Science.gov

Sample records for power generation cycles

  1. ADVANCED CO2 CYCLE POWER GENERATION

    SciTech Connect

    A. Nehrozoglu

    2003-10-01

    Research is being conducted under United States Department of Energy (DOE) Contract DE-FC26-02NT41621 to develop a conceptual design and determine the performance characteristics of a new IGCC plant configuration that facilitates CO{sub 2} removal for sequestration. This new configuration will be designed to achieve CO{sub 2} sequestration without the need for water gas shifting and CO{sub 2} separation, and may eliminate the need for a separate sequestration compressor. This research introduces a novel concept of using CO{sub 2} as a working fluid for an advanced coal gasification based power generation system, where it generates power with high system efficiency while concentrating CO{sub 2} for sequestration. This project supports the DOE research objective of development of concepts for the capture and storage of CO{sub 2}.

  2. ADVANCED CO2 CYCLE POWER GENERATION

    SciTech Connect

    A. Nehrozoglu

    2004-01-01

    Research is being conducted under United States Department of Energy (DOE) Contract DE-FC26-02NT41621 to develop a conceptual design and determine the performance characteristics of a new IGCC plant configuration that facilitates CO{sub 2} removal for sequestration. This new configuration will be designed to achieve CO{sub 2} sequestration without the need for water gas shifting and CO{sub 2} separation, and may eliminate the need for a separate sequestration compressor. This research introduces a novel concept of using CO{sub 2} as a working fluid for an advanced coal gasification based power generation system, where it generates power with high system efficiency while concentrating CO{sub 2} for sequestration. This project supports the DOE research objective of development of concepts for the capture and storage of CO{sub 2}.

  3. Nuclear power generation and fuel cycle report 1996

    SciTech Connect

    1996-10-01

    This report presents the current status and projections through 2015 of nuclear capacity, generation, and fuel cycle requirements for all countries using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the worldwide nuclear fuel market. Long term projections of U.S. nuclear capacity, generation, and spent fuel discharges for two different scenarios through 2040 are developed. A discussion on decommissioning of nuclear power plants is included.

  4. Solar powered Stirling cycle electrical generator

    NASA Technical Reports Server (NTRS)

    Shaltens, Richard K.

    1991-01-01

    Under NASA's Civil Space Technology Initiative (CSTI), the NASA Lewis Research Center is developing the technology needed for free-piston Stirling engines as a candidate power source for space systems in the late 1990's and into the next century. Space power requirements include high efficiency, very long life, high reliability, and low vibration. Furthermore, system weight and operating temperature are important. The free-piston Stirling engine has the potential for a highly reliable engine with long life because it has only a few moving parts, non-contacting gas bearings, and can be hermetically sealed. These attributes of the free-piston Stirling engine also make it a viable candidate for terrestrial applications. In cooperation with the Department of Energy, system designs are currently being completed that feature the free-piston Stirling engine for terrestrial applications. Industry teams were assembled and are currently completing designs for two Advanced Stirling Conversion Systems utilizing technology being developed under the NASA CSTI Program. These systems, when coupled with a parabolic mirror to collect the solar energy, are capable of producing about 25 kW of electricity to a utility grid. Industry has identified a niche market for dish Stirling systems for worldwide remote power application. They believe that these niche markets may play a major role in the introduction of Stirling products into the commercial market.

  5. Coal-gasification combined-cycle power generation

    SciTech Connect

    Roberts, J.A.

    1984-06-01

    Rolls-Royce has joined forces with Foster Wheeler to offer a modern power plant that integrates the benefits of coal gasification with the efficiency advantages of combined-cycle power generation. Powered by fuel gas from two parallel Lurgi slagging gasifiers, the 150-MW power station employs two Rolls-Royce SK60 gas-turbine generating sets. The proposed plant is designed for continuous power generation and should operate efficiently down to one-third of its rated capacity. Rolls estimates that the installed cost for this station would be lower than that for a conventional coal-fired station of the same output with comparable operating costs. Cooling water requirements would be less than half those of a coal-fired station.

  6. Fuel cycle comparison of distributed power generation technologies.

    SciTech Connect

    Elgowainy, A.; Wang, M. Q.; Energy Systems

    2008-12-08

    The fuel-cycle energy use and greenhouse gas (GHG) emissions associated with the application of fuel cells to distributed power generation were evaluated and compared with the combustion technologies of microturbines and internal combustion engines, as well as the various technologies associated with grid-electricity generation in the United States and California. The results were primarily impacted by the net electrical efficiency of the power generation technologies and the type of employed fuels. The energy use and GHG emissions associated with the electric power generation represented the majority of the total energy use of the fuel cycle and emissions for all generation pathways. Fuel cell technologies exhibited lower GHG emissions than those associated with the U.S. grid electricity and other combustion technologies. The higher-efficiency fuel cells, such as the solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC), exhibited lower energy requirements than those for combustion generators. The dependence of all natural-gas-based technologies on petroleum oil was lower than that of internal combustion engines using petroleum fuels. Most fuel cell technologies approaching or exceeding the DOE target efficiency of 40% offered significant reduction in energy use and GHG emissions.

  7. Nuclear power generation and fuel cycle report 1997

    SciTech Connect

    1997-09-01

    Nuclear power is an important source of electric energy and the amount of nuclear-generated electricity continued to grow as the performance of nuclear power plants improved. In 1996, nuclear power plants supplied 23 percent of the electricity production for countries with nuclear units, and 17 percent of the total electricity generated worldwide. However, the likelihood of nuclear power assuming a much larger role or even retaining its current share of electricity generation production is uncertain. The industry faces a complex set of issues including economic competitiveness, social acceptance, and the handling of nuclear waste, all of which contribute to the uncertain future of nuclear power. Nevertheless, for some countries the installed nuclear generating capacity is projected to continue to grow. Insufficient indigenous energy resources and concerns over energy independence make nuclear electric generation a viable option, especially for the countries of the Far East.

  8. Membranes for H2 generation from nuclear powered thermochemical cycles.

    SciTech Connect

    Nenoff, Tina Maria; Ambrosini, Andrea; Garino, Terry J.; Gelbard, Fred; Leung, Kevin; Navrotsky, Alexandra; Iyer, Ratnasabapathy G.; Axness, Marlene

    2006-11-01

    In an effort to produce hydrogen without the unwanted greenhouse gas byproducts, high-temperature thermochemical cycles driven by heat from solar energy or next-generation nuclear power plants are being explored. The process being developed is the thermochemical production of Hydrogen. The Sulfur-Iodide (SI) cycle was deemed to be one of the most promising cycles to explore. The first step of the SI cycle involves the decomposition of H{sub 2}SO{sub 4} into O{sub 2}, SO{sub 2}, and H{sub 2}O at temperatures around 850 C. In-situ removal of O{sub 2} from this reaction pushes the equilibrium towards dissociation, thus increasing the overall efficiency of the decomposition reaction. A membrane is required for this oxygen separation step that is capable of withstanding the high temperatures and corrosive conditions inherent in this process. Mixed ionic-electronic perovskites and perovskite-related structures are potential materials for oxygen separation membranes owing to their robustness, ability to form dense ceramics, capacity to stabilize oxygen nonstoichiometry, and mixed ionic/electronic conductivity. Two oxide families with promising results were studied: the double-substituted perovskite A{sub x}Sr{sub 1-x}Co{sub 1-y}B{sub y}O{sub 3-{delta}} (A=La, Y; B=Cr-Ni), in particular the family La{sub x}Sr{sub 1-x}Co{sub 1-y}Mn{sub y}O{sub 3-{delta}} (LSCM), and doped La{sub 2}Ni{sub 1-x}M{sub x}O{sub 4} (M = Cu, Zn). Materials and membranes were synthesized by solid state methods and characterized by X-ray and neutron diffraction, SEM, thermal analyses, calorimetry and conductivity. Furthermore, we were able to leverage our program with a DOE/NE sponsored H{sub 2}SO{sub 4} decomposition reactor study (at Sandia), in which our membranes were tested in the actual H{sub 2}SO{sub 4} decomposition step.

  9. ADVANCED CO{sub 2} CYCLE POWER GENERATION

    SciTech Connect

    A. Nehrozoglu

    2003-07-01

    Research is being conducted under United States Department of Energy (DOE) Contract DE-FC26-02NT41621 to develop a conceptual design and determine the performance characteristics of a new IGCC plant configuration that facilitates CO{sub 2} removal for sequestration. This new configuration will be designed to achieve CO{sub 2} sequestration without the need for water gas shifting and CO{sub 2} separation, and may eliminate the need for a separate sequestration compressor. This research introduces a novel concept of using CO{sub 2} as a working fluid for an advanced coal gasification based power generation system, where it generates power with high system efficiency while concentrating CO{sub 2} for sequestration. This project supports the DOE research objective of development of concepts for the capture and storage of CO{sub 2}.

  10. DESIGN OF HYBRID POWER GENERATION CYCLES EMPLOYING AMMONIA-WATER-CARBON DIOXIDE MIXTURES

    SciTech Connect

    Ashish Gupta

    2002-06-01

    A power cycle generates electricity from the heat of combustion of fossil fuels. Its efficiency is governed by the cycle configuration, the operating parameters, and the working fluid. Typical. designs use pure water as the fluid. in the last two decades, hybrid cycles based on ammonia-water, and carbon-dioxide mixtures as the working fluid have been proposed. These cycles may improve the power generation efficiency of Rankine cycles by 15%. Improved efficiency is important for two reasons: it lowers the cost of electricity being produced, and by reducing the consumption of fossil fuels per unit power, it reduces the generation of environmental pollutants. The goal of this project is to develop a computational optimization-based method for the design and analysis of hybrid bottoming power cycles to minimize the usage of fossil fuels. The development of this methodology has been achieved by formulating this task as that of selecting the least cost power cycle design from all possible configurations. They employ a detailed thermodynamic property prediction package they have developed under a DOE-FETC grant to model working fluid mixtures. Preliminary results from this work suggest that a pure NH{sub 3} cycle outperforms steam or the expensive Kalina cycle.

  11. TECHNOECONOMIC APPRAISAL OF INTEGRATED GASIFICATION COMBINED-CYCLE POWER GENERATION

    EPA Science Inventory

    The report is a technoeconomic appraisal of the integrated (coal) gasification combined-cycle (IGCC) system. lthough not yet a proven commercial technology, IGCC is a future competitive technology to current pulverized-coal boilers equipped with SO2 and NOx controls, because of i...

  12. TECHNOECONOMIC APPRAISAL OF INTEGRATED GASIFICATION COMBINED-CYCLE POWER GENERATION

    EPA Science Inventory

    The report is a technoeconomic appraisal of the integrated (coal) gasification combined-cycle (IGCC) system. lthough not yet a proven commercial technology, IGCC is a future competitive technology to current pulverized-coal boilers equipped with SO2 and NOx controls, because of i...

  13. Electric power generating plant having direct-coupled steam and compressed-air cycles

    DOEpatents

    Drost, M.K.

    1981-01-07

    An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

  14. Electric power generating plant having direct coupled steam and compressed air cycles

    DOEpatents

    Drost, Monte K.

    1982-01-01

    An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

  15. Innovative open air brayton combined cycle systems for the next generation nuclear power plants

    NASA Astrophysics Data System (ADS)

    Zohuri, Bahman

    The purpose of this research was to model and analyze a nuclear heated multi-turbine power conversion system operating with atmospheric air as the working fluid. The air is heated by a molten salt, or liquid metal, to gas heat exchanger reaching a peak temperature of 660 0C. The effects of adding a recuperator or a bottoming steam cycle have been addressed. The calculated results are intended to identify paths for future work on the next generation nuclear power plant (GEN-IV). This document describes the proposed system in sufficient detail to communicate a good understanding of the overall system, its components, and intended uses. The architecture is described at the conceptual level, and does not replace a detailed design document. The main part of the study focused on a Brayton --- Rankine Combined Cycle system and a Recuperated Brayton Cycle since they offer the highest overall efficiencies. Open Air Brayton power cycles also require low cooling water flows relative to other power cycles. Although the Recuperated Brayton Cycle achieves an overall efficiency slightly less that the Brayton --- Rankine Combined Cycle, it is completely free of a circulating water system and can be used in a desert climate. Detailed results of modeling a combined cycle Brayton-Rankine power conversion system are presented. The Rankine bottoming cycle appears to offer a slight efficiency advantage over the recuperated Brayton cycle. Both offer very significant advantages over current generation Light Water Reactor steam cycles. The combined cycle was optimized as a unit and lower pressure Rankine systems seem to be more efficient. The combined cycle requires a lot less circulating water than current power plants. The open-air Brayton systems appear to be worth investigating, if the higher temperatures predicted for the Next Generation Nuclear Plant do materialize.

  16. Preheating of fluid in a supercritical Brayton cycle power generation system at cold startup

    DOEpatents

    Wright, Steven A.; Fuller, Robert L.

    2016-07-12

    Various technologies pertaining to causing fluid in a supercritical Brayton cycle power generation system to flow in a desired direction at cold startup of the system are described herein. A sensor is positioned at an inlet of a turbine, wherein the sensor is configured to output sensed temperatures of fluid at the inlet of the turbine. If the sensed temperature surpasses a predefined threshold, at least one operating parameter of the power generation system is altered.

  17. Microfabricated rankine cycle steam turbine for power generation and methods of making the same

    NASA Technical Reports Server (NTRS)

    Frechette, Luc (Inventor); Muller, Norbert (Inventor); Lee, Changgu (Inventor)

    2009-01-01

    In accordance with the present invention, an integrated micro steam turbine power plant on-a-chip has been provided. The integrated micro steam turbine power plant on-a-chip of the present invention comprises a miniature electric power generation system fabricated using silicon microfabrication technology and lithographic patterning. The present invention converts heat to electricity by implementing a thermodynamic power cycle on a chip. The steam turbine power plant on-a-chip generally comprises a turbine, a pump, an electric generator, an evaporator, and a condenser. The turbine is formed by a rotatable, disk-shaped rotor having a plurality of rotor blades disposed thereon and a plurality of stator blades. The plurality of stator blades are interdigitated with the plurality of rotor blades to form the turbine. The generator is driven by the turbine and converts mechanical energy into electrical energy.

  18. Closed Cycle Magnetohydrodynamic Nuclear Space Power Generation Using Helium/Xenon Working Plasma

    NASA Technical Reports Server (NTRS)

    Litchford, R. J.; Harada, N.

    2005-01-01

    A multimegawatt-class nuclear fission powered closed cycle magnetohydrodynamic space power plant using a helium/xenon working gas has been studied, to include a comprehensive system analysis. Total plant efficiency was expected to be 55.2 percent including pre-ionization power. The effects of compressor stage number, regenerator efficiency, and radiation cooler temperature on plant efficiency were investigated. The specific mass of the power generation plant was also examined. System specific mass was estimated to be 3 kg/kWe for a net electrical output power of 1 MWe, 2-3 kg/kWe at 2 MWe, and approx.2 kg/KWe at >3 MWe. Three phases of research and development plan were proposed: (1) Phase I-proof of principle, (2) Phase II-demonstration of power generation, and (3) Phase III-prototypical closed loop test.

  19. Life-cycle consequences of internalising socio-environmental externalities of power generation.

    PubMed

    García-Gusano, Diego; Istrate, I Robert; Iribarren, Diego

    2017-08-28

    Current national energy sectors are generally unsustainable. Within this context, energy policy-makers face the need to move from economy- to sustainability-oriented schemes. Beyond the integration of the sustainability concept into energy policies through the implementation of techno-economic, environmental and/or social restrictions, other approaches propose the use of externalities -based on life-cycle emissions- to deeply take into account sustainability in the design of the future energy system. In this sense, this work evaluates the consequences of internalising socio-environmental externalities associated with power generation. Besides the calculation of external costs of power generation technologies and their implementation in an energy systems optimisation model for Spain, the life-cycle consequences of this internalisation are explored. This involves the prospective analysis of the evolution of the sustainability indicators on which the externalities are founded, i.e. climate change and human health. For the first time, this is done by endogenously integrating the life-cycle indicators into the energy systems optimisation model. The results show that the internalisation of externalities highly influences the evolution of the electricity production mix as well as the corresponding life-cycle profile, hastening the decarbonisation of the power generation system and thus leading to a significant decrease in life-cycle impacts. This effect is observed both when internalising only climate change externalities and when internalising additionally human health external costs. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Thermal analysis of a simple-cycle gas turbine in biogas power generation

    SciTech Connect

    Yomogida, D.E.; Thinh, Ngo Dinh

    1995-09-01

    This paper investigates the technical feasibility of utilizing small simple-cycle gas turbines (25 kW to 125 kW) for biogas power generation through thermal analysis. A computer code, GTPower, was developed to evaluate the performance of small simple-cycle gas turbines specifically for biogas combustion. The 125 KW Solar Gas Turbine (Tital series) has been selected as the base case gas turbine for biogas combustion. After its design parameters and typical operating conditions were entered into GTPower for analysis, GTPower outputted expected values for the thermal efficiency and specific work. For a sensitivity analysis, the GTPower Model outputted the thermal efficiency and specific work. For a sensitivity analysis, the GTPower Model outputted the thermal efficiency and specific work profiles for various operating conditions encountered in biogas combustion. These results will assist future research projects in determining the type of combustion device most suitable for biogas power generation.

  1. Integrated air separation plant-integrated gasification combined cycle power generator

    SciTech Connect

    Allam, R.J.; Topham, A.

    1992-01-21

    This patent describes an integrated gasification combined cycle power generation system, comprising an air separation unit wherein air is compressed, cooled, and separated into an oxygen and nitrogen enriched fractions, a gasification system for generating a fuel gas, an air compressor system for supplying compressed air for use in combusting the fuel gas, a combustion zone for effecting combustion of the compressed air and the fuel gas, and a gas turbine for effecting the generation of power from the resulting combusted gases from the combustion zone in the combined cycle power generation system. It comprises independently compressing feed air to the air separation unit to pressures of from 8 to 20 bar from the compressor system used to compress air for the combustion zone; cryogenically separating the air in the air separation unit having at least one distillation column operating at pressures of between 8 and 20 bar and producing an oxygen enriched fraction consisting of low purity oxygen, and; utilizing at least a portion of the low purity oxygen for effecting gasification of a carbon containing fuel source by partial oxidation in the gasification system and thereby generating a fuel gas stream; removing at least a portion of a nitrogen enriched fraction from the air separation unit and boosting its pressures to a pressure substantially equal to that of the fuel gas stream; and expanding at least another portion of the nitrogen enriched fraction in an expansion engine.

  2. Life cycle analysis of geothermal power generation with supercritical carbon dioxide

    NASA Astrophysics Data System (ADS)

    Frank, Edward D.; Sullivan, John L.; Wang, Michael Q.

    2012-09-01

    Life cycle analysis methods were employed to model the greenhouse gas emissions and fossil energy consumption associated with geothermal power production when supercritical carbon dioxide (scCO2) is used instead of saline geofluids to recover heat from below ground. Since a significant amount of scCO2 is sequestered below ground in the process, a constant supply is required. We therefore combined the scCO2 geothermal power plant with an upstream coal power plant that captured a portion of its CO2 emissions, compressed it to scCO2, and transported the scCO2 by pipeline to the geothermal power plant. Emissions and energy consumption from all operations spanning coal mining and plant construction through power production were considered, including increases in coal use to meet steam demand for the carbon capture. The results indicated that the electricity produced by the geothermal plant more than balanced the increase in energy use resulting from carbon capture at the coal power plant. The effective heat rate (BTU coal per total kW h of electricity generated, coal plus geothermal) was comparable to that of traditional coal, but the ratio of life cycle emissions from the combined system to that of traditional coal was 15% when 90% carbon capture efficiency was assumed and when leakage from the surface was neglected. Contributions from surface leakage were estimated with a simple model for several hypothetical surface leakage rates.

  3. Closed Brayton Cycle (CBC) Power Generation from an Electric Systems Perspective

    NASA Astrophysics Data System (ADS)

    Halsey, David G.; Fox, David A.

    2006-01-01

    Several forms of closed cycle heat engines exist to produce electrical energy suitable for space exploration or planetary surface applications. These engines include Stirling and Closed Brayton Cycle (CBC). Of these two, CBC has often been cited as providing the best balance of mass and efficiency for deep space or planetary power systems. Combined with an alternator on the same shaft, the hermetically sealed system provides the potential for long life and reliable operation. There is also a list of choices for the type of alternator. Choices include wound rotor machines, induction machines, switched reluctance machines, and permanent magnet generators (PMGs). In trades involving size, mass and efficiency the PMG is a favorable solution. This paper will discuss the consequences of using a CBC-PMG source for an electrical power system, and the system parameters that must be defined and controlled to provide a stable, useful power source. Considerations of voltage, frequency (including DC), and power quality will be discussed. Load interactions and constraints for various power types will also be addressed. Control of the CBC-PMG system during steady state operation and startup is also a factor.s

  4. Life cycle assessment of fuel selection for power generation in Taiwan.

    PubMed

    Yang, Ying-Hsien; Lin, Sue-Jane; Lewis, Charles

    2007-11-01

    Life cycle assessment (LCA) was applied to performance data from 1997-2002 to evaluate the environmental impacts of the energy input, airborne emission, waterborne emission, and solid waste inventories for Taiwan's electric power plants. Eco-indicator 95 was used to compare the differences among the generation processes and fuel purification. To better understand the environmental trends related to Taiwan's electric power industry, three fuel scenarios were selected for LCA system analysis. Results indicate that there are differences in characteristic environmental impact among the 13 power plants. Scenario simulation provided a basis for minimizing environmental impacts from fuel selection targets. Fuel selection priority should be a gas-fired combined cycle substituted for a coal-fired steam turbine to be more environmentally friendly, particularly in the areas of the greenhouse effect, acidification, winter smog, and solid waste. Furthermore, based purely on economic and environmental criteria, it is recommended that the gas-fired combined cycle be substituted for the oil-fired steam turbine.

  5. Interim Report: Air-Cooled Condensers for Next Generation Geothermal Power Plants Improved Binary Cycle Performance

    SciTech Connect

    Daniel S. Wendt; Greg L. Mines

    2010-09-01

    As geothermal resources that are more expensive to develop are utilized for power generation, there will be increased incentive to use more efficient power plants. This is expected to be the case with Enhanced Geothermal System (EGS) resources. These resources will likely require wells drilled to depths greater than encountered with hydrothermal resources, and will have the added costs for stimulation to create the subsurface reservoir. It is postulated that plants generating power from these resources will likely utilize the binary cycle technology where heat is rejected sensibly to the ambient. The consumptive use of a portion of the produced geothermal fluid for evaporative heat rejection in the conventional flash-steam conversion cycle is likely to preclude its use with EGS resources. This will be especially true in those areas where there is a high demand for finite supplies of water. Though they have no consumptive use of water, using air-cooling systems for heat rejection has disadvantages. These systems have higher capital costs, reduced power output (heat is rejected at the higher dry-bulb temperature), increased parasitics (fan power), and greater variability in power generation on both a diurnal and annual basis (larger variation in the dry-bulb temperature). This is an interim report for the task ‘Air-Cooled Condensers in Next- Generation Conversion Systems’. The work performed was specifically aimed at a plant that uses commercially available binary cycle technologies with an EGS resource. Concepts were evaluated that have the potential to increase performance, lower cost, or mitigate the adverse effects of off-design operation. The impact on both cost and performance were determined for the concepts considered, and the scenarios identified where a particular concept is best suited. Most, but not all, of the concepts evaluated are associated with the rejection of heat. This report specifically addresses three of the concepts evaluated: the use of

  6. Feasibility of the inflow disk generator for open-cycle MHD power generation

    NASA Astrophysics Data System (ADS)

    Nakamura, T.; Lear, W. E.; Eustis, R. H.

    1981-01-01

    A feasibility study of the inflow disk MHD generator for baseload applications was performed. Each design element, i.e., the combustor, the inlet flow path, the generator channel, the diffuser and the magnet, was studied in detail in order to provide a comprehensive assessment of the inflow disk generator. Based on these results, the performance of the inflow disk generator was calculated for two different thermal inputs: 1250 MW(th) and 2500 MW(th). It was shown that the performance of the inflow disk generator is similar to that of the diagonal generator within the uncertainty of the analysis.

  7. Life cycle assessment of coal-fired power plants and sensitivity analysis of CO2 emissions from power generation side

    NASA Astrophysics Data System (ADS)

    Yin, Libao; Liao, Yanfen; Zhou, Lianjie; Wang, Zhao; Ma, Xiaoqian

    2017-05-01

    The life cycle assessment and environmental impacts of a 1000MW coal-fired power plant were carried out in this paper. The results showed that the operation energy consumption and pollutant emission of the power plant are the highest in all sub-process, which accounts for 93.93% of the total energy consumption and 92.20% of the total emission. Compared to other pollutant emissions from the coal-fired power plant, CO2 reached up to 99.28%. Therefore, the control of CO2 emission from the coal-fired power plants was very important. Based on the BP neural network, the amount of CO2 emission from the generation side of coal-fired power plants was calculated via carbon balance method. The results showed that unit capacity, coal quality and unit operation load had great influence on the CO2 emission from coal-fired power plants in Guangdong Province. The use of high volatile and high heat value of coal also can reduce the CO2 emissions. What’s more, under higher operation load condition, the CO2 emissions of 1 kWh electric energy was less.

  8. MTCI/ThermoChem steam reforming process for solid fuels for combined cycle power generation

    SciTech Connect

    Mansour, M.N.; Voelker, G.; Dural-Swamy, K.

    1995-12-31

    Manufacturing and Technology Conversion International, Inc. (MTCI) has developed a novel technology to convert solid fuels including biomass, coal, municipal solid waste (MSW) and wastewater sludges into usable syngas by steam reforming in an indirectly heated, fluid-bed reactor. MTCI has licensed and patented the technology to ThermoChem, Inc. Both MTCI and ThermoChem have built two modular commercial-scale demonstration units: one for recycle paper mill rejects (similar to refuse-derived fuel [RDF]), and another for chemical recovery of black liquor. ThermoChem has entered into an agreement with Ajinkyatara Cooperative Sugar Factory, India, for building a 10 MW combined cycle power generation facility based on bagasse and agro-residue gasification.

  9. Performance Evaluation of a Power Generation Unit-Organic Rankine Cycle System with Electric Energy Storage

    NASA Astrophysics Data System (ADS)

    Warren, Edward Harrison Randall

    This research proposes the use of electric energy storage (EES) in conjunction with a power generation unit organic Rankine cycle system (PGU-ORC). The EES is used when available so that continuous operation of the PGU is not required. The potential of the PGU-ORC-EES system's performance is evaluated in terms of operational cost, primary energy consumption (PEC), and carbon dioxide emissions (CDE) from simulations of a restaurant building in twelve U.S. locations with different climate conditions. The performance of the proposed system is compared to a conventional system. Results indicate that the EES addition to the PGU-ORC system is beneficial for most locations. Ratios between electricity and fuel cost, CDE conversion factors, and PEC conversion factors are used to estimate potential performance benefits. The effect of the EES size and the capital cost available are also analyzed.

  10. Comparative evaluation of biomass power generation systems in China using hybrid life cycle inventory analysis.

    PubMed

    Liu, Huacai; Yin, Xiuli; Wu, Chuangzhi

    2014-01-01

    There has been a rapid growth in using agricultural residues as an energy source to generate electricity in China. Biomass power generation (BPG) systems may vary significantly in technology, scale, and feedstock and consequently in their performances. A comparative evaluation of five typical BPG systems has been conducted in this study through a hybrid life cycle inventory (LCI) approach. Results show that requirements of fossil energy savings, and greenhouse gas (GHG) emission reductions, as well as emission reductions of SO2 and NOx, can be best met by the BPG systems. The cofiring systems were found to behave better than the biomass-only fired system and the biomass gasification systems in terms of energy savings and GHG emission reductions. Comparing with results of conventional process-base LCI, an important aspect to note is the significant contribution of infrastructure, equipment, and maintenance of the plant, which require the input of various types of materials, fuels, services, and the consequent GHG emissions. The results demonstrate characteristics and differences of BPG systems and help identify critical opportunities for biomass power development in China.

  11. Comparative Evaluation of Biomass Power Generation Systems in China Using Hybrid Life Cycle Inventory Analysis

    PubMed Central

    Liu, Huacai; Yin, Xiuli; Wu, Chuangzhi

    2014-01-01

    There has been a rapid growth in using agricultural residues as an energy source to generate electricity in China. Biomass power generation (BPG) systems may vary significantly in technology, scale, and feedstock and consequently in their performances. A comparative evaluation of five typical BPG systems has been conducted in this study through a hybrid life cycle inventory (LCI) approach. Results show that requirements of fossil energy savings, and greenhouse gas (GHG) emission reductions, as well as emission reductions of SO2 and NOx, can be best met by the BPG systems. The cofiring systems were found to behave better than the biomass-only fired system and the biomass gasification systems in terms of energy savings and GHG emission reductions. Comparing with results of conventional process-base LCI, an important aspect to note is the significant contribution of infrastructure, equipment, and maintenance of the plant, which require the input of various types of materials, fuels, services, and the consequent GHG emissions. The results demonstrate characteristics and differences of BPG systems and help identify critical opportunities for biomass power development in China. PMID:25383383

  12. Life Cycle GHG Emissions from Conventional Natural Gas Power Generation: Systematic Review and Harmonization (Presentation)

    SciTech Connect

    Heath, G.; O'Donoughue, P.; Whitaker, M.

    2012-12-01

    This research provides a systematic review and harmonization of the life cycle assessment (LCA) literature of electricity generated from conventionally produced natural gas. We focus on estimates of greenhouse gases (GHGs) emitted in the life cycle of electricity generation from conventionally produced natural gas in combustion turbines (NGCT) and combined-cycle (NGCC) systems. A process we term "harmonization" was employed to align several common system performance parameters and assumptions to better allow for cross-study comparisons, with the goal of clarifying central tendency and reducing variability in estimates of life cycle GHG emissions. This presentation summarizes preliminary results.

  13. Efficiency Study of a Commercial Thermoelectric Power Generator (TEG) Under Thermal Cycling

    NASA Astrophysics Data System (ADS)

    Hatzikraniotis, E.; Zorbas, K. T.; Samaras, I.; Kyratsi, Th.; Paraskevopoulos, K. M.

    2010-09-01

    Thermoelectric generators (TEGs) make use of the Seebeck effect in semiconductors for the direct conversion of heat to electrical energy. The possible use of a device consisting of numerous TEG modules for waste heat recovery from an internal combustion (IC) engine could considerably help worldwide efforts towards energy saving. However, commercially available TEGs operate at temperatures much lower than the actual operating temperature range in the exhaust pipe of an automobile, which could cause structural failure of the thermoelectric elements. Furthermore, continuous thermal cycling could lead to reduced efficiency and lifetime of the TEG. In this work we investigate the long-term performance and stability of a commercially available TEG under temperature and power cycling. The module was subjected to sequential hot-side heating (at 200°C) and cooling for long times (3000 h) in order to measure changes in the TEG’s performance. A reduction in Seebeck coefficient and an increase in resistivity were observed. Alternating-current (AC) impedance measurements and scanning electron microscope (SEM) observations were performed on the module, and results are presented and discussed.

  14. Electrical power generating system

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1983-01-01

    A power generating system for adjusting coupling an induction motor, as a generator, to an A.C. power line wherein the motor and power line are connected through a triac is described. The triac is regulated to normally turn on at a relatively late point in each half cycle of its operation, whereby at less than operating speed, and thus when the induction motor functions as a motor rather than as a generator, power consumption from the line is substantially reduced.

  15. A global optimization method synthesizing heat transfer and thermodynamics for the power generation system with Brayton cycle

    NASA Astrophysics Data System (ADS)

    Fu, Rong-Huan; Zhang, Xing

    2016-09-01

    Supercritical carbon dioxide operated in a Brayton cycle offers a numerous of potential advantages for a power generation system, and a lot of thermodynamics analyses have been conducted to increase its efficiency. Because there are a lot of heat-absorbing and heat-lossing subprocesses in a practical thermodynamic cycle and they are implemented by heat exchangers, it will increase the gross efficiency of the whole power generation system to optimize the system combining thermodynamics and heat transfer theory. This paper analyzes the influence of the performance of heat exchangers on the actual efficiency of an ideal Brayton cycle with a simple configuration, and proposes a new method to optimize the power generation system, which aims at the minimum energy consumption. Although the method is operated only for the ideal working fluid in this paper, its merits compared to that only with thermodynamic analysis are fully shown.

  16. Specific features of combined generation of electric power, heat, and cold by combined-cycle plants

    NASA Astrophysics Data System (ADS)

    Klimenko, A. V.; Agababov, V. S.; Rogova, A. A.; Tideman, P. A.

    2015-03-01

    Trigeneration systems based on the combined-cycle plants of condensation type and the combined-cycle plants of cogeneration type of several possible structures for the simultaneous generation of heat and cold are developed. Two types of their operational modes are considered: trigeneration complexes with separate and simultaneous generation of heat and cold. In the first case, two assemblies (thermotransformers) of different types are used for generation of heat and cold, one of which is designed to generate heat and the second to generate cold. In the second case, the heat and cold are generated simultaneously in one thermotransformer. In the article, the results of thermodynamic analysis and calculations of technical and economic efficiency of the developed trigeneration systems are presented.

  17. Development of a quiet Stirling cycle multi-fuel engine for electric power generation

    NASA Astrophysics Data System (ADS)

    Mercer, J. E.; Emigh, S. G.; Riggle, P.; Tremoulet, O. L.; White, M. A.

    1982-08-01

    The work described in this report summarizes a six-month study to develop a lightweight, tactical electric power plant with a low level of aural, I. R., and visual detectability, based on a Stirling engine. The conceptual design presented was analyzed and predicted to have power output qualities exceeding those specified by the Army for tactical generators. The unit promises to have maintenance and overhaul requirement characteristics superior to any generator system in current use.

  18. Application of Organic Rankine Cycles (ORCs) to decentralized power generation, preliminary study

    NASA Astrophysics Data System (ADS)

    Huovilainen, Reino; Alamaeki, Jarmo; Tarjanne, Risto

    The study concentrates on MW-class ORC processes that could be utilized in connection with different kind of power plants. The use of an ORC-process may offer potential for improvements in two ways; first, an ORC-process can be suitable with low-grade thermal sources where water based power generation is not feasible. Second, an increase in power generation efficiency is achieved. The connection of an ORC-process to following plants were investigated; a gas burning heat-only boiler, a solid fuel boiler, a steam and gas turbine (co-generation) unit, a steam turbine and a heating reactor. In each case the following economical factors for adding an ORC-process were calculated; the cost for electricity, the return of investment (ROI) and the pay-back period. The most favorable cases to utilize an ORC-process are a heating reactor, a steam turbine and a gas turbine based co-generation plant. In connection with heat-only plants a better economy were achieved than with co-generation plants. The results indicate that there can be found economically promising applications for ORC-processes in industry and power plants. It is evident that those cases should be investigated more in detail. ORC-processes allow power generation in new circumstances and can increase the efficiency of power plants. More emphasis should be paid for the R and D of this relatively new technology.

  19. Evaluation of British Gas/Lurgi slagging gasifier for combined-cycle power generation

    SciTech Connect

    Roszkowski, T.R.; Klumpe, H.W.; Vierrath, H.; Beyer, T.; Thompson, B.H.

    1985-08-01

    Earlier studies by the Electric Power Research Institute were the basis for the study by British Gas/Lurgi of the slagging gasifier as a source of clean fuel gas for a gasification combined-cycle power plant. The current status of the technology of combustion gas turbine design and manufacture exhibits rapid change, providing additional incentive for the study. The goal was to develop a conceptual design to estimate the performance and the costs of capital, operations and maintenance, and electricity for a nominal 500 MW coal gasification combined-cycle power plant using slagging gasifiers. The authors describe the self-contained plant, and summarize performance, technology status of components, environmental aspects, and economics. 2 figures, 4 tables.

  20. Electrical power generating system. [for windpowered generation

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1981-01-01

    An alternating current power generation system adopted to inject power in an already powered power line is discussed. The power generating system solves to adjustably coup an induction motor, as a generator, to an ac power line wherein the motor and power line are connected through a triac. The triac is regulated to normally turn on at a relatively late point in each half cycle of its operation, whereby at less than operating speed, and thus when the induction motor functions as a motor rather than as a generator, power consumption from the line is substantially reduced. The principal application will be for windmill powered generation.

  1. Harmonization of initial estimates of shale gas life cycle greenhouse gas emissions for electric power generation.

    PubMed

    Heath, Garvin A; O'Donoughue, Patrick; Arent, Douglas J; Bazilian, Morgan

    2014-08-05

    Recent technological advances in the recovery of unconventional natural gas, particularly shale gas, have served to dramatically increase domestic production and reserve estimates for the United States and internationally. This trend has led to lowered prices and increased scrutiny on production practices. Questions have been raised as to how greenhouse gas (GHG) emissions from the life cycle of shale gas production and use compares with that of conventionally produced natural gas or other fuel sources such as coal. Recent literature has come to different conclusions on this point, largely due to differing assumptions, comparison baselines, and system boundaries. Through a meta-analytical procedure we call harmonization, we develop robust, analytically consistent, and updated comparisons of estimates of life cycle GHG emissions for electricity produced from shale gas, conventionally produced natural gas, and coal. On a per-unit electrical output basis, harmonization reveals that median estimates of GHG emissions from shale gas-generated electricity are similar to those for conventional natural gas, with both approximately half that of the central tendency of coal. Sensitivity analysis on the harmonized estimates indicates that assumptions regarding liquids unloading and estimated ultimate recovery (EUR) of wells have the greatest influence on life cycle GHG emissions, whereby shale gas life cycle GHG emissions could approach the range of best-performing coal-fired generation under certain scenarios. Despite clarification of published estimates through harmonization, these initial assessments should be confirmed through methane emissions measurements at components and in the atmosphere and through better characterization of EUR and practices.

  2. THERMODYNAMIC ANALYSIS OF AMMONIA-WATER-CARBON DIOXIDE MIXTURES FOR DESIGNING NEW POWER GENERATION CYCLES

    SciTech Connect

    Ashish Gupta

    2003-01-15

    This project was undertaken with the goal of developing a computational package for the thermodynamic properties of ammonia-water-carbon dioxide mixtures at elevated temperature and pressure conditions. This objective was accomplished by modifying an existing set of empirical equations of state for ammonia-water mixtures. This involved using the Wagner equation of state for the gas phase properties of carbon dioxide. In the liquid phase, Pitzer's ionic model was used. The implementation of this approach in the form of a computation package that can be used for the optimization of power cycles required additional code development. In particular, this thermodynamic model consisted of a large set of non-linear equations. Consequently, in the interest of computational speed and robustness that is required when applied to optimization problems, analytic gradients were incorporated in the Newton solver routines. The equations were then implemented using a stream property predictor to make initial guesses of the composition, temperature, pressure, enthalpy, entropy, etc. near a known state. The predictor's validity is then tested upon the convergence of an iteration. It proved difficult to obtain experimental data from the literature that could be used to test the accuracy of the new thermodynamic property package, and this remains a critical need for future efforts in the area. It was possible, however, to assess the feasibility of using this complicated property prediction package for power cycle design and optimization. Such feasibility was first demonstrated by modification of our Kalina cycle optimization code to use the package with either a deterministic optimizer, MINOS, or a stochastic optimizer using differential evolution, a genetic-algorithm-based technique. Beyond this feasibility demonstration, a new approach to the design and optimization of power cycles was developed using a graph theoretic approach.

  3. 53 W average power few-cycle fiber laser system generating soft x rays up to the water window.

    PubMed

    Rothhardt, Jan; Hädrich, Steffen; Klenke, Arno; Demmler, Stefan; Hoffmann, Armin; Gotschall, Thomas; Eidam, Tino; Krebs, Manuel; Limpert, Jens; Tünnermann, Andreas

    2014-09-01

    We report on a few-cycle laser system delivering sub-8-fs pulses with 353 μJ pulse energy and 25 GW of peak power at up to 150 kHz repetition rate. The corresponding average output power is as high as 53 W, which represents the highest average power obtained from any few-cycle laser architecture so far. The combination of both high average and high peak power provides unique opportunities for applications. We demonstrate high harmonic generation up to the water window and record-high photon flux in the soft x-ray spectral region. This tabletop source of high-photon flux soft x rays will, for example, enable coherent diffractive imaging with sub-10-nm resolution in the near future.

  4. Results of closed cycle MHD power generation test with a helium-cesium working fluid

    NASA Technical Reports Server (NTRS)

    Sovie, R. J.

    1977-01-01

    The cross sectional dimensions of the MHD channel in the NASA Lewis closed loop facility were reduced to 3.8 x 11.4 cm. Tests were run in this channel using a helium-cesium working fluid at stagnation pressures of 160,000 n/M2, stagnation temperatures of 2000-2060 K and an entrance Mach number of 0.36. In these tests Faraday open circuit voltages of 200 V were measured which correspond to a Faraday field of 1750 V/M. Power generation tests were run for different groups of electrode configurations and channel lengths. Hall fields up to 1450 V/M were generated. Power extraction per electrode of 183 W and power densities of 1.7 MW/M3 were obtained. A total power output of 2 kW was generated for tests with 14 electrodes. The power densities obtained in this channel represent a factor of 3 improvement over those previously reported for the M = 0.2 channel.

  5. Results of closed cycle MHD power generation tests with a helium-cesium working fluid

    NASA Technical Reports Server (NTRS)

    Sovie, R. J.

    1977-01-01

    The cross-sectional dimensions of the MHD channel in the NASA Lewis closed loop facility have been reduced to 3.8 x 11.4 cm. Tests were run in this channel using a helium-cesium working fluid at stagnation pressures of 1.6 x 10 to the 5th N/sq m, stagnation temperatures of 2000-2060 K and an entrance Mach number of 0.36. In these tests Faraday open circuit voltages of 200 V were measured which correspond to a Faraday field of 1750 V/m. Power generation tests were run for different groups of electrode configurations and channel lengths. Hall fields up to 1450 V/m were generated. Power extraction per electrode of 183 W and power densities of 1.7 MW/cu m have been obtained. A total power output of 2 kW was generated for tests with 14 electrodes. The power densities obtained in this channel represent a factor of 3 improvement over those reported for the m = 0.2 channel at the last EAM Symposium.

  6. Power Plant Cycling Costs

    SciTech Connect

    Kumar, N.; Besuner, P.; Lefton, S.; Agan, D.; Hilleman, D.

    2012-07-01

    This report provides a detailed review of the most up to date data available on power plant cycling costs. The primary objective of this report is to increase awareness of power plant cycling cost, the use of these costs in renewable integration studies and to stimulate debate between policymakers, system dispatchers, plant personnel and power utilities.

  7. High-potential Working Fluids for Next Generation Binary Cycle Geothermal Power Plants

    SciTech Connect

    Zia, Jalal; Sevincer, Edip; Chen, Huijuan; Hardy, Ajilli; Wickersham, Paul; Kalra, Chiranjeev; Laursen, Anna Lis; Vandeputte, Thomas

    2013-06-29

    A thermo-economic model has been built and validated for prediction of project economics of Enhanced Geothermal Projects. The thermo-economic model calculates and iteratively optimizes the LCOE (levelized cost of electricity) for a prospective EGS (Enhanced Geothermal) site. It takes into account the local subsurface temperature gradient, the cost of drilling and reservoir creation, stimulation and power plant configuration. It calculates and optimizes the power plant configuration vs. well depth. Thus outputs from the model include optimal well depth and power plant configuration for the lowest LCOE. The main focus of this final report was to experimentally validate the thermodynamic properties that formed the basis of the thermo-economic model built in Phase 2, and thus build confidence that the predictions of the model could be used reliably for process downselection and preliminary design at a given set of geothermal (and/or waste heat) boundary conditions. The fluid and cycle downselected was based on a new proprietary fluid from a vendor in a supercritical ORC cycle at a resource condition of 200°C inlet temperature. The team devised and executed a series of experiments to prove the suitability of the new fluid in realistic ORC cycle conditions. Furthermore, the team performed a preliminary design study for a MW-scale turbo expander that would be used for a supercritical ORC cycle with this new fluid. The following summarizes the main findings in the investigative campaign that was undertaken: 1. Chemical compatibility of the new fluid with common seal/gasket/Oring materials was found to be problematic. Neoprene, Viton, and silicone materials were found to be incompatible, suffering chemical decomposition, swelling and/or compression set issues. Of the materials tested, only TEFLON was found to be compatible under actual ORC temperature and pressure conditions. 2. Thermal stability of the new fluid at 200°C and 40 bar was found to be acceptable after 399

  8. Harmonization of initial estimates of shale gas life cycle greenhouse gas emissions for electric power generation

    PubMed Central

    Heath, Garvin A.; O’Donoughue, Patrick; Arent, Douglas J.; Bazilian, Morgan

    2014-01-01

    Recent technological advances in the recovery of unconventional natural gas, particularly shale gas, have served to dramatically increase domestic production and reserve estimates for the United States and internationally. This trend has led to lowered prices and increased scrutiny on production practices. Questions have been raised as to how greenhouse gas (GHG) emissions from the life cycle of shale gas production and use compares with that of conventionally produced natural gas or other fuel sources such as coal. Recent literature has come to different conclusions on this point, largely due to differing assumptions, comparison baselines, and system boundaries. Through a meta-analytical procedure we call harmonization, we develop robust, analytically consistent, and updated comparisons of estimates of life cycle GHG emissions for electricity produced from shale gas, conventionally produced natural gas, and coal. On a per-unit electrical output basis, harmonization reveals that median estimates of GHG emissions from shale gas-generated electricity are similar to those for conventional natural gas, with both approximately half that of the central tendency of coal. Sensitivity analysis on the harmonized estimates indicates that assumptions regarding liquids unloading and estimated ultimate recovery (EUR) of wells have the greatest influence on life cycle GHG emissions, whereby shale gas life cycle GHG emissions could approach the range of best-performing coal-fired generation under certain scenarios. Despite clarification of published estimates through harmonization, these initial assessments should be confirmed through methane emissions measurements at components and in the atmosphere and through better characterization of EUR and practices. PMID:25049378

  9. Steam Generator Component Model in a Combined Cycle of Power Conversion Unit for Very High Temperature Gas-Cooled Reactor

    SciTech Connect

    Oh, Chang H; Han, James; Barner, Robert; Sherman, Steven R

    2007-06-01

    The Department of Energy and the Idaho National Laboratory are developing a Next Generation Nuclear Plant (NGNP), Very High Temperature Gas-Cooled Reactor (VHTR) to serve as a demonstration of state-of-the-art nuclear technology. The purpose of the demonstration is two fold 1) efficient low cost energy generation and 2) hydrogen production. Although a next generation plant could be developed as a single-purpose facility, early designs are expected to be dual-purpose. While hydrogen production and advanced energy cycles are still in its early stages of development, research towards coupling a high temperature reactor, electrical generation and hydrogen production is under way. A combined cycle is considered as one of the power conversion units to be coupled to the very high-temperature gas-cooled reactor (VHTR). The combined cycle configuration consists of a Brayton top cycle coupled to a Rankine bottoming cycle by means of a steam generator. A detailed sizing and pressure drop model of a steam generator is not available in the HYSYS processes code. Therefore a four region model was developed for implementation into HYSYS. The focus of this study was the validation of a HYSYS steam generator model of two phase flow correlations. The correlations calculated the size and heat exchange of the steam generator. To assess the model, those calculations were input into a RELAP5 model and its results were compared with HYSYS results. The comparison showed many differences in parameters such as the heat transfer coefficients and revealed the different methods used by the codes. Despite differences in approach, the overall results of heat transfer were in good agreement.

  10. Dynamic analysis of concentrated solar supercritical CO2-based power generation closed-loop cycle

    DOE PAGES

    Osorio, Julian D.; Hovsapian, Rob; Ordonez, Juan C.

    2016-01-01

    Here, the dynamic behavior of a concentrated solar power (CSP) supercritical CO2 cycle is studied under different seasonal conditions. The system analyzed is composed of a central receiver, hot and cold thermal energy storage units, a heat exchanger, a recuperator, and multi-stage compression-expansion subsystems with intercoolers and reheaters between compressors and turbines respectively. Energy models for each component of the system are developed in order to optimize operating and design parameters such as mass flow rate, intermediate pressures and the effective area of the recuperator to lead to maximum efficiency. Our results show that the parametric optimization leads the systemmore » to a process efficiency of about 21 % and a maximum power output close to 1.5 MW. The thermal energy storage allows the system to operate for several hours after sunset. This operating time is approximately increased from 220 to 480 minutes after optimization. The hot and cold thermal energy storage also lessens the temperature fluctuations by providing smooth changes of temperatures at the turbines and compressors inlets. Our results indicate that concentrated solar systems using supercritical CO2 could be a viable alternative to satisfying energy needs in desert areas with scarce water and fossil fuel resources.« less

  11. Dynamic analysis of concentrated solar supercritical CO2-based power generation closed-loop cycle

    SciTech Connect

    Osorio, Julian D.; Hovsapian, Rob; Ordonez, Juan C.

    2016-01-01

    Here, the dynamic behavior of a concentrated solar power (CSP) supercritical CO2 cycle is studied under different seasonal conditions. The system analyzed is composed of a central receiver, hot and cold thermal energy storage units, a heat exchanger, a recuperator, and multi-stage compression-expansion subsystems with intercoolers and reheaters between compressors and turbines respectively. Energy models for each component of the system are developed in order to optimize operating and design parameters such as mass flow rate, intermediate pressures and the effective area of the recuperator to lead to maximum efficiency. Our results show that the parametric optimization leads the system to a process efficiency of about 21 % and a maximum power output close to 1.5 MW. The thermal energy storage allows the system to operate for several hours after sunset. This operating time is approximately increased from 220 to 480 minutes after optimization. The hot and cold thermal energy storage also lessens the temperature fluctuations by providing smooth changes of temperatures at the turbines and compressors inlets. Our results indicate that concentrated solar systems using supercritical CO2 could be a viable alternative to satisfying energy needs in desert areas with scarce water and fossil fuel resources.

  12. Model predictive control system and method for integrated gasification combined cycle power generation

    SciTech Connect

    Kumar, Aditya; Shi, Ruijie; Kumar, Rajeeva; Dokucu, Mustafa

    2013-04-09

    Control system and method for controlling an integrated gasification combined cycle (IGCC) plant are provided. The system may include a controller coupled to a dynamic model of the plant to process a prediction of plant performance and determine a control strategy for the IGCC plant over a time horizon subject to plant constraints. The control strategy may include control functionality to meet a tracking objective and control functionality to meet an optimization objective. The control strategy may be configured to prioritize the tracking objective over the optimization objective based on a coordinate transformation, such as an orthogonal or quasi-orthogonal projection. A plurality of plant control knobs may be set in accordance with the control strategy to generate a sequence of coordinated multivariable control inputs to meet the tracking objective and the optimization objective subject to the prioritization resulting from the coordinate transformation.

  13. Conversion of Low Quality Waste Heat to Electric Power with Small-Scale Organic Rankine Cycle (ORC) Engine/Generator Technology

    DTIC Science & Technology

    2016-08-01

    EW-201251) Conversion of Low Quality Waste Heat to Electric Power with Small-Scale Organic Rankine Cycle (ORC) Engine/Generator Technology...To) 09/30/2016 9/1912012 to 9/30/2016 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Conversion of Low Quality Waste Heat to Electric Power with...unlimited 13. SUPPLEMENTARY NOTES None 14. ABSTRACT An Organic Rankine Cycle generator (ORC) converts low-grade waste heat ( °C) into electric power

  14. Organic Fluids and Passive Cooling in a Supercritical Rankine Cycle for Power Generation from Low Grade Heat Sources

    NASA Astrophysics Data System (ADS)

    Vidhi, Rachana

    Low grade heat sources have a large amount of thermal energy content. Due to low temperature, the conventional power generation technologies result in lower efficiency and hence cannot be used. In order to efficiently generate power, alternate methods need to be used. In this study, a supercritical organic Rankine cycle was used for heat source temperatures varying from 125°C to 200°C. Organic refrigerants with zero ozone depletion potential and their mixtures were selected as working fluid for this study while the cooling water temperature was changed from 10-25°C. Operating pressure of the cycle has been optimized for each fluid at every heat source temperature to obtain the highest thermal efficiency. Energy and exergy efficiencies of the thermodynamic cycle have been obtained as a function of heat source temperature. Efficiency of a thermodynamic cycle depends significantly on the sink temperature. At areas where water cooling is not available and ambient air temperature is high, efficient power generation from low grade heat sources may be a challenge. Use of passive cooling systems coupled with the condenser was studied, so that lower sink temperatures could be obtained. Underground tunnels, buried at a depth of few meters, were used as earth-air-heat-exchanger (EAHE) through which hot ambient air was passed. It was observed that the air temperature could be lowered by 5-10°C in the EAHE. Vertical pipes were used to lower the temperature of water by 5°C by passing it underground. Nocturnal cooling of stored water has been studied that can be used to cool the working fluid in the thermodynamic cycle. It was observed that the water temperature can be lowered by 10-20°C during the night when it is allowed to cool. The amount of water lost was calculated and was found to be approximately 0.1% over 10 days. The different passive cooling systems were studied separately and their effects on the efficiency of the thermodynamic cycle were investigated. They were

  15. Comparative analysis of gas and coal-fired power generation in ultra-low emission condition using life cycle assessment (LCA)

    NASA Astrophysics Data System (ADS)

    Yin, Libao; Liao, Yanfen; Liu, Guicai; Liu, Zhichao; Yu, Zhaosheng; Guo, Shaode; Ma, Xiaoqian

    2017-05-01

    Energy consumption and pollutant emission of natural gas combined cycle power-generation (NGCC), liquefied natural gas combined cycle power-generation (LNGCC), natural gas combined heat and power generation (CHP) and ultra-supercritical power generation with ultra-low gas emission (USC) were analyzed using life cycle assessment method, pointing out the development opportunity and superiority of gas power generation in the period of coal-fired unit ultra-low emission transformation. The results show that CO2 emission followed the order: USC>LNGCC>NGCC>CHP the resource depletion coefficient of coal-fired power generation was lower than that of gas power generation, and the coal-fired power generation should be the main part of power generation in China; based on sensitivity analysis, improving the generating efficiency or shortening the transportation distance could effectively improve energy saving and emission reduction, especially for the coal-fired units, and improving the generating efficiency had a great significance for achieving the ultra-low gas emission.

  16. Regulation of pyruvate dehydrogenase activity and citric acid cycle intermediates during high cardiac power generation.

    PubMed

    Sharma, Naveen; Okere, Isidore C; Brunengraber, Daniel Z; McElfresh, Tracy A; King, Kristen L; Sterk, Joseph P; Huang, Hazel; Chandler, Margaret P; Stanley, William C

    2005-01-15

    A high rate of cardiac work increases citric acid cycle (CAC) turnover and flux through pyruvate dehydrogenase (PDH); however, the mechanisms for these effects are poorly understood. We tested the hypotheses that an increase in cardiac energy expenditure: (1) activates PDH and reduces the product/substrate ratios ([NADH]/[NAD(+)] and [acetyl-CoA]/[CoA-SH]); and (2) increases the content of CAC intermediates. Measurements were made in anaesthetized pigs under control conditions and during 15 min of a high cardiac workload induced by dobutamine (Dob). A third group was made hyperglycaemic (14 mm) to stimulate flux through PDH during the high work state (Dob + Glu). Glucose and fatty acid oxidation were measured with (14)C-glucose and (3)H-oleate. Compared with control, the high workload groups had a similar increase in myocardial oxygen consumption ( and cardiac power. Dob increased PDH activity and glucose oxidation above control, but did not reduce the [NADH]/[NAD(+)] and [acetyl-CoA]/[CoA-SH] ratios, and there were no differences between the Dob and Dob + Glu groups. An additional group was treated with Dob + Glu and oxfenicine (Oxf) to inhibit fatty acid oxidation: this increased [CoA-SH] and glucose oxidation compared with Dob; however, there was no further activation of PDH or decrease in the [NADH]/[NAD(+)] ratio. Content of the 4-carbon CAC intermediates succinate, fumarate and malate increased 3-fold with Dob, but there was no change in citrate content, and the Dob + Glu and Dob + Glu + Oxf groups were not different from Dob. In conclusion, compared with normal conditions, at high myocardial energy expenditure (1) the increase in flux through PDH is regulated by activation of the enzyme complex and continues to be partially controlled through inhibition by fatty acid oxidation, and (2) there is expansion of the CAC pool size at the level of 4-carbon intermediates that is largely independent of myocardial fatty acid oxidation.

  17. Regulation of pyruvate dehydrogenase activity and citric acid cycle intermediates during high cardiac power generation

    PubMed Central

    Sharma, Naveen; Okere, Isidore C; Brunengraber, Daniel Z; McElfresh, Tracy A; King, Kristen L; Sterk, Joseph P; Huang, Hazel; Chandler, Margaret P; Stanley, William C

    2005-01-01

    A high rate of cardiac work increases citric acid cycle (CAC) turnover and flux through pyruvate dehydrogenase (PDH); however, the mechanisms for these effects are poorly understood. We tested the hypotheses that an increase in cardiac energy expenditure: (1) activates PDH and reduces the product/substrate ratios ([NADH]/[NAD+] and [acetyl-CoA]/[CoA-SH]); and (2) increases the content of CAC intermediates. Measurements were made in anaesthetized pigs under control conditions and during 15 min of a high cardiac workload induced by dobutamine (Dob). A third group was made hyperglycaemic (14 mm) to stimulate flux through PDH during the high work state (Dob + Glu). Glucose and fatty acid oxidation were measured with 14C-glucose and 3H-oleate. Compared with control, the high workload groups had a similar increase in myocardial oxygen consumption ( and cardiac power. Dob increased PDH activity and glucose oxidation above control, but did not reduce the [NADH]/[NAD+] and [acetyl-CoA]/[CoA-SH] ratios, and there were no differences between the Dob and Dob + Glu groups. An additional group was treated with Dob + Glu and oxfenicine (Oxf) to inhibit fatty acid oxidation: this increased [CoA-SH] and glucose oxidation compared with Dob; however, there was no further activation of PDH or decrease in the [NADH]/[NAD+] ratio. Content of the 4-carbon CAC intermediates succinate, fumarate and malate increased 3-fold with Dob, but there was no change in citrate content, and the Dob + Glu and Dob + Glu + Oxf groups were not different from Dob. In conclusion, compared with normal conditions, at high myocardial energy expenditure (1) the increase in flux through PDH is regulated by activation of the enzyme complex and continues to be partially controlled through inhibition by fatty acid oxidation, and (2) there is expansion of the CAC pool size at the level of 4-carbon intermediates that is largely independent of myocardial fatty acid oxidation. PMID:15550462

  18. Closed cycle MHD power generation experiments using a helium-cesium working fluid in the NASA Lewis Facility

    NASA Technical Reports Server (NTRS)

    Sovie, R. J.

    1976-01-01

    The MHD channel in the NASA Lewis Research Center was redesigned and used in closed cycle power generation experiments with a helium-cesium working fluid. The cross sectional dimensions of the channel were reduced to 5 by 16.5 cm to allow operation over a variety of conditions. Experiments have been run at temperatures of 1900-2100 K and Mach numbers from 0.3 to 0.55 in argon and 0.2 in helium. Improvements in Hall voltage isolation and seed vaporization techniques have resulted in significant improvements in performance. Typical values obtained with helium are Faraday open circuit voltage 141 V (92% of uBh) at a magnetic field strength of 1.7 T, power outputs of 2.2 kw for tests with 28 electrodes and 2.1 kw for tests with 17 electrodes. Power densities of 0.6 MW/cu m and Hall fields of about 1100 V/m were obtained in the tests with 17 electrodes, representing a factor of 18 improvement over previously reported results. The V-I curves and current distribution data indicate that while near ideal equilibrium performance is obtained under some conditions, no nonequilibrium power has been generated to date.

  19. Evaluation of technical feasibility of closed-cycle non-equilibrium MHD power generation with direct coal firing. Final report, Task I

    SciTech Connect

    Not Available

    1981-11-01

    Program accomplishments in a continuing effort to demonstrate the feasibility of direct coal-fired, closed-cycle MHD power generation are reported. This volume contains the following appendices: (A) user's manual for 2-dimensional MHD generator code (2DEM); (B) performance estimates for a nominal 30 MW argon segmented heater; (C) the feedwater cooled Brayton cycle; (D) application of CCMHD in an industrial cogeneration environment; (E) preliminary design for shell and tube primary heat exchanger; and (F) plant efficiency as a function of output power for open and closed cycle MHD power plants. (WHK)

  20. Application of high temperature air heaters to advanced power generation cycles

    SciTech Connect

    Thompson, T R; Boss, W H; Chapman, J N

    1992-03-01

    Recent developments in ceramic composite materials open up the possibility of recuperative air heaters heating air to temperatures well above the feasible with metal tubes. A high temperature air heater (HTAH) has long been recognized as a requirement for the most efficient MHD plants in order to reach high combustor flame temperatures. The application of gas turbines in coal-fired plants of all types has been impeded because of the problems in cleaning exhaust gas sufficiently to avoid damage to the turbine. With a possibility of a HTAH, such plants may become feasible on the basis of air turbine cycles, in which air is compressed and heated in the HTAH before being applied to turbine. The heat exchanger eliminates the need for the hot gas cleanup system. The performance improvement potential of advanced cycles with HTAH application including the air turbine cycle in several variations such as the DOE program on ``Coal-Fired Air Furnace Combined Cycle...,`` variations originated by the authors, and the MHD combined cycle are presented. The status of development of ceramic air heater technology is included.

  1. Life cycle environmental and economic tradeoffs of using fast pyrolysis products for power generation

    USDA-ARS?s Scientific Manuscript database

    Bio-oils produced from small-scale pyrolysis technology may have economic and environmental benefits for both densifying agricultural biomass and supplying local bio-energy markets (e.g., Renewable Portfolio Standards). This study presents a life cycle assessment (LCA) of a farm-scale bio-oil produ...

  2. Oscillating fluid power generator

    DOEpatents

    Morris, David C

    2014-02-25

    A system and method for harvesting the kinetic energy of a fluid flow for power generation with a vertically oriented, aerodynamic wing structure comprising one or more airfoil elements pivotably attached to a mast. When activated by the moving fluid stream, the wing structure oscillates back and forth, generating lift first in one direction then in the opposite direction. This oscillating movement is converted to unidirectional rotational movement in order to provide motive power to an electricity generator. Unlike other oscillating devices, this device is designed to harvest the maximum aerodynamic lift forces available for a given oscillation cycle. Because the system is not subjected to the same intense forces and stresses as turbine systems, it can be constructed less expensively, reducing the cost of electricity generation. The system can be grouped in more compact clusters, be less evident in the landscape, and present reduced risk to avian species.

  3. Evaluation of the British Gas Corporation/Lurgi slagging gasifier in gasification-combined-cycle power generation. Final report

    SciTech Connect

    delaMora, J.A.; Grisso, J.R.; Klumpe, H.W.; Musso, A.; Roszkowski, T.R.; Thompson, B.H.; Lienhard, H.; Beyer, T.

    1985-03-01

    Plant designs, performance data, cost estimates, and bus-bar power costs were developed for a nominal 500-MW integrated coal gasification, combined-cycle power plant. The British Gas/Lurgi slagging, fixed-bed gasifier was employed to produce a clean fuel gas from coal. The clean fuel gas was fired in near-term, advanced technology combustion gas turbines operating at combustor temperatures of 2200/sup 0/F. Gas turbine exhausts were used to produce steam that was employed in a superheat/reheat main steam turbine generator to produce additional power. Duct burners and external combustors were investigated for the purpose of firing any fuel gas available in excess of that consumed by the gas turbines. The results of the study indicate that the power plant has the potential to provide base-load electricity at a cost that is 10% to 15% lower than the cost of electricity produced by a conventional coal-steam plant. In addition, the plant has the capability for producing very low-cost peak and intermediate load electricity. Harmful emissions from the plant would be considerably reduced in quantity relative to conventional coal-fired plants. 24 figures, 43 tables.

  4. A Gradient of ATP Affinities Generates an Asymmetric Power Stroke Driving the Chaperonin TRIC/CCT Folding Cycle

    PubMed Central

    Reissmann, Stefanie; Joachimiak, Lukasz A.; Chen, Bryan; Meyer, Anne S.; Nguyen, Anthony; Frydman, Judith

    2012-01-01

    SUMMARY The eukaryotic chaperonin TRiC/CCT uses ATP cycling to fold many essential proteins that other chaperones cannot fold. This 1 MDa hetero-oligomer consists of two identical stacked rings assembled from eight paralogous subunits, each containing a conserved ATP-binding domain. Here, we report a dramatic asymmetry in the ATP utilization cycle of this ring-shaped chaperonin, despite its apparently symmetric architecture. Only four of the eight different subunits bind ATP at physiological concentrations. ATP binding and hydrolysis by the low-affinity subunits is fully dispensable for TRiC function in vivo. The conserved nucleotide-binding hierarchy among TRiC subunits is evolutionarily modulated through differential nucleoside contacts. Strikingly, high-and low-affinity subunits are spatially segregated within two contiguous hemispheres in the ring, generating an asymmetric power stroke that drives the folding cycle. This unusual mode of ATP utilization likely serves to orchestrate a directional mechanism underlying TRiC/CCT’s unique ability to fold complex eukaryotic proteins. PMID:23041314

  5. Application of Biomass from Palm Oil Mill for Organic Rankine Cycle to Generate Power in North Sumatera Indonesia

    NASA Astrophysics Data System (ADS)

    Nur, T. B.; Pane, Z.; Amin, M. N.

    2017-03-01

    Due to increasing oil and gas demand with the depletion of fossil resources in the current situation make efficient energy systems and alternative energy conversion processes are urgently needed. With the great potential of resources in Indonesia, make biomass has been considered as one of major potential fuel and renewable resource for the near future. In this paper, the potential of palm oil mill waste as a bioenergy source has been investigated. An organic Rankine cycle (ORC) small scale power plant has been preliminary designed to generate electricity. The working fluid candidates for the ORC plant based on the heat source temperature domains have been investigated. The ORC system with a regenerator has higher thermal efficiency than the basic ORC system. The study demonstrates the technical feasibility of ORC solutions in terms of resources optimizations and reducing of greenhouse gas emissions.

  6. System Mass Variation and Entropy Generation in 100-kWe Closed-Brayton-Cycle Space Power Systems

    SciTech Connect

    Barrett, Michael J.; Reid, Bryan M.

    2004-02-04

    State-of-the-art closed-Brayton-cycle (CBC) space power systems were modeled to study performance trends in a trade space characteristic of interplanetary orbiters. For working-fluid molar masses of 48.6, 39.9 and 11.9 kg/kmol, peak system pressures of 1.38 and 3.0 MPa and compressor pressure ratios ranging from 1.6 to 2.4, total system masses were estimated. System mass increased as peak operating pressure increased for all compressor pressure ratios and molar mass values examined. Minimum mass point comparison between 72% He at 1.38 MPa peak and 94% He at 3.0 MPa peak showed an increase in system mass of 14%. Converter flow loop entropy generation rates were calculated for 1.38 and 3.0 MPa peak pressure cases. Physical system behavior was approximated using a pedigreed NASA-Glenn modeling code, Closed Cycle Engine Program (CCEP), which included realistic performance prediction for heat exchangers, radiators and turbomachinery.

  7. System Mass Variation and Entropy Generation in 100-kWe Closed-Brayton-Cycle Space Power Systems

    NASA Technical Reports Server (NTRS)

    Barrett, Michael J.; Reid, Bryan M.

    2004-01-01

    State-of-the-art closed-Brayton-cycle (CBC) space power systems were modeled to study performance trends in a trade space characteristic of interplanetary orbiters. For working-fluid molar masses of 48.6, 39.9, and 11.9 kg/kmol, peak system pressures of 1.38 and 3.0 MPa and compressor pressure ratios ranging from 1.6 to 2.4, total system masses were estimated. System mass increased as peak operating pressure increased for all compressor pressure ratios and molar mass values examined. Minimum mass point comparison between 72 percent He at 1.38 MPa peak and 94 percent He at 3.0 MPa peak showed an increase in system mass of 14 percent. Converter flow loop entropy generation rates were calculated for 1.38 and 3.0 MPa peak pressure cases. Physical system behavior was approximated using a pedigreed NASA Glenn modeling code, Closed Cycle Engine Program (CCEP), which included realistic performance prediction for heat exchangers, radiators and turbomachinery.

  8. System Mass Variation and Entropy Generation in 100k We Closed-Brayton-Cycle Space Power Systems

    NASA Technical Reports Server (NTRS)

    Barrett, Michael J.; Reid, Bryan M.

    2004-01-01

    State-of-the-art closed-Brayton-cycle (CBC) space power systems were modeled to study performance trends in a trade space characteristic of interplanetary orbiters. For working-fluid molar masses of 48.6, 39.9, and 11.9 kg/kmol, peak system pressures of 1.38 and 3.0 MPa and compressor pressure ratios ranging from 1.6 to 2.4, total system masses were estimated. System mass increased as peak operating pressure increased for all compressor pressure ratios and molar mass values examined. Minimum mass point comparison between 72 percent He at 1.38 MPa peak and 94 percent He at 3.0 MPa peak showed an increase in system mass of 14 percent. Converter flow loop entropy generation rates were calculated for 1.38 and 3.0 MPa peak pressure cases. Physical system behavior was approximated using a pedigreed NASA Glenn modeling code, Closed Cycle Engine Program (CCEP), which included realistic performance prediction for heat exchangers, radiators and turbomachinery.

  9. Thermal and environmental characteristics of the primary equipment of the 480-MW Razdan-5 power-generating plant operating as a combined-cycle plant

    NASA Astrophysics Data System (ADS)

    Sargsyan, K. B.; Eritsyan, S. Kh.; Petrosyan, G. S.; Avtandilyan, A. V.; Gevorkyan, A. R.; Klub, M. V.

    2015-01-01

    Results of thermal tests of 480-MW power-generating Unit 5 of Razdan Thermal Power Plant (hereinafter, Razdan-5 power unit) are presented. The tests were carried out by LvivORGRES after an integration trial of the power unit. The aim of the tests was thermal characterization of the steam boiler and the steam turbine when the power unit operates as a combined-cycle plant. The economic efficiency of the boiler and the turbine and the environmental characteristics of the power unit are determined and the calculated and the actual values are compared. The specific heat gross and net rates required for the power unit to generate the electric power are established.

  10. ELECTROSTATIC POWER GENERATOR.

    DTIC Science & Technology

    ELECTROSTATIC GENERATORS , POWER EQUIPMENT, ELECTRIC GOVERNORS, CIRCUITS, VACUUM SEALS, ELECTRICAL INSULATION, VACUUM, ELECTRODES, FINISHES, SURFACE...FINISHING, SURFACE PROPERTIES, HARDNESS, PULSE GENERATORS , TRANSFORMERS, FIELD EMISSION.

  11. ELECTROSTATIC POWER GENERATOR.

    DTIC Science & Technology

    ELECTROSTATIC GENERATORS , POWER EQUIPMENT, ELECTRICAL INSULATION, FIELD EMISSION, ELECTRODES, VACUUM, SURFACE PROPERTIES, ANODES, CATHODES, POLISHES...DIELECTRICS, COATINGS, PRESSURE, HARDNESS, PULSE GENERATORS , TRANSFORMERS, VACUUM SEALS, EQUATIONS.

  12. Conversion of Low Quality Waste Heat to Electric Power with Small-Scale Organic Rankine Cycle (ORC) Engine/Generator Technology

    DTIC Science & Technology

    2016-06-01

    FINAL REPORT Conversion of Low Quality Waste Heat to Electric Power with Small-Scale Organic Rankine Cycle (ORC) Engine/Generator...Economics: Total System Benefit - ORC Electric Output plus Cooling Load Reduction (45 kW...MWh Megawatt hours NEC National Electric Code NESHAP National Emissions Standard for Hazardous Air Pollutants v Acronym Definition NFPA

  13. MHD Power Generation

    ERIC Educational Resources Information Center

    Kantrowitz, Arthur; Rosa, Richard J.

    1975-01-01

    Explains the operation of the Magnetohydrodynamic (MHD) generator and advantages of the system over coal, oil or nuclear powered generators. Details the development of MHD generators in the United States and Soviet Union. (CP)

  14. MHD Power Generation

    ERIC Educational Resources Information Center

    Kantrowitz, Arthur; Rosa, Richard J.

    1975-01-01

    Explains the operation of the Magnetohydrodynamic (MHD) generator and advantages of the system over coal, oil or nuclear powered generators. Details the development of MHD generators in the United States and Soviet Union. (CP)

  15. Comparative life cycle assessment of biogas plant configurations for a demand oriented biogas supply for flexible power generation.

    PubMed

    Hahn, Henning; Hartmann, Kilian; Bühle, Lutz; Wachendorf, Michael

    2015-03-01

    The environmental performance of biogas plant configurations for a demand - oriented biogas supply for flexible power generation is comparatively assessed in this study. Those configurations indicate an increased energy demand to operate the operational enhancements compared to conventional biogas plants supplying biogas for baseload power generation. However, findings show that in contrast to an alternative supply of power generators with natural gas, biogas supplied on demand by adapted biogas plant configurations saves greenhouse gas emissions by 54-65 g CO(2-eq) MJ(-1) and primary energy by about 1.17 MJ MJ(-1). In this regard, configurations with flexible biogas production profit from reduced biogas storage requirements and achieve higher savings compared to configurations with continuous biogas production. Using thicker biogas storage sheeting material reduces the methane permeability of up to 6m(3) d(-1) which equals a reduction of 8% of the configuration's total methane emissions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Evaluation of technical feasibility of closed-cycle non-equilibrium MHD power generation with direct coal firing. Final report, Task 1

    SciTech Connect

    Not Available

    1981-11-01

    Program accomplishments in a continuing effort to demonstrate the feasibility of direct coal fired, closed cycle, magnetohydrodynamic power generation are detailed. These accomplishments relate to all system aspects of a CCMHD power generation system including coal combustion, heat transfer to the MHD working fluid, MHD power generation, heat and cesium seed recovery and overall systems analysis. Direct coal firing of the combined cycle has been under laboratory development in the form of a high slag rejection, regeneratively air cooled cyclone coal combustor concept, originated within this program. A hot bottom ceramic regenerative heat exchanger system was assembled and test fired with coal for the purposes of evaluating the catalytic effect of alumina on NO/sub x/ emission reduction and operability of the refractory dome support system. Design, procurement, fabrication and partial installation of a heat and seed recovery flow apparatus was accomplished and was based on a stream tube model of the full scale system using full scale temperatures, tube sizes, rates of temperature change and tube geometry. Systems analysis capability was substantially upgraded by the incorporation of a revised systems code, with emphasis on ease of operator interaction as well as separability of component subroutines. The updated code was used in the development of a new plant configuration, the Feedwater Cooled (FCB) Brayton Cycle, which is superior to the CCMHD/Steam cycle both in performance and cost. (WHK)

  17. Next Generation Geothermal Power Plants

    SciTech Connect

    Brugman, John; Hattar, Mai; Nichols, Kenneth; Esaki, Yuri

    1995-09-01

    A number of current and prospective power plant concepts were investigated to evaluate their potential to serve as the basis of the next generation geothermal power plant (NGGPP). The NGGPP has been envisaged as a power plant that would be more cost competitive (than current geothermal power plants) with fossil fuel power plants, would efficiently use resources and mitigate the risk of reservoir under-performance, and minimize or eliminate emission of pollutants and consumption of surface and ground water. Power plant concepts were analyzed using resource characteristics at ten different geothermal sites located in the western United States. Concepts were developed into viable power plant processes, capital costs were estimated and levelized busbar costs determined. Thus, the study results should be considered as useful indicators of the commercial viability of the various power plants concepts that were investigated. Broadly, the different power plant concepts that were analyzed in this study fall into the following categories: commercial binary and flash plants, advanced binary plants, advanced flash plants, flash/binary hybrid plants, and fossil/geothed hybrid plants. Commercial binary plants were evaluated using commercial isobutane as a working fluid; both air-cooling and water-cooling were considered. Advanced binary concepts included cycles using synchronous turbine-generators, cycles with metastable expansion, and cycles utilizing mixtures as working fluids. Dual flash steam plants were used as the model for the commercial flash cycle. The following advanced flash concepts were examined: dual flash with rotary separator turbine, dual flash with steam reheater, dual flash with hot water turbine, and subatmospheric flash. Both dual flash and binary cycles were combined with other cycles to develop a number of hybrid cycles: dual flash binary bottoming cycle, dual flash backpressure turbine binary cycle, dual flash gas turbine cycle, and binary gas turbine

  18. Life Cycle Greenhouse Gas Emissions of Trough and Tower Concentrating Solar Power Electricity Generation: Systematic Review and Harmonization

    SciTech Connect

    Burkhardt, J. J.; Heath, G.; Cohen, E.

    2012-04-01

    In reviewing life cycle assessment (LCA) literature of utility-scale concentrating solar power (CSP) systems, this analysis focuses on reducing variability and clarifying the central tendency of published estimates of life cycle greenhouse gas (GHG) emissions through a meta-analytical process called harmonization. From 125 references reviewed, 10 produced 36 independent GHG emissions estimates passing screens for quality and relevance: 19 for parabolic trough (trough) technology and 17 for power tower (tower) technology. The interquartile range (IQR) of published estimates for troughs and towers were 83 and 20 grams of carbon dioxide equivalent per kilowatt-hour (g CO2-eq/kWh),1 respectively; median estimates were 26 and 38 g CO2-eq/kWh for trough and tower, respectively. Two levels of harmonization were applied. Light harmonization reduced variability in published estimates by using consistent values for key parameters pertaining to plant design and performance. The IQR and median were reduced by 87% and 17%, respectively, for troughs. For towers, the IQR and median decreased by 33% and 38%, respectively. Next, five trough LCAs reporting detailed life cycle inventories were identified. The variability and central tendency of their estimates are reduced by 91% and 81%, respectively, after light harmonization. By harmonizing these five estimates to consistent values for global warming intensities of materials and expanding system boundaries to consistently include electricity and auxiliary natural gas combustion, variability is reduced by an additional 32% while central tendency increases by 8%. These harmonized values provide useful starting points for policy makers in evaluating life cycle GHG emissions from CSP projects without the requirement to conduct a full LCA for each new project.

  19. Closed cycle MHD power generation experiments using a helium-cesium working fluid in the NASA Lewis Facility

    NASA Technical Reports Server (NTRS)

    Sovie, R. J.

    1976-01-01

    A MHD channel, which was previously operated for over 500 hours of thermal operation, ten thermal cycles, and 200 cesium injection tests, was removed from the facility and redesigned. The cross sectional dimensions of the channel were reduced to 5 by 16.5 cm to allow operation over a variety of conditions. The redesigned channel has been operated for well over 300 hours, 10 thermal cycles, and 150 cesium injection tests with no problems. Experiments have been run at temperatures of 1900-2100 K and Mach numbers from 0.3 to 0.55 in argon and 0.2 in helium. The best results to date have been obtained in the helium tests. Power outputs of 2.2 kw for tests with 28 electrodes and 2.1 kw for tests with 17 electrodes were realized. Power densities of 0.6 MW/cu m and Hall fields of about 1,100 V/m were obtained in the tests with 17 electrodes.

  20. Enhancing power cycle efficiency for a supercritical Brayton cycle power system using tunable supercritical gas mixtures

    DOEpatents

    Wright, Steven A.; Pickard, Paul S.; Vernon, Milton E.; Radel, Ross F.

    2017-08-29

    Various technologies pertaining to tuning composition of a fluid mixture in a supercritical Brayton cycle power generation system are described herein. Compounds, such as Alkanes, are selectively added or removed from an operating fluid of the supercritical Brayton cycle power generation system to cause the critical temperature of the fluid to move up or down, depending upon environmental conditions. As efficiency of the supercritical Brayton cycle power generation system is substantially optimized when heat is rejected near the critical temperature of the fluid, dynamically modifying the critical temperature of the fluid based upon sensed environmental conditions improves efficiency of such a system.

  1. Advanced LMMHD space power generation concept

    NASA Astrophysics Data System (ADS)

    Ho, Vincent; Wong, Albert; Kim, Kilyoo; Dhir, Vijay

    Magnetohydrodynamic (MHD) power generation concept has been proposed and studied worldwide as one of the future power generation sources. An advanced one fluid two phase liquid metal (LM) MHD power generation concept was developed for space nuclear power generation design. The concept employs a nozzle to accelerate the liquid metal coolant to an acceptable velocity with Mach number greater than unity. Such nozzle and the MHD power generator replace the turbogenerator of a high temperature Rankine turboelectric cycle concept. As a result, the power generation system contains no movable parts. This provides high reliability, which is a very important factor in space application.

  2. Magnetohydrodynamic power generation

    NASA Technical Reports Server (NTRS)

    Smith, J. L.

    1984-01-01

    Magnetohydrodynamic (MHD) Power Generation is a concise summary of MHD theory, history, and future trends. Results of the major international MHD research projects are discussed. Data from MHD research is included. Economics of initial and operating costs are considered.

  3. An integrated system combining chemical looping hydrogen generation process and solid oxide fuel cell/gas turbine cycle for power production with CO2 capture

    NASA Astrophysics Data System (ADS)

    Chen, Shiyi; Xue, Zhipeng; Wang, Dong; Xiang, Wenguo

    2012-10-01

    In this paper, the solid oxide fuel cell/gas turbine (SOFC/GT) cycle is integrated with coal gasification and chemical looping hydrogen generation (CLHG) for electric power production with CO2 capture. The CLHG-SOFC/GT plant is configurated and the schematic process is modeled using Aspen Plus® software. Syngas, produced by coal gasification, is converted to hydrogen with CO2 separation through a three-reactors CLHG process. Hydrogen is then fueled to SOFC for power generation. The unreacted hydrogen from SOFC burns in a combustor and drives gas turbine. The heat of the gas turbine exhaust stream is recovered in HRSG for steam bottoming cycle. At a system pressure of 20 bar and a cell temperature of 900 °C, the CLHG-SOFC/GT plant has a net power efficiency of 43.53% with no CO2 emissions. The hybrid power plant performance is attractive because of high energy conversion efficiency and zero-CO2-emission. Key parameters that influence the system performance are also discussed, including system operating pressure, cell temperature, fuel utilization factor, steam reactor temperature, CO2 expander exhaust pressure and inlet gas preheating.

  4. Peak power ratio generator

    DOEpatents

    Moyer, Robert D.

    1985-01-01

    A peak power ratio generator is described for measuring, in combination with a conventional power meter, the peak power level of extremely narrow pulses in the gigahertz radio frequency bands. The present invention in a preferred embodiment utilizes a tunnel diode and a back diode combination in a detector circuit as the only high speed elements. The high speed tunnel diode provides a bistable signal and serves as a memory device of the input pulses for the remaining, slower components. A hybrid digital and analog loop maintains the peak power level of a reference channel at a known amount. Thus, by measuring the average power levels of the reference signal and the source signal, the peak power level of the source signal can be determined.

  5. Peak power ratio generator

    DOEpatents

    Moyer, R.D.

    A peak power ratio generator is described for measuring, in combination with a conventional power meter, the peak power level of extremely narrow pulses in the gigahertz radio frequency bands. The present invention in a preferred embodiment utilizes a tunnel diode and a back diode combination in a detector circuit as the only high speed elements. The high speed tunnel diode provides a bistable signal and serves as a memory device of the input pulses for the remaining, slower components. A hybrid digital and analog loop maintains the peak power level of a reference channel at a known amount. Thus, by measuring the average power levels of the reference signal and the source signal, the peak power level of the source signal can be determined.

  6. Low cost space power generation

    NASA Technical Reports Server (NTRS)

    Olsen, Randall B.

    1991-01-01

    The success of this study has given a method of fabricating durable copolymer films without size limitations. Previously, only compression molded samples were durable enough to generate electrical energy. The strengthened specimens are very long lived materials. The lifetime was enhanced at least a factor of 1,300 in full pyroelectric conversion cycle experiments compared with extruded, non-strengthened film. The new techniques proved so successful that the lifetime of the resultant copolymer samples was not fully characterized. The lifetime of these new materials is so long that accelerated tests were devised to probe their durability. After a total of more than 67 million high voltage electrical cycles at 100 C, the electrical properties of a copolymer sample remained stable. The test was terminated without any detectable degradation to allow for other experiments. One must be cautious in extrapolating to power cycle performance, but 67 million electrical cycles correspond to 2 years of pyroelectric cycling at 1 Hz. In another series of experiments at reduced temperature and electrical stress, a specimen survived over one-third of a billion electrical cycles during nearly three months of continuous testing. The radiation-limited lifetimes of the copolymer were shown to range from several years to millions of years for most earth orbits. Thus, the pyroelectric copolymer has become a strong candidate for serious consideration for future spacecraft power supplies.

  7. Regenerative Heater Optimization for Steam Turbo-Generation Cycles of Generation IV Nuclear Power Plants with a Comparison of Two Concepts for the Westinghouse International Reactor Innovative and Secure (IRIS)

    SciTech Connect

    Williams, W.C.

    2002-08-01

    The intent of this study is to discuss some of the many factors involved in the development of the design and layout of a steam turbo-generation unit as part of a modular Generation IV nuclear power plant. Of the many factors involved in the design and layout, this research will cover feed water system layout and optimization issues. The research is arranged in hopes that it can be generalized to any Generation IV system which uses a steam powered turbo-generation unit. The research is done using the ORCENT-II heat balance codes and the Salisbury methodology to be reviewed herein. The Salisbury methodology is used on an original cycle design by Famiani for the Westinghouse IRIS and the effects due to parameter variation are studied. The vital parameters of the Salisbury methodology are the incremental heater surface capital cost (S) in $/ft{sup 2}, the value of incremental power (I) in $/kW, and the overall heat transfer coefficient (U) in Btu/ft{sup 2}-degrees Fahrenheit-hr. Each is varied in order to determine the effects on the cycles overall heat rate, output, as well as, the heater surface areas. The effects of each are shown. Then the methodology is then used to compare the optimized original Famiani design consisting of seven regenerative feedwater heaters with an optimized new cycle concept, INRC8, containing four regenerative heaters. The results are shown. It can be seen that a trade between the complexity of the seven stage regenerative Famiani cycle and the simplicity of the INRC8 cycle can be made. It is desired that this methodology can be used to show the ability to evaluate modularity through the value of size a complexity of the system as well as the performance. It also shows the effectiveness of the Salisbury methodology in the optimization of regenerative cycles for such an evaluation.

  8. Combined cycle power plant incorporating coal gasification

    DOEpatents

    Liljedahl, Gregory N.; Moffat, Bruce K.

    1981-01-01

    A combined cycle power plant incorporating a coal gasifier as the energy source. The gases leaving the coal gasifier pass through a liquid couplant heat exchanger before being used to drive a gas turbine. The exhaust gases of the gas turbine are used to generate both high pressure and low pressure steam for driving a steam turbine, before being exhausted to the atmosphere.

  9. Modern geothermal power: Binary cycle geothermal power plants

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Shipkov, A. A.

    2017-04-01

    In the second part of the review of modern geothermal power plant technologies and equipment, a role, a usage scale, and features of application of binary cycle plants in the geothermal economy are considered. Data on the use of low-boiling fluids, their impact on thermal parameters and performance of geothermal binary power units are presented. A retrospective of the use of various low-boiling fluids in industrial binary power units in the world since 1965 is shown. It is noted that the current generating capacity of binary power units running on hydrocarbons is equal to approximately 82.7% of the total installed capacity of all the binary power units in the world. At the same time over the past 5 years, the total installed capacity of geothermal binary power units in 25 countries increased by more than 50%, reaching nearly 1800 MW (hereinafter electric power is indicated), by 2015. A vast majority of the existing binary power plants recovers heat of geothermal fluid in the range of 100-200°C. Binary cycle power plants have an average unit capacity of 6.3 MW, 30.4 MW at single-flash power plants, 37.4 MW at double-flash plants, and 45.4 MW at power plants working on superheated steam. The largest binary cycle geothermal power plants (GeoPP) with an installed capacity of over 60 MW are in operation in the United States and the Philippines. In most cases, binary plants are involved in the production process together with a steam cycle. Requirements to the fluid ensuring safety, reliability, and efficiency of binary power plants using heat of geothermal fluid are determined, and differences and features of their technological processes are shown. Application of binary cycle plants in the technological process of combined GeoPPs makes it possible to recover geothermal fluid more efficiently. Features and advantages of binary cycle plants using multiple fluids, including a Kalina Cycle, are analyzed. Technical characteristics of binary cycle plants produced by various

  10. Future trends in power generation cost by power resource

    NASA Astrophysics Data System (ADS)

    1992-08-01

    The Japan Energy Economy Research Institute has been evaluating power generation cost by each power resource every year focusing on nuclear power generation. The Institute is surveying the cost evaluations by power resources in France, Britain and the U.S.A., the nuclear generation advanced nations. The OECD is making power generation cost estimation using a hypothesis which uniforms basically the conditions varying in different member countries. In model power generation cost calculations conducted by the Ministry of International Trade and Industry of Japan, nuclear power generation is the most economical system in any fiscal year. According to recent calculations performed by the Japan Energy Economy Research Institute, the situation is such that it is difficult to distinguish the economical one from others among the power generation systems in terms of generation costs except for thermal power generation. Economic evaluations are given on estimated power generation costs based on construction costs for nuclear and thermal power plants, nuclear fuel cycling cost, and fuel cost data on petroleum, LNG and coal. With regard to the future trends, scenario analyses are made on generation costs, that assume fluctuations in fuel prices and construction costs, the important factors to give economic influence on power generation.

  11. High power microwave generator

    DOEpatents

    Ekdahl, Carl A.

    1986-01-01

    A microwave generator efficiently converts the energy of an intense relativistic electron beam (REB) into a high-power microwave emission using the Smith-Purcell effect which is related to Cerenkov radiation. Feedback for efficient beam bunching and high gain is obtained by placing a cylindrical Smith-Purcell transmission grating on the axis of a toroidal resonator. High efficiency results from the use of a thin cold annular highly-magnetized REB that is closely coupled to the resonant structure.

  12. High power microwave generator

    DOEpatents

    Ekdahl, C.A.

    1983-12-29

    A microwave generator efficiently converts the energy of an intense relativistic electron beam (REB) into a high-power microwave emission using the Smith-Purcell effect which is related to Cerenkov radiation. Feedback for efficient beam bunching and high gain is obtained by placing a cylindrical Smith-Purcell transmission grating on the axis of a toroidal resonator. High efficiency results from the use of a thin cold annular highly-magnetized REB that is closely coupled to the resonant structure.

  13. Wind power. [electricity generation

    NASA Technical Reports Server (NTRS)

    Savino, J. M.

    1975-01-01

    A historical background on windmill use, the nature of wind, wind conversion system technology and requirements, the economics of wind power and comparisons with alternative systems, data needs, technology development needs, and an implementation plan for wind energy are presented. Considerable progress took place during the 1950's. Most of the modern windmills feature a wind turbine electricity generator located directly at the top of their rotor towers.

  14. Wind power. [electricity generation

    NASA Technical Reports Server (NTRS)

    Savino, J. M.

    1975-01-01

    A historical background on windmill use, the nature of wind, wind conversion system technology and requirements, the economics of wind power and comparisons with alternative systems, data needs, technology development needs, and an implementation plan for wind energy are presented. Considerable progress took place during the 1950's. Most of the modern windmills feature a wind turbine electricity generator located directly at the top of their rotor towers.

  15. Spectrophotovoltaic orbital power generation

    NASA Technical Reports Server (NTRS)

    Onffroy, J. R.

    1980-01-01

    The feasibilty of a spectrophotovoltaic orbital power generation system that optically concentrates solar energy is demonstrated. A dichroic beam-splitting mirror is used to divide the solar spectrum into two wavebands. Absorption of these wavebands by GaAs and Si solar cell arrays with matched energy bandgaps increases the cell efficiency while decreasing the amount of heat that must be rejected. The projected cost per peak watt if this system is $2.50/W sub p.

  16. Wind power generator

    SciTech Connect

    Ross, F.

    1980-08-26

    A wind power generator comprises element opposing the force of the wind pivotally mounted and extending radially from the pivot. A counterweight also mounts to the pivot and extends radially from the same. The wind opposing element also mounts to another pivot between a first and second portion thereof. A second weight aids the turning of the wind opposing element about the first pivot to create a rocking motion of the counterweight.

  17. Supercritical Brayton Cycle Nuclear Power System Concepts

    SciTech Connect

    Wright, Steven A.

    2007-01-30

    Both the NASA and DOE have programs that are investigating advanced power conversion cycles for planetary surface power on the moon or Mars, and for next generation nuclear power plants on earth. The gas Brayton cycle offers many practical solutions for space nuclear power systems and was selected as the nuclear power system of choice for the NASA Prometheus project. An alternative Brayton cycle that offers high efficiency at a lower reactor coolant outlet temperature is the supercritical Brayton cycle (SCBC). The supercritical cycle is a true Brayton cycle because it uses a single phase fluid with a compressor inlet temperature that is just above the critical point of the fluid. This paper describes the use of a supercritical Brayton cycle that achieves a cycle efficiency of 26.6% with a peak coolant temperature of 750 K and for a compressor inlet temperature of 390 K. The working fluid uses a clear odorless, nontoxic refrigerant C318 perflurocarbon (C4F8) that always operates in the gas phase. This coolant was selected because it has a critical temperature and pressure of 388.38 K and 2.777 MPa. The relatively high critical temperature allows for efficient thermal radiation that keeps the radiator mass small. The SCBC achieves high efficiency because the loop design takes advantage of the non-ideal nature of the coolant equation of state just above the critical point. The lower coolant temperature means that metal fuels, uranium oxide fuels, and uranium zirconium hydride fuels with stainless steel, ferretic steel, or superalloy cladding can be used with little mass penalty or reduction in cycle efficiency. The reactor can use liquid-metal coolants and no high temperature heat exchangers need to be developed. Indirect gas cooling or perhaps even direct gas cooling can be used if the C4F8 coolant is found to be sufficiently radiation tolerant. Other fluids can also be used in the supercritical Brayton cycle including Propane (C3H8, Tcritical = 369 K) and Hexane (C6

  18. Supercritical Brayton Cycle Nuclear Power System Concepts

    NASA Astrophysics Data System (ADS)

    Wright, Steven A.

    2007-01-01

    Both the NASA and DOE have programs that are investigating advanced power conversion cycles for planetary surface power on the moon or Mars, and for next generation nuclear power plants on earth. The gas Brayton cycle offers many practical solutions for space nuclear power systems and was selected as the nuclear power system of choice for the NASA Prometheus project. An alternative Brayton cycle that offers high efficiency at a lower reactor coolant outlet temperature is the supercritical Brayton cycle (SCBC). The supercritical cycle is a true Brayton cycle because it uses a single phase fluid with a compressor inlet temperature that is just above the critical point of the fluid. This paper describes the use of a supercritical Brayton cycle that achieves a cycle efficiency of 26.6% with a peak coolant temperature of 750 K and for a compressor inlet temperature of 390 K. The working fluid uses a clear odorless, nontoxic refrigerant C318 perflurocarbon (C4F8) that always operates in the gas phase. This coolant was selected because it has a critical temperature and pressure of 388.38 K and 2.777 MPa. The relatively high critical temperature allows for efficient thermal radiation that keeps the radiator mass small. The SCBC achieves high efficiency because the loop design takes advantage of the non-ideal nature of the coolant equation of state just above the critical point. The lower coolant temperature means that metal fuels, uranium oxide fuels, and uranium zirconium hydride fuels with stainless steel, ferretic steel, or superalloy cladding can be used with little mass penalty or reduction in cycle efficiency. The reactor can use liquid-metal coolants and no high temperature heat exchangers need to be developed. Indirect gas cooling or perhaps even direct gas cooling can be used if the C4F8 coolant is found to be sufficiently radiation tolerant. Other fluids can also be used in the supercritical Brayton cycle including Propane (C3H8, Tcritical = 369 K) and Hexane (C6

  19. Integrated gasification combined cycle power stations -- A view of the future and the relevance of the European project at Puertollano for electricity generators

    SciTech Connect

    Dartheney, A.; Jaud, P.; Davidson, B.; Hotchkiss, R.

    1994-12-31

    Electricity generators must adapt to changing constraints and opportunities. Changes in technology and business environment relative fuel prices, emission control technology and public expectations - have been considerable over the last decade. Future stability is unlikely. National Power (NP) is constructing and operating gas fired stations. Electricite de France (EDF) is retrofitting its fossil fired power stations and experimenting with new technologies such as circulating fluid bed boilers. Both are interested in other options for solid fuels. Capital cost, efficiency, operational and maintenance costs and environmental performance are important. Combustion technologies can incorporate gas cleaning during or after combustion. Gasification technologies permit gas cleaning before the main combustion stage. The relative merits of the two technologies are considered in this paper. Essential developments for widespread implementation are considered. The role of the European Integrated Gasification Combined Cycle project in advancing the gasification option is considered by utilities who are looking to apply the experience in future plant. Developments for future gasification based power plants are discussed.

  20. Geothermal Power Generation Plant

    SciTech Connect

    Boyd, Tonya

    2013-12-01

    Oregon Institute of Technology (OIT) drilled a deep geothermal well on campus (to 5,300 feet deep) which produced 196°F resource as part of the 2008 OIT Congressionally Directed Project. OIT will construct a geothermal power plant (estimated at 1.75 MWe gross output). The plant would provide 50 to 75 percent of the electricity demand on campus. Technical support for construction and operations will be provided by OIT’s Geo-Heat Center. The power plant will be housed adjacent to the existing heat exchange building on the south east corner of campus near the existing geothermal production wells used for heating campus. Cooling water will be supplied from the nearby cold water wells to a cooling tower or air cooling may be used, depending upon the type of plant selected. Using the flow obtained from the deep well, not only can energy be generated from the power plant, but the “waste” water will also be used to supplement space heating on campus. A pipeline will be construction from the well to the heat exchanger building, and then a discharge line will be construction around the east and north side of campus for anticipated use of the “waste” water by facilities in an adjacent sustainable energy park. An injection well will need to be drilled to handle the flow, as the campus existing injection wells are limited in capacity.

  1. Design and calculated performance and cost of the ECAS Phase II open cycle MHD power generation system

    NASA Technical Reports Server (NTRS)

    Harris, L. P.

    1977-01-01

    A 2000 MWe MHD/steam plant for central station applications has been designed and costed as part of the Energy Conversion Alternatives Study (ECAS). This plant is fueled by Illinois No. 6 coal, rejects heat through mechanical draft wet cooling towers, and includes coal processing equipment, seed reprocessing, electrical inversion of the MHD generator output and emission controls to current EPA standards. It yields an estimated overall efficiency of 0.483 (7066 Btu/kWe-hr), a capital cost of $718 per kWe (1975 dollars), and a cost of electricity at 65% capacity factor of 32 mills per kWe-hr. If the assumed life and reliability could be achieved with these performance parameters, the MHD system should prove attractive.

  2. GROUND POWER THERMOELECTRIC GENERATOR INVESTIGATION.

    DTIC Science & Technology

    GENERATORS), (*THERMOELECTRICITY, SEEBECK EFFECT , MANUFACTURING, MATERIALS, TELLURIUM, STRESSES, COPPER, STAINLESS STEEL, ELECTRON BEAM WELDING, TITANIUM, POWER, TEMPERATURE, LEAD COMPOUNDS, TELLURIDES.

  3. Generation of electrical power

    DOEpatents

    Hursen, Thomas F.; Kolenik, Steven A.; Purdy, David L.

    1976-01-01

    A heat-to-electricity converter is disclosed which includes a radioactive heat source and a thermoelectric element of relatively short overall length capable of delivering a low voltage of the order of a few tenths of a volt. Such a thermoelectric element operates at a higher efficiency than longer higher-voltage elements; for example, elements producing 6 volts. In the generation of required power, thermoelectric element drives a solid-state converter which is controlled by input current rather than input voltage and operates efficiently for a high signal-plus-noise to signal ratio of current. The solid-state converter has the voltage gain necessary to deliver the required voltage at the low input of the thermoelectric element.

  4. Thermionic triode generates ac power

    NASA Technical Reports Server (NTRS)

    Kniazzeh, A. G. F.; Scharz, F. C.

    1970-01-01

    Electrostatic grid controls conduction cycle of thermionic diode to convert low dc output voltages to high ac power without undesirable power loss. An ac voltage applied to the grid of this new thermionic triode enables it to convert heat directly into high voltage electrical power.

  5. ZERO EMISSION POWER GENERATION TECHNOLOGY DEVELOPMENT

    SciTech Connect

    Ronald Bischoff; Stephen Doyle

    2005-01-20

    Clean Energy Systems (CES) was previously funded by DOE's ''Vision 21'' program. This program provided a proof-of-concept demonstration that CES' novel gas generator (combustor) enabled production of electrical power from fossil fuels without pollution. CES has used current DOE funding for additional design study exercises which established the utility of the CES-cycle for retrofitting existing power plants for zero-emission operations and for incorporation in zero-emission, ''green field'' power plant concepts. DOE funding also helped define the suitability of existing steam turbine designs for use in the CES-cycle and explored the use of aero-derivative turbines for advanced power plant designs. This work is of interest to the California Energy Commission (CEC) and the Norwegian Ministry of Petroleum & Energy. California's air quality districts have significant non-attainment areas in which CES technology can help. CEC is currently funding a CES-cycle technology demonstration near Bakersfield, CA. The Norwegian government is supporting conceptual studies for a proposed 40 MW zero-emission power plant in Stavager, Norway which would use the CES-cycle. The latter project is called Zero-Emission Norwegian Gas (ZENG). In summary, current engineering studies: (1) supported engineering design of plant subsystems applicable for use with CES-cycle zero-emission power plants, and (2) documented the suitability and availability of steam turbines for use in CES-cycle power plants, with particular relevance to the Norwegian ZENG Project.

  6. Power extraction from aeroelastic limit cycle oscillations

    NASA Astrophysics Data System (ADS)

    Dunnmon, J. A.; Stanton, S. C.; Mann, B. P.; Dowell, E. H.

    2011-11-01

    Nonlinear limit cycle oscillations of an aeroelastic energy harvester are exploited for enhanced piezoelectric power generation from aerodynamic flows. Specifically, a flexible beam with piezoelectric laminates is excited by a uniform axial flow field in a manner analogous to a flapping flag such that the system delivers power to an electrical impedance load. Fluid-structure interaction is modeled by augmenting a system of nonlinear equations for an electroelastic beam with a discretized vortex-lattice potential flow model. Experimental results from a prototype aeroelastic energy harvester are also presented. Root mean square electrical power on the order of 2.5 mW was delivered below the flutter boundary of the test apparatus at a comparatively low wind speed of 27 m/s and a chord normalized limit cycle amplitude of 0.33. Moreover, subcritical limit cycles with chord normalized amplitudes of up to 0.46 were observed. Calculations indicate that the system tested here was able to access over 17% of the flow energy to which it was exposed. Methods for designing aeroelastic energy harvesters by exploiting nonlinear aeroelastic phenomena and potential improvements to existing relevant aerodynamic models are also discussed.

  7. Parabolic Trough Organic Rankine Cycle Power Plant

    SciTech Connect

    Canada, S.; Cohen, G.; Cable, R.; Brosseau, D.; Price, H.

    2005-01-01

    Arizona Public Service (APS) is required to generate a portion of its electricity from solar resources in order to satisfy its obligation under the Arizona Environmental Portfolio Standard (EPS). In recent years, APS has installed and operates over 4.5 MWe of fixed, tracking, and concentrating photovoltaic systems to help meet the solar portion of this obligation and to develop an understanding of which solar technologies provide the best cost and performance to meet utility needs. During FY04, APS began construction of a 1-MWe parabolic trough concentrating solar power plant. This plant represents the first parabolic trough plant to begin construction since 1991. The plant will also be the first commercial deployment of the Solargenix parabolic trough collector technology developed under contract to the National Renewable Energy Laboratory (NREL). The plant will use an organic Rankine cycle (ORC) power plant, provided by Ormat. The ORC power plant is much simpler than a conventional steam Rankine cycle power plant and allows unattended operation of the facility.

  8. Closed cycle osmotic power plants for electric power production

    NASA Astrophysics Data System (ADS)

    Reali, M.

    1980-04-01

    The paper deals with closed-cycle osmotic power plants (CCOPPs), which are not meant for the exploitation of natural salinity gradients but, rather, for the exploitation of those abundant heat sources having temperatures slightly higher than ambient temperature, e.g., geothermal fields, ocean temperature gradients, waste heat from power plants, and solar energy. The paper gives a general description of the CCOPP, along with some indications of its potential for energy generation. The concept of the CCOPP lies in producing electric power by means of the osmotic flows of suitable solvents and subsequently in separating them again from their solutes by means of thermal energy obtained from any available heat source. The discussion covers osmotic phenomena and the CCOPP, as well as important features of the CCOPP.

  9. Energetics and Power Generation

    DTIC Science & Technology

    2007-03-01

    propellants, nanostructured pyrotechnics (thermites) and organic nanocomposites (propellants) will discussed. For thermites, a method will be...Nanoenergetics 2nd Generation (current efforts) - Metal oxide / Al sol-gel nanocomposites - Pyrotechnics (thermites) - High heat and light release...Nanoenergetics 2nd Generation (current efforts) - Metal oxide / Al sol-gel nanocomposites - Pyrotechnics (thermites) - High heat and light release - Organic sol

  10. Variable pressure power cycle and control system

    DOEpatents

    Goldsberry, Fred L.

    1984-11-27

    A variable pressure power cycle and control system that is adjustable to a variable heat source is disclosed. The power cycle adjusts itself to the heat source so that a minimal temperature difference is maintained between the heat source fluid and the power cycle working fluid, thereby substantially matching the thermodynamic envelope of the power cycle to the thermodynamic envelope of the heat source. Adjustments are made by sensing the inlet temperature of the heat source fluid and then setting a superheated vapor temperature and pressure to achieve a minimum temperature difference between the heat source fluid and the working fluid.

  11. Power Cycle Testing of Power Switches: A Literature Survey

    DOE PAGES

    GopiReddy, Lakshmi Reddy; Tolbert, Leon M.; Ozpineci, Burak

    2014-09-18

    Reliability of power converters and lifetime prediction has been a major topic of research in the last few decades, especially for traction applications. The main failures in high power semiconductors are caused by thermomechanical fatigue. Power cycling and temperature cycling are the two most common thermal acceleration tests used in assessing reliability. The objective of this paper is to study the various power cycling tests found in the literature and to develop generalized steps in planning application specific power cycling tests. A comparison of different tests based on the failures, duration, test circuits, and monitored electrical parameters is presented.

  12. Method and apparatus for thermal power generation

    DOEpatents

    Mangus, James D.

    1979-01-01

    A method and apparatus for power generation from a recirculating superheat-reheat circuit with multiple expansion stages which alleviates complex control systems and minimizes thermal cycling of system components, particularly the reheater. The invention includes preheating cold reheat fluid from the first expansion stage prior to its entering the reheater with fluid from the evaporator or drum component.

  13. Power generation systems and methods

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor); Chao, Yi (Inventor)

    2011-01-01

    A power generation system includes a plurality of submerged mechanical devices. Each device includes a pump that can be powered, in operation, by mechanical energy to output a pressurized output liquid flow in a conduit. Main output conduits are connected with the device conduits to combine pressurized output flows output from the submerged mechanical devices into a lower number of pressurized flows. These flows are delivered to a location remote of the submerged mechanical devices for power generation.

  14. High Pulsed Power, Self Excited Magnetohydrodynamic Power Generation Systems

    DTIC Science & Technology

    1985-12-27

    Degree of Ionization of Cesium on Performance 72 3.5.7. Effect of Channel Area Ratio on Performance 73 3.5.8. Comparison of Helium vs Argon Generator...EXPLOSIVE PULSED SYSTEM WEIGHTS,REF.2 32 TABLE 5: POWER DENSITY & ENTHALPY EXTRACTION OF CLOSED CYCLE GENERATORS 35 TABLE 6: ENTHALPY EXTRACTION VS PRESSURE...OF ALUMINUM PARTICLES 50 TABLE 11. ALUMINUM PARTICLE BURNING TIMES vs OPERATING CONDITIONS 52 TABLE 12. TOTAL COMBUSTION TIME OF Al. PARTICLES vs

  15. Advanced Coal-Based Power Generations

    NASA Technical Reports Server (NTRS)

    Robson, F. L.

    1982-01-01

    Advanced power-generation systems using coal-derived fuels are evaluated in two-volume report. Report considers fuel cells, combined gas- and steam-turbine cycles, and magnetohydrodynamic (MHD) energy conversion. Presents technological status of each type of system and analyzes performance of each operating on medium-Btu fuel gas, either delivered via pipeline to powerplant or generated by coal-gasification process at plantsite.

  16. Power Generation for River and Tidal Generators

    SciTech Connect

    Muljadi, Eduard; Wright, Alan; Gevorgian, Vahan; Donegan, James; Marnagh, Cian; McEntee, Jarlath

    2016-06-01

    Renewable energy sources are the second largest contributor to global electricity production, after fossil fuels. The integration of renewable energy continued to grow in 2014 against a backdrop of increasing global energy consumption and a dramatic decline in oil prices during the second half of the year. As renewable generation has become less expensive during recent decades, and it becomes more accepted by the global population, the focus on renewable generation has expanded from primarily wind and solar to include new types with promising future applications, such as hydropower generation, including river and tidal generation. Today, hydropower is considered one of the most important renewable energy sources. In river and tidal generation, the input resource flow is slower but also steadier than it is in wind or solar generation, yet the level of water turbulent flow may vary from one place to another. This report focuses on hydrokinetic power conversion.

  17. A Miniature TES powered Stirling-cycle engine

    SciTech Connect

    Schneider, J.A.; Holl, S.L.; Schalansky, C.P.

    1984-08-01

    Miniature Stirling-cycle engines are under development for use in powering implantable ventricular assist devices. Approaches which have been employed to drive these devices rely on the generation of either hydraulic or pneumatic power. This generated power is converted by hydraulic or pneumatic logic control to mechanical power which, in turn, actuates pusher-plate blood pumps. The logic control enables the blood pump to be cycled synchronously (counter-pulsatile mode) with the heart. Because Stirling-cycle engines are heated externally, a variety of energy sources can be used. Restrictions for this application are for the energy source to be small and self contained while suppling heat in the range of 500 to 850/sup 0/C. Historically these systems were designed to be powered by a radioisotope. More recently, thermal energy system utilizing the latent heat of fusion of fluoride eutectic salts are being developed to power the engine for 8 hours of tether free operation.

  18. Apparatus and methods of reheating gas turbine cooling steam and high pressure steam turbine exhaust in a combined cycle power generating system

    DOEpatents

    Tomlinson, Leroy Omar; Smith, Raub Warfield

    2002-01-01

    In a combined cycle system having a multi-pressure heat recovery steam generator, a gas turbine and steam turbine, steam for cooling gas turbine components is supplied from the intermediate pressure section of the heat recovery steam generator supplemented by a portion of the steam exhausting from the HP section of the steam turbine, steam from the gas turbine cooling cycle and the exhaust from the HP section of the steam turbine are combined for flow through a reheat section of the HRSG. The reheated steam is supplied to the IP section inlet of the steam turbine. Thus, where gas turbine cooling steam temperature is lower than optimum, a net improvement in performance is achieved by flowing the cooling steam exhausting from the gas turbine and the exhaust steam from the high pressure section of the steam turbine in series through the reheater of the HRSG for applying steam at optimum temperature to the IP section of the steam turbine.

  19. High power microwave generator

    DOEpatents

    Minich, Roger W.

    1988-01-01

    A device (10) for producing high-powered and coherent microwaves is described. The device comprises an evacuated, cylindrical, and hollow real cathode (20) that is driven to inwardly field emit relativistic electrons. The electrons pass through an internally disposed cylindrical and substantially electron-transparent cylindrical anode (24), proceed toward a cylindrical electron collector electrode (26), and form a cylindrical virtual cathode (32). Microwaves are produced by spatial and temporal oscillations of the cylindrical virtual cathode (32), and by electrons that reflex back and forth between the cylindrical virtual cathode (32) and the cylindrical real cathode (20).

  20. Spectrophotovoltaic orbital power generation

    NASA Technical Reports Server (NTRS)

    Knowles, G.; Carroll, J.

    1983-01-01

    A subscale model of a photovoltaic power system employing spectral splitting and 1000:1 concentration was fabricated and tested. The 10-in. aperture model demonstrated 15.5% efficiency with 86% of the energy produced by a GaAs solar cell and 14% of the energy produced by an Si cell. The calculated efficiency of the system using the same solar cells, but having perfect optics, would be approximately 20%. The model design, component measurements, test results, and mathematical model are presented.

  1. Spin Seebeck power generators

    SciTech Connect

    Cahaya, Adam B.; Tretiakov, O. A.; Bauer, Gerrit E. W.

    2014-01-27

    We derive expressions for the efficiency and figure of merit of two spin caloritronic devices based on the spin Seebeck effect (SSE), i.e., the generation of spin currents by a temperature gradient. The inverse spin Hall effect is conventionally used to detect the SSE and offers advantages for large area applications. We also propose a device that converts spin current into electric one by means of a spin-valve detector, which scales favorably to small sizes and approaches a figure of merit of 0.5 at room temperature.

  2. Wind Power Charged Aerosol Generator

    SciTech Connect

    Marks, A.M.

    1980-07-01

    This describes experimental results on a Charged Aerosol Wind/Electric Power Generator, using Induction Electric Charging with a water jet issuing under water pressure from a small diameter (25-100 ..mu..m) orifice.

  3. Thermal energy storage for power generation

    SciTech Connect

    Drost, M.K.; Antoniak, Z.I.; Brown, D.R.; Sathyanarayana, K.

    1989-10-01

    Studies strongly indicate that the United States will face widespread electrical power constraints in the 1990s, with most regions of the country experiencing capacity shortages by the year 2000. In many cases, the demand for increased power will occur during intermediate and peak demand periods. Much of this demand is expected to be met by oil- and natural gas-fired Brayton cycle turbines and combined-cycle plants. While natural gas is currently plentiful and reasonably priced, the availability of an economical long-term coal-fired option for peak and intermediate load power generation will give electric power utilities an option in case either the availability or cost of natural gas should deteriorate. 54 refs., 5 figs., 17 tabs.

  4. Tide operated power generating apparatus

    SciTech Connect

    Kertzman, H. Z.

    1981-02-03

    An improved tide operated power generating apparatus is disclosed in which a hollow float, rising and falling with the ocean tide, transmits energy to a power generator. The improvement comprises means for filling the float with water during the incoming tide to provide a substantial increase in the float dead weight during the outgoing tide. Means are further provided to then empty the float before the outgoing tide whereby the float becomes free to rise again on the next incoming tide.

  5. Power output measurement during treadmill cycling.

    PubMed

    Coleman, D A; Wiles, J D; Davison, R C R; Smith, M F; Swaine, I L

    2007-06-01

    The study aim was to consider the use of a motorised treadmill as a cycling ergometry system by assessing predicted and recorded power output values during treadmill cycling. Fourteen male cyclists completed repeated cycling trials on a motorised treadmill whilst riding their own bicycle fitted with a mobile ergometer. The speed, gradient and loading via an external pulley system were recorded during 20-s constant speed trials and used to estimate power output with an assumption about the contribution of rolling resistance. These values were then compared with mobile ergometer measurements. To assess the reliability of measured power output values, four repeated trials were conducted on each cyclist. During level cycling, the recorded power output was 257.2 +/- 99.3 W compared to the predicted power output of 258.2 +/- 99.9 W (p > 0.05). For graded cycling, there was no significant difference between measured and predicted power output, 268.8 +/- 109.8 W vs. 270.1 +/- 111.7 W, p > 0.05, SEE 1.2 %. The coefficient of variation for mobile ergometer power output measurements during repeated trials ranged from 1.5 % (95 % CI 1.2 - 2.0 %) to 1.8 % (95 % CI 1.5 - 2.4 %). These results indicate that treadmill cycling can be used as an ergometry system to assess power output in cyclists with acceptable accuracy.

  6. Wind driven power generating apparatus

    SciTech Connect

    Andruszkiw, W.; Andrushkiw, R.

    1986-10-14

    A vertically adjustable wind driven power generating apparatus comprised of, in combination, a well in which is vertically movably mounted a wind driven power generating apparatus comprised of: (i) a wind driven power generating means comprised of a tubular housing having rotatably mounted therein a horizontally extending shaft. The shaft has a centrally disposed bevel gear fixedly attached thereto and helical vanes disposed longitudinally on both sides of the bevel gear; (ii) means for vertical movement of the tubular housing within the well comprised of (a) a hollow vertical support column having a circular cross section and having one end thereof attached to the bottom of the tubular housing and (b) a vertically extending hollow tubular member having a hollow interior fixedly mounted at its bottom end in the floor of the well and being open at its other end, the tubular member adapted to telescopically receive the vertical support column in its open end; (iii) vertical movement control means comprised of (a) downward movement control means comprising an inverted wing system generating inverse-lift mounted on the tubular housing, and (b) upward movement control means comprising a cylinder having an axially movable piston therein; (iv) power transmission means comprising a vertically extending power transmitting shaft that drives a power generator.

  7. Combined cycle phosphoric acid fuel cell electric power system

    SciTech Connect

    Mollot, D.J.; Micheli, P.L.

    1995-12-31

    By arranging two or more electric power generation cycles in series, combined cycle systems are able to produce electric power more efficiently than conventional single cycle plants. The high fuel to electricity conversion efficiency results in lower plant operating costs, better environmental performance, and in some cases even lower capital costs. Despite these advantages, combined cycle systems for the 1 - 10 megawatt (MW) industrial market are rare. This paper presents a low noise, low (oxides of nitrogen) NOx, combined cycle alternative for the small industrial user. By combining a commercially available phosphoric acid fuel cell (PAFC) with a low-temperature Rankine cycle (similar to those used in geothermal applications), electric conversion efficiencies between 45 and 47 percent are predicted. While the simple cycle PAFC is competitive on a cost of energy basis with gas turbines and diesel generators in the 1 to 2 MW market, the combined cycle PAFC is competitive, on a cost of energy basis, with simple cycle diesel generators in the 4 to 25 MW market. In addition, the efficiency and low-temperature operation of the combined cycle PAFC results in a significant reduction in carbon dioxide emissions with NO{sub x} concentration on the order of 1 parts per million (per weight) (ppmw).

  8. Power Systems Life Cycle Analysis Tool (Power L-CAT).

    SciTech Connect

    Andruski, Joel; Drennen, Thomas E.

    2011-01-01

    The Power Systems L-CAT is a high-level dynamic model that calculates levelized production costs and tracks environmental performance for a range of electricity generation technologies: natural gas combined cycle (using either imported (LNGCC) or domestic natural gas (NGCC)), integrated gasification combined cycle (IGCC), supercritical pulverized coal (SCPC), existing pulverized coal (EXPC), nuclear, and wind. All of the fossil fuel technologies also include an option for including carbon capture and sequestration technologies (CCS). The model allows for quick sensitivity analysis on key technical and financial assumptions, such as: capital, O&M, and fuel costs; interest rates; construction time; heat rates; taxes; depreciation; and capacity factors. The fossil fuel options are based on detailed life cycle analysis reports conducted by the National Energy Technology Laboratory (NETL). For each of these technologies, NETL's detailed LCAs include consideration of five stages associated with energy production: raw material acquisition (RMA), raw material transport (RMT), energy conversion facility (ECF), product transportation and distribution (PT&D), and end user electricity consumption. The goal of the NETL studies is to compare existing and future fossil fuel technology options using a cradle-to-grave analysis. The NETL reports consider constant dollar levelized cost of delivered electricity, total plant costs, greenhouse gas emissions, criteria air pollutants, mercury (Hg) and ammonia (NH3) emissions, water withdrawal and consumption, and land use (acreage).

  9. Taming power: Generative historical consciousness.

    PubMed

    Winter, David G

    2016-04-01

    Power is a necessary dimension of all human enterprises. It can inspire and illuminate, but it can also corrupt, oppress, and destroy. Therefore, taming power has been a central moral and political question for most of human history. Writers, theorists, and researchers have suggested many methods and mechanisms for taming power: through affiliation and love, intellect and reason, responsibility, religion and values, democratic political structures, and separation of powers. Historical examples and social science research suggest that each has some success, but also that each is vulnerable to being hijacked by power itself. I therefore introduce generative historical consciousness (GHC) as a concept and measure that might help to secure the benefits of power while protecting against its outrages and excesses. I conclude by discussing the role that GHC may have played in the peaceful resolution of the Cuban Missile Crisis of 1962.

  10. Comparative analysis of CCMHD power plants. [Closed Cycle MHD

    NASA Technical Reports Server (NTRS)

    Alyea, F. N.; Marston, C. H.; Mantri, V. B.; Geisendorfer, B. G.; Doss, H.

    1981-01-01

    A study of Closed Cycle MHD (CCMHD) power generation systems has been conducted which emphasizes both advances in component conceptual design and overall system performance. New design data are presented for the high temperature, regenerative argon heaters (HTRH) and the heat recovery/seed recovery (HRSR) subsystem. Contamination of the argon by flue gas adsorbed in the HTRH is examined and a model for estimation of contamination effects in operating systems is developed. System performance and cost data have been developed for the standard CCMHD/steam cycle as powered by both direct fired cyclone combustors and selected coal gasifiers. In addition, a new CCMHD thermodynamic cycle has been identified.

  11. Solid state pulsed power generator

    DOEpatents

    Tao, Fengfeng; Saddoughi, Seyed Gholamali; Herbon, John Thomas

    2014-02-11

    A power generator includes one or more full bridge inverter modules coupled to a semiconductor opening switch (SOS) through an inductive resonant branch. Each module includes a plurality of switches that are switched in a fashion causing the one or more full bridge inverter modules to drive the semiconductor opening switch SOS through the resonant circuit to generate pulses to a load connected in parallel with the SOS.

  12. Second generation PFB for advanced power generation

    SciTech Connect

    Robertson, A.; Van Hook, J.

    1995-11-01

    Research is being conducted under a United States Department of Energy (USDOE) contract to develop a new type of coal-fueled plant for electric power generation. This new type of plant-called an advanced or second-generation pressurized fluidized bed combustion (APFBC) plant-offers the promise of 45-percent efficiency (HHV), with emissions and a cost of electricity that are significantly lower than conventional pulverized-coal-fired plants with scrubbers. This paper summarizes the pilot plant R&D work being conducted to develop this new type of plant. Although pilot plant testing is still underway, preliminary estimates indicate the commercial plant Will perform better than originally envisioned. Efficiencies greater than 46 percent are now being predicted.

  13. Solar thermal organic rankine cycle for micro-generation

    NASA Astrophysics Data System (ADS)

    Alkahli, N. A.; Abdullah, H.; Darus, A. N.; Jalaludin, A. F.

    2012-06-01

    The conceptual design of an Organic Rankine Cycle (ORC) driven by solar thermal energy is developed for the decentralized production of electricity of up to 50 kW. Conventional Rankine Cycle uses water as the working fluid whereas ORC uses organic compound as the working fluid and it is particularly suitable for low temperature applications. The ORC and the solar collector will be sized according to the solar flux distribution in the Republic of Yemen for the required power output of 50 kW. This will be a micro power generation system that consists of two cycles, the solar thermal cycle that harness solar energy and the power cycle, which is the ORC that generates electricity. As for the solar thermal cycle, heat transfer fluid (HTF) circulates the cycle while absorbing thermal energy from the sun through a parabolic trough collector and then storing it in a thermal storage to increase system efficiency and maintains system operation during low radiation. The heat is then transferred to the organic fluid in the ORC via a heat exchanger. The organic fluids to be used and analyzed in the ORC are hydrocarbons R600a and R290.

  14. Carbon Cycling with Nuclear Power

    NASA Astrophysics Data System (ADS)

    Lackner, Klaus S.

    2011-11-01

    Liquid hydrocarbon fuels like gasoline, diesel or jet fuel are the most efficient ways of delivering energy to the transportation sector, in particular cars, ships and airplanes. Unfortunately, their use nearly unavoidably leads to the emission of carbon dioxide into the atmosphere. Unless an equivalent amount is removed from the air, the carbon dioxide will accumulate and significantly contribute to the man-made greenhouse effect. If fuels are made from biomass, the capture of carbon dioxide is a natural part of the cycle. Here, we discuss technical options for capturing carbon dioxide at much faster rates. We outline the basic concepts, discuss how such capture technologies could be made affordable and show how they could be integrated into a larger system approach. In the short term, the likely source of the hydrocarbon fuels is oil or gas; in the longer term, technologies that can provide energy to remove oxygen from carbon dioxide and water molecules and combine the remaining components into liquid fuels make it possible to recycle carbon between fuels and carbon dioxide in an entirely abiotic process. Here we focus on renewable and nuclear energy options for producing liquid fuels and show how air capture combined with fuel synthesis could be more economic than a transition to electric cars or hydrogen-fueled cars.

  15. LIFE CYCLE ASSESSMENT OF ELECTRICITY GENERATION ALTERNATIVES

    EPA Science Inventory

    This presentation summarizes various electricity and electricity/steam cogeneration alternatives. Among these alternatives, are fossil fuel and biomass power generation plants. These plants have different designs due to the need in fossil fuel (coal) plants to include process u...

  16. LIFE CYCLE ASSESSMENT OF ELECTRICITY GENERATION ALTERNATIVES

    EPA Science Inventory

    This presentation summarizes various electricity and electricity/steam cogeneration alternatives. Among these alternatives, are fossil fuel and biomass power generation plants. These plants have different designs due to the need in fossil fuel (coal) plants to include process u...

  17. The Fourth Generation of Nuclear Power

    SciTech Connect

    Lake, James Alan

    2000-11-01

    The outlook for nuclear power in the U.S. is currently very bright. The economics, operations and safety performance of U.S. nuclear power plants is excellent. In addition, both the safety and economic regulation of nuclear power are being changed to produce better economic parameters for future nuclear plant operations and the licenses for plant operations are being extended to 60 years. There is further a growing awareness of the value of clean, emissions-free nuclear power. These parameters combine to form a firm foundation for continued successful U.S. nuclear plant operations, and even the potential In order to realize a bright future for nuclear power, we must respond successfully to five challenges: • Nuclear power must remain economically competitive, • The public must remain confident in the safety of the plants and the fuel cycle. • Nuclear wastes and spent fuel must be managed and the ultimate disposition pathways for nuclear wastes must be politically settled. • The proliferation potential of the commercial nuclear fuel cycle must continue to be minimized, and • We must assure a sustained manpower supply for the future and preserve the critical nuclear technology infrastructure. The Generation IV program is conceived to focus the efforts of the international nuclear community on responding to these challenges.

  18. Low chemical concentrating steam generating cycle

    DOEpatents

    Mangus, James D.

    1983-01-01

    A steam cycle for a nuclear power plant having two optional modes of operation. A once-through mode of operation uses direct feed of coolant water to an evaporator avoiding excessive chemical concentration buildup. A recirculation mode of operation uses a recirculation loop to direct a portion of flow from the evaporator back through the evaporator to effectively increase evaporator flow.

  19. Brayton Cycle Power System in the Space Power Facility

    NASA Image and Video Library

    1969-07-21

    Set up of a Brayton Cycle Power System test in the Space Power Facility’s massive vacuum chamber at the National Aeronautics and Space Administration’s (NASA) Plum Brook Station in Sandusky, Ohio. The $28.4-million facility, which began operations in 1969, is the largest high vacuum chamber ever built. The chamber is 100 feet in diameter and 120 feet high. It can produce a vacuum deep enough to simulate the conditions at 300 miles altitude. The Space Power Facility was originally designed to test nuclear-power sources for spacecraft, but it was never used for that purpose. The Space Power Facility was first used to test a 15 to 20-kilowatt Brayton Cycle Power System for space applications. Three different methods of simulating solar heat were employed during the tests. Lewis researchers studied the Brayton power system extensively in the 1960s and 1970s. The Brayton engine converted solar thermal energy into electrical power. The system operated on a closed-loop Brayton thermodynamic cycle with a helium-xenon gas mixture as its working fluid. A space radiator was designed to serve as the system’s waste heat rejecter. The radiator was later installed in the vacuum chamber and tested in a simulated space environment to determine its effect on the power conversion system. The Brayton system was subjected to simulated orbits with 62 minutes of sun and 34 minutes of shade.

  20. Thermoelectric power generator for variable thermal power source

    DOEpatents

    Bell, Lon E; Crane, Douglas Todd

    2015-04-14

    Traditional power generation systems using thermoelectric power generators are designed to operate most efficiently for a single operating condition. The present invention provides a power generation system in which the characteristics of the thermoelectrics, the flow of the thermal power, and the operational characteristics of the power generator are monitored and controlled such that higher operation efficiencies and/or higher output powers can be maintained with variably thermal power input. Such a system is particularly beneficial in variable thermal power source systems, such as recovering power from the waste heat generated in the exhaust of combustion engines.

  1. Computational tool for simulation of power and refrigeration cycles

    NASA Astrophysics Data System (ADS)

    Córdoba Tuta, E.; Reyes Orozco, M.

    2016-07-01

    Small improvement in thermal efficiency of power cycles brings huge cost savings in the production of electricity, for that reason have a tool for simulation of power cycles allows modeling the optimal changes for a best performance. There is also a big boom in research Organic Rankine Cycle (ORC), which aims to get electricity at low power through cogeneration, in which the working fluid is usually a refrigerant. A tool to design the elements of an ORC cycle and the selection of the working fluid would be helpful, because sources of heat from cogeneration are very different and in each case would be a custom design. In this work the development of a multiplatform software for the simulation of power cycles and refrigeration, which was implemented in the C ++ language and includes a graphical interface which was developed using multiplatform environment Qt and runs on operating systems Windows and Linux. The tool allows the design of custom power cycles, selection the type of fluid (thermodynamic properties are calculated through CoolProp library), calculate the plant efficiency, identify the fractions of flow in each branch and finally generates a report very educational in pdf format via the LaTeX tool.

  2. Magma energy for power generation

    SciTech Connect

    Dunn, J.C.

    1987-01-01

    Thermal energy contained in crustal magma bodies represents a large potential resource for the US and magma generated power could become a viable alternative in the future. Engineering feasibility of the magma energy concept is being investigated as part of the Department of Energy's Geothermal Program. This current project follows a seven-year Magma Energy Research Project where scientific feasibility of the concept was concluded.

  3. Wind Power Generation Design Considerations.

    DTIC Science & Technology

    1984-12-01

    sites. have low starting torques, operate at high tip-to- wind speeds, and generate high power output per turbine weight. 5 The Savonius rotor operates...DISTRIBUTION 4 I o ....................................... . . . e . * * TABLES Number Page I Wind Turbine Characteristics II 0- 2 Maximum Economic Life II 3...Ratio of Blade Tip Speed to Wind Speed 10 4 Interference with Microwave and TV Reception by Wind Turbines 13 5 Typical Flow Patterns Over Two

  4. Clean power generation from coal

    SciTech Connect

    Butler, J.W.; Basu, P.

    2007-09-15

    The chapter gives an overview of power generation from coal, describing its environmental impacts, methods of cleaning coal before combustion, combustion methods, and post-combustion cleanup. It includes a section on carbon dioxide capture, storage and utilization. Physical, chemical and biological cleaning methods are covered. Coal conversion techniques covered are: pulverized coal combustion, fluidized-bed combustion, supercritical boilers, cyclone combustion, magnetohydrodynamics and gasification. 66 refs., 29 figs., 8 tabs.

  5. Induction generator powered coaxial launchers

    SciTech Connect

    Nalty, K.E.; Driga, M.D. . Dept. of Electrical and Computer Engineering)

    1991-01-01

    Most coaxial accelerator concepts to date have used switched power supplies to energize coils in the vicinity of the projectile, or have tolerated a grossly oversized power supply which energizes all coils during the course of the launch. Coordination of the switching, while engineeringly possible, provides opportunities for failure which reduces the reliability of the system as compared to a passively activated system requiring no switching. Excitation of un-used sections of a launcher dramatically reduces launch efficiency, and increases both power supply and cooling requirements. A launcher design which avoids the need for switching and automatically excites only the windings in the vicinity of the projectile is presented in this paper. The energy store for the launcher consists of rotating induction machines. The excitation for the launcher is provided by an excitation winding on the projectile, which makes the projectile act like the rotor of a synchronous condenser. This combination of super-synchronous induction machines (the energy stores) and synchronous alternators (the projectile) is called an induction generator. This paper provides a description of the induction generator powered launcher concept, and investigates scaling laws to assess the applicability of this technology for tactical and space launch applications.

  6. Solar-powered aroma generator

    SciTech Connect

    Spector, D.

    1986-02-04

    In combination with a switch-controlled electric light bulb having a threaded plug and a threaded socket disposed in a room which is also subject to natural ambient light, a switchless aroma generator is installed in the room which is automatically activated only when the electric light bulb is switched on. The activated generator functions to discharge an air current into the room which conveys an aromatic vapor to modify the atmosphere. The generator described in this patent consists of: A.) an air-permeable cartridge containing an aroma supply which is exuded into the atmosphere at a relatively rapid rate as an air current is forced through the cartridge; B.) a fan driven by a low-voltage, direct-current motor having predetermined power requirements, the fan being arranged to force an air current through the cartridge; C.) a housing incorporating the cartridge and the motordriven fan, the housing containing an apparatus for mounting it on a wall in the room; and D.) a solar cell assembly producing a direct-current output placed in close proximity to the bulb in the room and irradiated when the bulb is switched on. The assembly is connected to the motor to supply power, the electrical relationship of the assembly to the motor being such that the cell output is sufficient to power the motor only when the bulb is switched on to irradiate the assembly, and is insufficient when the bulb is switched off. The cell output then depends on ambient light in the room, and the operation of the generator is coordinated with that of the bulb despite the absence of a wired connection between and an aroma is generated only when the bulb is switched on.

  7. Comparison of geothermal power conversion cycles

    NASA Technical Reports Server (NTRS)

    Elliott, D. G.

    1976-01-01

    Geothermal power conversion cycles are compared with respect to recovery of the available wellhead power. The cycles compared are flash steam, in which steam turbines are driven by steam separated from one or more flash stages; binary, in which heat is transferred from the brine to an organic turbine cycle; flash binary, in which heat is transferred from flashed steam to an organic turbine cycle; and dual steam, in which two-phase expanders are driven by the flashing steam-brine mixture and steam turbines by the separated steam. Expander efficiencies assumed are 0.7 for steam turbines, 0.8 for organic turbines, and 0.6 for two-phase expanders. The fraction of available wellhead power delivered by each cycle is found to be about the same at all brine temperatures: 0.65 with one stage and 0.7 with four stages for dual stream; 0.4 with one stage and 0.6 with four stages for flash steam; 0.5 for binary; and 0.3 with one stage and 0.5 with four stages for flash binary.

  8. Comparison of geothermal power conversion cycles

    NASA Technical Reports Server (NTRS)

    Elliott, D. G.

    1976-01-01

    Geothermal power conversion cycles are compared with respect to recovery of the available wellhead power. The cycles compared are flash steam, in which steam turbines are driven by steam separated from one or more flash stages; binary, in which heat is transferred from the brine to an organic turbine cycle; flash binary, in which heat is transferred from flashed steam to an organic turbine cycle; and dual steam, in which two-phase expanders are driven by the flashing steam-brine mixture and steam turbines by the separated steam. Expander efficiencies assumed are 0.7 for steam turbines, 0.8 for organic turbines, and 0.6 for two-phase expanders. The fraction of available wellhead power delivered by each cycle is found to be about the same at all brine temperatures: 0.65 with one stage and 0.7 with four stages for dual stream; 0.4 with one stage and 0.6 with four stages for flash steam; 0.5 for binary; and 0.3 with one stage and 0.5 with four stages for flash binary.

  9. Pros and cons of power combined cycle in Venezuela

    SciTech Connect

    Alvarez, C.; Hernandez, S.

    1997-09-01

    In Venezuela combined cycle power has not been economically attractive to electric utility companies, mainly due to the very low price of natural gas. Savings in cost of natural gas due to a higher efficiency, characteristic of this type of cycle, does not compensate additional investments required to close the simple cycle (heat recovery steam generator (HRSG) and steam turbine island). Low gas prices have contributed to create a situation characterized by investors` reluctance to commit capital in gas pipe lines and associated equipment. The Government is taking measures to improve economics. Recently (January 1, 1997), the Ministry of Energy and Mines raised the price of natural gas, and established a formula to tie its price to the exchange rate variation (dollar/bolivar) in an intent to stimulate investments in this sector. This is considered a good beginning after a price freeze for about three years. Another measure that has been announced is the implementation of a corporate policy of outsourcing to build new gas facilities such as pipe lines and measuring and regulation stations. Under these new circumstances, it seems that combined cycle will play an important role in the power sector. In fact, some power generation projects are considering building new plants using this technology. An economical comparative study is presented between simple and combined cycles power plant. Screening curves are showed with a gas price forecast based on the government decree recently issued, as a function of plant capacity factor.

  10. Performance evaluation of ejector expansion combined cooling and power cycles

    NASA Astrophysics Data System (ADS)

    Ghaebi, Hadi; Rostamzadeh, Hadi; Matin, Pouria Seyed

    2017-09-01

    This paper studies performance characteristics of a basic ejector expansion combined cooling and power cycle (EECCPC) as well as three modified ones. These modified cycles are EECCPC incorporating turbine bleeding, regenerative EECCP cycle, and EECCP cycle incorporating with both turbine bleeding and regeneration. The expansion valve has been replaced by a two-phase ejector-expander in the traditional CCP cycle to improve the first and second-law efficiencies. Furthermore, the exergy destruction for components of the systems as well as the whole systems has been calculated, leading to determination of the main source of irreversibility in different cycles. The results of the exergy analysis reveals that the generator has the major contribution role in the overall losses of the systems. The results also show that the EECCP cycle surpasses the TCCP cycle in terms of thermal and exergy efficiencies. As a matter of fact, the thermal and exergy efficiencies are improved by 6.02, and 5.44%, respectively, throughout this successive modification. At last, sensitivity analysis of different key parameters on performance of the cycles has been investigated. It is shown that one can obtain higher thermal efficiency by increasing of the generator and evaporator temperatures or decreasing of the condenser temperature.

  11. Simultaneous production of desalinated water and power using a hybrid-cycle OTEC plant

    SciTech Connect

    Panchal, C.B.; Bell, K.J.

    1987-05-01

    A systems study for simultaneous production of desalinated water and electric power using the hybrid-cycle OTEC system was carried out. The hybrid cycle is a combination of open and closed-cycle OTEC systems. A 10 MWe shore-based hybrid-cycle OTEC plant is discussed and corresponding operating parameters are presented. Design and plant operating criteria for adjusting the ratio of water production to power generation are described and their effects on the total system were evaluated. The systems study showed technical advantages of the hybrid-cycle power system as compared to other leading OTEC systems for simultaneous production of desalinated water and electric power generation.

  12. INTEGRATED PYROLYSIS COMBINED CYCLE BIOMASS POWER SYSTEM CONCEPT DEFINITION

    SciTech Connect

    Eric Sandvig; Gary Walling; Robert C. Brown; Ryan Pletka; Desmond Radlein; Warren Johnson

    2003-03-01

    Advanced power systems based on integrated gasification/combined cycles (IGCC) are often presented as a solution to the present shortcomings of biomass as fuel. Although IGCC has been technically demonstrated at full scale, it has not been adopted for commercial power generation. Part of the reason for this situation is the continuing low price for coal. However, another significant barrier to IGCC is the high level of integration of this technology: the gas output from the gasifier must be perfectly matched to the energy demand of the gas turbine cycle. We are developing an alternative to IGCC for biomass power: the integrated (fast) pyrolysis/ combined cycle (IPCC). In this system solid biomass is converted into liquid rather than gaseous fuel. This liquid fuel, called bio-oil, is a mixture of oxygenated organic compounds and water that serves as fuel for a gas turbine topping cycle. Waste heat from the gas turbine provides thermal energy to the steam turbine bottoming cycle. Advantages of the biomass-fueled IPCC system include: combined cycle efficiency exceeding 37 percent efficiency for a system as small as 7.6 MW{sub e}; absence of high pressure thermal reactors; decoupling of fuel processing and power generation; and opportunities for recovering value-added products from the bio-oil. This report provides a technical overview of the system including pyrolyzer design, fuel clean-up strategies, pyrolysate condenser design, opportunities for recovering pyrolysis byproducts, gas turbine cycle design, and Rankine steam cycle. The report also reviews the potential biomass fuel supply in Iowa, provide and economic analysis, and present a summery of benefits from the proposed system.

  13. High power terahertz generation using 1550 nm plasmonic photomixers

    NASA Astrophysics Data System (ADS)

    Berry, Christopher W.; Hashemi, Mohammad R.; Preu, Sascha; Lu, Hong; Gossard, Arthur C.; Jarrahi, Mona

    2014-07-01

    We present a 1550 nm plasmonic photomixer operating under pumping duty cycles below 10%, which offers significantly higher terahertz radiation power levels compared to previously demonstrated photomixers. The record-high terahertz radiation powers are enabled by enhancing the device quantum efficiency through use of plasmonic contact electrodes, and by mitigating thermal breakdown at high optical pump power levels through use of a low duty cycle optical pump. The repetition rate of the optical pump can be specifically selected at a given pump duty cycle to control the spectral linewidth of the generated terahertz radiation. At an average optical pump power of 150 mW with a pump modulation frequency of 1 MHz and pump duty cycle of 2%, we demonstrate up to 0.8 mW radiation power at 1 THz, within each continuous wave radiation cycle.

  14. Wind wheel electric power generator

    SciTech Connect

    Kaufman, J.W.

    1980-03-04

    Wind wheel electric power generator apparatus is disclosed as including a housing rotatably mounted upon a vertically disposed support column. Primary and auxiliary funnel-type, venturi ducts are fixedly mounted upon the housing for capturing wind currents and for conducting the same to a bladed wheel adapted to be operatively connected with generator apparatus. Additional air flows are also conducted onto the bladed wheel, all of the air flows positively effecting rotation of the wheel in a cumulative manner. The auxiliary ducts are disposed at an acute angle with respect to the longitudinal axis of the housing, and this feature , together with the rotatability of the housing and the ducts, permits capture of wind currents within a variable directional range.

  15. Wind wheel electric power generator

    NASA Technical Reports Server (NTRS)

    Kaufman, J. W. (Inventor)

    1980-01-01

    Wind wheel electric power generator apparatus includes a housing rotatably mounted upon a vertical support column. Primary and auxiliary funnel-type, venturi ducts are fixed onto the housing for capturing wind currents and conducting to a bladed wheel adapted to be operatively connected with the generator apparatus. Additional air flows are also conducted onto the bladed wheel; all of the air flows positively effecting rotation of the wheel in a cumulative manner. The auxiliary ducts are disposed at an acute angle with respect to the longitudinal axis of the housing, and this feature, together with the rotatability of the housing and the ducts, permits capture of wind currents within a variable directional range.

  16. Single stage rankine and cycle power plant

    SciTech Connect

    Closs, J.J.

    1981-10-13

    The specification describes a Rankine cycle power plant of the single stage type energized by gasified freon, the latter being derived from freon in the liquid state in a boiler provided in the form of a radio frequency heating cell adapted at low energy input to effect a rapid change of state from liquid freon at a given temperature and pressure to gaseous freon of relatively large volume, thereby to drive a Rankine cycle type of engine recognized in the prior art as a steam engine type of engine of the piston or turbine type.

  17. Clean coal technologies in electric power generation: a brief overview

    SciTech Connect

    Janos Beer; Karen Obenshain

    2006-07-15

    The paper talks about the future clean coal technologies in electric power generation, including pulverized coal (e.g., advanced supercritical and ultra-supercritical cycles and fluidized-bed combustion), integrated gasification combined cycle (IGCC), and CO{sub 2} capture technologies. 6 refs., 2 tabs.

  18. Advanced piggyback water power generator

    SciTech Connect

    Wiggs, B.R.

    1988-02-16

    A power generating system is described including: a central boat containing gearing and electric and/or power generation equipment, with a forward angled-back deflection screen and a rear non-angled deflection screen, with a smaller outrigger pontoon on each respective side of the central boat, with closed cell, waterproof, plastic foam filling in the central boat and pontoons, and with the bow of the respective outrigger pontoons angled so as to completely turn water away from, and to the outside of, the space and/or incoming water area between each such respective pontooon and the central boat. There are legs with cone shaped bottoms and with wheels attached, with the wheels extending slightly below the cone shaped bottoms; paddle wheels on each side of the central boat, between the central boat, and respective outrigger pontoons, with 90 degree spaced, flat, paddle blades, and with a solid, disk division vertically dividing each respective side paddle wheel in half and extending at right angles to, and from, the central axle, to the outside extreme end of the paddle blades, with each such half of the equally divided paddle wheel being constructed so that the 90 degree spaced paddle blades in one half are offset by 45 degrees from the 90 degree space paddle blades in the other half, and with the extreme ends of each such set of divided paddle wheels being enclosed via a similar solid.

  19. Rectifier-less piezoelectric micro power generator

    NASA Astrophysics Data System (ADS)

    Hajati, Arman; Kim, Sang-Gook

    2008-03-01

    A novel thin film lead zirconate titanate Pb(Zr,Ti)O 3 (PZT) MEMS energy harvesting device is designed and developed for powering autonomous wireless sensors. It is designed to harvest energy from parasitic vibrational energy sources and convert it to electrical energy via the piezoelectric effect. The new pie-shaped design for the harvester is about a size of a nickel and has a radical departure from previous design concepts. This design always generates positive tension on the PZT layer and then positive charge output throughout vibration cycles. It produces mono-polarity output charge without using any additional bridge rectifier circuitry, which will be a huge cost saving for commercial production of scaled-up products. Contrary to the high Q cantilever designs, the new design has a low Q, doubly anchored beam design, which provides a wide bandwidth of operational frequency. This will enable more robust power generation even if the frequency spectrum of the source vibration varies unexpectedly. Furthermore, the beam shape is optimized to achieve uniform strain throughout the PZT layer. To authors' knowledge, this is the first self-rectifying piezoelectric power generator at the MEMS-scale

  20. Coupling an induction motor type generator to ac power lines. [making windmill generators compatible with public power lines

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1984-01-01

    A system for coupling an induction motor type generator to an A.C. power line includes an electronic switch means that is controlled by a control system and is regulated to turn on at a relatively late point in each half cycle of its operation. The energizing power supplied by the line to the induction motor type generator is decreased and the net power delivered to the line is increased.

  1. Can cycle power predict sprint running performance?

    PubMed

    van Ingen Schenau, G J; Jacobs, R; de Koning, J J

    1991-01-01

    A major criticism of present models of the energetics and mechanics of sprint running concerns the application of estimates of parameters which seem to be adapted from measurements of running during actual competitions. This study presents a model which does not perpetuate this solecism. Using data obtained during supra-maximal cycle ergometer tests of highly trained athletes, the kinetics of the anaerobic and aerobic pathways were modelled. Internal power wasted in the acceleration and deceleration of body limbs and the power necessary to overcome air friction was calculated from data in the literature. Assuming a mechanical efficiency as found during submaximal cycling, a power equation was constructed which also included the power necessary to accelerate the body at the start of movement. The differential equation thus obtained was solved through simulation. The model appeared to predict realistic times at 100 m (10.47 s), 200 m (19.63 s) and 400 m (42.99 s) distances. By comparison with other methods it is argued that power equations of locomotion should include the concept of mechanical efficiency.

  2. Generation of Single-Cycle Light Pulses

    SciTech Connect

    Stuart, B C; Jovanovic, I; Armstrong, J P; Pyke, B; Crane, J K; Shuttlesworth, R

    2004-02-13

    Most optical pulses, even at the 10-femtosecond timescale, consist of several oscillations of the electric field. By producing and amplifying an ultra-broadband continuum, single cycle (e 3 fs) or shorter optical pulses may be generated. This requires a very challenging pulse-compression with sub-femtosecond accuracy. Production of these single-cycle pulses will lead to new generations of experiments in the areas of coherent control of chemical excitations and reactions, 0.1-fs high-order harmonic (XUV) generation for probing of materials and fast processes, and selective 3-D micron-scale material removal and modification. We activated the first stage of a planned three-stage optical parametric amplifier (OPA) that would ultimately produce sub-3 fs pulses. Active control with a learning algorithm was implemented to optimize the continuum generated in an argon-filled capillary and to control and optimize the final compressed pulse temporal shape. A collaboration was initiated to coherently control the population of different states upon dissociation of Rb{sub 2}. Except for one final optic, a pulse compressor and diagnostics were constructed to produce and characterize pulses in the 5-fs range from the first OPA stage.

  3. Novel Power Conditioning Circuits for Piezoelectric Micro Power Generators

    DTIC Science & Technology

    2003-10-31

    heat engine power generator [14]….………………. 7 1.6. Block diagram of a linear regulator……………………………………………. 7 1.7. Block diagram of a PWM switch...October 31, 2003. Title: Novel Power Conditioning Circuits for Piezoelectric Micro Power Generators . Abstract Approved...von Jouanne Advanced low power devices promote the development of micro power generators (MPGs) to

  4. Electronic load for testing power generating devices

    NASA Technical Reports Server (NTRS)

    Friedman, E. B.; Stepfer, G.

    1968-01-01

    Instrument tests various electric power generating devices by connecting the devices to the input of the load and comparing their outputs with a reference voltage. The load automatically adjusts until voltage output of the power generating device matches the reference.

  5. Terms of reference (Mahreb power generation). Export trade information

    SciTech Connect

    Not Available

    1991-12-01

    The Government of Yemen has decided to use the Natural Gas discovered at Mareb for Power Generation by building a new power station plant with an initial installed capacity of 180MW plant utilizing open cycles gas turbines. The purpose of the study is to identify a least cost generation and transmission program (commencing with an initial 180MW open cycle gas turbine station) which will satisfy the forecast power demands of the Republic of Yemen (ROY) at minimum present value capital and operating cost over the period up to 2015 in accordance with agreed technical criteria.

  6. High efficiency carbonate fuel cell/turbine hybrid power cycles

    SciTech Connect

    Steinfeld, G.

    1995-10-19

    Carbonate fuel cells developed by Energy Research Corporation, in commercial 2.85 MW size, have an efficiency of 57.9 percent. Studies of higher efficiency hybrid power cycles were conducted in cooperation with METC to identify an economically competitive system with an efficiency in excess of 65 percent. A hybrid power cycle was identified that includes a direct carbonate fuel cell, a gas turbine and a steam cycle, which generates power at a LHV efficiency in excess of 70 percent. This new system is called a Tandem Technology Cycle (TTC). In a TTC operating on natural gas fuel, 95 percent of the fuel is mixed with recycled fuel cell anode exhaust, providing water for the reforming of the fuel, and flows to a direct carbonate fuel cell system which generates 72 percent of the power. The portion of the fuel cell anode exhaust which is not recycled, is burned and heat is transferred to the compressed air from a gas turbine, raising its temperature to 1800{degrees}F. The stream is then heated to 2000{degrees}F in the gas turbine burner and expands through the turbine generating 13 percent of the power. Half the exhaust from the gas turbine flows to the anode exhaust burner, and the remainder flows to the fuel cell cathodes providing the O{sub 2} and CO{sub 2} needed in the electrochemical reaction. Exhaust from the fuel cells flows to a steam system which includes a heat recovery steam generator and stages steam turbine which generates 15 percent of the TTC system power. Studies of the TTC for 200-MW and 20-MW size plants quantified performance, emissions and cost-of-electricity, and compared the characteristics of the TTC to gas turbine combined cycles. A 200-MW TTC plant has an efficiency of 72.6 percent, and is relatively insensitive to ambient temperature, but requires a heat exchanger capable of 2000{degrees}F. The estimated cost of electricity is 45.8 mills/kWhr which is not competitive with a combined cycle in installations where fuel cost is under $5.8/MMBtu.

  7. Connecticut Biodiesel Power Generation Project

    SciTech Connect

    Grannis, Lee; York, Carla R.

    2010-10-31

    Sabre will continue support of the emissions equipment and VARS issues to ensure all are resolved and the system is functioning as expected. The remote data collection to become more automated. Final project reports for data collection and system performance to be generated. Sabre continued to support the emissions equipment and VARS issues to ensure all are resolved and the system is functioning as expected. The remote data collection became more automated. Final project reports for data collection and system performance were generated and are part of this final report. Some Systems Sensors were replaced due to a lightning strike. Sample data charts are shown at the end of the report. During the project, Sabre Engineering provided support to the project team with regarding to troubleshooting technical issues and system integration with the local power utility company. The resulting lessons learned through Sabre’s participation in the project have been valuable to the integrity of the data collected as well as in providing BioPur Light & Power valuable insights into future operations and planning for possible expansion. The system monitoring and data collection system has been operating as designed and continues to provide relevant information to the system operators. The information routinely gathered automatically by the system also contributes to the REN and REC validations which are required to secure credit for these items. During the quarter, the remaining work on the operations and safety manual were completed and released for publication after screen shots were verified. The goal of this effort to provide an accurate set of precautions and procedures for the technology system that can be replicated to other similar system.

  8. Miniature Gas-Turbine Power Generator

    NASA Technical Reports Server (NTRS)

    Wiberg, Dean; Vargo, Stephen; White, Victor; Shcheglov, Kirill

    2003-01-01

    A proposed microelectromechanical system (MEMS) containing a closed- Brayton-cycle turbine would serve as a prototype of electric-power generators for special applications in which high energy densities are required and in which, heretofore, batteries have been used. The system would have a volume of about 6 cm3 and would operate with a thermal efficiency >30 percent, generating up to 50 W of electrical power. The energy density of the proposed system would be about 10 times that of the best battery-based systems now available, and, as such, would be comparable to that of a fuel cell. The working gas for the turbine would be Xe containing small quantities of CO2, O2, and H2O as gaseous lubricants. The gas would be contained in an enclosed circulation system, within which the pressure would typically range between 5 and 50 atm (between 0.5 and 5 MPa). The heat for the Brayton cycle could be supplied by any of a number of sources, including a solar concentrator or a combustor burning a hydrocarbon or other fuel. The system would include novel heat-transfer and heat-management components. The turbine would be connected to an electric power generator/starter motor. The system would include a main rotor shaft with gas bearings; the bearing surfaces would be made of a ceramic material coated with nanocrystalline diamond. The shaft could withstand speed of 400,000 rpm or perhaps more, with bearing-wear rates less than 10(exp -)4 those of silicon bearings and 0.05 to 0.1 those of SiC bearings, and with a coefficient of friction about 0.1 that of Si or SiC bearings. The components of the system would be fabricated by a combination of (1) three-dimensional xray lithography and (2) highly precise injection molding of diamond-compatible metals and ceramic materials. The materials and fabrication techniques would be suitable for mass production. The disadvantages of the proposed system are that unlike a battery-based system, it could generate a perceptible amount of sound, and

  9. Modular Analysis of Automobile Exhaust Thermoelectric Power Generation System

    NASA Astrophysics Data System (ADS)

    Deng, Y. D.; Zhang, Y.; Su, C. Q.

    2015-06-01

    In this paper, an automobile exhaust thermoelectric power generation system is packaged into a model with its own operating principles. The inputs are the engine speed and power, and the output is the power generated by the system. The model is divided into two submodels. One is the inlet temperature submodel, and the other is the power generation submodel. An experimental data modeling method is adopted to construct the inlet temperature submodel, and a theoretical modeling method is adopted to construct the power generation submodel. After modeling, simulation is conducted under various engine operating conditions to determine the variation of the power generated by the system. Finally, the model is embedded into a Honda Insight vehicle model to explore the energy-saving effect of the system on the vehicle under Economic Commission for Europe and cyc-constant_60 driving cycles.

  10. User's manual for levelized power generation cost using a microcomputer

    SciTech Connect

    Fuller, L.C.

    1984-08-01

    Microcomputer programs for the estimation of levelized electrical power generation costs are described. Procedures for light-water reactor plants and coal-fired plants include capital investment cost, operation and maintenance cost, fuel cycle cost, nuclear decommissioning cost, and levelized total generation cost. Programs are written in Pascal and are run on an Apple II Plus microcomputer.

  11. Maturing Technologies for Stirling Space Power Generation

    NASA Technical Reports Server (NTRS)

    Wilson, Scott D.; Nowlin, Brentley C.; Dobbs, Michael W.; Schmitz, Paul; Huth, James

    2016-01-01

    Stirling Radioisotope Power Systems (RPS) are being developed as an option to provide power on future space science missions where robotic spacecraft will orbit, flyby, land or rove. A Stirling Radioisotope Generator (SRG) could offer space missions a more efficient power system that uses one fourth of the nuclear fuel and decreases the thermal footprint of the current state of the art. The RPS Program Office, working in collaboration with the U.S. Department of Energy (DOE), manages projects to develop thermoelectric and dynamic power systems, including Stirling Radioisotope Generators (SRGs). The Stirling Cycle Technology Development (SCTD) Project, located at Glenn Research Center (GRC), is developing Stirling-based subsystems, including convertors and controllers. The SCTD Project also performs research that focuses on a wide variety of objectives, including increasing convertor temperature capability to enable new environments, improving system reliability or fault tolerance, reducing mass or size, and developing advanced concepts that are mission enabling. Research activity includes maturing subsystems, assemblies, and components to prepare them for infusion into future convertor and generator designs. The status of several technology development efforts are described here. As part of the maturation process, technologies are assessed for readiness in higher-level subsystems. To assess the readiness level of the Dual Convertor Controller (DCC), a Technology Readiness Assessment (TRA) was performed and the process and results are shown. Stirling technology research is being performed by the SCTD Project for NASA's RPS Program Office, where tasks focus on maturation of Stirling-based systems and subsystems for future space science missions.

  12. Maturing Technologies for Stirling Space Power Generation

    NASA Technical Reports Server (NTRS)

    Wilson, Scott D.; Nowlin, Brentley C.; Dobbs, Michael W.; Schmitz, Paul C.; Huth, James

    2016-01-01

    Stirling Radioisotope Power Systems (RPS) are being developed as an option to provide power on future space science missions where robotic spacecraft will orbit, flyby, land or rove. A Stirling Radioisotope Generator (SRG) could offer space missions a more efficient power system that uses one fourth of the nuclear fuel and decreases the thermal footprint of the current state of the art. The RPS Program Office, working in collaboration with the U.S. Department of Energy (DOE), manages projects to develop thermoelectric and dynamic power systems, including Stirling Radioisotope Generators (SRGs). The Stirling Cycle Technology Development (SCTD) Project, located at Glenn Research Center (GRC), is developing Stirling-based subsystems, including convertors and controllers. The SCTD Project also performs research that focuses on a wide variety of objectives, including increasing convertor temperature capability to enable new environments, improving system reliability or fault tolerance, reducing mass or size, and developing advanced concepts that are mission enabling. Research activity includes maturing subsystems, assemblies, and components to prepare them for infusion into future convertor and generator designs. The status of several technology development efforts are described here. As part of the maturation process, technologies are assessed for readiness in higher-level subsystems. To assess the readiness level of the Dual Convertor Controller (DCC), a Technology Readiness Assessment (TRA) was performed and the process and results are shown. Stirling technology research is being performed by the SCTD Project for NASA's RPS Program Office, where tasks focus on maturation of Stirling-based systems and subsystems for future space science missions.

  13. Eighth international conference on MHD electrical power generation. Volume 4

    SciTech Connect

    Not Available

    1983-01-01

    The VIIIth International Conference on MHD Electrical Power Generation was convened at the initiative of the International Liaison Group on MHD Electrical Power Generation by the USSR Academy of Sciences (Institute of High Temperature) and under the sponsorship of: UNESCO; Council for Mutual Economic Assistance (COMECON); Energoinvest (Yugoslavia), Control Data Corporation (USA); and Bhabha Atomic Research Centre (India). The proceedings of the VIIIth International Conference on MHD Electrical Power Generation contain the results of most recent R and D work aimed at practical realization of this advanced method of electrical power generation. The papers presented to the Conference deal with heat-generating schemes and cycles, conceptual and detail designs of MHD power plants, including that of the first commercial 500-MW power generating unit presently under construction in the USSR. Research results obtained in pilot and experimental facilities in the USSR, USA, Poland, Japan, Netherlands and other countries are described. Volume 4 was concerned with Materials, Combined-Cycle, Liquid-Metal MHD, and Closed-Cycle Disk-Type MHD Generator. This DOE report contains full translations in English of all the papers in Volume 4. These have been entered individually into EDB and ERA. (LTN)

  14. Closed Brayton Cycle Power Conversion Unit for Fission Surface Power Phase I Final Report

    NASA Technical Reports Server (NTRS)

    Fuller, Robert L.

    2010-01-01

    A Closed Brayton cycle power conversion system has been developed to support the NASA fission surface power program. The goal is to provide electricity from a small nuclear reactor heat source for surface power production for lunar and Mars environments. The selected media for a heat source is NaK 78 with water as a cooling source. The closed Brayton cycle power was selected to be 12 kWe output from the generator terminals. A heat source NaK temperature of 850 K plus or minus 25 K was selected. The cold source water was selected at 375 K plus or minus 25 K. A vacuum radiation environment of 200 K is specified for environmental operation. The major components of the system are the power converter, the power controller, and the top level data acquisition and control unit. The power converter with associated sensors resides in the vacuum radiation environment. The power controller and data acquisition system reside in an ambient laboratory environment. Signals and power are supplied across the pressure boundary electrically with hermetic connectors installed on the vacuum vessel. System level analyses were performed on working fluids, cycle design parameters, heater and cooling temperatures, and heat exchanger options that best meet the needs of the power converter specification. The goal is to provide a cost effective system that has high thermal-to-electric efficiency in a compact, lightweight package.

  15. Generator powered electrically heated diesel particulate filter

    DOEpatents

    Gonze, Eugene V; Paratore, Jr., Michael J

    2014-03-18

    A control circuit for a vehicle powertrain includes a switch that selectivity interrupts current flow between a first terminal and a second terminal. A first power source provides power to the first terminal and a second power source provides power to the second terminal and to a heater of a heated diesel particulate filter (DPF). The switch is opened during a DPF regeneration cycle to prevent the first power source from being loaded by the heater while the heater is energized.

  16. Optimized working conditions for a thermoelectric generator as a topping cycle for gas turbines

    NASA Astrophysics Data System (ADS)

    Brady Knowles, C.; Lee, Hohyun

    2012-10-01

    This paper presents a model for a theoretical maximum efficiency of a thermoelectric generator integrated with a Brayton-cycle engine. The thermoelectric cycle is presented in two configurations as a topping cycle and a preheating topping cycle. For the topping cycle configuration, the thermoelectric generator receives heat from a high-temperature heat source and produces electrical work before rejecting heat to a Brayton cycle. For the preheating topping cycle, the rejected heat from the thermoelectric generator partially heats the compressed working fluid of the Brayton cycle before a secondary heater delivers heat to the working fluid directly from the heat source. The thermoelectric topping cycle efficiency increases as the temperature difference between the hot- and cold-side increases; however, this limits the heat transfer possible to the Brayton cycle, which in turn reduces power generation from the Brayton cycle. This model identifies the optimum operating parameters of the thermoelectric and Brayton cycles to obtain the maximum thermal efficiency of the combined cycle. In both configurations, efficiency gains are larger at low-temperature Brayton cycles. Although a thermoelectric generator (TEG) topping cycle enhances efficiency for a low temperature turbine, efficiency cannot exceed a high temperature gas turbine. Using a TEG topping cycle is limited to cases when space or price for a high temperature turbine cannot be justified. A design to achieve the preheating thermoelectric topping cycle is also presented.

  17. Energy Conversion Advanced Heat Transport Loop and Power Cycle

    SciTech Connect

    Oh, C. H.

    2006-08-01

    The Department of Energy and the Idaho National Laboratory are developing a Next Generation Nuclear Plant (NGNP) to serve as a demonstration of state-of-the-art nuclear technology. The purpose of the demonstration is two fold 1) efficient low cost energy generation and 2) hydrogen production. Although a next generation plant could be developed as a single-purpose facility, early designs are expected to be dual-purpose. While hydrogen production and advanced energy cycles are still in its early stages of development, research towards coupling a high temperature reactor, electrical generation and hydrogen production is under way. Many aspects of the NGNP must be researched and developed in order to make recommendations on the final design of the plant. Parameters such as working conditions, cycle components, working fluids, and power conversion unit configurations must be understood. Three configurations of the power conversion unit were demonstrated in this study. A three-shaft design with 3 turbines and 4 compressors, a combined cycle with a Brayton top cycle and a Rankine bottoming cycle, and a reheated cycle with 3 stages of reheat were investigated. An intermediate heat transport loop for transporting process heat to a High Temperature Steam Electrolysis (HTSE) hydrogen production plant was used. Helium, CO2, and an 80% nitrogen, 20% helium mixture (by weight) were studied to determine the best working fluid in terms cycle efficiency and development cost. In each of these configurations the relative component size were estimated for the different working fluids. The relative size of the turbomachinery was measured by comparing the power input/output of the component. For heat exchangers the volume was computed and compared. Parametric studies away from the baseline values of the three-shaft and combined cycles were performed to determine the effect of varying conditions in the cycle. This gives some insight into the sensitivity of these cycles to various

  18. Advanced staged combustion system for power generation

    SciTech Connect

    Rehmat, A.; Goyal, A.

    1993-12-31

    To respond to the increasing market need for a new generation of plants with a substantial improvement in efficiency and a reduction in capital cost, the Institute of Gas Technology has developed an advanced staged, fluidized-bed combustion system concept. The staged fluidized-bed partial combustor produces the fuel gas at about 1500 F. The fuel gas, after particulate removal, is directed to a gas turbine followed by a steam cycle. Adequate sulfur capture and solids waste stabilization are attained by separating calcination, carbonization, and gasification/combustion steps in the staged fluidized beds. Intermediate gas cooling is avoided during the process to maximize the power production. The coal-to-electricity conversion efficiency of the system approaches 49 percent, which exceeds the efficiencies of the other emerging technologies.

  19. Life Cycle Assessment of Coal-fired Power Production

    SciTech Connect

    Spath, P. L.; Mann, M. K.; Kerr, D. R.

    1999-09-01

    Coal has the largest share of utility power generation in the US, accounting for approximately 56% of all utility-produced electricity (US DOE, 1998). Therefore, understanding the environmental implications of producing electricity from coal is an important component of any plan to reduce total emissions and resource consumption. A life cycle assessment (LCA) on the production of electricity from coal was performed in order to examine the environmental aspects of current and future pulverized coal boiler systems. Three systems were examined: (1) a plant that represents the average emissions and efficiency of currently operating coal-fired power plants in the US (this tells us about the status quo), (2) a new coal-fired power plant that meets the New Source Performance Standards (NSPS), and (3) a highly advanced coal-fired power plant utilizing a low emission boiler system (LEBS).

  20. Electronic power generators for ultrasonic frequencies

    NASA Technical Reports Server (NTRS)

    Ciovica, D.

    1974-01-01

    The design and construction of an ultrasonic frequency electronic power generator are discussed. The principle design elements of the generator are illustrated. The generator provides an inductive load with an output power of two kilowatts and a variable output frequency in the fifteen to thirty KiloHertz range. The method of conducting the tests and the results obtained with selected materials are analyzed.

  1. Biomass combustion technologies for power generation

    SciTech Connect

    Wiltsee, G.A. Jr.; McGowin, C.R.; Hughes, E.E.

    1993-12-31

    Technology in power production from biomass has been advancing rapidly. Industry has responded to government incentives such as the PURPA legislation in the US and has recognized that there are environmental advantages to using waste biomass as fuel. During the 1980s many new biomass power plants were built. The relatively mature stoker boiler technology was improved by the introduction of water-cooled grates, staged combustion air, larger boiler sizes up to 60 MW, higher steam conditions, and advanced sootblowing systems. Circulating fluidized-bed (CFB) technology achieved full commercial status, and now is the leading process for most utility-scale power applications, with more complete combustion, lower emissions, and better fuel flexibility than stoker technology. Bubbling fluidized-bed (BFB) technology has an important market niche as the best process for difficult fuels such as agricultural wastes, typically in smaller plants. Other biomass power generation technologies are being developed for possible commercial introduction in the 1990s. Key components of Whole Tree Energy{trademark} technology have been tested, conceptual design studies have been completed with favorable results, and plans are being made for the first integrated process demonstration. Fluidized-bed gasification processes have advanced from pilot to demonstration status, and the world`s first integrated wood gasification/combined cycle utility power plant is starting operation in Sweden in early 1993. Several European vendors offer biomass gasification processes commercially. US electric utilities are evaluating the cofiring of biomass with fossil fuels in both existing and new plants. Retrofitting existing coal-fired plants gives better overall cost and performance results than any biomass technologies;but retrofit cofiring is {open_quotes}fuel-switching{close_quotes} that provides no new capacity and is attractive only with economic incentives.

  2. Life cycle assessment of a biomass gasification combined-cycle power system

    SciTech Connect

    Mann, M.K.; Spath, P.L.

    1997-12-01

    The potential environmental benefits from biomass power are numerous. However, biomass power may also have some negative effects on the environment. Although the environmental benefits and drawbacks of biomass power have been debated for some time, the total significance has not been assessed. This study serves to answer some of the questions most often raised in regard to biomass power: What are the net CO{sub 2} emissions? What is the energy balance of the integrated system? Which substances are emitted at the highest rates? What parts of the system are responsible for these emissions? To provide answers to these questions, a life cycle assessment (LCA) of a hypothetical biomass power plant located in the Midwest United States was performed. LCA is an analytical tool for quantifying the emissions, resource consumption, and energy use, collectively known as environmental stressors, that are associated with converting a raw material to a final product. Performed in conjunction with a technoeconomic feasibility study, the total economic and environmental benefits and drawbacks of a process can be quantified. This study complements a technoeconomic analysis of the same process, reported in Craig and Mann (1996) and updated here. The process studied is based on the concept of power Generation in a biomass integrated gasification combined cycle (BIGCC) plant. Broadly speaking, the overall system consists of biomass production, its transportation to the power plant, electricity generation, and any upstream processes required for system operation. The biomass is assumed to be supplied to the plant as wood chips from a biomass plantation, which would produce energy crops in a manner similar to the way food and fiber crops are produced today. Transportation of the biomass and other materials is by both rail and truck. The IGCC plant is sized at 113 MW, and integrates an indirectly-heated gasifier with an industrial gas turbine and steam cycle. 63 refs., 34 figs., 32 tabs.

  3. Space Station Freedom solar dynamic power generation

    NASA Technical Reports Server (NTRS)

    Springer, T.; Friefeld, Jerry M.

    1990-01-01

    Viewgraphs on Space Station Freedom solar dynamic power generation are presented. Topics covered include: prime contract activity; key solar dynamic power module requirements; solar dynamic heat receiver technology; and solar concentrator advanced development.

  4. Space Station Freedom solar dynamic power generation

    NASA Technical Reports Server (NTRS)

    Springer, T.; Friefeld, Jerry M.

    1990-01-01

    Viewgraphs on Space Station Freedom solar dynamic power generation are presented. Topics covered include: prime contract activity; key solar dynamic power module requirements; solar dynamic heat receiver technology; and solar concentrator advanced development.

  5. Combined fuel and air staged power generation system

    DOEpatents

    Rabovitser, Iosif K; Pratapas, John M; Boulanov, Dmitri

    2014-05-27

    A method and apparatus for generation of electric power employing fuel and air staging in which a first stage gas turbine and a second stage partial oxidation gas turbine power operated in parallel. A first portion of fuel and oxidant are provided to the first stage gas turbine which generates a first portion of electric power and a hot oxidant. A second portion of fuel and oxidant are provided to the second stage partial oxidation gas turbine which generates a second portion of electric power and a hot syngas. The hot oxidant and the hot syngas are provided to a bottoming cycle employing a fuel-fired boiler by which a third portion of electric power is generated.

  6. Power generating system and method utilizing hydropyrolysis

    DOEpatents

    Tolman, R.

    1986-12-30

    A vapor transmission cycle is described which burns a slurry of coal and water with some of the air from the gas turbine compressor, cools and cleans the resulting low-Btu fuel gas, burns the clean fuel gas with the remaining air from the compressor, and extracts the available energy in the gas turbine. The cycle lends itself to combined-cycle cogeneration for the production of steam, absorption cooling, and electric power.

  7. Thermoelectric power generator with intermediate loop

    SciTech Connect

    Bell, Lon E; Crane, Douglas Todd

    2013-05-21

    A thermoelectric power generator is disclosed for use to generate electrical power from heat, typically waste heat. An intermediate heat transfer loop forms a part of the system to permit added control and adjustability in the system. This allows the thermoelectric power generator to more effectively and efficiently generate power in the face of dynamically varying temperatures and heat flux conditions, such as where the heat source is the exhaust of an automobile, or any other heat source with dynamic temperature and heat flux conditions.

  8. Thermoelectric power generator with intermediate loop

    DOEpatents

    Bel,; Lon, E [Altadena, CA; Crane, Douglas Todd [Pasadena, CA

    2009-10-27

    A thermoelectric power generator is disclosed for use to generate electrical power from heat, typically waste heat. An intermediate heat transfer loop forms a part of the system to permit added control and adjustability in the system. This allows the thermoelectric power generator to more effectively and efficiently generate power in the face of dynamically varying temperatures and heat flux conditions, such as where the heat source is the exhaust of an automobile, or any other heat source with dynamic temperature and heat flux conditions.

  9. Fuel cell and advanced turbine power cycle

    SciTech Connect

    White, D.J.

    1996-12-31

    Solar has a vested interest in integration of gas turbines and high temperature fuels (particularly solid oxide fuel cells[SOFC]); this would be a backup for achieving efficiencies on the order of 60% with low exhaust emissions. Preferred cycle is with the fuel cell as a topping system to the gas turbine; bottoming arrangements (fuel cells using the gas turbine exhaust as air supply) would likely be both larger and less efficient unless complex steam bottoming systems are added. The combined SOFC and gas turbine will have an advantage because it will have lower NOx emissions than any heat engine system. Market niche for initial product entry will be the dispersed or distributed power market in nonattainment areas. First entry will be of 1-2 MW units between the years 2000 and 2004. Development requirements are outlined for both the fuel cell and the gas turbine.

  10. Geothermal power generation in United States

    NASA Astrophysics Data System (ADS)

    Braun, Gerald W.; McCluer, H. K.

    1993-03-01

    Geothermal energy is an indigenous environmentally benign heat source with the potential for 5000-10,000 GWe of power generation in the United States. Approximately 2535 MWe of installed capacity is currently operating in the U.S. with contracted power costs down to 4.6 cents/kWh. This paper summarizes: 1) types of geothermal resources; 2) power conversion systems used for geothermal power generation; 3) environmental aspects; 4) geothermal resource locations, potential, and current power plant development; 5) hurdles, bottlenecks, and risks of geothermal power production; 6) lessons learned; and 7) ongoing and future geothermal research programs.

  11. Hydrogen Peroxide Gas Generator Cycle with a Reciprocating Pump

    SciTech Connect

    Whitehead, J C

    2002-06-11

    A four-chamber piston pump is powered by decomposed 85% hydrogen peroxide. The performance envelope of the evolving 400 gram pump has been expanded to 172 cc/s water flow at discharge pressures near 5 MPa. A gas generator cycle system using the pump has been tested under similar conditions of pressure and flow. The powerhead gas is derived from a small fraction of the pumped hydrogen peroxide, and the system starts from tank pressures as low as 0.2 MPa. The effects of steam condensation on performance have been evaluated.

  12. Integrated engine generator for aircraft secondary power

    NASA Technical Reports Server (NTRS)

    Secunde, R. R.

    1972-01-01

    An integrated engine-generator for aircraft secondary power generation is described. The concept consists of an electric generator located inside a turbojet or turbofan engine and both concentric with and driven by one of the main engine shafts. The electric power conversion equipment and generator controls are located in the aircraft. When properly rated, the generator serves as an engine starter as well as a source of electric power. This configuration reduces or eliminates the need for an external gear box on the engine and permits reduction in the nacelle diameter.

  13. Status of Brayton Cycle Power Conversion Development at NASA GRC

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.; Shaltens, Richard K.; Dolce, James L.; Cataldo, Robert L.

    2002-01-01

    The NASA Glenn Research Center (GRC) is pursuing the development of Brayton cycle power conversion for various NASA initiatives. Brayton cycle power systems offer numerous advantages for space power generation including high efficiency, long life, high maturity, and broad scalability. Candidate mission applications include surface rovers and bases, advanced propulsion vehicles, and earth orbiting satellites. A key advantage is the ability for Brayton converters to span the wide range of power demands of future missions from several kilowatts to multi-megawatts using either solar, isotope, or reactor heat sources. Brayton technology has been under development by NASA since the early 1960's resulting in engine prototypes in the 2 to 15 kW-class that have demonstrated conversion efficiency of almost 30% and cumulative operation in excess of 40,000 hours. Present efforts at GRC are focusing on a 2 kW testbed as a proving ground for future component advances and operational strategies, and a 25 kW engine design as a modular building block for 100 kW-class electric propulsion and Mars surface power applications.

  14. Status of Brayton cycle power conversion development at NASA GRC

    NASA Astrophysics Data System (ADS)

    Mason, Lee S.; Shaltens, Richard K.; Dolce, James L.; Cataldo, Robert L.

    2002-01-01

    The NASA Glenn Research Center is pursuing the development of Brayton cycle power conversion for various NASA initiatives. Brayton cycle power systems offer numerous advantages for space power generation including high efficiency, long life, high maturity, and broad salability. Candidate mission applications include surface rovers and bases, advanced propulsion vehicles, and earth orbiting satellites. A key advantage is the ability for Brayton converters to span the wide range of power demands of future missions from several kilowatts to multi-megawatts using either solar, isotope, or reactor heat sources. Brayton technology has been under development by NASA since the early 1960's resulting in engine prototypes in the 2 to 15 kW-class that have demonstrated conversion efficiency of almost 30% and cumulative operation in excess of 40,000 hours. Present efforts at GRC are focusing on a 2 kW testbed as a proving ground for future component advances and operational strategies, and a 25 kW engine design as a modular building block for 100 kW-class electric propulsion and Mars surface power applications. .

  15. Next Generation Power and Energy

    DTIC Science & Technology

    2010-12-02

    18MW) – No plans for additional testing  High Temperature Superconducting Motor (HTS) – Full Power Testing Complete (December 08) – Motor Achieved...US Aircraft Carrier - ASNE CAPS Brief Oct 2010 Distribution Statement A: Approved for public release PLATFORM RESULTS Amphibious Assault (LHD 8)  The...full Integrated Power System  IPS declared for future surface combatants Germany  U-212 Submarines - Diesel Electric w/ PM Motors - AIP systems using

  16. A Non-condensing Thermal Compression Power Generation System

    DOE PAGES

    McGrail, B. P.; Jenks, J. J.; Abrams, W. P.; ...

    2017-09-12

    Organic Rankine cycle (ORC) systems have attracted interest for more than three decades due to advantages in operation at lower working temperature, low maintenance requirements, and relative simplicity (fewer components). In theory, these advantages should make ORC technology more economically attractive for the small and medium power scales (10 kW to 10 MW). Unfortunately, the theoretical promise of ORC systems for power generation has been realized at only a relatively small fraction of the potential market. Although there are a number of reasons for the low utilization of ORC technology, the root cause is directly tied to the relatively lowmore » heat-to-power conversion efficiency (2 to 7% typically) and high cost of specially designed expander–generator equipment that is up to 60% of total system cost. The resulting high cost of the power produced just does not make economic sense except in very specialized situations where on-site power is needed but unavailable (at any cost) or where local generation costs are well above regional averages. The overarching objective of the work presented here is to break this paradigm by developing and demonstrating a new harmonic adsorption recuperative power cycle (HARP) system that offers 40% more efficient power generation as compared with a standard ORC system and estimated electric power production costs at very competitive rates below $0.10/kWh.« less

  17. The next generation of revenue cycle management.

    PubMed

    Hammer, David C

    2007-07-01

    The revenue cycle management environment is dynamic. Revenue cycle leaders are now responsible for additional functional areas and have to deal with new financing arrangements that expose the organization to greater financial risk. Financial managers can use key performance indicators and the suggested practice processes checklist to determine whether their revenue cycle operations are in good shape or need shaping up.

  18. Design considerations of a power supply system for fast cycling superconducting accelerator magnets of 2 Tesla b-field generated by a conductor of 100 kA current

    SciTech Connect

    Hays, Steve; Piekarz, Henryk; Pfeffer, Howie; Claypool, Brad; /Fermilab

    2007-06-01

    Recently proposed fast cycling accelerators for proton drivers (SF-SPS, CERN and SF-MR, SF-BOOSTER, FNAL) neutrino sources require development of new magnet technology. In support of this magnet development a power supply system will need to be developed that can support the high current and high rate of power swing required by the fast cycling (1 sec rise and fall in the SF-MR, 5Hz in Booster). This paper will outline a design concept for a +/- 2000 V and 100,000 A fast ramping power supply system. This power supply design is in support of a 6.44 km magnet system at 0.020 H and 330 m 5 Hz, 0.00534 H superconducting loads. The design description will include the layout and plan for extending the present FNAL Main Injector style ramping power supply to the higher currents needed for this operation. This will also include the design for a harmonic filter and power factor corrector that will be needed to control the large power swings caused by the fast cycle time. A conceptual design for the current regulation system and control will also be outlined. The power circuit design will include the bridge, filter and transformer plan based on existing designs.

  19. Fossil fuel combined cycle power generation method

    DOEpatents

    Labinov, Solomon D [Knoxville, TN; Armstrong, Timothy R [Clinton, TN; Judkins, Roddie R [Knoxville, TN

    2008-10-21

    A method for converting fuel energy to electricity includes the steps of converting a higher molecular weight gas into at least one mixed gas stream of lower average molecular weight including at least a first lower molecular weight gas and a second gas, the first and second gases being different gases, wherein the first lower molecular weight gas comprises H.sub.2 and the second gas comprises CO. The mixed gas is supplied to at least one turbine to produce electricity. The mixed gas stream is divided after the turbine into a first gas stream mainly comprising H.sub.2 and a second gas stream mainly comprising CO. The first and second gas streams are then electrochemically oxidized in separate fuel cells to produce electricity. A nuclear reactor can be used to supply at least a portion of the heat the required for the chemical conversion process.

  20. Fuel cells for distributed power generation

    NASA Astrophysics Data System (ADS)

    Tarman, Paul B.

    Deregulation has caused a major change in power distribution in the USA. Large central power stations are being and will continue to be replaced by smaller, distributed power generation sources of less than 20 kW. Fuel cells, specifically molten carbonate fuel cells (MCFCs), are best suited to serve this need. Small turbines cannot achieve the efficiency or environmental friendliness of MCFCs in this power range. This paper discusses the goals of M-C Power Corporation and the advantages of its IMHEX® MCFC technology. M-C Power's factory, demonstration testing program, and its market-entry power plant are also described, as are its commercialization strategy and schedule.

  1. Photoconductive switching for high power microwave generation

    SciTech Connect

    Pocha, M.D.; Hofer, W.W.

    1990-10-01

    Photoconductive switching is a technology that is being increasingly applied to generation of high power microwaves. Two primary semiconductors used for these devices are silicon and gallium arsenide. Diamond is a promising future candidate material. This paper discusses the important material parameters and switching modes, critical issues for microwave generation, and future directions for this high power, photoconductive switching technology.

  2. Pneumatic tire-based piezoelectric power generation

    NASA Astrophysics Data System (ADS)

    Makki, Noaman; Pop-Iliev, Remon

    2011-03-01

    Plug-in Hybrid Electric Vehicles (PHEVs) and Extended Range Electric Vehicles (EREVs) currently mainly rely on Internal Combustion Engines (ICE) utilizing conventional fuels to recharge batteries in order to extend their range. Even though Piezo-based power generation devices have surfaced in recent years harvesting vibration energy, their output has only been sufficient to power up sensors and other such smaller devices. The permanent need for a cleaner power generation technique still remains. This paper investigates the possibility of using piezoceramics for power generation within the vehicle's wheel assembly by exploiting the rotational motion of the wheel and the continuously variable contact point between the pneumatic tire and the road.

  3. Concentrated solar power generation using solar receivers

    DOEpatents

    Anderson, Bruce N.; Treece, William Dean; Brown, Dan; Bennhold, Florian; Hilgert, Christoph

    2017-08-08

    Inventive concentrated solar power systems using solar receivers, and related devices and methods, are generally described. Low pressure solar receivers are provided that function to convert solar radiation energy to thermal energy of a working fluid, e.g., a working fluid of a power generation or thermal storage system. In some embodiments, low pressure solar receivers are provided herein that are useful in conjunction with gas turbine based power generation systems.

  4. Combined cycle power unit with a binary system based on waste geothermal brine at Mutnovsk geothermal power plant

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Shipkov, A. A.; Nikol'skii, A. I.; Semenov, V. N.

    2016-06-01

    The Russian geothermal power systems developed in the last few decades outperform their counterparts around the world in many respects. However, all Russian geothermal power stations employ steam as the geothermal fluid and discard the accompanying geothermal brine. In reality, the power of the existing Russian geothermal power stations may be increased without drilling more wells, if the waste brine is employed in combined cycle systems with steam and binary turbine units. For the example of the 50 MW Mutnovsk geothermal power plant, the optimal combined cycle power unit based on the waste geothermal brine is considered. It is of great interest to determine how the thermodynamic parameters of the secondary steam in the expansion unit and the pressure in the condenser affect the performance of the equipment in the combined cycle power unit at Mutnovsk geothermal power plant. For the utilization of the waste geothermal brine at Mutnovsk geothermal power plant, the optimal air temperature in the condensers of the combined cycle power unit is +5°C. The use of secondary steam obtained by flashing of the geothermal brine at Mutnovsk geothermal power plant 1 at a pressure of 0.2 MPa permits the generation of up to 8 MW of electric power in steam turbines and additional power of 5 MW in the turbines of the binary cycle.

  5. Solar energy thermally powered electrical generating system

    NASA Technical Reports Server (NTRS)

    Owens, William R. (Inventor)

    1989-01-01

    A thermally powered electrical generating system for use in a space vehicle is disclosed. The rate of storage in a thermal energy storage medium is controlled by varying the rate of generation and dissipation of electrical energy in a thermally powered electrical generating system which is powered from heat stored in the thermal energy storage medium without exceeding a maximum quantity of heat. A control system (10) varies the rate at which electrical energy is generated by the electrical generating system and the rate at which electrical energy is consumed by a variable parasitic electrical load to cause storage of an amount of thermal energy in the thermal energy storage system at the end of a period of insolation which is sufficient to satisfy the scheduled demand for electrical power to be generated during the next period of eclipse. The control system is based upon Kalman filter theory.

  6. Power Control of New Wind Power Generation System with Induction Generator Excited by Voltage Source Converter

    NASA Astrophysics Data System (ADS)

    Morizane, Toshimitsu; Kimura, Noriyuki; Taniguchi, Katsunori

    This paper investigates advantages of new combination of the induction generator for wind power and the power electronic equipment. Induction generator is popularly used for the wind power generation. The disadvantage of it is impossible to generate power at the lower rotor speed than the synchronous speed. To compensate this disadvantage, expensive synchronous generator with the permanent magnets is sometimes used. In proposed scheme, the diode rectifier is used to convert the real power from the induction generator to the intermediate dc voltage, while only the reactive power necessary to excite the induction generator is supplied from the voltage source converter (VSC). This means that the rating of the expensive VSC is minimized and total cost of the wind power generation system is decreased compared to the system with synchronous generator. Simulation study to investigate the control strategy of proposed system is performed. The results show the reduction of the VSC rating is prospective.

  7. Power generation using sugar cane bagasse: A heat recovery analysis

    NASA Astrophysics Data System (ADS)

    Seguro, Jean Vittorio

    The sugar industry is facing the need to improve its performance by increasing efficiency and developing profitable by-products. An important possibility is the production of electrical power for sale. Co-generation has been practiced in the sugar industry for a long time in a very inefficient way with the main purpose of getting rid of the bagasse. The goal of this research was to develop a software tool that could be used to improve the way that bagasse is used to generate power. Special focus was given to the heat recovery components of the co-generation plant (economizer, air pre-heater and bagasse dryer) to determine if one, or a combination, of them led to a more efficient co-generation cycle. An extensive review of the state of the art of power generation in the sugar industry was conducted and is summarized in this dissertation. Based on this models were developed. After testing the models and comparing the results with the data collected from the literature, a software application that integrated all these models was developed to simulate the complete co-generation plant. Seven different cycles, three different pressures, and sixty-eight distributions of the flue gas through the heat recovery components can be simulated. The software includes an economic analysis tool that can help the designer determine the economic feasibility of different options. Results from running the simulation are presented that demonstrate its effectiveness in evaluating and comparing the different heat recovery components and power generation cycles. These results indicate that the economizer is the most beneficial option for heat recovery and that the use of waste heat in a bagasse dryer is the least desirable option. Quantitative comparisons of several possible cycle options with the widely-used traditional back-pressure turbine cycle are given. These indicate that a double extraction condensing cycle is best for co-generation purposes. Power generation gains between 40 and

  8. Solar power generation and distribution

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The production of electricity from solar energy is discussed. The economics of the proposed generation and distribution systems are analyzed. The use of photovoltaics for converting solar energy to home heating is proposed. The problems of energy distribution are analyzed from the standpoint of equipment costs and complexity.

  9. Validation of a Mathematical Model for Road Cycling Power.

    PubMed

    Martin, James C; Milliken, Douglas L; Cobb, John E; McFadden, Kevin L; Coggan, Andrew R

    1998-08-01

    This investigation sought to determine if cycling power could be accurately modeled. A mathematical model of cycling power was derived, and values for each model parameter were determined. A bicycle-mounted power measurement system was validated by comparison with a laboratory ergometer. Power was measured during road cycling, and the measured values were compared with the values predicted by the model. The measured values for power were highly correlated (R(2) = .97) with, and were not different than, the modeled values. The standard error between the modeled and measured power (2.7 W) was very small. The model was also used to estimate the effects of changes in several model parameters on cycling velocity. Over the range of parameter values evaluated, velocity varied linearly (R(2) > .99). The results demonstrated that cycling power can be accurately predicted by a mathematical model.

  10. Supercritical Water Reactor Cycle for Medium Power Applications

    SciTech Connect

    BD Middleton; J Buongiorno

    2007-04-25

    and pipes were modeled with realistic assumptions using the PEACE module of Thermoflex. A three-dimensional layout of the plant was also generated with the SolidEdge software. The results of the engineering design are as follows: (i) The cycle achieves a net thermal efficiency of 24.13% with 350/460 C reactor inlet/outlet temperatures, {approx}250 bar reactor pressure and 0.75 bar condenser pressure. The steam quality at the turbine outlet is 90% and the total electric consumption of the pumps is about 2500 kWe at nominal conditions. (ii) The overall size of the plant is attractively compact and can be further reduced if a printed-circuit-heat-exchanger (vs shell-and-tube) design is used for the feedwater heater, which is currently the largest component by far. Finally, an analysis of the plant performance at off-nominal conditions has revealed good robustness of the design in handling large changes of thermal power and seawater temperature.

  11. An Implanted, Stimulated Muscle Powered Piezoelectric Generator

    NASA Technical Reports Server (NTRS)

    Lewandowski, Beth; Gustafson, Kenneth; Kilgore, Kevin

    2007-01-01

    A totally implantable piezoelectric generator system able to harness power from electrically activated muscle could be used to augment the power systems of implanted medical devices, such as neural prostheses, by reducing the number of battery replacement surgeries or by allowing periods of untethered functionality. The features of our generator design are no moving parts and the use of a portion of the generated power for system operation and regulation. A software model of the system has been developed and simulations have been performed to predict the output power as the system parameters were varied within their constraints. Mechanical forces that mimic muscle forces have been experimentally applied to a piezoelectric generator to verify the accuracy of the simulations and to explore losses due to mechanical coupling. Depending on the selection of system parameters, software simulations predict that this generator concept can generate up to approximately 700 W of power, which is greater than the power necessary to drive the generator, conservatively estimated to be 50 W. These results suggest that this concept has the potential to be an implantable, self-replenishing power source and further investigation is underway.

  12. Applicability of the minimum entropy generation method for optimizing thermodynamic cycles

    NASA Astrophysics Data System (ADS)

    Cheng, Xue-Tao; Liang, Xin-Gang

    2013-01-01

    Entropy generation is often used as a figure of merit in thermodynamic cycle optimizations. In this paper, it is shown that the applicability of the minimum entropy generation method to optimizing output power is conditional. The minimum entropy generation rate and the minimum entropy generation number do not correspond to the maximum output power when the total heat into the system of interest is not prescribed. For the cycles whose working medium is heated or cooled by streams with prescribed inlet temperatures and prescribed heat capacity flow rates, it is theoretically proved that both the minimum entropy generation rate and the minimum entropy generation number correspond to the maximum output power when the virtual entropy generation induced by dumping the used streams into the environment is considered. However, the minimum principle of entropy generation is not tenable in the case that the virtual entropy generation is not included, because the total heat into the system of interest is not fixed. An irreversible Carnot cycle and an irreversible Brayton cycle are analysed. The minimum entropy generation rate and the minimum entropy generation number do not correspond to the maximum output power if the heat into the system of interest is not prescribed.

  13. Electrical Power Conversion of River and Tidal Power Generator

    SciTech Connect

    Muljadi, Eduard; Gevorgian, Vahan; Wright, Alan; Donegan, James; Marnagh, Cian; McEntee, Jarlath

    2016-11-21

    As renewable generation has become less expensive during recent decades, and it becomes more accepted by the global population, the focus on renewable generation has expanded to include new types with promising future applications, such as river and tidal generation. Although the utilization of power electronics and electric machines in industry is phenomenal, the emphasis on system design is different for various sectors of industry. In precision control, robotics, and weaponry, the design emphasis is on accuracy and reliability with less concern for the cost of the final product. In energy generation, the cost of energy is the prime concern; thus, capital expenditures (CAPEX) and operations and maintenance expenditures (OPEX) are the major design objectives. This paper describes the electrical power conversion aspects of river and tidal generation. Although modern power converter control is available to control the generation side, the design was chosen on the bases of minimizing the CAPEX and OPEX; thus, the architecture is simple and modular for ease of replacement and maintenance. The power conversion is simplified by considering a simple diode bridge and a DC-DC power converter to take advantage of abundant and low-cost photovoltaic inverters that have well-proven grid integration characteristics (i.e., the capability to produce energy with good power quality and control real power and voltage on the grid side).

  14. Rankine engine solar power generation. I - Performance and economic analysis

    NASA Technical Reports Server (NTRS)

    Gossler, A. A.; Orrock, J. E.

    1981-01-01

    Results of a computer simulation of the performance of a solar flat plate collector powered electrical generation system are presented. The simulation was configured to include locations in New Mexico, North Dakota, Tennessee, and Massachusetts, and considered a water-based heat-transfer fluid collector system with storage. The collectors also powered a Rankine-cycle boiler filled with a low temperature working fluid. The generator was considered to be run only when excess solar heat and full storage would otherwise require heat purging through the collectors. All power was directed into the utility grid. The solar powered generator unit addition was found to be dependent on site location and collector area, and reduced the effective solar cost with collector areas greater than 400-670 sq m. The sites were economically ranked, best to worst: New Mexico, North Dakota, Massachusetts, and Tennessee.

  15. Rankine engine solar power generation. I - Performance and economic analysis

    NASA Technical Reports Server (NTRS)

    Gossler, A. A.; Orrock, J. E.

    1981-01-01

    Results of a computer simulation of the performance of a solar flat plate collector powered electrical generation system are presented. The simulation was configured to include locations in New Mexico, North Dakota, Tennessee, and Massachusetts, and considered a water-based heat-transfer fluid collector system with storage. The collectors also powered a Rankine-cycle boiler filled with a low temperature working fluid. The generator was considered to be run only when excess solar heat and full storage would otherwise require heat purging through the collectors. All power was directed into the utility grid. The solar powered generator unit addition was found to be dependent on site location and collector area, and reduced the effective solar cost with collector areas greater than 400-670 sq m. The sites were economically ranked, best to worst: New Mexico, North Dakota, Massachusetts, and Tennessee.

  16. Alkali metal Rankine cycles for utility and space power applications

    NASA Astrophysics Data System (ADS)

    Holcomb, R. S.

    1985-12-01

    The alkali metal Rankine cycle has potential for application to both electric utility and space power plants. A topping cycle in which an alkali metal vapor cycle is superimposed on a steam cycle would yield a thermal efficiency of about 50 percent for a fossil fuel-fired electric utility plant. Preliminary design studies have been carried out for utility power plants of 200 to 600 MW(e) output for potassium and cesium vapor topping cycles with both natural gas and fluidized bed coal firing. A full-scale potassium boiler tube bundle module was tested at 1088-1116 K with gas firing. Efficient, lightweight space power systems could be achieved with a potassium Rankine cycle employing a compact nuclear reactor. Studies have been made of both direct cycles with boiling potassium-cooled reactors and indirect cycles with liquid metal-cooled reactors, coupled to a boiler and turbine for turbine inlet temperatures up to 1450 K.

  17. Coal gasification for electric power generation.

    PubMed

    Spencer, D F; Gluckman, M J; Alpert, S B

    1982-03-26

    The electric utility industry is being severely affected by rapidly escalating gas and oil prices, restrictive environmental and licensing regulations, and an extremely tight money market. Integrated coal gasification combined cycle (IGCC) power plants have the potential to be economically competitive with present commercial coal-fired power plants while satisfying stringent emission control requirements. The current status of gasification technology is discussed and the critical importance of the 100-megawatt Cool Water IGCC demonstration program is emphasized.

  18. System studies of coal fired-closed cycle MHD for central station power plants

    NASA Technical Reports Server (NTRS)

    Zauderer, B.

    1976-01-01

    This paper presents a discussion of the closed-cycle MHD results obtained in a recent study of various advanced energy-conversion power systems. The direct coal-fired MHD topping-steam bottoming cycle was established as the current choice for central station power generation. Emphasis is placed on the background assumptions and the conclusions that can be drawn from the closed-cycle MHD analysis. It is concluded that closed-cycle MHD has efficiencies comparable to that of open-cycle MHD. Its cost will possibly be slightly higher than that of the open-cycle MHD system. Also, with reasonable fuel escalation assumptions, both systems can produce lower-cost electricity than conventional steam power plants. Suggestions for further work in closed-cycle MHD components and systems are made.

  19. System studies of coal fired-closed cycle MHD for central station power plants

    NASA Technical Reports Server (NTRS)

    Zauderer, B.

    1976-01-01

    This paper presents a discussion of the closed-cycle MHD results obtained in a recent study of various advanced energy-conversion power systems. The direct coal-fired MHD topping-steam bottoming cycle was established as the current choice for central station power generation. Emphasis is placed on the background assumptions and the conclusions that can be drawn from the closed-cycle MHD analysis. It is concluded that closed-cycle MHD has efficiencies comparable to that of open-cycle MHD. Its cost will possibly be slightly higher than that of the open-cycle MHD system. Also, with reasonable fuel escalation assumptions, both systems can produce lower-cost electricity than conventional steam power plants. Suggestions for further work in closed-cycle MHD components and systems are made.

  20. Life cycle assessment of overhead and underground primary power distribution.

    PubMed

    Bumby, Sarah; Druzhinina, Ekaterina; Feraldi, Rebe; Werthmann, Danae; Geyer, Roland; Sahl, Jack

    2010-07-15

    Electrical power can be distributed in overhead or underground systems, both of which generate a variety of environmental impacts at all stages of their life cycles. While there is considerable literature discussing the trade-offs between both systems in terms of aesthetics, safety, cost, and reliability, environmental assessments are relatively rare and limited to power cable production and end-of-life management. This paper assesses environmental impacts from overhead and underground medium voltage power distribution systems as they are currently built and managed by Southern California Edison (SCE). It uses process-based life cycle assessment (LCA) according to ISO 14044 (2006) and SCE-specific primary data to the extent possible. Potential environmental impacts have been calculated using a wide range of midpoint indicators, and robustness of the results has been investigated through sensitivity analysis of the most uncertain and potentially significant parameters. The studied underground system has higher environmental impacts in all indicators and for all parameter values, mostly due to its higher material intensity. For both systems and all indicators the majority of impact occurs during cable production. Promising strategies for impact reduction are thus cable failure rate reduction for overhead and cable lifetime extension for underground systems.

  1. Innovative gasification technology for future power generation

    SciTech Connect

    Mahajan, K.; Shadle, L.J.; Sadowski, R.S.

    1995-07-01

    Ever tightening environmental regulations have changed the way utility and non-utility electric generation providers currently view their fuels choices. While coal is still, by far, the major fuel utilized in power production, the general trend over the past 20 years has been to switch to low-sulfur coal and/or make costly modifications to existing coal-fired facilities to reach environmental compliance. Unfortunately, this approach has led to fragmented solutions to balance our energy and environmental needs. To date, few integrated gasification combined-cycle (IGCC) suppliers have been able to compete with the cost of other more conventional technologies or fuels. One need only look at the complexity of many IGCC approaches to understand that unless a view toward IEC is adopted, the widespread application of such otherwise potentially attractive technologies will be unlikely in our lifetime. Jacobs-Sirrine Engineers and Riley Stoker Corporation are working in partnership with the Department of Energy`s Morgantown Energy Technology Center to help demonstrate an innovative coal gasification technology called {open_quotes}PyGas{trademark},{close_quotes} for {open_quotes}pyrolysis-gasification{close_quotes}. This hybrid variation of fluidized-bed and fixed-bed gasification technologies is being developed with the goal to efficiently produce clean gas at costs competitive with more conventional systems by incorporating many of the principles of IEC within the confines of a single-gasifier vessel. Our project is currently in the detailed design stage of a 4 ton-per-hour gasification facility to be built at the Fort Martin Station of Allegheny Power Services. By locating the test facility at an existing coal-fired plant, much of the facility infrastructure can be utilized saving significant costs. Successful demonstration of this technology at this new facility is a prerequisite to its commercialization.

  2. The role of repowering in America's power generation future

    NASA Astrophysics Data System (ADS)

    1987-12-01

    Repowering--modifying aging coalfired electric power generating units with a new generation of environmentally clean, highly efficient coal technologies--can lead to long-term, sustained emission reductions, higher energy efficiencies, and more economical electricity for consumers. If the repowering design includes a combined cycle configuration, the potential exists to satisfy much of the nation's foreseeable demand for new capacity without undertaking expensive new power plant construction. This report analyzes the potential benefits of repowering with advanced, innovative clean coal technologies. It approaches the repowering option from the perspective of utility decisionmaking. Beneficial effects with respect to atmospheric pollution, in particular SO2 reduction and resulting acid rain reduction, are discussed.

  3. Harnessing microbially generated power on the seafloor.

    PubMed

    Tender, Leonard M; Reimers, Clare E; Stecher, Hilmar A; Holmes, Dawn E; Bond, Daniel R; Lowy, Daniel A; Pilobello, Kanoelani; Fertig, Stephanie J; Lovley, Derek R

    2002-08-01

    In many marine environments, a voltage gradient exists across the water sediment interface resulting from sedimentary microbial activity. Here we show that a fuel cell consisting of an anode embedded in marine sediment and a cathode in overlying seawater can use this voltage gradient to generate electrical power in situ. Fuel cells of this design generated sustained power in a boat basin carved into a salt marsh near Tuckerton, New Jersey, and in the Yaquina Bay Estuary near Newport, Oregon. Retrieval and analysis of the Tuckerton fuel cell indicates that power generation results from at least two anode reactions: oxidation of sediment sulfide (a by-product of microbial oxidation of sedimentary organic carbon) and oxidation of sedimentary organic carbon catalyzed by microorganisms colonizing the anode. These results demonstrate in real marine environments a new form of power generation that uses an immense, renewable energy reservoir (sedimentary organic carbon) and has near-immediate application.

  4. Green Power Partnership Eligible Generation Dates

    EPA Pesticide Factsheets

    The U.S. EPA's Green Power Partnership is a voluntary partnership program designed to reduce the environmental impact of electricity generation by promoting renewable energy. EPA requires that Partners meet GPP's vintage requirement.

  5. Green Power Partnership Renewable Generation Vintage Requirements

    EPA Pesticide Factsheets

    The U.S. EPA's Green Power Partnership is a voluntary partnership program designed to reduce the environmental impact of electricity generation by promoting renewable energy. EPA requires that Partners meet GPP's vintage requirement.

  6. Power generation method including membrane separation

    DOEpatents

    Lokhandwala, Kaaeid A.

    2000-01-01

    A method for generating electric power, such as at, or close to, natural gas fields. The method includes conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas by means of a membrane separation step. This step creates a leaner, sweeter, drier gas, which is then used as combustion fuel to run a turbine, which is in turn used for power generation.

  7. Electrofishing power requirements in relation to duty cycle

    USGS Publications Warehouse

    Miranda, L.E.; Dolan, C.R.

    2004-01-01

    Under controlled laboratory conditions we measured the electrical peak power required to immobilize (i.e., narcotize or tetanize) fish of various species and sizes with duty cycles (i.e., percentage of time a field is energized) ranging from 1.5% to 100%. Electrofishing effectiveness was closely associated with duty cycle. Duty cycles of 10-50% required the least peak power to immobilize fish; peak power requirements increased gradually above 50% duty cycle and sharply below 10%. Small duty cycles can increase field strength by making possible higher instantaneous peak voltages that allow the threshold power needed to immobilize fish to radiate farther away from the electrodes. Therefore, operating within the 10-50% range of duty cycles would allow a larger radius of immobilization action than operating with higher duty cycles. This 10-50% range of duty cycles also coincided with some of the highest margins of difference between the electrical power required to narcotize and that required to tetanize fish. This observation is worthy of note because proper use of duty cycle could help reduce the mortality associated with tetany documented by some authors. Although electrofishing with intermediate duty cycles can potentially increase effectiveness of electrofishing, our results suggest that immobilization response is not fully accounted for by duty cycle because of a potential interaction between pulse frequency and duration that requires further investigation.

  8. Power generator driven by Maxwell's demon

    NASA Astrophysics Data System (ADS)

    Chida, Kensaku; Desai, Samarth; Nishiguchi, Katsuhiko; Fujiwara, Akira

    2017-05-01

    Maxwell's demon is an imaginary entity that reduces the entropy of a system and generates free energy in the system. About 150 years after its proposal, theoretical studies explained the physical validity of Maxwell's demon in the context of information thermodynamics, and there have been successful experimental demonstrations of energy generation by the demon. The demon's next task is to convert the generated free energy to work that acts on the surroundings. Here, we demonstrate that Maxwell's demon can generate and output electric current and power with individual randomly moving electrons in small transistors. Real-time monitoring of electron motion shows that two transistors functioning as gates that control an electron's trajectory so that an electron moves directionally. A numerical calculation reveals that power generation is increased by miniaturizing the room in which the electrons are partitioned. These results suggest that evolving transistor-miniaturization technology can increase the demon's power output.

  9. Apparatus and method for thermal power generation

    DOEpatents

    Cohen, Paul; Redding, Arnold H.

    1978-01-01

    An improved thermal power plant and method of power generation which minimizes thermal stress and chemical impurity buildup in the vaporizing component, particularly beneficial under loss of normal feed fluid and startup conditions. The invention is particularly applicable to a liquid metal fast breeder reactor plant.

  10. Review of pulsed rf power generation

    SciTech Connect

    Lavine, T.L.

    1992-04-01

    I am going to talk about pulsed high-power rf generation for normal-conducting electron and positron linacs suitable for applications to high-energy physics in the Next Linear Collider, or NLC. The talk will cover some basic rf system design issues, klystrons and other microwave power sources, rf pulse-compression devices, and test facilities for system-integration studies.

  11. Solar Power Generation in Extreme Space Environments

    NASA Technical Reports Server (NTRS)

    Elliott, Frederick W.; Piszczor, Michael F.

    2016-01-01

    The exploration of space requires power for guidance, navigation, and control; instrumentation; thermal control; communications and data handling; and many subsystems and activities. Generating sufficient and reliable power in deep space through the use of solar arrays becomes even more challenging as solar intensity decreases and high radiation levels begin to degrade the performance of photovoltaic devices. The Extreme Environments Solar Power (EESP) project goal is to develop advanced photovoltaic technology to address these challenges.

  12. Evolutionary algorithm for vehicle driving cycle generation.

    PubMed

    Perhinschi, Mario G; Marlowe, Christopher; Tamayo, Sergio; Tu, Jun; Wayne, W Scott

    2011-09-01

    Modeling transit bus emissions and fuel economy requires a large amount of experimental data over wide ranges of operational conditions. Chassis dynamometer tests are typically performed using representative driving cycles defined based on vehicle instantaneous speed as sequences of "microtrips", which are intervals between consecutive vehicle stops. Overall significant parameters of the driving cycle, such as average speed, stops per mile, kinetic intensity, and others, are used as independent variables in the modeling process. Performing tests at all the necessary combinations of parameters is expensive and time consuming. In this paper, a methodology is proposed for building driving cycles at prescribed independent variable values using experimental data through the concatenation of "microtrips" isolated from a limited number of standard chassis dynamometer test cycles. The selection of the adequate "microtrips" is achieved through a customized evolutionary algorithm. The genetic representation uses microtrip definitions as genes. Specific mutation, crossover, and karyotype alteration operators have been defined. The Roulette-Wheel selection technique with elitist strategy drives the optimization process, which consists of minimizing the errors to desired overall cycle parameters. This utility is part of the Integrated Bus Information System developed at West Virginia University.

  13. Liquid-metal binary cycles for stationary power

    NASA Technical Reports Server (NTRS)

    Gutstein, M.; Furman, E. R.; Kaplan, G. M.

    1975-01-01

    The use of topping cycles to increase electric power plant efficiency is discussed, with particular attention to mercury and alkali metal Rankine cycle systems that could be considered for topping cycle applications. An overview of this technology, possible system applications, the required development, and possible problem areas is presented.

  14. Experience with organic Rankine cycles in heat recovery power plants

    SciTech Connect

    Bronicki, L.Y.; Elovic, A.; Rettger, P.

    1996-11-01

    Over the last 30 years, organic Rankine cycles (ORC) have been increasingly employed to produce power from various heat sources when other alternatives were either technically not feasible or economical. These power plants have logged a total of over 100 million turbine hours of experience demonstrating the maturity and field proven technology of the ORC cycle. The cycle is well adapted to low to moderate temperature heat sources such as waste heat from industrial plants and is widely used to recover energy from geothermal resources. The above cycle technology is well established and applicable to heat recovery of medium size gas turbines and offers significant advantages over conventional steam bottoming cycles.

  15. 78 FR 32385 - Exelon Generation Company, LLC; CER Generation II, LLC; Constellation Mystic Power, LLC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-30

    ... Energy Regulatory Commission Exelon Generation Company, LLC; CER Generation II, LLC; Constellation Mystic Power, LLC; Constellation NewEnergy, Inc.; Constellation Power Source Generation, Inc.; Criterion Power..., CER Generation II, LLC, Constellation Mystic Power, LLC, Constellation NewEnergy, Inc.,...

  16. Recovered Energy Generation Using an Organic Rankine Cycle System

    SciTech Connect

    Leslie, Neil; Sweetser, Richard; Zimron, Ohad; Stovall, Therese K

    2009-01-01

    This paper describes the results of a project demonstrating the technical and economic feasibility of capturing thermal energy from a 35,000 hp (27 MW) gas turbine driving a natural gas pipeline compressor with a Recovered Energy Generation (REG) system to produce 5.5 MW of electricity with no additional fuel and near-zero emissions. The REG is based on a modified Organic Rankine Cycle (ORC). Other major system elements include a waste-heat-to-oil heat exchanger with bypass, oil-to-pentane heat exchanger with preheater, recuperator, condenser, pentane turbine, generator and synchronizing breaker and all power and control systems required for the automatic operation of the REG. When operating at design heat input available from the gas turbine exhaust, the REG system consistently delivered 5.5 MW or more output to the grid at up to 15 percent heat conversion efficiency. The REG system improved the overall energy efficiency by 28%, from 32% simple cycle efficiency to 41% for the combined system. Significant lessons learned from this project are discussed as well as measured performance and economic considerations.

  17. Hybrid solar central receiver for combined cycle power plant

    DOEpatents

    Bharathan, Desikan; Bohn, Mark S.; Williams, Thomas A.

    1995-01-01

    A hybrid combined cycle power plant including a solar central receiver for receiving solar radiation and converting it to thermal energy. The power plant includes a molten salt heat transfer medium for transferring the thermal energy to an air heater. The air heater uses the thermal energy to preheat the air from the compressor of the gas cycle. The exhaust gases from the gas cycle are directed to a steam turbine for additional energy production.

  18. Hybrid solar central receiver for combined cycle power plant

    DOEpatents

    Bharathan, D.; Bohn, M.S.; Williams, T.A.

    1995-05-23

    A hybrid combined cycle power plant is described including a solar central receiver for receiving solar radiation and converting it to thermal energy. The power plant includes a molten salt heat transfer medium for transferring the thermal energy to an air heater. The air heater uses the thermal energy to preheat the air from the compressor of the gas cycle. The exhaust gases from the gas cycle are directed to a steam turbine for additional energy production. 1 figure.

  19. Fuel Cycle Comparison for Distributed Power Technologies

    SciTech Connect

    Elgowainy, A.; Wang, M. Q.

    2008-11-15

    This report examines backup power and prime power systems and addresses the potential energy and environmental effects of substituting fuel cells for existing combustion technologies based on microturbines and internal combustion engines.

  20. Fiscalini Farms Renewable Energy Power Generation Project

    SciTech Connect

    2009-02-01

    Funded by the American Recovery and Reinvestment Act of 2009 Fiscalini Farms L.P., in collaboration with University of the Pacific, Biogas Energy, Inc., and the University of California at Berkeley will measure and analyze the efficiency and regulatory compliance of a renewable energy system for power generation. The system will utilize digester gas from an anaerobic digester located at the Fiscalini Farms dairy for power generation with a reciprocating engine. The project will provide power, efficiency, emissions, and cost/benefit analysis for the system and evaluate its compliance with federal and California emissions standards.

  1. Application of Power Electronics on Hydropower Generation

    NASA Astrophysics Data System (ADS)

    Hell, Johann

    2017-04-01

    The developments in power electronics are offering new opportunities in operation of hydro power generating units. The applied load in pump and turbine operation cannot be changed easily. By using of frequency converters, the speed of the units can be changed in a defined range, without losing much efficiency. An additional benefit of such kind of concept is the improved transient performance of the entire system. In the presented paper the advantage of speed variable power generating system equipped with frequency converters are shown.

  2. Models for generation of carbonate cycles

    NASA Astrophysics Data System (ADS)

    Read, J. F.; Grotzinger, J. P.; Bova, J. A.; Koerschner, W. F.

    1986-02-01

    Computer modeling provides a quantitative approach to a better understanding of actual carbonate cyclic sequences. To model carbonate cycles, we can use water-depth-dependent sedimentation rate for each facies, an initial lag time, linear subsidence, tidal range, and period and amplitude of sea-level oscillation about a horizontal datum. Tidal-flat-capped cycles up to a few metres thick result from low-amplitude sea-level oscillation of a few metres and short lag times. Nonerosive caps reflect sea-level lowering being balanced by subsidence, and basinward migration of the shoreline not exceeding tidal-flat progradation rate. When higher amplitude sea-level oscillations occur, the tidal flats are abandoned on the inner shelf during sea-level fall, because seaward movement of the strandline outpaces progradation rate of flats. Increased amplitude also results in sea level falling faster than flats can subside, so that disconformities with thick vadose profiles develop. High-amplitude (100 m or more) oscillations result in incipient drowning of platforms and juxtaposition of deep-water facies against shallow-water facies within cycles. Sea level falls before the platform can build to the sea-level highstand, and the shoreline migrates much more rapidly than tidal flats can prograde; thus, cycles are disconformity-bounded and lack tidal-flat caps.

  3. Solar driven liquid metal MHD power generator

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Hohl, F. (Inventor)

    1983-01-01

    A solar energy collector focuses solar energy onto a solar oven which is attached to a mixer which in turn is attached to the channel of a MHD generator. Gas enters the oven and a liquid metal enters the mixer. The gas/liquid metal mixture is heated by the collected solar energy and moves through the MHD generator thereby generating electrical power. The mixture is then separated and recycled.

  4. Solar driven liquid metal MHD power generator

    NASA Astrophysics Data System (ADS)

    Lee, J. H.; Hohl, F.

    1983-06-01

    A solar energy collector focuses solar energy onto a solar oven which is attached to a mixer which in turn is attached to the channel of a MHD generator. Gas enters the oven and a liquid metal enters the mixer. The gas/liquid metal mixture is heated by the collected solar energy and moves through the MHD generator thereby generating electrical power. The mixture is then separated and recycled.

  5. Fuel cell and advanced turbine power cycle

    SciTech Connect

    White, D.J.

    1995-10-19

    Solar Turbines, Incorporated (Solar) has a vested interest in the integration of gas turbines and high temperature fuel cells and in particular, solid oxide fuel cells (SOFCs). Solar has identified a parallel path approach to the technology developments needed for future products. The primary approach is to move away from the simple cycle industrial machines of the past and develop as a first step more efficient recuperated engines. This move was prompted by the recognition that the simple cycle machines were rapidly approaching their efficiency limits. Improving the efficiency of simple cycle machines is and will become increasingly more costly. Each efficiency increment will be progressively more costly than the previous step.

  6. Test results of an organic Rankine-cycle power module for a small community solar thermal power experiment

    NASA Technical Reports Server (NTRS)

    Clark, T. B.

    1985-01-01

    The organic Rankine-cycle (ORC) power conversion assembly was tested. Qualification testing of the electrical transport subsystem was also completed. Test objectives were to verify compatibility of all system elements with emphasis on control of the power conversion assembly, to evaluate the performance and efficiency of the components, and to validate operating procedures. After 34 hours of power generation under a wide range of conditions, the net module efficiency exceeded 18% after accounting for all parasitic losses.

  7. US/USSR cooperative program in open-cycle MHD electrical power generation: joint test report No. 3. Tests in the U-25B facility: MHD generator tests No. 4 and 5

    SciTech Connect

    Picologlou, B F; Batenin, V M

    1980-07-01

    A description of the modifications made to improve the plasma parameters of the U-25B Facility is presented. The oxygen enrichment system was modified to allow oxygen enrichment of up to 50% (by volume) ahead of the preheaters. Optimum design and operating conditions of the seed injection system were defined as a result of experimental investigations. An account of the extensive diagnostic studies performed and a description of the measurement techniques and of the new submillimeter laser interferometer are given. The performance of the MHD generator is analyzed for different operating modes. Studies of fluctuations and nonuniformities, current take-off distributions, local electrical analysis, overall heat transfer history of the MHD channel, and an extensive parametric study of the generator are presented. A detailed account of the complete disassembly and inspection of channel No. 1 after more than 100 hours of operation with the combustor, and of the condition of its various elements is also given.

  8. US/USSR cooperative program in open-cycle MHD electrical power generation: joint test report No. 4. Tests in the U-25B facility: MHD generator tests No. 6 and 7

    SciTech Connect

    Picologlou, B F; Batenin, V M

    1981-01-01

    A description of the main results obtained during Tests No. 6 and 7 at the U-25B Facility using the new channel No. 2 is presented. The purpose of these tests was to operate the MHD generator at its design parameters. Described here are new plasma diagnostic devices: a traversing dual electrical probe for determining distribution of electron concentrations, and a traversing probe that includes a pitot tube for measuring total and static pressure, and a light detector for measuring plasma luminescence. Data are presented on heat flux distribution along the channel, the first data of this type obtained for an MHD facility of such size. Results are given of experimental studies of plasma characteristics, gasdynamic, thermal, and electrical MHD channel performance, and temporal and spatial nonuniformities. Typical modes of operation are analyzed by means of local electrical analyses. Computer models are used to obtain predictions for both localized and overall generator characteristics. These theoretical predictions agree closely with the results of the local analyses, as well as with measurements of the overall gasdynamic and electrical characteristics of the generator.

  9. Closed Brayton cycle power conversion systems for nuclear reactors :

    SciTech Connect

    Wright, Steven A.; Lipinski, Ronald J.; Vernon, Milton E.; Sanchez, Travis

    2006-04-01

    This report describes the results of a Sandia National Laboratories internally funded research program to study the coupling of nuclear reactors to gas dynamic Brayton power conversion systems. The research focused on developing integrated dynamic system models, fabricating a 10-30 kWe closed loop Brayton cycle, and validating these models by operating the Brayton test-loop. The work tasks were performed in three major areas. First, the system equations and dynamic models for reactors and Closed Brayton Cycle (CBC) systems were developed and implemented in SIMULINKTM. Within this effort, both steady state and dynamic system models for all the components (turbines, compressors, reactors, ducting, alternators, heat exchangers, and space based radiators) were developed and assembled into complete systems for gas cooled reactors, liquid metal reactors, and electrically heated simulators. Various control modules that use proportional-integral-differential (PID) feedback loops for the reactor and the power-conversion shaft speed were also developed and implemented. The simulation code is called RPCSIM (Reactor Power and Control Simulator). In the second task an open cycle commercially available Capstone C30 micro-turbine power generator was modified to provide a small inexpensive closed Brayton cycle test loop called the Sandia Brayton test-Loop (SBL-30). The Capstone gas-turbine unit housing was modified to permit the attachment of an electrical heater and a water cooled chiller to form a closed loop. The Capstone turbine, compressor, and alternator were used without modification. The Capstone systems nominal operating point is 1150 K turbine inlet temperature at 96,000 rpm. The annular recuperator and portions of the Capstone control system (inverter) and starter system also were reused. The rotational speed of the turbo-machinery is controlled by adjusting the alternator load by using the electrical grid as the load bank. The SBL-30 test loop was operated at

  10. Parametric analysis of closed cycle magnetohydrodynamic (MHD) power plants

    NASA Technical Reports Server (NTRS)

    Owens, W.; Berg, R.; Murthy, R.; Patten, J.

    1981-01-01

    A parametric analysis of closed cycle MHD power plants was performed which studied the technical feasibility, associated capital cost, and cost of electricity for the direct combustion of coal or coal derived fuel. Three reference plants, differing primarily in the method of coal conversion utilized, were defined. Reference Plant 1 used direct coal fired combustion while Reference Plants 2 and 3 employed on site integrated gasifiers. Reference Plant 2 used a pressurized gasifier while Reference Plant 3 used a ""state of the art' atmospheric gasifier. Thirty plant configurations were considered by using parametric variations from the Reference Plants. Parametric variations include the type of coal (Montana Rosebud or Illinois No. 6), clean up systems (hot or cold gas clean up), on or two stage atmospheric or pressurized direct fired coal combustors, and six different gasifier systems. Plant sizes ranged from 100 to 1000 MWe. Overall plant performance was calculated using two methodologies. In one task, the channel performance was assumed and the MHD topping cycle efficiencies were based on the assumed values. A second task involved rigorous calculations of channel performance (enthalpy extraction, isentropic efficiency and generator output) that verified the original (task one) assumptions. Closed cycle MHD capital costs were estimated for the task one plants; task two cost estimates were made for the channel and magnet only.

  11. Performance comparison of different thermodynamic cycles for an innovative central receiver solar power plant

    NASA Astrophysics Data System (ADS)

    Reyes-Belmonte, Miguel A.; Sebastián, Andrés; González-Aguilar, José; Romero, Manuel

    2017-06-01

    The potential of using different thermodynamic cycles coupled to a solar tower central receiver that uses a novel heat transfer fluid is analyzed. The new fluid, named as DPS, is a dense suspension of solid particles aerated through a tubular receiver used to convert concentrated solar energy into thermal power. This novel fluid allows reaching high temperatures at the solar receiver what opens a wide range of possibilities for power cycle selection. This work has been focused into the assessment of power plant performance using conventional, but optimized cycles but also novel thermodynamic concepts. Cases studied are ranging from subcritical steam Rankine cycle; open regenerative Brayton air configurations at medium and high temperature; combined cycle; closed regenerative Brayton helium scheme and closed recompression supercritical carbon dioxide Brayton cycle. Power cycle diagrams and working conditions for design point are compared amongst the studied cases for a common reference thermal power of 57 MWth reaching the central cavity receiver. It has been found that Brayton air cycle working at high temperature or using supercritical carbon dioxide are the most promising solutions in terms of efficiency conversion for the power block of future generation by means of concentrated solar power plants.

  12. Joint-specific power absorption during eccentric cycling.

    PubMed

    Elmer, Steven J; Madigan, Matthew L; LaStayo, Paul C; Martin, James C

    2010-02-01

    Previous investigators have reported that long term eccentric cycling increases muscle size and strength in a variety of populations. The joint-specific strategies used to absorb power during eccentric cycling, however, have not been identified. The purpose of this investigation was to determine the extent to which ankle, knee, and hip joint actions absorb power during eccentric cycling. Eight active males resisted the reverse moving pedals of an isokinetic eccentric ergometer (60 rpm) while targeting 20% of their maximum concentric cycling power. Pedal reaction forces and joint kinematics were recorded with an instrumented pedal and instrumented spatial linkage system, respectively. Joint powers were calculated using inverse dynamics; averaged over complete crank revolutions and over extension and flexion phases; and differences were assessed with a one-way ANOVA. Ankle, knee, and hip joint actions absorbed 10 (SD 3)%, 58 (SD 8)%, and 29 (SD 9)% of the total power, respectively, with 3 (SD 1)% transferred across the hip. The main power absorbing actions were eccentric knee extension (-139 (SD 21) watts), eccentric hip extension (-51 (SD 31) watts), and eccentric hip flexion (-25 (SD 6) watts). Eccentric cycling was performed with a combination of knee and hip joint actions which is consistent with submaximal concentric cycling. These data support and extend previous work that eccentric cycling improves knee extensor function and hip extensor muscle cross sectional area. Such information may allow clinicians to take even greater advantage of eccentric cycling as a rehabilitation modality. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  13. Impact of Altitude on Power Output during Cycling Stage Racing

    PubMed Central

    Garvican-Lewis, Laura A; Clark, Bradley; Martin, David T.; Schumacher, Yorck Olaf; McDonald, Warren; Stephens, Brian; Ma, Fuhai; Thompson, Kevin G.; Gore, Christopher J.; Menaspà, Paolo

    2015-01-01

    Purpose The purpose of this study was to quantify the effects of moderate-high altitude on power output, cadence, speed and heart rate during a multi-day cycling tour. Methods Power output, heart rate, speed and cadence were collected from elite male road cyclists during maximal efforts of 5, 15, 30, 60, 240 and 600 s. The efforts were completed in a laboratory power-profile assessment, and spontaneously during a cycling race simulation near sea-level and an international cycling race at moderate-high altitude. Matched data from the laboratory power-profile and the highest maximal mean power output (MMP) and corresponding speed and heart rate recorded during the cycling race simulation and cycling race at moderate-high altitude were compared using paired t-tests. Additionally, all MMP and corresponding speeds and heart rates were binned per 1000m (<1000m, 1000–2000, 2000–3000 and >3000m) according to the average altitude of each ride. Mixed linear modelling was used to compare cycling performance data from each altitude bin. Results Power output was similar between the laboratory power-profile and the race simulation, however MMPs for 5–600 s and 15, 60, 240 and 600 s were lower (p ≤ 0.005) during the race at altitude compared with the laboratory power-profile and race simulation, respectively. Furthermore, peak power output and all MMPs were lower (≥ 11.7%, p ≤ 0.001) while racing >3000 m compared with rides completed near sea-level. However, speed associated with MMP 60 and 240 s was greater (p < 0.001) during racing at moderate-high altitude compared with the race simulation near sea-level. Conclusion A reduction in oxygen availability as altitude increases leads to attenuation of cycling power output during competition. Decrement in cycling power output at altitude does not seem to affect speed which tended to be greater at higher altitudes. PMID:26629912

  14. Impact of Altitude on Power Output during Cycling Stage Racing.

    PubMed

    Garvican-Lewis, Laura A; Clark, Bradley; Martin, David T; Schumacher, Yorck Olaf; McDonald, Warren; Stephens, Brian; Ma, Fuhai; Thompson, Kevin G; Gore, Christopher J; Menaspà, Paolo

    2015-01-01

    The purpose of this study was to quantify the effects of moderate-high altitude on power output, cadence, speed and heart rate during a multi-day cycling tour. Power output, heart rate, speed and cadence were collected from elite male road cyclists during maximal efforts of 5, 15, 30, 60, 240 and 600 s. The efforts were completed in a laboratory power-profile assessment, and spontaneously during a cycling race simulation near sea-level and an international cycling race at moderate-high altitude. Matched data from the laboratory power-profile and the highest maximal mean power output (MMP) and corresponding speed and heart rate recorded during the cycling race simulation and cycling race at moderate-high altitude were compared using paired t-tests. Additionally, all MMP and corresponding speeds and heart rates were binned per 1000 m (<1000 m, 1000-2000, 2000-3000 and >3000 m) according to the average altitude of each ride. Mixed linear modelling was used to compare cycling performance data from each altitude bin. Power output was similar between the laboratory power-profile and the race simulation, however MMPs for 5-600 s and 15, 60, 240 and 600 s were lower (p ≤ 0.005) during the race at altitude compared with the laboratory power-profile and race simulation, respectively. Furthermore, peak power output and all MMPs were lower (≥ 11.7%, p ≤ 0.001) while racing >3000 m compared with rides completed near sea-level. However, speed associated with MMP 60 and 240 s was greater (p < 0.001) during racing at moderate-high altitude compared with the race simulation near sea-level. A reduction in oxygen availability as altitude increases leads to attenuation of cycling power output during competition. Decrement in cycling power output at altitude does not seem to affect speed which tended to be greater at higher altitudes.

  15. Conceptual design and analysis of ITM oxy-combustion power cycles.

    PubMed

    Mancini, N D; Mitsos, A

    2011-12-28

    Ion transport membrane (ITM)-based oxy-combustion systems could potentially provide zero-emissions power generation with a significantly reduced thermodynamic penalty compared to conventional carbon capture applications. This article investigates ITM-based oxy-combustion power cycles using an intermediate-fidelity model that captures the complex physical coupling between the two systems and accurately accounts for operational constraints. Coupled ITM-cycle simulation reveals hidden design challenges, facilitates the development of novel cycle concepts, and enables accurate assessment of new and existing power cycles. Simulations of various ITM-based zero and partial-emissions power cycles are performed using an intermediate-fidelity ITM model coupled to power cycle models created in ASPEN Plus®. The objectives herein are to analyze the prevalent ITM-based power cycle designs, develop novel design modifications, and evaluate the implementation of reactive ITMs. An assessment of the potential for these ITM power cycles to reduce both the thermodynamic penalty and reactor size associated with ITM air separation technology is conducted. The power cycle simulation and analysis demonstrate the various challenges associated with implementing reactive ITMs; hybridization (the use of both reactive and separation-only ITMs) is necessary in order to effectively utilize the advantages of reactive ITMs. The novel hybrid cycle developed herein displays the potential to reduce the size of the ITM compared to the best separation-only concept while maintaining a comparable First Law efficiency. Next, the merit of implementing partial-emissions cycles is explored based on a proposed linear-combination metric. The results indicate that the tradeoff between the main thermodynamic performance metrics efficiency and CO(2) emissions does not appear to justify the use of partial-emissions cycles.

  16. Flywheel-powered X-ray generator

    NASA Technical Reports Server (NTRS)

    Siedband, M. P.

    1984-01-01

    The use of a small flywheel appears to be a practical alternative to other power sources for mobile X-ray system applications. A 5 kg flywheel has been constructed which runs at 10 krpm and stores 30 KJ while requiring less than 500 W to bring the system up to speed. The wheel is coupled to an aircraft alternator and can yield pulsed power levels over 50 KWp. The aircraft alternator has the advantage of high frequency output which has also permitted the design of smaller high voltage transformers. A series of optical sensors detecting shaft position function as an electronic commutator so that the alternator may operate as a motor to bring the wheel up to operating speed. The system permits the generation of extremely powerful X-rays from a variety of low power sources such as household power outlets, automobile batteries or sources of poorly regulated electrical power such as those found in third world countries.

  17. Estimation of crank angle for cycling with a powered prosthesis.

    PubMed

    Lawson, B E; Shultz, A; Ledoux, E; Goldfarb, M

    2014-01-01

    In order for a prosthesis to restore power generation during cycling, it must supply torque in a manner that is coordinated with the motion of the bicycle crank. This paper outlines an algorithm for the real time estimation of the angular position of a bicycle crankshaft using only measurements internal to an intelligent knee and ankle prosthesis. The algorithm assumes that the rider/prosthesis/bicycle system can be modeled as a four-bar mechanism. Assuming that a prosthesis can generate two independent angular measurements of the mechanism (in this case the knee angle and the absolute orientation of the shank), Freudenstein's equation can be used to synthesize the mechanism continuously. A recursive least-squares algorithm is implemented to estimate the Freudenstein coefficients, and the resulting link lengths are used to reformulate the equation in terms of input-output relationships mapping both measured angles to the crank angle. Using two independent measurements allows the algorithm to uniquely determine the crank angle from multi-valued functions. In order to validate the algorithm, a bicycle was mounted on a trainer and configured with the prosthesis using an artificial hip joint attached to the seat post. Motion capture was used to monitor the mechanism for forward and backward pedaling and the results are compared to the output of the presented algorithm. Once the parameters have converged, the algorithm is shown to predict the crank angle within 15° of the externally measured value throughout the entire crank cycle during forward rotation.

  18. The Meteosat Second Generation (MSG) power system

    SciTech Connect

    Haines, J.E.; Levins, D.; Robben, A.; Sepers, A.

    1997-12-31

    Under the direction of the European Meteorological Satellite Organization (EUMETSAT) and the European Space Agency (ESA), space industries within Europe are in the process of developing a new series of larger and more performant geostationary weather satellites. The initial three spacecraft within this new series, which are known by the name of Meteosat Second Generation (MSG), are due to be progressively launched from the year 2000 onwards. The major objective of this mission is the continuation of the European weather watch and space borne atmospheric sensing services provided by the present series of Meteosat spacecraft. To satisfy this mission requirement, the payload compliment to be supported by MSG will consist of a comprehensive earth viewing instrument capable of operating in both the infra-red and visible spectrum, an earth radiation measurement system and a search and rescue facility. In furnishing the power needs for these payloads, the power generating element on the spin stabilized MSG spacecraft consists of a body mounted solar array, capable of providing 628 watts of electrical power at the end of seven years of geosynchronous orbital lifetime. The energy storage elements for the spacecraft consists of two, 29 ampere-hour batteries, while centralized power management is achieved by the Power Control Unit (PCU), which satisfies the payload and battery re-charge demands by controlling the available solar array power. Power distribution for the spacecraft electrical loads and heaters is achieved by the Power Distribution Unit (PDU) and for the pyrotechnic devices by the Pyrotechnic Release Unit.

  19. Thermal energy storage for coal-fired power generation

    SciTech Connect

    Drost, M.K.; Somasundaram, S.; Brown, D.R.; Antoniak, Z.I.

    1990-11-01

    This paper presents an engineering and economic evaluation of using thermal energy storage (TES) with coal-fired conventional and combined cycle power plants. In the first case, conventional pulverized coal combustion equipment was assumed to continuously operate to heat molten nitrate salt which was then stored in a tank. During intermediate-load demand periods, hot salt was withdrawn from storage and used to generate steam for a Rankine steam power cycle. This allowed the coal-fired salt heater to be approximately one-third the size of a coal-fired boiler in a conventional cycling plant. The use of nitrate salt TES also reduced the levelized cost of power by between 5% and 24% depends on the operating schedule. The second case evaluate the use of thermal energy storage with an integrated gasification combined cycle (IGCC) power plant. In this concept, the nitrate salt was heated by a combination of the gas turbine exhaust and the hot fuel gas. The IGCC plant also contained a low-temperature storage unit that uses a mixture of oil and rock as the thermal storage medium. Thermal energy stored in the low-temperature TES was used to preheat the feedwater after it leaves the condenser and to produce process steam for other applications in the IGCC plant. This concept study also predicted a 5% to 20% reduction in levelized cost of power compared to other coal-fired alternatives. If significant escalation rates in the price of fuel were assumed, the concept could be competitive with natural-gas-fired intermediate-load power generation. A sensitivity analysis of using a direct-contact heat exchanger instead of the conventional finned-tube design showed a significant reduction in the installed capital cost. 3 refs., 2 figs., 6 tabs.

  20. Thermoelectric Fabrics: Toward Power Generating Clothing

    NASA Astrophysics Data System (ADS)

    Du, Yong; Cai, Kefeng; Chen, Song; Wang, Hongxia; Shen, Shirley Z.; Donelson, Richard; Lin, Tong

    2015-03-01

    Herein, we demonstrate that a flexible, air-permeable, thermoelectric (TE) power generator can be prepared by applying a TE polymer (e.g. poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate)) coated commercial fabric and subsequently by linking the coated strips with a conductive connection (e.g. using fine metal wires). The poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) coated fabric shows very stable TE properties from 300 K to 390 K. The fabric device can generate a TE voltage output (V) of 4.3 mV at a temperature difference (ΔT) of 75.2 K. The potential for using fabric TE devices to harvest body temperature energy has been discussed. Fabric-based TE devices may be useful for the development of new power generating clothing and self-powered wearable electronics.

  1. Thermoelectric fabrics: toward power generating clothing.

    PubMed

    Du, Yong; Cai, Kefeng; Chen, Song; Wang, Hongxia; Shen, Shirley Z; Donelson, Richard; Lin, Tong

    2015-03-23

    Herein, we demonstrate that a flexible, air-permeable, thermoelectric (TE) power generator can be prepared by applying a TE polymer (e.g. poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate)) coated commercial fabric and subsequently by linking the coated strips with a conductive connection (e.g. using fine metal wires). The poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) coated fabric shows very stable TE properties from 300 K to 390 K. The fabric device can generate a TE voltage output (V) of 4.3 mV at a temperature difference (ΔT) of 75.2 K. The potential for using fabric TE devices to harvest body temperature energy has been discussed. Fabric-based TE devices may be useful for the development of new power generating clothing and self-powered wearable electronics.

  2. Thermoelectric Fabrics: Toward Power Generating Clothing

    PubMed Central

    Du, Yong; Cai, Kefeng; Chen, Song; Wang, Hongxia; Shen, Shirley Z.; Donelson, Richard; Lin, Tong

    2015-01-01

    Herein, we demonstrate that a flexible, air-permeable, thermoelectric (TE) power generator can be prepared by applying a TE polymer (e.g. poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate)) coated commercial fabric and subsequently by linking the coated strips with a conductive connection (e.g. using fine metal wires). The poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) coated fabric shows very stable TE properties from 300 K to 390 K. The fabric device can generate a TE voltage output (V) of 4.3 mV at a temperature difference (ΔT) of 75.2 K. The potential for using fabric TE devices to harvest body temperature energy has been discussed. Fabric-based TE devices may be useful for the development of new power generating clothing and self-powered wearable electronics. PMID:25804132

  3. Microfabricated thermoelectric power-generation devices

    NASA Technical Reports Server (NTRS)

    Fleurial, Jean-Pierre (Inventor); Ryan, Margaret A. (Inventor); Borshchevsky, Alex (Inventor); Phillips, Wayne (Inventor); Kolawa, Elizabeth A. (Inventor); Snyder, G. Jeffrey (Inventor); Caillat, Thierry (Inventor); Kascich, Thorsten (Inventor); Mueller, Peter (Inventor)

    2004-01-01

    A device for generating power to run an electronic component. The device includes a heat-conducting substrate (composed, e.g., of diamond or another high thermal conductivity material) disposed in thermal contact with a high temperature region. During operation, heat flows from the high temperature region into the heat-conducting substrate, from which the heat flows into the electrical power generator. A thermoelectric material (e.g., a BiTe alloy-based film or other thermoelectric material) is placed in thermal contact with the heat-conducting substrate. A low temperature region is located on the side of the thermoelectric material opposite that of the high temperature region. The thermal gradient generates electrical power and drives an electrical component.

  4. Microfabricated thermoelectric power-generation devices

    NASA Technical Reports Server (NTRS)

    Fleurial, Jean-Pierre (Inventor); Ryan, Margaret A. (Inventor); Borshchevsky, Alex (Inventor); Phillips, Wayne (Inventor); Kolawa, Elizabeth A. (Inventor); Snyder, G. Jeffrey (Inventor); Caillat, Thierry (Inventor); Kascich, Thorsten (Inventor); Mueller, Peter (Inventor)

    2002-01-01

    A device for generating power to run an electronic component. The device includes a heat-conducting substrate (composed, e.g., of diamond or another high thermal conductivity material) disposed in thermal contact with a high temperature region. During operation, heat flows from the high temperature region into the heat-conducting substrate, from which the heat flows into the electrical power generator. A thermoelectric material (e.g., a BiTe alloy-based film or other thermoelectric material) is placed in thermal contact with the heat-conducting substrate. A low temperature region is located on the side of the thermoelectric material opposite that of the high temperature region. The thermal gradient generates electrical power and drives an electrical component.

  5. Piezoelectric devices for generating low power

    NASA Astrophysics Data System (ADS)

    Chilibon, Irinela

    2016-12-01

    This paper reviews concepts and applications in low-power electronics and energy harvesting technologies. Various piezoelectric materials and devices for small power generators useful in renewable electricity are presented. The vibrating piezoelectric device differs from the typical electrical power source in that it has capacitive rather than inductive source impedance, and may be driven by mechanical vibrations of varying amplitude. In general, vibration energy could be converted into electrical energy using one of three techniques: electrostatic charge, magnetic fields and piezoelectric. A low power piezoelectric generator, having a PZT element was realised in order to supply small electronic elements, such as optoelectronic small devices, LEDs, electronic watches, small sensors, interferometry with lasers or Micro-electro-mechanical System (MEMS) array with multi-cantilevers.

  6. Residential Solar Combined Heat and Power Generation using Solar Thermoelectric Generation

    NASA Astrophysics Data System (ADS)

    Ohara, B.; Wagner, M.; Kunkle, C.; Watson, P.; Williams, R.; Donohoe, R.; Ugarte, K.; Wilmoth, R.; Chong, M. Zachary; Lee, H.

    2015-06-01

    Recent reports on improved efficiencies of solar thermoelectric generation (STEG) systems have generated interest in STEGs as a competitive power generation system. In this paper, the design of a combined cooling and power utilizing concentrated solar power is discussed. Solar radiation is concentrated into a receiver connected to thermoelectric modules, which are used as a topping cycle to generate power and high grade heat necessary to run an absorption chiller. Modeling of the overall system is discussed with experimental data to validate modeling results. A numerical modeling approach is presented which considers temperature variation of the source and sink temperatures and is used to maximize combined efficiency. A system is built with a demonstrated combined efficiency of 32% in actual working conditions with power generation of 3.1 W. Modeling results fell within 3% of the experimental results verifying the approach. An optimization study is performed on the mirror concentration ration and number of modules for thermal load matching and is shown to improve power generation to 26.8 W.

  7. Autonomous Underwater Vehicle Thermoelectric Power Generation

    NASA Astrophysics Data System (ADS)

    Buckle, J. R.; Knox, A.; Siviter, J.; Montecucco, A.

    2013-07-01

    Autonomous underwater vehicles (AUVs) are a vital part of the oceanographer's toolbox, allowing long-term measurements across a range of ocean depths of a number of ocean properties such as salinity, fluorescence, and temperature profile. Buoyancy-based gliding, rather than direct propulsion, dramatically reduces AUV power consumption and allows long-duration missions on the order of months rather than hours or days, allowing large distances to be analyzed or many successive analyses of a certain area without the need for retrieval. Recent versions of these gliders have seen the buoyancy variation system change from electrically powered to thermally powered using phase-change materials, however a significant battery pack is still required to power communications and sensors, with power consumption in the region of 250 mW. The authors propose a novel application of a thermoelectric generation system, utilizing the depth-related variation in oceanic temperature. A thermal energy store provides a temperature differential across which a thermoelectric device can generate from repeated dives, with the primary purpose of extending mission range. The system is modeled in Simulink to analyze the effect of variation in design parameters. The system proves capable of generating all required power for a modern AUV.

  8. Wind power generation and dispatch in competitive power markets

    NASA Astrophysics Data System (ADS)

    Abreu, Lisias

    Wind energy is currently the fastest growing type of renewable energy. The main motivation is led by more strict emission constraints and higher fuel prices. In addition, recent developments in wind turbine technology and financial incentives have made wind energy technically and economically viable almost anywhere. In restructured power systems, reliable and economical operation of power systems are the two main objectives for the ISO. The ability to control the output of wind turbines is limited and the capacity of a wind farm changes according to wind speeds. Since this type of generation has no production costs, all production is taken by the system. Although, insufficient operational planning of power systems considering wind generation could result in higher system operation costs and off-peak transmission congestions. In addition, a GENCO can participate in short-term power markets in restructured power systems. The goal of a GENCO is to sell energy in such a way that would maximize its profitability. However, due to market price fluctuations and wind forecasting errors, it is essential for the wind GENCO to keep its financial risk at an acceptable level when constituting market bidding strategies. This dissertation discusses assumptions, functions, and methodologies that optimize short-term operations of power systems considering wind energy, and that optimize bidding strategies for wind producers in short-term markets. This dissertation also discusses uncertainties associated with electricity market environment and wind power forecasting that can expose market participants to a significant risk level when managing the tradeoff between profitability and risk.

  9. NV Energy Solar Integration Study: Cycling and Movements of Conventional Generators for Balancing Services

    SciTech Connect

    Diao, Ruisheng; Lu, Shuai; Etingov, Pavel V.; Ma, Jian; Makarov, Yuri V.; Guo, Xinxin

    2011-07-01

    With an increasing penetration level of solar power in the southern Nevada system, the impact of solar on system operations needs to be carefully studied from various perspectives. Qualitatively, it is expected that the balancing requirements to compensate for solar power variability will be larger in magnitude; meanwhile, generators providing load following and regulation services will be moved up or down more frequently. One of the most important tasks is to quantitatively evaluate the cycling and movements of conventional generators with solar power at different penetration levels. This study is focused on developing effective methodologies for this goal and providing a basis for evaluating the wear and tear of the conventional generators

  10. Hybrid Er/Yb fibre laser system for generating few-cycle 1.6 to 2.0 {mu}m pulses optically synchronised with high-power pulses near 1 {mu}m

    SciTech Connect

    Andrianov, A V; Anashkina, E A; Murav'ev, S V; Kim, A V

    2013-03-31

    This paper presents the concept of fibre laser system design for generating optically synchronised femtosecond pulses at two, greatly differing wavelengths and reports experimental and numerical simulation studies of nonlinear conversion of femtosecond pulses at 1.5 {mu}m wavelength in a dispersion-shifted fibre, with the generation of synchronised pulses in the ranges 1.6 - 2 and 1 - 1.1 {mu}m. We describe a three-stage high-power fibre amplifier of femtosecond pulses at 1 {mu}m and a hybrid Er/Yb fibre laser system that has enabled the generation of 12 fs pulses with a centre wavelength of 1.7 {mu}m, synchronised with high-power (microjoule level) 250 fs pulses at 1.03 {mu}m. (extreme light fields and their applications)

  11. Maximum power for a power plant with two Carnot-like cycles

    NASA Astrophysics Data System (ADS)

    Aragón-González, G.; León-Galicia, A.

    2017-01-01

    A stationary power plant with two Carnot-like cycles is optimized. Each cycle has the following irreversibilities: finite rate heat transfer between the working fluid and the external heat sources, internal dissipation of the working fluid, and heat leak between reservoirs. The optimal allocation or effectiveness of the heat exchangers for this power plant is determined by applying, two alternating design rules: fixed internal thermal conductance or fixed areas. The optimal relations obtained are substituted in the power and the maximum power, according to the isentropic ratio of each one of the Carnot-like cycles of the power plant, is calculated. Additionally, the efficiency to maximum power is presented.

  12. Modular Trough Power Plant Cycle and Systems Analysis

    SciTech Connect

    Price, H.; Hassani, V.

    2002-01-01

    This report summarizes an analysis to reduce the cost of power production from modular concentrating solar power plants through a relatively new and exciting concept that merges two mature technologies to produce distributed modular electric power in the range of 500 to 1,500 kWe. These are the organic Rankine cycle (ORC) power plant and the concentrating solar parabolic (CSP) trough technologies that have been developed independent of each other over many years.

  13. Design and operation of a geopressurized-geothermal hybrid cycle power plant

    SciTech Connect

    Campbell, R.G.; Hattar, M.M.

    1991-02-01

    Geopressured-geothermal resources can contribute significantly to the national electricity supply once technical and economic obstacles are overcome. Power plant performance under the harsh conditions of a geopressured resource was unproven, so a demonstration power plant was built and operated on the Pleasant Bayou geopressured resource in Texas. This one megawatt facility provided valuable data over a range of operating conditions. This power plant was a first-of-a-kind demonstration of the hybrid cycle concept. A hybrid cycle was used to take advantage of the fact that geopressured resources contain energy in more than one form -- hot water and natural gas. Studies have shown that hybrid cycles can yield thirty percent more power than stand-alone geothermal and fossil fuel power plants operating on the same resource. In the hybrid cycle at Pleasant Bayou, gas was burned in engines to generate electricity directly. Exhaust heat from the engines was then combined with heat from the brine to generate additional electricity in a binary cycle. Heat from the gas engine was available at high temperature, thus improving the efficiency of the binary portion of the hybrid cycle. Design power output was achieved, and 3445 MWh of power were sold to the local utility over the course of the test. Plant availability was 97.5% and the capacity factor was over 80% for the extended run at maximum power production. The hybrid cycle power plant demonstrated that there are no technical obstacles to electricity generation at Pleasant Bayou. 14 refs., 38 figs., 16 tabs.

  14. Power plant V - Thek generating station

    NASA Astrophysics Data System (ADS)

    Pons, M.

    The design and operating features of a 10 MWe parabolic dish concentrator steam-cycle generating plant are described. The dishes which have 75 sq m area with a concentration factor of 265, were proved in the Themis project. The total field for the 10 MWe would cover 63,100 sq m and require 842 units. Using a water-steam cycle at 50 bars, temperature would never surpass 264 C, with an after-generator condition of 33 bars at 204 C. Preheating the water is intended with a fused salt reservoir containing 570 tons in 350 cu m container, around which condensed water would flow. Maintaining the primary loop at mildly elevated temperatures would permit uninterrupted operation during cloudy periods. A total shutdown would occur if cloudy conditions last more than one hour, and start-up would involve reheating the primary loop, recharging the storage, and then respinning the turbine.

  15. Thermoelectric power generation for hybrid-electric vehicle auxiliary power

    NASA Astrophysics Data System (ADS)

    Headings, Leon M.; Washington, Gregory N.; Midlam-Mohler, Shawn; Heremans, Joseph P.

    2009-03-01

    The plug-in hybrid-electric vehicle (PHEV) concept allows for a moderate driving range in electric mode but uses an onboard range extender to capitalize on the high energy density of fuels using a combustion-based generator, typically using an internal combustion engine. An alternative being developed here is a combustion-based thermoelectric generator in order to develop systems technologies which capitalize on the high power density and inherent benefits of solid-state thermoelectric power generation. This thermoelectric power unit may find application in many military, industrial, and consumer applications including range extension for PHEVs. In this research, a baseline prototype was constructed using a novel multi-fuel atomizer with diesel fuel, a conventional thermoelectric heat exchange configuration, and a commercially available bismuth telluride module (maximum 225°C). This prototype successfully demonstrated the viability of diesel fuel for thermoelectric power generation, provided a baseline performance for evaluating future improvements, provided the mechanism to develop simulation and analysis tools and methods, and highlighted areas requiring development. The improvements in heat transfer efficiency using catalytic combustion were evaluated, the system was redesigned to operate at temperatures around 500 °C, and the performance of advanced high temperature thermoelectric modules was examined.

  16. 40 CFR 1065.610 - Duty cycle generation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Duty cycle generation. 1065.610 Section 1065.610 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.610 Duty cycle...

  17. 40 CFR 1065.610 - Duty cycle generation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Duty cycle generation. 1065.610 Section 1065.610 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.610 Duty cycle...

  18. 40 CFR 1065.610 - Duty cycle generation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Duty cycle generation. 1065.610 Section 1065.610 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.610 Duty cycle...

  19. 40 CFR 1065.610 - Duty cycle generation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Duty cycle generation. 1065.610 Section 1065.610 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.610 Duty cycle...

  20. 40 CFR 1065.610 - Duty cycle generation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Duty cycle generation. 1065.610 Section 1065.610 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.610 Duty cycle...

  1. Coal-fired high performance power generating system. Final report

    SciTech Connect

    1995-08-31

    As a result of the investigations carried out during Phase 1 of the Engineering Development of Coal-Fired High-Performance Power Generation Systems (Combustion 2000), the UTRC-led Combustion 2000 Team is recommending the development of an advanced high performance power generation system (HIPPS) whose high efficiency and minimal pollutant emissions will enable the US to use its abundant coal resources to satisfy current and future demand for electric power. The high efficiency of the power plant, which is the key to minimizing the environmental impact of coal, can only be achieved using a modern gas turbine system. Minimization of emissions can be achieved by combustor design, and advanced air pollution control devices. The commercial plant design described herein is a combined cycle using either a frame-type gas turbine or an intercooled aeroderivative with clean air as the working fluid. The air is heated by a coal-fired high temperature advanced furnace (HITAF). The best performance from the cycle is achieved by using a modern aeroderivative gas turbine, such as the intercooled FT4000. A simplified schematic is shown. In the UTRC HIPPS, the conversion efficiency for the heavy frame gas turbine version will be 47.4% (HHV) compared to the approximately 35% that is achieved in conventional coal-fired plants. This cycle is based on a gas turbine operating at turbine inlet temperatures approaching 2,500 F. Using an aeroderivative type gas turbine, efficiencies of over 49% could be realized in advanced cycle configuration (Humid Air Turbine, or HAT). Performance of these power plants is given in a table.

  2. Microelectromechanical power generator and vibration sensor

    DOEpatents

    Roesler, Alexander W.; Christenson, Todd R.

    2006-11-28

    A microelectromechanical (MEM) apparatus is disclosed which can be used to generate electrical power in response to an external source of vibrations, or to sense the vibrations and generate an electrical output voltage in response thereto. The MEM apparatus utilizes a meandering electrical pickup located near a shuttle which holds a plurality of permanent magnets. Upon movement of the shuttle in response to vibrations coupled thereto, the permanent magnets move in a direction substantially parallel to the meandering electrical pickup, and this generates a voltage across the meandering electrical pickup. The MEM apparatus can be fabricated by LIGA or micromachining.

  3. Intermediate Fidelity Closed Brayton Cycle Power Conversion Model

    NASA Technical Reports Server (NTRS)

    Lavelle, Thomas M.; Khandelwal, Suresh; Owen, Albert K.

    2006-01-01

    This paper describes the implementation of an intermediate fidelity model of a closed Brayton Cycle power conversion system (Closed Cycle System Simulation). The simulation is developed within the Numerical Propulsion Simulation System architecture using component elements from earlier models. Of particular interest, and power, is the ability of this new simulation system to initiate a more detailed analysis of compressor and turbine components automatically and to incorporate the overall results into the general system simulation.

  4. Ocean Current Power Generator. Final Report

    SciTech Connect

    O'Sullivan, G. A.

    2002-07-26

    The Ocean Power Generator is both technically and economically suitable for deployment in the Gulf Stream from the US Navy facility in Dania, Florida. Yet to be completed is the calibration test in the Chesapeake Bay with the prototype dual hydroturbine Underwater Electric Kite. For the production units a revised design includes two ballast tanks mounted as pontoons to provide buoyancy and depth control. The power rating of the Ocean Power Generator has been doubled to 200 kW ready for insertion into the utility grid. The projected cost for a 10 MW installation is $3.38 per watt, a cost that is consistent with wind power pricing when it was in its deployment infancy, and a cost that is far better than photovoltaics after 25 years of research and development. The Gulf Stream flows 24 hours per day, and water flow is both environmentally and ecologically perfect as a renewable energy source. No real estate purchases are necessary, and you cannot see, hear, smell, or touch an Ocean Power Generator.

  5. Global Climate Change - The Power Generation Challenge

    EPA Science Inventory

    The planet continues to warm; O.5 C from the 1970’s to the 2000’s. Also, worldwide CO2 emissions have increased at a 3% annual growth rate from 2000 to 2010. Such emissions are driven by fossil fuel combustion, especially in the power generation sector, & especial...

  6. Radioisotope thermal generator (RTG) power conditioner

    NASA Technical Reports Server (NTRS)

    Stacey, W. S.

    1974-01-01

    New regulator: (a) permits operation with high-impedance radioisotope thermal generators at conversion efficiencies typically above 90%; (b) does not require input filtering; (c) eliminates current spiking; and (d) is simple, efficient, and reliable. Converter-charger pair could be adapted for other power levels by changing transistor, diode, capacitor bank, and inductor.

  7. Photovoltaic Generation Of Power By Utilities

    NASA Technical Reports Server (NTRS)

    Sugimura, Russell S.; Wood, Joan M.

    1989-01-01

    Bibliography of recent documents on photovoltaic generation of electric power divided into two subject areas: (1) central-station systems and (2) residential and intermediate systems. Further divided into design options, performance modeling, construction experience, operating experience, economics and costs, and integration with utilities. Reports, papers, and books included. Bibliography lists 79 references.

  8. Thermoelectric unicouple used for power generation

    NASA Technical Reports Server (NTRS)

    Caillat, Thierry (Inventor); Zoltan, Andrew (Inventor); Zoltan, Leslie (Inventor); Snyder, Jeffrey (Inventor)

    2004-01-01

    A high-efficiency thermoelectric unicouple is used for power generation. The unicouple is formed with a plurality of legs, each leg formed of a plurality of segments. The legs are formed in a way that equalizes certain aspects of the different segments. Different materials are also described.

  9. Global Climate Change - The Power Generation Challenge

    EPA Science Inventory

    The planet continues to warm; O.5 C from the 1970’s to the 2000’s. Also, worldwide CO2 emissions have increased at a 3% annual growth rate from 2000 to 2010. Such emissions are driven by fossil fuel combustion, especially in the power generation sector, & especial...

  10. 47 CFR 27.50 - Power limits and duty cycle.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... (iii) is permitted in all locations. For fixed WCS CPE using TDD technology, the duty cycle must not... bandwidth. For mobile and portable stations using time division duplexing (TDD) technology, the duty cycle... using FDD technology are restricted to transmitting in the 2305-2315 MHz band. Power averaging shall not...

  11. Apollo experience report: Power generation system

    NASA Technical Reports Server (NTRS)

    Bell, D., III; Plauche, F. M.

    1973-01-01

    A comprehensive review of the design philosophy and experience of the Apollo electrical power generation system is presented. The review of the system covers a period of 8 years, from conception through the Apollo 12 lunar-landing mission. The program progressed from the definition phase to hardware design, system development and qualification, and, ultimately, to the flight phase. Several problems were encountered; however, a technology evolved that enabled resolution of the problems and resulted in a fully manrated power generation system. These problems are defined and examined, and the corrective action taken is discussed. Several recommendations are made to preclude similar occurrences and to provide a more reliable fuel-cell power system.

  12. Optical generation of radio-frequency power

    SciTech Connect

    Hietala, V.M.; Vawter, G.A.; Brennan, T.M.; Hammons, B.E.; Meyer, W.J.

    1994-11-01

    An optical technique for high-power radio-frequency (RF) signal generation is described. The technique uses a unique photodetector based on a traveling-wave design driven by an appropriately modulated light source. The traveling-wave photodetector (TWPD) exhibits simultaneously a theoretical quantum efficiency approaching 100 % and a very large electrical bandwidth. Additionally, it is capable of dissipating the high-power levels required for the RF generation technique. The modulated light source is formed by either the beating together of two lasers or by the direct modulation of a light source. A system example is given which predicts RF power levels of 100`s of mW`s at millimeter wave frequencies with a theoretical ``wall-plug`` efficiency approaching 34%.

  13. Evolving an acceptable nuclear power fuel cycle

    SciTech Connect

    Steinberg, M.

    1986-10-01

    The following issues are examined: long-term safe nuclear power plant operation; acceptable nuclear waste management and, mainly, high-level waste management; and provision for long-term fissile fuel supply in a long-term nuclear fission economy. (LM)

  14. Rankine cycle generators using geothermal fluids. Final progress report

    SciTech Connect

    Not Available

    1981-01-01

    The Rankine Cycle generator was delivered and installed at Gila Hot Springs. Trial runs were made at that time, using Freon 12 as the expansion fluid. These tests showed that the boiler capacity was inadequate. It could not extract enough heat to generate sufficient volumes of Freon gas at the heat and pressure necessary to operate the system at an acceptable level. Increasing and decreasing the flow of hot water had a direct influence on efficiency, but it was not a linear relationship. Added amounts of hot water increased the power very little, but raised the water temperature at the discharge point. This implied that the heat exchange capacity of the boiler was saturated. The reverse was found in the condenser system. There was little increase in pressure of the condenser when we switched from static to run mode. Efficiency was maintained even when the cold water flow was reduced as much as 40%. The tests using Freon 12 resulted in the conclusion that the boiler volume needs to be increased and/or the configuration changed to radically increase its efficiency.

  15. Recent advances in RF power generation

    SciTech Connect

    Tallerico, P.J.

    1990-01-01

    This paper is a review of the progress and methods used in RF generation for particle accelerators. The frequencies of interest are from a few megahertz to 100 GHz, and the powers are for super linear collider applications, but in this case the pulses are short, generally below 1 {mu}s. The very high-power, short-pulse generators are only lightly reviewed here, and for more details the reader should follow the specialized references. Different RF generators excel over various parts of the frequency spectrum. Below 100 MHz solid-state devices and gridded tubes prevail, while the region between 400 MHz and 3 GHz, the cyclotron-resonant devices predominate, and above 250 GHz, Free-Electron Lasers and ubitrons are the most powerful generators. The emphasis for this review is on microwave generation at frequencies below 20 GHz, so the cyclotron-resonant devices are only partially reviewed, while the progress on free-electron laser and ubitrons is not reviewed in this paper. 39 refs., 4 figs.

  16. GE power generation technology challenges for advanced gas turbines

    SciTech Connect

    Cook, C.S.; Nourse, J.G.

    1993-11-01

    The GE Utility ATS is a large gas turbine, derived from proven GEPG designs and integrated GEAE technology, that utilizes a new turbine cooling system and incorporates advanced materials. This system has the potential to achieve ATS objectives for a utility sized machine. Combined with use of advanced Thermal Barrier Coatings (TBC`s), the new cooling system will allow higher firing temperatures and improved cycle efficiency that represents a significant improvement over currently available machines. Developing advances in gas turbine efficiency and emissions is an ongoing process at GEPG. The third generation, ``F`` class, of utility gas turbines offers net combined cycle efficiencies in the 55% range, with NO{sub x} programs in place to reduce emissions to less than 10 ppM. The gas turbines have firing temperatures of 2350{degree}F, and pressure ratios of 15 to 1. The turbine components are cooled by air extracted from the cycle at various stages of the compressor. The heat recovery cycle is a three pressure steam system, with reheat. Throttle conditions are nominally 1400 psi and 1000{degree}F reheat. As part of GEPG`s ongoing advanced power generation system development program, it is expected that a gas fired advanced turbine system providing 300 MW power output greater than 58% net efficiency and < 10 ppM NO{sub x} will be defined. The new turbine cooling system developed with technology support from the ATS program will achieve system net efficiency levels in excess of 60%.

  17. A combined power and ejector refrigeration cycle for low temperature heat sources

    SciTech Connect

    Zheng, B.; Weng, Y.W.

    2010-05-15

    A combined power and ejector refrigeration cycle for low temperature heat sources is under investigation in this paper. The proposed cycle combines the organic Rankine cycle and the ejector refrigeration cycle. The ejector is driven by the exhausts from the turbine to produce power and refrigeration simultaneously. A simulation was carried out to analyze the cycle performance using R245fa as the working fluid. A thermal efficiency of 34.1%, an effective efficiency of 18.7% and an exergy efficiency of 56.8% can be obtained at a generating temperature of 395 K, a condensing temperature of 298 K and an evaporating temperature of 280 K. Simulation results show that the proposed cycle has a big potential to produce refrigeration and most exergy losses take place in the ejector. (author)

  18. UF6 breeder reactor power plants for electric power generation

    NASA Technical Reports Server (NTRS)

    Rust, J. H.; Clement, J. D.; Hohl, F.

    1976-01-01

    The reactor concept analyzed is a U-233F6 core surrounded by a molten salt (Li(7)F, BeF2, ThF4) blanket. Nuclear survey calculations were carried out for both spherical and cylindrical geometries. Thermodynamic cycle calculations were performed for a variety of Rankine cycles. A conceptual design is presented along with a system layout for a 1000 MW stationary power plant. Advantages of the gas core breeder reactor (GCBR) are as follows: (1) high efficiency; (2) simplified on-line reprocessing; (3) inherent safety considerations; (4) high breeding ratio; (5) possibility of burning all or most of the long-lived nuclear waste actinides; and (6) possibility of extrapolating the technology to higher temperatures and MHD direct conversion.

  19. UF6 breeder reactor power plants for electric power generation

    NASA Technical Reports Server (NTRS)

    Rust, J. H.; Clement, J. D.; Hohl, F.

    1976-01-01

    The reactor concept analyzed is a U-233F6 core surrounded by a molten salt (Li(7)F, BeF2, ThF4) blanket. Nuclear survey calculations were carried out for both spherical and cylindrical geometries. Thermodynamic cycle calculations were performed for a variety of Rankine cycles. A conceptual design is presented along with a system layout for a 1000 MW stationary power plant. Advantages of the gas core breeder reactor (GCBR) are as follows: (1) high efficiency; (2) simplified on-line reprocessing; (3) inherent safety considerations; (4) high breeding ratio; (5) possibility of burning all or most of the long-lived nuclear waste actinides; and (6) possibility of extrapolating the technology to higher temperatures and MHD direct conversion.

  20. Power Gas and Combined Cycles: Clean Power From Fossil Fuels

    ERIC Educational Resources Information Center

    Metz, William D.

    1973-01-01

    The combined-cycle system is currently regarded as a useful procedure for producing electricity. This system can burn natural gas and oil distillates in addition to coal. In the future when natural gas stocks will be low, coal may become an important fuel for such systems. Considerable effort must be made for research on coal gasification and…

  1. Power Gas and Combined Cycles: Clean Power From Fossil Fuels

    ERIC Educational Resources Information Center

    Metz, William D.

    1973-01-01

    The combined-cycle system is currently regarded as a useful procedure for producing electricity. This system can burn natural gas and oil distillates in addition to coal. In the future when natural gas stocks will be low, coal may become an important fuel for such systems. Considerable effort must be made for research on coal gasification and…

  2. Electrical power generation from insect flight

    NASA Astrophysics Data System (ADS)

    Reissman, Timothy; MacCurdy, Robert B.; Garcia, Ephrahim

    2011-03-01

    This article presents an implementation of a miniature energy harvester (weighing 0.292 grams) on an insect (hawkmoth Manduca sexta) in un-tethered flight. The harvester utilizes a piezoelectric transducer which converts the vibratory motion induced by the insect's flight into electrical power (generating up to 59 μWRMS). By attaching a low-power management circuit (weighing 0.200 grams) to the energy harvester and accumulating the converted energy onboard the flying insect, we are able to visually demonstrate pulsed power delivery (averaging 196 mW) by intermittently flashing a light emitting diode. This self-recharging system offers biologists a new means for powering onboard electronics used to study small flying animals. Using this approach, the lifetime of the electronics would be limited only by the lifetime of the individuals, a vast improvement over current methods.

  3. Optimization and Comparison of Direct and Indirect Supercritical Carbon Dioxide Power Plant Cycles for Nuclear Applications

    SciTech Connect

    Edwin A. Harvego; Michael G. McKellar

    2011-11-01

    There have been a number of studies involving the use of gases operating in the supercritical mode for power production and process heat applications. Supercritical carbon dioxide (CO2) is particularly attractive because it is capable of achieving relatively high power conversion cycle efficiencies in the temperature range between 550 C and 750 C. Therefore, it has the potential for use with any type of high-temperature nuclear reactor concept, assuming reactor core outlet temperatures of at least 550 C. The particular power cycle investigated in this paper is a supercritical CO2 Recompression Brayton Cycle. The CO2 Recompression Brayton Cycle can be used as either a direct or indirect power conversion cycle, depending on the reactor type and reactor outlet temperature. The advantage of this cycle when compared to the helium Brayton cycle is the lower required operating temperature; 550 C versus 850 C. However, the supercritical CO2 Recompression Brayton Cycle requires an operating pressure in the range of 20 MPa, which is considerably higher than the required helium Brayton cycle operating pressure of 8 MPa. This paper presents results of analyses performed using the UniSim process analyses software to evaluate the performance of both a direct and indirect supercritical CO2 Brayton Recompression cycle for different reactor outlet temperatures. The direct supercritical CO2 cycle transferred heat directly from a 600 MWt reactor to the supercritical CO2 working fluid supplied to the turbine generator at approximately 20 MPa. The indirect supercritical CO2 cycle assumed a helium-cooled Very High Temperature Reactor (VHTR), operating at a primary system pressure of approximately 7.0 MPa, delivered heat through an intermediate heat exchanger to the secondary indirect supercritical CO2 Brayton Recompression cycle, again operating at a pressure of about 20 MPa. For both the direct and indirect cycles, sensitivity calculations were performed for reactor outlet temperature

  4. A Feasibility Study of CO2-Based Rankine Cycle Powered by Solar Energy

    NASA Astrophysics Data System (ADS)

    Zhang, Xin-Rong; Yamaguchi, Hiroshi; Fujima, Katsumi; Enomoto, Masatoshi; Sawada, Noboru

    An experiment study was carried out in order to investigate feasibility of CO2-based Rankine cycle powered by solar energy. The proposed cycle is to achieve a cogeneration of heat and power, which consists of evacuated solar tube collectors, power generating turbine, heat recovery system, and feed pump. The Rankine cycle of the system utilizes solar collectors to convert CO2 into high-temperature supercritical state, used to drive a turbine and produce electrical power. The cycle also recovers thermal energy, which can be used for absorption refrigerator, air conditioning, hot water supply so on for a building. A set of experimental set-up was constructed to investigate the performance of the CO2-based Rankine cycle. The results show the cycle can achieve production of heat and power with reasonable thermodynamics efficiency and has a great potential of the application of the CO2-based Rankine cycle powered by solar energy. In addition, some research interests related to the present study will also be discussed in this paper.

  5. Electrical power systems for distributed generation

    SciTech Connect

    Robertson, T.A.; Huval, S.J.

    1996-12-31

    {open_quotes}Distributed Generation{close_quotes} has become the {open_quotes}buzz{close_quotes} word of an electric utility industry facing deregulation. Many industrial facilities utilize equipment in distributed installations to serve the needs of a thermal host through the capture of exhaust energy in a heat recovery steam generator. The electrical power generated is then sold as a {open_quotes}side benefit{close_quotes} to the cost-effective supply of high quality thermal energy. Distributed generation is desirable for many different reasons, each with unique characteristics of the product. Many years of experience in the distributed generation market has helped Stewart & Stevenson to define a range of product features that are crucial to most any application. The following paper will highlight a few of these applications. The paper will also examine the range of products currently available and in development. Finally, we will survey the additional services offered by Stewart & Stevenson to meet the needs of a rapidly changing power generation industry.

  6. Isotope powered stirling generator for terrestrial applications

    NASA Astrophysics Data System (ADS)

    Tingey, Garth L.; Sorensen, Gerald C.; Ross, Brad A.

    1995-01-01

    An electric power supply, small enough to be man-portable, is being developed for remote, terrestrial applications. This system is designed for an operating lifetime of five years without maintenance or refueling. A small Radioisotope Stirling Generator (RSG) has been developed. The energy source of the generator is a 60 watt plutonium-238 fuel clad used in the General Purpose Heat Sources (GPHS) developed for space applications. A free piston Stirling ENgine drives a linear alternator to convert the heat to power. The system weighs about 7.5 kg and produces 11 watts AC power with a conversion efficiency of 18.5%. Two engine models have been designed, fabricated, and tested to data: (a) a development model instrumented to confirm and test parameters, and (b) an electrically heated model with an electrical heater equipped power input leads. Critical components have been tested for 10,000 to 20,000 hours. One complete generator has been operating for over 11,000 hours. Radioisotope heated prototypes are expected to be fabricated and tested in late 1995.

  7. Reversible thermodynamic cycle for AMTEC power conversion

    NASA Technical Reports Server (NTRS)

    Vining, Cronin B.; Williams, Roger M.; Underwood, Mark L.; Ryan, M. A.; Suitor, Jerry W.

    1992-01-01

    The thermodynamic cycle appropriate to an AMTEC (alkali metal thermal-to-electric converter) cell is discussed for both liquid- and vapor-fed modes of operation, under the assumption that all processes can be performed reversibly. In the liquid-fed mode, the reversible efficiency is greater than 89.6 percent of Carnot efficiency for heat input and rejection temperatures (900-1300 K and 400-800 K, respectively) typical of practical devices. Vapor-fed cells can approach the efficiency of liquid-fed cells. Quantitative estimates confirm that the efficiency is insensitive to either the work required to pressurize the sodium liquid or the details of the state changes associated with cooling the low pressure sodium gas to the heat rejection temperature.

  8. Organic flash cycles for efficient power production

    SciTech Connect

    Ho, Tony; Mao, Samuel S.; Greif, Ralph

    2016-03-15

    This disclosure provides systems, methods, and apparatus related to an Organic Flash Cycle (OFC). In one aspect, a modified OFC system includes a pump, a heat exchanger, a flash evaporator, a high pressure turbine, a throttling valve, a mixer, a low pressure turbine, and a condenser. The heat exchanger is coupled to an outlet of the pump. The flash evaporator is coupled to an outlet of the heat exchanger. The high pressure turbine is coupled to a vapor outlet of the flash evaporator. The throttling valve is coupled to a liquid outlet of the flash evaporator. The mixer is coupled to an outlet of the throttling valve and to an outlet of the high pressure turbine. The low pressure turbine is coupled to an outlet of the mixer. The condenser is coupled to an outlet of the low pressure turbine and to an inlet of the pump.

  9. Steam generators of the power-generating units of nuclear power plants with vver-1000 reactors

    SciTech Connect

    Titov, V.F.

    1995-02-01

    The first power-generating units at nuclear power plants with VVER-1000 reactors came on line in 1980. By August 1993 there were 19 such units (seven in Russia, ten in Ukraine, and two in Bulgaria). It was found that from the end of 1986 to 1991 the outlet ({open_quotes}cold{close_quotes}) coolant collectors of the PGV-1000 steam generators (1000 M) in these power-generating units contained damage in the form of cracks of corrosion-mechanical origin in the connections between the openings of the perforated zone. Damage appeared only at the cold collectors and only near the vertical axis, passing through the top of the unperforated wedge. The construction of the PGV-1000 steam generators is an elaboration of the structures of horizontal steam generators in nuclear power plants with VVER-440 reactors and is displayed.

  10. Tampa Electric Company`s Polk Power Station Integrated Gasification Combined Cycle Project

    SciTech Connect

    Jenkins, S.D.; Shafer, J.R.

    1994-12-31

    Tampa Electric Company (TEC) is in the construction phase for the new Polk Power Station, Unit {number_sign}1. This will be the first unit at a new site and will use Integrated Gasification Combined Cycle (IGCC) technology for power generation. The unit will utilize oxygen-blown entrained-flow coal gasification, along with combined cycle technology, to provide nominal net 26OMW of generation. As part of the environmental features of this process, the sulfur species in the coal will be recovered as a commercial grade sulfuric acid by-product. The sulfur will be removed from the synthesis gas utilizing a cold gas clean-up system (CGCU).

  11. Parasitism and generation cycles in a salt-marsh planthopper

    Treesearch

    John D. Reeve; James T. Cronin; Donald R. Strong

    1994-01-01

    1. In warm climates many insects exhibit discrete generations, in the absence of obvious factors that could synchronize their age structure.It has been hypothesized that parasitoid wasps might be responsible for these oscillations in the host age structure, known as generation cycles. 2. We examine the role of the parasitoid Anagrus delicatus in the dynamics of the...

  12. Technical and economic feasibility of a Thermal Gradient Utilization Cycle (TGUC) power plant. Final report

    SciTech Connect

    Raiji, A.M.; Renfroe, D.A.; Lalk, T.R.

    1980-01-01

    The technical and economic feasibility of a Thermal Gradient Utilization Cycle (TGUC), a new concept in power generation, was investigated. Power is generated by exploiting the natural atmosheric temperature gradient. A low grade energy source is used to vaporize a fluid which rises in a pipe to a higher elevation where it is condensed. The cycle is completed by passing the condensed liquid through a turbine as it returns to the lower elevation. A digital computer model was developed and used to simulate the operation of the cycle and to conduct a parameteric study. Life cycle cost analysis and energy analyses were conducted for the specific case of a TGUC using the ambient air at the lower elevation as an energy source. Although the cycle has a low thermal efficiency and is site specific, it is technically feasible. Variations in mass flow rate of the working fluid and elevation were found to affect the cycle power output to a large extent. The investment cost of a hypothetical 10 megawatt TGUC power plant was determined to be $3,080 per kilowatt, with life cycle busbar costs of electricity ranging from 47 to 55 Mills per kilowatt-hour depending on the method of financing. Results of the energy analyses showed that a TGUC system would have a positive net energy and a second law efficiency of 23% for the case of a TGUC system using the atmosphere as an energy source.

  13. Carnot cycle at finite power: attainability of maximal efficiency.

    PubMed

    Allahverdyan, Armen E; Hovhannisyan, Karen V; Melkikh, Alexey V; Gevorkian, Sasun G

    2013-08-02

    We want to understand whether and to what extent the maximal (Carnot) efficiency for heat engines can be reached at a finite power. To this end we generalize the Carnot cycle so that it is not restricted to slow processes. We show that for realistic (i.e., not purposefully designed) engine-bath interactions, the work-optimal engine performing the generalized cycle close to the maximal efficiency has a long cycle time and hence vanishing power. This aspect is shown to relate to the theory of computational complexity. A physical manifestation of the same effect is Levinthal's paradox in the protein folding problem. The resolution of this paradox for realistic proteins allows to construct engines that can extract at a finite power 40% of the maximally possible work reaching 90% of the maximal efficiency. For purposefully designed engine-bath interactions, the Carnot efficiency is achievable at a large power.

  14. Fuel-flexible combined cycles for utility power and cogeneration

    NASA Astrophysics Data System (ADS)

    Roberts, P. B.; Duffy, T. E.; Schreiber, H.

    1980-03-01

    Two combustion turbine combined cycle power plants have been studied for performance and operating economics. Both power plants are in the sizing range that will be suitable for small utility application and use less than 106 GJ/hr (100 million Btu/hr). The first power plant is based on the Solar Turbines International (STI) Mars industrial gas turbine. The combined gas turbine/steam cycle is direct fired with No. 2 diesel fuel. A total installed cost for the system is estimated to be within the band 545 to 660 $/kW. The second power plant is based on STI's Centaur industrial gas turbine. The combined gas turbine/steam cycle is indirectly fired with solid fuel although it is intended that the installation can be initially fired with a liquid fuel.

  15. High efficiency fuel cell/advanced turbine power cycles

    SciTech Connect

    Morehead, H.

    1995-10-19

    An outline of the Westinghouse high-efficiency fuel cell/advanced turbine power cycle is presented. The following topics are discussed: The Westinghouse SOFC pilot manufacturing facility, cell scale-up plan, pressure effects on SOFC power and efficiency, sureCell versus conventional gas turbine plants, sureCell product line for distributed power applications, 20 MW pressurized-SOFC/gas turbine power plant, 10 MW SOFC/CT power plant, sureCell plant concept design requirements, and Westinghouse SOFC market entry.

  16. Design and optimization of geothermal power generation, heating, and cooling

    NASA Astrophysics Data System (ADS)

    Kanoglu, Mehmet

    Most of the world's geothermal power plants have been built in 1970s and 1980s following 1973 oil crisis. Urgency to generate electricity from alternative energy sources and the fact that geothermal energy was essentially free adversely affected careful designs of plants which would maximize their performance for a given geothermal resource. There are, however, tremendous potentials to improve performance of many existing geothermal power plants by retrofitting, optimizing the operating conditions, re-selecting the most appropriate binary fluid in binary plants, and considering cogeneration such as a district heating and/or cooling system or a system to preheat water entering boilers in industrial facilities. In this dissertation, some representative geothermal resources and existing geothermal power plants in Nevada are investigated to show these potentials. Economic analysis of a typical geothermal resource shows that geothermal heating and cooling may generate up to 3 times as much revenue as power generation alone. A district heating/cooling system is designed for its incorporation into an existing 27 MW air-cooled binary geothermal power plant. The system as designed has the capability to meet the entire heating needs of an industrial park as well as 40% of its cooling needs, generating potential revenues of $14,040,000 per year. A study of the power plant shows that evaporative cooling can increase the power output by up to 29% in summer by decreasing the condenser temperature. The power output of the plant can be increased by 2.8 percent by optimizing the maximum pressure in the cycle. Also, replacing the existing working fluid isobutane by butane, R-114, isopentane, and pentane can increase the power output by up to 2.5 percent. Investigation of some well-known geothermal power generation technologies as alternatives to an existing 12.8 MW single-flash geothermal power plant shows that double-flash, binary, and combined flash/binary designs can increase the

  17. Repetitively pulsed high power stacked Blumlein generators

    NASA Astrophysics Data System (ADS)

    Davanloo, F.; Borovina, D. L.; Collins, C. B.; Agee, F. J.; Kingsley, L. E.

    1995-05-01

    The stacked Blumlein pulse generators developed at the University of Texas at Dallas consist of several triaxial Blumleins stacked in series at one end. The lines are charged in parallel and synchronously commuted with a single switching element at the other end. In this way, relatively low charging voltages are multiplied to give the desired discharge voltage across an arbitrary load. Described here is the progress in development and characterization of these novel pulse-power generators capable of discharging at high repetition rates. The introduction of a tapered transmission line concept to the stacked Blumlein design provided fine tuning of output waveforms.

  18. NAFTA opportunities: Electrical equipment and power generation

    SciTech Connect

    Not Available

    1993-01-01

    The North American Free Trade Agreement (NAFTA) provides significant commercial opportunities in Mexico and Canada for the United States electric equipment and power generation industries, through increased goods and services exports to the Federal Electricity Commission (CFE) and through new U.S. investment in electricity generation facilities in Mexico. Canada and Mexico are the United States' two largest export markets for electrical equipment with exports of $1.53 billion and $1.51 billion, respectively, in 1992. Canadian and Mexican markets represent approximately 47 percent of total U.S. exports of electric equipment. The report presents an economic analysis of the section.

  19. Assessment of Japan's Optimal Power Generation Mix Considering Massive Deployment of Variable Renewable Power Generation

    NASA Astrophysics Data System (ADS)

    Komiyama, Ryoichi; Fujii, Yasumasa

    This paper analyzes Japan's optimal power generation mix considering massive deployment of solar photovoltaic (PV) system and wind power generation. The extensive introduction of PV system and wind power system are expected to play an important role in addressing energy security and climate change concern in Japan. Considering this expected large-scale deployment of PV system in electric power system, it is necessary to investigate the optimal power generation mix which is technologically capable of controlling and accommodating the intermittent output-power fluctuation inherently derived from PV and wind energy system. On these backgrounds, we develop optimal power generation mix model, explicitly analyzing the impact of output fluctuation in variable renewable in detailed resolution of time interval like 10 minutes at consecutive 365 days, with the role of stationary battery technology incorporated. Simulation results reveal that considerable deployment of those variable renewables do not necessarily require the scale of battery capacity similar as that of variable renewable capacity, due to quick load following treatment by thermal power plants, pumped-storage hydro power and battery technology over renewable output fluctuation.

  20. Life cycle water use for electricity generation: a review and harmonization of literature estimates

    NASA Astrophysics Data System (ADS)

    Meldrum, J.; Nettles-Anderson, S.; Heath, G.; Macknick, J.

    2013-03-01

    This article provides consolidated estimates of water withdrawal and water consumption for the full life cycle of selected electricity generating technologies, which includes component manufacturing, fuel acquisition, processing, and transport, and power plant operation and decommissioning. Estimates were gathered through a broad search of publicly available sources, screened for quality and relevance, and harmonized for methodological differences. Published estimates vary substantially, due in part to differences in production pathways, in defined boundaries, and in performance parameters. Despite limitations to available data, we find that: water used for cooling of thermoelectric power plants dominates the life cycle water use in most cases; the coal, natural gas, and nuclear fuel cycles require substantial water per megawatt-hour in most cases; and, a substantial proportion of life cycle water use per megawatt-hour is required for the manufacturing and construction of concentrating solar, geothermal, photovoltaic, and wind power facilities. On the basis of the best available evidence for the evaluated technologies, total life cycle water use appears lowest for electricity generated by photovoltaics and wind, and highest for thermoelectric generation technologies. This report provides the foundation for conducting water use impact assessments of the power sector while also identifying gaps in data that could guide future research.

  1. Simulation of Piezoelectric Jellyfish Power Generator

    NASA Astrophysics Data System (ADS)

    Wu, Yeong-Jen; Lai, Wei-Hsiang

    The energy problem is getting increasingly serious. As such, unused energy recovery technology is crucial for environmental protection, which has been investigated extensively. Several methods have been developed to utilize scavenged energy from the environment, such as waste heat, solar energy, wind energy, and tides energy to convert into useful power. There is a new idea of piezoelectric jellyfish generator which combines the utilization of sea wave and vibration energy. When sea wave passes through the jellyfish, the wave causes the tentacles to vibrate. The tentacles is made of piezoelectric polymer which can convert the strain energy into electrical energy. This paper discusses about the piezoelectric jellyfish's tentacles being disturbed by wave in the sea. We employed the commercial CFD software CFD-ACE+ 2006 to simulate this phenomenon. The parameters including its tentacle length (L) and wave propagating function (Y) are studied which affect the piezoelectric jellyfish capacity to generate power.

  2. Heat Management in Thermoelectric Power Generators

    PubMed Central

    Zebarjadi, M.

    2016-01-01

    Thermoelectric power generators are used to convert heat into electricity. Like any other heat engine, the performance of a thermoelectric generator increases as the temperature difference on the sides increases. It is generally assumed that as more heat is forced through the thermoelectric legs, their performance increases. Therefore, insulations are typically used to minimize the heat losses and to confine the heat transport through the thermoelectric legs. In this paper we show that to some extend it is beneficial to purposely open heat loss channels in order to establish a larger temperature gradient and therefore to increase the overall efficiency and achieve larger electric power output. We define a modified Biot number (Bi) as an indicator of requirements for sidewall insulation. We show cooling from sidewalls increases the efficiency for Bi values less than one, and decreases the efficiency for Bi values larger than one. PMID:27033717

  3. Plasma focus experiments powered by explosive generators

    NASA Astrophysics Data System (ADS)

    Freeman, B. L.; Caird, R. S.; Erickson, D. J.; Fowler, C. M.; Garn, W. B.; Kruse, H. W.; King, J. C.; Bartram, D. E.; Kruse, P. J.

    1983-03-01

    The plasma focus project began as an effort to develop an intense, pulsed, expendable neutron radiographic source. Since previous efforts to power a plasma focus with explosive generators were successful, we proposed to couple plate generators to a coaxial-geometry plasma focus to achieve this goal. Utilizing a small capacitor bank and a selected set of diagnostics, the explosive experiments were successfully conducted with maximum currents of 1.5 MA to 2.4 MA. A maximum neutron yield of approx. 3 x 10 (11) (DD) neutrons was achieved at the 2.4 MA level. Since the neutron yield did scale as a power of the maximum delivered current, and the neutron-producing source region was small, this approach is an attractive option to achieve a neutron radiographic source. The need for a reliable open-circuiting switch at several megamperes has resulted in postponement of the project.

  4. Heat Management in Thermoelectric Power Generators

    NASA Astrophysics Data System (ADS)

    Zebarjadi, M.

    2016-04-01

    Thermoelectric power generators are used to convert heat into electricity. Like any other heat engine, the performance of a thermoelectric generator increases as the temperature difference on the sides increases. It is generally assumed that as more heat is forced through the thermoelectric legs, their performance increases. Therefore, insulations are typically used to minimize the heat losses and to confine the heat transport through the thermoelectric legs. In this paper we show that to some extend it is beneficial to purposely open heat loss channels in order to establish a larger temperature gradient and therefore to increase the overall efficiency and achieve larger electric power output. We define a modified Biot number (Bi) as an indicator of requirements for sidewall insulation. We show cooling from sidewalls increases the efficiency for Bi values less than one, and decreases the efficiency for Bi values larger than one.

  5. Heat Management in Thermoelectric Power Generators.

    PubMed

    Zebarjadi, M

    2016-04-01

    Thermoelectric power generators are used to convert heat into electricity. Like any other heat engine, the performance of a thermoelectric generator increases as the temperature difference on the sides increases. It is generally assumed that as more heat is forced through the thermoelectric legs, their performance increases. Therefore, insulations are typically used to minimize the heat losses and to confine the heat transport through the thermoelectric legs. In this paper we show that to some extend it is beneficial to purposely open heat loss channels in order to establish a larger temperature gradient and therefore to increase the overall efficiency and achieve larger electric power output. We define a modified Biot number (Bi) as an indicator of requirements for sidewall insulation. We show cooling from sidewalls increases the efficiency for Bi values less than one, and decreases the efficiency for Bi values larger than one.

  6. BIOMASS GASIFICATION AND POWER GENERATION USING ADVANCED GAS TURBINE SYSTEMS

    SciTech Connect

    David Liscinsky

    2002-10-20

    A multidisciplined team led by the United Technologies Research Center (UTRC) and consisting of Pratt & Whitney Power Systems (PWPS), the University of North Dakota Energy & Environmental Research Center (EERC), KraftWork Systems, Inc. (kWS), and the Connecticut Resource Recovery Authority (CRRA) has evaluated a variety of gasified biomass fuels, integrated into advanced gas turbine-based power systems. The team has concluded that a biomass integrated gasification combined-cycle (BIGCC) plant with an overall integrated system efficiency of 45% (HHV) at emission levels of less than half of New Source Performance Standards (NSPS) is technically and economically feasible. The higher process efficiency in itself reduces consumption of premium fuels currently used for power generation including those from foreign sources. In addition, the advanced gasification process can be used to generate fuels and chemicals, such as low-cost hydrogen and syngas for chemical synthesis, as well as baseload power. The conceptual design of the plant consists of an air-blown circulating fluidized-bed Advanced Transport Gasifier and a PWPS FT8 TwinPac{trademark} aeroderivative gas turbine operated in combined cycle to produce {approx}80 MWe. This system uses advanced technology commercial products in combination with components in advanced development or demonstration stages, thereby maximizing the opportunity for early implementation. The biofueled power system was found to have a levelized cost of electricity competitive with other new power system alternatives including larger scale natural gas combined cycles. The key elements are: (1) An Advanced Transport Gasifier (ATG) circulating fluid-bed gasifier having wide fuel flexibility and high gasification efficiency; (2) An FT8 TwinPac{trademark}-based combined cycle of approximately 80 MWe; (3) Sustainable biomass primary fuel source at low cost and potentially widespread availability-refuse-derived fuel (RDF); (4) An overall integrated

  7. Future Photovoltaic Power Generation for Space-Based Power Utilities

    NASA Astrophysics Data System (ADS)

    Bailey, S.; Landis, G.; Raffaelle, R.; Hepp, A.

    2002-01-01

    A recent NASA program, Space Solar Power Exploratory Research and Technology (SERT), investigated the technologies needed to provide cost-competitive ground baseload electrical power from space based solar energy conversion. This goal mandated low cost, light weight gigawatt (GW) power generation. Investment in solar power generation technologies would also benefit high power military, commercial and science missions. These missions are generally those involving solar electric propulsion, surface power systems to sustain an outpost or a permanent colony on the surface of the moon or mars, space based lasers or radar, or as large earth orbiting power stations which can serve as central utilities for other orbiting spacecraft, or as in the SERT program, potentially beaming power to the earth itself. This paper will discuss requirements for the two latter options, the current state of the art of space solar cells, and a variety of both evolving thin film cells as well as new technologies which may impact the future choice of space solar cells for a high power mission application. The space world has primarily transitioned to commercially available III-V (GaInP/GaAs/Ge) cells with 24-26% air mass zero (AMO) efficiencies. Research in the III-V multi-junction solar cells has focused on fabricating either lattice-mismatched materials with optimum stacking bandgaps or new lattice matched materials with optimum bandgaps. In the near term this will yield a 30% commercially available space cell and in the far term possibly a 40% cell. Cost reduction would be achieved if these cells could be grown on a silicon rather than a germanium substrate since the substrate is ~65% of the cell cost or, better yet, on a polyimide or possibly a ceramic substrate. An overview of multi-junction cell characteristics will be presented here. Thin film cells require substantially less material and have promised the advantage of large area, low cost manufacturing. However, space cell requirements

  8. Utility interconnection issues for wind power generation

    NASA Technical Reports Server (NTRS)

    Herrera, J. I.; Lawler, J. S.; Reddoch, T. W.; Sullivan, R. L.

    1986-01-01

    This document organizes the total range of utility related issues, reviews wind turbine control and dynamic characteristics, identifies the interaction of wind turbines to electric utility systems, and identifies areas for future research. The material is organized at three levels: the wind turbine, its controls and characteristics; connection strategies as dispersed or WPSs; and the composite issue of planning and operating the electric power system with wind generated electricity.

  9. System for generating power from waves

    SciTech Connect

    Gargos, G.

    1987-08-11

    A system is described for generating power from waves in a body of water, comprising floatable vessels; compound bell cranks having a central arm pinned at each end to adjacent the vessels and lateral arms extending outwardly in two opposed directions from each end of the central arm; and hydraulic cylinders pinned to alternate the compound bell cranks at the ends of the lateral arms.

  10. Gas Generation in Radioactive Wastes - MAGGAS Predictive Life Cycle Model

    SciTech Connect

    Streatfield, R.E.; Hebditch, D.J.; Swift, B.T.; Hoch, A.R.; Constable, M.

    2006-07-01

    Gases may form from radioactive waste in quantities posing different potential hazards throughout the waste package life cycle. The latter includes surface storage, transport, placing in an operating repository, storage in the repository prior to backfill, closure and the post-closure stage. Potentially hazardous situations involving gas include fire, flood, dropped packages, blocked package vents and disruption to a sealed repository. The MAGGAS (Magnox Gas generation) model was developed to assess gas formation for safety assessments during all stages of the waste package life cycle. This is a requirement of the U.K. regulatory authorities and Nirex and progress in this context is discussed. The processes represented in the model include: Corrosion, microbial degradation, radiolysis, solid-state diffusion, chemico-physical degradation and pressurisation. The calculation was split into three time periods. First the 'aerobic phase' is used to model the periods of surface storage, transport and repository operations including storage in the repository prior to backfill. The second and third periods were designated 'anaerobic phase 1' and 'anaerobic phase 2' and used to model the waste packages in the post-closure phase of the repository. The various significant gas production processes are modeled in each phase. MAGGAS (currently Version 8) is mounted on an Excel spreadsheet for ease of use and speed, has 22 worksheets and is operated routinely for assessing waste packages (e.g. for ventilation of stores and pressurisation of containers). Ten operational and decommissioning generic nuclear power station waste streams were defined as initial inputs, which included ion exchange materials, sludges and concentrates, fuel element debris, graphite debris, activated components, contaminated items, desiccants and catalysts. (authors)

  11. Thermophotovoltaic (TPV) applications to space power generation

    SciTech Connect

    Vicente, F.A.; Kelly, C.E.; Loughin, S.

    1996-12-31

    Examined is a Thermophotovoltaic (TPV) converter using an advanced quaternary III--V cell with an integral filter coupled to isotope (GPHS) and nuclear reactor heat sources. Results presented indicate the merits of TPV conversion for meeting a wide range of space power requirements. The authors find that TPV offers both a reduction in the cost of building the converter for an electric generator driven by a radioisotope or nuclear reactor, as well as appreciable fuel savings. On the basis of cost, they find that isotope powered TPV systems enjoy considerable advantage over solar arrays or interplanetary exploration missions beyond the asteroid belt. For space reactor power systems the analysis indicates that TPV conversion has a mass advantage over thermoelectrics (T/E) for systems below 50 kWe.

  12. Fiber-based flexible thermoelectric power generator

    NASA Astrophysics Data System (ADS)

    Yadav, A.; Pipe, K. P.; Shtein, M.

    Flexible thermoelectric power generators fabricated by evaporating thin films on flexible fiber substrates are demonstrated to be feasible candidates for waste heat recovery. An open circuit voltage of 19.6 μV K per thermocouple junction is measured for Ni-Ag thin films, and a maximum power of 2 nW for 7 couples at Δ T = 6.6 K is measured. Heat transfer analysis is used to project performance for several other material systems, with a predicted power output of 1 μW per couple for Bi 2Te 3/Sb 2Te 3-based fiber coatings with a hot junction temperature of 100 °C. Considering the performance of woven thermoelectric cloths or fiber composites, relevant properties and dimensions of individual thermoelectric fibers are optimized.

  13. Thermonuclear inverse magnetic pumping power cycle for stellarator reactors

    SciTech Connect

    Ho, D.D.M.; Kulsrud, R.M.

    1985-09-01

    A novel power cycle for direct conversion of alpha-particle energy into electricity is proposed for an ignited plasma in a stellarator reactor. The plasma column is alternately compressed and expanded in minor radius by periodic variation of the toroidal magnetic field strength. As a result of the way a stellarator is expected to work, the plasma pressure during expansion is greater than the corresponding pressure during compression. Therefore, negative work is done on the plasma during a complete cycle. This work manifests itself as a back-voltage in the toroidal field coils, and direct electrical energy is obtained from this voltage. For a typical reactor, the average power obtained from this cycle (with a minor radius compression factor on the order of 50%) can be as much as 50% of the electrical power obtained from the thermonuclear neutrons without compressing the plasma. Thus, if it is feasible to vary the toroidal field strength, the power cycle provides an alternative scheme of energy conversion for a deuterium-tritium fueled reactor. The cycle may become an important method of energy conversion for advanced neutron-lean fueled reactors. By operating two or more reactors in tandem, the cycle can be made self-sustaining.

  14. Cummins Power Generation SECA Phase 1

    SciTech Connect

    Charles Vesely

    2007-08-17

    The following report documents the progress of the Cummins Power Generation (CPG) SECA Phase 1 SOFC development and final testing under the U.S. Department of Energy Solid State Energy Conversion Alliance (SECA) contract DE-FC26-01NT41244. This report overviews and summarizes CPG and partner research development leading to successful demonstration of the SECA Phase 1 objectives and significant progress towards SOFC commercialization. Significant Phase 1 Milestones: (1) Demonstrated: (a) Operation meeting Phase 1 requirements on commercial natural gas. (b) LPG and Natural Gas CPOX fuel reformers. (c) SOFC systems on dry CPOX reformate. (c) Steam reformed Natural Gas operation. (d) Successful start-up and shut-down of SOFC system without inert gas purge. (e) Utility of stack simulators as a tool for developing balance of plant systems. (2) Developed: (a) Low cost balance of plant concepts and compatible systems designs. (b) Identified low cost, high volume components for balance of plant systems. (c) Demonstrated high efficiency SOFC output power conditioning. (d) Demonstrated SOFC control strategies and tuning methods. The Phase 1 performance test was carried out at the Cummins Power Generation facility in Minneapolis, Minnesota starting on October 2, 2006. Performance testing was successfully completed on January 4, 2007 including the necessary steady-state, transient, efficiency, and peak power operation tests.

  15. Complementary power output characteristics of electromagnetic generators and triboelectric generators

    NASA Astrophysics Data System (ADS)

    Fan, Feng-Ru; Tang, Wei; Yao, Yan; Luo, Jianjun; Zhang, Chi; Wang, Zhong Lin

    2014-04-01

    Recently, a triboelectric generator (TEG) has been invented to convert mechanical energy into electricity by a conjunction of triboelectrification and electrostatic induction. Compared to the traditional electromagnetic generator (EMG) that produces a high output current but low voltage, the TEG has different output characteristics of low output current but high output voltage. In this paper, we present a comparative study regarding the fundamentals of TEGs and EMGs. The power output performances of the EMG and the TEG have a special complementary relationship, with the EMG being a voltage source and the TEG a current source. Utilizing a power transformed and managed (PTM) system, the current output of a TEG can reach as high as ˜3 mA, which can be coupled with the output signal of an EMG to enhance the output power. We also demonstrate a design to integrate a TEG and an EMG into a single device for simultaneously harvesting mechanical energy. In addition, the integrated NGs can independently output a high voltage and a high current to meet special needs.

  16. Supercritical CO2 Power Cycles: Design Considerations for Concentrating Solar Power

    SciTech Connect

    Neises, Ty; Turchi, Craig

    2014-09-01

    A comparison of three supercritical CO2 Brayton cycles: the simple cycle, recompression cycle and partial-cooling cycle indicates the partial-cooling cycle is favored for use in concentrating solar power (CSP) systems. Although it displays slightly lower cycle efficiency versus the recompression cycle, the partial-cooling cycle is estimated to have lower total recuperator size, as well as a lower maximum s-CO2 temperature in the high-temperature recuperator. Both of these effects reduce recuperator cost. Furthermore, the partial-cooling cycle provides a larger temperature differential across the turbine, which translates into a smaller, more cost-effective thermal energy storage system. The temperature drop across the turbine (and by extension, across a thermal storage system) for the partial-cooling cycle is estimated to be 23% to 35% larger compared to the recompression cycle of equal recuperator conductance between 5 and 15 MW/K. This reduces the size and cost of the thermal storage system. Simulations by NREL and Abengoa Solar indicate the partial-cooling cycle results in a lower LCOE compared with the recompression cycle, despite the former's slightly lower cycle efficiency. Advantages of the recompression cycle include higher thermal efficiency and potential for a smaller precooler. The overall impact favors the use of a partial-cooling cycle for CSP compared to the more commonly analyzed recompression cycle.

  17. Life cycle assessment analysis of supercritical coal power units

    NASA Astrophysics Data System (ADS)

    Ziębik, Andrzej; Hoinka, Krzysztof; Liszka, Marcin

    2010-09-01

    This paper presents the Life Cycle Assessment (LCA) analysis concerning the selected options of supercritical coal power units. The investigation covers a pulverized power unit without a CCS (Carbon Capture and Storage) installation, a pulverized unit with a "post-combustion" installation (MEA type) and a pulverized power unit working in the "oxy-combustion" mode. For each variant the net electric power amounts to 600 MW. The energy component of the LCA analysis has been determined. It describes the depletion of non-renewable natural resources. The energy component is determined by the coefficient of cumulative energy consumption in the life cycle. For the calculation of the ecological component of the LCA analysis the cumulative CO2 emission has been applied. At present it is the basic emission factor for the LCA analysis of power plants. The work also presents the sensitivity analysis of calculated energy and ecological factors.

  18. Thermally regenerative hydrogen/oxygen fuel cell power cycles

    NASA Astrophysics Data System (ADS)

    Morehouse, J. H.

    1986-07-01

    Two innovative thermodynamic power cycles are analytically examined for future engineering feasibility. The power cycles use a hydrogen-oxygen fuel cell for electrical energy production and use the thermal dissociation of water for regeneration of the hydrogen and oxygen. The TDS (thermal dissociation system) uses a thermal energy input at over 2000 K to thermally dissociate the water. The other cycle, the HTE (high temperature electrolyzer) system, dissociates the water using an electrolyzer operating at high temperature (1300 K) which receives its electrical energy from the fuel cell. The primary advantages of these cycles is that they are basically a no moving parts system, thus having the potential for long life and high reliability, and they have the potential for high thermal efficiency. Both cycles are shown to be classical heat engines with ideal efficiency close to Carnot cycle efficiency. The feasibility of constructing actual cycles is investigated by examining process irreversibilities and device efficiencies for the two types of cycles. The results show that while the processes and devices of the 2000 K TDS exceed current technology limits, the high temperature electrolyzer system appears to be a state-of-the-art technology development. The requirements for very high electrolyzer and fuel cell efficiencies are seen as determining the feasbility of the HTE system, and these high efficiency devices are currently being developed. It is concluded that a proof-of-concept HTE system experiment can and should be conducted.

  19. Thermally regenerative hydrogen/oxygen fuel cell power cycles

    NASA Technical Reports Server (NTRS)

    Morehouse, J. H.

    1986-01-01

    Two innovative thermodynamic power cycles are analytically examined for future engineering feasibility. The power cycles use a hydrogen-oxygen fuel cell for electrical energy production and use the thermal dissociation of water for regeneration of the hydrogen and oxygen. The TDS (thermal dissociation system) uses a thermal energy input at over 2000 K to thermally dissociate the water. The other cycle, the HTE (high temperature electrolyzer) system, dissociates the water using an electrolyzer operating at high temperature (1300 K) which receives its electrical energy from the fuel cell. The primary advantages of these cycles is that they are basically a no moving parts system, thus having the potential for long life and high reliability, and they have the potential for high thermal efficiency. Both cycles are shown to be classical heat engines with ideal efficiency close to Carnot cycle efficiency. The feasibility of constructing actual cycles is investigated by examining process irreversibilities and device efficiencies for the two types of cycles. The results show that while the processes and devices of the 2000 K TDS exceed current technology limits, the high temperature electrolyzer system appears to be a state-of-the-art technology development. The requirements for very high electrolyzer and fuel cell efficiencies are seen as determining the feasbility of the HTE system, and these high efficiency devices are currently being developed. It is concluded that a proof-of-concept HTE system experiment can and should be conducted.

  20. Possibilities of improving the efficiency of power generation with regard to electrolytic water splitting

    NASA Astrophysics Data System (ADS)

    Knoche, K. F.; Hasberg, W.; Roth, M.

    The efficiency of power generation has a considerable influence on the upper limit of the total efficiency of electrolytic water splitting. This paper deals with the energetic potential of power generation processes and therefore with the water electrolysis processes. In the investigations reported here, it was assumed that the heat source is always the same (high-temperature nuclear reactor). For comparing thermochemical or hybrid water splitting cycles and water electrolysis, the upper limit of process temperatures must be comparable, too. Therefore, high-temperature processes for power generation have been investigated. A detailed energy and exergy balance is presented for the following cycles: (1) steam turbine cycles; (2) helium gas turbine cycles; (3) combined gas/steam turbine cycles. For these different processes an exergy analysis was performed in order to localize the process units, which make a considerable contribution to the decrease in total efficiency.

  1. Phase Change Material Thermal Power Generator

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.

    2013-01-01

    An innovative modification has been made to a previously patented design for the Phase Change Material (PCM) Thermal Generator, which works in water where ocean temperature alternatively melts wax in canisters, or allows the wax to re-solidify, causing high-pressure oil to flow through a hydraulic generator, thus creating electricity to charge a battery that powers the vehicle. In this modification, a similar thermal PCM device has been created that is heated and cooled by the air and solar radiation instead of using ocean temperature differences to change the PCM from solid to liquid. This innovation allows the device to use thermal energy to generate electricity on land, instead of just in the ocean.

  2. Overland Tidal Power Generation Using Modular Tidal Prism

    SciTech Connect

    Khangaonkar, Tarang; Yang, Zhaoqing; Geerlofs, Simon H.; Copping, Andrea

    2010-03-01

    Naturally occurring sites with sufficient kinetic energy suitable for tidal power generation with sustained currents > 1 to 2 m/s are relatively rare. Yet sites with greater than 3 to 4 m of tidal range are relatively common around the U.S. coastline. Tidal potential does exist along the shoreline but is mostly distributed, and requires an approach which allows trapping and collection to also be conducted in a distributed manner. In this paper we examine the feasibility of generating sustainable tidal power using multiple nearshore tidal energy collection units and present the Modular Tidal Prism (MTP) basin concept. The proposed approach utilizes available tidal potential by conversion into tidal kinetic energy through cyclic expansion and drainage from shallow modular manufactured overland tidal prisms. A preliminary design and configuration of the modular tidal prism basin including inlet channel configuration and basin dimensions was developed. The unique design was shown to sustain momentum in the penstocks during flooding as well as ebbing tidal cycles. The unstructured-grid finite volume coastal ocean model (FVCOM) was used to subject the proposed design to a number of sensitivity tests and to optimize the size, shape and configuration of MTP basin for peak power generation capacity. The results show that an artificial modular basin with a reasonable footprint (≈ 300 acres) has the potential to generate 10 to 20 kw average energy through the operation of a small turbine located near the basin outlet. The potential of generating a total of 500 kw to 1 MW of power through a 20 to 40 MTP basin tidal power farms distributed along the coastline of Puget Sound, Washington, is explored.

  3. Power Generator with Thermo-Differential Modules

    NASA Technical Reports Server (NTRS)

    Saiz, John R.; Nguyen, James

    2010-01-01

    A thermoelectric power generator consists of an oven box and a solar cooker/solar reflector unit. The solar reflector concentrates sunlight into heat and transfers the heat into the oven box via a heat pipe. The oven box unit is surrounded by five thermoelectric modules and is located at the bottom end of the solar reflector. When the heat is pumped into one side of the thermoelectric module and ejected from the opposite side at ambient temperatures, an electrical current is produced. Typical temperature accumulation in the solar reflector is approximately 200 C (392 F). The heat pipe then transfers heat into the oven box with a loss of about 40 percent. At the ambient temperature of about 20 C (68 F), the temperature differential is about 100 C (180 F) apart. Each thermoelectric module, generates about 6 watts of power. One oven box with five thermoelectric modules produces about 30 watts. The system provides power for unattended instruments in remote areas, such as space colonies and space vehicles, and in polar and other remote regions on Earth.

  4. Water-supported wind actuated power generating assembly

    SciTech Connect

    Hoar, R.A.

    1982-02-23

    A counterweighted elongate buoyant body that floats on the surface of the sea or a lake has at least one sail supporting mast extending upwardly therefrom as well as vanes that tend to maintain the sails substantially normal to the direction of movement of the wind. The buoyant body is by frame means maintained within the confines of a circular series of piles. The counterweight and means for pivoting each sail from a position normal to the direction of the wind to substantially parallel thereto cooperate to impart a transverse rocking motion to the buoyant body that has an eccentric transverse arcuate member depending therefrom that is engaged by a pair of rollers, as the transverse member moves relative to the pair of rollers a bellows is receprocated upwardly and downwardly to draw water into and discharge it from a check valve controlled confined space to a reservoir situated at a substantial distance above the surface of the body of water. Water discharges by gravity from the reservoir to a turbine or the like to power a generator to produce electricity for power purposes. Power means pivot the sails substantially parallel to the direction of the wind after the latter has rolled the buoyant body to a first position. The counterweight then rolls the buoyant body to a second position where upon the power means pivot the sails to positions substantially normal to the direction of the wind to start another power generating cycle.

  5. Comparison of advanced power generation technologies using computer simulations

    SciTech Connect

    Rodgers, B.R.; Maude, C.M.; IEA Coal Research, London )

    1989-01-01

    The intent of this report was to evaluate advanced technologies' for power generation by comparing examples from each generic type on a common basis. Due to the diversified nature of these technologies, computer process simulations were found to be the only suitable means for obtaining a common basis. A large number of process options significantly effected the performance of the advanced technologies. Independent measurements were made to determine the efficacy of the most important ones, namely, plant size, hot gas cleaning, supercritical steam cycle, air blown versus oxygen blown gasifiers, high sulphur coal, integrated oxygen plant, and advanced high temperature gas turbines. The results are summarized. 3 refs., 2 figs., 3 tabs.

  6. Evaluation Of Different Power Conditioning Options For Stirling Generators

    NASA Astrophysics Data System (ADS)

    Garrigos, A.; Blanes, J. M.; Carrasco, J. A.; Maset, E.; Montalban, G.; Ejea, J.; Ferreres, A.; Sanchis, E.

    2011-10-01

    Free-piston Stirling engines are an interesting alternative for electrical power systems, especially in deep space missions where photovoltaic systems are not feasible. This kind of power generators contains two main parts, the Stirling machine and the linear alternator that converts the mechanical energy from the piston movement to electrical energy. Since the generated power is in AC form, several aspects should be assessed to use such kind of generators in a spacecraft power system: AC/DC topologies, power factor correction, power regulation techniques, integration into the power system, etc. This paper details power generator operation and explores different power conversion approaches.

  7. High power terahertz generation using 1550 nm plasmonic photomixers

    SciTech Connect

    Berry, Christopher W.; Hashemi, Mohammad R.; Jarrahi, Mona; Preu, Sascha; Lu, Hong; Gossard, Arthur C.

    2014-07-07

    We present a 1550 nm plasmonic photomixer operating under pumping duty cycles below 10%, which offers significantly higher terahertz radiation power levels compared to previously demonstrated photomixers. The record-high terahertz radiation powers are enabled by enhancing the device quantum efficiency through use of plasmonic contact electrodes, and by mitigating thermal breakdown at high optical pump power levels through use of a low duty cycle optical pump. The repetition rate of the optical pump can be specifically selected at a given pump duty cycle to control the spectral linewidth of the generated terahertz radiation. At an average optical pump power of 150 mW with a pump modulation frequency of 1 MHz and pump duty cycle of 2%, we demonstrate up to 0.8 mW radiation power at 1 THz, within each continuous wave radiation cycle.

  8. Integrated control of next generation power system

    SciTech Connect

    None, None

    2010-02-28

    The multi-agent system (MAS) approach has been applied with promising results for enhancing an electric power distribution circuit, such as the Circuit of the Future as developed by Southern California Edison. These next generation power system results include better ability to reconfigure the circuit as well as the increased capability to improve the protection and enhance the reliability of the circuit. There were four main tasks in this project. The specific results for each of these four tasks and their related topics are presented in main sections of this report. Also, there were seven deliverables for this project. The main conclusions for these deliverables are summarized in the identified subtask section of this report. The specific details for each of these deliverables are included in the “Project Deliverables” section at the end of this Final Report.

  9. Breaking the Intergenerational Cycle of Disadvantage: The Three Generation Approach.

    PubMed

    Cheng, Tina L; Johnson, Sara B; Goodman, Elizabeth

    2016-06-01

    Health disparities in the United States related to socioeconomic status are persistent and pervasive. This review highlights how social disadvantage, particularly low socioeconomic status and the health burden it brings, is passed from 1 generation to the next. First, we review current frameworks for understanding the intergenerational transmission of health disparities and provide 4 illustrative examples relevant to child health, development, and well-being. Second, the leading strategy to break the cycle of poverty in young families in the United States, the 2-generation approach, is reviewed. Finally, we propose a new 3-generation approach that must combine with the 2-generation approach to interrupt the intergenerational cycle of disadvantage and eliminate health disparities.

  10. Breaking the Intergenerational Cycle of Disadvantage: The Three Generation Approach

    PubMed Central

    Johnson, Sara B.; Goodman, Elizabeth

    2016-01-01

    Health disparities in the United States related to socioeconomic status are persistent and pervasive. This review highlights how social disadvantage, particularly low socioeconomic status and the health burden it brings, is passed from 1 generation to the next. First, we review current frameworks for understanding the intergenerational transmission of health disparities and provide 4 illustrative examples relevant to child health, development, and well-being. Second, the leading strategy to break the cycle of poverty in young families in the United States, the 2-generation approach, is reviewed. Finally, we propose a new 3-generation approach that must combine with the 2-generation approach to interrupt the intergenerational cycle of disadvantage and eliminate health disparities. PMID:27244844

  11. Spindle position regulation for wind power generators

    NASA Astrophysics Data System (ADS)

    Tsai, Nan-Chyuan; Chiang, Chao-Wen

    2010-04-01

    The three-time-scale plant model of a wind power generator, including a wind turbine, a flexible vertical shaft, a variable inertia flywheel (VIF) module, an active magnetic bearing (AMB) unit and the applied wind sequence, is constructed. In order to make the wind power generator be still able to operate as the spindle speed exceeds its rated speed, the VIF is equipped so that the spindle speed can be appropriately slowed down once any stronger wind field is exerted. Currently, most of wind energy input is, as a matter of fact, a waste since the commercially available wind power generators only operate for fairly mild or low-speed wind field. To prevent any potential damage due to collision by shaft against conventional bearings, the AMB unit is proposed to replace the traditional bearings and regulate the shaft position deviation. By singular perturbation order-reduction technique, a lower-order plant model can be established for the synthesis of feedback controller. It is found that two major system parameter uncertainties, an additive uncertainty and a multiplicative uncertainty, are constituted by the wind turbine and the VIF, respectively. The upper bounds of system parameters variation can be therefore estimated and the frequency shaping sliding mode control (FSSMC) loop is proposed to account for these uncertainties and suppress the unmodeled higher-order plant dynamics. At last, the efficacy of the FSSMC is verified by intensive computer and experimental simulations for regulation on position deviation of the shaft and counter-balance of unpredictable wind disturbance.

  12. System studies of coal fired-closed cycle MHD for central station power plants

    NASA Technical Reports Server (NTRS)

    Zauderer, B.

    1976-01-01

    This paper presents a discussion of the closed cycle MHD results obtained in a recent study of various advanced energy conversion (ECAS) power systems. The study was part of the first phase of this ECAS study. Since this was the first opportunity to evaluate the coal fired closed cycle MHD system, a number of iterations were required to partially optimize the system. The present paper deals with the latter part of the study in which the direct coal fired, MHD topping-steam bottoming cycle was established as the current choice for central station power generation. The emphasis of the paper is on the background assumptions and the conclusions that can be drawn from the closed cycle MHD analysis. The author concludes that closed cycle MHD has efficiencies comparable to that of open cycle MHD and that both systems are considerably more efficient than the other system studies in Phase 1 of the GE ECAS. Its cost will possibly be slightly higher than that of the open cycle MHD system. Also, with reasonable fuel escalation assumptions, both systems can produce lower cost electricity than conventional steam power plants. Suggestions for further work in closed cycle MHD components and systems is made.

  13. System studies of coal fired-closed cycle MHD for central station power plants

    NASA Technical Reports Server (NTRS)

    Zauderer, B.

    1976-01-01

    This paper presents a discussion of the closed cycle MHD results obtained in a recent study of various advanced energy conversion (ECAS) power systems. The study was part of the first phase of this ECAS study. Since this was the first opportunity to evaluate the coal fired closed cycle MHD system, a number of iterations were required to partially optimize the system. The present paper deals with the latter part of the study in which the direct coal fired, MHD topping-steam bottoming cycle was established as the current choice for central station power generation. The emphasis of the paper is on the background assumptions and the conclusions that can be drawn from the closed cycle MHD analysis. The author concludes that closed cycle MHD has efficiencies comparable to that of open cycle MHD and that both systems are considerably more efficient than the other system studies in Phase 1 of the GE ECAS. Its cost will possibly be slightly higher than that of the open cycle MHD system. Also, with reasonable fuel escalation assumptions, both systems can produce lower cost electricity than conventional steam power plants. Suggestions for further work in closed cycle MHD components and systems is made.

  14. 15 KW Small Turboelectric Power Generation System

    DTIC Science & Technology

    2006-08-18

    Jefferson Davis Highway. Suite - 6. AUTHOR( S ) Daniel C. Mikkelson I 4. TITLE AND SUBTITLE 15 KW Small Turboelectric Power Generat ion S y s t e m...I 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) ( 8. PERFORMING ORGANIZATION 5. FUNDING NUMBERS C: W911 NF-04-C-0077 Locust USA, Inc. 8304...9. SPONSORING / MONITORING AGENCY NAME( S ) AND ADDRESS(ES) U. S . Army Research Office P.O. Box 1221 1 The views, opinions andlor f indings

  15. Diagnosis of automotive fuel cell power generators

    NASA Astrophysics Data System (ADS)

    Hissel, D.; Péra, M. C.; Kauffmann, J. M.

    Most of car manufacturers around the world have launched important research programs on the integration of fuel cell (FC) power generators into cars. Despite the first achievements, fuel cell systems are still badly known, particularly when talking about fault diagnosis and predictive maintenance. This paper proposes a first step in this way by introducing a simple but also efficient diagnosis-oriented model of a proton exchange membrane fuel cell (PEMFC). The considered diagnosis model is here a fuzzy one and is tuned thanks to genetic algorithms.

  16. Power generation transducer from magnetostrictive materials

    NASA Astrophysics Data System (ADS)

    Zhang, Hui

    2011-06-01

    In this letter, on the basis of Stoner-Wohlfarth model, the changes in magnetization of Tb0.3Dy0.7Fe2 alloy have been calculated with a compressive stress along the [111] and [112] axes. The results have shown that the significant change in magnetization for Tb0.3Dy0.7Fe2 alloy can be induced by the compressive stress. A feasible application of power generation floor which can convert the energy from the vibration created by a walking person on it into electric energy has been proposed, and its structure and performance also have been revealed.

  17. High average and peak power few-cycle laser pulses delivered by fiber pumped OPCPA system.

    PubMed

    Rothhardt, J; Hädrich, S; Seise, E; Krebs, M; Tavella, F; Willner, A; Düsterer, S; Schlarb, H; Feldhaus, J; Limpert, J; Rossbach, J; Tünnermann, A

    2010-06-07

    We report on a high power optical parametric amplifier delivering 8 fs pulses with 6 GW peak power. The system is pumped by a fiber amplifier and operated at 96 kHz repetition rate. The average output power is as high as 6.7 W, which is the highest average power few-cycle pulse laser reported so far. When stabilizing the seed oscillator, the system delivered carrier-envelop phase stable laser pulses. Furthermore, high harmonic generation up to the 33(th) order (21.8 nm) is demonstrated in a Krypton gas jet. In addition, the scalability of the presented laser system is discussed.

  18. Indirect-fired gas turbine dual fuel cell power cycle

    DOEpatents

    Micheli, Paul L.; Williams, Mark C.; Sudhoff, Frederick A.

    1996-01-01

    A fuel cell and gas turbine combined cycle system which includes dual fuel cell cycles combined with a gas turbine cycle wherein a solid oxide fuel cell cycle operated at a pressure of between 6 to 15 atms tops the turbine cycle and is used to produce CO.sub.2 for a molten carbonate fuel cell cycle which bottoms the turbine and is operated at essentially atmospheric pressure. A high pressure combustor is used to combust the excess fuel from the topping fuel cell cycle to further heat the pressurized gas driving the turbine. A low pressure combustor is used to combust the excess fuel from the bottoming fuel cell to reheat the gas stream passing out of the turbine which is used to preheat the pressurized air stream entering the topping fuel cell before passing into the bottoming fuel cell cathode. The CO.sub.2 generated in the solid oxide fuel cell cycle cascades through the system to the molten carbonate fuel cell cycle cathode.

  19. Coal gasification for power generation. 2nd ed.

    SciTech Connect

    2006-10-15

    The report gives an overview of the opportunities for coal gasification in the power generation industry. It provides a concise look at the challenges faced by coal-fired generation, the ability of coal gasification to address these challenges, and the current state of IGCC power generation. Topics covered in the report include: An overview of coal generation including its history, the current market environment, and the status of coal gasification; A description of gasification technology including processes and systems; An analysis of the key business factors that are driving increased interest in coal gasification; An analysis of the barriers that are hindering the implementation of coal gasification projects; A discussion of Integrated Gasification Combined Cycle (IGCC) technology; An evaluation of IGCC versus other generation technologies; A discussion of IGCC project development options; A discussion of the key government initiatives supporting IGCC development; Profiles of the key gasification technology companies participating in the IGCC market; and A description of existing and planned coal IGCC projects.

  20. Enhancing power generation of floating wave power generators by utilization of nonlinear roll-pitch coupling

    NASA Astrophysics Data System (ADS)

    Yerrapragada, Karthik; Ansari, M. H.; Karami, M. Amin

    2017-09-01

    We propose utilization of the nonlinear coupling between the roll and pitch motions of wave energy harvesting vessels to increase their power generation by orders of magnitude. Unlike linear vessels that exhibit unidirectional motion, our vessel undergoes both pitch and roll motions in response to frontal waves. This significantly magnifies the motion of the vessel and thus improves the power production by several orders of magnitude. The ocean waves result in roll and pitch motions of the vessel, which in turn causes rotation of an onboard pendulum. The pendulum is connected to an electric generator to produce power. The coupled electro-mechanical system is modeled using energy methods. This paper investigates the power generation of the vessel when the ratio between pitch and roll natural frequencies is about 2 to 1. In that case, a nonlinear energy transfer occurs between the roll and pitch motions, causing the vessel to perform coupled pitch and roll motion even though it is only excited in the pitch direction. It is shown that co-existence of pitch and roll motions significantly enhances the pendulum rotation and power generation. A method for tuning the natural frequencies of the vessel is proposed to make the energy generator robust to variations of the frequency of the incident waves. It is shown that the proposed method enhances the power output of the floating wave power generators by multiple orders of magnitude. A small-scale prototype is developed for the proof of concept. The nonlinear energy transfer and the full rotation of the pendulum in the prototype are observed in the experimental tests.

  1. Life-cycle analysis results of geothermal systems in comparison to other power systems.

    SciTech Connect

    Sullivan, J. L.; Clark, C. E.; Han, J.; Wang, M.; Energy Systems

    2010-10-11

    A life-cycle energy and greenhouse gas emissions analysis has been conducted with Argonne National Laboratory's expanded Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model for geothermal power-generating technologies, including enhanced geothermal, hydrothermal flash, and hydrothermal binary technologies. As a basis of comparison, a similar analysis has been conducted for other power-generating systems, including coal, natural gas combined cycle, nuclear, hydroelectric, wind, photovoltaic, and biomass by expanding the GREET model to include power plant construction for these latter systems with literature data. In this way, the GREET model has been expanded to include plant construction, as well as the usual fuel production and consumption stages of power plant life cycles. For the plant construction phase, on a per-megawatt (MW) output basis, conventional power plants in general are found to require less steel and concrete than renewable power systems. With the exception of the concrete requirements for gravity dam hydroelectric, enhanced geothermal and hydrothermal binary used more of these materials per MW than other renewable power-generation systems. Energy and greenhouse gas (GHG) ratios for the infrastructure and other life-cycle stages have also been developed in this study per kilowatt-hour (kWh) of electricity output by taking into account both plant capacity and plant lifetime. Generally, energy burdens per energy output associated with plant infrastructure are higher for renewable systems than conventional ones. GHG emissions per kWh of electricity output for plant construction follow a similar trend. Although some of the renewable systems have GHG emissions during plant operation, they are much smaller than those emitted by fossil fuel thermoelectric systems. Binary geothermal systems have virtually insignificant GHG emissions compared to fossil systems. Taking into account plant construction and operation, the GREET

  2. Thermodynamic analysis of a Rankine cycle powered vapor compression ice maker using solar energy.

    PubMed

    Hu, Bing; Bu, Xianbiao; Ma, Weibin

    2014-01-01

    To develop the organic Rankine-vapor compression ice maker driven by solar energy, a thermodynamic model was developed and the effects of generation temperature, condensation temperature, and working fluid types on the system performance were analyzed. The results show that the cooling power per square meter collector and ice production per square meter collector per day depend largely on generation temperature and condensation temperature and they increase firstly and then decrease with increasing generation temperature. For every working fluid there is an optimal generation temperature at which organic Rankine efficiency achieves the maximum value. The cooling power per square meter collector and ice production per square meter collector per day are, respectively, 126.44 W m(-2) and 7.61 kg m(-2) day(-1) at the generation temperature of 140 °C for working fluid of R245fa, which demonstrates the feasibility of organic Rankine cycle powered vapor compression ice maker.

  3. High-power Broadband Organic THz Generator

    PubMed Central

    Jeong, Jae-Hyeok; Kang, Bong-Joo; Kim, Ji-Soo; Jazbinsek, Mojca; Lee, Seung-Heon; Lee, Seung-Chul; Baek, In-Hyung; Yun, Hoseop; Kim, Jongtaek; Lee, Yoon Sup; Lee, Jae-Hyeok; Kim, Jae-Ho; Rotermund, Fabian; Kwon, O-Pil

    2013-01-01

    The high-power broadband terahertz (THz) generator is an essential tool for a wide range of THz applications. Here, we present a novel highly efficient electro-optic quinolinium single crystal for THz wave generation. For obtaining intense and broadband THz waves by optical-to-THz frequency conversion, a quinolinium crystal was developed to fulfill all the requirements, which are in general extremely difficult to maintain simultaneously in a single medium, such as a large macroscopic electro-optic response and excellent crystal characteristics including a large crystal size with desired facets, good environmental stability, high optical quality, wide transparency range, and controllable crystal thickness. Compared to the benchmark inorganic and organic crystals, the new quinolinium crystal possesses excellent crystal properties and THz generation characteristics with broader THz spectral coverage and higher THz conversion efficiency at the technologically important pump wavelength of 800 nm. Therefore, the quinolinium crystal offers great potential for efficient and gap-free broadband THz wave generation. PMID:24220234

  4. Method of optimizing performance of Rankine cycle power plants

    DOEpatents

    Pope, William L.; Pines, Howard S.; Doyle, Padraic A.; Silvester, Lenard F.

    1982-01-01

    A method for efficiently operating a Rankine cycle power plant (10) to maximize fuel utilization efficiency or energy conversion efficiency or minimize costs by selecting a turbine (22) fluid inlet state which is substantially in the area adjacent and including the transposed critical temperature line (46).

  5. Investment and operating costs of binary cycle geothermal power plants

    NASA Technical Reports Server (NTRS)

    Holt, B.; Brugman, J.

    1974-01-01

    Typical investment and operating costs for geothermal power plants employing binary cycle technology and utilizing the heat energy in liquid-dominated reservoirs are discussed. These costs are developed as a function of reservoir temperature. The factors involved in optimizing plant design are discussed. A relationship between the value of electrical energy and the value of the heat energy in the reservoir is suggested.

  6. Generation mechanism of power line harmonic radiation

    NASA Astrophysics Data System (ADS)

    Kostrov, Alexander; Gushchin, Mikhail; Korobkov, Sergei

    The questions concerning the generation of power line harmonic radiation (PLHR) and magne-tospheric line radiation (MLR) are discussed, including the effective source of high harmonics of 50/60 Hz, and fine dynamic structure of the frequency spectrum of PLHR and MLR. It is shown, that thyristor-based power regulators used by large electrical power consumers produce the periodic sequences of current pulses with duration of about 10 microseconds in a power line. The repetition rate of these pulses is typically 100/120 Hz; the bandwidth is as broad as 100 kHz. For high harmonics of 50/60 Hz, the power line represents an effective traveling-wave (or Beverage) antenna, especially in a frequency range of several kHz corresponding to VLF whistler band in Earth ionosphere and magnetosphere. For the fixed length of the power line, which acts as antenna, radiation directivity diagram in relation to horizon depends of frequency. Hence the spatial separation of whistlers emitted at various frequencies (1-10 kHz in a consid-ered case) is possible, with subsequent propagation of whistlers with different frequencies along different L-shells. Estimations show that the efficiency of power line as travelling-wave antenna can be changed by variations of its load, but not more than twice ("weekend effect"). Since the PLHR can represent the sequence of short electromagnetic bursts, then careful se-lection of frequency-time resolution of the data acquisition equipment is needed. Typically, the time constant of the data recording and processing is too large, and the spectra of PLHR or MLR are characterized by a well-known line structure. At the same time, original bursty structure of PLHR can not be defined. Fine structure of MLR is also discussed. Frequency drift of MLR can be explained by the perturbations of the magnetospheric plasma by intense ULF waves and particle flows affecting the propagation of PLHR. Hence the physical nature of PLHR and MLR is the same, excepting the

  7. Piezoelectric power generation for civil infrastructure systems

    NASA Astrophysics Data System (ADS)

    Erturk, A.; Inman, D. J.

    2011-04-01

    Civil infrastructure systems (CIS) employ various small electronic components ranging from temperature and humidity sensors used in buildings to acoustics emission sensors used for damage detection in bridges. Other than solar energy that has already found several applications in CIS; moving loads, surface strain fluctuations, and wind energy available in the vicinity of CIS constitute important sources of energy that can be converted into electricity. This paper focuses on low power generation from these energy sources using piezoelectric transduction. Moving loads caused by travelling vehicles can be used for exciting piezoceramics located on the road. Structural vibrations resulting from various sources such as support motions and interaction of CIS with the surrounding fluid may yield local surface strain fluctuations. Wind energy is available not only due to regular atmospheric flow but also due to the motion of vehicles travelling at relatively high speeds. This paper investigates and formulates (1) the electromechanical moving load problem for slender bridges with a piezoelectric cantilever and with embedded piezoceramics, (2) the problem of piezoelectric power generation from surface strain fluctuations using a piezoceramic patch, and (3) piezoelectric energy harvesting from wind excitation through aeroelastic flutter.

  8. Power consumption analysis DBD plasma ozone generator

    NASA Astrophysics Data System (ADS)

    Nur, M.; Restiwijaya, M.; Muchlisin, Z.; Susan, I. A.; Arianto, F.; Widyanto, S. A.

    2016-11-01

    Studies on the consumption of energy by an ozone generator with various constructions electrodes of dielectric barrier discharge plasma (DBDP) reactor has been carried out. This research was done to get the configuration of the reactor, that is capable to produce high ozone concentrations with low energy consumption. BDBP reactors were constructed by spiral- cylindrical configuration, plasma ozone was generated by high voltage AC voltage up to 25 kV and maximum frequency of 23 kHz. The reactor consists of an active electrode in the form of a spiral-shaped with variation diameter Dc, and it was made by using copper wire with diameter Dw. In this research, we variated number of loops coil windings N as well as Dc and Dw. Ozone concentrations greater when the wire's diameter Dw and the diameter of the coil windings applied was greater. We found that impedance greater will minimize the concentration of ozone, in contrary to the greater capacitance will increase the concentration of ozone. The ozone concentrations increase with augmenting of power. Maximum power is effective at DBD reactor spiral-cylinder is on the Dc = 20 mm, Dw = 1.2 mm, and the number of coil windings N = 10 loops with the resulting concentration is greater than 20 ppm and it consumes energy of 177.60 watts

  9. Underwater Cycle Ergometry: Power Requirements With and Without Diver Thermal Dress

    DTIC Science & Technology

    2009-01-01

    Additional power of cycling at 60 rpm in different diver dress 8 Figure 3. Example of increasing additional power with increasing shaft power, one...TABLES Table 1. Subject characteristics 3 Table 2. Additional power for cycling in the water, with additional power not a function of shaft ...power 8 Table 3. Additional power for cycling in the water, with increase in power a function of added shaft power, linear estimation 10 Table 4

  10. Self Excitation and Harmonics in Wind Power Generation: Preprint

    SciTech Connect

    Muljadi, E.; Butterfield, C. P.; Romanowitz, H.; Yinger, R.

    2004-11-01

    Traditional wind turbines are equipped with induction generators. Induction generators are preferred because they are inexpensive, rugged, and require very little maintenance. Unfortunately, induction generators require reactive power from the grid to operate. Because reactive power varies with the output power, the terminal voltage at the generator may become too low to compensate the induction generator. The interactions among the wind turbine, the power network, and the capacitor compensation, are important aspects of wind generation. In this paper, we will show the interactions among the induction generator, capacitor compensation, power system network, and magnetic saturations and examine the cause of resonance conditions and self-excitation.

  11. Gigawatt, Closed Cycle, Vapor Core-Mhd Space Power System Conceptual Design Study

    NASA Astrophysics Data System (ADS)

    Wetch, Joseph R.; Rhee, Hyop S.; Koester, J. Kent; Goodman, Julius; Maya, Issac

    1988-04-01

    A conceptual design study for a closed cycle gigawatt electric space power system has been conducted. The closed cycle static operation reduces power system interaction effects upon the space craft. This system utilizes a very high temperature (5500 K) plasma core reactor and a magnetohydrodynamic (MHD) power conversion subsystem to provide a power density of about 8 kWe/kg (0.13 kg/kWe) for several kilo-seconds. Uranium vapor is the fuel. Candidate working fluids are metal vapors such as lithium or calcium. The system is based on a Rankine cycle to minimize the electromagnetic pumping power requirement. The fission fragment induced nonequilibrium ionization in the plasma in the MHD power duct provides the plasma electric conductivity for gigawatt power generation. Waste heat is rejected utilizing lithium heat pipes at temperatures just below 2000 K, thus minimizing the radiator area requirement. Key technology issues are identified, including the containment of the 5500 K 'sun-liken plasma at 4 to 0 MPa In a reflector moderated, gas/vapor filled cavity core reactor. A promising scheme to protect the refractory metal reactor inner wall is presented, together with a heating load analysis in the wall. This scheme utilizes an ablating film of liquid lithium/calcium that evaporates into the cavity core to become the working fluid of the cycle.

  12. Conceptual design analysis for hybrid-cycle OTEC plants for co-production of electric power and desalinated water

    NASA Astrophysics Data System (ADS)

    Rabas, T.; Panchal, C. B.; Genens, L.

    Hybrid-cycle Ocean Thermal Energy Conversion (OTEC) power plants are shown to be potentially the most flexible and cost effective in obtaining any specific mix of electrical power and desalinated water. This paper describes two particular hybrid configurations. One achieves maximum power production and the other achieves maximum water production for a given cold sea-water flow rate and pipe size. When power is the desired commodity and desalinated water is the by-product, the most effective configuration is the conventional hybrid cycle. When only water production is required, the desired configuration combines a multistage flash evaporator and a closed-cycle power OTEC plant, the latter generates the power to run the support equipment with no net or minimal power generation.

  13. Changes in muscle coordination and power output during sprint cycling.

    PubMed

    O'Bryan, Steven J; Brown, Nicholas A T; Billaut, François; Rouffet, David M

    2014-07-25

    This study investigated the changes in muscle coordination associated to power output decrease during a 30-s isokinetic (120rpm) cycling sprint. Modifications in EMG amplitude and onset/offset were investigated from eight muscles [gluteus maximus (EMGGMAX), vastus lateralis and medialis obliquus (EMGVAS), medial and lateral gastrocnemius (EMGGAS), rectus femoris (EMGRF), biceps femoris and semitendinosus (EMGHAM)]. Changes in co-activation of four muscle pairs (CAIGMAX/GAS, CAIVAS/GAS, CAIVAS/HAM and CAIGMAX/RF) were also calculated. Substantial power reduction (60±6%) was accompanied by a decrease in EMG amplitude for all muscles other than HAM, with the greatest deficit identified for EMGRF (31±16%) and EMGGAS (20±14%). GASonset, HAMonset and GMAXonset shifted later in the pedalling cycle and the EMG offsets of all muscles (except GASoffset) shifted earlier as the sprint progressed (P<0.05). At the end of the sprint, CAIVAS/GAS and CAIGMAX/GAS were reduced by 48±10% and 43±12%, respectively. Our results show that substantial power reduction during fatiguing sprint cycling is accompanied by marked reductions in the EMG activity of bi-articular GAS and RF and co-activation level between GAS and main power producer muscles (GMAX and VAS). The observed changes in RF and GAS EMG activity are likely to result in a redistribution of the joint powers and alterations in the orientation of the pedal forces.

  14. EXPERIMENTAL AND THEORETICAL INVESTIGATIONS OF NEW POWER CYCLES AND ADVANCED FALLING FILM HEAT EXCHANGERS

    SciTech Connect

    Arsalan Razani; Kwang J. Kim

    2001-12-01

    The final report for the DOE/UNM grant number DE-FG26-98FT40148 discusses the accomplishments of both the theoretical analysis of advanced power cycles and experimental investigation of advanced falling film heat exchangers. This final report also includes the progress report for the third year (period of October 1, 2000 to September 30, 2001). Four new cycles were studied and two cycles were analyzed in detail based on the second law of thermodynamics. The first cycle uses a triple combined cycle, which consists of a topping cycle (Brayton/gas), an intermediate cycle (Rankine/steam), and a bottoming cycle (Rankine/ammonia). This cycle can produce high efficiency and reduces the irreversibility of the Heat Recovery Steam Generator (HRSC) of conventional combined power cycles. The effect of important system parameters on the irreversibility distribution of all components in the cycle under reasonable practical constraints was evaluated. The second cycle is a combined cycle, which consists of a topping cycle (Brayton/gas) and a bottoming cycle (Rankine/ammonia) with integrated compressor inlet air cooling. This innovative cycle can produce high power and efficiency. This cycle is also analyzed and optimized based on the second the second law to obtain the irreversibility distribution of all components in the cycle. The results of the studies have been published in peer reviewed journals and ASME conference proceeding. Experimental investigation of advanced falling film heat exchangers was conducted to find effective additives for steam condensation. Four additives have been selected and tested in a horizontal tube steam condensation facility. It has been observed that heat transfer additives have been shown to be an effective way to increase the efficiency of conventional tube bundle condenser heat exchangers. This increased condensation rate is due to the creation of a disturbance in the liquid condensate surround the film. The heat transfer through such a film has

  15. Laser-powered MHD generators for space application

    NASA Technical Reports Server (NTRS)

    Jalufka, N. W.

    1986-01-01

    Magnetohydrodynamic (MHD) energy conversion systems of the pulsed laser-supported detonation (LSD) wave, plasma MHD, and liquid-metal MHD (LMMHD) types are assessed for their potential as space-based laser-to-electrical power converters. These systems offer several advantages as energy converters relative to the present chemical, nuclear, and solar devices, including high conversion efficiency, simple design, high-temperature operation, high power density, and high reliability. Of these systems, the Brayton cycle liquid-metal MHD system appears to be the most attractive. The LMMHD technology base is well established for terrestrial applications, particularly with regard to the generator, mixer, and other system components. However, further research is required to extend this technology base to space applications and to establish the technology required to couple the laser energy into the system most efficiently. Continued research on each of the three system types is recommended.

  16. Bounding burnout risk power limits for the K-14 cycle

    SciTech Connect

    Shadday, M.A. Jr.

    1990-10-01

    This document discusses burnout risk (BOR) power limits which are designed to protect the reactor from a significant release of fission products, due to critical heat flux (CHF) burnout of fuel and target assemblies. At expected operating power levels for the reactor restart, approximately 50% of historical full power, the risk of CHF and attendant burnout is negligible. Flow instability power limits will restrict reactor operation, and flow instability will always occur before CHF. BOR power limits must nevertheless be calculated because they are required by the reactor control computer, (2) Bounding BOR limits have been calculated for the K-14 cycle, to fulfill this requirement, and they are presented in this document. Two sets of BOR limits have been calculated: one applicable for the first subcycle, zero to 30% fuel burnup, and the other for the second subcycle, 30% to 55% fuel burnup.

  17. Experimental investigation of an ammonia-based combined power and cooling cycle

    NASA Astrophysics Data System (ADS)

    Tamm, Gunnar Olavi

    A novel ammonia-water thermodynamic cycle, capable of producing both power and refrigeration, was proposed by D. Yogi Goswami. The binary mixture exhibits variable boiling temperatures during the boiling process, which leads to a good thermal match between the heating fluid and working fluid for efficient heat source utilization. The cycle can be driven by low temperature sources such as solar, geothermal, and waste heat from a conventional power cycle, reducing the reliance on high temperature sources such as fossil fuels. A theoretical simulation of the cycle at heat source temperatures obtainable from low and mid temperature solar collectors showed that the ideal cycle could produce power and refrigeration at a maximum exergy efficiency, defined as the ratio of the net work and refrigeration output to the change in availability of the heat source, of over 60%. The exergy efficiency is a useful measure of the cycle's performance as it compares the effectiveness of different cycles in harnessing the same source. An experimental system was constructed to demonstrate the feasibility of the cycle and to compare the experimental results with the theoretical simulations. In this first phase of experimentation, the turbine expansion was simulated with a throttling valve and a heat exchanger. Results showed that the vapor generation and absorption condensation processes work experimentally. The potential for combined turbine work and refrigeration output was evidenced in operating the system. Analysis of losses led to modifications in the system design, which were implemented to yield improvements in heat exchange, vapor generation, pump performance and overall stability. The research that has been conducted verifies the potential of the power and cooling cycle as an alternative to using conventional fossil fuel technologies. The research that continues is to further demonstrate the concept and direct it towards industry. On the large scale, the cycle can be used for

  18. Low duty-cycle pulsed power actuation applications

    NASA Astrophysics Data System (ADS)

    Merryman, Stephen A.; Owens, W. Todd

    1995-01-01

    Electrical actuator systems are being pursued as alternatives to hydraulic systems to reduce maintenance time, weight, and costs while increasing reliability. Additionally, safety and environmental hazards associated with the hydraulic fluids can be eliminated. For most actuation systems, the actuation process is typically pulsed with high peak power requirements but with relatively modest average power levels. For example, the peak power requirements for the shuttle solid rocket booster actuators are approximately 40 kW for one or two seconds, but the average power over the 130 second burn time is on the order of 7 kW. The power-time requirements for electrical actuators are characteristic of pulsed power technologies where the source can be sized for the average power levels while providing the capability to achieve the peak requirements. Among the options for the power source are battery systems, capacitor systems or battery-capacitor hybrid systems. Battery technologies are energy dense but deficient in power density; capacitor technologies are power dense but limited by energy density. The battery-capacitor hybrid system uses the battery to supply the average power and the capacitor to meet the peak demands. In this research effort, Chemical Double Layer (CDL) capacitor technology is being applied in the design and development of power sources for electrical actuators. CDL capacitors have many properties that make them well-suited for actuator applications. They have the highest demonstrated energy density for capacitive storage (about a factor of 5-10 less than NiCd batteries), have power densities 50 times greater than NiCd batteries, are capable of 500,000 charge-discharge cycles, can be charged at extremely high rates, and have non-explosive failure modes. Thus, CDL capacitors exhibit a combination of desirable battery and capacitor characteristics. Specifically, electrode technology patented by Auburn University is being used in the development of CDL

  19. Connection between solar activity cycles and grand minima generation

    NASA Astrophysics Data System (ADS)

    Vecchio, A.; Lepreti, F.; Laurenza, M.; Alberti, T.; Carbone, V.

    2017-03-01

    Aims: The revised dataset of sunspot and group numbers (released by WDC-SILSO) and the sunspot number reconstruction based on dendrochronologically dated radiocarbon concentrations have been analyzed to provide a deeper characterization of the solar activity main periodicities and to investigate the role of the Gleissberg and Suess cycles in the grand minima occurrence. Methods: Empirical mode decomposition (EMD) has been used to isolate the time behavior of the different solar activity periodicities. A general consistency among the results from all the analyzed datasets verifies the reliability of the EMD approach. Results: The analysis on the revised sunspot data indicates that the highest energy content is associated with the Schwabe cycle. In correspondence with the grand minima (Maunder and Dalton), the frequency of this cycle changes to longer timescales of 14 yr. The Gleissberg and Suess cycles, with timescales of 60-120 yr and 200-300 yr, respectively, represent the most energetic contribution to sunspot number reconstruction records and are both found to be characterized by multiple scales of oscillation. The grand minima generation and the origin of the two expected distinct types of grand minima, Maunder and longer Spörer-like, are naturally explained through the EMD approach. We found that the grand minima sequence is produced by the coupling between Gleissberg and Suess cycles, the latter being responsible for the most intense and longest Spörer-like minima (with typical duration longer than 80 yr). Finally, we identified a non-solar component, characterized by a very long scale oscillation of 7000 yr, and the Hallstatt cycle ( 2000 yr), likely due to the solar activity. Conclusions: These results provide new observational constraints on the properties of the solar cycle periodicities, the grand minima generation, and thus the long-term behavior of the solar dynamo.

  20. Life Cycle Greenhouse Gas Emissions from Electricity Generation

    SciTech Connect

    None, None

    2013-01-01

    As clean energy increasingly becomes part of the national dialogue, lenders, utilities, and lawmakers need the most comprehensive and accurate information on GHG emissions from various sources of energy to inform policy, planning, and investment decisions. The National Renewable Energy Laboratory (NREL) recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that gives decision makers and investors more precise estimates of life cycle GHG emissions for renewable and conventional generation, clarifying inconsistent and conflicting estimates in the published literature, and reducing uncertainty.

  1. Characterization of open-cycle coal-fired MHD generators

    NASA Astrophysics Data System (ADS)

    Wormhoudt, J.; Yousefian, V.; Weinberg, M.; Kolb, C.; Martinez-Sanchez, M.; Cheng, W.; Bien, F.; Dvore, D.; Unkel, W.; Stewart, G.

    1980-09-01

    The successful design of full-scale, open-cycle, coal-fired MHD generators for baseload electrical production requires a detailed understanding of the plasma chemical and plasma dynamic characteristics of anticipated combustor and channel fluids. Progress in efforts to model the efficiency of an open-cycle, coal-fired MHD channel based on the characterization of the channel flow as well as laboratory experiments to validate the modeling effort is detailed. In addition, studies related to understanding arcing phenomena in the vicinity of an anode are reported.

  2. Green Power Partnership Top 30 On-site Generation

    EPA Pesticide Factsheets

    EPA's Green Power Partnership is a voluntary program designed to reduce the environmental impact of electricity generation by promoting renewable energy. These partners are generating and consuming the most green power on-site within the GPP.

  3. Analytical investigation of thermal barrier coatings on advanced power generation gas turbines

    NASA Technical Reports Server (NTRS)

    Amos, D. J.

    1977-01-01

    An analytical investigation of present and advanced gas turbine power generation cycles incorporating thermal barrier turbine component coatings was performed. Approximately 50 parametric points considering simple, recuperated, and combined cycles (including gasification) with gas turbine inlet temperatures from current levels through 1644K (2500 F) were evaluated. The results indicated that thermal barriers would be an attractive means to improve performance and reduce cost of electricity for these cycles. A recommended thermal barrier development program has been defined.

  4. Generating clock signals for a cycle accurate, cycle reproducible FPGA based hardware accelerator

    SciTech Connect

    Asaad, Sameth W.; Kapur, Mohit

    2016-01-05

    A method, system and computer program product are disclosed for generating clock signals for a cycle accurate FPGA based hardware accelerator used to simulate operations of a device-under-test (DUT). In one embodiment, the DUT includes multiple device clocks generating multiple device clock signals at multiple frequencies and at a defined frequency ratio; and the FPG hardware accelerator includes multiple accelerator clocks generating multiple accelerator clock signals to operate the FPGA hardware accelerator to simulate the operations of the DUT. In one embodiment, operations of the DUT are mapped to the FPGA hardware accelerator, and the accelerator clock signals are generated at multiple frequencies and at the defined frequency ratio of the frequencies of the multiple device clocks, to maintain cycle accuracy between the DUT and the FPGA hardware accelerator. In an embodiment, the FPGA hardware accelerator may be used to control the frequencies of the multiple device clocks.

  5. Microscale air quality impacts of distributed power generation facilities.

    PubMed

    Olaguer, Eduardo P; Knipping, Eladio; Shaw, Stephanie; Ravindran, Satish

    2016-08-01

    The electric system is experiencing rapid growth in the adoption of a mix of distributed renewable and fossil fuel sources, along with increasing amounts of off-grid generation. New operational regimes may have unforeseen consequences for air quality. A three-dimensional microscale chemical transport model (CTM) driven by an urban wind model was used to assess gaseous air pollutant and particulate matter (PM) impacts within ~10 km of fossil-fueled distributed power generation (DG) facilities during the early afternoon of a typical summer day in Houston, TX. Three types of DG scenarios were considered in the presence of motor vehicle emissions and a realistic urban canopy: (1) a 25-MW natural gas turbine operating at steady state in either simple cycle or combined heating and power (CHP) mode; (2) a 25-MW simple cycle gas turbine undergoing a cold startup with either moderate or enhanced formaldehyde emissions; and (3) a data center generating 10 MW of emergency power with either diesel or natural gas-fired backup generators (BUGs) without pollution controls. Simulations of criteria pollutants (NO2, CO, O3, PM) and the toxic pollutant, formaldehyde (HCHO), were conducted assuming a 2-hr operational time period. In all cases, NOx titration dominated ozone production near the source. The turbine scenarios did not result in ambient concentration enhancements significantly exceeding 1 ppbv for gaseous pollutants or over 1 µg/m(3) for PM after 2 hr of emission, assuming realistic plume rise. In the case of the datacenter with diesel BUGs, ambient NO2 concentrations were enhanced by 10-50 ppbv within 2 km downwind of the source, while maximum PM impacts in the immediate vicinity of the datacenter were less than 5 µg/m(3). Plausible scenarios of distributed fossil generation consistent with the electricity grid's transformation to a more flexible and modernized system suggest that a substantial amount of deployment would be required to significantly affect air quality on

  6. Cycle 22; Geomagnetic storm threats to power systems continue

    SciTech Connect

    Kappernman, J.G. ); Albertson, V.D. )

    1991-09-01

    This paper reports that for many electric utility systems, Solar Cycle 22 has been the first introduction to the phenomena of Geomagnetic Disturbances and the disrupting and damaging effects that they can have upon modern power systems. For all intents and purposes, Power Industry awareness of Cycle 22 started with a bang during the Great Geomagnetic Storm of March 13, 1989. This storm caused a blackout to the entire Province of Quebec, permanently damaged a large nuclear plant GSU transformer in New Jersey, and created enough havoc across the entire North American power grid to create the plausible threat of a massive power system blackout. The flurry of activity and investigation that followed has led many engineers to realize that their power systems are indeed vulnerable to this phenomena and if anything are becoming ever more vulnerable as the system grows to meet future requirements. As a result some organizations such as Hydro Quebec, PSE and G, and the PJM Pool now implement strategic measures as a remedial response to detection of geomagnetic storm conditions. Many more companies pay particularly close attention to storm forecasts and alerts, and the industry in general has accelerated research and monitoring activities through their own means of in concert with the Electric Power Research Institute (EPRI).

  7. New power politics will determine generation's path

    SciTech Connect

    Maize, K.; Neville, A.; Peltier, R.

    2009-01-15

    The US power industry's story in 2009 will be all about change, to borrow a now-familiar theme. Though the new administration's policy specifics had not been revealed as this report was prepared, it appears that flat load growth in 2009 will give the new Obama administration a unique opportunity to formulate new energy policy without risking that the lights will go out. New coal projects are now facing increasing difficulties. It looks as though the electricity supply industry will continue to muddle through. It may see an advancement in infrastructure investment, significant new generation or new technology development. It also faces the possibility that policies necessary to achieving those goals will not materialize, for political and economic reasons. 4 figs.

  8. How large customer direct power transaction mode give consideration to power generation cleaning and power saving

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Zeng, Ming; Liu, Wei; Li, Ran

    2017-05-01

    The so-called Large Customers' Direct Power Transaction, refers to the mode that the users on high voltage level, or being seized of hold the large power or independent power distribution, have the qualification of purchasing electricity directly from the generation companies and pay reasonable electricity transmission and distribution fee to the power network enterprises because the transaction is through its transmission channel. The Direct Purchase promotes the marketization level of electricity trading, but there are some problems in its developing process, especially whether promotes the green optimal allocation of power resources, this paper aims to explore the solution.

  9. Nanostructured Bulk Thermoelectric Generator for Efficient Power Harvesting for Self-powered Sensor Networks

    SciTech Connect

    Zhang, Yanliang; Butt, Darryl; Agarwal, Vivek

    2015-07-01

    The objective of this Nuclear Energy Enabling Technology research project is to develop high-efficiency and reliable thermoelectric generators for self-powered wireless sensors nodes utilizing thermal energy from nuclear plant or fuel cycle. The power harvesting technology has crosscutting significance to address critical technology gaps in monitoring nuclear plants and fuel cycle. The outcomes of the project will lead to significant advancement in sensors and instrumentation technology, reducing cost, improving monitoring reliability and therefore enhancing safety. The self-powered wireless sensor networks could support the long-term safe and economical operation of all the reactor designs and fuel cycle concepts, as well as spent fuel storage and many other nuclear science and engineering applications. The research is based on recent breakthroughs in high-performance nanostructured bulk (nanobulk) thermoelectric materials that enable high-efficiency direct heat-to-electricity conversion over a wide temperature range. The nanobulk thermoelectric materials that the research team at Boise State University and University of Houston has developed yield up to a 50% increase in the thermoelectric figure of merit, ZT, compared with state-of-the-art bulk counterparts. This report focuses on the selection of optimal thermoelectric materials for this project. The team has performed extensive study on two thermoelectric materials systems, i.e. the half-Heusler materials, and the Bismuth-Telluride materials. The report contains our recent research results on the fabrication, characterization and thermoelectric property measurements of these two materials.

  10. 43 CFR 431.4 - Power generation responsibilities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Power generation responsibilities. 431.4..., DEPARTMENT OF THE INTERIOR GENERAL REGULATIONS FOR POWER GENERATION, OPERATION, MAINTENANCE, AND REPLACEMENT AT THE BOULDER CANYON PROJECT, ARIZONA/NEVADA § 431.4 Power generation responsibilities. (a)...

  11. 43 CFR 431.4 - Power generation responsibilities.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 1 2012-10-01 2011-10-01 true Power generation responsibilities. 431.4..., DEPARTMENT OF THE INTERIOR GENERAL REGULATIONS FOR POWER GENERATION, OPERATION, MAINTENANCE, AND REPLACEMENT AT THE BOULDER CANYON PROJECT, ARIZONA/NEVADA § 431.4 Power generation responsibilities. (a)...

  12. 43 CFR 431.6 - Power generation estimates.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 1 2014-10-01 2014-10-01 false Power generation estimates. 431.6 Section... THE INTERIOR GENERAL REGULATIONS FOR POWER GENERATION, OPERATION, MAINTENANCE, AND REPLACEMENT AT THE BOULDER CANYON PROJECT, ARIZONA/NEVADA § 431.6 Power generation estimates. Reclamation shall...

  13. 43 CFR 431.4 - Power generation responsibilities.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 1 2013-10-01 2013-10-01 false Power generation responsibilities. 431.4..., DEPARTMENT OF THE INTERIOR GENERAL REGULATIONS FOR POWER GENERATION, OPERATION, MAINTENANCE, AND REPLACEMENT AT THE BOULDER CANYON PROJECT, ARIZONA/NEVADA § 431.4 Power generation responsibilities. (a)...

  14. 43 CFR 431.6 - Power generation estimates.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 1 2011-10-01 2011-10-01 false Power generation estimates. 431.6 Section... THE INTERIOR GENERAL REGULATIONS FOR POWER GENERATION, OPERATION, MAINTENANCE, AND REPLACEMENT AT THE BOULDER CANYON PROJECT, ARIZONA/NEVADA § 431.6 Power generation estimates. Reclamation shall...

  15. 43 CFR 431.4 - Power generation responsibilities.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 1 2011-10-01 2011-10-01 false Power generation responsibilities. 431.4..., DEPARTMENT OF THE INTERIOR GENERAL REGULATIONS FOR POWER GENERATION, OPERATION, MAINTENANCE, AND REPLACEMENT AT THE BOULDER CANYON PROJECT, ARIZONA/NEVADA § 431.4 Power generation responsibilities. (a)...

  16. 43 CFR 431.4 - Power generation responsibilities.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 1 2014-10-01 2014-10-01 false Power generation responsibilities. 431.4..., DEPARTMENT OF THE INTERIOR GENERAL REGULATIONS FOR POWER GENERATION, OPERATION, MAINTENANCE, AND REPLACEMENT AT THE BOULDER CANYON PROJECT, ARIZONA/NEVADA § 431.4 Power generation responsibilities. (a)...

  17. 43 CFR 431.6 - Power generation estimates.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 1 2013-10-01 2013-10-01 false Power generation estimates. 431.6 Section... THE INTERIOR GENERAL REGULATIONS FOR POWER GENERATION, OPERATION, MAINTENANCE, AND REPLACEMENT AT THE BOULDER CANYON PROJECT, ARIZONA/NEVADA § 431.6 Power generation estimates. Reclamation shall...

  18. 43 CFR 431.6 - Power generation estimates.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 1 2012-10-01 2011-10-01 true Power generation estimates. 431.6 Section... THE INTERIOR GENERAL REGULATIONS FOR POWER GENERATION, OPERATION, MAINTENANCE, AND REPLACEMENT AT THE BOULDER CANYON PROJECT, ARIZONA/NEVADA § 431.6 Power generation estimates. Reclamation shall...

  19. Portable Power Generation via Integrated Catalytic Microcombustion-Thermoelectric Devices

    DTIC Science & Technology

    2004-12-01

    PORTABLE POWER GENERATION VIA INTEGRATED CATALYTIC MICROCOMBUSTION-THERMOELECTRIC DEVICES D. G. Norton, K. W. Voit, T. Brüggemann, and D. G...resulting in electrical power generation from catalytic microcombustion with a thermal efficiency of ~1%. 1. INTRODUCTION Advances in soldier...environmental burdens. Power generation utilizing hydrocarbons offers a promising alternative to traditional batteries. The energy density of

  20. 43 CFR 431.6 - Power generation estimates.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Power generation estimates. 431.6 Section... THE INTERIOR GENERAL REGULATIONS FOR POWER GENERATION, OPERATION, MAINTENANCE, AND REPLACEMENT AT THE BOULDER CANYON PROJECT, ARIZONA/NEVADA § 431.6 Power generation estimates. Reclamation shall...

  1. AC power generation from microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Lobo, Fernanda Leite; Wang, Heming; Forrestal, Casey; Ren, Zhiyong Jason

    2015-11-01

    Microbial fuel cells (MFCs) directly convert biodegradable substrates to electricity and carry good potential for energy-positive wastewater treatment. However, the low and direct current (DC) output from MFC is not usable for general electronics except small sensors, yet commercial DC-AC converters or inverters used in solar systems cannot be directly applied to MFCs. This study presents a new DC-AC converter system for MFCs that can generate alternating voltage in any desired frequency. Results show that AC power can be easily achieved in three different frequencies tested (1, 10, 60 Hz), and no energy storage layer such as capacitors was needed. The DC-AC converter efficiency was higher than 95% when powered by either individual MFCs or simple MFC stacks. Total harmonic distortion (THD) was used to investigate the quality of the energy, and it showed that the energy could be directly usable for linear electronic loads. This study shows that through electrical conversion MFCs can be potentially used in household electronics for decentralized off-grid communities.

  2. 18 CFR 801.12 - Electric power generation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Electric power... COMMISSION GENERAL POLICIES § 801.12 Electric power generation. (a) Significant uses are presently being made of the waters of the basin for the generation of electric power at hydro, pumped storage, and...

  3. 18 CFR 801.12 - Electric power generation.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Electric power... COMMISSION GENERAL POLICIES § 801.12 Electric power generation. (a) Significant uses are presently being made of the waters of the basin for the generation of electric power at hydro, pumped storage, and...

  4. 18 CFR 801.12 - Electric power generation.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Electric power... COMMISSION GENERAL POLICIES § 801.12 Electric power generation. (a) Significant uses are presently being made of the waters of the basin for the generation of electric power at hydro, pumped storage,...

  5. 18 CFR 801.12 - Electric power generation.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Electric power... COMMISSION GENERAL POLICIES § 801.12 Electric power generation. (a) Significant uses are presently being made of the waters of the basin for the generation of electric power at hydro, pumped storage,...

  6. 18 CFR 801.12 - Electric power generation.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Electric power... COMMISSION GENERAL POLICIES § 801.12 Electric power generation. (a) Significant uses are presently being made of the waters of the basin for the generation of electric power at hydro, pumped storage,...

  7. The Satellite Nuclear Power Station - An option for future power generation.

    NASA Technical Reports Server (NTRS)

    Williams, J. R.; Clement, J. D.

    1973-01-01

    A new concept in nuclear power generation is being explored which essentially eliminates major objections to nuclear power. The Satellite Nuclear Power Station, remotely operated in synchronous orbit, would transmit power safely to the ground by a microwave beam. Fuel reprocessing would take place in space and no radioactive materials would ever be returned to earth. Even the worst possible accident to such a plant should have negligible effect on the earth. An exploratory study of a satellite nuclear power station to provide 10,000 MWe to the earth has shown that the system could weigh about 20 million pounds and cost less than $1000/KWe. An advanced breeder reactor operating with an MHD power cycle could achieve an efficiency of about 50% with a 1100 K radiator temperature. If a hydrogen moderated gas core reactor is used, its breeding ratio of 1.10 would result in a fuel doubling time of a few years. A rotating fluidized bed or NERVA type reactor might also be used. The efficiency of power transmission from synchronous orbit would range from 70% to 80%.

  8. The Satellite Nuclear Power Station - An option for future power generation.

    NASA Technical Reports Server (NTRS)

    Williams, J. R.; Clement, J. D.

    1973-01-01

    A new concept in nuclear power generation is being explored which essentially eliminates major objections to nuclear power. The Satellite Nuclear Power Station, remotely operated in synchronous orbit, would transmit power safely to the ground by a microwave beam. Fuel reprocessing would take place in space and no radioactive materials would ever be returned to earth. Even the worst possible accident to such a plant should have negligible effect on the earth. An exploratory study of a satellite nuclear power station to provide 10,000 MWe to the earth has shown that the system could weigh about 20 million pounds and cost less than $1000/KWe. An advanced breeder reactor operating with an MHD power cycle could achieve an efficiency of about 50% with a 1100 K radiator temperature. If a hydrogen moderated gas core reactor is used, its breeding ratio of 1.10 would result in a fuel doubling time of a few years. A rotating fluidized bed or NERVA type reactor might also be used. The efficiency of power transmission from synchronous orbit would range from 70% to 80%.

  9. User's manual for levelized power generation cost using an IBM PC

    SciTech Connect

    Fuller, L.C.

    1985-06-01

    Programs for the estimation of levelized electric power generation costs using the BASIC interpreter on an IBM PC are described. Procedures for light-water reactor plants and coal-fired plants include capital investment cost, operation and maintenance cost, fuel cycle cost, nuclear decommissioning cost, and levelized total generation cost.

  10. Generation of pulsed ion beams by an inductive storage pulsed power generator

    NASA Astrophysics Data System (ADS)

    Katsuki, Sunao; Akiyama, Hidenori; Maeda, Sadao

    1990-10-01

    A pulsed power generator by an inductive energy storage system is extremely compact and light in comparison with a conventional pulsed power generator, which consists of a Marx bank and a water pulse forming line. A compact and light pulse power generator is applied to the generation of pulsed ion beams. A thin copper fuse is used an an opening switch, which is necessary in the inductive storage pulsed power generator. A magnetically insulated diode is used for the generation of ion beams. The pulsed ion beams are successfully generated by the inductive storage pulsed power generator for the first time.

  11. Evaluation of power block arrangements for 100MW scale concentrated solar thermal power generation using top-down design

    NASA Astrophysics Data System (ADS)

    Post, Alexander; Beath, Andrew; Sauret, Emilie; Persky, Rodney

    2017-06-01

    Concentrated solar thermal power generation poses a unique situation for power block selection, in which a capital intensive heat source is subject to daily and seasonal fluctuations in intensity. In this study, a method is developed to easily evaluate the favourability of different power blocks for converting the heat supplied by a concentrated solar thermal plant into power at the 100MWe scale based on several key parameters. The method is then applied to a range of commercially available power cycles that operate over different temperatures and efficiencies, and with differing capital costs, each with performance and economic parameters selected to be typical of their technology type, as reported in literature. Using this method, the power cycle is identified among those examined that is most likely to result in a minimum levelised cost of energy of a solar thermal plant.

  12. Morning vs. evening maximal cycle power and technical swimming ability.

    PubMed

    Deschodt, Veronique J; Arsac, Laurent M

    2004-02-01

    The aim of this study was to observe diurnal influences on maximal power and technical swimming ability at three different times (8 AM, 1 PM, and 6 PM). Prior to each test, tympanic temperature was taken. Maximal power was analyzed by cycle tests. Stroke length, stroke rate, hand pattern, and swimming velocity were recorded between the 20th and the 28th m of the 50-m freestyle. Temperature varied +/-0.4 degrees C between morning and evening. Concomitantly, maximal power (+7%) and technical ability (+3% in stroke length, +5% in stroke rate and changes in underwater hand coordinates) were greater in the evening. The present study confirms and specifies diurnal influences on all-out performances with regard to both maximal power and technical ability. Thus, when swimmers are called upon to perform at a high level in the morning, they should warm up extensively in order to "swamp" the diurnal effects of the morning.

  13. A New Thermodynamic Power Conversion Cycle and Heat Engine for Space Power Applications

    NASA Astrophysics Data System (ADS)

    Baker, Karl W.

    2004-02-01

    A new heat engine concept has been invented that operates on a new two-phase thermodynamic power conversion cycle. This device exploits the space flight proven technique of using a porous capillary structure to separate liquid from vapor through heat addition. This new thermodynamic cycle, the Baker cycle, is different from the existing Rankine because liquid and vapor are at different pressures and are separated during the phase change heat addition process as opposed to the Rankine cycle where liquid and vapor are at the same pressure and mixed during phase change heat addition. This new cycle also differs from Rankine because the heat addition process occurs at varying pressures and temperatures, where as in a Rankine cycle heat addition occurs at constant pressure. It is advantageous to apply this new cycle to space applications because management of the two-phase working fluid in micro gravity can be accomplished as never before using space flight proven Loop Heat Pipe and Capillary Pumped Loop technology. This new power system contains many components with significant flight heritage. Thermodynamic performance calculations are presented for several design cases. The new power cycle and system is inherently more efficient than single-phase systems because minimal compression power is required. One case shows 31.1% overall efficiency with a maximum working fluid temperature of 637.4 K. Since the heat addition process occurs at varying temperatures, waste heat from the spacecraft could be tapped and recovered to supply a large portion of the input energy. For the example cases discussed, between 63.1 to 84.4% of the total input energy could be waste heat. This new system could be used in conjunction with phase change thermal energy storage to supplement power production replacing batteries for solar low-earth-orbit applications. It could also be used as a power converter with a radioisotope heat source yielding efficiencies over 30% while requiring a maximum

  14. PSS Controller for Wind Power Generation Systems

    NASA Astrophysics Data System (ADS)

    Domínguez-García, J. L.; Gomis-Bellmunt, O.; Bianchi, F.; Sumper, A.

    2012-10-01

    Small signal stability analysis for power systems with wind farm interaction is presented. Power systems oscillation modes can be excited by disturbance or fault in the grid. Variable speed wind turbines can be regulated to reduce these oscillations, stabilising the power system. A power system stabiliser (PSS) control loop for wind power is designed in order to increase the damping of the oscillation modes. The proposed power system stabiliser controller is evaluated by small signal analysis.

  15. Development of advanced off-design models for supercritical carbon dioxide power cycles

    SciTech Connect

    Dyreby, J. J.; Klein, S. A.; Nellis, G. F.; Reindl, D. T.

    2012-07-01

    In the search for increased efficiency of utility-scale electricity generation, Brayton cycles operating with supercritical carbon dioxide (S-CO{sub 2}) have found considerable interest. There are two main advantages of a S-CO{sub 2} Brayton cycle compared to a Rankine cycle: 1) equal or greater thermal efficiencies can be realized using significantly smaller turbomachinery, and 2) heat rejection is not limited by the saturation temperature of the working fluid, which has the potential to reduce or completely eliminate the need for cooling water and instead allow dry cooling. While dry cooling is especially advantageous for power generation in arid climates, a reduction of water consumption in any location will be increasingly beneficial as tighter environmental regulations are enacted in the future. Because daily and seasonal weather variations may result in a plant operating away from its design point, models that are capable of predicting the off-design performance of S-CO{sub 2} power cycles are necessary for characterizing and evaluating cycle configurations and turbomachinery designs on an annual basis. To this end, an off-design model of a recuperated Brayton cycle was developed based on the radial turbomachinery currently being investigated by Sandia National Laboratory. (authors)

  16. Accelerator-driven thorium-cycle fission power

    NASA Astrophysics Data System (ADS)

    Sattarov, Akhdiyor

    2009-10-01

    A flux-coupled stack of superconducting isochronous cyclotrons could be used to drive thorium-cycle fission power. The 800 MeV proton beams produce fast neutrons through spallation, then the fast neutrons transmute the thorium into uranium and drive fission. The thorium reactor would provide GW electric power, eat its own long-lived waste, run for 7 years between core accesses, operate below criticality, and be stable against melt-down. Reserves of thorium are sufficient to provide the world's energy needs for a thousand years.

  17. Effects of Thermal Cycling on Control and Irradiated EPC 2nd Generation GaN FETs

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Scheick, Leif; Lauenstein, Jean-Marie; Casey, Megan; Hammoud, Ahmad

    2013-01-01

    The power systems for use in NASA space missions must work reliably under harsh conditions including radiation, thermal cycling, and exposure to extreme temperatures. Gallium nitride semiconductors show great promise, but information pertaining to their performance is scarce. Gallium nitride N-channel enhancement-mode field effect transistors made by EPC Corporation in a 2nd generation of manufacturing were exposed to radiation followed by long-term thermal cycling in order to address their reliability for use in space missions. Results of the experimental work are presented and discussed.

  18. Improving geothermal power plants with a binary cycle

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Shipkov, A. A.; Sorokina, E. V.

    2015-12-01

    The recent development of binary geothermal technology is analyzed. General trends in the introduction of low-temperature geothermal sources are summarized. The use of single-phase low-temperature geothermal fluids in binary power plants proves possible and expedient. The benefits of power plants with a binary cycle in comparison with traditional systems are shown. The selection of the working fluid is considered, and the influence of the fluid's physicochemical properties on the design of the binary power plant is discussed. The design of binary power plants is based on the chemical composition and energy potential of the geothermal fluids and on the landscape and climatic conditions at the intended location. Experience in developing a prototype 2.5 MW Russian binary power unit at Pauzhetka geothermal power plant (Kamchatka) is outlined. Most binary systems are designed individually for a specific location. Means of improving the technology and equipment at binary geothermal power plants are identified. One option is the development of modular systems based on several binary systems that employ the heat from the working fluid at different temperatures.

  19. Life Cycle analysis data and results for geothermal and other electricity generation technologies

    DOE Data Explorer

    Sullivan, John

    2013-06-04

    Life cycle analysis (LCA) is an environmental assessment method that quantifies the environmental performance of a product system over its entire lifetime, from cradle to grave. Based on a set of relevant metrics, the method is aptly suited for comparing the environmental performance of competing products systems. This file contains LCA data and results for electric power production including geothermal power. The LCA for electric power has been broken down into two life cycle stages, namely plant and fuel cycles. Relevant metrics include the energy ratio and greenhouse gas (GHG) ratios, where the former is the ratio of system input energy to total lifetime electrical energy out and the latter is the ratio of the sum of all incurred greenhouse gases (in CO2 equivalents) divided by the same energy output. Specific information included herein are material to power (MPR) ratios for a range of power technologies for conventional thermoelectric, renewables (including three geothermal power technologies), and coproduced natural gas/geothermal power. For the geothermal power scenarios, the MPRs include the casing, cement, diesel, and water requirements for drilling wells and topside piping. Also included herein are energy and GHG ratios for plant and fuel cycle stages for the range of considered electricity generating technologies. Some of this information are MPR data extracted directly from the literature or from models (eg. ICARUS – a subset of ASPEN models) and others (energy and GHG ratios) are results calculated using GREET models and MPR data. MPR data for wells included herein were based on the Argonne well materials model and GETEM well count results.

  20. Power generation from nuclear reactors in aerospace applications

    SciTech Connect

    English, R.E.

    1982-01-01

    Power generation in nuclear powerplants in space is addressed. In particular, the states of technology of the principal competitive concepts for power generation are assessed. The possible impact of power conditioning on power generation is also discussed. For aircraft nuclear propulsion, the suitability of various technologies is cursorily assessed for flight in the Earth's atmosphere. A program path is suggested to ease the conditions of first use of aircraft nuclear propulsion.

  1. Power Generation from Nuclear Reactors in Aerospace Applications

    NASA Technical Reports Server (NTRS)

    English, Robert E.

    1982-01-01

    Power generation in nuclear powerplants in space is addressed. In particular, the states of technology of the principal competitive concepts for power generation are assessed. The possible impact of power conditioning on power generation is also discussed. For aircraft nuclear propulsion, the suitability of various technologies is cursorily assessed for flight in the Earth's atmosphere; a program path is suggested to ease the conditions of first use of aircraft nuclear propulsion.

  2. POWER CYCLE AND STRESS ANALYSES FOR HIGH TEMPERATURE GAS-COOLED REACTOR

    SciTech Connect

    Oh, Chang H; Davis, Cliff; Hawkes, Brian D; Sherman, Steven R

    2007-05-01

    The Department of Energy and the Idaho National Laboratory are developing a Next Generation Nuclear Plant (NGNP) to serve as a demonstration of state-of-the-art nuclear technology. The purpose of the demonstration is two fold 1) efficient low cost energy generation and 2) hydrogen production. Although a next generation plant could be developed as a single-purpose facility, early designs are expected to be dual-purpose. While hydrogen production and advanced energy cycles are still in its early stages of development, research towards coupling a high temperature reactor, electrical generation and hydrogen production is under way. Many aspects of the NGNP must be researched and developed in order to make recommendations on the final design of the plant. Parameters such as working conditions, cycle components, working fluids, and power conversion unit configurations must be understood. Three configurations of the power conversion unit were demonstrated in this study. A three-shaft design with three turbines and four compressors, a combined cycle with a Brayton top cycle and a Rankine bottoming cycle, and a reheated cycle with three stages of reheat were investigated. An intermediate heat transport loop for transporting process heat to a High Temperature Steam Electrolysis (HTSE) hydrogen production plant was used. Helium, CO2, and a 80% nitrogen, 20% helium mixture (by weight) were studied to determine the best working fluid in terms cycle efficiency and development cost. In each of these configurations the relative component size were estimated for the different working fluids. The relative size of the turbomachinery was measured by comparing the power input/output of the component. For heat exchangers the volume was computed and compared. Parametric studies away from the baseline values of the three-shaft and combined cycles were performed to determine the effect of varying conditions in the cycle. This gives some insight into the sensitivity of these cycles to

  3. Chronic eccentric cycling improves quadriceps muscle structure and maximum cycling power.

    PubMed

    Leong, C H; McDermott, W J; Elmer, S J; Martin, J C

    2014-06-01

    An interesting finding from eccentric exercise training interventions is the presence of muscle hypertrophy without changes in maximum concentric strength and/or power. The lack of improvements in concentric strength and/or power could be due to long lasting suppressive effects on muscle force production following eccentric training. Thus, improvements in concentric strength and/or power might not be detected until muscle tissue has recovered (e. g., several weeks post-training). We evaluated alterations in muscular structure (rectus-femoris, RF, and vastus lateralis, VL, thickness and pennation angles) and maximum concentric cycling power (Pmax) 1-week following 8-weeks of eccentric cycling training (2×/week; 5-10.5 min; 20-55% of Pmax). Pmax was assessed again at 8-weeks post-training. At 1 week post-training, RF and VL thickness increased by 24±4% and 13±2%, respectively, and RF and VL pennation angles increased by 31±4% and 13±1%, respectively (all P<0.05). Compared to pre-training values, Pmax increased by 5±1% and 9±2% at 1 and 8 weeks post-training, respectively (both P<0.05). These results demonstrate that short-duration high-intensity eccentric cycling can be a time-effective intervention for improving muscular structure and function in the lower body of healthy individuals. The larger Pmax increase detected at 8-weeks post-training implies that sufficient recovery might be necessary to fully detect changes in muscular power after eccentric cycling training.

  4. Calculation of guaranteed mean power from wind turbine generators

    NASA Technical Reports Server (NTRS)

    Spera, D. A.

    1981-01-01

    A method for calculating the 'guaranteed mean' power output of a wind turbine generator is proposed. The term 'mean power' refers to the average power generated at specified wind speeds during short-term tests. Correlation of anemometers, the method of bins for analyzing non-steady data, the PROP Code for predicting turbine power, and statistical analysis of deviations in test data from theory are discussed. Guaranteed mean power density for the Clayton Mod-OA system was found to be 8 watts per square meter less than theoretical power density at all power levels, with a confidence level of 0.999. This amounts to 4 percent of rated power.

  5. Coupled generator and combustor performance calculations for potential early commercial MHD power plants

    NASA Technical Reports Server (NTRS)

    Dellinger, T. C.; Hnat, J. G.; Marston, C. H.

    1979-01-01

    A parametric study of the performance of the MHD generator and combustor components of potential early commercial open-cycle MHD/steam power plants is presented. Consideration is given to the effects of air heater system concept, MHD combustor type, coal type, thermal input power, oxygen enrichment of the combustion, subsonic and supersonic generator flow and magnetic field strength on coupled generator and combustor performance. The best performance is found to be attained with a 3000 F, indirectly fired air heater, no oxygen enrichment, Illinois no. 6 coal, a two-stage cyclone combustor with 85% slag rejection, a subsonic generator, and a magnetic field configuration yielding a constant transverse electric field of 4 kV/m. Results indicate that optimum net MHD generator power is generally compressor-power-limited rather than electric-stress-limited, with optimum net power a relatively weak function of operating pressure.

  6. Advanced gasification-based biomass power generation

    SciTech Connect

    Williams, R.H.; Larson, E.D.

    1993-12-31

    A promising strategy for modernizing bioenergy is the production of electricity or the cogeneration of electricity and heat using gasified biomass with advanced conversion technologies. Major advances that have been made in coal gasification technology, to marry the gas turbine to coal, are readily adaptable to biomass applications. Integrating biomass gasifiers with aeroderivative gas turbines in particular makes it possible to achieve high efficiencies and low unit capital costs at the modest scales required for bioenergy systems. Electricity produced with biomass-integrated gasifier/gas turbine (BIG/GT) power systems not only offers major environmental benefits but also would be competitive with electricity produced from fossil fuels and nuclear energy under a wide range of circumstances. Initial applications will be with biomass residues generated in the sugarcane, pulp and paper, and other agro- and forest-product industries. Eventually, biomass grown for energy purposes on dedicated energy farms will also be used to fuel these gas turbine systems. Continuing improvements in jet engine and biomass gasification technologies will lead to further gains in the performance of BIG/GT systems over the next couple of decades. Fuel cells operated on gasified biomass offer the promise of even higher performance levels in the period beyond the turn of the century. 79 refs., 21 figs., 11 tabs.

  7. Micro-ionics: next generation power sources.

    PubMed

    Tuller, Harry L; Litzelman, Scott J; Jung, Woochul

    2009-05-07

    The desire for ever smarter systems-on-a-chip and plug-free portable electronics with longer operating times between recharge has stimulated growing interest in micro-ionic systems. The use of thin film and photolithographic processing techniques, commonly at temperatures considerably below those utilized in conventional ceramics processing methods, leads to ionic or mixed ionic-electronic materials with nanosized dimensions. The implications for nanosized grains on the conductivity of thin film solid oxide electrolytes are examined. Grain boundary engineering, as a means of controlling and ultimately enhancing transport along and across grain boundaries, becomes essential given that such boundaries often dominate the transport properties of such nano-dimensioned materials. Heterogeneous doping by selective in-diffusion along grain boundaries was introduced as a potentially powerful means of achieving this. This is coupled with the modeling of space charge distributions at such boundaries, taking into account possible dopant segregation to the boundaries. The use of lithographic methods for generating geometrically well defined structures is used to illustrate how one can achieve a much improved understanding of electrode processes in SOFC structures. Indeed, the more idealized structures achievable by application of microelectronic processing provide a marvelous opportunity to uncover the science underlying the technology of micro- and ultimately macro-ionics.

  8. A Feasibility Study of Solar Thermal Power Generation as the Pumping Power Source for Pumped Storage in Indonesia

    NASA Astrophysics Data System (ADS)

    Funatsu, Tetsuya; Natsume, Hiroaki

    A pumped storage hydroelectric generation (PSHG) has been studied as alternative peak power source of the oil-fired power generation in Indonesia. However, because there is no surplus base load electricity even in the night, the economic advantage can not be found. The possibility of solar thermal power generation (STPG) is investigated to restrain the increase of fuel consumption by the existing peak power source. The optimum system simulation and the analysis of economy and environmental impact by a multiobjective optimization method provide the following results. The optimum aperture area and thermal storage capacity of STPG are found by the simulation based on the climate and the solar condition in West Java. PSHG with STPG as the power source of storage pump shows lower generation cost and CO2 emission than PSHG with existing oil fired peak power sources. Even if the fuel switch from oil to gas is supposed in future, PSHG with STPG will achieve the lower generation cost and CO2 emission than PSHG with the oil/gas fired combined cycle by sharing the peak electricity supply with the oil/gas fired combined cycle in an appropriate ratio. Furthermore, if the crude oil price hike in future is considered, PSHG with STPG may be the optimal solution for the peak electricity supply of Java-Bari grid.

  9. Model Predictive Control of Integrated Gasification Combined Cycle Power Plants

    SciTech Connect

    B. Wayne Bequette; Priyadarshi Mahapatra

    2010-08-31

    The primary project objectives were to understand how the process design of an integrated gasification combined cycle (IGCC) power plant affects the dynamic operability and controllability of the process. Steady-state and dynamic simulation models were developed to predict the process behavior during typical transients that occur in plant operation. Advanced control strategies were developed to improve the ability of the process to follow changes in the power load demand, and to improve performance during transitions between power levels. Another objective of the proposed work was to educate graduate and undergraduate students in the application of process systems and control to coal technology. Educational materials were developed for use in engineering courses to further broaden this exposure to many students. ASPENTECH software was used to perform steady-state and dynamic simulations of an IGCC power plant. Linear systems analysis techniques were used to assess the steady-state and dynamic operability of the power plant under various plant operating conditions. Model predictive control (MPC) strategies were developed to improve the dynamic operation of the power plants. MATLAB and SIMULINK software were used for systems analysis and control system design, and the SIMULINK functionality in ASPEN DYNAMICS was used to test the control strategies on the simulated process. Project funds were used to support a Ph.D. student to receive education and training in coal technology and the application of modeling and simulation techniques.

  10. Optimised heat recovery steam generators for integrated solar combined cycle plants

    NASA Astrophysics Data System (ADS)

    Peterseim, Jürgen H.; Huschka, Karsten

    2017-06-01

    The cost of concentrating solar power (CSP) plants is decreasing but, due to the cost differences and the currently limited value of energy storage, implementation of new facilities is still slow compared to photovoltaic systems. One recognized option to lower cost instantly is the hybridization of CSP with other energy sources, such as natural gas or biomass. Various references exist for the combination of CSP with natural gas in combined cycle plants, also known as Integrated Solar Combined Cycle (ISCC) plants. One problem with current ISCC concepts is the so called ISCC crisis, which occurs when CSP is not contributing and cycle efficiency falls below efficiency levels of solely natural gas only fired combined cycle plants. This paper analyses current ISCC concepts and compares them with two optimised designs. The comparison is based on a Kuraymat type ISCC plant and shows that cycle optimization enables a net capacity increase of 1.4% and additional daily generation of up to 7.9%. The specific investment of the optimised Integrated Solar Combined Cycle plant results in a 0.4% cost increase, which is below the additional net capacity and daily generation increase.

  11. Analysis of R&D Strategy for Advanced Combined Cycle Power Systems

    NASA Astrophysics Data System (ADS)

    Akimoto, Keigo; Hayashi, Ayami; Kosugi, Takanobu; Tomoda, Toshimasa

    This article analyzes and evaluates the R&D strategy for advanced power generation technologies, such as natural gas combined cycles, IGCCs (Integrated coal Gasification Combined Cycles), and large-scale fuel cell power generation systems with a mixed-integer programming model. The R&D processes are explicitly formulated in the model through GERT (Graphical Evaluation and Review Technique), and the data on each required time of R&D was collected through questionnaire surveys among the experts. The obtained cost-effective strategy incorporates the optimum investment allocation among the developments of various elemental technologies, and at the same time, it incorporates the least-cost expansion planning of power systems in Japan including other power generation technologies such as conventional coal, oil, and gas fired, and hydro and wind power. The simulation results show the selection of the cost-effective technology developments and the importance of the concentrated investments in them. For example, IGCC, which has a relatively high thermal efficiency, and LNG-CCs of the assumed two efficiencies are the cost-effective investment targets in the no-CO2-regulation case.

  12. Ames Lab 101: Next Generation Power Lines

    ScienceCinema

    Russell, Alan

    2016-07-12

    Ames Laboratory scientist Alan Russell discusses the need to develop new power lines that are stronger and more conductive as a way to address the problem of the nation's aging and inadequate power grid.

  13. Power Generation: The Next 30 Years

    ERIC Educational Resources Information Center

    Holcomb, Robert W.

    1970-01-01

    Discusses pollution problems associated with power production. Estimates power consumption in the 1980's and the availability of fossil and nuclear fuel resources. Emphasizes needed research on air pollution, nuclear pollution, and thermal pollution. (EB)

  14. Power Generation: The Next 30 Years

    ERIC Educational Resources Information Center

    Holcomb, Robert W.

    1970-01-01

    Discusses pollution problems associated with power production. Estimates power consumption in the 1980's and the availability of fossil and nuclear fuel resources. Emphasizes needed research on air pollution, nuclear pollution, and thermal pollution. (EB)

  15. Ames Lab 101: Next Generation Power Lines

    SciTech Connect

    Russell, Alan

    2010-01-01

    Ames Laboratory scientist Alan Russell discusses the need to develop new power lines that are stronger and more conductive as a way to address the problem of the nation's aging and inadequate power grid.

  16. Evaluating the thermodynamic efficiency of hydrogen cycles at wet-steam nuclear power stations

    NASA Astrophysics Data System (ADS)

    Aminov, R. Z.; Egorov, A. N.

    2013-04-01

    Various schematic solutions for implementing a hydrogen cycle on the basis of thermal and nuclear power stations are discussed. Different approaches to construction of cooling systems for the combustion chambers used in hydrogen-oxygen steam generators are described. An example of solution is given in which the combustion chamber is cooled by steam, which is the most efficient one in the thermodynamic respect. Results from an assessment of the thermodynamic efficiency of hydrogen cycles organized on the basis of the power unit of a wet-steam nuclear power station equipped with a K-1000-60/1500 turbine are presented. The thermodynamic efficiency of different schematic and parametric versions of implementing a hydrogen cycle, including those with a satellite turbine operating on displaced steam, is carried out. It is shown that the use of satellite turbines allows the power output and efficiency of the power unit of a wet-steam nuclear power station to be upgraded in a reliable and effective manner.

  17. Few-cycle solitons in supercontinuum generation dynamics

    NASA Astrophysics Data System (ADS)

    Leblond, Hervé; Grelu, Philippe; Mihalache, Dumitru; Triki, Houria

    2016-11-01

    We review several propagation models that do not rely on the slowly-varying-envelope approximation (SVEA), and can thus be considered as fundamental models addressing the formation and propagation of few-cycle pulsed field structures and solitary waves arising in the course of intense ultrashort optical pulse evolution in nonlinear media and beyond octave-bandwidth optical spectrum broadening. These generic models are: the modified-Korteweg-de Vries (mKdV), the sine-Gordon (sG), and the mixed mKdV-sG equations. To include wave polarization dynamics, the vector extensions of both mKdV and sG equations are introduced. Multi-octave-spanning supercontinuum generation and few-cycle soliton structures are highlighted from numerical simulations.

  18. Potassium Rankine cycle power conversion systems for lunar-Mars surface power

    SciTech Connect

    Holcomb, R.S.

    1992-07-01

    The potassium Rankine cycle has good potential for application to nuclear power systems for surface power on the moon and Mars. A substantial effort on the development of the power conversion was carried out in the 1960`s which demonstrated successful operation of components made of stainless steel at moderate temperatures. This technology could be applied in the near term to produce a 360 kW(e) power system by coupling a stainless steel power conversion system to the SP-100 reactor. Improved performance could be realized in later systems by utilizing niobium or tantalum refractory metal alloys in the reactor and power conversion system. The design characteristics and estimated mass of power systems for each of three technology levels are presented in the paper. 8 refs.

  19. Feasibility Investigation for a Solar Power Generation Facility

    NASA Technical Reports Server (NTRS)

    Nathan, Lakshmi

    2010-01-01

    The Energy Policy Act of 2005 states that by fiscal year 2013, at least 7.5% of the energy consumed by the government must be renewable energy. In an effort to help meet this goal, Johnson Space Center (JSC) is considering installing a solar power generation facility. The purpose of this project is to conduct a feasibility investigation for such a facility. Because Kennedy Space Center (KSC) has a solar power generation facility, the first step in this investigation is to learn about KSC's facility and obtain information on how it was constructed. After collecting this information, the following must be determined: the amount of power desired, the size of the facility, potential locations for it, and estimated construction and maintenance costs. Contacts with JSC's energy provider must also be established to determine if a partnership would be agreeable to both parties. Lastly, all of this data must be analyzed to decide whether or not JSC should construct the facility. The results from analyzing the data collected indicate that a 200 kW facility would provide enough energy to meet 1% of JSC's energy demand. This facility would require less than 1 acre of land. In the map below, potential locations are shown in green. The solar power facility is projected to cost $2 M. So far, the information collected indicates that such a facility could be constructed. The next steps in this investigation include contacting JSC's energy provider, CenterPoint Energy, to discuss entering a partnership; developing a life cycle cost analysis to determine payback time; developing more detailed plans; and securing funding.

  20. Local biofuels power plants with fuel cell generators

    SciTech Connect

    Lindstroem, O.

    1996-12-31

    The fuel cell should be a most important option for Asian countries now building up their electricity networks. The fuel cell is ideal for the schemes for distributed generation which are more reliable and efficient than the centralized schemes so far favoured by the industrialized countries in the West. Not yet developed small combined cycle power plants with advanced radial gas turbines and compact steam turbines will be the competition. Hot combustion is favoured today but cold combustion may win in the long run thanks to its environmental advantages. Emission standards are in general determined by what is feasible with available technology. The simple conclusion is that the fuel cell has to prove that it is competitive to the turbines in cost engineering terms. A second most important requirement is that the fuel cell option has to be superior with respect to electrical efficiency.

  1. Thermal Cycling and High Temperature Reverse Bias Testing of Control and Irradiated Gallium Nitride Power Transistors

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Boomer, Kristen T.; Scheick, Leif; Lauenstein, Jean-Marie; Casey, Megan; Hammoud, Ahmad

    2014-01-01

    The power systems for use in NASA space missions must work reliably under harsh conditions including radiation, thermal cycling, and exposure to extreme temperatures. Gallium nitride semiconductors show great promise, but information pertaining to their performance is scarce. Gallium nitride N-channel enhancement-mode field effect transistors made by EPC Corporation in a 2nd generation of manufacturing were exposed to radiation followed by long-term thermal cycling and testing under high temperature reverse bias conditions in order to address their reliability for use in space missions. Result of the experimental work are presented and discussed.

  2. 43 CFR 418.16 - Using water for power generation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 1 2013-10-01 2013-10-01 false Using water for power generation. 418.16... Operations and Management § 418.16 Using water for power generation. All use of Project water for power..., incentive water (§ 418.35), or spills....

  3. 43 CFR 418.16 - Using water for power generation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Using water for power generation. 418.16... Operations and Management § 418.16 Using water for power generation. All use of Project water for power..., incentive water (§ 418.35 ), or spills....

  4. 43 CFR 418.16 - Using water for power generation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 1 2014-10-01 2014-10-01 false Using water for power generation. 418.16... Operations and Management § 418.16 Using water for power generation. All use of Project water for power..., incentive water (§ 418.35), or spills....

  5. 43 CFR 418.16 - Using water for power generation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 1 2011-10-01 2011-10-01 false Using water for power generation. 418.16... Operations and Management § 418.16 Using water for power generation. All use of Project water for power..., incentive water (§ 418.35 ), or spills....

  6. 43 CFR 418.16 - Using water for power generation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 1 2012-10-01 2011-10-01 true Using water for power generation. 418.16... Operations and Management § 418.16 Using water for power generation. All use of Project water for power..., incentive water (§ 418.35 ), or spills....

  7. Diagnosis of Thermal Efficiency of Advanced Combined Cycle Power Plants Using Optical Torque Sensors

    NASA Astrophysics Data System (ADS)

    Umezawa, Shuichi

    A new optical torque measurement method was applied to diagnosis of thermal efficiency of advanced combined cycle, i.e. ACC, plants. Since the ACC power plant comprises a steam turbine and a gas turbine and both of them are connected to the same generator, it is difficult to identify which turbine in the plant deteriorates the performance when the plant efficiency is reduced. The sensor measures axial distortion caused by power transmission by use of He-Ne laser beams, small stainless steel reflectors having bar-code patterns, and a technique of signal processing featuring high frequency. The sensor was applied to the ACC plants of TOKYO ELECTRIC POWER COMPANY, TEPCO, following the success in the application to the early combined cycle plants of TEPCO. The sensor performance was inspected over a year. After an improvement related to the signal process, it is considered that the sensor performance has reached a practical use level.

  8. Life-cycle analysis results for geothermal systems in comparison to other power systems: Part II.

    SciTech Connect

    Sullivan, J.L.; Clark, C.E.; Yuan, L.; Han, J.; Wang, M.

    2012-02-08

    A study has been conducted on the material demand and life-cycle energy and emissions performance of power-generating technologies in addition to those reported in Part I of this series. The additional technologies included concentrated solar power, integrated gasification combined cycle, and a fossil/renewable (termed hybrid) geothermal technology, more specifically, co-produced gas and electric power plants from geo-pressured gas and electric (GPGE) sites. For the latter, two cases were considered: gas and electricity export and electricity-only export. Also modeled were cement, steel and diesel fuel requirements for drilling geothermal wells as a function of well depth. The impact of the construction activities in the building of plants was also estimated. The results of this study are consistent with previously reported trends found in Part I of this series. Among all the technologies considered, fossil combustion-based power plants have the lowest material demand for their construction and composition. On the other hand, conventional fossil-based power technologies have the highest greenhouse gas (GHG) emissions, followed by the hybrid and then two of the renewable power systems, namely hydrothermal flash power and biomass-based combustion power. GHG emissions from U.S. geothermal flash plants were also discussed, estimates provided, and data needs identified. Of the GPGE scenarios modeled, the all-electric scenario had the highest GHG emissions. Similar trends were found for other combustion emissions.

  9. The changing face of international power generation

    SciTech Connect

    Lindsay, I.

    1997-12-31

    The author limits his remarks to a discussion of the international generator`s marketplace, especially aimed at the developing countries. He discusses future global electricity demand, generating capacity build, its financing issues, and to the commercial generating opportunities which now abound outside the US.

  10. Update on use of mine pool water for power generation.

    SciTech Connect

    Veil, J. A.; Puder, M. G.; Environmental Science Division

    2006-09-30

    In 2004, nearly 90 percent of the country's electricity was generated at power plants using steam-based systems (EIA 2005). Electricity generation at steam electric plants requires a cooling system to condense the steam. With the exception of a few plants using air-cooled condensers, most U.S. steam electric power plants use water for cooling. Water usage occurs through once-through cooling or as make-up water in a closed-cycle system (generally involving one or more cooling towers). According to a U.S. Geological Survey report, the steam electric power industry withdrew about 136 billion gallons per day of fresh water in 2000 (USGS 2005). This is almost the identical volume withdrawn for irrigation purposes. In addition to fresh water withdrawals, the steam electric power industry withdrew about 60 billion gallons per day of saline water. Many parts of the United States are facing fresh water shortages. Even areas that traditionally have had adequate water supplies are reaching capacity limits. New or expanded steam electric power plants frequently need to turn to non-traditional alternate sources of water for cooling. This report examines one type of alternate water source-groundwater collected in underground pools associated with coal mines (referred to as mine pool water in this report). In 2003, the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) funded Argonne National Laboratory (Argonne) to evaluate the feasibility of using mine pool water in Pennsylvania and West Virginia. That report (Veil et al. 2003) identified six small power plants in northeastern Pennsylvania (the Anthracite region) that had been using mine pool water for over a decade. It also reported on a pilot study underway at Exelon's Limerick Generating Station in southeastern Pennsylvania that involved release of water from a mine located about 70 miles upstream from the plant. The water flowed down the Schuylkill River and augmented the natural flow so that

  11. POPCYCLE: a computer code for calculating nuclear and fossil plant levelized life-cycle power costs

    SciTech Connect

    Hardie, R.W.

    1982-02-01

    POPCYCLE, a computer code designed to calculate levelized life-cycle power costs for nuclear and fossil electrical generating plants is described. Included are (1) derivations of the equations and a discussion of the methodology used by POPCYCLE, (2) a description of the input required by the code, (3) a listing of the input for a sample case, and (4) the output for a sample case.

  12. Aero-engine derivative gas turbines for power generation: Thermodynamic and economic perspectives

    SciTech Connect

    Horlock, J.H.

    1997-01-01

    Aero-engine technology has played a major part in the development of both the industrial gas turbine and, more recently, the combined cycle gas turbine (CCGT) plant. A distinction may be drawn between the direct use of developed aero-engine hardware in power generation (and in marine applications), and the more indirect influence of aero-engine technology, particularly in design of heavy-duty gas turbines. Both the direct use of aero-engine hardware, in gas turbines for power generation, and the indirect influence of aero-engine technology, in the design of more conventional heavy-duty plants (including combined cycle gas turbines, CCGTs), are reviewed.

  13. Analysis of closed cycle megawatt class space power systems with nuclear reactor heat sources

    NASA Technical Reports Server (NTRS)

    Juhasz, A. J.; Jones, B. I.

    1987-01-01

    The analysis and integration studies of multimegawatt nuclear power conversion systems for potential SDI applications is presented. A study is summarized which considered 3 separate types of power conversion systems for steady state power generation with a duty requirement of 1 yr at full power. The systems considered are based on the following conversion cycles: direct and indirect Brayton gas turbine, direct and indirect liquid metal Rankine, and in core thermionic. A complete mass analysis was performed for each system at power levels ranging from 1 to 25 MWe for both heat pipe and liquid droplet radiator options. In the modeling of common subsystems, reactor and shield calculations were based on multiparameter correlation and an in-house analysis for the heat rejection and other subsystems.

  14. Analysis of closed cycle megawatt class space power systems with nuclear reactor heat sources

    NASA Technical Reports Server (NTRS)

    Juhasz, A. J.; Jones, B. I.

    1987-01-01

    The analysis and integration studies of multimegawatt nuclear power conversion systems for potential SDI applications is presented. A study is summarized which considered 3 separate types of power conversion systems for steady state power generation with a duty requirement of 1 yr at full power. The systems considered are based on the following conversion cycles: direct and indirect Brayton gas turbine, direct and indirect liquid metal Rankine, and in core thermionic. A complete mass analysis was performed for each system at power levels ranging from 1 to 25 MWe for both heat pipe and liquid droplet radiator options. In the modeling of common subsystems, reactor and shield calculations were based on multiparameter correlation and an in-house analysis for the heat rejection and other subsystems.

  15. Analyzing the Impact of Solar Power on Multi-Hourly Thermal Generator Ramping

    SciTech Connect

    Rosenkranz, Joshua-Benedict; Brancucci Martinez-Anido, Carlo; Hodge, Bri-Mathias

    2016-04-08

    Solar power generation, unlike conventional forms of electricity generation, has higher variability and uncertainty in its output because solar plant output is strongly impacted by weather. As the penetration rate of solar capacity increases, grid operators are increasingly concerned about accommodating the increased variability and uncertainty that solar power provides. This paper illustrates the impacts of increasing solar power penetration on the ramping of conventional electricity generators by simulating the operation of the Independent System Operator -- New England power system. A production cost model was used to simulate the power system under five different scenarios, one without solar power and four with increasing solar power penetrations up to 18%, in terms of annual energy. The impact of solar power is analyzed on six different temporal intervals, including hourly and multi-hourly (2- to 6-hour) ramping. The results show how the integration of solar power increases the 1- to 6-hour ramping events of the net load (electric load minus solar power). The study also analyzes the impact of solar power on the distribution of multi-hourly ramping events of fossil-fueled generators and shows increasing 1- to 6-hour ramping events for all different generators. Generators with higher ramp rates such as gas and oil turbine and internal combustion engine generators increased their ramping events by 200% to 280%. For other generator types--including gas combined-cycle generators, coal steam turbine generators, and gas and oil steam turbine generators--more and higher ramping events occurred as well for higher solar power penetration levels.

  16. 13. INTERIOR OF POWER PLANT LOOKING EASTNORTHEAST. 1925 GE GENERATOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. INTERIOR OF POWER PLANT LOOKING EAST-NORTHEAST. 1925 GE GENERATOR IN FOREGROUND, WITH C. 1910 GENERATOR COVER IN BACKGROUND. STEEL FRAME SUPPORTS HOISTING MECHANISM USED TO MOVE, REPAIR, OR REPLACE GENERATORS. - Potomac Power Plant, On West Virginia Shore of Potomac River, about 1 mile upriver from confluence with Shenandoah River, Harpers Ferry, Jefferson County, WV

  17. Coal and Coal/Biomass-Based Power Generation

    EPA Science Inventory

    For Frank Princiotta's book, Global Climate Change--The Technology Challenge Coal is a key, growing component in power generation globally. It generates 50% of U.S. electricity, and criteria emissions from coal-based power generation are being reduced. However, CO2 emissions m...

  18. Coal and Coal/Biomass-Based Power Generation

    EPA Science Inventory

    For Frank Princiotta's book, Global Climate Change--The Technology Challenge Coal is a key, growing component in power generation globally. It generates 50% of U.S. electricity, and criteria emissions from coal-based power generation are being reduced. However, CO2 emissions m...

  19. An Exploratory Study of Thermoelectrostatic Power Generation for Space Flight Applications

    NASA Technical Reports Server (NTRS)

    Beam, Benjamin H.

    1960-01-01

    A study has been made of a process in which a solar heating cycle is combined with an electrostatic cycle for generating electrical power for space vehicle applications. The power unit, referred to as a thermoelectrostatic generator, is a thin film, solid dielectric capacitor alternately heated by solar radiation and cooled by radiant emission. The theory of operation to extract electrical power is presented. Results of an experiment to illustrate the principle are described. Estimates of the performance of this type of device in space in the vicinity of earth are included. Values of specific power of several kilowatts per kilogram of generator weight are calculated for such a device employing polyethylene terephthalate dielectric.

  20. Future Photovoltaic Power Generation for Space-Based Power Utilities

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila; Landis, Geoffrey; Hepp, Aloysius; Raffaelle, Ryne

    2002-01-01

    This paper discusses requirements for large earth orbiting power stations that can serve as central utilities for other orbiting spacecraft, or for beaming power to the earth itself. The current state of the art of space solar cells, and a variety of both evolving thin film cells as well as new technologies that may impact the future choice of space solar cells for high power mission applications are addressed.

  1. Integrated engine-generator concept for aircraft electric secondary power

    NASA Technical Reports Server (NTRS)

    Secunde, R. R.; Macosko, R. P.; Repas, D. S.

    1972-01-01

    The integrated engine-generator concept of locating an electric generator inside an aircraft turbojet or turbofan engine concentric with, and driven by, one of the main engine shafts is discussed. When properly rated, the generator can serve as an engine starter as well as a generator of electric power. The electric power conversion equipment and generator controls are conveniently located in the aircraft. Preliminary layouts of generators in a large engine together with their physical sizes and weights indicate that this concept is a technically feasible approach to aircraft secondary power.

  2. Steam turbine development for advanced combined cycle power plants

    SciTech Connect

    Oeynhausen, H.; Bergmann, D.; Balling, L.; Termuehlen, H.

    1996-12-31

    For advanced combined cycle power plants, the proper selection of steam turbine models is required to achieve optimal performance. The advancements in gas turbine technology must be followed by advances in the combined cycle steam turbine design. On the other hand, building low-cost gas turbines and steam turbines is desired which, however, can only be justified if no compromise is made in regard to their performance. The standard design concept of two-casing single-flow turbines seems to be the right choice for most of the present and future applications worldwide. Only for very specific applications it might be justified to select another design concept as a more suitable option.

  3. Power Conversion with a Stirling Cycle for Venus Surface Mission

    NASA Technical Reports Server (NTRS)

    Mellott, Ken

    2004-01-01

    The light-filtering characteristic of the dense, mostly-CO2 atmosphere of Venus, combined with the high atmospheric cloud cover, relegates the surface mission use of photovoltaic power systems and beckons for the independence and reliability of a nuclear-powered energy source. A multi-faceted Venus mission study was completed at NASA GRC in December of 2003 that resulted in the preliminary design of a helium- charged, kinematic Stirling converter, which is powered by nuclear, General Purpose Heat Source (GPHS) modules. The kinematic, Stirling power converter is configured to drive an electronics and sensor cooler in addition to a generator for electrical power. This paper briefly describes the design process and also describes and summarizes key features of the Stirling power converter preliminary design concept. With an estimated total efficiency of 23.4%, the power converter drives the electronics and sensor cooler, and also produces 100 watts of electricity. The converter rejects waste heat at a hot sink temperature of 500 C.

  4. Power Conversion with a Stirling Cycle for Venus Surface Mission

    NASA Technical Reports Server (NTRS)

    Mellott, Ken

    2004-01-01

    The light-filtering characteristic of the dense, mostly-CO2 atmosphere of Venus, combined with the high atmospheric cloud cover, relegates the surface mission use of photovoltaic power systems and beckons for the independence and reliability of a nuclear-powered energy source. A multi-faceted Venus mission study was completed at NASA GRC in December of 2003 that resulted in the preliminary design of a helium- charged, kinematic Stirling converter, which is powered by nuclear, General Purpose Heat Source (GPHS) modules. The kinematic, Stirling power converter is configured to drive an electronics and sensor cooler in addition to a generator for electrical power. This paper briefly describes the design process and also describes and summarizes key features of the Stirling power converter preliminary design concept. With an estimated total efficiency of 23.4%, the power converter drives the electronics and sensor cooler, and also produces 100 watts of electricity. The converter rejects waste heat at a hot sink temperature of 500 C.

  5. Gas-Generator Augmented Expander Cycle Rocket Engine

    NASA Technical Reports Server (NTRS)

    Greene, William D. (Inventor)

    2011-01-01

    An augmented expander cycle rocket engine includes first and second turbopumps for respectively pumping fuel and oxidizer. A gas-generator receives a first portion of fuel output from the first turbopump and a first portion of oxidizer output from the second turbopump to ignite and discharge heated gas. A heat exchanger close-coupled to the gas-generator receives in a first conduit the discharged heated gas, and transfers heat to an adjacent second conduit carrying fuel exiting the cooling passages of a primary combustion chamber. Heat is transferred to the fuel passing through the cooling passages. The heated fuel enters the second conduit of the heat exchanger to absorb more heat from the first conduit, and then flows to drive a turbine of one or both of the turbopumps. The arrangement prevents the turbopumps exposure to combusted gas that could freeze in the turbomachinery and cause catastrophic failure upon attempted engine restart.

  6. HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER

    SciTech Connect

    BROWN,LC; BESENBRUCH,GE; LENTSCH,RD; SCHULTZ,KR; FUNK,JF; PICKARD,PS; MARSHALL,AC; SHOWALTER,SK

    2003-06-01

    fuels has trace contaminants (primarily carbon monoxide) that are detrimental to precious metal catalyzed fuel cells, as is now recognized by many of the world's largest automobile companies. Thermochemical hydrogen will not contain carbon monoxide as an impurity at any level. Electrolysis, the alternative process for producing hydrogen using nuclear energy, suffers from thermodynamic inefficiencies in both the production of electricity and in electrolytic parts of the process. The efficiency of electrolysis (electricity to hydrogen) is currently about 80%. Electric power generation efficiency would have to exceed 65% (thermal to electrical) for the combined efficiency to exceed the 52% (thermal to hydrogen) calculated for one thermochemical cycle. Thermochemical water-splitting cycles have been studied, at various levels of effort, for the past 35 years. They were extensively studied in the late 70s and early 80s but have received little attention in the past 10 years, particularly in the U.S. While there is no question about the technical feasibility and the potential for high efficiency, cycles with proven low cost and high efficiency have yet to be developed commercially. Over 100 cycles have been proposed, but substantial research has been executed on only a few. This report describes work accomplished during a three-year project whose objective is to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high temperature nuclear reactor as the energy source.'' The emphasis of the first phase was to evaluate thermochemical processes which offer the potential for efficient, cost-effective, large-scale production of hydrogen from water in which the primary energy input is high temperature heat from an advanced nuclear reactor and to select one (or, at most three) for further detailed consideration. During Phase 1, an exhaustive literature search was performed to locate all cycles previously proposed. The cycles

  7. Generating Functions for the Powers of Fibonacci Sequences

    ERIC Educational Resources Information Center

    Terrana, D.; Chen, H.

    2007-01-01

    In this note, based on the Binet formulas and the power-reducing techniques, closed forms of generating functions for the powers of Fibonacci sequences are presented. The corresponding results are extended to some other famous sequences as well.

  8. Generating Functions for the Powers of Fibonacci Sequences

    ERIC Educational Resources Information Center

    Terrana, D.; Chen, H.

    2007-01-01

    In this note, based on the Binet formulas and the power-reducing techniques, closed forms of generating functions for the powers of Fibonacci sequences are presented. The corresponding results are extended to some other famous sequences as well.

  9. Increased efficiency of topping cycle PCFB power plants

    SciTech Connect

    Robertson, A.; Domeracki, W.; Horazak, D.

    1996-05-01

    Pressurized circulating fluidized bed (PCFB) power plants offer the power industry significantly increased efficiencies with reduced costs of electricity and lower emissions. When topping combustion is incorporated in the plant, these advantages are enhanced. In the plant, coal is fed to a pressurized carbonizer that produces a low-Btu fuel gas and char. After passing through a cyclone and ceramic barrier filter to remove gas-entrained particulates and a packed bed of emathelite pellets to remove alkali vapors. the fuel gas is burned in a topping combustor to produce the energy required to drive a gas turbine. The gas turbine drives a generator combustor, and a fluidized bed heat exchanger (FBHE). The carbonizer char is burned in the PCFB and the exhaust gas passes through its own cyclone, ceramic barrier filter, and alkali getter and supports combustion of the fuel gas in the topping combustor. Steam generated in a heat-recovery steam generator (HRSG) downstream of the gas turbine and in the FBHE associated with the PCFB drives the steam turbine generator that furnishes the balance of electric power delivered by the plant.

  10. Life Cycle Greenhouse Gas Emissions of Nuclear Electricity Generation: Systematic Review and Harmonization

    SciTech Connect

    Warner, E. S.; Heath, G. A.

    2012-04-01

    A systematic review and harmonization of life cycle assessment (LCA) literature of nuclear electricity generation technologies was performed to determine causes of and, where possible, reduce variability in estimates of life cycle greenhouse gas (GHG) emissions to clarify the state of knowledge and inform decision making. LCA literature indicates that life cycle GHG emissions from nuclear power are a fraction of traditional fossil sources, but the conditions and assumptions under which nuclear power are deployed can have a significant impact on the magnitude of life cycle GHG emissions relative to renewable technologies. Screening 274 references yielded 27 that reported 99 independent estimates of life cycle GHG emissions from light water reactors (LWRs). The published median, interquartile range (IQR), and range for the pool of LWR life cycle GHG emission estimates were 13, 23, and 220 grams of carbon dioxide equivalent per kilowatt-hour (g CO{sub 2}-eq/kWh), respectively. After harmonizing methods to use consistent gross system boundaries and values for several important system parameters, the same statistics were 12, 17, and 110 g CO{sub 2}-eq/kWh, respectively. Harmonization (especially of performance characteristics) clarifies the estimation of central tendency and variability. To explain the remaining variability, several additional, highly influential consequential factors were examined using other methods. These factors included the primary source energy mix, uranium ore grade, and the selected LCA method. For example, a scenario analysis of future global nuclear development examined the effects of a decreasing global uranium market-average ore grade on life cycle GHG emissions. Depending on conditions, median life cycle GHG emissions could be 9 to 110 g CO{sub 2}-eq/kWh by 2050.

  11. A Framework for Assessing the Commercialization of Photovoltaic Power Generation

    NASA Astrophysics Data System (ADS)

    Yaqub, Mahdi

    30-year term instead of the current 15-year average term. Such government-financed PV utilities will sell electricity to the US Government at a lower than retail electricity price as compensation for a favorable interest rate (4% instead of 7%) and a longer PPA term (30 years instead of 15). The life-cycle cash flow simulation of this proposed financial plan ascertains a 20% reduction in PV LCOE. Such cost reduction could be applied as credit to the US government electricity bills with 20% saving. The government could also realize a second compensation from the replaced 30% ITC subsidy because such expenditures would no longer be needed. A comparison between the engineering economy cash flow simulation results of the current utility power PPA practice and the proposed financial plan suggests that the proposed plan would be viable. The simulation results also show that the proposed public debt financial plan does not reach grid parity on its own; rather, it needs to be an integral part of the PV commercialization framework developed in this dissertation. The outcome of this research demonstrates that the effective implementation of the developed framework could facilitate the realization of a commercially successful PV power generation industry.

  12. Operating Conditions of a Three-stage Combined Power Cycle using Cold Energy for Maximizing Exergetic Efficiency

    NASA Astrophysics Data System (ADS)

    Miyazaki, Takahiko; Akisawa, Atsushi; Kashiwagi, Takao

    Waste heat utilization is a fundamental approach to end-use energy savings. Medium or low temperature waste heat is not usable unless its temperature level matches the demand. From this standpoint, power generation from medium or low temperature waste heat is beneficial because it improves the availability of the energy by converting waste heat into electricity or mechanical work. Conventional waste heat driven power generation cycles, such as the Kalina cycle, attain relatively low thermal efficiencies because of the low exergy in medium or low temperature heat. This paper proposes a three-stage combined power cycle using cold energy for power generation from medium temperature (≅200°C)waste heat. The system consists of an ammonia-water Rankine cycle, an ethane-propane Rankine cycle and a liquefied natural gas direct expansion cycle. A cycle simulation of the system is executed, and the operating conditions where the exergetic efficiency is maximized are presented in this article. It is found that the exergetic efficiency reaches 31% under these operating conditions.

  13. Underwater vehicle propulsion and power generation

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor); Chao, Yi (Inventor)

    2008-01-01

    An underwater vehicle includes a shaft with a propeller disposed thereon; a generator/motor having a stator and a rotor, the rotor being operable to rotate with the propeller; at least one energy storage device connected to the generator/motor; and a controller for setting the generator/motor in a charge mode, a propulsion mode and an idle mode.

  14. Life Cycle Greenhouse Gas Emissions of Coal-Fired Electricity Generation: Systematic Review and Harmonization

    SciTech Connect

    Whitaker, M.; Heath, G. A.; O'Donoughue, P.; Vorum, M.

    2012-04-01

    This systematic review and harmonization of life cycle assessments (LCAs) of utility-scale coal-fired electricity generation systems focuses on reducing variability and clarifying central tendencies in estimates of life cycle greenhouse gas (GHG) emissions. Screening 270 references for quality LCA methods, transparency, and completeness yielded 53 that reported 164 estimates of life cycle GHG emissions. These estimates for subcritical pulverized, integrated gasification combined cycle, fluidized bed, and supercritical pulverized coal combustion technologies vary from 675 to 1,689 grams CO{sub 2}-equivalent per kilowatt-hour (g CO{sub 2}-eq/kWh) (interquartile range [IQR]= 890-1,130 g CO{sub 2}-eq/kWh; median = 1,001) leading to confusion over reasonable estimates of life cycle GHG emissions from coal-fired electricity generation. By adjusting published estimates to common gross system boundaries and consistent values for key operational input parameters (most importantly, combustion carbon dioxide emission factor [CEF]), the meta-analytical process called harmonization clarifies the existing literature in ways useful for decision makers and analysts by significantly reducing the variability of estimates ({approx}53% in IQR magnitude) while maintaining a nearly constant central tendency ({approx}2.2% in median). Life cycle GHG emissions of a specific power plant depend on many factors and can differ from the generic estimates generated by the harmonization approach, but the tightness of distribution of harmonized estimates across several key coal combustion technologies implies, for some purposes, first-order estimates of life cycle GHG emissions could be based on knowledge of the technology type, coal mine emissions, thermal efficiency, and CEF alone without requiring full LCAs. Areas where new research is necessary to ensure accuracy are also discussed.

  15. Optimization of disk generator performance for base-load power plant systems applications

    SciTech Connect

    Teare, J D; Loubsky, W J; Lytle, J K; Louis, J F

    1980-01-01

    Disk generators for use in base-load MHD power plants are examined for both open-cycle and closed-cycle operating modes. The OCD cases are compared with PSPEC results for a linear channel; enthalpy extractions up to 23% with 71% isentropic efficiency are achievable with generator inlet conditions similar to those used in PSPEC, thus confirming that the disk configuration is a viable alternative for base-load power generation. The evaluation of closed-cycle disks includes use of a simplified cycle model. High system efficiencies over a wide range of power levels are obtained for effective Hall coefficients in the range 2.3 to 4.9. Cases with higher turbulence (implying ..beta../sub eff/ less than or equal to 2.4) yield high system efficiencies at power levels of 100 to 500 MW/sub e/. All these CCD cases compare favorably with linear channels reported in the GE ECAS study, yielding higher isentropic efficiences for a given enthalpy extraction. Power densities in the range 70 to 170 MW/m/sup 3/ appear feasible, leading to very compact generator configurations.

  16. Research on Chinese Life Cycle-Based Wind Power Plant Environmental Influence Prevention Measures

    PubMed Central

    Wang, Hanxi; Xu, Jianling; Liu, Yuanyuan; Zhang, Tian

    2014-01-01

    The environmental impact of wind power plants over their life cycle is divided into three stages: construction period, operation period and retired period. The impact is mainly reflected in ecological destruction, noise pollution, water pollution and the effect on bird migration. In response to these environmental effects, suggesting reasonable locations, reducing plant footprint, optimizing construction programs, shielding noise, preventing pollution of terrestrial ecosystems, implementing combined optical and acoustical early warning signals, making synthesized use of power generation equipment in the post-retired period and using other specific measures, including methods involving governance and protection efforts to reduce environmental pollution, can be performed to achieve sustainable development. PMID:25153474

  17. Research on Chinese life cycle-based wind power plant environmental influence prevention measures.

    PubMed

    Wang, Hanxi; Xu, Jianling; Liu, Yuanyuan; Zhang, Tian

    2014-08-19

    The environmental impact of wind power plants over their life cycle is divided into three stages: construction period, operation period and retired period. The impact is mainly reflected in ecological destruction, noise pollution, water pollution and the effect on bird migration. In response to these environmental effects, suggesting reasonable locations, reducing plant footprint, optimizing construction programs, shielding noise, preventing pollution of terrestrial ecosystems, implementing combined optical and acoustical early warning signals, making synthesized use of power generation equipment in the post-retired period and using other specific measures, including methods involving governance and protection efforts to reduce environmental pollution, can be performed to achieve sustainable development.

  18. Secondary electric power generation with minimum engine bleed

    NASA Technical Reports Server (NTRS)

    Tagge, G. E.

    1983-01-01

    Secondary electric power generation with minimum engine bleed is discussed. Present and future jet engine systems are compared. The role of auxiliary power units is evaluated. Details of secondary electric power generation systems with and without auxiliary power units are given. Advanced bleed systems are compared with minimum bleed systems. A cost model of ownership is given. The difference in the cost of ownership between a minimum bleed system and an advanced bleed system is given.

  19. Life Cycle Greenhouse Gas Emissions of Utility-Scale Wind Power: Systematic Review and Harmonization

    SciTech Connect

    Dolan, S. L.; Heath, G. A.

    2012-04-01

    A systematic review and harmonization of life cycle assessment (LCA) literature of utility-scale wind power systems was performed to determine the causes of and, where possible, reduce variability in estimates of life cycle greenhouse gas (GHG) emissions. Screening of approximately 240 LCAs of onshore and offshore systems yielded 72 references meeting minimum thresholds for quality, transparency, and relevance. Of those, 49 references provided 126 estimates of life cycle GHG emissions. Published estimates ranged from 1.7 to 81 grams CO{sub 2}-equivalent per kilowatt-hour (g CO{sub 2}-eq/kWh), with median and interquartile range (IQR) both at 12 g CO{sub 2}-eq/kWh. After adjusting the published estimates to use consistent gross system boundaries and values for several important system parameters, the total range was reduced by 47% to 3.0 to 45 g CO{sub 2}-eq/kWh and the IQR was reduced by 14% to 10 g CO{sub 2}-eq/kWh, while the median remained relatively constant (11 g CO{sub 2}-eq/kWh). Harmonization of capacity factor resulted in the largest reduction in variability in life cycle GHG emission estimates. This study concludes that the large number of previously published life cycle GHG emission estimates of wind power systems and their tight distribution suggest that new process-based LCAs of similar wind turbine technologies are unlikely to differ greatly. However, additional consequential LCAs would enhance the understanding of true life cycle GHG emissions of wind power (e.g., changes to other generators operations when wind electricity is added to the grid), although even those are unlikely to fundamentally change the comparison of wind to other electricity generation sources.

  20. ASDTIC duty-cycle control for power converters

    NASA Technical Reports Server (NTRS)

    Lalli, V. R.; Schoenfeld, A. D.

    1972-01-01

    The application of analog signal to discrete interval converter (ASDTIC), a hybrid micromodule, two loop control subsystem, to a switching, stepdown dc to dc converter is described. The power circuitry, interface and ASDTIC subsystems used in this switching regulator were developed to exhibit the improved regulation, transient performance, regulator stability and freedom from the effects of variations in parts characteristics due to environmental changes and aging. ASDTIC can be used with other types of power circuits that use duty-cycle control techniques by simple changes in the interface subsystem. The circuitry and performance characteristics of a +10V dc switching converter as well as that of the ASDTIC micromodule are described. Realization of the ASDTIC hybrid micromodule has been accomplished with a hermetically sealed, beam-lead, bonded/deposited nichrome thin film resistors, discrete capacitors and integrated circuits on dilithic, glazed alumina substrates using 22 feed through terminals in an integrated package.

  1. Self-Excitation and Harmonics in Wind Power Generation

    SciTech Connect

    Muljadi, E.; Butterfield, C. P.; Romanowitz, H.; Yinger, R.

    2005-11-01

    Traditional wind turbines are commonly equipped with induction generators because they are inexpensive, rugged, and require very little maintenance. Unfortunately, induction generators require reactive power from the grid to operate; capacitor compensation is often used. Because the level of required reactive power varies with the output power, the capacitor compensation must be adjusted as the output power varies. The interactions among the wind turbine, the power network, and the capacitor compensation are important aspects of wind generation that may result in self-excitation and higher harmonic content in the output current. This paper examines the factors that control these phenomena and gives some guidelines on how they can be controlled or eliminated.

  2. Thawing of foods in a microwave oven: I. Effect of power levels and power cycling.

    PubMed

    Chamchong, M; Datta, A K

    1999-01-01

    Microwave thawing is faster than other methods, but it can produce significant non-uniformity of heating. The objective of this study was to perform comprehensive experimentation and heat transfer modeling to relate the time to thaw and the non-uniformity of thawing to power cycling, power level and the surface heat transfer coefficient. The governing energy equation was formulated with an exponential decay of the microwave flux from the surface. Surface microwave flux was obtained from the measured temperature rise using inverse heat transfer analysis. Gradual phase change was formulated as an apparent specific heat, and was obtained for the experimental material tylose from differential scanning calorimetry (DSC) measurements. The temperatures were measured immediately following heating with a fast response thermocouple. Dielectric properties were measured above freezing. Results show that the microwave flux at the surface and its decay are affected by the changes in the power level. Power cycling has an almost identical effect as continuous power at the reduced level of the average cycled power. As power level increases, the surface flux increases by the same fraction. At higher power levels, however, the outside thaws relatively faster. A "shield" develops due to a much reduced microwave penetration depth at the surface. This thawing time at higher power levels is reduced considerably. Temperature increases initially are non-uniform since the surface is heated at a faster rate than the interior. In keeping with the assumption that once the temperature reaches 100 degrees C, all energy absorbed goes into evaporation, and subsequent temperature is maintained at 100 degrees C. Thus, eventually, non-uniformity starts to decrease.

  3. A cycle ergometer test of maximal aerobic power.

    PubMed

    Myles, W S; Toft, R J

    1982-01-01

    An indirect test of maximal aerobic power (IMAP) was evaluated in 31 healthy male subjects by comparing it with a direct treadmill measurement of maximal aerobic power (VO2 max), with the prediction of VO2 max from heart rate during submaximal exercise on a cycle ergometer using Astrand's nomogram, with the British Army's Basic Fitness Test (BFT, a 2.4 km run performed in boots and trousers), and with a test of maximum anaerobic power. For the IMAP test, subjects pedalled on a cycle ergometer at 75 revs X min-1. The workload was 37.5 watts for the first minute, and was increased by 37.5 watts every minute until the subject could not continue. Time to exhaustion was recorded. Predicted VO2 max and times for BFT and IMAP correlated significantly (p less than 0.001) with the direct VO2 max: r = 0.70, r = 0.67 and r = 0.79 respectively. The correlation between direct VO2 max and the maximum anaerobic power test was significant (p less than 0.05) but lower, r = 0.44. Although lactate levels after direct VO2 max determination were significantly higher than those after the IMAP test, maximum heart rates were not significantly different. Submaximal VO2 values measured during the IMAP test yielded a regression equation relating VO2 and pedalling time. When individual values for direct and predicted VO2 max and times for BFT and IMAP were compared with equivalent standards, the percentages of subjects able to exceed the standard were 100, 65, 87, and 87 respectively. These data demonstrate that the IMAP test provides a valid estimate of VO2 max and indicate that it may be a practical test for establishing that an individual meets a minimum standard.

  4. Small-scale AFBC hot air gas turbine power cycle

    SciTech Connect

    Ashworth, R.A.; Keener, H.M.; Hall, A.W.

    1995-12-31

    The Energy and Environmental Research Corporation (EER), the Ohio Agricultural Research and Development Center (OARDC), the Will-Burt Company (W-B) and the US Department of Energy (DOE) have successfully developed and completed pilot plant tests on a small scale atmospheric fluidized bed combustion (AFBC) system. This system can be used to generate electricity, and/or hot water, steam. Following successful pilot plant operation, commercial demonstration will take place at Cedar Lane Farms (CLF), near Wooster, Ohio. The system demonstration will be completed by the end of 1995. The project is being funded through a cooperative effort between the DOE, EER, W-B, OARDC, CLF and the Ohio Coal Development Office (OCDO). The small scale AFBC, has no internal heat transfer surfaces in the fluid bed proper. Combining the combustor with a hot air gas turbine (HAGT) for electrical power generation, can give a relatively high overall system thermal efficiency. Using a novel method of recovering waste heat from the gas turbine, a gross heat rate of 13,500 Btu/kWhr ({approximately}25% efficiency) can be achieved for a small 1.5 MW{sub e} plant. A low technology industrial recuperation type gas turbine is used that operates with an inlet blade temperature of 1,450 F and a compression ratio of 3.9:1. The AFBC-HAGT technology can be used to generate power for remote rural communities to replace diesel generators, or can be used for small industrial co-generation applications.

  5. Efficient millimeter wave 1140 GHz/ diode for harmonic power generation

    NASA Technical Reports Server (NTRS)

    1967-01-01

    Epitaxial gallium arsenide diode junction formed in a crossed waveguide structure operates as a variable reactance harmonic generator. This varactor diode can generate power efficiently in the low-millimeter wavelength.

  6. Analysis of a Temperature-Controlled Exhaust Thermoelectric Generator During a Driving Cycle

    NASA Astrophysics Data System (ADS)

    Brito, F. P.; Alves, A.; Pires, J. M.; Martins, L. B.; Martins, J.; Oliveira, J.; Teixeira, J.; Goncalves, L. M.; Hall, M. J.

    2016-03-01

    Thermoelectric generators can be used in automotive exhaust energy recovery. As car engines operate under wide variable loads, it is a challenge to design a system for operating efficiently under these variable conditions. This means being able to avoid excessive thermal dilution under low engine loads and being able to operate under high load, high temperature events without the need to deflect the exhaust gases with bypass systems. The authors have previously proposed a thermoelectric generator (TEG) concept with temperature control based on the operating principle of the variable conductance heat pipe/thermosiphon. This strategy allows the TEG modules’ hot face to work under constant, optimized temperature. The variable engine load will only affect the number of modules exposed to the heat source, not the heat transfer temperature. This prevents module overheating under high engine loads and avoids thermal dilution under low engine loads. The present work assesses the merit of the aforementioned approach by analysing the generator output during driving cycles simulated with an energy model of a light vehicle. For the baseline evaporator and condenser configuration, the driving cycle averaged electrical power outputs were approximately 320 W and 550 W for the type-approval Worldwide harmonized light vehicles test procedure Class 3 driving cycle and for a real-world highway driving cycle, respectively.

  7. Synchrophasor Applications for Wind Power Generation

    SciTech Connect

    Muljadi, E.; Zhang, Y. C.; Allen, A.; Singh, M.; Gevorgian, V.; Wan, Y. H.

    2014-02-01

    The U.S. power industry is undertaking several initiatives that will improve the operations of the electric power grid. One of those is the implementation of wide-area measurements using phasor measurement units to dynamically monitor the operations and status of the network and provide advanced situational awareness and stability assessment. The overviews of synchrophasors and stability analyses in this report are intended to present the potential future applications of synchrophasors for power system operations under high penetrations of wind and other renewable energy sources.

  8. Use and recovery of ammonia in power plant cycles

    SciTech Connect

    Pflug, H.D.; Bettenworth, H.J.; Syring, H.A.

    1995-01-01

    The paper presents some practical and theoretical aspects of the use of ammonia in power plant water/steam cycles. The plants considered are fully automated units with once-through boilers, which operate under complex conditions and are subject to frequent starts and load changes. The boilers are chemically conditioned with combined oxygen ammonia treatment and the condensate polishing plant is only operated during start-up, in the event of a condenser leak or to remove excess ammonia. The paper also covers the recovery of ammonia from the condensate polishing plant waste regenerants and reuse for conditioning the feedwater. In particular, the paper deals with the following points: theoretical analysis of the chemical equilibrium of ammonia and carbon dioxide in water, including calculation of the concentrations from the parameters normally measured, such as conductivities and pH; equipment for monitoring and controlling the amount of ammonia fed to the water/steam cycle, including the optimum positioning of the sampling and feed-points, the parameters suitable for feed control and their temperature dependence; the partial pressure and distribution coefficient of ammonia; the consumption and losses of ammonia through the water/steam cycle during operation; the recovery of ammonia from condensate polishing plant waste regenerants by steam stripping. The paper should be of interest to both planning engineers and plant operators.

  9. Load Frequency Control in Power System with Distributed Generation

    NASA Astrophysics Data System (ADS)

    Yukita, Kazuto; Ota, Takuya; Fujimoto, Koji; Goto, Yasuyuki; Ichiyanagi, Katuhiro

    This paper proposes a method to improve the load frequency control in a power system with distributed generation (DG). DG is assumed to include photovoltaic generation, wind power generation, fuel cells and etc. In this paper, a simulation is performed using a microgrid model or island model that is composed of a storage system with either wind power generation or photovoltaic generation system as the DG. The effectiveness of load frequency control (LFC) using a storage system is examined using a power transmission simulator. The model for the experiment has been composed of inverter, battery, synchronous generator and load. Using this model, the comparison examination was done in respect of output setting control and the case in which the PI control was used. As a result, when the output set-point control using power demand estimation method is executed, the control characteristic is very excellent.

  10. Thermal analysis of heat and power plant with high temperature reactor and intermediate steam cycle

    NASA Astrophysics Data System (ADS)

    Fic, Adam; Składzień, Jan; Gabriel, Michał

    2015-03-01

    Thermal analysis of a heat and power plant with a high temperature gas cooled nuclear reactor is presented. The main aim of the considered system is to supply a technological process with the heat at suitably high temperature level. The considered unit is also used to produce electricity. The high temperature helium cooled nuclear reactor is the primary heat source in the system, which consists of: the reactor cooling cycle, the steam cycle and the gas heat pump cycle. Helium used as a carrier in the first cycle (classic Brayton cycle), which includes the reactor, delivers heat in a steam generator to produce superheated steam with required parameters of the intermediate cycle. The intermediate cycle is provided to transport energy from the reactor installation to the process installation requiring a high temperature heat. The distance between reactor and the process installation is assumed short and negligable, or alternatively equal to 1 km in the analysis. The system is also equipped with a high temperature argon heat pump to obtain the temperature level of a heat carrier required by a high temperature process. Thus, the steam of the intermediate cycle supplies a lower heat exchanger of the heat pump, a process heat exchanger at the medium temperature level and a classical steam turbine system (Rankine cycle). The main purpose of the research was to evaluate the effectiveness of the system considered and to assess whether such a three cycle cogeneration system is reasonable. Multivariant calculations have been carried out employing the developed mathematical model. The results have been presented in a form of the energy efficiency and exergy efficiency of the system as a function of the temperature drop in the high temperature process heat exchanger and the reactor pressure.

  11. Unifying the Gait Cycle in the Control of a Powered Prosthetic Leg

    PubMed Central

    Martin, Anne E.; Gregg, Robert D.

    2015-01-01

    This paper presents a novel control strategy for an above-knee powered prosthetic leg that unifies the entire gait cycle, eliminating the need to switch between controllers during different periods of gait. Current control methods divide the gait cycle into several sequential periods each with independent controllers, resulting in many patient-specific control parameters and switching rules that must be tuned by clinicians. Having a single controller could reduce the number of control parameters to be tuned for each patient, thereby reducing the clinical time and effort involved in fitting a powered prosthesis for a lower-limb amputee. Using the Discrete Fourier Transformation, a single virtual constraint is derived that exactly characterizes the desired actuated joint motion over the entire gait cycle. Because the virtual constraint is defined as a periodic function of a monotonically increasing phase variable, no switching or resetting is necessary within or across gait cycles. The output function is zeroed using feedback linearization to produce a single, unified controller. The method is illustrated with simulations of a powered knee-ankle prosthesis in an amputee biped model and with examples of systematically generated output functions for different walking speeds. PMID:26913092

  12. The concept of electro-nuclear facility for useful power generation and minor actinides transmutation

    NASA Astrophysics Data System (ADS)

    Bergelson, B. R.; Balyuk, S. A.

    1995-09-01

    The possibility is shown to design in principle the double-purpose liquid fuel electro nuclear facility for useful power generation and minor actinides transmutation in U-Pu fuel cycle conditions. D2O and a melt of fluorine salts are considered as a working media for liquid fuel. Such facility replenished with depicted or natural uranium only makes it possible to generate power of 900 MW (c) for external consumers and serve 20 WWER-1000 reactors for transmutation of MA. The facility could be thought as an alternative to fast reactors since appr. 30% of the total power confined in uranium is utilized in it.

  13. The concept of electro-nuclear facility for useful power generation and minor actinides transmutation

    SciTech Connect

    Bergelson, B.R.; Balyuk, S.A.

    1995-10-01

    The possibility is shown to design in principle the double-purpose liquid fuel electro nuclear facility for useful power generation and minor actinides transmutation in U-Pu fuel cycle conditions. D{sub 2}O and a melt of fluorine salts are considered as a working media for liquid fuel. Such facility replenished with depicted or natural uranium only makes it possible to generate power of 900 MW (c) for external consumers and serve 20 WWER-1000 reactors for transmutation of MA. The facility could be thought as an alternative to fast reactors since appr. 30% of the total power confined in uranium is utilized in it.

  14. Second-generation pressurized fluidized bed combustion plants for electric power generation

    SciTech Connect

    Robertson, A. ); Bonk, D. ); Horazak, D. ); Newby, R. . Science and Technology Center); Rehmat, A.

    1992-01-01

    In the search for a more efficient, less costly, and more environmentally responsible method for generating electrical power from coal, research and development has turned to advanced pressurized fluidized bed combustion (PFBC) and coal gasification technologies. A logical extension of this work is the second-generation PFBC plant, which incorporates key components of each of these technologies. In this new type of plant, coal is devolatilized/carbonized before it is injected into the PFB combustor bed, and the low-Btu fuel gas produced by this process is burned in a gas turbine topping combustor. By integrating coal carbonization with PFB[degree]C (2300[degree]F) and higher can be achieved. When integrated with a conventional 16.5-MPa gage/538[degree]C/538[degree]C/8.5-kPa Hg (2400- psig/1000[degree]F/1000[degree]F/2.5-in. Hg) steam cycle, a plant electrical generating efficiency of 45-percent is predicted. Concomitant advantages, among others, are a 20-percent lower cost of electricity (compared with a conventional pulverized-coal-fired plant with stack gas scrubbing), reduced stack emissions, and components that can be shipped by barge. This paper presents a conceptual design and economic analysis of Pittsburgh No. 8 and Texas lignite coal-fired 500-MWe second-generation PFB combustion plants.

  15. Generation of high-fidelity few-cycle pulses at 2.1 μm via cross-polarized wave generation.

    PubMed

    Ricci, Aurélien; Silva, Francisco; Jullien, Aurélie; Cousin, Seth L; Austin, Dane R; Biegert, Jens; Lopez-Martens, Rodrigo

    2013-04-22

    We demonstrate the generation of temporally clean few-cycle pulses at 2.1 μm by shortening of 6-optical-cycle pulses via cross-polarized wave (XPW) generation in BaF(2), CaF(2) and CVD-Diamond crystals. By combining spectra and single-shot third-order intensity cross-correlation traces in a novel Bayesian pulse retrieval technique, we measured pulse durations of 20 fs, corresponding to 2.8 optical cycles. Our results show that XPW generation in the infrared could provide a high-fidelity source of few-cycle pulses for strong-field physics applications. It could also serve as an injector for high-peak power ultrafast mid-IR wavelength parametric amplifiers.

  16. Brayton-Cycle Baseload Power Tower CSP System

    SciTech Connect

    Anderson, Bruce

    2013-12-31

    The primary objectives of Phase 2 of this Project were:1. Engineer, fabricate, and conduct preliminary testing on a low-pressure, air-heating solar receiver capable of powering a microturbine system to produce 300kWe while the sun is shining while simultaneously storing enough energy thermally to power the system for up to 13 hours thereafter. 2. Cycle-test a high-temperature super alloy, Haynes HR214, to determine its efficacy for the system’s high-temperature heat exchanger. 3. Engineer the thermal energy storage system. This Phase 2 followed Wilson’s Phase 1, which primarily was an engineering feasibility study to determine a practical and innovative approach to a full Brayton-cycle system configuration that could meet DOE’s targets. Below is a summary table of the DOE targets with Wilson’s Phase 1 Project results. The results showed that a Brayton system with an innovative (low pressure) solar receiver with ~13 hours of dry (i.e., not phase change materials or molten salts but rather firebrick, stone, or ceramics) has the potential to meet or exceed DOE targets. Such systems would consist of pre-engineered, standardized, factory-produced modules to minimize on-site costs while driving down costs through mass production. System sizes most carefully analyzed were in the range of 300 kWe to 2 MWe. Such systems would also use off-the-shelf towers, blowers, piping, microturbine packages, and heliostats. Per DOE’s instructions, LCOEs are based on the elevation and DNI levels of Daggett, CA, for a 100 MWe power plant following 2 GWe of factory production of the various system components.

  17. A 48-month extended fuel cycle for the B and W mPower{sup TM} small modular nuclear reactor

    SciTech Connect

    Erighin, M. A.

    2012-07-01

    The B and W mPower{sup TM} reactor is a small, rail-shippable pressurized water reactor (PWR) with an integral once-through steam generator and an electric power output of 150 MW, which is intended to replace aging fossil power plants of similar output. The core is composed of 69 reduced-height, but otherwise standard, PWR assemblies with the familiar 17 x 17 fuel rod array on a 21.5 cm inter-assembly pitch. The B and W mPower core design and cycle management plan, which were performed using the Studsvik core design code suite, follow the pattern of a typical nuclear reactor fuel cycle design and analysis performed by most nuclear fuel management organizations, such as fuel vendors and utilities. However, B and W is offering a core loading and cycle management plan for four years of continuous power operations without refueling and without the hurdles of chemical shim. (authors)

  18. Fiber optical magnetic field sensor for power generator monitoring

    NASA Astrophysics Data System (ADS)

    Willsch, Michael; Bosselmann, Thomas; Villnow, Michael

    2014-05-01

    Inside of large electrical engines such as power generators and large drives, extreme electric and magnetic fields can occur which cannot be measured electrically. Novel fiber optical magnetic field sensors are being used to characterize the fields and recognize inner faults of large power generators.

  19. 46 CFR 111.10-4 - Power requirements, generating sources.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 111.10-4 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Supply § 111.10-4 Power requirements, generating sources. (a) The aggregate capacity of the electric ship's service generating sources required in § 111.10-3...

  20. 46 CFR 111.10-4 - Power requirements, generating sources.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 111.10-4 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Supply § 111.10-4 Power requirements, generating sources. (a) The aggregate capacity of the electric ship's service generating sources required in § 111.10-3...