed flow reliability is modeled and analyzed for at the device, architecture, and system level. Our reliability management technique is superior to existing solutions in terms of power and performance. In fact, our solution can scale to thousand core with low overhead.

  10. Study on the thermodynamical and mechanical conditions for the generation of high operating pressures with liquefied gases for low and very low flow rates

    NASA Astrophysics Data System (ADS)

    Nieratschker, Willi

    1989-12-01

    An investigation of the thermodynamical and mechanical conditions for extending the flow rate range in the direction of low flow rates with regard to the delivery of liquefied gases at high operating pressures is presented. For low flow rates, the especially critical cavitation problem connected with the pumping of liquefied gases becomes more acute, since with decreasing volume the ratio of heat losses to the hydraulic power becomes ever more unfavorable. A first prototype is designed, produced and investigated to evaluate design-related heat loss and piston seal problems. An approach to the solution is indicated for both problem areas with the application of a new and patented pump principle, and through investigation of a second prototype modified in several respects. By reducing the pump mass when designing the second pump prototype, the nonstationary cooling phase is greatly shortened, so that intermittent pump operation becomes possible when the pump is housed external to the storage tank.

  11. The maximum work principle regarded as a consequence of an optimization problem based on mechanical virtual power principle and application of constructal theory

    NASA Astrophysics Data System (ADS)

    Gavrus, Adinel

    2017-10-01

    This scientific paper proposes to prove that the maximum work principle used by theory of continuum media plasticity can be regarded as a consequence of an optimization problem based on constructal theory (prof. Adrian BEJAN). It is known that the thermodynamics define the conservation of energy and the irreversibility of natural systems evolution. From mechanical point of view the first one permits to define the momentum balance equation, respectively the virtual power principle while the second one explains the tendency of all currents to flow from high to low values. According to the constructal law all finite-size system searches to evolve in such configurations that flow more and more easily over time distributing the imperfections in order to maximize entropy and to minimize the losses or dissipations. During a material forming process the application of constructal theory principles leads to the conclusion that under external loads the material flow is that which all dissipated mechanical power (deformation and friction) become minimal. On a mechanical point of view it is then possible to formulate the real state of all mechanical variables (stress, strain, strain rate) as those that minimize the total dissipated power. So between all other virtual non-equilibrium states, the real state minimizes the total dissipated power. It can be then obtained a variational minimization problem and this paper proof in a mathematical sense that starting from this formulation can be finding in a more general form the maximum work principle together with an equivalent form for the friction term. An application in the case of a plane compression of a plastic material shows the feasibility of the proposed minimization problem formulation to find analytical solution for both cases: one without friction influence and a second which take into account Tresca friction law. To valid the proposed formulation, a comparison with a classical analytical analysis based on slices, upper/lower bound methods and numerical Finite Element simulation is also presented.

  12. The creation of hypersonic flows by a powerful impulse capillary discharge

    NASA Astrophysics Data System (ADS)

    Pashchina, A. S.; Karmatsky, R. E.; Klimov, A. I.

    2017-11-01

    The possibility of using a powerful pulsed capillary discharge to produce quasi-stationary highspeed plasma flows with characteristic Mach numbers M = 3-10 and temperatures T = 3000-6000 K has been experimentally substantiated. In a rarefied gas atmosphere ( p ∞ < 10 Torr), the transverse size of flow exceeds d < 3 cm and the duration of the working cycle can be brought to hundreds of milliseconds, which is of interest in problems of laboratory modeling of physical-chemical and gas-dynamic effects of interaction of bodies with hypersonic flows. Strong temperature nonequilibrium has been found (with the ratio between the vibrational and rotational temperatures reaching T v/ T r = 3 and more) and anomalously low values of the effective adiabatic index, which indicates an intensive formation of polyatomic molecules and condensed particles in a carbon-containing plasma.

  13. Results of the Workshop on Two-Phase Flow, Fluid Stability and Dynamics: Issues in Power, Propulsion, and Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    McQuillen, John; Rame, Enrique; Kassemi, Mohammad; Singh, Bhim; Motil, Brian

    2003-01-01

    The Two-phase Flow, Fluid Stability and Dynamics Workshop was held on May 15, 2003 in Cleveland, Ohio to define a coherent scientific research plan and roadmap that addresses the multiphase fluid problems associated with NASA s technology development program. The workshop participants, from academia, industry and government, prioritized various multiphase issues and generated a research plan and roadmap to resolve them. This report presents a prioritization of the various multiphase flow and fluid stability phenomena related primarily to power, propulsion, fluid and thermal management and advanced life support; and a plan to address these issues in a logical and timely fashion using analysis, ground-based and space-flight experiments.

  14. New insights on the interaction between atmospheric flow and a full-scale 2.5 MW wind turbine

    NASA Astrophysics Data System (ADS)

    Chamorro, L. P.; Lee, S.; Olsen, D.; Milliren, C.; Marr, J.; Arndt, R.; Sotiropoulos, F.

    2012-12-01

    Power fluctuations and fatigue loads are among the most significant problems that wind turbines face throughout their lifetime. Atmospheric turbulence is the common driving mechanism that triggers instabilities on these quantities. Reducing the effects of the fluctuating flow on wind turbines is quite challenging due to the wide variety of length scales present in the boundary layer flow. Each group of these scales, which range from the order of a millimeter to kilometer and larger, plays a characteristic and distinctive role on the performance and structural reliability of wind turbines. This study seeks to contribute toward the understanding on the complex scale-to-scale interaction between wind turbine and flow turbulence. Novel insights into the physical mechanisms that govern the flow/turbine interaction will be discussed. To tackle the problem, we investigate the unsteady behavior of a full-scale 2.5 MW wind turbine under nearly neutral thermal stratification. The study is performed in the Eolos Wind Energy Research Field Station of the University of Minnesota. An instrumented 130 meter meteorological tower located upstream of a Clipper Liberty C96 wind turbine is used to characterize the turbulent flow and atmospheric conditions right upstream of the wind turbine. High resolution and synchronous measurements of the approach wind velocity at several heights, turbine power and strain at the tower foundation are used to determine the scale-to-scale interaction between flow and the wind turbine performance and its physical structure. The spectral distribution of the fluctuating turbine power and instantaneous stresses will be discussed in detail. Characteristic length scales playing a key role on the dynamics of the wind turbine as well as the distinctive effects of flow coherent motions and strong intermittent gusts will also be addressed. Funding was provided by the U.S. Department of Energy (DE-EE0002980) and Xcel Energy through the Renewable Development Fund (grant RD3-42).

  15. On a solution of the nonlinear differential equation for transonic flow past a wave-shaped wall

    NASA Technical Reports Server (NTRS)

    Kaplan, Carl

    1952-01-01

    The Prandtl-Busemann small-perturbation method is utilized to obtain the flow of a compressible fluid past an infinitely long wave-shaped wall. When the essential assumption for transonic flow (that all Mach numbers in the region of flow are nearly unity) is introduced, the expression for the velocity potential takes the form of a power series in the transonic similarity parameter. On the basis of this form of the solution, an attempt is made to solve the nonlinear differential equation for transonic flow past the wavy wall. The analysis utilized exhibits clearly the difficulties inherent in nonlinear-flow problems.

  16. Perform Experiments on LINUS-O and LTX Imploding Liquid Liner Fusion Systems.

    DTIC Science & Technology

    1982-08-27

    EXPERIMENTS .. .. .. ... 3 III. HOMOPOLAR GENERATOR/INDUCTOR POWER SUPPLY EXPERIMENTS. 11 IV. PLASMA SWITCH EXPERIMENTS. .. .. .. .... . ..... 18 V... homopolar generator (HPG) inductive load system. 0 Conduct an electromagnetic pulse (EMP) simulation demonstration using the NRL HPG/inductive storage...suggest solutions to the unstable flow problem, the research was suspended due to the program redirection. -10- IT III. HOMOPOLAR GENERATOR/INDUCTOR POWER

  17. Adjoint-Baed Optimal Control on the Pitch Angle of a Single-Bladed Vertical-Axis Wind Turbine

    NASA Astrophysics Data System (ADS)

    Tsai, Hsieh-Chen; Colonius, Tim

    2017-11-01

    Optimal control on the pitch angle of a NACA0018 single-bladed vertical-axis wind turbine (VAWT) is numerically investigated at a low Reynolds number of 1500. With fixed tip-speed ratio, the input power is minimized and mean tangential force is maximized over a specific time horizon. The immersed boundary method is used to simulate the two-dimensional, incompressible flow around a horizontal cross section of the VAWT. The problem is formulated as a PDE constrained optimization problem and an iterative solution is obtained using adjoint-based conjugate gradient methods. By the end of the longest control horizon examined, two controls end up with time-invariant pitch angles of about the same magnitude but with the opposite signs. The results show that both cases lead to a reduction in the input power but not necessarily an enhancement in the mean tangential force. These reductions in input power are due to the removal of a power-damaging phenomenon that occurs when a vortex pair is captured by the blade in the upwind-half region of a cycle. This project was supported by Caltech FLOWE center/Gordon and Betty Moore Foundation.

  18. Fleet Sizing of Automated Material Handling Using Simulation Approach

    NASA Astrophysics Data System (ADS)

    Wibisono, Radinal; Ai, The Jin; Ratna Yuniartha, Deny

    2018-03-01

    Automated material handling tends to be chosen rather than using human power in material handling activity for production floor in manufacturing company. One critical issue in implementing automated material handling is designing phase to ensure that material handling activity more efficient in term of cost spending. Fleet sizing become one of the topic in designing phase. In this research, simulation approach is being used to solve fleet sizing problem in flow shop production to ensure optimum situation. Optimum situation in this research means minimum flow time and maximum capacity in production floor. Simulation approach is being used because flow shop can be modelled into queuing network and inter-arrival time is not following exponential distribution. Therefore, contribution of this research is solving fleet sizing problem with multi objectives in flow shop production using simulation approach with ARENA Software

  19. Dispatching power system for preventive and corrective voltage collapse problem in a deregulated power system

    NASA Astrophysics Data System (ADS)

    Alemadi, Nasser Ahmed

    Deregulation has brought opportunities for increasing efficiency of production and delivery and reduced costs to customers. Deregulation has also bought great challenges to provide the reliability and security customers have come to expect and demand from the electrical delivery system. One of the challenges in the deregulated power system is voltage instability. Voltage instability has become the principal constraint on power system operation for many utilities. Voltage instability is a unique problem because it can produce an uncontrollable, cascading instability that results in blackout for a large region or an entire country. In this work we define a system of advanced analytical methods and tools for secure and efficient operation of the power system in the deregulated environment. The work consists of two modules; (a) contingency selection module and (b) a Security Constrained Optimization module. The contingency selection module to be used for voltage instability is the Voltage Stability Security Assessment and Diagnosis (VSSAD). VSSAD shows that each voltage control area and its reactive reserve basin describe a subsystem or agent that has a unique voltage instability problem. VSSAD identifies each such agent. VS SAD is to assess proximity to voltage instability for each agent and rank voltage instability agents for each contingency simulated. Contingency selection and ranking for each agent is also performed. Diagnosis of where, why, when, and what can be done to cure voltage instability for each equipment outage and transaction change combination that has no load flow solution is also performed. A security constrained optimization module developed solves a minimum control solvability problem. A minimum control solvability problem obtains the reactive reserves through action of voltage control devices that VSSAD determines are needed in each agent to obtain solution of the load flow. VSSAD makes a physically impossible recommendation of adding reactive generation capability to specific generators to allow a load flow solution to be obtained. The minimum control solvability problem can also obtain solution of the load flow without curtailing transactions that shed load and generation as recommended by VSSAD. A minimum control solvability problem will be implemented as a corrective control, that will achieve the above objectives by using minimum control changes. The control includes; (1) voltage setpoint on generator bus voltage terminals; (2) under load tap changer tap positions and switchable shunt capacitors; and (3) active generation at generator buses. The minimum control solvability problem uses the VSSAD recommendation to obtain the feasible stable starting point but completely eliminates the impossible or onerous recommendation made by VSSAD. This thesis reviews the capabilities of Voltage Stability Security Assessment and Diagnosis and how it can be used to implement a contingency selection module for the Open Access System Dispatch (OASYDIS). The OASYDIS will also use the corrective control computed by Security Constrained Dispatch. The corrective control would be computed off line and stored for each contingency that produces voltage instability. The control is triggered and implemented to correct the voltage instability in the agent experiencing voltage instability only after the equipment outage or operating changes predicted to produce voltage instability have occurred. The advantages and the requirements to implement the corrective control are also discussed.

  20. Magnetohydrodynamic viscous flow over a nonlinearly moving surface: Closed-form solutions

    NASA Astrophysics Data System (ADS)

    Fang, Tiegang

    2014-05-01

    In this paper, the magnetohydrodynamic (MHD) flow over a nonlinearly (power-law velocity) moving surface is investigated analytically and solutions are presented for a few special conditions. The solutions are obtained in closed forms with hyperbolic functions. The effects of the magnetic, the wall moving, and the mass transpiration parameters are discussed. These solutions are important to show the flow physics as well as to be used as bench mark problems for numerical validation and development of new solution schemes.

  1. Laser absorption phenomena in flowing gas devices

    NASA Technical Reports Server (NTRS)

    Chapman, P. K.; Otis, J. H.

    1976-01-01

    A theoretical and experimental investigation is presented of inverse Bremsstrahlung absorption of CW CO2 laser radiation in flowing gases seeded with alkali metals. In order to motivate this development, some simple models are described of several space missions which could use laser powered rocket vehicles. Design considerations are given for a test call to be used with a welding laser, using a diamond window for admission of laser radiation at power levels in excess of 10 kW. A detailed analysis of absorption conditions in the test cell is included. The experimental apparatus and test setup are described and the results of experiments presented. Injection of alkali seedant and steady state absorption of the laser radiation were successfully demonstrated, but problems with the durability of the diamond windows at higher powers prevented operation of the test cell as an effective laser powered thruster.

  2. Flow in water-intake pump bays: A guide for utility engineers. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ettema, R.

    1998-09-01

    This report is intended to serve as a guide for power-plant engineers facing problems with flow conditions in pump bays in water-intake structures, especially those located alongside rivers. The guide briefly introduces the typical prevailing flow field outside of a riverside water intake. That flow field often sets the inflow conditions for pump bays located within the water intake. The monograph then presents and discusses the main flow problems associated with pump bays. The problems usually revolve around the formation of troublesome vortices. A novel feature of this monograph is the use of numerical modeling to reveal diagnostically how themore » vortices form and their sensitivities to flow conditions, such as uniformity of approach flow entering the bay and water-surface elevation relative to pump-bell submergence. The modeling was carried out using a computer code developed specially for the present project. Pump-bay layouts are discussed next. The discussion begins with a summary of the main variables influencing bay flows. The numerical model is used to determine the sensitivities of the vortices to variations in the geometric parameters. The fixes include the use of flow-control vanes and suction scoops for ensuring satisfactory flow performance in severe flow conditions; notably flows with strong cross flow and shallow flows. The monograph ends with descriptions of modeling techniques. An extensive discussion is provided on the use of numerical model for illuminating bay flows. The model is used to show how fluid viscosity affects bay flow. The effect of fluid viscosity is an important consideration in hydraulic modeling of water intakes.« less

  3. Developments in boundary element methods - 2

    NASA Astrophysics Data System (ADS)

    Banerjee, P. K.; Shaw, R. P.

    This book is a continuation of the effort to demonstrate the power and versatility of boundary element methods which began in Volume 1 of this series. While Volume 1 was designed to introduce the reader to a selected range of problems in engineering for which the method has been shown to be efficient, the present volume has been restricted to time-dependent problems in engineering. Boundary element formulation for melting and solidification problems in considered along with transient flow through porous elastic media, applications of boundary element methods to problems of water waves, and problems of general viscous flow. Attention is given to time-dependent inelastic deformation of metals by boundary element methods, the determination of eigenvalues by boundary element methods, transient stress analysis of tunnels and caverns of arbitrary shape due to traveling waves, an analysis of hydrodynamic loads by boundary element methods, and acoustic emissions from submerged structures.

  4. Convective hydromagnetic instabilities of a power-law liquid saturating a porous medium: Flux conditions

    NASA Astrophysics Data System (ADS)

    Chahtour, C.; Ben Hamed, H.; Beji, H.; Guizani, A.; Alimi, W.

    2018-01-01

    We investigate how an external imposed magnetic field affects thermal instability in a horizontal shallow porous cavity saturated by a non-Newtonian power-law liquid. The magnetic field is assumed to be constant and parallel to the gravity. A uniform heat flux is applied to the horizontal walls of the layer while the vertical walls are adiabatic. We use linear stability analysis to find expressions for the critical Rayleigh number as a function of the power-law index and the intensity of the magnetic field. We use nonlinear parallel flow theory to find some explicit solutions of the problem, and we use finite difference numerical simulations to solve the full nonlinear equations. We show how the presence of magnetic field alters the known hydrodynamical result of Newtonian flows and power-law flows and how it causes the presence of subcritical finite amplitude convection for both pseudoplastic and dilatant fluids. We also show that in the limit of very strong magnetic field, the dissipation of energy by Joule effect dominates the dissipation of energy by shear stress and gives to the liquid an inviscid character.

  5. Operational Characteristics of an Ultra Compact Combustor

    DTIC Science & Technology

    2014-03-27

    to control this temperature profile to the turbine. A thermally non -uniform flow can create problems with power extraction and heat loading within...NOx) in an experimental rig set-up using air jet cross flows in non -reacting and reacting conditions at high pressure. NOx formation has become the...performance. One of the obstacles for implementing an UCC is the ability to control this temperature profile to the turbine. A thermally non

  6. Development of the scientific heritage of M.E. Deich in the sphere of the gas dynamics of two-phase media (On the 100th anniversary of his birthday)

    NASA Astrophysics Data System (ADS)

    Avetisyan, A. R.; Lazarev, L. Ya.

    2017-07-01

    This article is a brief overview of some scientific and engineering ideas in the sphere of two-phase gas dynamics that were developed by the team of the Problem Laboratory of Turbomachines, Department of Steam and Gas Turbines, Moscow Power Engineering Institute (NRU MPEI, National Research University), under the leadership of Mikhail Efimovich Deich since 1963 and the analysis of their development and influence on the current state of the problem. At the early stages of the studies on two-phase media, the problem of the measurement of physical parameters of phases was especially urgent. The characteristics of probes for the measurement of one-phase flows in the presence of drops were studied, and the corrections for the influence of the second phase were obtained. However, the main focus was the development of new methods, and the optical method using a laser light source that is currently used at the leading laboratories of the world was chosen as the main method. The study of the wet-steam flow in nozzles is one of the first stages of the research on the problem. In these studies, the wave structure of supersonic wet-steam flows (condensation jumps and shock waves, Mach waves, turbulent condensation, periodic condensation nonstationarity, etc.) was investigated in detail. At present, like in the earlier studies, much attention is paid to the study of the influence of the addition of surface-active substance (SASs) on the wet-steam flow. The study of the wet-steam motion in steam-turbine stages was performed simultaneously with physical studies as the practical application of the obtained results. The development of computer technology in the 21st century contributed to the elaboration of the theoretical methods for the calculation of wet-steam flows in elements of power devices.

  7. Research on Centralized Voltage and Effective Inequality Identification Based on Circuit Analysis Method

    NASA Astrophysics Data System (ADS)

    Su, Yi; Wang, Feifeng; Lu, Yufeng; Huang, Huimin; Xia, Xiaofei

    2017-09-01

    This paper is based on affine function equation of the grid and OPF problem, discusses the equivalent of some inequality constraints variables optimizing. Further, we propose the model of injection current and set up the constraint sensitivity index of affine characteristics. The index can be used to identify the central point voltage and effective inequality of the system automatically. And then we can know how to compensate reactive power of the corresponding generator node and control the voltage to ensure the quality of the system voltage. When checking the effective inequalities we introduce cross-solving method of power flow. This provide a different idea for solving the power flow. The paper uses the results of the IEEE5 node examples to illustrate the validity and practicality of the proposed method.

  8. Microcomputer Applications in Interaction Analysis.

    ERIC Educational Resources Information Center

    Wadham, Rex A.

    The Timed Interval Categorical Observation Recorder (TICOR), a portable, battery powered microcomputer designed to automate the collection of sequential and simultaneous behavioral observations and their associated durations, was developed to overcome problems in gathering subtle interaction analysis data characterized by sequential flow of…

  9. Design and evaluation of a microgrid for PEV charging with flexible distribution of energy sources and storage

    NASA Astrophysics Data System (ADS)

    Pyne, Moinak

    This thesis aspires to model and control, the flow of power in a DC microgrid. Specifically, the energy sources are a photovoltaic system and the utility grid, a lead acid battery based energy storage system and twenty PEV charging stations as the loads. Theoretical principles of large scale state space modeling are applied to model the considerable number of power electronic converters needed for controlling voltage and current thresholds. The energy storage system is developed using principles of neural networks to facilitate a stable and uncomplicated model of the lead acid battery. Power flow control is structured as a hierarchical problem with multiple interactions between individual components of the microgrid. The implementation is done using fuzzy logic with scheduling the maximum use of available solar energy and compensating demand or excess power with the energy storage system, and minimizing utility grid use, while providing multiple speeds of charging the PEVs.

  10. Research and development studies for MHD/coal power flow train components. Technical progress report, 1 September 1979-31 August 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bloom, M. H.

    1980-01-01

    The aim of this program is to contribute to certain facets of the development of the MHD/coal power system, and particularly the CDIF of DOE with regard to its flow train. Consideration is given specifically to the electrical power take-off, the diagnostic and instrumentation systems, the combustor and MHD channel technology, and electrode alternatives. Within the constraints of the program, high priorities were assigned to the problems of power take-off and the related characteristics of the MHD channel, and to the establishment of a non-intrusive, laser-based diagnostic system. The next priority was given to the combustor modeling and to amore » significantly improved analysis of particle combustion. Separate abstracts were prepared for nine of the ten papers included. One paper was previously included in the data base. (WHK)« less

  11. Frequency-feature based antistrong-disturbance signal processing method and system for vortex flowmeter with single sensor

    NASA Astrophysics Data System (ADS)

    Xu, Ke-Jun; Luo, Qing-Lin; Wang, Gang; Liu, San-Shan; Kang, Yi-Bo

    2010-07-01

    Digital signal processing methods have been applied to vortex flowmeter for extracting the useful information from noisy output of the vortex flow sensor. But these approaches are unavailable when the power of the mechanical vibration noise is larger than that of the vortex flow signal. In order to solve this problem, an antistrong-disturbance signal processing method is proposed based on frequency features of the vortex flow signal and mechanical vibration noise for the vortex flowmeter with single sensor. The frequency bandwidth of the vortex flow signal is different from that of the mechanical vibration noise. The autocorrelation function can represent bandwidth features of the signal and noise. The output of the vortex flow sensor is processed by the spectrum analysis, filtered by bandpass filters, and calculated by autocorrelation function at the fixed delaying time and at τ =0 to obtain ratios. The frequency corresponding to the minimal ratio is regarded as the vortex flow frequency. With an ultralow-power microcontroller, a digital signal processing system is developed to implement the antistrong-disturbance algorithm, and at the same time to ensure low-power and two-wire mode for meeting the requirement of process instrumentation. The water flow-rate calibration and vibration test experiments are conducted, and the experimental results show that both the algorithm and system are effective.

  12. Frequency-feature based antistrong-disturbance signal processing method and system for vortex flowmeter with single sensor.

    PubMed

    Xu, Ke-Jun; Luo, Qing-Lin; Wang, Gang; Liu, San-Shan; Kang, Yi-Bo

    2010-07-01

    Digital signal processing methods have been applied to vortex flowmeter for extracting the useful information from noisy output of the vortex flow sensor. But these approaches are unavailable when the power of the mechanical vibration noise is larger than that of the vortex flow signal. In order to solve this problem, an antistrong-disturbance signal processing method is proposed based on frequency features of the vortex flow signal and mechanical vibration noise for the vortex flowmeter with single sensor. The frequency bandwidth of the vortex flow signal is different from that of the mechanical vibration noise. The autocorrelation function can represent bandwidth features of the signal and noise. The output of the vortex flow sensor is processed by the spectrum analysis, filtered by bandpass filters, and calculated by autocorrelation function at the fixed delaying time and at tau=0 to obtain ratios. The frequency corresponding to the minimal ratio is regarded as the vortex flow frequency. With an ultralow-power microcontroller, a digital signal processing system is developed to implement the antistrong-disturbance algorithm, and at the same time to ensure low-power and two-wire mode for meeting the requirement of process instrumentation. The water flow-rate calibration and vibration test experiments are conducted, and the experimental results show that both the algorithm and system are effective.

  13. Lift and moment coefficients expanded to the seventh power of frequency for oscillating rectangular wings in supersonic flow and applied to a specific flutter problem

    NASA Technical Reports Server (NTRS)

    Nelson, Herbert C; Rainey, Ruby A; Watkins, Charles E

    1954-01-01

    Linearized theory for compressible unsteady flow is used to derive the velocity potential and lift and moment coefficients in the form of oscillating rectangular wing moving at a constant supersonic speed. Closed expressions for the velocity potential and lift and moment coefficients associated with pitching and translation are given to seventh power of the frequency. These expressions extend the range of usefulness of NACA report 1028 in which similar expressions were derived to the third power of the frequency of oscillation. For example, at a Mach number of 10/9 the expansion of the potential to the third power is an accurate representation of the potential for values of the reduced frequency only up to about 0.08; whereas the expansion of the potential to the seventh power is an accurate representation for values of the reduced frequency up to about 0.2. The section and total lift and moment coefficients are discussed with the aid of several figures. In addition, flutter speeds obtained in the Mach number range from 10/9 to 10/6 for a rectangular wing of aspect ratio 4.53 by using section coefficients derived on the basis of three-dimensional flow are compared with flutter speeds for this wing obtained by using coefficients derived on the basis of two-dimensional flow.

  14. Mechanical power efficiency of modified turbine blades

    NASA Astrophysics Data System (ADS)

    Mahmud, Syahir; Sampebatu, Limbran; Kwang, Suendy Ciayadi

    2017-01-01

    Abstract-The problem of energy crisis has become one of the unsolved issues until today. Indonesia has a lot of non-conventional energy sources that does not utilized effectively yet. For that the available resources must utilized efficiently due to the energy crisis and the growing energy needs. Among the abundant resources of energy, one potential source of energy is hydroelectric energy. This research compares the mechanical power efficiency generated by the Darrieus turbine, Savonius turbine and the Darrieus-Savonius turbine. The comparation of the mechanical power amongst the three turbine starts from the measurement of the water flow rate, water temperature, turbine rotation and force on the shaft on each type of turbine. The comparison will show the mechanical power efficiency of each turbine to find the most efficient turbine that can work optimally. The results show that with 0.637m/s flow velocity and 44.827 Watt of water flow power, the Darrieus-Savonius turbine can generate power equal to 29.927 Watt and shaft force around by 17 N. The Darrieus-Savonius turbine provides around 66.76% efficiency betwen the three turbines; Darrieus turbine, Savonius turbine and the Darrieus-Savonius turbine. Overall, the Darrieus Savonius turbine has the ability to work optimally at the research location.

  15. Data Assimilation for Applied Meteorology

    NASA Astrophysics Data System (ADS)

    Haupt, S. E.

    2012-12-01

    Although atmospheric models provide a best estimate of the future state of the atmosphere, due to sensitivity to initial condition, it is difficult to predict the precise future state. For applied problems, however, users often depend on having accurate knowledge of that future state. To improve prediction of a particular realization of an evolving flow field requires knowledge of the current state of that field and assimilation of local observations into the model. This talk will consider how dynamic assimilation can help address the concerns of users of atmospheric forecasts. First, we will look at the value of assimilation for the renewable energy industry. If the industry decision makers can have confidence in the wind and solar power forecasts, they can build their power allocations around the expected renewable resource, saving money for the ratepayers as well as reducing carbon emissions. We will assess the value to that industry of assimilating local real-time observations into the model forecasts and the value that is provided. The value of the forecasts with assimilation is important on both short (several hour) to medium range (within two days). A second application will be atmospheric transport and dispersion problems. In particular, we will look at assimilation of concentration data into a prediction model. An interesting aspect of this problem is that the dynamics are a one-way coupled system, with the fluid dynamic equations affecting the concentration equation, but not vice versa. So when the observations are of the concentration, one must infer the fluid dynamics. This one-way coupled system presents a challenge: one must first infer the changes in the flow field from observations of the contaminant, then assimilate that to recover both the advecting flow and information on the subgrid processes that provide the mixing. To accomplish such assimilation requires a robust method to match the observed contaminant field to that modeled. One approach is to separate the problem into a transport portion and a dispersion portion, representing the resolved flow and the unresolved portion. One then treats the resolved portion in a Lagrangian framework and the unresolved in an Eulerian framework to pose an optimization problem for both the transport and dispersion variables. We demonstrate how this problem can be solved by assimilating the data dynamically using a genetic algorithm variation approach (GA-Var). This technique is demonstrated on both a basic Gaussian puff problem and a Large Eddy Simulation. Finally we will show how assimilation can help bridge the gap between modeling flows at the mesoscale and flows at the fine scale that is often important for resolving flow around local features. By assimilating mesoscale model data into a computational fluid dynamics model, we can force the fine scale model to with the features at the mesoscale, providing a coupling mechanism.

  16. Spectral simulation of unsteady compressible flow past a circular cylinder

    NASA Technical Reports Server (NTRS)

    Don, Wai-Sun; Gottlieb, David

    1990-01-01

    An unsteady compressible viscous wake flow past a circular cylinder was successfully simulated using spectral methods. A new approach in using the Chebyshev collocation method for periodic problems is introduced. It was further proved that the eigenvalues associated with the differentiation matrix are purely imaginary, reflecting the periodicity of the problem. It was been shown that the solution of a model problem has exponential growth in time if improper boundary conditions are used. A characteristic boundary condition, which is based on the characteristics of the Euler equations of gas dynamics, was derived for the spectral code. The primary vortex shedding frequency computed agrees well with the results in the literature for Mach = 0.4, Re = 80. No secondary frequency is observed in the power spectrum analysis of the pressure data.

  17. Adaptive LES Methodology for Turbulent Flow Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oleg V. Vasilyev

    2008-06-12

    Although turbulent flows are common in the world around us, a solution to the fundamental equations that govern turbulence still eludes the scientific community. Turbulence has often been called one of the last unsolved problem in classical physics, yet it is clear that the need to accurately predict the effect of turbulent flows impacts virtually every field of science and engineering. As an example, a critical step in making modern computational tools useful in designing aircraft is to be able to accurately predict the lift, drag, and other aerodynamic characteristics in numerical simulations in a reasonable amount of time. Simulationsmore » that take months to years to complete are much less useful to the design cycle. Much work has been done toward this goal (Lee-Rausch et al. 2003, Jameson 2003) and as cost effective accurate tools for simulating turbulent flows evolve, we will all benefit from new scientific and engineering breakthroughs. The problem of simulating high Reynolds number (Re) turbulent flows of engineering and scientific interest would have been solved with the advent of Direct Numerical Simulation (DNS) techniques if unlimited computing power, memory, and time could be applied to each particular problem. Yet, given the current and near future computational resources that exist and a reasonable limit on the amount of time an engineer or scientist can wait for a result, the DNS technique will not be useful for more than 'unit' problems for the foreseeable future (Moin & Kim 1997, Jimenez & Moin 1991). The high computational cost for the DNS of three dimensional turbulent flows results from the fact that they have eddies of significant energy in a range of scales from the characteristic length scale of the flow all the way down to the Kolmogorov length scale. The actual cost of doing a three dimensional DNS scales as Re{sup 9/4} due to the large disparity in scales that need to be fully resolved. State-of-the-art DNS calculations of isotropic turbulence have recently been completed at the Japanese Earth Simulator (Yokokawa et al. 2002, Kaneda et al. 2003) using a resolution of 40963 (approximately 10{sup 11}) grid points with a Taylor-scale Reynolds number of 1217 (Re {approx} 10{sup 6}). Impressive as these calculations are, performed on one of the world's fastest super computers, more brute computational power would be needed to simulate the flow over the fuselage of a commercial aircraft at cruising speed. Such a calculation would require on the order of 10{sup 16} grid points and would have a Reynolds number in the range of 108. Such a calculation would take several thousand years to simulate one minute of flight time on today's fastest super computers (Moin & Kim 1997). Even using state-of-the-art zonal approaches, which allow DNS calculations that resolve the necessary range of scales within predefined 'zones' in the flow domain, this calculation would take far too long for the result to be of engineering interest when it is finally obtained. Since computing power, memory, and time are all scarce resources, the problem of simulating turbulent flows has become one of how to abstract or simplify the complexity of the physics represented in the full Navier-Stokes (NS) equations in such a way that the 'important' physics of the problem is captured at a lower cost. To do this, a portion of the modes of the turbulent flow field needs to be approximated by a low order model that is cheaper than the full NS calculation. This model can then be used along with a numerical simulation of the 'important' modes of the problem that cannot be well represented by the model. The decision of what part of the physics to model and what kind of model to use has to be based on what physical properties are considered 'important' for the problem. It should be noted that 'nothing is free', so any use of a low order model will by definition lose some information about the original flow.« less

  18. Statistical analysis of cascading failures in power grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chertkov, Michael; Pfitzner, Rene; Turitsyn, Konstantin

    2010-12-01

    We introduce a new microscopic model of cascading failures in transmission power grids. This model accounts for automatic response of the grid to load fluctuations that take place on the scale of minutes, when optimum power flow adjustments and load shedding controls are unavailable. We describe extreme events, caused by load fluctuations, which cause cascading failures of loads, generators and lines. Our model is quasi-static in the causal, discrete time and sequential resolution of individual failures. The model, in its simplest realization based on the Directed Current description of the power flow problem, is tested on three standard IEEE systemsmore » consisting of 30, 39 and 118 buses. Our statistical analysis suggests a straightforward classification of cascading and islanding phases in terms of the ratios between average number of removed loads, generators and links. The analysis also demonstrates sensitivity to variations in line capacities. Future research challenges in modeling and control of cascading outages over real-world power networks are discussed.« less

  19. A Model of Small Capacity Power Plant in Tateli Village, North Sulawesi

    NASA Astrophysics Data System (ADS)

    Sangari, F. J.; Rompas, P. T. D.

    2017-03-01

    The electricity supply in North Sulawesi is still very limited so ubiquitous electric current outage. It makes rural communities have problems in life because most uses electrical energy. One of the solutions is a model of power plants to supply electricity in Tateli village, Minahasa, North Sulawesi, Indonesia. The objective of this research is to get the model that generate electrical energy for household needs through power plant that using a model of Picohydro with cross flow turbine in Tateli village. The method used the study of literature, survey the construction site of the power plant and the characteristics of the location being a place of research, analysis of hydropower ability and analyzing costs of power plant. The result showed that the design model of cross flow turbines used in pico-hydro hydropower installations is connected to a generator to produce electrical energy maximum of 3.29 kW for household needs. This analyze will be propose to local government of Minahasa, North Sulawesi, Indonesia to be followed.

  20. Optimal Operation and Management for Smart Grid Subsumed High Penetration of Renewable Energy, Electric Vehicle, and Battery Energy Storage System

    NASA Astrophysics Data System (ADS)

    Shigenobu, Ryuto; Noorzad, Ahmad Samim; Muarapaz, Cirio; Yona, Atsushi; Senjyu, Tomonobu

    2016-04-01

    Distributed generators (DG) and renewable energy sources have been attracting special attention in distribution systems in all over the world. Renewable energies, such as photovoltaic (PV) and wind turbine generators are considered as green energy. However, a large amount of DG penetration causes voltage deviation beyond the statutory range and reverse power flow at interconnection points in the distribution system. If excessive voltage deviation occurs, consumer's electric devices might break and reverse power flow will also has a negative impact on the transmission system. Thus, mass interconnections of DGs has an adverse effect on both of the utility and the customer. Therefore, reactive power control method is proposed previous research by using inverters attached DGs for prevent voltage deviations. Moreover, battery energy storage system (BESS) is also proposed for resolve reverse power flow. In addition, it is possible to supply high quality power for managing DGs and BESSs. Therefore, this paper proposes a method to maintain voltage, active power, and reactive power flow at interconnection points by using cooperative controlled of PVs, house BESSs, EVs, large BESSs, and existing voltage control devices. This paper not only protect distribution system, but also attain distribution loss reduction and effectivity management of control devices. Therefore mentioned control objectives are formulated as an optimization problem that is solved by using the Particle Swarm Optimization (PSO) algorithm. Modified scheduling method is proposed in order to improve convergence probability of scheduling scheme. The effectiveness of the proposed method is verified by case studies results and by using numerical simulations in MATLAB®.

  1. A zonal method for modeling powered-lift aircraft flow fields

    NASA Technical Reports Server (NTRS)

    Roberts, D. W.

    1989-01-01

    A zonal method for modeling powered-lift aircraft flow fields is based on the coupling of a three-dimensional Navier-Stokes code to a potential flow code. By minimizing the extent of the viscous Navier-Stokes zones the zonal method can be a cost effective flow analysis tool. The successful coupling of the zonal solutions provides the viscous/inviscid interations that are necessary to achieve convergent and unique overall solutions. The feasibility of coupling the two vastly different codes is demonstrated. The interzone boundaries were overlapped to facilitate the passing of boundary condition information between the codes. Routines were developed to extract the normal velocity boundary conditions for the potential flow zone from the viscous zone solution. Similarly, the velocity vector direction along with the total conditions were obtained from the potential flow solution to provide boundary conditions for the Navier-Stokes solution. Studies were conducted to determine the influence of the overlap of the interzone boundaries and the convergence of the zonal solutions on the convergence of the overall solution. The zonal method was applied to a jet impingement problem to model the suckdown effect that results from the entrainment of the inviscid zone flow by the viscous zone jet. The resultant potential flow solution created a lower pressure on the base of the vehicle which produces the suckdown load. The feasibility of the zonal method was demonstrated. By enhancing the Navier-Stokes code for powered-lift flow fields and optimizing the convergence of the coupled analysis a practical flow analysis tool will result.

  2. Optimal Transmission Line Switching under Geomagnetic Disturbances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Mowen; Nagarajan, Harsha; Yamangil, Emre

    Recently, there have been increasing concerns about how geomagnetic disturbances (GMDs) impact electrical power systems. Geomagnetically-induced currents (GICs) can saturate transformers, induce hot spot heating and increase reactive power losses. These effects can potentially cause catastrophic damage to transformers and severely impact the ability of a power system to deliver power. To address this problem, we develop a model of GIC impacts to power systems that includes 1) GIC thermal capacity of transformers as a function of normal Alternating Current (AC) and 2) reactive power losses as a function of GIC. We also use this model to derive an optimizationmore » problem that protects power systems from GIC impacts through line switching, generator dispatch, and load shedding. We then employ state-of-the-art convex relaxations of AC power flow equations to lower bound the objective. We demonstrate the approach on a modified RTS96 system and UIUC 150-bus system and show that line switching is an effective means to mitigate GIC impacts. We also provide a sensitivity analysis of decisions with respect to GMD direction.« less

  3. Optimal Transmission Line Switching under Geomagnetic Disturbances

    DOE PAGES

    Lu, Mowen; Nagarajan, Harsha; Yamangil, Emre; ...

    2017-10-11

    Recently, there have been increasing concerns about how geomagnetic disturbances (GMDs) impact electrical power systems. Geomagnetically-induced currents (GICs) can saturate transformers, induce hot spot heating and increase reactive power losses. These effects can potentially cause catastrophic damage to transformers and severely impact the ability of a power system to deliver power. To address this problem, we develop a model of GIC impacts to power systems that includes 1) GIC thermal capacity of transformers as a function of normal Alternating Current (AC) and 2) reactive power losses as a function of GIC. We also use this model to derive an optimizationmore » problem that protects power systems from GIC impacts through line switching, generator dispatch, and load shedding. We then employ state-of-the-art convex relaxations of AC power flow equations to lower bound the objective. We demonstrate the approach on a modified RTS96 system and UIUC 150-bus system and show that line switching is an effective means to mitigate GIC impacts. We also provide a sensitivity analysis of decisions with respect to GMD direction.« less

  4. Scaling considerations for a multi-megawatt class supercritical CO2 brayton cycle and commercialization.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleming, Darryn D.; Holschuh, Thomas Vernon,; Conboy, Thomas M.

    2013-11-01

    Small-scale supercritical CO2 demonstration loops are successful at identifying the important technical issues that one must face in order to scale up to larger power levels. The Sandia National Laboratories supercritical CO2 Brayton cycle test loops are identifying technical needs to scale the technology to commercial power levels such as 10 MWe. The small size of the Sandia 1 MWth loop has demonstration of the split flow loop efficiency and effectiveness of the Printed Circuit Heat Exchangers (PCHXs) leading to the design of a fully recuperated, split flow, supercritical CO2 Brayton cycle demonstration system. However, there were many problems thatmore » were encountered, such as high rotational speeds in the units. Additionally, the turbomachinery in the test loops need to identify issues concerning the bearings, seals, thermal boundaries, and motor controller problems in order to be proved a reliable power source in the 300 kWe range. Although these issues were anticipated in smaller demonstration units, commercially scaled hardware would eliminate these problems caused by high rotational speeds at small scale. The economic viability and development of the future scalable 10 MWe solely depends on the interest of DOE and private industry. The Intellectual Property collected by Sandia proves that the ~10 MWe supercritical CO2 power conversion loop to be very beneficial when coupled to a 20 MWth heat source (either solar, geothermal, fossil, or nuclear). This paper will identify a commercialization plan, as well as, a roadmap from the simple 1 MWth supercritical CO2 development loop to a power producing 10 MWe supercritical CO2 Brayton loop.« less

  5. Liquid propulsion turbomachinery model testing

    NASA Technical Reports Server (NTRS)

    Mcdaniels, David M.; Snellgrove, Lauren M.

    1992-01-01

    For the past few years an extensive experimental program to understand the fluid dynamics of the Space Shuttle Main Engine hot gas manifold has been in progress. This program includes models of the Phase II and II+ manifolds for each of the air and water flow facilities, as well as two different turbine flow paths and two simulated power levels for each manifold. All models are full-scale (geometric). The water models are constructed partially of acrylic to allow flow visualization. The intent of this paper is to discuss the concept, including the test objectives, facilities, and models, and to summarize the data for an example configuration, including static pressure data, flow visualization, and the solution of a specific flow problem.

  6. On accuracy of the wave finite element predictions of wavenumbers and power flow: A benchmark problem

    NASA Astrophysics Data System (ADS)

    Søe-Knudsen, Alf; Sorokin, Sergey

    2011-06-01

    This rapid communication is concerned with justification of the 'rule of thumb', which is well known to the community of users of the finite element (FE) method in dynamics, for the accuracy assessment of the wave finite element (WFE) method. An explicit formula linking the size of a window in the dispersion diagram, where the WFE method is trustworthy, with the coarseness of a FE mesh employed is derived. It is obtained by the comparison of the exact Pochhammer-Chree solution for an elastic rod having the circular cross-section with its WFE approximations. It is shown that the WFE power flow predictions are also valid within this window.

  7. Design of a High Voltage Power Supply Providing a Force Field for a Fluid Experiment

    NASA Astrophysics Data System (ADS)

    Herty, Frank

    2005-05-01

    As part of the GeoFlow fluid experiment an ac high voltage power supply (HVPS) is used to establish high electrical fields on fluids based on silicon oil. The non- conductive fluid is encapsulated between two spherical electrodes. This experiment cell assembly acts essentially as a capacitive load.The GeoFlow HVPS is an integrated ac high voltage source capable to provide up to 10kVRMS on capacitive loads up to 100pF.This paper presents major design challenges and solutions regarding the high voltage transformer and its driver electronics. Particular high voltage problems like corona effects and dielectric losses are discussed and countermeasures are presented.

  8. Influence of Distributed Residential Energy Storage on Voltage in Rural Distribution Network and Capacity Configuration

    NASA Astrophysics Data System (ADS)

    Liu, Lu; Tong, Yibin; Zhao, Zhigang; Zhang, Xuefen

    2018-03-01

    Large-scale access of distributed residential photovoltaic (PV) in rural areas has solved the voltage problem to a certain extent. However, due to the intermittency of PV and the particularity of rural residents’ power load, the problem of low voltage in the evening peak remains to be resolved. This paper proposes to solve the problem by accessing residential energy storage. Firstly, the influence of access location and capacity of energy storage on voltage distribution in rural distribution network is analyzed. Secondly, the relation between the storage capacity and load capacity is deduced for four typical load and energy storage cases when the voltage deviation meets the demand. Finally, the optimal storage position and capacity are obtained by using PSO and power flow simulation.

  9. PFEM-based modeling of industrial granular flows

    NASA Astrophysics Data System (ADS)

    Cante, J.; Dávalos, C.; Hernández, J. A.; Oliver, J.; Jonsén, P.; Gustafsson, G.; Häggblad, H.-Å.

    2014-05-01

    The potential of numerical methods for the solution and optimization of industrial granular flows problems is widely accepted by the industries of this field, the challenge being to promote effectively their industrial practice. In this paper, we attempt to make an exploratory step in this regard by using a numerical model based on continuous mechanics and on the so-called Particle Finite Element Method (PFEM). This goal is achieved by focusing two specific industrial applications in mining industry and pellet manufacturing: silo discharge and calculation of power draw in tumbling mills. Both examples are representative of variations on the granular material mechanical response—varying from a stagnant configuration to a flow condition. The silo discharge is validated using the experimental data, collected on a full-scale flat bottomed cylindrical silo. The simulation is conducted with the aim of characterizing and understanding the correlation between flow patterns and pressures for concentric discharges. In the second example, the potential of PFEM as a numerical tool to track the positions of the particles inside the drum is analyzed. Pressures and wall pressures distribution are also studied. The power draw is also computed and validated against experiments in which the power is plotted in terms of the rotational speed of the drum.

  10. Multiphysics numerical modeling of the continuous flow microwave-assisted transesterification process.

    PubMed

    Muley, Pranjali D; Boldor, Dorin

    2012-01-01

    Use of advanced microwave technology for biodiesel production from vegetable oil is a relatively new technology. Microwave dielectric heating increases the process efficiency and reduces reaction time. Microwave heating depends on various factors such as material properties (dielectric and thermo-physical), frequency of operation and system design. Although lab scale results are promising, it is important to study these parameters and optimize the process before scaling up. Numerical modeling approach can be applied for predicting heating and temperature profiles including at larger scale. The process can be studied for optimization without actually performing the experiments, reducing the amount of experimental work required. A basic numerical model of continuous electromagnetic heating of biodiesel precursors was developed. A finite element model was built using COMSOL Multiphysics 4.2 software by coupling the electromagnetic problem with the fluid flow and heat transfer problem. Chemical reaction was not taken into account. Material dielectric properties were obtained experimentally, while the thermal properties were obtained from the literature (all the properties were temperature dependent). The model was tested for the two different power levels 4000 W and 4700 W at a constant flow rate of 840ml/min. The electric field, electromagnetic power density flow and temperature profiles were studied. Resulting temperature profiles were validated by comparing to the temperatures obtained at specific locations from the experiment. The results obtained were in good agreement with the experimental data.

  11. Optimal placement of FACTS devices using optimization techniques: A review

    NASA Astrophysics Data System (ADS)

    Gaur, Dipesh; Mathew, Lini

    2018-03-01

    Modern power system is dealt with overloading problem especially transmission network which works on their maximum limit. Today’s power system network tends to become unstable and prone to collapse due to disturbances. Flexible AC Transmission system (FACTS) provides solution to problems like line overloading, voltage stability, losses, power flow etc. FACTS can play important role in improving static and dynamic performance of power system. FACTS devices need high initial investment. Therefore, FACTS location, type and their rating are vital and should be optimized to place in the network for maximum benefit. In this paper, different optimization methods like Particle Swarm Optimization (PSO), Genetic Algorithm (GA) etc. are discussed and compared for optimal location, type and rating of devices. FACTS devices such as Thyristor Controlled Series Compensator (TCSC), Static Var Compensator (SVC) and Static Synchronous Compensator (STATCOM) are considered here. Mentioned FACTS controllers effects on different IEEE bus network parameters like generation cost, active power loss, voltage stability etc. have been analyzed and compared among the devices.

  12. Wind-Driven Ecological Flow Regimes Downstream from Hydropower Dams

    NASA Astrophysics Data System (ADS)

    Kern, J.; Characklis, G. W.

    2012-12-01

    Conventional hydropower can be turned on and off quicker and less expensively than thermal generation (coal, nuclear, or natural gas). These advantages enable hydropower utilities to respond to rapid fluctuations in energy supply and demand. More recently, a growing renewable energy sector has underlined the need for flexible generation capacity that can complement intermittent renewable resources such as wind power. While wind power entails lower variable costs than other types of generation, incorporating it into electric power systems can be problematic. Due to variable and unpredictable wind speeds, wind power is difficult to schedule and must be used when available. As a result, integrating large amounts of wind power into the grid may result in atypical, swiftly changing demand patterns for other forms of generation, placing a premium on sources that can be rapidly ramped up and down. Moreover, uncertainty in wind power forecasts will stipulate increased levels of 'reserve' generation capacity that can respond quickly if real-time wind supply is less than expected. These changes could create new hourly price dynamics for energy and reserves, altering the short-term financial signals that hydroelectric dam operators use to schedule water releases. Traditionally, hourly stream flow patterns below hydropower dams have corresponded in a very predictable manner to electricity demand, whose primary factors are weather (hourly temperature) and economic activity (workday hours). Wind power integration has the potential to yield more variable, less predictable flows at hydro dams, flows that at times could resemble reciprocal wind patterns. An existing body of research explores the impacts of standard, demand-following hydroelectric dams on downstream ecological flows; but weighing the benefits of increased reliance on wind power against further impacts to ecological flows may be a novel challenge for the environmental community. As a preliminary step in meeting this challenge, the following study was designed to investigate the potential for wind power integration to alter riparian flow regimes below hydroelectric dams. A hydrological model of a three-dam cascade in the Roanoke River basin (Virginia, USA) is interfaced with a simulated electricity market (i.e. a unit commitment problem) representing the Dominion Zone of PJM Interconnection. Incorporating forecasts of electricity demand, hydro capacity and wind availability, a mixed-integer optimization program minimizes the system cost of meeting hourly demand and reserve requirements by means of a diverse generation portfolio (e.g. nuclear, fossil, hydro, and biomass). A secondary 'balancing' energy market is executed if real-time wind generation is less than the day-ahead forecast, calling upon reserved generation resources to meet the supply shortfall. Hydropower release schedules are determined across a range of wind development scenarios (varying wind's fraction of total installed generating capacity, as well as its geographical source region). Flow regimes for each wind development scenario are compared against both historical and simulated flows under current operations (negligible wind power), as well as simulated natural flows (dam removal), in terms of ecologically relevant flow metrics. Results quantify the ability of wind power development to alter within-week stream flows downstream from hydropower dams.

  13. Oscillatory supersonic kernel function method for interfering surfaces

    NASA Technical Reports Server (NTRS)

    Cunningham, A. M., Jr.

    1974-01-01

    In the method presented in this paper, a collocation technique is used with the nonplanar supersonic kernel function to solve multiple lifting surface problems with interference in steady or oscillatory flow. The pressure functions used are based on conical flow theory solutions and provide faster solution convergence than is possible with conventional functions. In the application of the nonplanar supersonic kernel function, an improper integral of a 3/2 power singularity along the Mach hyperbola is described and treated. The method is compared with other theories and experiment for two wing-tail configurations in steady and oscillatory flow.

  14. Validation of a CFD Methodology for Variable Speed Power Turbine Relevant Conditions

    NASA Technical Reports Server (NTRS)

    Ameri, Ali A.; Giel, Paul W.; McVetta, Ashlie B.

    2013-01-01

    Analysis tools are needed to investigate aerodynamic performance of Variable-Speed Power Turbines (VSPT) for rotorcraft applications. The VSPT operates at low Reynolds numbers (transitional flow) and over a wide range of incidence. Previously, the capability of a published three-equation turbulence model to predict accurately the transition location for three-dimensional heat transfer problems was assessed. In this paper, the results of a post-diction exercise using a three-dimensional flow in a transonic linear cascade comprising VSPT blading are presented. The measured blade pressure distributions and exit total pressure and flow angles for two incidence angles corresponding to cruise (i = 5.8deg) and takeoff (i = -36.7deg) were used for this study. For the higher loading condition of cruise and the negative incidence condition of takeoff, overall agreement with data may be considered satisfactory but areas of needed improvement are also indicated.

  15. Finite size scaling analysis on Nagel-Schreckenberg model for traffic flow

    NASA Astrophysics Data System (ADS)

    Balouchi, Ashkan; Browne, Dana

    2015-03-01

    The traffic flow problem as a many-particle non-equilibrium system has caught the interest of physicists for decades. Understanding the traffic flow properties and though obtaining the ability to control the transition from the free-flow phase to the jammed phase plays a critical role in the future world of urging self-driven cars technology. We have studied phase transitions in one-lane traffic flow through the mean velocity, distributions of car spacing, dynamic susceptibility and jam persistence -as candidates for an order parameter- using the Nagel-Schreckenberg model to simulate traffic flow. The length dependent transition has been observed for a range of maximum velocities greater than a certain value. Finite size scaling analysis indicates power-law scaling of these quantities at the onset of the jammed phase.

  16. Scaling of peak flows with constant flow velocity in random self-similar networks

    USGS Publications Warehouse

    Troutman, Brent M.; Mantilla, Ricardo; Gupta, Vijay K.

    2011-01-01

    A methodology is presented to understand the role of the statistical self-similar topology of real river networks on scaling, or power law, in peak flows for rainfall-runoff events. We created Monte Carlo generated sets of ensembles of 1000 random self-similar networks (RSNs) with geometrically distributed interior and exterior generators having parameters pi and pe, respectively. The parameter values were chosen to replicate the observed topology of real river networks. We calculated flow hydrographs in each of these networks by numerically solving the link-based mass and momentum conservation equation under the assumption of constant flow velocity. From these simulated RSNs and hydrographs, the scaling exponents β and φ characterizing power laws with respect to drainage area, and corresponding to the width functions and flow hydrographs respectively, were estimated. We found that, in general, φ > β, which supports a similar finding first reported for simulations in the river network of the Walnut Gulch basin, Arizona. Theoretical estimation of β and φ in RSNs is a complex open problem. Therefore, using results for a simpler problem associated with the expected width function and expected hydrograph for an ensemble of RSNs, we give heuristic arguments for theoretical derivations of the scaling exponents β(E) and φ(E) that depend on the Horton ratios for stream lengths and areas. These ratios in turn have a known dependence on the parameters of the geometric distributions of RSN generators. Good agreement was found between the analytically conjectured values of β(E) and φ(E) and the values estimated by the simulated ensembles of RSNs and hydrographs. The independence of the scaling exponents φ(E) and φ with respect to the value of flow velocity and runoff intensity implies an interesting connection between unit hydrograph theory and flow dynamics. Our results provide a reference framework to study scaling exponents under more complex scenarios of flow dynamics and runoff generation processes using ensembles of RSNs.

  17. Some perspective decisions for the regeneration system equipment of the thermal and nuclear power plants decreasing the probability of water ingress into the turbine and rotor acceleration by return steam flow

    NASA Astrophysics Data System (ADS)

    Trifonov, N. N.; Svyatkin, F. A.; Sintsova, T. G.; Ukhanova, M. G.; Yesin, S. B.; Nikolayenkova, E. K.; Yurchenko, A. Yu.; Grigorieva, E. B.

    2016-03-01

    The regeneration system heaters are one of the sources of possible ingress of the water into the turbine. The water penetrates into the turbine either at the heaters overflow or with the return flow of steam generated when the water being in the heater boils up in the dynamic operation modes or at deenergization of the power-generating unit. The return flow of steam and water is dangerous to the turbine blades and can result in the rotor acceleration. The known protective devices used to prevent the overflow of the low-pressure and high-pressure heaters (LPH and HPH), of the horizontal and vertical heaters of heating-system water (HWH and VWH), as well as of the deaerators and low-pressure mixing heaters (LPMH) were considered. The main protective methods of the steam and water return flows supplied by the heaters in dynamic operation modes or at deenergization of the power-generating unit are described. Previous operating experience shows that the available protections do not fully prevent water ingress into the turbine and the rotor acceleration and, therefore, the development of measures to decrease the possibility of ingress of the water into the turbine is an actual problem. The measures allowing eliminating or reducing the water mass in the heaters are expounded; some of them were designed by the specialists of OAO Polzunov Scientific and Development Association on Research and Design of Power Equipment (NPO CKTI) and are efficiently introduced at heat power plants and nuclear power plants. The suggested technical solutions allow reducing the possibility of the water ingress into the turbine and rotor acceleration by return steam flow in the dynamic operation modes or in the case of power generating unit deenergization. Some of these solutions have been tested in experimental-industrial exploitation and can be used in industry.

  18. Zinc Bromide Flow Battery Installation for Islanding and Backup Power

    DTIC Science & Technology

    2017-08-09

    predictably is in place. The ability to control generation has become more difficult with the increase of RE systems such as solar PV and wind turbines ...Both PV and wind systems generate power based on unpredictable cycles of nature. At very low levels of RE penetration the grid can be balanced by...Page Intentionally Left Blank 15 5.0 TEST DESIGN This goal of this demonstration was to solve two main problems . The first

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geng, Guangchao; Abhyankar, Shrirang; Wang, Xiaoyu

    Transient stability-constrained optimal power flow is an important emerging problem with power systems pushed to the limits for economic benefits, dense and larger interconnected systems, and reduced inertia due to expected proliferation of renewable energy resources. In this study, two more approaches: single machine equivalent and computational intelligence are presented. Also discussed are various application areas, and future directions in this research area. In conclusion, a comprehensive resource for the available literature, publicly available test systems, and relevant numerical libraries is also provided.

  20. Active control of panel vibrations induced by a boundary layer flow

    NASA Technical Reports Server (NTRS)

    Chow, Pao-Liu

    1995-01-01

    The problems of active and passive control of sound and vibration has been investigated by many researchers for a number of years. However, few of the articles are concerned with the sound and vibration with flow-structure interaction. Experimental and numerical studies on the coupling between panel vibration and acoustic radiation due to flow excitation have been done by Maestrello and his associates at NASA/Langley Research Center. Since the coupled system of nonlinear partial differential equations is formidable, an analytical solution to the full problem seems impossible. For this reason, we have to simplify the problem to that of the nonlinear panel vibration induced by a uniform flow or a boundary-layer flow with a given wall pressure distribution. Based on this simplified model, we have been able to consider the control and stabilization of the nonlinear panel vibration, which have not been treated satisfactorily by other authors. Although the sound radiation has not been included, the vibration suppression will clearly reduce the sound radiation power from the panel. The major research findings are presented in three sections. In section two we describe results on the boundary control of nonlinear panel vibration, with or without flow excitation. Sections three and four are concerned with some analytical and numerical results in the optimal control of the linear and nonlinear panel vibrations, respectively, excited by the flow pressure fluctuations. Finally, in section five, we draw some conclusions from research findings.

  1. "Financial Emergency" and the Faculty Furlough: A Breach of Contract.

    ERIC Educational Resources Information Center

    Richards, Mary Sanders

    1984-01-01

    The power of the university to breach faculty contracts in order to meet its temporary cash-flow problems and the rights of faculty when this breach occurs are discussed. To avoid litigation, a university must have established internal guidelines which can be incorporated into an employment contract. (MLW)

  2. Flow through a very porous obstacle in a shallow channel.

    PubMed

    Creed, M J; Draper, S; Nishino, T; Borthwick, A G L

    2017-04-01

    A theoretical model, informed by numerical simulations based on the shallow water equations, is developed to predict the flow passing through and around a uniform porous obstacle in a shallow channel, where background friction is important. This problem is relevant to a number of practical situations, including flow through aquatic vegetation, the performance of arrays of turbines in tidal channels and hydrodynamic forces on offshore structures. To demonstrate this relevance, the theoretical model is used to (i) reinterpret core flow velocities in existing laboratory-based data for an array of emergent cylinders in shallow water emulating aquatic vegetation and (ii) reassess the optimum arrangement of tidal turbines to generate power in a tidal channel. Comparison with laboratory-based data indicates a maximum obstacle resistance (or minimum porosity) for which the present theoretical model is valid. When the obstacle resistance is above this threshold the shallow water equations do not provide an adequate representation of the flow, and the theoretical model over-predicts the core flow passing through the obstacle. The second application of the model confirms that natural bed resistance increases the power extraction potential for a partial tidal fence in a shallow channel and alters the optimum arrangement of turbines within the fence.

  3. Power system voltage stability and agent based distribution automation in smart grid

    NASA Astrophysics Data System (ADS)

    Nguyen, Cuong Phuc

    2011-12-01

    Our interconnected electric power system is presently facing many challenges that it was not originally designed and engineered to handle. The increased inter-area power transfers, aging infrastructure, and old technologies, have caused many problems including voltage instability, widespread blackouts, slow control response, among others. These problems have created an urgent need to transform the present electric power system to a highly stable, reliable, efficient, and self-healing electric power system of the future, which has been termed "smart grid". This dissertation begins with an investigation of voltage stability in bulk transmission networks. A new continuation power flow tool for studying the impacts of generator merit order based dispatch on inter-area transfer capability and static voltage stability is presented. The load demands are represented by lumped load models on the transmission system. While this representation is acceptable in traditional power system analysis, it may not be valid in the future smart grid where the distribution system will be integrated with intelligent and quick control capabilities to mitigate voltage problems before they propagate into the entire system. Therefore, before analyzing the operation of the whole smart grid, it is important to understand the distribution system first. The second part of this dissertation presents a new platform for studying and testing emerging technologies in advanced Distribution Automation (DA) within smart grids. Due to the key benefits over the traditional centralized approach, namely flexible deployment, scalability, and avoidance of single-point-of-failure, a new distributed approach is employed to design and develop all elements of the platform. A multi-agent system (MAS), which has the three key characteristics of autonomy, local view, and decentralization, is selected to implement the advanced DA functions. The intelligent agents utilize a communication network for cooperation and negotiation. Communication latency is modeled using a user-defined probability density function. Failure-tolerant communication strategies are developed for agent communications. Major elements of advanced DA are developed in a completely distributed way and successfully tested for several IEEE standard systems, including: Fault Detection, Location, Isolation, and Service Restoration (FLISR); Coordination of Distributed Energy Storage Systems (DES); Distributed Power Flow (DPF); Volt-VAR Control (VVC); and Loss Reduction (LR).

  4. Singularities in Free Surface Flows

    NASA Astrophysics Data System (ADS)

    Thete, Sumeet Suresh

    Free surface flows where the shape of the interface separating two or more phases or liquids are unknown apriori, are commonplace in industrial applications and nature. Distribution of drop sizes, coalescence rate of drops, and the behavior of thin liquid films are crucial to understanding and enhancing industrial practices such as ink-jet printing, spraying, separations of chemicals, and coating flows. When a contiguous mass of liquid such as a drop, filament or a film undergoes breakup to give rise to multiple masses, the topological transition is accompanied with a finite-time singularity . Such singularity also arises when two or more masses of liquid merge into each other or coalesce. Thus the dynamics close to singularity determines the fate of about-to-form drops or films and applications they are involved in, and therefore needs to be analyzed precisely. The primary goal of this thesis is to resolve and analyze the dynamics close to singularity when free surface flows experience a topological transition, using a combination of theory, experiments, and numerical simulations. The first problem under consideration focuses on the dynamics following flow shut-off in bottle filling applications that are relevant to pharmaceutical and consumer products industry, using numerical techniques based on Galerkin Finite Element Methods (GFEM). The second problem addresses the dual flow behavior of aqueous foams that are observed in oil and gas fields and estimates the relevant parameters that describe such flows through a series of experiments. The third problem aims at understanding the drop formation of Newtonian and Carreau fluids, computationally using GFEM. The drops are formed as a result of imposed flow rates or expanding bubbles similar to those of piezo actuated and thermal ink-jet nozzles. The focus of fourth problem is on the evolution of thinning threads of Newtonian fluids and suspensions towards singularity, using computations based on GFEM and experimental techniques. The aim of fifth problem is to analyze the coalescence dynamics of drops through a combination of GFEM and scaling theory. Lastly, the sixth problem concerns the thinning and rupture dynamics of thin films of Newtonian and power-law fluids using scaling theory based on asymptotic analysis and the predictions of this theory are corroborated using computations based on GFEM.

  5. Forced-flow once-through boilers. [structural design criteria/aerospace environments

    NASA Technical Reports Server (NTRS)

    Stone, J. R.; Gray, V. H.; Gutierrez, O. A.

    1975-01-01

    A compilation and review of NASA-sponsored research on boilers for use in spacecraft electrical power generation systems is presented. Emphasis is on the heat-transfer and fluid-flow problems. In addition to space applications, much of the boiler technology is applicable to terrestrial and marine uses such as vehicular power, electrical power generation, vapor generation, and heating and cooling. Related research areas are discussed such as condensation, cavitation, line and boiler dynamics, the SNAP-8 project (Mercury-Rankine cycle), and conventional terrestrial boilers (either supercritical or gravity-assisted liquid-vapor separation types). The research effort was directed at developing the technology for once-through compact boilers with high heat fluxes to generate dry vapor stably, without utilizing gravity for phase separations. A background section that discusses, tutorially, the complex aspects of the boiling process is presented. Discussions of tests on alkali metals are interspersed with those on water and other fluids on a phenomenological basis.

  6. Upper Limits for Power Yield in Thermal, Chemical, and Electrochemical Systems

    NASA Astrophysics Data System (ADS)

    Sieniutycz, Stanislaw

    2010-03-01

    We consider modeling and power optimization of energy converters, such as thermal, solar and chemical engines and fuel cells. Thermodynamic principles lead to expressions for converter's efficiency and generated power. Efficiency equations serve to solve the problems of upgrading or downgrading a resource. Power yield is a cumulative effect in a system consisting of a resource, engines, and an infinite bath. While optimization of steady state systems requires using the differential calculus and Lagrange multipliers, dynamic optimization involves variational calculus and dynamic programming. The primary result of static optimization is the upper limit of power, whereas that of dynamic optimization is a finite-rate counterpart of classical reversible work (exergy). The latter quantity depends on the end state coordinates and a dissipation index, h, which is the Hamiltonian of the problem of minimum entropy production. In reacting systems, an active part of chemical affinity constitutes a major component of the overall efficiency. The theory is also applied to fuel cells regarded as electrochemical flow engines. Enhanced bounds on power yield follow, which are stronger than those predicted by the reversible work potential.

  7. Controlling transient chaos in deterministic flows with applications to electrical power systems and ecology

    NASA Astrophysics Data System (ADS)

    Dhamala, Mukeshwar; Lai, Ying-Cheng

    1999-02-01

    Transient chaos is a common phenomenon in nonlinear dynamics of many physical, biological, and engineering systems. In applications it is often desirable to maintain sustained chaos even in parameter regimes of transient chaos. We address how to sustain transient chaos in deterministic flows. We utilize a simple and practical method, based on extracting the fundamental dynamics from time series, to maintain chaos. The method can result in control of trajectories from almost all initial conditions in the original basin of the chaotic attractor from which transient chaos is created. We apply our method to three problems: (1) voltage collapse in electrical power systems, (2) species preservation in ecology, and (3) elimination of undesirable bursting behavior in a chemical reaction system.

  8. Electric oxygen-iodine laser discharge scaling and laser performance

    NASA Astrophysics Data System (ADS)

    Woodard, Brian S.

    In 2004, a research partnership between the University of Illinois and CU Aerospace demonstrated the first electric discharge pumped oxygen-iodine laser referred to as ElectricOIL. This exciting improvement over the standard oxygen-iodine laser utilizes a gas discharge to produce the necessary electronically-excited molecular oxygen, O2(a 1Delta), that serves as the energy reservoir in the laser system. Pumped by a near-resonant energy transfer, the atomic iodine lases on the I(2P1/2) → I(2P3/2) transition at 1315 nm. Molecular oxygen diluted with helium and a small fraction of nitric oxide flows through a radiofrequency discharge where O2(a 1Delta) and many other excited species are created. Careful investigations to understand the benefits and problems associated with these other states in the laser system allowed this team to succeed where other research groups had failed, and after the initial demonstration, the ElectricOIL research focus shifted to increasing the efficiencies along with the output laser energy. Among other factors, the laser power scales with the flow rate of oxygen in the desired excited state. Therefore, high yields of O2(a 1Delta) are desired along with high input oxygen flow rates. In the early ElectricOIL experiments, the pressure in the discharge was approximately 10 Torr, but increased flow rates forced the pressure to between 50 and 60 Torr requiring a number of new discharge designs in order to produce similar yields of O2(a1Delta) efficiently. Experiments were conducted with only the electric discharge portion of the laser system using emission diagnostics to study the effects of changing the discharge geometry, flow residence time, and diluent. The power carried by O2(a 1Delta) is the maximum power that could be extracted from the laser, and the results from these studies showed approximately 2500 W stored in the O2(a1Delta) state. Transferring this energy into the atomic iodine has been another challenge in ElectricOIL as experiments have shown that the iodine is pumped into the excited state slower than is predicted by the known kinetics, resulting in reduced output power. An elementary model is presented that may partially explain this problem. Larger laser resonator volumes are employed to improve power extraction by providing more flow time for iodine pumping. The results presented in this work in conjunction with the efforts of others led to ElectricOIL scaling from 200 mW in the initial demonstration to nearly 500 W.

  9. COMMIX-PPC: A three-dimensional transient multicomponent computer program for analyzing performance of power plant condensers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chien, T.H.; Domanus, H.M.; Sha, W.T.

    1993-02-01

    The COMMIX-PPC computer pregrain is an extended and improved version of earlier COMMIX codes and is specifically designed for evaluating the thermal performance of power plant condensers. The COMMIX codes are general-purpose computer programs for the analysis of fluid flow and heat transfer in complex Industrial systems. In COMMIX-PPC, two major features have been added to previously published COMMIX codes. One feature is the incorporation of one-dimensional equations of conservation of mass, momentum, and energy on the tube stile and the proper accounting for the thermal interaction between shell and tube side through the porous-medium approach. The other added featuremore » is the extension of the three-dimensional conservation equations for shell-side flow to treat the flow of a multicomponent medium. COMMIX-PPC is designed to perform steady-state and transient. Three-dimensional analysis of fluid flow with heat transfer tn a power plant condenser. However, the code is designed in a generalized fashion so that, with some modification, it can be used to analyze processes in any heat exchanger or other single-phase engineering applications. Volume I (Equations and Numerics) of this report describes in detail the basic equations, formulation, solution procedures, and models for a phenomena. Volume II (User's Guide and Manual) contains the input instruction, flow charts, sample problems, and descriptions of available options and boundary conditions.« less

  10. Numerical investigation of the air injection effect on the cavitating flow in Francis hydro turbine

    NASA Astrophysics Data System (ADS)

    Chirkov, D. V.; Shcherbakov, P. K.; Cherny, S. G.; Skorospelov, V. A.; Turuk, P. A.

    2017-09-01

    At full and over load operating points, some Francis turbines experience strong self-excited pressure and power oscillations. These oscillations are occuring due to the hydrodynamic instability of the cavitating fluid flow. In many cases, the amplitude of such pulsations may be reduced substantially during the turbine operation by the air injection/ admission below the runner. Such an effect is investigated numerically in the present work. To this end, the hybrid one-three-dimensional model of the flow of the mixture "liquid-vapor" in the duct of a hydroelectric power station, which was proposed previously by the present authors, is augmented by the second gaseous component — the noncondensable air. The boundary conditions and the numerical method for solving the equations of the model are described. To check the accuracy of computing the interface "liquid-gas", the numerical method was applied at first for solving the dam break problem. The algorithm was then used for modeling the flow in a hydraulic turbine with air injection below the runner. It is shown that with increasing flow rate of the injected air, the amplitude of pressure pulsations decreases. The mechanism of the flow structure alteration in the draft tube cone has been elucidated, which leads to flow stabilization at air injection.

  11. Computational aerodynamics requirements: The future role of the computer and the needs of the aerospace industry

    NASA Technical Reports Server (NTRS)

    Rubbert, P. E.

    1978-01-01

    The commercial airplane builder's viewpoint on the important issues involved in the development of improved computational aerodynamics tools such as powerful computers optimized for fluid flow problems is presented. The primary user of computational aerodynamics in a commercial aircraft company is the design engineer who is concerned with solving practical engineering problems. From his viewpoint, the development of program interfaces and pre-and post-processing capability for new computational methods is just as important as the algorithms and machine architecture. As more and more details of the entire flow field are computed, the visibility of the output data becomes a major problem which is then doubled when a design capability is added. The user must be able to see, understand, and interpret the results calculated. Enormous costs are expanded because of the need to work with programs having only primitive user interfaces.

  12. Energy Survey of Machine Tools: Separating Power Information of the Main Transmission System During Machining Process

    NASA Astrophysics Data System (ADS)

    Liu, Shuang; Liu, Fei; Hu, Shaohua; Yin, Zhenbiao

    The major power information of the main transmission system in machine tools (MTSMT) during machining process includes effective output power (i.e. cutting power), input power and power loss from the mechanical transmission system, and the main motor power loss. These information are easy to obtain in the lab but difficult to evaluate in a manufacturing process. To solve this problem, a separation method is proposed here to extract the MTSMT power information during machining process. In this method, the energy flow and the mathematical models of major power information of MTSMT during the machining process are set up first. Based on the mathematical models and the basic data tables obtained from experiments, the above mentioned power information during machining process can be separated just by measuring the real time total input power of the spindle motor. The operation program of this method is also given.

  13. MHD mixed convection analysis of non-Newtonian power law fluid in an open channel with round cavity

    NASA Astrophysics Data System (ADS)

    Bose, Pritom; Rakib, Tawfiqur; Das, Sourav; Rabbi, Khan Md.; Mojumder, Satyajit

    2017-06-01

    In this study, magneto-hydrodynamic (MHD) mixed convection flow through a channel with a round cavity at bottom wall using non-Newtonian power law fluid is analysed numerically. The cavity is kept at uniformly high temperature whereas rest of the bottom wall is insulated and top wall of the channel is maintained at a temperature lower than cavity temperature. Grid independency test and code validation are performed to justify the computational accuracy before solving the present problem. Galerkin weighted residual method is appointed to solve the continuity, momentum and energy equations. The problem is solved for wide range of pertinent parameters like Rayleigh number (Ra= 103 - 105), Hartmann number (Ha= 0 - 60) and power law index (n= 0.5 - 1.5) at constant Richardson number Ri= 1.0. The flow and thermal field have been thoroughly discussed through streamline and isothermal lines respectively. The heat transfer performance of the given study is illustrated by average Nusselt number plots. Result of this investigation indicates that heat transfer is highest for dilatant fluids at this configuration and they perform better (47% more heat transfer) in absence of magnetic field. The retardation of heat transfer is offset by shear thickening nature of non-Newtonian fluid.

  14. Experimental study on the inlet fogging system using two-fluid nozzles

    NASA Astrophysics Data System (ADS)

    Suryan, Abhilash; Kim, Dong Sun; Kim, Heuy Dong

    2010-04-01

    Large-capacity compressors in industrial plants and the compressors in gas turbine engines consume a considerable amount of power. The compression work is a strong function of the ambient air temperature. This increase in compression work presents a significant problem to utilities, generators and power producers when electric demands are high during the hot months. In many petrochemical process industries and gas turbine engines, the increase in compression work curtails plant output, demanding more electric power to drive the system. One way to counter this problem is to directly cool the inlet air. Inlet fogging is a popular means of cooling the inlet air to air compressors. In the present study, experiments have been performed to investigate the suitability of two-fluid nozzle for inlet fogging. Compressed air is used as the driving working gas for two-fluid nozzle and water at ambient conditions is dragged into the high-speed air jet, thus enabling the entrained water to be atomized in a very short distance from the exit of the two-fluid nozzle. The air supply pressure is varied between 2.0 and 5.0 bar and the water flow rate entrained is measured. The flow visualization and temperature and relative humidity measurements are carried out to specify the fogging characteristics of the two-fluid nozzle.

  15. Low-Pressure Long-Term Xenon Storage for Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Back, Dwight D.; Ramos, Charlie; Meyer, John A.

    2001-01-01

    This Phase 2 effort demonstrated an alternative Xe storage and regulation system using activated carbon (AC) as a secondary storage media (ACSFR). This regulator system is nonmechanical, simple, inexpensive, and lighter. The ACSFR system isolates the thruster from the compressed gas tank, and allows independent multiple setpoint thruster operation. The flow using an ACSFR can also be throttled by applying increments in electrical power. Primary storage of Xe by AC is not superior to compressed gas storage with regard to weight, but AC storage can provide volume reduction, lower pressures in space, and potentially in situ Xe purification. With partial fill designs, a primary AC storage vessel for Xe could also eliminate problems with two-phase storage and regulate pressure. AC could also be utilized in long-term large quantity storage of Xe serving as a compact capture site for boil-off. Several Xe delivery ACSFR protocols between 2 and 45 sccm, and 15 min to 7 hr, were tested with an average flow variance of 1.2 percent, average power requirements of 5 W, and repeatability s of about 0.4 percent. Power requirements are affected by ACSFR bed sizing and flow rate/ duration design points, and these flow variances can be reduced by optimizing PID controller parameters.

  16. A unified view of energetic efficiency in active drag reduction, thrust generation and self-propulsion through a loss coefficient with some applications

    NASA Astrophysics Data System (ADS)

    Arakeri, Jaywant H.; Shukla, Ratnesh K.

    2013-08-01

    An analysis of the energy budget for the general case of a body translating in a stationary fluid under the action of an external force is used to define a power loss coefficient. This universal definition of power loss coefficient gives a measure of the energy lost in the wake of the translating body and, in general, is applicable to a variety of flow configurations including active drag reduction, self-propulsion and thrust generation. The utility of the power loss coefficient is demonstrated on a model bluff body flow problem concerning a two-dimensional elliptical cylinder in a uniform cross-flow. The upper and lower boundaries of the elliptic cylinder undergo continuous motion due to a prescribed reflectionally symmetric constant tangential surface velocity. It is shown that a decrease in drag resulting from an increase in the strength of tangential surface velocity leads to an initial reduction and eventual rise in the power loss coefficient. A maximum in energetic efficiency is attained for a drag reducing tangential surface velocity which minimizes the power loss coefficient. The effect of the tangential surface velocity on drag reduction and self-propulsion of both bluff and streamlined bodies is explored through a variation in the thickness ratio (ratio of the minor and major axes) of the elliptical cylinders.

  17. Power System Decomposition for Practical Implementation of Bulk-Grid Voltage Control Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vallem, Mallikarjuna R.; Vyakaranam, Bharat GNVSR; Holzer, Jesse T.

    Power system algorithms such as AC optimal power flow and coordinated volt/var control of the bulk power system are computationally intensive and become difficult to solve in operational time frames. The computational time required to run these algorithms increases exponentially as the size of the power system increases. The solution time for multiple subsystems is less than that for solving the entire system simultaneously, and the local nature of the voltage problem lends itself to such decomposition. This paper describes an algorithm that can be used to perform power system decomposition from the point of view of the voltage controlmore » problem. Our approach takes advantage of the dominant localized effect of voltage control and is based on clustering buses according to the electrical distances between them. One of the contributions of the paper is to use multidimensional scaling to compute n-dimensional Euclidean coordinates for each bus based on electrical distance to perform algorithms like K-means clustering. A simple coordinated reactive power control of photovoltaic inverters for voltage regulation is used to demonstrate the effectiveness of the proposed decomposition algorithm and its components. The proposed decomposition method is demonstrated on the IEEE 118-bus system.« less

  18. On the possibility of control restoration in some inverse problems of heat and mass transfer

    NASA Astrophysics Data System (ADS)

    Bilchenko, G. G.; Bilchenko, N. G.

    2016-11-01

    The hypersonic aircraft permeable surfaces effective heat protection problems are considered. The physic-chemical processes (the dissociation and the ionization) in laminar boundary layer of compressible gas are appreciated in mathematical model. The statements of direct problems of heat and mass transfer are given: according to preset given controls it is necessary to compute the boundary layer mathematical model parameters and determinate the local and total heat flows and friction forces and the power of blowing system. The A.A.Dorodnicyn's generalized integral relations method has been used as calculation basis. The optimal control - the blowing into boundary layer (for continuous functions) was constructed as the solution of direct problem in extreme statement with the use of this approach. The statement of inverse problems are given: the control laws ensuring the preset given local heat flow and local tangent friction are restored. The differences between the interpolation and the approximation statements are discussed. The possibility of unique control restoration is established and proved (in the stagnation point). The computational experiments results are presented.

  19. Multi-agent coordination algorithms for control of distributed energy resources in smart grids

    NASA Astrophysics Data System (ADS)

    Cortes, Andres

    Sustainable energy is a top-priority for researchers these days, since electricity and transportation are pillars of modern society. Integration of clean energy technologies such as wind, solar, and plug-in electric vehicles (PEVs), is a major engineering challenge in operation and management of power systems. This is due to the uncertain nature of renewable energy technologies and the large amount of extra load that PEVs would add to the power grid. Given the networked structure of a power system, multi-agent control and optimization strategies are natural approaches to address the various problems of interest for the safe and reliable operation of the power grid. The distributed computation in multi-agent algorithms addresses three problems at the same time: i) it allows for the handling of problems with millions of variables that a single processor cannot compute, ii) it allows certain independence and privacy to electricity customers by not requiring any usage information, and iii) it is robust to localized failures in the communication network, being able to solve problems by simply neglecting the failing section of the system. We propose various algorithms to coordinate storage, generation, and demand resources in a power grid using multi-agent computation and decentralized decision making. First, we introduce a hierarchical vehicle-one-grid (V1G) algorithm for coordination of PEVs under usage constraints, where energy only flows from the grid in to the batteries of PEVs. We then present a hierarchical vehicle-to-grid (V2G) algorithm for PEV coordination that takes into consideration line capacity constraints in the distribution grid, and where energy flows both ways, from the grid in to the batteries, and from the batteries to the grid. Next, we develop a greedy-like hierarchical algorithm for management of demand response events with on/off loads. Finally, we introduce distributed algorithms for the optimal control of distributed energy resources, i.e., generation and storage in a microgrid. The algorithms we present are provably correct and tested in simulation. Each algorithm is assumed to work on a particular network topology, and simulation studies are carried out in order to demonstrate their convergence properties to a desired solution.

  20. Analysis of the velocity distribution in different types of ventilation system ducts

    NASA Astrophysics Data System (ADS)

    Peszyński, Kazimierz; Olszewski, Lukasz; Smyk, Emil; Perczyński, Daniel

    2018-06-01

    The paper presents the results obtained during the preliminary studies of circular and rectangular ducts before testing the properties elements (elbows, tees, etc.)of rectangular with rounded corners ducts. The fundamental problem of the studies was to determine the flow rate in the ventilation duct. Due to the size of the channel it was decided to determine the flow rate based on the integration of flow velocity over the considered cross-section. This method requires knowledge of the velocity distribution in the cross section. Approximation of the measured actual profile by the classic and modified Prandtl power-law velocity profile was analysed.

  1. Optimized planning of in-service inspections of local flow-accelerated corrosion of pipeline elements used in the secondary coolant circuit of the VVER-440-based units at the Novovoronezh NPP

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Povarov, V. P.; Shipkov, A. A.; Gromov, A. F.; Budanov, V. A.; Golubeva, T. N.

    2015-03-01

    Matters concerned with making efficient use of the information-analytical system on the flow-accelerated corrosion problem in setting up in-service examination of the metal of pipeline elements operating in the secondary coolant circuit of the VVER-440-based power units at the Novovoronezh NPP are considered. The principles used to select samples of pipeline elements in planning ultrasonic thickness measurements for timely revealing metal thinning due to flow-accelerated corrosion along with reducing the total amount of measurements in the condensate-feedwater path are discussed.

  2. Integral method for the calculation of three-dimensional, laminar and turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Stock, H. W.

    1978-01-01

    The method for turbulent flows is a further development of an existing method; profile families with two parameters and a lag entrainment method replace the simple entrainment method and power profiles with one parameter. The method for laminar flows is a new development. Moment of momentum equations were used for the solution of the problem, the profile families were derived from similar solutions of boundary layer equations. Laminar and turbulent flows at the wings were calculated. The influence of wing tapering on the boundary layer development was shown. The turbulent boundary layer for a revolution ellipsoid is calculated for 0 deg and 10 deg incidence angles.

  3. Flow of nanofluid by nonlinear stretching velocity

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Rashid, Madiha; Alsaedi, Ahmed; Ahmad, Bashir

    2018-03-01

    Main objective in this article is to model and analyze the nanofluid flow induced by curved surface with nonlinear stretching velocity. Nanofluid comprises water and silver. Governing problem is solved by using homotopy analysis method (HAM). Induced magnetic field for low magnetic Reynolds number is not entertained. Development of convergent series solutions for velocity and skin friction coefficient is successfully made. Pressure in the boundary layer flow by curved stretching surface cannot be ignored. It is found that magnitude of power-law index parameter increases for pressure distibutions. Magnitude of radius of curvature reduces for pressure field while opposite trend can be observed for velocity.

  4. smoothG

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barker, Andrew T.; Gelever, Stephan A.; Lee, Chak S.

    2017-12-12

    smoothG is a collection of parallel C++ classes/functions that algebraically constructs reduced models of different resolutions from a given high-fidelity graph model. In addition, smoothG also provides efficient linear solvers for the reduced models. Other than pure graph problem, the software finds its application in subsurface flow and power grid simulations in which graph Laplacians are found

  5. X-ray monochromators for high-power synchrotron radiation sources

    NASA Astrophysics Data System (ADS)

    Hart, Michael

    1990-11-01

    Exact solutions to the problems of power flow from a line source of heat into a semicylinder and of uniform heat flow normal to a flat surface are discussed. These lead to bounds on feasible designs and the boundary layer problem can be placed in proper perspective. While finite element calculations are useful if the sample boundaries are predefined, they are much less help in establishing design principles. Previous work on hot beam X-ray crystal optics has emphasised the importance of coolant hydraulics and boundary layer heat transfer. Instead this paper emphasises the importance of the elastic response of crystals to thermal strainfields and the importance of maintaining the Darwin reflectivity. The conclusions of this design study are that the diffracting crystal region should be thin, but not very thin, similar in area to the hot beam footprint, part of a thin-walked buckling crystal box and remote from the support to which the crystal is rigidly clamped. Prototype 111 and 220 cooled silicon crystals tested at the National Synchrotron Light Source at Brookhaven have almost perfect rocking curves under a beam heat load of {1}/{3}kW.

  6. Challenges in reducing the computational time of QSTS simulations for distribution system analysis.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deboever, Jeremiah; Zhang, Xiaochen; Reno, Matthew J.

    The rapid increase in penetration of distributed energy resources on the electric power distribution system has created a need for more comprehensive interconnection modelling and impact analysis. Unlike conventional scenario - based studies , quasi - static time - series (QSTS) simulation s can realistically model time - dependent voltage controllers and the diversity of potential impacts that can occur at different times of year . However, to accurately model a distribution system with all its controllable devices, a yearlong simulation at 1 - second resolution is often required , which could take conventional computers a computational time of 10more » to 120 hours when an actual unbalanced distribution feeder is modeled . This computational burden is a clear l imitation to the adoption of QSTS simulation s in interconnection studies and for determining optimal control solutions for utility operations . Our ongoing research to improve the speed of QSTS simulation has revealed many unique aspects of distribution system modelling and sequential power flow analysis that make fast QSTS a very difficult problem to solve. In this report , the most relevant challenges in reducing the computational time of QSTS simulations are presented: number of power flows to solve, circuit complexity, time dependence between time steps, multiple valid power flow solutions, controllable element interactions, and extensive accurate simulation analysis.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peratt, A.L.; Mostrom, M.A.

    With the availability of 80--125 MHz microprocessors, the methodology developed for the simulation of problems in pulsed power and plasma physics on modern day supercomputers is now amenable to application on a wide range of platforms including laptops and workstations. While execution speeds with these processors do not match those of large scale computing machines, resources such as computer-aided-design (CAD) and graphical analysis codes are available to automate simulation setup and process data. This paper reports on the adaptation of IVORY, a three-dimensional, fully-electromagnetic, particle-in-cell simulation code, to this platform independent CAD environment. The primary purpose of this talk ismore » to demonstrate how rapidly a pulsed power/plasma problem can be scoped out by an experimenter on a dedicated workstation. Demonstrations include a magnetically insulated transmission line, power flow in a graded insulator stack, a relativistic klystron oscillator, and the dynamics of a coaxial thruster for space applications.« less

  8. New power sharing control for inverter-dominated microgrid based on impedance match concept.

    PubMed

    Gu, Herong; Wang, Deyu; Shen, Hong; Zhao, Wei; Guo, Xiaoqiang

    2013-01-01

    Power flow control is one of the most important issues for operating the inverter-dominated autonomous microgrid. A technical challenge is how to achieve the accurate active/reactive power sharing of inverters. P-F and Q-V droop control schemes have been widely used for power sharing in the past decades. But they suffer from the poor power sharing in the presence of unequal line impedance. In order to solve the problem, a comprehensive analysis of the power droop control is presented, and a new droop control based on the impedance match concept is proposed in this paper. In addition, the design guidelines of control coefficients and virtual impedance are provided. Finally, the performance evaluation is carried out, and the evaluation results verify the effectiveness of the proposed method.

  9. Modern problems of thermodynamics

    NASA Astrophysics Data System (ADS)

    Novikov, I. I.

    2012-12-01

    The role of energy and methods of its saving for the development of human society and life are analyzed. The importance of future use of space energy flows and energy of water and air oceans is emphasized. The authors consider the idea of the unit for production of electric energy and pure substances using sodium chloride which reserves are limitless on the planet. Looking retrospectively at the development of power engineering from the elementary fire to modern electric power station, we see that the used method of heat production, namely by direct interaction of fuel and oxidizer, is the simplest. However, it may be possible to combust coal, i.e., carbon in salt melt, for instance, sodium chloride that would be more rational and efficient. If the stated problems are solved positively, we would master all energy properties of the substance; and this is the main problem of thermodynamics being one of the sciences on energy.

  10. Alkaline quinone flow battery.

    PubMed

    Lin, Kaixiang; Chen, Qing; Gerhardt, Michael R; Tong, Liuchuan; Kim, Sang Bok; Eisenach, Louise; Valle, Alvaro W; Hardee, David; Gordon, Roy G; Aziz, Michael J; Marshak, Michael P

    2015-09-25

    Storage of photovoltaic and wind electricity in batteries could solve the mismatch problem between the intermittent supply of these renewable resources and variable demand. Flow batteries permit more economical long-duration discharge than solid-electrode batteries by using liquid electrolytes stored outside of the battery. We report an alkaline flow battery based on redox-active organic molecules that are composed entirely of Earth-abundant elements and are nontoxic, nonflammable, and safe for use in residential and commercial environments. The battery operates efficiently with high power density near room temperature. These results demonstrate the stability and performance of redox-active organic molecules in alkaline flow batteries, potentially enabling cost-effective stationary storage of renewable energy. Copyright © 2015, American Association for the Advancement of Science.

  11. Equivalent Relaxations of Optimal Power Flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bose, S; Low, SH; Teeraratkul, T

    2015-03-01

    Several convex relaxations of the optimal power flow (OPF) problem have recently been developed using both bus injection models and branch flow models. In this paper, we prove relations among three convex relaxations: a semidefinite relaxation that computes a full matrix, a chordal relaxation based on a chordal extension of the network graph, and a second-order cone relaxation that computes the smallest partial matrix. We prove a bijection between the feasible sets of the OPF in the bus injection model and the branch flow model, establishing the equivalence of these two models and their second-order cone relaxations. Our results implymore » that, for radial networks, all these relaxations are equivalent and one should always solve the second-order cone relaxation. For mesh networks, the semidefinite relaxation and the chordal relaxation are equally tight and both are strictly tighter than the second-order cone relaxation. Therefore, for mesh networks, one should either solve the chordal relaxation or the SOCP relaxation, trading off tightness and the required computational effort. Simulations are used to illustrate these results.« less

  12. Application of empirical and linear methods to VSTOL powered-lift aerodynamics

    NASA Technical Reports Server (NTRS)

    Margason, Richard; Kuhn, Richard

    1988-01-01

    Available prediction methods applied to problems of aero/propulsion interactions for short takeoff and vertical landing (STOVL) aircraft are critically reviewed and an assessment of their strengths and weaknesses provided. The first two problems deal with aerodynamic performance effects during hover: (1) out-of-ground effect, and (2) in-ground effect. The first can be evaluated for some multijet cases; however, the second problem is very difficult to evaluate for multijets. The ground-environment effects due to wall jets and fountain flows directly affect hover performance. In a related problem: (3) hot-gas ingestion affects the engine operation. Both of these problems as well as jet noise affect the ability of people to work near the aircraft and the ability of the aircraft to operate near the ground. Additional problems are: (4) the power-augmented lift due to jet-flap effects (both in- and out-of-ground effects), and (5) the direct jet-lift effects during short takeoff and landing (STOL) operations. The final problem: (6) is the aerodynamic/propulsion interactions in transition between hover and wing-borne flight. Areas where modern CFD methods can provide improvements to current computational capabilities are identified.

  13. Dynamic power flow controllers

    DOEpatents

    Divan, Deepakraj M.; Prasai, Anish

    2017-03-07

    Dynamic power flow controllers are provided. A dynamic power flow controller may comprise a transformer and a power converter. The power converter is subject to low voltage stresses and not floated at line voltage. In addition, the power converter is rated at a fraction of the total power controlled. A dynamic power flow controller controls both the real and the reactive power flow between two AC sources having the same frequency. A dynamic power flow controller inserts a voltage with controllable magnitude and phase between two AC sources; thereby effecting control of active and reactive power flows between two AC sources.

  14. Numerical modeling and optimization of the Iguassu gas centrifuge

    NASA Astrophysics Data System (ADS)

    Bogovalov, S. V.; Borman, V. D.; Borisevich, V. D.; Tronin, V. N.; Tronin, I. V.

    2017-07-01

    The full procedure of the numerical calculation of the optimized parameters of the Iguassu gas centrifuge (GC) is under discussion. The procedure consists of a few steps. On the first step the problem of a hydrodynamical flow of the gas in the rotating rotor of the GC is solved numerically. On the second step the problem of diffusion of the binary mixture of isotopes is solved. The separation power of the gas centrifuge is calculated after that. On the last step the time consuming procedure of optimization of the GC is performed providing us the maximum of the separation power. The optimization is based on the BOBYQA method exploring the results of numerical simulations of the hydrodynamics and diffusion of the mixture of isotopes. Fast convergence of calculations is achieved due to exploring of a direct solver at the solution of the hydrodynamical and diffusion parts of the problem. Optimized separative power and optimal internal parameters of the Iguassu GC with 1 m rotor were calculated using the developed approach. Optimization procedure converges in 45 iterations taking 811 minutes.

  15. Characteristics of melting heat transfer during flow of Carreau fluid induced by a stretching cylinder.

    PubMed

    Hashim; Khan, Masood; Saleh Alshomrani, Ali

    2017-01-01

    This article provides a comprehensive analysis of the energy transportation by virtue of the melting process of high-temperature phase change materials. We have developed a two-dimensional model for the boundary layer flow of non-Newtonian Carreau fluid. It is assumed that flow is caused by stretching of a cylinder in the axial direction by means of a linear velocity. Adequate local similarity transformations are employed to determine a set of non-linear ordinary differential equations which govern the flow problem. Numerical solutions to the resultant non-dimensional boundary value problem are computed via the fifth-order Runge-Kutta Fehlberg integration scheme. The solutions are captured for both zero and non-zero curvature parameters, i.e., for flow over a flat plate or flow over a cylinder. The flow and heat transfer attributes are witnessed to be prompted in an intricate manner by the melting parameter, the curvature parameter, the Weissenberg number, the power law index and the Prandtl number. We determined that one of the possible ways to boost the fluid velocity is to increase the melting parameter. Additionally, both the velocity of the fluid and the momentum boundary layer thickness are higher in the case of flow over a stretching cylinder. As expected, the magnitude of the skin friction and the rate of heat transfer decrease by raising the values of the melting parameter and the Weissenberg number.

  16. Flow through a very porous obstacle in a shallow channel

    PubMed Central

    Draper, S.; Nishino, T.; Borthwick, A. G. L.

    2017-01-01

    A theoretical model, informed by numerical simulations based on the shallow water equations, is developed to predict the flow passing through and around a uniform porous obstacle in a shallow channel, where background friction is important. This problem is relevant to a number of practical situations, including flow through aquatic vegetation, the performance of arrays of turbines in tidal channels and hydrodynamic forces on offshore structures. To demonstrate this relevance, the theoretical model is used to (i) reinterpret core flow velocities in existing laboratory-based data for an array of emergent cylinders in shallow water emulating aquatic vegetation and (ii) reassess the optimum arrangement of tidal turbines to generate power in a tidal channel. Comparison with laboratory-based data indicates a maximum obstacle resistance (or minimum porosity) for which the present theoretical model is valid. When the obstacle resistance is above this threshold the shallow water equations do not provide an adequate representation of the flow, and the theoretical model over-predicts the core flow passing through the obstacle. The second application of the model confirms that natural bed resistance increases the power extraction potential for a partial tidal fence in a shallow channel and alters the optimum arrangement of turbines within the fence. PMID:28484321

  17. Blended Wing Body Concept Development with Open Rotor Engine Intergration

    NASA Technical Reports Server (NTRS)

    Pitera, David M.; DeHaan, Mark; Brown, Derrell; Kawai, Ronald T.; Hollowell, Steve; Camacho, Peter; Bruns, David; Rawden, Blaine K.

    2011-01-01

    The purpose of this study is to perform a systems analysis of a Blended Wing Body (BWB) open rotor concept at the conceptual design level. This concept will be utilized to estimate overall noise and fuel burn performance, leveraging recent test data. This study will also investigate the challenge of propulsion airframe installation of an open rotor engine on a BWB configuration. Open rotor engines have unique problems relative to turbofans. The rotors are open, exposed to flow conditions outside of the engine. The flow field that the rotors are immersed in may be higher than the free stream flow and it may not be uniform, both of these characteristics could increase noise and decrease performance. The rotors sometimes cause changes in the flow conditions imposed on aircraft surfaces. At high power conditions such as takeoff and climb out, the stream tube of air that goes through the rotors contracts rapidly causing the boundary layer on the body upper surface to go through an adverse pressure gradient which could result with separated airflow. The BWB / Open Rotor configuration must be designed to mitigate these problems.

  18. Turbofan forced mixer lobe flow modeling. 2: Three-dimensional inviscid mixer analysis (FLOMIX)

    NASA Technical Reports Server (NTRS)

    Barber, T.

    1988-01-01

    A three-dimensional potential analysis (FLOMIX) was formulated and applied to the inviscid flow over a turbofan foced mixer. The method uses a small disturbance formulation to analytically uncouple the circumferential flow from the radial and axial flow problem, thereby reducing the analysis to the solution of a series of axisymmetric problems. These equations are discretized using a flux volume formulation along a Cartesian grid. The method extends earlier applications of the Cartesian method to complex cambered geometries. The effects of power addition are also included within the potential formulation. Good agreement is obtained with an alternate small disturbance analysis for a high penetration symmetric mixer in a planar duct. In addition, calculations showing pressure distributions and induced secondary vorticity fields are presented for practical trubofan mixer configurations, and where possible, comparison was made with available experimental data. A detailed description of the required data input and coordinate definition is presented along with a sample data set for a practical forced mixer configuration. A brief description of the program structure and subroutines is also provided.

  19. Thermal boundary layer due to sudden heating of fluid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurkal, K.R.; Munukutla, S.

    This paper proposes to solve computationally the heat-transfer problems (introduced by Munukutla and Venkataraman, 1988) related to a closed-cycle pulsed high-power laser flow loop. The continuity and the momentum equations as well as the unsteady energy equation are solved using the Keller-Box method. The solutions were compared with the steady-state solutions at large times, and the comparison was found to be excellent. Empirical formulas are proposed for calculating the time-dependent boundary-layer thickness and mass-heat transfer, that can be used by laser flow loop designers. 6 refs.

  20. Thermal boundary layer due to sudden heating of fluid

    NASA Astrophysics Data System (ADS)

    Kurkal, K. R.; Munukutla, S.

    1989-10-01

    This paper proposes to solve computationally the heat-transfer problems (introduced by Munukutla and Venkataraman, 1988) related to a closed-cycle pulsed high-power laser flow loop. The continuity and the momentum equations as well as the unsteady energy equation are solved using the Keller-Box method. The solutions were compared with the steady-state solutions at large times, and the comparison was found to be excellent. Empirical formulas are proposed for calculating the time-dependent boundary-layer thickness and mass-heat transfer, that can be used by laser flow loop designers.

  1. Bioinspired sensory systems for local flow characterization

    NASA Astrophysics Data System (ADS)

    Colvert, Brendan; Chen, Kevin; Kanso, Eva

    2016-11-01

    Empirical evidence suggests that many aquatic organisms sense differential hydrodynamic signals.This sensory information is decoded to extract relevant flow properties. This task is challenging because it relies on local and partial measurements, whereas classical flow characterization methods depend on an external observer to reconstruct global flow fields. Here, we introduce a mathematical model in which a bioinspired sensory array measuring differences in local flow velocities characterizes the flow type and intensity. We linearize the flow field around the sensory array and express the velocity gradient tensor in terms of frame-independent parameters. We develop decoding algorithms that allow the sensory system to characterize the local flow and discuss the conditions under which this is possible. We apply this framework to the canonical problem of a circular cylinder in uniform flow, finding excellent agreement between sensed and actual properties. Our results imply that combining suitable velocity sensors with physics-based methods for decoding sensory measurements leads to a powerful approach for understanding and developing underwater sensory systems.

  2. Strange attractors in weakly turbulent Couette-Taylor flow

    NASA Technical Reports Server (NTRS)

    Brandstater, A.; Swinney, Harry L.

    1987-01-01

    An experiment is conducted on the transition from quasi-periodic to weakly turbulent flow of a fluid contained between concentric cylinders with the inner cylinder rotating and the outer cylinder at rest. Power spectra, phase-space portraits, and circle maps obtained from velocity time-series data indicate that the nonperiodic behavior observed is deterministic, that is, it is described by strange attractors. Various problems that arise in computing the dimension of strange attractors constructed from experimental data are discussed and it is shown that these problems impose severe requirements on the quantity and accuracy of data necessary for determining dimensions greater than about 5. In the present experiment the attractor dimension increases from 2 at the onset of turbulence to about 4 at a Reynolds number 50-percent above the onset of turbulence.

  3. Geothermal down well pumping system

    NASA Technical Reports Server (NTRS)

    Matthews, H. B.; Mcbee, W. D.

    1974-01-01

    A key technical problem in the exploitation of hot water geothermal energy resources is down-well pumping to inhibit mineral precipitation, improve thermal efficiency, and enhance flow. A novel approach to this problem involves the use of a small fraction of the thermal energy of the well water to boil and super-heat a clean feedwater flow in a down-hole exchanger adjacent to the pump. This steam powers a high-speed turbine-driven pump. The exhaust steam is brought to the surface through an exhaust pipe, condensed, and recirculated. A small fraction of the high-pressure clean feedwater is diverted to lubricate the turbine pump bearings and prevent leakage of brine into the turbine-pump unit. A project demonstrating the feasibility of this approach by means of both laboratory and down-well tests is discussed.

  4. Applying Graph Theory to Problems in Air Traffic Management

    NASA Technical Reports Server (NTRS)

    Farrahi, Amir Hossein; Goldbert, Alan; Bagasol, Leonard Neil; Jung, Jaewoo

    2017-01-01

    Graph theory is used to investigate three different problems arising in air traffic management. First, using a polynomial reduction from a graph partitioning problem, it is shown that both the airspace sectorization problem and its incremental counterpart, the sector combination problem are NP-hard, in general, under several simple workload models. Second, using a polynomial time reduction from maximum independent set in graphs, it is shown that for any fixed e, the problem of finding a solution to the minimum delay scheduling problem in traffic flow management that is guaranteed to be within n1-e of the optimal, where n is the number of aircraft in the problem instance, is NP-hard. Finally, a problem arising in precision arrival scheduling is formulated and solved using graph reachability. These results demonstrate that graph theory provides a powerful framework for modeling, reasoning about, and devising algorithmic solutions to diverse problems arising in air traffic management.

  5. Applying Graph Theory to Problems in Air Traffic Management

    NASA Technical Reports Server (NTRS)

    Farrahi, Amir H.; Goldberg, Alan T.; Bagasol, Leonard N.; Jung, Jaewoo

    2017-01-01

    Graph theory is used to investigate three different problems arising in air traffic management. First, using a polynomial reduction from a graph partitioning problem, it isshown that both the airspace sectorization problem and its incremental counterpart, the sector combination problem are NP-hard, in general, under several simple workload models. Second, using a polynomial time reduction from maximum independent set in graphs, it is shown that for any fixed e, the problem of finding a solution to the minimum delay scheduling problem in traffic flow management that is guaranteed to be within n1-e of the optimal, where n is the number of aircraft in the problem instance, is NP-hard. Finally, a problem arising in precision arrival scheduling is formulated and solved using graph reachability. These results demonstrate that graph theory provides a powerful framework for modeling, reasoning about, and devising algorithmic solutions to diverse problems arising in air traffic management.

  6. Theoretical regime diagrams for thermally driven flows in a beta-plane channel in the presence of variable gravity

    NASA Technical Reports Server (NTRS)

    Geisler, J. E.; Fowlis, W. W.

    1980-01-01

    The effect of a power law gravity field on baroclinic instability is examined, with a focus on the case of inverse fifth power gravity, since this is the power law produced when terrestrial gravity is simulated in spherical geometry by a dielectric force. Growth rates are obtained of unstable normal modes as a function of parameters of the problem by solving a second order differential equation numerically. It is concluded that over the range of parameter space explored, there is no significant change in the character of theoretical regime diagrams if the vertically averaged gravity is used as parameter.

  7. Mechanism of emergence of intense vibrations of turbines on the Sayano-Shushensk hydro power plant

    NASA Astrophysics Data System (ADS)

    Kurzin, V. B.; Seleznev, V. S.

    2010-07-01

    It is demonstrated that the level of vibrations of turbines on the Sayano-Shushensk hydro power plant is enhanced by the capability of a compressible fluid to perform its own hydroacoustic oscillations (which can be unstable) in the turbine duct. Based on the previously obtained results of solving the problem of natural hydroacoustic oscillations in the turbine duct and some ideas about turbine interaction with an unsteady compressible fluid flow, results of full-scale studies of turbine vibrations and seismic monitoring of the dam of the Sayano-Shushensk hydro power plant before and during the accident are analyzed.

  8. Lattice Boltzmann modeling of transport phenomena in fuel cells and flow batteries

    NASA Astrophysics Data System (ADS)

    Xu, Ao; Shyy, Wei; Zhao, Tianshou

    2017-06-01

    Fuel cells and flow batteries are promising technologies to address climate change and air pollution problems. An understanding of the complex multiscale and multiphysics transport phenomena occurring in these electrochemical systems requires powerful numerical tools. Over the past decades, the lattice Boltzmann (LB) method has attracted broad interest in the computational fluid dynamics and the numerical heat transfer communities, primarily due to its kinetic nature making it appropriate for modeling complex multiphase transport phenomena. More importantly, the LB method fits well with parallel computing due to its locality feature, which is required for large-scale engineering applications. In this article, we review the LB method for gas-liquid two-phase flows, coupled fluid flow and mass transport in porous media, and particulate flows. Examples of applications are provided in fuel cells and flow batteries. Further developments of the LB method are also outlined.

  9. Flow friction of the turbulent coolant flow in cryogenic porous cables

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Yeroshenko, V. M.; Zaichik, L. I.; Yanovsky, L. S.

    1979-01-01

    Considered are cryogenic power transmission cables with porous cores. Calculations of the turbulent coolant flow with injection or suction through the porous wall are presented within the framework of a two-layer model. Universal velocity profiles were obtained for the viscous sublayer and flow core. Integrating the velocity profile, the law of flow friction in the pipe with injection has been derived for the case when there is a tangential injection velocity component. The effect of tangential velocity on the relative law of flow friction is analyzed. The applicability of the Prandtl model to the problem under study is discussed. It is shown that the error due to the acceptance of the model increases with the injection parameter and at lower Reynolds numbers; under these circumstances, the influence of convective terms in the turbulent energy equation on the mechanism of turbulent transport should be taken into account.

  10. COMMIX-PPC: A three-dimensional transient multicomponent computer program for analyzing performance of power plant condensers. Volume 1, Equations and numerics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chien, T.H.; Domanus, H.M.; Sha, W.T.

    1993-02-01

    The COMMIX-PPC computer pregrain is an extended and improved version of earlier COMMIX codes and is specifically designed for evaluating the thermal performance of power plant condensers. The COMMIX codes are general-purpose computer programs for the analysis of fluid flow and heat transfer in complex Industrial systems. In COMMIX-PPC, two major features have been added to previously published COMMIX codes. One feature is the incorporation of one-dimensional equations of conservation of mass, momentum, and energy on the tube stile and the proper accounting for the thermal interaction between shell and tube side through the porous-medium approach. The other added featuremore » is the extension of the three-dimensional conservation equations for shell-side flow to treat the flow of a multicomponent medium. COMMIX-PPC is designed to perform steady-state and transient. Three-dimensional analysis of fluid flow with heat transfer tn a power plant condenser. However, the code is designed in a generalized fashion so that, with some modification, it can be used to analyze processes in any heat exchanger or other single-phase engineering applications. Volume I (Equations and Numerics) of this report describes in detail the basic equations, formulation, solution procedures, and models for a phenomena. Volume II (User`s Guide and Manual) contains the input instruction, flow charts, sample problems, and descriptions of available options and boundary conditions.« less

  11. Alternative power supply systems for remote industrial customers

    NASA Astrophysics Data System (ADS)

    Kharlamova, N. V.; Khalyasmaa, A. I.; Eroshenko, S. A.

    2017-06-01

    The paper addresses the problem of alternative power supply of remote industrial clusters with renewable electric energy generation. As a result of different technologies comparison, consideration is given to wind energy application. The authors present a methodology of mean expected wind generation output calculation, based on Weibull distribution, which provides an effective express-tool for preliminary assessment of required installed generation capacity. The case study is based on real data including database of meteorological information, relief characteristics, power system topology etc. Wind generation feasibility estimation for a specific territory is followed by power flow calculations using Monte Carlo methodology. Finally, the paper provides a set of recommendations to ensure safe and reliable power supply for the final customers and, subsequently, to provide sustainable development of the regions, located far from megalopolises and industrial centres.

  12. Simulation of the turbulent Rayleigh-Benard problem using a spectral/finite difference technique

    NASA Technical Reports Server (NTRS)

    Eidson, T. M.; Hussaini, M. Y.; Zang, T. A.

    1986-01-01

    The three-dimensional, incompressible Navier-Stokes and energy equations with the Bousinesq assumption have been directly simulated at a Rayleigh number of 3.8 x 10 to the 5th power and a Prandtl number of 0.76. In the vertical direction, wall boundaries were used and in the horizontal, periodic boundary conditions were used. A spectral/finite difference numerical method was used to simulate the flow. The flow at these conditions is turbulent and a sufficiently fine mesh was used to capture all relevant flow scales. The results of the simulation are compared to experimental data to justify the conclusion that the small scale motion is adequately resolved.

  13. Groebner Basis Methods for Stationary Solutions of a Low-Dimensional Model for a Shear Flow

    NASA Astrophysics Data System (ADS)

    Pausch, Marina; Grossmann, Florian; Eckhardt, Bruno; Romanovski, Valery G.

    2014-10-01

    We use Groebner basis methods to extract all stationary solutions for the nine-mode shear flow model described in Moehlis et al. (New J Phys 6:56, 2004). Using rational approximations to irrational wave numbers and algebraic manipulation techniques we reduce the problem of determining all stationary states to finding roots of a polynomial of order 30. The coefficients differ by 30 powers of 10, so that algorithms for extended precision are needed to extract the roots reliably. We find that there are eight stationary solutions consisting of two distinct states, each of which appears in four symmetry-related phases. We discuss extensions of these results for other flows.

  14. Fuel Cell Power System and Equipment Bay for High Altitude, Super- Pressured, Powered Aerostat (HASPA) Operational Manual

    DTIC Science & Technology

    1975-05-20

    across the anode side of the membrane -electrode assembly. Flow distribution of the hydrogen gas from cell to cell is not a problem as that system is...DOCUMENTATION PAGE RiEAI T C OMPLETING FORM V ~i 12.BR NUMVE AccEisioN NO4 II T AAO UM811" 4. TITL[ (Wd SibItl@) ... . I YPE or REPORT I PERIOD COVERED...instructions for Fuel Cell Module FS-2. The ion exchange membrane fuel cell module is produced by the General Electric Company, Direct Energy

  15. Balancing the Power-to-Load Ratio for a Novel Variable Geometry Wave Energy Converter with Nonideal Power Take-Off in Regular Waves: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tom, Nathan M; Yu, Yi-Hsiang; Wright, Alan D

    This work attempts to balance power absorption against structural loading for a novel variable geometry wave energy converter. The variable geometry consists of four identical flaps that will be opened in ascending order starting with the flap closest to the seafloor and moving to the free surface. The influence of a pitch motion constraint on power absorption when utilizing a nonideal power take-off (PTO) is examined and found to reduce the losses associated with bidirectional energy flow. The power-to-load ratio is evaluated using pseudo-spectral control to determine the optimum PTO torque based on a multiterm objective function. The pseudo-spectral optimalmore » control problem is extended to include load metrics in the objective function, which may now consist of competing terms. Separate penalty weights are attached to the surge-foundation force and PTO control torque to tune the optimizer performance to emphasize either power absorption or load shedding. PTO efficiency is not included in the objective function, but the penalty weights are utilized to limit the force and torque amplitudes, thereby reducing losses associated with bidirectional energy flow. Results from pseudo-spectral control demonstrate that shedding a portion of the available wave energy can provide greater reductions in structural loads and reactive power.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smed, T.; Andersson, G.

    In this paper, damping of slow oscillations with active and reactive power modulation of HVDC-links is analyzed with the aim of gaining a physical insight into the problem. The analysis shows that active power modulation is efficient when applied to a short mass-scaled electrical distance from one of the swinging machines, and reactive power modulation is most efficient when there exists a well-defined power flow direction and the modulation is made at a point close to the electrical midpoint between the swinging machines. It is shown that the intuitively appealing feedback signals frequency and derivative of the voltage are appropriatemore » for active and reactive power modulation, respectively. The impact of the constraints imposed by the HVDC equations are analyzed, and it is determined when the implicit reactive power modulation resulting from constant [gamma] control may be detrimental for the damping.« less

  17. New Power Sharing Control for Inverter-Dominated Microgrid Based on Impedance Match Concept

    PubMed Central

    Gu, Herong; Wang, Deyu; Shen, Hong; Zhao, Wei; Guo, Xiaoqiang

    2013-01-01

    Power flow control is one of the most important issues for operating the inverter-dominated autonomous microgrid. A technical challenge is how to achieve the accurate active/reactive power sharing of inverters. P-F and Q-V droop control schemes have been widely used for power sharing in the past decades. But they suffer from the poor power sharing in the presence of unequal line impedance. In order to solve the problem, a comprehensive analysis of the power droop control is presented, and a new droop control based on the impedance match concept is proposed in this paper. In addition, the design guidelines of control coefficients and virtual impedance are provided. Finally, the performance evaluation is carried out, and the evaluation results verify the effectiveness of the proposed method. PMID:24453910

  18. Global convergence of inexact Newton methods for transonic flow

    NASA Technical Reports Server (NTRS)

    Young, David P.; Melvin, Robin G.; Bieterman, Michael B.; Johnson, Forrester T.; Samant, Satish S.

    1990-01-01

    In computational fluid dynamics, nonlinear differential equations are essential to represent important effects such as shock waves in transonic flow. Discretized versions of these nonlinear equations are solved using iterative methods. In this paper an inexact Newton method using the GMRES algorithm of Saad and Schultz is examined in the context of the full potential equation of aerodynamics. In this setting, reliable and efficient convergence of Newton methods is difficult to achieve. A poor initial solution guess often leads to divergence or very slow convergence. This paper examines several possible solutions to these problems, including a standard local damping strategy for Newton's method and two continuation methods, one of which utilizes interpolation from a coarse grid solution to obtain the initial guess on a finer grid. It is shown that the continuation methods can be used to augment the local damping strategy to achieve convergence for difficult transonic flow problems. These include simple wings with shock waves as well as problems involving engine power effects. These latter cases are modeled using the assumption that each exhaust plume is isentropic but has a different total pressure and/or temperature than the freestream.

  19. Trash Diverter Orientation Angle Optimization at Run-Off River Type Hydro-power Plant using CFD

    NASA Astrophysics Data System (ADS)

    Munisamy, Kannan M.; Kamal, Ahmad; Shuaib, Norshah Hafeez; Yusoff, Mohd. Zamri; Hasini, Hasril; Rashid, Azri Zainol; Thangaraju, Savithry K.; Hamid, Hazha

    2010-06-01

    Tenom Pangi Hydro Power Station in Tenom, Sabah is suffering from poor river quality with a lot of suspended trashes. This problem necessitates the need for a trash diverter to divert the trash away from the intake region. Previously, a trash diverter (called Trash Diverter I) was installed at the site but managed to survived for a short period of time due to an impact with huge log as a results of a heavy flood. In the current project, a second trash diverter structure is designed (called Trash Diverter II) with improved features compared to Trash Diverter I. The Computational Fluid Dynamics (CFD) analysis is done to evaluate the river flow interaction onto the trash diverter from the fluid flow point of view, Computational Fluids Dynamics is a numerical approach to solve fluid flow profile for different inlet conditions. In this work, the river geometry is modeled using commercial CFD code, FLUENT®. The computational model consists of Reynolds Averaged Navier-Stokes (RANS) equations coupled with other related models using the properties of the fluids under investigation. The model is validated with site-measurements done at Tenom Pangi Hydro Power Station. Different operating condition of river flow rate and weir opening is also considered. The optimum angle is determined in this simulation to further use the data for 3D simulation and structural analysis.

  20. Microbiological removal of hydrogen sulfide from biogas by means of a separate biofilter system: experience with technical operation.

    PubMed

    Schieder, D; Quicker, P; Schneider, R; Winter, H; Prechtl, S; Faulstich, M

    2003-01-01

    The "BIO-Sulfex" biofilter of ATZ-EVUS removes hydrogen sulfide from biogas in a biological way. Hydrogen sulfide causes massive problems during power generation from biogas in a power plant, e.g. corrosion of engines and heat exchangers, and thus causes frequent and therefore expensive engine oil changes. The BIO-Sulfex module is placed between the digester and the power-plant and warrants a cost-effective, reliable and fully biological desulfurization. In the cleaned gas concentrations of less than 100 ppm can be achieved. Power-plant manufacturers usually demand less than 500 or less than 200 ppm. At present, several plants with biogas flow rates between 20 and 350 m3/h are in operation.

  1. Equivalent Electromagnetic Constants for Microwave Application to Composite Materials for the Multi-Scale Problem

    PubMed Central

    Fujisaki, Keisuke; Ikeda, Tomoyuki

    2013-01-01

    To connect different scale models in the multi-scale problem of microwave use, equivalent material constants were researched numerically by a three-dimensional electromagnetic field, taking into account eddy current and displacement current. A volume averaged method and a standing wave method were used to introduce the equivalent material constants; water particles and aluminum particles are used as composite materials. Consumed electrical power is used for the evaluation. Water particles have the same equivalent material constants for both methods; the same electrical power is obtained for both the precise model (micro-model) and the homogeneous model (macro-model). However, aluminum particles have dissimilar equivalent material constants for both methods; different electric power is obtained for both models. The varying electromagnetic phenomena are derived from the expression of eddy current. For small electrical conductivity such as water, the macro-current which flows in the macro-model and the micro-current which flows in the micro-model express the same electromagnetic phenomena. However, for large electrical conductivity such as aluminum, the macro-current and micro-current express different electromagnetic phenomena. The eddy current which is observed in the micro-model is not expressed by the macro-model. Therefore, the equivalent material constant derived from the volume averaged method and the standing wave method is applicable to water with a small electrical conductivity, although not applicable to aluminum with a large electrical conductivity. PMID:28788395

  2. Recent developments in CO2 lasers

    NASA Astrophysics Data System (ADS)

    Du, Keming

    1993-05-01

    CO2 lasers have been used in industry mainly for such things as cutting, welding, and surface processing. To conduct a broad spectrum of high-speed and high-quality applications, most of the developments in industrial CO2 lasers at the ILT are aimed at increasing the output power, optimizing the beam quality, and reducing the production costs. Most of the commercial CO2 lasers above 5 kW are transverse-flow systems using dc excitation. The applications of these lasers are limited due to the lower beam quality, the poor point stability, and the lower modulation frequency. To overcome the problems we developed a fast axial- flow CO2 laser using rf excitation with an output of 13 kW. In section 2 some of the results are discussed concerning the gas flow, the discharge, the resonator design, optical effects of active medium, the aerodynamic window, and the modulation of the output power. The first CO2 lasers ever built are diffusion-cooled systems with conventional dc excited cylindrical discharge tubes surrounded by cooling jackets. The output power per unit length is limited to 50 W/m by those lasers with cylindrical tubes. In the past few years considerable increases in the output power were achieved, using new mechanical geometries, excitation- techniques, and resonator designs. This progress in diffusion-cooled CO2 lasers is presented in section 3.

  3. Numerical solution of a flow inside a labyrinth seal

    NASA Astrophysics Data System (ADS)

    Šimák, Jan; Straka, Petr; Pelant, Jaroslav

    2012-04-01

    The aim of this study is a behaviour of a flow inside a labyrinth seal on a rotating shaft. The labyrinth seal is a type of a non-contact seal where a leakage of a fluid is prevented by a rather complicated path, which the fluid has to overcome. In the presented case the sealed medium is the air and the seal is made by a system of 20 teeth on a rotating shaft situated against a smooth static surface. Centrifugal forces present due to the rotation of the shaft create vortices in each chamber and thus dissipate the axial velocity of the escaping air.The structure of the flow field inside the seal is studied through the use of numerical methods. Three-dimensional solution of the Navier-Stokes equations for turbulent flow is very time consuming. In order to reduce the computational time we can simplify our problem and solve it as an axisymmetric problem in a two-dimensional meridian plane. For this case we use a transformation of the Navier-Stokes equations and of the standard k-omega turbulence model into a cylindrical coordinate system. A finite volume method is used for the solution of the resulting problem. A one-side modification of the Riemann problem for boundary conditions is used at the inlet and at the outlet of the axisymmetric channel. The total pressure and total density (temperature) are to be used preferably at the inlet whereas the static pressure is used at the outlet for the compatibility. This idea yields physically relevant boundary conditions. The important characteristics such as a mass flow rate and a power loss, depending on a pressure ratio (1.1 - 4) and an angular velocity (1000 - 15000 rpm) are evaluated.

  4. Analysis and Down Select of Flow Passages for Thermal Hydraulic Testing of a SNAP Derived Reactor

    NASA Technical Reports Server (NTRS)

    Godfroy, T. J.; Sadasivan, P.; Masterson, S.

    2007-01-01

    As past of the Vision for Space Exploration, man will return to the moon. To enable safe and productive time on the lunar surface will require adequate power resources. To provide the needed power and to give mission planners all landing site possibilities, including a permanently dark crater, a nuclear reactor provides the most options. Designed to be l00kWt providing approx. 25kWe this power plants would be very effective in delivering dependable, site non-specific power to crews or robotic missions on the lunar surface. An affordable reference reactor based upon the successful SNAP program of the 1960's and early 1970's has been designed by Los Alamos National Laboratory that will meet such a requirement. Considering current funding, environmental, and schedule limitations this lunar surface power reactor will be tested using non-nuclear simulators to simulate the heat from fission reactions. Currently a 25kWe surface power SNAP derivative reactor is in the early process of design and testing with collaboration between Los Alamos National Laboratory, Idaho National Laboratory, Glenn Research Center, Marshall Space Flight Center, and Sandia National Laboratory to ensure that this new design is affordable and can be tested using non-nuclear methods as have proven so effective in the past. This paper will discuss the study and down selection of a flow passage concept for a approx. 25kWe lunar surface power reactor. Several different flow passages designs were evaluated using computational fluid dynamics to determine pressure drop and a structural assessment to consider thermal and stress of the passage walls. The reactor design basis conditions are discussed followed by passage problem setup and results for each concept. A recommendation for passage design is made with rationale for selection.

  5. Methodology and measures for preventing unacceptable flow-accelerated corrosion thinning of pipelines and equipment of NPP power generating units

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Shipkov, A. A.; Lovchev, V. N.; Gutsev, D. F.

    2016-10-01

    Problems of metal flow-accelerated corrosion (FAC) in the pipelines and equipment of the condensate- feeding and wet-steam paths of NPP power-generating units (PGU) are examined. Goals, objectives, and main principles of the methodology for the implementation of an integrated program of AO Concern Rosenergoatom for the prevention of unacceptable FAC thinning and for increasing operational flow-accelerated corrosion resistance of NPP EaP are worded (further the Program). A role is determined and potentialities are shown for the use of Russian software packages in the evaluation and prediction of FAC rate upon solving practical problems for the timely detection of unacceptable FAC thinning in the elements of pipelines and equipment (EaP) of the secondary circuit of NPP PGU. Information is given concerning the structure, properties, and functions of the software systems for plant personnel support in the monitoring and planning of the inservice inspection of FAC thinning elements of pipelines and equipment of the secondary circuit of NPP PGUs, which are created and implemented at some Russian NPPs equipped with VVER-1000, VVER-440, and BN-600 reactors. It is noted that one of the most important practical results of software packages for supporting NPP personnel concerning the issue of flow-accelerated corrosion consists in revealing elements under a hazard of intense local FAC thinning. Examples are given for successful practice at some Russian NPP concerning the use of software systems for supporting the personnel in early detection of secondary-circuit pipeline elements with FAC thinning close to an unacceptable level. Intermediate results of working on the Program are presented and new tasks set in 2012 as a part of the updated program are denoted. The prospects of the developed methods and tools in the scope of the Program measures at the stages of design and construction of NPP PGU are discussed. The main directions of the work on solving the problems of flow-accelerated corrosion of pipelines and equipment in Russian NPP PGU are defined.

  6. A comprehensive approach to reactive power scheduling in restructured power systems

    NASA Astrophysics Data System (ADS)

    Shukla, Meera

    Financial constraints, regulatory pressure, and need for more economical power transfers have increased the loading of interconnected transmission systems. As a consequence, power systems have been operated close to their maximum power transfer capability limits, making the system more vulnerable to voltage instability events. The problem of voltage collapse characterized by a severe local voltage depression is generally believed to be associated with inadequate VAr support at key buses. The goal of reactive power planning is to maintain a high level of voltage security, through installation of properly sized and located reactive sources and their optimal scheduling. In case of vertically-operated power systems, the reactive requirement of the system is normally satisfied by using all of its reactive sources. But in case of different scenarios of restructured power systems, one may consider a fixed amount of exchange of reactive power through tie lines. Reviewed literature suggests a need for optimal scheduling of reactive power generation for fixed inter area reactive power exchange. The present work proposed a novel approach for reactive power source placement and a novel approach for its scheduling. The VAr source placement technique was based on the property of system connectivity. This is followed by development of optimal reactive power dispatch formulation which facilitated fixed inter area tie line reactive power exchange. This formulation used a Line Flow-Based (LFB) model of power flow analysis. The formulation determined the generation schedule for fixed inter area tie line reactive power exchange. Different operating scenarios were studied to analyze the impact of VAr management approach for vertically operated and restructured power systems. The system loadability, losses, generation and the cost of generation were the performance measures to study the impact of VAr management strategy. The novel approach was demonstrated on IEEE 30 bus system.

  7. Solving Partial Differential Equations on Overlapping Grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henshaw, W D

    2008-09-22

    We discuss the solution of partial differential equations (PDEs) on overlapping grids. This is a powerful technique for efficiently solving problems in complex, possibly moving, geometry. An overlapping grid consists of a set of structured grids that overlap and cover the computational domain. By allowing the grids to overlap, grids for complex geometries can be more easily constructed. The overlapping grid approach can also be used to remove coordinate singularities by, for example, covering a sphere with two or more patches. We describe the application of the overlapping grid approach to a variety of different problems. These include the solutionmore » of incompressible fluid flows with moving and deforming geometry, the solution of high-speed compressible reactive flow with rigid bodies using adaptive mesh refinement (AMR), and the solution of the time-domain Maxwell's equations of electromagnetism.« less

  8. New two-tier low pressure turbine for heavy duty steam turbines

    NASA Astrophysics Data System (ADS)

    Zaryankin, A. E.; Rogalev, A. N.; Osipov, S. K.; Bychkov, N. M.

    2017-11-01

    Among factors characterising steam turbine units of power plants, a specific metal content which value decreases inversely to turbine power is of substantive importance. In turn, their maximum power depends on the capacity of low pressure turbines. It is traditionally managed to increase either by installation of larger number of low pressure turbines or by lengthening the exhaust blades. It is worth noting that the above-mentioned methods have some technical restrictions by the number of rotors to be connected. Currently some works aimed at solving the stated technical problems appear in the literature for the purpose of increasing the unit power of turbomachines, for example, by using exhaust blades with the length of 1 500 mm and longer. However, it is to be understood that increasing the exhaust area of turbomachine only by lengthening exhaust blades cannot provide a cost-effective and reliable work of the turbine flow part. Here new problems appear: losses rise abruptly due to the stage fan-out, the turbomachine dimensions increase, etc. In this connection, an issue of development of new, technically implementable ways of turbo-units power increase is very acute today.

  9. Continuation Power Flow with Variable-Step Variable-Order Nonlinear Predictor

    NASA Astrophysics Data System (ADS)

    Kojima, Takayuki; Mori, Hiroyuki

    This paper proposes a new continuation power flow calculation method for drawing a P-V curve in power systems. The continuation power flow calculation successively evaluates power flow solutions through changing a specified value of the power flow calculation. In recent years, power system operators are quite concerned with voltage instability due to the appearance of deregulated and competitive power markets. The continuation power flow calculation plays an important role to understand the load characteristics in a sense of static voltage instability. In this paper, a new continuation power flow with a variable-step variable-order (VSVO) nonlinear predictor is proposed. The proposed method evaluates optimal predicted points confirming with the feature of P-V curves. The proposed method is successfully applied to IEEE 118-bus and IEEE 300-bus systems.

  10. All-Fullerene-Based Cells for Nonaqueous Redox Flow Batteries.

    PubMed

    Friedl, Jochen; Lebedeva, Maria A; Porfyrakis, Kyriakos; Stimming, Ulrich; Chamberlain, Thomas W

    2018-01-10

    Redox flow batteries have the potential to revolutionize our use of intermittent sustainable energy sources such as solar and wind power by storing the energy in liquid electrolytes. Our concept study utilizes a novel electrolyte system, exploiting derivatized fullerenes as both anolyte and catholyte species in a series of battery cells, including a symmetric, single species system which alleviates the common problem of membrane crossover. The prototype multielectron system, utilizing molecular based charge carriers, made from inexpensive, abundant, and sustainable materials, principally, C and Fe, demonstrates remarkable current and energy densities and promising long-term cycling stability.

  11. A new simulation system of traffic flow based on cellular automata principle

    NASA Astrophysics Data System (ADS)

    Shan, Junru

    2017-05-01

    Traffic flow is a complex system of multi-behavior so it is difficult to give a specific mathematical equation to express it. With the rapid development of computer technology, it is an important method to study the complex traffic behavior by simulating the interaction mechanism between vehicles and reproduce complex traffic behavior. Using the preset of multiple operating rules, cellular automata is a kind of power system which has discrete time and space. It can be a good simulation of the real traffic process and a good way to solve the traffic problems.

  12. Loop Heat Pipe Temperature Oscillation Induced by Gravity Assist and Reservoir Heating

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Garrison, Matthew; Patel, Deepak; Robinson, Franklin; Ottenstein, Laura

    2015-01-01

    The Laser Thermal Control System (LCTS) for the Advanced Topographic Laser Altimeter System (ATLAS) to be installed on NASA's Ice, Cloud, and Land Elevation Satellite (ICESat-2) consists of a constant conductance heat pipe and a loop heat pipe (LHP) with an associated radiator. During the recent thermal vacuum testing of the LTCS where the LHP condenser/radiator was placed in a vertical position above the evaporator and reservoir, it was found that the LHP reservoir control heater power requirement was much higher than the analytical model had predicted. Even with the control heater turned on continuously at its full power, the reservoir could not be maintained at its desired set point temperature. An investigation of the LHP behaviors found that the root cause of the problem was fluid flow and reservoir temperature oscillations, which led to persistent alternate forward and reversed flow along the liquid line and an imbalance between the vapor mass flow rate in the vapor line and liquid mass flow rate in the liquid line. The flow and temperature oscillations were caused by an interaction between gravity and reservoir heating, and were exacerbated by the large thermal mass of the instrument simulator which modulated the net heat load to the evaporator, and the vertical radiator/condenser which induced a variable gravitational pressure head. Furthermore, causes and effects of the contributing factors to flow and temperature oscillations intermingled.

  13. Refrigeration generation using expander-generator units

    NASA Astrophysics Data System (ADS)

    Klimenko, A. V.; Agababov, V. S.; Koryagin, A. V.; Baidakova, Yu. O.

    2016-05-01

    The problems of using the expander-generator unit (EGU) to generate refrigeration, along with electricity were considered. It is shown that, on the level of the temperatures of refrigeration flows using the EGU, one can provide the refrigeration supply of the different consumers: ventilation and air conditioning plants and industrial refrigerators and freezers. The analysis of influence of process parameters on the cooling power of the EGU, which depends on the parameters of the gas expansion process in the expander and temperatures of cooled environment, was carried out. The schematic diagram of refrigeration generation plant based on EGU is presented. The features and advantages of EGU to generate refrigeration compared with thermotransformer of steam compressive and absorption types were shown, namely: there is no need to use the energy generated by burning fuel to operate the EGU; beneficial use of the heat delivered to gas from the flow being cooled in equipment operating on gas; energy production along with refrigeration generation, which makes it possible to create, using EGU, the trigeneration plants without using the energy power equipment. It is shown that the level of the temperatures of refrigeration flows, which can be obtained by using the EGU on existing technological decompression stations of the transported gas, allows providing the refrigeration supply of various consumers. The information that the refrigeration capacity of an expander-generator unit not only depends on the parameters of the process of expansion of gas flowing in the expander (flow rate, temperatures and pressures at the inlet and outlet) but it is also determined by the temperature needed for a consumer and the initial temperature of the flow of the refrigeration-carrier being cooled. The conclusion was made that the expander-generator units can be used to create trigeneration plants both at major power plants and at small energy.

  14. Supersonic plasma jets in experiments for radiophysical testing of bodies flow

    NASA Astrophysics Data System (ADS)

    Balakirev, B. A.; Bityurin, V. A.; Bocharov, A. N.; Brovkin, V. G.; Vedenin, P. V.; Lashkov, V. A.; Mashek, I. Ch; Pashchina, A. S.; Petrovskiy, V. P.; Khoronzhuk, R. S.; Dobrovolskaya, A. S.

    2018-01-01

    The action of differently oriented magnetic fields on the parameters of bow shock created in the vicinity of aerodynamic bodies placed into the supersonic gas-plasma flows is studied. For these experiments two types of the high speed plasma jet sources are used—magneto-plasma compressor (MPC) and powerful pulse capillary type discharge. MPC allows to create the plasma jets with gas flow velocity of 10 ± 2 km/s, lifetime 30-50 μs, temperature Te ≈ 3 ± 0.5 eV, electron density about ne ˜ 1016cm-3 and temperature Te ≈ 3 ± 0.5 eV. The jet source based on powerful capillary discharge creates the flows with lifetime 1-20 ms, Mach numbers 3-8, plasma flow velocity 3-10 km/s, vibration and rotation temperatures 9000-14000 and 3800-6000 K respectively. The results of our first experiments show the possibility of using gas-plasma sources based on MPC and powerful capillary discharge for aerodynamic and radiophysical experiments. Comparatively small magnetic field B = 0.23-0.5 T, applied to the obtained bow shocks, essentially modify them. This can lead to a change in shape and an increase in the distance between the detached shock wave and the streamlined body surface if B is parallel to the jet velocity or to decrease this parameter if B is orthogonal to the oncoming flow. Probably, the first case can be useful for reducing the thermal load and aerodynamic drug of streamlined body and the second case can be used to control the radio-transparency of the plasma layer and solving the blackout problem.

  15. Modification and performance evaluation of a mono-valve engine

    NASA Astrophysics Data System (ADS)

    Behrens, Justin W.

    A four-stroke engine utilizing one tappet valve for both the intake and exhaust gas exchange processes has been built and evaluated. The engine operates under its own power, but has a reduced power capacity than the conventional 2-valve engine. The reduction in power is traced to higher than expected amounts of exhaust gases flowing back into the intake system. Design changes to the cylinder head will fix the back flow problems, but the future capacity of mono-valve engine technology cannot be estimated. The back flow of exhaust gases increases the exhaust gas recirculation (EGR) rate and deteriorates combustion. Intake pressure data shows the mono-valve engine requires an advanced intake valve closing (IVC) time to prevent back flow of charge air. A single actuation camshaft with advanced IVC was tested in the mono-valve engine, and was found to improve exhaust scavenging at TDC and nearly eliminated all charge air back flow at IVC. The optimum IVC timing is shown to be approximately 30 crank angle degrees after BDC. The mono-valve cylinder head utilizes a rotary valve positioned above the tappet valve. The open spaces inside the rotary valveand between the rotary valve and tappet valve represent a common volume that needs to be reduced in order to reduce the base EGR rate. Multiple rotary valve configurations were tested, and the size of the common volume was found to have no effect on back flow but a direct effect on the EGR rate and engine performance. The position of the rotary valve with respect to crank angle has a direct effect on the scavenging process. Optimum scavenging occurs when the intake port is opened just after TDC.

  16. Chance-Constrained Day-Ahead Hourly Scheduling in Distribution System Operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Huaiguang; Zhang, Yingchen; Muljadi, Eduard

    This paper aims to propose a two-step approach for day-ahead hourly scheduling in a distribution system operation, which contains two operation costs, the operation cost at substation level and feeder level. In the first step, the objective is to minimize the electric power purchase from the day-ahead market with the stochastic optimization. The historical data of day-ahead hourly electric power consumption is used to provide the forecast results with the forecasting error, which is presented by a chance constraint and formulated into a deterministic form by Gaussian mixture model (GMM). In the second step, the objective is to minimize themore » system loss. Considering the nonconvexity of the three-phase balanced AC optimal power flow problem in distribution systems, the second-order cone program (SOCP) is used to relax the problem. Then, a distributed optimization approach is built based on the alternating direction method of multiplier (ADMM). The results shows that the validity and effectiveness method.« less

  17. Available Transfer Capability Determination Using Hybrid Evolutionary Algorithm

    NASA Astrophysics Data System (ADS)

    Jirapong, Peeraool; Ongsakul, Weerakorn

    2008-10-01

    This paper proposes a new hybrid evolutionary algorithm (HEA) based on evolutionary programming (EP), tabu search (TS), and simulated annealing (SA) to determine the available transfer capability (ATC) of power transactions between different control areas in deregulated power systems. The optimal power flow (OPF)-based ATC determination is used to evaluate the feasible maximum ATC value within real and reactive power generation limits, line thermal limits, voltage limits, and voltage and angle stability limits. The HEA approach simultaneously searches for real power generations except slack bus in a source area, real power loads in a sink area, and generation bus voltages to solve the OPF-based ATC problem. Test results on the modified IEEE 24-bus reliability test system (RTS) indicate that ATC determination by the HEA could enhance ATC far more than those from EP, TS, hybrid TS/SA, and improved EP (IEP) algorithms, leading to an efficient utilization of the existing transmission system.

  18. Multiphysics analysis of liquid metal annular linear induction pumps: A project overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maidana, Carlos Omar; Nieminen, Juha E.

    Liquid metal-cooled fission reactors are both moderated and cooled by a liquid metal solution. These reactors are typically very compact and they can be used in regular electric power production, for naval and space propulsion systems or in fission surface power systems for planetary exploration. The coupling between the electromagnetics and thermo-fluid mechanical phenomena observed in liquid metal thermo-magnetic systems for nuclear and space applications gives rise to complex engineering magnetohydrodynamics and numerical problems. It is known that electromagnetic pumps have a number of advantages over rotating mechanisms: absence of moving parts, low noise and vibration level, simplicity of flowmore » rate regulation, easy maintenance and so on. However, while developing annular linear induction pumps, we are faced with a significant problem of magnetohydrodynamic instability arising in the device. The complex flow behavior in this type of devices includes a time-varying Lorentz force and pressure pulsation due to the time-varying electromagnetic fields and the induced convective currents that originates from the liquid metal flow, leading to instability problems along the device geometry. The determinations of the geometry and electrical configuration of liquid metal thermo-magnetic devices give rise to a complex inverse magnetohydrodynamic field problem were techniques for global optimization should be used, magnetohydrodynamics instabilities understood –or quantified- and multiphysics models developed and analyzed. Lastly, we present a project overview as well as a few computational models developed to study liquid metal annular linear induction pumps using first principles and the a few results of our multi-physics analysis.« less

  19. Multiphysics analysis of liquid metal annular linear induction pumps: A project overview

    DOE PAGES

    Maidana, Carlos Omar; Nieminen, Juha E.

    2016-03-14

    Liquid metal-cooled fission reactors are both moderated and cooled by a liquid metal solution. These reactors are typically very compact and they can be used in regular electric power production, for naval and space propulsion systems or in fission surface power systems for planetary exploration. The coupling between the electromagnetics and thermo-fluid mechanical phenomena observed in liquid metal thermo-magnetic systems for nuclear and space applications gives rise to complex engineering magnetohydrodynamics and numerical problems. It is known that electromagnetic pumps have a number of advantages over rotating mechanisms: absence of moving parts, low noise and vibration level, simplicity of flowmore » rate regulation, easy maintenance and so on. However, while developing annular linear induction pumps, we are faced with a significant problem of magnetohydrodynamic instability arising in the device. The complex flow behavior in this type of devices includes a time-varying Lorentz force and pressure pulsation due to the time-varying electromagnetic fields and the induced convective currents that originates from the liquid metal flow, leading to instability problems along the device geometry. The determinations of the geometry and electrical configuration of liquid metal thermo-magnetic devices give rise to a complex inverse magnetohydrodynamic field problem were techniques for global optimization should be used, magnetohydrodynamics instabilities understood –or quantified- and multiphysics models developed and analyzed. Lastly, we present a project overview as well as a few computational models developed to study liquid metal annular linear induction pumps using first principles and the a few results of our multi-physics analysis.« less

  20. A parallel offline CFD and closed-form approximation strategy for computationally efficient analysis of complex fluid flows

    NASA Astrophysics Data System (ADS)

    Allphin, Devin

    Computational fluid dynamics (CFD) solution approximations for complex fluid flow problems have become a common and powerful engineering analysis technique. These tools, though qualitatively useful, remain limited in practice by their underlying inverse relationship between simulation accuracy and overall computational expense. While a great volume of research has focused on remedying these issues inherent to CFD, one traditionally overlooked area of resource reduction for engineering analysis concerns the basic definition and determination of functional relationships for the studied fluid flow variables. This artificial relationship-building technique, called meta-modeling or surrogate/offline approximation, uses design of experiments (DOE) theory to efficiently approximate non-physical coupling between the variables of interest in a fluid flow analysis problem. By mathematically approximating these variables, DOE methods can effectively reduce the required quantity of CFD simulations, freeing computational resources for other analytical focuses. An idealized interpretation of a fluid flow problem can also be employed to create suitably accurate approximations of fluid flow variables for the purposes of engineering analysis. When used in parallel with a meta-modeling approximation, a closed-form approximation can provide useful feedback concerning proper construction, suitability, or even necessity of an offline approximation tool. It also provides a short-circuit pathway for further reducing the overall computational demands of a fluid flow analysis, again freeing resources for otherwise unsuitable resource expenditures. To validate these inferences, a design optimization problem was presented requiring the inexpensive estimation of aerodynamic forces applied to a valve operating on a simulated piston-cylinder heat engine. The determination of these forces was to be found using parallel surrogate and exact approximation methods, thus evidencing the comparative benefits of this technique. For the offline approximation, latin hypercube sampling (LHS) was used for design space filling across four (4) independent design variable degrees of freedom (DOF). Flow solutions at the mapped test sites were converged using STAR-CCM+ with aerodynamic forces from the CFD models then functionally approximated using Kriging interpolation. For the closed-form approximation, the problem was interpreted as an ideal 2-D converging-diverging (C-D) nozzle, where aerodynamic forces were directly mapped by application of the Euler equation solutions for isentropic compression/expansion. A cost-weighting procedure was finally established for creating model-selective discretionary logic, with a synthesized parallel simulation resource summary provided.

  1. Robust Distribution Network Reconfiguration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Changhyeok; Liu, Cong; Mehrotra, Sanjay

    2015-03-01

    We propose a two-stage robust optimization model for the distribution network reconfiguration problem with load uncertainty. The first-stage decision is to configure the radial distribution network and the second-stage decision is to find the optimal a/c power flow of the reconfigured network for given demand realization. We solve the two-stage robust model by using a column-and-constraint generation algorithm, where the master problem and subproblem are formulated as mixed-integer second-order cone programs. Computational results for 16, 33, 70, and 94-bus test cases are reported. We find that the configuration from the robust model does not compromise much the power loss undermore » the nominal load scenario compared to the configuration from the deterministic model, yet it provides the reliability of the distribution system for all scenarios in the uncertainty set.« less

  2. Optimal Regulation of Virtual Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dall Anese, Emiliano; Guggilam, Swaroop S.; Simonetto, Andrea

    This paper develops a real-time algorithmic framework for aggregations of distributed energy resources (DERs) in distribution networks to provide regulation services in response to transmission-level requests. Leveraging online primal-dual-type methods for time-varying optimization problems and suitable linearizations of the nonlinear AC power-flow equations, we believe this work establishes the system-theoretic foundation to realize the vision of distribution-level virtual power plants. The optimization framework controls the output powers of dispatchable DERs such that, in aggregate, they respond to automatic-generation-control and/or regulation-services commands. This is achieved while concurrently regulating voltages within the feeder and maximizing customers' and utility's performance objectives. Convergence andmore » tracking capabilities are analytically established under suitable modeling assumptions. Simulations are provided to validate the proposed approach.« less

  3. Coalescence of Drops of a Power-law Fluid

    NASA Astrophysics Data System (ADS)

    Kamat, Pritish; Thete, Sumeet; Basaran, Osman

    2014-11-01

    Drop coalescence is crucial in a host of industrial, household, and natural processes that involve dispersions. Coalescence is a rate-controlling process in breaking emulsions and strongly influences drop-size-distributions in sprays. In a continuum approach, coalescence begins by the formation of a microscopic, non-slender bridge connecting the two drops. Indefinitely large axial curvature at the neck results in local lowering of pressure that drives fluid from the bulk of the drops toward the neck, thereby causing the bridge radius r (t) and height z (t) to increase in time t. The coalescence of Newtonian drops in air has heretofore been thoroughly studied. Here, we extend these earlier studies by analyzing the coalescence of drops of power-law fluids because many fluids encountered in real applications, including cosmetic creams, shampoos, grease, and paint, exhibit power-law (deformation-rate thinning) rheology. On account of the non-slender geometry of the liquid bridge connecting the two drops (z << r) , we analyze the resulting free surface flow problem by numerical simulation. Among other results, we present and discuss the nature of flows and scaling behaviors for r and z as functions of the initial viscosity and power-law index (0 < n <= 1) .

  4. Application of computational aero-acoustics to real world problems

    NASA Technical Reports Server (NTRS)

    Hardin, Jay C.

    1996-01-01

    The application of computational aeroacoustics (CAA) to real problems is discussed in relation to the analysis performed with the aim of assessing the application of the various techniques. It is considered that the applications are limited by the inability of the computational resources to resolve the large range of scales involved in high Reynolds number flows. Possible simplifications are discussed. It is considered that problems remain to be solved in relation to the efficient use of the power of parallel computers and in the development of turbulent modeling schemes. The goal of CAA is stated as being the implementation of acoustic design studies on a computer terminal with reasonable run times.

  5. PEBBLE: a two-dimensional steady-state pebble bed reactor thermal hydraulics code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vondy, D.R.

    1981-09-01

    This report documents the local implementation of the PEBBLE code to treat the two-dimensional steady-state pebble bed reactor thermal hydraulics problem. This code is implemented as a module of a computation system used for reactor core history calculations. Given power density data, the geometric description in (RZ), and basic heat removal conditions and thermal properties, the coolant properties, flow conditions, and temperature distributions in the pebble fuel elements are predicted. The calculation is oriented to the continuous fueling, steady state condition with consideration of the effect of the high energy neutron flux exposure and temperature history on the thermal conductivity.more » The coolant flow conditions are calculated for the same geometry as used in the neutronics calculation, power density and fluence data being used directly, and temperature results are made available for subsequent use.« less

  6. Preliminary design of an auxiliary power unit for the space shuttle. Volume 3: Details of system analysis, engineering, and design for selected system

    NASA Technical Reports Server (NTRS)

    Hamilton, M. L.; Burriss, W. L.

    1972-01-01

    Numerous candidate APU concepts, each meeting the space shuttle APU problem statement are considered. Evaluation of these concepts indicates that the optimum concept is a hydrogen-oxygen APU incorporating a recuperator to utilize the exhaust energy and using the cycle hydrogen flow as a means of cooling the component heat loads.

  7. Ensemble modeling of stochastic unsteady open-channel flow in terms of its time-space evolutionary probability distribution - Part 2: numerical application

    NASA Astrophysics Data System (ADS)

    Dib, Alain; Kavvas, M. Levent

    2018-03-01

    The characteristic form of the Saint-Venant equations is solved in a stochastic setting by using a newly proposed Fokker-Planck Equation (FPE) methodology. This methodology computes the ensemble behavior and variability of the unsteady flow in open channels by directly solving for the flow variables' time-space evolutionary probability distribution. The new methodology is tested on a stochastic unsteady open-channel flow problem, with an uncertainty arising from the channel's roughness coefficient. The computed statistical descriptions of the flow variables are compared to the results obtained through Monte Carlo (MC) simulations in order to evaluate the performance of the FPE methodology. The comparisons show that the proposed methodology can adequately predict the results of the considered stochastic flow problem, including the ensemble averages, variances, and probability density functions in time and space. Unlike the large number of simulations performed by the MC approach, only one simulation is required by the FPE methodology. Moreover, the total computational time of the FPE methodology is smaller than that of the MC approach, which could prove to be a particularly crucial advantage in systems with a large number of uncertain parameters. As such, the results obtained in this study indicate that the proposed FPE methodology is a powerful and time-efficient approach for predicting the ensemble average and variance behavior, in both space and time, for an open-channel flow process under an uncertain roughness coefficient.

  8. Transient well flow in layered aquifer systems: the uniform well-face drawdown solution

    NASA Astrophysics Data System (ADS)

    Hemker, C. J.

    1999-11-01

    Previously a hybrid analytical-numerical solution for the general problem of computing transient well flow in vertically heterogeneous aquifers was proposed by the author. The radial component of flow was treated analytically, while the finite-difference technique was used for the vertical flow component only. In the present work the hybrid solution has been modified by replacing the previously assumed uniform well-face gradient (UWG) boundary condition in such a way that the drawdown remains uniform along the well screen. The resulting uniform well-face drawdown (UWD) solution also includes the effects of a finite diameter well, wellbore storage and a thin skin, while partial penetration and vertical heterogeneity are accommodated by the one-dimensional discretization. Solutions are proposed for well flow caused by constant, variable and slug discharges. The model was verified by comparing wellbore drawdowns and well-face flux distributions with published numerical solutions. Differences between UWG and UWD well flow will occur in all situations with vertical flow components near the well, which is demonstrated by considering: (1) partially penetrating wells in confined aquifers, (2) fully penetrating wells in unconfined aquifers with delayed response and (3) layered aquifers and leaky multiaquifer systems. The presented solution can be a powerful tool for solving many well-hydraulic problems, including well tests, flowmeter tests, slug tests and pumping tests. A computer program for the analysis of pumping tests, based on the hybrid analytical-numerical technique and UWG or UWD conditions, is available from the author.

  9. Multi-Temporal Decomposed Wind and Load Power Models for Electric Energy Systems

    NASA Astrophysics Data System (ADS)

    Abdel-Karim, Noha

    This thesis is motivated by the recognition that sources of uncertainties in electric power systems are multifold and may have potentially far-reaching effects. In the past, only system load forecast was considered to be the main challenge. More recently, however, the uncertain price of electricity and hard-to-predict power produced by renewable resources, such as wind and solar, are making the operating and planning environment much more challenging. The near-real-time power imbalances are compensated by means of frequency regulation and generally require fast-responding costly resources. Because of this, a more accurate forecast and look-ahead scheduling would result in a reduced need for expensive power balancing. Similarly, long-term planning and seasonal maintenance need to take into account long-term demand forecast as well as how the short-term generation scheduling is done. The better the demand forecast, the more efficient planning will be as well. Moreover, computer algorithms for scheduling and planning are essential in helping the system operators decide what to schedule and planners what to build. This is needed given the overall complexity created by different abilities to adjust the power output of generation technologies, demand uncertainties and by the network delivery constraints. Given the growing presence of major uncertainties, it is likely that the main control applications will use more probabilistic approaches. Today's predominantly deterministic methods will be replaced by methods which account for key uncertainties as decisions are made. It is well-understood that although demand and wind power cannot be predicted at very high accuracy, taking into consideration predictions and scheduling in a look-ahead way over several time horizons generally results in more efficient and reliable utilization, than when decisions are made assuming deterministic, often worst-case scenarios. This change is in approach is going to ultimately require new electricity market rules capable of providing the right incentives to manage uncertainties and of differentiating various technologies according to the rate at which they can respond to ever changing conditions. Given the overall need for modeling uncertainties in electric energy systems, we consider in this thesis the problem of multi-temporal modeling of wind and demand power, in particular. Historic data is used to derive prediction models for several future time horizons. Short-term prediction models derived can be used for look-ahead economic dispatch and unit commitment, while the long-term annual predictive models can be used for investment planning. As expected, the accuracy of such predictive models depends on the time horizons over which the predictions are made, as well as on the nature of uncertain signals. It is shown that predictive models obtained using the same general modeling approaches result in different accuracy for wind than for demand power. In what follows, we introduce several models which have qualitatively different patterns, ranging from hourly to annual. We first transform historic time-stamped data into the Fourier Transform (Fr) representation. The frequency domain data representation is used to decompose the wind and load power signals and to derive predictive models relevant for short-term and long-term predictions using extracted spectral techniques. The short-term results are interpreted next as a Linear Prediction Coding Model (LPC) and its accuracy is analyzed. Next, a new Markov-Based Sensitivity Model (MBSM) for short term prediction has been proposed and the dispatched costs of uncertainties for different predictive models with comparisons have been developed. Moreover, the Discrete Markov Process (DMP) representation is applied to help assess probabilities of most likely short-, medium- and long-term states and the related multi-temporal risks. In addition, this thesis discusses operational impacts of wind power integration in different scenario levels by performing more than 9,000 AC Optimal Power Flow runs. The effects of both wind and load variations on system constraints and costs are presented. The limitations of DC Optimal Power Flow (DCOPF) vs. ACOPF are emphasized by means of system convergence problems due to the effect of wind power on changing line flows and net power injections. By studying the effect of having wind power on line flows, we found that the divergence problem applies in areas with high wind and hydro generation capacity share (cheap generations). (Abstract shortened by UMI.).

  10. Two-phase flows in the formed tornado funnel

    NASA Astrophysics Data System (ADS)

    Sinkevich, O. A.; Bortsova, A. A.

    2017-10-01

    At present, it is obvious that the problem of the tornado is important not only for our planetЮ to determine the conditions for the formation of a tornado, it is required to take into account a number of hydrodynamic and plasma processes [1 - 6]. Along to prediction of a tornado generation conditions [1 - 3] it is necessary to evaluate the characteristics of its quasi-stationary motion in a formed funnel: the mass of the moving moist air involved in the funnel and the size and form of the funnel. For a complete description of the phenomena, it is necessary to involve numerical calculations. We note that even for numerical calculations using powerful computers, the problem is very difficult because of the need to calculate multiphase turbulent flows with free, self-organizing boundaries [1, 6]. However, “strict” numerical calculations, it is impossible to do without the use of many, often mutually exclusive, models. For example, how to choice an adequate model of turbulence (algebraic, k-ε model, etc.) or the use of additional, often not accepted, hypotheses about certain processes used in calculations (mechanisms on the nature of moisture condensation, etc.). Therefore, along with numerical calculations of such flows, modeling problems that allow an exact solution and allow to determine the most important and observed characteristics of a tornado.

  11. The creation of high-temperature superconducting cables of megawatt range in Russia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sytnikov, V. E., E-mail: vsytnikov@gmail.com; Bemert, S. E.; Krivetsky, I. V.

    Urgent problems of the power industry in the 21st century require the creation of smart energy systems, providing a high effectiveness of generation, transmission, and consumption of electric power. Simultaneously, the requirements for controllability of power systems and ecological and resource-saving characteristics at all stages of production and distribution of electric power are increased. One of the decision methods of many problems of the power industry is the development of new high-efficiency electrical equipment for smart power systems based on superconducting technologies to ensure a qualitatively new level of functioning of the electric power industry. The intensive research and developmentmore » of new types of electrical devices based on superconductors are being carried out in many industrialized advanced countries. Interest in such developments has especially increased in recent years owing to the discovery of so-called high-temperature superconductors (HTS) that do not require complicated and expensive cooling devices. Such devices can operate at cooling by inexpensive and easily accessible liquid nitrogen. Taking into account the obvious advantages of superconducting cable lines for the transmission of large power flows through an electrical network, as compared with conventional cables, the Federal Grid Company of Unified Energy System (JSC FGC UES) initiated a research and development program including the creation of superconducting HTS AC and DC cable lines. Two cable lines for the transmitted power of 50 MVA/MW at 20 kV were manufactured and tested within the framework of the program.« less

  12. The creation of high-temperature superconducting cables of megawatt range in Russia

    NASA Astrophysics Data System (ADS)

    Sytnikov, V. E.; Bemert, S. E.; Krivetsky, I. V.; Romashov, M. A.; Popov, D. A.; Fedotov, E. V.; Komandenko, O. V.

    2015-12-01

    Urgent problems of the power industry in the 21st century require the creation of smart energy systems, providing a high effectiveness of generation, transmission, and consumption of electric power. Simultaneously, the requirements for controllability of power systems and ecological and resource-saving characteristics at all stages of production and distribution of electric power are increased. One of the decision methods of many problems of the power industry is the development of new high-efficiency electrical equipment for smart power systems based on superconducting technologies to ensure a qualitatively new level of functioning of the electric power industry. The intensive research and development of new types of electrical devices based on superconductors are being carried out in many industrialized advanced countries. Interest in such developments has especially increased in recent years owing to the discovery of so-called high-temperature superconductors (HTS) that do not require complicated and expensive cooling devices. Such devices can operate at cooling by inexpensive and easily accessible liquid nitrogen. Taking into account the obvious advantages of superconducting cable lines for the transmission of large power flows through an electrical network, as compared with conventional cables, the Federal Grid Company of Unified Energy System (JSC FGC UES) initiated a research and development program including the creation of superconducting HTS AC and DC cable lines. Two cable lines for the transmitted power of 50 MVA/MW at 20 kV were manufactured and tested within the framework of the program.

  13. A photogrammetric technique for generation of an accurate multispectral optical flow dataset

    NASA Astrophysics Data System (ADS)

    Kniaz, V. V.

    2017-06-01

    A presence of an accurate dataset is the key requirement for a successful development of an optical flow estimation algorithm. A large number of freely available optical flow datasets were developed in recent years and gave rise for many powerful algorithms. However most of the datasets include only images captured in the visible spectrum. This paper is focused on the creation of a multispectral optical flow dataset with an accurate ground truth. The generation of an accurate ground truth optical flow is a rather complex problem, as no device for error-free optical flow measurement was developed to date. Existing methods for ground truth optical flow estimation are based on hidden textures, 3D modelling or laser scanning. Such techniques are either work only with a synthetic optical flow or provide a sparse ground truth optical flow. In this paper a new photogrammetric method for generation of an accurate ground truth optical flow is proposed. The method combines the benefits of the accuracy and density of a synthetic optical flow datasets with the flexibility of laser scanning based techniques. A multispectral dataset including various image sequences was generated using the developed method. The dataset is freely available on the accompanying web site.

  14. Environmental Problems Associated With Decommissioning The Chernobyl Nuclear Power Plant Cooling Pond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farfan, E. B.; Jannik, G. T.; Marra, J. C.

    2009-11-09

    Decommissioning of nuclear power plants and other nuclear fuel cycle facilities has been an imperative issue lately. There exist significant experience and generally accepted recommendations on remediation of lands with residual radioactive contamination; however, there are hardly any such recommendations on remediation of cooling ponds that, in most cases, are fairly large water reservoirs. The literature only describes remediation of minor reservoirs containing radioactive silt (a complete closure followed by preservation) or small water reservoirs resulting in reestablishing natural water flows. Problems associated with remediation of river reservoirs resulting in flooding of vast agricultural areas also have been described. Inmore » addition, the severity of environmental and economic problems related to the remedial activities is shown to exceed any potential benefits of these activities. One of the large, highly contaminated water reservoirs that require either remediation or closure is Karachay Lake near the MAYAK Production Association in the Chelyabinsk Region of Russia where liquid radioactive waste had been deep well injected for a long period of time. Backfilling of Karachay Lake is currently in progress. It should be noted that secondary environmental problems associated with its closure are considered to be of less importance since sustaining Karachay Lake would have presented a much higher radiological risk. Another well-known highly contaminated water reservoir is the Chernobyl Nuclear Power Plant (ChNPP) Cooling Pond, decommissioning of which is planned for the near future. This study summarizes the environmental problems associated with the ChNPP Cooling Pond decommissioning.« less

  15. ENVIRONMENTAL PROBLEMS ASSOCIATED WITH DECOMMISSIONING THE CHERNOBYL NUCLEAR POWER PLANT COOLING POND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farfan, E.

    2009-09-30

    Decommissioning of nuclear power plants and other nuclear fuel cycle facilities has been an imperative issue lately. There exist significant experience and generally accepted recommendations on remediation of lands with residual radioactive contamination; however, there are hardly any such recommendations on remediation of cooling ponds that, in most cases, are fairly large water reservoirs. The literature only describes remediation of minor reservoirs containing radioactive silt (a complete closure followed by preservation) or small water reservoirs resulting in reestablishing natural water flows. Problems associated with remediation of river reservoirs resulting in flooding of vast agricultural areas also have been described. Inmore » addition, the severity of environmental and economic problems related to the remedial activities is shown to exceed any potential benefits of these activities. One of the large, highly contaminated water reservoirs that require either remediation or closure is Karachay Lake near the MAYAK Production Association in the Chelyabinsk Region of Russia where liquid radioactive waste had been deep well injected for a long period of time. Backfilling of Karachay Lake is currently in progress. It should be noted that secondary environmental problems associated with its closure are considered to be of less importance since sustaining Karachay Lake would have presented a much higher radiological risk. Another well-known highly contaminated water reservoir is the Chernobyl Nuclear Power Plant (ChNPP) Cooling Pond, decommissioning of which is planned for the near future. This study summarizes the environmental problems associated with the ChNPP Cooling Pond decommissioning.« less

  16. Corrective Control to Handle Forecast Uncertainty: A Chance Constrained Optimal Power Flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roald, Line; Misra, Sidhant; Krause, Thilo

    Higher shares of electricity generation from renewable energy sources and market liberalization is increasing uncertainty in power systems operation. At the same time, operation is becoming more flexible with improved control systems and new technology such as phase shifting transformers (PSTs) and high voltage direct current connections (HVDC). Previous studies have shown that the use of corrective control in response to outages contributes to a reduction in operating cost, while maintaining N-1 security. In this work, we propose a method to extend the use of corrective control of PSTs and HVDCs to react to uncertainty. We characterize the uncertainty asmore » continuous random variables, and define the corrective control actions through affine control policies. This allows us to efficiently model control reactions to a large number of uncertainty sources. The control policies are then included in a chance constrained optimal power flow formulation, which guarantees that the system constraints are enforced with a desired probability. Lastly, by applying an analytical reformulation of the chance constraints, we obtain a second-order cone problem for which we develop an efficient solution algorithm. In a case study for the IEEE 118 bus system, we show that corrective control for uncertainty leads to a decrease in operational cost, while maintaining system security. Further, we demonstrate the scalability of the method by solving the problem for the IEEE 300 bus and the Polish system test cases.« less

  17. Corrective Control to Handle Forecast Uncertainty: A Chance Constrained Optimal Power Flow

    DOE PAGES

    Roald, Line; Misra, Sidhant; Krause, Thilo; ...

    2016-08-25

    Higher shares of electricity generation from renewable energy sources and market liberalization is increasing uncertainty in power systems operation. At the same time, operation is becoming more flexible with improved control systems and new technology such as phase shifting transformers (PSTs) and high voltage direct current connections (HVDC). Previous studies have shown that the use of corrective control in response to outages contributes to a reduction in operating cost, while maintaining N-1 security. In this work, we propose a method to extend the use of corrective control of PSTs and HVDCs to react to uncertainty. We characterize the uncertainty asmore » continuous random variables, and define the corrective control actions through affine control policies. This allows us to efficiently model control reactions to a large number of uncertainty sources. The control policies are then included in a chance constrained optimal power flow formulation, which guarantees that the system constraints are enforced with a desired probability. Lastly, by applying an analytical reformulation of the chance constraints, we obtain a second-order cone problem for which we develop an efficient solution algorithm. In a case study for the IEEE 118 bus system, we show that corrective control for uncertainty leads to a decrease in operational cost, while maintaining system security. Further, we demonstrate the scalability of the method by solving the problem for the IEEE 300 bus and the Polish system test cases.« less

  18. An experimental investigation of an advanced turboprop installation on a swept wing at subsonic and transonic speeds

    NASA Technical Reports Server (NTRS)

    Carlson, John R.; Pendergraft, Odis C., Jr.

    1987-01-01

    An investigation was conducted in the Langley 16-Foot Transonic Tunnel to determine the effects of a turboprop-nacelle installation on the pressure distributions over a swept, supercritical wing. The tests were conducted at Mach numbers from 0.20 to 0.80, at angles of attack from 0 to 5 degrees, nacelle nozzle pressure ratios from 1.0 to 1.6, and at propeller tip speeds from 700 to 800 ft/sec. The results of this study indicate that the turboprop nacelle interference, with and without power, on a swept wing is greater on the inboard wing panel than on the outboard wing panel. The over-the-wing nacelle installation with the propeller upwash on the inboard panel had flow separation problems at a Mach number of 0.80. No severe flow separation problems appear to exist for either propeller rotation direction for the under-the-wing nacelle installation. The local flow disturbances caused by the under-the-wing nacelle installation were in general less severe than for the over-the-wing nacelle installation.

  19. Turbulence as a Problem in Non-equilibrium Statistical Mechanics

    NASA Astrophysics Data System (ADS)

    Goldenfeld, Nigel; Shih, Hong-Yan

    2017-05-01

    The transitional and well-developed regimes of turbulent shear flows exhibit a variety of remarkable scaling laws that are only now beginning to be systematically studied and understood. In the first part of this article, we summarize recent progress in understanding the friction factor of turbulent flows in rough pipes and quasi-two-dimensional soap films, showing how the data obey a two-parameter scaling law known as roughness-induced criticality, and exhibit power-law scaling of friction factor with Reynolds number that depends on the precise form of the nature of the turbulent cascade. These results hint at a non-equilibrium fluctuation-dissipation relation that applies to turbulent flows. The second part of this article concerns the lifetime statistics in smooth pipes around the transition, showing how the remarkable super-exponential scaling with Reynolds number reflects deep connections between large deviation theory, extreme value statistics, directed percolation and the onset of coexistence in predator-prey ecosystems. Both these phenomena reflect the way in which turbulence can be fruitfully approached as a problem in non-equilibrium statistical mechanics.

  20. Autonomous solutions for powering wireless sensor nodes in rivers

    NASA Astrophysics Data System (ADS)

    Kamenar, E.; Maćešić, S.; Gregov, G.; Blažević, D.; Zelenika, S.; Marković, K.; Glažar, V.

    2015-05-01

    There is an evident need for monitoring pollutants and/or other conditions in river flows via wireless sensor networks. In a typical wireless sensor network topography, a series of sensor nodes is to be deployed in the environment, all wirelessly connected to each other and/or their gateways. Each sensor node is composed of active electronic devices that have to be constantly powered. In general, batteries can be used for this purpose, but problems may occur when they have to be replaced. In the case of large networks, when sensor nodes can be placed in hardly accessible locations, energy harvesting can thus be a viable powering solution. The possibility to use three different small-scale river flow energy harvesting principles is hence thoroughly studied in this work: a miniaturized underwater turbine, a so-called `piezoelectric eel' and a hybrid turbine solution coupled with a rigid piezoelectric beam. The first two concepts are then validated experimentally in laboratory as well as in real river conditions. The concept of the miniaturised hydro-generator is finally embedded into the actual wireless sensor node system and its functionality is confirmed.

  1. Turbulence effects on a full-scale 2.5 MW horizontal axis wind turbine

    NASA Astrophysics Data System (ADS)

    Chamorro, Leonardo; Lee, Seung-Jae; Olsen, David; Milliren, Chris; Marr, Jeff; Arndt, Roger; Sotiropoulos, Fotis

    2012-11-01

    Power fluctuations and fatigue loads are among the most significant problems that wind turbines face throughout their lifetime. Turbulence is the common driving mechanism that triggers instabilities on these quantities. We investigate the complex response of a full-scale 2.5 MW wind turbine under nearly neutral thermal stratification. The study is performed in the EOLOS Wind Energy Research Field Station of the University of Minnesota. An instrumented 130 meter meteorological tower located upstream of a Clipper Liberty C96 wind turbine is used to characterize the turbulent flow and atmospheric conditions right upstream of the wind turbine. High resolution and synchronous measurements of the wind velocity, turbine power and strain at the tower foundation are used to determine the scale-to-scale interaction between flow and the wind turbine. The structure of the fluctuating turbine power and instantaneous stresses are studied in detail. Important insights about the role of turbulent and coherent motions as well as strong intermittent gusts will be discussed. Funding was provided by Department of Energy DOE (DE-EE0002980) and Xcel Energy through the Renewable Development Fund (grant RD3-42).

  2. Parametric and experimental analysis using a power flow approach

    NASA Technical Reports Server (NTRS)

    Cuschieri, J. M.

    1990-01-01

    A structural power flow approach for the analysis of structure-borne transmission of vibrations is used to analyze the influence of structural parameters on transmitted power. The parametric analysis is also performed using the Statistical Energy Analysis approach and the results are compared with those obtained using the power flow approach. The advantages of structural power flow analysis are demonstrated by comparing the type of results that are obtained by the two analytical methods. Also, to demonstrate that the power flow results represent a direct physical parameter that can be measured on a typical structure, an experimental study of structural power flow is presented. This experimental study presents results for an L shaped beam for which an available solution was already obtained. Various methods to measure vibrational power flow are compared to study their advantages and disadvantages.

  3. Short paths in expander graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kleinberg, J.; Rubinfeld, R.

    Graph expansion has proved to be a powerful general tool for analyzing the behavior of routing algorithms and the interconnection networks on which they run. We develop new routing algorithms and structural results for bounded-degree expander graphs. Our results are unified by the fact that they are all based upon, and extend, a body of work asserting that expanders are rich in short, disjoint paths. In particular, our work has consequences for the disjoint paths problem, multicommodify flow, and graph minor containment. We show: (i) A greedy algorithm for approximating the maximum disjoint paths problem achieves a polylogarithmic approximation ratiomore » in bounded-degree expanders. Although our algorithm is both deterministic and on-line, its performance guarantee is an improvement over previous bounds in expanders. (ii) For a multicommodily flow problem with arbitrary demands on a bounded-degree expander, there is a (1 + {epsilon})-optimal solution using only flow paths of polylogarithmic length. It follows that the multicommodity flow algorithm of Awerbuch and Leighton runs in nearly linear time per commodity in expanders. Our analysis is based on establishing the following: given edge weights on an expander G, one can increase some of the weights very slightly so the resulting shortest-path metric is smooth - the min-weight path between any pair of nodes uses a polylogarithmic number of edges. (iii) Every bounded-degree expander on n nodes contains every graph with O(n/log{sup O(1)} n) nodes and edges as a minor.« less

  4. Adjoint optimization of natural convection problems: differentially heated cavity

    NASA Astrophysics Data System (ADS)

    Saglietti, Clio; Schlatter, Philipp; Monokrousos, Antonios; Henningson, Dan S.

    2017-12-01

    Optimization of natural convection-driven flows may provide significant improvements to the performance of cooling devices, but a theoretical investigation of such flows has been rarely done. The present paper illustrates an efficient gradient-based optimization method for analyzing such systems. We consider numerically the natural convection-driven flow in a differentially heated cavity with three Prandtl numbers (Pr=0.15{-}7) at super-critical conditions. All results and implementations were done with the spectral element code Nek5000. The flow is analyzed using linear direct and adjoint computations about a nonlinear base flow, extracting in particular optimal initial conditions using power iteration and the solution of the full adjoint direct eigenproblem. The cost function for both temperature and velocity is based on the kinetic energy and the concept of entransy, which yields a quadratic functional. Results are presented as a function of Prandtl number, time horizons and weights between kinetic energy and entransy. In particular, it is shown that the maximum transient growth is achieved at time horizons on the order of 5 time units for all cases, whereas for larger time horizons the adjoint mode is recovered as optimal initial condition. For smaller time horizons, the influence of the weights leads either to a concentric temperature distribution or to an initial condition pattern that opposes the mean shear and grows according to the Orr mechanism. For specific cases, it could also been shown that the computation of optimal initial conditions leads to a degenerate problem, with a potential loss of symmetry. In these situations, it turns out that any initial condition lying in a specific span of the eigenfunctions will yield exactly the same transient amplification. As a consequence, the power iteration converges very slowly and fails to extract all possible optimal initial conditions. According to the authors' knowledge, this behavior is illustrated here for the first time.

  5. 76 FR 20971 - Free Flow Power Corporation; Notice of Intent To File License Application, Filing of Pre...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-14

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. P-13346-001] Free Flow...: February 18, 2011. d. Submitted By: Free Flow Power Corporation (Free Flow Power), on behalf of its... Officer, Free Flow Power Corporation, 239 Causeway Street, Boston, MA 02114-2130; or at (978) 283-2822. i...

  6. Numerical Simulation of Fluidic Actuators for Flow Control Applications

    NASA Technical Reports Server (NTRS)

    Vasta, Veer N.; Koklu, Mehti; Wygnanski, Israel L.; Fares, Ehab

    2012-01-01

    Active flow control technology is finding increasing use in aerospace applications to control flow separation and improve aerodynamic performance. In this paper we examine the characteristics of a class of fluidic actuators that are being considered for active flow control applications for a variety of practical problems. Based on recent experimental work, such actuators have been found to be more efficient for controlling flow separation in terms of mass flow requirements compared to constant blowing and suction or even synthetic jet actuators. The fluidic actuators produce spanwise oscillating jets, and therefore are also known as sweeping jets. The frequency and spanwise sweeping extent depend on the geometric parameters and mass flow rate entering the actuators through the inlet section. The flow physics associated with these actuators is quite complex and not fully understood at this time. The unsteady flow generated by such actuators is simulated using the lattice Boltzmann based solver PowerFLOW R . Computed mean and standard deviation of velocity profiles generated by a family of fluidic actuators in quiescent air are compared with experimental data. Simulated results replicate the experimentally observed trends with parametric variation of geometry and inflow conditions.

  7. Influence of Dissipation on Heat Transfer During Flow of a Non-Newtonian Fluid in a Porous Channel

    NASA Astrophysics Data System (ADS)

    Baranov, A. V.; Yunitskii, S. A.

    2017-07-01

    A study is made of flow and heat transfer during the motion of a non-Newtonian (power-law) fluid in a plane channel filled with porous material. The Brinkman equation is used as the equation of state, and a one-temperature model, in representing the energy equation. Account us taken of dissipative heat releases. The problem is solved for temperature boundary conditions of the first kind. The authors show the influence of dissipation on the development of the temperature profile, and also on the distributions of the local Nusselt number and the mass-mean temperature along the channel.

  8. A parameter identification method for the rotordynamic coefficients of a high Reynolds number hydrostatic bearing

    NASA Technical Reports Server (NTRS)

    Rouvas, C.; Childs, D. W.

    1993-01-01

    In identifying the rotordynamic coefficients of a high-Reynolds-number hydrostatic bearing, fluid-flow induced forces present a unique problem, in that they provide an unmeasureable and uncontrollable excitation to the bearing. An analysis method is developed that effectively eliminates the effects of fluid-flow induced excitation on the estimation of the bearing rotordynamic coefficients, by using power spectral densities. In addition to the theoretical development, the method is verified experimentally by single-frequency testing, and repeatability tests. Results obtained for a bearing are the twelve rotordynamic coefficients (stiffness, damping, and inertia coefficients) as functions of eccentricity ratio, speed, and supply pressure.

  9. Thermofluid Modeling of Fuel Cells

    NASA Astrophysics Data System (ADS)

    Young, John B.

    2007-01-01

    Fuel cells offer the prospect of silent electrical power generation at high efficiency with near-zero pollutant emission. Many materials and fabrication problems have now been solved and attention has shifted toward system modeling, including the fluid flows that supply the cells with hydrogen and oxygen. This review describes the current thermofluid modeling capabilities for proton exchange membrane fuel cells (PEMFCs) and solid oxide fuel cells (SOFCs), the most promising candidates for commercial exploitation. Topics covered include basic operating principles and stack design, convective-diffusive flow in porous solids, special modeling issues for PEMFCs and SOFCs, and the use of computational fluid dynamics (CFD) methods.

  10. Surface phenomena revealed by in situ imaging: studies from adhesion, wear and cutting

    NASA Astrophysics Data System (ADS)

    Viswanathan, Koushik; Mahato, Anirban; Yeung, Ho; Chandrasekar, Srinivasan

    2017-03-01

    Surface deformation and flow phenomena are ubiquitous in mechanical processes. In this work we present an in situ imaging framework for studying a range of surface mechanical phenomena at high spatial resolution and across a range of time scales. The in situ framework is capable of resolving deformation and flow fields quantitatively in terms of surface displacements, velocities, strains and strain rates. Three case studies are presented demonstrating the power of this framework for studying surface deformation. In the first, the origin of stick-slip motion in adhesive polymer interfaces is investigated, revealing a intimate link between stick-slip and surface wave propagation. Second, the role of flow in mediating formation of surface defects and wear particles in metals is analyzed using a prototypical sliding process. It is shown that conventional post-mortem observation and inference can lead to erroneous conclusions with regard to formation of surface cracks and wear particles. The in situ framework is shown to unambiguously capture delamination wear in sliding. Third, material flow and surface deformation in a typical cutting process is analyzed. It is shown that a long-standing problem in the cutting of annealed metals is resolved by the imaging, with other benefits such as estimation of energy dissipation and power from the flow fields. In closure, guidelines are provided for profitably exploiting in situ observations to study large-strain deformation, flow and friction phenomena at surfaces that display a variety of time-scales.

  11. Two-phase flows within systems with ambient pressure

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Braun, M. J.; Wheeler, R. L., III; Mullen, R. L.

    1985-01-01

    In systems where the design inlet and outlet pressures are maintained above the thermodynamic critical pressure, it is often assumed that two phase flows within the system cannot occur. Designers rely on this simple rule of thumb to circumvent problems associated with a highly compressible two phase flow occurring within the supercritical pressure system along with the uncertainties in rotordynamics, load capacity, heat transfer, fluid mechanics, and thermophysical property variations. The simple rule of thumb is adequate in many low power designs but is inadequate for high performance turbomachines and linear systems, where two phase regions can exist even though outlet pressure is greater than critical pressure. Rotordynamic-fluid-mechanic restoring forces depend on momentum differences, and those for a two phase zone can differ significantly from those for a single-phase zone. Using the Reynolds equation the angular velocity, eccentricity, geometry, and ambient conditions are varied to determine the point of two phase flow incipience.

  12. Parametric and experimental analysis using a power flow approach

    NASA Technical Reports Server (NTRS)

    Cuschieri, J. M.

    1988-01-01

    Having defined and developed a structural power flow approach for the analysis of structure-borne transmission of structural vibrations, the technique is used to perform an analysis of the influence of structural parameters on the transmitted energy. As a base for comparison, the parametric analysis is first performed using a Statistical Energy Analysis approach and the results compared with those obtained using the power flow approach. The advantages of using structural power flow are thus demonstrated by comparing the type of results obtained by the two methods. Additionally, to demonstrate the advantages of using the power flow method and to show that the power flow results represent a direct physical parameter that can be measured on a typical structure, an experimental investigation of structural power flow is also presented. Results are presented for an L-shaped beam for which an analytical solution has already been obtained. Furthermore, the various methods available to measure vibrational power flow are compared to investigate the advantages and disadvantages of each method.

  13. Transport on percolation clusters with power-law distributed bond strengths.

    PubMed

    Alava, Mikko; Moukarzel, Cristian F

    2003-05-01

    The simplest transport problem, namely finding the maximum flow of current, or maxflow, is investigated on critical percolation clusters in two and three dimensions, using a combination of extremal statistics arguments and exact numerical computations, for power-law distributed bond strengths of the type P(sigma) approximately sigma(-alpha). Assuming that only cutting bonds determine the flow, the maxflow critical exponent v is found to be v(alpha)=(d-1)nu+1/(1-alpha). This prediction is confirmed with excellent accuracy using large-scale numerical simulation in two and three dimensions. However, in the region of anomalous bond capacity distributions (0< or =alpha< or =1) we demonstrate that, due to cluster-structure fluctuations, it is not the cutting bonds but the blobs that set the transport properties of the backbone. This "blob dominance" avoids a crossover to a regime where structural details, the distribution of the number of red or cutting bonds, would set the scaling. The restored scaling exponents, however, still follow the simplistic red bond estimate. This is argued to be due to the existence of a hierarchy of so-called minimum cut configurations, for which cutting bonds form the lowest level, and whose transport properties scale all in the same way. We point out the relevance of our findings to other scalar transport problems (i.e., conductivity).

  14. Allocation and management issues in multiple-transaction open access transmission networks

    NASA Astrophysics Data System (ADS)

    Tao, Shu

    This thesis focuses on some key issues related to allocation and management by the independent grid operator (IGO) of unbundled services in multiple-transaction open access transmission networks. The three unbundled services addressed in the thesis are transmission real power losses, reactive power support requirements from generation sources, and transmission congestion management. We develop the general framework that explicitly represents multiple transactions undertaken simultaneously in the transmission grid. This framework serves as the basis for formulating various problems treated in the thesis. We use this comprehensive framework to develop a physical-flow-based mechanism to allocate the total transmission losses to each transaction using the system. An important property of the allocation scheme is its capability to effectively deal with counter flows that result in the presence of specific transactions. Using the loss allocation results as the basis, we construct the equivalent loss compensation concept and apply it to develop flexible and effective procedures for compensating losses in multiple-transaction networks. We present a new physical-flow-based mechanism for allocating the reactive power support requirements provided by generators in multiple-transaction networks. The allocatable reactive support requirements are formulated as the sum of two specific components---the voltage magnitude variation component and the voltage angle variation component. The formulation utilizes the multiple-transaction framework and makes use of certain simplifying approximations. The formulation leads to a natural allocation as a function of the amount of each transaction. The physical interpretation of each allocation as a sensitivity of the reactive output of a generator is discussed. We propose a congestion management allocation scheme for multiple-transaction networks. The proposed scheme determines the allocation of congestion among the transactions on a physical-flow basis. It also proposes a congestion relief scheme that removes the congestion attributed to each transaction on the network in a least-cost manner to the IGO and determines the appropriate transmission charges to each transaction for its transmission usage. The thesis provides a compendium of problems that are natural extensions of the research results reported here and appear to be good candidates for future work.

  15. Noise Radiation Of A Strongly Pulsating Tailpipe Exhaust

    NASA Astrophysics Data System (ADS)

    Peizi, Li; Genhua, Dai; Zhichi, Zhu

    1993-11-01

    The method of characteristics is used to solve the problem of the propagation of a strongly pulsating flow in an exhaust system tailpipe. For a strongly pulsating exhaust, the flow may shock at the pipe's open end at some point in a pulsating where the flow pressure exceeds its critical value. The method fails if one insists on setting the flow pressure equal to the atmospheric pressure as the pipe end boundary condition. To solve the problem, we set the Mach number equal to 1 as the boundary condition when the flow pressure exceeds its critical value. For a strongly pulsating flow, the fluctuations of flow variables may be much higher than their respective time averages. Therefore, the acoustic radiation method would fail in the computation of the noise radiation from the pipe's open end. We simulate the exhaust flow out of the open end as a simple sound source to compute the noise radiation, which has been successfully applied in reference [1]. The simple sound source strength is proportional to the volume acceleration of exhaust gas. Also computed is the noise radiation from the turbulence of the exhaust flow, as was done in reference [1]. Noise from a reciprocating valve simulator has been treated in detail. The radiation efficiency is very low for the pressure range considered and is about 10 -5. The radiation efficiency coefficient increases with the square of the frequency. Computation of the pipe length dependence of the noise radiation and mass flux allows us to design a suitable length for an aerodynamic noise generator or a reciprocating internal combustion engine. For the former, powerful noise radiation is preferable. For the latter, maximum mass flux is desired because a freer exhaust is preferable.

  16. 77 FR 3761 - Free Flow Power Corporation, Northland Power Mississippi River LLC; Notice Announcing Filing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-25

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 12817-002, Project No. 14083-000] Free Flow Power Corporation, Northland Power Mississippi River LLC; Notice Announcing Filing... priority is as follows: 1. Free Flow Power Corporation; Project No. 12817-002. 2. Northland Power...

  17. A simple depth-averaged model for dry granular flow

    NASA Astrophysics Data System (ADS)

    Hung, Chi-Yao; Stark, Colin P.; Capart, Herve

    Granular flow over an erodible bed is an important phenomenon in both industrial and geophysical settings. Here we develop a depth-averaged theory for dry erosive flows using balance equations for mass, momentum and (crucially) kinetic energy. We assume a linearized GDR-Midi rheology for granular deformation and Coulomb friction along the sidewalls. The theory predicts the kinematic behavior of channelized flows under a variety of conditions, which we test in two sets of experiments: (1) a linear chute, where abrupt changes in tilt drive unsteady uniform flows; (2) a rotating drum, to explore steady non-uniform flow. The theoretical predictions match the experimental results well in all cases, without the need to tune parameters or invoke an ad hoc equation for entrainment at the base of the flow. Here we focus on the drum problem. A dimensionless rotation rate (related to Froude number) characterizes flow geometry and accounts not just for spin rate, drum radius and gravity, but also for grain size, wall friction and channel width. By incorporating Coriolis force the theory can treat behavior under centrifuge-induced enhanced gravity. We identify asymptotic flow regimes at low and high dimensionless rotation rates that exhibit distinct power-law scaling behaviors.

  18. The Seepage Simulation of Single Hole and Composite Gas Drainage Based on LB Method

    NASA Astrophysics Data System (ADS)

    Chen, Yanhao; Zhong, Qiu; Gong, Zhenzhao

    2018-01-01

    Gas drainage is the most effective method to prevent and solve coal mine gas power disasters. It is very important to study the seepage flow law of gas in fissure coal gas. The LB method is a simplified computational model based on micro-scale, especially for the study of seepage problem. Based on fracture seepage mathematical model on the basis of single coal gas drainage, using the LB method during coal gas drainage of gas flow numerical simulation, this paper maps the single-hole drainage gas, symmetric slot and asymmetric slot, the different width of the slot combined drainage area gas flow under working condition of gas cloud of gas pressure, flow path diagram and flow velocity vector diagram, and analyses the influence on gas seepage field under various working conditions, and also discusses effective drainage method of the center hole slot on both sides, and preliminary exploration that is related to the combination of gas drainage has been carried on as well.

  19. Mechanical energy flow models of rods and beams

    NASA Technical Reports Server (NTRS)

    Wohlever, J. C.; Bernhard, R. J.

    1992-01-01

    It has been proposed that the flow of mechanical energy through a structural/acoustic system may be modeled in a manner similar to that of flow of thermal energy/in a heat conduction problem. If this hypothesis is true, it would result in relatively efficient numerical models of structure-borne energy in large built-up structures. Fewer parameters are required to approximate the energy solution than are required to model the characteristic wave behavior of structural vibration by using traditional displacement formulations. The energy flow hypothesis is tested in this investigation for both longitudinal vibration in rods and transverse flexural vibrations of beams. The rod is shown to behave approximately according to the thermal energy flow analogy. However, the beam solutions behave significantly differently than predicted by the thermal analogy unless locally-space-averaged energy and power are considered. Several techniques for coupling dissimilar rods and beams are also discussed. Illustrations of the solution accuracy of the methods are included.

  20. Analysis and Application of Microgrids

    NASA Astrophysics Data System (ADS)

    Yue, Lu

    New trends of generating electricity locally and utilizing non-conventional or renewable energy sources have attracted increasing interests due to the gradual depletion of conventional fossil fuel energy sources. The new type of power generation is called Distributed Generation (DG) and the energy sources utilized by Distributed Generation are termed Distributed Energy Sources (DERs). With DGs embedded in the distribution networks, they evolve from passive distribution networks to active distribution networks enabling bidirectional power flows in the networks. Further incorporating flexible and intelligent controllers and employing future technologies, active distribution networks will turn to a Microgrid. A Microgrid is a small-scale, low voltage Combined with Heat and Power (CHP) supply network designed to supply electrical and heat loads for a small community. To further implement Microgrids, a sophisticated Microgrid Management System must be integrated. However, due to the fact that a Microgrid has multiple DERs integrated and is likely to be deregulated, the ability to perform real-time OPF and economic dispatch with fast speed advanced communication network is necessary. In this thesis, first, problems such as, power system modelling, power flow solving and power system optimization, are studied. Then, Distributed Generation and Microgrid are studied and reviewed, including a comprehensive review over current distributed generation technologies and Microgrid Management Systems, etc. Finally, a computer-based AC optimization method which minimizes the total transmission loss and generation cost of a Microgrid is proposed and a wireless communication scheme based on synchronized Code Division Multiple Access (sCDMA) is proposed. The algorithm is tested with a 6-bus power system and a 9-bus power system.

  1. Advanced Computational Methods for Security Constrained Financial Transmission Rights

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalsi, Karanjit; Elbert, Stephen T.; Vlachopoulou, Maria

    Financial Transmission Rights (FTRs) are financial insurance tools to help power market participants reduce price risks associated with transmission congestion. FTRs are issued based on a process of solving a constrained optimization problem with the objective to maximize the FTR social welfare under power flow security constraints. Security constraints for different FTR categories (monthly, seasonal or annual) are usually coupled and the number of constraints increases exponentially with the number of categories. Commercial software for FTR calculation can only provide limited categories of FTRs due to the inherent computational challenges mentioned above. In this paper, first an innovative mathematical reformulationmore » of the FTR problem is presented which dramatically improves the computational efficiency of optimization problem. After having re-formulated the problem, a novel non-linear dynamic system (NDS) approach is proposed to solve the optimization problem. The new formulation and performance of the NDS solver is benchmarked against widely used linear programming (LP) solvers like CPLEX™ and tested on both standard IEEE test systems and large-scale systems using data from the Western Electricity Coordinating Council (WECC). The performance of the NDS is demonstrated to be comparable and in some cases is shown to outperform the widely used CPLEX algorithms. The proposed formulation and NDS based solver is also easily parallelizable enabling further computational improvement.« less

  2. Implantable physiologic controller for left ventricular assist devices with telemetry capability.

    PubMed

    Asgari, Siavash S; Bonde, Pramod

    2014-01-01

    Rotary type left ventricular assist devices have mitigated the problem of durability associated with earlier pulsatile pumps and demonstrated improved survival. However, the compromise is the loss of pulsatility due to continuous flow and retained percutaneous driveline leading to increased mortality and morbidity. Lack of pulsatility is implicated in increased gastrointestinal bleeding, aortic incompetence, and diastolic hypertension. We present a novel, wirelessly powered, ultra-compact, implantable physiologic controller capable of running a left ventricular assist device in a pulsatile mode with wireless power delivery. The schematic of our system was laid out on a circuit board to wirelessly receive power and run a left ventricular assist device with required safety and backup measures. We have embedded an antenna and wireless network for telemetry. Multiple signal processing steps and controlling algorithm were incorporated. The controller was tested in in vitro and in vivo experiments. The controller drove left ventricular assist devices continuously for 2 weeks in an in vitro setup and in vivo without any failure. Our controller is more power efficient than the current Food and Drug Administration-approved left ventricular assist device controllers. When used with electrocardiography synchronization, the controller allowed on-demand customization of operation with instantaneous flow and revolutions per minute changes, resulting in a pulsatile flow with adjustable pulse pressure. Our test results prove the system to be remarkably safe, accurate, and efficient. The unique combination of wireless powering and small footprint makes this system an ideal totally implantable physiologic left ventricular assist device system. Copyright © 2014 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.

  3. Convective heat transfer for a gaseous slip flow in micropipe and parallel-plate microchannel with uniform wall heat flux: effect of axial heat conduction

    NASA Astrophysics Data System (ADS)

    Haddout, Y.; Essaghir, E.; Oubarra, A.; Lahjomri, J.

    2017-12-01

    Thermally developing laminar slip flow through a micropipe and a parallel plate microchannel, with axial heat conduction and uniform wall heat flux, is studied analytically by using a powerful method of self-adjoint formalism. This method results from a decomposition of the elliptic energy equation into a system of two first-order partial differential equations. The advantage of this method over other methods, resides in the fact that the decomposition procedure leads to a selfadjoint problem although the initial problem is apparently not a self-adjoint one. The solution is an extension of prior studies and considers a first order slip model boundary conditions at the fluid-wall interface. The analytical expressions for the developing temperature and local Nusselt number in the thermal entrance region are obtained in the general case. Therefore, the solution obtained could be extended easily to any hydrodynamically developed flow and arbitrary heat flux distribution. The analytical results obtained are compared for select simplified cases with available numerical calculations and they both agree. The results show that the heat transfer characteristics of flow in the thermal entrance region are strongly influenced by the axial heat conduction and rarefaction effects which are respectively characterized by Péclet and Knudsen numbers.

  4. Convective heat transfer for a gaseous slip flow in micropipe and parallel-plate microchannel with uniform wall heat flux: effect of axial heat conduction

    NASA Astrophysics Data System (ADS)

    Haddout, Y.; Essaghir, E.; Oubarra, A.; Lahjomri, J.

    2018-06-01

    Thermally developing laminar slip flow through a micropipe and a parallel plate microchannel, with axial heat conduction and uniform wall heat flux, is studied analytically by using a powerful method of self-adjoint formalism. This method results from a decomposition of the elliptic energy equation into a system of two first-order partial differential equations. The advantage of this method over other methods, resides in the fact that the decomposition procedure leads to a selfadjoint problem although the initial problem is apparently not a self-adjoint one. The solution is an extension of prior studies and considers a first order slip model boundary conditions at the fluid-wall interface. The analytical expressions for the developing temperature and local Nusselt number in the thermal entrance region are obtained in the general case. Therefore, the solution obtained could be extended easily to any hydrodynamically developed flow and arbitrary heat flux distribution. The analytical results obtained are compared for select simplified cases with available numerical calculations and they both agree. The results show that the heat transfer characteristics of flow in the thermal entrance region are strongly influenced by the axial heat conduction and rarefaction effects which are respectively characterized by Péclet and Knudsen numbers.

  5. Grid tied PV/battery system architecture and power management for fast electric vehicle charging

    NASA Astrophysics Data System (ADS)

    Badawy, Mohamed O.

    The prospective spread of Electric vehicles (EV) and plug-in hybrid electric vehicles (PHEV) arises the need for fast charging rates. Higher charging rates requirements lead to high power demands, which cant be always supported by the grid. Thus, the use of on-site sources alongside the electrical grid for EVs charging is a rising area of interest. In this dissertation, a photovoltaic (PV) source is used to support the high power EVs charging. However, the PV output power has an intermittent nature that is dependable on the weather conditions. Thus, battery storage are combined with the PV in a grid tied system, providing a steady source for on-site EVs use in a renewable energy based fast charging station. Verily, renewable energy based fast charging stations should be cost effective, efficient, and reliable to increase the penetration of EVs in the automotive market. Thus, this Dissertation proposes a novel power flow management topology that aims on decreasing the running cost along with innovative hardware solutions and control structures for the developed architecture. The developed power flow management topology operates the hybrid system at the minimum operating cost while extending the battery lifetime. An optimization problem is formulated and two stages of optimization, i.e online and offline stages, are adopted to optimize the batteries state of charge (SOC) scheduling and continuously compensate for the forecasting errors. The proposed power flow management topology is validated and tested with two metering systems, i.e unified and dual metering systems. The results suggested that minimal power flow is anticipated from the battery storage to the grid in the dual metering system. Thus, the power electronic interfacing system is designed accordingly. Interconnecting bi-directional DC/DC converters are analyzed, and a cascaded buck boost (CBB) converter is chosen and tested under 80 kW power flow rates. The need to perform power factor correction (PFC) on the grid power while supplying the battery storage and the DC loads inspired a novel dual switch control structure for the CBB AC/DC converter used in this dissertation. Thus, The CBB operates at a discontinuous capacitor voltage mode (DCVM) and the control structure enables for a non-distorted input current at overlapping output voltage levels. The PFC concept is validated and tested for a single phase rectifier and a 3 phase extension of the proposed concept is presented. Lastly, the PV source used in this study is required to supply power to both, the grid system, and to the DC loads, i.e the battery storage and the EVs. Thus, the PV panels used are connected in series to reach a desirable high voltage on the DC bus output of the PV system. Consequently, a novel differential power processing architecture is proposed in this dissertation. The proposed architecture enables each PV element to operate at its local maximum power point (MPP) while processing only a small portion of its total generated power through the distributed integrated converters. This leads to higher energy capture at an increased conversion efficiency while overcoming the difficulties associated with unmatched MPPs of the PV elements.

  6. From "E-flows" to "Sed-flows": Managing the Problem of Sediment in High Altitude Hydropower Systems

    NASA Astrophysics Data System (ADS)

    Gabbud, C.; Lane, S. N.

    2017-12-01

    The connections between stream hydraulics, geomorphology and ecosystems in mountain rivers have been substantially perturbed by humans, for example through flow regulation related to hydropower activities. It is well known that the ecosystem impacts downstream of hydropower dams may be managed by a properly designed compensation release or environmental flows ("e-flows"), and such flows may also include sediment considerations (e.g. to break up bed armor). However, there has been much less attention given to the ecosystem impacts of water intakes (where water is extracted and transferred for storage and/or power production), even though in many mountain systems such intakes may be prevalent. Flow intakes tend to be smaller than dams and because they fill quickly in the presence of sediment delivery, they often need to be flushed, many times within a day in Alpine glaciated catchments with high sediment yields. The associated short duration "flood" flow is characterised by very high sediment concentrations, which may drastically modify downstream habitat, both during the floods but also due to subsequent accumulation of "legacy" sediment. The impacts on flora and fauna of these systems have not been well studied. In addition, there are no guidelines established that might allow the design of "e-flows" that also treat this sediment problem, something we call "sed-flows". Through an Alpine field example, we quantify the hydrological, geomorphological, and ecosystem impacts of Alpine water transfer systems. The high sediment concentrations of these flushing flows lead to very high rates of channel disturbance downstream, superimposed upon long-term and progressive bed sediment accumulation. Monthly macroinvertebrate surveys over almost a two-year period showed that reductions in the flushing rate reduced rates of disturbance substantially, and led to rapid macroinvertebrate recovery, even in the seasons (autumn and winter) when biological activity should be reduced. The results suggest the need to redesign e-flows to take into account these sediment impacts if the objectives of e-flows are to be realised.

  7. Multi-objective optimal dispatch of distributed energy resources

    NASA Astrophysics Data System (ADS)

    Longe, Ayomide

    This thesis is composed of two papers which investigate the optimal dispatch for distributed energy resources. In the first paper, an economic dispatch problem for a community microgrid is studied. In this microgrid, each agent pursues an economic dispatch for its personal resources. In addition, each agent is capable of trading electricity with other agents through a local energy market. In this paper, a simple market structure is introduced as a framework for energy trades in a small community microgrid such as the Solar Village. It was found that both sellers and buyers benefited by participating in this market. In the second paper, Semidefinite Programming (SDP) for convex relaxation of power flow equations is used for optimal active and reactive dispatch for Distributed Energy Resources (DER). Various objective functions including voltage regulation, reduced transmission line power losses, and minimized reactive power charges for a microgrid are introduced. Combinations of these goals are attained by solving a multiobjective optimization for the proposed ORPD problem. Also, both centralized and distributed versions of this optimal dispatch are investigated. It was found that SDP made the optimal dispatch faster and distributed solution allowed for scalability.

  8. Stability of power systems coupled with market dynamics

    NASA Astrophysics Data System (ADS)

    Meng, Jianping

    This Ph.D. thesis presented here spans two relatively independent topics. The first part, Chapter 2 is self-contained, and is dedicated to studies of new algorithms for power system state estimation. The second part, encompassing the remaining chapters, is dedicated to stability analysis of power system coupled with market dynamics. The first part of this thesis presents improved Newton's methods employing efficient vectorized calculations of higher order derivatives in power system state estimation problems. The improved algorithms are proposed based on an exact Newton's method using the second order terms. By efficiently computing an exact gain matrix, combined with a special optimal multiplier method, the new algorithms show more reliable convergence compared with the existing methods of normal equations, orthogonal decomposition, and Hachtel's sparse tableau. Our methods are able to handle ill-conditioned problems, yet show minimal penalty in computational cost for well-conditioned cases. These claims are illustrated through the standard IEEE 118 and 300 bus test examples. The second part of the thesis focuses on stability analysis of market/power systems. The work presented is motivated by an emerging problem. As the frequency of market based dispatch updates increases, there will inevitably be interaction between the dynamics of markets determining the generator dispatch commands, and the physical response of generators and network interconnections, necessitating the development of stability analysis for such coupled systems. We begin with numeric tests using different market models, with detailed machine/exciter/turbine/governor dynamics, in the New England 39 bus test system. A progression of modeling refinements are introduced, including such non-ideal effects as time delays. Electricity market parameter identification algorithms are also studied based on real time data from the PJM electricity market. Finally our power market model is augmented by optimal power flow constraints, allowing study of the so-called congestion problem. These studies show that understanding of potential modes of instability in such coupled systems is of crucial importance both in designing suitable rules for power markets, and in designing physical generator controls that are complementary to market-based dispatch.

  9. Performance improvement of multi-class detection using greedy algorithm for Viola-Jones cascade selection

    NASA Astrophysics Data System (ADS)

    Tereshin, Alexander A.; Usilin, Sergey A.; Arlazarov, Vladimir V.

    2018-04-01

    This paper aims to study the problem of multi-class object detection in video stream with Viola-Jones cascades. An adaptive algorithm for selecting Viola-Jones cascade based on greedy choice strategy in solution of the N-armed bandit problem is proposed. The efficiency of the algorithm on the problem of detection and recognition of the bank card logos in the video stream is shown. The proposed algorithm can be effectively used in documents localization and identification, recognition of road scene elements, localization and tracking of the lengthy objects , and for solving other problems of rigid object detection in a heterogeneous data flows. The computational efficiency of the algorithm makes it possible to use it both on personal computers and on mobile devices based on processors with low power consumption.

  10. 78 FR 33400 - Free Flow Power Corporation; Notice Soliciting Scoping Comments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-04

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [ Project No. 13346-003] Free Flow Power... Major License. b. Project No.: P-13346-003. c. Date filed: December 3, 2012. d. Applicant: Free Flow Power Corporation (Free Flow Power), on behalf of its subsidiary PayneBridge, LLC. e. Name of Project...

  11. Water Chemistry and Chemistry Monitoring at Thermal and Nuclear Power Plants: Problems and Tasks (Based on Proceedings of Conferences)

    NASA Astrophysics Data System (ADS)

    Larin, B. M.

    2018-02-01

    In late May-early June 2017, two international science and technology conferences on problems of water chemistry and chemistry monitoring at thermal and nuclear power plants were held. The participants of both the first conference held at OAO VTI and the second conference that took place at NITI formulated the problems of the development of the regulatory base and implementation of promising water treatment technologies and outlined the ways of improving the water chemistry and chemistry monitoring at TPPs and NPPs for the near future. It was pointed out that the new amine-containing VTIAMIN agent developed by OAO VTI had been successfully tested on the power-generating units equipped with steam-gas plants to establish the minimum excess of the film-forming amine in the power-generating unit circuit that ensures the protection of the metal as 5-10 μg/dm3. A flow-injection technique for the analysis of trace concentrations of chlorides was proposed; the technique applied to the condensate of the 1000-MW steam turbine of the NPP power-generating unit yields the results comparable with the results obtained by the ion chromatography and the potentiometric method using the solver electrode. The participants of the conferences were demonstrated new Russian instruments to analyze the water media at the TPPs and NPPs, including the total organic carbon analyzer and the analyzer of mineral impurities in the condensate and feed water, that won a gold medal at the 45th International Exhibition of Inventions held in Geneva this April.

  12. Wave propagation and power flow in an acoustic metamaterial plate with lateral local resonance attachment

    NASA Astrophysics Data System (ADS)

    Wang, Ting; Sheng, Meiping; Ding, Xiaodong; Yan, Xiaowei

    2018-03-01

    This paper presents analysis on wave propagation and power flow in an acoustic metamaterial plate with lateral local resonance. The metamaterial is designed to have lateral local resonance systems attached to a homogeneous plate. Relevant theoretical analysis, numerical modelling and application prospect are presented. Results show that the metamaterial has two complete band gaps for flexural wave absorption and vibration attenuation. Damping can smooth and lower the metamaterial’s frequency responses in high frequency ranges at the expense of the band gap effect, and as an important factor to calculate the power flow is thoroughly investigated. Moreover, the effective mass density becomes negative and unbounded at specific frequencies. Simultaneously, power flow within band gaps are dramatically blocked from the power flow contour and power flow maps. Results from finite element modelling and power flow analysis reveal the working mechanism of the flexural wave attenuation and power flow blocked within the band gaps, where part of the flexural vibration is absorbed by the vertical resonator and the rest is transformed through four-link-mechanisms to the lateral resonators that oscillate and generate inertial forces indirectly to counterbalance the shear forces induced by the vibrational plate. The power flow is stored in the vertical and lateral local resonance, as well as in the connected plate.

  13. Power flow analysis of two coupled plates with arbitrary characteristics

    NASA Technical Reports Server (NTRS)

    Cuschieri, J. M.

    1990-01-01

    In the last progress report (Feb. 1988) some results were presented for a parametric analysis on the vibrational power flow between two coupled plate structures using the mobility power flow approach. The results reported then were for changes in the structural parameters of the two plates, but with the two plates identical in their structural characteristics. Herein, limitation is removed. The vibrational power input and output are evaluated for different values of the structural damping loss factor for the source and receiver plates. In performing this parametric analysis, the source plate characteristics are kept constant. The purpose of this parametric analysis is to determine the most critical parameters that influence the flow of vibrational power from the source plate to the receiver plate. In the case of the structural damping parametric analysis, the influence of changes in the source plate damping is also investigated. The results obtained from the mobility power flow approach are compared to results obtained using a statistical energy analysis (SEA) approach. The significance of the power flow results are discussed together with a discussion and a comparison between the SEA results and the mobility power flow results. Furthermore, the benefits derived from using the mobility power flow approach are examined.

  14. Dynamic remedial action scheme using online transient stability analysis

    NASA Astrophysics Data System (ADS)

    Shrestha, Arun

    Economic pressure and environmental factors have forced the modern power systems to operate closer to their stability limits. However, maintaining transient stability is a fundamental requirement for the operation of interconnected power systems. In North America, power systems are planned and operated to withstand the loss of any single or multiple elements without violating North American Electric Reliability Corporation (NERC) system performance criteria. For a contingency resulting in the loss of multiple elements (Category C), emergency transient stability controls may be necessary to stabilize the power system. Emergency control is designed to sense abnormal conditions and subsequently take pre-determined remedial actions to prevent instability. Commonly known as either Remedial Action Schemes (RAS) or as Special/System Protection Schemes (SPS), these emergency control approaches have been extensively adopted by utilities. RAS are designed to address specific problems, e.g. to increase power transfer, to provide reactive support, to address generator instability, to limit thermal overloads, etc. Possible remedial actions include generator tripping, load shedding, capacitor and reactor switching, static VAR control, etc. Among various RAS types, generation shedding is the most effective and widely used emergency control means for maintaining system stability. In this dissertation, an optimal power flow (OPF)-based generation-shedding RAS is proposed. This scheme uses online transient stability calculation and generator cost function to determine appropriate remedial actions. For transient stability calculation, SIngle Machine Equivalent (SIME) technique is used, which reduces the multimachine power system model to a One-Machine Infinite Bus (OMIB) equivalent and identifies critical machines. Unlike conventional RAS, which are designed using offline simulations, online stability calculations make the proposed RAS dynamic and adapting to any power system configuration and operating state. The generation-shedding cost is calculated using pre-RAS and post-RAS OPF costs. The criteria for selecting generators to trip is based on the minimum cost rather than minimum amount of generation to shed. For an unstable Category C contingency, the RAS control action that results in stable system with minimum generation shedding cost is selected among possible candidate solutions. The RAS control actions update whenever there is a change in operating condition, system configuration, or cost functions. The effectiveness of the proposed technique is demonstrated by simulations on the IEEE 9-bus system, the IEEE 39-bus system, and IEEE 145-bus system. This dissertation also proposes an improved, yet relatively simple, technique for solving Transient Stability-Constrained Optimal Power Flow (TSC-OPF) problem. Using the SIME method, the sets of dynamic and transient stability constraints are reduced to a single stability constraint, decreasing the overall size of the optimization problem. The transient stability constraint is formulated using the critical machines' power at the initial time step, rather than using the machine rotor angles. This avoids the addition of machine steady state stator algebraic equations in the conventional OPF algorithm. A systematic approach to reach an optimal solution is developed by exploring the quasi-linear behavior of critical machine power and stability margin. The proposed method shifts critical machines active power based on generator costs using an OPF algorithm. Moreover, the transient stability limit is based on stability margin, and not on a heuristically set limit on OMIB rotor angle. As a result, the proposed TSC-OPF solution is more economical and transparent. The proposed technique enables the use of fast and robust commercial OPF tool and time-domain simulation software for solving large scale TSC-OPF problem, which makes the proposed method also suitable for real-time application.

  15. Do trout swim better than eels? Challenges for estimating performance based on the wake of self-propelled bodies

    NASA Astrophysics Data System (ADS)

    Tytell, Eric D.

    2007-11-01

    Engineers and biologists have long desired to compare propulsive performance for fishes and underwater vehicles of different sizes, shapes, and modes of propulsion. Ideally, such a comparison would be made on the basis of either propulsive efficiency, total power output or both. However, estimating the efficiency and power output of self-propelled bodies, and particularly fishes, is methodologically challenging because it requires an estimate of thrust. For such systems traveling at a constant velocity, thrust and drag are equal, and can rarely be separated on the basis of flow measured in the wake. This problem is demonstrated using flow fields from swimming American eels, Anguilla rostrata, measured using particle image velocimetry (PIV) and high-speed video. Eels balance thrust and drag quite evenly, resulting in virtually no wake momentum in the swimming (axial) direction. On average, their wakes resemble those of self-propelled jet propulsors, which have been studied extensively. Theoretical studies of such wakes may provide methods for the estimation of thrust separately from drag. These flow fields are compared with those measured in the wakes of rainbow trout, Oncorhynchus mykiss, and bluegill sunfish, Lepomis macrochirus. In contrast to eels, these fishes produce wakes with axial momentum. Although the net momentum flux must be zero on average, it is neither spatially nor temporally homogeneous; the heterogeneity may provide an alternative route for estimating thrust. This review shows examples of wakes and velocity profiles from the three fishes, indicating challenges in estimating efficiency and power output and suggesting several routes for further experiments. Because these estimates will be complicated, a much simpler method for comparing performance is outlined, using as a point of comparison the power lost producing the wake. This wake power, a component of the efficiency and total power, can be estimated in a straightforward way from the flow fields. Although it does not provide complete information about the performance, it can be used to place constraints on the relative efficiency and cost of transport for the fishes.

  16. Do trout swim better than eels? Challenges for estimating performance based on the wake of self-propelled bodies

    NASA Astrophysics Data System (ADS)

    Tytell, Eric D.

    Engineers and biologists have long desired to compare propulsive performance for fishes and underwater vehicles of different sizes, shapes, and modes of propulsion. Ideally, such a comparison would be made on the basis of either propulsive efficiency, total power output or both. However, estimating the efficiency and power output of self-propelled bodies, and particularly fishes, is methodologically challenging because it requires an estimate of thrust. For such systems traveling at a constant velocity, thrust and drag are equal, and can rarely be separated on the basis of flow measured in the wake. This problem is demonstrated using flow fields from swimming American eels, Anguilla rostrata, measured using particle image velocimetry (PIV) and high-speed video. Eels balance thrust and drag quite evenly, resulting in virtually no wake momentum in the swimming (axial) direction. On average, their wakes resemble those of self-propelled jet propulsors, which have been studied extensively. Theoretical studies of such wakes may provide methods for the estimation of thrust separately from drag. These flow fields are compared with those measured in the wakes of rainbow trout, Oncorhynchus mykiss, and bluegill sunfish, Lepomis macrochirus. In contrast to eels, these fishes produce wakes with axial momentum. Although the net momentum flux must be zero on average, it is neither spatially nor temporally homogeneous; the heterogeneity may provide an alternative route for estimating thrust. This review shows examples of wakes and velocity profiles from the three fishes, indicating challenges in estimating efficiency and power output and suggesting several routes for further experiments. Because these estimates will be complicated, a much simpler method for comparing performance is outlined, using as a point of comparison the power lost producing the wake. This wake power, a component of the efficiency and total power, can be estimated in a straightforward way from the flow fields. Although it does not provide complete information about the performance, it can be used to place constraints on the relative efficiency and cost of transport for the fishes.

  17. Choice of optimal working fluid for binary power plants at extremely low temperature brine

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Shipkov, A. A.; Sorokina, E. V.

    2016-12-01

    The geothermal energy development problems based on using binary power plants utilizing lowpotential geothermal resources are considered. It is shown that one of the possible ways of increasing the efficiency of heat utilization of geothermal brine in a wide temperature range is the use of multistage power systems with series-connected binary power plants based on incremental primary energy conversion. Some practically significant results of design-analytical investigations of physicochemical properties of various organic substances and their influence on the main parameters of the flowsheet and the technical and operational characteristics of heat-mechanical and heat-exchange equipment for binary power plant operating on extremely-low temperature geothermal brine (70°C) are presented. The calculation results of geothermal brine specific flow rate, capacity (net), and other operation characteristics of binary power plants with the capacity of 2.5 MW at using various organic substances are a practical interest. It is shown that the working fluid selection significantly influences on the parameters of the flowsheet and the operational characteristics of the binary power plant, and the problem of selection of working fluid is in the search for compromise based on the priorities in the field of efficiency, safety, and ecology criteria of a binary power plant. It is proposed in the investigations on the working fluid selection of the binary plant to use the plotting method of multiaxis complex diagrams of relative parameters and characteristic of binary power plants. Some examples of plotting and analyzing these diagrams intended to choose the working fluid provided that the efficiency of geothermal brine is taken as main priority.

  18. Survey of the status of finite element methods for partial differential equations

    NASA Technical Reports Server (NTRS)

    Temam, Roger

    1986-01-01

    The finite element methods (FEM) have proved to be a powerful technique for the solution of boundary value problems associated with partial differential equations of either elliptic, parabolic, or hyperbolic type. They also have a good potential for utilization on parallel computers particularly in relation to the concept of domain decomposition. This report is intended as an introduction to the FEM for the nonspecialist. It contains a survey which is totally nonexhaustive, and it also contains as an illustration, a report on some new results concerning two specific applications, namely a free boundary fluid-structure interaction problem and the Euler equations for inviscid flows.

  19. Power flow controller with a fractionally rated back-to-back converter

    DOEpatents

    Divan, Deepakraj M.; Kandula, Rajendra Prasad; Prasai, Anish

    2016-03-08

    A power flow controller with a fractionally rated back-to-back (BTB) converter is provided. The power flow controller provide dynamic control of both active and reactive power of a power system. The power flow controller inserts a voltage with controllable magnitude and phase between two AC sources at the same frequency; thereby effecting control of active and reactive power flows between the two AC sources. A transformer may be augmented with a fractionally rated bi-directional Back to Back (BTB) converter. The fractionally rated BTB converter comprises a transformer side converter (TSC), a direct-current (DC) link, and a line side converter (LSC). By controlling the switches of the BTB converter, the effective phase angle between the two AC source voltages may be regulated, and the amplitude of the voltage inserted by the power flow controller may be adjusted with respect to the AC source voltages.

  20. 78 FR 71594 - Free Flow Power Missouri 2, LLC; Notice of Application Tendered for Filing With the Commission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-29

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 13703-002] Free Flow Power.... c. Date filed: November 13, 2013. d. Applicant: Free Flow Power Missouri 2, LLC. e. Name of Project... President of Project Development, Free Flow Power Corporation, 239 Causeway Street, Suite 300, Boston, MA...

  1. 78 FR 71596 - Free Flow Power Missouri 2, LLC; Notice of Application Tendered for Filing With the Commission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-29

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 13704-002] Free Flow Power.... c. Date Filed: November 13, 2013. d. Applicant: Free Flow Power Missouri 2, LLC. e. Name of Project... Feldman, Vice President of Project Development, Free Flow Power Corporation, 239 Causeway Street, Suite...

  2. 78 FR 71593 - Free Flow Power Missouri 2, LLC; Notice of Application Tendered for Filing With the Commission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-29

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 13702-002] Free Flow Power.... c. Date filed: November 13, 2013. d. Applicant: Free Flow Power Missouri 2, LLC. e. Name of Project... President of Project Development, Free Flow Power Corporation, 239 Causeway Street, Suite 300, Boston, MA...

  3. 78 FR 71592 - Free Flow Power Missouri 2, LLC; Notice of Application Tendered for Filing With the Commission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-29

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 13701-002] Free Flow Power.... c. Date filed: November 13, 2013. d. Applicant: Free Flow Power Missouri 2, LLC. e. Name of Project..., Vice President of Project Development, Free Flow Power Corporation, 239 Causeway Street, Suite 300...

  4. Advances in Time-Distance Helioseismology

    NASA Technical Reports Server (NTRS)

    Duvall, Thomas L., Jr.; Beck, John G.; Gizon, Laurent; Kosovichev, Alexander F.; Oegerle, William (Technical Monitor)

    2002-01-01

    Time-distance helioseismology is a way to measure travel times between surface locations for waves traversing the solar interior. Coupling the travel with an extensive modeling effort has proven to be a powerful tool for measuring flows and other wave speed inhomogeneities in the solar interior. Problems receiving current attention include studying the time variation of the meridional circulation and torsional oscillation and active region emergence and evolution, current results on these topics will be presented.

  5. A Mechanical Power Flow Capability for the Finite Element Code NASTRAN

    DTIC Science & Technology

    1989-07-01

    perimental methods. statistical energy analysis , the finite element method, and a finite element analog-,y using heat conduction equations. Experimental...weights and inertias of the transducers attached to an experimental structure may produce accuracy problems. Statistical energy analysis (SEA) is a...405-422 (1987). 8. Lyon, R.L., Statistical Energy Analysis of Dynamical Sistems, The M.I.T. Press, (1975). 9. Mickol, J.D., and R.J. Bernhard, "An

  6. Refinement and application of acoustic impulse technique to study nozzle transmission characteristics

    NASA Technical Reports Server (NTRS)

    Salikuddin, M.; Brown, W. H.; Ramakrishnan, R.; Tanna, H. K.

    1983-01-01

    An improved acoustic impulse technique was developed and was used to study the transmission characteristics of duct/nozzle systems. To accomplish the above objective, various problems associated with the existing spark-discharge impulse technique were first studied. These included (1) the nonlinear behavior of high intensity pulses, (2) the contamination of the signal with flow noise, (3) low signal-to-noise ratio at high exhaust velocities, and (4) the inability to control or shape the signal generated by the source, specially when multiple spark points were used as the source. The first step to resolve these problems was the replacement of the spark-discharge source with electroacoustic driver(s). These included (1) synthesizing on acoustic impulse with acoustic driver(s) to control and shape the output signal, (2) time domain signal averaging to remove flow noise from the contaminated signal, (3) signal editing to remove unwanted portions of the time history, (4) spectral averaging, and (5) numerical smoothing. The acoustic power measurement technique was improved by taking multiple induct measurements and by a modal decomposition process to account for the contribution of higher order modes in the power computation. The improved acoustic impulse technique was then validated by comparing the results derived by an impedance tube method. The mechanism of acoustic power loss, that occurs when sound is transmitted through nozzle terminations, was investigated. Finally, the refined impulse technique was applied to obtain more accurate results for the acoustic transmission characteristics of a conical nozzle and a multi-lobe multi-tube supressor nozzle.

  7. Developing a Procedure for Segmenting Meshed Heat Networks of Heat Supply Systems without Outflows

    NASA Astrophysics Data System (ADS)

    Tokarev, V. V.

    2018-06-01

    The heat supply systems of cities have, as a rule, a ring structure with the possibility of redistributing the flows. Despite the fact that a ring structure is more reliable than a radial one, the operators of heat networks prefer to use them in normal modes according to the scheme without overflows of the heat carrier between the heat mains. With such a scheme, it is easier to adjust the networks and to detect and locate faults in them. The article proposes a formulation of the heat network segmenting problem. The problem is set in terms of optimization with the heat supply system's excessive hydraulic power used as the optimization criterion. The heat supply system computer model has a hierarchically interconnected multilevel structure. Since iterative calculations are only carried out for the level of trunk heat networks, decomposing the entire system into levels allows the dimensionality of the solved subproblems to be reduced by an order of magnitude. An attempt to solve the problem by fully enumerating possible segmentation versions does not seem to be feasible for systems of really existing sizes. The article suggests a procedure for searching rational segmentation of heat supply networks with limiting the search to versions of dividing the system into segments near the flow convergence nodes with subsequent refining of the solution. The refinement is performed in two stages according to the total excess hydraulic power criterion. At the first stage, the loads are redistributed among the sources. After that, the heat networks are divided into independent fragments, and the possibility of increasing the excess hydraulic power in the obtained fragments is checked by shifting the division places inside a fragment. The proposed procedure has been approbated taking as an example a municipal heat supply system involving six heat mains fed from a common source, 24 loops within the feeding mains plane, and more than 5000 consumers. Application of the proposed segmentation procedure made it possible to find a version with required hydraulic power in the heat supply system on 3% less than the one found using the simultaneous segmentation method.

  8. Investigation of a Light Gas Helicon Plasma Source for the VASIMR Space Propulsion System

    NASA Technical Reports Server (NTRS)

    Squire, J. P.; Chang-Diaz, F. R.; Jacobson, V. T.; Glover, T. W.; Baity, F. W.; Carter, M. D.; Goulding, R. H.; Bengtson, R. D.; Bering, E. A., III

    2003-01-01

    An efficient plasma source producing a high-density (approx.10(exp 19/cu m) light gas (e.g. H, D, or He) flowing plasma with a high degree of ionization is a critical component of the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) concept. We are developing an antenna to apply ICRF power near the fundamental ion cyclotron resonance to further accelerate the plasma ions to velocities appropriate for space propulsion applications. The high degree of ionization and a low vacuum background pressure are important to eliminate the problem of radial losses due to charge exchange. We have performed parametric (e.g. gas flow, power (0.5 - 3 kW), magnetic field , frequency (25 and 50 MHz)) studies of a helicon operating with gas (H2 D2, He, N2 and Ar) injected at one end with a high magnetic mirror downstream of the antenna. We have explored operation with a cusp and a mirror field upstream. Plasma flows into a low background vacuum (<10(exp -4) torr) at velocities higher than the ion sound speed. High densities (approx. 10(exp 19/cu m) have been achieved at the location where ICRF will be applied, just downstream of the magnetic mirror.

  9. Specification and testing for power by wire aircraft

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.; Kenney, Barbara H.

    1993-01-01

    A power by wire aircraft is one in which all active functions other than propulsion are implemented electrically. Other nomenclature are 'all electric airplane,' or 'more electric airplane.' What is involved is the task of developing and certifying electrical equipment to replace existing hydraulics and pneumatics. When such functions, however, are primary flight controls which are implemented electrically, new requirements are imposed that were not anticipated by existing power system designs. Standards of particular impact are the requirements of ultra-high reliability, high peak transient bi-directional power flow, and immunity to electromagnetic interference and lightning. Not only must the electromagnetic immunity of the total system be verifiable, but box level tests and meaningful system models must be established to allow system evaluation. This paper discusses some of the problems, the system modifications involved, and early results in establishing wiring harness and interface susceptibility requirements.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnamurthy, Dheepak

    This paper is an overview of Power System Simulation Toolbox (psst). psst is an open-source Python application for the simulation and analysis of power system models. psst simulates the wholesale market operation by solving a DC Optimal Power Flow (DCOPF), Security Constrained Unit Commitment (SCUC) and a Security Constrained Economic Dispatch (SCED). psst also includes models for the various entities in a power system such as Generator Companies (GenCos), Load Serving Entities (LSEs) and an Independent System Operator (ISO). psst features an open modular object oriented architecture that will make it useful for researchers to customize, expand, experiment beyond solvingmore » traditional problems. psst also includes a web based Graphical User Interface (GUI) that allows for user friendly interaction and for implementation on remote High Performance Computing (HPCs) clusters for parallelized operations. This paper also provides an illustrative application of psst and benchmarks with standard IEEE test cases to show the advanced features and the performance of toolbox.« less

  11. The application of LQR synthesis techniques to the turboshaft engine control problem

    NASA Technical Reports Server (NTRS)

    Pfeil, W. H.; De Los Reyes, G.; Bobula, G. A.

    1984-01-01

    A power turbine governor was designed for a recent-technology turboshaft engine coupled to a modern, articulated rotor system using Linear Quadratic Regulator (LQR) and Kalman Filter (KF) techniques. A linear, state-space model of the engine and rotor system was derived for six engine power settings from flight idle to maximum continuous. An integrator was appended to the fuel flow input to reduce the steady-state governor error to zero. Feedback gains were calculated for the system states at each power setting using the LQR technique. The main rotor tip speed state is not measurable, so a Kalman Filter of the rotor was used to estimate this state. The crossover of the system was increased to 10 rad/s compared to 2 rad/sec for a current governor. Initial computer simulations with a nonlinear engine model indicate a significant decrease in power turbine speed variation with the LQR governor compared to a conventional governor.

  12. PMARC - PANEL METHOD AMES RESEARCH CENTER

    NASA Technical Reports Server (NTRS)

    Ashby, D. L.

    1994-01-01

    Panel methods are moderate cost tools for solving a wide range of engineering problems. PMARC (Panel Method Ames Research Center) is a potential flow panel code that numerically predicts flow fields around complex three-dimensional geometries. PMARC's predecessor was a panel code named VSAERO which was developed for NASA by Analytical Methods, Inc. PMARC is a new program with many additional subroutines and a well-documented code suitable for powered-lift aerodynamic predictions. The program's open architecture facilitates modifications or additions of new features. Another improvement is the adjustable size code which allows for an optimum match between the computer hardware available to the user and the size of the problem being solved. PMARC can be resized (the maximum number of panels can be changed) in a matter of minutes. Several other state-of-the-art PMARC features include internal flow modeling for ducts and wind tunnel test sections, simple jet plume modeling essential for the analysis and design of powered-lift aircraft, and a time-stepping wake model which allows the study of both steady and unsteady motions. PMARC is a low-order panel method, which means the singularities are distributed with constant strength over each panel. In many cases low-order methods can provide nearly the same accuracy as higher order methods (where the singularities are allowed to vary linearly or quadratically over each panel). Low-order methods have the advantage of a shorter computation time and do not require exact matching between panels. The flow problem is solved by assuming that the body is at rest in a moving flow field. The body is modeled as a closed surface which divides space into two regions -- one region contains the flow field of interest and the other contains a fictitious flow. External flow problems, such as a wing in a uniform stream, have the external region as the flow field of interest and the internal flow as the fictitious flow. This arrangement is reversed for internal flow problems where the internal region contains the flow field of interest and the external flow field is fictitious. In either case it is assumed that the velocity potentials in both regions satisfy Laplace's equation. PMARC has extensive geometry modeling capabilities for handling complex, three-dimensional surfaces. As with all panel methods, the geometry must be modeled by a set of panels. For convenience, the geometry is usually subdivided into several pieces and modeled with sets of panels called patches. A patch may be folded over on itself so that opposing sides of the patch form a common line. For example, wings are normally modeled with a folded patch to form the trailing edge of the wing. PMARC also has the capability to automatically generate a closing tip patch. In the case of a wing, a tip patch could be generated to close off the wing's third side. PMARC has a simple jet model for simulating a jet plume in a crossflow. The jet plume shape, trajectory, and entrainment velocities are computed using the Adler/Baron jet in crossflow code. This information is then passed back to PMARC. The wake model in PMARC is a time-stepping wake model. The wake is convected downstream from the wake separation line by the local velocity flowfield. With each time step, a new row of wake panels is added to the wake at the wake separation line. PMARC also allows an initial wake to be specified if desired, or, as a third option, no wakes need be modeled. The effective presentation of results for aerodynamics problems requires the generation of report-quality graphics. PMAPP (ARC-12751), the Panel Method Aerodynamic Plotting Program, (Sterling Software), was written for scientists at NASA's Ames Research Center to plot the aerodynamic analysis results (flow data) from PMARC. PMAPP is an interactive, color-capable graphics program for the DEC VAX or MicroVAX running VMS. It was designed to work with a variety of terminal types and hardcopy devices. PMAPP is available separately from COSMIC. PMARC was written in standard FORTRAN77 using adjustable size arrays throughout the code. Redimensioning PMARC will change the amount of disk space and memory the code requires to be able to run; however, due to its memory requirements, this program does not readily lend itself to implementation on MS-DOS based machines. The program was implemented on an Apple Macintosh (using 2.5 MB of memory) and tested on a VAX/VMS computer. The program is available on a 3.5 inch Macintosh format diskette (standard media) or in VAX BACKUP format on TK50 tape cartridge or 9-track magnetic tape. PMARC was developed in 1989.

  13. Comprehensive analysis of heat transfer of gold-blood nanofluid (Sisko-model) with thermal radiation

    NASA Astrophysics Data System (ADS)

    Eid, Mohamed R.; Alsaedi, Ahmed; Muhammad, Taseer; Hayat, Tasawar

    Characteristics of heat transfer of gold nanoparticles (Au-NPs) in flow past a power-law stretching surface are discussed. Sisko bio-nanofluid flow (with blood as a base fluid) in existence of non-linear thermal radiation is studied. The resulting equations system is abbreviated to model the suggested problem in non-linear PDEs. Along with initial and boundary-conditions, the equations are made non-dimensional and then resolved numerically utilizing 4th-5th order Runge-Kutta-Fehlberg (RKF45) technique with shooting integration procedure. Various flow quantities behaviors are examined for parametric consideration such as the Au-NPs volume fraction, the exponentially stretching and thermal radiation parameters. It is observed that radiation drives to shortage the thermal boundary-layer thickness and therefore resulted in better heat transfer at surface.

  14. Numerical simulation of a shear-thinning fluid through packed spheres

    NASA Astrophysics Data System (ADS)

    Liu, Hai Long; Moon, Jong Sin; Hwang, Wook Ryol

    2012-12-01

    Flow behaviors of a non-Newtonian fluid in spherical microstructures have been studied by a direct numerical simulation. A shear-thinning (power-law) fluid through both regular and randomly packed spheres has been numerically investigated in a representative unit cell with the tri-periodic boundary condition, employing a rigorous three-dimensional finite-element scheme combined with fictitious-domain mortar-element methods. The present scheme has been validated for the classical spherical packing problems with literatures. The flow mobility of regular packing structures, including simple cubic (SC), body-centered cubic (BCC), face-centered cubic (FCC), as well as randomly packed spheres, has been investigated quantitatively by considering the amount of shear-thinning, the pressure gradient and the porosity as parameters. Furthermore, the mechanism leading to the main flow path in a highly shear-thinning fluid through randomly packed spheres has been discussed.

  15. Dynamic characteristics of a two-stage variable-mass flexible missile with internal flow

    NASA Technical Reports Server (NTRS)

    Meirovitch, L.; Bankovskis, J.

    1972-01-01

    A general formulation of the dynamical problems associated with powered flight of a two stage flexible, variable-mass missile with internal flow, discrete masses, and aerodynamic forces is presented. The formulation comprises six ordinary differential equations for the rigid body motion, 3n ordinary differential equations for the n discrete masses and three partial differential equations with the appropriate boundary conditions for the elastic motion. This set of equations is modified to represent a single stage flexible, variable-mass missile with internal flow and aerodynamic forces. The rigid-body motion consists then of three translations and three rotations, whereas the elastic motion is defined by one longitudinal and two flexural displacements, the latter about two orthogonal transverse axes. The differential equations are nonlinear and, in addition, they possess time-dependent coefficients due to the mass variation.

  16. B-ALL minimal residual disease flow cytometry: an application of a novel method for optimization of a single-tube model.

    PubMed

    Shaver, Aaron C; Greig, Bruce W; Mosse, Claudio A; Seegmiller, Adam C

    2015-05-01

    Optimizing a clinical flow cytometry panel can be a subjective process dependent on experience. We develop a quantitative method to make this process more rigorous and apply it to B lymphoblastic leukemia/lymphoma (B-ALL) minimal residual disease (MRD) testing. We retrospectively analyzed our existing three-tube, seven-color B-ALL MRD panel and used our novel method to develop an optimized one-tube, eight-color panel, which was tested prospectively. The optimized one-tube, eight-color panel resulted in greater efficiency of time and resources with no loss in diagnostic power. Constructing a flow cytometry panel using a rigorous, objective, quantitative method permits optimization and avoids problems of interdependence and redundancy in a large, multiantigen panel. Copyright© by the American Society for Clinical Pathology.

  17. Parallel ALLSPD-3D: Speeding Up Combustor Analysis Via Parallel Processing

    NASA Technical Reports Server (NTRS)

    Fricker, David M.

    1997-01-01

    The ALLSPD-3D Computational Fluid Dynamics code for reacting flow simulation was run on a set of benchmark test cases to determine its parallel efficiency. These test cases included non-reacting and reacting flow simulations with varying numbers of processors. Also, the tests explored the effects of scaling the simulation with the number of processors in addition to distributing a constant size problem over an increasing number of processors. The test cases were run on a cluster of IBM RS/6000 Model 590 workstations with ethernet and ATM networking plus a shared memory SGI Power Challenge L workstation. The results indicate that the network capabilities significantly influence the parallel efficiency, i.e., a shared memory machine is fastest and ATM networking provides acceptable performance. The limitations of ethernet greatly hamper the rapid calculation of flows using ALLSPD-3D.

  18. Evaluation of the Lattice-Boltzmann Equation Solver PowerFLOW for Aerodynamic Applications

    NASA Technical Reports Server (NTRS)

    Lockard, David P.; Luo, Li-Shi; Singer, Bart A.; Bushnell, Dennis M. (Technical Monitor)

    2000-01-01

    A careful comparison of the performance of a commercially available Lattice-Boltzmann Equation solver (Power-FLOW) was made with a conventional, block-structured computational fluid-dynamics code (CFL3D) for the flow over a two-dimensional NACA-0012 airfoil. The results suggest that the version of PowerFLOW used in the investigation produced solutions with large errors in the computed flow field; these errors are attributed to inadequate resolution of the boundary layer for reasons related to grid resolution and primitive turbulence modeling. The requirement of square grid cells in the PowerFLOW calculations limited the number of points that could be used to span the boundary layer on the wing and still keep the computation size small enough to fit on the available computers. Although not discussed in detail, disappointing results were also obtained with PowerFLOW for a cavity flow and for the flow around a generic helicopter configuration.

  19. A boundary element method for Stokes flows with interfaces

    NASA Astrophysics Data System (ADS)

    Alinovi, Edoardo; Bottaro, Alessandro

    2018-03-01

    The boundary element method is a widely used and powerful technique to numerically describe multiphase flows with interfaces, satisfying Stokes' approximation. However, low viscosity ratios between immiscible fluids in contact at an interface and large surface tensions may lead to consistency issues as far as mass conservation is concerned. A simple and effective approach is described to ensure mass conservation at all viscosity ratios and capillary numbers within a standard boundary element framework. Benchmark cases are initially considered demonstrating the efficacy of the proposed technique in satisfying mass conservation, comparing with approaches and other solutions present in the literature. The methodology developed is finally applied to the problem of slippage over superhydrophobic surfaces.

  20. Optimizing parameters of GTU cycle and design values of air-gas channel in a gas turbine with cooled nozzle and rotor blades

    NASA Astrophysics Data System (ADS)

    Kler, A. M.; Zakharov, Yu. B.

    2012-09-01

    The authors have formulated the problem of joint optimization of pressure and temperature of combustion products before gas turbine, profiles of nozzle and rotor blades of gas turbine, and cooling air flow rates through nozzle and rotor blades. The article offers an original approach to optimization of profiles of gas turbine blades where the optimized profiles are presented as linear combinations of preliminarily formed basic profiles. The given examples relate to optimization of the gas turbine unit on the criterion of power efficiency at preliminary heat removal from air flows supplied for the air-gas channel cooling and without such removal.

  1. Using genetic algorithms to determine near-optimal pricing, investment and operating strategies in the electric power industry

    NASA Astrophysics Data System (ADS)

    Wu, Dongjun

    Network industries have technologies characterized by a spatial hierarchy, the "network," with capital-intensive interconnections and time-dependent, capacity-limited flows of products and services through the network to customers. This dissertation studies service pricing, investment and business operating strategies for the electric power network. First-best solutions for a variety of pricing and investment problems have been studied. The evaluation of genetic algorithms (GA, which are methods based on the idea of natural evolution) as a primary means of solving complicated network problems, both w.r.t. pricing: as well as w.r.t. investment and other operating decisions, has been conducted. New constraint-handling techniques in GAs have been studied and tested. The actual application of such constraint-handling techniques in solving practical non-linear optimization problems has been tested on several complex network design problems with encouraging initial results. Genetic algorithms provide solutions that are feasible and close to optimal when the optimal solution is know; in some instances, the near-optimal solutions for small problems by the proposed GA approach can only be tested by pushing the limits of currently available non-linear optimization software. The performance is far better than several commercially available GA programs, which are generally inadequate in solving any of the problems studied in this dissertation, primarily because of their poor handling of constraints. Genetic algorithms, if carefully designed, seem very promising in solving difficult problems which are intractable by traditional analytic methods.

  2. Extension of vibrational power flow techniques to two-dimensional structures

    NASA Technical Reports Server (NTRS)

    Cuschieri, Joseph M.

    1988-01-01

    In the analysis of the vibration response and structure-borne vibration transmission between elements of a complex structure, statistical energy analysis (SEA) or finite element analysis (FEA) are generally used. However, an alternative method is using vibrational power flow techniques which can be especially useful in the mid frequencies between the optimum frequency regimes for SEA and FEA. Power flow analysis has in general been used on 1-D beam-like structures or between structures with point joints. In this paper, the power flow technique is extended to 2-D plate-like structures joined along a common edge without frequency or spatial averaging the results, such that the resonant response of the structure is determined. The power flow results are compared to results obtained using FEA results at low frequencies and SEA at high frequencies. The agreement with FEA results is good but the power flow technique has an improved computational efficiency. Compared to the SEA results the power flow results show a closer representation of the actual response of the structure.

  3. Extension of vibrational power flow techniques to two-dimensional structures

    NASA Technical Reports Server (NTRS)

    Cuschieri, J. M.

    1987-01-01

    In the analysis of the vibration response and structure-borne vibration transmission between elements of a complex structure, statistical energy analysis (SEA) or Finite Element Analysis (FEA) are generally used. However, an alternative method is using vibrational power flow techniques which can be especially useful in the mid- frequencies between the optimum frequency regimes for FEA and SEA. Power flow analysis has in general been used on one-dimensional beam-like structures or between structures with point joints. In this paper, the power flow technique is extended to two-dimensional plate like structures joined along a common edge without frequency or spatial averaging the results, such that the resonant response of the structure is determined. The power flow results are compared to results obtained using FEA at low frequencies and SEA at high frequencies. The agreement with FEA results is good but the power flow technique has an improved computational efficiency. Compared to the SEA results the power flow results show a closer representation of the actual response of the structure.

  4. Molecular simulation of small Knudsen number flows

    NASA Astrophysics Data System (ADS)

    Fei, Fei; Fan, Jing

    2012-11-01

    The direct simulation Monte Carlo (DSMC) method is a powerful particle-based method for modeling gas flows. It works well for relatively large Knudsen (Kn) numbers, typically larger than 0.01, but quickly becomes computationally intensive as Kn decreases due to its time step and cell size limitations. An alternative approach was proposed to relax or remove these limitations, based on replacing pairwise collisions with a stochastic model corresponding to the Fokker-Planck equation [J. Comput. Phys., 229, 1077 (2010); J. Fluid Mech., 680, 574 (2011)]. Similar to the DSMC method, the downside of that approach suffers from computationally statistical noise. To solve the problem, a diffusion-based information preservation (D-IP) method has been developed. The main idea is to track the motion of a simulated molecule from the diffusive standpoint, and obtain the flow velocity and temperature through sampling and averaging the IP quantities. To validate the idea and the corresponding model, several benchmark problems with Kn ˜ 10-3-10-4 have been investigated. It is shown that the IP calculations are not only accurate, but also efficient because they make possible using a time step and cell size over an order of magnitude larger than the mean collision time and mean free path, respectively.

  5. Optimal reactive planning with security constraints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, W.R.; Cheng, D.T.Y.; Dixon, A.M.

    1995-12-31

    The National Grid Company (NGC) of England and Wales has developed a computer program, SCORPION, to help system planners optimize the location and size of new reactive compensation plant on the transmission system. The reactive power requirements of the NGC system have risen as a result of increased power flows and the shorter timescale on which power stations are commissioned and withdrawn from service. In view of the high costs involved, it is important that reactive compensation be installed as economically as possible, without compromising security. Traditional methods based on iterative use of a load flow program are labor intensivemore » and subjective. SCORPION determines a near-optimal pattern of new reactive sources which are required to satisfy voltage constraints for normal and contingent states of operation of the transmission system. The algorithm processes the system states sequentially, instead of optimizing all of them simultaneously. This allows a large number of system states to be considered with an acceptable run time and computer memory requirement. Installed reactive sources are treated as continuous, rather than discrete, variables. However, the program has a restart facility which enables the user to add realistically sized reactive sources explicitly and thereby work towards a realizable solution to the planning problem.« less

  6. New Developments of Computational Fluid Dynamics and Their Applications to Practical Engineering Problems

    NASA Astrophysics Data System (ADS)

    Chen, Hudong

    2001-06-01

    There have been considerable advances in Lattice Boltzmann (LB) based methods in the last decade. By now, the fundamental concept of using the approach as an alternative tool for computational fluid dynamics (CFD) has been substantially appreciated and validated in mainstream scientific research and in industrial engineering communities. Lattice Boltzmann based methods possess several major advantages: a) less numerical dissipation due to the linear Lagrange type advection operator in the Boltzmann equation; b) local dynamic interactions suitable for highly parallel processing; c) physical handling of boundary conditions for complicated geometries and accurate control of fluxes; d) microscopically consistent modeling of thermodynamics and of interface properties in complex multiphase flows. It provides a great opportunity to apply the method to practical engineering problems encountered in a wide range of industries from automotive, aerospace to chemical, biomedical, petroleum, nuclear, and others. One of the key challenges is to extend the applicability of this alternative approach to regimes of highly turbulent flows commonly encountered in practical engineering situations involving high Reynolds numbers. Over the past ten years, significant efforts have been made on this front at Exa Corporation in developing a lattice Boltzmann based commercial CFD software, PowerFLOW. It has become a useful computational tool for the simulation of turbulent aerodynamics in practical engineering problems involving extremely complex geometries and flow situations, such as in new automotive vehicle designs world wide. In this talk, we present an overall LB based algorithm concept along with certain key extensions in order to accurately handle turbulent flows involving extremely complex geometries. To demonstrate the accuracy of turbulent flow simulations, we provide a set of validation results for some well known academic benchmarks. These include straight channels, backward-facing steps, flows over a curved hill and typical NACA airfoils at various angles of attack including prediction of stall angle. We further provide numerous engineering cases, ranging from external aerodynamics around various car bodies to internal flows involved in various industrial devices. We conclude with a discussion of certain future extensions for complex fluids.

  7. Large-eddy simulations of turbulent flow for grid-to-rod fretting in nuclear reactors

    DOE PAGES

    Bakosi, J.; Christon, M. A.; Lowrie, R. B.; ...

    2013-07-12

    The grid-to-rod fretting (GTRF) problem in pressurized water reactors is a flow-induced vibration problem that results in wear and failure of the fuel rods in nuclear assemblies. In order to understand the fluid dynamics of GTRF and to build an archival database of turbulence statistics for various configurations, implicit large-eddy simulations of time-dependent single-phase turbulent flow have been performed in 3 × 3 and 5 × 5 rod bundles with a single grid spacer. To assess the computational mesh and resolution requirements, a method for quantitative assessment of unstructured meshes with no-slip walls is described. The calculations have been carriedmore » out using Hydra-TH, a thermal-hydraulics code developed at Los Alamos for the Consortium for Advanced Simulation of Light water reactors, a United States Department of Energy Innovation Hub. Hydra-TH uses a second-order implicit incremental projection method to solve the singlephase incompressible Navier-Stokes equations. The simulations explicitly resolve the large scale motions of the turbulent flow field using first principles and rely on a monotonicity-preserving numerical technique to represent the unresolved scales. Each series of simulations for the 3 × 3 and 5 × 5 rod-bundle geometries is an analysis of the flow field statistics combined with a mesh-refinement study and validation with available experimental data. Our primary focus is the time history and statistics of the forces loading the fuel rods. These hydrodynamic forces are believed to be the key player resulting in rod vibration and GTRF wear, one of the leading causes for leaking nuclear fuel which costs power utilities millions of dollars in preventive measures. As a result, we demonstrate that implicit large-eddy simulation of rod-bundle flows is a viable way to calculate the excitation forces for the GTRF problem.« less

  8. Active Control of Panel Vibrations Induced by a Boundary Layer Flow

    NASA Technical Reports Server (NTRS)

    Chow, Pao-Liu

    1998-01-01

    In recent years, active and passive control of sound and vibration in aeroelastic structures have received a great deal of attention due to many potential applications to aerospace and other industries. There exists a great deal of research work done in this area. Recent advances in the control of sound and vibration can be found in the several conference proceedings. In this report we will summarize our research findings supported by the NASA grant NAG-1-1175. The problems of active and passive control of sound and vibration has been investigated by many researchers for a number of years. However, few of the articles are concerned with the sound and vibration with flow-structure interaction. Experimental and numerical studies on the coupling between panel vibration and acoustic radiation due to flow excitation have been done by Maestrello and his associates at NASA/Langley Research Center. Since the coupled system of nonlinear partial differential equations is formidable, an analytical solution to the full problem seems impossible. For this reason, we have to simplify the problem to that of the nonlinear panel vibration induced by a uniform flow or a boundary-layer flow with a given wall pressure distribution. Based on this simplified model, we have been able to study the control and stabilization of the nonlinear panel vibration, which have not been treated satisfactorily by other authors. The vibration suppression will clearly reduce the sound radiation power from the panel. The major research findings will be presented in the next three sections. In Section II we shall describe our results on the boundary control of nonlinear panel vibration, with or without flow excitation. Section III is concerned with active control of the vibration and sound radiation from a nonlinear elastic panel. A detailed description of our work on the parametric vibrational control of nonlinear elastic panel will be presented in Section IV. This paper will be submitted to the Journal of Acoustic Society of America for publication.

  9. Modeling the complexity of acoustic emission during intermittent plastic deformation: Power laws and multifractal spectra

    NASA Astrophysics Data System (ADS)

    Kumar, Jagadish; Ananthakrishna, G.

    2018-01-01

    Scale-invariant power-law distributions for acoustic emission signals are ubiquitous in several plastically deforming materials. However, power-law distributions for acoustic emission energies are reported in distinctly different plastically deforming situations such as hcp and fcc single and polycrystalline samples exhibiting smooth stress-strain curves and in dilute metallic alloys exhibiting discontinuous flow. This is surprising since the underlying dislocation mechanisms in these two types of deformations are very different. So far, there have been no models that predict the power-law statistics for discontinuous flow. Furthermore, the statistics of the acoustic emission signals in jerky flow is even more complex, requiring multifractal measures for a proper characterization. There has been no model that explains the complex statistics either. Here we address the problem of statistical characterization of the acoustic emission signals associated with the three types of the Portevin-Le Chatelier bands. Following our recently proposed general framework for calculating acoustic emission, we set up a wave equation for the elastic degrees of freedom with a plastic strain rate as a source term. The energy dissipated during acoustic emission is represented by the Rayleigh-dissipation function. Using the plastic strain rate obtained from the Ananthakrishna model for the Portevin-Le Chatelier effect, we compute the acoustic emission signals associated with the three Portevin-Le Chatelier bands and the Lüders-like band. The so-calculated acoustic emission signals are used for further statistical characterization. Our results show that the model predicts power-law statistics for all the acoustic emission signals associated with the three types of Portevin-Le Chatelier bands with the exponent values increasing with increasing strain rate. The calculated multifractal spectra corresponding to the acoustic emission signals associated with the three band types have a maximum spread for the type C bands and decreasing with types B and A. We further show that the acoustic emission signals associated with Lüders-like band also exhibit a power-law distribution and multifractality.

  10. Renewable energy powered membrane technology. 1. Development and characterization of a photovoltaic hybrid membrane system.

    PubMed

    Schäfer, A I; Broeckmann, A; Richards, B S

    2007-02-01

    In isolated communities where potable water sources as well as energy grids are limited or nonexistent, treating brackish groundwater aquifers with small-scale desalination systems can be a viable alternative to existing water infrastructures. Given the unavailability of power in many such situations, renewable energy is an obvious solution to power such systems. However, renewable energy is an intermittent power supply and with regards to the performance of intermittently operated desalination systems, only very limited experience exists, both with regards to efficiency as well as water quality. In this paper, this lack of knowledge is addressed by evaluating a system operated with varying parameters (pressure and flow) with constant power as a step toward defining a safe operating window, and they provide a basis for interpreting future data obtained with a renewable energy source. Field trials were performed on a brackish (5300 mg/L TDS; 8290 microS/cm) bore in Central Australia with a photovoltaic-powered membrane filtration (PV-membrane) system. Four nanofiltration and reverse osmosis membranes (BW30, ESPA4, NF90, TFC-S) and a number of operation parameter combinations (transmembrane pressure, feed flow, TFC-S) and operating parameters transmembrane pressure and feed flow were investigated to find the best operating conditions for maximum drinking water production and minimum specific energy consumption (SEC). The ESPA4 membrane performed best for this brackish source, producing 250 L/h of excellent drinking water (257 mg/L TDS; 400 microS/ cm) at an SEC of 1.2 kWh/m3. The issue of brine disposal or reuse is also discussed and the article compares the salinity of the produced brine with livestock water. Since the feedwater is disinfected physically using ultrafiltration (UF), the brine is free from bacteria and most viruses and hence can be seen more as a reusable product stream than a waste stream with a disposal problem.

  11. Modeling the complexity of acoustic emission during intermittent plastic deformation: Power laws and multifractal spectra.

    PubMed

    Kumar, Jagadish; Ananthakrishna, G

    2018-01-01

    Scale-invariant power-law distributions for acoustic emission signals are ubiquitous in several plastically deforming materials. However, power-law distributions for acoustic emission energies are reported in distinctly different plastically deforming situations such as hcp and fcc single and polycrystalline samples exhibiting smooth stress-strain curves and in dilute metallic alloys exhibiting discontinuous flow. This is surprising since the underlying dislocation mechanisms in these two types of deformations are very different. So far, there have been no models that predict the power-law statistics for discontinuous flow. Furthermore, the statistics of the acoustic emission signals in jerky flow is even more complex, requiring multifractal measures for a proper characterization. There has been no model that explains the complex statistics either. Here we address the problem of statistical characterization of the acoustic emission signals associated with the three types of the Portevin-Le Chatelier bands. Following our recently proposed general framework for calculating acoustic emission, we set up a wave equation for the elastic degrees of freedom with a plastic strain rate as a source term. The energy dissipated during acoustic emission is represented by the Rayleigh-dissipation function. Using the plastic strain rate obtained from the Ananthakrishna model for the Portevin-Le Chatelier effect, we compute the acoustic emission signals associated with the three Portevin-Le Chatelier bands and the Lüders-like band. The so-calculated acoustic emission signals are used for further statistical characterization. Our results show that the model predicts power-law statistics for all the acoustic emission signals associated with the three types of Portevin-Le Chatelier bands with the exponent values increasing with increasing strain rate. The calculated multifractal spectra corresponding to the acoustic emission signals associated with the three band types have a maximum spread for the type C bands and decreasing with types B and A. We further show that the acoustic emission signals associated with Lüders-like band also exhibit a power-law distribution and multifractality.

  12. Assessing the potential for improved scramjet performance through application of electromagnetic flow control

    NASA Astrophysics Data System (ADS)

    Lindsey, Martin Forrester

    Sustained hypersonic flight using scramjet propulsion is the key technology bridging the gap between turbojets and the exoatmospheric environment where a rocket is required. Recent efforts have focused on electromagnetic (EM) flow control to mitigate the problems of high thermomechanical loads and low propulsion efficiencies associated with scramjet propulsion. This research effort is the first flight-scale, three-dimensional computational analysis of a realistic scramjet to determine how EM flow control can improve scramjet performance. Development of a quasi-one dimensional design tool culminated in the first open source geometry of an entire scramjet flowpath. This geometry was then tested extensively with the Air Force Research Laboratory's three-dimensional Navier-Stokes and EM coupled computational code. As part of improving the model fidelity, a loosely coupled algorithm was developed to incorporate thermochemistry. This resulted in the only open-source model of fuel injection, mixing and combustion in a magnetogasdynamic (MGD) flow controlled engine. In addition, a control volume analysis tool with an electron beam ionization model was presented for the first time in the context of the established computational method used. Local EM flow control within the internal inlet greatly impacted drag forces and wall heat transfer but was only marginally successful in raising the average pressure entering the combustor. The use of an MGD accelerator to locally increase flow momentum was an effective approach to improve flow into the scramjet's isolator. Combustor-based MGD generators proved superior to the inlet generator with respect to power density and overall engine efficiency. MGD acceleration was shown to be ineffective in improving overall performance, with all of the bypass engines having approximately 33% more drag than baseline and none of them achieving a self-powered state.

  13. Finite element analysis in fluids; Proceedings of the Seventh International Conference on Finite Element Methods in Flow Problems, University of Alabama, Huntsville, Apr. 3-7, 1989

    NASA Technical Reports Server (NTRS)

    Chung, T. J. (Editor); Karr, Gerald R. (Editor)

    1989-01-01

    Recent advances in computational fluid dynamics are examined in reviews and reports, with an emphasis on finite-element methods. Sections are devoted to adaptive meshes, atmospheric dynamics, combustion, compressible flows, control-volume finite elements, crystal growth, domain decomposition, EM-field problems, FDM/FEM, and fluid-structure interactions. Consideration is given to free-boundary problems with heat transfer, free surface flow, geophysical flow problems, heat and mass transfer, high-speed flow, incompressible flow, inverse design methods, MHD problems, the mathematics of finite elements, and mesh generation. Also discussed are mixed finite elements, multigrid methods, non-Newtonian fluids, numerical dissipation, parallel vector processing, reservoir simulation, seepage, shallow-water problems, spectral methods, supercomputer architectures, three-dimensional problems, and turbulent flows.

  14. CFD Analysis of Hypersonic Flowfields With Surface Thermochemistry and Ablation

    NASA Technical Reports Server (NTRS)

    Henline, W. D.

    1997-01-01

    In the past forty years much progress has been made in computational methods applied to the solution of problems in spacecraft hypervelocity flow and heat transfer. Although the basic thermochemical and physical modeling techniques have changed little in this time, several orders of magnitude increase in the speed of numerically solving the Navier-Stokes and associated energy equations have been achieved. The extent to which this computational power can be applied to the design of spacecraft heat shields is dependent on the proper coupling of the external flow equations to the boundary conditions and governing equations representing the thermal protection system in-depth conduction, pyrolysis and surface ablation phenomena. A discussion of the techniques used to do this in past problems as well as the current state-of-art is provided. Specific examples, including past missions such as Galileo, together with the more recent case studies of ESA/Rosetta Sample Comet Return, Mars Pathfinder and X-33 will be discussed. Modeling assumptions, design approach and computational methods and results are presented.

  15. Power formula for open-channel flow resistance

    USGS Publications Warehouse

    Chen, Cheng-lung

    1988-01-01

    This paper evaluates various power formulas for flow resistance in open channels. Unlike the logarithmic resistance equation that can be theoretically derived either from Prandtl's mixing-length hypothesis or von Karman's similarity hypothesis, the power formula has long had an appearance of empiricism. Nevertheless, the simplicity in the form of the power formula has made it popular among the many possible forms of flow resistance formulas. This paper reexamines the concept and rationale of the power formulation, thereby addressing some critical issues in the modeling of flow resistance.

  16. Simulation of supersonic turbulent flow in the vicinity of an inclined backward-facing step

    NASA Astrophysics Data System (ADS)

    El-Askary, W. A.

    2011-08-01

    Large eddy simulation (LES) is a viable and powerful tool to analyse unsteady three-dimensional turbulent flows. In this article, the method of LES is used to compute a plane turbulent supersonic boundary layer subjected to different pressure gradients. The pressure gradients are generated by allowing the flow to pass in the vicinity of an expansion-compression ramp (inclined backward-facing step with leeward-face angle of 25°) for an upstream Mach number of 2.9. The inflow boundary condition is the main problem for all turbulent wall-bounded flows. An approach to solve this problem is to extract instantaneous velocities, temperature and density data from an auxiliary simulation (inflow generator). To generate an appropriate realistic inflow condition to the inflow generator itself the rescaling technique for compressible flows is used. In this method, Morkovin's hypothesis, in which the total temperature fluctuations are neglected compared with the static temperature fluctuations, is applied to rescale and generate the temperature profile at inlet. This technique was successfully developed and applied by the present author for an LES of subsonic three-dimensional boundary layer of a smooth curved ramp. The present LES results are compared with the available experimental data as well as numerical data. The positive impact of the rescaling formulation of the temperature is proven by the convincing agreement of the obtained results with the experimental data compared with published numerical work and sheds light on the quality of the developed compressible inflow generator.

  17. 1r2dinv: A finite-difference model for inverse analysis of two dimensional linear or radial groundwater flow

    USGS Publications Warehouse

    Bohling, Geoffrey C.; Butler, J.J.

    2001-01-01

    We have developed a program for inverse analysis of two-dimensional linear or radial groundwater flow problems. The program, 1r2dinv, uses standard finite difference techniques to solve the groundwater flow equation for a horizontal or vertical plane with heterogeneous properties. In radial mode, the program simulates flow to a well in a vertical plane, transforming the radial flow equation into an equivalent problem in Cartesian coordinates. The physical parameters in the model are horizontal or x-direction hydraulic conductivity, anisotropy ratio (vertical to horizontal conductivity in a vertical model, y-direction to x-direction in a horizontal model), and specific storage. The program allows the user to specify arbitrary and independent zonations of these three parameters and also to specify which zonal parameter values are known and which are unknown. The Levenberg-Marquardt algorithm is used to estimate parameters from observed head values. Particularly powerful features of the program are the ability to perform simultaneous analysis of heads from different tests and the inclusion of the wellbore in the radial mode. These capabilities allow the program to be used for analysis of suites of well tests, such as multilevel slug tests or pumping tests in a tomographic format. The combination of information from tests stressing different vertical levels in an aquifer provides the means for accurately estimating vertical variations in conductivity, a factor profoundly influencing contaminant transport in the subsurface. ?? 2001 Elsevier Science Ltd. All rights reserved.

  18. Regularization Reconstruction Method for Imaging Problems in Electrical Capacitance Tomography

    NASA Astrophysics Data System (ADS)

    Chu, Pan; Lei, Jing

    2017-11-01

    The electrical capacitance tomography (ECT) is deemed to be a powerful visualization measurement technique for the parametric measurement in a multiphase flow system. The inversion task in the ECT technology is an ill-posed inverse problem, and seeking for an efficient numerical method to improve the precision of the reconstruction images is important for practical measurements. By the introduction of the Tikhonov regularization (TR) methodology, in this paper a loss function that emphasizes the robustness of the estimation and the low rank property of the imaging targets is put forward to convert the solution of the inverse problem in the ECT reconstruction task into a minimization problem. Inspired by the split Bregman (SB) algorithm, an iteration scheme is developed for solving the proposed loss function. Numerical experiment results validate that the proposed inversion method not only reconstructs the fine structures of the imaging targets, but also improves the robustness.

  19. Space shuttle booster multi-engine base flow analysis

    NASA Technical Reports Server (NTRS)

    Tang, H. H.; Gardiner, C. R.; Anderson, W. A.; Navickas, J.

    1972-01-01

    A comprehensive review of currently available techniques pertinent to several prominent aspects of the base thermal problem of the space shuttle booster is given along with a brief review of experimental results. A tractable engineering analysis, capable of predicting the power-on base pressure, base heating, and other base thermal environmental conditions, such as base gas temperature, is presented and used for an analysis of various space shuttle booster configurations. The analysis consists of a rational combination of theoretical treatments of the prominent flow interaction phenomena in the base region. These theories consider jet mixing, plume flow, axisymmetric flow effects, base injection, recirculating flow dynamics, and various modes of heat transfer. Such effects as initial boundary layer expansion at the nozzle lip, reattachment, recompression, choked vent flow, and nonisoenergetic mixing processes are included in the analysis. A unified method was developed and programmed to numerically obtain compatible solutions for the various flow field components in both flight and ground test conditions. Preliminary prediction for a 12-engine space shuttle booster base thermal environment was obtained for a typical trajectory history. Theoretical predictions were also obtained for some clustered-engine experimental conditions. Results indicate good agreement between the data and theoretical predicitons.

  20. Quantum Max-flow/Min-cut

    NASA Astrophysics Data System (ADS)

    Cui, Shawn X.; Freedman, Michael H.; Sattath, Or; Stong, Richard; Minton, Greg

    2016-06-01

    The classical max-flow min-cut theorem describes transport through certain idealized classical networks. We consider the quantum analog for tensor networks. By associating an integral capacity to each edge and a tensor to each vertex in a flow network, we can also interpret it as a tensor network and, more specifically, as a linear map from the input space to the output space. The quantum max-flow is defined to be the maximal rank of this linear map over all choices of tensors. The quantum min-cut is defined to be the minimum product of the capacities of edges over all cuts of the tensor network. We show that unlike the classical case, the quantum max-flow=min-cut conjecture is not true in general. Under certain conditions, e.g., when the capacity on each edge is some power of a fixed integer, the quantum max-flow is proved to equal the quantum min-cut. However, concrete examples are also provided where the equality does not hold. We also found connections of quantum max-flow/min-cut with entropy of entanglement and the quantum satisfiability problem. We speculate that the phenomena revealed may be of interest both in spin systems in condensed matter and in quantum gravity.

  1. DNS study of speed of sound in two-phase flows with phase change

    NASA Astrophysics Data System (ADS)

    Fu, Kai; Deng, Xiaolong

    2017-11-01

    Heat transfer through pipe flow is important for the safety of thermal power plants. Normally it is considered incompressible. However, in some conditions compressibility effects could deteriorate the heat transfer efficiency and even result in pipe rupture, especially when there is obvious phase change, due to the much lower sound speed in liquid-gas mixture flows. Based on the stratified multiphase flow model (Chang and Liou, JCP 2007), we present a new approach to simulate the sound speed in 3-D compressible two-phase dispersed flows, in which each face is divided into gas-gas, gas-liquid, and liquid-liquid parts via reconstruction by volume fraction, and fluxes are calculated correspondingly. Applying it to well-distributed air-water bubbly flows, comparing with the experiment measurements in air water mixture (Karplus, JASA 1957), the effects of adiabaticity, viscosity, and isothermality are examined. Under viscous and isothermal condition, the simulation results match the experimental ones very well, showing the DNS study with current method is an effective way for the sound speed of complex two-phase dispersed flows. Including the two-phase Riemann solver with phase change (Fechter et al., JCP 2017), more complex problems can be numerically studied.

  2. Thermal analyses of power subsystem components

    NASA Technical Reports Server (NTRS)

    Morehouse, Jeffrey H.

    1990-01-01

    The hiatus in the Space Shuttle (Orbiter) program provided time for an in-depth examination of all the subsystems and their past performance. Specifically, problems with reliability and/or operating limits were and continue to be of major engineering concern. The Orbiter Auxiliary Power Unit (APU) currently operates with electric resistance line heaters which are controlled with thermostats. A design option simplification of this heater subsystem is being considered which would use self-regulating heaters. A determination of the properties and thermal operating characteristics of these self-regulating heaters was needed. The Orbiter fuel cells are cooled with a freon loop. During a loss of external heat exchanger coolant flow, the single pump circulating the freon is to be left running. It was unknown what temperature and flow rate transient conditions of the freon would provide the required fuel cell cooling and for how long. The overall objective was the development of the thermal characterization and subsequent analysis of both the proposed self-regulating APU heater and the fuel cell coolant loop subsystem. The specific objective of the APU subsystem effort was to determine the feasibility of replacing the current heater and thermostat arrangement with a self-regulating heater. The specific objective of the fuel cell coolant subsystem work was to determine the tranient coolant temperature and associated flow rates during a loss-of-external heat exchanger flow.

  3. Single-Phase Single-Stage Grid Tied Solar PV System with Active Power Filtering Using Power Balance Theory

    NASA Astrophysics Data System (ADS)

    Singh, Yashi; Hussain, Ikhlaq; Singh, Bhim; Mishra, Sukumar

    2018-06-01

    In this paper, power quality features such as harmonics mitigation, power factor correction with active power filtering are addressed in a single-stage, single-phase solar photovoltaic (PV) grid tied system. The Power Balance Theory (PBT) with perturb and observe based maximum power point tracking algorithm is proposed for the mitigation of power quality problems in a solar PV grid tied system. The solar PV array is interfaced to a single phase AC grid through a Voltage Source Converter (VSC), which provides active power flow from a solar PV array to the grid as well as to the load and it performs harmonics mitigation using PBT based control. The solar PV array power varies with sunlight and due to this, the solar PV grid tied VSC works only 8-10 h per day. At night, when PV power is zero, the VSC works as an active power filter for power quality improvement, and the load active power is delivered by the grid to the load connected at the point of common coupling. This increases the effective utilization of a VSC. The system is modelled and simulated using MATLAB and simulated responses of the system at nonlinear loads and varying environmental conditions are also validated experimentally on a prototype developed in the laboratory.

  4. Single-Phase Single-Stage Grid Tied Solar PV System with Active Power Filtering Using Power Balance Theory

    NASA Astrophysics Data System (ADS)

    Singh, Yashi; Hussain, Ikhlaq; Singh, Bhim; Mishra, Sukumar

    2018-03-01

    In this paper, power quality features such as harmonics mitigation, power factor correction with active power filtering are addressed in a single-stage, single-phase solar photovoltaic (PV) grid tied system. The Power Balance Theory (PBT) with perturb and observe based maximum power point tracking algorithm is proposed for the mitigation of power quality problems in a solar PV grid tied system. The solar PV array is interfaced to a single phase AC grid through a Voltage Source Converter (VSC), which provides active power flow from a solar PV array to the grid as well as to the load and it performs harmonics mitigation using PBT based control. The solar PV array power varies with sunlight and due to this, the solar PV grid tied VSC works only 8-10 h per day. At night, when PV power is zero, the VSC works as an active power filter for power quality improvement, and the load active power is delivered by the grid to the load connected at the point of common coupling. This increases the effective utilization of a VSC. The system is modelled and simulated using MATLAB and simulated responses of the system at nonlinear loads and varying environmental conditions are also validated experimentally on a prototype developed in the laboratory.

  5. Flow Characteristics of a Multiple Nozzle Exhaust Gas Eductor System.

    DTIC Science & Technology

    1981-03-01

    these exhaust gases are a temperatures significantly above those of conventionally powered ships. A few of the problems caused by these high temperatures ...systems designed for marine gas turbine applications must substantially cool exhaust gases , present an exterior stack surface temperature which will not...stack in. H 02 R - Gas constant for air, 53.34 ft-lbf/Ibm-R s - Entropy, Btu/Ibm-R S - Primary dimension of mixing stack T - Absolute temperature , R

  6. Agent-based modeling: Methods and techniques for simulating human systems

    PubMed Central

    Bonabeau, Eric

    2002-01-01

    Agent-based modeling is a powerful simulation modeling technique that has seen a number of applications in the last few years, including applications to real-world business problems. After the basic principles of agent-based simulation are briefly introduced, its four areas of application are discussed by using real-world applications: flow simulation, organizational simulation, market simulation, and diffusion simulation. For each category, one or several business applications are described and analyzed. PMID:12011407

  7. Mobility power flow analysis of an L-shaped plate structure subjected to acoustic excitation

    NASA Technical Reports Server (NTRS)

    Cuschieri, J. M.

    1989-01-01

    An analytical investigation based on the Mobility Power Flow method is presented for the determination of the vibrational response and power flow for two coupled flat plate structures in an L-shaped configuration, subjected to acoustical excitation. The principle of the mobility power flow method consists of dividing the global structure into a series of subsystems coupled together using mobility functions. Each separate subsystem is analyzed independently to determine the structural mobility functions for the junction and excitation locations. The mobility functions, together with the characteristics of the junction between the subsystems, are then used to determine the response of the global structure and the power flow. In the coupled plate structure considered here, mobility power flow expressions are derived for excitation by an incident acoustic plane wave. In this case, the forces (acoustic pressures) acting on the structure are dependent on the response of the structure because of the scattered pressure component. The interaction between the structure and the fluid leads to the derivation of a corrected mode shape for the plates' normal surface velocity and also for the structure mobility functions. The determination of the scattered pressure components in the expressions for the power flow represents an additional component in the power flow balance for the source plate and the receiver plate. This component represents the radiated acoustical power from the plate structure.

  8. MIDDLE GORGE POWER PLANT, OWENS RIVER STREAM FLOWING OVER TAIL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MIDDLE GORGE POWER PLANT, OWENS RIVER STREAM FLOWING OVER TAIL RACE OF POWER PLANT AND PENSTOCK HEADGATE TO LOWER GORGE CONTROL PLANT. A MINIMAL FLOW OF RIVER WATER IS REQUIRED TO MAINTAIN FISH LIFE - Los Angeles Aqueduct, Middle Gorge Power Plant, Los Angeles, Los Angeles County, CA

  9. Reconstruction of signals with unknown spectra in information field theory with parameter uncertainty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ensslin, Torsten A.; Frommert, Mona

    2011-05-15

    The optimal reconstruction of cosmic metric perturbations and other signals requires knowledge of their power spectra and other parameters. If these are not known a priori, they have to be measured simultaneously from the same data used for the signal reconstruction. We formulate the general problem of signal inference in the presence of unknown parameters within the framework of information field theory. To solve this, we develop a generic parameter-uncertainty renormalized estimation (PURE) technique. As a concrete application, we address the problem of reconstructing Gaussian signals with unknown power-spectrum with five different approaches: (i) separate maximum-a-posteriori power-spectrum measurement and subsequentmore » reconstruction, (ii) maximum-a-posteriori reconstruction with marginalized power-spectrum, (iii) maximizing the joint posterior of signal and spectrum, (iv) guessing the spectrum from the variance in the Wiener-filter map, and (v) renormalization flow analysis of the field-theoretical problem providing the PURE filter. In all cases, the reconstruction can be described or approximated as Wiener-filter operations with assumed signal spectra derived from the data according to the same recipe, but with differing coefficients. All of these filters, except the renormalized one, exhibit a perception threshold in case of a Jeffreys prior for the unknown spectrum. Data modes with variance below this threshold do not affect the signal reconstruction at all. Filter (iv) seems to be similar to the so-called Karhune-Loeve and Feldman-Kaiser-Peacock estimators for galaxy power spectra used in cosmology, which therefore should also exhibit a marginal perception threshold if correctly implemented. We present statistical performance tests and show that the PURE filter is superior to the others, especially if the post-Wiener-filter corrections are included or in case an additional scale-independent spectral smoothness prior can be adopted.« less

  10. Performance study of a data flow architecture

    NASA Technical Reports Server (NTRS)

    Adams, George

    1985-01-01

    Teams of scientists studied data flow concepts, static data flow machine architecture, and the VAL language. Each team mapped its application onto the machine and coded it in VAL. The principal findings of the study were: (1) Five of the seven applications used the full power of the target machine. The galactic simulation and multigrid fluid flow teams found that a significantly smaller version of the machine (16 processing elements) would suffice. (2) A number of machine design parameters including processing element (PE) function unit numbers, array memory size and bandwidth, and routing network capability were found to be crucial for optimal machine performance. (3) The study participants readily acquired VAL programming skills. (4) Participants learned that application-based performance evaluation is a sound method of evaluating new computer architectures, even those that are not fully specified. During the course of the study, participants developed models for using computers to solve numerical problems and for evaluating new architectures. These models form the bases for future evaluation studies.

  11. Multi-port power router and its impact on resilient power grid systems

    NASA Astrophysics Data System (ADS)

    Kado, Yuichi; Iwatsuki, Katsumi; Wada, Keiji

    2016-02-01

    We propose a Y-configuration power router as a unit cell to easily construct a power delivery system that can meet many types of user requirements. The Y-configuration power router controls the direction and magnitude of power flow among three ports regardless of DC and AC. We constructed a prototype three-way isolated DC/DC converter that is the core unit of the Y-configuration power router and tested the power flow control operation. Experimental results revealed that our methodology based on the governing equation was appropriate for the power flow control of the three-way DC/DC converter. In addition, the hexagonal distribution network composed of the power routers has the ability to easily interchange electric power between autonomous microgrid cells. We also explored the requirements for communication between energy routers to achieve dynamic adjustments of energy flow in a coordinated manner and its impact on resilient power grid systems.

  12. Integration of image capture and processing: beyond single-chip digital camera

    NASA Astrophysics Data System (ADS)

    Lim, SukHwan; El Gamal, Abbas

    2001-05-01

    An important trend in the design of digital cameras is the integration of capture and processing onto a single CMOS chip. Although integrating the components of a digital camera system onto a single chip significantly reduces system size and power, it does not fully exploit the potential advantages of integration. We argue that a key advantage of integration is the ability to exploit the high speed imaging capability of CMOS image senor to enable new applications such as multiple capture for enhancing dynamic range and to improve the performance of existing applications such as optical flow estimation. Conventional digital cameras operate at low frame rates and it would be too costly, if not infeasible, to operate their chips at high frame rates. Integration solves this problem. The idea is to capture images at much higher frame rates than he standard frame rate, process the high frame rate data on chip, and output the video sequence and the application specific data at standard frame rate. This idea is applied to optical flow estimation, where significant performance improvements are demonstrate over methods using standard frame rate sequences. We then investigate the constraints on memory size and processing power that can be integrated with a CMOS image sensor in a 0.18 micrometers process and below. We show that enough memory and processing power can be integrated to be able to not only perform the functions of a conventional camera system but also to perform applications such as real time optical flow estimation.

  13. High Sensitive Precise 3D Accelerometer for Solar System Exploration with Unmanned Spacecrafts

    NASA Astrophysics Data System (ADS)

    Savenko, Y. V.; Demyanenko, P. O.; Zinkovskiy, Y. F.

    Solutions of several space and geophysical tasks require creating high sensitive precise accelerometers with sensitivity in order of 10 -13 g. These several tasks are following: inertial navigation of the Earth and Space; gravimetry nearby the Earth and into Space; geology; geophysics; seismology etc. Accelerometers (gravimeters and gradientmeters) with required sensitivity are not available now. The best accelerometers in the world have sensitivity worth on 4-5 orders. It has been developed a new class of fiber-optical sensors (FOS) with light pulse modulation. These sensors have super high threshold sensitivity and wide (up to 10 orders) dynamic range, and can be used as a base for creating of measurement units of physical values as 3D superhigh sensitive precise accelerometers of linear accelerations that is suitable for highest requirements. The principle of operation of the FOS is organically combined with a digital signal processing. It allows decreasing hardware of the accelerometer due to using a usual air-borne or space-borne computer; correcting the influence of natural, design, technological drawbacks of FOS on measured results; neutralising the influence of extraordinary situations available during using of FOS; decreasing the influence of internal and external destabilising factors (as for FOS), such as oscillation of environment temperature, instability of pendulum cycle frequency of sensitive element of the accelerometer etc. We were conducted a quantitative estimation of precise opportunities of analogue FOS in structure of fiber optical measuring devices (FOMD) for elementary FOMD with analogue FOS built on modern element basis of fiber optics (FO), at following assumptions: absolute parameter stability of devices of FOS measuring path; single transmission band of registration path; maximum possible inserted in optical fiber (OF) a radiated power. Even at such idealized assumptions, a calculated value in limit reached minimum inaccuracy of measuring, by analogue FOS, has been ˜ 10-4 %. Substantially accessible values are yet worse on 2-3 order. The reason of poor precise performances of measurers on the basis of analogue FOS is metrologically poor quality of a stream of optical radiation carrying out role of the carrier and receptor of the information. It is a high level of photon noise and a small blanket intensity level. First reason reflects the fact of discreteness of flow of high-energy photons, and it is consequence of second one - smallness, on absolute value, of inserted power into OF from available radiation sources (RS). Works on improvement of FO elements are carrying out. Certainly, it will be created RS allow to insert enough of power into standard OF. But simple increasing of optical flow power in measuring path of FOS will not be able to decide radically the problem of increasing of measuring prices: with raising of power in proportion of square root of its value there is raising a power of photon noises - 1000-times increase of power promises only 30-times increase of measuring precise; insertion into OF more large power (˜ 1 W for standard silicon OF) causes an appearance of non-linear effects in it, which destroying an operating principle of analogue FOS. Thus, it is needed to constatate impossibility of building, at that time, measurers of analogue FOS, concurated with traditional (electrical) measurers on measuring precise. At that all, advantages of FO, as basis of building of FO MD requires to find ways for decision of these problems. Analysis of problem of sensitivity of usual (analogue) FOS has brought us to conclusion about necessity of reviewing of principles of information signal forming in FOS and principles its next electronic processing. For radical increasing of accuracy of measurements with using FOS it is necessary to refuse analogue modulation of optical flow and to transfer to discreet its modulations, entering thus in optical flow new, non-optical, parameters, which will serve as recipients of the information. It allows to save up all advantages of FOS (carrier of information, as earlier, remains an optical flow), but problem of accuracy of measurements now will not be more connected with problem of measurement of low power intensity of optical flow - it is transferred from area of optical measurements in other, non-optical area, where there is no this problem, or it had been solved duly. It had been developed a new class of FOS with pulse modulation of radiation flow intensity at the Department of Design and Production of Redioelectronic Systems of National Technical University of Ukraine ``Kiev Polytechnic Institute''. PFOS have benefit differ from usual analogue FOS on high threshold sensitivity and wide dynamic range of measured values. As example there are described design and performances of proposed 3D accelerometer. High precision of accelerometer measurements on PFOS is provided by following: possibility of high precision measurements of time intervals, which serve as informative parameters in output pulse signal of PFOS; possibility of creating a high quality quartz oscillating system, which serves as sensitive element of PFOS; insensitiveness of metrological performances of the accelerometer to any parameter instabilities (time, temperature, etc.) of optical and electrical elements in measuring path of PFOS; digital processing of PFOS signal practically excludes processing errors; principle insensitiveness of PFOS to electromagnetic noises of any nature and any intensity; possibility of direct correction of measuring results, during their processing, for taking into account and excluding undesirable influences of any destabilizing factors are acting on PFOS. Quasi stationary approach The developed 3D accelerometer on PFOS of extra low accelerations has unique technical performances, that confirms our conclusions about potentially high metrological abilities of pulse FOS. It has the following performances (calculated): threshold sensitivity is (10 -9 ldots 10 -13) g (threshold is determine by customer with determination of sizes of sensor and electronic processing unit); dynamic range is 10 7 ldots 10 9 ; frequency range is 0 ldots 10 Hz; mass is 50 grams; size: length is 120 mm and diameter is 20 mm In addition, that it can be used as accelerometer properly, on its base it is possible to create the strapdown inertial systems (SIS) for spacecraft. Flight control is carried out in accordance to flight programe of spacecraft without support connection with external reference objects. These SIS allow: - direct control over changes of orbital parameter or flight track, caused by action of extra low but long time external force factors (braking action of planet atmosphere remains, sun wind pressure, etc.) on spacecraft; - checking correction of orbital parameters (spacecraft track) by including of low power spaceborne engine; The developed accelerometer can be also used as high sensitive gravimeter for geophysical investigations and geological explorations - anywhere, where it is required to measure extra low deviation of terrestrial gravity value. High sensitivity of described accelerometers allows to create, on its base, gradientometers of real system for investigation of Planet gravity field heterogeneity from spacecraft orbit. This opens possibilities of practical solution of number important tasks of Planet physics.

  14. Operation and Performance of a Biphase Turbine Power Plant at the Cerro Prieto Geothermal Field (Final Report)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hays, Lance G.

    2000-09-01

    A full scale, wellhead Biphase turbine was manufactured and installed with the balance of plant at Well 103 of the Cerro Prieto geothermal resource in Baja, California. The Biphase turbine was first synchronized with the electrical grid of Comision Federal de Electricidad on August 20, 1997. The Biphase power plant was operated from that time until May 23, 2000, a period of 2 years and 9 months. A total of 77,549 kWh were delivered to the grid. The power plant was subsequently placed in a standby condition pending replacement of the rotor with a newly designed, higher power rotor andmore » replacement of the bearings and seals. The maximum measured power output of the Biphase turbine, 808 kWe at 640 psig wellhead pressure, agreed closely with the predicted output, 840 kWe. When combined with the backpressure steam turbine the total output power from that flow would be increased by 40% above the power derived only from the flow by the present flash steam plant. The design relations used to predict performance and design the turbine were verified by these tests. The performance and durability of the Biphase turbine support the conclusion of the Economics and Application Report previously published, (Appendix A). The newly designed rotor (the Dual Pressure Rotor) was analyzed for the above power condition. The Dual Pressure Rotor would increase the power output to 2064 kWe by incorporating two pressure letdown stages in the Biphase rotor, eliminating the requirement for a backpressure steam turbine. The power plant availability was low due to deposition of solids from the well on the Biphase rotor and balance of plant problems. A great deal of plant down time resulted from the requirement to develop methods to handle the solids and from testing the apparatus in the Biphase turbine. Finally an online, washing method using the high pressure two-phase flow was developed which completely eliminated the solids problem. The availability of the Biphase turbine itself was 100% after implementations of this method in March 2000. However, failures of instrumentation and control system components led to additional plant down time and damage to the bearings and seals. The enthalpy and pressure of well 103 declined substantially from the inception of the project. When the project was started the wellhead pressure and enthalpy were 760 psig and 882 Btu/lb respectively. At the time the plant was placed in standby the corresponding values were only 525 psig and 658 Btu/lb. This reduced the available plant power to only 400 kWe making the project economically unfeasible. However, replacement of the existing rotor with the Dual Pressure Rotor and replacement of the bearings and seals will enable the existing Biphase turbine to produce 1190 kWe at the present well conditions without the backpressure steam turbine. Operation with the present staff can then be sustained by selling power under the existing Agreement with CFE. Implementation of this option is recommended with operation of the facility to continue as a demonstration plant. Biphase turbine theory, design and performance are reported herein. The construction of the Biphase turbine and power plant and operational experience are detailed. Improvements in the Biphase turbine are indicated and analyzed. The impact of Biphase techonology on geothermal power production is discussed and recommendations made.« less

  15. Compressibility Effects in Aeronautical Engineering

    NASA Technical Reports Server (NTRS)

    Stack, John

    1941-01-01

    Compressible-flow research, while a relatively new field in aeronautics, is very old, dating back almost to the development of the first firearm. Over the last hundred years, researches have been conducted in the ballistics field, but these results have been of practically no use in aeronautical engineering because the phenomena that have been studied have been the more or less steady supersonic condition of flow. Some work that has been done in connection with steam turbines, particularly nozzle studies, has been of value, In general, however, understanding of compressible-flow phenomena has been very incomplete and permitted no real basis for the solution of aeronautical engineering problems in which.the flow is likely to be unsteady because regions of both subsonic and supersonic speeds may occur. In the early phases of the development of the airplane, speeds were so low that the effects of compressibility could be justifiably ignored. During the last war and immediately after, however, propellers exhibited losses in efficiency as the tip speeds approached the speed of sound, and the first experiments of an aeronautical nature were therefore conducted with propellers. Results of these experiments indicated serious losses of efficiency, but aeronautical engineers were not seriously concerned at the time became it was generally possible. to design propellers with quite low tip. speeds. With the development of new engines having increased power and rotational speeds, however, the problems became of increasing importance.

  16. Improving a complex finite-difference ground water flow model through the use of an analytic element screening model

    USGS Publications Warehouse

    Hunt, R.J.; Anderson, M.P.; Kelson, V.A.

    1998-01-01

    This paper demonstrates that analytic element models have potential as powerful screening tools that can facilitate or improve calibration of more complicated finite-difference and finite-element models. We demonstrate how a two-dimensional analytic element model was used to identify errors in a complex three-dimensional finite-difference model caused by incorrect specification of boundary conditions. An improved finite-difference model was developed using boundary conditions developed from a far-field analytic element model. Calibration of a revised finite-difference model was achieved using fewer zones of hydraulic conductivity and lake bed conductance than the original finite-difference model. Calibration statistics were also improved in that simulated base-flows were much closer to measured values. The improved calibration is due mainly to improved specification of the boundary conditions made possible by first solving the far-field problem with an analytic element model.This paper demonstrates that analytic element models have potential as powerful screening tools that can facilitate or improve calibration of more complicated finite-difference and finite-element models. We demonstrate how a two-dimensional analytic element model was used to identify errors in a complex three-dimensional finite-difference model caused by incorrect specification of boundary conditions. An improved finite-difference model was developed using boundary conditions developed from a far-field analytic element model. Calibration of a revised finite-difference model was achieved using fewer zones of hydraulic conductivity and lake bed conductance than the original finite-difference model. Calibration statistics were also improved in that simulated base-flows were much closer to measured values. The improved calibration is due mainly to improved specification of the boundary conditions made possible by first solving the far-field problem with an analytic element model.

  17. Verification and Calibration of a Reduced Order Wind Farm Model by Wind Tunnel Experiments

    NASA Astrophysics Data System (ADS)

    Schreiber, J.; Nanos, E. M.; Campagnolo, F.; Bottasso, C. L.

    2017-05-01

    In this paper an adaptation of the FLORIS approach is considered that models the wind flow and power production within a wind farm. In preparation to the use of this model for wind farm control, this paper considers the problem of its calibration and validation with the use of experimental observations. The model parameters are first identified based on measurements performed on an isolated scaled wind turbine operated in a boundary layer wind tunnel in various wind-misalignment conditions. Next, the wind farm model is verified with results of experimental tests conducted on three interacting scaled wind turbines. Although some differences in the estimated absolute power are observed, the model appears to be capable of identifying with good accuracy the wind turbine misalignment angles that, by deflecting the wake, lead to maximum power for the investigated layouts.

  18. Power generation systems and methods

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor); Chao, Yi (Inventor)

    2011-01-01

    A power generation system includes a plurality of submerged mechanical devices. Each device includes a pump that can be powered, in operation, by mechanical energy to output a pressurized output liquid flow in a conduit. Main output conduits are connected with the device conduits to combine pressurized output flows output from the submerged mechanical devices into a lower number of pressurized flows. These flows are delivered to a location remote of the submerged mechanical devices for power generation.

  19. Vibration Power Flow In A Constrained Layer Damping Cylindrical Shell

    NASA Astrophysics Data System (ADS)

    Wang, Yun; Zheng, Gangtie

    2012-07-01

    In this paper, the vibration power flow in a constrained layer damping (CLD) cylindrical shell using wave propagation approach is investigated. The dynamic equations of the shell are derived with the Hamilton principle in conjunction with the Donnell shell assumption. With these equations, the dynamic responses of the system under a line circumferential cosine harmonic exciting force is obtained by employing the Fourier transform and the residue theorem. The vibration power flows inputted to the system and transmitted along the shell axial direction are both studied. The results show that input power flow varies with driving frequency and circumferential mode order, and the constrained damping layer can obviously restrict the exciting force from inputting power flow into the base shell especially for a thicker viscoelastic layer, a thicker or stiffer constraining layer (CL), and a higher circumferential mode order, can rapidly attenuate the vibration power flow transmitted along the base shell axial direction.

  20. Mechanical energy and power flow of the upper extremity in manual wheelchair propulsion.

    PubMed

    Guo, Lan-Yuen; Su, Fong-Chin; Wu, Hong-Wen; An, Kai-Nan

    2003-02-01

    To investigate the characteristics of mechanical energy and power flow of the upper limb during wheelchair propulsion. Mechanical energy and power flow of segments were calculated. Very few studies have taken into account the mechanical energy and power flow of the musculoskeletal system during wheelchair propulsion. Mechanical energy and power flow have proven to be useful tools for investigating locomotion disorders during human gait. Twelve healthy male adults (mean age, 23.5 years) were recruited for this study. Three-dimensional kinematic and kinetic data of the upper extremity were collected during wheelchair propulsion using a Hi-Res Expert Vision system and an instrumented wheel, respectively. During the initiation of the propulsion phase, joint power is generated in the upper arm or is transferred from the trunk downward to the forearm and hand to propel the wheel forward. During terminal propulsion, joint power is transferred upward to the trunk from the forearm and upper arm. The rate of change of mechanical energy and power flow for the forearm and hand have similar patterns, but the upper arm values differ. Joint power plays an important role in energy transfer as well as the energy generated and absorbed by muscles spanning the joints during wheelchair propulsion. Energy and power flow information during wheelchair propulsion allows us to gain a better understanding of the coordination of the movement by the musculoskeletal system.

  1. Interaction of a shock wave with an array of particles and effect of particles on the shock wave weakening

    NASA Astrophysics Data System (ADS)

    Bulat, P. V.; Ilyina, T. E.; Volkov, K. N.; Silnikov, M. V.; Chernyshov, M. V.

    2017-06-01

    Two-phase systems that involve gas-particle or gas-droplet flows are widely used in aerospace and power engineering. The problems of weakening and suppression of detonation during saturation of a gas or liquid flow with the array of solid particles are considered. The tasks, associated with the formation of particles arrays, dust lifting behind a travelling shock wave, ignition of particles in high-speed and high-temperature gas flows are adjoined to safety of space flight. The mathematical models of shock wave interaction with the array of solid particles are discussed, and numerical methods are briefly described. The numerical simulations of interaction between sub- and supersonic flows and an array of particles being in motionless state at the initial time are performed. Calculations are carried out taking into account the influence that the particles cause on the flow of carrier gas. The results obtained show that inert particles significantly weaken the shock waves up to their suppression, which can be used to enhance the explosion safety of spacecrafts.

  2. Curvilinear immersed-boundary method for simulating unsteady flows in shallow natural streams with arbitrarily complex obstacles

    NASA Astrophysics Data System (ADS)

    Kang, Seokkoo; Borazjani, Iman; Sotiropoulos, Fotis

    2008-11-01

    Unsteady 3D simulations of flows in natural streams is a challenging task due to the complexity of the bathymetry, the shallowness of the flow, and the presence of multiple nature- and man-made obstacles. This work is motivated by the need to develop a powerful numerical method for simulating such flows using coherent-structure-resolving turbulence models. We employ the curvilinear immersed boundary method of Ge and Sotiropoulos (Journal of Computational Physics, 2007) and address the critical issue of numerical efficiency in large aspect ratio computational domains and grids such as those encountered in long and shallow open channels. We show that the matrix-free Newton-Krylov method for solving the momentum equations coupled with an algebraic multigrid method with incomplete LU preconditioner for solving the Poisson equation yield a robust and efficient procedure for obtaining time-accurate solutions in such problems. We demonstrate the potential of the numerical approach by carrying out a direct numerical simulation of flow in a long and shallow meandering stream with multiple hydraulic structures.

  3. History of the Kolff Laboratory turbine driven electrohydraulic artificial heart.

    PubMed

    Topaz, S R; Flinders, T; Topaz, H A; Jones, D

    1998-11-01

    The concept of an electrically powered total artificial heart has been pursued by Dr. Kolff and his associates since the 1960s. Since the 1980s these efforts have been concentrated upon the development of the electrohydraulic total artificial heart, a turbine pump powered by a brushless DC motor. Dr. Kolff realized the benefits of pulsatile flow and device response to Starling's Law, and these concepts have formed the basis of subsequent design decisions. Design iterations have both solved existing problems and exposed new challenges. The current device design is greatly improved over early attempts due to the incorporation of technologies that have recently become available as the result of progress in the fields of materials and electronics and due to the lessons learned over many years of research under the guidance of Dr. Kolff. This article describes, from its inception, the last major research project of Dr. Kolff prior to his retirement. The discussion centers around development, problems and their solutions, and the reasoning for given solutions.

  4. Environmental control and life support system: Analysis of STS-1

    NASA Technical Reports Server (NTRS)

    Steines, G.

    1980-01-01

    The capability of the orbiter environmental control and life support system (ECLSS) to support vehicle cooling requirements in the event of cabin pressure reduction to 9 psia was evaluated, using the Orbiter versions of the shuttle environmental consumbles usage requirement evaluation (SECURE) program, and using heat load input data developed by the spacecraft electrical power simulator (SEPS) program. The SECURE model used in the analysis, the timeline and ECLSS configuration used in formulating the analysis, and the results of the analysis are presented. The conclusion which may be drawn drom these results. is summarized. There are no significant thermal problems with the proposed mission. There are, however, several procedures which could be optimized for better performance: setting the cabin HX air bypass and the interchanger water bypass to the zero flow position is of questionable efficacy; the cabin air pressure monitoring procedure should be re-evaluated; and the degree of equipment power down specified for this analysis and no problems were noted.

  5. Active Combustion Control for Aircraft Gas-Turbine Engines-Experimental Results for an Advanced, Low-Emissions Combustor Prototype

    NASA Technical Reports Server (NTRS)

    DeLaat, John C.; Kopasakis, George; Saus, Joseph R.; Chang, Clarence T.; Wey, Changlie

    2012-01-01

    Lean combustion concepts for aircraft engine combustors are prone to combustion instabilities. Mitigation of instabilities is an enabling technology for these low-emissions combustors. NASA Glenn Research Center s prior activity has demonstrated active control to suppress a high-frequency combustion instability in a combustor rig designed to emulate an actual aircraft engine instability experience with a conventional, rich-front-end combustor. The current effort is developing further understanding of the problem specifically as applied to future lean-burning, very low-emissions combustors. A prototype advanced, low-emissions aircraft engine combustor with a combustion instability has been identified and previous work has characterized the dynamic behavior of that combustor prototype. The combustor exhibits thermoacoustic instabilities that are related to increasing fuel flow and that potentially prevent full-power operation. A simplified, non-linear oscillator model and a more physics-based sectored 1-D dynamic model have been developed to capture the combustor prototype s instability behavior. Utilizing these models, the NASA Adaptive Sliding Phasor Average Control (ASPAC) instability control method has been updated for the low-emissions combustor prototype. Active combustion instability suppression using the ASPAC control method has been demonstrated experimentally with this combustor prototype in a NASA combustion test cell operating at engine pressures, temperatures, and flows. A high-frequency fuel valve was utilized to perturb the combustor fuel flow. Successful instability suppression was shown using a dynamic pressure sensor in the combustor for controller feedback. Instability control was also shown with a pressure feedback sensor in the lower temperature region upstream of the combustor. It was also demonstrated that the controller can prevent the instability from occurring while combustor operation was transitioning from a stable, low-power condition to a normally unstable high-power condition, thus enabling the high-power condition.

  6. Toward Automatic Verification of Goal-Oriented Flow Simulations

    NASA Technical Reports Server (NTRS)

    Nemec, Marian; Aftosmis, Michael J.

    2014-01-01

    We demonstrate the power of adaptive mesh refinement with adjoint-based error estimates in verification of simulations governed by the steady Euler equations. The flow equations are discretized using a finite volume scheme on a Cartesian mesh with cut cells at the wall boundaries. The discretization error in selected simulation outputs is estimated using the method of adjoint-weighted residuals. Practical aspects of the implementation are emphasized, particularly in the formulation of the refinement criterion and the mesh adaptation strategy. Following a thorough code verification example, we demonstrate simulation verification of two- and three-dimensional problems. These involve an airfoil performance database, a pressure signature of a body in supersonic flow and a launch abort with strong jet interactions. The results show reliable estimates and automatic control of discretization error in all simulations at an affordable computational cost. Moreover, the approach remains effective even when theoretical assumptions, e.g., steady-state and solution smoothness, are relaxed.

  7. Research and Design on a Product Data Definition System of Semiconductor Packaging Industry

    NASA Astrophysics Data System (ADS)

    Shi, Jinfei; Ma, Qingyao; Zhou, Yifan; Chen, Ruwen

    2017-12-01

    This paper develops a product data definition (PDD) system for a semiconductor packaging and testing company with independent intellectual property rights. The new PDD system can solve the problems such as, the effective control of production plans, the timely feedback of production processes, and the efficient schedule of resources. Firstly, this paper introduces the general requirements of the PDD system and depicts the operation flow and the data flow of the PDD system. Secondly, the overall design scheme of the PDD system is put forward. After that, the physical data model is developed using the Power Designer15.0 tool, and the database system is built. Finally, the function realization and running effects of the PDD system are analysed. The successful operation of the PDD system can realize the information flow among various production departments of the enterprise to meet the standard of the enterprise manufacturing integration and improve the efficiency of production management.

  8. Optimal coordinated voltage control in active distribution networks using backtracking search algorithm

    PubMed Central

    Tengku Hashim, Tengku Juhana; Mohamed, Azah

    2017-01-01

    The growing interest in distributed generation (DG) in recent years has led to a number of generators connected to a distribution system. The integration of DGs in a distribution system has resulted in a network known as active distribution network due to the existence of bidirectional power flow in the system. Voltage rise issue is one of the predominantly important technical issues to be addressed when DGs exist in an active distribution network. This paper presents the application of the backtracking search algorithm (BSA), which is relatively new optimisation technique to determine the optimal settings of coordinated voltage control in a distribution system. The coordinated voltage control considers power factor, on-load tap-changer and generation curtailment control to manage voltage rise issue. A multi-objective function is formulated to minimise total losses and voltage deviation in a distribution system. The proposed BSA is compared with that of particle swarm optimisation (PSO) so as to evaluate its effectiveness in determining the optimal settings of power factor, tap-changer and percentage active power generation to be curtailed. The load flow algorithm from MATPOWER is integrated in the MATLAB environment to solve the multi-objective optimisation problem. Both the BSA and PSO optimisation techniques have been tested on a radial 13-bus distribution system and the results show that the BSA performs better than PSO by providing better fitness value and convergence rate. PMID:28991919

  9. Optimal coordinated voltage control in active distribution networks using backtracking search algorithm.

    PubMed

    Tengku Hashim, Tengku Juhana; Mohamed, Azah

    2017-01-01

    The growing interest in distributed generation (DG) in recent years has led to a number of generators connected to a distribution system. The integration of DGs in a distribution system has resulted in a network known as active distribution network due to the existence of bidirectional power flow in the system. Voltage rise issue is one of the predominantly important technical issues to be addressed when DGs exist in an active distribution network. This paper presents the application of the backtracking search algorithm (BSA), which is relatively new optimisation technique to determine the optimal settings of coordinated voltage control in a distribution system. The coordinated voltage control considers power factor, on-load tap-changer and generation curtailment control to manage voltage rise issue. A multi-objective function is formulated to minimise total losses and voltage deviation in a distribution system. The proposed BSA is compared with that of particle swarm optimisation (PSO) so as to evaluate its effectiveness in determining the optimal settings of power factor, tap-changer and percentage active power generation to be curtailed. The load flow algorithm from MATPOWER is integrated in the MATLAB environment to solve the multi-objective optimisation problem. Both the BSA and PSO optimisation techniques have been tested on a radial 13-bus distribution system and the results show that the BSA performs better than PSO by providing better fitness value and convergence rate.

  10. A series solution for horizontal infiltration in an initially dry aquifer

    NASA Astrophysics Data System (ADS)

    Furtak-Cole, Eden; Telyakovskiy, Aleksey S.; Cooper, Clay A.

    2018-06-01

    The porous medium equation (PME) is a generalization of the traditional Boussinesq equation for hydraulic conductivity as a power law function of height. We analyze the horizontal recharge of an initially dry unconfined aquifer of semi-infinite extent, as would be found in an aquifer adjacent a rising river. If the water level can be modeled as a power law function of time, similarity variables can be introduced and the original problem can be reduced to a boundary value problem for a nonlinear ordinary differential equation. The position of the advancing front is not known ahead of time and must be found in the process of solution. We present an analytical solution in the form of a power series, with the coefficients of the series given by a recurrence relation. The analytical solution compares favorably with a highly accurate numerical solution, and only a small number of terms of the series are needed to achieve high accuracy in the scenarios considered here. We also conduct a series of physical experiments in an initially dry wedged Hele-Shaw cell, where flow is modeled by a special form of the PME. Our analytical solution closely matches the hydraulic head profiles in the Hele-Shaw cell experiment.

  11. Integration of HTS Cables in the Future Grid of the Netherlands

    NASA Astrophysics Data System (ADS)

    Zuijderduin, R.; Chevtchenko, O.; Smit, J. J.; Aanhaanen, G.; Melnik, I.; Geschiere, A.

    Due to increasing power demand, the electricity grid of the Netherlands is changing. The future transmission grid will obtain electrical power generated by decentralized renewable sources, together with large scale generation units located at the coastal region. In this way electrical power has to be distributed and transmitted over longer distances from generation to end user. Potential grid issues like: amount of distributed power, grid stability and electrical loss dissipation merit particular attention. High temperature superconductors (HTS) can play an important role in solving these grid problems. Advantages to integrate HTS components at transmission voltages are numerous: more transmittable power together with less emissions, intrinsic fault current limiting capability, lower ac loss, better control of power flow, reduced footprint, less magnetic field emissions, etc. The main obstacle at present is the relatively high price of HTS conductor. However as the price goes down, initial market penetration of several HTS components (e.g.: cables, fault current limiters) is expected by year 2015. In the full paper we present selected ways to integrate EHV AC HTS cables depending on a particular future grid scenario in the Netherlands.

  12. Assessing geotechnical centrifuge modelling in addressing variably saturated flow in soil and fractured rock.

    PubMed

    Jones, Brendon R; Brouwers, Luke B; Van Tonder, Warren D; Dippenaar, Matthys A

    2017-05-01

    The vadose zone typically comprises soil underlain by fractured rock. Often, surface water and groundwater parameters are readily available, but variably saturated flow through soil and rock are oversimplified or estimated as input for hydrological models. In this paper, a series of geotechnical centrifuge experiments are conducted to contribute to the knowledge gaps in: (i) variably saturated flow and dispersion in soil and (ii) variably saturated flow in discrete vertical and horizontal fractures. Findings from the research show that the hydraulic gradient, and not the hydraulic conductivity, is scaled for seepage flow in the geotechnical centrifuge. Furthermore, geotechnical centrifuge modelling has been proven as a viable experimental tool for the modelling of hydrodynamic dispersion as well as the replication of similar flow mechanisms for unsaturated fracture flow, as previously observed in literature. Despite the imminent challenges of modelling variable saturation in the vadose zone, the geotechnical centrifuge offers a powerful experimental tool to physically model and observe variably saturated flow. This can be used to give valuable insight into mechanisms associated with solid-fluid interaction problems under these conditions. Findings from future research can be used to validate current numerical modelling techniques and address the subsequent influence on aquifer recharge and vulnerability, contaminant transport, waste disposal, dam construction, slope stability and seepage into subsurface excavations.

  13. Evaluation of the effect of reactant gases mass flow rates on power density in a polymer electrolyte membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Kahveci, E. E.; Taymaz, I.

    2018-03-01

    In this study it was experimentally investigated the effect of mass flow rates of reactant gases which is one of the most important operational parameters of polymer electrolyte membrane (PEM) fuel cell on power density. The channel type is serpentine and single PEM fuel cell has an active area of 25 cm2. Design-Expert 8.0 (trial version) was used with four variables to investigate the effect of variables on the response using. Cell temperature, hydrogen mass flow rate, oxygen mass flow rate and humidification temperature were selected as independent variables. In addition, the power density was used as response to determine the combined effects of these variables. It was kept constant cell and humidification temperatures while changing mass flow rates of reactant gases. From the results an increase occurred in power density with increasing the hydrogen flow rates. But oxygen flow rate does not have a significant effect on power density within determined mass flow rates.

  14. A new fringeline-tracking approach for color Doppler ultrasound imaging phase unwrapping

    NASA Astrophysics Data System (ADS)

    Saad, Ashraf A.; Shapiro, Linda G.

    2008-03-01

    Color Doppler ultrasound imaging is a powerful non-invasive diagnostic tool for many clinical applications that involve examining the anatomy and hemodynamics of human blood vessels. These clinical applications include cardio-vascular diseases, obstetrics, and abdominal diseases. Since its commercial introduction in the early eighties, color Doppler ultrasound imaging has been used mainly as a qualitative tool with very little attempts to quantify its images. Many imaging artifacts hinder the quantification of the color Doppler images, the most important of which is the aliasing artifact that distorts the blood flow velocities measured by the color Doppler technique. In this work we will address the color Doppler aliasing problem and present a recovery methodology for the true flow velocities from the aliased ones. The problem is formulated as a 2D phase-unwrapping problem, which is a well-defined problem with solid theoretical foundations for other imaging domains, including synthetic aperture radar and magnetic resonance imaging. This paper documents the need for a phase unwrapping algorithm for use in color Doppler ultrasound image analysis. It describes a new phase-unwrapping algorithm that relies on the recently developed cutline detection approaches. The algorithm is novel in its use of heuristic information provided by the ultrasound imaging modality to guide the phase unwrapping process. Experiments have been performed on both in-vitro flow-phantom data and in-vivo human blood flow data. Both data types were acquired under a controlled acquisition protocol developed to minimize the distortion of the color Doppler data and hence to simplify the phase-unwrapping task. In addition to the qualitative assessment of the results, a quantitative assessment approach was developed to measure the success of the results. The results of our new algorithm have been compared on ultrasound data to those from other well-known algorithms, and it outperforms all of them.

  15. Performance Evaluation of UPQC under Nonlinear Unbalanced Load Conditions Using Synchronous Reference Frame Based Control

    NASA Astrophysics Data System (ADS)

    Kota, Venkata Reddy; Vinnakoti, Sudheer

    2017-12-01

    Today, maintaining Power Quality (PQ) is very important in the growing competent world. With new equipments and devices, new challenges are also being put before power system operators. Unified Power Quality Conditioner (UPQC) is proposed to mitigate many power quality problems and to improve the performance of the power system. In this paper, an UPQC with Fuzzy Logic controller for capacitor voltage balancing is proposed in Synchronous Reference Frame (SRF) based control with Modified Phased Locked Loop (MPLL). The proposed controller with SRF-MPLL based control is tested under non-linear and unbalanced load conditions. The system is developed in Matlab/Simulink and its performance is analyzed under various conditions like non-linear, unbalanced load and polluted supply voltage including voltage sag/swells. Active and reactive power flow in the system, power factor and %THD of voltages and currents before and after compensation are also analyzed in this work. Results prove the applicability of the proposed scheme for power quality improvement. It is observed that the fuzzy controller gives better performance than PI controller with faster capacitor voltage balancing and also improves the dynamic performance of the system.

  16. Study of electrode slice forming of bicycle dynamo hub power connector

    NASA Astrophysics Data System (ADS)

    Chen, Dyi-Cheng; Jao, Chih-Hsuan

    2013-12-01

    Taiwan's bicycle industry has been an international reputation as bicycle kingdom, but the problem in the world makes global warming green energy rise, the development of electrode slice of hub dynamo and power output connector to bring new hope to bike industry. In this study connector power output to gather public opinion related to patent, basis of collected documents as basis for design, structural components in least drawn to power output with simple connector. Power output of this study objectives connector hope at least cost, structure strongest, highest efficiency in output performance characteristics such as use of computer-aided drawing software Solid works to establish power output connector parts of 3D model, the overall portfolio should be considered part types including assembly ideas, weather resistance, water resistance, corrosion resistance to vibration and power flow stability. Moreover the 3D model import computer-aided finite element analysis software simulation of expected the power output of the connector parts manufacturing process. A series of simulation analyses, in which the variables relied on first stage and second stage forming, were run to examine the effective stress, effective strain, press speed, and die radial load distribution when forming electrode slice of bicycle dynamo hub.

  17. In vitro evaluation of forward and reverse volumetric flow across a regurgitant aortic valve using Doppler power-weighted mean velocities.

    PubMed

    Minich, L L; Tani, L Y; Pantalos, G M

    1997-01-01

    To determine the accuracy of using power-weighted mean velocities for quantitating volumetric flow across a cardiac valve, we equipped pulsatile flow-tank systems with a 25 mm porcine or a 27 mm mechanical valve with various sizes of regurgitant orifices. Forward and reverse volumetric flows were measured over a range of hemodynamic conditions using two insonating angles (0 and 45 degrees). Pulsed Doppler power-weighted mean velocity measurements were obtained simultaneously with electromagnetic or ultrasonic transit-time probe measurements. For the porcine valve, Doppler measurements correlated well with electromagnetic flow measurements for all (r = 0.75 to 0.97, p < 0.05) except the smallest (2.7 mm) orifice (r = 0.19). For the mechanical valve, power-weighted mean velocity measurements correlated well with ultrasonic transit-time measurements for each hemodynamic condition defined by pulse rate, mean arterial pressure, and insonating angle (r = 0.93 to 0.99, p < 0.01), but equations varied unpredictably. Thus, although power-weighted mean velocity volumetric flow measurements correlate well with flow probe measurements, equations vary widely as hemodynamic conditions change. Because of this variation, power-weighted mean velocity data are not useful for quantitation of volumetric flow across a cardiac valve at this time. Further investigation may show how different hemodynamic conditions affect power-weighted mean velocity measurements of volumetric flow.

  18. Topology optimisation for natural convection problems

    NASA Astrophysics Data System (ADS)

    Alexandersen, Joe; Aage, Niels; Andreasen, Casper Schousboe; Sigmund, Ole

    2014-12-01

    This paper demonstrates the application of the density-based topology optimisation approach for the design of heat sinks and micropumps based on natural convection effects. The problems are modelled under the assumptions of steady-state laminar flow using the incompressible Navier-Stokes equations coupled to the convection-diffusion equation through the Boussinesq approximation. In order to facilitate topology optimisation, the Brinkman approach is taken to penalise velocities inside the solid domain and the effective thermal conductivity is interpolated in order to accommodate differences in thermal conductivity of the solid and fluid phases. The governing equations are discretised using stabilised finite elements and topology optimisation is performed for two different problems using discrete adjoint sensitivity analysis. The study shows that topology optimisation is a viable approach for designing heat sink geometries cooled by natural convection and micropumps powered by natural convection.

  19. Optimal clustering of MGs based on droop controller for improving reliability using a hybrid of harmony search and genetic algorithms.

    PubMed

    Abedini, Mohammad; Moradi, Mohammad H; Hosseinian, S M

    2016-03-01

    This paper proposes a novel method to address reliability and technical problems of microgrids (MGs) based on designing a number of self-adequate autonomous sub-MGs via adopting MGs clustering thinking. In doing so, a multi-objective optimization problem is developed where power losses reduction, voltage profile improvement and reliability enhancement are considered as the objective functions. To solve the optimization problem a hybrid algorithm, named HS-GA, is provided, based on genetic and harmony search algorithms, and a load flow method is given to model different types of DGs as droop controller. The performance of the proposed method is evaluated in two case studies. The results provide support for the performance of the proposed method. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Unscheduled load flow effect due to large variation in the distributed generation in a subtransmission network

    NASA Astrophysics Data System (ADS)

    Islam, Mujahidul

    A sustainable energy delivery infrastructure implies the safe and reliable accommodation of large scale penetration of renewable sources in the power grid. In this dissertation it is assumed there will be no significant change in the power transmission and distribution structure currently in place; except in the operating strategy and regulatory policy. That is to say, with the same old structure, the path towards unveiling a high penetration of switching power converters in the power system will be challenging. Some of the dimensions of this challenge are power quality degradation, frequent false trips due to power system imbalance, and losses due to a large neutral current. The ultimate result is the reduced life of many power distribution components - transformers, switches and sophisticated loads. Numerous ancillary services are being developed and offered by the utility operators to mitigate these problems. These services will likely raise the system's operational cost, not only from the utility operators' end, but also reflected on the Independent System Operators and by the Regional Transmission Operators (RTO) due to an unforeseen backlash of frequent variation in the load-side generation or distributed generation. The North American transmission grid is an interconnected system similar to a large electrical circuit. This circuit was not planned but designed over 100 years. The natural laws of physics govern the power flow among loads and generators except where control mechanisms are installed. The control mechanism has not matured enough to withstand the high penetration of variable generators at uncontrolled distribution ends. Unlike a radial distribution system, mesh or loop networks can alleviate complex channels for real and reactive power flow. Significant variation in real power injection and absorption on the distribution side can emerge as a bias signal on the routing reactive power in some physical links or channels that are not distinguishable from the vast network. A path tracing methodology is developed to identify the power lines that are vulnerable to an unscheduled flow effect in the sub-transmission network. It is much harder to aggregate power system network sensitivity information or data from measuring load flow physically than to simulate in software. System dynamics is one of the key factors to determine an appropriate dynamic control mechanism at an optimum network location. Once a model of deterministic but variable power generator is used, the simulation can be meaningful in justifying this claim. The method used to model the variable generator is named the two-components phase distortion model. The model was validated from the high resolution data collected from three pilot photovoltaic sites in Florida - two in the city of St. Petersburg and one in the city of Tampa. The high resolution data was correlated with weather radar closest to the sites during the design stage of the model. Technically the deterministic model cannot replicate a stochastic model which is more realistically applicable for solar isolation and involves a Markov chain. The author justified the proposition based on the fact that for analysis of the response functions of different systems, the excitation function should be common for comparison. Moreover, there could be many possible simulation scenarios but fewer worst cases. Almost all commercial systems are protected against potential faults and contingencies to a certain extent. Hence, the proposed model for worst case studies was designed within a reasonable limit. The simulation includes steady state and transient mode using multiple software modules including MatlabRTM, PSCADRTM and Paladin Design BaseRTM. It is shown that by identifying vulnerable or sensitive branches in the network, the control mechanisms can be coordinated reliably. In the long run this can save money by preventing unscheduled power flow in the network and eventually stabilizing the energy market.

  1. Newton-like methods for Navier-Stokes solution

    NASA Astrophysics Data System (ADS)

    Qin, N.; Xu, X.; Richards, B. E.

    1992-12-01

    The paper reports on Newton-like methods called SFDN-alpha-GMRES and SQN-alpha-GMRES methods that have been devised and proven as powerful schemes for large nonlinear problems typical of viscous compressible Navier-Stokes solutions. They can be applied using a partially converged solution from a conventional explicit or approximate implicit method. Developments have included the efficient parallelization of the schemes on a distributed memory parallel computer. The methods are illustrated using a RISC workstation and a transputer parallel system respectively to solve a hypersonic vortical flow.

  2. VNAP2: A Computer Program for Computation of Two-dimensional, Time-dependent, Compressible, Turbulent Flow

    NASA Technical Reports Server (NTRS)

    Cline, M. C.

    1981-01-01

    A computer program, VNAP2, for calculating turbulent (as well as laminar and inviscid), steady, and unsteady flow is presented. It solves the two dimensional, time dependent, compressible Navier-Stokes equations. The turbulence is modeled with either an algebraic mixing length model, a one equation model, or the Jones-Launder two equation model. The geometry may be a single or a dual flowing stream. The interior grid points are computed using the unsplit MacCormack scheme. Two options to speed up the calculations for high Reynolds number flows are included. The boundary grid points are computed using a reference plane characteristic scheme with the viscous terms treated as source functions. An explicit artificial viscosity is included for shock computations. The fluid is assumed to be a perfect gas. The flow boundaries may be arbitrary curved solid walls, inflow/outflow boundaries, or free jet envelopes. Typical problems that can be solved concern nozzles, inlets, jet powered afterbodies, airfoils, and free jet expansions. The accuracy and efficiency of the program are shown by calculations of several inviscid and turbulent flows. The program and its use are described completely, and six sample cases and a code listing are included.

  3. On the characterization of subsurface flow and hydraulic conductivity from surface SP measurements: correcting for electrical heterogeneities.

    NASA Astrophysics Data System (ADS)

    Sailhac, P.; Marquis, G.; Darnet, M.; Szalai, S.

    2003-04-01

    Surface self potential measurements (SP) are useful to characterize underground fluid flow or chemical reactions (as redox) and can be used in addition to NMR and electrical prospecting in hydrological investigations. Assuming that the SP anomalies have an electrokinetic origin, the source of SP data is the divergence of underground fluid flow; one important problem with surface SP data is then its interpretation in terms of fluid flow geometry. Some integral transform techniques have been shown to be powerful for SP interpretation (e.g. Fournier 1989, Patella, 1997; Sailhac &Marquis 2001). All these techniques are based upon Green’{ }s functions to characterize underground water flow, but they assume a constant electrical conductivity in the subsurface. This unrealistic approximation results in the appearance of non-electrokinetic sources at strong lateral electrical conductivity contrasts. We present here new Green’{ }s functions suitable for media of heterogeneous electrical conductivity. This new approach allows the joint interpretation of electrical resistivity tomography and SP measurements to detect electrokinetic sources caused by fluid flow. Tests on synthetic examples show that it gives more realistic results that when a constant electrical conductivity is assumed.

  4. Impeller tandem blade study with grid embedding for local grid refinement

    NASA Technical Reports Server (NTRS)

    Bache, George

    1992-01-01

    Flow non-uniformity at the discharge of high power density impellers can result in significant unsteady interactions between impeller blades and downstream diffuser vanes. These interactions result in degradation of both performance and pump reliability. The MSFC Pump Technology Team has recognized the importance of resolving this problem and has thus initiated the development and testing of a high head coefficient impeller. One of the primary goals of this program is to improve impeller performance and discharge flow uniformity. The objective of the present work is complimentary. Flow uniformity and performance gains were sought through the application of a tandem blade arrangement. The approach adopted was to numerically establish flow characteristics at the impeller discharge for the baseline MSFC impeller and then parametrically evaluate tandem blade configurations. A tandem design was sought that improves both impeller performance and discharge uniformity. The Navier-Stokes solver AEROVISC was used to conduct the study. Grid embedding is used to resolve local gradients while attempting to minimize model size. Initial results indicate that significant gains in flow uniformity can be achieved through the tandem blade concept and that blade clocking rather than slot location is the primary driver for flow uniformity.

  5. The effect of dentinal fluid flow during loading in various directions--simulation of fluid-structure interaction.

    PubMed

    Su, Kuo-Chih; Chang, Chih-Han; Chuang, Shu-Fen; Ng, Eddie Yin-Kwee

    2013-06-01

    This study uses a fluid-structure interaction (FSI) simulation to evaluate the fluid flow in a dental intrapulpal chamber induced by the deformation of the tooth structure during loading in various directions. The FSI is used for the biomechanics simulation of dental intrapulpal responses with the force loading gradually increasing from 0 to 100N at 0°, 30°, 45°, 60°, and 90° on the tooth surface in 1s, respectively. The effect of stress or deformation on tooth and fluid flow changes in the pulp chamber are evaluated. A horizontal loading force on a tooth may induce tooth structure deformation, which increases fluid flow velocity in the coronal pulp. Thus, horizontal loading on a tooth may easily induce tooth pain. This study suggests that experiments to investigate the relationship between loading in various directions and dental pain should avoid measuring the bulk pulpal fluid flow from radicular pulp, but rather should measure the dentinal fluid flow in the dentinal tubules or coronal pulp. The FSI analysis used here could provide a powerful tool for investigating problems with coupled solid and fluid structures in dental biomechanics. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Viscous dissipation in a flow with power law, temperature-dependent rheology: Application to channeled lava flows

    NASA Astrophysics Data System (ADS)

    Filippucci, Marilena; Tallarico, Andrea; Dragoni, Michele

    2017-05-01

    The cooling and the dynamics of a lava flowing down an inclined channel under the effect of the gravity force is studied through the finite volume method, taking into account the effect of viscous dissipation in the heat equation. The considered rheology is shear thinning and temperature dependent. The numerical solution is tested in order to verify the independence from the mesh. The dynamic and heat problems are addressed obtaining both the stationary and the transient solution. Results indicate that, considering viscous dissipation in the heat equation, a fluid with temperature-dependent nonlinear viscosity is faster and hotter with respect to the case in which viscous dissipation is neglected. The most important effect of viscous dissipation is on the solid boundaries where the fluid warms up, and the use of a variable Reynolds number allowed us to conclude that areas in which the flow is in the laminar regime and areas in which the flow is in the turbulent regime can coexist inside the fluid. This behavior seems independent of the channel shape and can explain the observed warming back after the initial cooling in the lava flow lobes emplacement on Kilauea Volcano.

  7. Robustness analysis of complex networks with power decentralization strategy via flow-sensitive centrality against cascading failures

    NASA Astrophysics Data System (ADS)

    Guo, Wenzhang; Wang, Hao; Wu, Zhengping

    2018-03-01

    Most existing cascading failure mitigation strategy of power grids based on complex network ignores the impact of electrical characteristics on dynamic performance. In this paper, the robustness of the power grid under a power decentralization strategy is analysed through cascading failure simulation based on AC flow theory. The flow-sensitive (FS) centrality is introduced by integrating topological features and electrical properties to help determine the siting of the generation nodes. The simulation results of the IEEE-bus systems show that the flow-sensitive centrality method is a more stable and accurate approach and can enhance the robustness of the network remarkably. Through the study of the optimal flow-sensitive centrality selection for different networks, we find that the robustness of the network with obvious small-world effect depends more on contribution of the generation nodes detected by community structure, otherwise, contribution of the generation nodes with important influence on power flow is more critical. In addition, community structure plays a significant role in balancing the power flow distribution and further slowing the propagation of failures. These results are useful in power grid planning and cascading failure prevention.

  8. Bondi flow from a slowly rotating hot atmosphere

    NASA Astrophysics Data System (ADS)

    Narayan, Ramesh; Fabian, Andrew C.

    2011-08-01

    A supermassive black hole in the nucleus of an elliptical galaxy at the centre of a cool-core group or cluster of galaxies is immersed in hot gas. Bondi accretion should occur at a rate determined by the properties of the gas at the Bondi radius and the mass of the black hole. X-ray observations of massive nearby elliptical galaxies, including M87 in the Virgo cluster, indicate a Bondi accretion rate ? which roughly matches the total kinetic power of the jets, suggesting that there is a tight coupling between the jet power and the mass accretion rate. While the Bondi model considers non-rotating gas, it is likely that the external gas has some angular momentum, which previous studies have shown could decrease the accretion rate drastically. We investigate here the possibility that viscosity acts at all radii to transport angular momentum outwards so that the accretion inflow proceeds rapidly and steadily. The situation corresponds to a giant advection-dominated accretion flow (ADAF) which extends from beyond the Bondi radius down to the black hole. We find solutions of the ADAF equations in which the gas accretes at just a factor of a few less than ?. These solutions assume that the atmosphere beyond the Bondi radius rotates with a sub-Keplerian velocity and that the viscosity parameter is large, α≥ 0.1, both of which are reasonable for the problem at hand. The infall time of the ADAF solutions is no more than a few times the free-fall time. Thus, the accretion rate at the black hole is closely coupled to the surrounding gas, enabling tight feedback to occur. We show that jet powers of a few per cent of ? are expected if either a fraction of the accretion power is channelled into the jet or the black hole spin energy is tapped by a strong magnetic field pressed against the black hole by the pressure of the accretion flow. We discuss the Bernoulli parameter of the flow, the role of convection and the possibility that these as well as magnetohydrodynamic effects may invalidate the model. If the latter comes to pass, it would imply that the rough agreement between observed jet powers and the Bondi accretion rate is a coincidence and jet power is determined by factors other than the mass accretion rate.

  9. Multiport power router and its impact on future smart grids

    NASA Astrophysics Data System (ADS)

    Kado, Yuichi; Shichijo, Daiki; Wada, Keiji; Iwatsuki, Katsumi

    2016-07-01

    We propose a Y configuration power router as a unit cell to easily construct a power delivery system that can meet many types of user requirements. The Y configuration power router controls the direction and magnitude of power flows between three ports regardless of DC or AC. We constructed a prototype three-way isolated DC/DC converter that is the core unit of the Y configuration power router. The electrical insulation between three ports assures safety and reliability for power network systems. We then tested the operation of power flow control. The experimental results revealed that our methodology based on a governing equation was appropriate to control the power flow of the three-way DC/DC converter. In addition, a distribution network composed of power routers had the ability to easily enable interchanges of electrical power between autonomous microgrid cells. We also explored the requirements for communication between energy routers to achieve dynamic adjustments of energy flows in a coordinated manner and their impact on resilient power grid systems.

  10. Substantiation of the cogeneration turbine unit selection for reconstruction of power units with a T-250/300-23.5 turbine

    NASA Astrophysics Data System (ADS)

    Valamin, A. E.; Kultyshev, A. Yu.; Shibaev, T. L.; Gol'dberg, A. A.; Sakhnin, Yu. A.; Stepanov, M. Yu.; Bilan, V. N.; Kadkina, I. V.

    2016-11-01

    The selection of a cogeneration steam turbine unit (STU) for the reconstruction of power units with a T-250/300-23.5 turbine is substantiated by the example of power unit no. 9 at the cogeneration power station no. 22 (TETs-22) of Mosenergo Company. Series T-250 steam turbines have been developed for combined heat and power generation. A total of 31 turbines were manufactured. By the end of 2015, the total operation time of prototype power units with the T-250/300-23.5 turbine exceeded 290000 hours. Considering the expiry of the service life, the decision was made that the reconstruction of the power unit at st. no. 9 of TETs-22 should be the first priority. The main issues that arose in developing this project—the customer's requirements and the request for the reconstruction, the view on certain problems of Ural Turbine Works (UTZ) as the manufacturer of the main power unit equipment, and the opinions of other project parties—are examined. The decisions were made with account taken of the experience in operation of all Series T-250 turbines and the results of long-term discussions of pressing problems at scientific and technical councils, meetings, and negotiations. For the new power unit, the following parameters have been set: a live steam pressure of 23.5 MPa and live steam/reheat temperature of 565/565°C. Considering that the boiler equipment will be upgraded, the live steam flow is increased up to 1030 t/h. The reconstruction activities involving the replacement of the existing turbine with a new one will yield a service life of 250000 hours for turbine parts exposed to a temperature of 450°C or higher and 200000 hours for pipeline components. Hence, the decision has been made to reuse the arrangement of the existing turbine: a four-cylinder turbine unit comprising a high-pressure cylinder (HPC), two intermediate pressure cylinders (IPC-1 & 2), and a low-pressure cylinder (LPC). The flow path in the new turbine will have active blading in LPC and IPC-1. The information is also presented on the use of the existing foundations, the fact that the overall dimensions of the turbine unit compartment are not changed, the selection of the new turbine type, and the solutions adopted on the basis of this information as to LPC blading, steam admission type, issues associated with thermal displacements, etc.

  11. Non-Flow-Through Fuel Cell System Test Results and Demonstration on the SCARAB Rover

    NASA Technical Reports Server (NTRS)

    Scheidegger, Brianne; Burke, Kenneth; Jakupca, Ian

    2012-01-01

    This presentation describes the results of the demonstration of a non-flow-through PEM fuel cell as part of a power system on the SCARAB rover at the NASA Glenn Research Center. A 16-cell non-flow-through fuel cell stack from Infinity Fuel Cell and Hydrogen, Inc. was incorporated into a power system designed to act as a range extender by providing power to the SCARAB rover s hotel loads. The power system, including the non-flow-through fuel cell technology, successfully demonstrated its goal as a range extender by powering hotel loads on the SCARAB rover, making this demonstration the first to use the non-flow-through fuel cell technology on a mobile platform.

  12. Power flow analysis of two coupled plates with arbitrary characteristics

    NASA Technical Reports Server (NTRS)

    Cuschieri, J. M.

    1988-01-01

    The limitation of keeping two plates identical is removed and the vibrational power input and output are evaluated for different area ratios, plate thickness ratios, and for different values of the structural damping loss factor for the source plate (plate with excitation) and the receiver plate. In performing this parametric analysis, the source plate characteristics are kept constant. The purpose of this parametric analysis is to be able to determine the most critical parameters that influence the flow of vibrational power from the source plate to the receiver plate. In the case of the structural damping parametric analysis, the influence of changes in the source plate damping is also investigated. As was done previously, results obtained from the mobility power flow approach will be compared to results obtained using a statistical energy analysis (SEA) approach. The significance of the power flow results are discussed together with a discussion and a comparison between SEA results and the mobility power flow results. Furthermore, the benefits that can be derived from using the mobility power flow approach, are also examined.

  13. Wide-Area Situational Awareness of Power Grids with Limited Phasor Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Ning; Huang, Zhenyu; Nieplocha, Jarek

    Lack of situational awareness has been identified as one of root causes for the August 14, 2003 Northeast Blackout in North America. To improve situational awareness, the Department of Energy (DOE) launched several projects to deploy Wide Area Measurement Systems (WAMS) in different interconnections. Compared to the tens of thousands of buses, the number of Phasor Measurement Units (PMUs) is quite limited and not enough to achieve the observability for the whole interconnections. To utilize the limited number of PMU measurements to improve situational awareness, this paper proposes to combine PMU measurement data and power flow equations to form amore » hybrid power flow model. Technically, a model which combines the concept of observable islands and modeling of power flow conditions, is proposed. The model is called a Hybrid Power Flow Model as it has both PMU measurements and simulation assumptions, which describes prior knowledge available about whole power systems. By solving the hybrid power flow equations, the proposed method can be used to derive power system states to improve the situational awareness of a power grid.« less

  14. Parametric study of natural circulation flow in molten salt fuel in molten salt reactor

    NASA Astrophysics Data System (ADS)

    Pauzi, Anas Muhamad; Cioncolini, Andrea; Iacovides, Hector

    2015-04-01

    The Molten Salt Reactor (MSR) is one of the most promising system proposed by Generation IV Forum (GIF) for future nuclear reactor systems. Advantages of the MSR are significantly larger compared to other reactor system, and is mainly achieved from its liquid nature of fuel and coolant. Further improvement to this system, which is a natural circulating molten fuel salt inside its tube in the reactor core is proposed, to achieve advantages of reducing and simplifying the MSR design proposed by GIF. Thermal hydraulic analysis on the proposed system was completed using a commercial computation fluid dynamics (CFD) software called FLUENT by ANSYS Inc. An understanding on theory behind this unique natural circulation flow inside the tube caused by fission heat generated in molten fuel salt and tube cooling was briefly introduced. Currently, no commercial CFD software could perfectly simulate natural circulation flow, hence, modeling this flow problem in FLUENT is introduced and analyzed to obtain best simulation results. Results obtained demonstrate the existence of periodical transient nature of flow problem, hence improvements in tube design is proposed based on the analysis on temperature and velocity profile. Results show that the proposed system could operate at up to 750MW core power, given that turbulence are enhanced throughout flow region, and precise molten fuel salt physical properties could be defined. At the request of the authors and the Proceedings Editor the name of the co-author Andrea Cioncolini was corrected from Andrea Coincolini. The same name correction was made in the Acknowledgement section on page 030004-10 and in reference number 4. The updated article was published on 11 May 2015.

  15. The scattering analog for infiltration in porous media

    NASA Astrophysics Data System (ADS)

    Philip, J. R.

    1989-11-01

    This review takes the form of a set of Chinese boxes. The outermost box gives a brief general account of modem developments in the mathematical physics of unsaturated flow in soils and porous media. This provides the necessary foundations for the second box, which describes the quasi-linear analysis of steady multidimensional unsaturated flow, which is an essential prerequisite to the analog. Only then can we proceed to the innermost box, devoted to our major theme. An exact analog exists between steady quasi-linear flow in unsaturated soils and porous media and the scattering of plane pulses, and the analog carries over to the scattering of plane harmonic waves. Numerous established results, and powerful techniques such as Watson transforms, far-field scattering functions, and optical theorems, become available for the solution and understanding of problems of multidimensional infiltration. These are needed, in particular, to provide the asymptotics of the physically interesting and practically important limit of flows strongly dominated by gravity, with capillary effects weak but nonzero. This is the limit of large s, where s is a characteristic length of the water supply surface normalized with respect to the sorptive length of the soil. These problems are singular in the sense that ignoring capillarity gives a totally incorrect picture of the wetted region. In terms of the optical analog, neglecting capillarity is equivalent to using geometrical optics, with coherent shadows projected to infinity. When exact solutions involve exotic functions, difficulties of both analysis and series summation may be avoided through use of small-s and large-s expansions provided by the analog. Numerous examples are given of solutions obtained through the analog. The scope for extending the application to flows from surface sources, to anisotropic and heterogeneous media, to unsteady flows, and to linear convection-diffusion processes in general is described briefly.

  16. Kinematic dynamo action in a network of screw motions; application to the core of a fast breeder reactor

    NASA Astrophysics Data System (ADS)

    Plunian, F.; Marty, P.; Alemany, A.

    1999-03-01

    Most of the studies concerning the dynamo effect are motivated by astrophysical and geophysical applications. The dynamo effect is also the subject of some experimental studies in fast breeder reactors (FBR) for they contain liquid sodium in motion with magnetic Reynolds numbers larger than unity. In this paper, we are concerned with the flow of sodium inside the core of an FBR, characterized by a strong helicity. The sodium in the core flows through a network of vertical cylinders. In each cylinder assembly, the flow can be approximated by a smooth upwards helical motion with no-slip conditions at the boundary. As the core contains a large number of assemblies, the global flow is considered to be two-dimensionally periodic. We investigate the self-excitation of a two-dimensionally periodic magnetic field using an instability analysis of the induction equation which leads to an eigenvalue problem. Advantage is taken of the flow symmetries to reduce the size of the problem. The growth rate of the magnetic field is found as a function of the flow pitch, the magnetic Reynolds number (Rm) and the vertical magnetic wavenumber (k). An [alpha]-effect is shown to operate for moderate values of Rm, supporting a mean magnetic field. The large-Rm limit is investigated numerically. It is found that [alpha]=O(Rm[minus sign]2/3), which can be explained through appropriate dynamo mechanisms. Either a smooth Ponomarenko or a Roberts type of dynamo is operating in each periodic cell, depending on k. The standard power regime of an industrial FPBR is found to be subcritical.

  17. Effect of Er,Cr:YSGG laser on human dentin fluid flow.

    PubMed

    Al-Omari, Wael M; Palamara, Joseph E

    2013-11-01

    The aim of the current investigation was to assess the rate and magnitude of dentin fluid flow of dentinal surfaces irradiated with Er,Cr:YSGG laser. Twenty extracted third molars were sectioned, mounted, and irradiated with Er,Cr:YSGG laser at 3.5 and 4.5 W power settings. Specimens were connected to an automated fluid flow measurement apparatus (Flodec). The rate, magnitude, and direction of dentin fluid flow were recorded at baseline and after irradiation. Nonparametric Wilcoxon signed ranks repeated measure t test revealed a statistically significant reduction in fluid flow for all the power settings. The 4.5-W power output reduced the flow significantly more than the 3.5 W. The samples showed a baseline outward flow followed by inward flow due to irradiation then followed by decreased outward flow. It was concluded that Er,Cr:YSGG laser irradiation at 3.5 and 4.5 W significantly reduced dentinal fluid flow rate. The reduction was directly proportional to power output.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pauzi, Anas Muhamad, E-mail: Anas@uniten.edu.my; Cioncolini, Andrea; Iacovides, Hector

    The Molten Salt Reactor (MSR) is one of the most promising system proposed by Generation IV Forum (GIF) for future nuclear reactor systems. Advantages of the MSR are significantly larger compared to other reactor system, and is mainly achieved from its liquid nature of fuel and coolant. Further improvement to this system, which is a natural circulating molten fuel salt inside its tube in the reactor core is proposed, to achieve advantages of reducing and simplifying the MSR design proposed by GIF. Thermal hydraulic analysis on the proposed system was completed using a commercial computation fluid dynamics (CFD) software calledmore » FLUENT by ANSYS Inc. An understanding on theory behind this unique natural circulation flow inside the tube caused by fission heat generated in molten fuel salt and tube cooling was briefly introduced. Currently, no commercial CFD software could perfectly simulate natural circulation flow, hence, modeling this flow problem in FLUENT is introduced and analyzed to obtain best simulation results. Results obtained demonstrate the existence of periodical transient nature of flow problem, hence improvements in tube design is proposed based on the analysis on temperature and velocity profile. Results show that the proposed system could operate at up to 750MW core power, given that turbulence are enhanced throughout flow region, and precise molten fuel salt physical properties could be defined. At the request of the authors and the Proceedings Editor the name of the co-author Andrea Cioncolini was corrected from Andrea Coincolini. The same name correction was made in the Acknowledgement section on page 030004-10 and in reference number 4. The updated article was published on 11 May 2015.« less

  19. Cascade phenomenon against subsequent failures in complex networks

    NASA Astrophysics Data System (ADS)

    Jiang, Zhong-Yuan; Liu, Zhi-Quan; He, Xuan; Ma, Jian-Feng

    2018-06-01

    Cascade phenomenon may lead to catastrophic disasters which extremely imperil the network safety or security in various complex systems such as communication networks, power grids, social networks and so on. In some flow-based networks, the load of failed nodes can be redistributed locally to their neighboring nodes to maximally preserve the traffic oscillations or large-scale cascading failures. However, in such local flow redistribution model, a small set of key nodes attacked subsequently can result in network collapse. Then it is a critical problem to effectively find the set of key nodes in the network. To our best knowledge, this work is the first to study this problem comprehensively. We first introduce the extra capacity for every node to put up with flow fluctuations from neighbors, and two extra capacity distributions including degree based distribution and average distribution are employed. Four heuristic key nodes discovering methods including High-Degree-First (HDF), Low-Degree-First (LDF), Random and Greedy Algorithms (GA) are presented. Extensive simulations are realized in both scale-free networks and random networks. The results show that the greedy algorithm can efficiently find the set of key nodes in both scale-free and random networks. Our work studies network robustness against cascading failures from a very novel perspective, and methods and results are very useful for network robustness evaluations and protections.

  20. A diffusive information preservation method for small Knudsen number flows

    NASA Astrophysics Data System (ADS)

    Fei, Fei; Fan, Jing

    2013-06-01

    The direct simulation Monte Carlo (DSMC) method is a powerful particle-based method for modeling gas flows. It works well for relatively large Knudsen (Kn) numbers, typically larger than 0.01, but quickly becomes computationally intensive as Kn decreases due to its time step and cell size limitations. An alternative approach was proposed to relax or remove these limitations, based on replacing pairwise collisions with a stochastic model corresponding to the Fokker-Planck equation [J. Comput. Phys., 229, 1077 (2010); J. Fluid Mech., 680, 574 (2011)]. Similar to the DSMC method, the downside of that approach suffers from computationally statistical noise. To solve the problem, a diffusion-based information preservation (D-IP) method has been developed. The main idea is to track the motion of a simulated molecule from the diffusive standpoint, and obtain the flow velocity and temperature through sampling and averaging the IP quantities. To validate the idea and the corresponding model, several benchmark problems with Kn ˜ 10-3-10-4 have been investigated. It is shown that the IP calculations are not only accurate, but also efficient because they make possible using a time step and cell size over an order of magnitude larger than the mean collision time and mean free path, respectively.

  1. Marginal Loss Calculations for the DCOPF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eldridge, Brent; O'Neill, Richard P.; Castillo, Andrea R.

    2016-12-05

    The purpose of this paper is to explain some aspects of including a marginal line loss approximation in the DCOPF. The DCOPF optimizes electric generator dispatch using simplified power flow physics. Since the standard assumptions in the DCOPF include a lossless network, a number of modifications have to be added to the model. Calculating marginal losses allows the DCOPF to optimize the location of power generation, so that generators that are closer to demand centers are relatively cheaper than remote generation. The problem formulations discussed in this paper will simplify many aspects of practical electric dispatch implementations in use today,more » but will include sufficient detail to demonstrate a few points with regard to the handling of losses.« less

  2. Experimental investigation of thermal processes in the multi-ring Couette system with counter rotation of cylinders

    NASA Astrophysics Data System (ADS)

    Mamonov, V. N.; Nazarov, A. D.; Serov, A. F.; Terekhov, V. I.

    2016-01-01

    The effect of parameters of the multi-ring Couette system with counter rotating coaxial cylinders on the process of thermal energy release in a viscous liquid filling this system is considered with regard to the problem of determining the possibility of creating the high-performance wind heat generator. The multi-cylinder rotor design allows directly conversion of the mechanical power of a device consisting of two "rotor" wind turbines with a common axis normal to the air flow into the thermal energy in a wide range of rotational speed of the cylinders. Experimental results on the measurement of thermal power released in the pilot heat generator at different relative angular speeds of cylinder rotation are presented.

  3. Wind-energy recovery by a static Scherbius induction generator

    NASA Astrophysics Data System (ADS)

    Smith, G. A.; Nigim, K. A.

    1981-11-01

    The paper describes a technique for controlling a doubly fed induction generator driven by a windmill, or other form of variable-speed prime mover, to provide power generation into the national grid system. The secondary circuit of the generator is supplied at a variable frequency from a current source inverter which for test purposes is rated to allow energy recovery, from a simulated windmill, from maximum speed to standstill. To overcome the stability problems normally associated with doubly fed machines a novel signal generator, which is locked in phase with the rotor EMF, controls the secondary power to provide operation over a wide range of subsynchronous and supersynchronous speeds. Consideration of power flow enables the VA rating of the secondary power source to be determined as a function of the gear ratio and online operating range of the system. A simple current source model is used to predict performance which is compared with experimental results. The results indicate a viable system, and suggestions for further work are proposed.

  4. The application of LQR synthesis techniques to the turboshaft engine control problem. [Linear Quadratic Regulator

    NASA Technical Reports Server (NTRS)

    Pfeil, W. H.; De Los Reyes, G.; Bobula, G. A.

    1985-01-01

    A power turbine governor was designed for a recent-technology turboshaft engine coupled to a modern, articulated rotor system using Linear Quadratic Regulator (LQR) and Kalman Filter (KF) techniques. A linear, state-space model of the engine and rotor system was derived for six engine power settings from flight idle to maximum continuous. An integrator was appended to the fuel flow input to reduce the steady-state governor error to zero. Feedback gains were calculated for the system states at each power setting using the LQR technique. The main rotor tip speed state is not measurable, so a Kalman Filter of the rotor was used to estimate this state. The crossover of the system was increased to 10 rad/s compared to 2 rad/sec for a current governor. Initial computer simulations with a nonlinear engine model indicate a significant decrease in power turbine speed variation with the LQR governor compared to a conventional governor.

  5. Power Grid Maintenance Scheduling Intelligence Arrangement Supporting System Based on Power Flow Forecasting

    NASA Astrophysics Data System (ADS)

    Xie, Chang; Wen, Jing; Liu, Wenying; Wang, Jiaming

    With the development of intelligent dispatching, the intelligence level of network control center full-service urgent need to raise. As an important daily work of network control center, the application of maintenance scheduling intelligent arrangement to achieve high-quality and safety operation of power grid is very important. By analyzing the shortages of the traditional maintenance scheduling software, this paper designs a power grid maintenance scheduling intelligence arrangement supporting system based on power flow forecasting, which uses the advanced technologies in maintenance scheduling, such as artificial intelligence, online security checking, intelligent visualization techniques. It implements the online security checking of maintenance scheduling based on power flow forecasting and power flow adjusting based on visualization, in order to make the maintenance scheduling arrangement moreintelligent and visual.

  6. Modeling sediment concentration of rill flow

    NASA Astrophysics Data System (ADS)

    Yang, Daming; Gao, Peiling; Zhao, Yadong; Zhang, Yuhang; Liu, Xiaoyuan; Zhang, Qingwen

    2018-06-01

    Accurate estimation of sediment concentration is essential to establish physically-based erosion models. The objectives of this study were to evaluate the effects of flow discharge (Q), slope gradient (S), flow velocity (V), shear stress (τ), stream power (ω) and unit stream power (U) on sediment concentration. Laboratory experiments were conducted using a 10 × 0.1 m rill flume under four flow discharges (2, 4, 8 and 16 L min-1), and five slope gradients (5°, 10°, 15°, 20° and 25°). The results showed that the measured sediment concentration varied from 87.08 to 620.80 kg m-3 with a mean value of 343.13 kg m-3. Sediment concentration increased as a power function with flow discharge and slope gradient, with R2 = 0.975 and NSE = 0.945. The sediment concentration was more sensitive to slope gradient than to flow discharge. The sediment concentration was well predicted by unit stream power (R2 = 0.937, NSE = 0.865), whereas less satisfactorily by flow velocity (R2 = 0.470, NSE = 0.539) and stream power (R2 = 0.773, NSE = 0.732). In addition, using the equations to simulate the measured sediment concentration of other studies, the result further indicated that slope gradient, flow discharge and unit stream power were good predictors of sediment concentration. In general, slope gradient, flow discharge and unit stream power seem to be the preferred predictors for estimating sediment concentration.

  7. GPU accelerated study of heat transfer and fluid flow by lattice Boltzmann method on CUDA

    NASA Astrophysics Data System (ADS)

    Ren, Qinlong

    Lattice Boltzmann method (LBM) has been developed as a powerful numerical approach to simulate the complex fluid flow and heat transfer phenomena during the past two decades. As a mesoscale method based on the kinetic theory, LBM has several advantages compared with traditional numerical methods such as physical representation of microscopic interactions, dealing with complex geometries and highly parallel nature. Lattice Boltzmann method has been applied to solve various fluid behaviors and heat transfer process like conjugate heat transfer, magnetic and electric field, diffusion and mixing process, chemical reactions, multiphase flow, phase change process, non-isothermal flow in porous medium, microfluidics, fluid-structure interactions in biological system and so on. In addition, as a non-body-conformal grid method, the immersed boundary method (IBM) could be applied to handle the complex or moving geometries in the domain. The immersed boundary method could be coupled with lattice Boltzmann method to study the heat transfer and fluid flow problems. Heat transfer and fluid flow are solved on Euler nodes by LBM while the complex solid geometries are captured by Lagrangian nodes using immersed boundary method. Parallel computing has been a popular topic for many decades to accelerate the computational speed in engineering and scientific fields. Today, almost all the laptop and desktop have central processing units (CPUs) with multiple cores which could be used for parallel computing. However, the cost of CPUs with hundreds of cores is still high which limits its capability of high performance computing on personal computer. Graphic processing units (GPU) is originally used for the computer video cards have been emerged as the most powerful high-performance workstation in recent years. Unlike the CPUs, the cost of GPU with thousands of cores is cheap. For example, the GPU (GeForce GTX TITAN) which is used in the current work has 2688 cores and the price is only 1,000 US dollars. The release of NVIDIA's CUDA architecture which includes both hardware and programming environment in 2007 makes GPU computing attractive. Due to its highly parallel nature, lattice Boltzmann method is successfully ported into GPU with a performance benefit during the recent years. In the current work, LBM CUDA code is developed for different fluid flow and heat transfer problems. In this dissertation, lattice Boltzmann method and immersed boundary method are used to study natural convection in an enclosure with an array of conduting obstacles, double-diffusive convection in a vertical cavity with Soret and Dufour effects, PCM melting process in a latent heat thermal energy storage system with internal fins, mixed convection in a lid-driven cavity with a sinusoidal cylinder, and AC electrothermal pumping in microfluidic systems on a CUDA computational platform. It is demonstrated that LBM is an efficient method to simulate complex heat transfer problems using GPU on CUDA.

  8. Sustained diffusive alternating current gliding arc discharge in atmospheric pressure air

    NASA Astrophysics Data System (ADS)

    Zhu, Jiajian; Gao, Jinlong; Li, Zhongshan; Ehn, Andreas; Aldén, Marcus; Larsson, Anders; Kusano, Yukihiro

    2014-12-01

    Rapid transition from glow discharge to thermal arc has been a common problem in generating stable high-power non-thermal plasmas especially at ambient conditions. A sustained diffusive gliding arc discharge was generated in a large volume in atmospheric pressure air, driven by an alternating current (AC) power source. The plasma column extended beyond the water-cooled stainless steel electrodes and was stabilized by matching the flow speed of the turbulent air jet with the rated output power. Comprehensive investigations were performed using high-speed movies measured over the plasma column, synchronized with simultaneously recorded current and voltage waveforms. Dynamic details of the novel non-equilibrium discharge are revealed, which is characterized by a sinusoidal current waveform with amplitude stabilized at around 200 mA intermediate between thermal arc and glow discharge, shedding light to the governing mechanism of the sustained spark-suppressed AC gliding arc discharge.

  9. Flow instability in particle-bed nuclear reactors

    NASA Technical Reports Server (NTRS)

    Kerrebrock, J. L.; Kalamas, J.

    1993-01-01

    A three-dimensional model of the stability of the particle-bed reactor is presented, in which the fluid has mobility in three dimensions. The model accurately represents the stability at low Re numbers as well as the effects of the cold and hot frits and of the heat conduction and radiation in the particle bed. The model can be easily extended to apply to the cylindrical geometry of particle-bed reactors. Exemplary calculations are carried out, showing that a particle bed without a cold frit would be subject to instability if operated at the high-temperature ratios used for nuclear rockets and at power densities below about 4 MW/l; since the desired power density for such a reactor is about 40 MW/l, the operation at design exit temperature but at reduced power could be hazardous. Calculations show however that it might be possible to remove the instability problem by appropriate combinations of cold and hot frits.

  10. AC HTS Transmission Cable for Integration into the Future EHV Grid of the Netherlands

    NASA Astrophysics Data System (ADS)

    Zuijderduin, R.; Chevtchenko, O.; Smit, J. J.; Aanhaanen, G.; Melnik, I.; Geschiere, A.

    Due to increasing power demand, the electricity grid of the Netherlands is changing. The future grid must be capable to transmit all the connected power. Power generation will be more decentralized like for instance wind parks connected to the grid. Furthermore, future large scale production units are expected to be installed near coastal regions. This creates some potential grid issues, such as: large power amounts to be transmitted to consumers from west to east and grid stability. High temperature superconductors (HTS) can help solving these grid problems. Advantages to integrate HTS components at Extra High Voltage (EHV) and High Voltage (HV) levels are numerous: more power with less losses and less emissions, intrinsic fault current limiting capability, better control of power flow, reduced footprint, etc. Today's main obstacle is the relatively high price of HTS. Nevertheless, as the price goes down, initial market penetration for several HTS components is expected by year 2015 (e.g.: cables, fault current limiters). In this paper we present a design of intrinsically compensated EHV HTS cable for future grid integration. Discussed are the parameters of such cable providing an optimal power transmission in the future network.

  11. Quantum Max-flow/Min-cut

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Shawn X., E-mail: xingshan@math.ucsb.edu; Quantum Architectures and Computation Group, Microsoft Research, Redmond, Washington 98052; Freedman, Michael H., E-mail: michaelf@microsoft.com

    2016-06-15

    The classical max-flow min-cut theorem describes transport through certain idealized classical networks. We consider the quantum analog for tensor networks. By associating an integral capacity to each edge and a tensor to each vertex in a flow network, we can also interpret it as a tensor network and, more specifically, as a linear map from the input space to the output space. The quantum max-flow is defined to be the maximal rank of this linear map over all choices of tensors. The quantum min-cut is defined to be the minimum product of the capacities of edges over all cuts ofmore » the tensor network. We show that unlike the classical case, the quantum max-flow=min-cut conjecture is not true in general. Under certain conditions, e.g., when the capacity on each edge is some power of a fixed integer, the quantum max-flow is proved to equal the quantum min-cut. However, concrete examples are also provided where the equality does not hold. We also found connections of quantum max-flow/min-cut with entropy of entanglement and the quantum satisfiability problem. We speculate that the phenomena revealed may be of interest both in spin systems in condensed matter and in quantum gravity.« less

  12. Experimental investigation of acoustic self-oscillation influence on decay process for underexpanded supersonic jet in submerged space

    NASA Astrophysics Data System (ADS)

    Aleksandrov, V. Yu.; Arefyev, K. Yu.; Ilchenko, M. A.

    2016-07-01

    Intensification of mixing between the gaseous working body ejected through a jet nozzle with ambient medium is an important scientific and technical problem. Effective mixing can increase the total efficiency of power and propulsion apparatuses. The promising approach, although poorly studied, is generation of acoustic self-oscillation inside the jet nozzle: this impact might enhance the decay of a supersonic jet and improve the mixing parameters. The paper presents peculiar properties of acoustic self-excitation in jet nozzle. The paper presents results of experimental study performed for a model injector with a set of plates placed into the flow channel, enabling the excitation of acoustic self-oscillations. The study reveals the regularity of under-expanded supersonic jet decay in submerged space for different flow modes. Experimental data support the efficiency of using the jet nozzle with acoustic self-oscillation in application to the systems of gas fuel supply. Experimental results can be used for designing new power apparatuses for aviation and space industry and for process plants.

  13. PIC simulation of the vacuum power flow for a 5 terawatt, 5 MV, 1 MA pulsed power system

    NASA Astrophysics Data System (ADS)

    Liu, Laqun; Zou, Wenkang; Liu, Dagang; Guo, Fan; Wang, Huihui; Chen, Lin

    2018-03-01

    In this paper, a 5 Terawatt, 5 MV, 1 MA pulsed power system based on vacuum magnetic insulation is simulated by the particle-in-cell (PIC) simulation method. The system consists of 50 100-kV linear transformer drive (LTD) cavities in series, using magnetically insulated induction voltage adder (MIVA) technology for pulsed power addition and transmission. The pulsed power formation and the vacuum power flow are simulated when the system works in self-limited flow and load-limited flow. When the pulsed power system isn't connected to the load, the downstream magnetically insulated transmission line (MITL) works in the self-limited flow, the maximum of output current is 1.14 MA and the amplitude of voltage is 4.63 MV. The ratio of the electron current to the total current is 67.5%, when the output current reached the peak value. When the impedance of the load is 3.0 Ω, the downstream MITL works in the self-limited flow, the maximums of output current and the amplitude of voltage are 1.28 MA and 3.96 MV, and the ratio of the electron current to the total current is 11.7% when the output current reached the peak value. In addition, when the switches are triggered in synchronism with the passage of the pulse power flow, it effectively reduces the rise time of the pulse current.

  14. Estimating the vibration level of an L-shaped beam using power flow techniques

    NASA Technical Reports Server (NTRS)

    Cuschieri, J. M.; Mccollum, M.; Rassineux, J. L.; Gilbert, T.

    1986-01-01

    The response of one component of an L-shaped beam, with point force excitation on the other component, is estimated using the power flow method. The transmitted power from the source component to the receiver component is expressed in terms of the transfer and input mobilities at the excitation point and the joint. The response is estimated both in narrow frequency bands, using the exact geometry of the beams, and as a frequency averaged response using infinite beam models. The results using this power flow technique are compared to the results obtained using finite element analysis (FEA) of the L-shaped beam for the low frequency response and to results obtained using statistical energy analysis (SEA) for the high frequencies. The agreement between the FEA results and the power flow method results at low frequencies is very good. SEA results are in terms of frequency averaged levels and these are in perfect agreement with the results obtained using the infinite beam models in the power flow method. The narrow frequency band results from the power flow method also converge to the SEA results at high frequencies. The advantage of the power flow method is that detail of the response can be retained while reducing computation time, which will allow the narrow frequency band analysis of the response to be extended to higher frequencies.

  15. Evaluation of the Uncertainty in JP-7 Kinetics Models Applied to Scramjets

    NASA Technical Reports Server (NTRS)

    Norris, A. T.

    2017-01-01

    One of the challenges of designing and flying a scramjet-powered vehicle is the difficulty of preflight testing. Ground tests at realistic flight conditions introduce several sources of uncertainty to the flow that must be addressed. For example, the scales of the available facilities limit the size of vehicles that can be tested and so performance metrics for larger flight vehicles must be extrapolated from ground tests at smaller scales. To create the correct flow enthalpy for higher Mach number flows, most tunnels use a heater that introduces vitiates into the flow. At these conditions, the effects of the vitiates on the combustion process is of particular interest to the engine designer, where the ground test results must be extrapolated to flight conditions. In this paper, the uncertainty of the cracked JP-7 chemical kinetics used in the modeling of a hydrocarbon-fueled scramjet was investigated. The factors that were identified as contributing to uncertainty in the combustion process were the level of flow vitiation, the uncertainty of the kinetic model coefficients and the variation of flow properties between ground testing and flight. The method employed was to run simulations of small, unit problems and identify which variables were the principal sources of uncertainty for the mixture temperature. Then using this resulting subset of all the variables, the effects of the uncertainty caused by the chemical kinetics on a representative scramjet flow-path for both vitiated (ground) and nonvitiated (flight) flows were investigated. The simulations showed that only a few of the kinetic rate equations contribute to the uncertainty in the unit problem results, and when applied to the representative scramjet flowpath, the resulting temperature variability was on the order of 100 K. Both the vitiated and clean air results showed very similar levels of uncertainty, and the difference between the mean properties were generally within the range of uncertainty predicted.

  16. How an antenna launches its input power into radiation: thepattern of the Poynting vector at and near an antenna

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, J.D.

    2005-05-18

    In this paper I first address the question of whether theseat of the power radiated by an antenna made of conducting members isdistributed over the "arms" of the antenna according tomore » $$ - \\bf J \\cdotE$$, where $$\\bf J$$ is the specified current density and $$\\bf E$$ is theelectric field produced by that source. Poynting's theorem permits only aglobal identification of the total input power, usually from a localizedgenerator, with the total power radiated to infinity, not a localcorrespondence of $$- \\bf J \\cdot E\\ d^3x $$ with some specific radiatedpower, $$r^2 \\bf S \\cdot \\hat r\\ d\\Omega $$. I then describe a modelantenna consisting of two perfectly conducting hemispheres of radius\\emph a separated by a small equatorial gap across which occurs thedriving oscillatory electric field. The fields and surface current aredetermined by solution of the boundary value problem. In contrast to thefirst approach (not a boundary value problem), the tangential electricfield vanishes on the metallic surface. There is no radial Poyntingvector at the surface. Numerical examples are shown to illustrate how theenergy flows from the input region of the gap and is guided near theantenna by its "arms" until it is launched at larger \\emph r/a into theradiation pattern determined by the value of \\emph ka.« less

  17. The balance of power in therapeutic interactions with individuals who have intellectual disabilities.

    PubMed

    Jahoda, Andrew; Selkirk, Mhairi; Trower, Peter; Pert, Carol; Stenfert Kroese, Biza; Dagnan, Dave; Burford, Bronwen

    2009-03-01

    Establishing a collaborative relationship is a cornerstone of cognitive behavioural therapy (CBT). Increasingly CBT is being offered to people with intellectual disabilities who may have problems with receptive and expressive communication, and a history of disadvantage or discrimination in their relationships with those in positions of power. Consequently, they may have difficulty establishing a collaborative interaction with their therapist. This paper uses a novel method of interactional analysis to examine if collaboration increases as therapy progresses. Fifteen participants with borderline to mild intellectual disabilities and significant problems of depression, anxiety and anger were recruited from specialist clinical services to participate in this study. Verbatim transcripts of therapy sessions 4 and 9 were coded using an initiative-response method of analysing power distribution in dialogue, to investigate collaboration at the level of therapeutic interaction. The initiative-response scores indicated that power was relatively equally distributed between clients and therapists. On this measure there was no significant increase in collaboration as therapy progressed, as the dialogues were relatively equal from session 4. Analyses of the pattern of interaction showed that whilst the therapists asked most questions, the clients contributed to the flow of the analysis and played an active part in dialogues. The implications of these findings are discussed, along with the possible uses of such interactional analyses in identifying barriers to communication and ways of establishing effective therapeutic dialogue.

  18. 75 FR 33613 - Notice of Interviews, Teleconferences, Regional Workshops and Multi-Stakeholder Technical...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-14

    ............ Project No. 2266-096. Sabine River Authority of Texas and Project No. 2305-020. State of Louisiana. Town of Massena Electric Department Project No. 12607-001. Free Flow Power Corporation........ Project No. 12829-001. Free Flow Power Corporation........ Project No. 12861-001. Free Flow Power Corporation...

  19. Challenges in Implementing a Multi-Partnership Geothermal Power Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gosnold, Will; Mann, Michael; Salehfar, Hossein

    The UND-CLR binary geothermal power plant project is a piggyback operation on a secondary-recovery water-flood project in the Cedar Hills oil field in the Williston Basin. Two open-hole horizontal wells at 2,300 m and 2,400 m depths with lateral lengths of 1,290 m and 860 m produce water at a combined flow of 51 l s -1 from the Lodgepole formation (Miss.) for injection into the Red River formation (Ordovician). The hydrostatic head for the Lodgepole is at ground surface and the pumps, which are set at 650 m depth, have run continuously since 2009. Water temperature at the wellheadmore » is 103 °C and CLR passes the water through two large air-cooled heat exchangers prior to injection. In all aspects, the CLR water flood project is ideal for demonstration of electrical power production from a low-temperature geothermal resource. However, implementation of the project from concept to power production was analogous to breaking trail in deep snow in an old growth forest. There were many hidden bumps, detours, and in some instances immoveable barriers. Problems with investors, cost share, contracts with CLR, resistance from local industry, cost of installation, delays by the ORC supplier, and the North Dakota climate all caused delays and setbacks. Determination and problem solving by the UND team eventually overcame most setbacks, and in April 2016, the site began generating power. Figure 1: Schematic of the water supply well at the UND CLR binary geothermal power plant REFERENCES Williams, Snyder, and Gosnold, 2016, Low Temperature Projects Evaluation and Lesson Learned, GRC Transactions, Vol. 40, 203-210 Gosnold, LeFever, Klenner, Mann, Salehfar, and Johnson, 2010, Geothermal Power from Coproduced Fluids in the Williston Basin, GRC Transactions, Vol. 34, 557-560« less

  20. Application for Single Price Auction Model (SPA) in AC Network

    NASA Astrophysics Data System (ADS)

    Wachi, Tsunehisa; Fukutome, Suguru; Chen, Luonan; Makino, Yoshinori; Koshimizu, Gentarou

    This paper aims to develop a single price auction model with AC transmission network, based on the principle of maximizing social surplus of electricity market. Specifically, we first formulate the auction market as a nonlinear optimization problem, which has almost the same form as the conventional optimal power flow problem, and then propose an algorithm to derive both market clearing price and trade volume of each player even for the case of market-splitting. As indicated in the paper, the proposed approach can be used not only for the price evaluation of auction or bidding market but also for analysis of bidding strategy, congestion effect and other constraints or factors. Several numerical examples are used to demonstrate effectiveness of our method.

  1. A novel investigation of a micropolar fluid characterized by nonlinear constitutive diffusion model in boundary layer flow and heat transfer.

    PubMed

    Sui, Jize; Zhao, Peng; Cheng, Zhengdong; Zheng, Liancun; Zhang, Xinxin

    2017-02-01

    The rheological and heat-conduction constitutive models of micropolar fluids (MFs), which are important non-Newtonian fluids, have been, until now, characterized by simple linear expressions, and as a consequence, the non-Newtonian performance of such fluids could not be effectively captured. Here, we establish the novel nonlinear constitutive models of a micropolar fluid and apply them to boundary layer flow and heat transfer problems. The nonlinear power law function of angular velocity is represented in the new models by employing generalized " n -diffusion theory," which has successfully described the characteristics of non-Newtonian fluids, such as shear-thinning and shear-thickening fluids. These novel models may offer a new approach to the theoretical understanding of shear-thinning behavior and anomalous heat transfer caused by the collective micro-rotation effects in a MF with shear flow according to recent experiments. The nonlinear similarity equations with a power law form are derived and the approximate analytical solutions are obtained by the homotopy analysis method, which is in good agreement with the numerical solutions. The results indicate that non-Newtonian behaviors involving a MF depend substantially on the power exponent n and the modified material parameter [Formula: see text] introduced by us. Furthermore, the relations of the engineering interest parameters, including local boundary layer thickness, local skin friction, and Nusselt number are found to be fitted by a quadratic polynomial to n with high precision, which enables the extraction of the rapid predictions from a complex nonlinear boundary-layer transport system.

  2. A novel investigation of a micropolar fluid characterized by nonlinear constitutive diffusion model in boundary layer flow and heat transfer

    PubMed Central

    Zhao, Peng; Cheng, Zhengdong; Zheng, Liancun; Zhang, Xinxin

    2017-01-01

    The rheological and heat-conduction constitutive models of micropolar fluids (MFs), which are important non-Newtonian fluids, have been, until now, characterized by simple linear expressions, and as a consequence, the non-Newtonian performance of such fluids could not be effectively captured. Here, we establish the novel nonlinear constitutive models of a micropolar fluid and apply them to boundary layer flow and heat transfer problems. The nonlinear power law function of angular velocity is represented in the new models by employing generalized “n-diffusion theory,” which has successfully described the characteristics of non-Newtonian fluids, such as shear-thinning and shear-thickening fluids. These novel models may offer a new approach to the theoretical understanding of shear-thinning behavior and anomalous heat transfer caused by the collective micro-rotation effects in a MF with shear flow according to recent experiments. The nonlinear similarity equations with a power law form are derived and the approximate analytical solutions are obtained by the homotopy analysis method, which is in good agreement with the numerical solutions. The results indicate that non-Newtonian behaviors involving a MF depend substantially on the power exponent n and the modified material parameter K0 introduced by us. Furthermore, the relations of the engineering interest parameters, including local boundary layer thickness, local skin friction, and Nusselt number are found to be fitted by a quadratic polynomial to n with high precision, which enables the extraction of the rapid predictions from a complex nonlinear boundary-layer transport system. PMID:28344433

  3. Unstable behaviour of RPT when testing turbine characteristics in the laboratory

    NASA Astrophysics Data System (ADS)

    Nielsen, T. K.; Fjørtoft Svarstad, M.

    2014-03-01

    A reversible pump turbine is a machine that can operate in three modes of operation i.e. in pumping mode. in turbine mode and in phase compensating mode (idle speed). Reversible pump turbines have an increasing importance for regulation purposes for obtaining power balance in electric power systems. Especially in grids dominated by thermal energy. reversible pump turbines improve the overall power regulating ability. Increased use of renewables (wind-. wave- and tidal power plants) will utterly demand better regulation ability of the traditional water power systems. enhancing the use of reversible pump turbines. A reversible pump turbine is known for having incredible steep speed - flow characteristics. As the speed increases the flow decreases more than that of a Francis turbines with the same specific speed. The steep characteristics might cause severe stability problems in turbine mode of operation. Stability in idle speed is a necessity for phasing in the generator to the electric grid. In the design process of a power plant. system dynamic simulations must be performed in order to check the system stability. The turbine characteristics will have to be modelled with certain accuracy even before one knows the exact turbine design and have measured characteristics. A representation of the RPT characteristics for system dynamic simulation purposes is suggested and compared with measured characteristics. The model shows good agreement with RPT characteristics measured in The Waterpower Laboratory. Because of the S-shaped characteristics. there is a stability issue involved when measuring these characteristics. Without special measures. it is impossible to achieve stable conditions in certain operational points. The paper discusses the mechanism when using a throttle to achieve system stability. even if the turbine characteristics imply instability.

  4. Avalanches and power-law behaviour in lung inflation

    NASA Astrophysics Data System (ADS)

    Suki, Béla; Barabási, Albert-László; Hantos, Zoltán; Peták, Ferenc; Stanley, H. Eugene

    1994-04-01

    WHEN lungs are emptied during exhalation, peripheral airways close up1. For people with lung disease, they may not reopen for a significant portion of inhalation, impairing gas exchange2,3. A knowledge of the mechanisms that govern reinflation of collapsed regions of lungs is therefore central to the development of ventilation strategies for combating respiratory problems. Here we report measurements of the terminal airway resistance, Rt , during the opening of isolated dog lungs. When inflated by a constant flow, Rt decreases in discrete jumps. We find that the probability distribution of the sizes of the jumps and of the time intervals between them exhibit power-law behaviour over two decades. We develop a model of the inflation process in which 'avalanches' of airway openings are seen-with power-law distributions of both the size of avalanches and the time intervals between them-which agree quantitatively with those seen experimentally, and are reminiscent of the power-law behaviour observed for self-organized critical systems4. Thus power-law distributions, arising from avalanches associated with threshold phenomena propagating down a branching tree structure, appear to govern the recruitment of terminal airspaces.

  5. Derivative with two fractional orders: A new avenue of investigation toward revolution in fractional calculus

    NASA Astrophysics Data System (ADS)

    Atangana, Abdon

    2016-10-01

    In order to describe more complex problems using the concept of fractional derivatives, we introduce in this paper the concept of fractional derivatives with orders. The new definitions are based upon the concept of power law together with the generalized Mittag-Leffler function. The first order is included in the power law function and the second one is in the generalized Mittag-Leffler function. Each order therefore plays an important role while modeling, for instance, problems with two layers with different properties. This is the case, for instance, in thermal science for a reaction diffusion within a media with two different layers with different properties. Another case is that of groundwater flowing within an aquifer where geological formation is formed with two layers with different properties. The paper presents new fractional operators that will open new doors for research and investigations in modeling real world problems. Some useful properties of the new operators are presented, in particular their relationship with existing integral transforms, namely the Laplace, Sumudu, Mellin and Fourier transforms. The numerical approximation of the new fractional operators are presented. We apply the new fractional operators on the model of groundwater plume with degradation and limited sorption and solve the new model numerically with some numerical simulations. The numerical simulation leaves no doubt in believing that the new fractional operators are powerfull mathematical tools able to portray complexes real world problems.

  6. Reversing cooling flows with AGN jets: shock waves, rarefaction waves and trailing outflows

    NASA Astrophysics Data System (ADS)

    Guo, Fulai; Duan, Xiaodong; Yuan, Ye-Fei

    2018-01-01

    The cooling flow problem is one of the central problems in galaxy clusters, and active galactic nucleus (AGN) feedback is considered to play a key role in offsetting cooling. However, how AGN jets heat and suppress cooling flows remains highly debated. Using an idealized simulation of a cool-core cluster, we study the development of central cooling catastrophe and how a subsequent powerful AGN jet event averts cooling flows, with a focus on complex gasdynamical processes involved. We find that the jet drives a bow shock, which reverses cooling inflows and overheats inner cool-core regions. The shocked gas moves outward in a rarefaction wave, which rarefies the dense core and adiabatically transports a significant fraction of heated energy to outer regions. As the rarefaction wave propagates away, inflows resume in the cluster core, but a trailing outflow is uplifted by the AGN bubble, preventing gas accumulation and catastrophic cooling in central regions. Inflows and trailing outflows constitute meridional circulations in the cluster core. At later times, trailing outflows fall back to the cluster centre, triggering central cooling catastrophe and potentially a new generation of AGN feedback. We thus envisage a picture of cool cluster cores going through cycles of cooling-induced contraction and AGN-induced expansion. This picture naturally predicts an anti-correlation between the gas fraction (or X-ray luminosity) of cool cores and the central gas entropy, which may be tested by X-ray observations.

  7. Multiobjective Optimization of Atmospheric Plasma Spray Process Parameters to Deposit Yttria-Stabilized Zirconia Coatings Using Response Surface Methodology

    NASA Astrophysics Data System (ADS)

    Ramachandran, C. S.; Balasubramanian, V.; Ananthapadmanabhan, P. V.

    2011-03-01

    Atmospheric plasma spraying is used extensively to make Thermal Barrier Coatings of 7-8% yttria-stabilized zirconia powders. The main problem faced in the manufacture of yttria-stabilized zirconia coatings by the atmospheric plasma spraying process is the selection of the optimum combination of input variables for achieving the required qualities of coating. This problem can be solved by the development of empirical relationships between the process parameters (input power, primary gas flow rate, stand-off distance, powder feed rate, and carrier gas flow rate) and the coating quality characteristics (deposition efficiency, tensile bond strength, lap shear bond strength, porosity, and hardness) through effective and strategic planning and the execution of experiments by response surface methodology. This article highlights the use of response surface methodology by designing a five-factor five-level central composite rotatable design matrix with full replication for planning, conduction, execution, and development of empirical relationships. Further, response surface methodology was used for the selection of optimum process parameters to achieve desired quality of yttria-stabilized zirconia coating deposits.

  8. Regolith thermal property inversion in the LUNAR-A heat-flow experiment

    NASA Astrophysics Data System (ADS)

    Hagermann, A.; Tanaka, S.; Yoshida, S.; Fujimura, A.; Mizutani, H.

    2001-11-01

    In 2003, two penetrators of the LUNAR--A mission of ISAS will investigate the internal structure of the Moon by conducting seismic and heat--flow experiments. Heat-flow is the product of thermal gradient tial T / tial z, and thermal conductivity λ of the lunar regolith. For measuring the thermal conductivity (or dissusivity), each penetrator will carry five thermal property sensors, consisting of small disc heaters. The thermal response Ts(t) of the heater itself to the constant known power supply of approx. 50 mW serves as the data for the subsequent data interpretation. Horai et al. (1991) found a forward analytical solution to the problem of determining the thermal inertia λ ρ c of the regolith for constant thermal properties and a simplyfied geometry. In the inversion, the problem of deriving the unknown thermal properties of a medium from known heat sources and temperatures is an Identification Heat Conduction Problem (IDHCP), an ill--posed inverse problem. Assuming that thermal conductivity λ and heat capacity ρ c are linear functions of temperature (which is reasonable in most cases), one can apply a Kirchhoff transformation to linearize the heat conduction equation, which minimizes computing time. Then the error functional, i.e. the difference between the measured temperature response of the heater and the predicted temperature response, can be minimized, thus solving for thermal dissusivity κ = λ / (ρ c), wich will complete the set of parameters needed for a detailed description of thermal properties of the lunar regolith. Results of model calculations will be presented, in which synthetic data and calibration data are used to invert the unknown thermal diffusivity of the unknown medium by means of a modified Newton Method. Due to the ill-posedness of the problem, the number of parameters to be solved for should be limited. As the model calculations reveal, a homogeneous regolith allows for a fast and accurate inversion.

  9. Effect of flow rate and concentration difference on reverse electrodialysis system

    NASA Astrophysics Data System (ADS)

    Kwon, Kilsugn; Han, Jaesuk; Kim, Daejoong

    2013-11-01

    Various energy conversion technologies have been developed to reduce dependency on limited fossil fuels, including wind power, solar power, hydropower, ocean power, and geothermal power. Among them, reverse electrodialysis (RED), which is one type of salinity gradient power (SGP), has received much attention due to high reliability and simplicity without moving parts. Here, we experimentally evaluated the RED performance with several parameters like flow rate of concentrated and dilute solution, concentration difference, and temperature. RED was composed of endplates, electrodes, spacers, anion exchange membrane, and cation exchange membrane. Endplates are made by a polypropylene. It included the electrodes, flow field for the electrode rinse solution, and path to supply a concentrated and dilute solution. Titanium coated by iridium and ruthenium was used as the electrode. The electrode rinse solution based on hexacyanoferrate system is used to reduce the power loss generated by conversion process form ionic current to electric current. Maximum power monotonously increases as increasing flow rate and concentration difference. Net power has optimal point because pumping power consumption increases with flow rate. This work was supported by Basic Science Research Program (Grat No. NRF-2011-0009993) through the National Research Foundation of Korea.

  10. Radiation beam calorimetric power measurement system

    DOEpatents

    Baker, John; Collins, Leland F.; Kuklo, Thomas C.; Micali, James V.

    1992-01-01

    A radiation beam calorimetric power measurement system for measuring the average power of a beam such as a laser beam, including a calorimeter configured to operate over a wide range of coolant flow rates and being cooled by continuously flowing coolant for absorbing light from a laser beam to convert the laser beam energy into heat. The system further includes a flow meter for measuring the coolant flow in the calorimeter and a pair of thermistors for measuring the temperature difference between the coolant inputs and outputs to the calorimeter. The system also includes a microprocessor for processing the measured coolant flow rate and the measured temperature difference to determine the average power of the laser beam.

  11. A Gradient-Based Multistart Algorithm for Multimodal Aerodynamic Shape Optimization Problems Based on Free-Form Deformation

    NASA Astrophysics Data System (ADS)

    Streuber, Gregg Mitchell

    Environmental and economic factors motivate the pursuit of more fuel-efficient aircraft designs. Aerodynamic shape optimization is a powerful tool in this effort, but is hampered by the presence of multimodality in many design spaces. Gradient-based multistart optimization uses a sampling algorithm and multiple parallel optimizations to reliably apply fast gradient-based optimization to moderately multimodal problems. Ensuring that the sampled geometries remain physically realizable requires manually developing specialized linear constraints for each class of problem. Utilizing free-form deformation geometry control allows these linear constraints to be written in a geometry-independent fashion, greatly easing the process of applying the algorithm to new problems. This algorithm was used to assess the presence of multimodality when optimizing a wing in subsonic and transonic flows, under inviscid and viscous conditions, and a blended wing-body under transonic, viscous conditions. Multimodality was present in every wing case, while the blended wing-body was found to be generally unimodal.

  12. Computational Modeling and Analysis of Aeroelastic Wing Flutter

    NASA Astrophysics Data System (ADS)

    Menon, Karthik; Katz, Joseph; Mittal, Rajat

    2017-11-01

    Aeroelastic flutter is ubiquitous in aeronautics; of particular relevance here is the flutter of aircraft wings, helicopter rotor blades, flexible wing MAVs and UAVs, and long-endurance aerial systems such as airships and solar powered air-vehicles. Here, we attempt to understand some fundamental aspects of this problem via immersed boundary method based numerical simulations of canonical bodies. We report findings on the effect of body geometry on the dynamics of flutter involving coupled pitch-heave oscillations. We also explore flow-induced flutter of airfoils in pre and post-stall configurations, including the effect of stiffness and pitch axis location. Finally, a novel force decomposition method is used to provide some insight into the flutter dynamics and associated unsteady flow physics. This work is supported by AFOSR Grant FA9550-16-1-0404.

  13. Optimal homotopy asymptotic method for flow and heat transfer of a viscoelastic fluid in an axisymmetric channel with a porous wall.

    PubMed

    Mabood, Fazle; Khan, Waqar A; Ismail, Ahmad Izani Md

    2013-01-01

    In this article, an approximate analytical solution of flow and heat transfer for a viscoelastic fluid in an axisymmetric channel with porous wall is presented. The solution is obtained through the use of a powerful method known as Optimal Homotopy Asymptotic Method (OHAM). We obtained the approximate analytical solution for dimensionless velocity and temperature for various parameters. The influence and effect of different parameters on dimensionless velocity, temperature, friction factor, and rate of heat transfer are presented graphically. We also compared our solution with those obtained by other methods and it is found that OHAM solution is better than the other methods considered. This shows that OHAM is reliable for use to solve strongly nonlinear problems in heat transfer phenomena.

  14. Optimal Homotopy Asymptotic Method for Flow and Heat Transfer of a Viscoelastic Fluid in an Axisymmetric Channel with a Porous Wall

    PubMed Central

    Mabood, Fazle; Khan, Waqar A.; Ismail, Ahmad Izani

    2013-01-01

    In this article, an approximate analytical solution of flow and heat transfer for a viscoelastic fluid in an axisymmetric channel with porous wall is presented. The solution is obtained through the use of a powerful method known as Optimal Homotopy Asymptotic Method (OHAM). We obtained the approximate analytical solution for dimensionless velocity and temperature for various parameters. The influence and effect of different parameters on dimensionless velocity, temperature, friction factor, and rate of heat transfer are presented graphically. We also compared our solution with those obtained by other methods and it is found that OHAM solution is better than the other methods considered. This shows that OHAM is reliable for use to solve strongly nonlinear problems in heat transfer phenomena. PMID:24376722

  15. Dynamic Control of Facts Devices to Enable Large Scale Penetration of Renewable Energy Resources

    NASA Astrophysics Data System (ADS)

    Chavan, Govind Sahadeo

    This thesis focuses on some of the problems caused by large scale penetration of Renewable Energy Resources within EHV transmission networks, and investigates some approaches in resolving these problems. In chapter 4, a reduced-order model of the 500 kV WECC transmission system is developed by estimating its key parameters from phasor measurement unit (PMU) data. The model was then implemented in RTDS and was investigated for its accuracy with respect to the PMU data. Finally it was tested for observing the effects of various contingencies like transmission line loss, generation loss and large scale penetration of wind farms on EHV transmission systems. Chapter 5 introduces Static Series Synchronous Compensators (SSSC) which are seriesconnected converters that can control real power flow along a transmission line. A new application of SSSCs in mitigating Ferranti effect on unloaded transmission lines was demonstrated on PSCAD. A new control scheme for SSSCs based on the Cascaded H-bridge (CHB) converter configuration was proposed and was demonstrated using PSCAD and RTDS. A new centralized controller was developed for the distributed SSSCs based on some of the concepts used in the CHB-based SSSC. The controller's efficacy was demonstrated using RTDS. Finally chapter 6 introduces the problem of power oscillations induced by renewable sources in a transmission network. A power oscillation damping (POD) controller is designed using distributed SSSCs in NYPA's 345 kV three-bus AC system and its efficacy is demonstrated in PSCAD. A similar POD controller is then designed for the CHB-based SSSC in the IEEE 14 bus system in PSCAD. Both controllers were noted to have significantly damped power oscillations in the transmission networks.

  16. Locational Marginal Pricing in the Campus Power System at the Power Distribution Level

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao, Jun; Gu, Yi; Zhang, Yingchen

    2016-11-14

    In the development of smart grid at distribution level, the realization of real-time nodal pricing is one of the key challenges. The research work in this paper implements and studies the methodology of locational marginal pricing at distribution level based on a real-world distribution power system. The pricing mechanism utilizes optimal power flow to calculate the corresponding distributional nodal prices. Both Direct Current Optimal Power Flow and Alternate Current Optimal Power Flow are utilized to calculate and analyze the nodal prices. The University of Denver campus power grid is used as the power distribution system test bed to demonstrate themore » pricing methodology.« less

  17. Design of novel dual-port tapered waveguide plasma apparatus by numerical analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, D.; Zhou, R.; Yang, X. Q., E-mail: yyxxqq-mail@163.com

    Microwave plasma apparatus is often of particular interest due to their superiority of low cost, electrode contamination free, and suitability for industrial production. However, there exist problems of unstable plasma and low electron density in conventional waveguide apparatus based on single port, due to low strength and non-uniformity of microwave field. This study proposes a novel dual-port tapered waveguide plasma apparatus based on power-combining technique, to improve the strength and uniformity of microwave field for the applications of plasma. A 3D model of microwave-induced plasma (field frequency 2.45 GHz) in argon at atmospheric pressure is presented. On the condition thatmore » the total input power is 500 W, simulations indicate that coherent power-combining will maximize the electric-field strength to 3.32 × 10{sup 5 }V/m and improve the uniformity of distributed microwave field, which raised 36.7% and 47.2%, respectively, compared to conventional waveguide apparatus of single port. To study the optimum conditions for industrial application, a 2D argon fluid model based on above structure is presented. It demonstrates that relatively uniform and high-density plasma is obtained at an argon flow rate of 200 ml/min. The contrastive result of electric-field distribution, electron density, and gas temperature is also valid and clearly proves the superiority of coherent power-combining to conventional technique in flow field.« less

  18. Estimating Vibrational Powers Of Parts In Fluid Machinery

    NASA Technical Reports Server (NTRS)

    Harvey, S. A.; Kwok, L. C.

    1995-01-01

    In new method of estimating vibrational power associated with component of fluid-machinery system, physics of flow through (or in vicinity of) component regarded as governing vibrations. Devised to generate scaling estimates for design of new parts of rocket engines (e.g., pumps, combustors, nozzles) but applicable to terrestrial pumps, turbines, and other machinery in which turbulent flows and vibrations caused by such flows are significant. Validity of method depends on assumption that fluid flows quasi-steadily and that flow gives rise to uncorrelated acoustic powers in different parts of pump.

  19. Noise of the SR-6 propeller model at 2 deg and 4 deg angles of attack

    NASA Technical Reports Server (NTRS)

    Dittmar, J. H.; Stefko, G. L.

    1983-01-01

    The noise generated by supersonic-tip-speed propellers creates a cabin noise problem for future airplanes powered by these propellers. Noise of a number of propeller models were measured in the NASA Lewis 8- by 6-Foot Wind Tunnel with flow parallel to the propeller axis. In flight, as a result of the induced upwash from the airplane wing, the propeller is at an angle of attack with respect to the incoming flow. Therefore, the 10-blade SR-6 propeller was operated at angle of attack to determine its noise behavior. Higher blade passage tones were observed for the propeller operating at angle of attack in a 0.6 axial Mach number flow. The noise increase was not symmetrical, with one wall of the wind tunnel showing a larger noise increase than the other wall. No noise increase was observed at angle of attack in a 0.8 axial Mach number flow. For this propeller the dominance of thickness noise, which does not increase with angle of attack, explains the lack of noise increase at the higher 0.8 Mach number.

  20. Crystal and Particle Engineering Strategies for Improving Powder Compression and Flow Properties to Enable Continuous Tablet Manufacturing by Direct Compression.

    PubMed

    Chattoraj, Sayantan; Sun, Changquan Calvin

    2018-04-01

    Continuous manufacturing of tablets has many advantages, including batch size flexibility, demand-adaptive scale up or scale down, consistent product quality, small operational foot print, and increased manufacturing efficiency. Simplicity makes direct compression the most suitable process for continuous tablet manufacturing. However, deficiencies in powder flow and compression of active pharmaceutical ingredients (APIs) limit the range of drug loading that can routinely be considered for direct compression. For the widespread adoption of continuous direct compression, effective API engineering strategies to address power flow and compression problems are needed. Appropriate implementation of these strategies would facilitate the design of high-quality robust drug products, as stipulated by the Quality-by-Design framework. Here, several crystal and particle engineering strategies for improving powder flow and compression properties are summarized. The focus is on the underlying materials science, which is the foundation for effective API engineering to enable successful continuous manufacturing by the direct compression process. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  1. Asymmetrical booster ascent guidance and control system design study. Volume 5: Space shuttle powered explicit guidance. [space shuttle development

    NASA Technical Reports Server (NTRS)

    Jaggers, R. F.

    1974-01-01

    An optimum powered explicit guidance algorithm capable of handling all space shuttle exoatospheric maneuvers is presented. The theoretical and practical basis for the currently baselined space shuttle powered flight guidance equations and logic is documented. Detailed flow diagrams for implementing the steering computations for all shuttle phases, including powered return to launch site (RTLS) abort, are also presented. Derivation of the powered RTLS algorithm is provided, as well as detailed flow diagrams for implementing the option. The flow diagrams and equations are compatible with the current powered flight documentation.

  2. Model calculations of kinetic and fluid dynamic processes in diode pumped alkali lasers

    NASA Astrophysics Data System (ADS)

    Barmashenko, Boris D.; Rosenwaks, Salman; Waichman, Karol

    2013-10-01

    Kinetic and fluid dynamic processes in diode pumped alkali lasers (DPALs) are analyzed in detail using a semianalytical model, applicable to both static and flowing-gas devices. The model takes into account effects of temperature rise, excitation of neutral alkali atoms to high lying electronic states and their losses due to ionization and chemical reactions, resulting in a decrease of the pump absorption, slope efficiency and lasing power. Effects of natural convection in static DPALs are also taken into account. The model is applied to Cs DPALs and the results are in good agreement with measurements in a static [B.V. Zhdanov, J. Sell and R.J. Knize, Electron. Lett. 44, 582 (2008)] and 1-kW flowing-gas [A.V. Bogachev et al., Quantum Electron. 42, 95 (2012)] DPALs. It predicts the dependence of power on the flow velocity in flowing-gas DPALs and on the buffer gas composition. The maximum values of the laser power can be substantially increased by optimization of the flowing-gas DPAL parameters. In particular for the aforementioned 1 kW DPAL, 6 kW maximum power is achievable just by increasing the pump power and the temperature of the wall and the gas at the flow inlet (resulting in increase of the alkali saturated vapor density). Dependence of the lasing power on the pump power is non-monotonic: the power first increases, achieves its maximum and then decreases. The decrease of the lasing power with increasing pump power at large values of the latter is due to the rise of the aforementioned losses of the alkali atoms as a result of ionization. Work in progress applying two-dimensional computational fluid dynamics modeling of flowing-gas DPALs is also reported.

  3. Jet pump-drive system for heat removal

    NASA Technical Reports Server (NTRS)

    French, James R. (Inventor)

    1987-01-01

    The invention does away with the necessity of moving parts such as a check valve in a nuclear reactor cooling system. Instead, a jet pump, in combination with a TEMP, is employed to assure safe cooling of a nuclear reactor after shutdown. A main flow exists for a reactor coolant. A point of withdrawal is provided for a secondary flow. A TEMP, responsive to the heat from said coolant in the secondary flow path, automatically pumps said withdrawn coolant to a higher pressure and thus higher velocity compared to the main flow. The high velocity coolant is applied as a driver flow for the jet pump which has a main flow chamber located in the main flow circulation pump. Upon nuclear shutdown and loss of power for the main reactor pumping system, the TEMP/jet pump combination continues to boost the coolant flow in the direction it is already circulating. During the decay time for the nuclear reactor, the jet pump keeps running until the coolant temperature drops to a lower and safe temperature where the heat is no longer a problem. At this lower temperature, the TEMP/jet pump combination ceases its circulation boosting operation. When the nuclear reactor is restarted and the coolant again exceeds the lower temperature setting, the TEMP/jet pump automatically resumes operation. The TEMP/jet pump combination is thus automatic, self-regulating and provides an emergency pumping system free of moving parts.

  4. Optimized Lateral Flow Immunoassay Reader for the Detection of Infectious Diseases in Developing Countries.

    PubMed

    Pilavaki, Evdokia; Demosthenous, Andreas

    2017-11-20

    Detection and control of infectious diseases is a major problem, especially in developing countries. Lateral flow immunoassays can be used with great success for the detection of infectious diseases. However, for the quantification of their results an electronic reader is required. This paper presents an optimized handheld electronic reader for developing countries. It features a potentially low-cost, low-power, battery-operated device with no added optical accessories. The operation of this proof of concept device is based on measuring the reflected light from the lateral flow immunoassay and translating it into the concentration of the specific analyte of interest. Characterization of the surface of the lateral flow immunoassay has been performed in order to accurately model its response to the incident light. Ray trace simulations have been performed to optimize the system and achieve maximum sensitivity by placing all the components in optimum positions. A microcontroller enables all the signal processing to be performed on the device and a Bluetooth module allows transmission of the results wirelessly to a mobile phone app. Its performance has been validated using lateral flow immunoassays with influenza A nucleoprotein in the concentration range of 0.5 ng/mL to 200 ng/mL.

  5. Scaling Relations for Viscous and Gravitational Flow Instabilities in Multiphase Multicomponent Compressible Flow

    NASA Astrophysics Data System (ADS)

    Moortgat, J.; Amooie, M. A.; Soltanian, M. R.

    2016-12-01

    Problems in hydrogeology and hydrocarbon reservoirs generally involve the transport of solutes in a single solvent phase (e.g., contaminants or dissolved injection gas), or the flow of multiple phases that may or may not exchange mass (e.g., brine, NAPL, oil, gas). Often, flow is viscously and gravitationally unstable due to mobility and density contrasts within a phase or between phases. Such instabilities have been studied in detail for single-phase incompressible fluids and for two-phase immiscible flow, but to a lesser extent for multiphase multicomponent compressible flow. The latter is the subject of this presentation. Robust phase stability analyses and phase split calculations, based on equations of state, determine the mass exchange between phases and the resulting phase behavior, i.e., phase densities, viscosities, and volumes. Higher-order finite element methods and fine grids are used to capture the small-scale onset of flow instabilities. A full matrix of composition dependent coefficients is considered for each Fickian diffusive phase flux. Formation heterogeneity can have a profound impact and is represented by realistic geostatistical models. Qualitatively, fingering in multiphase compositional flow is different from single-phase problems because 1) phase mobilities depend on rock wettability through relative permeabilities, and 2) the initial density and viscosity ratios between phases may change due to species transfer. To quantify mixing rates in different flow regimes and for varying degrees of miscibility and medium heterogeneities, we define the spatial variance, scalar dissipation rate, dilution index, skewness, and kurtosis of the molar density of introduced species. Molar densities, unlike compositions, include compressibility effects. The temporal evolution of these measures shows that, while transport at the small-scale (cm) is described by the classical advection-diffusion-dispersion relations, scaling at the macro-scale (> 10 m) shows transitions between advective, diffusive, ballistic, sub-diffusive, and non-Fickian diffusive behavior. These scaling relations can be used to improve the predictive powers of field-scale reservoir simulations that cannot resolve the complexities of unstable flow and transport at cm-m scales.

  6. The dynamic phenomena of a tethered satellite: NASA's first Tethered Satellite Mission, TSS-1

    NASA Technical Reports Server (NTRS)

    Ryan, R. S.; Mowery, D. K.; Tomlin, D. D.

    1993-01-01

    The tethered satellite system (TSS) was envisioned as a means of extending a satellite from its base (space shuttle, space station, space platform) into a lower or higher altitude in order to more efficiently acquire data and perform science experiments. This is accomplished by attaching the satellite to a tether, deploying it, then reeling it in. When its mission is completed, the satellite can be returned to its base for reuse. If the tether contains a conductor, it can also be used as a means to generate and flow current to and from the satellite to the base. When current is flowed, the tether interacts with the Earth's magnetic field, deflecting the tether. When the current flows in one direction, the system becomes a propulsive system that can be used to boost the orbiting system. In the other direction, it is a power generating system. Pulsing the current sets up a dynamic oscillation in the tether, which can upset the satellite attitude and preclude docking. A basic problem occurs around 400-m tether length, during satellite retrieval when the satellite's pendulous (rotational) mode gets in resonance with the first lateral tether string mode. The problem's magnitude is determined by the amount of skiprope present coming into this resonance condition. This paper deals with the tethered satellite, its dynamic phenomena, and how the resulting problems were solved for the first tethered satellite mission (TSS-1). Proposals for improvements for future tethered satellite missions are included. Results from the first tethered satellite flight are summarized.

  7. Theoretical and Numerical Studies of a Vortex - Interaction Problem

    NASA Astrophysics Data System (ADS)

    Hsu, To-Ming

    The problem of vortex-airfoil interaction has received considerable interest in the helicopter industry. This phenomenon has been shown to be a major source of noise, vibration, and structural fatigue in helicopter flight. Since unsteady flow is always associated with vortex shedding and movement of free vortices, the problem of vortex-airfoil interaction also serves as a basic building block in unsteady aerodynamics. A careful study of the vortex-airfoil interaction reveals the major effects of the vortices on the generation of unsteady aerodynamic forces, especially the lift. The present work establishes three different flow models to study the vortex-airfoil interaction problem: a theoretical model, an inviscid flow model, and a viscous flow model. In the first two models, a newly developed aerodynamic force theorem has been successfully applied to identify the contributions to unsteady forces from various vortical systems in the flow field. Through viscous flow analysis, different features of laminar interaction, turbulent attached interaction, and turbulent separated interaction are examined. Along with the study of the vortex-airfoil interaction problem, several new schemes are developed for inviscid and viscous flow solutions. New formulas are derived to determine the trailing edge flow conditions, such as flow velocity and direction, in unsteady inviscid flow. A new iteration scheme that is faster for higher Reynolds number is developed for solving the viscous flow problem.

  8. A reliable ground bounce noise reduction technique for nanoscale CMOS circuits

    NASA Astrophysics Data System (ADS)

    Sharma, Vijay Kumar; Pattanaik, Manisha

    2015-11-01

    Power gating is the most effective method to reduce the standby leakage power by adding header/footer high-VTH sleep transistors between actual and virtual power/ground rails. When a power gating circuit transitions from sleep mode to active mode, a large instantaneous charge current flows through the sleep transistors. Ground bounce noise (GBN) is the high voltage fluctuation on real ground rail during sleep mode to active mode transitions of power gating circuits. GBN disturbs the logic states of internal nodes of circuits. A novel and reliable power gating structure is proposed in this article to reduce the problem of GBN. The proposed structure contains low-VTH transistors in place of high-VTH footer. The proposed power gating structure not only reduces the GBN but also improves other performance metrics. A large mitigation of leakage power in both modes eliminates the need of high-VTH transistors. A comprehensive and comparative evaluation of proposed technique is presented in this article for a chain of 5-CMOS inverters. The simulation results are compared to other well-known GBN reduction circuit techniques at 22 nm predictive technology model (PTM) bulk CMOS model using HSPICE tool. Robustness against process, voltage and temperature (PVT) variations is estimated through Monte-Carlo simulations.

  9. Flood control problems

    USGS Publications Warehouse

    Leopold, Luna Bergere; Maddock, Thomas

    1955-01-01

    Throughout the world, alluvial soils are among the most fertile and easiest cultivated. Alluvial valleys are routes for transportation either by water or by road and railroad. Rivers are sources of water, a necessity of life. But these river valleys and alluvial deposits, which have so many desirable characteristics and which have increased so greatly in population, are periodically occupied by the river in performing its task of removing the excess of precipitation from the land area and carrying away the products of erosion.How a river behaves and how the river flood plain appears depend on the relationships between water and sediment combined with the existing topography. Thus rivers and their alluvial deposits provide an endless variety of forms which are shaped, to a large extent, by the river flow during periods of rapid removal of debris and of excessive rainfall. The mechanics of river formation are such, however, that the highest discharges are not contained within a limited channel. How much water a channel will carry depends upon the frequency of occurrence of a flow. Low flows, which occur very frequently, are not important in channel formation. Neither are the infrequent discharges of very great magnitude which, although powerful, do not occur often enough to shape the channel. Channel characteristics, are dependent on those discharges of moderate size which combine power with frequency of occurrence to modify the channel from. In the highest discharges of a stream, water rises above the confines of its banks and flows over the flood plain.It must be considered, therefore, that floods are natural phenomena which are characteristic of all rivers. They perform a vital function in the maintenance of river forms and out of bank flow may be expected with a reasonable degree of regularity.

  10. Optimal PMU placement using topology transformation method in power systems.

    PubMed

    Rahman, Nadia H A; Zobaa, Ahmed F

    2016-09-01

    Optimal phasor measurement units (PMUs) placement involves the process of minimizing the number of PMUs needed while ensuring the entire power system completely observable. A power system is identified observable when the voltages of all buses in the power system are known. This paper proposes selection rules for topology transformation method that involves a merging process of zero-injection bus with one of its neighbors. The result from the merging process is influenced by the selection of bus selected to merge with the zero-injection bus. The proposed method will determine the best candidate bus to merge with zero-injection bus according to the three rules created in order to determine the minimum number of PMUs required for full observability of the power system. In addition, this paper also considered the case of power flow measurements. The problem is formulated as integer linear programming (ILP). The simulation for the proposed method is tested by using MATLAB for different IEEE bus systems. The explanation of the proposed method is demonstrated by using IEEE 14-bus system. The results obtained in this paper proved the effectiveness of the proposed method since the number of PMUs obtained is comparable with other available techniques.

  11. Three-phase Power Flow Calculation of Low Voltage Distribution Network Considering Characteristics of Residents Load

    NASA Astrophysics Data System (ADS)

    Wang, Yaping; Lin, Shunjiang; Yang, Zhibin

    2017-05-01

    In the traditional three-phase power flow calculation of the low voltage distribution network, the load model is described as constant power. Since this model cannot reflect the characteristics of actual loads, the result of the traditional calculation is always different from the actual situation. In this paper, the load model in which dynamic load represented by air conditioners parallel with static load represented by lighting loads is used to describe characteristics of residents load, and the three-phase power flow calculation model is proposed. The power flow calculation model includes the power balance equations of three-phase (A,B,C), the current balance equations of phase 0, and the torque balancing equations of induction motors in air conditioners. And then an alternating iterative algorithm of induction motor torque balance equations with each node balance equations is proposed to solve the three-phase power flow model. This method is applied to an actual low voltage distribution network of residents load, and by the calculation of three different operating states of air conditioners, the result demonstrates the effectiveness of the proposed model and the algorithm.

  12. Computational Study on the Effect of Shroud Shape on the Efficiency of the Gas Turbine Stage

    NASA Astrophysics Data System (ADS)

    Afanas'ev, I. V.; Granovskii, A. V.

    2018-03-01

    The last stages of powerful power gas turbines play an important role in the development of power and efficiency of the whole unit as well as in the distribution of the flow parameters behind the last stage, which determines the efficient operation of the exhaust diffusers. Therefore, much attention is paid to improving the efficiency of the last stages of gas turbines as well as the distribution of flow parameters. Since the long blades of the last stages of multistage high-power gas turbines could fall into the resonance frequency range in the course of operation, which results in the destruction of the blades, damping wires or damping bolts are used for turning out of resonance frequencies. However, these damping elements cause additional energy losses leading to a reduction in the efficiency of the stage. To minimize these losses, dampening shrouds are used instead of wires and bolts at the periphery of the working blades. However, because of the strength problems, designers have to use, instead of the most efficient full shrouds, partial shrouds that do not provide for significantly reducing the losses in the tip clearance between the blade and the turbine housing. In this paper, a computational study is performed concerning an effect that the design of the shroud of the turbine-working blade exerted on the flow structure in the vicinity of the shroud and on the efficiency of the stage as a whole. The analysis of the flow structure has shown that a significant part of the losses under using the shrouds is associated with the formation of vortex zones in the cavities on the turbine housing before the shrouds, between the ribs of the shrouds, and in the cavities at the outlet behind the shrouds. All the investigated variants of a partial shrouding are inferior in efficiency to the stages with shrouds that completely cover the tip section of the working blade. The stage with a unshrouded working blade was most efficient at the values of the relative tip clearance less than 0.9%.

  13. Applications of statistical physics to technology price evolution

    NASA Astrophysics Data System (ADS)

    McNerney, James

    Understanding how changing technology affects the prices of goods is a problem with both rich phenomenology and important policy consequences. Using methods from statistical physics, I model technology-driven price evolution. First, I examine a model for the price evolution of individual technologies. The price of a good often follows a power law equation when plotted against its cumulative production. This observation turns out to have significant consequences for technology policy aimed at mitigating climate change, where technologies are needed that achieve low carbon emissions at low cost. However, no theory adequately explains why technology prices follow power laws. To understand this behavior, I simplify an existing model that treats technologies as machines composed of interacting components. I find that the power law exponent of the price trajectory is inversely related to the number of interactions per component. I extend the model to allow for more realistic component interactions and make a testable prediction. Next, I conduct a case-study on the cost evolution of coal-fired electricity. I derive the cost in terms of various physical and economic components. The results suggest that commodities and technologies fall into distinct classes of price models, with commodities following martingales, and technologies following exponentials in time or power laws in cumulative production. I then examine the network of money flows between industries. This work is a precursor to studying the simultaneous evolution of multiple technologies. Economies resemble large machines, with different industries acting as interacting components with specialized functions. To begin studying the structure of these machines, I examine 20 economies with an emphasis on finding common features to serve as targets for statistical physics models. I find they share the same money flow and industry size distributions. I apply methods from statistical physics to show that industries cluster the same way according to industry type. Finally, I use these industry money flows to model the price evolution of many goods simultaneously, where network effects become important. I derive a prediction for which goods tend to improve most rapidly. The fastest-improving goods are those with the highest mean path lengths in the money flow network.

  14. Advanced Computational Methods for Security Constrained Financial Transmission Rights: Structure and Parallelism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elbert, Stephen T.; Kalsi, Karanjit; Vlachopoulou, Maria

    Financial Transmission Rights (FTRs) help power market participants reduce price risks associated with transmission congestion. FTRs are issued based on a process of solving a constrained optimization problem with the objective to maximize the FTR social welfare under power flow security constraints. Security constraints for different FTR categories (monthly, seasonal or annual) are usually coupled and the number of constraints increases exponentially with the number of categories. Commercial software for FTR calculation can only provide limited categories of FTRs due to the inherent computational challenges mentioned above. In this paper, a novel non-linear dynamical system (NDS) approach is proposed tomore » solve the optimization problem. The new formulation and performance of the NDS solver is benchmarked against widely used linear programming (LP) solvers like CPLEX™ and tested on large-scale systems using data from the Western Electricity Coordinating Council (WECC). The NDS is demonstrated to outperform the widely used CPLEX algorithms while exhibiting superior scalability. Furthermore, the NDS based solver can be easily parallelized which results in significant computational improvement.« less

  15. Environment, power, and society. [stressing energy language and energy analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Odum, H.T.

    Studies of the energetics of ecological systems suggest general means for applying basic laws of energy and matter to the complex systems of nature and man. In this book, energy language is used to consider the pressing problem of survival in our time--the partnership of man in nature. An effort is made to show that energy analysis can help answer many of the questions of economics, law, and religion. Models for the analysis of a system are made by recognizing major divisions whose causal relationships are indicated by the pathways of interchange of energy and work. Then simulation allows themore » model's performance to be tested against the performance of the real system. Ideal energy flows are illustrated with ecological systems and then applied to all kinds of situations from very small biochemical processes to the large overall systems of man and the biosphere. Energy diagraming is included to consider the great problems of power, pollution, population, food, and war. This account also attempts to introduce ecology through the energy language.« less

  16. Electronics for Piezoelectric Smart Structures

    NASA Technical Reports Server (NTRS)

    Warkentin, D. J.; Tani, J.

    1997-01-01

    This paper briefly presents work addressing some of the basic considerations for the electronic components used in smart structures incorporating piezoelectric elements. After general remarks on the application of piezoelectric elements to the problem of structural vibration control, three main topics are described. Work to date on the development of techniques for embedding electronic components within structural parts is presented, followed by a description of the power flow and dissipation requirements of those components. Finally current work on the development of electronic circuits for use in an 'active wall' for acoustic noise is introduced.

  17. Research on a new wave energy absorption device

    NASA Astrophysics Data System (ADS)

    Lu, Zhongyue; Shang, Jianzhong; Luo, Zirong; Sun, Chongfei; Zhu, Yiming

    2018-01-01

    To reduce impact of global warming and the energy crisis problems caused by pollution of energy combustion, the research on renewable and clean energies becomes more and more important. This paper designed a new wave absorption device, and also gave an introduction on its mechanical structure. The flow tube model is analyzed, and presented the formulation of the proposed method. To verify the principle of wave absorbing device, an experiment was carried out in a laboratory environment, and the results of the experiment can be applied for optimizing the structure design of output power.

  18. The Researches on Cycle-Changeable Generation Settlement Method

    NASA Astrophysics Data System (ADS)

    XU, Jun; LONG, Suyan; LV, Jianhu

    2018-03-01

    Through the analysis of the business characteristics and problems of price adjustment, a cycle-changeable generation settlement method is proposed to support any time cycle settlement, and put forward a complete set of solutions, including the creation of settlement tasks, time power dismantle, generating fixed cycle of electricity, net energy split. At the same time, the overall design flow of cycle-changeable settlement is given. This method supports multiple price adjustments during the month, and also is an effective solution to the cost reduction of month-after price adjustment.

  19. Investigation of flow in axial turbine stage without shroud-seal

    NASA Astrophysics Data System (ADS)

    Straka, Petr; Němec, Martin; Jelínek, Thomáš

    2015-05-01

    This article deals with investigation of the influence of the radial gaps on the efficiency of the axial turbine stage. The investigation was carried out for the axial stage of the low-power turbine with the drum-type rotor without the shroud. In this configuration the flow through the radial gap under the hub-end of the stator blades and above the tip-end of the rotor blades leads to generation of the strong secondary flows, which decrease the efficiency of the stage. This problem was studied by experiment as well as by numerical modelling. The experiment was performed on the test rig equipped with the water brake dynamometer, torque meter and rotatable stator together with the linear probe manipulator. Numerical modelling was carried out for both the steady flow using the "mixing plane" interface and the unsteady flow using the "sliding mesh" interface between the stator and rotor wheels. The influence of the radial gap was studied in two configuration a) positive and b) negative overlapping of the tip-ends of the rotor blades. The efficiency of the axial stage in dependence on the expansion ratio, velocity ratio and the configuration as well as the details of the flow fields are presented in this paper.

  20. Passive noise control by enhancing aeroacoustic interference due to structural discontinuities in close proximity

    NASA Astrophysics Data System (ADS)

    Leung, R. C. K.; So, R. M. C.; Tang, S. K.; Wang, X. Q.

    2011-07-01

    In-duct devices are commonly installed in flow ducts for various flow management purposes. The structural construction of these devices indispensably creates disruption to smooth flow through duct passages so they exist as structural discontinuities in duct flow. The presence of these discontinuities provides additional possibility of noise generation. In real practice, in-duct devices do not exist alone in any duct system. Even though each in-duct device would generate its own noise, it might be possible that these devices could be properly arranged so as to strengthen the interference between individual noise; thus giving rise to an overall reduction of noise radiation in the in-duct far field. This concept of passive noise control is investigated by considering different configurations of two structural discontinuities of simple form (i.e., a cavity) in tandem in an unconfined flow and in opposing setting within a flow duct. It is known that noise generated by a cavity in unconfined domain (unconfined cavity) is strongly dependent on flow-resonant behavior within the cavity so the interference it produces is merely aeroacoustic. The objective of the present study is to verify the concept of passive noise reduction through enhancement of aeroacoustic interference due to two cavities by considering laminar flow only. A two-dimensional approach is adopted for the direct aeroacoustic calculations using a direct numerical simulation (DNS) technique. The position and geometries of the cavities and the Mach number are varied; the resultant aeroacoustic behavior and acoustic power are calculated. The numerical results are compared with a single cavity case to highlight the effect of introducing additional cavities to the aeroacoustic problem. Resonant flow oscillations occur when two unconfined cavities are very close and the associated acoustic field is very intense with no noise reduction possible. However, for duct aeroacoustics, it is found that a 7.9 db reduction of acoustic power in the downstream side of the duct or a total reduction of ˜6 db is possible with opposing cavities having an offset of half a cavity length. In addition, the reduction is shown to be free from lock-on with trapped modes of the ducts with cavities.

  1. Integrated control system and method

    DOEpatents

    Wang, Paul Sai Keat; Baldwin, Darryl; Kim, Myoungjin

    2013-10-29

    An integrated control system for use with an engine connected to a generator providing electrical power to a switchgear is disclosed. The engine receives gas produced by a gasifier. The control system includes an electronic controller associated with the gasifier, engine, generator, and switchgear. A gas flow sensor monitors a gas flow from the gasifier to the engine through an engine gas control valve and provides a gas flow signal to the electronic controller. A gas oversupply sensor monitors a gas oversupply from the gasifier and provides an oversupply signal indicative of gas not provided to the engine. A power output sensor monitors a power output of the switchgear and provide a power output signal. The electronic controller changes gas production of the gasifier and the power output rating of the switchgear based on the gas flow signal, the oversupply signal, and the power output signal.

  2. Reactive Power Pricing Model Considering the Randomness of Wind Power Output

    NASA Astrophysics Data System (ADS)

    Dai, Zhong; Wu, Zhou

    2018-01-01

    With the increase of wind power capacity integrated into grid, the influence of the randomness of wind power output on the reactive power distribution of grid is gradually highlighted. Meanwhile, the power market reform puts forward higher requirements for reasonable pricing of reactive power service. Based on it, the article combined the optimal power flow model considering wind power randomness with integrated cost allocation method to price reactive power. Meanwhile, considering the advantages and disadvantages of the present cost allocation method and marginal cost pricing, an integrated cost allocation method based on optimal power flow tracing is proposed. The model realized the optimal power flow distribution of reactive power with the minimal integrated cost and wind power integration, under the premise of guaranteeing the balance of reactive power pricing. Finally, through the analysis of multi-scenario calculation examples and the stochastic simulation of wind power outputs, the article compared the results of the model pricing and the marginal cost pricing, which proved that the model is accurate and effective.

  3. Mechanical energy and power flow analysis of wheelchair use with different camber settings.

    PubMed

    Huang, Yueh-Chu; Guo, Lan-Yuen; Tsai, Chung-Ying; Su, Fong-Chin

    2013-04-01

    It has been suggested that minimisation of energy cost is one of the primary determinants of wheelchair designs. Wheel camber is one important parameter related to wheelchair design and its angle may affect usability during manual propulsion. However, there is little available literature addressing the effect of wheel camber on the mechanical energy or power flow involved in manual wheelchair propulsion. Twelve normal subjects (mean age, 22.3 years; SD, 1.6 years) participated in this study. A video-tracking system and an instrumented wheel were used to collect 3D kinematic and kinetic data. Wheel camber of 0° and 15° was chosen to examine the difference between mechanical power and power flow of the upper extremity during manual wheelchair propulsion. The work calculated from power flow and the discrepancy between the mechanical work and power flow work of upper extremity had significantly greater values with increased camber. The upper arm had a larger active muscle power compared with that in the forearm and hand segments. While propelling the increased camber, the magnitude of both the proximal and distal joint power and proximal muscle power was increased in all three segments. While the propelling wheel with camber not only needs a greater energy cost but also there is greater energy loss.

  4. Nonlinear effects on sound propagation through high subsonic Mach number flows in variable area ducts

    NASA Technical Reports Server (NTRS)

    Callegari, A. J.

    1979-01-01

    A nonlinear theory for sound propagation in variable area ducts carrying a nearly sonic flow is presented. Linear acoustic theory is shown to be singular and the detailed nature of the singularity is used to develop the correct nonlinear theory. The theory is based on a quasi-one dimensional model. It is derived by the method of matched asymptotic expansions. In a nearly chocked flow, the theory indicates the following processes to be acting: a transonic trapping of upstream propagating sound causing an intensification of this sound in the throat region of the duct; generation of superharmonics and an acoustic streaming effect; development of shocks in the acoustic quantities near the throat. Several specific problems are solved analytically and numerical parameter studies are carried out. Results indicate that appreciable acoustic power is shifted to higher harmonics as shocked conditions are approached. The effect of the throat Mach number on the attenuation of upstream propagating sound excited by a fixed source is also determined.

  5. Development of Point Doppler Velocimetry for Flow Field Investigations

    NASA Technical Reports Server (NTRS)

    Cavone, Angelo A.; Meyers, James F.; Lee, Joseph W.

    2006-01-01

    A Point Doppler Velocimeter (pDv) has been developed using a vapor-limited iodine cell as the sensing medium. The iodine cell is utilized to directly measure the Doppler shift frequency of laser light scattered from submicron particles suspended within a fluid flow. The measured Doppler shift can then be used to compute the velocity of the particles, and hence the fluid. Since this approach does not require resolution of scattered light from individual particles, the potential exists to obtain temporally continuous signals that could be uniformly sampled in the manner as a hot wire anemometer. This leads to the possibility of obtaining flow turbulence power spectra without the limitations of fringe-type laser velocimetry. The development program consisted of a methodical investigation of the technology coupled with the solution of practical engineering problems to produce a usable measurement system. The paper outlines this development along with the evaluation of the resulting system as compared to primary standards and other measurement technologies.

  6. Flow and Heat Transfer in Sisko Fluid with Convective Boundary Condition

    PubMed Central

    Malik, Rabia; Khan, Masood; Munir, Asif; Khan, Waqar Azeem

    2014-01-01

    In this article, we have studied the flow and heat transfer in Sisko fluid with convective boundary condition over a non-isothermal stretching sheet. The flow is influenced by non-linearly stretching sheet in the presence of a uniform transverse magnetic field. The partial differential equations governing the problem have been reduced by similarity transformations into the ordinary differential equations. The transformed coupled ordinary differential equations are then solved analytically by using the homotopy analysis method (HAM) and numerically by the shooting method. Effects of different parameters like power-law index , magnetic parameter , stretching parameter , generalized Prandtl number Pr and generalized Biot number are presented graphically. It is found that temperature profile increases with the increasing value of and whereas it decreases for . Numerical values of the skin-friction coefficient and local Nusselt number are tabulated at various physical situations. In addition, a comparison between the HAM and exact solutions is also made as a special case and excellent agreement between results enhance a confidence in the HAM results. PMID:25285822

  7. Brief Communication: A low-cost Arduino®-based wire extensometer for earth flow monitoring

    NASA Astrophysics Data System (ADS)

    Guerriero, Luigi; Guerriero, Giovanni; Grelle, Gerardo; Guadagno, Francesco M.; Revellino, Paola

    2017-06-01

    Continuous monitoring of earth flow displacement is essential for the understanding of the dynamic of the process, its ongoing evolution and designing mitigation measures. Despite its importance, it is not always applied due to its expense and the need for integration with additional sensors to monitor factors controlling movement. To overcome these problems, we developed and tested a low-cost Arduino-based wire-rail extensometer integrating a data logger, a power system and multiple digital and analog inputs. The system is equipped with a high-precision position transducer that in the test configuration offers a measuring range of 1023 mm and an associated accuracy of ±1 mm, and integrates an operating temperature sensor that should allow potential thermal drift that typically affects this kind of systems to be identified and corrected. A field test, conducted at the Pietrafitta earth flow where additional monitoring systems had been installed, indicates a high reliability of the measurement and a high monitoring stability without visible thermal drift.

  8. An approach to forecast major GIC events

    NASA Astrophysics Data System (ADS)

    Stauning, Peter

    2013-04-01

    In addition to provide fascinating auroral displays, the large and violent magnetic substorms may endanger power grids and cause problems for a variety of other important technical systems. Such substorms generally result from the build-up of excessive stresses in the magnetospheric tail region caused by imbalance between the transpolar antisunward convection of plasma and embedded magnetic fields and the sunward convection (return flow) at auroral latitudes. The stresses are subsequently released through substorm processes, which may, among other, cause rapidly varying ionospheric currents in the million-ampere range that in turn endanger power grids through the related "Geomagnetically Induced Current" (GIC) effects. The presentation will discuss the construction of a geomagnetic stress parameter based on a combination of polar cap indices and auroral electrojet monitoring to be used in the forecasting of major GIC events.

  9. Feedback-Based Projected-Gradient Method for Real-Time Optimization of Aggregations of Energy Resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dall-Anese, Emiliano; Bernstein, Andrey; Simonetto, Andrea

    This paper develops an online optimization method to maximize operational objectives of distribution-level distributed energy resources (DERs), while adjusting the aggregate power generated (or consumed) in response to services requested by grid operators. The design of the online algorithm is based on a projected-gradient method, suitably modified to accommodate appropriate measurements from the distribution network and the DERs. By virtue of this approach, the resultant algorithm can cope with inaccuracies in the representation of the AC power flows, it avoids pervasive metering to gather the state of noncontrollable resources, and it naturally lends itself to a distributed implementation. Optimality claimsmore » are established in terms of tracking of the solution of a well-posed time-varying convex optimization problem.« less

  10. Theoretical study of the effect of ground proximity on the induced efficiency of helicopter rotors

    NASA Technical Reports Server (NTRS)

    Heyson, H. H.

    1977-01-01

    A study of rotors in forward flight within ground effect showed that the ground-induced interference is an upwash and a decrease in forward velocity. The interference velocities are large, oppose the normal flow through the rotor, and have large effects on the induced efficiency. Hovering with small ground clearances may result in significant blade stall. As speed is increased from hover in ground effect, power initially increases rather than decreases. At very low heights above the ground, the power requirements become nonlinear with speed as a result of the streamwise interference. The streamwise interference becomes greater as the wake approaches the ground and eventually distorts the wake to form the ground vortex which contributes to certain observed directional stability problems.

  11. Predicting, examining, and evaluating FAC in US power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohn, M.J.; Garud, Y.S.; Raad, J. de

    1999-11-01

    There have been many pipe failures in fossil and nuclear power plant piping systems caused by flow-accelerated corrosion (FAC). In some piping systems, this failure mechanism maybe the most important type of damage to mitigate because FAC damage has led to catastrophic failures and fatalities. Detecting the damage and mitigating the problem can significantly reduce future forced outages and increase personnel safety. This article discusses the implementation of recent developments to select FAC inspection locations, perform cost-effective examinations, evaluate results, and mitigate FAC failures. These advances include implementing the combination of software to assist in selecting examination locations and anmore » improved pulsed eddy current technique to scan for wall thinning without removing insulation. The use of statistical evaluation methodology and possible mitigation strategies also are discussed.« less

  12. A NEW CONCEPT FOR HIGH POWER RF COUPLING BETWEEN WAVEGUIDES AND RESONANT RF CAVITIES

    DOE PAGES

    Xu, Chen; Ben-Zvi, Ilan; Wang, Haipeng; ...

    2017-01-01

    Microwave engineering of high average-power (hundreds of kilowatts) devices often involves a transition from a waveguide to a device, typically a resonant cavity. This is a basic operation, which finds use in various application areas of significance to science and industry. At relatively low frequencies, L-band and below, it is convenient, sometimes essential, to couple the power between the waveguide and the cavity through a coaxial antenna, forming a power coupler. Power flow to the cavity in the fundamental mode leads to a Fundamental Power Coupler (FPC). High-order mode power generated in the cavity by a particle beam leads tomore » a high-order mode power damper. Coupling a cryogenic device, such as a superconducting cavity to a room temperature power source (or damp) leads to additional constraints and challenges. We propose a new approach to this problem, wherein the coax line element is operated in a TE11 mode rather than the conventional TEM mode. We will show that this method leads to a significant increase in the power handling capability of the coupler as well as a few other advantages. As a result, we describe the mode converter from the waveguide to the TE11 coax line, outline the characteristics and performance limits of the coupler and provide a detailed worked out example in the challenging area of coupling to a superconducting accelerator cavity.« less

  13. A NEW CONCEPT FOR HIGH POWER RF COUPLING BETWEEN WAVEGUIDES AND RESONANT RF CAVITIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Chen; Ben-Zvi, Ilan; Wang, Haipeng

    Microwave engineering of high average-power (hundreds of kilowatts) devices often involves a transition from a waveguide to a device, typically a resonant cavity. This is a basic operation, which finds use in various application areas of significance to science and industry. At relatively low frequencies, L-band and below, it is convenient, sometimes essential, to couple the power between the waveguide and the cavity through a coaxial antenna, forming a power coupler. Power flow to the cavity in the fundamental mode leads to a Fundamental Power Coupler (FPC). High-order mode power generated in the cavity by a particle beam leads tomore » a high-order mode power damper. Coupling a cryogenic device, such as a superconducting cavity to a room temperature power source (or damp) leads to additional constraints and challenges. We propose a new approach to this problem, wherein the coax line element is operated in a TE11 mode rather than the conventional TEM mode. We will show that this method leads to a significant increase in the power handling capability of the coupler as well as a few other advantages. As a result, we describe the mode converter from the waveguide to the TE11 coax line, outline the characteristics and performance limits of the coupler and provide a detailed worked out example in the challenging area of coupling to a superconducting accelerator cavity.« less

  14. Optimization of power systems with voltage security constraints

    NASA Astrophysics Data System (ADS)

    Rosehart, William Daniel

    As open access market principles are applied to power systems, significant changes in their operation and control are occurring. In the new marketplace, power systems are operating under higher loading conditions as market influences demand greater attention to operating cost versus stability margins. Since stability continues to be a basic requirement in the operation of any power system, new tools are being considered to analyze the effect of stability on the operating cost of the system, so that system stability can be incorporated into the costs of operating the system. In this thesis, new optimal power flow (OPF) formulations are proposed based on multi-objective methodologies to optimize active and reactive power dispatch while maximizing voltage security in power systems. The effects of minimizing operating costs, minimizing reactive power generation and/or maximizing voltage stability margins are analyzed. Results obtained using the proposed Voltage Stability Constrained OPF formulations are compared and analyzed to suggest possible ways of costing voltage security in power systems. When considering voltage stability margins the importance of system modeling becomes critical, since it has been demonstrated, based on bifurcation analysis, that modeling can have a significant effect of the behavior of power systems, especially at high loading levels. Therefore, this thesis also examines the effects of detailed generator models and several exponential load models. Furthermore, because of its influence on voltage stability, a Static Var Compensator model is also incorporated into the optimization problems.

  15. Flow separation on wind turbines blades

    NASA Astrophysics Data System (ADS)

    Corten, G. P.

    2001-01-01

    In the year 2000, 15GW of wind power was installed throughout the world, producing 100PJ of energy annually. This contributes to the total electricity demand by only 0.2%. Both the installed power and the generated energy are increasing by 30% per year world-wide. If the airflow over wind turbine blades could be controlled fully, the generation efficiency and thus the energy production would increase by 9%. Power Control To avoid damage to wind turbines, they are cut out above 10 Beaufort (25 m/s) on the wind speed scale. A turbine could be designed in such a way that it converts as much power as possible in all wind speeds, but then it would have to be to heavy. The high costs of such a design would not be compensated by the extra production in high winds, since such winds are rare. Therefore turbines usually reach maximum power at a much lower wind speed: the rated wind speed, which occurs at about 6 Beaufort (12.5 m/s). Above this rated speed, the power intake is kept constant by a control mechanism. Two different mechanisms are commonly used. Active pitch control, where the blades pitch to vane if the turbine maximum is exceeded or, passive stall control, where the power control is an implicit property of the rotor. Stall Control The flow over airfoils is called "attached" when it flows over the surface from the leading edge to the trailing edge. However, when the angle of attack of the flow exceeds a certain critical angle, the flow does not reach the trailing edge, but leaves the surface at the separation line. Beyond this line the flow direction is reversed, i.e. it flows from the trailing edge backward to the separation line. A blade section extracts much less energy from the flow when it separates. This property is used for stall control. Stall controlled rotors always operate at a constant rotation speed. The angle of attack of the flow incident to the blades is determined by the blade speed and the wind speed. Since the latter is variable, it determines the angle of attack. The art of designing stall rotors is to make the separated area on the blades extend in such a way, that the extracted power remains precisely constant, independent of the wind speed, while the power in the wind at cut-out exceeds the maximum power of the turbine by a factor of 8. Since the stall behaviour is influenced by many parameters, this demand cannot be easily met. However, if it can be met, the advantage of stall control is its passive operation, which is reliable and cheap. Problem Definition In practical application, stall control is not very accurate and many stall-controlled turbines do not meet their specifications. Deviations of the design-power in the order of tens of percent are regular. In the nineties, the aerodynamic research on these deviations focussed on: profile aerodynamics, computational fluid dynamics, rotational effects on separation and pressure measurements on test turbines. However, this did not adequately solve the actual problems with stall turbines. In this thesis, we therefore formulated the following as the essential question: "Does the separated blade area really extend with the wind speed, as we predict?" To find the answer a measurement technique was required, which 1) was applicable on large commercial wind turbines, 2) could follow the dynamic changes of the stall pattern, 3) was not influenced by the centrifugal force and 4) did not disturb the flow. Such a technique was not available, therefore we decided to develop it. Stall Flag Method For this method, a few hundred indicators are fixed to the rotor blades in a special pattern. These indicators, called "stall flags" are patented by the Netherlands Energy Research Foundation (ECN). They have a retro-reflective area which, depending on the flow direction, is or is not covered. A powerful light source in the field up to 500m behind the turbine illuminates the swept rotor area. The uncovered reflectors reflect the light to the source, where a digital video camera records the dynamic stall patterns. The images are analysed by image processing software that we developed. The program extracts the stall pattern, the blade azimuth angles and the rotor speed from the stall flags. It also measures the yaw error and the wind speed from the optical signals of other sensors, which are recorded simultaneously. We subsequently characterise the statistical stall behaviour from the sequences of thousands of analysed images. For example, the delay in the stall angle by vortex generators can be measured within 1° of accuracy from the stall flag signals. Properties of the Stall Flag The new indicators are compared to the classic tufts. Stall flags are pressure driven while tufts are driven by frictional drag, which means that they have more drag. The self-excited motion of tufts, due to the Kelvin-Helmholtz instability, complicates the interpretation and gives more drag. We designed stall flags in such a way that this instability is avoided. An experiment with a 65cm diameter propeller confirms the independence of stall flags from the centrifugal force and that stall flags respond quickly to changes in the flow. We developed an optical model of the method to find an optimum set-up. With the present system, we can take measurements on turbines of all actual diameters. The stall flag responds to separated flow with an optical signal. The contrast of this signal exceeds that of tuft-signals by a factor of at least 1000. To detect the stall flag signal we need a factor of 25 fewer pixels of the CCD chip than is necessary for tufts. Stall flags applied on fast moving objects may show light tracks due to motion blur, which in fact yields even more information. In the case of tuft visualisations, even a slight motion blur is fatal. Principal Results In dealing with the fundamental theory of wind turbines, we found a new aspect of the conversion efficiency of a wind turbine, which also concerns the stall behaviour. Another new aspect concerns the effects of rotation on stall. By using the stall flag method, we were able to clear up two practical problems that seriously threatened the performance of stall turbines. These topics will be described briefly. 1. Inherent Heat Generation The classic result for an actuator disk representing a wind turbine is that the power extracted equals the kinetic power transferred. This is a consequence of disregarding the flow around the disk. When this flow is included, we need to introduce a heat generation term in the energy balance. This has the practical consequence that an actuator disk at the Lanchester-Betz limit transfers 50% more kinetic energy than it extracts. This surplus is dissipated in heat. Using this new argument, together with a classic argument on induction, we see no reason to introduce the concept of edge-forces on the tips of the rotor blades (Van Kuik, 1991). We rather recommend following the ideas of Lanchester (1915) on the edge of the actuator disk and on the wind speed at the disc. We analyse the concept induction, and show that correcting for the aspect ratio, for induced drag and application of Blade Element Momentum Theory all have the same significance for a wind turbine. Such corrections are sometimes made twice (Viterna & Corrigan, 1981). 2. Rotational Effects on Flow Separation In designing wind turbine rotors, one uses the aerodynamic characteristics measured in the wind tunnel on fixed aerodynamic profiles. These characteristics are corrected for the effects of rotation and subsequently used for wind turbine rotors. Such a correction was developed by Snel (1990-1999). This correction is based on boundary layer theory, the validity of which we question in regard to separated flow. We estimated the effects of rotation on flow separation by arguing that the separation layer is thick so the velocity gradients are small and viscosity can be neglected. We add the argument that the chord-wise speed and its derivative normal to the wall is zero at the separation line, which causes the terms with the chord-wise speed or accelerations to disappear. The conclusion is that the chord-wise pressure gradient balances the Coriolis force. By doing so we obtain a simple set of equations that can be solved analytically. Subsequently, our model predicts that the convective term with the radial velocity (vrvr/r) is dominant in the equation for the r-direction, precisely the term that was neglected in Snel's analysis. 3. Multiple Power Levels Several large commercial wind turbines demonstrate drops in maximum power levels up to 45%, under apparently equal conditions. Earlier studies attempting to explain this effect by technical malfunctioning, aerodynamic instabilities and blade contamination effects estimated with computational fluid dynamics, have not yet yielded a plausible result. We formulated many hypotheses, three of which were useful. By taking stall flag measurements and making two other crucial experiments, we could confirm one of those three hypotheses: the insect hypothesis. Insects only fly in low wind, impacting upon the blades at specific locations. In these conditions, the insectual remains are located at positions where roughness has little influence on the profile performance, so that the power is not affected. In high winds however, the flow around the blades has changed. As a result, the positions at which the insects have impacted at low winds are very sensitive to contamination. So the contamination level changes at low wind when insects fly and this level determines the power in high winds when insects do not fly. As a consequence we get discrete power levels in high winds. The other two hypotheses, which did not cause the multiple power levels for the case we studied, gave rise to two new insights. First, we expect the power to depend on the wind direction at sites where the shape of the terrain concentrates the wind. In this case the power level of all turbine types, including pitch regulated ones, will be affected. Second, we infer heuristically that the stalled area on wind turbine blades will adapt continuously to wind variations. Therefore, the occurrence of strong bi-stable stall-hysteresis, which most blade sections demonstrate in the wind tunnel, is lost. This has been confirmed by taking special stall flag measurements. 4. Deviation of Specifications The maximum power of stall controlled wind turbines often shows large systematic deviations from the design. We took stall flag measurements on a rotor, the maximum power of which was 30% too high, so that the turbine had to be cut out far below the designed cut-out wind speed. We immediately observed the blade areas with deviating stall behaviour. Some areas that should have stalled did not and caused the excessive power. We adapted those areas by shifting the vortex generators. In this way we obtained a power curve that met the design much more closely and we realised a production increase of 8%.

  16. 77 FR 63811 - FFP Solia 6 Hydroelectric, LLC; Notice of Intent To File License Application, Filing of Pre...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-17

    ...: August 17, 2012. d. Submitted By: Free Flow Power Corporation on behalf of its subsidiary limited... River in Beaver County, Pennsylvania. The project would occupy United States lands administered by the U..., Boston, MA 02114-2130; (978) 283-2822; or email at flow-power.com ">[email protected] flow-power.com . i...

  17. Research on energy conversion mechanism of rotodynamic pump and design of non-overload centrifugal pump

    NASA Astrophysics Data System (ADS)

    Zhang, X. L.; Hu, S. B.; Shen, Z. Z.; Wu, S. P.; Li, K.

    2016-05-01

    In this paper, an attempt has been made for the calculation of an expression for the intrinsic law of input power which has not yet been given by current theory of Rotodynamic pump. By adequate recognition of the characteristics of non-inertial system within the rotating impeller, it is concluded that the input power consists of two power components, the first power component, whose magnitude increases with the increase of the flow rate, corresponds to radial velocity component, and the second power component, whose magnitude decreases with the increase of the flow rate, corresponds to tangential velocity component, therefore, the law of rise, basic levelness and drop of input power curves of centrifugal pump, mixed-flow pump and axial-flow pump can be explained reasonably. Through further analysis, the main ways for realizing non-overload of centrifugal pump are obtained, and its equivalent design factor is found out, the factor correlates with the outlet angle of leading face and back face of the blade, wrap angle, number of blades, outlet width, area ratio, and the ratio of operating flow rate to specified flow rate and so on. These are verified with actual example.

  18. Power of Your Pancreas: Keep Your Digestive Juices Flowing

    MedlinePlus

    ... Issues Subscribe February 2017 Print this issue The Power of Your Pancreas Keep Your Digestive Juices Flowing ... your entire digestive system working properly. Related Stories Power to the Pelvis Battling a Bulging Hernia Keeping ...

  19. Rarefied gas flow simulations using high-order gas-kinetic unified algorithms for Boltzmann model equations

    NASA Astrophysics Data System (ADS)

    Li, Zhi-Hui; Peng, Ao-Ping; Zhang, Han-Xin; Yang, Jaw-Yen

    2015-04-01

    This article reviews rarefied gas flow computations based on nonlinear model Boltzmann equations using deterministic high-order gas-kinetic unified algorithms (GKUA) in phase space. The nonlinear Boltzmann model equations considered include the BGK model, the Shakhov model, the Ellipsoidal Statistical model and the Morse model. Several high-order gas-kinetic unified algorithms, which combine the discrete velocity ordinate method in velocity space and the compact high-order finite-difference schemes in physical space, are developed. The parallel strategies implemented with the accompanying algorithms are of equal importance. Accurate computations of rarefied gas flow problems using various kinetic models over wide ranges of Mach numbers 1.2-20 and Knudsen numbers 0.0001-5 are reported. The effects of different high resolution schemes on the flow resolution under the same discrete velocity ordinate method are studied. A conservative discrete velocity ordinate method to ensure the kinetic compatibility condition is also implemented. The present algorithms are tested for the one-dimensional unsteady shock-tube problems with various Knudsen numbers, the steady normal shock wave structures for different Mach numbers, the two-dimensional flows past a circular cylinder and a NACA 0012 airfoil to verify the present methodology and to simulate gas transport phenomena covering various flow regimes. Illustrations of large scale parallel computations of three-dimensional hypersonic rarefied flows over the reusable sphere-cone satellite and the re-entry spacecraft using almost the largest computer systems available in China are also reported. The present computed results are compared with the theoretical prediction from gas dynamics, related DSMC results, slip N-S solutions and experimental data, and good agreement can be found. The numerical experience indicates that although the direct model Boltzmann equation solver in phase space can be computationally expensive, nevertheless, the present GKUAs for kinetic model Boltzmann equations in conjunction with current available high-performance parallel computer power can provide a vital engineering tool for analyzing rarefied gas flows covering the whole range of flow regimes in aerospace engineering applications.

  20. Near-Channel Versus Watershed Controls on Sediment Rating Curves

    NASA Astrophysics Data System (ADS)

    Vaughan, Angus A.; Belmont, Patrick; Hawkins, Charles P.; Wilcock, Peter

    2017-10-01

    Predicting riverine suspended sediment flux is a fundamental problem in geomorphology, with important implications for water quality, land and water resource management, and aquatic ecosystem health. To advance understanding, we evaluated environmental and landscape factors that influence sediment rating curves (SRCs). We generated SRCs with recent total suspended solids (TSSs) and discharge data from 45 gages on 36 rivers throughout the state of Minnesota, USA. Watersheds range from 32 to 14,600 km2 and represent distinct settings regarding topography, land cover, and geologic history. Rivers exhibited three distinct SRC shapes: simple power functions, threshold power functions, and peaked or negative-slope functions. We computed SRC exponents and coefficients (describing the steepness of the relation and the TSS concentration at median flows, respectively). In addition to quantifying watershed topography, climate/hydrology, geology, soil type, and land cover, we used lidar topography to characterize the near-channel environment upstream of gages. We used random forest models to analyze relations between SRC parameters and attributes of the watershed and the near-channel environment. The models correctly classify 78% of SRC shapes and explain 37%-60% of variance in SRC parameters. We find that SRC steepness (exponent) is strongly related to near-channel morphological characteristics including near-channel relief, channel gradient, and presence of lakes along the local channel network, but not to land use. In contrast, land use influences TSS concentrations at moderate and low flow. These findings suggest that the near-channel environment controls changes in TSS as flows increase, whereas land use drives median and low flow TSS conditions.

  1. The MEMS process of a micro friction sensor

    NASA Astrophysics Data System (ADS)

    Yuan, Ming-Quan; Lei, Qiang; Wang, Xiong

    2018-02-01

    The research and testing techniques of friction sensor is an important support for hypersonic aircraft. Compared with the conventional skin friction sensor, the MEMS skin friction sensor has the advantages of small size, high sensitivity, good stability and dynamic response. The MEMS skin friction sensor can be integrated with other flow field sensors whose process is compatible with MEMS skin friction sensor to achieve multi-physical measurement of the flow field; and the micro-friction balance sensor array enable to achieve large area and accurate measurement for the near-wall flow. A MEMS skin friction sensor structure is proposed, which sensing element not directly contacted with the flow field. The MEMS fabrication process of the sensing element is described in detail. The thermal silicon oxide is used as the mask to solve the selection ratio problem of silicon DRIE. The optimized process parameters of silicon DRIE: etching power 1600W/LF power 100 W; SF6 flux 360 sccm; C4F8 flux 300 sccm; O2 flux 300 sccm. With Cr/Au mask, etch depth of glass shallow groove can be controlled in 30°C low concentration HF solution; the spray etch and wafer rotate improve the corrosion surface quality of glass shallow groove. The MEMS skin friction sensor samples were fabricated by the above MEMS process, and results show that the error of the length and width of the elastic cantilever is within 2 μm, the depth error of the shallow groove is less than 0.03 μm, and the static capacitance error is within 0.2 pF, which satisfy the design requirements.

  2. Computational and experimental aftbody flow fields for hypersonic, airbreathing configurations with scramjet exhaust flow simulation

    NASA Technical Reports Server (NTRS)

    Huebner, Lawrence D.; Tatum, Kenneth E.

    1991-01-01

    Computational results are presented for three issues pertinent to hypersonic, airbreathing vehicles employing scramjet exhaust flow simulation. The first issue consists of a comparison of schlieren photographs obtained on the aftbody of a cruise missile configuration under powered conditions with two-dimensional computational solutions. The second issue presents the powered aftbody effects of modeling the inlet with a fairing to divert the external flow as compared to an operating flow-through inlet on a generic hypersonic vehicle. Finally, a comparison of solutions examining the potential of testing powered configurations in a wind-off, instead of a wind-on, environment, indicate that, depending on the extent of the three-dimensional plume, it may be possible to test aftbody powered hypersonic, airbreathing configurations in a wind-off environment.

  3. Flow reversal power limit for the HFBR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Lap Y.; Tichler, P.R.

    The High Flux Beam Reactor (HFBR) undergoes a buoyancy-driven reversal of flow in the reactor core following certain postulated accidents. Uncertainties about the afterheat removal capability during the flow reversal has limited the reactor operating power to 30 MW. An experimental and analytical program to address these uncertainties is described in this report. The experiments were single channel flow reversal tests under a range of conditions. The analytical phase involved simulations of the tests to benchmark the physical models and development of a criterion for dryout. The criterion is then used in simulations of reactor accidents to determine a safemore » operating power level. It is concluded that the limit on the HFBR operating power with respect to the issue of flow reversal is in excess of 60 MW.« less

  4. Turbulent Output-Based Anisotropic Adaptation

    NASA Technical Reports Server (NTRS)

    Park, Michael A.; Carlson, Jan-Renee

    2010-01-01

    Controlling discretization error is a remaining challenge for computational fluid dynamics simulation. Grid adaptation is applied to reduce estimated discretization error in drag or pressure integral output functions. To enable application to high O(10(exp 7)) Reynolds number turbulent flows, a hybrid approach is utilized that freezes the near-wall boundary layer grids and adapts the grid away from the no slip boundaries. The hybrid approach is not applicable to problems with under resolved initial boundary layer grids, but is a powerful technique for problems with important off-body anisotropic features. Supersonic nozzle plume, turbulent flat plate, and shock-boundary layer interaction examples are presented with comparisons to experimental measurements of pressure and velocity. Adapted grids are produced that resolve off-body features in locations that are not known a priori.

  5. U.S. Air Force Research Laboratory's Need for Flow Physics and Control With Applications Involving Aero-Optics and Weapon Bay Cavities

    NASA Technical Reports Server (NTRS)

    Schmit, Ryan

    2010-01-01

    To develop New Flow Control Techniques: a) Knowledge of the Flow Physics with and without control. b) How does Flow Control Effect Flow Physics (What Works to Optimize the Design?). c) Energy or Work Efficiency of the Control Technique (Cost - Risk - Benefit Analysis). d) Supportability, e.g. (size of equipment, computational power, power supply) (Allows Designer to include Flow Control in Plans).

  6. A Low-Power Thermal-Based Sensor System for Low Air Flow Detection

    PubMed Central

    Arifuzzman, AKM; Haider, Mohammad Rafiqul; Allison, David B.

    2016-01-01

    Being able to rapidly detect a low air flow rate with high accuracy is essential for various applications in the automotive and biomedical industries. We have developed a thermal-based low air flow sensor with a low-power sensor readout for biomedical applications. The thermal-based air flow sensor comprises a heater and three pairs of temperature sensors that sense temperature differences due to laminar air flow. The thermal-based flow sensor was designed and simulated by using laminar flow, heat transfer in solids and fluids physics in COMSOL MultiPhysics software. The proposed sensor can detect air flow as low as 0.0064 m/sec. The readout circuit is based on a current- controlled ring oscillator in which the output frequency of the ring oscillator is proportional to the temperature differences of the sensors. The entire readout circuit was designed and simulated by using a 130-nm standard CMOS process. The sensor circuit features a small area and low-power consumption of about 22.6 µW with an 800 mV power supply. In the simulation, the output frequency of the ring oscillator and the change in thermistor resistance showed a high linearity with an R2 value of 0.9987. The low-power dissipation, high linearity and small dimensions of the proposed flow sensor and circuit make the system highly suitable for biomedical applications. PMID:28435186

  7. Multi-blocking strategies for the INS3D incompressible Navier-Stokes code

    NASA Technical Reports Server (NTRS)

    Gatlin, Boyd

    1990-01-01

    With the continuing development of bigger and faster supercomputers, computational fluid dynamics (CFD) has become a useful tool for real-world engineering design and analysis. However, the number of grid points necessary to resolve realistic flow fields numerically can easily exceed the memory capacity of available computers. In addition, geometric shapes of flow fields, such as those in the Space Shuttle Main Engine (SSME) power head, may be impossible to fill with continuous grids upon which to obtain numerical solutions to the equations of fluid motion. The solution to this dilemma is simply to decompose the computational domain into subblocks of manageable size. Computer codes that are single-block by construction can be modified to handle multiple blocks, but ad-hoc changes in the FORTRAN have to be made for each geometry treated. For engineering design and analysis, what is needed is generalization so that the blocking arrangement can be specified by the user. INS3D is a computer program for the solution of steady, incompressible flow problems. It is used frequently to solve engineering problems in the CFD Branch at Marshall Space Flight Center. INS3D uses an implicit solution algorithm and the concept of artificial compressibility to provide the necessary coupling between the pressure field and the velocity field. The development of generalized multi-block capability in INS3D is described.

  8. Parallelization of TWOPORFLOW, a Cartesian Grid based Two-phase Porous Media Code for Transient Thermo-hydraulic Simulations

    NASA Astrophysics Data System (ADS)

    Trost, Nico; Jiménez, Javier; Imke, Uwe; Sanchez, Victor

    2014-06-01

    TWOPORFLOW is a thermo-hydraulic code based on a porous media approach to simulate single- and two-phase flow including boiling. It is under development at the Institute for Neutron Physics and Reactor Technology (INR) at KIT. The code features a 3D transient solution of the mass, momentum and energy conservation equations for two inter-penetrating fluids with a semi-implicit continuous Eulerian type solver. The application domain of TWOPORFLOW includes the flow in standard porous media and in structured porous media such as micro-channels and cores of nuclear power plants. In the latter case, the fluid domain is coupled to a fuel rod model, describing the heat flow inside the solid structure. In this work, detailed profiling tools have been utilized to determine the optimization potential of TWOPORFLOW. As a result, bottle-necks were identified and reduced in the most feasible way, leading for instance to an optimization of the water-steam property computation. Furthermore, an OpenMP implementation addressing the routines in charge of inter-phase momentum-, energy- and mass-coupling delivered good performance together with a high scalability on shared memory architectures. In contrast to that, the approach for distributed memory systems was to solve sub-problems resulting by the decomposition of the initial Cartesian geometry. Thread communication for the sub-problem boundary updates was accomplished by the Message Passing Interface (MPI) standard.

  9. Predicting the impact of chromium on flow-accelerated corrosion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chexal, B.; Goyette, L.F.; Horowitz, J.S.

    1996-12-01

    Flow-Accelerated Corrosion (FAC) continues to cause problems in nuclear and fossil power plants. Many experiments have been performed to understand the mechanism of FAC. For approximately twenty years, it has ben widely recognized that the presence of small amounts of chromium will reduce the rate of FAC. This effect was quantified in the eighties by research performed in France, Germany and the Netherlands. The results of this research has been incorporated into the computer-based tools used by utility engineers to deal with this issue. For some time, plant data from Diablo Canyon has suggested that the existing correlations relating themore » concentration of chromium to the rate of FAC are conservative. Laboratory examinations have supported this observation. It appears that the existing correlations fail to capture a change in mechanism from a FAC process with linear kinetics to a general corrosion process with parabolic kinetics. This change in mechanism occurs at a chromium level of approximately 0.1%, within the allowable alloy range of typical carbon steel (ASTM/ASME A106 Grade B) used in power piping in most domestic plants. It has been difficult to obtain plant data that has sufficient chromium to develop a new correlation. Data from Diablo Canyon and the Dukovany Power Plant in the Czech Republic will be used to develop a new chromium correlation for predicting FAC rate.« less

  10. PREFACE: International Congress on Energy Fluxes and Radiation Effects (EFRE-2014)

    NASA Astrophysics Data System (ADS)

    2014-11-01

    The International Congress on Energy Fluxes and Radiation Effects 2014 (EFRE 2014) was held in Tomsk, Russia, on September 21-26, 2014. The organizers of the Congress were the Institute of High Current Electronics SB RAS and Tomsk Polytechnic University. EFRE 2014 combines three international conferences which are regularly held in Tomsk, Russia: the 18th International Symposium on High-Current Electronics (18th SHCE), the 12th International Conference on Modification of Materials with Particle Beams and Plasma Flows (12th CMM) and the 16th International Conference on Radiation Physics and Chemistry of Condensed Matter (16th RPC). The International Conference on Radiation Physics and Chemistry of Condensed Matter is a traditional representative forum devoted to the discussion of the fundamental problems of physical and chemical non-linear processes in condensed matter (mainly inorganic dielectrics) under the action of particle and photon beams of all types including pulsed power laser radiation. The International Symposium on High-Current Electronics is held biannually in Tomsk, Russia. The program of the conferences covers a wide range of scientific and technical areas including pulsed power technology, ion and electron beams, high-power microwaves, plasma and particle beam sources, modification of materials, and pulsed power applications in chemistry, biology and medicine. The 12th International Conference on Modification of Materials with Particle Beams and Plasma Flows is devoted to the discussion of the fundamental and applied issues in the field of modification of materials properties with particle beams and plasma flows. The six-day Congress brought together more than 250 specialists and scientists from different countries and organizations and provided an excellent opportunity to exchange knowledge, make oral contributions and poster presentations, and initiate discussion on the topics of interest. The proceedings were edited by Victor Lisitsyn, Vladimir Lopatin, and Anna Bogdan. We appreciate the contribution of the invited speakers and all participants, as well as sponsors "Intech Analytics" and "MICROSPLAV" for making the Congress successful.

  11. Power Generation Evaluated on a Bismuth Telluride Unicouple Module

    NASA Astrophysics Data System (ADS)

    Hu, Xiaokai; Nagase, Kazuo; Jood, Priyanka; Ohta, Michihiro; Yamamoto, Atsushi

    2015-06-01

    The power generated by a thermoelectric unicouple module made of Bi2Te3 alloy was evaluated by use of a newly developed instrument. An electrical load was connected to the module, and the terminal voltage and output power of the module were obtained by altering electric current. Water flow was used to cool the cold side of the module and for heat flow measurement, by monitoring inlet and outlet temperatures. When the electric current was increased, heat flow was enhanced as a result of the Peltier effect and Joule heating. Voltage, power, heat flow, and efficiency as functions of current were determined for hot-side temperatures from 50 to 220°C. Maximum power output and peak conversion efficiency could thus be easily derived for each temperature.

  12. Numerical viscosity and resolution of high-order weighted essentially nonoscillatory schemes for compressible flows with high Reynolds numbers.

    PubMed

    Zhang, Yong-Tao; Shi, Jing; Shu, Chi-Wang; Zhou, Ye

    2003-10-01

    A quantitative study is carried out in this paper to investigate the size of numerical viscosities and the resolution power of high-order weighted essentially nonoscillatory (WENO) schemes for solving one- and two-dimensional Navier-Stokes equations for compressible gas dynamics with high Reynolds numbers. A one-dimensional shock tube problem, a one-dimensional example with parameters motivated by supernova and laser experiments, and a two-dimensional Rayleigh-Taylor instability problem are used as numerical test problems. For the two-dimensional Rayleigh-Taylor instability problem, or similar problems with small-scale structures, the details of the small structures are determined by the physical viscosity (therefore, the Reynolds number) in the Navier-Stokes equations. Thus, to obtain faithful resolution to these small-scale structures, the numerical viscosity inherent in the scheme must be small enough so that the physical viscosity dominates. A careful mesh refinement study is performed to capture the threshold mesh for full resolution, for specific Reynolds numbers, when WENO schemes of different orders of accuracy are used. It is demonstrated that high-order WENO schemes are more CPU time efficient to reach the same resolution, both for the one-dimensional and two-dimensional test problems.

  13. Molecular dynamics study of solid-liquid heat transfer and passive liquid flow

    NASA Astrophysics Data System (ADS)

    Yesudasan Daisy, Sumith

    High heat flux removal is a challenging problem in boilers, electronics cooling, concentrated photovoltaic and other power conversion devices. Heat transfer by phase change is one of the most efficient mechanisms for removing heat from a solid surface. Futuristic electronic devices are expected to generate more than 1000 W/cm2 of heat. Despite the advancements in microscale and nanoscale manufacturing, the maximum passive heat flux removal has been 300 W/cm2 in pool boiling. Such limitations can be overcome by developing nanoscale thin-film evaporation based devices, which however require a better understanding of surface interactions and liquid vapor phase change process. Evaporation based passive flow is an inspiration from the transpiration process that happens in trees. If we can mimic this process and develop heat removal devices, then we can develop efficient cooling devices. The existing passive flow based cooling devices still needs improvement to meet the future demands. To improve the efficiency and capacity of these devices, we need to explore and quantify the passive flow happening at nanoscales. Experimental techniques have not advanced enough to study these fundamental phenomena at the nanoscale, an alternative method is to perform theoretical study at nanoscales. Molecular dynamics (MD) simulation is a widely accepted powerful tool for studying a range of fundamental and engineering problems. MD simulations can be utilized to study the passive flow mechanism and heat transfer due to it. To study passive flow using MD, apart from the conventional methods available in MD, we need to have methods to simulate the heat transfer between solid and liquid, local pressure, surface tension, density, temperature calculation methods, realistic boundary conditions, etc. Heat transfer between solid and fluids has been a challenging area in MD simulations, and has only been minimally explored (especially for a practical fluid like water). Conventionally, an equilibrium canonical ensemble (NVT) is simulated using thermostat algorithms. For research in heat transfer involving solid liquid interaction, we need to perform non equilibrium MD (NEMD) simulations. In such NEMD simulations, the methods used for simulating heating from a surface is very important and must capture proper physics and thermodynamic properties. Development of MD simulation techniques to simulate solid-liquid heating and the study of fundamental mechanism of passive flow is the main focus of this thesis. An accurate surface-heating algorithm was developed for water which can now allow the study of a whole new set of fundamental heat transfer problems at the nanoscale like surface heating/cooling of droplets, thin-films, etc. The developed algorithm is implemented in the in-house developed C++ MD code. A direct two dimensional local pressure estimation algorithm is also formulated and implemented in the code. With this algorithm, local pressure of argon and platinum interaction is studied. Also, the surface tension of platinum-argon (solid-liquid) was estimated directly from the MD simulations for the first time. Contact angle estimation studies of water on platinum, and argon on platinum were also performed. A thin film of argon is kept above platinum plate and heated in the middle region, leading to the evaporation and pressure reduction thus creating a strong passive flow in the near surface region. This observed passive liquid flow is characterized by estimating the pressure, density, velocity and surface tension using Eulerian mapping method. Using these simulation, we have demonstrated the fundamental nature and origin of surface-driven passive flow. Heat flux removed from the surface is also estimated from the results, which shows a significant improvement can be achieved in thermal management of electronic devices by taking advantage of surface-driven strong passive liquid flow. Further, the local pressure of water on silicon di-oxide surface is estimated using the LAMMPS atomic to continuum (ATC) package towards the goal of simulating the passive flow in water.

  14. 77 FR 34032 - FFP Project 70, LLC; Notice of Intent To File License Application, Filing of Pre-Application...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-08

    ...: April 3, 2012. d. Submitted By: Free Flow Power Corporation on behalf of FFP Project 70, LLC (FFP), a wholly-owned subsidiary of Free Flow Power, LLC. e. Name of Project: Mississippi Lock and Dam 19 Water..., Free Flow Power Corporation, 239 Causeway Street, Suite 300, Boston, MA 02114; (978) 283-2822; or email...

  15. Power Laws, Scale Invariance and the Generalized Frobenius Series:

    NASA Astrophysics Data System (ADS)

    Visser, Matt; Yunes, Nicolas

    We present a self-contained formalism for calculating the background solution, the linearized solutions and a class of generalized Frobenius-like solutions to a system of scale-invariant differential equations. We first cast the scale-invariant model into its equidimensional and autonomous forms, find its fixed points, and then obtain power-law background solutions. After linearizing about these fixed points, we find a second linearized solution, which provides a distinct collection of power laws characterizing the deviations from the fixed point. We prove that generically there will be a region surrounding the fixed point in which the complete general solution can be represented as a generalized Frobenius-like power series with exponents that are integer multiples of the exponents arising in the linearized problem. While discussions of the linearized system are common, and one can often find a discussion of power-series with integer exponents, power series with irrational (indeed complex) exponents are much rarer in the extant literature. The Frobenius-like series we encounter can be viewed as a variant of the rarely-discussed Liapunov expansion theorem (not to be confused with the more commonly encountered Liapunov functions and Liapunov exponents). As specific examples we apply these ideas to Newtonian and relativistic isothermal stars and construct two separate power series with the overlapping radius of convergence. The second of these power series solutions represents an expansion around "spatial infinity," and in realistic models it is this second power series that gives information about the stellar core, and the damped oscillations in core mass and core radius as the central pressure goes to infinity. The power-series solutions we obtain extend classical results; as exemplified for instance by the work of Lane, Emden, and Chandrasekhar in the Newtonian case, and that of Harrison, Thorne, Wakano, and Wheeler in the relativistic case. We also indicate how to extend these ideas to situations where fixed points may not exist — either due to "monotone" flow or due to the presence of limit cycles. Monotone flow generically leads to logarithmic deviations from scaling, while limit cycles generally lead to discrete self-similar solutions.

  16. Jet Engine Noise Generation, Prediction and Control. Chapter 86

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.; Envia, Edmane

    2004-01-01

    Aircraft noise has been a problem near airports for many years. It is a quality of life issue that impacts millions of people around the world. Solving this problem has been the principal goal of noise reduction research that began when commercial jet travel became a reality. While progress has been made in reducing both airframe and engine noise, historically, most of the aircraft noise reduction efforts have concentrated on the engines. This was most evident during the 1950 s and 1960 s when turbojet engines were in wide use. This type of engine produces high velocity hot exhaust jets during takeoff generating a great deal of noise. While there are fewer commercial aircraft flying today with turbojet engines, supersonic aircraft including high performance military aircraft use engines with similar exhaust flow characteristics. The Pratt & Whitney F100-PW-229, pictured in Figure la, is an example of an engine that powers the F-15 and F-16 fighter jets. The turbofan engine was developed for subsonic transports, which in addition to better fuel efficiency also helped mitigate engine noise by reducing the jet exhaust velocity. These engines were introduced in the late 1960 s and power most of the commercial fleet today. Over the years, the bypass ratio (that is the ratio of the mass flow through the fan bypass duct to the mass flow through the engine core) has increased to values approaching 9 for modern turbofans such as the General Electric s GE-90 engine (Figure lb). The benefits to noise reduction for high bypass ratio (HPBR) engines are derived from lowering the core jet velocity and temperature, and lowering the tip speed and pressure ratio of the fan, both of which are the consequences of the increase in bypass ratio. The HBPR engines are typically very large in diameter and can produce over 100,000 pounds of thrust for the largest engines. A third type of engine flying today is the turbo-shaft which is mainly used to power turboprop aircraft and helicopters. An example of this type of engine is shown in Figure IC, which is a schematic of the Honeywell T55 engine that powers the CH-47 Chinook helicopter. Since the noise from the propellers or helicopter rotors is usually dominant for turbo-shaft engines, less attention has been paid to these engines in so far as community noise considerations are concerned. This chapter will concentrate mostly on turbofan engine noise and will highlight common methods for their noise prediction and reduction.

  17. A model problem for estimation of moving-film time relaxation at sudden change of boundary conditions

    NASA Astrophysics Data System (ADS)

    Smirnovsky, Alexander A.; Eliseeva, Viktoria O.

    2018-05-01

    The study of the film flow occurred under the influence of a gas slug flow is of definite interest in heat and mass transfer during the motion of a coolant in the second circuit of a nuclear water-water reactor. Thermohydraulic codes are usually used for analysis of the such problems in which the motion of the liquid film and the vapor is modeled on the basis of a one-dimensional balance equations. Due to a greater inertia of the liquid film motion, film flow parameters changes with a relaxation compared with gas flow. We consider a model problem of film flow under the influence of friction from gas slug flow neglecting such effects as wave formation, droplet breakage and deposition on the film surface, evaporation and condensation. Such a problem is analogous to the well-known problems of Couette and Stokes flows. An analytical solution has been obtained for laminar flow. Numerical RANS-based simulation of turbulent flow was performed using OpenFOAM. It is established that the relaxation process is almost self-similar. This fact opens a possibility of obtaining valuable correlations for the relaxation time.

  18. Assessment of serious water shortage in the Icelandic water resource system

    NASA Astrophysics Data System (ADS)

    Jonsdottir, H.; Eliasson, J.; Madsen, H.

    Water resources are economically important and environmentally extremely vulnerable. The electrical power system in Iceland is hydropower based and due to the country’s isolation, power import is not an option as elsewhere in Europe. In the hydropower system, a water shortage is met by flow augmentation from reservoirs. The management of these reservoirs are a human intervention in a natural flow and therefore necessarily limited by environmental regulations. During a heavy drought, the available water storage in the reservoir may not be sufficient to cater for the demand and consequently there will be a shortage of electrical power. This is politically acceptable as long as it only touches heavy industries but not power deliveries to the common market. Empty or near empty reservoirs cause power shortage that will be felt by homeowners and businesses, until spring thaw sets in and inflow to the reservoirs begins. If such a power shortage event occurs, it will cause heavy social problems and a political decision making will follow. It is commonly agreed, that management methods leading to such a disastrous event as a general power shortage in the whole country, are not acceptable. It is therefore very important to have mathematical tools to estimate the risk of water shortage in the system when searching for the best management method. In view of the fact that the subject is to estimate the risk of events that have to be very rare, i.e. with large recurrence time, stochastic simulation is used to produce synthetically run-off records with adequate length, in order to estimate very rare droughts. The method chosen is to make the run-off series stationary in the mean and the variance and simulating the resulting stationary process. When this method is chosen, future trends in the run-off from climate change and glacier reduction can easily be incorporated in the model. The probabilities of extreme droughts are calculated and their frequencies are compared to theoretical distributions.

  19. Microgrid Enabled Distributed Energy Solutions (MEDES) Fort Bliss Military Reservation

    DTIC Science & Technology

    2014-02-01

    Logic Controller PF Power Factor PO Performance Objectives PPA Power Purchase Agreements PV Photovoltaic R&D Research and Development RDSI...controller, algorithms perform power flow analysis, short term optimization, and long-term forecasted planning. The power flow analysis ensures...renewable photovoltaic power and energy storage in this microgrid configuration, the available mission operational time of the backup generator can be

  20. Parallel processing methods for space based power systems

    NASA Technical Reports Server (NTRS)

    Berry, F. C.

    1993-01-01

    This report presents a method for doing load-flow analysis of a power system by using a decomposition approach. The power system for the Space Shuttle is used as a basis to build a model for the load-flow analysis. To test the decomposition method for doing load-flow analysis, simulations were performed on power systems of 16, 25, 34, 43, 52, 61, 70, and 79 nodes. Each of the power systems was divided into subsystems and simulated under steady-state conditions. The results from these tests have been found to be as accurate as tests performed using a standard serial simulator. The division of the power systems into different subsystems was done by assigning a processor to each area. There were 13 transputers available, therefore, up to 13 different subsystems could be simulated at the same time. This report has preliminary results for a load-flow analysis using a decomposition principal. The report shows that the decomposition algorithm for load-flow analysis is well suited for parallel processing and provides increases in the speed of execution.

  1. Precision control of high temperature furnaces using an auxiliary power supply and charged practice current flow

    DOEpatents

    Pollock, George G.

    1997-01-01

    Two power supplies are combined to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved.

  2. B-spline Method in Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Botella, Olivier; Shariff, Karim; Mansour, Nagi N. (Technical Monitor)

    2001-01-01

    B-spline functions are bases for piecewise polynomials that possess attractive properties for complex flow simulations : they have compact support, provide a straightforward handling of boundary conditions and grid nonuniformities, and yield numerical schemes with high resolving power, where the order of accuracy is a mere input parameter. This paper reviews the progress made on the development and application of B-spline numerical methods to computational fluid dynamics problems. Basic B-spline approximation properties is investigated, and their relationship with conventional numerical methods is reviewed. Some fundamental developments towards efficient complex geometry spline methods are covered, such as local interpolation methods, fast solution algorithms on cartesian grid, non-conformal block-structured discretization, formulation of spline bases of higher continuity over triangulation, and treatment of pressure oscillations in Navier-Stokes equations. Application of some of these techniques to the computation of viscous incompressible flows is presented.

  3. Broad Redshifted Line as a Signature of Outflow

    NASA Astrophysics Data System (ADS)

    Titarchuk, Lev; Kazanas, Demos; Becker, Peter A.

    2003-11-01

    We formulate and solve the diffusion problem of line photon propagation in a bulk outflow from a compact object (black hole or neutron star) using a generic assumption regarding the distribution of line photons within the outflow. Thomson scattering of the line photons within the expanding flow leads to a decrease of their energy which is of first order in v/c, where v is the outflow velocity and c is the speed of light. We demonstrate that the emergent line profile is closely related to the time distribution of photons diffusing through the flow (the light curve) and consists of a broad redshifted feature. We analyzed the line profiles for the general case of outflow density distribution. We emphasize that the redshifted lines are intrinsic properties of the powerful outflow that are supposed to be in many compact objects.

  4. Broad Red-Shifted Lines as a Signature of Outflow

    NASA Astrophysics Data System (ADS)

    Kazanas, Demosthenes; Titarchuk, Lev; Becker, Peter A.

    2004-07-01

    We formulate and solve the diffusion problem of line photon propagation in a bulk outflow from a compact object (black hole or neutron star) using a generic assumption regarding the distribution of line photons within the outflow. Thomson scattering of the line photons within the expanding flow leads to a decrease of their energy which is of first order in v/c, where v is the outflow velocity and c the speed of light. We demonstrate that the emergent line profile is closely related to the time distribution of photons diffusing through the flow (the light curve) and consists of a broad redshifted feature. We analyzed the line profiles for the general case of outflow density distribution. We emphasize that the redshifted lines are intrinsic properties of the powerful outflow that are supposed to be in many compact objects.

  5. Broad Red-Shifted Lines as a Signature of Outflows

    NASA Astrophysics Data System (ADS)

    Titarchuck, Lev; Kazanas, Demos; Becker, Peter A.

    2006-02-01

    We formulate and solve the diffusion problem of line photon propagation in a bulk outflow from a compact object (black hole or neutron star) using a generic assumption regarding the distribution of line photons within the outflow. Thomson scattering of the line photons within the expanding flow leads to a decrease of their energy which is of first order in υ/c, where υ the outflow velocity and c is the speed of light. We demonstrate that the emergent line profile is closely related to the time distribution of photons diffusing through the flow (the light curve) and consists of a broad redshifted feature. We analyzed the line profiles for the general case of outflow density distribution. We emphasize that the redshifted lines are intrinsic properties of the powerful outflow that are supposed to be in many compact objects.

  6. Power harvesting by electromagnetic coupling from wind-induced limit cycle oscillations

    NASA Astrophysics Data System (ADS)

    Boccalero, G.; Olivieri, S.; Mazzino, A.; Boragno, C.

    2017-09-01

    Recent developments of low-power microprocessors open to new applications such as wireless sensor networks (WSN) with the consequent problem of autonomous powering. For this purpose, a possible strategy is represented by energy harvesting from wind or other flows exploiting fluid-structure interactions. In this work, we present an updated picture of a flutter-based device characterized by fully passive dynamics and a simple constructive layout, where limit cycle oscillations are undergone by an elastically bounded wing. In this case, the conversion from mechanical to electrical energy is performed by means of an electromagnetic coupling between a pair of coils and magnets. A centimetric-size prototype is shown to harvest energy from low wind velocities (between 2 and 4 m s-1), reaching a power peak of 14 mW, representing a valuable amount for applications related to WSN. A mathematical description of the nonlinear dynamics is then provided by a quasi-steady phenomenological model, revealing satisfactory agreement with the experimental framework within a certain parametric range and representing a useful tool for future optimizations.

  7. Survey of lift-fan aerodynamic technology

    NASA Technical Reports Server (NTRS)

    Hickey, David H.; Kirk, Jerry V.

    1993-01-01

    Representatives of NASA Ames Research Center asked that a summary of technology appropriate for lift-fan powered short takeoff/vertical landing (STOVL) aircraft be prepared so that new programs could more easily benefit from past research efforts. This paper represents one of six prepared for that purpose. The authors have conducted or supervised the conduct of research on lift-fan powered STOVL designs and some of their important components for decades. This paper will first address aerodynamic modeling requirements for experimental programs to assure realistic, trustworthy results. It will next summarize the results or efforts to develop satisfactory specialized STOVL components such as inlets and flow deflectors. It will also discuss problems with operation near the ground, aerodynamics while under lift-fan power, and aerodynamic prediction techniques. Finally, results of studies to reduce lift-fan noise will be presented. The paper will emphasize results from large scale experiments, where available, for reasons that will be brought out in the discussion. Some work with lift-engine powered STOVL aircraft is also applicable to lift-fan technology and will be presented herein. Small-scale data will be used where necessary to fill gaps.

  8. Numerical analysis of laminar and turbulent incompressible flows using the finite element Fluid Dynamics Analysis Package (FIDAP)

    NASA Technical Reports Server (NTRS)

    Sohn, Jeong L.

    1988-01-01

    The purpose of the study is the evaluation of the numerical accuracy of FIDAP (Fluid Dynamics Analysis Package). Accordingly, four test problems in laminar and turbulent incompressible flows are selected and the computational results of these problems compared with other numerical solutions and/or experimental data. These problems include: (1) 2-D laminar flow inside a wall-driven cavity; (2) 2-D laminar flow over a backward-facing step; (3) 2-D turbulent flow over a backward-facing step; and (4) 2-D turbulent flow through a turn-around duct.

  9. Investigating Darcy-scale assumptions by means of a multiphysics algorithm

    NASA Astrophysics Data System (ADS)

    Tomin, Pavel; Lunati, Ivan

    2016-09-01

    Multiphysics (or hybrid) algorithms, which couple Darcy and pore-scale descriptions of flow through porous media in a single numerical framework, are usually employed to decrease the computational cost of full pore-scale simulations or to increase the accuracy of pure Darcy-scale simulations when a simple macroscopic description breaks down. Despite the massive increase in available computational power, the application of these techniques remains limited to core-size problems and upscaling remains crucial for practical large-scale applications. In this context, the Hybrid Multiscale Finite Volume (HMsFV) method, which constructs the macroscopic (Darcy-scale) problem directly by numerical averaging of pore-scale flow, offers not only a flexible framework to efficiently deal with multiphysics problems, but also a tool to investigate the assumptions used to derive macroscopic models and to better understand the relationship between pore-scale quantities and the corresponding macroscale variables. Indeed, by direct comparison of the multiphysics solution with a reference pore-scale simulation, we can assess the validity of the closure assumptions inherent to the multiphysics algorithm and infer the consequences for macroscopic models at the Darcy scale. We show that the definition of the scale ratio based on the geometric properties of the porous medium is well justified only for single-phase flow, whereas in case of unstable multiphase flow the nonlinear interplay between different forces creates complex fluid patterns characterized by new spatial scales, which emerge dynamically and weaken the scale-separation assumption. In general, the multiphysics solution proves very robust even when the characteristic size of the fluid-distribution patterns is comparable with the observation length, provided that all relevant physical processes affecting the fluid distribution are considered. This suggests that macroscopic constitutive relationships (e.g., the relative permeability) should account for the fact that they depend not only on the saturation but also on the actual characteristics of the fluid distribution.

  10. Solar water disinfection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, R.; Collier, R.

    Non-potable drinking water is a major problem for much of the world`s population. It has been estimated that from 15 to 20 million children under the age of 5 die from diarrheal conditions brought on by infected drinking water every year. This is equivalent to a fully-loaded DC-10 crashing every ten minutes of every day, 365 days a year. Heat is one of the most effective methods of disinfecting drinking water. Using conventional means of heating water (heating on an open-flamed stove) results in an extremely energy-intensive process. The main obstacle is that for areas of the world where potablemore » water is a problem, fuel supplies are either too expensive, not available, or the source of devastating environmental problems (deforestation). The apparatus described is a solar-powered water disinfection device that can overcome most if not all of the barriers that presently limit technological solutions to drinking water problems. It uses a parabolic trough solar concentrator with a receiver tube that is also a counterflow heat exchanger. The system is totally self-contained utilizing a photovoltaic-powered water pump, and a standard automotive thermostat for water flow control. The system is designed for simplicity, reliability and the incorporation of technology readily accessible in most areas of the world. Experiments at the Florida Solar Energy Center have demonstrated up to 2,500 liters of safe drinking water per day with 28 square meters of solar concentrator.« less

  11. Enhancements to BISON U-Zr Metallic Fuel X447 Example Problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galloway, Jack D.; Matthews, Christopher; Unal, Cetin

    As development of a metallic fuel modeling capability in BISON has progressed, the need for an example problem used as a comparison basis was observed. Collaborative work between researchers at Los Alamos National Laboratory (LANL) and Idaho National Laboratory (INL) then proceeded to determine a viable rod to use as the basis and create a BISON input deck utilizing as many metallic fuel models as feasible. The basis chosen was what would be considered a generic rod from subassembly X447, an assembly irradiated in EBR-II towards the end of its operating life, heavily based on reported data for fuel pinmore » DP11. Thus, the approach was adopted to use flow characteristics from subassembly X447 as a basis for the convective heat transfer solution, power history and axial power profiles that are representative of rod DP11 from subassembly X447. The rod simulated is a U-10Zr wt% (U-22.5Zr at%) composition. A 2D-RZ mesh would be used to capture axial thermal hydraulic effects, axial swelling and stress-strain calculations over the full length of the rod. After initial work was invested, a refinement of the various models and input parameters was conducted to ensure consistency between operator-declared conditions, model input requirements and those represented in the example problem. This report serves as a synopsis of the enhancements and refinements to the example problem conducted throughout the 2016 fiscal year.« less

  12. The Advantages of Non-Flow-Through Fuel Cell Power Systems for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Hoberecht, Mark; Burke, Kenneth; Jakupca, Ian

    2011-01-01

    NASA has been developing proton-exchange-membrane (PEM) fuel cell power systems for the past decade, as an upgraded technology to the alkaline fuel cells which presently provide power for the Shuttle Orbiter. All fuel cell power systems consist of one or more fuel cell stacks in combination with appropriate balance-of-plant hardware. Traditional PEM fuel cells are characterized as flow-through, in which recirculating reactant streams remove product water from the fuel cell stack. NASA recently embarked on the development of non-flow-through fuel cell systems, in which reactants are dead-ended into the fuel cell stack and product water is removed by internal wicks. This simplifies the fuel cell power system by eliminating the need for pumps to provide reactant circulation, and mechanical water separators to remove the product water from the recirculating reactant streams. By eliminating these mechanical components, the resulting fuel cell power system has lower mass, volume, and parasitic power requirements, along with higher reliability and longer life. These improved non-flow-through fuel cell power systems therefore offer significant advantages for many aerospace applications.

  13. Power laws and fragility in flow networks.

    PubMed

    Shore, Jesse; Chu, Catherine J; Bianchi, Matt T

    2013-01-01

    What makes economic and ecological networks so unlike other highly skewed networks in their tendency toward turbulence and collapse? Here, we explore the consequences of a defining feature of these networks: their nodes are tied together by flow. We show that flow networks tend to the power law degree distribution (PLDD) due to a self-reinforcing process involving position within the global network structure, and thus present the first random graph model for PLDDs that does not depend on a rich-get-richer function of nodal degree. We also show that in contrast to non-flow networks, PLDD flow networks are dramatically more vulnerable to catastrophic failure than non-PLDD flow networks, a finding with potential explanatory power in our age of resource- and financial-interdependence and turbulence.

  14. Ion Heating and Flows in a High Power Helicon Source

    NASA Astrophysics Data System (ADS)

    Scime, Earl; Agnello, Riccardo; Furno, Ivo; Howling, Alan; Jacquier, Remy; Plyushchev, Gennady; Thompson, Derek

    2017-10-01

    We report experimental measurements of ion temperatures and flows in a high power, linear, magnetized, helicon plasma device, the Resonant Antenna Ion Device (RAID). RAID is equipped with a high power helicon source. Parallel and perpendicular ion temperatures on the order of 0.6 eV are observed for an rf power of 4 kW, suggesting that higher power helicon sources should attain ion temperatures in excess of 1 eV. The unique RAID antenna design produces broad, uniform plasma density and perpendicular ion temperature radial profiles. Measurements of the azimuthal flow indicate rigid body rotation of the plasma column of a few kHz. When configured with an expanding magnetic field, modest parallel ion flows are observed in the expansion region. The ion flows and temperatures are derived from laser induced fluorescence measurements of the Doppler resolved velocity distribution functions of argon ions. This work supported by U.S. National Science Foundation Grant No. PHY-1360278.

  15. Ion heating and flows in a high power helicon source

    NASA Astrophysics Data System (ADS)

    Thompson, Derek S.; Agnello, Riccardo; Furno, Ivo; Howling, Alan; Jacquier, Rémy; Plyushchev, Gennady; Scime, Earl E.

    2017-06-01

    We report experimental measurements of ion temperatures and flows in a high power, linear, magnetized, helicon plasma device, the Resonant Antenna Ion Device (RAID). Parallel and perpendicular ion temperatures on the order of 0.6 eV are observed for an rf power of 4 kW, suggesting that higher power helicon sources should attain ion temperatures in excess of 1 eV. The unique RAID antenna design produces broad, uniform plasma density and perpendicular ion temperature radial profiles. Measurements of the azimuthal flow indicate rigid body rotation of the plasma column of a few kHz. When configured with an expanding magnetic field, modest parallel ion flows are observed in the expansion region. The ion flows and temperatures are derived from laser induced fluorescence measurements of the Doppler resolved velocity distribution functions of argon ions.

  16. Precipitation patterns during channel flow

    NASA Astrophysics Data System (ADS)

    Jamtveit, B.; Hawkins, C.; Benning, L. G.; Meier, D.; Hammer, O.; Angheluta, L.

    2013-12-01

    Mineral precipitation during channelized fluid flow is widespread in a wide variety of geological systems. It is also a common and costly phenomenon in many industrial processes that involve fluid flow in pipelines. It is often referred to as scale formation and encountered in a large number of industries, including paper production, chemical manufacturing, cement operations, food processing, as well as non-renewable (i.e. oil and gas) and renewable (i.e. geothermal) energy production. We have studied the incipient stages of growth of amorphous silica on steel plates emplaced into the central areas of the ca. 1 meter in diameter sized pipelines used at the hydrothermal power plant at Hellisheidi, Iceland (with a capacity of ca 300 MW electricity and 100 MW hot water). Silica precipitation takes place over a period of ca. 2 months at approximately 120°C and a flow rate around 1 m/s. The growth produces asymmetric ca. 1mm high dendritic structures ';leaning' towards the incoming fluid flow. A novel phase-field model combined with the lattice Boltzmann method is introduced to study how the growth morphologies vary under different hydrodynamic conditions, including non-laminar systems with turbulent mixing. The model accurately predicts the observed morphologies and is directly relevant for understanding the more general problem of precipitation influenced by turbulent mixing during flow in channels with rough walls and even for porous flow. Reference: Hawkins, C., Angheluta, L., Hammer, Ø., and Jamtveit, B., Precipitation dendrites in channel flow. Europhysics Letters, 102, 54001

  17. Analyzing Quadratic Unconstrained Binary Optimization Problems Via Multicommodity Flows

    PubMed Central

    Wang, Di; Kleinberg, Robert D.

    2009-01-01

    Quadratic Unconstrained Binary Optimization (QUBO) problems concern the minimization of quadratic polynomials in n {0, 1}-valued variables. These problems are NP-complete, but prior work has identified a sequence of polynomial-time computable lower bounds on the minimum value, denoted by C2, C3, C4,…. It is known that C2 can be computed by solving a maximum-flow problem, whereas the only previously known algorithms for computing Ck (k > 2) require solving a linear program. In this paper we prove that C3 can be computed by solving a maximum multicommodity flow problem in a graph constructed from the quadratic function. In addition to providing a lower bound on the minimum value of the quadratic function on {0, 1}n, this multicommodity flow problem also provides some information about the coordinates of the point where this minimum is achieved. By looking at the edges that are never saturated in any maximum multicommodity flow, we can identify relational persistencies: pairs of variables that must have the same or different values in any minimizing assignment. We furthermore show that all of these persistencies can be detected by solving single-commodity flow problems in the same network. PMID:20161596

  18. Analyzing Quadratic Unconstrained Binary Optimization Problems Via Multicommodity Flows.

    PubMed

    Wang, Di; Kleinberg, Robert D

    2009-11-28

    Quadratic Unconstrained Binary Optimization (QUBO) problems concern the minimization of quadratic polynomials in n {0, 1}-valued variables. These problems are NP-complete, but prior work has identified a sequence of polynomial-time computable lower bounds on the minimum value, denoted by C(2), C(3), C(4),…. It is known that C(2) can be computed by solving a maximum-flow problem, whereas the only previously known algorithms for computing C(k) (k > 2) require solving a linear program. In this paper we prove that C(3) can be computed by solving a maximum multicommodity flow problem in a graph constructed from the quadratic function. In addition to providing a lower bound on the minimum value of the quadratic function on {0, 1}(n), this multicommodity flow problem also provides some information about the coordinates of the point where this minimum is achieved. By looking at the edges that are never saturated in any maximum multicommodity flow, we can identify relational persistencies: pairs of variables that must have the same or different values in any minimizing assignment. We furthermore show that all of these persistencies can be detected by solving single-commodity flow problems in the same network.

  19. Experimental and analytical study of loss-of-flow transients in EBR-II occurring at decay power levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, L.K.; Mohr, D.; Feldman, E.E.

    A series of eight loss-of-flow (LOF) tests have been conducted in EBR-II to study the transition between forced and natural convective flows following a variety of loss-of-primary-pumping power conditions from decay heat levels. Comparisons of measurements and pretest/posttest predictions were made on a selected test. Good agreements between measurements and predictions was found prior to and just after the flow reaching its minimum, but the agreement is not as good after that point. The temperatures are consistent with the flow response and the assumed decay power. The measured results indicate that the flows of driver and the instrumented subassemblies aremore » too much in the analytical model in the natural convective region. Although a parametric study on secondary flow, turbulent-laminar flow transition, heat transfer ability of the intermediate heat exchange at low flow and flow mixing in the primary tank has been performed to determine their effects on the flow, the cause of the discrepancy at very low flow level is still unknown.« less

  20. Droop Control of Solar PV, Grid and Critical Load using Suppressing DC Current Injection Technique without Battery Storage

    NASA Astrophysics Data System (ADS)

    Dama Mr., Jayachandra; (Mrs. , Lini Mathew, Dr.; Srikanth Mr., G.

    2017-08-01

    This paper presents design of a sustainable solar Photo voltaic system for an Indian cities based residential/community house, integrated with grid, supporting it as supplementary sources, to meet energy demand of domestic loads. The role of renewable energy sources in Distributed Generation (DG) is increasingly being recognized as a supplement and an alternative to large conventional central power supply. Though centralized economic system that solely depends on cities is hampered due to energy deficiency, the use of solar energy in cities is never been tried widely due to technical inconvenience and high installation cost. To mitigate these problems, this paper proposes an optimized design of grid-tied PV system without storage which is suitable for Indian origin as it requires less installallation cost and supplies residential loads when the grid power is unavailable. The energy requirement is mainly fulfilled from PV energy module for critical load of a city located residential house and supplemented by grid/DG for base and peak load. The system has been developed for maximum daily household demand of 50kWp and can be scaled to any higher value as per requirement of individual/community building ranging from 50kWp to 60kWp as per the requirement. A simplified control system model has been developed to optimize and control flow of power from these sources. The simulation work, using MATLAB Simulink software for proposed energy management, has resulted in an optimal yield leading efficient power flow control of proposed system.

  1. Relativistic thermodynamics, a Lagrangian field theory for general flows including rotation

    NASA Astrophysics Data System (ADS)

    Frønsdal, Christian

    Any theory that is based on an action principle has a much greater predictive power than one that does not have such a formulation. The formulation of a dynamical theory of General Relativity, including matter, is here viewed as a problem of coupling Einstein’s theory of pure gravity to an independently chosen and well-defined field theory of matter. It is well known that this is accomplished in a most natural way when both theories are formulated as relativistic, Lagrangian field theories, as is the case with Einstein-Maxwell theory. Special matter models of this type have been available; here a more general thermodynamical model that allows for vortex flows is presented. In a wider context, the problem of subjecting hydrodynamics and thermodynamics to an action principle is one that has been pursued for at least 150 years. A solution to this problem has been known for some time, but only under the strong restriction to potential flows. A variational principle for general flows has become available. It represents a development of the Navier-Stokes-Fourier approach to fluid dynamics. The principal innovation is the recognition that two kinds of flow velocity fields are needed, one the gradient of a scalar field and the other the time derivative of a vector field, the latter closely associated with vorticity. In the relativistic theory that is presented here, the latter is the Hodge dual of an exact 3-form, well known as the notoph field of Ogievetskij and Palubarinov, the B-field of Kalb and Ramond and the vorticity field of Lund and Regge. The total number of degrees of freedom of a unary system, including the density and the two velocity fields is 4, as expected — as in classical hydrodynamics. In this paper, we do not reduce Einstein’s dynamical equation for the metric to phenomenology, which would have denied the relevance of any intrinsic dynamics for the matter sector, nor do we abandon the equation of continuity - the very soul of hydrodynamics.

  2. Sharing the opportunity cost among power companies to support hydropower-to-environment water transfers

    NASA Astrophysics Data System (ADS)

    Tilmant, Amaury; Marques, Guilherme

    2016-04-01

    Among the environmental impacts caused by dams, the alteration of flow regimes is one of the most critical to river ecosystems given its influence in long river reaches and its continuous pattern. Provided it is technically feasible, the reoperation of hydroelectric reservoir systems can, in principle, mitigate the impacts on degraded freshwater ecosystems by recovering some of the natural flow regime. The typical approach to implement hydropower-to-environment water transfers focuses on the reoperation of the dam located immediately upstream of the environmentally sensitive area, meaning that only one power station will bear the brunt of the benefits forgone for the power sector. By ignoring the contribution of upstream infrastructures to the alteration of the flow regime, the opportunity cost associated with the restoration of a flow regime is not equitably distributed among the power companies in the river basin, therefore slowing the establishment of environmental flow programs. Yet, there is no criterion, nor institutional mechanisms, to ensure a fair distribution of the opportunity cost among power stations. This paper addresses this issue by comparing four rules to redistribute the costs faced by the power sector when environmental flows must be implemented in a multireservoir system. The rules are based on the the installed capacity of the power plants, the live storage capacity of the reservoirs, the ratio between the incremental flows and the live storage capacity, and the extent of the storage services; that is, the volume of water effectively transferred by each reservoir. The analysis is carried out using the Parana River Basin (Brazil) as a case study.

  3. Thermal margin protection system for a nuclear reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musick, C.R.

    1974-02-12

    A thermal margin protection system for a nuclear reactor is described where the coolant flow flow trip point and the calculated thermal margin trip point are switched simultaneously and the thermal limit locus is made more restrictive as the allowable flow rate is decreased. The invention is characterized by calculation of the thermal limit Locus in response to applied signals which accurately represent reactor cold leg temperature and core power; cold leg temperature being corrected for stratification before being utilized and reactor power signals commensurate with power as a function of measured neutron flux and thermal energy added to themore » coolant being auctioneered to select the more conservative measure of power. The invention further comprises the compensation of the selected core power signal for the effects of core radial peaking factor under maximum coolant flow conditions. (Official Oazette)« less

  4. Intracycle angular velocity control of cross-flow turbines

    NASA Astrophysics Data System (ADS)

    Strom, Benjamin; Brunton, Steven L.; Polagye, Brian

    2017-08-01

    Cross-flow turbines, also known as vertical-axis turbines, are attractive for power generation from wind and water currents. Some cross-flow turbine designs optimize unsteady fluid forces and maximize power output by controlling blade kinematics within one rotation. One established method is to dynamically pitch the blades. Here we introduce a mechanically simpler alternative: optimize the turbine rotation rate as a function of angular blade position. We demonstrate experimentally that this approach results in a 59% increase in power output over standard control methods. Analysis of fluid forcing and blade kinematics suggest that power increase is achieved through modification of the local flow conditions and alignment of fluid force and rotation rate extrema. The result is a low-speed, structurally robust turbine that achieves high efficiency and could enable a new generation of environmentally benign turbines for renewable power generation.

  5. Individual Battery-Power Control for a Battery Energy Storage System Using a Modular Multilevel Cascade Converter

    NASA Astrophysics Data System (ADS)

    Yamagishi, Tsukasa; Maharjan, Laxman; Akagi, Hirofumi

    This paper focuses on a battery energy storage system that can be installed in a 6.6-kV power distribution system. This system comprises a combination of a modular multilevel cascade converter based on single-star bridge-cells (MMCC-SSBC) and multiple battery modules. Each battery module is connected to the dc side of each bridge-cell, where the battery modules are galvanically isolated from each other. Three-phase multilevel line-to-line voltages with extremely low voltage steps on the ac side of the converter help in solving problems related to line harmonic currents and electromagnetic interference (EMI) issues. This paper proposes a control method that allows each bridge-cell to independently adjust the battery power flowing into or out of each battery module. A three-phase energy storage system using nine nickel-metal-hydride (NiMH) battery modules, each rated at 72V and 5.5Ah, is designed, constructed, and tested to verify the viability and effectiveness of the proposed control method.

  6. Sequential Service Restoration for Unbalanced Distribution Systems and Microgrids

    DOE PAGES

    Chen, Bo; Chen, Chen; Wang, Jianhui; ...

    2017-07-07

    The resilience and reliability of modern power systems are threatened by increasingly severe weather events and cyber-physical security events. An effective restoration methodology is desired to optimally integrate emerging smart grid technologies and pave the way for developing self-healing smart grids. In this paper, a sequential service restoration (SSR) framework is proposed to generate restoration solutions for distribution systems and microgrids in the event of large-scale power outages. The restoration solution contains a sequence of control actions that properly coordinate switches, distributed generators, and switchable loads to form multiple isolated microgrids. The SSR can be applied for three-phase unbalanced distributionmore » systems and microgrids and can adapt to various operation conditions. Mathematical models are introduced for three-phase unbalanced power flow, voltage regulators, transformers, and loads. Furthermore, the SSR problem is formulated as a mixed-integer linear programming model, and its effectiveness is evaluated via the modified IEEE 123 node test feeder.« less

  7. Sequential Service Restoration for Unbalanced Distribution Systems and Microgrids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Bo; Chen, Chen; Wang, Jianhui

    The resilience and reliability of modern power systems are threatened by increasingly severe weather events and cyber-physical security events. An effective restoration methodology is desired to optimally integrate emerging smart grid technologies and pave the way for developing self-healing smart grids. In this paper, a sequential service restoration (SSR) framework is proposed to generate restoration solutions for distribution systems and microgrids in the event of large-scale power outages. The restoration solution contains a sequence of control actions that properly coordinate switches, distributed generators, and switchable loads to form multiple isolated microgrids. The SSR can be applied for three-phase unbalanced distributionmore » systems and microgrids and can adapt to various operation conditions. Mathematical models are introduced for three-phase unbalanced power flow, voltage regulators, transformers, and loads. Furthermore, the SSR problem is formulated as a mixed-integer linear programming model, and its effectiveness is evaluated via the modified IEEE 123 node test feeder.« less

  8. Utilization of power plant bottom ash as aggregates in fiber-reinforced cellular concrete.

    PubMed

    Lee, H K; Kim, H K; Hwang, E A

    2010-02-01

    Recently, millions tons of bottom ash wastes from thermoelectric power plants have been disposed of in landfills and coastal areas, regardless of its recycling possibility in construction fields. Fiber-reinforced cellular concrete (FRCC) of low density and of high strength may be attainable through the addition of bottom ash due to its relatively high strength. This paper focuses on evaluating the feasibility of utilizing bottom ash of thermoelectric power plant wastes as aggregates in FRCC. The flow characteristics of cement mortar with bottom ash aggregates and the effect of aggregate type and size on concrete density and compressive strength were investigated. In addition, the effects of adding steel and polypropylene fibers for improving the strength of concrete were also investigated. The results from this study suggest that bottom ash can be applied as a construction material which may not only improve the compressive strength of FRCC significantly but also reduce problems related to bottom ash waste.

  9. Secure provision of reactive power ancillary services in competitive electricity markets

    NASA Astrophysics Data System (ADS)

    El-Samahy, Ismael

    The research work presented in this thesis discusses various complex issues associated with reactive power management and pricing in the context of new operating paradigms in deregulated power systems, proposing appropriate policy solutions. An integrated two-level framework for reactive power management is set forth, which is both suitable for a competitive market and ensures a secure and reliable operation of the associated power system. The framework is generic in nature and can be adopted for any electricity market structure. The proposed hierarchical reactive power market structure comprises two stages: procurement of reactive power resources on a seasonal basis, and real-time reactive power dispatch. The main objective of the proposed framework is to provide appropriate reactive power support from service providers at least cost, while ensuring a secure operation of the power system. The proposed procurement procedure is based on a two-step optimization model. First, the marginal benefits of reactive power supply from each provider, with respect to system security, are obtained by solving a loadability-maximization problem subject to transmission security constraints imposed by voltage and thermal limits. Second, the selected set of generators is determined by solving an optimal power flow (OPF)-based auction. This auction maximizes a societal advantage function comprising generators' offers and their corresponding marginal benefits with respect to system security, and considering all transmission system constraints. The proposed procedure yields the selected set of generators and zonal price components, which would form the basis for seasonal contracts between the system operator and the selected reactive power service providers. The main objective of the proposed reactive power dispatch model is to minimize the total payment burden on the Independent System Operator (ISO), which is associated with reactive power dispatch. The real power generation is decoupled and assumed to be fixed during the reactive power dispatch procedures; however, the effect of reactive power on real power is considered in the model by calculating the required reduction in real power output of a generator due to an increase in its reactive power supply. In this case, real power generation is allowed to be rescheduled, within given limits, from the already dispatched levels obtained from the energy market clearing process. The proposed dispatch model achieves the main objective of an ISO in a competitive electricity market, which is to provide the required reactive power support from generators at least cost while ensuring a secure operation of the power system. The proposed reactive power procurement and dispatch models capture both the technical and economic aspects of power system operation in competitive electricity markets; however, from an optimization point of view, these models represent non-convex mixed integer non-linear programming (MINLP) problems due to the presence of binary variables associated with the different regions of reactive power operation in a synchronous generator. Such MINLP optimization problems are difficult to solve, especially for an actual power system. A novel Generator Reactive Power Classification (GRPC) algorithm is proposed in this thesis to address this issue, with the advantage of iteratively solving the optimization models as a series of non-linear programming (NLP) sub-problems. The proposed reactive power procurement and dispatch models are implemented and tested on the CIGRE 32-bus system, with several case studies that represent different practical operating scenarios. The developed models are also compared with other approaches for reactive power provision, and the results demonstrate the robustness and effectiveness of the proposed model. The results clearly reveal the main features of the proposed models for optimal provision of reactive power ancillary service, in order to suit the requirements of an ISO under today's stressed system conditions in a competitive market environment.

  10. Automated flow quantification in valvular heart disease based on backscattered Doppler power analysis: implementation on matrix-array ultrasound imaging systems.

    PubMed

    Buck, Thomas; Hwang, Shawn M; Plicht, Björn; Mucci, Ronald A; Hunold, Peter; Erbel, Raimund; Levine, Robert A

    2008-06-01

    Cardiac ultrasound imaging systems are limited in the noninvasive quantification of valvular regurgitation due to indirect measurements and inaccurate hemodynamic assumptions. We recently demonstrated that the principle of integration of backscattered acoustic Doppler power times velocity can be used for flow quantification in valvular regurgitation directly at the vena contracta of a regurgitant flow jet. We now aimed to accomplish implementation of automated Doppler power flow analysis software on a standard cardiac ultrasound system utilizing novel matrix-array transducer technology with detailed description of system requirements, components and software contributing to the system. This system based on a 3.5 MHz, matrix-array cardiac ultrasound scanner (Sonos 5500, Philips Medical Systems) was validated by means of comprehensive experimental signal generator trials, in vitro flow phantom trials and in vivo testing in 48 patients with mitral regurgitation of different severity and etiology using magnetic resonance imaging (MRI) for reference. All measurements displayed good correlation to the reference values, indicating successful implementation of automated Doppler power flow analysis on a matrix-array ultrasound imaging system. Systematic underestimation of effective regurgitant orifice areas >0.65 cm(2) and volumes >40 ml was found due to currently limited Doppler beam width that could be readily overcome by the use of new generation 2D matrix-array technology. Automated flow quantification in valvular heart disease based on backscattered Doppler power can be fully implemented on board a routinely used matrix-array ultrasound imaging systems. Such automated Doppler power flow analysis of valvular regurgitant flow directly, noninvasively, and user independent overcomes the practical limitations of current techniques.

  11. High power gas laser - Applications and future developments

    NASA Technical Reports Server (NTRS)

    Hertzberg, A.

    1977-01-01

    Fast flow can be used to create the population inversion required for lasing action, or can be used to improve laser operation, for example by the removal of waste heat. It is pointed out that at the present time all lasers which are capable of continuous high-average power employ flow as an indispensable aspect of operation. High power laser systems are discussed, taking into account the gasdynamic laser, the HF supersonic diffusion laser, and electric discharge lasers. Aerodynamics and high power lasers are considered, giving attention to flow effects in high-power gas lasers, aerodynamic windows and beam manipulation, and the Venus machine. Applications of high-power laser technology reported are related to laser material working, the employment of the laser in controlled fusion machines, laser isotope separation and photochemistry, and laser power transmission.

  12. Hypersonic Flight and the Re-Entry Problem: The Twenty-First Wright Brothers Lecture

    NASA Technical Reports Server (NTRS)

    Allen, H. Julian

    1958-01-01

    Up to this point the discussion of the problems of rocket vehicles has been confined to the effects of phenomena which have in the past been important ones for lower speed aircraft and will continue to be important for aircraft of all speeds. Now with considerable extension of both speed and altitude, other phenomena also become important. The nature of some problems will be altered, as a result, and new problems, of course, will be encountered. First, it is well to note that our interest in bluff bodies for ballistic vehicles in particular, and in rounded-nosed bodies generally, has changed our emphasis in aerodynamics. The detached bow waves which occur with such bodies at high supersonic speeds complicate the calculations of the flow-field characteristics. In the present period, much attention is being given to such studies. In addition, at the very high altitudes attained by most of the rocket-craft, the mean free path of air molecules can be of the same order, or long, compared to the dimensions of the vehicles. Thus, slip-flow and free-molecule-flow studies are of interest, particularly for satellite vehicles." The aerodynatnicist must deal with air having unfamiliar states and properties. Second, at hypersonic speeds where, for example, air is greatly decelerated, it may undergo considerable change in composition, the degree of change depending upon many factors. Dissociation of oxygen and nitrogen molecules can occur and, in addition, thermal ionization of many of the constituents. It is naturally to be expected that the convective heat transfer will, as a result, be altered from what it was for the "perfect" gas, and this has been the subject of much recent research effort. Moreover, the decelerated gas becomes capable of radiating energy and the radiative heat transfer must generally be considered for hypersonic vehicles, particularly for long-range ballistic rockets. It is not only the aerodynamic heating problems that are affected. The fact that at very high air temperature the gas becomes electrically conductive introduces new problems in radio wave transmission and reception. In addition, a conducting gas flow can, of course, be influenced by a magnetic field. The study of such flows, which has been termed "magneto gas dynamics," is still in too primitive a state to indicate how important a role it can play, but many interesting possibilities suggest themselves. Third, our experience with airplanes powered by air-breathing engines has naturally been restricted to the stratosphere, or lower. Our ignorance increases with altitude. For rockets, literally, "the sky's the limit," and it is not surprising that a great emphasis has now been placed on obtaining a more thorough understanding of the whole atmosphere. These studies are not aimed at an understanding of the chemical and physical characteristics alone, but also of the occurrence of high-energy particles, from meteors to cosmic rays, and the nature of the problems they will promote.

  13. Dynamic Contraction of the Positive Column of a Self-Sustained Glow Discharge in Molecular Gas Flow

    NASA Astrophysics Data System (ADS)

    Shneider, Mikhail

    2014-10-01

    Contraction of the gas discharge, when current contracts from a significant volume of weakly ionized plasma into a thin arc channel, was attracted attention of scientists for more than a century. Studies of the contraction (also called constriction) mechanisms, besides carrying interesting science, are of practical importance, especially when contraction should be prevented. A set of time-dependent two-dimensional equations for the non-equilibrium weakly-ionized nitrogen/ air plasma is formulated. The process is described by a set of time-dependent continuity equations for the electrons, positive and negative ions; gas and vibrational temperature; by taking into account the convective heat and plasma losses by the transverse flux. Transition from the uniform to contracted state was analyzed. It was shown that such transition experiences a hysteresis, and that the critical current of the transition increases when the pressure (gas density) drops. Possible coexistence of the contracted and uniform state of the plasma in the discharge where the current flows along the density gradient of the background gas was discussed. In this talk the problems related to the dynamic contraction of the current channel inside a quasineutral positive column of a self-sustained glow discharge in molecular gas in a rectangular duct with convection cooling will be discussed. Study presented in this talk was stimulated by the fact that there are large number of experiments on the dynamic contraction of a glow discharge in nitrogen and air flows and a many of possible applications. Similar processes play a role in the powerful gas-discharge lasers. In addition, the problem of dynamic contraction in the large volume of non-equilibrium weakly ionized plasma is closely related to the problem of streamer to leader transitions in lightning and blue jets.

  14. An optimal tuning strategy for tidal turbines

    PubMed Central

    2016-01-01

    Tuning wind and tidal turbines is critical to maximizing their power output. Adopting a wind turbine tuning strategy of maximizing the output at any given time is shown to be an extremely poor strategy for large arrays of tidal turbines in channels. This ‘impatient-tuning strategy’ results in far lower power output, much higher structural loads and greater environmental impacts due to flow reduction than an existing ‘patient-tuning strategy’ which maximizes the power output averaged over the tidal cycle. This paper presents a ‘smart patient tuning strategy’, which can increase array output by up to 35% over the existing strategy. This smart strategy forgoes some power generation early in the half tidal cycle in order to allow stronger flows to develop later in the cycle. It extracts enough power from these stronger flows to produce more power from the cycle as a whole than the existing strategy. Surprisingly, the smart strategy can often extract more power without increasing maximum structural loads on the turbines, while also maintaining stronger flows along the channel. This paper also shows that, counterintuitively, for some tuning strategies imposing a cap on turbine power output to limit loads can increase a turbine’s average power output. PMID:27956870

  15. An optimal tuning strategy for tidal turbines

    NASA Astrophysics Data System (ADS)

    Vennell, Ross

    2016-11-01

    Tuning wind and tidal turbines is critical to maximizing their power output. Adopting a wind turbine tuning strategy of maximizing the output at any given time is shown to be an extremely poor strategy for large arrays of tidal turbines in channels. This `impatient-tuning strategy' results in far lower power output, much higher structural loads and greater environmental impacts due to flow reduction than an existing `patient-tuning strategy' which maximizes the power output averaged over the tidal cycle. This paper presents a `smart patient tuning strategy', which can increase array output by up to 35% over the existing strategy. This smart strategy forgoes some power generation early in the half tidal cycle in order to allow stronger flows to develop later in the cycle. It extracts enough power from these stronger flows to produce more power from the cycle as a whole than the existing strategy. Surprisingly, the smart strategy can often extract more power without increasing maximum structural loads on the turbines, while also maintaining stronger flows along the channel. This paper also shows that, counterintuitively, for some tuning strategies imposing a cap on turbine power output to limit loads can increase a turbine's average power output.

  16. An optimal tuning strategy for tidal turbines.

    PubMed

    Vennell, Ross

    2016-11-01

    Tuning wind and tidal turbines is critical to maximizing their power output. Adopting a wind turbine tuning strategy of maximizing the output at any given time is shown to be an extremely poor strategy for large arrays of tidal turbines in channels. This 'impatient-tuning strategy' results in far lower power output, much higher structural loads and greater environmental impacts due to flow reduction than an existing 'patient-tuning strategy' which maximizes the power output averaged over the tidal cycle. This paper presents a 'smart patient tuning strategy', which can increase array output by up to 35% over the existing strategy. This smart strategy forgoes some power generation early in the half tidal cycle in order to allow stronger flows to develop later in the cycle. It extracts enough power from these stronger flows to produce more power from the cycle as a whole than the existing strategy. Surprisingly, the smart strategy can often extract more power without increasing maximum structural loads on the turbines, while also maintaining stronger flows along the channel. This paper also shows that, counterintuitively, for some tuning strategies imposing a cap on turbine power output to limit loads can increase a turbine's average power output.

  17. Evaluating Heat Pipe Performance in 1/6 g Acceleration: Problems and Prospects

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.; McCollum, Timothy A.; Gibson, Marc A.; Sanzi, James L.; Sechkar, Edward A.

    2011-01-01

    Heat pipes composed of titanium and water are being considered for use in the heat rejection system of a fission power system option for lunar exploration. Placed vertically on the lunar surface, the heat pipes would operate as thermosyphons in the 1/6 g environment. The design of thermosyphons for such an application is determined, in part, by the flooding limit. Flooding is composed of two components, the thickness of the fluid film on the walls of the thermosyphon and the interaction of the fluid flow with the concurrent vapor counter flow. Both the fluid thickness contribution and interfacial shear contribution are inversely proportional to gravity. Hence, evaluating the performance of a thermosyphon in a 1 g environment on Earth may inadvertently lead to overestimating the performance of the same thermosyphon as experienced in the 1/6 g environment on the moon. Several concepts of varying complexity have been proposed for evaluating thermosyphon performance in reduced gravity, ranging from tilting the thermosyphons on Earth based on a cosine function, to flying heat pipes on a low-g aircraft. This paper summarizes the problems and prospects for evaluating thermosyphon performance in 1/6 g.

  18. Modeling of flowing gas diode pumped alkali lasers: dependence of the operation on the gas velocity and on the nature of the buffer gas.

    PubMed

    Barmashenko, B D; Rosenwaks, S

    2012-09-01

    A simple, semi-analytical model of flowing gas diode pumped alkali lasers (DPALs) is presented. The model takes into account the rise of temperature in the lasing medium with increasing pump power, resulting in decreasing pump absorption and slope efficiency. The model predicts the dependence of power on the flow velocity in flowing gas DPALs and checks the effect of using a buffer gas with high molar heat capacity and large relaxation rate constant between the 2P3/2 and 2P1/2 fine-structure levels of the alkali atom. It is found that the power strongly increases with flow velocity and that by replacing, e.g., ethane by propane as a buffer gas the power may be further increased by up to 30%. Eight kilowatt is achievable for 20 kW pump at flow velocity of 20  m/s.

  19. Energy Harvesting from Fluid Flow in Water Pipelines for Smart Metering Applications

    NASA Astrophysics Data System (ADS)

    Hoffmann, D.; Willmann, A.; Göpfert, R.; Becker, P.; Folkmer, B.; Manoli, Y.

    2013-12-01

    In this paper a rotational, radial-flux energy harvester incorporating a three-phase generation principle is presented for converting energy from water flow in domestic water pipelines. The energy harvester together with a power management circuit and energy storage is used to power a smart metering system installed underground making it independent from external power supplies or depleting batteries. The design of the radial-flux energy harvester is adapted to the housing of a conventional mechanical water flow meter enabling the use of standard components such as housing and impeller. The energy harvester is able to generate up to 720 mW when using a flow rate of 20 l/min (fully opened water tab). A minimum flow rate of 3 l/min is required to get the harvester started. In this case a power output of 2 mW is achievable. By further design optimization of the mechanical structure including the impeller and magnetic circuit the threshold flow rate can be further reduced.

  20. AUTOMOTIVE DIESEL MAINTENANCE 2. UNIT XXI, MICHIGAN/CLARK TRANSMISSION--COMPLETE POWER TRAIN.

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MOSULE OF A 25-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF A SPECIFIC POWER TRAIN SYSTEM USED ON DIESEL POWERED EQUIPMENT. TOPICS ARE EXAMINING THE POWER FLOW, UNIT OIL FLOW, AND OIL PRESSURE IN THE CONVERTER AND TRANSMISSION SYSTEM. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL PROGRAM TRAINING FILM "UNDERSTANDING THE…

Top