Recent Trends in Variable Generation Forecasting and Its Value to the Power System
Orwig, Kirsten D.; Ahlstrom, Mark L.; Banunarayanan, Venkat; ...
2014-12-23
We report that the rapid deployment of wind and solar energy generation systems has resulted in a need to better understand, predict, and manage variable generation. The uncertainty around wind and solar power forecasts is still viewed by the power industry as being quite high, and many barriers to forecast adoption by power system operators still remain. In response, the U.S. Department of Energy has sponsored, in partnership with the National Oceanic and Atmospheric Administration, public, private, and academic organizations, two projects to advance wind and solar power forecasts. Additionally, several utilities and grid operators have recognized the value ofmore » adopting variable generation forecasting and have taken great strides to enhance their usage of forecasting. In parallel, power system markets and operations are evolving to integrate greater amounts of variable generation. This paper will discuss the recent trends in wind and solar power forecasting technologies in the U.S., the role of forecasting in an evolving power system framework, and the benefits to intended forecast users.« less
Probabilistic Wind Power Ramp Forecasting Based on a Scenario Generation Method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Qin; Florita, Anthony R; Krishnan, Venkat K
Wind power ramps (WPRs) are particularly important in the management and dispatch of wind power and currently drawing the attention of balancing authorities. With the aim to reduce the impact of WPRs for power system operations, this paper develops a probabilistic ramp forecasting method based on a large number of simulated scenarios. An ensemble machine learning technique is first adopted to forecast the basic wind power forecasting scenario and calculate the historical forecasting errors. A continuous Gaussian mixture model (GMM) is used to fit the probability distribution function (PDF) of forecasting errors. The cumulative distribution function (CDF) is analytically deduced.more » The inverse transform method based on Monte Carlo sampling and the CDF is used to generate a massive number of forecasting error scenarios. An optimized swinging door algorithm is adopted to extract all the WPRs from the complete set of wind power forecasting scenarios. The probabilistic forecasting results of ramp duration and start-time are generated based on all scenarios. Numerical simulations on publicly available wind power data show that within a predefined tolerance level, the developed probabilistic wind power ramp forecasting method is able to predict WPRs with a high level of sharpness and accuracy.« less
Probabilistic Wind Power Ramp Forecasting Based on a Scenario Generation Method: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Qin; Florita, Anthony R; Krishnan, Venkat K
2017-08-31
Wind power ramps (WPRs) are particularly important in the management and dispatch of wind power, and they are currently drawing the attention of balancing authorities. With the aim to reduce the impact of WPRs for power system operations, this paper develops a probabilistic ramp forecasting method based on a large number of simulated scenarios. An ensemble machine learning technique is first adopted to forecast the basic wind power forecasting scenario and calculate the historical forecasting errors. A continuous Gaussian mixture model (GMM) is used to fit the probability distribution function (PDF) of forecasting errors. The cumulative distribution function (CDF) ismore » analytically deduced. The inverse transform method based on Monte Carlo sampling and the CDF is used to generate a massive number of forecasting error scenarios. An optimized swinging door algorithm is adopted to extract all the WPRs from the complete set of wind power forecasting scenarios. The probabilistic forecasting results of ramp duration and start time are generated based on all scenarios. Numerical simulations on publicly available wind power data show that within a predefined tolerance level, the developed probabilistic wind power ramp forecasting method is able to predict WPRs with a high level of sharpness and accuracy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Qin; Wu, Hongyu; Florita, Anthony R.
The value of improving wind power forecasting accuracy at different electricity market operation timescales was analyzed by simulating the IEEE 118-bus test system as modified to emulate the generation mixes of the Midcontinent, California, and New England independent system operator balancing authority areas. The wind power forecasting improvement methodology and error analysis for the data set were elaborated. Production cost simulation was conducted on the three emulated systems with a total of 480 scenarios, considering the impacts of different generation technologies, wind penetration levels, and wind power forecasting improvement timescales. The static operational flexibility of the three systems was comparedmore » through the diversity of generation mix, the percentage of must-run baseload generators, as well as the available ramp rate and the minimum generation levels. The dynamic operational flexibility was evaluated by the real-time upward and downward ramp capacity. Simulation results show that the generation resource mix plays a crucial role in evaluating the value of improved wind power forecasting at different timescales. In addition, the changes in annual operational electricity generation costs were mostly influenced by the dominant resource in the system. Lastly, the impacts of pumped-storage resources, generation ramp rates, and system minimum generation level requirements on the value of improved wind power forecasting were also analyzed.« less
Wang, Qin; Wu, Hongyu; Florita, Anthony R.; ...
2016-11-11
The value of improving wind power forecasting accuracy at different electricity market operation timescales was analyzed by simulating the IEEE 118-bus test system as modified to emulate the generation mixes of the Midcontinent, California, and New England independent system operator balancing authority areas. The wind power forecasting improvement methodology and error analysis for the data set were elaborated. Production cost simulation was conducted on the three emulated systems with a total of 480 scenarios, considering the impacts of different generation technologies, wind penetration levels, and wind power forecasting improvement timescales. The static operational flexibility of the three systems was comparedmore » through the diversity of generation mix, the percentage of must-run baseload generators, as well as the available ramp rate and the minimum generation levels. The dynamic operational flexibility was evaluated by the real-time upward and downward ramp capacity. Simulation results show that the generation resource mix plays a crucial role in evaluating the value of improved wind power forecasting at different timescales. In addition, the changes in annual operational electricity generation costs were mostly influenced by the dominant resource in the system. Lastly, the impacts of pumped-storage resources, generation ramp rates, and system minimum generation level requirements on the value of improved wind power forecasting were also analyzed.« less
Forecasting Electric Power Generation of Photovoltaic Power System for Energy Network
NASA Astrophysics Data System (ADS)
Kudo, Mitsuru; Takeuchi, Akira; Nozaki, Yousuke; Endo, Hisahito; Sumita, Jiro
Recently, there has been an increase in concern about the global environment. Interest is growing in developing an energy network by which new energy systems such as photovoltaic and fuel cells generate power locally and electric power and heat are controlled with a communications network. We developed the power generation forecast method for photovoltaic power systems in an energy network. The method makes use of weather information and regression analysis. We carried out forecasting power output of the photovoltaic power system installed in Expo 2005, Aichi Japan. As a result of comparing measurements with a prediction values, the average prediction error per day was about 26% of the measured power.
NASA Astrophysics Data System (ADS)
Pinson, Pierre
2016-04-01
The operational management of renewable energy generation in power systems and electricity markets requires forecasts in various forms, e.g., deterministic or probabilistic, continuous or categorical, depending upon the decision process at hand. Besides, such forecasts may also be necessary at various spatial and temporal scales, from high temporal resolutions (in the order of minutes) and very localized for an offshore wind farm, to coarser temporal resolutions (hours) and covering a whole country for day-ahead power scheduling problems. As of today, weather predictions are a common input to forecasting methodologies for renewable energy generation. Since for most decision processes, optimal decisions can only be made if accounting for forecast uncertainties, ensemble predictions and density forecasts are increasingly seen as the product of choice. After discussing some of the basic approaches to obtaining ensemble forecasts of renewable power generation, it will be argued that space-time trajectories of renewable power production may or may not be necessitate post-processing ensemble forecasts for relevant weather variables. Example approaches and test case applications will be covered, e.g., looking at the Horns Rev offshore wind farm in Denmark, or gridded forecasts for the whole continental Europe. Eventually, we will illustrate some of the limitations of current frameworks to forecast verification, which actually make it difficult to fully assess the quality of post-processing approaches to obtain renewable energy predictions.
Short-Term Energy Outlook Model Documentation: Electricity Generation and Fuel Consumption Models
2014-01-01
The electricity generation and fuel consumption models of the Short-Term Energy Outlook (STEO) model provide forecasts of electricity generation from various types of energy sources and forecasts of the quantities of fossil fuels consumed for power generation. The structure of the electricity industry and the behavior of power generators varies between different areas of the United States. In order to capture these differences, the STEO electricity supply and fuel consumption models are designed to provide forecasts for the four primary Census regions.
Staid, Andrea; Watson, Jean -Paul; Wets, Roger J. -B.; ...
2017-07-11
Forecasts of available wind power are critical in key electric power systems operations planning problems, including economic dispatch and unit commitment. Such forecasts are necessarily uncertain, limiting the reliability and cost effectiveness of operations planning models based on a single deterministic or “point” forecast. A common approach to address this limitation involves the use of a number of probabilistic scenarios, each specifying a possible trajectory of wind power production, with associated probability. We present and analyze a novel method for generating probabilistic wind power scenarios, leveraging available historical information in the form of forecasted and corresponding observed wind power timemore » series. We estimate non-parametric forecast error densities, specifically using epi-spline basis functions, allowing us to capture the skewed and non-parametric nature of error densities observed in real-world data. We then describe a method to generate probabilistic scenarios from these basis functions that allows users to control for the degree to which extreme errors are captured.We compare the performance of our approach to the current state-of-the-art considering publicly available data associated with the Bonneville Power Administration, analyzing aggregate production of a number of wind farms over a large geographic region. Finally, we discuss the advantages of our approach in the context of specific power systems operations planning problems: stochastic unit commitment and economic dispatch. Here, our methodology is embodied in the joint Sandia – University of California Davis Prescient software package for assessing and analyzing stochastic operations strategies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Staid, Andrea; Watson, Jean -Paul; Wets, Roger J. -B.
Forecasts of available wind power are critical in key electric power systems operations planning problems, including economic dispatch and unit commitment. Such forecasts are necessarily uncertain, limiting the reliability and cost effectiveness of operations planning models based on a single deterministic or “point” forecast. A common approach to address this limitation involves the use of a number of probabilistic scenarios, each specifying a possible trajectory of wind power production, with associated probability. We present and analyze a novel method for generating probabilistic wind power scenarios, leveraging available historical information in the form of forecasted and corresponding observed wind power timemore » series. We estimate non-parametric forecast error densities, specifically using epi-spline basis functions, allowing us to capture the skewed and non-parametric nature of error densities observed in real-world data. We then describe a method to generate probabilistic scenarios from these basis functions that allows users to control for the degree to which extreme errors are captured.We compare the performance of our approach to the current state-of-the-art considering publicly available data associated with the Bonneville Power Administration, analyzing aggregate production of a number of wind farms over a large geographic region. Finally, we discuss the advantages of our approach in the context of specific power systems operations planning problems: stochastic unit commitment and economic dispatch. Here, our methodology is embodied in the joint Sandia – University of California Davis Prescient software package for assessing and analyzing stochastic operations strategies.« less
NASA Astrophysics Data System (ADS)
Antonenkov, D. V.; Solovev, D. B.
2017-10-01
The article covers the aspects of forecasting and consideration of the wholesale market environment in generating the power demand forecast. Major mining companies that operate in conditions of the present day power market have to provide a reliable energy demand request for a certain time period ahead, thus ensuring sufficient reduction of financial losses associated with deviations of the actual power demand from the expected figures. Normally, under the power supply agreement, the consumer is bound to provide a per-month and per-hour request annually. It means that the consumer has to generate one-month-ahead short-term and medium-term hourly forecasts. The authors discovered that empiric distributions of “Yakutugol”, Holding Joint Stock Company, power demand belong to the sustainable rank parameter H-distribution type used for generating forecasts based on extrapolation of such distribution parameters. For this reason they justify the need to apply the mathematic rank analysis in short-term forecasting of the contracted power demand of “Neryungri” coil strip mine being a component of the technocenosis-type system of the mining company “Yakutugol”, Holding JSC.
Advancing solar energy forecasting through the underlying physics
NASA Astrophysics Data System (ADS)
Yang, H.; Ghonima, M. S.; Zhong, X.; Ozge, B.; Kurtz, B.; Wu, E.; Mejia, F. A.; Zamora, M.; Wang, G.; Clemesha, R.; Norris, J. R.; Heus, T.; Kleissl, J. P.
2017-12-01
As solar power comprises an increasingly large portion of the energy generation mix, the ability to accurately forecast solar photovoltaic generation becomes increasingly important. Due to the variability of solar power caused by cloud cover, knowledge of both the magnitude and timing of expected solar power production ahead of time facilitates the integration of solar power onto the electric grid by reducing electricity generation from traditional ancillary generators such as gas and oil power plants, as well as decreasing the ramping of all generators, reducing start and shutdown costs, and minimizing solar power curtailment, thereby providing annual economic value. The time scales involved in both the energy markets and solar variability range from intra-hour to several days ahead. This wide range of time horizons led to the development of a multitude of techniques, with each offering unique advantages in specific applications. For example, sky imagery provides site-specific forecasts on the minute-scale. Statistical techniques including machine learning algorithms are commonly used in the intra-day forecast horizon for regional applications, while numerical weather prediction models can provide mesoscale forecasts on both the intra-day and days-ahead time scale. This talk will provide an overview of the challenges unique to each technique and highlight the advances in their ongoing development which come alongside advances in the fundamental physics underneath.
Wind Power Forecasting Error Frequency Analyses for Operational Power System Studies: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Florita, A.; Hodge, B. M.; Milligan, M.
2012-08-01
The examination of wind power forecasting errors is crucial for optimal unit commitment and economic dispatch of power systems with significant wind power penetrations. This scheduling process includes both renewable and nonrenewable generators, and the incorporation of wind power forecasts will become increasingly important as wind fleets constitute a larger portion of generation portfolios. This research considers the Western Wind and Solar Integration Study database of wind power forecasts and numerical actualizations. This database comprises more than 30,000 locations spread over the western United States, with a total wind power capacity of 960 GW. Error analyses for individual sites andmore » for specific balancing areas are performed using the database, quantifying the fit to theoretical distributions through goodness-of-fit metrics. Insights into wind-power forecasting error distributions are established for various levels of temporal and spatial resolution, contrasts made among the frequency distribution alternatives, and recommendations put forth for harnessing the results. Empirical data are used to produce more realistic site-level forecasts than previously employed, such that higher resolution operational studies are possible. This research feeds into a larger work of renewable integration through the links wind power forecasting has with various operational issues, such as stochastic unit commitment and flexible reserve level determination.« less
Utilizing Climate Forecasts for Improving Water and Power Systems Coordination
NASA Astrophysics Data System (ADS)
Arumugam, S.; Queiroz, A.; Patskoski, J.; Mahinthakumar, K.; DeCarolis, J.
2016-12-01
Climate forecasts, typically monthly-to-seasonal precipitation forecasts, are commonly used to develop streamflow forecasts for improving reservoir management. Irrespective of their high skill in forecasting, temperature forecasts in developing power demand forecasts are not often considered along with streamflow forecasts for improving water and power systems coordination. In this study, we consider a prototype system to analyze the utility of climate forecasts, both precipitation and temperature, for improving water and power systems coordination. The prototype system, a unit-commitment model that schedules power generation from various sources, is considered and its performance is compared with an energy system model having an equivalent reservoir representation. Different skill sets of streamflow forecasts and power demand forecasts are forced on both water and power systems representations for understanding the level of model complexity required for utilizing monthly-to-seasonal climate forecasts to improve coordination between these two systems. The analyses also identify various decision-making strategies - forward purchasing of fuel stocks, scheduled maintenance of various power systems and tradeoff on water appropriation between hydropower and other uses - in the context of various water and power systems configurations. Potential application of such analyses for integrating large power systems with multiple river basins is also discussed.
NASA Astrophysics Data System (ADS)
Ghonima, M. S.; Yang, H.; Zhong, X.; Ozge, B.; Sahu, D. K.; Kim, C. K.; Babacan, O.; Hanna, R.; Kurtz, B.; Mejia, F. A.; Nguyen, A.; Urquhart, B.; Chow, C. W.; Mathiesen, P.; Bosch, J.; Wang, G.
2015-12-01
One of the main obstacles to high penetrations of solar power is the variable nature of solar power generation. To mitigate variability, grid operators have to schedule additional reliability resources, at considerable expense, to ensure that load requirements are met by generation. Thus despite the cost of solar PV decreasing, the cost of integrating solar power will increase as penetration of solar resources onto the electric grid increases. There are three principal tools currently available to mitigate variability impacts: (i) flexible generation, (ii) storage, either virtual (demand response) or physical devices and (iii) solar forecasting. Storage devices are a powerful tool capable of ensuring smooth power output from renewable resources. However, the high cost of storage is prohibitive and markets are still being designed to leverage their full potential and mitigate their limitation (e.g. empty storage). Solar forecasting provides valuable information on the daily net load profile and upcoming ramps (increasing or decreasing solar power output) thereby providing the grid advance warning to schedule ancillary generation more accurately, or curtail solar power output. In order to develop solar forecasting as a tool that can be utilized by the grid operators we identified two focus areas: (i) develop solar forecast technology and improve solar forecast accuracy and (ii) develop forecasts that can be incorporated within existing grid planning and operation infrastructure. The first issue required atmospheric science and engineering research, while the second required detailed knowledge of energy markets, and power engineering. Motivated by this background we will emphasize area (i) in this talk and provide an overview of recent advancements in solar forecasting especially in two areas: (a) Numerical modeling tools for coastal stratocumulus to improve scheduling in the day-ahead California energy market. (b) Development of a sky imager to provide short term forecasts (0-20 min ahead) to improve optimization and control of equipment on distribution feeders with high penetration of solar. Leveraging such tools that have seen extensive use in the atmospheric sciences supports the development of accurate physics-based solar forecast models. Directions for future research are also provided.
Optimizing Microgrid Architecture on Department of Defense Installations
2014-09-01
PPA power purchase agreement PV photovoltaic QDR Quadrennial Defense Review SNL Sandia National Laboratory SPIDERS Smart Power Infrastructure...a MILP that dispatches fuel-based generators with consideration to an ensemble of forecasted inputs from renewable power sources, subject to physical...wind power project costs by region: 2012 projects, from [30]. 6. Weather Forecasts Weather forecasts are often presented as a single prediction
Quan, Hao; Srinivasan, Dipti; Khosravi, Abbas
2015-09-01
Penetration of renewable energy resources, such as wind and solar power, into power systems significantly increases the uncertainties on system operation, stability, and reliability in smart grids. In this paper, the nonparametric neural network-based prediction intervals (PIs) are implemented for forecast uncertainty quantification. Instead of a single level PI, wind power forecast uncertainties are represented in a list of PIs. These PIs are then decomposed into quantiles of wind power. A new scenario generation method is proposed to handle wind power forecast uncertainties. For each hour, an empirical cumulative distribution function (ECDF) is fitted to these quantile points. The Monte Carlo simulation method is used to generate scenarios from the ECDF. Then the wind power scenarios are incorporated into a stochastic security-constrained unit commitment (SCUC) model. The heuristic genetic algorithm is utilized to solve the stochastic SCUC problem. Five deterministic and four stochastic case studies incorporated with interval forecasts of wind power are implemented. The results of these cases are presented and discussed together. Generation costs, and the scheduled and real-time economic dispatch reserves of different unit commitment strategies are compared. The experimental results show that the stochastic model is more robust than deterministic ones and, thus, decreases the risk in system operations of smart grids.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Tian; Chernyakhovskiy, Ilya; Brancucci Martinez-Anido, Carlo
This document is the Spanish version of 'Greening the Grid- Forecasting Wind and Solar Generation Improving System Operations'. It discusses improving system operations with forecasting with and solar generation. By integrating variable renewable energy (VRE) forecasts into system operations, power system operators can anticipate up- and down-ramps in VRE generation in order to cost-effectively balance load and generation in intra-day and day-ahead scheduling. This leads to reduced fuel costs, improved system reliability, and maximum use of renewable resources.
Short-term load and wind power forecasting using neural network-based prediction intervals.
Quan, Hao; Srinivasan, Dipti; Khosravi, Abbas
2014-02-01
Electrical power systems are evolving from today's centralized bulk systems to more decentralized systems. Penetrations of renewable energies, such as wind and solar power, significantly increase the level of uncertainty in power systems. Accurate load forecasting becomes more complex, yet more important for management of power systems. Traditional methods for generating point forecasts of load demands cannot properly handle uncertainties in system operations. To quantify potential uncertainties associated with forecasts, this paper implements a neural network (NN)-based method for the construction of prediction intervals (PIs). A newly introduced method, called lower upper bound estimation (LUBE), is applied and extended to develop PIs using NN models. A new problem formulation is proposed, which translates the primary multiobjective problem into a constrained single-objective problem. Compared with the cost function, this new formulation is closer to the primary problem and has fewer parameters. Particle swarm optimization (PSO) integrated with the mutation operator is used to solve the problem. Electrical demands from Singapore and New South Wales (Australia), as well as wind power generation from Capital Wind Farm, are used to validate the PSO-based LUBE method. Comparative results show that the proposed method can construct higher quality PIs for load and wind power generation forecasts in a short time.
Ensemble Solar Forecasting Statistical Quantification and Sensitivity Analysis: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheung, WanYin; Zhang, Jie; Florita, Anthony
2015-12-08
Uncertainties associated with solar forecasts present challenges to maintain grid reliability, especially at high solar penetrations. This study aims to quantify the errors associated with the day-ahead solar forecast parameters and the theoretical solar power output for a 51-kW solar power plant in a utility area in the state of Vermont, U.S. Forecasts were generated by three numerical weather prediction (NWP) models, including the Rapid Refresh, the High Resolution Rapid Refresh, and the North American Model, and a machine-learning ensemble model. A photovoltaic (PV) performance model was adopted to calculate theoretical solar power generation using the forecast parameters (e.g., irradiance,more » cell temperature, and wind speed). Errors of the power outputs were quantified using statistical moments and a suite of metrics, such as the normalized root mean squared error (NRMSE). In addition, the PV model's sensitivity to different forecast parameters was quantified and analyzed. Results showed that the ensemble model yielded forecasts in all parameters with the smallest NRMSE. The NRMSE of solar irradiance forecasts of the ensemble NWP model was reduced by 28.10% compared to the best of the three NWP models. Further, the sensitivity analysis indicated that the errors of the forecasted cell temperature attributed only approximately 0.12% to the NRMSE of the power output as opposed to 7.44% from the forecasted solar irradiance.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jie; Cui, Mingjian; Hodge, Bri-Mathias
The large variability and uncertainty in wind power generation present a concern to power system operators, especially given the increasing amounts of wind power being integrated into the electric power system. Large ramps, one of the biggest concerns, can significantly influence system economics and reliability. The Wind Forecast Improvement Project (WFIP) was to improve the accuracy of forecasts and to evaluate the economic benefits of these improvements to grid operators. This paper evaluates the ramp forecasting accuracy gained by improving the performance of short-term wind power forecasting. This study focuses on the WFIP southern study region, which encompasses most ofmore » the Electric Reliability Council of Texas (ERCOT) territory, to compare the experimental WFIP forecasts to the existing short-term wind power forecasts (used at ERCOT) at multiple spatial and temporal scales. The study employs four significant wind power ramping definitions according to the power change magnitude, direction, and duration. The optimized swinging door algorithm is adopted to extract ramp events from actual and forecasted wind power time series. The results show that the experimental WFIP forecasts improve the accuracy of the wind power ramp forecasting. This improvement can result in substantial costs savings and power system reliability enhancements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finley, Cathy
2014-04-30
This report contains the results from research aimed at improving short-range (0-6 hour) hub-height wind forecasts in the NOAA weather forecast models through additional data assimilation and model physics improvements for use in wind energy forecasting. Additional meteorological observing platforms including wind profilers, sodars, and surface stations were deployed for this study by NOAA and DOE, and additional meteorological data at or near wind turbine hub height were provided by South Dakota State University and WindLogics/NextEra Energy Resources over a large geographical area in the U.S. Northern Plains for assimilation into NOAA research weather forecast models. The resulting improvements inmore » wind energy forecasts based on the research weather forecast models (with the additional data assimilation and model physics improvements) were examined in many different ways and compared with wind energy forecasts based on the current operational weather forecast models to quantify the forecast improvements important to power grid system operators and wind plant owners/operators participating in energy markets. Two operational weather forecast models (OP_RUC, OP_RAP) and two research weather forecast models (ESRL_RAP, HRRR) were used as the base wind forecasts for generating several different wind power forecasts for the NextEra Energy wind plants in the study area. Power forecasts were generated from the wind forecasts in a variety of ways, from very simple to quite sophisticated, as they might be used by a wide range of both general users and commercial wind energy forecast vendors. The error characteristics of each of these types of forecasts were examined and quantified using bulk error statistics for both the local wind plant and the system aggregate forecasts. The wind power forecast accuracy was also evaluated separately for high-impact wind energy ramp events. The overall bulk error statistics calculated over the first six hours of the forecasts at both the individual wind plant and at the system-wide aggregate level over the one year study period showed that the research weather model-based power forecasts (all types) had lower overall error rates than the current operational weather model-based power forecasts, both at the individual wind plant level and at the system aggregate level. The bulk error statistics of the various model-based power forecasts were also calculated by season and model runtime/forecast hour as power system operations are more sensitive to wind energy forecast errors during certain times of year and certain times of day. The results showed that there were significant differences in seasonal forecast errors between the various model-based power forecasts. The results from the analysis of the various wind power forecast errors by model runtime and forecast hour showed that the forecast errors were largest during the times of day that have increased significance to power system operators (the overnight hours and the morning/evening boundary layer transition periods), but the research weather model-based power forecasts showed improvement over the operational weather model-based power forecasts at these times.« less
NASA Astrophysics Data System (ADS)
Cervone, G.; Clemente-Harding, L.; Alessandrini, S.; Delle Monache, L.
2016-12-01
A methodology based on Artificial Neural Networks (ANN) and an Analog Ensemble (AnEn) is presented to generate 72-hour deterministic and probabilistic forecasts of power generated by photovoltaic (PV) power plants using input from a numerical weather prediction model and computed astronomical variables. ANN and AnEn are used individually and in combination to generate forecasts for three solar power plant located in Italy. The computational scalability of the proposed solution is tested using synthetic data simulating 4,450 PV power stations. The NCAR Yellowstone supercomputer is employed to test the parallel implementation of the proposed solution, ranging from 1 node (32 cores) to 4,450 nodes (141,140 cores). Results show that a combined AnEn + ANN solution yields best results, and that the proposed solution is well suited for massive scale computation.
Quantifying the Economic and Grid Reliability Impacts of Improved Wind Power Forecasting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Qin; Martinez-Anido, Carlo Brancucci; Wu, Hongyu
Wind power forecasting is an important tool in power system operations to address variability and uncertainty. Accurately doing so is important to reducing the occurrence and length of curtailment, enhancing market efficiency, and improving the operational reliability of the bulk power system. This research quantifies the value of wind power forecasting improvements in the IEEE 118-bus test system as modified to emulate the generation mixes of Midcontinent, California, and New England independent system operator balancing authority areas. To measure the economic value, a commercially available production cost modeling tool was used to simulate the multi-timescale unit commitment (UC) and economicmore » dispatch process for calculating the cost savings and curtailment reductions. To measure the reliability improvements, an in-house tool, FESTIV, was used to calculate the system's area control error and the North American Electric Reliability Corporation Control Performance Standard 2. The approach allowed scientific reproducibility of results and cross-validation of the tools. A total of 270 scenarios were evaluated to accommodate the variation of three factors: generation mix, wind penetration level, and wind fore-casting improvements. The modified IEEE 118-bus systems utilized 1 year of data at multiple timescales, including the day-ahead UC, 4-hour-ahead UC, and 5-min real-time dispatch. The value of improved wind power forecasting was found to be strongly tied to the conventional generation mix, existence of energy storage devices, and the penetration level of wind energy. The simulation results demonstrate that wind power forecasting brings clear benefits to power system operations.« less
Comparison of Wind Power and Load Forecasting Error Distributions: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hodge, B. M.; Florita, A.; Orwig, K.
2012-07-01
The introduction of large amounts of variable and uncertain power sources, such as wind power, into the electricity grid presents a number of challenges for system operations. One issue involves the uncertainty associated with scheduling power that wind will supply in future timeframes. However, this is not an entirely new challenge; load is also variable and uncertain, and is strongly influenced by weather patterns. In this work we make a comparison between the day-ahead forecasting errors encountered in wind power forecasting and load forecasting. The study examines the distribution of errors from operational forecasting systems in two different Independent Systemmore » Operator (ISO) regions for both wind power and load forecasts at the day-ahead timeframe. The day-ahead timescale is critical in power system operations because it serves the unit commitment function for slow-starting conventional generators.« less
NASA Astrophysics Data System (ADS)
Sone, Akihito; Kato, Takeyoshi; Shimakage, Toyonari; Suzuoki, Yasuo
A microgrid (MG) is one of the measures for enhancing the high penetration of renewable energy (RE)-based distributed generators (DGs). If a number of MGs are controlled to maintain the predetermined electricity demand including RE-based DGs as negative demand, they would contribute to supply-demand balancing of whole electric power system. For constructing a MG economically, the capacity optimization of controllable DGs against RE-based DGs is essential. By using a numerical simulation model developed based on a demonstrative study on a MG using PAFC and NaS battery as controllable DGs and photovoltaic power generation system (PVS) as a RE-based DG, this study discusses the influence of forecast accuracy of PVS output on the capacity optimization. Three forecast cases with different accuracy are compared. The main results are as follows. Even with no forecast error during every 30 min. as the ideal forecast method, the required capacity of NaS battery reaches about 40% of PVS capacity for mitigating the instantaneous forecast error within 30 min. The required capacity to compensate for the forecast error is doubled with the actual forecast method. The influence of forecast error can be reduced by adjusting the scheduled power output of controllable DGs according to the weather forecast. Besides, the required capacity can be reduced significantly if the error of balancing control in a MG is acceptable for a few percentages of periods, because the total periods of large forecast error is not so often.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makarov, Yuri V.; Huang, Zhenyu; Etingov, Pavel V.
2010-01-01
The power system balancing process, which includes the scheduling, real time dispatch (load following) and regulation processes, is traditionally based on deterministic models. Since the conventional generation needs time to be committed and dispatched to a desired megawatt level, the scheduling and load following processes use load and wind and solar power production forecasts to achieve future balance between the conventional generation and energy storage on the one side, and system load, intermittent resources (such as wind and solar generation), and scheduled interchange on the other side. Although in real life the forecasting procedures imply some uncertainty around the loadmore » and wind/solar forecasts (caused by forecast errors), only their mean values are actually used in the generation dispatch and commitment procedures. Since the actual load and intermittent generation can deviate from their forecasts, it becomes increasingly unclear (especially, with the increasing penetration of renewable resources) whether the system would be actually able to meet the conventional generation requirements within the look-ahead horizon, what the additional balancing efforts would be needed as we get closer to the real time, and what additional costs would be incurred by those needs. To improve the system control performance characteristics, maintain system reliability, and minimize expenses related to the system balancing functions, it becomes necessary to incorporate the predicted uncertainty ranges into the scheduling, load following, and, in some extent, into the regulation processes. It is also important to address the uncertainty problem comprehensively by including all sources of uncertainty (load, intermittent generation, generators’ forced outages, etc.) into consideration. All aspects of uncertainty such as the imbalance size (which is the same as capacity needed to mitigate the imbalance) and generation ramping requirement must be taken into account. The latter unique features make this work a significant step forward toward the objective of incorporating of wind, solar, load, and other uncertainties into power system operations. Currently, uncertainties associated with wind and load forecasts, as well as uncertainties associated with random generator outages and unexpected disconnection of supply lines, are not taken into account in power grid operation. Thus, operators have little means to weigh the likelihood and magnitude of upcoming events of power imbalance. In this project, funded by the U.S. Department of Energy (DOE), a framework has been developed for incorporating uncertainties associated with wind and load forecast errors, unpredicted ramps, and forced generation disconnections into the energy management system (EMS) as well as generation dispatch and commitment applications. A new approach to evaluate the uncertainty ranges for the required generation performance envelope including balancing capacity, ramping capability, and ramp duration has been proposed. The approach includes three stages: forecast and actual data acquisition, statistical analysis of retrospective information, and prediction of future grid balancing requirements for specified time horizons and confidence levels. Assessment of the capacity and ramping requirements is performed using a specially developed probabilistic algorithm based on a histogram analysis, incorporating all sources of uncertainties of both continuous (wind and load forecast errors) and discrete (forced generator outages and start-up failures) nature. A new method called the “flying brick” technique has been developed to evaluate the look-ahead required generation performance envelope for the worst case scenario within a user-specified confidence level. A self-validation algorithm has been developed to validate the accuracy of the confidence intervals.« less
Forecast Inaccuracies in Power Plant Projects From Project Managers' Perspectives
NASA Astrophysics Data System (ADS)
Sanabria, Orlando
Guided by organizational theory, this phenomenological study explored the factors affecting forecast preparation and inaccuracies during the construction of fossil fuel-fired power plants in the United States. Forecast inaccuracies can create financial stress and uncertain profits during the project construction phase. A combination of purposeful and snowball sampling supported the selection of participants. Twenty project managers with over 15 years of experience in power generation and project experience across the United States were interviewed within a 2-month period. From the inductive codification and descriptive analysis, 5 themes emerged: (a) project monitoring, (b) cost control, (c) management review frequency, (d) factors to achieve a precise forecast, and (e) factors causing forecast inaccuracies. The findings of the study showed the factors necessary to achieve a precise forecast includes a detailed project schedule, accurate labor cost estimates, monthly project reviews and risk assessment, and proper utilization of accounting systems to monitor costs. The primary factors reported as causing forecast inaccuracies were cost overruns by subcontractors, scope gaps, labor cost and availability of labor, and equipment and material cost. Results of this study could improve planning accuracy and the effective use of resources during construction of power plants. The study results could contribute to social change by providing a framework to project managers to lessen forecast inaccuracies, and promote construction of power plants that will generate employment opportunities and economic development.
NASA Astrophysics Data System (ADS)
Ohba, Masamichi; Nohara, Daisuke; Kadokura, Shinji
2016-04-01
Severe storms or other extreme weather events can interrupt the spin of wind turbines in large scale that cause unexpected "wind ramp events". In this study, we present an application of self-organizing maps (SOMs) for climatological attribution of the wind ramp events and their probabilistic prediction. The SOM is an automatic data-mining clustering technique, which allows us to summarize a high-dimensional data space in terms of a set of reference vectors. The SOM is applied to analyze and connect the relationship between atmospheric patterns over Japan and wind power generation. SOM is employed on sea level pressure derived from the JRA55 reanalysis over the target area (Tohoku region in Japan), whereby a two-dimensional lattice of weather patterns (WPs) classified during the 1977-2013 period is obtained. To compare with the atmospheric data, the long-term wind power generation is reconstructed by using a high-resolution surface observation network AMeDAS (Automated Meteorological Data Acquisition System) in Japan. Our analysis extracts seven typical WPs, which are linked to frequent occurrences of wind ramp events. Probabilistic forecasts to wind power generation and ramps are conducted by using the obtained SOM. The probability are derived from the multiple SOM lattices based on the matching of output from TIGGE multi-model global forecast to the WPs on the lattices. Since this method effectively takes care of the empirical uncertainties from the historical data, wind power generation and ramp is probabilistically forecasted from the forecasts of global models. The predictability skill of the forecasts for the wind power generation and ramp events show the relatively good skill score under the downscaling technique. It is expected that the results of this study provides better guidance to the user community and contribute to future development of system operation model for the transmission grid operator.
NASA Astrophysics Data System (ADS)
Kato, Takeyoshi; Sone, Akihito; Shimakage, Toyonari; Suzuoki, Yasuo
A microgrid (MG) is one of the measures for enhancing the high penetration of renewable energy (RE)-based distributed generators (DGs). For constructing a MG economically, the capacity optimization of controllable DGs against RE-based DGs is essential. By using a numerical simulation model developed based on the demonstrative studies on a MG using PAFC and NaS battery as controllable DGs and photovoltaic power generation system (PVS) as a RE-based DG, this study discusses the influence of forecast accuracy of PVS output on the capacity optimization and daily operation evaluated with the cost. The main results are as follows. The required capacity of NaS battery must be increased by 10-40% against the ideal situation without the forecast error of PVS power output. The influence of forecast error on the received grid electricity would not be so significant on annual basis because the positive and negative forecast error varies with days. The annual total cost of facility and operation increases by 2-7% due to the forecast error applied in this study. The impact of forecast error on the facility optimization and operation optimization is almost the same each other at a few percentages, implying that the forecast accuracy should be improved in terms of both the number of times with large forecast error and the average error.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendes, J.; Bessa, R.J.; Keko, H.
Wind power forecasting (WPF) provides important inputs to power system operators and electricity market participants. It is therefore not surprising that WPF has attracted increasing interest within the electric power industry. In this report, we document our research on improving statistical WPF algorithms for point, uncertainty, and ramp forecasting. Below, we provide a brief introduction to the research presented in the following chapters. For a detailed overview of the state-of-the-art in wind power forecasting, we refer to [1]. Our related work on the application of WPF in operational decisions is documented in [2]. Point forecasts of wind power are highlymore » dependent on the training criteria used in the statistical algorithms that are used to convert weather forecasts and observational data to a power forecast. In Chapter 2, we explore the application of information theoretic learning (ITL) as opposed to the classical minimum square error (MSE) criterion for point forecasting. In contrast to the MSE criterion, ITL criteria do not assume a Gaussian distribution of the forecasting errors. We investigate to what extent ITL criteria yield better results. In addition, we analyze time-adaptive training algorithms and how they enable WPF algorithms to cope with non-stationary data and, thus, to adapt to new situations without requiring additional offline training of the model. We test the new point forecasting algorithms on two wind farms located in the U.S. Midwest. Although there have been advancements in deterministic WPF, a single-valued forecast cannot provide information on the dispersion of observations around the predicted value. We argue that it is essential to generate, together with (or as an alternative to) point forecasts, a representation of the wind power uncertainty. Wind power uncertainty representation can take the form of probabilistic forecasts (e.g., probability density function, quantiles), risk indices (e.g., prediction risk index) or scenarios (with spatial and/or temporal dependence). Statistical approaches to uncertainty forecasting basically consist of estimating the uncertainty based on observed forecasting errors. Quantile regression (QR) is currently a commonly used approach in uncertainty forecasting. In Chapter 3, we propose new statistical approaches to the uncertainty estimation problem by employing kernel density forecast (KDF) methods. We use two estimators in both offline and time-adaptive modes, namely, the Nadaraya-Watson (NW) and Quantilecopula (QC) estimators. We conduct detailed tests of the new approaches using QR as a benchmark. One of the major issues in wind power generation are sudden and large changes of wind power output over a short period of time, namely ramping events. In Chapter 4, we perform a comparative study of existing definitions and methodologies for ramp forecasting. We also introduce a new probabilistic method for ramp event detection. The method starts with a stochastic algorithm that generates wind power scenarios, which are passed through a high-pass filter for ramp detection and estimation of the likelihood of ramp events to happen. The report is organized as follows: Chapter 2 presents the results of the application of ITL training criteria to deterministic WPF; Chapter 3 reports the study on probabilistic WPF, including new contributions to wind power uncertainty forecasting; Chapter 4 presents a new method to predict and visualize ramp events, comparing it with state-of-the-art methodologies; Chapter 5 briefly summarizes the main findings and contributions of this report.« less
NASA Astrophysics Data System (ADS)
Pierro, Marco; De Felice, Matteo; Maggioni, Enrico; Moser, David; Perotto, Alessandro; Spada, Francesco; Cornaro, Cristina
2017-04-01
The growing photovoltaic generation results in a stochastic variability of the electric demand that could compromise the stability of the grid and increase the amount of energy reserve and the energy imbalance cost. On regional scale, solar power estimation and forecast is becoming essential for Distribution System Operators, Transmission System Operator, energy traders, and aggregators of generation. Indeed the estimation of regional PV power can be used for PV power supervision and real time control of residual load. Mid-term PV power forecast can be employed for transmission scheduling to reduce energy imbalance and related cost of penalties, residual load tracking, trading optimization, secondary energy reserve assessment. In this context, a new upscaling method was developed and used for estimation and mid-term forecast of the photovoltaic distributed generation in a small area in the north of Italy under the control of a local DSO. The method was based on spatial clustering of the PV fleet and neural networks models that input satellite or numerical weather prediction data (centered on cluster centroids) to estimate or predict the regional solar generation. It requires a low computational effort and very few input information should be provided by users. The power estimation model achieved a RMSE of 3% of installed capacity. Intra-day forecast (from 1 to 4 hours) obtained a RMSE of 5% - 7% while the one and two days forecast achieve to a RMSE of 7% and 7.5%. A model to estimate the forecast error and the prediction intervals was also developed. The photovoltaic production in the considered region provided the 6.9% of the electric consumption in 2015. Since the PV penetration is very similar to the one observed at national level (7.9%), this is a good case study to analyse the impact of PV generation on the electric grid and the effects of PV power forecast on transmission scheduling and on secondary reserve estimation. It appears that, already with 7% of PV penetration, the distributed PV generation could have a great impact both on the DSO energy need and on the transmission scheduling capability. Indeed, for some hours of the days in summer time, the photovoltaic generation can provide from 50% to 75% of the energy that the local DSO should buy from Italian TSO to cover the electrical demand. Moreover, mid-term forecast can reduce the annual energy imbalance between the scheduled transmission and the actual one from 10% of the TSO energy supply (without considering the PV forecast) to 2%. Furthermore, it was shown that prediction intervals could be used not only to estimate the probability of a specific PV generation bid on the energy market, but also to reduce the energy reserve predicted for the next day. Two different methods for energy reserve estimation were developed and tested. The first is based on a clear sky model while the second makes use of the PV prediction intervals with the 95% of confidence level. The latter reduces the amount of the day-ahead energy reserve of 36% with respect the clear sky method.
Impacts of Short-Term Solar Power Forecasts in System Operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ibanez, Eduardo; Krad, Ibrahim; Hodge, Bri-Mathias
2016-05-05
Solar generation is experiencing an exponential growth in power systems worldwide and, along with wind power, is posing new challenges to power system operations. Those challenges are characterized by an increase of system variability and uncertainty across many time scales: from days, down to hours, minutes, and seconds. Much of the research in the area has focused on the effect of solar forecasting across hours or days. This paper presents a methodology to capture the effect of short-term forecasting strategies and analyzes the economic and reliability implications of utilizing a simple, yet effective forecasting method for solar PV in intra-daymore » operations.« less
Metrics for Evaluating the Accuracy of Solar Power Forecasting: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, J.; Hodge, B. M.; Florita, A.
2013-10-01
Forecasting solar energy generation is a challenging task due to the variety of solar power systems and weather regimes encountered. Forecast inaccuracies can result in substantial economic losses and power system reliability issues. This paper presents a suite of generally applicable and value-based metrics for solar forecasting for a comprehensive set of scenarios (i.e., different time horizons, geographic locations, applications, etc.). In addition, a comprehensive framework is developed to analyze the sensitivity of the proposed metrics to three types of solar forecasting improvements using a design of experiments methodology, in conjunction with response surface and sensitivity analysis methods. The resultsmore » show that the developed metrics can efficiently evaluate the quality of solar forecasts, and assess the economic and reliability impact of improved solar forecasting.« less
A data-driven multi-model methodology with deep feature selection for short-term wind forecasting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Cong; Cui, Mingjian; Hodge, Bri-Mathias
With the growing wind penetration into the power system worldwide, improving wind power forecasting accuracy is becoming increasingly important to ensure continued economic and reliable power system operations. In this paper, a data-driven multi-model wind forecasting methodology is developed with a two-layer ensemble machine learning technique. The first layer is composed of multiple machine learning models that generate individual forecasts. A deep feature selection framework is developed to determine the most suitable inputs to the first layer machine learning models. Then, a blending algorithm is applied in the second layer to create an ensemble of the forecasts produced by firstmore » layer models and generate both deterministic and probabilistic forecasts. This two-layer model seeks to utilize the statistically different characteristics of each machine learning algorithm. A number of machine learning algorithms are selected and compared in both layers. This developed multi-model wind forecasting methodology is compared to several benchmarks. The effectiveness of the proposed methodology is evaluated to provide 1-hour-ahead wind speed forecasting at seven locations of the Surface Radiation network. Numerical results show that comparing to the single-algorithm models, the developed multi-model framework with deep feature selection procedure has improved the forecasting accuracy by up to 30%.« less
NASA Astrophysics Data System (ADS)
Cheng, K.; Guo, L. M.; Wang, Y. K.; Zafar, M. T.
2017-11-01
In order to select effective samples in the large number of data of PV power generation years and improve the accuracy of PV power generation forecasting model, this paper studies the application of clustering analysis in this field and establishes forecasting model based on neural network. Based on three different types of weather on sunny, cloudy and rainy days, this research screens samples of historical data by the clustering analysis method. After screening, it establishes BP neural network prediction models using screened data as training data. Then, compare the six types of photovoltaic power generation prediction models before and after the data screening. Results show that the prediction model combining with clustering analysis and BP neural networks is an effective method to improve the precision of photovoltaic power generation.
Improved Weather and Power Forecasts for Energy Operations - the German Research Project EWeLiNE
NASA Astrophysics Data System (ADS)
Lundgren, Kristina; Siefert, Malte; Hagedorn, Renate; Majewski, Detlev
2014-05-01
The German energy system is going through a fundamental change. Based on the energy plans of the German federal government, the share of electrical power production from renewables should increase to 35% by 2020. This means that, in the near future at certain times renewable energies will provide a major part of Germany's power production. Operating a power supply system with a large share of weather-dependent power sources in a secure way requires improved power forecasts. One of the most promising strategies to improve the existing wind power and PV power forecasts is to optimize the underlying weather forecasts and to enhance the collaboration between the meteorology and energy sectors. Deutscher Wetterdienst addresses these challenges in collaboration with Fraunhofer IWES within the research project EWeLiNE. The overarching goal of the project is to improve the wind and PV power forecasts by combining improved power forecast models and optimized weather forecasts. During the project, the numerical weather prediction models COSMO-DE and COSMO-DE-EPS (Ensemble Prediction System) by Deutscher Wetterdienst will be generally optimized towards improved wind power and PV forecasts. For instance, it will be investigated whether the assimilation of new types of data, e.g. power production data, can lead to improved weather forecasts. With regard to the probabilistic forecasts, the focus is on the generation of ensembles and ensemble calibration. One important aspect of the project is to integrate the probabilistic information into decision making processes by developing user-specified products. In this paper we give an overview of the project and present first results.
Analyzing Effect of System Inertia on Grid Frequency Forecasting Usnig Two Stage Neuro-Fuzzy System
NASA Astrophysics Data System (ADS)
Chourey, Divyansh R.; Gupta, Himanshu; Kumar, Amit; Kumar, Jitesh; Kumar, Anand; Mishra, Anup
2018-04-01
Frequency forecasting is an important aspect of power system operation. The system frequency varies with load-generation imbalance. Frequency variation depends upon various parameters including system inertia. System inertia determines the rate of fall of frequency after the disturbance in the grid. Though, inertia of the system is not considered while forecasting the frequency of power system during planning and operation. This leads to significant errors in forecasting. In this paper, the effect of inertia on frequency forecasting is analysed for a particular grid system. In this paper, a parameter equivalent to system inertia is introduced. This parameter is used to forecast the frequency of a typical power grid for any instant of time. The system gives appreciable result with reduced error.
Advanced, Cost-Based Indices for Forecasting the Generation of Photovoltaic Power
NASA Astrophysics Data System (ADS)
Bracale, Antonio; Carpinelli, Guido; Di Fazio, Annarita; Khormali, Shahab
2014-01-01
Distribution systems are undergoing significant changes as they evolve toward the grids of the future, which are known as smart grids (SGs). The perspective of SGs is to facilitate large-scale penetration of distributed generation using renewable energy sources (RESs), encourage the efficient use of energy, reduce systems' losses, and improve the quality of power. Photovoltaic (PV) systems have become one of the most promising RESs due to the expected cost reduction and the increased efficiency of PV panels and interfacing converters. The ability to forecast power-production information accurately and reliably is of primary importance for the appropriate management of an SG and for making decisions relative to the energy market. Several forecasting methods have been proposed, and many indices have been used to quantify the accuracy of the forecasts of PV power production. Unfortunately, the indices that have been used have deficiencies and usually do not directly account for the economic consequences of forecasting errors in the framework of liberalized electricity markets. In this paper, advanced, more accurate indices are proposed that account directly for the economic consequences of forecasting errors. The proposed indices also were compared to the most frequently used indices in order to demonstrate their different, improved capability. The comparisons were based on the results obtained using a forecasting method based on an artificial neural network. This method was chosen because it was deemed to be one of the most promising methods available due to its capability for forecasting PV power. Numerical applications also are presented that considered an actual PV plant to provide evidence of the forecasting performances of all of the indices that were considered.
Parametric analysis of parameters for electrical-load forecasting using artificial neural networks
NASA Astrophysics Data System (ADS)
Gerber, William J.; Gonzalez, Avelino J.; Georgiopoulos, Michael
1997-04-01
Accurate total system electrical load forecasting is a necessary part of resource management for power generation companies. The better the hourly load forecast, the more closely the power generation assets of the company can be configured to minimize the cost. Automating this process is a profitable goal and neural networks should provide an excellent means of doing the automation. However, prior to developing such a system, the optimal set of input parameters must be determined. The approach of this research was to determine what those inputs should be through a parametric study of potentially good inputs. Input parameters tested were ambient temperature, total electrical load, the day of the week, humidity, dew point temperature, daylight savings time, length of daylight, season, forecast light index and forecast wind velocity. For testing, a limited number of temperatures and total electrical loads were used as a basic reference input parameter set. Most parameters showed some forecasting improvement when added individually to the basic parameter set. Significantly, major improvements were exhibited with the day of the week, dew point temperatures, additional temperatures and loads, forecast light index and forecast wind velocity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cormier, Dallas; Edra, Sherwin; Espinoza, Michael
This project will enable utilities to develop long-term strategic plans that integrate high levels of renewable energy generation, and to better plan power system operations under high renewable penetration. The program developed forecast data streams for decision support and effective integration of centralized and distributed solar power generation in utility operations. This toolset focused on real time simulation of distributed power generation within utility grids with the emphasis on potential applications in day ahead (market) and real time (reliability) utility operations. The project team developed and demonstrated methodologies for quantifying the impact of distributed solar generation on core utility operations,more » identified protocols for internal data communication requirements, and worked with utility personnel to adapt the new distributed generation (DG) forecasts seamlessly within existing Load and Generation procedures through a sophisticated DMS. This project supported the objectives of the SunShot Initiative and SUNRISE by enabling core utility operations to enhance their simulation capability to analyze and prepare for the impacts of high penetrations of solar on the power grid. The impact of high penetration solar PV on utility operations is not only limited to control centers, but across many core operations. Benefits of an enhanced DMS using state-of-the-art solar forecast data were demonstrated within this project and have had an immediate direct operational cost savings for Energy Marketing for Day Ahead generation commitments, Real Time Operations, Load Forecasting (at an aggregate system level for Day Ahead), Demand Response, Long term Planning (asset management), Distribution Operations, and core ancillary services as required for balancing and reliability. This provided power system operators with the necessary tools and processes to operate the grid in a reliable manner under high renewable penetration.« less
NASA Astrophysics Data System (ADS)
Holmukhe, R. M.; Dhumale, Mrs. Sunita; Chaudhari, Mr. P. S.; Kulkarni, Mr. P. P.
2010-10-01
Load forecasting is very essential to the operation of Electricity companies. It enhances the energy efficient and reliable operation of power system. Forecasting of load demand data forms an important component in planning generation schedules in a power system. The purpose of this paper is to identify issues and better method for load foecasting. In this paper we focus on fuzzy logic system based short term load forecasting. It serves as overview of the state of the art in the intelligent techniques employed for load forecasting in power system planning and reliability. Literature review has been conducted and fuzzy logic method has been summarized to highlight advantages and disadvantages of this technique. The proposed technique for implementing fuzzy logic based forecasting is by Identification of the specific day and by using maximum and minimum temperature for that day and finally listing the maximum temperature and peak load for that day. The results show that Load forecasting where there are considerable changes in temperature parameter is better dealt with Fuzzy Logic system method as compared to other short term forecasting techniques.
Water and Power Systems Co-optimization under a High Performance Computing Framework
NASA Astrophysics Data System (ADS)
Xuan, Y.; Arumugam, S.; DeCarolis, J.; Mahinthakumar, K.
2016-12-01
Water and energy systems optimizations are traditionally being treated as two separate processes, despite their intrinsic interconnections (e.g., water is used for hydropower generation, and thermoelectric cooling requires a large amount of water withdrawal). Given the challenges of urbanization, technology uncertainty and resource constraints, and the imminent threat of climate change, a cyberinfrastructure is needed to facilitate and expedite research into the complex management of these two systems. To address these issues, we developed a High Performance Computing (HPC) framework for stochastic co-optimization of water and energy resources to inform water allocation and electricity demand. The project aims to improve conjunctive management of water and power systems under climate change by incorporating improved ensemble forecast models of streamflow and power demand. First, by downscaling and spatio-temporally disaggregating multimodel climate forecasts from General Circulation Models (GCMs), temperature and precipitation forecasts are obtained and input into multi-reservoir and power systems models. Extended from Optimus (Optimization Methods for Universal Simulators), the framework drives the multi-reservoir model and power system model, Temoa (Tools for Energy Model Optimization and Analysis), and uses Particle Swarm Optimization (PSO) algorithm to solve high dimensional stochastic problems. The utility of climate forecasts on the cost of water and power systems operations is assessed and quantified based on different forecast scenarios (i.e., no-forecast, multimodel forecast and perfect forecast). Analysis of risk management actions and renewable energy deployments will be investigated for the Catawba River basin, an area with adequate hydroclimate predicting skill and a critical basin with 11 reservoirs that supplies water and generates power for both North and South Carolina. Further research using this scalable decision supporting framework will provide understanding and elucidate the intricate and interdependent relationship between water and energy systems and enhance the security of these two critical public infrastructures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makarov, Yuri V.; Huang, Zhenyu; Etingov, Pavel V.
2010-09-01
The power system balancing process, which includes the scheduling, real time dispatch (load following) and regulation processes, is traditionally based on deterministic models. Since the conventional generation needs time to be committed and dispatched to a desired megawatt level, the scheduling and load following processes use load and wind power production forecasts to achieve future balance between the conventional generation and energy storage on the one side, and system load, intermittent resources (such as wind and solar generation) and scheduled interchange on the other side. Although in real life the forecasting procedures imply some uncertainty around the load and windmore » forecasts (caused by forecast errors), only their mean values are actually used in the generation dispatch and commitment procedures. Since the actual load and intermittent generation can deviate from their forecasts, it becomes increasingly unclear (especially, with the increasing penetration of renewable resources) whether the system would be actually able to meet the conventional generation requirements within the look-ahead horizon, what the additional balancing efforts would be needed as we get closer to the real time, and what additional costs would be incurred by those needs. In order to improve the system control performance characteristics, maintain system reliability, and minimize expenses related to the system balancing functions, it becomes necessary to incorporate the predicted uncertainty ranges into the scheduling, load following, and, in some extent, into the regulation processes. It is also important to address the uncertainty problem comprehensively, by including all sources of uncertainty (load, intermittent generation, generators’ forced outages, etc.) into consideration. All aspects of uncertainty such as the imbalance size (which is the same as capacity needed to mitigate the imbalance) and generation ramping requirement must be taken into account. The latter unique features make this work a significant step forward toward the objective of incorporating of wind, solar, load, and other uncertainties into power system operations. In this report, a new methodology to predict the uncertainty ranges for the required balancing capacity, ramping capability and ramp duration is presented. Uncertainties created by system load forecast errors, wind and solar forecast errors, generation forced outages are taken into account. The uncertainty ranges are evaluated for different confidence levels of having the actual generation requirements within the corresponding limits. The methodology helps to identify system balancing reserve requirement based on a desired system performance levels, identify system “breaking points”, where the generation system becomes unable to follow the generation requirement curve with the user-specified probability level, and determine the time remaining to these potential events. The approach includes three stages: statistical and actual data acquisition, statistical analysis of retrospective information, and prediction of future grid balancing requirements for specified time horizons and confidence intervals. Assessment of the capacity and ramping requirements is performed using a specially developed probabilistic algorithm based on a histogram analysis incorporating all sources of uncertainty and parameters of a continuous (wind forecast and load forecast errors) and discrete (forced generator outages and failures to start up) nature. Preliminary simulations using California Independent System Operator (California ISO) real life data have shown the effectiveness of the proposed approach. A tool developed based on the new methodology described in this report will be integrated with the California ISO systems. Contractual work is currently in place to integrate the tool with the AREVA EMS system.« less
NASA Astrophysics Data System (ADS)
Mahoney, W. P.; Wiener, G.; Liu, Y.; Myers, W.; Johnson, D.
2010-12-01
Wind energy decision makers are required to make critical judgments on a daily basis with regard to energy generation, distribution, demand, storage, and integration. Accurate knowledge of the present and future state of the atmosphere is vital in making these decisions. As wind energy portfolios expand, this forecast problem is taking on new urgency because wind forecast inaccuracies frequently lead to substantial economic losses and constrain the national expansion of renewable energy. Improved weather prediction and precise spatial analysis of small-scale weather events are crucial for renewable energy management. In early 2009, the National Center for Atmospheric Research (NCAR) began a collaborative project with Xcel Energy Services, Inc. to perform research and develop technologies to improve Xcel Energy's ability to increase the amount of wind energy in their generation portfolio. The agreement and scope of work was designed to provide highly detailed, localized wind energy forecasts to enable Xcel Energy to more efficiently integrate electricity generated from wind into the power grid. The wind prediction technologies are designed to help Xcel Energy operators make critical decisions about powering down traditional coal and natural gas-powered plants when sufficient wind energy is predicted. The wind prediction technologies have been designed to cover Xcel Energy wind resources spanning a region from Wisconsin to New Mexico. The goal of the project is not only to improve Xcel Energy’s wind energy prediction capabilities, but also to make technological advancements in wind and wind energy prediction, expand our knowledge of boundary layer meteorology, and share the results across the renewable energy industry. To generate wind energy forecasts, NCAR is incorporating observations of current atmospheric conditions from a variety of sources including satellites, aircraft, weather radars, ground-based weather stations, wind profilers, and even wind sensors on individual wind turbines. The information is utilized by several technologies including: a) the Weather Research and Forecasting (WRF) model, which generates finely detailed simulations of future atmospheric conditions, b) the Real-Time Four-Dimensional Data Assimilation System (RTFDDA), which performs continuous data assimilation providing the WRF model with continuous updates of the initial atmospheric state, 3) the Dynamic Integrated Forecast System (DICast®), which statistically optimizes the forecasts using all predictors, and 4) a suite of wind-to-power algorithms that convert wind speed to power for a wide range of wind farms with varying real-time data availability capabilities. In addition to these core wind energy prediction capabilities, NCAR implemented a high-resolution (10 km grid increment) 30-member ensemble RTFDDA prediction system that provides information on the expected range of wind power over a 72-hour forecast period covering Xcel Energy’s service areas. This talk will include descriptions of these capabilities and report on several topics including initial results of next-day forecasts and nowcasts of wind energy ramp events, influence of local observations on forecast skill, and overall lessons learned to date.
A short-term ensemble wind speed forecasting system for wind power applications
NASA Astrophysics Data System (ADS)
Baidya Roy, S.; Traiteur, J. J.; Callicutt, D.; Smith, M.
2011-12-01
This study develops an adaptive, blended forecasting system to provide accurate wind speed forecasts 1 hour ahead of time for wind power applications. The system consists of an ensemble of 21 forecasts with different configurations of the Weather Research and Forecasting Single Column Model (WRFSCM) and a persistence model. The ensemble is calibrated against observations for a 2 month period (June-July, 2008) at a potential wind farm site in Illinois using the Bayesian Model Averaging (BMA) technique. The forecasting system is evaluated against observations for August 2008 at the same site. The calibrated ensemble forecasts significantly outperform the forecasts from the uncalibrated ensemble while significantly reducing forecast uncertainty under all environmental stability conditions. The system also generates significantly better forecasts than persistence, autoregressive (AR) and autoregressive moving average (ARMA) models during the morning transition and the diurnal convective regimes. This forecasting system is computationally more efficient than traditional numerical weather prediction models and can generate a calibrated forecast, including model runs and calibration, in approximately 1 minute. Currently, hour-ahead wind speed forecasts are almost exclusively produced using statistical models. However, numerical models have several distinct advantages over statistical models including the potential to provide turbulence forecasts. Hence, there is an urgent need to explore the role of numerical models in short-term wind speed forecasting. This work is a step in that direction and is likely to trigger a debate within the wind speed forecasting community.
Solar power satellite system definition study. Volume 1, phase 1: Executive summary
NASA Technical Reports Server (NTRS)
1979-01-01
A systems definition study of the solar satellite system (SPS) is presented. The technical feasibility of solar power satellites based on forecasts of technical capability in the various applicable technologies is assessed. The performance, cost, operational characteristics, reliability, and the suitability of SPS's as power generators for typical commercial electricity grids are discussed. The uncertainties inherent in the system characteristics forecasts are assessed.
Using Analog Ensemble to generate spatially downscaled probabilistic wind power forecasts
NASA Astrophysics Data System (ADS)
Delle Monache, L.; Shahriari, M.; Cervone, G.
2017-12-01
We use the Analog Ensemble (AnEn) method to generate probabilistic 80-m wind power forecasts. We use data from the NCEP GFS ( 28 km resolution) and NCEP NAM (12 km resolution). We use forecasts data from NAM and GFS, and analysis data from NAM which enables us to: 1) use a lower-resolution model to create higher-resolution forecasts, and 2) use a higher-resolution model to create higher-resolution forecasts. The former essentially increases computing speed and the latter increases forecast accuracy. An aggregated model of the former can be compared against the latter to measure the accuracy of the AnEn spatial downscaling. The AnEn works by taking a deterministic future forecast and comparing it with past forecasts. The model searches for the best matching estimates within the past forecasts and selects the predictand value corresponding to these past forecasts as the ensemble prediction for the future forecast. Our study is based on predicting wind speed and air density at more than 13,000 grid points in the continental US. We run the AnEn model twice: 1) estimating 80-m wind speed by using predictor variables such as temperature, pressure, geopotential height, U-component and V-component of wind, 2) estimating air density by using predictors such as temperature, pressure, and relative humidity. We use the air density values to correct the standard wind power curves for different values of air density. The standard deviation of the ensemble members (i.e. ensemble spread) will be used as the degree of difficulty to predict wind power at different locations. The value of the correlation coefficient between the ensemble spread and the forecast error determines the appropriateness of this measure. This measure is prominent for wind farm developers as building wind farms in regions with higher predictability will reduce the real-time risks of operating in the electricity markets.
A Comparison of Forecast Error Generators for Modeling Wind and Load Uncertainty
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Ning; Diao, Ruisheng; Hafen, Ryan P.
2013-07-25
This paper presents four algorithms to generate random forecast error time series. The performance of four algorithms is compared. The error time series are used to create real-time (RT), hour-ahead (HA), and day-ahead (DA) wind and load forecast time series that statistically match historically observed forecasting data sets used in power grid operation to study the net load balancing need in variable generation integration studies. The four algorithms are truncated-normal distribution models, state-space based Markov models, seasonal autoregressive moving average (ARMA) models, and a stochastic-optimization based approach. The comparison is made using historical DA load forecast and actual load valuesmore » to generate new sets of DA forecasts with similar stoical forecast error characteristics (i.e., mean, standard deviation, autocorrelation, and cross-correlation). The results show that all methods generate satisfactory results. One method may preserve one or two required statistical characteristics better the other methods, but may not preserve other statistical characteristics as well compared with the other methods. Because the wind and load forecast error generators are used in wind integration studies to produce wind and load forecasts time series for stochastic planning processes, it is sometimes critical to use multiple methods to generate the error time series to obtain a statistically robust result. Therefore, this paper discusses and compares the capabilities of each algorithm to preserve the characteristics of the historical forecast data sets.« less
NASA Astrophysics Data System (ADS)
Wang, Jianzong; Chen, Yanjun; Hua, Rui; Wang, Peng; Fu, Jia
2012-02-01
Photovoltaic is a method of generating electrical power by converting solar radiation into direct current electricity using semiconductors that exhibit the photovoltaic effect. Photovoltaic power generation employs solar panels composed of a number of solar cells containing a photovoltaic material. Due to the growing demand for renewable energy sources, the manufacturing of solar cells and photovoltaic arrays has advanced considerably in recent years. Solar photovoltaics are growing rapidly, albeit from a small base, to a total global capacity of 40,000 MW at the end of 2010. More than 100 countries use solar photovoltaics. Driven by advances in technology and increases in manufacturing scale and sophistication, the cost of photovoltaic has declined steadily since the first solar cells were manufactured. Net metering and financial incentives, such as preferential feed-in tariffs for solar-generated electricity; have supported solar photovoltaics installations in many countries. However, the power that generated by solar photovoltaics is affected by the weather and other natural factors dramatically. To predict the photovoltaic energy accurately is of importance for the entire power intelligent dispatch in order to reduce the energy dissipation and maintain the security of power grid. In this paper, we have proposed a big data system--the Solar Photovoltaic Power Forecasting System, called SPPFS to calculate and predict the power according the real-time conditions. In this system, we utilized the distributed mixed database to speed up the rate of collecting, storing and analysis the meteorological data. In order to improve the accuracy of power prediction, the given neural network algorithm has been imported into SPPFS.By adopting abundant experiments, we shows that the framework can provide higher forecast accuracy-error rate less than 15% and obtain low latency of computing by deploying the mixed distributed database architecture for solar-generated electricity.
Impact of the 4 April 2014 Saharan dust outbreak on the photovoltaic power generation in Germany
NASA Astrophysics Data System (ADS)
Rieger, Daniel; Steiner, Andrea; Bachmann, Vanessa; Gasch, Philipp; Förstner, Jochen; Deetz, Konrad; Vogel, Bernhard; Vogel, Heike
2017-11-01
The importance for reliable forecasts of incoming solar radiation is growing rapidly, especially for those countries with an increasing share in photovoltaic (PV) power production. The reliability of solar radiation forecasts depends mainly on the representation of clouds and aerosol particles absorbing and scattering radiation. Especially under extreme aerosol conditions, numerical weather prediction has a systematic bias in the solar radiation forecast. This is caused by the design of numerical weather prediction models, which typically account for the direct impact of aerosol particles on radiation using climatological mean values and the impact on cloud formation assuming spatially and temporally homogeneous aerosol concentrations. These model deficiencies in turn can lead to significant economic losses under extreme aerosol conditions. For Germany, Saharan dust outbreaks occurring 5 to 15 times per year for several days each are prominent examples for conditions, under which numerical weather prediction struggles to forecast solar radiation adequately. We investigate the impact of mineral dust on the PV-power generation during a Saharan dust outbreak over Germany on 4 April 2014 using ICON-ART, which is the current German numerical weather prediction model extended by modules accounting for trace substances and related feedback processes. We find an overall improvement of the PV-power forecast for 65 % of the pyranometer stations in Germany. Of the nine stations with very high differences between forecast and measurement, eight stations show an improvement. Furthermore, we quantify the direct radiative effects and indirect radiative effects of mineral dust. For our study, direct effects account for 64 %, indirect effects for 20 % and synergistic interaction effects for 16 % of the differences between the forecast including mineral dust radiative effects and the forecast neglecting mineral dust.
NASA Astrophysics Data System (ADS)
Sun, Congcong; Wang, Zhijie; Liu, Sanming; Jiang, Xiuchen; Sheng, Gehao; Liu, Tianyu
2017-05-01
Wind power has the advantages of being clean and non-polluting and the development of bundled wind-thermal generation power systems (BWTGSs) is one of the important means to improve wind power accommodation rate and implement “clean alternative” on generation side. A two-stage optimization strategy for BWTGSs considering wind speed forecasting results and load characteristics is proposed. By taking short-term wind speed forecasting results of generation side and load characteristics of demand side into account, a two-stage optimization model for BWTGSs is formulated. By using the environmental benefit index of BWTGSs as the objective function, supply-demand balance and generator operation as the constraints, the first-stage optimization model is developed with the chance-constrained programming theory. By using the operation cost for BWTGSs as the objective function, the second-stage optimization model is developed with the greedy algorithm. The improved PSO algorithm is employed to solve the model and numerical test verifies the effectiveness of the proposed strategy.
Wang, Hongguang
2018-01-01
Annual power load forecasting is not only the premise of formulating reasonable macro power planning, but also an important guarantee for the safety and economic operation of power system. In view of the characteristics of annual power load forecasting, the grey model of GM (1,1) are widely applied. Introducing buffer operator into GM (1,1) to pre-process the historical annual power load data is an approach to improve the forecasting accuracy. To solve the problem of nonadjustable action intensity of traditional weakening buffer operator, variable-weight weakening buffer operator (VWWBO) and background value optimization (BVO) are used to dynamically pre-process the historical annual power load data and a VWWBO-BVO-based GM (1,1) is proposed. To find the optimal value of variable-weight buffer coefficient and background value weight generating coefficient of the proposed model, grey relational analysis (GRA) and improved gravitational search algorithm (IGSA) are integrated and a GRA-IGSA integration algorithm is constructed aiming to maximize the grey relativity between simulating value sequence and actual value sequence. By the adjustable action intensity of buffer operator, the proposed model optimized by GRA-IGSA integration algorithm can obtain a better forecasting accuracy which is demonstrated by the case studies and can provide an optimized solution for annual power load forecasting. PMID:29768450
Nuclear power generation and fuel cycle report 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-10-01
This report presents the current status and projections through 2015 of nuclear capacity, generation, and fuel cycle requirements for all countries using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the worldwide nuclear fuel market. Long term projections of U.S. nuclear capacity, generation, and spent fuel discharges for two different scenarios through 2040 are developed. A discussion on decommissioning of nuclear power plants is included.
Spatial Pattern Classification for More Accurate Forecasting of Variable Energy Resources
NASA Astrophysics Data System (ADS)
Novakovskaia, E.; Hayes, C.; Collier, C.
2014-12-01
The accuracy of solar and wind forecasts is becoming increasingly essential as grid operators continue to integrate additional renewable generation onto the electric grid. Forecast errors affect rate payers, grid operators, wind and solar plant maintenance crews and energy traders through increases in prices, project down time or lost revenue. While extensive and beneficial efforts were undertaken in recent years to improve physical weather models for a broad spectrum of applications these improvements have generally not been sufficient to meet the accuracy demands of system planners. For renewables, these models are often used in conjunction with additional statistical models utilizing both meteorological observations and the power generation data. Forecast accuracy can be dependent on specific weather regimes for a given location. To account for these dependencies it is important that parameterizations used in statistical models change as the regime changes. An automated tool, based on an artificial neural network model, has been developed to identify different weather regimes as they impact power output forecast accuracy at wind or solar farms. In this study, improvements in forecast accuracy were analyzed for varying time horizons for wind farms and utility-scale PV plants located in different geographical regions.
NASA Astrophysics Data System (ADS)
Zack, J. W.
2015-12-01
Predictions from Numerical Weather Prediction (NWP) models are the foundation for wind power forecasts for day-ahead and longer forecast horizons. The NWP models directly produce three-dimensional wind forecasts on their respective computational grids. These can be interpolated to the location and time of interest. However, these direct predictions typically contain significant systematic errors ("biases"). This is due to a variety of factors including the limited space-time resolution of the NWP models and shortcomings in the model's representation of physical processes. It has become common practice to attempt to improve the raw NWP forecasts by statistically adjusting them through a procedure that is widely known as Model Output Statistics (MOS). The challenge is to identify complex patterns of systematic errors and then use this knowledge to adjust the NWP predictions. The MOS-based improvements are the basis for much of the value added by commercial wind power forecast providers. There are an enormous number of statistical approaches that can be used to generate the MOS adjustments to the raw NWP forecasts. In order to obtain insight into the potential value of some of the newer and more sophisticated statistical techniques often referred to as "machine learning methods" a MOS-method comparison experiment has been performed for wind power generation facilities in 6 wind resource areas of California. The underlying NWP models that provided the raw forecasts were the two primary operational models of the US National Weather Service: the GFS and NAM models. The focus was on 1- and 2-day ahead forecasts of the hourly wind-based generation. The statistical methods evaluated included: (1) screening multiple linear regression, which served as a baseline method, (2) artificial neural networks, (3) a decision-tree approach called random forests, (4) gradient boosted regression based upon an decision-tree algorithm, (5) support vector regression and (6) analog ensemble, which is a case-matching scheme. The presentation will provide (1) an overview of each method and the experimental design, (2) performance comparisons based on standard metrics such as bias, MAE and RMSE, (3) a summary of the performance characteristics of each approach and (4) a preview of further experiments to be conducted.
Development of a Neural Network-Based Renewable Energy Forecasting Framework for Process Industries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Soobin; Ryu, Jun-Hyung; Hodge, Bri-Mathias
2016-06-25
This paper presents a neural network-based forecasting framework for photovoltaic power (PV) generation as a decision-supporting tool to employ renewable energies in the process industry. The applicability of the proposed framework is illustrated by comparing its performance against other methodologies such as linear and nonlinear time series modelling approaches. A case study of an actual PV power plant in South Korea is presented.
RE-Europe, a large-scale dataset for modeling a highly renewable European electricity system
Jensen, Tue V.; Pinson, Pierre
2017-01-01
Future highly renewable energy systems will couple to complex weather and climate dynamics. This coupling is generally not captured in detail by the open models developed in the power and energy system communities, where such open models exist. To enable modeling such a future energy system, we describe a dedicated large-scale dataset for a renewable electric power system. The dataset combines a transmission network model, as well as information for generation and demand. Generation includes conventional generators with their technical and economic characteristics, as well as weather-driven forecasts and corresponding realizations for renewable energy generation for a period of 3 years. These may be scaled according to the envisioned degrees of renewable penetration in a future European energy system. The spatial coverage, completeness and resolution of this dataset, open the door to the evaluation, scaling analysis and replicability check of a wealth of proposals in, e.g., market design, network actor coordination and forecasting of renewable power generation. PMID:29182600
RE-Europe, a large-scale dataset for modeling a highly renewable European electricity system.
Jensen, Tue V; Pinson, Pierre
2017-11-28
Future highly renewable energy systems will couple to complex weather and climate dynamics. This coupling is generally not captured in detail by the open models developed in the power and energy system communities, where such open models exist. To enable modeling such a future energy system, we describe a dedicated large-scale dataset for a renewable electric power system. The dataset combines a transmission network model, as well as information for generation and demand. Generation includes conventional generators with their technical and economic characteristics, as well as weather-driven forecasts and corresponding realizations for renewable energy generation for a period of 3 years. These may be scaled according to the envisioned degrees of renewable penetration in a future European energy system. The spatial coverage, completeness and resolution of this dataset, open the door to the evaluation, scaling analysis and replicability check of a wealth of proposals in, e.g., market design, network actor coordination and forecasting of renewable power generation.
RE-Europe, a large-scale dataset for modeling a highly renewable European electricity system
NASA Astrophysics Data System (ADS)
Jensen, Tue V.; Pinson, Pierre
2017-11-01
Future highly renewable energy systems will couple to complex weather and climate dynamics. This coupling is generally not captured in detail by the open models developed in the power and energy system communities, where such open models exist. To enable modeling such a future energy system, we describe a dedicated large-scale dataset for a renewable electric power system. The dataset combines a transmission network model, as well as information for generation and demand. Generation includes conventional generators with their technical and economic characteristics, as well as weather-driven forecasts and corresponding realizations for renewable energy generation for a period of 3 years. These may be scaled according to the envisioned degrees of renewable penetration in a future European energy system. The spatial coverage, completeness and resolution of this dataset, open the door to the evaluation, scaling analysis and replicability check of a wealth of proposals in, e.g., market design, network actor coordination and forecasting of renewable power generation.
7 CFR 1710.303 - Power cost studies-power supply borrowers.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 11 2011-01-01 2011-01-01 false Power cost studies-power supply borrowers. 1710.303... AND GUARANTEES Long-Range Financial Forecasts § 1710.303 Power cost studies—power supply borrowers. (a... facilities shall be supported by a power cost study to demonstrate that the proposed generation and...
Hybrid robust predictive optimization method of power system dispatch
Chandra, Ramu Sharat [Niskayuna, NY; Liu, Yan [Ballston Lake, NY; Bose, Sumit [Niskayuna, NY; de Bedout, Juan Manuel [West Glenville, NY
2011-08-02
A method of power system dispatch control solves power system dispatch problems by integrating a larger variety of generation, load and storage assets, including without limitation, combined heat and power (CHP) units, renewable generation with forecasting, controllable loads, electric, thermal and water energy storage. The method employs a predictive algorithm to dynamically schedule different assets in order to achieve global optimization and maintain the system normal operation.
Improved Modeling Tools Development for High Penetration Solar
DOE Office of Scientific and Technical Information (OSTI.GOV)
Washom, Byron; Meagher, Kevin
2014-12-11
One of the significant objectives of the High Penetration solar research is to help the DOE understand, anticipate, and minimize grid operation impacts as more solar resources are added to the electric power system. For Task 2.2, an effective, reliable approach to predicting solar energy availability for energy generation forecasts using the University of California, San Diego (UCSD) Sky Imager technology has been demonstrated. Granular cloud and ramp forecasts for the next 5 to 20 minutes over an area of 10 square miles were developed. Sky images taken every 30 seconds are processed to determine cloud locations and cloud motionmore » vectors yielding future cloud shadow locations respective to distributed generation or utility solar power plants in the area. The performance of the method depends on cloud characteristics. On days with more advective cloud conditions, the developed method outperforms persistence forecasts by up to 30% (based on mean absolute error). On days with dynamic conditions, the method performs worse than persistence. Sky Imagers hold promise for ramp forecasting and ramp mitigation in conjunction with inverter controls and energy storage. The pre-commercial Sky Imager solar forecasting algorithm was documented with licensing information and was a Sunshot website highlight.« less
NREL Projects Awarded More Than $3 Million to Advance Novel Solar
in Grid Operations," evaluating a research solution to better integrate solar power generation funding program, which advances state-of-the-art techniques for predicting solar power generation to Office to advance predictive modeling of solar power as part of its Solar Forecasting 2 funding program
Overview and Meteorological Validation of the Wind Integration National Dataset toolkit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Draxl, C.; Hodge, B. M.; Clifton, A.
2015-04-13
The Wind Integration National Dataset (WIND) Toolkit described in this report fulfills these requirements, and constitutes a state-of-the-art national wind resource data set covering the contiguous United States from 2007 to 2013 for use in a variety of next-generation wind integration analyses and wind power planning. The toolkit is a wind resource data set, wind forecast data set, and wind power production and forecast data set derived from the Weather Research and Forecasting (WRF) numerical weather prediction model. WIND Toolkit data are available online for over 116,000 land-based and 10,000 offshore sites representing existing and potential wind facilities.
An Operational Short-Term Forecasting System for Regional Hydropower Management
NASA Astrophysics Data System (ADS)
Gronewold, A.; Labuhn, K. A.; Calappi, T. J.; MacNeil, A.
2017-12-01
The Niagara River is the natural outlet of Lake Erie and drains four of the five Great lakes. The river is used to move commerce and is home to both sport fishing and tourism industries. It also provides nearly 5 million kilowatts of hydropower for approximately 3.9 million homes. Due to a complex international treaty and the necessity of balancing water needs for an extensive tourism industry, the power entities operating on the river require detailed and accurate short-term river flow forecasts to maximize power output. A new forecast system is being evaluated that takes advantage of several previously independent components including the NOAA Lake Erie operational Forecast System (LEOFS), a previously developed HEC-RAS model, input from the New York Power Authority(NYPA) and Ontario Power Generation (OPG) and lateral flow forecasts for some of the tributaries provided by the NOAA Northeast River Forecast Center (NERFC). The Corps of Engineers updated the HEC-RAS model of the upper Niagara River to use the output forcing from LEOFS and a planned Grass Island Pool elevation provided by the power entities. The entire system has been integrated at the NERFC; it will be run multiple times per day with results provided to the Niagara River Control Center operators. The new model helps improve discharge forecasts by better accounting for dynamic conditions on Lake Erie. LEOFS captures seiche events on the lake that are often several meters of displacement from still water level. These seiche events translate into flow spikes that HEC-RAS routes downstream. Knowledge of the peak arrival time helps improve operational decisions at the Grass Island Pool. This poster will compare and contrast results from the existing operational flow forecast and the new integrated LEOFS/HEC-RAS forecast. This additional model will supply the Niagara River Control Center operators with multiple forecasts of flow to help improve forecasting under a wider variety of conditions.
A probabilistic neural network based approach for predicting the output power of wind turbines
NASA Astrophysics Data System (ADS)
Tabatabaei, Sajad
2017-03-01
Finding the authentic predicting tools of eliminating the uncertainty of wind speed forecasts is highly required while wind power sources are strongly penetrating. Recently, traditional predicting models of generating point forecasts have no longer been trustee. Thus, the present paper aims at utilising the concept of prediction intervals (PIs) to assess the uncertainty of wind power generation in power systems. Besides, this paper uses a newly introduced non-parametric approach called lower upper bound estimation (LUBE) to build the PIs since the forecasting errors are unable to be modelled properly by applying distribution probability functions. In the present proposed LUBE method, a PI combination-based fuzzy framework is used to overcome the performance instability of neutral networks (NNs) used in LUBE. In comparison to other methods, this formulation more suitably has satisfied the PI coverage and PI normalised average width (PINAW). Since this non-linear problem has a high complexity, a new heuristic-based optimisation algorithm comprising a novel modification is introduced to solve the aforesaid problems. Based on data sets taken from a wind farm in Australia, the feasibility and satisfying performance of the suggested method have been investigated.
NASA Astrophysics Data System (ADS)
Wang, Liping; Wang, Boquan; Zhang, Pu; Liu, Minghao; Li, Chuangang
2017-06-01
The study of reservoir deterministic optimal operation can improve the utilization rate of water resource and help the hydropower stations develop more reasonable power generation schedules. However, imprecise forecasting inflow may lead to output error and hinder implementation of power generation schedules. In this paper, output error generated by the uncertainty of the forecasting inflow was regarded as a variable to develop a short-term reservoir optimal operation model for reducing operation risk. To accomplish this, the concept of Value at Risk (VaR) was first applied to present the maximum possible loss of power generation schedules, and then an extreme value theory-genetic algorithm (EVT-GA) was proposed to solve the model. The cascade reservoirs of Yalong River Basin in China were selected as a case study to verify the model, according to the results, different assurance rates of schedules can be derived by the model which can present more flexible options for decision makers, and the highest assurance rate can reach 99%, which is much higher than that without considering output error, 48%. In addition, the model can greatly improve the power generation compared with the original reservoir operation scheme under the same confidence level and risk attitude. Therefore, the model proposed in this paper can significantly improve the effectiveness of power generation schedules and provide a more scientific reference for decision makers.
[Demography perspectives and forecasts of the demand for electricity].
Roy, L; Guimond, E
1995-01-01
"Demographic perspectives form an integral part in the development of electric load forecasts. These forecasts in turn are used to justify the addition and repair of generating facilities that will supply power in the coming decades. The goal of this article is to present how demographic perspectives are incorporated into the electric load forecasting in Quebec. The first part presents the methods, hypotheses and results of population and household projections used by Hydro-Quebec in updating its latest development plan. The second section demonstrates applications of such demographic projections for forecasting the electric load, with a focus on the residential sector." (SUMMARY IN ENG AND SPA) excerpt
Valuing hydrological forecasts for a pumped storage assisted hydro facility
NASA Astrophysics Data System (ADS)
Zhao, Guangzhi; Davison, Matt
2009-07-01
SummaryThis paper estimates the value of a perfectly accurate short-term hydrological forecast to the operator of a hydro electricity generating facility which can sell its power at time varying but predictable prices. The expected value of a less accurate forecast will be smaller. We assume a simple random model for water inflows and that the costs of operating the facility, including water charges, will be the same whether or not its operator has inflow forecasts. Thus, the improvement in value from better hydrological prediction results from the increased ability of the forecast using facility to sell its power at high prices. The value of the forecast is therefore the difference between the sales of a facility operated over some time horizon with a perfect forecast, and the sales of a similar facility operated over the same time horizon with similar water inflows which, though governed by the same random model, cannot be forecast. This paper shows that the value of the forecast is an increasing function of the inflow process variance and quantifies how much the value of this perfect forecast increases with the variance of the water inflow process. Because the lifetime of hydroelectric facilities is long, the small increase observed here can lead to an increase in the profitability of hydropower investments.
NASA Astrophysics Data System (ADS)
Mainardi Fan, Fernando; Schwanenberg, Dirk; Alvarado, Rodolfo; Assis dos Reis, Alberto; Naumann, Steffi; Collischonn, Walter
2016-04-01
Hydropower is the most important electricity source in Brazil. During recent years, it accounted for 60% to 70% of the total electric power supply. Marginal costs of hydropower are lower than for thermal power plants, therefore, there is a strong economic motivation to maximize its share. On the other hand, hydropower depends on the availability of water, which has a natural variability. Its extremes lead to the risks of power production deficits during droughts and safety issues in the reservoir and downstream river reaches during flood events. One building block of the proper management of hydropower assets is the short-term forecast of reservoir inflows as input for an online, event-based optimization of its release strategy. While deterministic forecasts and optimization schemes are the established techniques for the short-term reservoir management, the use of probabilistic ensemble forecasts and stochastic optimization techniques receives growing attention and a number of researches have shown its benefit. The present work shows one of the first hindcasting and closed-loop control experiments for a multi-purpose hydropower reservoir in a tropical region in Brazil. The case study is the hydropower project (HPP) Três Marias, located in southeast Brazil. The HPP reservoir is operated with two main objectives: (i) hydroelectricity generation and (ii) flood control at Pirapora City located 120 km downstream of the dam. In the experiments, precipitation forecasts based on observed data, deterministic and probabilistic forecasts with 50 ensemble members of the ECMWF are used as forcing of the MGB-IPH hydrological model to generate streamflow forecasts over a period of 2 years. The online optimization depends on a deterministic and multi-stage stochastic version of a model predictive control scheme. Results for the perfect forecasts show the potential benefit of the online optimization and indicate a desired forecast lead time of 30 days. In comparison, the use of actual forecasts with shorter lead times of up to 15 days shows the practical benefit of actual operational data. It appears that the use of stochastic optimization combined with ensemble forecasts leads to a significant higher level of flood protection without compromising the HPP's energy production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coimbra, Carlos F. M.
2016-02-25
In this project we address multiple resource integration challenges associated with increasing levels of solar penetration that arise from the variability and uncertainty in solar irradiance. We will model the SMUD service region as its own balancing region, and develop an integrated, real-time operational tool that takes solar-load forecast uncertainties into consideration and commits optimal energy resources and reserves for intra-hour and intra-day decisions. The primary objectives of this effort are to reduce power system operation cost by committing appropriate amount of energy resources and reserves, as well as to provide operators a prediction of the generation fleet’s behavior inmore » real time for realistic PV penetration scenarios. The proposed methodology includes the following steps: clustering analysis on the expected solar variability per region for the SMUD system, Day-ahead (DA) and real-time (RT) load forecasts for the entire service areas, 1-year of intra-hour CPR forecasts for cluster centers, 1-year of smart re-forecasting CPR forecasts in real-time for determination of irreducible errors, and uncertainty quantification for integrated solar-load for both distributed and central stations (selected locations within service region) PV generation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aabakken, J.
This report, prepared by NREL's Strategic Energy Analysis Center, includes up-to-date information on power technologies, including complete technology profiles. The data book also contains charts on electricity restructuring, power technology forecasts, electricity supply, electricity capability, electricity generation, electricity demand, prices, economic indicators, environmental indicators, and conversion factors.
Microgrid optimal scheduling considering impact of high penetration wind generation
NASA Astrophysics Data System (ADS)
Alanazi, Abdulaziz
The objective of this thesis is to study the impact of high penetration wind energy in economic and reliable operation of microgrids. Wind power is variable, i.e., constantly changing, and nondispatchable, i.e., cannot be controlled by the microgrid controller. Thus an accurate forecasting of wind power is an essential task in order to study its impacts in microgrid operation. Two commonly used forecasting methods including Autoregressive Integrated Moving Average (ARIMA) and Artificial Neural Network (ANN) have been used in this thesis to improve the wind power forecasting. The forecasting error is calculated using a Mean Absolute Percentage Error (MAPE) and is improved using the ANN. The wind forecast is further used in the microgrid optimal scheduling problem. The microgrid optimal scheduling is performed by developing a viable model for security-constrained unit commitment (SCUC) based on mixed-integer linear programing (MILP) method. The proposed SCUC is solved for various wind penetration levels and the relationship between the total cost and the wind power penetration is found. In order to reduce microgrid power transfer fluctuations, an additional constraint is proposed and added to the SCUC formulation. The new constraint would control the time-based fluctuations. The impact of the constraint on microgrid SCUC results is tested and validated with numerical analysis. Finally, the applicability of proposed models is demonstrated through numerical simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, Kyri; Dall'Anese, Emiliano; Summers, Tyler
This paper outlines a data-driven, distributionally robust approach to solve chance-constrained AC optimal power flow problems in distribution networks. Uncertain forecasts for loads and power generated by photovoltaic (PV) systems are considered, with the goal of minimizing PV curtailment while meeting power flow and voltage regulation constraints. A data- driven approach is utilized to develop a distributionally robust conservative convex approximation of the chance-constraints; particularly, the mean and covariance matrix of the forecast errors are updated online, and leveraged to enforce voltage regulation with predetermined probability via Chebyshev-based bounds. By combining an accurate linear approximation of the AC power flowmore » equations with the distributionally robust chance constraint reformulation, the resulting optimization problem becomes convex and computationally tractable.« less
Microgrid Enabled Distributed Energy Solutions (MEDES) Fort Bliss Military Reservation
2014-02-01
Logic Controller PF Power Factor PO Performance Objectives PPA Power Purchase Agreements PV Photovoltaic R&D Research and Development RDSI...controller, algorithms perform power flow analysis, short term optimization, and long-term forecasted planning. The power flow analysis ensures...renewable photovoltaic power and energy storage in this microgrid configuration, the available mission operational time of the backup generator can be
Quantifying and Reducing Uncertainty in Correlated Multi-Area Short-Term Load Forecasting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Yannan; Hou, Zhangshuan; Meng, Da
2016-07-17
In this study, we represent and reduce the uncertainties in short-term electric load forecasting by integrating time series analysis tools including ARIMA modeling, sequential Gaussian simulation, and principal component analysis. The approaches are mainly focusing on maintaining the inter-dependency between multiple geographically related areas. These approaches are applied onto cross-correlated load time series as well as their forecast errors. Multiple short-term prediction realizations are then generated from the reduced uncertainty ranges, which are useful for power system risk analyses.
NASA Astrophysics Data System (ADS)
Scolari, Enrica; Sossan, Fabrizio; Paolone, Mario
2018-01-01
Due to the increasing proportion of distributed photovoltaic (PV) production in the generation mix, the knowledge of the PV generation capacity has become a key factor. In this work, we propose to compute the PV plant maximum power starting from the indirectly-estimated irradiance. Three estimators are compared in terms of i) ability to compute the PV plant maximum power, ii) bandwidth and iii) robustness against measurements noise. The approaches rely on measurements of the DC voltage, current, and cell temperature and on a model of the PV array. We show that the considered methods can accurately reconstruct the PV maximum generation even during curtailment periods, i.e. when the measured PV power is not representative of the maximum potential of the PV array. Performance evaluation is carried out by using a dedicated experimental setup on a 14.3 kWp rooftop PV installation. Results also proved that the analyzed methods can outperform pyranometer-based estimations, with a less complex sensing system. We show how the obtained PV maximum power values can be applied to train time series-based solar maximum power forecasting techniques. This is beneficial when the measured power values, commonly used as training, are not representative of the maximum PV potential.
How to Integrate Variable Power Source into a Power Grid
NASA Astrophysics Data System (ADS)
Asano, Hiroshi
This paper discusses how to integrate variable power source such as wind power and photovoltaic generation into a power grid. The intermittent renewable generation is expected to penetrate for less carbon intensive power supply system, but it causes voltage control problem in the distribution system, and supply-demand imbalance problem in a whole power system. Cooperative control of customers' energy storage equipment such as water heater with storage tank for reducing inverse power flow from the roof-top PV system, the operation technique using a battery system and the solar radiation forecast for stabilizing output of variable generation, smart charging of plug-in hybrid electric vehicles for load frequency control (LFC), and other methods to integrate variable power source with improving social benefits are surveyed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hudgins, Andrew P.; Waight, Jim; Grover, Shailendra
OMNETRIC Corp., Duke Energy, CPS Energy, and the University of Texas at San Antonio (UTSA) created a project team to execute the project 'OpenFMB Reference Architecture Demonstration.' The project included development and demonstration of concepts that will enable the electric utility grid to host larger penetrations of renewable resources. The project concept calls for the aggregation of renewable resources and loads into microgrids and the control of these microgrids with an implementation of the OpenFMB Reference Architecture. The production of power from the renewable resources that are appearing on the grid today is very closely linked to the weather. Themore » difficulty of forecasting the weather, which is well understood, leads to difficulty in forecasting the production of renewable resources. The current state of the art in forecasting the power production from renewables (solar PV and wind) are accuracies in the range of 12-25 percent NMAE. In contrast the demand for electricity aggregated to the system level, is easier to predict. The state of the art of demand forecasting done, 24 hours ahead, is about 2-3% MAPE. Forecasting the load to be supplied from conventional resources (demand minus generation from renewable resources) is thus very hard to forecast. This means that even a few hours before the time of consumption, there can be considerable uncertainty over what must be done to balance supply and demand. Adding to the problem of difficulty of forecasting, is the reality of the variability of the actual production of power from renewables. Due to the variability of wind speeds and solar insolation, the actual output of power from renewable resources can vary significantly over a short period of time. Gusts of winds result is variation of power output of wind turbines. The shadows of clouds moving over solar PV arrays result in the variation of power production of the array. This compounds the problem of balancing supply and demand in real time. Establishing a control system that can manage distribution systems with large penetrations of renewable resources is difficult due to two major issues: (1) the lack of standardization and interoperability between the vast array of equipment in operation and on the market, most of which use different and proprietary means of communication and (2) the magnitude of the network and the information it generates and consumes. The objective of this project is to provide the industry with a design concept and tools that will enable the electric power grid to overcome these barriers and support a larger penetration of clean energy from renewable resources.« less
Code of Federal Regulations, 2010 CFR
2010-01-01
... the forecast, including the methodology used to project loads, rates, revenue, power costs, operating expenses, plant additions, and other factors having a material effect on the balance sheet and on financial... regional office will consult with the Power Supply Division in the case of generation projects for...
Reactive Power Compensation Using an Energy Management System
2014-09-01
bulk power grid or independent of the grid in islanded mode using various DG sources ( photovoltaic panels, fuel cells, gas generators, batteries...developed in order to forecast the system’s response to both capacitive and inductive power demands on the grid. The process was then confirmed in a...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited REACTIVE POWER
Diversity modelling for electrical power system simulation
NASA Astrophysics Data System (ADS)
Sharip, R. M.; Abu Zarim, M. A. U. A.
2013-12-01
This paper considers diversity of generation and demand profiles against the different future energy scenarios and evaluates these on a technical basis. Compared to previous studies, this research applied a forecasting concept based on possible growth rates from publically electrical distribution scenarios concerning the UK. These scenarios were created by different bodies considering aspects such as environment, policy, regulation, economic and technical. In line with these scenarios, forecasting is on a long term timescale (up to every ten years from 2020 until 2050) in order to create a possible output of generation mix and demand profiles to be used as an appropriate boundary condition for the network simulation. The network considered is a segment of rural LV populated with a mixture of different housing types. The profiles for the 'future' energy and demand have been successfully modelled by applying a forecasting method. The network results under these profiles shows for the cases studied that even though the value of the power produced from each Micro-generation is often in line with the demand requirements of an individual dwelling there will be no problems arising from high penetration of Micro-generation and demand side management for each dwellings considered. The results obtained highlight the technical issues/changes for energy delivery and management to rural customers under the future energy scenarios.
Distribution-Agnostic Stochastic Optimal Power Flow for Distribution Grids: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, Kyri; Dall'Anese, Emiliano; Summers, Tyler
2016-09-01
This paper outlines a data-driven, distributionally robust approach to solve chance-constrained AC optimal power flow problems in distribution networks. Uncertain forecasts for loads and power generated by photovoltaic (PV) systems are considered, with the goal of minimizing PV curtailment while meeting power flow and voltage regulation constraints. A data- driven approach is utilized to develop a distributionally robust conservative convex approximation of the chance-constraints; particularly, the mean and covariance matrix of the forecast errors are updated online, and leveraged to enforce voltage regulation with predetermined probability via Chebyshev-based bounds. By combining an accurate linear approximation of the AC power flowmore » equations with the distributionally robust chance constraint reformulation, the resulting optimization problem becomes convex and computationally tractable.« less
Flexible NO(x) abatement from power plants in the eastern United States.
Sun, Lin; Webster, Mort; McGaughey, Gary; McDonald-Buller, Elena C; Thompson, Tammy; Prinn, Ronald; Ellerman, A Denny; Allen, David T
2012-05-15
Emission controls that provide incentives for maximizing reductions in emissions of ozone precursors on days when ozone concentrations are highest have the potential to be cost-effective ozone management strategies. Conventional prescriptive emissions controls or cap-and-trade programs consider all emissions similarly regardless of when they occur, despite the fact that contributions to ozone formation may vary. In contrast, a time-differentiated approach targets emissions reductions on forecasted high ozone days without imposition of additional costs on lower ozone days. This work examines simulations of such dynamic air quality management strategies for NO(x) emissions from electric generating units. Results from a model of day-specific NO(x) pricing applied to the Pennsylvania-New Jersey-Maryland (PJM) portion of the northeastern U.S. electrical grid demonstrate (i) that sufficient flexibility in electricity generation is available to allow power production to be switched from high to low NO(x) emitting facilities, (ii) that the emission price required to induce EGUs to change their strategies for power generation are competitive with other control costs, (iii) that dispatching strategies, which can change the spatial and temporal distribution of emissions, lead to ozone concentration reductions comparable to other control technologies, and (iv) that air quality forecasting is sufficiently accurate to allow EGUs to adapt their power generation strategies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curry, Judith
This project addressed the challenge of providing weather and climate information to support the operation, management and planning for wind-energy systems. The need for forecast information is extending to longer projection windows with increasing penetration of wind power into the grid and also with diminishing reserve margins to meet peak loads during significant weather events. Maintenance planning and natural gas trading is being influenced increasingly by anticipation of wind generation on timescales of weeks to months. Future scenarios on decadal time scales are needed to support assessment of wind farm siting, government planning, long-term wind purchase agreements and the regulatorymore » environment. The challenge of making wind forecasts on these longer time scales is associated with a wide range of uncertainties in general circulation and regional climate models that make them unsuitable for direct use in the design and planning of wind-energy systems. To address this challenge, CFAN has developed a hybrid statistical/dynamical forecasting scheme for delivering probabilistic forecasts on time scales from one day to seven months using what is arguably the best forecasting system in the world (European Centre for Medium Range Weather Forecasting, ECMWF). The project also provided a framework to assess future wind power through developing scenarios of interannual to decadal climate variability and change. The Phase II research has successfully developed an operational wind power forecasting system for the U.S., which is being extended to Europe and possibly Asia.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenthal, William Steven; Tartakovsky, Alex; Huang, Zhenyu
State and parameter estimation of power transmission networks is important for monitoring power grid operating conditions and analyzing transient stability. Wind power generation depends on fluctuating input power levels, which are correlated in time and contribute to uncertainty in turbine dynamical models. The ensemble Kalman filter (EnKF), a standard state estimation technique, uses a deterministic forecast and does not explicitly model time-correlated noise in parameters such as mechanical input power. However, this uncertainty affects the probability of fault-induced transient instability and increased prediction bias. Here a novel approach is to model input power noise with time-correlated stochastic fluctuations, and integratemore » them with the network dynamics during the forecast. While the EnKF has been used to calibrate constant parameters in turbine dynamical models, the calibration of a statistical model for a time-correlated parameter has not been investigated. In this study, twin experiments on a standard transmission network test case are used to validate our time-correlated noise model framework for state estimation of unsteady operating conditions and transient stability analysis, and a methodology is proposed for the inference of the mechanical input power time-correlation length parameter using time-series data from PMUs monitoring power dynamics at generator buses.« less
Rosenthal, William Steven; Tartakovsky, Alex; Huang, Zhenyu
2017-10-31
State and parameter estimation of power transmission networks is important for monitoring power grid operating conditions and analyzing transient stability. Wind power generation depends on fluctuating input power levels, which are correlated in time and contribute to uncertainty in turbine dynamical models. The ensemble Kalman filter (EnKF), a standard state estimation technique, uses a deterministic forecast and does not explicitly model time-correlated noise in parameters such as mechanical input power. However, this uncertainty affects the probability of fault-induced transient instability and increased prediction bias. Here a novel approach is to model input power noise with time-correlated stochastic fluctuations, and integratemore » them with the network dynamics during the forecast. While the EnKF has been used to calibrate constant parameters in turbine dynamical models, the calibration of a statistical model for a time-correlated parameter has not been investigated. In this study, twin experiments on a standard transmission network test case are used to validate our time-correlated noise model framework for state estimation of unsteady operating conditions and transient stability analysis, and a methodology is proposed for the inference of the mechanical input power time-correlation length parameter using time-series data from PMUs monitoring power dynamics at generator buses.« less
Economic analysis for transmission operation and planning
NASA Astrophysics Data System (ADS)
Zhou, Qun
2011-12-01
Restructuring of the electric power industry has caused dramatic changes in the use of transmission system. The increasing congestion conditions as well as the necessity of integrating renewable energy introduce new challenges and uncertainties to transmission operation and planning. Accurate short-term congestion forecasting facilitates market traders in bidding and trading activities. Cost sharing and recovery issue is a major impediment for long-term transmission investment to integrate renewable energy. In this research, a new short-term forecasting algorithm is proposed for predicting congestion, LMPs, and other power system variables based on the concept of system patterns. The advantage of this algorithm relative to standard statistical forecasting methods is that structural aspects underlying power market operations are exploited to reduce the forecasting error. The advantage relative to previously proposed structural forecasting methods is that data requirements are substantially reduced. Forecasting results based on a NYISO case study demonstrate the feasibility and accuracy of the proposed algorithm. Moreover, a negotiation methodology is developed to guide transmission investment for integrating renewable energy. Built on Nash Bargaining theory, the negotiation of investment plans and payment rate can proceed between renewable generation and transmission companies for cost sharing and recovery. The proposed approach is applied to Garver's six bus system. The numerical results demonstrate fairness and efficiency of the approach, and hence can be used as guidelines for renewable energy investors. The results also shed light on policy-making of renewable energy subsidies.
Wind power generation and dispatch in competitive power markets
NASA Astrophysics Data System (ADS)
Abreu, Lisias
Wind energy is currently the fastest growing type of renewable energy. The main motivation is led by more strict emission constraints and higher fuel prices. In addition, recent developments in wind turbine technology and financial incentives have made wind energy technically and economically viable almost anywhere. In restructured power systems, reliable and economical operation of power systems are the two main objectives for the ISO. The ability to control the output of wind turbines is limited and the capacity of a wind farm changes according to wind speeds. Since this type of generation has no production costs, all production is taken by the system. Although, insufficient operational planning of power systems considering wind generation could result in higher system operation costs and off-peak transmission congestions. In addition, a GENCO can participate in short-term power markets in restructured power systems. The goal of a GENCO is to sell energy in such a way that would maximize its profitability. However, due to market price fluctuations and wind forecasting errors, it is essential for the wind GENCO to keep its financial risk at an acceptable level when constituting market bidding strategies. This dissertation discusses assumptions, functions, and methodologies that optimize short-term operations of power systems considering wind energy, and that optimize bidding strategies for wind producers in short-term markets. This dissertation also discusses uncertainties associated with electricity market environment and wind power forecasting that can expose market participants to a significant risk level when managing the tradeoff between profitability and risk.
Power control and management of the grid containing largescale wind power systems
NASA Astrophysics Data System (ADS)
Aula, Fadhil Toufick
The ever increasing demand for electricity has driven many countries toward the installation of new generation facilities. However, concerns such as environmental pollution and global warming issues, clean energy sources, high costs associated with installation of new conventional power plants, and fossil fuels depletion have created many interests in finding alternatives to conventional fossil fuels for generating electricity. Wind energy is one of the most rapidly growing renewable power sources and wind power generations have been increasingly demanded as an alternative to the conventional fossil fuels. However, wind power fluctuates due to variation of wind speed. Therefore, large-scale integration of wind energy conversion systems is a threat to the stability and reliability of utility grids containing these systems. They disturb the balance between power generation and consumption, affect the quality of the electricity, and complicate load sharing and load distribution managing and planning. Overall, wind power systems do not help in providing any services such as operating and regulating reserves to the power grid. In order to resolve these issues, research has been conducted in utilizing weather forecasting data to improve the performance of the wind power system, reduce the influence of the fluctuations, and plan power management of the grid containing large-scale wind power systems which consist of doubly-fed induction generator based energy conversion system. The aims of this research, my dissertation, are to provide new methods for: smoothing the output power of the wind power systems and reducing the influence of their fluctuations, power managing and planning of a grid containing these systems and other conventional power plants, and providing a new structure of implementing of latest microprocessor technology for controlling and managing the operation of the wind power system. In this research, in order to reduce and smooth the fluctuations, two methods are presented. The first method is based on a de-loaded technique while the other method is based on utilizing multiple storage facilities. The de-loaded technique is based on characteristics of the power of a wind turbine and estimation of the generated power according to weather forecasting data. The technique provides a reference power by which the wind power system will operate and generate a smooth power. In contrast, utilizing storage facilities will allow the wind power system to operate at its maximum tracking power points' strategy. Two types of energy storages are considered in this research, battery energy storage system (BESS) and pumped-hydropower storage system (PHSS), to suppress the output fluctuations and to support the wind power system to follow the system load demands. Furthermore, this method provides the ability to store energy when there is a surplus of the generated power and to reuse it when there is a shortage of power generation from wind power systems. Both methods are new in terms of utilizing of the techniques and wind speed data. A microprocessor embedded system using an IntelRTM Atom(TM) processor is presented for controlling the wind power system and for providing the remote communication for enhancing the operation of the individual wind power system in a wind farm. The embedded system helps the wind power system to respond and to follow the commands of the central control of the power system. Moreover, it enhances the performance of the wind power system through self-managing, self-functioning, and self-correcting. Finally, a method of system power management and planning is modeled and studied for a grid containing large-scale wind power systems. The method is based on a new technique through constructing a new load demand curve (NLDC) from merging the estimation of generated power from wind power systems and forecasting of the load. To summarize, the methods and their results presented in this dissertation, enhance the operation of the large-scale wind power systems and reduce their drawbacks on the operation of the power grid.
Practice of Meteorological Services in Turpan Solar Eco-City in China (Invited)
NASA Astrophysics Data System (ADS)
Shen, Y.; Chang, R.; He, X.; Jiang, Y.; Zhao, D.; Ma, J.
2013-12-01
Turpan Solar Eco-City is located in Gobi in Northwest China, which is one of the National New Energy Demonstration Urban. The city was planed and designed from October of 2008 and constructed from May of 2010, and the first phase of the project has been completed by October of 2013. Energy supply in Turpan Solar Eco-City is mainly from PV power, which is installed in all of the roof and the total capacity is 13.4MW. During the planning and designing of the city, and the running of the smart grid, meteorological services have played an important role. 1) Solar Energy Resource Assessment during Planning Phase. According to the observed data from meteorological stations in recent 30 years, solar energy resource was assessed and available PV power generation capacity was calculated. The results showed that PV power generation capacity is 1.3 times the power consumption, that is, solar energy resource in Turpan is rich. 2) Key Meteorological Parameters Determination for Architectural Design. A professional solar energy resource station was constructed and the observational items included Global Horizontal Irradiance, Inclined Total Solar Irradiance at 30 degree, Inclined Total Solar Irradiance at local latitude, and so on. According these measured data, the optical inclined angle for PV array was determined, that is, 30 degree. The results indicated that the annual irradiation on inclined plane with optimal angle is 1.4% higher than the inclined surface with latitude angle, and 23.16% higher than the horizontal plane. The diffuse ratio and annual variation of the solar elevation angle are two major factors that influence the irradiation on inclined plane. 3) Solar Energy Resource Forecast for Smart Grid. Weather Research Forecast (WRF) model was used to forecast the hourly solar radiation of future 72 hours and the measured irradiance data was used to forecast the minutely solar radiation of future 4 hours. The forecast results were submitted to smart grid and used to regulate the local grid and the city gird.
NASA Astrophysics Data System (ADS)
Gronewold, A.; Fry, L. M.; Hunter, T.; Pei, L.; Smith, J.; Lucier, H.; Mueller, R.
2017-12-01
The U.S. Army Corps of Engineers (USACE) has recently operationalized a suite of ensemble forecasts of Net Basin Supply (NBS), water levels, and connecting channel flows that was developed through a collaboration among USACE, NOAA's Great Lakes Environmental Research Laboratory, Ontario Power Generation (OPG), New York Power Authority (NYPA), and the Niagara River Control Center (NRCC). These forecasts are meant to provide reliable projections of potential extremes in daily discharge in the Niagara and St. Lawrence Rivers over a long time horizon (5 years). The suite of forecasts includes eight configurations that vary by (a) NBS model configuration, (b) meteorological forcings, and (c) incorporation of seasonal climate projections through the use of weighting. Forecasts are updated on a weekly basis, and represent the first operational forecasts of Great Lakes water levels and flows that span daily to inter-annual horizons and employ realistic regulation logic and lake-to-lake routing. We will present results from a hindcast assessment conducted during the transition from research to operation, as well as early indications of success rates determined through operational verification of forecasts. Assessment will include an exploration of the relative skill of various forecast configurations at different time horizons and the potential for application to hydropower decision making and Great Lakes water management.
Heterogeneity: The key to failure forecasting
Vasseur, Jérémie; Wadsworth, Fabian B.; Lavallée, Yan; Bell, Andrew F.; Main, Ian G.; Dingwell, Donald B.
2015-01-01
Elastic waves are generated when brittle materials are subjected to increasing strain. Their number and energy increase non-linearly, ending in a system-sized catastrophic failure event. Accelerating rates of geophysical signals (e.g., seismicity and deformation) preceding large-scale dynamic failure can serve as proxies for damage accumulation in the Failure Forecast Method (FFM). Here we test the hypothesis that the style and mechanisms of deformation, and the accuracy of the FFM, are both tightly controlled by the degree of microstructural heterogeneity of the material under stress. We generate a suite of synthetic samples with variable heterogeneity, controlled by the gas volume fraction. We experimentally demonstrate that the accuracy of failure prediction increases drastically with the degree of material heterogeneity. These results have significant implications in a broad range of material-based disciplines for which failure forecasting is of central importance. In particular, the FFM has been used with only variable success to forecast failure scenarios both in the field (volcanic eruptions and landslides) and in the laboratory (rock and magma failure). Our results show that this variability may be explained, and the reliability and accuracy of forecast quantified significantly improved, by accounting for material heterogeneity as a first-order control on forecasting power. PMID:26307196
Heterogeneity: The key to failure forecasting.
Vasseur, Jérémie; Wadsworth, Fabian B; Lavallée, Yan; Bell, Andrew F; Main, Ian G; Dingwell, Donald B
2015-08-26
Elastic waves are generated when brittle materials are subjected to increasing strain. Their number and energy increase non-linearly, ending in a system-sized catastrophic failure event. Accelerating rates of geophysical signals (e.g., seismicity and deformation) preceding large-scale dynamic failure can serve as proxies for damage accumulation in the Failure Forecast Method (FFM). Here we test the hypothesis that the style and mechanisms of deformation, and the accuracy of the FFM, are both tightly controlled by the degree of microstructural heterogeneity of the material under stress. We generate a suite of synthetic samples with variable heterogeneity, controlled by the gas volume fraction. We experimentally demonstrate that the accuracy of failure prediction increases drastically with the degree of material heterogeneity. These results have significant implications in a broad range of material-based disciplines for which failure forecasting is of central importance. In particular, the FFM has been used with only variable success to forecast failure scenarios both in the field (volcanic eruptions and landslides) and in the laboratory (rock and magma failure). Our results show that this variability may be explained, and the reliability and accuracy of forecast quantified significantly improved, by accounting for material heterogeneity as a first-order control on forecasting power.
Heterogeneity: The key to failure forecasting
NASA Astrophysics Data System (ADS)
Vasseur, Jérémie; Wadsworth, Fabian B.; Lavallée, Yan; Bell, Andrew F.; Main, Ian G.; Dingwell, Donald B.
2015-08-01
Elastic waves are generated when brittle materials are subjected to increasing strain. Their number and energy increase non-linearly, ending in a system-sized catastrophic failure event. Accelerating rates of geophysical signals (e.g., seismicity and deformation) preceding large-scale dynamic failure can serve as proxies for damage accumulation in the Failure Forecast Method (FFM). Here we test the hypothesis that the style and mechanisms of deformation, and the accuracy of the FFM, are both tightly controlled by the degree of microstructural heterogeneity of the material under stress. We generate a suite of synthetic samples with variable heterogeneity, controlled by the gas volume fraction. We experimentally demonstrate that the accuracy of failure prediction increases drastically with the degree of material heterogeneity. These results have significant implications in a broad range of material-based disciplines for which failure forecasting is of central importance. In particular, the FFM has been used with only variable success to forecast failure scenarios both in the field (volcanic eruptions and landslides) and in the laboratory (rock and magma failure). Our results show that this variability may be explained, and the reliability and accuracy of forecast quantified significantly improved, by accounting for material heterogeneity as a first-order control on forecasting power.
Moriano, Javier; Rodríguez, Francisco Javier; Martín, Pedro; Jiménez, Jose Antonio; Vuksanovic, Branislav
2016-01-01
In recent years, Secondary Substations (SSs) are being provided with equipment that allows their full management. This is particularly useful not only for monitoring and planning purposes but also for detecting erroneous measurements, which could negatively affect the performance of the SS. On the other hand, load forecasting is extremely important since they help electricity companies to make crucial decisions regarding purchasing and generating electric power, load switching, and infrastructure development. In this regard, Short Term Load Forecasting (STLF) allows the electric power load to be predicted over an interval ranging from one hour to one week. However, important issues concerning error detection by employing STLF has not been specifically addressed until now. This paper proposes a novel STLF-based approach to the detection of gain and offset errors introduced by the measurement equipment. The implemented system has been tested against real power load data provided by electricity suppliers. Different gain and offset error levels are successfully detected. PMID:26771613
A framework for improving a seasonal hydrological forecasting system using sensitivity analysis
NASA Astrophysics Data System (ADS)
Arnal, Louise; Pappenberger, Florian; Smith, Paul; Cloke, Hannah
2017-04-01
Seasonal streamflow forecasts are of great value for the socio-economic sector, for applications such as navigation, flood and drought mitigation and reservoir management for hydropower generation and water allocation to agriculture and drinking water. However, as we speak, the performance of dynamical seasonal hydrological forecasting systems (systems based on running seasonal meteorological forecasts through a hydrological model to produce seasonal hydrological forecasts) is still limited in space and time. In this context, the ESP (Ensemble Streamflow Prediction) remains an attractive forecasting method for seasonal streamflow forecasting as it relies on forcing a hydrological model (starting from the latest observed or simulated initial hydrological conditions) with historical meteorological observations. This makes it cheaper to run than a standard dynamical seasonal hydrological forecasting system, for which the seasonal meteorological forecasts will first have to be produced, while still producing skilful forecasts. There is thus the need to focus resources and time towards improvements in dynamical seasonal hydrological forecasting systems which will eventually lead to significant improvements in the skill of the streamflow forecasts generated. Sensitivity analyses are a powerful tool that can be used to disentangle the relative contributions of the two main sources of errors in seasonal streamflow forecasts, namely the initial hydrological conditions (IHC; e.g., soil moisture, snow cover, initial streamflow, among others) and the meteorological forcing (MF; i.e., seasonal meteorological forecasts of precipitation and temperature, input to the hydrological model). Sensitivity analyses are however most useful if they inform and change current operational practices. To this end, we propose a method to improve the design of a seasonal hydrological forecasting system. This method is based on sensitivity analyses, informing the forecasters as to which element of the forecasting chain (i.e., IHC or MF) could potentially lead to the highest increase in seasonal hydrological forecasting performance, after each forecast update.
1991-11-17
are several concrete examples of how these affect application. (1) For the development and spread of solar photoelectric power generation, under the...technician in charge of each generator. In order to promote the installation of solar cells at various households and businesses, the relevant laws must be...products from microorganisms ’ Solar photoelectric power Communications satellites Skyscrapers Alone in 1st Tied for 1st 10 Years Ago Present !i
2014-09-01
generation, exotic storage technologies, smart power grid management, and better power sources for directed-energy weapons (DEW). Accessible partner nation...near term will help to mitigate risks and improve outcomes. 2 Forecasting typically extrapolates predictions based...eventually, diminished national power . Within this context, this paper examines policy, legal, ethical, and strategy implications for DoD from the impact
A multiscale forecasting method for power plant fleet management
NASA Astrophysics Data System (ADS)
Chen, Hongmei
In recent years the electric power industry has been challenged by a high level of uncertainty and volatility brought on by deregulation and globalization. A power producer must minimize the life cycle cost while meeting stringent safety and regulatory requirements and fulfilling customer demand for high reliability. Therefore, to achieve true system excellence, a more sophisticated system-level decision-making process with a more accurate forecasting support system to manage diverse and often widely dispersed generation units as a single, easily scaled and deployed fleet system in order to fully utilize the critical assets of a power producer has been created as a response. The process takes into account the time horizon for each of the major decision actions taken in a power plant and develops methods for information sharing between them. These decisions are highly interrelated and no optimal operation can be achieved without sharing information in the overall process. The process includes a forecasting system to provide information for planning for uncertainty. A new forecasting method is proposed, which utilizes a synergy of several modeling techniques properly combined at different time-scales of the forecasting objects. It can not only take advantages of the abundant historical data but also take into account the impact of pertinent driving forces from the external business environment to achieve more accurate forecasting results. Then block bootstrap is utilized to measure the bias in the estimate of the expected life cycle cost which will actually be needed to drive the business for a power plant in the long run. Finally, scenario analysis is used to provide a composite picture of future developments for decision making or strategic planning. The decision-making process is applied to a typical power producer chosen to represent challenging customer demand during high-demand periods. The process enhances system excellence by providing more accurate market information, evaluating the impact of external business environment, and considering cross-scale interactions between decision actions. Along with this process, system operation strategies, maintenance schedules, and capacity expansion plans that guide the operation of the power plant are optimally identified, and the total life cycle costs are estimated.
Proceedings of the American Power Conference. Volume 58-I
DOE Office of Scientific and Technical Information (OSTI.GOV)
McBride, A.E.
1996-10-01
This is volume 58-I of the proceedings of the American Power Conference, 1996, Technology for Competition and Globalization. The topics of the papers include power plant DC issues; cost of environmental compliance; advanced coal systems -- environmental performance; technology for competition in dispersed generation; superconductivity technologies for electric utility applications; power generation trends and challenges in China; aging in nuclear power plants; innovative and competitive repowering options; structural examinations, modifications and repairs; electric load forecasting; distribution planning; EMF effects; fuzzy logic and neural networks for power plant applications; electrokinetic decontamination of soils; integrated gasification combined cycle; advances in fusion; coolingmore » towers; relays; plant controls; flue gas desulfurization; waste product utilization; and improved technologies.« less
Five Indisputable Facts on Modern Power Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bloom, Aaron P; Brinkman, Gregory L; Lopez, Anthony J
This presentation overviews five indisputable facts about modern power systems: Fact one: The grid can handle more renewable generation than previously thought. Fact two: Geographic and resource diversity provide additional reliability to the system. Fact three: Wind and solar forecasting provide significant value. Fact four: Our electric power markets were not originally designed for variable renewables -- but they could be adapted. Fact five: Modern power electronics are creating new sources of essential reliability services.
2014-06-01
systems. It can model systems including both conventional, diesel powered generators and renewable power sources such as photovoltaic arrays and wind...conducted an experiment where he assessed the capabilities of the HOMER model in forecasting the power output of a solar panel at NPS [32]. In his ex...energy efficiency in expeditionary operations, the HOMER micropower optimization model provides potential to serve as a powerful tool for improving
NASA Astrophysics Data System (ADS)
Radziukynas, V.; Klementavičius, A.
2016-04-01
The paper analyses the performance results of the recently developed short-term forecasting suit for the Latvian power system. The system load and wind power are forecasted using ANN and ARIMA models, respectively, and the forecasting accuracy is evaluated in terms of errors, mean absolute errors and mean absolute percentage errors. The investigation of influence of additional input variables on load forecasting errors is performed. The interplay of hourly loads and wind power forecasting errors is also evaluated for the Latvian power system with historical loads (the year 2011) and planned wind power capacities (the year 2023).
Code of Federal Regulations, 2012 CFR
2012-01-01
... power supply borrowers and by distribution borrowers required to maintain an approved load forecast on... forecasts by power supply borrowers and by distribution borrowers required to maintain an approved load forecast on an ongoing basis. All load forecasts submitted by power supply borrowers and by distribution...
Code of Federal Regulations, 2013 CFR
2013-01-01
... power supply borrowers and by distribution borrowers required to maintain an approved load forecast on... forecasts by power supply borrowers and by distribution borrowers required to maintain an approved load forecast on an ongoing basis. All load forecasts submitted by power supply borrowers and by distribution...
Code of Federal Regulations, 2014 CFR
2014-01-01
... power supply borrowers and by distribution borrowers required to maintain an approved load forecast on... forecasts by power supply borrowers and by distribution borrowers required to maintain an approved load forecast on an ongoing basis. All load forecasts submitted by power supply borrowers and by distribution...
Code of Federal Regulations, 2011 CFR
2011-01-01
... power supply borrowers and by distribution borrowers required to maintain an approved load forecast on... forecasts by power supply borrowers and by distribution borrowers required to maintain an approved load forecast on an ongoing basis. All load forecasts submitted by power supply borrowers and by distribution...
NCAR's Experimental Real-time Convection-allowing Ensemble Prediction System
NASA Astrophysics Data System (ADS)
Schwartz, C. S.; Romine, G. S.; Sobash, R.; Fossell, K.
2016-12-01
Since April 2015, the National Center for Atmospheric Research's (NCAR's) Mesoscale and Microscale Meteorology (MMM) Laboratory, in collaboration with NCAR's Computational Information Systems Laboratory (CISL), has been producing daily, real-time, 10-member, 48-hr ensemble forecasts with 3-km horizontal grid spacing over the conterminous United States (http://ensemble.ucar.edu). These computationally-intensive, next-generation forecasts are produced on the Yellowstone supercomputer, have been embraced by both amateur and professional weather forecasters, are widely used by NCAR and university researchers, and receive considerable attention on social media. Initial conditions are supplied by NCAR's Data Assimilation Research Testbed (DART) software and the forecast model is NCAR's Weather Research and Forecasting (WRF) model; both WRF and DART are community tools. This presentation will focus on cutting-edge research results leveraging the ensemble dataset, including winter weather predictability, severe weather forecasting, and power outage modeling. Additionally, the unique design of the real-time analysis and forecast system and computational challenges and solutions will be described.
Wind-Driven Ecological Flow Regimes Downstream from Hydropower Dams
NASA Astrophysics Data System (ADS)
Kern, J.; Characklis, G. W.
2012-12-01
Conventional hydropower can be turned on and off quicker and less expensively than thermal generation (coal, nuclear, or natural gas). These advantages enable hydropower utilities to respond to rapid fluctuations in energy supply and demand. More recently, a growing renewable energy sector has underlined the need for flexible generation capacity that can complement intermittent renewable resources such as wind power. While wind power entails lower variable costs than other types of generation, incorporating it into electric power systems can be problematic. Due to variable and unpredictable wind speeds, wind power is difficult to schedule and must be used when available. As a result, integrating large amounts of wind power into the grid may result in atypical, swiftly changing demand patterns for other forms of generation, placing a premium on sources that can be rapidly ramped up and down. Moreover, uncertainty in wind power forecasts will stipulate increased levels of 'reserve' generation capacity that can respond quickly if real-time wind supply is less than expected. These changes could create new hourly price dynamics for energy and reserves, altering the short-term financial signals that hydroelectric dam operators use to schedule water releases. Traditionally, hourly stream flow patterns below hydropower dams have corresponded in a very predictable manner to electricity demand, whose primary factors are weather (hourly temperature) and economic activity (workday hours). Wind power integration has the potential to yield more variable, less predictable flows at hydro dams, flows that at times could resemble reciprocal wind patterns. An existing body of research explores the impacts of standard, demand-following hydroelectric dams on downstream ecological flows; but weighing the benefits of increased reliance on wind power against further impacts to ecological flows may be a novel challenge for the environmental community. As a preliminary step in meeting this challenge, the following study was designed to investigate the potential for wind power integration to alter riparian flow regimes below hydroelectric dams. A hydrological model of a three-dam cascade in the Roanoke River basin (Virginia, USA) is interfaced with a simulated electricity market (i.e. a unit commitment problem) representing the Dominion Zone of PJM Interconnection. Incorporating forecasts of electricity demand, hydro capacity and wind availability, a mixed-integer optimization program minimizes the system cost of meeting hourly demand and reserve requirements by means of a diverse generation portfolio (e.g. nuclear, fossil, hydro, and biomass). A secondary 'balancing' energy market is executed if real-time wind generation is less than the day-ahead forecast, calling upon reserved generation resources to meet the supply shortfall. Hydropower release schedules are determined across a range of wind development scenarios (varying wind's fraction of total installed generating capacity, as well as its geographical source region). Flow regimes for each wind development scenario are compared against both historical and simulated flows under current operations (negligible wind power), as well as simulated natural flows (dam removal), in terms of ecologically relevant flow metrics. Results quantify the ability of wind power development to alter within-week stream flows downstream from hydropower dams.
Uncertainties in Forecasting Streamflow using Entropy Theory
NASA Astrophysics Data System (ADS)
Cui, H.; Singh, V. P.
2017-12-01
Streamflow forecasting is essential in river restoration, reservoir operation, power generation, irrigation, navigation, and water management. However, there is always uncertainties accompanied in forecast, which may affect the forecasting results and lead to large variations. Therefore, uncertainties must be considered and be assessed properly when forecasting streamflow for water management. The aim of our work is to quantify the uncertainties involved in forecasting streamflow and provide reliable streamflow forecast. Despite that streamflow time series are stochastic, they exhibit seasonal and periodic patterns. Therefore, streamflow forecasting entails modeling seasonality, periodicity, and its correlation structure, and assessing uncertainties. This study applies entropy theory to forecast streamflow and measure uncertainties during the forecasting process. To apply entropy theory for streamflow forecasting, spectral analysis is combined to time series analysis, as spectral analysis can be employed to characterize patterns of streamflow variation and identify the periodicity of streamflow. That is, it permits to extract significant information for understanding the streamflow process and prediction thereof. Application of entropy theory for streamflow forecasting involves determination of spectral density, determination of parameters, and extension of autocorrelation function. The uncertainties brought by precipitation input, forecasting model and forecasted results are measured separately using entropy. With information theory, how these uncertainties transported and aggregated during these processes will be described.
NASA Astrophysics Data System (ADS)
Finley, Christopher
Power generation using wind turbines increases the electrical system balancing, regulation and ramp rate requirements due to the minute to minute variability in wind speed and the difficulty in accurately forecasting wind speeds. The addition of thermal energy storage, such as ice storage, to a building's space cooling equipment increases the operational flexibility of the equipment by allowing the owner to choose when the chiller is run. The ability of the building owner to increase the power demand from the chiller (e.g. make ice) or to decrease the power demand (e.g. melt ice) to provide electrical system ancillary services was evaluated.
The combined value of wind and solar power forecasting improvements and electricity storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hodge, Bri-Mathias; Brancucci Martinez-Anido, Carlo; Wang, Qin
As the penetration rates of variable renewable energy increase, the value of power systems operation flexibility technology options, such as renewable energy forecasting improvements and electricity storage, is also assumed to increase. In this work, we examine the value of these two technologies, when used independently and concurrently, for two real case studies that represent the generation mixes for the California and Midcontinent Independent System Operators (CAISO and MISO). Since both technologies provide additional system flexibility they reduce operational costs and renewable curtailment for both generation mixes under study. Interestingly, the relative impacts are quite similar when both technologies aremore » used together. Though both flexibility options can solve some of the same issues that arise with high penetration levels of renewables, they do not seem to significantly increase or decrease the economic potential of the other technology.« less
The combined value of wind and solar power forecasting improvements and electricity storage
Hodge, Bri-Mathias; Brancucci Martinez-Anido, Carlo; Wang, Qin; ...
2018-02-12
As the penetration rates of variable renewable energy increase, the value of power systems operation flexibility technology options, such as renewable energy forecasting improvements and electricity storage, is also assumed to increase. In this work, we examine the value of these two technologies, when used independently and concurrently, for two real case studies that represent the generation mixes for the California and Midcontinent Independent System Operators (CAISO and MISO). Since both technologies provide additional system flexibility they reduce operational costs and renewable curtailment for both generation mixes under study. Interestingly, the relative impacts are quite similar when both technologies aremore » used together. Though both flexibility options can solve some of the same issues that arise with high penetration levels of renewables, they do not seem to significantly increase or decrease the economic potential of the other technology.« less
NASA Launches NOAA Weather Satellite to Improve Forecasts
2017-11-18
Early on the morning of Saturday, Nov. 18, NASA successfully launched for the National Oceanic and Atmospheric Administration (NOAA) the first in a series of four advanced polar-orbiting satellites, equipped with next-generation technology and designed to improve the accuracy of U.S. weather forecasts out to seven days. The Joint Polar Satellite System-1 (JPSS-1) lifted off on a United Launch Alliance Delta II rocket from Vandenberg Air Force Base on California’s central coast. JPSS-1 data will improve weather forecasting and help agencies involved with post-storm recovery by visualizing storm damage and the geographic extent of power outages.
7 CFR 1710.302 - Financial forecasts-power supply borrowers.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 11 2011-01-01 2011-01-01 false Financial forecasts-power supply borrowers. 1710.302... AND GUARANTEES Long-Range Financial Forecasts § 1710.302 Financial forecasts—power supply borrowers. (a) The requirements of this section apply only to financial forecasts submitted by power supply...
NASA Astrophysics Data System (ADS)
Hart, E. K.; Jacobson, M. Z.; Dvorak, M. J.
2008-12-01
Time series power flow analyses of the California electricity grid are performed with extensive addition of intermittent renewable power. The study focuses on the effects of replacing non-renewable and imported (out-of-state) electricity with wind and solar power on the reliability of the transmission grid. Simulations are performed for specific days chosen throughout the year to capture seasonal fluctuations in load, wind, and insolation. Wind farm expansions and new wind farms are proposed based on regional wind resources and time-dependent wind power output is calculated using a meteorological model and the power curves of specific wind turbines. Solar power is incorporated both as centralized and distributed generation. Concentrating solar thermal plants are modeled using local insolation data and the efficiencies of pre-existing plants. Distributed generation from rooftop PV systems is included using regional insolation data, efficiencies of common PV systems, and census data. The additional power output of these technologies offsets power from large natural gas plants and is balanced for the purposes of load matching largely with hydroelectric power and by curtailment when necessary. A quantitative analysis of the effects of this significant shift in the electricity portfolio of the state of California on power availability and transmission line congestion, using a transmission load-flow model, is presented. A sensitivity analysis is also performed to determine the effects of forecasting errors in wind and insolation on load-matching and transmission line congestion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolinger, Mark; Wiser, Ryan
2003-12-18
For better or worse, natural gas has become the fuel of choice for new power plants being built across the United States. According to the US Energy Information Administration (EIA), natural gas combined-cycle and combustion turbine power plants accounted for 96% of the total generating capacity added in the US between 1999 and 2002--138 GW out of a total of 144 GW. Looking ahead, the EIA expects that gas-fired technology will account for 61% of the 355 GW new generating capacity projected to come on-line in the US up to 2025, increasing the nationwide market share of gas-fired generation frommore » 18% in 2002 to 22% in 2025. While the data are specific to the US, natural gas-fired generation is making similar advances in other countries as well. Regardless of the explanation for (or interpretation of) the empirical findings, however, the basic implications remain the same: one should not blindly rely on gas price forecasts when comparing fixed-price renewable with variable-price gas-fired generation contracts. If there is a cost to hedging, gas price forecasts do not capture and account for it. Alternatively, if the forecasts are at risk of being biased or out of tune with the market, then one certainly would not want to use them as the basis for resource comparisons or investment decisions if a more certain source of data (forwards) existed. Accordingly, assuming that long-term price stability is valued, the most appropriate way to compare the levelized cost of these resources in both cases would be to use forward natural gas price data--i.e. prices that can be locked in to create price certainty--as opposed to uncertain natural gas price forecasts. This article suggests that had utilities and analysts in the US done so over the sample period from November 2000 to November 2003, they would have found gas-fired generation to be at least 0.3-0.6 cents/kWh more expensive (on a levelized cost basis) than otherwise thought. With some renewable resources, in particular wind power, now largely competitive with gas-fired generation in the US (including the impact of the federal production tax credit and current high gas prices), a margin of 0.3-0.6 cents/kWh may in some cases be enough to sway resource decisions in favor of renewables.« less
Analysis and Synthesis of Load Forecasting Data for Renewable Integration Studies: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steckler, N.; Florita, A.; Zhang, J.
2013-11-01
As renewable energy constitutes greater portions of the generation fleet, the importance of modeling uncertainty as part of integration studies also increases. In pursuit of optimal system operations, it is important to capture not only the definitive behavior of power plants, but also the risks associated with systemwide interactions. This research examines the dependence of load forecast errors on external predictor variables such as temperature, day type, and time of day. The analysis was utilized to create statistically relevant instances of sequential load forecasts with only a time series of historic, measured load available. The creation of such load forecastsmore » relies on Bayesian techniques for informing and updating the model, thus providing a basis for networked and adaptive load forecast models in future operational applications.« less
NASA Astrophysics Data System (ADS)
Declair, Stefan; Saint-Drenan, Yves-Marie; Potthast, Roland
2017-04-01
Determining the amount of weather dependent renewable energy is a demanding task for transmission system operators (TSOs) and wind and photovoltaic (PV) prediction errors require the use of reserve power, which generate costs and can - in extreme cases - endanger the security of supply. In the project EWeLiNE funded by the German government, the German Weather Service and the Fraunhofer Institute on Wind Energy and Energy System Technology develop innovative weather- and power forecasting models and tools for grid integration of weather dependent renewable energy. The key part in energy prediction process chains is the numerical weather prediction (NWP) system. Irradiation forecasts from NWP systems are however subject to several sources of error. For PV power prediction, weaknesses of the NWP model to correctly forecast i.e. low stratus, absorption of condensed water or aerosol optical depths are the main sources of errors. Inaccurate radiation schemes (i.e. the two-stream parametrization) are also known as a deficit of NWP systems with regard to irradiation forecast. To mitigate errors like these, latest observations can be used in a pre-processing technique called data assimilation (DA). In DA, not only the initial fields are provided, but the model is also synchronized with reality - the observations - and hence forecast errors are reduced. Besides conventional observation networks like radiosondes, synoptic observations or air reports of wind, pressure and humidity, the number of observations measuring meteorological information indirectly by means of remote sensing such as satellite radiances, radar reflectivities or GPS slant delays strongly increases. Numerous PV plants installed in Germany potentially represent a dense meteorological network assessing irradiation through their power measurements. Forecast accuracy may thus be enhanced by extending the observations in the assimilation by this new source of information. PV power plants can provide information on clouds, aerosol optical depth or low stratus in terms of remote sensing: the power output is strongly dependent on perturbations along the slant between sun position and PV panel. Since these data are not limited to the vertical column above or below the detector, it may thus complement satellite data and compensate weaknesses in the radiation scheme. In this contribution, the used DA technique (Local Ensemble Transform Kalman Filter, LETKF) is shortly sketched. Furthermore, the computation of the model power equivalents is described and first results are presented and discussed.
Increasing the temporal resolution of direct normal solar irradiance forecasted series
NASA Astrophysics Data System (ADS)
Fernández-Peruchena, Carlos M.; Gastón, Martin; Schroedter-Homscheidt, Marion; Marco, Isabel Martínez; Casado-Rubio, José L.; García-Moya, José Antonio
2017-06-01
A detailed knowledge of the solar resource is a critical point in the design and control of Concentrating Solar Power (CSP) plants. In particular, accurate forecasting of solar irradiance is essential for the efficient operation of solar thermal power plants, the management of energy markets, and the widespread implementation of this technology. Numerical weather prediction (NWP) models are commonly used for solar radiation forecasting. In the ECMWF deterministic forecasting system, all forecast parameters are commercially available worldwide at 3-hourly intervals. Unfortunately, as Direct Normal solar Irradiance (DNI) exhibits a great variability due to the dynamic effects of passing clouds, 3-h time resolution is insufficient for accurate simulations of CSP plants due to their nonlinear response to DNI, governed by various thermal inertias due to their complex response characteristics. DNI series of hourly or sub-hourly frequency resolution are normally used for an accurate modeling and analysis of transient processes in CSP technologies. In this context, the objective of this study is to propose a methodology for generating synthetic DNI time series at 1-h (or higher) temporal resolution from 3-h DNI series. The methodology is based upon patterns as being defined with help of the clear-sky envelope approach together with a forecast of maximum DNI value, and it has been validated with high quality measured DNI data.
NASA Astrophysics Data System (ADS)
Salvage, R. O.; Neuberg, J. W.
2016-09-01
Prior to many volcanic eruptions, an acceleration in seismicity has been observed, suggesting the potential for this as a forecasting tool. The Failure Forecast Method (FFM) relates an accelerating precursor to the timing of failure by an empirical power law, with failure being defined in this context as the onset of an eruption. Previous applications of the FFM have used a wide variety of accelerating time series, often generating questionable forecasts with large misfits between data and the forecast, as well as the generation of a number of different forecasts from the same data series. Here, we show an alternative approach applying the FFM in combination with a cross correlation technique which identifies seismicity from a single active source mechanism and location at depth. Isolating a single system at depth avoids additional uncertainties introduced by averaging data over a number of different accelerating phenomena, and consequently reduces the misfit between the data and the forecast. Similar seismic waveforms were identified in the precursory accelerating seismicity to dome collapses at Soufrière Hills volcano, Montserrat in June 1997, July 2003 and February 2010. These events were specifically chosen since they represent a spectrum of collapse scenarios at this volcano. The cross correlation technique generates a five-fold increase in the number of seismic events which could be identified from continuous seismic data rather than using triggered data, thus providing a more holistic understanding of the ongoing seismicity at the time. The use of similar seismicity as a forecasting tool for collapses in 1997 and 2003 greatly improved the forecasted timing of the dome collapse, as well as improving the confidence in the forecast, thereby outperforming the classical application of the FFM. We suggest that focusing on a single active seismic system at depth allows a more accurate forecast of some of the major dome collapses from the ongoing eruption at Soufrière Hills volcano, and provides a simple addition to the well-used methodology of the FFM.
Existing generating assets squeezed as new project starts slow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, R.B.; Tiffany, E.D.
Most forecasting reports concentrate on political or regulatory events to predict future industry trends. Frequently overlooked are the more empirical performance trends of the principal power generation technologies. Solomon and Associates queried its many power plant performance databases and crunched some numbers to identify those trends. Areas of investigation included reliability, utilization (net output factor and net capacity factor) and cost (operating costs). An in-depth analysis for North America and Europe is presented in this article, by region and by regeneration technology. 4 figs., 2 tabs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Etingov, Pavel; Makarov, PNNL Yuri; Subbarao, PNNL Kris
RUT software is designed for use by the Balancing Authorities to predict and display additional requirements caused by the variability and uncertainty in load and generation. The prediction is made for the next operating hours as well as for the next day. The tool predicts possible deficiencies in generation capability and ramping capability. This deficiency of balancing resources can cause serious risks to power system stability and also impact real-time market energy prices. The tool dynamically and adaptively correlates changing system conditions with the additional balancing needs triggered by the interplay between forecasted and actual load and output of variablemore » resources. The assessment is performed using a specially developed probabilistic algorithm incorporating multiple sources of uncertainty including wind, solar and load forecast errors. The tool evaluates required generation for a worst case scenario, with a user-specified confidence level.« less
Systems modeling and analysis for Saudi Arabian electric power requirements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Mohawes, N.A.
This thesis addresses the long-range generation planning problem in Saudi Arabia up to the year 2000. The first part presents various models for electric energy consumption in the residential and industrial sectors. These models can be used by the decision makers for the purposes of policy analysis, evaluation, and forecasting. Forecasts of energy in each sector are obtained from two different models for each sector. These models are based on two forecasting techniques: (1) Hybrid econometric/time series model. The idea of adaptive smoothing was utilized to produce forecasts under several scenarios. (2) Box-Jenkins time series technique. Box-Jenkins models and forecastsmore » are developed for the monthly number of electric consumers and the monthly energy consumption per consumer. The results obtained indicate that high energy consumption is expected during the coming two decades which necessitate serious energy assessment and optimization. Optimization of a mix of energy sources was considered using the group multiattribute utility (MAU) function. The results of MAU for three classes of decision makers (managerial, technical, and consumers) are developed through personal interactions. The computer package WASP was also used to develop a tentative optimum plan. According to this plan, four heavy-water nuclear power plants (800 MW) and four light-water nuclear power plants (1200 MW) have to be introduced by the year 2000 in addition to sixteen oil-fired power plants (400 MW) and nine gas turbines (100 MW).« less
Koopman Operator Framework for Time Series Modeling and Analysis
NASA Astrophysics Data System (ADS)
Surana, Amit
2018-01-01
We propose an interdisciplinary framework for time series classification, forecasting, and anomaly detection by combining concepts from Koopman operator theory, machine learning, and linear systems and control theory. At the core of this framework is nonlinear dynamic generative modeling of time series using the Koopman operator which is an infinite-dimensional but linear operator. Rather than working with the underlying nonlinear model, we propose two simpler linear representations or model forms based on Koopman spectral properties. We show that these model forms are invariants of the generative model and can be readily identified directly from data using techniques for computing Koopman spectral properties without requiring the explicit knowledge of the generative model. We also introduce different notions of distances on the space of such model forms which is essential for model comparison/clustering. We employ the space of Koopman model forms equipped with distance in conjunction with classical machine learning techniques to develop a framework for automatic feature generation for time series classification. The forecasting/anomaly detection framework is based on using Koopman model forms along with classical linear systems and control approaches. We demonstrate the proposed framework for human activity classification, and for time series forecasting/anomaly detection in power grid application.
Constructing probabilistic scenarios for wide-area solar power generation
Woodruff, David L.; Deride, Julio; Staid, Andrea; ...
2017-12-22
Optimizing thermal generation commitments and dispatch in the presence of high penetrations of renewable resources such as solar energy requires a characterization of their stochastic properties. In this study, we describe novel methods designed to create day-ahead, wide-area probabilistic solar power scenarios based only on historical forecasts and associated observations of solar power production. Each scenario represents a possible trajectory for solar power in next-day operations with an associated probability computed by algorithms that use historical forecast errors. Scenarios are created by segmentation of historic data, fitting non-parametric error distributions using epi-splines, and then computing specific quantiles from these distributions.more » Additionally, we address the challenge of establishing an upper bound on solar power output. Our specific application driver is for use in stochastic variants of core power systems operations optimization problems, e.g., unit commitment and economic dispatch. These problems require as input a range of possible future realizations of renewables production. However, the utility of such probabilistic scenarios extends to other contexts, e.g., operator and trader situational awareness. Finally, we compare the performance of our approach to a recently proposed method based on quantile regression, and demonstrate that our method performs comparably to this approach in terms of two widely used methods for assessing the quality of probabilistic scenarios: the Energy score and the Variogram score.« less
Constructing probabilistic scenarios for wide-area solar power generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woodruff, David L.; Deride, Julio; Staid, Andrea
Optimizing thermal generation commitments and dispatch in the presence of high penetrations of renewable resources such as solar energy requires a characterization of their stochastic properties. In this study, we describe novel methods designed to create day-ahead, wide-area probabilistic solar power scenarios based only on historical forecasts and associated observations of solar power production. Each scenario represents a possible trajectory for solar power in next-day operations with an associated probability computed by algorithms that use historical forecast errors. Scenarios are created by segmentation of historic data, fitting non-parametric error distributions using epi-splines, and then computing specific quantiles from these distributions.more » Additionally, we address the challenge of establishing an upper bound on solar power output. Our specific application driver is for use in stochastic variants of core power systems operations optimization problems, e.g., unit commitment and economic dispatch. These problems require as input a range of possible future realizations of renewables production. However, the utility of such probabilistic scenarios extends to other contexts, e.g., operator and trader situational awareness. Finally, we compare the performance of our approach to a recently proposed method based on quantile regression, and demonstrate that our method performs comparably to this approach in terms of two widely used methods for assessing the quality of probabilistic scenarios: the Energy score and the Variogram score.« less
Planning a Target Renewable Portfolio using Atmospheric Modeling and Stochastic Optimization
NASA Astrophysics Data System (ADS)
Hart, E.; Jacobson, M. Z.
2009-12-01
A number of organizations have suggested that an 80% reduction in carbon emissions by 2050 is a necessary step to mitigate climate change and that decarbonization of the electricity sector is a crucial component of any strategy to meet this target. Integration of large renewable and intermittent generators poses many new problems in power system planning. In this study, we attempt to determine an optimal portfolio of renewable resources to meet best the fluctuating California load while also meeting an 80% carbon emissions reduction requirement. A stochastic optimization scheme is proposed that is based on a simplified model of the California electricity grid. In this single-busbar power system model, the load is met with generation from wind, solar thermal, photovoltaic, hydroelectric, geothermal, and natural gas plants. Wind speeds and insolation are calculated using GATOR-GCMOM, a global-through-urban climate-weather-air pollution model. Fields were produced for California and Nevada at 21km SN by 14 km WE spatial resolution every 15 minutes for the year 2006. Load data for 2006 were obtained from the California ISO OASIS database. Maximum installed capacities for wind and solar thermal generation were determined using a GIS analysis of potential development sites throughout the state. The stochastic optimization scheme requires that power balance be achieved in a number of meteorological and load scenarios that deviate from the forecasted (or modeled) data. By adjusting the error distributions of the forecasts, the model describes how improvements in wind speed and insolation forecasting may affect the optimal renewable portfolio. Using a simple model, we describe the diversity, size, and sensitivities of a renewable portfolio that is best suited to the resources and needs of California and that contributes significantly to reduction of the state’s carbon emissions.
A Project Assessment of Stabilizing System of WT Generation using Rechargeable Battery
NASA Astrophysics Data System (ADS)
Kojima, Yasuhiro; Takano, Tomihiro; Tanikawa, Ryoichi; Takagi, Tetsuro; Hirooka, Koutaro; Kumagai, Sadatoshi
The expansion of the renewable energy introduction is examined as measures for controlling global warming. Wind power generation is expected as effective power resource, but the negative impact from the difficulty of an unstable output is concerned. In recent years, WT generation with contract of cut-of with shorting adjusting power and with rechargeable battery for stabilizing control are examined, but the introduction has not been accelerated yet because there is an influence in WT generation entrepreneur's business. In this paper, we make a brief summary of relation between the fluctuation of wind power generation and stability of electric power operation, and two types of approach; cut-off contract and stabilization using rechargeable battery. For the stabilization using battery, there are two methods, one is reduction control and the other is constant control. We propose a new control method for constant control based on profit optimization considering WT generation forecast and its risk of deviation. We also propose the estimation method for the .limitation of battery installation. Simulation results show the efficiency of our proposed methods.
Dynamics of analyst forecasts and emergence of complexity: Role of information disparity
Ahn, Kwangwon
2017-01-01
We report complex phenomena arising among financial analysts, who gather information and generate investment advice, and elucidate them with the help of a theoretical model. Understanding how analysts form their forecasts is important in better understanding the financial market. Carrying out big-data analysis of the analyst forecast data from I/B/E/S for nearly thirty years, we find skew distributions as evidence for emergence of complexity, and show how information asymmetry or disparity affects financial analysts’ forming their forecasts. Here regulations, information dissemination throughout a fiscal year, and interactions among financial analysts are regarded as the proxy for a lower level of information disparity. It is found that financial analysts with better access to information display contrasting behaviors: a few analysts become bolder and issue forecasts independent of other forecasts while the majority of analysts issue more accurate forecasts and flock to each other. Main body of our sample of optimistic forecasts fits a log-normal distribution, with the tail displaying a power law. Based on the Yule process, we propose a model for the dynamics of issuing forecasts, incorporating interactions between analysts. Explaining nicely empirical data on analyst forecasts, this provides an appealing instance of understanding social phenomena in the perspective of complex systems. PMID:28498831
Optimal Day-Ahead Scheduling of a Hybrid Electric Grid Using Weather Forecasts
2013-12-01
ahead scheduling, Weather forecast , Wind power , Photovoltaic Power 15. NUMBER OF PAGES 107 16. PRICE CODE 17. SECURITY CLASSIFICATION OF...cost can be reached by accurately anticipating the future renewable power productions. This thesis suggests the use of weather forecasts to establish...reached by accurately anticipating the future renewable power productions. This thesis suggests the use of weather forecasts to establish day-ahead
Inventing an Energy Internet: Concepts, Architectures and Protocols for Smart Energy Utilization
Tsoukalas, Lefteri
2018-01-24
In recent years, the Internet is revolutionizing information availability much like the Power Grid revolutionized energy availability a century earlier. We will explore the differences and similarities of these two critical infrastructures and identify ways for convergence which may lead to an energy internet. Pricing signals, nodal forecasting, and short-term elasticities are key concepts in smart energy flows respecting the delicate equilibrium involved in generation-demand and aiming at higher efficiencies. We will discuss how intelligent forecasting approaches operating at multiple levels (including device or nodal levels) can ameliorate the challenges of power storage. In addition to higher efficiencies, an energy internet may achieve significant reliability and security improvements and offer greater flexibility and transparency in the overall energy-environmental relation.
Wind power forecasting: IEA Wind Task 36 & future research issues
NASA Astrophysics Data System (ADS)
Giebel, G.; Cline, J.; Frank, H.; Shaw, W.; Pinson, P.; Hodge, B.-M.; Kariniotakis, G.; Madsen, J.; Möhrlen, C.
2016-09-01
This paper presents the new International Energy Agency Wind Task 36 on Forecasting, and invites to collaborate within the group. Wind power forecasts have been used operatively for over 20 years. Despite this fact, there are still several possibilities to improve the forecasts, both from the weather prediction side and from the usage of the forecasts. The new International Energy Agency (IEA) Task on Forecasting for Wind Energy tries to organise international collaboration, among national meteorological centres with an interest and/or large projects on wind forecast improvements (NOAA, DWD, MetOffice, met.no, DMI,...), operational forecaster and forecast users. The Task is divided in three work packages: Firstly, a collaboration on the improvement of the scientific basis for the wind predictions themselves. This includes numerical weather prediction model physics, but also widely distributed information on accessible datasets. Secondly, we will be aiming at an international pre-standard (an IEA Recommended Practice) on benchmarking and comparing wind power forecasts, including probabilistic forecasts. This WP will also organise benchmarks, in cooperation with the IEA Task WakeBench. Thirdly, we will be engaging end users aiming at dissemination of the best practice in the usage of wind power predictions. As first results, an overview of current issues for research in short-term forecasting of wind power is presented.
Robust optimization-based DC optimal power flow for managing wind generation uncertainty
NASA Astrophysics Data System (ADS)
Boonchuay, Chanwit; Tomsovic, Kevin; Li, Fangxing; Ongsakul, Weerakorn
2012-11-01
Integrating wind generation into the wider grid causes a number of challenges to traditional power system operation. Given the relatively large wind forecast errors, congestion management tools based on optimal power flow (OPF) need to be improved. In this paper, a robust optimization (RO)-based DCOPF is proposed to determine the optimal generation dispatch and locational marginal prices (LMPs) for a day-ahead competitive electricity market considering the risk of dispatch cost variation. The basic concept is to use the dispatch to hedge against the possibility of reduced or increased wind generation. The proposed RO-based DCOPF is compared with a stochastic non-linear programming (SNP) approach on a modified PJM 5-bus system. Primary test results show that the proposed DCOPF model can provide lower dispatch cost than the SNP approach.
Low Probability Tail Event Analysis and Mitigation in BPA Control Area: Task 2 Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Shuai; Makarov, Yuri V.; McKinstry, Craig A.
Task report detailing low probability tail event analysis and mitigation in BPA control area. Tail event refers to the situation in a power system when unfavorable forecast errors of load and wind are superposed onto fast load and wind ramps, or non-wind generators falling short of scheduled output, causing the imbalance between generation and load to become very significant.
Wind Power Forecasting Error Distributions: An International Comparison; Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hodge, B. M.; Lew, D.; Milligan, M.
2012-09-01
Wind power forecasting is expected to be an important enabler for greater penetration of wind power into electricity systems. Because no wind forecasting system is perfect, a thorough understanding of the errors that do occur can be critical to system operation functions, such as the setting of operating reserve levels. This paper provides an international comparison of the distribution of wind power forecasting errors from operational systems, based on real forecast data. The paper concludes with an assessment of similarities and differences between the errors observed in different locations.
NASA Astrophysics Data System (ADS)
Kies, Alexander; Brown, Tom; Schlachtberger, David; Schramm, Stefan
2017-04-01
The supply-demand imbalance is a major concern in the presence of large shares of highly variable renewable generation from sources like wind and photovoltaics (PV) in power systems. Other than the measures on the generation side, such as flexible backup generation or energy storage, sector coupling or demand side management are the most likely option to counter imbalances, therefore to ease the integration of renewable generation. Demand side management usually refers to load shifting, which comprises the reaction of electricity consumers to price fluctuations. In this work, we derive a novel methodology to model the interplay of load shifting and provided incentives via real-time pricing in highly renewable power systems. We use weather data to simulate generation from the renewable sources of wind and photovoltaics, as well as historical load data, split into different consumption categories, such as, heating, cooling, domestic, etc., to model a simplified power system. Together with renewable power forecast data, a simple market model and approaches to incorporate sector coupling [1] and load shifting [2,3], we model the interplay of incentives and load shifting for different scenarios (e.g., in dependency of the risk-aversion of consumers or the forecast horizon) and demonstrate the practical benefits of load shifting. First, we introduce the novel methodology and compare it with existing approaches. Secondly, we show results of numerical simulations on the effects of load shifting: It supports the integration of PV power by providing a storage, which characteristics can be described as "daily" and provides a significant amount of balancing potential. Lastly, we propose an experimental setup to obtain empirical data on end-consumer load-shifting behaviour in response to price incentives. References [1] Brown, T., Schlachtberger, D., Kies. A., Greiner, M., Sector coupling in a highly renewable European energy system, Proc. of the 15th International Workshop on Large-Scale Integration of Wind Power into Power Systems as well as on Transmission Networks for Offshore Wind Power Plants, Vienna, Austria, 15.-17. November 2016 [2] Kleinhans, D.: Towards a systematic characterization of the potential of demand side management, arXiv preprint arXiv:1401.4121, 2014 [3] Kies, A., Schyska, B. U., von Bremen, L., The Demand Side Management Potential to Balance a Highly Renewable European Power System. Energies, 9(11), 955, 2016
The Use of Artificial Neural Networks for Forecasting the Electric Demand of Stand-Alone Consumers
NASA Astrophysics Data System (ADS)
Ivanin, O. A.; Direktor, L. B.
2018-05-01
The problem of short-term forecasting of electric power demand of stand-alone consumers (small inhabited localities) situated outside centralized power supply areas is considered. The basic approaches to modeling the electric power demand depending on the forecasting time frame and the problems set, as well as the specific features of such modeling, are described. The advantages and disadvantages of the methods used for the short-term forecast of the electric demand are indicated, and difficulties involved in the solution of the problem are outlined. The basic principles of arranging artificial neural networks are set forth; it is also shown that the proposed method is preferable when the input information necessary for prediction is lacking or incomplete. The selection of the parameters that should be included into the list of the input data for modeling the electric power demand of residential areas using artificial neural networks is validated. The structure of a neural network is proposed for solving the problem of modeling the electric power demand of residential areas. The specific features of generation of the training dataset are outlined. The results of test modeling of daily electric demand curves for some settlements of Kamchatka and Yakutia based on known actual electric demand curves are provided. The reliability of the test modeling has been validated. A high value of the deviation of the modeled curve from the reference curve obtained in one of the four reference calculations is explained. The input data and the predicted power demand curves for the rural settlement of Kuokuiskii Nasleg are provided. The power demand curves were modeled for four characteristic days of the year, and they can be used in the future for designing a power supply system for the settlement. To enhance the accuracy of the method, a series of measures based on specific features of a neural network's functioning are proposed.
Variable Generation Power Forecasting as a Big Data Problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haupt, Sue Ellen; Kosovic, Branko
To blend growing amounts of power from renewable resources into utility operations requires accurate forecasts. For both day ahead planning and real-time operations, the power from the wind and solar resources must be predicted based on real-time observations and a series of models that span the temporal and spatial scales of the problem, using the physical and dynamical knowledge as well as computational intelligence. Accurate prediction is a Big Data problem that requires disparate data, multiple models that are each applicable for a specific time frame, and application of computational intelligence techniques to successfully blend all of the model andmore » observational information in real-time and deliver it to the decision makers at utilities and grid operators. This paper describes an example system that has been used for utility applications and how it has been configured to meet utility needs while addressing the Big Data issues.« less
Variable Generation Power Forecasting as a Big Data Problem
Haupt, Sue Ellen; Kosovic, Branko
2016-10-10
To blend growing amounts of power from renewable resources into utility operations requires accurate forecasts. For both day ahead planning and real-time operations, the power from the wind and solar resources must be predicted based on real-time observations and a series of models that span the temporal and spatial scales of the problem, using the physical and dynamical knowledge as well as computational intelligence. Accurate prediction is a Big Data problem that requires disparate data, multiple models that are each applicable for a specific time frame, and application of computational intelligence techniques to successfully blend all of the model andmore » observational information in real-time and deliver it to the decision makers at utilities and grid operators. This paper describes an example system that has been used for utility applications and how it has been configured to meet utility needs while addressing the Big Data issues.« less
Application and verification of ECMWF seasonal forecast for wind energy
NASA Astrophysics Data System (ADS)
Žagar, Mark; Marić, Tomislav; Qvist, Martin; Gulstad, Line
2015-04-01
A good understanding of long-term annual energy production (AEP) is crucial when assessing the business case of investing in green energy like wind power. The art of wind-resource assessment has emerged into a scientific discipline on its own, which has advanced at high pace over the last decade. This has resulted in continuous improvement of the AEP accuracy and, therefore, increase in business case certainty. Harvesting the full potential output of a wind farm or a portfolio of wind farms depends heavily on optimizing operation and management strategy. The necessary information for short-term planning (up to 14 days) is provided by standard weather and power forecasting services, and the long-term plans are based on climatology. However, the wind-power industry is lacking quality information on intermediate scales of the expected variability in seasonal and intra-annual variations and their geographical distribution. The seasonal power forecast presented here is designed to bridge this gap. The seasonal power production forecast is based on the ECMWF seasonal weather forecast and the Vestas' high-resolution, mesoscale weather library. The seasonal weather forecast is enriched through a layer of statistical post-processing added to relate large-scale wind speed anomalies to mesoscale climatology. The resulting predicted energy production anomalies, thus, include mesoscale effects not captured by the global forecasting systems. The turbine power output is non-linearly related to the wind speed, which has important implications for the wind power forecast. In theory, the wind power is proportional to the cube of wind speed. However, due to the nature of turbine design, this exponent is close to 3 only at low wind speeds, becomes smaller as the wind speed increases, and above 11-13 m/s the power output remains constant, called the rated power. The non-linear relationship between wind speed and the power output generally increases sensitivity of the forecasted power to the wind speed anomalies. On the other hand, in some cases and areas where turbines operate close to, or above the rated power, the sensitivity of power forecast is reduced. Thus, the seasonal power forecasting system requires good knowledge of the changes in frequency of events with sufficient wind speeds to have acceptable skill. The scientific background for the Vestas seasonal power forecasting system is described and the relationship between predicted monthly wind speed anomalies and observed wind energy production are investigated for a number of operating wind farms in different climate zones. Current challenges will be discussed and some future research and development areas identified.
Support vector machine for day ahead electricity price forecasting
NASA Astrophysics Data System (ADS)
Razak, Intan Azmira binti Wan Abdul; Abidin, Izham bin Zainal; Siah, Yap Keem; Rahman, Titik Khawa binti Abdul; Lada, M. Y.; Ramani, Anis Niza binti; Nasir, M. N. M.; Ahmad, Arfah binti
2015-05-01
Electricity price forecasting has become an important part of power system operation and planning. In a pool- based electric energy market, producers submit selling bids consisting in energy blocks and their corresponding minimum selling prices to the market operator. Meanwhile, consumers submit buying bids consisting in energy blocks and their corresponding maximum buying prices to the market operator. Hence, both producers and consumers use day ahead price forecasts to derive their respective bidding strategies to the electricity market yet reduce the cost of electricity. However, forecasting electricity prices is a complex task because price series is a non-stationary and highly volatile series. Many factors cause for price spikes such as volatility in load and fuel price as well as power import to and export from outside the market through long term contract. This paper introduces an approach of machine learning algorithm for day ahead electricity price forecasting with Least Square Support Vector Machine (LS-SVM). Previous day data of Hourly Ontario Electricity Price (HOEP), generation's price and demand from Ontario power market are used as the inputs for training data. The simulation is held using LSSVMlab in Matlab with the training and testing data of 2004. SVM that widely used for classification and regression has great generalization ability with structured risk minimization principle rather than empirical risk minimization. Moreover, same parameter settings in trained SVM give same results that absolutely reduce simulation process compared to other techniques such as neural network and time series. The mean absolute percentage error (MAPE) for the proposed model shows that SVM performs well compared to neural network.
Low Probability Tail Event Analysis and Mitigation in BPA Control Area: Task One Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Shuai; Makarov, Yuri V.
This is a report for task one of the tail event analysis project for BPA. Tail event refers to the situation in a power system when unfavorable forecast errors of load and wind are superposed onto fast load and wind ramps, or non-wind generators falling short of scheduled output, the imbalance between generation and load becomes very significant. This type of events occurs infrequently and appears on the tails of the distribution of system power imbalance; therefore, is referred to as tail events. This report analyzes what happened during the Electric Reliability Council of Texas (ERCOT) reliability event on Februarymore » 26, 2008, which was widely reported because of the involvement of wind generation. The objective is to identify sources of the problem, solutions to it and potential improvements that can be made to the system. Lessons learned from the analysis include the following: (1) Large mismatch between generation and load can be caused by load forecast error, wind forecast error and generation scheduling control error on traditional generators, or a combination of all of the above; (2) The capability of system balancing resources should be evaluated both in capacity (MW) and in ramp rate (MW/min), and be procured accordingly to meet both requirements. The resources need to be able to cover a range corresponding to the variability of load and wind in the system, additional to other uncertainties; (3) Unexpected ramps caused by load and wind can both become the cause leading to serious issues; (4) A look-ahead tool evaluating system balancing requirement during real-time operations and comparing that with available system resources should be very helpful to system operators in predicting the forthcoming of similar events and planning ahead; and (5) Demand response (only load reduction in ERCOT event) can effectively reduce load-generation mismatch and terminate frequency deviation in an emergency situation.« less
China’s Growing Energy Demand: Implications for the United States
2015-06-01
but less oil, natural gas, and nuclear power . By 2013, China consumed 25 percent more energy than the United States, including burning more than three...1 Energy Information Administration, International Energy Outlook 2013 (July 2013), www.eia.gov/ forecasts /archive/ieo13/. 3 output in China...natural gas (other than through pipelines), or the power generated from nuclear energy or renewable sources limits their markets to geographically
NASA Astrophysics Data System (ADS)
O'Brien, Enda; McKinstry, Alastair; Ralph, Adam
2015-04-01
Building on previous work presented at EGU 2013 (http://www.sciencedirect.com/science/article/pii/S1876610213016068 ), more results are available now from a different wind-farm in complex terrain in southwest Ireland. The basic approach is to interpolate wind-speed forecasts from an operational weather forecast model (i.e., HARMONIE in the case of Ireland) to the precise location of each wind-turbine, and then use Bayes Model Averaging (BMA; with statistical information collected from a prior training-period of e.g., 25 days) to remove systematic biases. Bias-corrected wind-speed forecasts (and associated power-generation forecasts) are then provided twice daily (at 5am and 5pm) out to 30 hours, with each forecast validation fed back to BMA for future learning. 30-hr forecasts from the operational Met Éireann HARMONIE model at 2.5km resolution have been validated against turbine SCADA observations since Jan. 2014. An extra high-resolution (0.5km grid-spacing) HARMONIE configuration has been run since Nov. 2014 as an extra member of the forecast "ensemble". A new version of HARMONIE with extra filters designed to stabilize high-resolution configurations has been run since Jan. 2015. Measures of forecast skill and forecast errors will be provided, and the contributions made by the various physical and computational enhancements to HARMONIE will be quantified.
Wind power forecasting: IEA Wind Task 36 & future research issues
Giebel, G.; Cline, J.; Frank, H.; ...
2016-10-03
Here, this paper presents the new International Energy Agency Wind Task 36 on Forecasting, and invites to collaborate within the group. Wind power forecasts have been used operatively for over 20 years. Despite this fact, there are still several possibilities to improve the forecasts, both from the weather prediction side and from the usage of the forecasts. The new International Energy Agency (IEA) Task on Forecasting for Wind Energy tries to organise international collaboration, among national meteorological centres with an interest and/or large projects on wind forecast improvements (NOAA, DWD, MetOffice, met.no, DMI,...), operational forecaster and forecast users. The Taskmore » is divided in three work packages: Firstly, a collaboration on the improvement of the scientific basis for the wind predictions themselves. This includes numerical weather prediction model physics, but also widely distributed information on accessible datasets. Secondly, we will be aiming at an international pre-standard (an IEA Recommended Practice) on benchmarking and comparing wind power forecasts, including probabilistic forecasts. This WP will also organise benchmarks, in cooperation with the IEA Task WakeBench. Thirdly, we will be engaging end users aiming at dissemination of the best practice in the usage of wind power predictions. As first results, an overview of current issues for research in short-term forecasting of wind power is presented.« less
Short term load forecasting of anomalous load using hybrid soft computing methods
NASA Astrophysics Data System (ADS)
Rasyid, S. A.; Abdullah, A. G.; Mulyadi, Y.
2016-04-01
Load forecast accuracy will have an impact on the generation cost is more economical. The use of electrical energy by consumers on holiday, show the tendency of the load patterns are not identical, it is different from the pattern of the load on a normal day. It is then defined as a anomalous load. In this paper, the method of hybrid ANN-Particle Swarm proposed to improve the accuracy of anomalous load forecasting that often occur on holidays. The proposed methodology has been used to forecast the half-hourly electricity demand for power systems in the Indonesia National Electricity Market in West Java region. Experiments were conducted by testing various of learning rate and learning data input. Performance of this methodology will be validated with real data from the national of electricity company. The result of observations show that the proposed formula is very effective to short-term load forecasting in the case of anomalous load. Hybrid ANN-Swarm Particle relatively simple and easy as a analysis tool by engineers.
Modeling and Forecasting Mortality With Economic Growth: A Multipopulation Approach.
Boonen, Tim J; Li, Hong
2017-10-01
Research on mortality modeling of multiple populations focuses mainly on extrapolating past mortality trends and summarizing these trends by one or more common latent factors. This article proposes a multipopulation stochastic mortality model that uses the explanatory power of economic growth. In particular, we extend the Li and Lee model (Li and Lee 2005) by including economic growth, represented by the real gross domestic product (GDP) per capita, to capture the common mortality trend for a group of populations with similar socioeconomic conditions. We find that our proposed model provides a better in-sample fit and an out-of-sample forecast performance. Moreover, it generates lower (higher) forecasted period life expectancy for countries with high (low) GDP per capita than the Li and Lee model.
NASA Astrophysics Data System (ADS)
Wharton, S.; Simpson, M.; Osuna, J. L.; Newman, J. F.; Biraud, S.
2013-12-01
Wind power forecasting is plagued with difficulties in accurately predicting the occurrence and intensity of atmospheric conditions at the heights spanned by industrial-scale turbines (~ 40 to 200 m above ground level). Better simulation of the relevant physics would enable operational practices such as integration of large fractions of wind power into power grids, scheduling maintenance on wind energy facilities, and deciding design criteria based on complex loads for next-generation turbines and siting. Accurately simulating the surface energy processes in numerical models may be critically important for wind energy forecasting as energy exchange at the surface strongly drives atmospheric mixing (i.e., stability) in the lower layers of the planetary boundary layer (PBL), which in turn largely determines wind shear and turbulence at heights found in the turbine rotor-disk. We hypothesize that simulating accurate a surface-atmosphere energy coupling should lead to more accurate predictions of wind speed and turbulence at heights within the turbine rotor-disk. Here, we tested 10 different land surface model configurations in the Weather Research and Forecasting (WRF) model including Noah, Noah-MP, SSiB, Pleim-Xiu, RUC, and others to evaluate (1) the accuracy of simulated surface energy fluxes to flux tower measurements, (2) the accuracy of forecasted wind speeds to observations at rotor-disk heights, and (3) the sensitivity of forecasting hub-height rotor disk wind speed to the choice of land surface model. WRF was run for four, two-week periods covering both summer and winter periods over the Southern Great Plains ARM site in Oklahoma. Continuous measurements of surface energy fluxes and lidar-based wind speed, direction and turbulence were also available. The SGP ARM site provided an ideal location for this evaluation as it centrally located in the wind-rich Great Plains and multi-MW wind farms are rapidly expanding in the area. We found significant differences in simulated wind speeds at rotor-disk heights from WRF which indicated, in part, the sensitivity of lower PBL winds to surface energy exchange. We also found significant differences in energy partitioning between sensible heat and latent energy depending on choice of land surface model. Overall, the most consistent, accurate model results were produced using Noah-MP. Noah-MP was most accurate at simulating energy fluxes and wind shear. Hub-height wind speed, however, was predicted with most accuracy with Pleim-Xiu. This suggests that simulating wind shear in the surface layer is consistent with accurately simulating surface energy exchange while the exact magnitudes of wind speed may be more strongly influenced by the PBL dynamics. As the nation is working towards a 20% wind energy goal by 2030, increasing the accuracy of wind forecasting at rotor-disk heights becomes more important considering that utilities require wind farms to estimate their power generation 24 to 36 hours ahead and face penalties for inaccuracies in those forecasts.
NASA Astrophysics Data System (ADS)
Bunnoon, Pituk; Chalermyanont, Kusumal; Limsakul, Chusak
2010-02-01
This paper proposed the discrete transform and neural network algorithms to obtain the monthly peak load demand in mid term load forecasting. The mother wavelet daubechies2 (db2) is employed to decomposed, high pass filter and low pass filter signals from the original signal before using feed forward back propagation neural network to determine the forecasting results. The historical data records in 1997-2007 of Electricity Generating Authority of Thailand (EGAT) is used as reference. In this study, historical information of peak load demand(MW), mean temperature(Tmean), consumer price index (CPI), and industrial index (economic:IDI) are used as feature inputs of the network. The experimental results show that the Mean Absolute Percentage Error (MAPE) is approximately 4.32%. This forecasting results can be used for fuel planning and unit commitment of the power system in the future.
Joint Seasonal ARMA Approach for Modeling of Load Forecast Errors in Planning Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hafen, Ryan P.; Samaan, Nader A.; Makarov, Yuri V.
2014-04-14
To make informed and robust decisions in the probabilistic power system operation and planning process, it is critical to conduct multiple simulations of the generated combinations of wind and load parameters and their forecast errors to handle the variability and uncertainty of these time series. In order for the simulation results to be trustworthy, the simulated series must preserve the salient statistical characteristics of the real series. In this paper, we analyze day-ahead load forecast error data from multiple balancing authority locations and characterize statistical properties such as mean, standard deviation, autocorrelation, correlation between series, time-of-day bias, and time-of-day autocorrelation.more » We then construct and validate a seasonal autoregressive moving average (ARMA) model to model these characteristics, and use the model to jointly simulate day-ahead load forecast error series for all BAs.« less
Progress in preliminary studies at Ottana Solar Facility
NASA Astrophysics Data System (ADS)
Demontis, V.; Camerada, M.; Cau, G.; Cocco, D.; Damiano, A.; Melis, T.; Musio, M.
2016-05-01
The fast increasing share of distributed generation from non-programmable renewable energy sources, such as the strong penetration of photovoltaic technology in the distribution networks, has generated several problems for the management and security of the whole power grid. In order to meet the challenge of a significant share of solar energy in the electricity mix, several actions aimed at increasing the grid flexibility and its hosting capacity, as well as at improving the generation programmability, need to be investigated. This paper focuses on the ongoing preliminary studies at the Ottana Solar Facility, a new experimental power plant located in Sardinia (Italy) currently under construction, which will offer the possibility to progress in the study of solar plants integration in the power grid. The facility integrates a concentrating solar power (CSP) plant, including a thermal energy storage system and an organic Rankine cycle (ORC) unit, with a concentrating photovoltaic (CPV) plant and an electrical energy storage system. The facility has the main goal to assess in real operating conditions the small scale concentrating solar power technology and to study the integration of the two technologies and the storage systems to produce programmable and controllable power profiles. A model for the CSP plant yield was developed to assess different operational strategies that significantly influence the plant yearly yield and its global economic effectiveness. In particular, precise assumptions for the ORC module start-up operation behavior, based on discussions with the manufacturers and technical datasheets, will be described. Finally, the results of the analysis of the: "solar driven", "weather forecasts" and "combined storage state of charge (SOC)/ weather forecasts" operational strategies will be presented.
7 CFR 1710.202 - Requirement to prepare a load forecast-power supply borrowers.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 11 2011-01-01 2011-01-01 false Requirement to prepare a load forecast-power supply...—power supply borrowers. (a) A power supply borrower with a total utility plant of $500 million or more... be prepared pursuant to the approved load forecast work plan. (b) A power supply borrower that is a...
NASA Astrophysics Data System (ADS)
Ito, Shigenobu; Yukita, Kazuto; Goto, Yasuyuki; Ichiyanagi, Katsuhiro; Nakano, Hiroyuki
By the development of industry, in recent years; dependence to electric energy is growing year by year. Therefore, reliable electric power supply is in need. However, to stock a huge amount of electric energy is very difficult. Also, there is a necessity to keep balance between the demand and supply, which changes hour after hour. Consequently, to supply the high quality and highly dependable electric power supply, economically, and with high efficiency, there is a need to forecast the movement of the electric power demand carefully in advance. And using that forecast as the source, supply and demand management plan should be made. Thus load forecasting is said to be an important job among demand investment of electric power companies. So far, forecasting method using Fuzzy logic, Neural Net Work, Regression model has been suggested for the development of forecasting accuracy. Those forecasting accuracy is in a high level. But to invest electric power in higher accuracy more economically, a new forecasting method with higher accuracy is needed. In this paper, to develop the forecasting accuracy of the former methods, the daily peak load forecasting method using the weather distribution of highest and lowest temperatures, and comparison value of each nearby date data is suggested.
An application of ensemble/multi model approach for wind power production forecasting
NASA Astrophysics Data System (ADS)
Alessandrini, S.; Pinson, P.; Hagedorn, R.; Decimi, G.; Sperati, S.
2011-02-01
The wind power forecasts of the 3 days ahead period are becoming always more useful and important in reducing the problem of grid integration and energy price trading due to the increasing wind power penetration. Therefore it's clear that the accuracy of this forecast is one of the most important requirements for a successful application. The wind power forecast applied in this study is based on meteorological models that provide the 3 days ahead wind data. A Model Output Statistic correction is then performed to reduce systematic error caused, for instance, by a wrong representation of surface roughness or topography in the meteorological models. For this purpose a training of a Neural Network (NN) to link directly the forecasted meteorological data and the power data has been performed. One wind farm has been examined located in a mountain area in the south of Italy (Sicily). First we compare the performances of a prediction based on meteorological data coming from a single model with those obtained by the combination of models (RAMS, ECMWF deterministic, LAMI). It is shown that the multi models approach reduces the day-ahead normalized RMSE forecast error (normalized by nominal power) of at least 1% compared to the singles models approach. Finally we have focused on the possibility of using the ensemble model system (EPS by ECMWF) to estimate the hourly, three days ahead, power forecast accuracy. Contingency diagram between RMSE of the deterministic power forecast and the ensemble members spread of wind forecast have been produced. From this first analysis it seems that ensemble spread could be used as an indicator of the forecast's accuracy at least for the first three days ahead period.
Inventing an Energy Internet: Concepts, Architectures and Protocols for Smart Energy Utilization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsoukalas, Lefteri
2009-04-29
In recent years, the Internet is revolutionizing information availability much like the Power Grid revolutionized energy availability a century earlier. We will explore the differences and similarities of these two critical infrastructures and identify ways for convergence which may lead to an energy internet. Pricing signals, nodal forecasting, and short-term elasticities are key concepts in smart energy flows respecting the delicate equilibrium involved in generation-demand and aiming at higher efficiencies. We will discuss how intelligent forecasting approaches operating at multiple levels (including device or nodal levels) can ameliorate the challenges of power storage. In addition to higher efficiencies, an energymore » internet may achieve significant reliability and security improvements and offer greater flexibility and transparency in the overall energy-environmental relation.« less
76 FR 72203 - Voltage Coordination on High Voltage Grids; Notice of Reliability Workshop Agenda
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-22
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. AD12-5-000] Voltage... currently coordinate the dispatch of reactive resources to support forecasted loads, generation and... reactive power needs of the distribution system or loads are coordinated or optimized. Panelists: Khaled...
Usage of Multi-Mission Radioisotope Thermoelectric Generators (MMRTGs) for Future Potential Missions
NASA Technical Reports Server (NTRS)
Zakrajsek, June F.; Cairns-Gallimore, Dirk; Otting, Bill; Johnson, Steve; Woerner, Dave
2016-01-01
The goal of NASAs Radioisotope Power Systems (RPS) Program is to make RPS ready and available to support the exploration of the solar system in environments where the use of conventional solar or chemical power generation is impractical or impossible to meet the needs of the missions. To meet this goal, the RPS Program, working closely with the Department of Energy, performs mission and system studies (such as the recently released Nuclear Power Assessment Study), evaluates the readiness of promising technologies to infuse in future generators, assesses the sustainment of key RPS capabilities and knowledge, forecasts and tracks the Programs budgetary needs, and disseminates current information about RPS to the community of potential users. This presentation focuses on the needs of the mission community and provides users a better understanding of how to integrate the MMRTG (Multi-Mission Radioisotope Thermoelectric Generator).
Commercialisation of Solid Oxide Fuel Cells - opportunities and forecasts
NASA Astrophysics Data System (ADS)
Dziurdzia, B.; Magonski, Z.; Jankowski, H.
2016-01-01
The paper presents the analysis of commercialisation possibilities of the SOFC stack designed at AGH. The paper reminds the final design of the stack, presented earlier at IMAPS- Poland conferences, its recent modifications and measurements. The stack consists of planar double-sided ceramic fuel cells which characterize by the special anode construction with embedded fuel channels. The stack features by a simple construction without metallic interconnectors and frames, lowered thermal capacity and quick start-up time. Predictions for the possible applications of the stack include portable generators for luxurious caravans, yachts, ships at berth. The SOFC stack operating as clean, quiet and efficient power source could replace on-board diesel generators. Market forecasts shows that there is also some room on a market for the SOFC stack as a standalone generator in rural areas far away from the grid. The paper presents also the survey of SOFC market in Europe USA, Australia and other countries.
A Machine LearningFramework to Forecast Wave Conditions
NASA Astrophysics Data System (ADS)
Zhang, Y.; James, S. C.; O'Donncha, F.
2017-12-01
Recently, significant effort has been undertaken to quantify and extract wave energy because it is renewable, environmental friendly, abundant, and often close to population centers. However, a major challenge is the ability to accurately and quickly predict energy production, especially across a 48-hour cycle. Accurate forecasting of wave conditions is a challenging undertaking that typically involves solving the spectral action-balance equation on a discretized grid with high spatial resolution. The nature of the computations typically demands high-performance computing infrastructure. Using a case-study site at Monterey Bay, California, a machine learning framework was trained to replicate numerically simulated wave conditions at a fraction of the typical computational cost. Specifically, the physics-based Simulating WAves Nearshore (SWAN) model, driven by measured wave conditions, nowcast ocean currents, and wind data, was used to generate training data for machine learning algorithms. The model was run between April 1st, 2013 and May 31st, 2017 generating forecasts at three-hour intervals yielding 11,078 distinct model outputs. SWAN-generated fields of 3,104 wave heights and a characteristic period could be replicated through simple matrix multiplications using the mapping matrices from machine learning algorithms. In fact, wave-height RMSEs from the machine learning algorithms (9 cm) were less than those for the SWAN model-verification exercise where those simulations were compared to buoy wave data within the model domain (>40 cm). The validated machine learning approach, which acts as an accurate surrogate for the SWAN model, can now be used to perform real-time forecasts of wave conditions for the next 48 hours using available forecasted boundary wave conditions, ocean currents, and winds. This solution has obvious applications to wave-energy generation as accurate wave conditions can be forecasted with over a three-order-of-magnitude reduction in computational expense. The low computational cost (and by association low computer-power requirement) means that the machine learning algorithms could be installed on a wave-energy converter as a form of "edge computing" where a device could forecast its own 48-hour energy production.
An application of ensemble/multi model approach for wind power production forecast.
NASA Astrophysics Data System (ADS)
Alessandrini, S.; Decimi, G.; Hagedorn, R.; Sperati, S.
2010-09-01
The wind power forecast of the 3 days ahead period are becoming always more useful and important in reducing the problem of grid integration and energy price trading due to the increasing wind power penetration. Therefore it's clear that the accuracy of this forecast is one of the most important requirements for a successful application. The wind power forecast is based on a mesoscale meteorological models that provides the 3 days ahead wind data. A Model Output Statistic correction is then performed to reduce systematic error caused, for instance, by a wrong representation of surface roughness or topography in the meteorological models. The corrected wind data are then used as input in the wind farm power curve to obtain the power forecast. These computations require historical time series of wind measured data (by an anemometer located in the wind farm or on the nacelle) and power data in order to be able to perform the statistical analysis on the past. For this purpose a Neural Network (NN) is trained on the past data and then applied in the forecast task. Considering that the anemometer measurements are not always available in a wind farm a different approach has also been adopted. A training of the NN to link directly the forecasted meteorological data and the power data has also been performed. The normalized RMSE forecast error seems to be lower in most cases by following the second approach. We have examined two wind farms, one located in Denmark on flat terrain and one located in a mountain area in the south of Italy (Sicily). In both cases we compare the performances of a prediction based on meteorological data coming from a single model with those obtained by using two or more models (RAMS, ECMWF deterministic, LAMI, HIRLAM). It is shown that the multi models approach reduces the day-ahead normalized RMSE forecast error of at least 1% compared to the singles models approach. Moreover the use of a deterministic global model, (e.g. ECMWF deterministic model) seems to reach similar level of accuracy of those of the mesocale models (LAMI and RAMS). Finally we have focused on the possibility of using the ensemble model (ECMWF) to estimate the hourly, three days ahead, power forecast accuracy. Contingency diagram between RMSE of the deterministic power forecast and the ensemble members spread of wind forecast have been produced. From this first analysis it seems that ensemble spread could be used as an indicator of the forecast's accuracy at least for the first day ahead period. In fact low spreads often correspond to low forecast error. For longer forecast horizon the correlation between RMSE and ensemble spread decrease becoming too low to be used for this purpose.
An econometric simulation model of income and electricity demand in Alaska's Railbelt, 1982-2022
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maddigan, R.J.; Hill, L.J.; Hamblin, D.M.
1987-01-01
This report describes the specification of-and forecasts derived from-the Alaska Railbelt Electricity Load, Macroeconomic (ARELM) model. ARELM was developed as an independent, modeling tool for the evaluation of the need for power from the Susitna Hydroelectric Project which has been proposed by the Alaska Power Authority. ARELM is an econometric simulation model consisting of 61 equations - 46 behavioral equations and 15 identities. The system includes two components: (1) ARELM-MACRO which is a system of equations that simulates the performance of both the total Alaskan and Railbelt macroeconomies and (2) ARELM-LOAD which projects electricity-related activity in the Alaskan Railbelt region.more » The modeling system is block recursive in the sense that forecasts of population, personal income, and employment in the Railbelt derived from ARELM-MACRO are used as explanatory variables in ARELM-LOAD to simulate electricity demand, the real average price of electricity, and the number of customers in the Railbelt. Three scenarios based on assumptions about the future price of crude oil are simulated and documented in the report. The simulations, which do not include the cost-of-power impacts of Susitna-based generation, show that the growth rate in Railbelt electricity load is between 2.5 and 2.7% over the 1982 to 2022 forecast period. The forecasting results are consistent with other projections of load growth in the region using different modeling approaches.« less
Bulk electric system reliability evaluation incorporating wind power and demand side management
NASA Astrophysics Data System (ADS)
Huang, Dange
Electric power systems are experiencing dramatic changes with respect to structure, operation and regulation and are facing increasing pressure due to environmental and societal constraints. Bulk electric system reliability is an important consideration in power system planning, design and operation particularly in the new competitive environment. A wide range of methods have been developed to perform bulk electric system reliability evaluation. Theoretically, sequential Monte Carlo simulation can include all aspects and contingencies in a power system and can be used to produce an informative set of reliability indices. It has become a practical and viable tool for large system reliability assessment technique due to the development of computing power and is used in the studies described in this thesis. The well-being approach used in this research provides the opportunity to integrate an accepted deterministic criterion into a probabilistic framework. This research work includes the investigation of important factors that impact bulk electric system adequacy evaluation and security constrained adequacy assessment using the well-being analysis framework. Load forecast uncertainty is an important consideration in an electrical power system. This research includes load forecast uncertainty considerations in bulk electric system reliability assessment and the effects on system, load point and well-being indices and reliability index probability distributions are examined. There has been increasing worldwide interest in the utilization of wind power as a renewable energy source over the last two decades due to enhanced public awareness of the environment. Increasing penetration of wind power has significant impacts on power system reliability, and security analyses become more uncertain due to the unpredictable nature of wind power. The effects of wind power additions in generating and bulk electric system reliability assessment considering site wind speed correlations and the interactive effects of wind power and load forecast uncertainty on system reliability are examined. The concept of the security cost associated with operating in the marginal state in the well-being framework is incorporated in the economic analyses associated with system expansion planning including wind power and load forecast uncertainty. Overall reliability cost/worth analyses including security cost concepts are applied to select an optimal wind power injection strategy in a bulk electric system. The effects of the various demand side management measures on system reliability are illustrated using the system, load point, and well-being indices, and the reliability index probability distributions. The reliability effects of demand side management procedures in a bulk electric system including wind power and load forecast uncertainty considerations are also investigated. The system reliability effects due to specific demand side management programs are quantified and examined in terms of their reliability benefits.
Wind-Friendly Flexible Ramping Product Design in Multi-Timescale Power System Operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Mingjian; Zhang, Jie; Wu, Hongyu
With increasing wind power penetration in the electricity grid, system operators are recognizing the need for additional flexibility, and some are implementing new ramping products as a type of ancillary service. However, wind is generally thought of as causing the need for ramping services, not as being a potential source for the service. In this paper, a multi-timescale unit commitment and economic dispatch model is developed to consider the wind power ramping product (WPRP). An optimized swinging door algorithm with dynamic programming is applied to identify and forecast wind power ramps (WPRs). Designed as positive characteristics of WPRs, the WPRPmore » is then integrated into the multi-timescale dispatch model that considers new objective functions, ramping capacity limits, active power limits, and flexible ramping requirements. Numerical simulations on the modified IEEE 118-bus system show the potential effectiveness of WPRP in increasing the economic efficiency of power system operations with high levels of wind power penetration. It is found that WPRP not only reduces the production cost by using less ramping reserves scheduled by conventional generators, but also possibly enhances the reliability of power system operations. Moreover, wind power forecasts play an important role in providing high-quality WPRP service.« less
NASA Astrophysics Data System (ADS)
Sinha, T.; Arumugam, S.
2012-12-01
Seasonal streamflow forecasts contingent on climate forecasts can be effectively utilized in updating water management plans and optimize generation of hydroelectric power. Streamflow in the rainfall-runoff dominated basins critically depend on forecasted precipitation in contrast to snow dominated basins, where initial hydrological conditions (IHCs) are more important. Since precipitation forecasts from Atmosphere-Ocean-General Circulation Models are available at coarse scale (~2.8° by 2.8°), spatial and temporal downscaling of such forecasts are required to implement land surface models, which typically runs on finer spatial and temporal scales. Consequently, multiple sources are introduced at various stages in predicting seasonal streamflow. Therefore, in this study, we addresses the following science questions: 1) How do we attribute the errors in monthly streamflow forecasts to various sources - (i) model errors, (ii) spatio-temporal downscaling, (iii) imprecise initial conditions, iv) no forecasts, and (iv) imprecise forecasts? and 2) How does monthly streamflow forecast errors propagate with different lead time over various seasons? In this study, the Variable Infiltration Capacity (VIC) model is calibrated over Apalachicola River at Chattahoochee, FL in the southeastern US and implemented with observed 1/8° daily forcings to estimate reference streamflow during 1981 to 2010. The VIC model is then forced with different schemes under updated IHCs prior to forecasting period to estimate relative mean square errors due to: a) temporally disaggregation, b) spatial downscaling, c) Reverse Ensemble Streamflow Prediction (imprecise IHCs), d) ESP (no forecasts), and e) ECHAM4.5 precipitation forecasts. Finally, error propagation under different schemes are analyzed with different lead time over different seasons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giebel, G.; Cline, J.; Frank, H.
Here, this paper presents the new International Energy Agency Wind Task 36 on Forecasting, and invites to collaborate within the group. Wind power forecasts have been used operatively for over 20 years. Despite this fact, there are still several possibilities to improve the forecasts, both from the weather prediction side and from the usage of the forecasts. The new International Energy Agency (IEA) Task on Forecasting for Wind Energy tries to organise international collaboration, among national meteorological centres with an interest and/or large projects on wind forecast improvements (NOAA, DWD, MetOffice, met.no, DMI,...), operational forecaster and forecast users. The Taskmore » is divided in three work packages: Firstly, a collaboration on the improvement of the scientific basis for the wind predictions themselves. This includes numerical weather prediction model physics, but also widely distributed information on accessible datasets. Secondly, we will be aiming at an international pre-standard (an IEA Recommended Practice) on benchmarking and comparing wind power forecasts, including probabilistic forecasts. This WP will also organise benchmarks, in cooperation with the IEA Task WakeBench. Thirdly, we will be engaging end users aiming at dissemination of the best practice in the usage of wind power predictions. As first results, an overview of current issues for research in short-term forecasting of wind power is presented.« less
Electricity forecasting on the individual household level enhanced based on activity patterns
Gajowniczek, Krzysztof; Ząbkowski, Tomasz
2017-01-01
Leveraging smart metering solutions to support energy efficiency on the individual household level poses novel research challenges in monitoring usage and providing accurate load forecasting. Forecasting electricity usage is an especially important component that can provide intelligence to smart meters. In this paper, we propose an enhanced approach for load forecasting at the household level. The impacts of residents’ daily activities and appliance usages on the power consumption of the entire household are incorporated to improve the accuracy of the forecasting model. The contributions of this paper are threefold: (1) we addressed short-term electricity load forecasting for 24 hours ahead, not on the aggregate but on the individual household level, which fits into the Residential Power Load Forecasting (RPLF) methods; (2) for the forecasting, we utilized a household specific dataset of behaviors that influence power consumption, which was derived using segmentation and sequence mining algorithms; and (3) an extensive load forecasting study using different forecasting algorithms enhanced by the household activity patterns was undertaken. PMID:28423039
DOE Office of Scientific and Technical Information (OSTI.GOV)
Optis, Michael; Scott, George N.; Draxl, Caroline
The goal of this analysis was to assess the wind power forecast accuracy of the Vermont Weather Analytics Center (VTWAC) forecast system and to identify potential improvements to the forecasts. Based on the analysis at Georgia Mountain, the following recommendations for improving forecast performance were made: 1. Resolve the significant negative forecast bias in February-March 2017 (50% underprediction on average) 2. Improve the ability of the forecast model to capture the strong diurnal cycle of wind power 3. Add ability for forecast model to assess internal wake loss, particularly at sites where strong diurnal shifts in wind direction are present.more » Data availability and quality limited the robustness of this forecast assessment. A more thorough analysis would be possible given a longer period of record for the data (at least one full year), detailed supervisory control and data acquisition data for each wind plant, and more detailed information on the forecast system input data and methodologies.« less
Electricity forecasting on the individual household level enhanced based on activity patterns.
Gajowniczek, Krzysztof; Ząbkowski, Tomasz
2017-01-01
Leveraging smart metering solutions to support energy efficiency on the individual household level poses novel research challenges in monitoring usage and providing accurate load forecasting. Forecasting electricity usage is an especially important component that can provide intelligence to smart meters. In this paper, we propose an enhanced approach for load forecasting at the household level. The impacts of residents' daily activities and appliance usages on the power consumption of the entire household are incorporated to improve the accuracy of the forecasting model. The contributions of this paper are threefold: (1) we addressed short-term electricity load forecasting for 24 hours ahead, not on the aggregate but on the individual household level, which fits into the Residential Power Load Forecasting (RPLF) methods; (2) for the forecasting, we utilized a household specific dataset of behaviors that influence power consumption, which was derived using segmentation and sequence mining algorithms; and (3) an extensive load forecasting study using different forecasting algorithms enhanced by the household activity patterns was undertaken.
A Wind Forecasting System for Energy Application
NASA Astrophysics Data System (ADS)
Courtney, Jennifer; Lynch, Peter; Sweeney, Conor
2010-05-01
Accurate forecasting of available energy is crucial for the efficient management and use of wind power in the national power grid. With energy output critically dependent upon wind strength there is a need to reduce the errors associated wind forecasting. The objective of this research is to get the best possible wind forecasts for the wind energy industry. To achieve this goal, three methods are being applied. First, a mesoscale numerical weather prediction (NWP) model called WRF (Weather Research and Forecasting) is being used to predict wind values over Ireland. Currently, a gird resolution of 10km is used and higher model resolutions are being evaluated to establish whether they are economically viable given the forecast skill improvement they produce. Second, the WRF model is being used in conjunction with ECMWF (European Centre for Medium-Range Weather Forecasts) ensemble forecasts to produce a probabilistic weather forecasting product. Due to the chaotic nature of the atmosphere, a single, deterministic weather forecast can only have limited skill. The ECMWF ensemble methods produce an ensemble of 51 global forecasts, twice a day, by perturbing initial conditions of a 'control' forecast which is the best estimate of the initial state of the atmosphere. This method provides an indication of the reliability of the forecast and a quantitative basis for probabilistic forecasting. The limitation of ensemble forecasting lies in the fact that the perturbed model runs behave differently under different weather patterns and each model run is equally likely to be closest to the observed weather situation. Models have biases, and involve assumptions about physical processes and forcing factors such as underlying topography. Third, Bayesian Model Averaging (BMA) is being applied to the output from the ensemble forecasts in order to statistically post-process the results and achieve a better wind forecasting system. BMA is a promising technique that will offer calibrated probabilistic wind forecasts which will be invaluable in wind energy management. In brief, this method turns the ensemble forecasts into a calibrated predictive probability distribution. Each ensemble member is provided with a 'weight' determined by its relative predictive skill over a training period of around 30 days. Verification of data is carried out using observed wind data from operational wind farms. These are then compared to existing forecasts produced by ECMWF and Met Eireann in relation to skill scores. We are developing decision-making models to show the benefits achieved using the data produced by our wind energy forecasting system. An energy trading model will be developed, based on the rules currently used by the Single Electricity Market Operator for energy trading in Ireland. This trading model will illustrate the potential for financial savings by using the forecast data generated by this research.
NASA Astrophysics Data System (ADS)
Beckers, J.; Weerts, A.; Tijdeman, E.; Welles, E.; McManamon, A.
2013-12-01
To provide reliable and accurate seasonal streamflow forecasts for water resources management several operational hydrologic agencies and hydropower companies around the world use the Extended Streamflow Prediction (ESP) procedure. The ESP in its original implementation does not accommodate for any additional information that the forecaster may have about expected deviations from climatology in the near future. Several attempts have been conducted to improve the skill of the ESP forecast, especially for areas which are affected by teleconnetions (e,g. ENSO, PDO) via selection (Hamlet and Lettenmaier, 1999) or weighting schemes (Werner et al., 2004; Wood and Lettenmaier, 2006; Najafi et al., 2012). A disadvantage of such schemes is that they lead to a reduction of the signal to noise ratio of the probabilistic forecast. To overcome this, we propose a resampling method conditional on climate indices to generate meteorological time series to be used in the ESP. The method can be used to generate a large number of meteorological ensemble members in order to improve the statistical properties of the ensemble. The effectiveness of the method was demonstrated in a real-time operational hydrologic seasonal forecasts system for the Columbia River basin operated by the Bonneville Power Administration. The forecast skill of the k-nn resampler was tested against the original ESP for three basins at the long-range seasonal time scale. The BSS and CRPSS were used to compare the results to those of the original ESP method. Positive forecast skill scores were found for the resampler method conditioned on different indices for the prediction of spring peak flows in the Dworshak and Hungry Horse basin. For the Libby Dam basin however, no improvement of skill was found. The proposed resampling method is a promising practical approach that can add skill to ESP forecasts at the seasonal time scale. Further improvement is possible by fine tuning the method and selecting the most informative climate indices for the region of interest.
Near real time wind energy forecasting incorporating wind tunnel modeling
NASA Astrophysics Data System (ADS)
Lubitz, William David
A series of experiments and investigations were carried out to inform the development of a day-ahead wind power forecasting system. An experimental near-real time wind power forecasting system was designed and constructed that operates on a desktop PC and forecasts 12--48 hours in advance. The system uses model output of the Eta regional scale forecast (RSF) to forecast the power production of a wind farm in the Altamont Pass, California, USA from 12 to 48 hours in advance. It is of modular construction and designed to also allow diagnostic forecasting using archived RSF data, thereby allowing different methods of completing each forecasting step to be tested and compared using the same input data. Wind-tunnel investigations of the effect of wind direction and hill geometry on wind speed-up above a hill were conducted. Field data from an Altamont Pass, California site was used to evaluate several speed-up prediction algorithms, both with and without wind direction adjustment. These algorithms were found to be of limited usefulness for the complex terrain case evaluated. Wind-tunnel and numerical simulation-based methods were developed for determining a wind farm power curve (the relation between meteorological conditions at a point in the wind farm and the power production of the wind farm). Both methods, as well as two methods based on fits to historical data, ultimately showed similar levels of accuracy: mean absolute errors predicting power production of 5 to 7 percent of the wind farm power capacity. The downscaling of RSF forecast data to the wind farm was found to be complicated by the presence of complex terrain. Poor results using the geostrophic drag law and regression methods motivated the development of a database search method that is capable of forecasting not only wind speeds but also power production with accuracy better than persistence.
NASA Astrophysics Data System (ADS)
Hernandez, C.
2010-09-01
The weakness of small island electrical grids implies a handicap for the electrical generation with renewable energy sources. With the intention of maximizing the installation of photovoltaic generators in the Canary Islands, arises the need to develop a solar forecasting system that allows knowing in advance the amount of PV generated electricity that will be going into the grid, from the installed PV power plants installed in the island. The forecasting tools need to get feedback from real weather data in "real time" from remote weather stations. Nevertheless, the transference of this data to the calculation computer servers is very complicated with the old point to point telecommunication systems that, neither allow the transfer of data from several remote weather stations simultaneously nor high frequency of sampling of weather parameters due to slowness of the connection. This one project has developed a telecommunications infrastructure that allows sensorizadas remote stations, to send data of its sensors, once every minute and simultaneously, to the calculation server running the solar forecasting numerical models. For it, the Canary Islands Institute of Technology has added a sophisticated communications network to its 30 weather stations measuring irradiation at strategic sites, areas with high penetration of photovoltaic generation or that have potential to host in the future photovoltaic power plants connected to the grid. In each one of the stations, irradiance and temperature measurement instruments have been installed, over inclined silicon cell, global radiation on horizontal surface and room temperature. Mobile telephone devices have been installed and programmed in each one of the weather stations, which allow the transfer of their data taking advantage of the UMTS service offered by the local telephone operator. Every minute the computer server running the numerical weather forecasting models receives data inputs from 120 instruments distributed over the 30 radiometric stations. As a the result, currently it exist a stable, flexible, safe and economic infrastructure of radiometric stations and telecommunications that allows, on the one hand, to have data in real time from all 30 remote weather stations, and on the other hand allows to communicate with them in order to reprogram them and to carry out maintenance works.
NASA Astrophysics Data System (ADS)
Szurgacz, Dawid; Brodny, Jaroław
2018-01-01
A powered roof support is a machine responsible for protection of an underground excavation against deformation generated by rock mass. In the case of dynamic impact of rock mass, the proper level of protection is hard to achieve. Therefore, the units of the roof support and its components are subject to detailed tests aimed at acquiring greater reliability, efficiency and efficacy. In the course of such test, however, it is not always possible to foresee values of load that may occur in actual conditions. The article presents a case of a dynamic load impacting the powered roof support during a high-energy tremor in an underground hard coal mine. The authors discuss the method for selecting powered roof support units proper for specific forecasted load conditions. The method takes into account the construction of the support and mining and geological conditions of an excavation. Moreover, the paper includes tests carried out on hydraulic legs and yield valves which were responsible for additional yielding of the support. Real loads impacting the support unit during tremors are analysed. The results indicated that the real registered values of the load were significantly greater than the forecasted values. The analysis results of roof support operation during dynamic impact generated by the rock mass (real life conditions) prompted the authors to develop a set of recommendations for manufacturers and users of powered roof supports. These include, inter alia, the need for innovative solutions for testing hydraulic section systems.
A Comparison of Forecast Error Generators for Modeling Wind and Load Uncertainty
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Ning; Diao, Ruisheng; Hafen, Ryan P.
2013-12-18
This paper presents four algorithms to generate random forecast error time series, including a truncated-normal distribution model, a state-space based Markov model, a seasonal autoregressive moving average (ARMA) model, and a stochastic-optimization based model. The error time series are used to create real-time (RT), hour-ahead (HA), and day-ahead (DA) wind and load forecast time series that statistically match historically observed forecasting data sets, used for variable generation integration studies. A comparison is made using historical DA load forecast and actual load values to generate new sets of DA forecasts with similar stoical forecast error characteristics. This paper discusses and comparesmore » the capabilities of each algorithm to preserve the characteristics of the historical forecast data sets.« less
Solar and Wind Forecasting | Grid Modernization | NREL
and Wind Forecasting Solar and Wind Forecasting As solar and wind power become more common system operators. An aerial photo of the National Wind Technology Center's PV arrays. Capabilities value of accurate forecasting Wind power visualization to direct questions and feedback during industry
Power fluctuation reduction methodology for the grid-connected renewable power systems
NASA Astrophysics Data System (ADS)
Aula, Fadhil T.; Lee, Samuel C.
2013-04-01
This paper presents a new methodology for eliminating the influence of the power fluctuations of the renewable power systems. The renewable energy, which is to be considered an uncertain and uncontrollable resource, can only provide irregular electrical power to the power grid. This irregularity creates fluctuations of the generated power from the renewable power systems. These fluctuations cause instability to the power system and influence the operation of conventional power plants. Overall, the power system is vulnerable to collapse if necessary actions are not taken to reduce the impact of these fluctuations. This methodology aims at reducing these fluctuations and makes the generated power capability for covering the power consumption. This requires a prediction tool for estimating the generated power in advance to provide the range and the time of occurrence of the fluctuations. Since most of the renewable energies are weather based, as a result a weather forecast technique will be used for predicting the generated power. The reduction of the fluctuation also requires stabilizing facilities to maintain the output power at a desired level. In this study, a wind farm and a photovoltaic array as renewable power systems and a pumped-storage and batteries as stabilizing facilities are used, since they are best suitable for compensating the fluctuations of these types of power suppliers. As an illustrative example, a model of wind and photovoltaic power systems with battery energy and pumped hydro storage facilities for power fluctuation reduction is included, and its power fluctuation reduction is verified through simulation.
Sensor network based solar forecasting using a local vector autoregressive ridge framework
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, J.; Yoo, S.; Heiser, J.
2016-04-04
The significant improvements and falling costs of photovoltaic (PV) technology make solar energy a promising resource, yet the cloud induced variability of surface solar irradiance inhibits its effective use in grid-tied PV generation. Short-term irradiance forecasting, especially on the minute scale, is critically important for grid system stability and auxiliary power source management. Compared to the trending sky imaging devices, irradiance sensors are inexpensive and easy to deploy but related forecasting methods have not been well researched. The prominent challenge of applying classic time series models on a network of irradiance sensors is to address their varying spatio-temporal correlations duemore » to local changes in cloud conditions. We propose a local vector autoregressive framework with ridge regularization to forecast irradiance without explicitly determining the wind field or cloud movement. By using local training data, our learned forecast model is adaptive to local cloud conditions and by using regularization, we overcome the risk of overfitting from the limited training data. Our systematic experimental results showed an average of 19.7% RMSE and 20.2% MAE improvement over the benchmark Persistent Model for 1-5 minute forecasts on a comprehensive 25-day dataset.« less
Addressing forecast uncertainty impact on CSP annual performance
NASA Astrophysics Data System (ADS)
Ferretti, Fabio; Hogendijk, Christopher; Aga, Vipluv; Ehrsam, Andreas
2017-06-01
This work analyzes the impact of weather forecast uncertainty on the annual performance of a Concentrated Solar Power (CSP) plant. Forecast time series has been produced by a commercial forecast provider using the technique of hindcasting for the full year 2011 in hourly resolution for Ouarzazate, Morocco. Impact of forecast uncertainty has been measured on three case studies, representing typical tariff schemes observed in recent CSP projects plus a spot market price scenario. The analysis has been carried out using an annual performance model and a standard dispatch optimization algorithm based on dynamic programming. The dispatch optimizer has been demonstrated to be a key requisite to maximize the annual revenues depending on the price scenario, harvesting the maximum potential out of the CSP plant. Forecasting uncertainty affects the revenue enhancement outcome of a dispatch optimizer depending on the error level and the price function. Results show that forecasting accuracy of direct solar irradiance (DNI) is important to make best use of an optimized dispatch but also that a higher number of calculation updates can partially compensate this uncertainty. Improvement in revenues can be significant depending on the price profile and the optimal operation strategy. Pathways to achieve better performance are presented by having more updates both by repeatedly generating new optimized trajectories but also more often updating weather forecasts. This study shows the importance of working on DNI weather forecasting for revenue enhancement as well as selecting weather services that can provide multiple updates a day and probabilistic forecast information.
Flexible reserve markets for wind integration
NASA Astrophysics Data System (ADS)
Fernandez, Alisha R.
The increased interconnection of variable generation has motivated the use of improved forecasting to more accurately predict future production with the purpose to lower total system costs for balancing when the expected output exceeds or falls short of the actual output. Forecasts are imperfect, and the forecast errors associated with utility-scale generation from variable generators need new balancing capabilities that cannot be handled by existing ancillary services. Our work focuses on strategies for integrating large amounts of wind generation under the flex reserve market, a market that would called upon for short-term energy services during an under or oversupply of wind generation to maintain electric grid reliability. The flex reserve market would be utilized for time intervals that fall in-between the current ancillary services markets that would be longer than second-to-second energy services for maintaining system frequency and shorter than reserve capacity services that are called upon for several minutes up to an hour during an unexpected contingency on the grid. In our work, the wind operator would access the flex reserve market as an energy service to correct for unanticipated forecast errors, akin to paying the generators participating in the market to increase generation during a shortfall or paying the other generators to decrease generation during an excess of wind generation. Such a market does not currently exist in the Mid-Atlantic United States. The Pennsylvania-New Jersey-Maryland Interconnection (PJM) is the Mid-Atlantic electric grid case study that was used to examine if a flex reserve market can be utilized for integrating large capacities of wind generation in a lowcost manner for those providing, purchasing and dispatching these short-term balancing services. The following work consists of three studies. The first examines the ability of a hydroelectric facility to provide short-term forecast error balancing services via a flex reserve market, identifying the operational constraints that inhibit a multi-purpose dam facility to meet the desired flexible energy demand. The second study transitions from the hydroelectric facility as the decision maker providing flex reserve services to the wind plant as the decision maker purchasing these services. In this second study, methods for allocating the costs of flex reserve services under different wind policy scenarios are explored that aggregate farms into different groupings to identify the least-cost strategy for balancing the costs of hourly day-ahead forecast errors. The least-cost strategy may be different for an individual wind plant and for the system operator, noting that the least-cost strategy is highly sensitive to cost allocation and aggregation schemes. The latter may also cause cross-subsidies in the cost for balancing wind forecast errors among the different wind farms. The third study builds from the second, with the objective to quantify the amount of flex reserves needed for balancing future forecast errors using a probabilistic approach (quantile regression) to estimating future forecast errors. The results further examine the usefulness of separate flexible markets PJM could use for balancing oversupply and undersupply events, similar to the regulation up and down markets used in Europe. These three studies provide the following results and insights to large-scale wind integration using actual PJM wind farm data that describe the markets and generators within PJM. • Chapter 2 provides an in-depth analysis of the valuable, yet highly-constrained, energy services multi-purpose hydroelectric facilities can provide, though the opportunity cost for providing these services can result in large deviations from the reservoir policies with minimal revenue gain in comparison to dedicating the whole of dam capacity to providing day-ahead, baseload generation. • Chapter 3 quantifies the system-wide efficiency gains and the distributive effects of PJM's decision to act as a single balancing authority, which means that it procures ancillary services across its entire footprint simultaneously. This can be contrasted to Midwest Independent System Operator (MISO), which has several balancing authorities operating under its footprint. • Chapter 4 uses probabilistic methods to estimate the uncertainty in the forecast errors and the quantity of energy needed to balance these forecast errors at a certain percentile. Current practice is to use a point forecast that describes the conditional expectation of the dependent variable at each time step. The approach here uses quantile regression to describe the relationship between independent variable and the conditional quantiles (equivalently the percentiles) of the dependent variable. An estimate of the conditional density is performed, which contains information about the covariate relationship of the sign of the forecast errors (negative for too much wind generation and positive for too little wind generation) and the wind power forecast. This additional knowledge may be implemented in the decision process to more accurately schedule day-ahead wind generation bids and provide an example for using separate markets for balancing an oversupply and undersupply of generation. Such methods are currently used for coordinating large footprints of wind generation in Europe.
The Value of Humans in the Operational River Forecasting Enterprise
NASA Astrophysics Data System (ADS)
Pagano, T. C.
2012-04-01
The extent of human control over operational river forecasts, such as by adjusting model inputs and outputs, varies from nearly completely automated systems to those where forecasts are generated after discussion among a group of experts. Historical and realtime data availability, the complexity of hydrologic processes, forecast user needs, and forecasting institution support/resource availability (e.g. computing power, money for model maintenance) influence the character and effectiveness of operational forecasting systems. Automated data quality algorithms, if used at all, are typically very basic (e.g. checks for impossible values); substantial human effort is devoted to cleaning up forcing data using subjective methods. Similarly, although it is an active research topic, nearly all operational forecasting systems struggle to make quantitative use of Numerical Weather Prediction model-based precipitation forecasts, instead relying on the assessment of meteorologists. Conversely, while there is a strong tradition in meteorology of making raw model outputs available to forecast users via the Internet, this is rarely done in hydrology; Operational river forecasters express concerns about exposing users to raw guidance, due to the potential for misinterpretation and misuse. However, this limits the ability of users to build their confidence in operational products through their own value-added analyses. Forecasting agencies also struggle with provenance (i.e. documenting the production process and archiving the pieces that went into creating a forecast) although this is necessary for quantifying the benefits of human involvement in forecasting and diagnosing weak links in the forecasting chain. In hydrology, the space between model outputs and final operational products is nearly unstudied by the academic community, although some studies exist in other fields such as meteorology.
NASA Astrophysics Data System (ADS)
Sirch, Tobias; Bugliaro, Luca; Zinner, Tobias; Möhrlein, Matthias; Vazquez-Navarro, Margarita
2017-02-01
A novel approach for the nowcasting of clouds and direct normal irradiance (DNI) based on the Spinning Enhanced Visible and Infrared Imager (SEVIRI) aboard the geostationary Meteosat Second Generation (MSG) satellite is presented for a forecast horizon up to 120 min. The basis of the algorithm is an optical flow method to derive cloud motion vectors for all cloudy pixels. To facilitate forecasts over a relevant time period, a classification of clouds into objects and a weighted triangular interpolation of clear-sky regions are used. Low and high level clouds are forecasted separately because they show different velocities and motion directions. Additionally a distinction in advective and convective clouds together with an intensity correction for quickly thinning convective clouds is integrated. The DNI is calculated from the forecasted optical thickness of the low and high level clouds. In order to quantitatively assess the performance of the algorithm, a forecast validation against MSG/SEVIRI observations is performed for a period of 2 months. Error rates and Hanssen-Kuiper skill scores are derived for forecasted cloud masks. For a forecast of 5 min for most cloud situations more than 95 % of all pixels are predicted correctly cloudy or clear. This number decreases to 80-95 % for a forecast of 2 h depending on cloud type and vertical cloud level. Hanssen-Kuiper skill scores for cloud mask go down to 0.6-0.7 for a 2 h forecast. Compared to persistence an improvement of forecast horizon by a factor of 2 is reached for all forecasts up to 2 h. A comparison of forecasted optical thickness distributions and DNI against observations yields correlation coefficients larger than 0.9 for 15 min forecasts and around 0.65 for 2 h forecasts.
Improving medium-range ensemble streamflow forecasts through statistical post-processing
NASA Astrophysics Data System (ADS)
Mendoza, Pablo; Wood, Andy; Clark, Elizabeth; Nijssen, Bart; Clark, Martyn; Ramos, Maria-Helena; Nowak, Kenneth; Arnold, Jeffrey
2017-04-01
Probabilistic hydrologic forecasts are a powerful source of information for decision-making in water resources operations. A common approach is the hydrologic model-based generation of streamflow forecast ensembles, which can be implemented to account for different sources of uncertainties - e.g., from initial hydrologic conditions (IHCs), weather forecasts, and hydrologic model structure and parameters. In practice, hydrologic ensemble forecasts typically have biases and spread errors stemming from errors in the aforementioned elements, resulting in a degradation of probabilistic properties. In this work, we compare several statistical post-processing techniques applied to medium-range ensemble streamflow forecasts obtained with the System for Hydromet Applications, Research and Prediction (SHARP). SHARP is a fully automated prediction system for the assessment and demonstration of short-term to seasonal streamflow forecasting applications, developed by the National Center for Atmospheric Research, University of Washington, U.S. Army Corps of Engineers, and U.S. Bureau of Reclamation. The suite of post-processing techniques includes linear blending, quantile mapping, extended logistic regression, quantile regression, ensemble analogs, and the generalized linear model post-processor (GLMPP). We assess and compare these techniques using multi-year hindcasts in several river basins in the western US. This presentation discusses preliminary findings about the effectiveness of the techniques for improving probabilistic skill, reliability, discrimination, sharpness and resolution.
Karpušenkaitė, Aistė; Ruzgas, Tomas; Denafas, Gintaras
2018-05-01
The aim of the study was to create a hybrid forecasting method that could produce higher accuracy forecasts than previously used 'pure' time series methods. Mentioned methods were already tested with total automotive waste, hazardous automotive waste, and total medical waste generation, but demonstrated at least a 6% error rate in different cases and efforts were made to decrease it even more. Newly developed hybrid models used a random start generation method to incorporate different time-series advantages and it helped to increase the accuracy of forecasts by 3%-4% in hazardous automotive waste and total medical waste generation cases; the new model did not increase the accuracy of total automotive waste generation forecasts. Developed models' abilities to forecast short- and mid-term forecasts were tested using prediction horizon.
A Solar Time-Based Analog Ensemble Method for Regional Solar Power Forecasting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hodge, Brian S; Zhang, Xinmin; Li, Yuan
This paper presents a new analog ensemble method for day-ahead regional photovoltaic (PV) power forecasting with hourly resolution. By utilizing open weather forecast and power measurement data, this prediction method is processed within a set of historical data with similar meteorological data (temperature and irradiance), and astronomical date (solar time and earth declination angle). Further, clustering and blending strategies are applied to improve its accuracy in regional PV forecasting. The robustness of the proposed method is demonstrated with three different numerical weather prediction models, the North American Mesoscale Forecast System, the Global Forecast System, and the Short-Range Ensemble Forecast, formore » both region level and single site level PV forecasts. Using real measured data, the new forecasting approach is applied to the load zone in Southeastern Massachusetts as a case study. The normalized root mean square error (NRMSE) has been reduced by 13.80%-61.21% when compared with three tested baselines.« less
A Numerical Simulation (Study) of a Strong West Coast December 2014 Winter Storm
NASA Astrophysics Data System (ADS)
Smelser, I.; Xu, L.; Amerault, C. M.; Baker, N. L.; Satterfield, E.; Chua, B.
2016-12-01
From December 10 through December 13, 2014, a powerful winter storm swept across the western US coastal states bringing widespread power outages, numerous downed trees and power lines, heavy rains, flooding and even a tornado in the Los Angeles basin. This windstorm was the strongest since October 2009, and was similar to classic wind storms such as the 1962 Columbus Day Storm (Read, 2015).The storm started developing over the Pacific Ocean north of Hawaii on Nov. 30, and formed an atmospheric river that eventually stretched from Hawaii to the west coast. The storm initially hit the Pacific Northwest on Dec. 9th and then split. The highest precipitation amounts started in British Colombia and moved south along the coast. By the Dec. 11th, the highest precipitation amounts were near San Francisco (CA). The peak wind gust (14.4 ms-1) for Monterey (CA) occurred at 1116Z on Dec. 11th while the heaviest 6-hr precipitation (42.9 mm) occurred between 18Z on Dec. 11th to 00Z on Dec. 12th. By Dec. 12th, the storm was centered over Southern California.This storm was poorly forecast by many operational NWP models even 2-3 days in advance (Mass, 2014). The NCEP Global Forecast System (GFS) showed considerably variability between successive model runs, and significant differences existed between Environment Canada, UK Met Office and ECMWF model forecasts. To study this extreme weather event, we used the Navy global (NAVGEM) and mesoscale (COAMPS®) NWP models, and compared the resulting forecasts to observations, satellite imagery and ECMWF (TIGGE) forecasts. NAVGEM, with Hybrid 4DVar, was run with a resolution of 31 km, and generated the boundary conditions for COAMPS® 4DVar and forecasts, that were run with triple-nested grids of 27, 9, and 3 km. The MesoWest data from the University of Utah were used for forecast verification, and to locate the times of highest precipitation and wind speed for different points along the coast. Both the online API and the python module were used to access and pull information from the data base. Overall, both NAVGEM and COAMPS® predicted the storm well. NAVGEM predicted the storm to be slower and more powerful than the analyses. The NAVGEM analysis and corresponding 5-day forecast accumulated 6-hr precipitation (Fig. 1) for Dec. 12th at 00Z agree well with the observed precipitation (4.29 cm) for Monterey (KMRY).
Hourly Wind Speed Interval Prediction in Arid Regions
NASA Astrophysics Data System (ADS)
Chaouch, M.; Ouarda, T.
2013-12-01
The long and extended warm and dry summers, the low rate of rain and humidity are the main factors that explain the increase of electricity consumption in hot arid regions. In such regions, the ventilating and air-conditioning installations, that are typically the most energy-intensive among energy consumption activities, are essential for securing healthy, safe and suitable indoor thermal conditions for building occupants and stored materials. The use of renewable energy resources such as solar and wind represents one of the most relevant solutions to overcome the increase of the electricity demand challenge. In the recent years, wind energy is gaining more importance among the researchers worldwide. Wind energy is intermittent in nature and hence the power system scheduling and dynamic control of wind turbine requires an estimate of wind energy. Accurate forecast of wind speed is a challenging task for the wind energy research field. In fact, due to the large variability of wind speed caused by the unpredictable and dynamic nature of the earth's atmosphere, there are many fluctuations in wind power production. This inherent variability of wind speed is the main cause of the uncertainty observed in wind power generation. Furthermore, producing wind power forecasts might be obtained indirectly by modeling the wind speed series and then transforming the forecasts through a power curve. Wind speed forecasting techniques have received substantial attention recently and several models have been developed. Basically two main approaches have been proposed in the literature: (1) physical models such as Numerical Weather Forecast and (2) statistical models such as Autoregressive integrated moving average (ARIMA) models, Neural Networks. While the initial focus in the literature has been on point forecasts, the need to quantify forecast uncertainty and communicate the risk of extreme ramp events has led to an interest in producing probabilistic forecasts. In short term context, probabilistic forecasts might be more relevant than point forecasts for the planner to build scenarios In this paper, we are interested in estimating predictive intervals of the hourly wind speed measures in few cities in United Arab emirates (UAE). More precisely, given a wind speed time series, our target is to forecast the wind speed at any specific hour during the day and provide in addition an interval with the coverage probability 0
NASA Astrophysics Data System (ADS)
Zhou, Zongchuan; Dang, Dongsheng; Qi, Caijuan; Tian, Hongliang
2018-02-01
It is of great significance to make accurate forecasting for the power consumption of high energy-consuming industries. A forecasting model for power consumption of high energy-consuming industries based on system dynamics is proposed in this paper. First, several factors that have influence on the development of high energy-consuming industries in recent years are carefully dissected. Next, by analysing the relationship between each factor and power consumption, the system dynamics flow diagram and equations are set up to reflect the relevant relationships among variables. In the end, the validity of the model is verified by forecasting the power consumption of electrolytic aluminium industry in Ningxia according to the proposed model.
NASA Astrophysics Data System (ADS)
Engeland, K.; Steinsland, I.
2012-04-01
This work is driven by the needs of next generation short term optimization methodology for hydro power production. Stochastic optimization are about to be introduced; i.e. optimizing when available resources (water) and utility (prices) are uncertain. In this paper we focus on the available resources, i.e. water, where uncertainty mainly comes from uncertainty in future runoff. When optimizing a water system all catchments and several lead times have to be considered simultaneously. Depending on the system of hydropower reservoirs, it might be a set of headwater catchments, a system of upstream /downstream reservoirs where water used from one catchment /dam arrives in a lower catchment maybe days later, or a combination of both. The aim of this paper is therefore to construct a simultaneous probabilistic forecast for several catchments and lead times, i.e. to provide a predictive distribution for the forecasts. Stochastic optimization methods need samples/ensembles of run-off forecasts as input. Hence, it should also be possible to sample from our probabilistic forecast. A post-processing approach is taken, and an error model based on Box- Cox transformation, power transform and a temporal-spatial copula model is used. It accounts for both between catchment and between lead time dependencies. In operational use it is strait forward to sample run-off ensembles from this models that inherits the catchment and lead time dependencies. The methodology is tested and demonstrated in the Ulla-Førre river system, and simultaneous probabilistic forecasts for five catchments and ten lead times are constructed. The methodology has enough flexibility to model operationally important features in this case study such as hetroscadasety, lead-time varying temporal dependency and lead-time varying inter-catchment dependency. Our model is evaluated using CRPS for marginal predictive distributions and energy score for joint predictive distribution. It is tested against deterministic run-off forecast, climatology forecast and a persistent forecast, and is found to be the better probabilistic forecast for lead time grater then two. From an operational point of view the results are interesting as the between catchment dependency gets stronger with longer lead-times.
7 CFR 1710.209 - Approval requirements for load forecast work plans.
Code of Federal Regulations, 2011 CFR
2011-01-01
...) In addition to the approved load forecast required under §§ 1710.202 and 1710.203, any power supply... that are members of a power supply borrower with a total utility plant of $500 million or more must cooperate in the preparation of and submittal of the load forecast work plan of their power supply borrower...
Buitrago, Jaime; Asfour, Shihab
2017-01-01
Short-term load forecasting is crucial for the operations planning of an electrical grid. Forecasting the next 24 h of electrical load in a grid allows operators to plan and optimize their resources. The purpose of this study is to develop a more accurate short-term load forecasting method utilizing non-linear autoregressive artificial neural networks (ANN) with exogenous multi-variable input (NARX). The proposed implementation of the network is new: the neural network is trained in open-loop using actual load and weather data, and then, the network is placed in closed-loop to generate a forecast using the predicted load as the feedback input.more » Unlike the existing short-term load forecasting methods using ANNs, the proposed method uses its own output as the input in order to improve the accuracy, thus effectively implementing a feedback loop for the load, making it less dependent on external data. Using the proposed framework, mean absolute percent errors in the forecast in the order of 1% have been achieved, which is a 30% improvement on the average error using feedforward ANNs, ARMAX and state space methods, which can result in large savings by avoiding commissioning of unnecessary power plants. Finally, the New England electrical load data are used to train and validate the forecast prediction.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buitrago, Jaime; Asfour, Shihab
Short-term load forecasting is crucial for the operations planning of an electrical grid. Forecasting the next 24 h of electrical load in a grid allows operators to plan and optimize their resources. The purpose of this study is to develop a more accurate short-term load forecasting method utilizing non-linear autoregressive artificial neural networks (ANN) with exogenous multi-variable input (NARX). The proposed implementation of the network is new: the neural network is trained in open-loop using actual load and weather data, and then, the network is placed in closed-loop to generate a forecast using the predicted load as the feedback input.more » Unlike the existing short-term load forecasting methods using ANNs, the proposed method uses its own output as the input in order to improve the accuracy, thus effectively implementing a feedback loop for the load, making it less dependent on external data. Using the proposed framework, mean absolute percent errors in the forecast in the order of 1% have been achieved, which is a 30% improvement on the average error using feedforward ANNs, ARMAX and state space methods, which can result in large savings by avoiding commissioning of unnecessary power plants. Finally, the New England electrical load data are used to train and validate the forecast prediction.« less
Assessment of the Charging Policy in Energy Efficiency of the Enterprise
NASA Astrophysics Data System (ADS)
Shutov, E. A.; E Turukina, T.; Anisimov, T. S.
2017-04-01
The forecasting problem for energy facilities with a power exceeding 670 kW is currently one of the main. In connection with rules of the retail electricity market such customers also pay for actual energy consumption deviations from plan value. In compliance with the hierarchical stages of the electricity market a guaranteeing supplier is to respect the interests of distribution and generation companies that require load leveling. The answer to this question for industrial enterprise is possible only within technological process through implementation of energy-efficient processing chains with the adaptive function and forecasting tool. In such a circumstance the primary objective of a forecasting is reduce the energy consumption costs by taking account of the energy cost correlation for 24 hours for forming of pumping unit work schedule. The pumping unit virtual model with the variable frequency drive is considered. The forecasting tool and the optimizer are integrated into typical control circuit. Economic assessment of the optimization method was estimated.
Rapid ISS Power Availability Simulator
NASA Technical Reports Server (NTRS)
Downing, Nicholas
2011-01-01
The ISS (International Space Station) Power Resource Officers (PROs) needed a tool to automate the calculation of thousands of ISS power availability simulations used to generate power constraint matrices. Each matrix contains 864 cells, and each cell represents a single power simulation that must be run. The tools available to the flight controllers were very operator intensive and not conducive to rapidly running the thousands of simulations necessary to generate the power constraint data. SOLAR is a Java-based tool that leverages commercial-off-the-shelf software (Satellite Toolkit) and an existing in-house ISS EPS model (SPEED) to rapidly perform thousands of power availability simulations. SOLAR has a very modular architecture and consists of a series of plug-ins that are loosely coupled. The modular architecture of the software allows for the easy replacement of the ISS power system model simulator, re-use of the Satellite Toolkit integration code, and separation of the user interface from the core logic. Satellite Toolkit (STK) is used to generate ISS eclipse and insulation times, solar beta angle, position of the solar arrays over time, and the amount of shadowing on the solar arrays, which is then provided to SPEED to calculate power generation forecasts. The power planning turn-around time is reduced from three months to two weeks (83-percent decrease) using SOLAR, and the amount of PRO power planning support effort is reduced by an estimated 30 percent.
Decomposition of Sources of Errors in Seasonal Streamflow Forecasting over the U.S. Sunbelt
NASA Technical Reports Server (NTRS)
Mazrooei, Amirhossein; Sinah, Tusshar; Sankarasubramanian, A.; Kumar, Sujay V.; Peters-Lidard, Christa D.
2015-01-01
Seasonal streamflow forecasts, contingent on climate information, can be utilized to ensure water supply for multiple uses including municipal demands, hydroelectric power generation, and for planning agricultural operations. However, uncertainties in the streamflow forecasts pose significant challenges in their utilization in real-time operations. In this study, we systematically decompose various sources of errors in developing seasonal streamflow forecasts from two Land Surface Models (LSMs) (Noah3.2 and CLM2), which are forced with downscaled and disaggregated climate forecasts. In particular, the study quantifies the relative contributions of the sources of errors from LSMs, climate forecasts, and downscaling/disaggregation techniques in developing seasonal streamflow forecast. For this purpose, three month ahead seasonal precipitation forecasts from the ECHAM4.5 general circulation model (GCM) were statistically downscaled from 2.8deg to 1/8deg spatial resolution using principal component regression (PCR) and then temporally disaggregated from monthly to daily time step using kernel-nearest neighbor (K-NN) approach. For other climatic forcings, excluding precipitation, we considered the North American Land Data Assimilation System version 2 (NLDAS-2) hourly climatology over the years 1979 to 2010. Then the selected LSMs were forced with precipitation forecasts and NLDAS-2 hourly climatology to develop retrospective seasonal streamflow forecasts over a period of 20 years (1991-2010). Finally, the performance of LSMs in forecasting streamflow under different schemes was analyzed to quantify the relative contribution of various sources of errors in developing seasonal streamflow forecast. Our results indicate that the most dominant source of errors during winter and fall seasons is the errors due to ECHAM4.5 precipitation forecasts, while temporal disaggregation scheme contributes to maximum errors during summer season.
Study on load forecasting to data centers of high power density based on power usage effectiveness
NASA Astrophysics Data System (ADS)
Zhou, C. C.; Zhang, F.; Yuan, Z.; Zhou, L. M.; Wang, F. M.; Li, W.; Yang, J. H.
2016-08-01
There is usually considerable energy consumption in data centers. Load forecasting to data centers is in favor of formulating regional load density indexes and of great benefit to getting regional spatial load forecasting more accurately. The building structure and the other influential factors, i.e. equipment, geographic and climatic conditions, are considered for the data centers, and a method to forecast the load of the data centers based on power usage effectiveness is proposed. The cooling capacity of a data center and the index of the power usage effectiveness are used to forecast the power load of the data center in the method. The cooling capacity is obtained by calculating the heat load of the data center. The index is estimated using the group decision-making method of mixed language information. An example is given to prove the applicability and accuracy of this method.
Delensing CMB polarization with external datasets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Kendrick M.; Hanson, Duncan; LoVerde, Marilena
2012-06-01
One of the primary scientific targets of current and future CMB polarization experiments is the search for a stochastic background of gravity waves in the early universe. As instrumental sensitivity improves, the limiting factor will eventually be B-mode power generated by gravitational lensing, which can be removed through use of so-called ''delensing'' algorithms. We forecast prospects for delensing using lensing maps which are obtained externally to CMB polarization: either from large-scale structure observations, or from high-resolution maps of CMB temperature. We conclude that the forecasts in either case are not encouraging, and that significantly delensing large-scale CMB polarization requires high-resolutionmore » polarization maps with sufficient sensitivity to measure the lensing B-mode. We also present a simple formalism for including delensing in CMB forecasts which is computationally fast and agrees well with Monte Carlos.« less
Arab energy: prospects to 2000
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1982-01-01
The energy situation of 21 Arab countries for the period between 1960 and 2000 is examined. Attempts to forecast the demand and supply of energy in the Arab world for 1985, 1990 and 2000 are discussed. Following a description of the methodology employed, crude petroleum, petroleum production, natural gas and electricity are explored in detail. The national programs of the Arab countries for electric-power generation include conventional thermal electricity, hydroelectricity, nuclear power, solar energy, biomass conversion, and geothermal and wind energy. 23 references.
NASA Astrophysics Data System (ADS)
Shimada, Takae; Kawasaki, Norihiro; Ueda, Yuzuru; Sugihara, Hiroyuki; Kurokawa, Kosuke
This paper aims to clarify the battery capacity required by a residential area with densely grid-connected photovoltaic (PV) systems. This paper proposes a planning method of tomorrow's grid-connection power from/to the external electric power system by using demand power forecasting and insolation forecasting for PV power predictions, and defines a operation method of the electricity storage device to control the grid-connection power as planned. A residential area consisting of 389 houses consuming 2390 MWh/year of electricity with 2390kW PV systems is simulated based on measured data and actual forecasts. The simulation results show that 8.3MWh of battery capacity is required in the conditions of half-hour planning and 1% or less of planning error ratio and PV output limiting loss ratio. The results also show that existing technologies of forecasting reduce required battery capacity to 49%, and increase the allowable installing PV amount to 210%.
NASA Technical Reports Server (NTRS)
Peterson, B.
1978-01-01
The present situation and possible developments over the period 1970-1985 for active semiconductor elements in the microwave range are outlined. After a short historical survey of FT techniques, the following are discussed: Generation, power amplification, amplification of small signals, frequency conversion, detection, electronic signal control and integrated microwave circuits.
Comparison of the economic impact of different wind power forecast systems for producers
NASA Astrophysics Data System (ADS)
Alessandrini, S.; Davò, F.; Sperati, S.; Benini, M.; Delle Monache, L.
2014-05-01
Deterministic forecasts of wind production for the next 72 h at a single wind farm or at the regional level are among the main end-users requirement. However, for an optimal management of wind power production and distribution it is important to provide, together with a deterministic prediction, a probabilistic one. A deterministic forecast consists of a single value for each time in the future for the variable to be predicted, while probabilistic forecasting informs on probabilities for potential future events. This means providing information about uncertainty (i.e. a forecast of the PDF of power) in addition to the commonly provided single-valued power prediction. A significant probabilistic application is related to the trading of energy in day-ahead electricity markets. It has been shown that, when trading future wind energy production, using probabilistic wind power predictions can lead to higher benefits than those obtained by using deterministic forecasts alone. In fact, by using probabilistic forecasting it is possible to solve economic model equations trying to optimize the revenue for the producer depending, for example, on the specific penalties for forecast errors valid in that market. In this work we have applied a probabilistic wind power forecast systems based on the "analog ensemble" method for bidding wind energy during the day-ahead market in the case of a wind farm located in Italy. The actual hourly income for the plant is computed considering the actual selling energy prices and penalties proportional to the unbalancing, defined as the difference between the day-ahead offered energy and the actual production. The economic benefit of using a probabilistic approach for the day-ahead energy bidding are evaluated, resulting in an increase of 23% of the annual income for a wind farm owner in the case of knowing "a priori" the future energy prices. The uncertainty on price forecasting partly reduces the economic benefit gained by using a probabilistic energy forecast system.
Zhang, Jie; Hodge, Bri -Mathias; Lu, Siyuan; ...
2015-11-10
Accurate solar photovoltaic (PV) power forecasting allows utilities to reliably utilize solar resources on their systems. However, to truly measure the improvements that any new solar forecasting methods provide, it is important to develop a methodology for determining baseline and target values for the accuracy of solar forecasting at different spatial and temporal scales. This paper aims at developing a framework to derive baseline and target values for a suite of generally applicable, value-based, and custom-designed solar forecasting metrics. The work was informed by close collaboration with utility and independent system operator partners. The baseline values are established based onmore » state-of-the-art numerical weather prediction models and persistence models in combination with a radiative transfer model. The target values are determined based on the reduction in the amount of reserves that must be held to accommodate the uncertainty of PV power output. The proposed reserve-based methodology is a reasonable and practical approach that can be used to assess the economic benefits gained from improvements in accuracy of solar forecasting. Lastly, the financial baseline and targets can be translated back to forecasting accuracy metrics and requirements, which will guide research on solar forecasting improvements toward the areas that are most beneficial to power systems operations.« less
Loss of Load Probability Calculation for West Java Power System with Nuclear Power Plant Scenario
NASA Astrophysics Data System (ADS)
Azizah, I. D.; Abdullah, A. G.; Purnama, W.; Nandiyanto, A. B. D.; Shafii, M. A.
2017-03-01
Loss of Load Probability (LOLP) index showing the quality and performance of an electrical system. LOLP value is affected by load growth, the load duration curve, forced outage rate of the plant, number and capacity of generating units. This reliability index calculation begins with load forecasting to 2018 using multiple regression method. Scenario 1 with compositions of conventional plants produce the largest LOLP in 2017 amounted to 71.609 days / year. While the best reliability index generated in scenario 2 with the NPP amounted to 6.941 days / year in 2015. Improved reliability of systems using nuclear power more efficiently when compared to conventional plants because it also has advantages such as emission-free, inexpensive fuel costs, as well as high level of plant availability.
Super short term forecasting of photovoltaic power generation output in micro grid
NASA Astrophysics Data System (ADS)
Gong, Cheng; Ma, Longfei; Chi, Zhongjun; Zhang, Baoqun; Jiao, Ran; Yang, Bing; Chen, Jianshu; Zeng, Shuang
2017-01-01
The prediction model combining data mining and support vector machine (SVM) was built. Which provide information of photovoltaic (PV) power generation output for economic operation and optimal control of micro gird, and which reduce influence of power system from PV fluctuation. Because of the characteristic which output of PV rely on radiation intensity, ambient temperature, cloudiness, etc., so data mining was brought in. This technology can deal with large amounts of historical data and eliminate superfluous data, by using fuzzy classifier of daily type and grey related degree. The model of SVM was built, which can dock with information from data mining. Based on measured data from a small PV station, the prediction model was tested. The numerical example shows that the prediction model is fast and accurate.
Stochastic Multi-Timescale Power System Operations With Variable Wind Generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Hongyu; Krad, Ibrahim; Florita, Anthony
This paper describes a novel set of stochastic unit commitment and economic dispatch models that consider stochastic loads and variable generation at multiple operational timescales. The stochastic model includes four distinct stages: stochastic day-ahead security-constrained unit commitment (SCUC), stochastic real-time SCUC, stochastic real-time security-constrained economic dispatch (SCED), and deterministic automatic generation control (AGC). These sub-models are integrated together such that they are continually updated with decisions passed from one to another. The progressive hedging algorithm (PHA) is applied to solve the stochastic models to maintain the computational tractability of the proposed models. Comparative case studies with deterministic approaches are conductedmore » in low wind and high wind penetration scenarios to highlight the advantages of the proposed methodology, one with perfect forecasts and the other with current state-of-the-art but imperfect deterministic forecasts. The effectiveness of the proposed method is evaluated with sensitivity tests using both economic and reliability metrics to provide a broader view of its impact.« less
Baseline and Target Values for PV Forecasts: Toward Improved Solar Power Forecasting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jie; Hodge, Bri-Mathias; Lu, Siyuan
2015-10-05
Accurate solar power forecasting allows utilities to get the most out of the solar resources on their systems. To truly measure the improvements that any new solar forecasting methods can provide, it is important to first develop (or determine) baseline and target solar forecasting at different spatial and temporal scales. This paper aims to develop baseline and target values for solar forecasting metrics. These were informed by close collaboration with utility and independent system operator partners. The baseline values are established based on state-of-the-art numerical weather prediction models and persistence models. The target values are determined based on the reductionmore » in the amount of reserves that must be held to accommodate the uncertainty of solar power output.« less
Baseline and Target Values for PV Forecasts: Toward Improved Solar Power Forecasting: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jie; Hodge, Bri-Mathias; Lu, Siyuan
2015-08-05
Accurate solar power forecasting allows utilities to get the most out of the solar resources on their systems. To truly measure the improvements that any new solar forecasting methods can provide, it is important to first develop (or determine) baseline and target solar forecasting at different spatial and temporal scales. This paper aims to develop baseline and target values for solar forecasting metrics. These were informed by close collaboration with utility and independent system operator partners. The baseline values are established based on state-of-the-art numerical weather prediction models and persistence models. The target values are determined based on the reductionmore » in the amount of reserves that must be held to accommodate the uncertainty of solar power output. forecasting metrics. These were informed by close collaboration with utility and independent system operator partners. The baseline values are established based on state-of-the-art numerical weather prediction models and persistence models. The target values are determined based on the reduction in the amount of reserves that must be held to accommodate the uncertainty of solar power output.« less
Load Forecasting of Central Urban Area Power Grid Based on Saturated Load Density Index
NASA Astrophysics Data System (ADS)
Huping, Yang; Chengyi, Tang; Meng, Yu
2018-03-01
In the current society, coordination between urban power grid development and city development has become more and more prominent. Electricity saturated load forecasting plays an important role in the planning and development of power grids. Electricity saturated load forecasting is a new concept put forward by China in recent years in the field of grid planning. Urban saturation load forecast is different from the traditional load forecasting method for specific years, the time span of it often relatively large, and involves a wide range of aspects. This study takes a county in eastern Jiangxi as an example, this paper chooses a variety of load forecasting methods to carry on the recent load forecasting calculation to central urban area. At the same time, this paper uses load density index method to predict the Longterm load forecasting of electric saturation load of central urban area lasted until 2030. And further study shows the general distribution of the urban saturation load in space.
NASA Astrophysics Data System (ADS)
Arsenault, R.; Mai, J.; Latraverse, M.; Tolson, B.
2017-12-01
Probabilistic ensemble forecasts generated by the ensemble streamflow prediction (ESP) methodology are subject to biases due to errors in the hydrological model's initial states. In day-to-day operations, hydrologists must compensate for discrepancies between observed and simulated states such as streamflow. However, in data-scarce regions, little to no information is available to guide the streamflow assimilation process. The manual assimilation process can then lead to more uncertainty due to the numerous options available to the forecaster. Furthermore, the model's mass balance may be compromised and could affect future forecasts. In this study we propose a data-driven approach in which specific variables that may be adjusted during assimilation are defined. The underlying principle was to identify key variables that would be the most appropriate to modify during streamflow assimilation depending on the initial conditions such as the time period of the assimilation, the snow water equivalent of the snowpack and meteorological conditions. The variables to adjust were determined by performing an automatic variational data assimilation on individual (or combinations of) model state variables and meteorological forcing. The assimilation aimed to simultaneously optimize: (1) the error between the observed and simulated streamflow at the timepoint where the forecasts starts and (2) the bias between medium to long-term observed and simulated flows, which were simulated by running the model with the observed meteorological data on a hindcast period. The optimal variables were then classified according to the initial conditions at the time period where the forecast is initiated. The proposed method was evaluated by measuring the average electricity generation of a hydropower complex in Québec, Canada driven by this method. A test-bed which simulates the real-world assimilation, forecasting, water release optimization and decision-making of a hydropower cascade was developed to assess the performance of each individual process in the reservoir management chain. Here the proposed method was compared to the PF algorithm while keeping all other elements intact. Preliminary results are encouraging in terms of power generation and robustness for the proposed approach.
Building the Sun4Cast System: Improvements in Solar Power Forecasting
Haupt, Sue Ellen; Kosovic, Branko; Jensen, Tara; ...
2017-06-16
The Sun4Cast System results from a research-to-operations project built on a value chain approach, and benefiting electric utilities’ customers, society, and the environment by improving state-of-the-science solar power forecasting capabilities. As integration of solar power into the national electric grid rapidly increases, it becomes imperative to improve forecasting of this highly variable renewable resource. Thus, a team of researchers from public, private, and academic sectors partnered to develop and assess a new solar power forecasting system, Sun4Cast. The partnership focused on improving decision-making for utilities and independent system operators, ultimately resulting in improved grid stability and cost savings for consumers.more » The project followed a value chain approach to determine key research and technology needs to reach desired results. Sun4Cast integrates various forecasting technologies across a spectrum of temporal and spatial scales to predict surface solar irradiance. Anchoring the system is WRF-Solar, a version of the Weather Research and Forecasting (WRF) numerical weather prediction (NWP) model optimized for solar irradiance prediction. Forecasts from multiple NWP models are blended via the Dynamic Integrated Forecast (DICast) System, the basis of the system beyond about 6 h. For short-range (0-6 h) forecasts, Sun4Cast leverages several observation-based nowcasting technologies. These technologies are blended via the Nowcasting Expert System Integrator (NESI). The NESI and DICast systems are subsequently blended to produce short to mid-term irradiance forecasts for solar array locations. The irradiance forecasts are translated into power with uncertainties quantified using an analog ensemble approach, and are provided to the industry partners for real-time decision-making. The Sun4Cast system ran operationally throughout 2015 and results were assessed. As a result, this paper analyzes the collaborative design process, discusses the project results, and provides recommendations for best-practice solar forecasting.« less
Building the Sun4Cast System: Improvements in Solar Power Forecasting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haupt, Sue Ellen; Kosovic, Branko; Jensen, Tara
The Sun4Cast System results from a research-to-operations project built on a value chain approach, and benefiting electric utilities’ customers, society, and the environment by improving state-of-the-science solar power forecasting capabilities. As integration of solar power into the national electric grid rapidly increases, it becomes imperative to improve forecasting of this highly variable renewable resource. Thus, a team of researchers from public, private, and academic sectors partnered to develop and assess a new solar power forecasting system, Sun4Cast. The partnership focused on improving decision-making for utilities and independent system operators, ultimately resulting in improved grid stability and cost savings for consumers.more » The project followed a value chain approach to determine key research and technology needs to reach desired results. Sun4Cast integrates various forecasting technologies across a spectrum of temporal and spatial scales to predict surface solar irradiance. Anchoring the system is WRF-Solar, a version of the Weather Research and Forecasting (WRF) numerical weather prediction (NWP) model optimized for solar irradiance prediction. Forecasts from multiple NWP models are blended via the Dynamic Integrated Forecast (DICast) System, the basis of the system beyond about 6 h. For short-range (0-6 h) forecasts, Sun4Cast leverages several observation-based nowcasting technologies. These technologies are blended via the Nowcasting Expert System Integrator (NESI). The NESI and DICast systems are subsequently blended to produce short to mid-term irradiance forecasts for solar array locations. The irradiance forecasts are translated into power with uncertainties quantified using an analog ensemble approach, and are provided to the industry partners for real-time decision-making. The Sun4Cast system ran operationally throughout 2015 and results were assessed. As a result, this paper analyzes the collaborative design process, discusses the project results, and provides recommendations for best-practice solar forecasting.« less
Flexible operation of batteries in power system scheduling with renewable energy
Li, Nan; Uckun, Canan; Constantinescu, Emil M.; ...
2015-12-17
The fast growing expansion of renewable energy increases the complexities in balancing generation and demand in the power system. The energy-shifting and fast-ramping capability of energy storage has led to increasing interests in batteries to facilitate the integration of renewable resources. In this paper, we present a two-step framework to evaluate the potential value of energy storage in power systems with renewable generation. First, we formulate a stochastic unit commitment approach with wind power forecast uncertainty and energy storage. Second, the solution from the stochastic unit commitment is used to derive a flexible schedule for energy storage in economic dispatchmore » where the look-ahead horizon is limited. Here, analysis is conducted on the IEEE 24-bus system to demonstrate the benefits of battery storage in systems with renewable resources and the effectiveness of the proposed battery operation strategy.« less
The Use of Ambient Humidity Conditions to Improve Influenza Forecast
NASA Astrophysics Data System (ADS)
Shaman, J. L.; Kandula, S.; Yang, W.; Karspeck, A. R.
2017-12-01
Laboratory and epidemiological evidence indicate that ambient humidity modulates the survival and transmission of influenza. Here we explore whether the inclusion of humidity forcing in mathematical models describing influenza transmission improves the accuracy of forecasts generated with those models. We generate retrospective forecasts for 95 cities over 10 seasons in the United States and assess both forecast accuracy and error. Overall, we find that humidity forcing improves forecast performance and that forecasts generated using daily climatological humidity forcing generally outperform forecasts that utilize daily observed humidity forcing. These findings hold for predictions of outbreak peak intensity, peak timing, and incidence over 2- and 4-week horizons. The results indicate that use of climatological humidity forcing is warranted for current operational influenza forecast and provide further evidence that humidity modulates rates of influenza transmission.
Kim, Byeong-Uk; Kim, Okgil; Kim, Hyun Cheol; Kim, Soontae
2016-09-01
The South Korean government plans to reduce region-wide annual PM2.5 (particulate matter with an aerodynamic diameter ≤2.5 μm) concentrations in the Seoul Capital Area (SCA) from 2010 levels of 27 µg/m(3) to 20 µg/m(3) by 2024. At the same time, it is inevitable that emissions from fossil-fuel power plants will continue to increase if electricity generation expands and the generation portfolio remains the same in the future. To estimate incremental PM2.5 contributions due to projected electricity generation growth in South Korea, we utilized an ensemble forecasting member of the Integrated Multidimensional Air Quality System for Korea based on the Community Multi-scale Air Quality model. We performed sensitivity runs with across-the-board emission reductions for all fossil-fuel power plants in South Korea to estimate the contribution of PM2.5 from domestic fossil-fuel power plants. We estimated that fossil-fuel power plants are responsible for 2.4% of the annual PM2.5 national ambient air quality standard in the SCA as of 2010. Based on the electricity generation and the annual contribution of fossil-fuel power plants in 2010, we estimated that annual PM2.5 concentrations may increase by 0.2 µg/m(3) per 100 TWhr due to additional electricity generation. With currently available information on future electricity demands, we estimated that the total future contribution of fossil-fuel power plants would be 0.87 µg/m(3), which is 12.4% of the target reduction amount of the annual PM2.5 concentration by 2024. We also approximated that the number of premature deaths caused by existing fossil-fuel power plants would be 736 in 2024. Since the proximity of power plants to the SCA and the types of fuel used significantly impact this estimation, further studies are warranted on the impact of physical parameters of plants, such as location and stack height, on PM2.5 concentrations in the SCA due to each precursor. Improving air quality by reducing fine particle pollution is challenging when fossil-fuel-based electricity production is increasing. We show that an air quality forecasting system based on a photochemical model can be utilized to efficiently estimate PM2.5 contributions from and health impacts of domestic power plants. We derived PM2.5 concentrations per unit amount of electricity production from existing fossil-fuel power plants in South Korea. We assessed the health impacts of existing fossil-fuel power plants and the PM2.5 concentrations per unit electricity production to quantify the significance of existing and future fossil-fuel power plants with respect to the planned PM2.5 reduction target.
Solar Photovoltaic and Liquid Natural Gas Opportunities for Command Naval Region Hawaii
2014-12-01
Utilities Commission xii PV Photovoltaic Pwr Power RE Renewable Energy Re-gas Regasification RFP Request For Proposal RMI Rocky... forecasted LS diesel price and the forecasted LNG delivered-to-the- power -plant cost. The forecast for LS diesel by FGE from year 2020–2030 is seen...annual/html/epa_08_01.html Electric Power Research Institute. (July, 2010). Addressing solar photovoltaic operations and maintenance challenges: A
The use of ambient humidity conditions to improve influenza forecast.
Shaman, Jeffrey; Kandula, Sasikiran; Yang, Wan; Karspeck, Alicia
2017-11-01
Laboratory and epidemiological evidence indicate that ambient humidity modulates the survival and transmission of influenza. Here we explore whether the inclusion of humidity forcing in mathematical models describing influenza transmission improves the accuracy of forecasts generated with those models. We generate retrospective forecasts for 95 cities over 10 seasons in the United States and assess both forecast accuracy and error. Overall, we find that humidity forcing improves forecast performance (at 1-4 lead weeks, 3.8% more peak week and 4.4% more peak intensity forecasts are accurate than with no forcing) and that forecasts generated using daily climatological humidity forcing generally outperform forecasts that utilize daily observed humidity forcing (4.4% and 2.6% respectively). These findings hold for predictions of outbreak peak intensity, peak timing, and incidence over 2- and 4-week horizons. The results indicate that use of climatological humidity forcing is warranted for current operational influenza forecast.
The use of ambient humidity conditions to improve influenza forecast
Kandula, Sasikiran; Karspeck, Alicia
2017-01-01
Laboratory and epidemiological evidence indicate that ambient humidity modulates the survival and transmission of influenza. Here we explore whether the inclusion of humidity forcing in mathematical models describing influenza transmission improves the accuracy of forecasts generated with those models. We generate retrospective forecasts for 95 cities over 10 seasons in the United States and assess both forecast accuracy and error. Overall, we find that humidity forcing improves forecast performance (at 1–4 lead weeks, 3.8% more peak week and 4.4% more peak intensity forecasts are accurate than with no forcing) and that forecasts generated using daily climatological humidity forcing generally outperform forecasts that utilize daily observed humidity forcing (4.4% and 2.6% respectively). These findings hold for predictions of outbreak peak intensity, peak timing, and incidence over 2- and 4-week horizons. The results indicate that use of climatological humidity forcing is warranted for current operational influenza forecast. PMID:29145389
Multi-Temporal Decomposed Wind and Load Power Models for Electric Energy Systems
NASA Astrophysics Data System (ADS)
Abdel-Karim, Noha
This thesis is motivated by the recognition that sources of uncertainties in electric power systems are multifold and may have potentially far-reaching effects. In the past, only system load forecast was considered to be the main challenge. More recently, however, the uncertain price of electricity and hard-to-predict power produced by renewable resources, such as wind and solar, are making the operating and planning environment much more challenging. The near-real-time power imbalances are compensated by means of frequency regulation and generally require fast-responding costly resources. Because of this, a more accurate forecast and look-ahead scheduling would result in a reduced need for expensive power balancing. Similarly, long-term planning and seasonal maintenance need to take into account long-term demand forecast as well as how the short-term generation scheduling is done. The better the demand forecast, the more efficient planning will be as well. Moreover, computer algorithms for scheduling and planning are essential in helping the system operators decide what to schedule and planners what to build. This is needed given the overall complexity created by different abilities to adjust the power output of generation technologies, demand uncertainties and by the network delivery constraints. Given the growing presence of major uncertainties, it is likely that the main control applications will use more probabilistic approaches. Today's predominantly deterministic methods will be replaced by methods which account for key uncertainties as decisions are made. It is well-understood that although demand and wind power cannot be predicted at very high accuracy, taking into consideration predictions and scheduling in a look-ahead way over several time horizons generally results in more efficient and reliable utilization, than when decisions are made assuming deterministic, often worst-case scenarios. This change is in approach is going to ultimately require new electricity market rules capable of providing the right incentives to manage uncertainties and of differentiating various technologies according to the rate at which they can respond to ever changing conditions. Given the overall need for modeling uncertainties in electric energy systems, we consider in this thesis the problem of multi-temporal modeling of wind and demand power, in particular. Historic data is used to derive prediction models for several future time horizons. Short-term prediction models derived can be used for look-ahead economic dispatch and unit commitment, while the long-term annual predictive models can be used for investment planning. As expected, the accuracy of such predictive models depends on the time horizons over which the predictions are made, as well as on the nature of uncertain signals. It is shown that predictive models obtained using the same general modeling approaches result in different accuracy for wind than for demand power. In what follows, we introduce several models which have qualitatively different patterns, ranging from hourly to annual. We first transform historic time-stamped data into the Fourier Transform (Fr) representation. The frequency domain data representation is used to decompose the wind and load power signals and to derive predictive models relevant for short-term and long-term predictions using extracted spectral techniques. The short-term results are interpreted next as a Linear Prediction Coding Model (LPC) and its accuracy is analyzed. Next, a new Markov-Based Sensitivity Model (MBSM) for short term prediction has been proposed and the dispatched costs of uncertainties for different predictive models with comparisons have been developed. Moreover, the Discrete Markov Process (DMP) representation is applied to help assess probabilities of most likely short-, medium- and long-term states and the related multi-temporal risks. In addition, this thesis discusses operational impacts of wind power integration in different scenario levels by performing more than 9,000 AC Optimal Power Flow runs. The effects of both wind and load variations on system constraints and costs are presented. The limitations of DC Optimal Power Flow (DCOPF) vs. ACOPF are emphasized by means of system convergence problems due to the effect of wind power on changing line flows and net power injections. By studying the effect of having wind power on line flows, we found that the divergence problem applies in areas with high wind and hydro generation capacity share (cheap generations). (Abstract shortened by UMI.).
Advanced Cloud Forecasting for Solar Energy Production
NASA Astrophysics Data System (ADS)
Werth, D. W.; Parker, M. J.
2017-12-01
A power utility must decide days in advance how it will allocate projected loads among its various generating sources. If the latter includes solar plants, the utility must predict how much energy the plants will produce - any shortfall will have to be compensated for by purchasing power as it is needed, when it is more expensive. To avoid this, utilities often err on the side of caution and assume that a relatively small amount of solar energy will be available, and allocate correspondingly more load to coal-fired plants. If solar irradiance can be predicted more accurately, utilities can be more confident that the predicted solar energy will indeed be available when needed, and assign solar plants a larger share of the future load. Solar power production is increasing in the Southeast, but is often hampered by irregular cloud fields, especially during high-pressure periods when rapid afternoon thunderstorm development can occur during what was predicted to be a clear day. We are currently developing an analog forecasting system to predict solar irradiance at the surface at the Savannah River Site in South Carolina, with the goal of improving predictions of available solar energy. Analog forecasting is based on the assumption that similar initial conditions will lead to similar outcomes, and involves the use of an algorithm to look through the weather patterns of the past to identify previous conditions (the analogs) similar to those of today. For our application, we select three predictor variables - sea-level pressure, 700mb geopotential, and 700mb humidity. These fields for the current day are compared to those from past days, and a weighted combination of the differences (defined by a cost function) is used to select the five best analog days. The observed solar irradiance values subsequent to the dates of those analogs are then combined to represent the forecast for the next day. We will explain how we apply the analog process, and compare it to existing solar forecasts.
NASA Astrophysics Data System (ADS)
Efremenko, Vladimir; Belyaevsky, Roman; Skrebneva, Evgeniya
2017-11-01
In article the analysis of electric power consumption and problems of power saving on coal mines are considered. Nowadays the share of conditionally constant costs of electric power for providing safe working conditions underground on coal mines is big. Therefore, the power efficiency of underground coal mining depends on electric power expense of the main technological processes and size of conditionally constant costs. The important direction of increase of power efficiency of coal mining is forecasting of a power consumption and monitoring of electric power expense. One of the main approaches to reducing of electric power costs is increase in accuracy of the enterprise demand in the wholesale electric power market. It is offered to use artificial neural networks to forecasting of day-ahead power consumption with hourly breakdown. At the same time use of neural and indistinct (hybrid) systems on the principles of fuzzy logic, neural networks and genetic algorithms is more preferable. This model allows to do exact short-term forecasts at a small array of input data. A set of the input parameters characterizing mining-and-geological and technological features of the enterprise is offered.
Using Bayes Model Averaging for Wind Power Forecasts
NASA Astrophysics Data System (ADS)
Preede Revheim, Pål; Beyer, Hans Georg
2014-05-01
For operational purposes predictions of the forecasts of the lumped output of groups of wind farms spread over larger geographic areas will often be of interest. A naive approach is to make forecasts for each individual site and sum them up to get the group forecast. It is however well documented that a better choice is to use a model that also takes advantage of spatial smoothing effects. It might however be the case that some sites tends to more accurately reflect the total output of the region, either in general or for certain wind directions. It will then be of interest giving these a greater influence over the group forecast. Bayesian model averaging (BMA) is a statistical post-processing method for producing probabilistic forecasts from ensembles. Raftery et al. [1] show how BMA can be used for statistical post processing of forecast ensembles, producing PDFs of future weather quantities. The BMA predictive PDF of a future weather quantity is a weighted average of the ensemble members' PDFs, where the weights can be interpreted as posterior probabilities and reflect the ensemble members' contribution to overall forecasting skill over a training period. In Revheim and Beyer [2] the BMA procedure used in Sloughter, Gneiting and Raftery [3] were found to produce fairly accurate PDFs for the future mean wind speed of a group of sites from the single sites wind speeds. However, when the procedure was attempted applied to wind power it resulted in either problems with the estimation of the parameters (mainly caused by longer consecutive periods of no power production) or severe underestimation (mainly caused by problems with reflecting the power curve). In this paper the problems that arose when applying BMA to wind power forecasting is met through two strategies. First, the BMA procedure is run with a combination of single site wind speeds and single site wind power production as input. This solves the problem with longer consecutive periods where the input data does not contain information, but it has the disadvantage of nearly doubling the number of model parameters to be estimated. Second, the BMA procedure is run with group mean wind power as the response variable instead of group mean wind speed. This also solves the problem with longer consecutive periods without information in the input data, but it leaves the power curve to also be estimated from the data. [1] Raftery, A. E., et al. (2005). Using Bayesian Model Averaging to Calibrate Forecast Ensembles. Monthly Weather Review, 133, 1155-1174. [2]Revheim, P. P. and H. G. Beyer (2013). Using Bayesian Model Averaging for wind farm group forecasts. EWEA Wind Power Forecasting Technology Workshop,Rotterdam, 4-5 December 2013. [3]Sloughter, J. M., T. Gneiting and A. E. Raftery (2010). Probabilistic Wind Speed Forecasting Using Ensembles and Bayesian Model Averaging. Journal of the American Statistical Association, Vol. 105, No. 489, 25-35
NASA Astrophysics Data System (ADS)
Shukla, S.; Husak, G. J.; Funk, C. C.; Verdin, J. P.
2015-12-01
The USAID's Famine Early Warning Systems Network (FEWS NET) provides seasonal assessments of crop conditions over the Greater Horn of Africa (GHA) and other food insecure regions. These assessments and current livelihood, nutrition, market conditions and conflicts are used to generate food security scenarios that help national, regional and local decision makers target their resources and mitigate socio-economic losses. Among the various tools that FEWS NET uses is the FAO's Water Requirement Satisfaction Index (WRSI). The WRSI is a simple yet powerful crop assessment model that incorporates current moisture conditions (at the time of the issuance of forecast), precipitation scenarios, potential evapotranspiration and crop parameters to categorize crop conditions into different classes ranging from "failure" to "very good". The WRSI tool has been shown to have a good agreement with local crop yields in the GHA region. At present, the precipitation scenarios used to drive the WRSI are based on either a climatological forecast (that assigns equal chances of occurrence to all possible scenarios and has no skill over the forecast period) or a sea-surface temperature anomaly based scenario (which at best have skill at the seasonal scale). In both cases, the scenarios fail to capture the skill that can be attained by initial atmospheric conditions (i.e., medium-range weather forecasts). During the middle of a cropping season, when a week or two of poor rains can have a devastating effect, two weeks worth of skillful precipitation forecasts could improve the skill of the crop scenarios. With this working hypothesis, we examine the value of incorporating medium-range weather forecasts in improving the skill of crop scenarios in the GHA region. We use the NCEP's Global Ensemble Forecast system (GEFS) weather forecasts and examine the skill of crop scenarios generated using the GEFS weather forecasts with respect to the scenarios based solely on the climatological forecast. The period of analysis is from 1985-2010 (over which the reforecasts of GEFS is available) and the focus season is October-November-December. We examine the improvement (if any) in long-term skill, and present results for several recent drought events in the region.
NASA Astrophysics Data System (ADS)
Declair, Stefan; Saint-Drenan, Yves-Marie; Potthast, Roland
2016-04-01
Determining the amount of weather dependent renewable energy is a demanding task for transmission system operators (TSOs) and wind and photovoltaic (PV) prediction errors require the use of reserve power, which generate costs and can - in extreme cases - endanger the security of supply. In the project EWeLiNE funded by the German government, the German Weather Service and the Fraunhofer Institute on Wind Energy and Energy System Technology develop innovative weather- and power forecasting models and tools for grid integration of weather dependent renewable energy. The key part in energy prediction process chains is the numerical weather prediction (NWP) system. Wind speed and irradiation forecast from NWP system are however subject to several sources of error. The quality of the wind power prediction is mainly penalized by forecast error of the NWP model in the planetary boundary layer (PBL), which is characterized by high spatial and temporal fluctuations of the wind speed. For PV power prediction, weaknesses of the NWP model to correctly forecast i.e. low stratus, the absorption of condensed water or aerosol optical depth are the main sources of errors. Inaccurate radiation schemes (i.e. the two-stream parametrization) are also known as a deficit of NWP systems with regard to irradiation forecast. To mitigate errors like these, NWP model data can be corrected by post-processing techniques such as model output statistics and calibration using historical observational data. Additionally, latest observations can be used in a pre-processing technique called data assimilation (DA). In DA, not only the initial fields are provided, but the model is also synchronized with reality - the observations - and hence the model error is reduced in the forecast. Besides conventional observation networks like radiosondes, synoptic observations or air reports of wind, pressure and humidity, the number of observations measuring meteorological information indirectly such as satellite radiances, radar reflectivities or GPS slant delays strongly increases. The numerous wind farm and PV plants installed in Germany potentially represent a dense meteorological network assessing irradiation and wind speed through their power measurements. The accuracy of the NWP data may thus be enhanced by extending the observations in the assimilation by this new source of information. Wind power data can serve as indirect measurements of wind speed at hub height. The impact on the NWP model is potentially interesting since conventional observation network lacks measurements in this part of the PBL. Photovoltaic power plants can provide information on clouds, aerosol optical depth or low stratus in terms of remote sensing: the power output is strongly dependent on perturbations along the slant between sun position and PV panel. Additionally, since the latter kind of data is not limited to the vertical column above or below the detector. It may thus complement satellite data and compensate weaknesses in the radiation scheme. In this contribution, the DA method (Local Ensemble Transform Kalman Filter, LETKF) is shortly sketched. Furthermore, the computation of the model power equivalents is described and first assimilation results are presented and discussed.
Short-term load forecasting of power system
NASA Astrophysics Data System (ADS)
Xu, Xiaobin
2017-05-01
In order to ensure the scientific nature of optimization about power system, it is necessary to improve the load forecasting accuracy. Power system load forecasting is based on accurate statistical data and survey data, starting from the history and current situation of electricity consumption, with a scientific method to predict the future development trend of power load and change the law of science. Short-term load forecasting is the basis of power system operation and analysis, which is of great significance to unit combination, economic dispatch and safety check. Therefore, the load forecasting of the power system is explained in detail in this paper. First, we use the data from 2012 to 2014 to establish the partial least squares model to regression analysis the relationship between daily maximum load, daily minimum load, daily average load and each meteorological factor, and select the highest peak by observing the regression coefficient histogram Day maximum temperature, daily minimum temperature and daily average temperature as the meteorological factors to improve the accuracy of load forecasting indicators. Secondly, in the case of uncertain climate impact, we use the time series model to predict the load data for 2015, respectively, the 2009-2014 load data were sorted out, through the previous six years of the data to forecast the data for this time in 2015. The criterion for the accuracy of the prediction is the average of the standard deviations for the prediction results and average load for the previous six years. Finally, considering the climate effect, we use the BP neural network model to predict the data in 2015, and optimize the forecast results on the basis of the time series model.
NASA Astrophysics Data System (ADS)
Giebel, Gregor; Cline, Joel; Frank, Helmut; Shaw, Will; Pinson, Pierre; Hodge, Bri-Mathias; Kariniotakis, Georges; Sempreviva, Anna Maria; Draxl, Caroline
2017-04-01
Wind power forecasts have been used operatively for over 20 years. Despite this fact, there are still several possibilities to improve the forecasts, both from the weather prediction side and from the usage of the forecasts. The new International Energy Agency (IEA) Task on Wind Power Forecasting tries to organise international collaboration, among national weather centres with an interest and/or large projects on wind forecast improvements (NOAA, DWD, UK MetOffice, …) and operational forecaster and forecast users. The Task is divided in three work packages: Firstly, a collaboration on the improvement of the scientific basis for the wind predictions themselves. This includes numerical weather prediction model physics, but also widely distributed information on accessible datasets for verification. Secondly, we will be aiming at an international pre-standard (an IEA Recommended Practice) on benchmarking and comparing wind power forecasts, including probabilistic forecasts aiming at industry and forecasters alike. This WP will also organise benchmarks, in cooperation with the IEA Task WakeBench. Thirdly, we will be engaging end users aiming at dissemination of the best practice in the usage of wind power predictions, especially probabilistic ones. The Operating Agent is Gregor Giebel of DTU, Co-Operating Agent is Joel Cline of the US Department of Energy. Collaboration in the task is solicited from everyone interested in the forecasting business. We will collaborate with IEA Task 31 Wakebench, which developed the Windbench benchmarking platform, which this task will use for forecasting benchmarks. The task runs for three years, 2016-2018. Main deliverables are an up-to-date list of current projects and main project results, including datasets which can be used by researchers around the world to improve their own models, an IEA Recommended Practice on performance evaluation of probabilistic forecasts, a position paper regarding the use of probabilistic forecasts, and one or more benchmark studies implemented on the Windbench platform hosted at CENER. Additionally, spreading of relevant information in both the forecasters and the users community is paramount. The poster also shows the work done in the first half of the Task, e.g. the collection of available datasets and the learnings from a public workshop on 9 June in Barcelona on Experiences with the Use of Forecasts and Gaps in Research. Participation is open for all interested parties in member states of the IEA Annex on Wind Power, see ieawind.org for the up-to-date list. For collaboration, please contact the author grgi@dtu.dk).
Value of Adaptive Drought Forecasting and Management for the ACF River Basin in the Southeast U.S.
NASA Astrophysics Data System (ADS)
Georgakakos, A. P.; Kistenmacher, M.
2016-12-01
In recent times, severe droughts in the southeast U.S. occur every 6 to 10 years and last for up to 4 years. During such drought episodes, the ACF River Basin supplies decline by up to 50 % of their normal levels, and water stresses increase rather markedly, exacerbating stakeholder anxiety and conflicts. As part of the ACF Stakeholder planning process, GWRI has developed new tools and carried out comprehensive assessments to provide quantitative answers to several important questions related to drought prediction and management: (i) Can dry and wet climatic periods be reliably anticipated with sufficiently long lead times? What drought indices can support reliable, skillful, and long-lead forecasts? (ii) What management objectives can seasonal climate forecasts benefit? How should benefits/impacts be shared? (iii) What operational adjustments are likely to mitigate stakeholder impacts or increase benefits consistent with stakeholder expectations? Regarding drought prediction, a large number of indices were defined and tested at different basin locations and lag times. These included local/cumulative unimpaired flows (UIFs) at 10 river nodes; Mean Areal Precipitation (MAP); Standard Precipitation Index (SPI); Palmer Drought Severity Index; Palmer Modified Drought Index; Palmer Z-Index; Palmer Hydrologic Drought Severity Index; and Soil Moisture—GWRI watershed model. Our findings show that all ACF sub-basins exhibit good forecast skill throughout the year and with sufficient lead time. Index variables with high explanatory value include: previous UIFs, soil moisture states (generated by the GWRI watershed model), and PDSI. Regarding drought management, assessments with coupled forecast-management schemes demonstrate that the use of adaptive forecast-management procedures improves reservoir operations and meets basin demands more reliably. Such improvements can support better management of lake levels, higher environmental and navigation flows, higher dependable power generation hours, and better management of consumptive uses without adverse impacts on other stakeholder interests. However, realizing these improvements requires (1) usage of adaptive reservoir management procedures (incorporating forecasts), and (2) stakeholder agreement on equitable benefit sharing.
Phosphoric acid fuel cell platinum use study
NASA Technical Reports Server (NTRS)
Lundblad, H. L.
1983-01-01
The U.S. Department of Energy is promoting the private development of phosphoric acid fuel cell (PAFC) power plants for terrestrial applications. Current PAFC technology utilizes platinum as catalysts in the power electrodes. The possible repercussions that the platinum demand of PAFC power plant commercialization will have on the worldwide supply and price of platinum from the outset of commercialization to the year 2000 are investigated. The platinum demand of PAFC commercialization is estimated by developing forecasts of platinum use per unit of generating capacity and penetration of PAFC power plants into the electric generation market. The ability of the platinum supply market to meet future demands is gauged by assessing the size of platinum reserves and the capability of platinum producers to extract, refine and market sufficient quantities of these reserves. The size and timing of platinum price shifts induced by the added demand of PAFC commercialization are investigated by several analytical methods. Estimates of these price shifts are then used to calculate the subsequent effects on PAFC power plant capital costs.
Phosphoric acid fuel cell platinum use study
NASA Astrophysics Data System (ADS)
Lundblad, H. L.
1983-05-01
The U.S. Department of Energy is promoting the private development of phosphoric acid fuel cell (PAFC) power plants for terrestrial applications. Current PAFC technology utilizes platinum as catalysts in the power electrodes. The possible repercussions that the platinum demand of PAFC power plant commercialization will have on the worldwide supply and price of platinum from the outset of commercialization to the year 2000 are investigated. The platinum demand of PAFC commercialization is estimated by developing forecasts of platinum use per unit of generating capacity and penetration of PAFC power plants into the electric generation market. The ability of the platinum supply market to meet future demands is gauged by assessing the size of platinum reserves and the capability of platinum producers to extract, refine and market sufficient quantities of these reserves. The size and timing of platinum price shifts induced by the added demand of PAFC commercialization are investigated by several analytical methods. Estimates of these price shifts are then used to calculate the subsequent effects on PAFC power plant capital costs.
NASA Astrophysics Data System (ADS)
Thiesen, J.; Gulstad, L.; Ristic, I.; Maric, T.
2010-09-01
Summit: The wind power predictability is often a forgotten decision and planning factor for most major wind parks, both onshore and offshore. The results of the predictability are presented after having examined a number of European offshore and offshore parks power predictability by using three(3) mesoscale model IRIE_GFS and IRIE_EC and WRF. Full description: It is well known that the potential wind production is changing with latitude and complexity in terrain, but how big are the changes in the predictability and the economic impacts on a project? The concept of meteorological predictability has hitherto to some degree been neglected as a risk factor in the design, construction and operation of wind power plants. Wind power plants are generally built in places where the wind resources are high, but these are often also sites where the predictability of the wind and other weather parameters is comparatively low. This presentation addresses the question of whether higher predictability can outweigh lower average wind speeds with regard to the overall economy of a wind power project. Low predictability also tends to reduce the value of the energy produced. If it is difficult to forecast the wind on a site, it will also be difficult to predict the power production. This, in turn, leads to increased balance costs and a less reduced carbon emission from the renewable source. By investigating the output from three(3) mesoscale models IRIE and WRF, using ECMWF and GFS as boundary data over a forecasting period of 3 months for 25 offshore and onshore wind parks in Europe, the predictability are mapped. Three operational mesoscale models with two different boundary data have been chosen in order to eliminate the uncertainty with one mesoscale model. All mesoscale models are running in a 10 km horizontal resolution. The model output are converted into "day a head" wind turbine generation forecasts by using a well proven advanced physical wind power model. The power models are using a number of weather parameters like wind speed in different heights, friction velocity and DTHV. The 25 wind sites are scattered around in Europe and contains 4 offshore parks and 21 onshore parks in various terrain complexity. The "day a head" forecasts are compared with production data and predictability for the period February 2010-April 2010 are given in Mean Absolute Errors (MAE) and Root Mean Squared Errors (RMSE). The power predictability results are mapped for each turbine giving a clear picture of the predictability in Europe. . Finally a economic analysis are shown for each wind parks in different regimes of predictability will be compared with regard to the balance costs that result from errors in the wind power prediction. Analysis shows that it may very well be profitable to place wind parks in regions of lower, but more predictable wind ressource. Authors: Ivan Ristic, CTO Weather2Umberlla D.O.O Tomislav Maric, Meteorologist at Global Flow Solutions Vestas Wind Technology R&D Line Gulstad, Manager Global Flow Solutions Vestas Wind Technology R&D Jesper Thiesen, CEO ConWx ApS
Wind power application research on the fusion of the determination and ensemble prediction
NASA Astrophysics Data System (ADS)
Lan, Shi; Lina, Xu; Yuzhu, Hao
2017-07-01
The fused product of wind speed for the wind farm is designed through the use of wind speed products of ensemble prediction from the European Centre for Medium-Range Weather Forecasts (ECMWF) and professional numerical model products on wind power based on Mesoscale Model5 (MM5) and Beijing Rapid Update Cycle (BJ-RUC), which are suitable for short-term wind power forecasting and electric dispatch. The single-valued forecast is formed by calculating the different ensemble statistics of the Bayesian probabilistic forecasting representing the uncertainty of ECMWF ensemble prediction. Using autoregressive integrated moving average (ARIMA) model to improve the time resolution of the single-valued forecast, and based on the Bayesian model averaging (BMA) and the deterministic numerical model prediction, the optimal wind speed forecasting curve and the confidence interval are provided. The result shows that the fusion forecast has made obvious improvement to the accuracy relative to the existing numerical forecasting products. Compared with the 0-24 h existing deterministic forecast in the validation period, the mean absolute error (MAE) is decreased by 24.3 % and the correlation coefficient (R) is increased by 12.5 %. In comparison with the ECMWF ensemble forecast, the MAE is reduced by 11.7 %, and R is increased 14.5 %. Additionally, MAE did not increase with the prolongation of the forecast ahead.
NASA Astrophysics Data System (ADS)
Li, Xiwang
Buildings consume about 41.1% of primary energy and 74% of the electricity in the U.S. Moreover, it is estimated by the National Energy Technology Laboratory that more than 1/4 of the 713 GW of U.S. electricity demand in 2010 could be dispatchable if only buildings could respond to that dispatch through advanced building energy control and operation strategies and smart grid infrastructure. In this study, it is envisioned that neighboring buildings will have the tendency to form a cluster, an open cyber-physical system to exploit the economic opportunities provided by a smart grid, distributed power generation, and storage devices. Through optimized demand management, these building clusters will then reduce overall primary energy consumption and peak time electricity consumption, and be more resilient to power disruptions. Therefore, this project seeks to develop a Net-zero building cluster simulation testbed and high fidelity energy forecasting models for adaptive and real-time control and decision making strategy development that can be used in a Net-zero building cluster. The following research activities are summarized in this thesis: 1) Development of a building cluster emulator for building cluster control and operation strategy assessment. 2) Development of a novel building energy forecasting methodology using active system identification and data fusion techniques. In this methodology, a systematic approach for building energy system characteristic evaluation, system excitation and model adaptation is included. The developed methodology is compared with other literature-reported building energy forecasting methods; 3) Development of the high fidelity on-line building cluster energy forecasting models, which includes energy forecasting models for buildings, PV panels, batteries and ice tank thermal storage systems 4) Small scale real building validation study to verify the performance of the developed building energy forecasting methodology. The outcomes of this thesis can be used for building cluster energy forecasting model development and model based control and operation optimization. The thesis concludes with a summary of the key outcomes of this research, as well as a list of recommendations for future work.
NASA's Radioisotope Power Systems Planning and Potential Future Systems Overview
NASA Technical Reports Server (NTRS)
Zakrajsek, June F.; Woerner, Dave F.; Cairns-Gallimore, Dirk; Johnson, Stephen G.; Qualls, Louis
2016-01-01
The goal of NASA's Radioisotope Power Systems (RPS) Program is to make RPS ready and available to support the exploration of the solar system in environments where the use of conventional solar or chemical power generation is impractical or impossible to meet the needs of the missions. To meet this goal, the RPS Program, working closely with the Department of Energy, performs mission and system studies (such as the recently released Nuclear Power Assessment Study), assesses the readiness of promising technologies to infuse in future generators, assesses the sustainment of key RPS capabilities and knowledge, forecasts and tracks the Program's budgetary needs, and disseminates current information about RPS to the community of potential users. This process has been refined and used to determine the current content of the RPS Program's portfolio. This portfolio currently includes an effort to mature advanced thermoelectric technology for possible integration into an enhanced Multi-Mission Radioisotope Generator (eMMRTG), sustainment and production of the currently deployed MMRTG, and technology investments that could lead to a future Stirling Radioisotope Generator (SRG). This paper describes the program planning processes that have been used, the currently available MMRTG, and one of the potential future systems, the eMMRTG.
NASA's Radioisotope Power Systems Planning and Potential Future Systems Overview
NASA Technical Reports Server (NTRS)
Zakrajsek, June F.; Woerner, Dave F.; Cairns-Gallimore, Dirk; Johnson, Stephen G.; Qualis, Louis
2016-01-01
The goal of NASA's Radioisotope Power Systems (RPS) Program is to make RPS ready and available to support the exploration of the solar system in environments where the use of conventional solar or chemical power generation is impractical or impossible to meet the needs of the missions. To meet this goal, the RPS Program, working closely with the Department of Energy, performs mission and system studies (such as the recently released Nuclear Power Assessment Study), assesses the readiness of promising technologies to infuse in future generators, assesses the sustainment of key RPS capabilities and knowledge, forecasts and tracks the Programs budgetary needs, and disseminates current information about RPS to the community of potential users. This process has been refined and used to determine the current content of the RPS Programs portfolio. This portfolio currently includes an effort to mature advanced thermoelectric technology for possible integration into an enhanced Multi-Mission Radioisotope Generator (eMMRTG), sustainment and production of the currently deployed MMRTG, and technology investments that could lead to a future Stirling Radioisotope Generator (SRG). This paper describes the program planning processes that have been used, the currently available MMRTG, and one of the potential future systems, the eMMRTG.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zack, J; Natenberg, E J; Knowe, G V
The overall goal of this multi-phased research project known as WindSENSE is to develop an observation system deployment strategy that would improve wind power generation forecasts. The objective of the deployment strategy is to produce the maximum benefit for 1- to 6-hour ahead forecasts of wind speed at hub-height ({approx}80 m). In this phase of the project the focus is on the Mid-Columbia Basin region, which encompasses the Bonneville Power Administration (BPA) wind generation area (Figure 1) that includes the Klondike, Stateline, and Hopkins Ridge wind plants. There are two tasks in the current project effort designed to validate themore » Ensemble Sensitivity Analysis (ESA) observational system deployment approach in order to move closer to the overall goal: (1) Perform an Observing System Experiment (OSE) using a data denial approach. The results of this task are presented in a separate report. (2) Conduct a set of Observing System Simulation Experiments (OSSE) for the Mid-Colombia basin region. This report presents the results of the OSSE task. The specific objective is to test strategies for future deployment of observing systems in order to suggest the best and most efficient ways to improve wind forecasting at BPA wind farm locations. OSSEs have been used for many years in meteorology to evaluate the potential impact of proposed observing systems, determine tradeoffs in instrument design, and study the most effective data assimilation methodologies to incorporate the new observations into numerical weather prediction (NWP) models (Atlas 1997; Lord 1997). For this project, a series of OSSEs will allow consideration of the impact of new observing systems of various types and in various locations.« less
Snow mapping from space platforms
NASA Technical Reports Server (NTRS)
Itten, K. I.
1980-01-01
The paper considers problems of optimum resolution, periodicity, and wavelength bands used for snow mapping. Analog and digital methods were used for application of satellite data; techniques were developed for producing steamflow forecasts, hydroelectric power generation regulation data, irrigation potentials, and information on the availability of drinking water supplies. Future systems will utilize improved spectral band selection, new spectral regions, higher repetition rates, and more rapid access to satellite data.
Market protocols in ERCOT and their effect on wind generation
Sioshansi, Ramteen; Hurlbut, David
2009-08-22
Integrating wind generation into power systems and wholesale electricity markets presents unique challenges due to the characteristics of wind power, including its limited dispatchability, variability in generation, difficulty in forecasting resource availability, and the geographic location of wind resources. Texas has had to deal with many of these issues beginning in 2002 when it restructured its electricity industry and introduced aggressive renewable portfolio standards that helped spur major investments in wind generation. In this paper we discuss the issues that have arisen in designing market protocols that take account of these special characteristics of wind generation and survey the regulatorymore » and market rules that have been developed in Texas. We discuss the perverse incentives some of the rules gave wind generators to overschedule generation in order to receive balancing energy payments, and steps that have been taken to mitigate those incentive effects. Lastly, we discuss more recent steps taken by the market operator and regulators to ensure transmission capacity is available for new wind generators that are expected to come online in the future.« less
On the Profitability of Variable Speed Pump-Storage-Power in Frequency Restoration Reserve
NASA Astrophysics Data System (ADS)
Filipe, Jorge; Bessa, Ricardo; Moreira, Carlos; Silva, Bernardo
2017-04-01
The increase penetration of renewable energy sources (RES) into the European power system has introduced a significant amount of variability and uncertainty in the generation profiles raising the needs for ancillary services as well as other tools like demand response, improved generation forecasting techniques and changes to the market design. While RES is able to replace energy produced by the traditional centralized generation, it cannot displace its capacity in terms of ancillary services provided. Therefore, centralized generation capacity must be retained to perform this function leading to over-capacity issues and underutilisation of the assets. Large-scale reversible hydro power plants represent the majority of the storage solution installed in the power system. This technology comes with high investments costs, hence the constant search for methods to increase and diversify the sources of revenue. Traditional fixed speed pump storage units typically operate in the day-ahead market to perform price arbitrage and, in some specific cases, provide downward replacement reserve (RR). Variable speed pump storage can not only participate in RR but also contribute to FRR, given their ability to control its operating point in pumping mode. This work does an extended analysis of a complete bidding strategy for Pumped Storage Power, enhancing the economic advantages of variable speed pump units in comparison with fixed ones.
Integrating Solar PV in Utility System Operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mills, A.; Botterud, A.; Wu, J.
2013-10-31
This study develops a systematic framework for estimating the increase in operating costs due to uncertainty and variability in renewable resources, uses the framework to quantify the integration costs associated with sub-hourly solar power variability and uncertainty, and shows how changes in system operations may affect these costs. Toward this end, we present a statistical method for estimating the required balancing reserves to maintain system reliability along with a model for commitment and dispatch of the portfolio of thermal and renewable resources at different stages of system operations. We estimate the costs of sub-hourly solar variability, short-term forecast errors, andmore » day-ahead (DA) forecast errors as the difference in production costs between a case with “realistic” PV (i.e., subhourly solar variability and uncertainty are fully included in the modeling) and a case with “well behaved” PV (i.e., PV is assumed to have no sub-hourly variability and can be perfectly forecasted). In addition, we highlight current practices that allow utilities to compensate for the issues encountered at the sub-hourly time frame with increased levels of PV penetration. In this analysis we use the analytical framework to simulate utility operations with increasing deployment of PV in a case study of Arizona Public Service Company (APS), a utility in the southwestern United States. In our analysis, we focus on three processes that are important in understanding the management of PV variability and uncertainty in power system operations. First, we represent the decisions made the day before the operating day through a DA commitment model that relies on imperfect DA forecasts of load and wind as well as PV generation. Second, we represent the decisions made by schedulers in the operating day through hour-ahead (HA) scheduling. Peaking units can be committed or decommitted in the HA schedules and online units can be redispatched using forecasts that are improved relative to DA forecasts, but still imperfect. Finally, we represent decisions within the operating hour by schedulers and transmission system operators as real-time (RT) balancing. We simulate the DA and HA scheduling processes with a detailed unit-commitment (UC) and economic dispatch (ED) optimization model. This model creates a least-cost dispatch and commitment plan for the conventional generating units using forecasts and reserve requirements as inputs. We consider only the generation units and load of the utility in this analysis; we do not consider opportunities to trade power with neighboring utilities. We also do not consider provision of reserves from renewables or from demand-side options. We estimate dynamic reserve requirements in order to meet reliability requirements in the RT operations, considering the uncertainty and variability in load, solar PV, and wind resources. Balancing reserve requirements are based on the 2.5th and 97.5th percentile of 1-min deviations from the HA schedule in a previous year. We then simulate RT deployment of balancing reserves using a separate minute-by-minute simulation of deviations from the HA schedules in the operating year. In the simulations we assume that balancing reserves can be fully deployed in 10 min. The minute-by-minute deviations account for HA forecasting errors and the actual variability of the load, wind, and solar generation. Using these minute-by-minute deviations and deployment of balancing reserves, we evaluate the impact of PV on system reliability through the calculation of the standard reliability metric called Control Performance Standard 2 (CPS2). Broadly speaking, the CPS2 score measures the percentage of 10-min periods in which a balancing area is able to balance supply and demand within a specific threshold. Compliance with the North American Electric Reliability Corporation (NERC) reliability standards requires that the CPS2 score must exceed 90% (i.e., the balancing area must maintain adequate balance for 90% of the 10-min periods). The combination of representing DA forecast errors in the DA commitments, using 1-min PV data to simulate RT balancing, and estimates of reliability performance through the CPS2 metric, all factors that are important to operating systems with increasing amounts of PV, makes this study unique in its scope.« less
NASA Astrophysics Data System (ADS)
Gao, Yi
The development and utilization of wind energy for satisfying electrical demand has received considerable attention in recent years due to its tremendous environmental, social and economic benefits, together with public support and government incentives. Electric power generation from wind energy behaves quite differently from that of conventional sources. The fundamentally different operating characteristics of wind energy facilities therefore affect power system reliability in a different manner than those of conventional systems. The reliability impact of such a highly variable energy source is an important aspect that must be assessed when the wind power penetration is significant. The focus of the research described in this thesis is on the utilization of state sampling Monte Carlo simulation in wind integrated bulk electric system reliability analysis and the application of these concepts in system planning and decision making. Load forecast uncertainty is an important factor in long range planning and system development. This thesis describes two approximate approaches developed to reduce the number of steps in a load duration curve which includes load forecast uncertainty, and to provide reasonably accurate generating and bulk system reliability index predictions. The developed approaches are illustrated by application to two composite test systems. A method of generating correlated random numbers with uniform distributions and a specified correlation coefficient in the state sampling method is proposed and used to conduct adequacy assessment in generating systems and in bulk electric systems containing correlated wind farms in this thesis. The studies described show that it is possible to use the state sampling Monte Carlo simulation technique to quantitatively assess the reliability implications associated with adding wind power to a composite generation and transmission system including the effects of multiple correlated wind sites. This is an important development as it permits correlated wind farms to be incorporated in large practical system studies without requiring excessive increases in computer solution time. The procedures described in this thesis for creating monthly and seasonal wind farm models should prove useful in situations where time period models are required to incorporate scheduled maintenance of generation and transmission facilities. There is growing interest in combining deterministic considerations with probabilistic assessment in order to evaluate the quantitative system risk and conduct bulk power system planning. A relatively new approach that incorporates deterministic and probabilistic considerations in a single risk assessment framework has been designated as the joint deterministic-probabilistic approach. The research work described in this thesis illustrates that the joint deterministic-probabilistic approach can be effectively used to integrate wind power in bulk electric system planning. The studies described in this thesis show that the application of the joint deterministic-probabilistic method provides more stringent results for a system with wind power than the traditional deterministic N-1 method because the joint deterministic-probabilistic technique is driven by the deterministic N-1 criterion with an added probabilistic perspective which recognizes the power output characteristics of a wind turbine generator.
NASA Astrophysics Data System (ADS)
Kariniotakis, G.; Anemos Team
2003-04-01
Objectives: Accurate forecasting of the wind energy production up to two days ahead is recognized as a major contribution for reliable large-scale wind power integration. Especially, in a liberalized electricity market, prediction tools enhance the position of wind energy compared to other forms of dispatchable generation. ANEMOS, is a new 3.5 years R&D project supported by the European Commission, that resembles research organizations and end-users with an important experience on the domain. The project aims to develop advanced forecasting models that will substantially outperform current methods. Emphasis is given to situations like complex terrain, extreme weather conditions, as well as to offshore prediction for which no specific tools currently exist. The prediction models will be implemented in a software platform and installed for online operation at onshore and offshore wind farms by the end-users participating in the project. Approach: The paper presents the methodology of the project. Initially, the prediction requirements are identified according to the profiles of the end-users. The project develops prediction models based on both a physical and an alternative statistical approach. Research on physical models gives emphasis to techniques for use in complex terrain and the development of prediction tools based on CFD techniques, advanced model output statistics or high-resolution meteorological information. Statistical models (i.e. based on artificial intelligence) are developed for downscaling, power curve representation, upscaling for prediction at regional or national level, etc. A benchmarking process is set-up to evaluate the performance of the developed models and to compare them with existing ones using a number of case studies. The synergy between statistical and physical approaches is examined to identify promising areas for further improvement of forecasting accuracy. Appropriate physical and statistical prediction models are also developed for offshore wind farms taking into account advances in marine meteorology (interaction between wind and waves, coastal effects). The benefits from the use of satellite radar images for modeling local weather patterns are investigated. A next generation forecasting software, ANEMOS, will be developed to integrate the various models. The tool is enhanced by advanced Information Communication Technology (ICT) functionality and can operate both in stand alone, or remote mode, or be interfaced with standard Energy or Distribution Management Systems (EMS/DMS) systems. Contribution: The project provides an advanced technology for wind resource forecasting applicable in a large scale: at a single wind farm, regional or national level and for both interconnected and island systems. A major milestone is the on-line operation of the developed software by the participating utilities for onshore and offshore wind farms and the demonstration of the economic benefits. The outcome of the ANEMOS project will help consistently the increase of wind integration in two levels; in an operational level due to better management of wind farms, but also, it will contribute to increasing the installed capacity of wind farms. This is because accurate prediction of the resource reduces the risk of wind farm developers, who are then more willing to undertake new wind farm installations especially in a liberalized electricity market environment.
Howell, Lydia Pleotis; Joad, Jesse P; Callahan, Edward; Servis, Gregg; Bonham, Ann C
2009-08-01
Multigenerational teams are essential to the missions of academic health centers (AHCs). Generational forecasting using Strauss and Howe's predictive model, "the generational diagonal," can be useful for anticipating and addressing issues so that each generation is effective. Forecasts are based on the observation that cyclical historical events are experienced by all generations, but the response of each generation differs according to its phase of life and previous defining experiences. This article relates Strauss and Howe's generational forecasts to AHCs. Predicted issues such as work-life balance, indebtedness, and succession planning have existed previously, but they now have different causes or consequences because of the unique experiences and life stages of current generations. Efforts to address these issues at the authors' AHC include a work-life balance workgroup, expanded leave, and intramural grants.
NASA Astrophysics Data System (ADS)
Xie, Chang; Wen, Jing; Liu, Wenying; Wang, Jiaming
With the development of intelligent dispatching, the intelligence level of network control center full-service urgent need to raise. As an important daily work of network control center, the application of maintenance scheduling intelligent arrangement to achieve high-quality and safety operation of power grid is very important. By analyzing the shortages of the traditional maintenance scheduling software, this paper designs a power grid maintenance scheduling intelligence arrangement supporting system based on power flow forecasting, which uses the advanced technologies in maintenance scheduling, such as artificial intelligence, online security checking, intelligent visualization techniques. It implements the online security checking of maintenance scheduling based on power flow forecasting and power flow adjusting based on visualization, in order to make the maintenance scheduling arrangement moreintelligent and visual.
Evaluation and prediction of solar radiation for energy management based on neural networks
NASA Astrophysics Data System (ADS)
Aldoshina, O. V.; Van Tai, Dinh
2017-08-01
Currently, there is a high rate of distribution of renewable energy sources and distributed power generation based on intelligent networks; therefore, meteorological forecasts are particularly useful for planning and managing the energy system in order to increase its overall efficiency and productivity. The application of artificial neural networks (ANN) in the field of photovoltaic energy is presented in this article. Implemented in this study, two periodically repeating dynamic ANS, that are the concentration of the time delay of a neural network (CTDNN) and the non-linear autoregression of a network with exogenous inputs of the NAEI, are used in the development of a model for estimating and daily forecasting of solar radiation. ANN show good productivity, as reliable and accurate models of daily solar radiation are obtained. This allows to successfully predict the photovoltaic output power for this installation. The potential of the proposed method for controlling the energy of the electrical network is shown using the example of the application of the NAEI network for predicting the electric load.
Integrated Wind Power Planning Tool
NASA Astrophysics Data System (ADS)
Rosgaard, Martin; Giebel, Gregor; Skov Nielsen, Torben; Hahmann, Andrea; Sørensen, Poul; Madsen, Henrik
2013-04-01
This poster presents the current state of the public service obligation (PSO) funded project PSO 10464, with the title "Integrated Wind Power Planning Tool". The goal is to integrate a mesoscale numerical weather prediction (NWP) model with purely statistical tools in order to assess wind power fluctuations, with focus on long term power system planning for future wind farms as well as short term forecasting for existing wind farms. Currently, wind power fluctuation models are either purely statistical or integrated with NWP models of limited resolution. Using the state-of-the-art mesoscale NWP model Weather Research & Forecasting model (WRF) the forecast error is sought quantified in dependence of the time scale involved. This task constitutes a preparative study for later implementation of features accounting for NWP forecast errors in the DTU Wind Energy maintained Corwind code - a long term wind power planning tool. Within the framework of PSO 10464 research related to operational short term wind power prediction will be carried out, including a comparison of forecast quality at different mesoscale NWP model resolutions and development of a statistical wind power prediction tool taking input from WRF. The short term prediction part of the project is carried out in collaboration with ENFOR A/S; a Danish company that specialises in forecasting and optimisation for the energy sector. The integrated prediction model will allow for the description of the expected variability in wind power production in the coming hours to days, accounting for its spatio-temporal dependencies, and depending on the prevailing weather conditions defined by the WRF output. The output from the integrated short term prediction tool constitutes scenario forecasts for the coming period, which can then be fed into any type of system model or decision making problem to be solved. The high resolution of the WRF results loaded into the integrated prediction model will ensure a high accuracy data basis is available for use in the decision making process of the Danish transmission system operator. The need for high accuracy predictions will only increase over the next decade as Denmark approaches the goal of 50% wind power based electricity in 2025 from the current 20%.
Wind speed time series reconstruction using a hybrid neural genetic approach
NASA Astrophysics Data System (ADS)
Rodriguez, H.; Flores, J. J.; Puig, V.; Morales, L.; Guerra, A.; Calderon, F.
2017-11-01
Currently, electric energy is used in practically all modern human activities. Most of the energy produced came from fossil fuels, making irreversible damage to the environment. Lately, there has been an effort by nations to produce energy using clean methods, such as solar and wind energy, among others. Wind energy is one of the cleanest alternatives. However, the wind speed is not constant, making the planning and operation at electric power systems a difficult activity. Knowing in advance the amount of raw material (wind speed) used for energy production allows us to estimate the energy to be generated by the power plant, helping the maintenance planning, the operational management, optimal operational cost. For these reasons, the forecast of wind speed becomes a necessary task. The forecast process involves the use of past observations from the variable to forecast (wind speed). To measure wind speed, weather stations use devices called anemometers, but due to poor maintenance, connection error, or natural wear, they may present false or missing data. In this work, a hybrid methodology is proposed, and it uses a compact genetic algorithm with an artificial neural network to reconstruct wind speed time series. The proposed methodology reconstructs the time series using a ANN defined by a Compact Genetic Algorithm.
Investment in generation is heavy, but important needs remain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maize, K.
2007-01-15
Forecasting the direction of the US electric power industry for 2007, much less the distant future, is like defining a velocity vector; doing so requires a direction and speed to delineate progress. In this special report, the paper looks at current industry indicators and draws conclusions based on more than 100 years of experience. To borrow verbatim the title of basketball legend Charles Barkely's book 'I may be wrong but I doubt it'. The forecast takes into consideration USDOE's National Electric Transmission Congestion Study (August 2006),a summary of industry data prepared by Industrial Info Resources (IIR) and NERC's 2006 Long-Termmore » Reliability Assessment (October 2006). It also reports opinions of industry specialists. 3 figs., 4 tabs.« less
NASA Astrophysics Data System (ADS)
Pulusani, Praneeth R.
As the number of electric vehicles on the road increases, current power grid infrastructure will not be able to handle the additional load. Some approaches in the area of Smart Grid research attempt to mitigate this, but those approaches alone will not be sufficient. Those approaches and traditional solution of increased power production can result in an insufficient and imbalanced power grid. It can lead to transformer blowouts, blackouts and blown fuses, etc. The proposed solution will supplement the ``Smart Grid'' to create a more sustainable power grid. To solve or mitigate the magnitude of the problem, measures can be taken that depend on weather forecast models. For instance, wind and solar forecasts can be used to create first order Markov chain models that will help predict the availability of additional power at certain times. These models will be used in conjunction with the information processing layer and bidirectional signal processing components of electric vehicle charging systems, to schedule the amount of energy transferred per time interval at various times. The research was divided into three distinct components: (1) Renewable Energy Supply Forecast Model, (2) Energy Demand Forecast from PEVs, and (3) Renewable Energy Resource Estimation. For the first component, power data from a local wind turbine, and weather forecast data from NOAA were used to develop a wind energy forecast model, using a first order Markov chain model as the foundation. In the second component, additional macro energy demand from PEVs in the Greater Rochester Area was forecasted by simulating concurrent driving routes. In the third component, historical data from renewable energy sources was analyzed to estimate the renewable resources needed to offset the energy demand from PEVs. The results from these models and components can be used in the smart grid applications for scheduling and delivering energy. Several solutions are discussed to mitigate the problem of overloading transformers, lack of energy supply, and higher utility costs.
The impact of wind power on electricity prices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brancucci Martinez-Anido, Carlo; Brinkman, Greg; Hodge, Bri-Mathias
This paper investigates the impact of wind power on electricity prices using a production cost model of the Independent System Operator - New England power system. Different scenarios in terms of wind penetration, wind forecasts, and wind curtailment are modeled in order to analyze the impact of wind power on electricity prices for different wind penetration levels and for different levels of wind power visibility and controllability. The analysis concludes that electricity price volatility increases even as electricity prices decrease with increasing wind penetration levels. The impact of wind power on price volatility is larger in the shorter term (5-minmore » compared to hour-to-hour). The results presented show that over-forecasting wind power increases electricity prices while under-forecasting wind power reduces them. The modeling results also show that controlling wind power by allowing curtailment increases electricity prices, and for higher wind penetrations it also reduces their volatility.« less
NASA Astrophysics Data System (ADS)
Khajehei, Sepideh; Moradkhani, Hamid
2015-04-01
Producing reliable and accurate hydrologic ensemble forecasts are subject to various sources of uncertainty, including meteorological forcing, initial conditions, model structure, and model parameters. Producing reliable and skillful precipitation ensemble forecasts is one approach to reduce the total uncertainty in hydrological applications. Currently, National Weather Prediction (NWP) models are developing ensemble forecasts for various temporal ranges. It is proven that raw products from NWP models are biased in mean and spread. Given the above state, there is a need for methods that are able to generate reliable ensemble forecasts for hydrological applications. One of the common techniques is to apply statistical procedures in order to generate ensemble forecast from NWP-generated single-value forecasts. The procedure is based on the bivariate probability distribution between the observation and single-value precipitation forecast. However, one of the assumptions of the current method is fitting Gaussian distribution to the marginal distributions of observed and modeled climate variable. Here, we have described and evaluated a Bayesian approach based on Copula functions to develop an ensemble precipitation forecast from the conditional distribution of single-value precipitation forecasts. Copula functions are known as the multivariate joint distribution of univariate marginal distributions, which are presented as an alternative procedure in capturing the uncertainties related to meteorological forcing. Copulas are capable of modeling the joint distribution of two variables with any level of correlation and dependency. This study is conducted over a sub-basin in the Columbia River Basin in USA using the monthly precipitation forecasts from Climate Forecast System (CFS) with 0.5x0.5 Deg. spatial resolution to reproduce the observations. The verification is conducted on a different period and the superiority of the procedure is compared with Ensemble Pre-Processor approach currently used by National Weather Service River Forecast Centers in USA.
U.S. Electric System Operating Data
EIA provides hourly electricity operating data, including actual and forecast demand, net generation, and the power flowing between electric systems. EIA's new U.S. Electric System Operating Data tool provides nearly real-time demand data, plus analysis and visualizations of hourly, daily, and weekly electricity supply and demand on a national and regional level for all of the 66 electric system balancing authorities that make up the U.S. electric grid.
Men, Zhongxian; Yee, Eugene; Lien, Fue-Sang; Yang, Zhiling; Liu, Yongqian
2014-01-01
Short-term wind speed and wind power forecasts (for a 72 h period) are obtained using a nonlinear autoregressive exogenous artificial neural network (ANN) methodology which incorporates either numerical weather prediction or high-resolution computational fluid dynamics wind field information as an exogenous input. An ensemble approach is used to combine the predictions from many candidate ANNs in order to provide improved forecasts for wind speed and power, along with the associated uncertainties in these forecasts. More specifically, the ensemble ANN is used to quantify the uncertainties arising from the network weight initialization and from the unknown structure of the ANN. All members forming the ensemble of neural networks were trained using an efficient particle swarm optimization algorithm. The results of the proposed methodology are validated using wind speed and wind power data obtained from an operational wind farm located in Northern China. The assessment demonstrates that this methodology for wind speed and power forecasting generally provides an improvement in predictive skills when compared to the practice of using an "optimal" weight vector from a single ANN while providing additional information in the form of prediction uncertainty bounds.
Lien, Fue-Sang; Yang, Zhiling; Liu, Yongqian
2014-01-01
Short-term wind speed and wind power forecasts (for a 72 h period) are obtained using a nonlinear autoregressive exogenous artificial neural network (ANN) methodology which incorporates either numerical weather prediction or high-resolution computational fluid dynamics wind field information as an exogenous input. An ensemble approach is used to combine the predictions from many candidate ANNs in order to provide improved forecasts for wind speed and power, along with the associated uncertainties in these forecasts. More specifically, the ensemble ANN is used to quantify the uncertainties arising from the network weight initialization and from the unknown structure of the ANN. All members forming the ensemble of neural networks were trained using an efficient particle swarm optimization algorithm. The results of the proposed methodology are validated using wind speed and wind power data obtained from an operational wind farm located in Northern China. The assessment demonstrates that this methodology for wind speed and power forecasting generally provides an improvement in predictive skills when compared to the practice of using an “optimal” weight vector from a single ANN while providing additional information in the form of prediction uncertainty bounds. PMID:27382627
Rimaityte, Ingrida; Ruzgas, Tomas; Denafas, Gintaras; Racys, Viktoras; Martuzevicius, Dainius
2012-01-01
Forecasting of generation of municipal solid waste (MSW) in developing countries is often a challenging task due to the lack of data and selection of suitable forecasting method. This article aimed to select and evaluate several methods for MSW forecasting in a medium-scaled Eastern European city (Kaunas, Lithuania) with rapidly developing economics, with respect to affluence-related and seasonal impacts. The MSW generation was forecast with respect to the economic activity of the city (regression modelling) and using time series analysis. The modelling based on social-economic indicators (regression implemented in LCA-IWM model) showed particular sensitivity (deviation from actual data in the range from 2.2 to 20.6%) to external factors, such as the synergetic effects of affluence parameters or changes in MSW collection system. For the time series analysis, the combination of autoregressive integrated moving average (ARIMA) and seasonal exponential smoothing (SES) techniques were found to be the most accurate (mean absolute percentage error equalled to 6.5). Time series analysis method was very valuable for forecasting the weekly variation of waste generation data (r (2) > 0.87), but the forecast yearly increase should be verified against the data obtained by regression modelling. The methods and findings of this study may assist the experts, decision-makers and scientists performing forecasts of MSW generation, especially in developing countries.
7 CFR 1710.203 - Requirement to prepare a load forecast-distribution borrowers.
Code of Federal Regulations, 2011 CFR
2011-01-01
...—distribution borrowers. (a) A distribution borrower that is a member of a power supply borrower with a total... forecast work plan of its power supply borrower. (b) A distribution borrower that is a member of a power supply borrower which is itself a member of another power supply borrower that has a total utility plant...
Medium- and long-term electric power demand forecasting based on the big data of smart city
NASA Astrophysics Data System (ADS)
Wei, Zhanmeng; Li, Xiyuan; Li, Xizhong; Hu, Qinghe; Zhang, Haiyang; Cui, Pengjie
2017-08-01
Based on the smart city, this paper proposed a new electric power demand forecasting model, which integrates external data such as meteorological information, geographic information, population information, enterprise information and economic information into the big database, and uses an improved algorithm to analyse the electric power demand and provide decision support for decision makers. The data mining technology is used to synthesize kinds of information, and the information of electric power customers is analysed optimally. The scientific forecasting is made based on the trend of electricity demand, and a smart city in north-eastern China is taken as a sample.
Price elasticity matrix of demand in power system considering demand response programs
NASA Astrophysics Data System (ADS)
Qu, Xinyao; Hui, Hongxun; Yang, Shengchun; Li, Yaping; Ding, Yi
2018-02-01
The increasing renewable energy power generations have brought more intermittency and volatility to the electric power system. Demand-side resources can improve the consumption of renewable energy by demand response (DR), which becomes one of the important means to improve the reliability of power system. In price-based DR, the sensitivity analysis of customer’s power demand to the changing electricity prices is pivotal for setting reasonable prices and forecasting loads of power system. This paper studies the price elasticity matrix of demand (PEMD). An improved PEMD model is proposed based on elasticity effect weight, which can unify the rigid loads and flexible loads. Moreover, the structure of PEMD, which is decided by price policies and load types, and the calculation method of PEMD are also proposed. Several cases are studied to prove the effectiveness of this method.
Scaling forecast models for wind turbulence and wind turbine power intermittency
NASA Astrophysics Data System (ADS)
Duran Medina, Olmo; Schmitt, Francois G.; Calif, Rudy
2017-04-01
The intermittency of the wind turbine power remains an important issue for the massive development of this renewable energy. The energy peaks injected in the electric grid produce difficulties in the energy distribution management. Hence, a correct forecast of the wind power in the short and middle term is needed due to the high unpredictability of the intermittency phenomenon. We consider a statistical approach through the analysis and characterization of stochastic fluctuations. The theoretical framework is the multifractal modelisation of wind velocity fluctuations. Here, we consider three wind turbine data where two possess a direct drive technology. Those turbines are producing energy in real exploitation conditions and allow to test our forecast models of power production at a different time horizons. Two forecast models were developed based on two physical principles observed in the wind and the power time series: the scaling properties on the one hand and the intermittency in the wind power increments on the other. The first tool is related to the intermittency through a multifractal lognormal fit of the power fluctuations. The second tool is based on an analogy of the power scaling properties with a fractional brownian motion. Indeed, an inner long-term memory is found in both time series. Both models show encouraging results since a correct tendency of the signal is respected over different time scales. Those tools are first steps to a search of efficient forecasting approaches for grid adaptation facing the wind energy fluctuations.
Miyakawa, Tomoki; Satoh, Masaki; Miura, Hiroaki; Tomita, Hirofumi; Yashiro, Hisashi; Noda, Akira T.; Yamada, Yohei; Kodama, Chihiro; Kimoto, Masahide; Yoneyama, Kunio
2014-01-01
Global cloud/cloud system-resolving models are perceived to perform well in the prediction of the Madden–Julian Oscillation (MJO), a huge eastward -propagating atmospheric pulse that dominates intraseasonal variation of the tropics and affects the entire globe. However, owing to model complexity, detailed analysis is limited by computational power. Here we carry out a simulation series using a recently developed supercomputer, which enables the statistical evaluation of the MJO prediction skill of a costly new-generation model in a manner similar to operational forecast models. We estimate the current MJO predictability of the model as 27 days by conducting simulations including all winter MJO cases identified during 2003–2012. The simulated precipitation patterns associated with different MJO phases compare well with observations. An MJO case captured in a recent intensive observation is also well reproduced. Our results reveal that the global cloud-resolving approach is effective in understanding the MJO and in providing month-long tropical forecasts. PMID:24801254
Miyakawa, Tomoki; Satoh, Masaki; Miura, Hiroaki; Tomita, Hirofumi; Yashiro, Hisashi; Noda, Akira T; Yamada, Yohei; Kodama, Chihiro; Kimoto, Masahide; Yoneyama, Kunio
2014-05-06
Global cloud/cloud system-resolving models are perceived to perform well in the prediction of the Madden-Julian Oscillation (MJO), a huge eastward -propagating atmospheric pulse that dominates intraseasonal variation of the tropics and affects the entire globe. However, owing to model complexity, detailed analysis is limited by computational power. Here we carry out a simulation series using a recently developed supercomputer, which enables the statistical evaluation of the MJO prediction skill of a costly new-generation model in a manner similar to operational forecast models. We estimate the current MJO predictability of the model as 27 days by conducting simulations including all winter MJO cases identified during 2003-2012. The simulated precipitation patterns associated with different MJO phases compare well with observations. An MJO case captured in a recent intensive observation is also well reproduced. Our results reveal that the global cloud-resolving approach is effective in understanding the MJO and in providing month-long tropical forecasts.
Uses and Applications of Climate Forecasts for Power Utilities.
NASA Astrophysics Data System (ADS)
Changnon, Stanley A.; Changnon, Joyce M.; Changnon, David
1995-05-01
The uses and potential applications of climate forecasts for electric and gas utilities were assessed 1) to discern needs for improving climate forecasts and guiding future research, and 2) to assist utilities in making wise use of forecasts. In-depth structured interviews were conducted with 56 decision makers in six utilities to assess existing and potential uses of climate forecasts. Only 3 of the 56 use forecasts. Eighty percent of those sampled envisioned applications of climate forecasts, given certain changes and additional information. Primary applications exist in power trading, load forecasting, fuel acquisition, and systems planning, with slight differences in interests between utilities. Utility staff understand probability-based forecasts but desire climatological information related to forecasted outcomes, including analogs similar to the forecasts, and explanations of the forecasts. Desired lead times vary from a week to three months, along with forecasts of up to four seasons ahead. The new NOAA forecasts initiated in 1995 provide the lead times and longer-term forecasts desired. Major hindrances to use of forecasts are hard-to-understand formats, lack of corporate acceptance, and lack of access to expertise. Recent changes in government regulations altered the utility industry, leading to a more competitive world wherein information about future weather conditions assumes much more value. Outreach efforts by government forecast agencies appear valuable to help achieve the appropriate and enhanced use of climate forecasts by the utility industry. An opportunity for service exists also for the private weather sector.
NASA Astrophysics Data System (ADS)
Takenaka, H.; Teruyuki, N.; Nakajima, T. Y.; Higurashi, A.; Hashimoto, M.; Suzuki, K.; Uchida, J.; Nagao, T. M.; Shi, C.; Inoue, T.
2017-12-01
It is important to estimate the earth's radiation budget accurately for understanding of climate. Clouds can cool the Earth by reflecting solar radiation but also maintain warmth by absorbing and emitting terrestrial radiation. similarly aerosols also have an effect on radiation budget by absorption and scattering of Solar radiation. In this study, we developed the high speed and accurate algorithm for shortwave (SW) radiation budget and it's applied to geostationary satellite for rapid analysis. It enabled highly accurate monitoring of solar radiation and photo voltaic (PV) power generation. Next step, we try to update the algorithm for retrieval of Aerosols and Clouds. It indicates the accurate atmospheric parameters for estimation of solar radiation. (This research was supported in part by CREST/EMS).
NASA Astrophysics Data System (ADS)
Chen, Chun-I.; Chen, Hong Long; Chen, Shuo-Pei
2008-08-01
The traditional Grey Model is easy to understand and simple to calculate, with satisfactory accuracy, but it is also lack of flexibility to adjust the model to acquire higher forecasting precision. This research studies feasibility and effectiveness of a novel Grey model together with the concept of the Bernoulli differential equation in ordinary differential equation. In this research, the author names this newly proposed model as Nonlinear Grey Bernoulli Model (NGBM). The NGBM is nonlinear differential equation with power index n. By controlling n, the curvature of the solution curve could be adjusted to fit the result of one time accumulated generating operation (1-AGO) of raw data. One extreme case from Grey system textbook is studied by NGBM, and two published articles are chosen for practical tests of NGBM. The results prove the novel NGBM is feasible and efficient. Finally, NGBM is used to forecast 2005 foreign exchange rates of twelve Taiwan major trading partners, including Taiwan.
Payette River Basin Project: Improving Operational Forecasting in Complex Terrain through Chemistry
NASA Astrophysics Data System (ADS)
Blestrud, D.; Kunkel, M. L.; Parkinson, S.; Holbrook, V. P.; Benner, S. G.; Fisher, J.
2015-12-01
Idaho Power Company (IPC) is an investor owned hydroelectric based utility, serving customers throughout southern Idaho and eastern Oregon. The University of Arizona (UA) runs an operational 1.8-km resolution Weather and Research Forecast (WRF) model for IPC, which is incorporated into IPC near and real-time forecasts for hydro, solar and wind generation, load servicing and a large-scale wintertime cloud seeding operation to increase winter snowpack. Winter snowpack is critical to IPC, as hydropower provides ~50% of the company's generation needs. In efforts to improve IPC's near-term forecasts and operational guidance to its cloud seeding program, IPC is working extensively with UA and the National Center for Atmospheric Research (NCAR) to improve WRF performance in the complex terrain of central Idaho. As part of this project, NCAR has developed a WRF based cloud seeding module (WRF CS) to deliver high-resolution, tailored forecasts to provide accurate guidance for IPC's operations. Working with Boise State University (BSU), IPC is conducting a multiyear campaign to validate the WRF CS's ability to account for and disperse the cloud seeding agent (AgI) within the boundary layer. This improved understanding of how WRF handles the AgI dispersion and fate will improve the understanding and ultimately the performance of WRF to forecast other parameters. As part of this campaign, IPC has developed an extensive ground based monitoring network including a Remote Area Snow Sampling Device (RASSD) that provides spatially and temporally discrete snow samples during active cloud seeding periods. To quantify AgI dispersion in the complex terrain, BSU conducts trace element analysis using LA-ICP-MS on the RASSD sampled snow to provide measurements (at the 10-12 level) of incorporated AgI, measurements are compare directly with WRF CS's estimates of distributed AgI. Modeling and analysis results from previous year's research and plans for coming seasons will be presented.
Short time ahead wind power production forecast
NASA Astrophysics Data System (ADS)
Sapronova, Alla; Meissner, Catherine; Mana, Matteo
2016-09-01
An accurate prediction of wind power output is crucial for efficient coordination of cooperative energy production from different sources. Long-time ahead prediction (from 6 to 24 hours) of wind power for onshore parks can be achieved by using a coupled model that would bridge the mesoscale weather prediction data and computational fluid dynamics. When a forecast for shorter time horizon (less than one hour ahead) is anticipated, an accuracy of a predictive model that utilizes hourly weather data is decreasing. That is because the higher frequency fluctuations of the wind speed are lost when data is averaged over an hour. Since the wind speed can vary up to 50% in magnitude over a period of 5 minutes, the higher frequency variations of wind speed and direction have to be taken into account for an accurate short-term ahead energy production forecast. In this work a new model for wind power production forecast 5- to 30-minutes ahead is presented. The model is based on machine learning techniques and categorization approach and using the historical park production time series and hourly numerical weather forecast.
Towards a More Accurate Solar Power Forecast By Improving NWP Model Physics
NASA Astrophysics Data System (ADS)
Köhler, C.; Lee, D.; Steiner, A.; Ritter, B.
2014-12-01
The growing importance and successive expansion of renewable energies raise new challenges for decision makers, transmission system operators, scientists and many more. In this interdisciplinary field, the role of Numerical Weather Prediction (NWP) is to reduce the uncertainties associated with the large share of weather-dependent power sources. Precise power forecast, well-timed energy trading on the stock market, and electrical grid stability can be maintained. The research project EWeLiNE is a collaboration of the German Weather Service (DWD), the Fraunhofer Institute (IWES) and three German transmission system operators (TSOs). Together, wind and photovoltaic (PV) power forecasts shall be improved by combining optimized NWP and enhanced power forecast models. The conducted work focuses on the identification of critical weather situations and the associated errors in the German regional NWP model COSMO-DE. Not only the representation of the model cloud characteristics, but also special events like Sahara dust over Germany and the solar eclipse in 2015 are treated and their effect on solar power accounted for. An overview of the EWeLiNE project and results of the ongoing research will be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-11-01
This study, conducted by Black & Veatch, was funded by the U.S. Trade and Development Agency. The report, produced for the Ministry of National Resources, Energy and Environment (MNRE) of Swaziland, determines the least cost capacity expansion option to meet the future power demand and system reliability criteria of Swaziland, with particular emphasis on the proposed interconnector between Swaziland and Mozambique. Volume 2, the Final Report, contains the following sections: (1.0) Introduction; (2.0) Review of SEB Power System; (3.0) SEB Load Forecast and Review; (4.0) SEB Load Forecast Revision; (5.0) The SEB Need for Power; (6.0) SEB System Development Planmore » Review; (7.0) Southern Mozambique EdM power System Review; (8.0) Southern Mozambique EdM Energy and Demand; (9.0) Supply Side Capacity Options for Swaziland and Mozambique; (10.0) SEB Expansion Plan Development; (11.0) EdM Expansion Plan Development; (12.0) Cost Sharing of the Interconnector; (13.0) Enviroinmental Evaluation of Interconnector Options; (14.0) Generation/Transmission Trade Offs; (15.0) Draft Interconnection Agreement and Contract Packages; (16.0) Transmission System Study; (17.0) Automatic General Control; (18.0) Automatic Startup and Shutdown of Hydro Electric Power Plants; (19.0) Communications and Metering; (20.0) Conclusions and Recommendations; Appendix A: Demand Side Management Primer; Appendix B. PURPA and Avoided Cost Calculations.« less
Does NASA SMAP Improve the Accuracy of Power Outage Models?
NASA Astrophysics Data System (ADS)
Quiring, S. M.; McRoberts, D. B.; Toy, B.; Alvarado, B.
2016-12-01
Electric power utilities make critical decisions in the days prior to hurricane landfall that are primarily based on the estimated impact to their service area. For example, utilities must determine how many repair crews to request from other utilities, the amount of material and equipment they will need to make repairs, and where in their geographically expansive service area to station crews and materials. Accurate forecasts of the impact of an approaching hurricane within their service area are critical for utilities in balancing the costs and benefits of different levels of resources. The Hurricane Outage Prediction Model (HOPM) are a family of statistical models that utilize predictions of tropical cyclone windspeed and duration of strong winds, along with power system and environmental variables (e.g., soil moisture, long-term precipitation), to forecast the number and location of power outages. This project assesses whether using NASA SMAP soil moisture improves the accuracy of power outage forecasts as compared to using model-derived soil moisture from NLDAS-2. A sensitivity analysis is employed since there have been very few tropical cyclones making landfall in the United States since SMAP was launched. The HOPM is used to predict power outages for 13 historical tropical cyclones and the model is run using twice, once with NLDAS soil moisture and once with SMAP soil moisture. Our results demonstrate that using SMAP soil moisture can have a significant impact on power outage predictions. SMAP has the potential to enhance the accuracy of power outage forecasts. Improved outage forecasts reduce the duration of power outages which reduces economic losses and accelerates recovery.
Forecasting of Hourly Photovoltaic Energy in Canarian Electrical System
NASA Astrophysics Data System (ADS)
Henriquez, D.; Castaño, C.; Nebot, R.; Piernavieja, G.; Rodriguez, A.
2010-09-01
The Canarian Archipelago face similar problems as most insular region lacking of endogenous conventional energy resources and not connected to continental electrical grids. A consequence of the "insular fact" is the existence of isolated electrical systems that are very difficult to interconnect due to the considerable sea depths between the islands. Currently, the Canary Islands have six isolated electrical systems, only one utility generating most of the electricity (burning fuel), a recently arrived TSO (REE) and still a low implementation of Renewable Energy Resources (RES). The low level of RES deployment is a consequence of two main facts: the weakness of the stand-alone grids (from 12 MW in El Hierro up to only 1 GW in Gran Canaria) and the lack of space to install RES systems (more than 50% of the land protected due to environmental reasons). To increase the penetration of renewable energy generation, like solar or wind energy, is necessary to develop tools to manage them. The penetration of non manageable sources into weak grids like the Canarian ones causes a big problem to the grid operator. There are currently 104 MW of PV connected to the islands grids (Dec. 2009) and additional 150 MW under licensing. This power presents a serious challenge for the operation and stability of the electrical system. ITC, together with the local TSO (Red Eléctrica de España, REE) started in 2008 and R&D project to develop a PV energy prediction tool for the six Canarian Insular electrical systems. The objective is to supply reliable information for hourly forecast of the generation dispatch programme and to predict daily solar radiation patterns, in order to help program spinning reserves. ITC has approached the task of weather forecasting using different numerical model (MM5 and WRF) in combination with MSG (Meteosat Second Generation) images. From the online data recorded at several monitored PV plants and meteorological stations, PV nominal power and energy produced by every plant in Canary Islands are estimated using a series of theoretical and statistical energy models.
NASA Astrophysics Data System (ADS)
Wang, Jiangbo; Liu, Junhui; Li, Tiantian; Yin, Shuo; He, Xinhui
2018-01-01
The monthly electricity sales forecasting is a basic work to ensure the safety of the power system. This paper presented a monthly electricity sales forecasting method which comprehensively considers the coupled multi-factors of temperature, economic growth, electric power replacement and business expansion. The mathematical model is constructed by using regression method. The simulation results show that the proposed method is accurate and effective.
NASA Astrophysics Data System (ADS)
Regonda, Satish Kumar; Seo, Dong-Jun; Lawrence, Bill; Brown, James D.; Demargne, Julie
2013-08-01
We present a statistical procedure for generating short-term ensemble streamflow forecasts from single-valued, or deterministic, streamflow forecasts produced operationally by the U.S. National Weather Service (NWS) River Forecast Centers (RFCs). The resulting ensemble streamflow forecast provides an estimate of the predictive uncertainty associated with the single-valued forecast to support risk-based decision making by the forecasters and by the users of the forecast products, such as emergency managers. Forced by single-valued quantitative precipitation and temperature forecasts (QPF, QTF), the single-valued streamflow forecasts are produced at a 6-h time step nominally out to 5 days into the future. The single-valued streamflow forecasts reflect various run-time modifications, or "manual data assimilation", applied by the human forecasters in an attempt to reduce error from various sources in the end-to-end forecast process. The proposed procedure generates ensemble traces of streamflow from a parsimonious approximation of the conditional multivariate probability distribution of future streamflow given the single-valued streamflow forecast, QPF, and the most recent streamflow observation. For parameter estimation and evaluation, we used a multiyear archive of the single-valued river stage forecast produced operationally by the NWS Arkansas-Red River Basin River Forecast Center (ABRFC) in Tulsa, Oklahoma. As a by-product of parameter estimation, the procedure provides a categorical assessment of the effective lead time of the operational hydrologic forecasts for different QPF and forecast flow conditions. To evaluate the procedure, we carried out hindcasting experiments in dependent and cross-validation modes. The results indicate that the short-term streamflow ensemble hindcasts generated from the procedure are generally reliable within the effective lead time of the single-valued forecasts and well capture the skill of the single-valued forecasts. For smaller basins, however, the effective lead time is significantly reduced by short basin memory and reduced skill in the single-valued QPF.
Decision Support on the Sediments Flushing of Aimorés Dam Using Medium-Range Ensemble Forecasts
NASA Astrophysics Data System (ADS)
Mainardi Fan, Fernando; Schwanenberg, Dirk; Collischonn, Walter; Assis dos Reis, Alberto; Alvarado Montero, Rodolfo; Alencar Siqueira, Vinicius
2015-04-01
In the present study we investigate the use of medium-range streamflow forecasts in the Doce River basin (Brazil), at the reservoir of Aimorés Hydro Power Plant (HPP). During daily operations this reservoir acts as a "trap" to the sediments that originate from the upstream basin of the Doce River. This motivates a cleaning process called "pass through" to periodically remove the sediments from the reservoir. The "pass through" or "sediments flushing" process consists of a decrease of the reservoir's water level to a certain flushing level when a determined reservoir inflow threshold is forecasted. Then, the water in the approaching inflow is used to flush the sediments from the reservoir through the spillway and to recover the original reservoir storage. To be triggered, the sediments flushing operation requires an inflow larger than 3000m³/s in a forecast horizon of 7 days. This lead-time of 7 days is far beyond the basin's concentration time (around 2 days), meaning that the forecasts for the pass through procedure highly depends on Numerical Weather Predictions (NWP) models that generate Quantitative Precipitation Forecasts (QPF). This dependency creates an environment with a high amount of uncertainty to the operator. To support the decision making at Aimorés HPP we developed a fully operational hydrological forecasting system to the basin. The system is capable of generating ensemble streamflow forecasts scenarios when driven by QPF data from meteorological Ensemble Prediction Systems (EPS). This approach allows accounting for uncertainties in the NWP at a decision making level. This system is starting to be used operationally by CEMIG and is the one shown in the present study, including a hindcasting analysis to assess the performance of the system for the specific flushing problem. The QPF data used in the hindcasting study was derived from the TIGGE (THORPEX Interactive Grand Global Ensemble) database. Among all EPS available on TIGGE, three were selected: ECMWF, GEFS, and CPTEC. As a deterministic reference forecast, we adopt the high resolution ECMWF forecast for comparison. The experiment consisted on running retrospective forecasts for a full five-year period. To verify the proposed objectives of the study, we use different metrics to evaluate the forecast: ROC Curves, Exceedance Diagrams, Forecast Convergence Score (FCS). Metrics results enabled to understand the benefits of the hydrological ensemble prediction system as a decision making tool for the HPP operation. The ROC scores indicate that the use of the lower percentiles of the ensemble scenarios issues for a true alarm rate around 0,5 to 0,8 (depending on the model and on the percentile), for the lead time of seven days. While the false alarm rate is between 0 and 0,3. Those rates were better than the ones resulting from the deterministic reference forecast. Exceedance diagrams and forecast convergence scores indicate that the ensemble scenarios provide an early signal about the threshold crossing. Furthermore, the ensemble forecasts are more consistent between two subsequent forecasts in comparison to the deterministic forecast. The assessments results also give more credibility to CEMIG in the realization and communication of flushing operation with the stakeholders involved.
Coordinated Scheduling for Interdependent Electric Power and Natural Gas Infrastructures
Zlotnik, Anatoly; Roald, Line; Backhaus, Scott; ...
2016-03-24
The extensive installation of gas-fired power plants in many parts of the world has led electric systems to depend heavily on reliable gas supplies. The use of gas-fired generators for peak load and reserve provision causes high intraday variability in withdrawals from high-pressure gas transmission systems. Such variability can lead to gas price fluctuations and supply disruptions that affect electric generator dispatch, electricity prices, and threaten the security of power systems and gas pipelines. These infrastructures function on vastly different spatio-temporal scales, which prevents current practices for separate operations and market clearing from being coordinated. Here in this article, wemore » apply new techniques for control of dynamic gas flows on pipeline networks to examine day-ahead scheduling of electric generator dispatch and gas compressor operation for different levels of integration, spanning from separate forecasting, and simulation to combined optimal control. We formulate multiple coordination scenarios and develop tractable physically accurate computational implementations. These scenarios are compared using an integrated model of test networks for power and gas systems with 24 nodes and 24 pipes, respectively, which are coupled through gas-fired generators. The analysis quantifies the economic efficiency and security benefits of gas-electric coordination and dynamic gas system operation.« less
Models for the modern power grid
NASA Astrophysics Data System (ADS)
Nardelli, Pedro H. J.; Rubido, Nicolas; Wang, Chengwei; Baptista, Murilo S.; Pomalaza-Raez, Carlos; Cardieri, Paulo; Latva-aho, Matti
2014-10-01
This article reviews different kinds of models for the electric power grid that can be used to understand the modern power system, the smart grid. From the physical network to abstract energy markets, we identify in the literature different aspects that co-determine the spatio-temporal multilayer dynamics of power system. We start our review by showing how the generation, transmission and distribution characteristics of the traditional power grids are already subject to complex behaviour appearing as a result of the the interplay between dynamics of the nodes and topology, namely synchronisation and cascade effects. When dealing with smart grids, the system complexity increases even more: on top of the physical network of power lines and controllable sources of electricity, the modernisation brings information networks, renewable intermittent generation, market liberalisation, prosumers, among other aspects. In this case, we forecast a dynamical co-evolution of the smart grid and other kind of networked systems that cannot be understood isolated. This review compiles recent results that model electric power grids as complex systems, going beyond pure technological aspects. From this perspective, we then indicate possible ways to incorporate the diverse co-evolving systems into the smart grid model using, for example, network theory and multi-agent simulation.
77 FR 41481 - Integration of Variable Energy Resources
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-13
...The Federal Energy Regulatory Commission is amending the pro forma Open Access Transmission Tariff to remove unduly discriminatory practices and to ensure just and reasonable rates for Commission- jurisdictional services. Specifically, this Final Rule removes barriers to the integration of variable energy resources by requiring each public utility transmission provider to: offer intra-hourly transmission scheduling; and, incorporate provisions into the pro forma Large Generator Interconnection Agreement requiring interconnection customers whose generating facilities are variable energy resources to provide meteorological and forced outage data to the public utility transmission provider for the purpose of power production forecasting.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zack, J; Natenberg, E J; Knowe, G V
The overall goal of this multi-phased research project known as WindSENSE is to develop an observation system deployment strategy that would improve wind power generation forecasts. The objective of the deployment strategy is to produce the maximum benefit for 1- to 6-hour ahead forecasts of wind speed at hub-height ({approx}80 m). In this phase of the project the focus is on the Mid-Columbia Basin region which encompasses the Bonneville Power Administration (BPA) wind generation area shown in Figure 1 that includes Klondike, Stateline, and Hopkins Ridge wind plants. The Ensemble Sensitivity Analysis (ESA) approach uses data generated by a setmore » (ensemble) of perturbed numerical weather prediction (NWP) simulations for a sample time period to statistically diagnose the sensitivity of a specified forecast variable (metric) for a target location to parameters at other locations and prior times referred to as the initial condition (IC) or state variables. The ESA approach was tested on the large-scale atmospheric prediction problem by Ancell and Hakim 2007 and Torn and Hakim 2008. ESA was adapted and applied at the mesoscale by Zack et al. (2010a, b, and c) to the Tehachapi Pass, CA (warm and cools seasons) and Mid-Colombia Basin (warm season only) wind generation regions. In order to apply the ESA approach at the resolution needed at the mesoscale, Zack et al. (2010a, b, and c) developed the Multiple Observation Optimization Algorithm (MOOA). MOOA uses a multivariate regression on a few select IC parameters at one location to determine the incremental improvement of measuring multiple variables (representative of the IC parameters) at various locations. MOOA also determines how much information from each IC parameter contributes to the change in the metric variable at the target location. The Zack et al. studies (2010a, b, and c), demonstrated that forecast sensitivity can be characterized by well-defined, localized patterns for a number of IC variables such as 80-m wind speed and vertical temperature difference. Ideally, the data assimilation scheme used in the experiments would have been based upon an ensemble Kalman filter (EnKF) that was similar to the ESA method used to diagnose the Mid-Colombia Basin sensitivity patterns in the previous studies. However, the use of an EnKF system at high resolution is impractical because of the very high computational cost. Thus, it was decided to use the three-dimensional variational analysis data assimilation that is less computationally intensive and more economically practical for generating operational forecasts. There are two tasks in the current project effort designed to validate the ESA observational system deployment approach in order to move closer to the overall goal: (1) Perform an Observing System Experiment (OSE) using a data denial approach which is the focus of this task and report; and (2) Conduct a set of Observing System Simulation Experiments (OSSE) for the Mid-Colombia basin region. The results of this task are presented in a separate report. The objective of the OSE task involves validating the ESA-MOOA results from the previous sensitivity studies for the Mid-Columbia Basin by testing the impact of existing meteorological tower measurements on the 0- to 6-hour ahead 80-m wind forecasts at the target locations. The testing of the ESA-MOOA method used a combination of data assimilation techniques and data denial experiments to accomplish the task objective.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freedman, Jeffrey M.; Manobianco, John; Schroeder, John
This Final Report presents a comprehensive description, findings, and conclusions for the Wind Forecast Improvement Project (WFIP) -- Southern Study Area (SSA) work led by AWS Truepower (AWST). This multi-year effort, sponsored by the Department of Energy (DOE) and National Oceanographic and Atmospheric Administration (NOAA), focused on improving short-term (15-minute - 6 hour) wind power production forecasts through the deployment of an enhanced observation network of surface and remote sensing instrumentation and the use of a state-of-the-art forecast modeling system. Key findings from the SSA modeling and forecast effort include: 1. The AWST WFIP modeling system produced an overall 10more » - 20% improvement in wind power production forecasts over the existing Baseline system, especially during the first three forecast hours; 2. Improvements in ramp forecast skill, particularly for larger up and down ramps; 3. The AWST WFIP data denial experiments showed mixed results in the forecasts incorporating the experimental network instrumentation; however, ramp forecasts showed significant benefit from the additional observations, indicating that the enhanced observations were key to the model systems’ ability to capture phenomena responsible for producing large short-term excursions in power production; 4. The OU CAPS ARPS simulations showed that the additional WFIP instrument data had a small impact on their 3-km forecasts that lasted for the first 5-6 hours, and increasing the vertical model resolution in the boundary layer had a greater impact, also in the first 5 hours; and 5. The TTU simulations were inconclusive as to which assimilation scheme (3DVAR versus EnKF) provided better forecasts, and the additional observations resulted in some improvement to the forecasts in the first 1 - 3 hours.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolinger, Mark; Wiser, Ryan; Golove, William
2003-08-13
Against the backdrop of increasingly volatile natural gas prices, renewable energy resources, which by their nature are immune to natural gas fuel price risk, provide a real economic benefit. Unlike many contracts for natural gas-fired generation, renewable generation is typically sold under fixed-price contracts. Assuming that electricity consumers value long-term price stability, a utility or other retail electricity supplier that is looking to expand its resource portfolio (or a policymaker interested in evaluating different resource options) should therefore compare the cost of fixed-price renewable generation to the hedged or guaranteed cost of new natural gas-fired generation, rather than to projectedmore » costs based on uncertain gas price forecasts. To do otherwise would be to compare apples to oranges: by their nature, renewable resources carry no natural gas fuel price risk, and if the market values that attribute, then the most appropriate comparison is to the hedged cost of natural gas-fired generation. Nonetheless, utilities and others often compare the costs of renewable to gas-fired generation using as their fuel price input long-term gas price forecasts that are inherently uncertain, rather than long-term natural gas forward prices that can actually be locked in. This practice raises the critical question of how these two price streams compare. If they are similar, then one might conclude that forecast-based modeling and planning exercises are in fact approximating an apples-to-apples comparison, and no further consideration is necessary. If, however, natural gas forward prices systematically differ from price forecasts, then the use of such forecasts in planning and modeling exercises will yield results that are biased in favor of either renewable (if forwards < forecasts) or natural gas-fired generation (if forwards > forecasts). In this report we compare the cost of hedging natural gas price risk through traditional gas-based hedging instruments (e.g., futures, swaps, and fixed-price physical supply contracts) to contemporaneous forecasts of spot natural gas prices, with the purpose of identifying any systematic differences between the two. Although our data set is quite limited, we find that over the past three years, forward gas prices for durations of 2-10 years have been considerably higher than most natural gas spot price forecasts, including the reference case forecasts developed by the Energy Information Administration (EIA). This difference is striking, and implies that resource planning and modeling exercises based on these forecasts over the past three years have yielded results that are biased in favor of gas-fired generation (again, presuming that long-term stability is desirable). As discussed later, these findings have important ramifications for resource planners, energy modelers, and policy-makers.« less
Bessa, Ricardo; Möhrlen, Corinna; Fundel, Vanessa; ...
2017-09-14
Around the world wind energy is starting to become a major energy provider in electricity markets, as well as participating in ancillary services markets to help maintain grid stability. The reliability of system operations and smooth integration of wind energy into electricity markets has been strongly supported by years of improvement in weather and wind power forecasting systems. Deterministic forecasts are still predominant in utility practice although truly optimal decisions and risk hedging are only possible with the adoption of uncertainty forecasts. One of the main barriers for the industrial adoption of uncertainty forecasts is the lack of understanding ofmore » its information content (e.g., its physical and statistical modeling) and standardization of uncertainty forecast products, which frequently leads to mistrust towards uncertainty forecasts and their applicability in practice. Our paper aims at improving this understanding by establishing a common terminology and reviewing the methods to determine, estimate, and communicate the uncertainty in weather and wind power forecasts. This conceptual analysis of the state of the art highlights that: (i) end-users should start to look at the forecast's properties in order to map different uncertainty representations to specific wind energy-related user requirements; (ii) a multidisciplinary team is required to foster the integration of stochastic methods in the industry sector. Furthermore, a set of recommendations for standardization and improved training of operators are provided along with examples of best practices.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bessa, Ricardo; Möhrlen, Corinna; Fundel, Vanessa
Around the world wind energy is starting to become a major energy provider in electricity markets, as well as participating in ancillary services markets to help maintain grid stability. The reliability of system operations and smooth integration of wind energy into electricity markets has been strongly supported by years of improvement in weather and wind power forecasting systems. Deterministic forecasts are still predominant in utility practice although truly optimal decisions and risk hedging are only possible with the adoption of uncertainty forecasts. One of the main barriers for the industrial adoption of uncertainty forecasts is the lack of understanding ofmore » its information content (e.g., its physical and statistical modeling) and standardization of uncertainty forecast products, which frequently leads to mistrust towards uncertainty forecasts and their applicability in practice. Our paper aims at improving this understanding by establishing a common terminology and reviewing the methods to determine, estimate, and communicate the uncertainty in weather and wind power forecasts. This conceptual analysis of the state of the art highlights that: (i) end-users should start to look at the forecast's properties in order to map different uncertainty representations to specific wind energy-related user requirements; (ii) a multidisciplinary team is required to foster the integration of stochastic methods in the industry sector. Furthermore, a set of recommendations for standardization and improved training of operators are provided along with examples of best practices.« less
NASA RPS Program Overview: A Focus on RPS Users
NASA Technical Reports Server (NTRS)
Hamley, John A.; Sutliff, Thomas J.; Sandifer, Carl E., II; Zakrajsek, June F.
2016-01-01
The goal of NASA's Radioisotope Power Systems (RPS) Program is to make RPS ready and available to support the exploration of the solar system in environments where the use of conventional solar or chemical power generation is impractical or impossible to meet the needs of the missions. To meet this goal, the RPS Program, working closely with the Department of Energy, performs mission and system studies (such as the recently released Nuclear Power Assessment Study), assesses the readiness of promising technologies to infuse in future generators, assesses the sustainment of key RPS capabilities and knowledge, forecasts and tracks the Programs budgetary needs, and disseminates current information about RPS to the community of potential users. This process has been refined and used to determine the current content of the RPS Programs portfolio. This portfolio currently includes an effort to mature advanced thermoelectric technology for possible integration into an enhanced Multi-Mission Radioisotope Generator (eMMRTG), sustainment and production of the currently deployed MMRTG, and technology investments that could lead to a future Stirling Radioisotope Generator (SRG). This paper describes the program planning processes that have been used, the currently available MMRTG, and one of the potential future systems, the eMMRTG.
Coordination and decision making of regulation, operation, and market activities in power systems
NASA Astrophysics Data System (ADS)
Nakashima, Tomoaki
Electric power has been traditionally supplied to customers at regulated rates by vertically integrated utilities (VIUs), which own generation, transmission, and distribution systems. However, the regulatory authorities of VIUs are promoting competition in their businesses to lower the price of electric energy. Consequently, in new deregulated circumstances, many suppliers and marketers compete in the generation market, and conflict of interest may often occur over transmission. Therefore, a neutral entity, called an independent system operator (ISO), which operates the power system independently, has been established to give market participants nondiscriminatory access to transmission sectors with a natural monopoly, and to facilitate competition in generation sectors. Several types of ISOs are established at present, with their respective regions and authorities. The ISO receives many requests from market participants to transfer power, and must evaluate the feasibility of their requests under the system's condition. In the near future, regulatory authorities may impose various objectives on the ISOs. Then, based on the regulators' policies, the ISO must determine the optimal schedules from feasible solutions, or change the market participants' requests. In a newly developed power market, market participants will conduct their transactions in order to maximize their profit. The most crucial information in conducting power transactions is price and demand. A direct transaction between suppliers and consumers may become attractive because of its stability of price, while in a power exchange market, gaming and speculation of participants may push up electricity prices considerably. To assist the consumers in making effective decisions, suitable methods for forecasting volatile market price are necessary. This research has been approached from three viewpoints: Firstly, from the system operator's point of view, desirable system operation and power market structure are explored. Two typical ISO models, centralized and decentralized, have been identified and compared. These ISO models have been simulated to observe the advantages and disadvantages of the different systems. If no powerful players exist, the centralized system would achieve the maximum market efficiency. However, in decentralized systems, freedom of trade protects market participants from strategic bidding caused by powerful players. Reduced market efficiency is the price markets have to pay to prevent strategic bidding. Secondly, from the regulator's point of view, the effects of different policies imposed by regulators on power transactions are examined. The optimal schedule could be affected greatly by the ideal goals and their allowable values. Therefore, when the ISO defines its objectives and their allowable ranges, an agreeable conclusion among market participants is required. Fuzzy multiobjective optimization methods can be suitably applied to the scheduling of the ISO, reflecting its objectives and their allowable ranges properly. Thirdly, from market participants' point of view, models to represent and forecast the price and demand of power are developed. Electricity consumption and price are forecasted based on possibility theory and fuzzy autoregression. The fuzzy model can represent highly volatile demand-price relations as a range, and gives the possibility distribution of prices. Based on the proposed model, a procedure to help consumers decide whether to accept a bilateral transaction contract or market-based purchases of electricity has been developed. The same procedure can also be used by an electricity supplier or broker to determine an offering price.
NASA Astrophysics Data System (ADS)
Ahmadov, R.; Grell, G. A.; James, E.; Alexander, C.; Stewart, J.; Benjamin, S.; McKeen, S. A.; Csiszar, I. A.; Tsidulko, M.; Pierce, R. B.; Pereira, G.; Freitas, S. R.; Goldberg, M.
2017-12-01
We present a new real-time smoke modeling system, the High Resolution Rapid Refresh coupled with smoke (HRRR-Smoke), to simulate biomass burning (BB) emissions, plume rise and smoke transport in real time. The HRRR is the NOAA Earth System Research Laboratory's 3km grid spacing version of the Weather Research and Forecasting (WRF) model used for weather forecasting. Here we make use of WRF-Chem (the WRF model coupled with chemistry) and simulate fine particulate matter (smoke) emissions emitted by BB. The HRRR-Smoke modeling system ingests fire radiative power (FRP) data from the Visible Infrared Imaging Radiometer Suite (VIIRS) sensor on the Suomi National Polar-orbiting Partnership (S-NPP) satellite to calculate BB emissions. The FRP product is based on processing 750m resolution "M" bands. The algorithms for fire detection and FRP retrieval are consistent with those used to generate the MODIS fire detection data. For the purpose of ingesting VIIRS fire data into the HRRR-Smoke model, text files are generated to provide the location and detection confidence of fire pixels, as well as FRP. The VIIRS FRP data from the text files are processed and remapped over the HRRR-Smoke model domains. We process the FRP data to calculate BB emissions (smoldering part) and fire size for the model input. In addition, HRRR-Smoke uses the FRP data to simulate the injection height for the flaming emissions using concurrently simulated meteorological fields by the model. Currently, there are two 3km resolution domains covering the contiguous US and Alaska which are used to simulate smoke in real time. In our presentation, we focus on the CONUS domain. HRRR-Smoke is initialized 4 times per day to forecast smoke concentrations for the next 36 hours. The VIIRS FRP data, as well as near-surface and vertically integrated smoke mass concentrations are visualized for every forecast hour. These plots are provided to the public via the HRRR-Smoke web-page: https://rapidrefresh.noaa.gov/HRRRsmoke/. Model evaluations for a case study are presented, where simulated smoke concentrations are compared with hourly PM2.5 measurements from EPA's Air Quality System network. These comparisons demonstrate the model's ability in simulating high aerosol loadings during major wildfire events in the western US.
NASA Astrophysics Data System (ADS)
Lee, Joseph C. Y.; Lundquist, Julie K.
2017-11-01
Forecasts of wind-power production are necessary to facilitate the integration of wind energy into power grids, and these forecasts should incorporate the impact of wind-turbine wakes. This paper focuses on a case study of four diurnal cycles with significant power production, and assesses the skill of the wind farm parameterization (WFP) distributed with the Weather Research and Forecasting (WRF) model version 3.8.1, as well as its sensitivity to model configuration. After validating the simulated ambient flow with observations, we quantify the value of the WFP as it accounts for wake impacts on power production of downwind turbines. We also illustrate with statistical significance that a vertical grid with approximately 12 m vertical resolution is necessary for reproducing the observed power production. Further, the WFP overestimates wake effects and hence underestimates downwind power production during high wind speed, highly stable, and low turbulence conditions. We also find the WFP performance is independent of the number of wind turbines per model grid cell and the upwind-downwind position of turbines. Rather, the ability of the WFP to predict power production is most dependent on the skill of the WRF model in simulating the ambient wind speed.
Lee, Joseph C. Y.; Lundquist, Julie K.
2017-11-23
Forecasts of wind-power production are necessary to facilitate the integration of wind energy into power grids, and these forecasts should incorporate the impact of wind-turbine wakes. Our paper focuses on a case study of four diurnal cycles with significant power production, and assesses the skill of the wind farm parameterization (WFP) distributed with the Weather Research and Forecasting (WRF) model version 3.8.1, as well as its sensitivity to model configuration. After validating the simulated ambient flow with observations, we quantify the value of the WFP as it accounts for wake impacts on power production of downwind turbines. We also illustratemore » with statistical significance that a vertical grid with approximately 12 m vertical resolution is necessary for reproducing the observed power production. Further, the WFP overestimates wake effects and hence underestimates downwind power production during high wind speed, highly stable, and low turbulence conditions. We also find the WFP performance is independent of the number of wind turbines per model grid cell and the upwind–downwind position of turbines. Rather, the ability of the WFP to predict power production is most dependent on the skill of the WRF model in simulating the ambient wind speed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Joseph C. Y.; Lundquist, Julie K.
Forecasts of wind-power production are necessary to facilitate the integration of wind energy into power grids, and these forecasts should incorporate the impact of wind-turbine wakes. Our paper focuses on a case study of four diurnal cycles with significant power production, and assesses the skill of the wind farm parameterization (WFP) distributed with the Weather Research and Forecasting (WRF) model version 3.8.1, as well as its sensitivity to model configuration. After validating the simulated ambient flow with observations, we quantify the value of the WFP as it accounts for wake impacts on power production of downwind turbines. We also illustratemore » with statistical significance that a vertical grid with approximately 12 m vertical resolution is necessary for reproducing the observed power production. Further, the WFP overestimates wake effects and hence underestimates downwind power production during high wind speed, highly stable, and low turbulence conditions. We also find the WFP performance is independent of the number of wind turbines per model grid cell and the upwind–downwind position of turbines. Rather, the ability of the WFP to predict power production is most dependent on the skill of the WRF model in simulating the ambient wind speed.« less
7 CFR 1710.209 - Approval requirements for load forecast work plans.
Code of Federal Regulations, 2010 CFR
2010-01-01
... cooperate in the preparation of and submittal of the load forecast work plan of their power supply borrower. (b) An approved load forecast work plan establishes the process for the preparation and maintenance... approved load forecast work plan must outline the coordination and preparation requirements for both the...
Day-Ahead Short-Term Forecasting Electricity Load via Approximation
NASA Astrophysics Data System (ADS)
Khamitov, R. N.; Gritsay, A. S.; Tyunkov, D. A.; E Sinitsin, G.
2017-04-01
The method of short-term forecasting of a power consumption which can be applied to short-term forecasting of power consumption is offered. The offered model is based on sinusoidal function for the description of day and night cycles of power consumption. Function coefficients - the period and amplitude are set up is adaptive, considering dynamics of power consumption with use of an artificial neural network. The presented results are tested on real retrospective data of power supply company. The offered method can be especially useful if there are no opportunities of collection of interval indications of metering devices of consumers, and the power supply company operates with electrical supply points. The offered method can be used by any power supply company upon purchase of the electric power in the wholesale market. For this purpose, it is necessary to receive coefficients of approximation of sinusoidal function and to have retrospective data on power consumption on an interval not less than one year.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hodge, B. M.; Lew, D.; Milligan, M.
2013-01-01
Load forecasting in the day-ahead timescale is a critical aspect of power system operations that is used in the unit commitment process. It is also an important factor in renewable energy integration studies, where the combination of load and wind or solar forecasting techniques create the net load uncertainty that must be managed by the economic dispatch process or with suitable reserves. An understanding of that load forecasting errors that may be expected in this process can lead to better decisions about the amount of reserves necessary to compensate errors. In this work, we performed a statistical analysis of themore » day-ahead (and two-day-ahead) load forecasting errors observed in two independent system operators for a one-year period. Comparisons were made with the normal distribution commonly assumed in power system operation simulations used for renewable power integration studies. Further analysis identified time periods when the load is more likely to be under- or overforecast.« less
NASA Astrophysics Data System (ADS)
Ángel Prósper Fernández, Miguel; Casal, Carlos Otero; Canoura Fernández, Felipe; Miguez-Macho, Gonzalo
2017-04-01
Regional meteorological models are becoming a generalized tool for forecasting wind resource, due to their capacity to simulate local flow dynamics impacting wind farm production. This study focuses on the production forecast and validation of a real onshore wind farm using high horizontal and vertical resolution WRF (Weather Research and Forecasting) model simulations. The wind farm is located in Galicia, in the northwest of Spain, in a complex terrain region with high wind resource. Utilizing the Fitch scheme, specific for wind farms, a period of one year is simulated with a daily operational forecasting set-up. Power and wind predictions are obtained and compared with real data provided by the management company. Results show that WRF is able to yield good wind power operational predictions for this kind of wind farms, due to a good representation of the planetary boundary layer behaviour of the region and the good performance of the Fitch scheme under these conditions.
NASA Astrophysics Data System (ADS)
Anghileri, D.; Castelletti, A.; Burlando, P.
2016-12-01
European energy markets have experienced dramatic changes in the last years because of the massive introduction of Variable Renewable Sources (VRSs), such as wind and solar power sources, in the generation portfolios in many countries. VRSs i) are intermittent, i.e., their production is highly variable and only partially predictable, ii) are characterized by no correlation between production and demand, iii) have negligible costs of production, and iv) have been largely subsidized. These features result in lower energy prices, but, at the same time, in increased price volatility, and in network stability issues, which pose a threat to traditional power sources because of smaller incomes and higher maintenance costs associated to a more flexible operation of power systems. Storage hydropower systems play an important role in compensating production peaks, both in term of excess and shortage of energy. Traditionally, most of the research effort in hydropower reservoir operation has focused on modeling and forecasting reservoir inflow as well as designing reservoir operation accordingly. Nowadays, price variability may be the largest source of uncertainty in the context of hydropower systems, especially when considering medium-to-large reservoirs, whose storage can easily buffer small inflow fluctuations. In this work, we compare the effects of uncertain inflow and energy price forecasts on hydropower production and profitability. By adding noise to historic inflow and price trajectories, we build a set of synthetic forecasts corresponding to different levels of predictability and assess their impact on reservoir operating policies and performances. The study is conducted on different hydropower systems, including storage systems and pumped-storage systems, with different characteristics, e.g., different inflow-capacity ratios. The analysis focuses on Alpine hydropower systems where the hydrological regime ranges from purely ice and snow-melt dominated to mixed snow-melt and rain-dominated regimes.
NASA Astrophysics Data System (ADS)
Millstein, D.; Zhai, P.; Menon, S.
2011-12-01
Over the past decade significant reductions of NOx and SOx emissions from coal burning power plants in the U.S. have been achieved due to regulatory action and substitution of new generation towards natural gas and wind power. Low natural gas prices, ever decreasing solar generation costs, and proposed regulatory changes, such as to the Cross State Air Pollution Rule, promise further long-run coal power plant emission reductions. Reduced power plant emissions have the potential to affect ozone and particulate air quality and influence regional climate through aerosol cloud interactions and visibility effects. Here we investigate, on a national scale, the effects on future (~2030) air quality and regional climate of power plant emission regulations in contrast to and combination with policies designed to aggressively promote solar electricity generation. A sophisticated, economic and engineering based, hourly power generation dispatch model is developed to explore the integration of significant solar generation resources (>10% on an energy basis) at various regions across the county, providing detailed estimates of substitution of solar generation for fossil fuel generation resources. Future air pollutant emissions from all sectors of the economy are scaled based on the U.S. Environmental Protection Agency's National Emission Inventory to account for activity changes based on population and economic projections derived from county level U.S. Census data and the Energy Information Administration's Annual Energy Outlook. Further adjustments are made for technological and regulatory changes applicable within various sectors, for example, emission intensity adjustments to on-road diesel trucking due to exhaust treatment and improved engine design. The future year 2030 is selected for the emissions scenarios to allow for the development of significant solar generation resources. A regional climate and air quality model (Weather Research and Forecasting, WRF model) is used to investigate the effects of the various solar generation scenarios given emissions projections that account for changing regulatory environment, economic and population growth, and technological change. The results will help to quantify the potential air quality benefits of promotion of solar electricity generation in regions containing high penetration of coal-fired power generation. Note current national solar incentives that are based only on solar generation capacity. Further investigation of changes to regional climate due to emission reductions of aerosols and relevant precursors will provide insight into the environmental effects that may occur if solar power generation becomes widespread.
Two methods for estimating limits to large-scale wind power generation
Miller, Lee M.; Brunsell, Nathaniel A.; Mechem, David B.; Gans, Fabian; Monaghan, Andrew J.; Vautard, Robert; Keith, David W.; Kleidon, Axel
2015-01-01
Wind turbines remove kinetic energy from the atmospheric flow, which reduces wind speeds and limits generation rates of large wind farms. These interactions can be approximated using a vertical kinetic energy (VKE) flux method, which predicts that the maximum power generation potential is 26% of the instantaneous downward transport of kinetic energy using the preturbine climatology. We compare the energy flux method to the Weather Research and Forecasting (WRF) regional atmospheric model equipped with a wind turbine parameterization over a 105 km2 region in the central United States. The WRF simulations yield a maximum generation of 1.1 We⋅m−2, whereas the VKE method predicts the time series while underestimating the maximum generation rate by about 50%. Because VKE derives the generation limit from the preturbine climatology, potential changes in the vertical kinetic energy flux from the free atmosphere are not considered. Such changes are important at night when WRF estimates are about twice the VKE value because wind turbines interact with the decoupled nocturnal low-level jet in this region. Daytime estimates agree better to 20% because the wind turbines induce comparatively small changes to the downward kinetic energy flux. This combination of downward transport limits and wind speed reductions explains why large-scale wind power generation in windy regions is limited to about 1 We⋅m−2, with VKE capturing this combination in a comparatively simple way. PMID:26305925
Evaluating the Impacts of Real-Time Pricing on the Cost and Value of Wind Generation
Siohansi, Ramteen
2010-05-01
One of the costs associated with integrating wind generation into a power system is the cost of redispatching the system in real-time due to day-ahead wind resource forecast errors. One possible way of reducing these redispatch costs is to introduce demand response in the form of real-time pricing (RTP), which could allow electricity demand to respond to actual real-time wind resource availability using price signals. A day-ahead unit commitment model with day-ahead wind forecasts and a real-time dispatch model with actual wind resource availability is used to estimate system operations in a high wind penetration scenario. System operations are comparedmore » to a perfect foresight benchmark, in which actual wind resource availability is known day-ahead. The results show that wind integration costs with fixed demands can be high, both due to real-time redispatch costs and lost load. It is demonstrated that introducing RTP can reduce redispatch costs and eliminate loss of load events. Finally, social surplus with wind generation and RTP is compared to a system with neither and the results demonstrate that introducing wind and RTP into a market can result in superadditive surplus gains.« less
Economic and environmental costs of regulatory uncertainty for coal-fired power plants.
Patiño-Echeverri, Dalia; Fischbeck, Paul; Kriegler, Elmar
2009-02-01
Uncertainty about the extent and timing of CO2 emissions regulations for the electricity-generating sector exacerbates the difficulty of selecting investment strategies for retrofitting or alternatively replacing existent coal-fired power plants. This may result in inefficient investments imposing economic and environmental costs to society. In this paper, we construct a multiperiod decision model with an embedded multistage stochastic dynamic program minimizing the expected total costs of plant operation, installations, and pollution allowances. We use the model to forecast optimal sequential investment decisions of a power plant operator with and without uncertainty about future CO2 allowance prices. The comparison of the two cases demonstrates that uncertainty on future CO2 emissions regulations might cause significant economic costs and higher air emissions.
NASA Astrophysics Data System (ADS)
Bell, Andrew F.; Naylor, Mark; Heap, Michael J.; Main, Ian G.
2011-08-01
Power-law accelerations in the mean rate of strain, earthquakes and other precursors have been widely reported prior to material failure phenomena, including volcanic eruptions, landslides and laboratory deformation experiments, as predicted by several theoretical models. The Failure Forecast Method (FFM), which linearizes the power-law trend, has been routinely used to forecast the failure time in retrospective analyses; however, its performance has never been formally evaluated. Here we use synthetic and real data, recorded in laboratory brittle creep experiments and at volcanoes, to show that the assumptions of the FFM are inconsistent with the error structure of the data, leading to biased and imprecise forecasts. We show that a Generalized Linear Model method provides higher-quality forecasts that converge more accurately to the eventual failure time, accounting for the appropriate error distributions. This approach should be employed in place of the FFM to provide reliable quantitative forecasts and estimate their associated uncertainties.
Characterizing Time Series Data Diversity for Wind Forecasting: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hodge, Brian S; Chartan, Erol Kevin; Feng, Cong
Wind forecasting plays an important role in integrating variable and uncertain wind power into the power grid. Various forecasting models have been developed to improve the forecasting accuracy. However, it is challenging to accurately compare the true forecasting performances from different methods and forecasters due to the lack of diversity in forecasting test datasets. This paper proposes a time series characteristic analysis approach to visualize and quantify wind time series diversity. The developed method first calculates six time series characteristic indices from various perspectives. Then the principal component analysis is performed to reduce the data dimension while preserving the importantmore » information. The diversity of the time series dataset is visualized by the geometric distribution of the newly constructed principal component space. The volume of the 3-dimensional (3D) convex polytope (or the length of 1D number axis, or the area of the 2D convex polygon) is used to quantify the time series data diversity. The method is tested with five datasets with various degrees of diversity.« less
Data on Support Vector Machines (SVM) model to forecast photovoltaic power.
Malvoni, M; De Giorgi, M G; Congedo, P M
2016-12-01
The data concern the photovoltaic (PV) power, forecasted by a hybrid model that considers weather variations and applies a technique to reduce the input data size, as presented in the paper entitled "Photovoltaic forecast based on hybrid pca-lssvm using dimensionality reducted data" (M. Malvoni, M.G. De Giorgi, P.M. Congedo, 2015) [1]. The quadratic Renyi entropy criteria together with the principal component analysis (PCA) are applied to the Least Squares Support Vector Machines (LS-SVM) to predict the PV power in the day-ahead time frame. The data here shared represent the proposed approach results. Hourly PV power predictions for 1,3,6,12, 24 ahead hours and for different data reduction sizes are provided in Supplementary material.
Projected electric power demands for the Potomac Electric Power Company. Volume 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Estomin, S.; Kahal, M.
1984-03-01
This three-volume report presents the results of an econometric forecast of peak and electric power demands for the Potomac Electric Power Company (PEPCO) through the year 2002. Volume I describes the methodology, the results of the econometric estimations, the forecast assumptions and the calculated forecasts of peak demand and energy usage. Separate sets of models were developed for the Maryland Suburbs (Montgomery and Prince George's counties), the District of Columbia and Southern Maryland (served by a wholesale customer of PEPCO). For each of the three jurisdictions, energy equations were estimated for residential and commercial/industrial customers for both summer and wintermore » seasons. For the District of Columbia, summer and winter equations for energy sales to the federal government were also estimated. Equations were also estimated for street lighting and energy losses. Noneconometric techniques were employed to forecast energy sales to the Northern Virginia suburbs, Metrorail and federal government facilities located in Maryland.« less
Research on light rail electric load forecasting based on ARMA model
NASA Astrophysics Data System (ADS)
Huang, Yifan
2018-04-01
The article compares a variety of time series models and combines the characteristics of power load forecasting. Then, a light load forecasting model based on ARMA model is established. Based on this model, a light rail system is forecasted. The prediction results show that the accuracy of the model prediction is high.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muljadi, Eduard; Gevorgian, Vahan; Hoke, Andy
The total inertia stored in all rotating masses (synchronous generators, induction motors, etc.) connected to a power system grid is an essential force that keeps the system stable after disturbances. Power systems have been experiencing reduced inertia during the past few decades [1]. This trend will continue as the level of renewable generation (e.g., wind and solar) increases. Wind power plants (WPPs) and other renewable power plants with power electronic interfaces are capable of delivering frequency response (both droop and/or inertial response) by a control action; thus, the reduction in available online inertia can be compensated by designing the plantmore » control to include frequency response. The source of energy to be delivered as inertial response is determined by the type of generation (wind, photovoltaic, concentrating solar power, etc.) and the control strategy chosen. The importance of providing ancillary services to ensure frequency control within a power system is evidenced from many recent publications with different perspectives (manufacturer, system operator, regulator, etc.) [2]-[6]. This paper is intended to provide operators with a method for the real-time assessment of the available inertia of a WPP. This is critical to managing power system stability and the reserve margin. In many states, modern WPPs are required to provide ancillary services (e.g., frequency regulation via governor response and inertial response) to the grid. This paper describes the method of estimating the available inertia and the profile of the forecasted response from a WPP.« less
NOAA's weather forecasts go hyper-local with next-generation weather
model NOAA HOME WEATHER OCEANS FISHERIES CHARTING SATELLITES CLIMATE RESEARCH COASTS CAREERS with next-generation weather model New model will help forecasters predict a storm's path, timing and intensity better than ever September 30, 2014 This is a comparison of two weather forecast models looking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilczak, James M.; Finley, Cathy; Freedman, Jeff
The Wind Forecast Improvement Project (WFIP) is a public-private research program, the goals of which are to improve the accuracy of short-term (0-6 hr) wind power forecasts for the wind energy industry and then to quantify the economic savings that accrue from more efficient integration of wind energy into the electrical grid. WFIP was sponsored by the U.S. Department of Energy (DOE), with partners that include the National Oceanic and Atmospheric Administration (NOAA), private forecasting companies (WindLogics and AWS Truepower), DOE national laboratories, grid operators, and universities. WFIP employed two avenues for improving wind power forecasts: first, through the collectionmore » of special observations to be assimilated into forecast models to improve model initial conditions; and second, by upgrading NWP forecast models and ensembles. The new observations were collected during concurrent year-long field campaigns in two high wind energy resource areas of the U.S. (the upper Great Plains, and Texas), and included 12 wind profiling radars, 12 sodars, 184 instrumented tall towers and over 400 nacelle anemometers (provided by private industry), lidar, and several surface flux stations. Results demonstrate that a substantial improvement of up to 14% relative reduction in power root mean square error (RMSE) was achieved from the combination of improved NOAA numerical weather prediction (NWP) models and assimilation of the new observations. Data denial experiments run over select periods of time demonstrate that up to a 6% relative improvement came from the new observations. The use of ensemble forecasts produced even larger forecast improvements. Based on the success of WFIP, DOE is planning follow-on field programs.« less
NASA Astrophysics Data System (ADS)
Harty, T. M.; Lorenzo, A.; Holmgren, W.; Morzfeld, M.
2017-12-01
The irradiance incident on a solar panel is the main factor in determining the power output of that panel. For this reason, accurate global horizontal irradiance (GHI) estimates and forecasts are critical when determining the optimal location for a solar power plant, forecasting utility scale solar power production, or forecasting distributed, behind the meter rooftop solar power production. Satellite images provide a basis for producing the GHI estimates needed to undertake these objectives. The focus of this work is to combine satellite derived GHI estimates with ground sensor measurements and an advection model. The idea is to use accurate but sparsely distributed ground sensors to improve satellite derived GHI estimates which can cover large areas (the size of a city or a region of the United States). We use a Bayesian framework to perform the data assimilation, which enables us to produce irradiance forecasts and associated uncertainties which incorporate both satellite and ground sensor data. Within this framework, we utilize satellite images taken from the GOES-15 geostationary satellite (available every 15-30 minutes) as well as ground data taken from irradiance sensors and rooftop solar arrays (available every 5 minutes). The advection model, driven by wind forecasts from a numerical weather model, simulates cloud motion between measurements. We use the Local Ensemble Transform Kalman Filter (LETKF) to perform the data assimilation. We present preliminary results towards making such a system useful in an operational context. We explain how localization and inflation in the LETKF, perturbations of wind-fields, and random perturbations of the advection model, affect the accuracy of our estimates and forecasts. We present experiments showing the accuracy of our forecasted GHI over forecast-horizons of 15 mins to 1 hr. The limitations of our approach and future improvements are also discussed.
Benefits of an ultra large and multiresolution ensemble for estimating available wind power
NASA Astrophysics Data System (ADS)
Berndt, Jonas; Hoppe, Charlotte; Elbern, Hendrik
2016-04-01
In this study we investigate the benefits of an ultra large ensemble with up to 1000 members including multiple nesting with a target horizontal resolution of 1 km. The ensemble shall be used as a basis to detect events of extreme errors in wind power forecasting. Forecast value is the wind vector at wind turbine hub height (~ 100 m) in the short range (1 to 24 hour). Current wind power forecast systems rest already on NWP ensemble models. However, only calibrated ensembles from meteorological institutions serve as input so far, with limited spatial resolution (˜10 - 80 km) and member number (˜ 50). Perturbations related to the specific merits of wind power production are yet missing. Thus, single extreme error events which are not detected by such ensemble power forecasts occur infrequently. The numerical forecast model used in this study is the Weather Research and Forecasting Model (WRF). Model uncertainties are represented by stochastic parametrization of sub-grid processes via stochastically perturbed parametrization tendencies and in conjunction via the complementary stochastic kinetic-energy backscatter scheme already provided by WRF. We perform continuous ensemble updates by comparing each ensemble member with available observations using a sequential importance resampling filter to improve the model accuracy while maintaining ensemble spread. Additionally, we use different ensemble systems from global models (ECMWF and GFS) as input and boundary conditions to capture different synoptic conditions. Critical weather situations which are connected to extreme error events are located and corresponding perturbation techniques are applied. The demanding computational effort is overcome by utilising the supercomputer JUQUEEN at the Forschungszentrum Juelich.
The S-curve for forecasting waste generation in construction projects.
Lu, Weisheng; Peng, Yi; Chen, Xi; Skitmore, Martin; Zhang, Xiaoling
2016-10-01
Forecasting construction waste generation is the yardstick of any effort by policy-makers, researchers, practitioners and the like to manage construction and demolition (C&D) waste. This paper develops and tests an S-curve model to indicate accumulative waste generation as a project progresses. Using 37,148 disposal records generated from 138 building projects in Hong Kong in four consecutive years from January 2011 to June 2015, a wide range of potential S-curve models are examined, and as a result, the formula that best fits the historical data set is found. The S-curve model is then further linked to project characteristics using artificial neural networks (ANNs) so that it can be used to forecast waste generation in future construction projects. It was found that, among the S-curve models, cumulative logistic distribution is the best formula to fit the historical data. Meanwhile, contract sum, location, public-private nature, and duration can be used to forecast construction waste generation. The study provides contractors with not only an S-curve model to forecast overall waste generation before a project commences, but also with a detailed baseline to benchmark and manage waste during the course of construction. The major contribution of this paper is to the body of knowledge in the field of construction waste generation forecasting. By examining it with an S-curve model, the study elevates construction waste management to a level equivalent to project cost management where the model has already been readily accepted as a standard tool. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-11-01
This study, conducted by Black & Veatch, was funded by the U.S. Trade and Development Agency. The report, produced for the Ministry of National Resources, Energy and Environment (MNRE) of Swaziland, determines the least cost capacity expansion option to meet the future power demand and system reliability criteria of Swaziland, with particular emphasis on the propsoed Interconnector between Swaziland and Mozambique. Volume 1 contains the Executive Summary and is divided into the following sections: (1.0) Study Objectives; (2.0) Swaziland and its Economy; (3.0) The Power Sector Structure in Swaziland; (4.0) Electric Power Resources; (5.0) Past Demand Growth; (6.0) Load andmore » Energy Forecasts; (7.0) Need for Power; (8.0) Generation and Transmission Capacity Addition Option; (9.0) SEB Expansion Plan Scenario Development; (10.0) EDM Expansion Plan Development; (11.0) Cost Sharing of the Interconnector; (12.0) Interconnector Options and Environmental Evaluation; (13.0) Generation/Transmission Trade Offs; (14.0) EPC RFP and Draft Interconnection Agreement; (15.0) Transmission System Study; (16.0) Conclusions and Recommendations.« less
High-resolution global irradiance monitoring from photovoltaic systems
NASA Astrophysics Data System (ADS)
Buchmann, Tina; Pfeilsticker, Klaus; Siegmund, Alexander; Meilinger, Stefanie; Mayer, Bernhard; Pinitz, Sven; Steinbrecht, Wolfgang
2016-04-01
Reliable and regional differentiated power forecasts are required to guarantee an efficient and economic energy transition towards renewable energies. Amongst other renewable energy technologies, e.g. wind mills, photovoltaic systems are an essential component of this transition being cost-efficient and simply to install. Reliable power forecasts are however required for a grid integration of photovoltaic systems, which among other data requires high-resolution spatio-temporal global irradiance data. Hence the generation of robust reviewed global irradiance data is an essential contribution for the energy transition. To achieve this goal our studies introduce a novel method which makes use of photovoltaic power generation in order to infer global irradiance. The method allows to determine high-resolution temporal global irradiance data (one data point every 15 minutes at each location) from power data of operated photovoltaic systems. Due to the multitude of installed photovoltaic systems (in Germany) the detailed spatial coverage is much better than for example only using global irradiance data from conventional pyranometer networks (e.g. from the German Weather Service). Our designated method is composed of two components: a forward component, i.e. to conclude from predicted global irradiance to photovoltaic (PV) power, and a backward component, i.e. from PV power with suitable calibration to global irradiance. The forward process is modelled by using the radiation transport model libRadtran (B. Mayer and A. Kylling (1)) for clear skies to obtain the characteristics (orientation, size, temperature dependence, …) of individual PV systems. For PV systems in the vicinity of a meteorological station, these data are validated against calibrated pyranometer readings. The forward-modelled global irradiance is used to determine the power efficiency for each photovoltaic system using non-linear optimisation techniques. The backward component uses the power efficiency and meteorological parameters (e.g. from the model COSMO-DE) to calculate global irradiance by means of the generated power of individual photovoltaic systems. For the year 2012, our method is tested for PV systems in the Allgäu region (south Germany), the distribution area of the system operator "AllgäuNetz GmbH & Co". The test region includes 215 online-monitored photovoltaic systems and one pyranometer station located at the DWD (Deutscher WetterDienst) weather station Hohenpeißenberg (operated by the German Weather Service). The present talk provides an introduction to the newly developed method along with first results for clear sky scenarios. (1) B. Mayer and A. Kylling (2005): Technical note: The libRadtran software package for radiative transfer calculations - description and examples of use. In: Chemistry and Physics Chemistry and Physics. Page: 1855 - 1877
ERIC Educational Resources Information Center
Smith, Curtis A.
"EnrollForecast for Excel" will generate a 5-year forecast of K-12 student enrollment. It will also work for any combination of grades between kindergarten and twelth. The forecasts can be printed as either a table or a graph. The user must provide birth history (only if forecasting kindergarten) and enrollment history information. The user also…
Uncertainty estimation of long-range ensemble forecasts of snowmelt flood characteristics
NASA Astrophysics Data System (ADS)
Kuchment, L.
2012-04-01
Long-range forecasts of snowmelt flood characteristics with the lead time of 2-3 months have important significance for regulation of flood runoff and mitigation of flood damages at almost all large Russian rivers At the same time, the application of current forecasting techniques based on regression relationships between the runoff volume and the indexes of river basin conditions can lead to serious errors in forecasting resulted in large economic losses caused by wrong flood regulation. The forecast errors can be caused by complicated processes of soil freezing and soil moisture redistribution, too high rate of snow melt, large liquid precipitation before snow melt. or by large difference of meteorological conditions during the lead-time periods from climatologic ones. Analysis of economic losses had shown that the largest damages could, to a significant extent, be avoided if the decision makers had an opportunity to take into account predictive uncertainty and could use more cautious strategies in runoff regulation. Development of methodology of long-range ensemble forecasting of spring/summer floods which is based on distributed physically-based runoff generation models has created, in principle, a new basis for improving hydrological predictions as well as for estimating their uncertainty. This approach is illustrated by forecasting of the spring-summer floods at the Vyatka River and the Seim River basins. The application of the physically - based models of snowmelt runoff generation give a essential improving of statistical estimates of the deterministic forecasts of the flood volume in comparison with the forecasts obtained from the regression relationships. These models had been used also for the probabilistic forecasts assigning meteorological inputs during lead time periods from the available historical daily series, and from the series simulated by using a weather generator and the Monte Carlo procedure. The weather generator consists of the stochastic models of daily temperature and precipitation. The performance of the probabilistic forecasts were estimated by the ranked probability skill scores. The application of Monte Carlo simulations using weather generator has given better results then using the historical meteorological series.
Improved Rainfall Estimates and Predictions for 21st Century Drought Early Warning
NASA Technical Reports Server (NTRS)
Funk, Chris; Peterson, Pete; Shukla, Shraddhanand; Husak, Gregory; Landsfeld, Marty; Hoell, Andrew; Pedreros, Diego; Roberts, J. B.; Robertson, F. R.; Tadesse, Tsegae;
2015-01-01
As temperatures increase, the onset and severity of droughts is likely to become more intense. Improved tools for understanding, monitoring and predicting droughts will be a key component of 21st century climate adaption. The best drought monitoring systems will bring together accurate precipitation estimates with skillful climate and weather forecasts. Such systems combine the predictive power inherent in the current land surface state with the predictive power inherent in low frequency ocean-atmosphere dynamics. To this end, researchers at the Climate Hazards Group (CHG), in collaboration with partners at the USGS and NASA, have developed i) a long (1981-present) quasi-global (50degS-50degN, 180degW-180degE) high resolution (0.05deg) homogenous precipitation data set designed specifically for drought monitoring, ii) tools for understanding and predicting East African boreal spring droughts, and iii) an integrated land surface modeling (LSM) system that combines rainfall observations and predictions to provide effective drought early warning. This talk briefly describes these three components. Component 1: CHIRPS The Climate Hazards group InfraRed Precipitation with Stations (CHIRPS), blends station data with geostationary satellite observations to provide global near real time daily, pentadal and monthly precipitation estimates. We describe the CHIRPS algorithm and compare CHIRPS and other estimates to validation data. The CHIRPS is shown to have high correlation, low systematic errors (bias) and low mean absolute errors. Component 2: Hybrid statistical-dynamic forecast strategies East African droughts have increased in frequency, but become more predictable as Indo- Pacific SST gradients and Walker circulation disruptions intensify. We describe hybrid statistical-dynamic forecast strategies that are far superior to the raw output of coupled forecast models. These forecasts can be translated into probabilities that can be used to generate bootstrapped ensembles describing future climate conditions. Component 3: Assimilation using LSMs CHIRPS rainfall observations (component 1) and bootstrapped forecast ensembles (component 2) can be combined using LSMs to predict soil moisture deficits. We evaluate the skill such a system in East Africa, and demonstrate results for 2013.
Development of a satellite-based nowcasting system for surface solar radiation
NASA Astrophysics Data System (ADS)
Limbach, Sebastian; Hungershoefer, Katja; Müller, Richard; Trentmann, Jörg; Asmus, Jörg; Schömer, Elmar; Groß, André
2014-05-01
The goal of the RadNowCast project was the development of a tool-chain for a satellite-based nowcasting of the all sky global and direct surface solar radiation. One important application of such short-term forecasts is the computation of the expected energy yield of photovoltaic systems. This information is of great importance for an efficient balancing of power generation and consumption in large, decentralized power grids. Our nowcasting approach is based on an optical-flow analysis of a series of Meteosat SEVIRI satellite images. For this, we extended and combined several existing software tools and set up a series of benchmarks for determining the optimal forecasting parameters. The first step in our processing-chain is the determination of the cloud albedo from the HRV (High Resolution Visible)-satellite images using a Heliosat-type method. The actual nowcasting is then performed by a commercial software system in two steps: First, vector fields characterizing the movement of the clouds are derived from the cloud albedo data from the previous 15 min to 2 hours. Next, these vector fields are combined with the most recent cloud albedo data in order to extrapolate the cloud albedo in the near future. In the last step of the processing, the Gnu-Magic software is used to calculate the global and direct solar radiation based on the forecasted cloud albedo data. For an evaluation of the strengths and weaknesses of our nowcastig system, we analyzed four different benchmarks, each of which covered different weather conditions. We compared the forecasted data with radiation data derived from the real satellite images of the corresponding time steps. The impact of different parameters on the cloud albedo nowcasting and the surface radiation computation has been analysed. Additionally, we could show that our cloud-albedo-based forecasts outperform forecasts based on the original HRV images. Possible future extension are the incorporation of additional data sources, for example NWC-SAF high resolution wind fields, in order to improve the quality of the atmospheric motion fields, and experiments with custom, optimized software components for the optical-flow estimation and the nowcasting.
Wind power prediction based on genetic neural network
NASA Astrophysics Data System (ADS)
Zhang, Suhan
2017-04-01
The scale of grid connected wind farms keeps increasing. To ensure the stability of power system operation, make a reasonable scheduling scheme and improve the competitiveness of wind farm in the electricity generation market, it's important to accurately forecast the short-term wind power. To reduce the influence of the nonlinear relationship between the disturbance factor and the wind power, the improved prediction model based on genetic algorithm and neural network method is established. To overcome the shortcomings of long training time of BP neural network and easy to fall into local minimum and improve the accuracy of the neural network, genetic algorithm is adopted to optimize the parameters and topology of neural network. The historical data is used as input to predict short-term wind power. The effectiveness and feasibility of the method is verified by the actual data of a certain wind farm as an example.
Overview of Hydrometeorologic Forecasting Procedures at BC Hydro
NASA Astrophysics Data System (ADS)
McCollor, D.
2004-12-01
Energy utility companies must balance production from limited sources with increasing demand from industrial, business, and residential consumers. The utility planning process requires a balanced, efficient, and effective distribution of energy from source to consumer. Therefore utility planners must consider the impact of weather on energy production and consumption. Hydro-electric companies should be particularly tuned to weather because their source of energy is water, and water supply depends on precipitation. BC Hydro operates as the largest hydro-electric company in western Canada, managing over 30 reservoirs within the province of British Columbia, and generating electricity for 1.6 million people. BC Hydro relies on weather forecasts of watershed precipitation and temperature to drive hydrologic reservoir inflow models and of urban temperatures to meet energy demand requirements. Operations and planning specialists in the company rely on current, value-added weather forecasts for extreme high-inflow events, daily reservoir operations planning, and long-term water resource management. Weather plays a dominant role for BC Hydro financial planners in terms of sensitive economic responses. For example, a two percent change in hydropower generation, due in large part to annual precipitation patterns, results in an annual net change of \\50 million in earnings. A five percent change in temperature produces a \\5 million change in yearly earnings. On a daily basis, significant precipitation events or temperature extremes involve potential profit/loss decisions in the tens of thousands of dollars worth of power generation. These factors are in addition to environmental and societal costs that must be considered equally as part of a triple bottom line reporting structure. BC Hydro water resource managers require improved meteorological information from recent advancements in numerical weather prediction. At BC Hydro, methods of providing meteorological forecast data are changing as new downscaling and ensemble techniques evolve to improve environmental information supplied to water managers.
System-wide emissions implications of increased wind power penetration.
Valentino, Lauren; Valenzuela, Viviana; Botterud, Audun; Zhou, Zhi; Conzelmann, Guenter
2012-04-03
This paper discusses the environmental effects of incorporating wind energy into the electric power system. We present a detailed emissions analysis based on comprehensive modeling of power system operations with unit commitment and economic dispatch for different wind penetration levels. First, by minimizing cost, the unit commitment model decides which thermal power plants will be utilized based on a wind power forecast, and then, the economic dispatch model dictates the level of production for each unit as a function of the realized wind power generation. Finally, knowing the power production from each power plant, the emissions are calculated. The emissions model incorporates the effects of both cycling and start-ups of thermal power plants in analyzing emissions from an electric power system with increasing levels of wind power. Our results for the power system in the state of Illinois show significant emissions effects from increased cycling and particularly start-ups of thermal power plants. However, we conclude that as the wind power penetration increases, pollutant emissions decrease overall due to the replacement of fossil fuels.
7 CFR 1710.302 - Financial forecasts-power supply borrowers.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 11 2010-01-01 2010-01-01 false Financial forecasts-power supply borrowers. 1710.302 Section 1710.302 Agriculture Regulations of the Department of Agriculture (Continued) RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE GENERAL AND PRE-LOAN POLICIES AND PROCEDURES COMMON TO ELECTRIC LOANS AND GUARANTEES Long-Range Financial...
The meta-Gaussian Bayesian Processor of forecasts and associated preliminary experiments
NASA Astrophysics Data System (ADS)
Chen, Fajing; Jiao, Meiyan; Chen, Jing
2013-04-01
Public weather services are trending toward providing users with probabilistic weather forecasts, in place of traditional deterministic forecasts. Probabilistic forecasting techniques are continually being improved to optimize available forecasting information. The Bayesian Processor of Forecast (BPF), a new statistical method for probabilistic forecast, can transform a deterministic forecast into a probabilistic forecast according to the historical statistical relationship between observations and forecasts generated by that forecasting system. This technique accounts for the typical forecasting performance of a deterministic forecasting system in quantifying the forecast uncertainty. The meta-Gaussian likelihood model is suitable for a variety of stochastic dependence structures with monotone likelihood ratios. The meta-Gaussian BPF adopting this kind of likelihood model can therefore be applied across many fields, including meteorology and hydrology. The Bayes theorem with two continuous random variables and the normal-linear BPF are briefly introduced. The meta-Gaussian BPF for a continuous predictand using a single predictor is then presented and discussed. The performance of the meta-Gaussian BPF is tested in a preliminary experiment. Control forecasts of daily surface temperature at 0000 UTC at Changsha and Wuhan stations are used as the deterministic forecast data. These control forecasts are taken from ensemble predictions with a 96-h lead time generated by the National Meteorological Center of the China Meteorological Administration, the European Centre for Medium-Range Weather Forecasts, and the US National Centers for Environmental Prediction during January 2008. The results of the experiment show that the meta-Gaussian BPF can transform a deterministic control forecast of surface temperature from any one of the three ensemble predictions into a useful probabilistic forecast of surface temperature. These probabilistic forecasts quantify the uncertainty of the control forecast; accordingly, the performance of the probabilistic forecasts differs based on the source of the underlying deterministic control forecasts.
NASA Astrophysics Data System (ADS)
Jha, Sanjeev K.; Shrestha, Durga L.; Stadnyk, Tricia A.; Coulibaly, Paulin
2018-03-01
Flooding in Canada is often caused by heavy rainfall during the snowmelt period. Hydrologic forecast centers rely on precipitation forecasts obtained from numerical weather prediction (NWP) models to enforce hydrological models for streamflow forecasting. The uncertainties in raw quantitative precipitation forecasts (QPFs) are enhanced by physiography and orography effects over a diverse landscape, particularly in the western catchments of Canada. A Bayesian post-processing approach called rainfall post-processing (RPP), developed in Australia (Robertson et al., 2013; Shrestha et al., 2015), has been applied to assess its forecast performance in a Canadian catchment. Raw QPFs obtained from two sources, Global Ensemble Forecasting System (GEFS) Reforecast 2 project, from the National Centers for Environmental Prediction, and Global Deterministic Forecast System (GDPS), from Environment and Climate Change Canada, are used in this study. The study period from January 2013 to December 2015 covered a major flood event in Calgary, Alberta, Canada. Post-processed results show that the RPP is able to remove the bias and reduce the errors of both GEFS and GDPS forecasts. Ensembles generated from the RPP reliably quantify the forecast uncertainty.
Verification of FLYSAFE Clear Air Turbulence (CAT) objects against aircraft turbulence measurements
NASA Astrophysics Data System (ADS)
Lunnon, R.; Gill, P.; Reid, L.; Mirza, A.
2009-09-01
Prediction of gridded CAT fields The main causes of CAT are (a) Vertical wind shear - low Richardson Number (b) Mountain waves (c) Convection. All three causes contribute roughly equally to CAT occurrences, globally Prediction of shear induced CAT The predictions of shear induced CAT has a longer history than either mountain-wave induced CAT or convectively induced CAT. Both Global Aviation Forecasting Centres are currently using the Ellrod TI1 algorithm (Ellrod and Knapp, 1992). This predictor is the scalar product of deformation [akm1]and vertical wind shear. More sophisticated algorithms can amplify errors in non-linear, differentiated quantities so it is very likely that Ellrod will out-perform other algorithms when verified globally. Prediction of mountain wave CAT The Global Aviation Forecasting Centre in the UK has been generating automated forecasts of mountain wave CAT since the late 1990s, based on the diagnosis of gravity wave drag. Generation of CAT objects In the FLYSAFE project it was decided at an early stage that short range forecasts of meteorological hazards, i.e. icing, Clear Air Turbulence, Cumulonimbus Clouds, should be represented as weather objects, that is, descriptions of individual hazardous volumes of airspace. For CAT, the forecast information on which the weather objects were based was gridded, that comprised a representation of a hazard level for all points in a pre-defined 3-D grid, for a range of forecast times. A "grid-to-objects" capability was generated. This is discussed further in Mirza and Drouin (this conference). Verification of CAT forecasts Verification was performed using digital accelerometer data from aircraft in the British Airways Boeing 747 fleet. A preliminary processing of the aircraft data were performed to generate a truth field on a scale similar to that used to provide gridded forecasts to airlines. This truth field was binary, i.e. each flight segment was characterised as being either "turbulent" or "benign". A gridded forecast field is a continuously changing variable. In contrast, a simple weather object must be characterised by a specific threshold. For a gridded forecast and a binary truth measure it is possible to generate Relative Operating Characteristic (ROC) curves. For weather objects, a single point in the hit-rate/false-alarm-rate space can be generated. If this point is plotted on a ROC curve graph then the skill of the forecast using weather objects can be compared with the skill of the gridded forecast.
The effort to increase the space weather forecasting accuracy in KSWC
NASA Astrophysics Data System (ADS)
Choi, J. S.
2017-12-01
The Korean Space Weather Center (KSWC) of the National Radio Research Agency (RRA) is a government agency which is the official source of space weather information for Korean Government and the primary action agency of emergency measure to severe space weather condition as the Regional Warning Center of the International Space Environment Service (ISES). KSWC's main role is providing alerts, watches, and forecasts in order to minimize the space weather impacts on both of public and commercial sectors of satellites, aviation, communications, navigations, power grids, and etc. KSWC is also in charge of monitoring the space weather condition and conducting research and development for its main role of space weather operation in Korea. Recently, KSWC are focusing on increasing the accuracy of space weather forecasting results and verifying the model generated results. The forecasting accuracy will be calculated based on the probability statistical estimation so that the results can be compared numerically. Regarding the cosmic radiation does, we are gathering the actual measured data of radiation does using the instrument by cooperation with the domestic airlines. Based on the measurement, we are going to verify the reliability of SAFE system which was developed by KSWC to provide the cosmic radiation does information with the airplane cabin crew and public users.
NASA Astrophysics Data System (ADS)
Camerada, M.; Cau, G.; Cocco, D.; Damiano, A.; Demontis, V.; Melis, T.; Musio, M.
2016-05-01
The integration of small scale concentrating solar power (CSP) in an industrial district, in order to develop a microgrid fully supplied by renewable energy sources, is presented in this paper. The plant aims to assess in real operating conditions, the performance, the effectiveness and the reliability of small-scale concentrating solar power technologies in the field of distributed generation. In particular, the potentiality of small scale CSP with thermal storage to supply dispatchable electricity to an industrial microgrid will be investigated. The microgrid will be realized in the municipal waste treatment plant of the Industrial Consortium of Villacidro, in southern Sardinia (Italy), which already includes a biogas power plant. In order to achieve the microgrid instantaneous energy balance, the analysis of the time evolution of the waste treatment plant demand and of the generation in the existing power systems has been carried out. This has allowed the design of a suitable CSP plant with thermal storage and an electrochemical storage system for supporting the proposed microgrid. At the aim of obtaining the expected energy autonomy, a specific Energy Management Strategy, which takes into account the different dynamic performances and characteristics of the demand and the generation, has been designed. In this paper, the configuration of the proposed small scale concentrating solar power (CSP) and of its thermal energy storage, based on thermocline principle, is initially described. Finally, a simulation study of the entire power system, imposing scheduled profiles based on weather forecasts, is presented.
Security, protection, and control of power systems with large-scale wind power penetration
NASA Astrophysics Data System (ADS)
Acharya, Naresh
As the number of wind generation facilities in the utility system is fast increasing, many issues associated with their integration into the power system are beginning to emerge. Of the various issues, this dissertation deals with the development of new concepts and computational methods to handle the transmission issues and voltage issues caused by large-scale integration of wind turbines. This dissertation also formulates a probabilistic framework for the steady-state security assessment of wind power incorporating the forecast uncertainty and correlation. Transmission issues are mainly related to the overloading of transmission lines, when all the wind power generated cannot be delivered in full due to prior outage conditions. To deal with this problem, a method to curtail the wind turbine outputs through Energy Management System facilities in the on-line operational environment is proposed. The proposed method, which is based on linear optimization, sends the calculated control signals via the Supervisory Control and Data Acquisition system to wind farm controllers. The necessary ramping of the wind farm outputs is implemented either by the appropriate blade pitch angle control at the turbine level or by switching a certain number of turbines. The curtailment strategy is tested with an equivalent system model of MidAmerican Energy Company. The results show that the line overload in high wind areas can be alleviated by controlling the outputs of the wind farms step-by-step over an allowable period of time. A low voltage event during a system fault can cause a large number of wind turbines to trip, depending on voltages at the wind turbine terminals during the fault and the under-voltage protection setting of wind turbines. As a result, an N-1 contingency may evolve into an N-(K+1) contingency, where K is the number of wind farms tripped due to low voltage conditions. Losing a large amount of wind power following a line contingency might lead to system instabilities. It is important for the system operator to be aware of such limiting events during system operation and be prepared to take proper control actions. This can be achieved by incorporating the wind farm tripping status for each contingency as part of the static security assessment. A methodology to calculate voltages at the wind farm buses during a worst case line fault is proposed, which, along with the protection settings of wind turbines, can be used to determine the tripping of wind farms. The proposed algorithm is implemented in MATLAB and tested with MidAmerican Energy reduced network. The result shows that a large amount of wind capacity can be tripped due to a fault in the lines. Therefore, the technique will find its application in the static security assessment where each line fault can be associated with the tripping of wind farms as determined from the proposed method. A probabilistic framework to handle the uncertainty in day-ahead forecast error in order to correctly assess the steady-state security of the power system is presented. Stochastic simulations are conducted by means of Latin hypercube sampling along with the consideration of correlations. The correlation is calculated from the historical distribution of wind power forecast errors. The results from the deterministic simulation based on point forecast and the stochastic simulation show that security assessment based solely on deterministic simulations can lead to incorrect assessment of system security. With stochastic simulations, each outcome can be assigned a probability and the decision regarding control actions can be made based on the associated probability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Siyuan; Hwang, Youngdeok; Khabibrakhmanov, Ildar
With increasing penetration of solar and wind energy to the total energy supply mix, the pressing need for accurate energy forecasting has become well-recognized. Here we report the development of a machine-learning based model blending approach for statistically combining multiple meteorological models for improving the accuracy of solar/wind power forecast. Importantly, we demonstrate that in addition to parameters to be predicted (such as solar irradiance and power), including additional atmospheric state parameters which collectively define weather situations as machine learning input provides further enhanced accuracy for the blended result. Functional analysis of variance shows that the error of individual modelmore » has substantial dependence on the weather situation. The machine-learning approach effectively reduces such situation dependent error thus produces more accurate results compared to conventional multi-model ensemble approaches based on simplistic equally or unequally weighted model averaging. Validation over an extended period of time results show over 30% improvement in solar irradiance/power forecast accuracy compared to forecasts based on the best individual model.« less
Method for assigning sites to projected generic nuclear power plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holter, G.M.; Purcell, W.L.; Shutz, M.E.
1986-07-01
Pacific Northwest Laboratory developed a method for forecasting potential locations and startup sequences of nuclear power plants that will be required in the future but have not yet been specifically identified by electric utilities. Use of the method results in numerical ratings for potential nuclear power plant sites located in each of the 10 federal energy regions. The rating for each potential site is obtained from numerical factors assigned to each of 5 primary siting characteristics: (1) cooling water availability, (2) site land area, (3) power transmission land area, (4) proximity to metropolitan areas, and (5) utility plans for themore » site. The sequence of plant startups in each federal energy region is obtained by use of the numerical ratings and the forecasts of generic nuclear power plant startups obtained from the EIA Middle Case electricity forecast. Sites are assigned to generic plants in chronological order according to startup date.« less
SCADA-based Operator Support System for Power Plant Equipment Fault Forecasting
NASA Astrophysics Data System (ADS)
Mayadevi, N.; Ushakumari, S. S.; Vinodchandra, S. S.
2014-12-01
Power plant equipment must be monitored closely to prevent failures from disrupting plant availability. Online monitoring technology integrated with hybrid forecasting techniques can be used to prevent plant equipment faults. A self learning rule-based expert system is proposed in this paper for fault forecasting in power plants controlled by supervisory control and data acquisition (SCADA) system. Self-learning utilizes associative data mining algorithms on the SCADA history database to form new rules that can dynamically update the knowledge base of the rule-based expert system. In this study, a number of popular associative learning algorithms are considered for rule formation. Data mining results show that the Tertius algorithm is best suited for developing a learning engine for power plants. For real-time monitoring of the plant condition, graphical models are constructed by K-means clustering. To build a time-series forecasting model, a multi layer preceptron (MLP) is used. Once created, the models are updated in the model library to provide an adaptive environment for the proposed system. Graphical user interface (GUI) illustrates the variation of all sensor values affecting a particular alarm/fault, as well as the step-by-step procedure for avoiding critical situations and consequent plant shutdown. The forecasting performance is evaluated by computing the mean absolute error and root mean square error of the predictions.
NASA Astrophysics Data System (ADS)
Areekul, Phatchakorn; Senjyu, Tomonobu; Urasaki, Naomitsu; Yona, Atsushi
Electricity price forecasting is becoming increasingly relevant to power producers and consumers in the new competitive electric power markets, when planning bidding strategies in order to maximize their benefits and utilities, respectively. This paper proposed a method to predict hourly electricity prices for next-day electricity markets by combination methodology of ARIMA and ANN models. The proposed method is examined on the Australian National Electricity Market (NEM), New South Wales regional in year 2006. Comparison of forecasting performance with the proposed ARIMA, ANN and combination (ARIMA-ANN) models are presented. Empirical results indicate that an ARIMA-ANN model can improve the price forecasting accuracy.
Tracking Cloud Motion and Deformation for Short-Term Photovoltaic Power Forecasting
NASA Astrophysics Data System (ADS)
Good, Garrett; Siefert, Malte; Fritz, Rafael; Saint-Drenan, Yves-Marie; Dobschinski, Jan
2016-04-01
With the increasing role of photovoltaic power production, the need to accurately forecast and anticipate weather-driven elements like cloud cover has become ever more important. Of particular concern is forecasting on the short-term (up to several hours), for which the most recent full weather simulation may no longer provide the most accurate information in light of real-time satellite measurements. We discuss the application of the image correlation velocimetry technique described by Tokumaru & Dimotakis (1995) (for calculating flow fields from images) to measure deformations of various orders based on recent satellite imagery, with the goal of not only more accurately forecasting the advection of cloud structures, but their continued deformation as well.
Travel demand forecasting models: a comparison of EMME/2 and QUR II using a real-world network.
DOT National Transportation Integrated Search
2000-10-01
In order to automate the travel demand forecasting process in urban transportation planning, a number of : commercial computer based travel demand forecasting models have been developed, which have provided : transportation planners with powerful and...
A probabilistic drought forecasting framework: A combined dynamical and statistical approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Hongxiang; Moradkhani, Hamid; Zarekarizi, Mahkameh
In order to improve drought forecasting skill, this study develops a probabilistic drought forecasting framework comprised of dynamical and statistical modeling components. The novelty of this study is to seek the use of data assimilation to quantify initial condition uncertainty with the Monte Carlo ensemble members, rather than relying entirely on the hydrologic model or land surface model to generate a single deterministic initial condition, as currently implemented in the operational drought forecasting systems. Next, the initial condition uncertainty is quantified through data assimilation and coupled with a newly developed probabilistic drought forecasting model using a copula function. The initialmore » condition at each forecast start date are sampled from the data assimilation ensembles for forecast initialization. Finally, seasonal drought forecasting products are generated with the updated initial conditions. This study introduces the theory behind the proposed drought forecasting system, with an application in Columbia River Basin, Pacific Northwest, United States. Results from both synthetic and real case studies suggest that the proposed drought forecasting system significantly improves the seasonal drought forecasting skills and can facilitate the state drought preparation and declaration, at least three months before the official state drought declaration.« less
A Review on Development Practice of Smart Grid Technology in China
NASA Astrophysics Data System (ADS)
Han, Liu; Chen, Wei; Zhuang, Bo; Shen, Hongming
2017-05-01
Smart grid has become an inexorable trend of energy and economy development worldwide. Since the development of smart grid was put forward in China in 2009, we have obtained abundant research results and practical experiences as well as extensive attention from international community in this field. This paper reviews the key technologies and demonstration projects on new energy connection forecasts; energy storage; smart substations; disaster prevention and reduction for power transmission lines; flexible DC transmission; distribution automation; distributed generation access and micro grid; smart power consumption; the comprehensive demonstration of power distribution and utilization; smart power dispatching and control systems; and the communication networks and information platforms of China, systematically, on the basis of 5 fields, i.e., renewable energy integration, smart power transmission and transformation, smart power distribution and consumption, smart power dispatching and control systems and information and communication platforms. Meanwhile, it also analyzes and compares with the developmental level of similar technologies abroad, providing an outlook on the future development trends of various technologies.
NASA Technical Reports Server (NTRS)
Trettel, D. W.; Aquino, J. T.; Piazza, T. R.; Taylor, L. E.; Trask, D. C.
1982-01-01
Correlations between standard meteorological data and wind power generation potential were developed. Combined with appropriate wind forecasts, these correlations can be useful to load dispatchers to supplement conventional energy sources. Hourly wind data were analyzed for four sites, each exhibiting a unique physiography. These sites are Amarillo, Texas; Ludington, Michigan; Montauk Point, New York; and San Gorgonio, California. Synoptic weather maps and tables are presented to illustrate various wind 'regimes' at these sites.
A Novel Wind Speed Forecasting Model for Wind Farms of Northwest China
NASA Astrophysics Data System (ADS)
Wang, Jian-Zhou; Wang, Yun
2017-01-01
Wind resources are becoming increasingly significant due to their clean and renewable characteristics, and the integration of wind power into existing electricity systems is imminent. To maintain a stable power supply system that takes into account the stochastic nature of wind speed, accurate wind speed forecasting is pivotal. However, no single model can be applied to all cases. Recent studies show that wind speed forecasting errors are approximately 25% to 40% in Chinese wind farms. Presently, hybrid wind speed forecasting models are widely used and have been verified to perform better than conventional single forecasting models, not only in short-term wind speed forecasting but also in long-term forecasting. In this paper, a hybrid forecasting model is developed, the Similar Coefficient Sum (SCS) and Hermite Interpolation are exploited to process the original wind speed data, and the SVM model whose parameters are tuned by an artificial intelligence model is built to make forecast. The results of case studies show that the MAPE value of the hybrid model varies from 22.96% to 28.87 %, and the MAE value varies from 0.47 m/s to 1.30 m/s. Generally, Sign test, Wilcoxon's Signed-Rank test, and Morgan-Granger-Newbold test tell us that the proposed model is different from the compared models.
Modelling utility-scale wind power plants. Part 2: Capacity credit
NASA Astrophysics Data System (ADS)
Milligan, Michael R.
2000-10-01
As the worldwide use of wind turbine generators in utility-scale applications continues to increase, it will become increasingly important to assess the economic and reliability impact of these intermittent resources. Although the utility industry appears to be moving towards a restructured environment, basic economic and reliability issues will continue to be relevant to companies involved with electricity generation. This article is the second in a two-part series that addresses modelling approaches and results that were obtained in several case studies and research projects at the National Renewable Energy Laboratory (NREL). This second article focuses on wind plant capacity credit as measured with power system reliability indices. Reliability-based methods of measuring capacity credit are compared with wind plant capacity factor. The relationship between capacity credit and accurate wind forecasting is also explored. Published in 2000 by John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
French, Jon; Mawdsley, Robert; Fujiyama, Taku; Achuthan, Kamal
2017-04-01
Effective prediction of tidal storm surge is of considerable importance for operators of major ports, since much of their infrastructure is necessarily located close to sea level. Storm surge inundation can damage critical elements of this infrastructure and significantly disrupt port operations and downstream supply chains. The risk of surge inundation is typically approached using extreme value analysis, while short-term forecasting generally relies on coastal shelf-scale tide and surge models. However, extreme value analysis does not provide information on the duration of a surge event and can be sensitive to the assumptions made and the historic data available. Also, whilst regional tide and surge models perform well along open coasts, their fairly coarse spatial resolution means that they do not always provide accurate predictions for estuarine ports. As part of a NERC Environmental Risks to Infrastructure Innovation Programme project, we have developed a tool that is specifically designed to forecast the North Sea storm surges on major ports along the east coast of the UK. Of particular interest is the Port of Immingham, Humber estuary, which handles the largest volume of bulk cargo in the UK including major flows of coal and biomass for power generation. A tidal surge in December 2013, with an estimated return period of 760 years, partly flooded the port, damaged infrastructure and disrupted operations for several weeks. This and other recent surge events highlight the need for additional tools to supplement the national UK Storm Tide Warning Service. Port operators are also keen to have access to less computationally expensive forecasting tools for scenario planning and to improve their resilience to actual events. In this paper, we demonstrate the potential of machine learning methods based on Artificial Neural Networks (ANNs) to generate accurate short-term forecasts of extreme water levels at estuarine North Sea ports such as Immingham. An ANN is configured to take advantage of far-field information on developing tidal surges provided by tide gauges in NW Scotland (the 'external surge'), supported by observations of wind and atmospheric pressure and the predicted astronomical tide at Immingham. Missing data can cause problems with ANN models and a novel aspect of our implementation is the use of multiple redundant inputs (nearby tide gauges that experience a high degree of surge coherence) to synthesise a single external surge input. A similar approach is taken with meteorological forcings, creating an ANN that is resilient against data drop-outs within its input vector. The ANN generates 6 to 24 hour surge forecasts at Immingham with accuracy better than the present UK Storm Tide Warning Service. These can be used to cross-check national forecasts, generate more accurate estimates of likely flood depths, timings and durations and trigger planned responses to severe forecasts. Crucially, this capability can be 'owned' by the port operator, which encourages the development of a shared understanding of storm surge hazards and the challenges of port resilience planning between scientist and stakeholder.
NASA Astrophysics Data System (ADS)
Qiu, Yunfei; Li, Xizhong; Zheng, Wei; Hu, Qinghe; Wei, Zhanmeng; Yue, Yaqin
2017-08-01
The climate changes have great impact on the residents’ electricity consumption, so the study on the impact of climatic factors on electric power load is of significance. In this paper, the effects of the data of temperature, rainfall and wind of smart city on short-term power load is studied to predict power load. The authors studied the relation between power load and daily temperature, rainfall and wind in the 31 days of January of one year. In the research, the authors used the Matlab neural network toolbox to establish the combinational forecasting model. The authors trained the original input data continuously to get the internal rules inside the data and used the rules to predict the daily power load in the next January. The prediction method relies on the accuracy of weather forecasting. If the weather forecasting is different from the actual weather, we need to correct the climatic factors to ensure accurate prediction.
Wind Power Energy in Southern Brazil: evaluation using a mesoscale meteorological model
NASA Astrophysics Data System (ADS)
Krusche, Nisia; Stoevesandt, Bernhard; Chang, Chi-Yao; Peralta, Carlos
2015-04-01
In recent years, several wind farms were build in the coast of Rio Grande do Sul state. This region of Brazil was identified, in wind energy studies, as most favorable to the development of wind power energy, along with the Northeast part of the country. Site assessments of wind power, over long periods to estimate the power production and forecasts over short periods can be used for planning of power distribution and enhancements on Brazil's present capacity to use this resource. The computational power available today allows the simulation of the atmospheric flow in great detail. For instance, one of the authors participated in a research that demonstrated the interaction between the lake and maritime breeze in this region through the use of a atmospheric model. Therefore, we aim to evaluate simulations of wind conditions and its potential to generate energy in this region. The model applied is the Weather Research and Forecasting , which is the mesoscale weather forecast software. The calculation domain is centered in 32oS and 52oW, in the southern region of Rio Grande do Sul state. The initial conditions of the simulation are taken from the global weather forecast in the time period from October 1st to October 31st, 2006. The wind power potential was calculated for a generic turbine, with a blade length of 52 m, using the expression: P=1/2*d*A*Cp*v^3, where P is the wind power energy (in Watts), d is the density (equal to 1.23 kg/m^3), A is the area section, which is equal to 8500 m2 , and v is the intensity of the velocity. The evaluation was done for a turbine placed at 50 m and 150 m of height. A threshold was chosen for a turbine production of 1.5 MW to estimate the potential of the site. In contrast to northern Brazilian region, which has a rather constant wind condition, this region shows a great variation of power output due to the weather variability. During the period of the study, at least three frontal systems went over the region, and thre was a associated variation of wind intensity. The monthly average indicate several small regions with a higher value of energy. Average production higher than 1.5 MW, for the area inland, was of 72.9% for a turbine at 150 m height but only 13.1% for one at 50 m height. This initial study indicates the variability of the region in terms of wind power availability. It can be extended to the study of extreme situations, as the case of very strong winds that knocked down 8 wind turbines in this region on the 20 of December of 2014. Simulations with high degree of spacial details will be the next step in this investigation.
NASA Astrophysics Data System (ADS)
Kuzma, H. A.; Golubkova, A.; Eklund, C.
2015-12-01
Nevada has the second largest output of geothermal energy in the United States (after California) with 14 major power plants producing over 425 megawatts of electricity meeting 7% of the state's total energy needs. A number of wells, particularly older ones, have shown significant temperature and pressure declines over their lifetimes, adversely affecting economic returns. Production declines are almost universal in the oil and gas (O&G) industry. BetaZi (BZ) is a proprietary algorithm which uses a physiostatistical model to forecast production from the past history of O&G wells and to generate "type curves" which are used to estimate the production of undrilled wells. Although BZ was designed and calibrated for O&G, it is a general purpose diffusion equation solver, capable of modeling complex fluid dynamics in multi-phase systems. In this pilot study, it is applied directly to the temperature data from five Nevada geothermal fields. With the data appropriately normalized, BZ is shown to accurately predict temperature declines. The figure shows several examples of BZ forecasts using historic data from Steamboat Hills field near Reno. BZ forecasts were made using temperature on a normalized scale (blue) with two years of data held out for blind testing (yellow). The forecast is returned in terms of percentiles of probability (red) with the median forecast marked (solid green). Actual production is expected to fall within the majority of the red bounds 80% of the time. Blind tests such as these are used to verify that the probabilistic forecast can be trusted. BZ is also used to compute and accurate type temperature profile for wells that have yet to be drilled. These forecasts can be combined with estimated costs to evaluate the economics and risks of a project or potential capital investment. It is remarkable that an algorithm developed for oil and gas can accurately predict temperature in geothermal wells without significant recasting.
NASA Astrophysics Data System (ADS)
Peters, Aaron; Brown, Michael L.; Kay, Scott T.; Barnes, David J.
2018-03-01
We use a combination of full hydrodynamic and dark matter only simulations to investigate the effect that supercluster environments and baryonic physics have on the matter power spectrum, by re-simulating a sample of supercluster sub-volumes. On large scales we find that the matter power spectrum measured from our supercluster sample has at least twice as much power as that measured from our random sample. Our investigation of the effect of baryonic physics on the matter power spectrum is found to be in agreement with previous studies and is weaker than the selection effect over the majority of scales. In addition, we investigate the effect of targeting a cosmologically non-representative, supercluster region of the sky on the weak lensing shear power spectrum. We do this by generating shear and convergence maps using a line-of-sight integration technique, which intercepts our random and supercluster sub-volumes. We find the convergence power spectrum measured from our supercluster sample has a larger amplitude than that measured from the random sample at all scales. We frame our results within the context of the Super-CLuster Assisted Shear Survey (Super-CLASS), which aims to measure the cosmic shear signal in the radio band by targeting a region of the sky that contains five Abell clusters. Assuming the Super-CLASS survey will have a source density of 1.5 galaxies arcmin-2, we forecast a detection significance of 2.7^{+1.5}_{-1.2}, which indicates that in the absence of systematics the Super-CLASS project could make a cosmic shear detection with radio data alone.
NASA Astrophysics Data System (ADS)
Moore, A. W.; Bock, Y.; Geng, J.; Gutman, S. I.; Laber, J. L.; Morris, T.; Offield, D. G.; Small, I.; Squibb, M. B.
2012-12-01
We describe a system under development for generating ultra-low latency tropospheric delay and precipitable water vapor (PWV) estimates in situ at a prototype network of geodetic GPS sites in southern California, and demonstrating their utility in forecasting severe storms commonly associated with flooding and debris flow events along the west coast of North America through infusion of this meteorological data at NOAA National Weather Service (NWS) Forecast Offices and the NOAA Earth System Research Laboratory (ESRL). The first continuous geodetic GPS network was established in southern California in the early 1990s and much of it was converted to real-time (latency <1s) high-rate (1Hz) mode over the following decades. GPS stations are multi-purpose and can also provide estimates of tropospheric zenith delays, which can be converted into mm-accuracy PWV using collocated pressure and temperature measurements, the basis for GPS meteorology (Bevis et al. 1992, 1994; Duan et al. 1996) as implemented by NOAA with a nationwide distribution of about 300 GPS-Met stations providing PW estimates at subhourly resolution currently used in operational weather forecasting in the U.S. We improve upon the current paradigm of transmitting large quantities of raw data back to a central facility for processing into higher-order products. By operating semi-autonomously, each station will provide low-latency, high-fidelity and compact data products within the constraints of the narrow communications bandwidth that often occurs in the aftermath of natural disasters. The onsite ambiguity-resolved precise point positioning solutions are enabled by a power-efficient, low-cost, plug-in Geodetic Module for fusion of data from in situ sensors including GPS and a low-cost MEMS meteorological sensor package. The decreased latency (~5 minutes) PW estimates will provide the detailed knowledge of the distribution and magnitude of PW that NWS forecasters require to monitor and predict severe winter storms, landfalling atmospheric rivers, and summer thunderstorms associated with the North American monsoon. On the national level, the ESRL will evaluate the utility of ultra-low resolution GNSS observations to improve NOAA's warning and forecast capabilities. The overall objective is to better forecast, assess, and mitigate natural hazards through the flow of information from multiple geodetic stations to scientists, mission planners, decision makers, and first responders.
NASA Astrophysics Data System (ADS)
Prinsloo, Gerro; Dobson, Robert; Brent, Alan; Mammoli, Andrea
2016-05-01
Concentrating solar power co-generation systems have been identified as potential stand-alone solar energy supply solutions in remote rural energy applications. This study describes the modelling and synthesis of a combined heat and power Stirling CSP system in order to evaluate its potential performance in small off-grid rural village applications in Africa. This Stirling micro-Combined Heat and Power (micro-CHP) system has a 1 kW electric capacity, with 3 kW of thermal generation capacity which is produced as waste heat recovered from the solar power generation process. As part of the development of an intelligent microgrid control and distribution solution, the Trinum micro-CHP system and other co-generation systems are systematically being modelled on the TRNSYS simulation platform. This paper describes the modelling and simulation of the Trinum micro-CHP configuration on TRNSYS as part of the process to develop the control automation solution for the smart rural microgrid in which the Trinum will serve as a solar powerpack. The results present simulated performance outputs for the Trinum micro-CHP system for a number of remote rural locations in Africa computed from real-time TRNSYS solar irradiation and weather data (yearly, monthly, daily) for the relevant locations. The focus of this paper is on the parametric modelling of the Trinum Stirling micro-CHP system, with specific reference to this system as a TRNSYS functional block in the microgrid simulation. The model is used to forecast the solar energy harvesting potential of the Trinum micro-CHP unit at a number of remote rural sites in Africa.
The Ability of Analysts' Recommendations to Predict Optimistic and Pessimistic Forecasts
Biglari, Vahid; Alfan, Ervina Binti; Ahmad, Rubi Binti; Hajian, Najmeh
2013-01-01
Previous researches show that buy (growth) companies conduct income increasing earnings management in order to meet forecasts and generate positive forecast Errors (FEs). This behavior however, is not inherent in sell (non-growth) companies. Using the aforementioned background, this research hypothesizes that since sell companies are pressured to avoid income increasing earnings management, they are capable, and in fact more inclined, to pursue income decreasing Forecast Management (FM) with the purpose of generating positive FEs. Using a sample of 6553 firm-years of companies that are listed in the NYSE between the years 2005–2010, the study determines that sell companies conduct income decreasing FM to generate positive FEs. However, the frequency of positive FEs of sell companies does not exceed that of buy companies. Using the efficiency perspective, the study suggests that even though buy and sell companies have immense motivation in avoiding negative FEs, they exploit different but efficient strategies, respectively, in order to meet forecasts. Furthermore, the findings illuminated the complexities behind informative and opportunistic forecasts that falls under the efficiency versus opportunistic theories in literature. PMID:24146741
The ability of analysts' recommendations to predict optimistic and pessimistic forecasts.
Biglari, Vahid; Alfan, Ervina Binti; Ahmad, Rubi Binti; Hajian, Najmeh
2013-01-01
Previous researches show that buy (growth) companies conduct income increasing earnings management in order to meet forecasts and generate positive forecast Errors (FEs). This behavior however, is not inherent in sell (non-growth) companies. Using the aforementioned background, this research hypothesizes that since sell companies are pressured to avoid income increasing earnings management, they are capable, and in fact more inclined, to pursue income decreasing Forecast Management (FM) with the purpose of generating positive FEs. Using a sample of 6553 firm-years of companies that are listed in the NYSE between the years 2005-2010, the study determines that sell companies conduct income decreasing FM to generate positive FEs. However, the frequency of positive FEs of sell companies does not exceed that of buy companies. Using the efficiency perspective, the study suggests that even though buy and sell companies have immense motivation in avoiding negative FEs, they exploit different but efficient strategies, respectively, in order to meet forecasts. Furthermore, the findings illuminated the complexities behind informative and opportunistic forecasts that falls under the efficiency versus opportunistic theories in literature.
Online Analysis of Wind and Solar Part II: Transmission Tool
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makarov, Yuri V.; Etingov, Pavel V.; Ma, Jian
2012-01-31
To facilitate wider penetration of renewable resources without compromising system reliability concerns arising from the lack of predictability of intermittent renewable resources, a tool for use by California Independent System Operator (CAISO) power grid operators was developed by Pacific Northwest National Laboratory (PNNL) in conjunction with CAISO with funding from California Energy Commission. The tool analyzes and displays the impacts of uncertainties in forecasts of loads and renewable generation on: (1) congestion, (2)voltage and transient stability margins, and (3)voltage reductions and reactive power margins. The impacts are analyzed in the base case and under user-specified contingencies.A prototype of the toolmore » has been developed and implemented in software.« less
Short-term Power Load Forecasting Based on Balanced KNN
NASA Astrophysics Data System (ADS)
Lv, Xianlong; Cheng, Xingong; YanShuang; Tang, Yan-mei
2018-03-01
To improve the accuracy of load forecasting, a short-term load forecasting model based on balanced KNN algorithm is proposed; According to the load characteristics, the historical data of massive power load are divided into scenes by the K-means algorithm; In view of unbalanced load scenes, the balanced KNN algorithm is proposed to classify the scene accurately; The local weighted linear regression algorithm is used to fitting and predict the load; Adopting the Apache Hadoop programming framework of cloud computing, the proposed algorithm model is parallelized and improved to enhance its ability of dealing with massive and high-dimension data. The analysis of the household electricity consumption data for a residential district is done by 23-nodes cloud computing cluster, and experimental results show that the load forecasting accuracy and execution time by the proposed model are the better than those of traditional forecasting algorithm.
Maximizing Statistical Power When Verifying Probabilistic Forecasts of Hydrometeorological Events
NASA Astrophysics Data System (ADS)
DeChant, C. M.; Moradkhani, H.
2014-12-01
Hydrometeorological events (i.e. floods, droughts, precipitation) are increasingly being forecasted probabilistically, owing to the uncertainties in the underlying causes of the phenomenon. In these forecasts, the probability of the event, over some lead time, is estimated based on some model simulations or predictive indicators. By issuing probabilistic forecasts, agencies may communicate the uncertainty in the event occurring. Assuming that the assigned probability of the event is correct, which is referred to as a reliable forecast, the end user may perform some risk management based on the potential damages resulting from the event. Alternatively, an unreliable forecast may give false impressions of the actual risk, leading to improper decision making when protecting resources from extreme events. Due to this requisite for reliable forecasts to perform effective risk management, this study takes a renewed look at reliability assessment in event forecasts. Illustrative experiments will be presented, showing deficiencies in the commonly available approaches (Brier Score, Reliability Diagram). Overall, it is shown that the conventional reliability assessment techniques do not maximize the ability to distinguish between a reliable and unreliable forecast. In this regard, a theoretical formulation of the probabilistic event forecast verification framework will be presented. From this analysis, hypothesis testing with the Poisson-Binomial distribution is the most exact model available for the verification framework, and therefore maximizes one's ability to distinguish between a reliable and unreliable forecast. Application of this verification system was also examined within a real forecasting case study, highlighting the additional statistical power provided with the use of the Poisson-Binomial distribution.
Wave resource variability: Impacts on wave power supply over regional to international scales
NASA Astrophysics Data System (ADS)
Smith, Helen; Fairley, Iain; Robertson, Bryson; Abusara, Mohammad; Masters, Ian
2017-04-01
The intermittent, irregular and variable nature of the wave energy resource has implications for the supply of wave-generated electricity into the grid. Intermittency of renewable power may lead to frequency and voltage fluctuations in the transmission and distribution networks. A matching supply of electricity must be planned to meet the predicted demand, leading to a need for gas-fired and back-up generating plants to supplement intermittent supplies, and potentially limiting the integration of intermittent power into the grid. Issues relating to resource intermittency and their mitigation through the development of spatially separated sites have been widely researched in the wind industry, but have received little attention to date in the less mature wave industry. This study analyses the wave resource over three different spatial scales to investigate the potential impacts of the temporal and spatial resource variability on the grid supply. The primary focus is the Southwest UK, a region already home to multiple existing and proposed wave energy test sites. Concurrent wave buoy data from six locations, supported by SWAN wave model hindcast data, are analysed to assess the correlation of the resource across the region and the variation in wave power with direction. Power matrices for theoretical nearshore and offshore devices are used to calculate the maximum step change in generated power across the region as the number of deployment sites is increased. The step change analysis is also applied across national and international spatial scales using output from the European Centre for Medium-range Weather Forecasting (ECMWF) ERA-Interim hindcast model. It is found that the deployment of multiple wave energy sites, whether on a regional, national or international scale, results in both a reduction in step changes in power and reduced times of zero generation, leading to an overall smoothing of the wave-generated electrical power. This has implications for the planning and siting of future wave energy arrays when the industry reaches the point of large-scale deployment.
Sukič, Primož; Štumberger, Gorazd
2017-05-13
Clouds moving at a high speed in front of the Sun can cause step changes in the output power of photovoltaic (PV) power plants, which can lead to voltage fluctuations and stability problems in the connected electricity networks. These effects can be reduced effectively by proper short-term cloud passing forecasting and suitable PV power plant output power control. This paper proposes a low-cost Internet of Things (IoT)-based solution for intra-minute cloud passing forecasting. The hardware consists of a Raspberry PI Model B 3 with a WiFi connection and an OmniVision OV5647 sensor with a mounted wide-angle lens, a circular polarizing (CPL) filter and a natural density (ND) filter. The completely new algorithm for cloud passing forecasting uses the green and blue colors in the photo to determine the position of the Sun, to recognize the clouds, and to predict their movement. The image processing is performed in several stages, considering selectively only a small part of the photo relevant to the movement of the clouds in the vicinity of the Sun in the next minute. The proposed algorithm is compact, fast and suitable for implementation on low cost processors with low computation power. The speed of the cloud parts closest to the Sun is used to predict when the clouds will cover the Sun. WiFi communication is used to transmit this data to the PV power plant control system in order to decrease the output power slowly and smoothly.
Sukič, Primož; Štumberger, Gorazd
2017-01-01
Clouds moving at a high speed in front of the Sun can cause step changes in the output power of photovoltaic (PV) power plants, which can lead to voltage fluctuations and stability problems in the connected electricity networks. These effects can be reduced effectively by proper short-term cloud passing forecasting and suitable PV power plant output power control. This paper proposes a low-cost Internet of Things (IoT)-based solution for intra-minute cloud passing forecasting. The hardware consists of a Raspberry PI Model B 3 with a WiFi connection and an OmniVision OV5647 sensor with a mounted wide-angle lens, a circular polarizing (CPL) filter and a natural density (ND) filter. The completely new algorithm for cloud passing forecasting uses the green and blue colors in the photo to determine the position of the Sun, to recognize the clouds, and to predict their movement. The image processing is performed in several stages, considering selectively only a small part of the photo relevant to the movement of the clouds in the vicinity of the Sun in the next minute. The proposed algorithm is compact, fast and suitable for implementation on low cost processors with low computation power. The speed of the cloud parts closest to the Sun is used to predict when the clouds will cover the Sun. WiFi communication is used to transmit this data to the PV power plant control system in order to decrease the output power slowly and smoothly. PMID:28505078
7 CFR 1710.202 - Requirement to prepare a load forecast-power supply borrowers.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 11 2010-01-01 2010-01-01 false Requirement to prepare a load forecast-power supply borrowers. 1710.202 Section 1710.202 Agriculture Regulations of the Department of Agriculture (Continued) RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE GENERAL AND PRE-LOAN POLICIES AND PROCEDURES COMMON TO ELECTRIC LOANS AND GUARANTEES Load...
Electric energy demand and supply prospects for California
NASA Technical Reports Server (NTRS)
Jones, H. G. M.
1978-01-01
A recent history of electricity forecasting in California is given. Dealing with forecasts and regulatory uncertainty is discussed. Graphs are presented for: (1) Los Angeles Department of Water and Power and Pacific Gas and Electric present and projected reserve margins; (2) California electricity peak demand forecast; and (3) California electricity production.
Dispersion Modeling Using Ensemble Forecasts Compared to ETEX Measurements.
NASA Astrophysics Data System (ADS)
Straume, Anne Grete; N'dri Koffi, Ernest; Nodop, Katrin
1998-11-01
Numerous numerical models are developed to predict long-range transport of hazardous air pollution in connection with accidental releases. When evaluating and improving such a model, it is important to detect uncertainties connected to the meteorological input data. A Lagrangian dispersion model, the Severe Nuclear Accident Program, is used here to investigate the effect of errors in the meteorological input data due to analysis error. An ensemble forecast, produced at the European Centre for Medium-Range Weather Forecasts, is then used as model input. The ensemble forecast members are generated by perturbing the initial meteorological fields of the weather forecast. The perturbations are calculated from singular vectors meant to represent possible forecast developments generated by instabilities in the atmospheric flow during the early part of the forecast. The instabilities are generated by errors in the analyzed fields. Puff predictions from the dispersion model, using ensemble forecast input, are compared, and a large spread in the predicted puff evolutions is found. This shows that the quality of the meteorological input data is important for the success of the dispersion model. In order to evaluate the dispersion model, the calculations are compared with measurements from the European Tracer Experiment. The model manages to predict the measured puff evolution concerning shape and time of arrival to a fairly high extent, up to 60 h after the start of the release. The modeled puff is still too narrow in the advection direction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolinger, Mark A; Wiser, Ryan
2008-09-15
For better or worse, natural gas has become the fuel of choice for new power plants being built across the United States. According to the Energy Information Administration (EIA), natural gas-fired units account for nearly 90% of the total generating capacity added in the U.S. between 1999 and 2005 (EIA 2006b), bringing the nationwide market share of gas-fired generation to 19%. Looking ahead over the next decade, the EIA expects this trend to continue, increasing the market share of gas-fired generation to 22% by 2015 (EIA 2007a). Though these numbers are specific to the US, natural gas-fired generation is makingmore » similar advances in many other countries as well. A large percentage of the total cost of gas-fired generation is attributable to fuel costs--i.e., natural gas prices. For example, at current spot prices of around $7/MMBtu, fuel costs account for more than 75% of the levelized cost of energy from a new combined cycle gas turbine, and more than 90% of its operating costs (EIA 2007a). Furthermore, given that gas-fired plants are often the marginal supply units that set the market-clearing price for all generators in a competitive wholesale market, there is a direct link between natural gas prices and wholesale electricity prices. In this light, the dramatic increase in natural gas prices since the 1990s should be a cause for ratepayer concern. Figure 1 shows the daily price history of the 'first-nearby' (i.e., closest to expiration) NYMEX natural gas futures contract (black line) at Henry Hub, along with the futures strip (i.e., the full series of futures contracts) from August 22, 2007 (red line). First, nearby prices, which closely track spot prices, have recently been trading within a $7-9/MMBtu range in the United States and, as shown by the futures strip, are expected to remain there through 2012. These price levels are $6/MMBtu higher than the $1-3/MMBtu range seen throughout most of the 1990s, demonstrating significant price escalation for natural gas in the United States over a relatively brief period. Perhaps of most concern is that this dramatic price increase was largely unforeseen. Figure 2 compares the EIA's natural gas wellhead price forecast from each year's Annual Energy Outlook (AEO) going back to 1985 against the average US wellhead price that actually transpired. As shown, our forecasting abilities have proven rather dismal over time, as over-forecasts made in the late 1980's eventually yielded to under-forecasts that have persisted to this day. This historical experience demonstrates that little weight should be placed on any one forecast of future natural gas prices, and that a broad range of future price conditions ought to be considered in planning and investment decisions. Against this backdrop of high, volatile, and unpredictable natural gas prices, increasing the market penetration of renewable generation such as wind, solar, and geothermal power may provide economic benefits to ratepayers by displacing gas-fired generation. These benefits may manifest themselves in several ways. First, the displacement of natural gas-fired generation by increased renewable generation reduces ratepayer exposure to natural gas price risk--i.e., the risk that future gas prices (and by extension future electricity prices) may end up markedly different than expected. Second, this displacement reduces demand for natural gas among gas-fired generators, which, all else equal, will put downward pressure on natural gas prices. Lower natural gas prices in turn benefit both electric ratepayers and other end-users of natural gas. Using analytic approaches that build upon, yet differ from, the past work of others, including Awerbuch (1993, 1994, 2003), Kahn and Stoft (1993), and Humphreys and McClain (1998), this chapter explores each of these two potential 'hedging' benefits of renewable electricity. Though we do not seek to judge whether these two specific benefits outweigh any incremental cost of renewable energy (relative to conventional fuels), we do seek to quantify the magnitude of these two individual benefits. We also note that these benefits are not unique to renewable electricity: other generation (or demand-side) resources whose costs are not tied to natural gas would provide similar benefits.« less
Accuracy of short‐term sea ice drift forecasts using a coupled ice‐ocean model
Zhang, Jinlun
2015-01-01
Abstract Arctic sea ice drift forecasts of 6 h–9 days for the summer of 2014 are generated using the Marginal Ice Zone Modeling and Assimilation System (MIZMAS); the model is driven by 6 h atmospheric forecasts from the Climate Forecast System (CFSv2). Forecast ice drift speed is compared to drifting buoys and other observational platforms. Forecast positions are compared with actual positions 24 h–8 days since forecast. Forecast results are further compared to those from the forecasts generated using an ice velocity climatology driven by multiyear integrations of the same model. The results are presented in the context of scheduling the acquisition of high‐resolution images that need to follow buoys or scientific research platforms. RMS errors for ice speed are on the order of 5 km/d for 24–48 h since forecast using the sea ice model compared with 9 km/d using climatology. Predicted buoy position RMS errors are 6.3 km for 24 h and 14 km for 72 h since forecast. Model biases in ice speed and direction can be reduced by adjusting the air drag coefficient and water turning angle, but the adjustments do not affect verification statistics. This suggests that improved atmospheric forecast forcing may further reduce the forecast errors. The model remains skillful for 8 days. Using the forecast model increases the probability of tracking a target drifting in sea ice with a 10 km × 10 km image from 60 to 95% for a 24 h forecast and from 27 to 73% for a 48 h forecast. PMID:27818852
Wet snow hazard for power lines: a forecast and alert system applied in Italy
NASA Astrophysics Data System (ADS)
Bonelli, P.; Lacavalla, M.; Marcacci, P.; Mariani, G.; Stella, G.
2011-09-01
Wet snow icing accretion on power lines is a real problem in Italy, causing failures on high and medium voltage power supplies during the cold season. The phenomenon is a process in which many large and local scale variables contribute in a complex way and not completely understood. A numerical weather forecast can be used to select areas where wet snow accretion has an high probability of occurring, but a specific accretion model must also be used to estimate the load of an ice sleeve and its hazard. All the information must be carefully selected and shown to the electric grid operator in order to warn him promptly. The authors describe a prototype of forecast and alert system, WOLF (Wet snow Overload aLert and Forecast), developed and applied in Italy. The prototype elaborates the output of a numerical weather prediction model, as temperature, precipitation, wind intensity and direction, to determine the areas of potential risk for the power lines. Then an accretion model computes the ice sleeves' load for different conductor diameters. The highest values are selected and displayed on a WEB-GIS application principally devoted to the electric operator, but also to more expert users. Some experimental field campaigns have been conducted to better parameterize the accretion model. Comparisons between real accidents and forecasted icing conditions are presented and discussed.
A clustering-based fuzzy wavelet neural network model for short-term load forecasting.
Kodogiannis, Vassilis S; Amina, Mahdi; Petrounias, Ilias
2013-10-01
Load forecasting is a critical element of power system operation, involving prediction of the future level of demand to serve as the basis for supply and demand planning. This paper presents the development of a novel clustering-based fuzzy wavelet neural network (CB-FWNN) model and validates its prediction on the short-term electric load forecasting of the Power System of the Greek Island of Crete. The proposed model is obtained from the traditional Takagi-Sugeno-Kang fuzzy system by replacing the THEN part of fuzzy rules with a "multiplication" wavelet neural network (MWNN). Multidimensional Gaussian type of activation functions have been used in the IF part of the fuzzyrules. A Fuzzy Subtractive Clustering scheme is employed as a pre-processing technique to find out the initial set and adequate number of clusters and ultimately the number of multiplication nodes in MWNN, while Gaussian Mixture Models with the Expectation Maximization algorithm are utilized for the definition of the multidimensional Gaussians. The results corresponding to the minimum and maximum power load indicate that the proposed load forecasting model provides significantly accurate forecasts, compared to conventional neural networks models.
A Gaussian Processes Technique for Short-term Load Forecasting with Considerations of Uncertainty
NASA Astrophysics Data System (ADS)
Ohmi, Masataro; Mori, Hiroyuki
In this paper, an efficient method is proposed to deal with short-term load forecasting with the Gaussian Processes. Short-term load forecasting plays a key role to smooth power system operation such as economic load dispatching, unit commitment, etc. Recently, the deregulated and competitive power market increases the degree of uncertainty. As a result, it is more important to obtain better prediction results to save the cost. One of the most important aspects is that power system operator needs the upper and lower bounds of the predicted load to deal with the uncertainty while they require more accurate predicted values. The proposed method is based on the Bayes model in which output is expressed in a distribution rather than a point. To realize the model efficiently, this paper proposes the Gaussian Processes that consists of the Bayes linear model and kernel machine to obtain the distribution of the predicted value. The proposed method is successively applied to real data of daily maximum load forecasting.
Real-time drought forecasting system for irrigation managment
NASA Astrophysics Data System (ADS)
Ceppi, Alessandro; Ravazzani, Giovanni; Corbari, Chiara; Masseroni, Daniele; Meucci, Stefania; Pala, Francesca; Salerno, Raffaele; Meazza, Giuseppe; Chiesa, Marco; Mancini, Marco
2013-04-01
In recent years frequent periods of water scarcity have enhanced the need to use water more carefully, even in in European areas traditionally rich of water such as the Po Valley. In dry periods, the problem of water shortage can be enhanced by conflictual use of water such as irrigation, industrial and power production (hydroelectric and thermoelectric). Further, over the last decade the social perspective on this issue is increasing due to climate change and global warming scenarios which come out from the last IPCC Report. The increased frequency of dry periods has stimulated the improvement of irrigation and water management. In this study we show the development and implementation of the real-time drought forecasting system Pre.G.I., an Italian acronym that stands for "Hydro-Meteorological forecast for irrigation management". The system is based on ensemble prediction at long range (30 days) with hydrological simulation of water balance to forecast the soil water content in every parcel over the Consorzio Muzza basin. The studied area covers 74,000 ha in the middle of the Po Valley, near the city of Lodi. The hydrological ensemble forecasts are based on 20 meteorological members of the non-hydrostatic WRF model with 30 days as lead-time, provided by Epson Meteo Centre, while the hydrological model used to generate the soil moisture and water table simulations is the rainfall-runoff distributed FEST-WB model, developed at Politecnico di Milano. The hydrological model was validated against measurements of latent heat flux and soil moisture acquired by an eddy-covariance station. Reliability of the forecasting system and its benefits was assessed on some cases-study occurred in the recent years.
Flood Forecasting in Wales: Challenges and Solutions
NASA Astrophysics Data System (ADS)
How, Andrew; Williams, Christopher
2015-04-01
With steep, fast-responding river catchments, exposed coastal reaches with large tidal ranges and large population densities in some of the most at-risk areas; flood forecasting in Wales presents many varied challenges. Utilising advances in computing power and learning from best practice within the United Kingdom and abroad have seen significant improvements in recent years - however, many challenges still remain. Developments in computing and increased processing power comes with a significant price tag; greater numbers of data sources and ensemble feeds brings a better understanding of uncertainty but the wealth of data needs careful management to ensure a clear message of risk is disseminated; new modelling techniques utilise better and faster computation, but lack the history of record and experience gained from the continued use of more established forecasting models. As a flood forecasting team we work to develop coastal and fluvial forecasting models, set them up for operational use and manage the duty role that runs the models in real time. An overview of our current operational flood forecasting system will be presented, along with a discussion on some of the solutions we have in place to address the challenges we face. These include: • real-time updating of fluvial models • rainfall forecasting verification • ensemble forecast data • longer range forecast data • contingency models • offshore to nearshore wave transformation • calculation of wave overtopping
Uncertainty analysis of geothermal energy economics
NASA Astrophysics Data System (ADS)
Sener, Adil Caner
This dissertation research endeavors to explore geothermal energy economics by assessing and quantifying the uncertainties associated with the nature of geothermal energy and energy investments overall. The study introduces a stochastic geothermal cost model and a valuation approach for different geothermal power plant development scenarios. The Monte Carlo simulation technique is employed to obtain probability distributions of geothermal energy development costs and project net present values. In the study a stochastic cost model with incorporated dependence structure is defined and compared with the model where random variables are modeled as independent inputs. One of the goals of the study is to attempt to shed light on the long-standing modeling problem of dependence modeling between random input variables. The dependence between random input variables will be modeled by employing the method of copulas. The study focuses on four main types of geothermal power generation technologies and introduces a stochastic levelized cost model for each technology. Moreover, we also compare the levelized costs of natural gas combined cycle and coal-fired power plants with geothermal power plants. The input data used in the model relies on the cost data recently reported by government agencies and non-profit organizations, such as the Department of Energy, National Laboratories, California Energy Commission and Geothermal Energy Association. The second part of the study introduces the stochastic discounted cash flow valuation model for the geothermal technologies analyzed in the first phase. In this phase of the study, the Integrated Planning Model (IPM) software was used to forecast the revenue streams of geothermal assets under different price and regulation scenarios. These results are then combined to create a stochastic revenue forecast of the power plants. The uncertainties in gas prices and environmental regulations will be modeled and their potential impacts will be captured in the valuation model. Finally, the study will compare the probability distributions of development cost and project value and discusses the market penetration potential of the geothermal power generation. There is a recent world wide interest in geothermal utilization projects. There are several reasons for the recent popularity of geothermal energy, including the increasing volatility of fossil fuel prices, need for domestic energy sources, approaching carbon emission limitations and state renewable energy standards, increasing need for baseload units, and new technology to make geothermal energy more attractive for power generation. It is our hope that this study will contribute to the recent progress of geothermal energy by shedding light on the uncertainty of geothermal energy project costs.
Predicting financial market crashes using ghost singularities.
Smug, Damian; Ashwin, Peter; Sornette, Didier
2018-01-01
We analyse the behaviour of a non-linear model of coupled stock and bond prices exhibiting periodically collapsing bubbles. By using the formalism of dynamical system theory, we explain what drives the bubbles and how foreshocks or aftershocks are generated. A dynamical phase space representation of that system coupled with standard multiplicative noise rationalises the log-periodic power law singularity pattern documented in many historical financial bubbles. The notion of 'ghosts of finite-time singularities' is introduced and used to estimate the end of an evolving bubble, using finite-time singularities of an approximate normal form near the bifurcation point. We test the forecasting skill of this method on different stochastic price realisations and compare with Monte Carlo simulations of the full system. Remarkably, the approximate normal form is significantly more precise and less biased. Moreover, the method of ghosts of singularities is less sensitive to the noise realisation, thus providing more robust forecasts.
Predicting financial market crashes using ghost singularities
2018-01-01
We analyse the behaviour of a non-linear model of coupled stock and bond prices exhibiting periodically collapsing bubbles. By using the formalism of dynamical system theory, we explain what drives the bubbles and how foreshocks or aftershocks are generated. A dynamical phase space representation of that system coupled with standard multiplicative noise rationalises the log-periodic power law singularity pattern documented in many historical financial bubbles. The notion of ‘ghosts of finite-time singularities’ is introduced and used to estimate the end of an evolving bubble, using finite-time singularities of an approximate normal form near the bifurcation point. We test the forecasting skill of this method on different stochastic price realisations and compare with Monte Carlo simulations of the full system. Remarkably, the approximate normal form is significantly more precise and less biased. Moreover, the method of ghosts of singularities is less sensitive to the noise realisation, thus providing more robust forecasts. PMID:29596485
Space Communications and Data Systems Technologies for Next Generation Earth Science Measurements
NASA Technical Reports Server (NTRS)
Bauer, Robert A.; Reinhart, Richard C.; Hilderman, Don R.; Paulsen, Phillip E.
2003-01-01
The next generation of Earth observing satellites and sensor networks will face challenges in supporting robust high rate communications links from the increasingly sophisticated onboard instruments. Emerging applications will need data rates forecast to be in the 100's to 1000's of Mbps. As mission designers seek smaller spacecraft, challenges exist in reducing the size and power requirements while increasing the capacity of the spacecraft's communications technologies. To meet these challenges, this work looks at three areas of selected space communications and data services technologies, specifically in the development of reflectarray antennas, demonstration of space Internet concepts, and measurement of atmospheric propagation effects on Ka-band signal transmitted from LEO.
Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System Operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoff, Thomas Hoff; Kankiewicz, Adam
Four major research objectives were completed over the course of this study. Three of the objectives were to evaluate three, new, state-of-the-art solar irradiance forecasting models. The fourth objective was to improve the California Independent System Operator’s (ISO) load forecasts by integrating behind-the-meter (BTM) PV forecasts. The three, new, state-of-the-art solar irradiance forecasting models included: the infrared (IR) satellite-based cloud motion vector (CMV) model; the WRF-SolarCA model and variants; and the Optimized Deep Machine Learning (ODML)-training model. The first two forecasting models targeted known weaknesses in current operational solar forecasts. They were benchmarked against existing operational numerical weather prediction (NWP)more » forecasts, visible satellite CMV forecasts, and measured PV plant power production. IR CMV, WRF-SolarCA, and ODML-training forecasting models all improved the forecast to a significant degree. Improvements varied depending on time of day, cloudiness index, and geographic location. The fourth objective was to demonstrate that the California ISO’s load forecasts could be improved by integrating BTM PV forecasts. This objective represented the project’s most exciting and applicable gains. Operational BTM forecasts consisting of 200,000+ individual rooftop PV forecasts were delivered into the California ISO’s real-time automated load forecasting (ALFS) environment. They were then evaluated side-by-side with operational load forecasts with no BTM-treatment. Overall, ALFS-BTM day-ahead (DA) forecasts performed better than baseline ALFS forecasts when compared to actual load data. Specifically, ALFS-BTM DA forecasts were observed to have the largest reduction of error during the afternoon on cloudy days. Shorter term 30 minute-ahead ALFS-BTM forecasts were shown to have less error under all sky conditions, especially during the morning time periods when traditional load forecasts often experience their largest uncertainties. This work culminated in a GO decision being made by the California ISO to include zonal BTM forecasts into its operational load forecasting system. The California ISO’s Manager of Short Term Forecasting, Jim Blatchford, summarized the research performed in this project with the following quote: “The behind-the-meter (BTM) California ISO region forecasting research performed by Clean Power Research and sponsored by the Department of Energy’s SUNRISE program was an opportunity to verify value and demonstrate improved load forecast capability. In 2016, the California ISO will be incorporating the BTM forecast into the Hour Ahead and Day Ahead load models to look for improvements in the overall load forecast accuracy as BTM PV capacity continues to grow.”« less
2017-01-01
Load information plays an important role in deregulated electricity markets, since it is the primary factor to make critical decisions on production planning, day-to-day operations, unit commitment and economic dispatch. Being able to predict the load for a short term, which covers one hour to a few days, equips power generation facilities and traders with an advantage. With the deregulation of electricity markets, a variety of short term load forecasting models are developed. Deregulation in Turkish Electricity Market has started in 2001 and liberalization is still in progress with rules being effective in its predefined schedule. However, there is a very limited number of studies for Turkish Market. In this study, we introduce two different models for current Turkish Market using Seasonal Autoregressive Integrated Moving Average (SARIMA) and Artificial Neural Network (ANN) and present their comparative performances. Building models that cope with the dynamic nature of deregulated market and are able to run in real-time is the main contribution of this study. We also use our ANN based model to evaluate the effect of several factors, which are claimed to have effect on electrical load. PMID:28426739
Bozkurt, Ömer Özgür; Biricik, Göksel; Tayşi, Ziya Cihan
2017-01-01
Load information plays an important role in deregulated electricity markets, since it is the primary factor to make critical decisions on production planning, day-to-day operations, unit commitment and economic dispatch. Being able to predict the load for a short term, which covers one hour to a few days, equips power generation facilities and traders with an advantage. With the deregulation of electricity markets, a variety of short term load forecasting models are developed. Deregulation in Turkish Electricity Market has started in 2001 and liberalization is still in progress with rules being effective in its predefined schedule. However, there is a very limited number of studies for Turkish Market. In this study, we introduce two different models for current Turkish Market using Seasonal Autoregressive Integrated Moving Average (SARIMA) and Artificial Neural Network (ANN) and present their comparative performances. Building models that cope with the dynamic nature of deregulated market and are able to run in real-time is the main contribution of this study. We also use our ANN based model to evaluate the effect of several factors, which are claimed to have effect on electrical load.
A three-stage birandom program for unit commitment with wind power uncertainty.
Zhang, Na; Li, Weidong; Liu, Rao; Lv, Quan; Sun, Liang
2014-01-01
The integration of large-scale wind power adds a significant uncertainty to power system planning and operating. The wind forecast error is decreased with the forecast horizon, particularly when it is from one day to several hours ahead. Integrating intraday unit commitment (UC) adjustment process based on updated ultra-short term wind forecast information is one way to improve the dispatching results. A novel three-stage UC decision method, in which the day-ahead UC decisions are determined in the first stage, the intraday UC adjustment decisions of subfast start units are determined in the second stage, and the UC decisions of fast-start units and dispatching decisions are determined in the third stage is presented. Accordingly, a three-stage birandom UC model is presented, in which the intraday hours-ahead forecasted wind power is formulated as a birandom variable, and the intraday UC adjustment event is formulated as a birandom event. The equilibrium chance constraint is employed to ensure the reliability requirement. A birandom simulation based hybrid genetic algorithm is designed to solve the proposed model. Some computational results indicate that the proposed model provides UC decisions with lower expected total costs.
Short-Term Solar Forecasting Performance of Popular Machine Learning Algorithms: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Florita, Anthony R; Elgindy, Tarek; Hodge, Brian S
A framework for assessing the performance of short-term solar forecasting is presented in conjunction with a range of numerical results using global horizontal irradiation (GHI) from the open-source Surface Radiation Budget (SURFRAD) data network. A suite of popular machine learning algorithms is compared according to a set of statistically distinct metrics and benchmarked against the persistence-of-cloudiness forecast and a cloud motion forecast. Results show significant improvement compared to the benchmarks with trade-offs among the machine learning algorithms depending on the desired error metric. Training inputs include time series observations of GHI for a history of years, historical weather and atmosphericmore » measurements, and corresponding date and time stamps such that training sensitivities might be inferred. Prediction outputs are GHI forecasts for 1, 2, 3, and 4 hours ahead of the issue time, and they are made for every month of the year for 7 locations. Photovoltaic power and energy outputs can then be made using the solar forecasts to better understand power system impacts.« less
NASA Astrophysics Data System (ADS)
Mohammed, Touseef Ahmed Faisal
Since 2000, renewable electricity installations in the United States (excluding hydropower) have more than tripled. Renewable electricity has grown at a compounded annual average of nearly 14% per year from 2000-2010. Wind, Concentrated Solar Power (CSP) and solar Photo Voltaic (PV) are the fastest growing renewable energy sectors. In 2010 in the U.S., solar PV grew over 71% and CSP grew by 18% from the previous year. Globally renewable electricity installations have more than quadrupled from 2000-2010. Solar PV generation grew by a factor of more than 28 between 2000 and 2010. The amount of CSP and solar PV installations are increasing on the distribution grid. These PV installations transmit electrical current from the load centers to the generating stations. But the transmission and distribution grid have been designed for uni-directional flow of electrical energy from generating stations to load centers. This causes imbalances in voltage and switchgear of the electrical circuitry. With the continuous rise in PV installations, analysis of voltage profile and penetration levels remain an active area of research. Standard distributed photovoltaic (PV) generators represented in simulation studies do not reflect the exact location and variability properties such as distance between interconnection points to substations, voltage regulators, solar irradiance and other environmental factors. Quasi-Static simulations assist in peak load planning hour and day ahead as it gives a time sequence analysis to help in generation allocation. Simulation models can be daily, hourly or yearly depending on duty cycle and dynamics of the system. High penetration of PV into the power grid changes the voltage profile and power flow dynamically in the distribution circuits due to the inherent variability of PV. There are a number of modeling and simulations tools available for the study of such high penetration PV scenarios. This thesis will specifically utilize OpenDSS, a open source Distribution System Simulator developed by Electric Power Research Institute, to simulate grid voltage profile with a large scale PV system under quasi-static time series considering variations of PV output in seconds, minutes, and the average daily load variations. A 13 bus IEEE distribution feeder model is utilized with distributed residential and commercial scale PV at different buses for simulation studies. Time series simulations are discussed for various modes of operation considering dynamic PV penetration at different time periods in a day. In addition, this thesis demonstrates simulations taking into account the presence of moving cloud for solar forecasting studies.
Towards an improved ensemble precipitation forecast: A probabilistic post-processing approach
NASA Astrophysics Data System (ADS)
Khajehei, Sepideh; Moradkhani, Hamid
2017-03-01
Recently, ensemble post-processing (EPP) has become a commonly used approach for reducing the uncertainty in forcing data and hence hydrologic simulation. The procedure was introduced to build ensemble precipitation forecasts based on the statistical relationship between observations and forecasts. More specifically, the approach relies on a transfer function that is developed based on a bivariate joint distribution between the observations and the simulations in the historical period. The transfer function is used to post-process the forecast. In this study, we propose a Bayesian EPP approach based on copula functions (COP-EPP) to improve the reliability of the precipitation ensemble forecast. Evaluation of the copula-based method is carried out by comparing the performance of the generated ensemble precipitation with the outputs from an existing procedure, i.e. mixed type meta-Gaussian distribution. Monthly precipitation from Climate Forecast System Reanalysis (CFS) and gridded observation from Parameter-Elevation Relationships on Independent Slopes Model (PRISM) have been employed to generate the post-processed ensemble precipitation. Deterministic and probabilistic verification frameworks are utilized in order to evaluate the outputs from the proposed technique. Distribution of seasonal precipitation for the generated ensemble from the copula-based technique is compared to the observation and raw forecasts for three sub-basins located in the Western United States. Results show that both techniques are successful in producing reliable and unbiased ensemble forecast, however, the COP-EPP demonstrates considerable improvement in the ensemble forecast in both deterministic and probabilistic verification, in particular in characterizing the extreme events in wet seasons.
A Public-Private-Acadmic Partnership to Advance Solar Power Forecasting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haupt, Sue Ellen
The National Center for Atmospheric Research (NCAR) is pleased to have led a partnership to advance the state-of-the-science of solar power forecasting by designing, developing, building, deploying, testing, and assessing the SunCast™ Solar Power Forecasting System. The project has included cutting edge research, testing in several geographically- and climatologically-diverse high penetration solar utilities and Independent System Operators (ISOs), and wide dissemination of the research results to raise the bar on solar power forecasting technology. The partners include three other national laboratories, six universities, and industry partners. This public-private-academic team has worked in concert to perform use-inspired research to advance solarmore » power forecasting through cutting-edge research to advance both the necessary forecasting technologies and the metrics for evaluating them. The project has culminated in a year-long, full-scale demonstration of provide irradiance and power forecasts to utilities and ISOs to use in their operations. The project focused on providing elements of a value chain, beginning with the weather that causes a deviation from clear sky irradiance and progresses through monitoring and observations, modeling, forecasting, dissemination and communication of the forecasts, interpretation of the forecast, and through decision-making, which produces outcomes that have an economic value. The system has been evaluated using metrics developed specifically for this project, which has provided rich information on model and system performance. Research was accomplished on the very short range (0-6 hours) Nowcasting system as well as on the longer term (6-72 hour) forecasting system. The shortest range forecasts are based on observations in the field. The shortest range system, built by Brookhaven National Laboratory (BNL) and based on Total Sky Imagers (TSIs) is TSICast, which operates on the shortest time scale with a latency of only a few minutes and forecasts that currently go out to about 15 min. This project has facilitated research in improving the hardware and software so that the new high definition cameras deployed at multiple nearby locations allow discernment of the clouds at varying levels and advection according to the winds observed at those levels. Improvements over “smart persistence” are about 29% for even these very short forecasts. StatCast is based on pyranometer data measured at the site as well as concurrent meteorological observations and forecasts. StatCast is based on regime-dependent artificial intelligence forecasting techniques and has been shown to improve on “smart persistence” forecasts by 15-50%. A second category of short-range forecasting systems employ satellite imagery and use that information to discern clouds and their motion, allowing them to project the clouds, and the resulting blockage of irradiance, in time. CIRACast (the system produced by the Cooperative Institute for Atmospheric Research [CIRA] at Colorado State University) was already one of the more advanced cloud motion systems, which is the reason that team was brought to this project. During the project timeframe, the CIRA team was able to advance cloud shadowing, parallax removal, and implementation of better advecting winds at different altitudes. CIRACast shows generally a 25-40% improvement over Smart Persistence between sunrise and approximately 1600 UTC (Coordinated Universal Time) . A second satellite-based system, MADCast (Multi-sensor Advective Diffusive foreCast system), assimilates data from multiple satellite imagers and profilers to assimilate a fully three-dimensional picture of the cloud into the dynamic core of WRF. During 2015, MADCast (provided at least 70% improvement over Smart Persistence, with most of that skill being derived during partly cloudy conditions. That allows advection of the clouds via the Weather Research and Forecasting (WRF) model dynamics directly. After WRF-Solar™ showed initial success, it was also deployed in nowcasting mode with coarser runs out to 6 hours made hourly. It provided improvements on the order of 50-60% over Smart Persistence for forecasts up to 1600 UTC. The advantages of WRF-Solar-Nowcasting and MADCast were then blended to develop the new MAD-WRF model that incorporates the most important features of each of those models, both assimilating satellite cloud fields and using WRF-So far physics to develop and dissipate clouds. MAE improvements for MAD-WRF for forecasts from 3-6 hours are improved over WRF-Solar-Now by 20%. While all the Nowcasting system components by themselves provide improvement over Smart Persistence, the largest benefit is derived when they are smartly blended together by the Nowcasting Integrator to produce an integrated forecast. The development of WRF-Solar™ under this project has provided the first numerical weather prediction (NWP) model specifically designed to meet the needs of irradiance forecasting. The first augmentation improved the solar tracking algorithm to account for deviations associated with the eccentricity of the Earth’s orbit and the obliquity of the Earth. Second, WRF-Solar™ added the direct normal irradiance (DNI) and diffuse (DIF) components from the radiation parameterization to the model output. Third, efficient parameterizations were implemented to either interpolate the irradiance in between calls to the expensive radiative transfer parameterization, or to use a fast radiative transfer code that avoids computing three-dimensional heating rates but provides the surface irradiance. Fourth, a new parameterization was developed to improve the representation of absorption and scattering of radiation by aerosols (aerosol direct effect). A fifth advance is that the aerosols now interact with the cloud microphysics, altering the cloud evolution and radiative properties, an effect that has been traditionally only implemented in atmospheric computationally costly chemistry models. A sixth development accounts for the feedbacks that sub-grid scale clouds produce in shortwave irradiance as implemented in a shallow cumulus parameterization Finally, WRF-Solar™ also allows assimilation of infrared irradiances from satellites to determine the three dimensional cloud field, allowing for an improved initialization of the cloud field that increases the performance of short-range forecasts. We find that WRF-Solar™ can improve clear sky irradiance prediction by 15-80% over a standard version of WRF, depending on location and cloud conditions. In a formal comparison to the NAM baseline, WRF-Solar™ showed improvements in the Day-Ahead forecast of 22-42%. The SunCast™ system requires substantial software engineering to blend all of the new model components as well as existing publically available NWP model runs. To do this we use an expert system for the Nowcasting blender and the Dynamic Integrated foreCast (DICast®) system for the NWP models. These two systems are then blended, we use an empirical power conversion method to convert the irradiance predictions to power, then apply an analog ensemble (AnEn) approach to further tune the forecast as well as to estimate its uncertainty. The AnEn module decreased RMSE (root mean squared error) by 17% over the blended SunCast™ power forecasts and provided skill in the probabilistic forecast with a Brier Skill Score of 0.55. In addition, we have also developed a Gridded Atmospheric Forecast System (GRAFS) in parallel, leveraging cost share funds. An economic evaluation based on Production Cost Modeling in the Public Service Company of Colorado showed that the observed 50% improvement in forecast accuracy will save their customers $819,200 with the projected MW deployment for 2024. Using econometrics, NCAR has scaled this savings to a national level and shown that an annual expected savings for this 50% forecast error reduction ranges from $11M in 2015 to $43M expected in 2040 with increased solar deployment. This amounts to a $455M discounted savings over the 26 year period of analysis.« less
NASA Astrophysics Data System (ADS)
Taleb, M.; Cherkaoui, M.; Hbib, M.
2018-05-01
Recently, renewable energy sources are impacting seriously power quality of the grids in term of frequency and voltage stability, due to their intermittence and less forecasting accuracy. Among these sources, wind energy conversion systems (WECS) received a great interest and especially the configuration with Doubly Fed Induction Generator. However, WECS strongly nonlinear, are making their control not easy by classical approaches such as a PI. In this paper, we continue deepen study of PI controller used in active and reactive power control of this kind of WECS. Particle Swarm Optimization (PSO) is suggested to improve its dynamic performances and its robustness against parameters variations. This work highlights the performances of PSO optimized PI control against classical PI tuned with poles compensation strategy. Simulations are carried out on MATLAB-SIMULINK software.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carson, K.S.
The presence of overpopulation or unsustainable population growth may place pressure on the food and water supplies of countries in sensitive areas of the world. Severe air or water pollution may place additional pressure on these resources. These pressures may generate both internal and international conflict in these areas as nations struggle to provide for their citizens. Such conflicts may result in United States intervention, either unilaterally, or through the United Nations. Therefore, it is in the interests of the United States to identify potential areas of conflict in order to properly train and allocate forces. The purpose of thismore » research is to forecast the probability of conflict in a nation as a function of it s environmental conditions. Probit, logit and ordered probit models are employed to forecast the probability of a given level of conflict. Data from 95 countries are used to estimate the models. Probability forecasts are generated for these 95 nations. Out-of sample forecasts are generated for an additional 22 nations. These probabilities are then used to rank nations from highest probability of conflict to lowest. The results indicate that the dependence of a nation`s economy on agriculture, the rate of deforestation, and the population density are important variables in forecasting the probability and level of conflict. These results indicate that environmental variables do play a role in generating or exacerbating conflict. It is unclear that the United States military has any direct role in mitigating the environmental conditions that may generate conflict. A more important role for the military is to aid in data gathering to generate better forecasts so that the troops are adequntely prepared when conflicts arises.« less
Personalized glucose forecasting for type 2 diabetes using data assimilation
Albers, David J.; Gluckman, Bruce; Ginsberg, Henry; Hripcsak, George; Mamykina, Lena
2017-01-01
Type 2 diabetes leads to premature death and reduced quality of life for 8% of Americans. Nutrition management is critical to maintaining glycemic control, yet it is difficult to achieve due to the high individual differences in glycemic response to nutrition. Anticipating glycemic impact of different meals can be challenging not only for individuals with diabetes, but also for expert diabetes educators. Personalized computational models that can accurately forecast an impact of a given meal on an individual’s blood glucose levels can serve as the engine for a new generation of decision support tools for individuals with diabetes. However, to be useful in practice, these computational engines need to generate accurate forecasts based on limited datasets consistent with typical self-monitoring practices of individuals with type 2 diabetes. This paper uses three forecasting machines: (i) data assimilation, a technique borrowed from atmospheric physics and engineering that uses Bayesian modeling to infuse data with human knowledge represented in a mechanistic model, to generate real-time, personalized, adaptable glucose forecasts; (ii) model averaging of data assimilation output; and (iii) dynamical Gaussian process model regression. The proposed data assimilation machine, the primary focus of the paper, uses a modified dual unscented Kalman filter to estimate states and parameters, personalizing the mechanistic models. Model selection is used to make a personalized model selection for the individual and their measurement characteristics. The data assimilation forecasts are empirically evaluated against actual postprandial glucose measurements captured by individuals with type 2 diabetes, and against predictions generated by experienced diabetes educators after reviewing a set of historical nutritional records and glucose measurements for the same individual. The evaluation suggests that the data assimilation forecasts compare well with specific glucose measurements and match or exceed in accuracy expert forecasts. We conclude by examining ways to present predictions as forecast-derived range quantities and evaluate the comparative advantages of these ranges. PMID:28448498
Projected electric power demands for the Potomac Electric Power Company
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, J.W.
1975-07-01
Included are chapters on the background of the Potomac Electric Power Company, forecasting future power demand, demand modeling, accuracy of market predictions, and total power system requirements. (DG)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Huaiguang; Zhang, Yingchen; Muljadi, Eduard
In this paper, a short-term load forecasting approach based network reconfiguration is proposed in a parallel manner. Specifically, a support vector regression (SVR) based short-term load forecasting approach is designed to provide an accurate load prediction and benefit the network reconfiguration. Because of the nonconvexity of the three-phase balanced optimal power flow, a second-order cone program (SOCP) based approach is used to relax the optimal power flow problem. Then, the alternating direction method of multipliers (ADMM) is used to compute the optimal power flow in distributed manner. Considering the limited number of the switches and the increasing computation capability, themore » proposed network reconfiguration is solved in a parallel way. The numerical results demonstrate the feasible and effectiveness of the proposed approach.« less
Evaluating space weather forecasts of geomagnetic activity from a user perspective
NASA Astrophysics Data System (ADS)
Thomson, A. W. P.
2000-12-01
Decision Theory can be used as a tool for discussing the relative costs of complacency and false alarms with users of space weather forecasts. We describe a new metric for the value of space weather forecasts, derived from Decision Theory. In particular we give equations for the level of accuracy that a forecast must exceed in order to be useful to a specific customer. The technique is illustrated by simplified example forecasts for global geomagnetic activity and for geophysical exploration and power grid management in the British Isles.
NASA Technical Reports Server (NTRS)
Park, Michael A.; Krakos, Joshua A.; Michal, Todd; Loseille, Adrien; Alonso, Juan J.
2016-01-01
Unstructured grid adaptation is a powerful tool to control discretization error for Computational Fluid Dynamics (CFD). It has enabled key increases in the accuracy, automation, and capacity of some fluid simulation applications. Slotnick et al. provides a number of case studies in the CFD Vision 2030 Study: A Path to Revolutionary Computational Aerosciences to illustrate the current state of CFD capability and capacity. The authors forecast the potential impact of emerging High Performance Computing (HPC) environments forecast in the year 2030 and identify that mesh generation and adaptivity continue to be significant bottlenecks in the CFD work flow. These bottlenecks may persist because very little government investment has been targeted in these areas. To motivate investment, the impacts of improved grid adaptation technologies are identified. The CFD Vision 2030 Study roadmap and anticipated capabilities in complementary disciplines are quoted to provide context for the progress made in grid adaptation in the past fifteen years, current status, and a forecast for the next fifteen years with recommended investments. These investments are specific to mesh adaptation and impact other aspects of the CFD process. Finally, a strategy is identified to diffuse grid adaptation technology into production CFD work flows.
Forecasting Propagation and Evolution of CMEs in an Operational Setting: What Has Been Learned
NASA Technical Reports Server (NTRS)
Zheng, Yihua; Macneice, Peter; Odstrcil, Dusan; Mays, M. L.; Rastaetter, Lutz; Pulkkinen, Antti; Taktakishvili, Aleksandre; Hesse, Michael; Kuznetsova, M. Masha; Lee, Hyesook;
2013-01-01
One of the major types of solar eruption, coronal mass ejections (CMEs) not only impact space weather, but also can have significant societal consequences. CMEs cause intense geomagnetic storms and drive fast mode shocks that accelerate charged particles, potentially resulting in enhanced radiation levels both in ions and electrons. Human and technological assets in space can be endangered as a result. CMEs are also the major contributor to generating large amplitude Geomagnetically Induced Currents (GICs), which are a source of concern for power grid safety. Due to their space weather significance, forecasting the evolution and impacts of CMEs has become a much desired capability for space weather operations worldwide. Based on our operational experience at Space Weather Research Center at NASA Goddard Space Flight Center (http://swrc.gsfc.nasa.gov), we present here some of the insights gained about accurately predicting CME impacts, particularly in relation to space weather operations. These include: 1. The need to maximize information to get an accurate handle of three-dimensional (3-D) CME kinetic parameters and therefore improve CME forecast; 2. The potential use of CME simulation results for qualitative prediction of regions of space where solar energetic particles (SEPs) may be found; 3. The need to include all CMEs occurring within a 24 h period for a better representation of the CME interactions; 4. Various other important parameters in forecasting CME evolution in interplanetary space, with special emphasis on the CME propagation direction. It is noted that a future direction for our CME forecasting is to employ the ensemble modeling approach.
Forecasting propagation and evolution of CMEs in an operational setting: What has been learned
NASA Astrophysics Data System (ADS)
Zheng, Yihua; Macneice, Peter; Odstrcil, Dusan; Mays, M. L.; Rastaetter, Lutz; Pulkkinen, Antti; Taktakishvili, Aleksandre; Hesse, Michael; Masha Kuznetsova, M.; Lee, Hyesook; Chulaki, Anna
2013-10-01
of the major types of solar eruption, coronal mass ejections (CMEs) not only impact space weather, but also can have significant societal consequences. CMEs cause intense geomagnetic storms and drive fast mode shocks that accelerate charged particles, potentially resulting in enhanced radiation levels both in ions and electrons. Human and technological assets in space can be endangered as a result. CMEs are also the major contributor to generating large amplitude Geomagnetically Induced Currents (GICs), which are a source of concern for power grid safety. Due to their space weather significance, forecasting the evolution and impacts of CMEs has become a much desired capability for space weather operations worldwide. Based on our operational experience at Space Weather Research Center at NASA Goddard Space Flight Center (http://swrc.gsfc.nasa.gov), we present here some of the insights gained about accurately predicting CME impacts, particularly in relation to space weather operations. These include: 1. The need to maximize information to get an accurate handle of three-dimensional (3-D) CME kinetic parameters and therefore improve CME forecast; 2. The potential use of CME simulation results for qualitative prediction of regions of space where solar energetic particles (SEPs) may be found; 3. The need to include all CMEs occurring within a 24 h period for a better representation of the CME interactions; 4. Various other important parameters in forecasting CME evolution in interplanetary space, with special emphasis on the CME propagation direction. It is noted that a future direction for our CME forecasting is to employ the ensemble modeling approach.
Testing for ontological errors in probabilistic forecasting models of natural systems
Marzocchi, Warner; Jordan, Thomas H.
2014-01-01
Probabilistic forecasting models describe the aleatory variability of natural systems as well as our epistemic uncertainty about how the systems work. Testing a model against observations exposes ontological errors in the representation of a system and its uncertainties. We clarify several conceptual issues regarding the testing of probabilistic forecasting models for ontological errors: the ambiguity of the aleatory/epistemic dichotomy, the quantification of uncertainties as degrees of belief, the interplay between Bayesian and frequentist methods, and the scientific pathway for capturing predictability. We show that testability of the ontological null hypothesis derives from an experimental concept, external to the model, that identifies collections of data, observed and not yet observed, that are judged to be exchangeable when conditioned on a set of explanatory variables. These conditional exchangeability judgments specify observations with well-defined frequencies. Any model predicting these behaviors can thus be tested for ontological error by frequentist methods; e.g., using P values. In the forecasting problem, prior predictive model checking, rather than posterior predictive checking, is desirable because it provides more severe tests. We illustrate experimental concepts using examples from probabilistic seismic hazard analysis. Severe testing of a model under an appropriate set of experimental concepts is the key to model validation, in which we seek to know whether a model replicates the data-generating process well enough to be sufficiently reliable for some useful purpose, such as long-term seismic forecasting. Pessimistic views of system predictability fail to recognize the power of this methodology in separating predictable behaviors from those that are not. PMID:25097265
Energy transition in transport sector from energy substitution perspective
NASA Astrophysics Data System (ADS)
Sun, Wangmin; Yang, Xiaoguang; Han, Song; Sun, Xiaoyang
2017-10-01
Power and heating generation sector and transport sector contribute a highest GHG emissions and even air pollutions. This paper seeks to investigate life cycle costs and emissions in both the power sector and transport sector, and evaluate the cost-emission efficient (costs for one unit GHG emissions) of the substitution between new energy vehicles and conventional gasoline based vehicles under two electricity mix scenarios. In power sector, wind power and PV power will be cost comparative in 2030 forecasted with learning curve method. With high subsidies, new energy cars could be comparative now, but it still has high costs to lower GHG emissions. When the government subsidy policy is reversible, the emission reduction cost for new energy vehicle consumer will be 900/ton. According to the sensitive analysis, the paper suggests that the government implement policies that allocate the cost to the whole life cycle of energy production and consumption related to transport sector energy transition and policies that are in favor of new energy vehicle consumers but not the new energy car producers.
Online Analysis of Wind and Solar Part I: Ramping Tool
DOE Office of Scientific and Technical Information (OSTI.GOV)
Etingov, Pavel V.; Ma, Jian; Makarov, Yuri V.
2012-01-31
To facilitate wider penetration of renewable resources without compromising system reliability concerns arising from the lack of predictability of intermittent renewable resources, a tool for use by California Independent System Operator (CAISO) power grid operators was developed by Pacific Northwest National Laboratory (PNNL) in conjunction with CAISO with funding from California Energy Commission. This tool predicts and displays additional capacity and ramping requirements caused by uncertainties in forecasts of loads and renewable generation. The tool is currently operational in the CAISO operations center. This is one of two final reports on the project.
Simulation of Earthquake-Generated Sea-Surface Deformation
NASA Astrophysics Data System (ADS)
Vogl, Chris; Leveque, Randy
2016-11-01
Earthquake-generated tsunamis can carry with them a powerful, destructive force. One of the most well-known, recent examples is the tsunami generated by the Tohoku earthquake, which was responsible for the nuclear disaster in Fukushima. Tsunami simulation and forecasting, a necessary element of emergency procedure planning and execution, is typically done using the shallow-water equations. A typical initial condition is that using the Okada solution for a homogeneous, elastic half-space. This work focuses on simulating earthquake-generated sea-surface deformations that are more true to the physics of the materials involved. In particular, a water layer is added on top of the half-space that models the seabed. Sea-surface deformations are then simulated using the Clawpack hyperbolic PDE package. Results from considering the water layer both as linearly elastic and as "nearly incompressible" are compared to that of the Okada solution.
Market-Based Indian Grid Integration Study Options: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoltenberg, B.; Clark, K.; Negi, S. K.
2012-03-01
The Indian state of Gujarat is forecasting solar and wind generation expansion from 16% to 32% of installed generation capacity by 2015. Some states in India are already experiencing heavy wind power curtailment. Understanding how to integrate variable generation (VG) into the grid is of great interest to local transmission companies and India's Ministry of New and Renewable Energy. This paper describes the nature of a market-based integration study and how this approach, while new to Indian grid operation and planning, is necessary to understand how to operate and expand the grid to best accommodate the expansion of VG. Second,more » it discusses options in defining a study's scope, such as data granularity, generation modeling, and geographic scope. The paper also explores how Gujarat's method of grid operation and current system reliability will affect how an integration study can be performed.« less
Modeling and forecasting U.S. sex differentials in mortality.
Carter, L R; Lee, R D
1992-11-01
"This paper examines differentials in observed and forecasted sex-specific life expectancies and longevity in the United States from 1900 to 2065. Mortality models are developed and used to generate long-run forecasts, with confidence intervals that extend recent work by Lee and Carter (1992). These results are compared for forecast accuracy with univariate naive forecasts of life expectancies and those prepared by the Actuary of the Social Security Administration." excerpt
NASA Astrophysics Data System (ADS)
Whitford, Dennis J.
2002-05-01
Ocean waves are the most recognized phenomena in oceanography. Unfortunately, undergraduate study of ocean wave dynamics and forecasting involves mathematics and physics and therefore can pose difficulties with some students because of the subject's interrelated dependence on time and space. Verbal descriptions and two-dimensional illustrations are often insufficient for student comprehension. Computer-generated visualization and animation offer a visually intuitive and pedagogically sound medium to present geoscience, yet there are very few oceanographic examples. A two-part article series is offered to explain ocean wave forecasting using computer-generated visualization and animation. This paper, Part 1, addresses forecasting of sea wave conditions and serves as the basis for the more difficult topic of swell wave forecasting addressed in Part 2. Computer-aided visualization and animation, accompanied by oral explanation, are a welcome pedagogical supplement to more traditional methods of instruction. In this article, several MATLAB ® software programs have been written to visualize and animate development and comparison of wave spectra, wave interference, and forecasting of sea conditions. These programs also set the stage for the more advanced and difficult animation topics in Part 2. The programs are user-friendly, interactive, easy to modify, and developed as instructional tools. By using these software programs, teachers can enhance their instruction of these topics with colorful visualizations and animation without requiring an extensive background in computer programming.
NASA Astrophysics Data System (ADS)
Hildebrand, E. P.
2017-12-01
Air Force Weather has developed various cloud analysis and forecast products designed to support global Department of Defense (DoD) missions. A World-Wide Merged Cloud Analysis (WWMCA) and short term Advected Cloud (ADVCLD) forecast is generated hourly using data from 16 geostationary and polar-orbiting satellites. Additionally, WWMCA and Numerical Weather Prediction (NWP) data are used in a statistical long-term (out to five days) cloud forecast model known as the Diagnostic Cloud Forecast (DCF). The WWMCA and ADVCLD are generated on the same polar stereographic 24 km grid for each hemisphere, whereas the DCF is generated on the same grid as its parent NWP model. When verifying the cloud forecast models, the goal is to understand not only the ability to detect cloud, but also the ability to assign it to the correct vertical layer. ADVCLD and DCF forecasts traditionally have been verified using WWMCA data as truth, but this might over-inflate the performance of those models because WWMCA also is a primary input dataset for those models. Because of this, in recent years, a WWMCA Reanalysis product has been developed, but this too is not a fully independent dataset. This year, work has been done to incorporate data from external, independent sources to verify not only the cloud forecast products, but the WWMCA data itself. One such dataset that has been useful for examining the 3-D performance of the cloud analysis and forecast models is Atmospheric Radiation Measurement (ARM) data from various sites around the globe. This presentation will focus on the use of the Department of Energy (DoE) ARM data to verify Air Force Weather cloud analysis and forecast products. Results will be presented to show relative strengths and weaknesses of the analyses and forecasts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yishen; Zhou, Zhi; Liu, Cong
2016-08-01
As more wind power and other renewable resources are being integrated into the electric power grid, the forecast uncertainty brings operational challenges for the power system operators. In this report, different operational strategies for uncertainty management are presented and evaluated. A comprehensive and consistent simulation framework is developed to analyze the performance of different reserve policies and scheduling techniques under uncertainty in wind power. Numerical simulations are conducted on a modified version of the IEEE 118-bus system with a 20% wind penetration level, comparing deterministic, interval, and stochastic unit commitment strategies. The results show that stochastic unit commitment provides amore » reliable schedule without large increases in operational costs. Moreover, decomposition techniques, such as load shift factor and Benders decomposition, can help in overcoming the computational obstacles to stochastic unit commitment and enable the use of a larger scenario set to represent forecast uncertainty. In contrast, deterministic and interval unit commitment tend to give higher system costs as more reserves are being scheduled to address forecast uncertainty. However, these approaches require a much lower computational effort Choosing a proper lower bound for the forecast uncertainty is important for balancing reliability and system operational cost in deterministic and interval unit commitment. Finally, we find that the introduction of zonal reserve requirements improves reliability, but at the expense of higher operational costs.« less
a system approach to the long term forecasting of the climat data in baikal region
NASA Astrophysics Data System (ADS)
Abasov, N.; Berezhnykh, T.
2003-04-01
The Angara river running from Baikal with a cascade of hydropower plants built on it plays a peculiar role in economy of the region. With view of high variability of water inflow into the rivers and lakes (long-term low water periods and catastrophic floods) that is due to climatic peculiarities of the water resource formation, a long-term forecasting is developed and applied for risk decreasing at hydropower plants. Methodology and methods of long-term forecasting of natural-climatic processes employs some ideas of the research schools by Academician I.P.Druzhinin and Prof. A.P.Reznikhov and consists in detailed investigation of cause-effect relations, finding out physical analogs and their application to formalized methods of long-term forecasting. They are divided into qualitative (background method; method of analogs based on solar activity), probabilistic and approximative methods (analog-similarity relations; discrete-continuous model). These forecasting methods have been implemented in the form of analytical aids of the information-forecasting software "GIPSAR" that provides for some elements of artificial intelligence. Background forecasts of the runoff of the Ob, the Yenisei, the Angara Rivers in the south of Siberia are based on space-time regularities that were revealed on taking account of the phase shifts in occurrence of secular maxima and minima on integral-difference curves of many-year hydrological processes in objects compared. Solar activity plays an essential role in investigations of global variations of climatic processes. Its consideration in the method of superimposed epochs has allowed a conclusion to be made on the higher probability of the low-water period in the actual inflow to Lake Baikal that takes place on the increasing branch of solar activity of its 11-year cycle. The higher probability of a high-water period is observed on the decreasing branch of solar activity from the 2nd to the 5th year after its maximum. Probabilistic method of forecasting (with a year in advance) is based on the property of alternation of series of years with increase and decrease in the observed indicators (characteristic indices) of natural processes. Most of the series (98.4-99.6%) are represented by series of one to three years. The problem of forecasting is divided into two parts: 1) qualitative forecast of the probability that the started series will either continue or be replaced by a new series during the next year that is based on the frequency characteristics of series of years with increase or decrease of the forecasted sequence); 2) quantitative estimate of the forecasted value in the form of a curve of conditional frequencies is made on the base of intra-sequence interrelations among hydrometeorological elements by their differentiation with respect to series of years of increase or decrease, by construction of particular curves of conditional frequencies of the runoff for each expected variant of series development and by subsequent construction a generalized curve. Approximative learning methods form forecasted trajectories of the studied process indices for a long-term perspective. The method of analog-similarity relations is based on the fact that long periods of observations reveal some similarities in the character of variability of indices for some fragments of the sequence x (t) by definite criteria. The idea of the method is to estimate similarity of such fragments of the sequence that have been called the analogs. The method applies multistage optimization of both external parameters (e.g. the number of iterations of the sliding averaging needed to decompose the sequence into two components: the smoothed one with isolated periodic oscillations and the residual or random one). The method is applicable to current terms of forecasts and ending with the double solar cycle. Using a special procedure of integration, it separates terms with the best results for the given optimization subsample. Several optimal vectors of parameters obtained are tested on the examination (verifying) subsample. If the procedure is successful, the forecast is immediately made by integration of several best solutions. Peculiarities of forecasting extreme processes. Methods of long-term forecasting allow the sufficiently reliable forecasts to be made within the interval of xmin+Δ_1, xmax - Δ_2 (i.e. in the interval of medium values of indices). Meanwhile, in the intervals close to extreme ones, reliability of forecasts is substantially lower. While for medium values the statistics of the100-year sequence gives acceptable results owing to a sufficiently large number of revealed analogs that correspond to prognostic samples, for extreme values the situation is quite different, first of all by virtue of poverty of statistical data. Decreasing the values of Δ_1,Δ_2: Δ_1,Δ_2 rightarrow 0 (by including them into optimization parameters of the considered forecasting methods) could be one of the ways to improve reliability of forecasts. Partially, such an approach has been realized in the method of analog-similarity relations, giving the possibility to form a range of possible forecasted trajectories in two variants - from the minimum possible trajectory to the maximum possible one. Reliability of long-term forecasts. Both the methodology and the methods considered above have been realized as the information-forecasting system "GIPSAR". The system includes some tools implementing several methods of forecasting, analysis of initial and forecasted information, a developed database, a set of tools for verification of algorithms, additional information on the algorithms of statistical processing of sequences (sliding averaging, integral-difference curves, etc.), aids to organize input of initial information (in its various forms) as well as aids to draw up output prognostic documents. Risk management. The normal functioning of the Angara cascade is periodically interrupted by risks of two types that take place in the Baikal, the Bratsk and Ust-Ilimsk reservoirs: long low-water periods and sudden periods of extremely high water levels. For example, low-water periods, observed in the reservoirs of the Angara cascade can be classified under four risk categories : 1 - acceptable (negligible reduction of electric power generation by hydropower plants; certain difficulty in meeting environmental and navigation requirements); 2 - significant (substantial reduction of electric power generation by hydropower plants; certain restriction on water releases for navigation; violation of environmental requirements in some years); 3 - emergency (big losses in electric power generation; limited electricity supply to large consumers; significant restriction of water releases for navigation; threat of exposure of drinkable water intake works; violation of environmental requirements for a number of years); 4 - catastrophic (energy crisis; social crisis exposure of drinkable water intake works; termination of navigation; environmental catastrophe). Management of energy systems consists in operative, many-year regulation and perspective planning and has to take into account the analysis of operative data (water reserves in reservoirs), long-term statistics and relations among natural processes and also forecasts - short-term (for a day, week, decade), long-term and/or super-long-term (from a month to several decades). Such natural processes as water inflow to reservoirs, air temperatures during heating periods depend in turn on external factors: prevailing types of atmospheric circulation, intensity of the 11- and 22-year cycles of solar activity, volcanic activity, interaction between the ocean and atmosphere, etc. Until recently despite the formed scientific schools on long-term forecasting (I.P.Druzhinin, A.P.Reznikhov) the energy system management has been based on specially drawn dispatching schedules and long-term hydrometeorological forecasts only without attraction of perspective forecasted indices. Insertion of a parallel block of forecast (based on the analysis of data on natural processes and special methods of forecasting) into the scheme can largely smooth unfavorable consequences from the impact of natural processes on sustainable development of energy systems and especially on its safe operation. However, the requirements to reliability and accuracy of long-term forecasts significantly increase. The considered approach to long term forecasting can be used for prediction: mean winter and summer air temperatures, droughts and wood fires.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin Wilde, Principal Investigator
2012-12-31
ABSTRACT Application of Real-Time Offsite Measurements in Improved Short-Term Wind Ramp Prediction Skill Improved forecasting performance immediately preceding wind ramp events is of preeminent concern to most wind energy companies, system operators, and balancing authorities. The value of near real-time hub height-level wind data and more general meteorological measurements to short-term wind power forecasting is well understood. For some sites, access to onsite measured wind data - even historical - can reduce forecast error in the short-range to medium-range horizons by as much as 50%. Unfortunately, valuable free-stream wind measurements at tall tower are not typically available at most windmore » plants, thereby forcing wind forecasters to rely upon wind measurements below hub height and/or turbine nacelle anemometry. Free-stream measurements can be appropriately scaled to hub-height levels, using existing empirically-derived relationships that account for surface roughness and turbulence. But there is large uncertainty in these relationships for a given time of day and state of the boundary layer. Alternatively, forecasts can rely entirely on turbine anemometry measurements, though such measurements are themselves subject to wake effects that are not stationary. The void in free-stream hub-height level measurements of wind can be filled by remote sensing (e.g., sodar, lidar, and radar). However, the expense of such equipment may not be sustainable. There is a growing market for traditional anemometry on tall tower networks, maintained by third parties to the forecasting process (i.e., independent of forecasters and the forecast users). This study examines the value of offsite tall-tower data from the WINDataNOW Technology network for short-horizon wind power predictions at a wind farm in northern Montana. The presentation shall describe successful physical and statistical techniques for its application and the practicality of its application in an operational setting. It shall be demonstrated that when used properly, the real-time offsite measurements materially improve wind ramp capture and prediction statistics, when compared to traditional wind forecasting techniques and to a simple persistence model.« less
Does the OVX matter for volatility forecasting? Evidence from the crude oil market
NASA Astrophysics Data System (ADS)
Lv, Wendai
2018-02-01
In this paper, I investigate that whether the OVX and its truncated parts with a certain threshold can significantly help in forecasting the oil futures price volatility basing on the Heterogeneous Autoregressive model of Realized Volatility (HAR-RV). In-sample estimation results show that the OVX has a significantly positive impact on futures volatility. The impact of large OVX on future volatility has slightly powerful compared to the small ones. Moreover, the HARQ-RV model outperforms the HAR-RV in predicting the oil futures volatility. More importantly, the decomposed OVX have more powerful in forecasting the oil futures price volatility compared to the OVX itself.
A hybrid procedure for MSW generation forecasting at multiple time scales in Xiamen City, China.
Xu, Lilai; Gao, Peiqing; Cui, Shenghui; Liu, Chun
2013-06-01
Accurate forecasting of municipal solid waste (MSW) generation is crucial and fundamental for the planning, operation and optimization of any MSW management system. Comprehensive information on waste generation for month-scale, medium-term and long-term time scales is especially needed, considering the necessity of MSW management upgrade facing many developing countries. Several existing models are available but of little use in forecasting MSW generation at multiple time scales. The goal of this study is to propose a hybrid model that combines the seasonal autoregressive integrated moving average (SARIMA) model and grey system theory to forecast MSW generation at multiple time scales without needing to consider other variables such as demographics and socioeconomic factors. To demonstrate its applicability, a case study of Xiamen City, China was performed. Results show that the model is robust enough to fit and forecast seasonal and annual dynamics of MSW generation at month-scale, medium- and long-term time scales with the desired accuracy. In the month-scale, MSW generation in Xiamen City will peak at 132.2 thousand tonnes in July 2015 - 1.5 times the volume in July 2010. In the medium term, annual MSW generation will increase to 1518.1 thousand tonnes by 2015 at an average growth rate of 10%. In the long term, a large volume of MSW will be output annually and will increase to 2486.3 thousand tonnes by 2020 - 2.5 times the value for 2010. The hybrid model proposed in this paper can enable decision makers to develop integrated policies and measures for waste management over the long term. Copyright © 2013 Elsevier Ltd. All rights reserved.
Spatial Evaluation and Verification of Earthquake Simulators
NASA Astrophysics Data System (ADS)
Wilson, John Max; Yoder, Mark R.; Rundle, John B.; Turcotte, Donald L.; Schultz, Kasey W.
2017-06-01
In this paper, we address the problem of verifying earthquake simulators with observed data. Earthquake simulators are a class of computational simulations which attempt to mirror the topological complexity of fault systems on which earthquakes occur. In addition, the physics of friction and elastic interactions between fault elements are included in these simulations. Simulation parameters are adjusted so that natural earthquake sequences are matched in their scaling properties. Physically based earthquake simulators can generate many thousands of years of simulated seismicity, allowing for a robust capture of the statistical properties of large, damaging earthquakes that have long recurrence time scales. Verification of simulations against current observed earthquake seismicity is necessary, and following past simulator and forecast model verification methods, we approach the challenges in spatial forecast verification to simulators; namely, that simulator outputs are confined to the modeled faults, while observed earthquake epicenters often occur off of known faults. We present two methods for addressing this discrepancy: a simplistic approach whereby observed earthquakes are shifted to the nearest fault element and a smoothing method based on the power laws of the epidemic-type aftershock (ETAS) model, which distributes the seismicity of each simulated earthquake over the entire test region at a decaying rate with epicentral distance. To test these methods, a receiver operating characteristic plot was produced by comparing the rate maps to observed m>6.0 earthquakes in California since 1980. We found that the nearest-neighbor mapping produced poor forecasts, while the ETAS power-law method produced rate maps that agreed reasonably well with observations.
NASA Astrophysics Data System (ADS)
Lee, H. S.; Liu, Y.; Ward, J.; Brown, J.; Maestre, A.; Herr, H.; Fresch, M. A.; Wells, E.; Reed, S. M.; Jones, E.
2017-12-01
The National Weather Service's (NWS) Office of Water Prediction (OWP) recently launched a nationwide effort to verify streamflow forecasts from the Hydrologic Ensemble Forecast Service (HEFS) for a majority of forecast locations across the 13 River Forecast Centers (RFCs). Known as the HEFS Baseline Validation (BV), the project involves a joint effort between the OWP and the RFCs. It aims to provide a geographically consistent, statistically robust validation, and a benchmark to guide the operational implementation of the HEFS, inform practical applications, such as impact-based decision support services, and to provide an objective framework for evaluating strategic investments in the HEFS. For the BV, HEFS hindcasts are issued once per day on a 12Z cycle for the period of 1985-2015 with a forecast horizon of 30 days. For the first two weeks, the hindcasts are forced with precipitation and temperature ensemble forecasts from the Global Ensemble Forecast System of the National Centers for Environmental Prediction, and by resampled climatology for the remaining period. The HEFS-generated ensemble streamflow hindcasts are verified using the Ensemble Verification System. Skill is assessed relative to streamflow hindcasts generated from NWS' current operational system, namely climatology-based Ensemble Streamflow Prediction. In this presentation, we summarize the results and findings to date.
NASA Astrophysics Data System (ADS)
Bogner, Konrad; Monhart, Samuel; Liniger, Mark; Spririg, Christoph; Jordan, Fred; Zappa, Massimiliano
2015-04-01
In recent years large progresses have been achieved in the operational prediction of floods and hydrological drought with up to ten days lead time. Both the public and the private sectors are currently using probabilistic runoff forecast in order to monitoring water resources and take actions when critical conditions are to be expected. The use of extended-range predictions with lead times exceeding 10 days is not yet established. The hydropower sector in particular might have large benefits from using hydro meteorological forecasts for the next 15 to 60 days in order to optimize the operations and the revenues from their watersheds, dams, captions, turbines and pumps. The new Swiss Competence Centers in Energy Research (SCCER) targets at boosting research related to energy issues in Switzerland. The objective of HEPS4POWER is to demonstrate that operational extended-range hydro meteorological forecasts have the potential to become very valuable tools for fine tuning the production of energy from hydropower systems. The project team covers a specific system-oriented value chain starting from the collection and forecast of meteorological data (MeteoSwiss), leading to the operational application of state-of-the-art hydrological models (WSL) and terminating with the experience in data presentation and power production forecasts for end-users (e-dric.ch). The first task of the HEPS4POWER will be the downscaling and post-processing of ensemble extended-range meteorological forecasts (EPS). The goal is to provide well-tailored forecasts of probabilistic nature that should be reliable in statistical and localized at catchment or even station level. The hydrology related task will consist in feeding the post-processed meteorological forecasts into a HEPS using a multi-model approach by implementing models with different complexity. Also in the case of the hydrological ensemble predictions, post-processing techniques need to be tested in order to improve the quality of the forecasts against observed discharge. Analysis should be specifically oriented to the maximisation of hydroelectricity production. Thus, verification metrics should include economic measures like cost loss approaches. The final step will include the transfer of the HEPS system to several hydropower systems, the connection with the energy market prices and the development of probabilistic multi-reservoir production and management optimizations guidelines. The baseline model chain yielding three-days forecasts established for a hydropower system in southern-Switzerland will be presented alongside with the work-plan to achieve seasonal ensemble predictions.
NASA Astrophysics Data System (ADS)
Lassonde, Sylvain; Boucher, Olivier; Breon, François-Marie; Tobin, Isabelle; Vautard, Robert
2016-04-01
The share of renewable energies in the mix of electricity production is increasing worldwide. This trend is driven by environmental and economic policies aiming at a reduction of greenhouse gas emissions and an improvement of energy security. It is expected to continue in the forthcoming years and decades. Electricity production from renewables is related to weather and climate factors such as the diurnal and seasonal cycles of sunlight and wind, but is also linked to variability on all time scales. The intermittency in the renewable electricity production (solar, wind power) could eventually hinder their future deployment. Intermittency is indeed a challenge as demand and supply of electricity need to be balanced at any time. This challenge can be addressed by the deployment of an overcapacity in power generation (from renewable and/or thermal sources), a large-scale energy storage system and/or improved management of the demand. The main goal of this study is to optimize a hypothetical renewable energy system at the French and European scales in order to investigate if spatial diversity of the production (here electricity from wind energy) could be a response to the intermittency. We use ECMWF (European Centre for Medium-Range Weather Forecasts) ERA-interim meteorological reanalysis and meteorological fields from the Weather Research and Forecasts (WRF) model to estimate the potential for wind power generation. Electricity demand and production are provided by the French electricity network (RTE) at the scale of administrative regions for years 2013 and 2014. Firstly we will show how the simulated production of wind power compares against the measured production at the national and regional scale. Several modelling and bias correction methods of wind power production will be discussed. Secondly, we will present results from an optimization procedure that aims to minimize some measure of the intermittency of wind energy. For instance we estimate the optimal distribution between French regions (with or without cross-border inputs) that minimizes the impact of low-production periods computed in a running mean sense and its sensitivity to the period considered. We will also assess which meteorological situations are the most problematic over the 35-year ERA-interim climatology(1980-2015).
Ensemble forecast of human West Nile virus cases and mosquito infection rates
NASA Astrophysics Data System (ADS)
Defelice, Nicholas B.; Little, Eliza; Campbell, Scott R.; Shaman, Jeffrey
2017-02-01
West Nile virus (WNV) is now endemic in the continental United States; however, our ability to predict spillover transmission risk and human WNV cases remains limited. Here we develop a model depicting WNV transmission dynamics, which we optimize using a data assimilation method and two observed data streams, mosquito infection rates and reported human WNV cases. The coupled model-inference framework is then used to generate retrospective ensemble forecasts of historical WNV outbreaks in Long Island, New York for 2001-2014. Accurate forecasts of mosquito infection rates are generated before peak infection, and >65% of forecasts accurately predict seasonal total human WNV cases up to 9 weeks before the past reported case. This work provides the foundation for implementation of a statistically rigorous system for real-time forecast of seasonal outbreaks of WNV.
Ensemble forecast of human West Nile virus cases and mosquito infection rates.
DeFelice, Nicholas B; Little, Eliza; Campbell, Scott R; Shaman, Jeffrey
2017-02-24
West Nile virus (WNV) is now endemic in the continental United States; however, our ability to predict spillover transmission risk and human WNV cases remains limited. Here we develop a model depicting WNV transmission dynamics, which we optimize using a data assimilation method and two observed data streams, mosquito infection rates and reported human WNV cases. The coupled model-inference framework is then used to generate retrospective ensemble forecasts of historical WNV outbreaks in Long Island, New York for 2001-2014. Accurate forecasts of mosquito infection rates are generated before peak infection, and >65% of forecasts accurately predict seasonal total human WNV cases up to 9 weeks before the past reported case. This work provides the foundation for implementation of a statistically rigorous system for real-time forecast of seasonal outbreaks of WNV.
Between the Rock and a Hard Place: The CCMC as a Transit Station Between Modelers and Forecasters
NASA Technical Reports Server (NTRS)
Hesse, Michael
2009-01-01
The Community Coordinated Modeling Center (CCMC) is a US inter-agency activity aiming at research in support of the generation of advanced space weather models. As one of its main functions, the CCMC provides to researchers the use of space science models, even if they are not model owners themselves. The second CCMC activity is to support Space Weather forecasting at national Space Weather Forecasting Centers. This second activity involved model evaluations, model transitions to operations, and the development of draft Space Weather forecasting tools. This presentation will focus on the latter element. Specifically, we will discuss the process of transition research models, or information generated by research models, to Space Weather Forecasting organizations. We will analyze successes as well as obstacles to further progress, and we will suggest avenues for increased transitioning success.
NASA Astrophysics Data System (ADS)
Whitford, Dennis J.
2002-05-01
This paper, the second of a two-part series, introduces undergraduate students to ocean wave forecasting using interactive computer-generated visualization and animation. Verbal descriptions and two-dimensional illustrations are often insufficient for student comprehension. Fortunately, the introduction of computers in the geosciences provides a tool for addressing this problem. Computer-generated visualization and animation, accompanied by oral explanation, have been shown to be a pedagogical improvement to more traditional methods of instruction. Cartographic science and other disciplines using geographical information systems have been especially aggressive in pioneering the use of visualization and animation, whereas oceanography has not. This paper will focus on the teaching of ocean swell wave forecasting, often considered a difficult oceanographic topic due to the mathematics and physics required, as well as its interdependence on time and space. Several MATLAB ® software programs are described and offered to visualize and animate group speed, frequency dispersion, angular dispersion, propagation, and wave height forecasting of deep water ocean swell waves. Teachers may use these interactive visualizations and animations without requiring an extensive background in computer programming.
NASA Astrophysics Data System (ADS)
Ma, Feng; Ye, Aizhong; Duan, Qingyun
2017-03-01
An experimental seasonal drought forecasting system is developed based on 29-year (1982-2010) seasonal meteorological hindcasts generated by the climate models from the North American Multi-Model Ensemble (NMME) project. This system made use of a bias correction and spatial downscaling method, and a distributed time-variant gain model (DTVGM) hydrologic model. DTVGM was calibrated using observed daily hydrological data and its streamflow simulations achieved Nash-Sutcliffe efficiency values of 0.727 and 0.724 during calibration (1978-1995) and validation (1996-2005) periods, respectively, at the Danjiangkou reservoir station. The experimental seasonal drought forecasting system (known as NMME-DTVGM) is used to generate seasonal drought forecasts. The forecasts were evaluated against the reference forecasts (i.e., persistence forecast and climatological forecast). The NMME-DTVGM drought forecasts have higher detectability and accuracy and lower false alarm rate than the reference forecasts at different lead times (from 1 to 4 months) during the cold-dry season. No apparent advantage is shown in drought predictions during spring and summer seasons because of a long memory of the initial conditions in spring and a lower predictive skill for precipitation in summer. Overall, the NMME-based seasonal drought forecasting system has meaningful skill in predicting drought several months in advance, which can provide critical information for drought preparedness and response planning as well as the sustainable practice of water resource conservation over the basin.
New Aspects of Probabilistic Forecast Verification Using Information Theory
NASA Astrophysics Data System (ADS)
Tödter, Julian; Ahrens, Bodo
2013-04-01
This work deals with information-theoretical methods in probabilistic forecast verification, particularly concerning ensemble forecasts. Recent findings concerning the "Ignorance Score" are shortly reviewed, then a consistent generalization to continuous forecasts is motivated. For ensemble-generated forecasts, the presented measures can be calculated exactly. The Brier Score (BS) and its generalizations to the multi-categorical Ranked Probability Score (RPS) and to the Continuous Ranked Probability Score (CRPS) are prominent verification measures for probabilistic forecasts. Particularly, their decompositions into measures quantifying the reliability, resolution and uncertainty of the forecasts are attractive. Information theory sets up a natural framework for forecast verification. Recently, it has been shown that the BS is a second-order approximation of the information-based Ignorance Score (IGN), which also contains easily interpretable components and can also be generalized to a ranked version (RIGN). Here, the IGN, its generalizations and decompositions are systematically discussed in analogy to the variants of the BS. Additionally, a Continuous Ranked IGN (CRIGN) is introduced in analogy to the CRPS. The useful properties of the conceptually appealing CRIGN are illustrated, together with an algorithm to evaluate its components reliability, resolution, and uncertainty for ensemble-generated forecasts. This algorithm can also be used to calculate the decomposition of the more traditional CRPS exactly. The applicability of the "new" measures is demonstrated in a small evaluation study of ensemble-based precipitation forecasts.
Optimal Power Flow for Distribution Systems under Uncertain Forecasts: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dall'Anese, Emiliano; Baker, Kyri; Summers, Tyler
2016-12-01
The paper focuses on distribution systems featuring renewable energy sources and energy storage devices, and develops an optimal power flow (OPF) approach to optimize the system operation in spite of forecasting errors. The proposed method builds on a chance-constrained multi-period AC OPF formulation, where probabilistic constraints are utilized to enforce voltage regulation with a prescribed probability. To enable a computationally affordable solution approach, a convex reformulation of the OPF task is obtained by resorting to i) pertinent linear approximations of the power flow equations, and ii) convex approximations of the chance constraints. Particularly, the approximate chance constraints provide conservative boundsmore » that hold for arbitrary distributions of the forecasting errors. An adaptive optimization strategy is then obtained by embedding the proposed OPF task into a model predictive control framework.« less
Consumption Behavior Analytics-Aided Energy Forecasting and Dispatch
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yingchen; Yang, Rui; Jiang, Huaiguang
For decades, electricity customers have been treated as mere recipients of electricity in vertically integrated power systems. However, as customers have widely adopted distributed energy resources and other forms of customer participation in active dispatch (such as demand response) have taken shape, the value of mining knowledge from customer behavior patterns and using it for power system operation is increasing. Further, the variability of renewable energy resources has been considered a liability to the grid. However, electricity consumption has shown the same level of variability and uncertainty, and this is sometimes overlooked. This article investigates data analytics and forecasting methodsmore » to identify correlations between electricity consumption behavior and distributed photovoltaic (PV) output. The forecasting results feed into a predictive energy management system that optimizes energy consumption in the near future to balance customer demand and power system needs.« less
National Assessment of Energy Storage for Grid Balancing and Arbitrage: Phase 1, WECC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kintner-Meyer, Michael CW; Balducci, Patrick J.; Colella, Whitney G.
2012-06-01
To examine the role that energy storage could play in mitigating the impacts of the stochastic variability of wind generation on regional grid operation, the Pacific Northwest National Laboratory (PNNL) examined a hypothetical 2020 grid scenario in which additional wind generation capacity is built to meet renewable portfolio standard targets in the Western Interconnection. PNNL developed a stochastic model for estimating the balancing requirements using historical wind statistics and forecasting error, a detailed engineering model to analyze the dispatch of energy storage and fast-ramping generation devices for estimating size requirements of energy storage and generation systems for meeting new balancingmore » requirements, and financial models for estimating the life-cycle cost of storage and generation systems in addressing the future balancing requirements for sub-regions in the Western Interconnection. Evaluated technologies include combustion turbines, sodium sulfur (Na-S) batteries, lithium ion batteries, pumped-hydro energy storage, compressed air energy storage, flywheels, redox flow batteries, and demand response. Distinct power and energy capacity requirements were estimated for each technology option, and battery size was optimized to minimize costs. Modeling results indicate that in a future power grid with high-penetration of renewables, the most cost competitive technologies for meeting balancing requirements include Na-S batteries and flywheels.« less
The IDEA model: A single equation approach to the Ebola forecasting challenge.
Tuite, Ashleigh R; Fisman, David N
2018-03-01
Mathematical modeling is increasingly accepted as a tool that can inform disease control policy in the face of emerging infectious diseases, such as the 2014-2015 West African Ebola epidemic, but little is known about the relative performance of alternate forecasting approaches. The RAPIDD Ebola Forecasting Challenge (REFC) tested the ability of eight mathematical models to generate useful forecasts in the face of simulated Ebola outbreaks. We used a simple, phenomenological single-equation model (the "IDEA" model), which relies only on case counts, in the REFC. Model fits were performed using a maximum likelihood approach. We found that the model performed reasonably well relative to other more complex approaches, with performance metrics ranked on average 4th or 5th among participating models. IDEA appeared better suited to long- than short-term forecasts, and could be fit using nothing but reported case counts. Several limitations were identified, including difficulty in identifying epidemic peak (even retrospectively), unrealistically precise confidence intervals, and difficulty interpolating daily case counts when using a model scaled to epidemic generation time. More realistic confidence intervals were generated when case counts were assumed to follow a negative binomial, rather than Poisson, distribution. Nonetheless, IDEA represents a simple phenomenological model, easily implemented in widely available software packages that could be used by frontline public health personnel to generate forecasts with accuracy that approximates that which is achieved using more complex methodologies. Copyright © 2016 The Author(s). Published by Elsevier B.V. All rights reserved.
A Copula-Based Conditional Probabilistic Forecast Model for Wind Power Ramps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hodge, Brian S; Krishnan, Venkat K; Zhang, Jie
Efficient management of wind ramping characteristics can significantly reduce wind integration costs for balancing authorities. By considering the stochastic dependence of wind power ramp (WPR) features, this paper develops a conditional probabilistic wind power ramp forecast (cp-WPRF) model based on Copula theory. The WPRs dataset is constructed by extracting ramps from a large dataset of historical wind power. Each WPR feature (e.g., rate, magnitude, duration, and start-time) is separately forecasted by considering the coupling effects among different ramp features. To accurately model the marginal distributions with a copula, a Gaussian mixture model (GMM) is adopted to characterize the WPR uncertaintymore » and features. The Canonical Maximum Likelihood (CML) method is used to estimate parameters of the multivariable copula. The optimal copula model is chosen based on the Bayesian information criterion (BIC) from each copula family. Finally, the best conditions based cp-WPRF model is determined by predictive interval (PI) based evaluation metrics. Numerical simulations on publicly available wind power data show that the developed copula-based cp-WPRF model can predict WPRs with a high level of reliability and sharpness.« less
Assessing the skill of seasonal precipitation and streamflow forecasts in sixteen French catchments
NASA Astrophysics Data System (ADS)
Crochemore, Louise; Ramos, Maria-Helena; Pappenberger, Florian
2015-04-01
Meteorological centres make sustained efforts to provide seasonal forecasts that are increasingly skilful. Streamflow forecasting is one of the many applications than can benefit from these efforts. Seasonal flow forecasts generated using seasonal ensemble precipitation forecasts as input to a hydrological model can help to take anticipatory measures for water supply reservoir operation or drought risk management. The objective of the study is to assess the skill of seasonal precipitation and streamflow forecasts in France. First, we evaluated the skill of ECMWF SYS4 seasonal precipitation forecasts for streamflow forecasting in sixteen French catchments. Daily flow forecasts were produced using raw seasonal precipitation forecasts as input to the GR6J hydrological model. Ensemble forecasts are issued every month with 15 or 51 members according to the month of the year and evaluated for up to 90 days ahead. In a second step, we applied eight variants of bias correction approaches to the precipitation forecasts prior to generating the flow forecasts. The approaches were based on the linear scaling and the distribution mapping methods. The skill of the ensemble forecasts was assessed in accuracy (MAE), reliability (PIT Diagram) and overall performance (CRPS). The results show that, in most catchments, raw seasonal precipitation and streamflow forecasts are more skilful in terms of accuracy and overall performance than a reference prediction based on historic observed precipitation and watershed initial conditions at the time of forecast. Reliability is the only attribute that is not significantly improved. The skill of the forecasts is, in general, improved when applying bias correction. Two bias correction methods showed the best performance for the studied catchments: the simple linear scaling of monthly values and the empirical distribution mapping of daily values. L. Crochemore is funded by the Interreg IVB DROP Project (Benefit of governance in DROught adaPtation).
Superensemble forecasts of dengue outbreaks
Kandula, Sasikiran; Shaman, Jeffrey
2016-01-01
In recent years, a number of systems capable of predicting future infectious disease incidence have been developed. As more of these systems are operationalized, it is important that the forecasts generated by these different approaches be formally reconciled so that individual forecast error and bias are reduced. Here we present a first example of such multi-system, or superensemble, forecast. We develop three distinct systems for predicting dengue, which are applied retrospectively to forecast outbreak characteristics in San Juan, Puerto Rico. We then use Bayesian averaging methods to combine the predictions from these systems and create superensemble forecasts. We demonstrate that on average, the superensemble approach produces more accurate forecasts than those made from any of the individual forecasting systems. PMID:27733698
Towards more accurate wind and solar power prediction by improving NWP model physics
NASA Astrophysics Data System (ADS)
Steiner, Andrea; Köhler, Carmen; von Schumann, Jonas; Ritter, Bodo
2014-05-01
The growing importance and successive expansion of renewable energies raise new challenges for decision makers, economists, transmission system operators, scientists and many more. In this interdisciplinary field, the role of Numerical Weather Prediction (NWP) is to reduce the errors and provide an a priori estimate of remaining uncertainties associated with the large share of weather-dependent power sources. For this purpose it is essential to optimize NWP model forecasts with respect to those prognostic variables which are relevant for wind and solar power plants. An improved weather forecast serves as the basis for a sophisticated power forecasts. Consequently, a well-timed energy trading on the stock market, and electrical grid stability can be maintained. The German Weather Service (DWD) currently is involved with two projects concerning research in the field of renewable energy, namely ORKA*) and EWeLiNE**). Whereas the latter is in collaboration with the Fraunhofer Institute (IWES), the project ORKA is led by energy & meteo systems (emsys). Both cooperate with German transmission system operators. The goal of the projects is to improve wind and photovoltaic (PV) power forecasts by combining optimized NWP and enhanced power forecast models. In this context, the German Weather Service aims to improve its model system, including the ensemble forecasting system, by working on data assimilation, model physics and statistical post processing. This presentation is focused on the identification of critical weather situations and the associated errors in the German regional NWP model COSMO-DE. First steps leading to improved physical parameterization schemes within the NWP-model are presented. Wind mast measurements reaching up to 200 m height above ground are used for the estimation of the (NWP) wind forecast error at heights relevant for wind energy plants. One particular problem is the daily cycle in wind speed. The transition from stable stratification during nighttime to well mixed conditions during the day presents a big challenge to NWP models. Fast decrease and successive increase in hub-height wind speed after sunrise, and the formation of nocturnal low level jets will be discussed. For PV, the life cycle of low stratus clouds and fog is crucial. Capturing these processes correctly depends on the accurate simulation of diffusion or vertical momentum transport and the interaction with other atmospheric and soil processes within the numerical weather model. Results from Single Column Model simulations and 3d case studies will be presented. Emphasis is placed on wind forecasts; however, some references to highlights concerning the PV-developments will also be given. *) ORKA: Optimierung von Ensembleprognosen regenerativer Einspeisung für den Kürzestfristbereich am Anwendungsbeispiel der Netzsicherheitsrechnungen **) EWeLiNE: Erstellung innovativer Wetter- und Leistungsprognosemodelle für die Netzintegration wetterabhängiger Energieträger, www.projekt-eweline.de
NASA Astrophysics Data System (ADS)
Turnbull, S. J.
2017-12-01
Within the US Army Corps of Engineers (USACE), reservoirs are typically operated according to a rule curve that specifies target water levels based on the time of year. The rule curve is intended to maximize flood protection by specifying releases of water before the dominant rainfall period for a region. While some operating allowances are permissible, generally the rule curve elevations must be maintained. While this operational approach provides for the required flood control purpose, it may not result in optimal reservoir operations for multi-use impoundments. In the Russian River Valley of California a multi-agency research effort called Forecast-Informed Reservoir Operations (FIRO) is assessing the application of forecast weather and streamflow predictions to potentially enhance the operation of reservoirs in the watershed. The focus of the study has been on Lake Mendocino, a USACE project important for flood control, water supply, power generation and ecological flows. As part of this effort the Engineer Research and Development Center is assessing the ability of utilizing the physics based, distributed watershed model Gridded Surface Subsurface Hydrologic Analysis (GSSHA) model to simulate stream flows, reservoir stages, and discharges while being driven by weather forecast products. A key question in this application is the effect of watershed model resolution on forecasted stream flows. To help resolve this question, GSSHA models of multiple grid resolutions, 30, 50, and 270m, were developed for the upper Russian River, which includes Lake Mendocino. The models were derived from common inputs: DEM, soils, land use, stream network, reservoir characteristics, and specified inflows and discharges. All the models were calibrated in both event and continuous simulation mode using measured precipitation gages and then driven with the West-WRF atmospheric model in prediction mode to assess the ability of the model to function in short term, less than one week, forecasting mode. In this presentation we will discuss the effect the grid resolution has model development, parameter assignment, streamflow prediction and forecasting capability utilizing the West-WRF forecast hydro-meteorology.
Online probabilistic learning with an ensemble of forecasts
NASA Astrophysics Data System (ADS)
Thorey, Jean; Mallet, Vivien; Chaussin, Christophe
2016-04-01
Our objective is to produce a calibrated weighted ensemble to forecast a univariate time series. In addition to a meteorological ensemble of forecasts, we rely on observations or analyses of the target variable. The celebrated Continuous Ranked Probability Score (CRPS) is used to evaluate the probabilistic forecasts. However applying the CRPS on weighted empirical distribution functions (deriving from the weighted ensemble) may introduce a bias because of which minimizing the CRPS does not produce the optimal weights. Thus we propose an unbiased version of the CRPS which relies on clusters of members and is strictly proper. We adapt online learning methods for the minimization of the CRPS. These methods generate the weights associated to the members in the forecasted empirical distribution function. The weights are updated before each forecast step using only past observations and forecasts. Our learning algorithms provide the theoretical guarantee that, in the long run, the CRPS of the weighted forecasts is at least as good as the CRPS of any weighted ensemble with weights constant in time. In particular, the performance of our forecast is better than that of any subset ensemble with uniform weights. A noteworthy advantage of our algorithm is that it does not require any assumption on the distributions of the observations and forecasts, both for the application and for the theoretical guarantee to hold. As application example on meteorological forecasts for photovoltaic production integration, we show that our algorithm generates a calibrated probabilistic forecast, with significant performance improvements on probabilistic diagnostic tools (the CRPS, the reliability diagram and the rank histogram).
Generation co-ordination and energy trading systems in an open market
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eichler, R.
1998-07-01
The power industry in many parts of the world is currently undergoing dramatic changes: deregulation, privatization, competition and 3rd party access are the keywords. The major trends are summarized at the beginning of the paper to provide the basis for the evolving consequences for the power generation industry. In the restructured environment of the Open Market power generation companies frequently are organizationally separated from transmission, distribution, and supply and now have to sell their product directly to customers. This necessitates the introduction of energy trading support functions for both bilateral trading and power exchange trading. On the other hand, theremore » is a close relationship between energy trading and the technical process of energy production. The paper discusses design principles for software systems supporting maximum economic benefits. First practical application experience is also presented. The energy trading process requires the break up of proprietary databases and proprietary data structures as this process has a major need to communicate with external partners who normally use different systems. This directly leads to 3rd party products for the database, standardized data structures and standardized communication protocols. The Open Market environment calls for new and modified planning functions: in some cases measured value information necessary for updating load forecasts cannot be directly achieved. This leads to the need for an estimator of the actual load situation, a completely new function. Power scheduling has to take care of the generation company's balance but it need not always be forced to 0. Regulating services from the grid companies can be used instead. This gives the scheduling functions additional freedom for determining more economic overall solutions considering both purchase and services and sales of energy.« less
Gas demand forecasting by a new artificial intelligent algorithm
NASA Astrophysics Data System (ADS)
Khatibi. B, Vahid; Khatibi, Elham
2012-01-01
Energy demand forecasting is a key issue for consumers and generators in all energy markets in the world. This paper presents a new forecasting algorithm for daily gas demand prediction. This algorithm combines a wavelet transform and forecasting models such as multi-layer perceptron (MLP), linear regression or GARCH. The proposed method is applied to real data from the UK gas markets to evaluate their performance. The results show that the forecasting accuracy is improved significantly by using the proposed method.
Mid-Atlantic Offshore Wind Interconnection and Transmission (MAOWIT)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kempton, Willett
This project has carried out a detailed analysis to evaluate the pros and cons of offshore transmission, a possible method to decrease balance-of-system costs and permitting time identified in the DOE Office Wind Strategic Plan (DOE, 2011). It also addresses questions regarding the adequacy of existing transmission infrastructure and the ability of existing generating resources to provide the necessary Ancillary Services (A/S) support (spinning and contingency reserves) in the ISO territory. This project has completed the tasks identified in the proposal: 1. Evaluation of the offshore wind resource off PJM, then examination of offshore wind penetrations consistent with U.S. Departmentmore » of Energy’s (DOE) targets and with their assumed resource size (DOE, 2011). 2. Comparison of piecemeal radial connections to the Independent System Operator (ISO) with connections via a high-voltage direct current (HVDC) offshore network similar to a team partner. 3. High-resolution examination of power fluctuations at each node due to wind energy variability 4. Analysis of wind power production profiles over the Eastern offshore region of the regional ISO to assess the effectiveness of long-distance, North- South transmission for leveling offshore wind energy output 5. Analysis of how the third and fourth items affect the need for ISO grid upgrades, congestion management, and demand for Ancillary Services (A/S) 6. Analysis of actual historic 36-hr and 24-hr forecasts to solve the unit commitment problem and determine the optimal mix of generators given the need to respond to both wind variability and wind forecasting uncertainties.« less
NASA Astrophysics Data System (ADS)
Nespoli, Lorenzo; Medici, Vasco
2017-12-01
In this paper, we present a method to determine the global horizontal irradiance (GHI) from the power measurements of one or more PV systems, located in the same neighborhood. The method is completely unsupervised and is based on a physical model of a PV plant. The precise assessment of solar irradiance is pivotal for the forecast of the electric power generated by photovoltaic (PV) plants. However, on-ground measurements are expensive and are generally not performed for small and medium-sized PV plants. Satellite-based services represent a valid alternative to on site measurements, but their space-time resolution is limited. Results from two case studies located in Switzerland are presented. The performance of the proposed method at assessing GHI is compared with that of free and commercial satellite services. Our results show that the presented method is generally better than satellite-based services, especially at high temporal resolutions.
Chance-Constrained AC Optimal Power Flow for Distribution Systems With Renewables
DOE Office of Scientific and Technical Information (OSTI.GOV)
DallAnese, Emiliano; Baker, Kyri; Summers, Tyler
This paper focuses on distribution systems featuring renewable energy sources (RESs) and energy storage systems, and presents an AC optimal power flow (OPF) approach to optimize system-level performance objectives while coping with uncertainty in both RES generation and loads. The proposed method hinges on a chance-constrained AC OPF formulation where probabilistic constraints are utilized to enforce voltage regulation with prescribed probability. A computationally more affordable convex reformulation is developed by resorting to suitable linear approximations of the AC power-flow equations as well as convex approximations of the chance constraints. The approximate chance constraints provide conservative bounds that hold for arbitrarymore » distributions of the forecasting errors. An adaptive strategy is then obtained by embedding the proposed AC OPF task into a model predictive control framework. Finally, a distributed solver is developed to strategically distribute the solution of the optimization problems across utility and customers.« less
eShopper modeling and simulation
NASA Astrophysics Data System (ADS)
Petrushin, Valery A.
2001-03-01
The advent of e-commerce gives an opportunity to shift the paradigm of customer communication into a highly interactive mode. The new generation of commercial Web servers, such as the Blue Martini's server, combines the collection of data on a customer behavior with real-time processing and dynamic tailoring of a feedback page. The new opportunities for direct product marketing and cross selling are arriving. The key problem is what kind of information do we need to achieve these goals, or in other words, how do we model the customer? The paper is devoted to customer modeling and simulation. The focus is on modeling an individual customer. The model is based on the customer's transaction data, click stream data, and demographics. The model includes the hierarchical profile of a customer's preferences to different types of products and brands; consumption models for the different types of products; the current focus, trends, and stochastic models for time intervals between purchases; product affinity models; and some generalized features, such as purchasing power, sensitivity to advertising, price sensitivity, etc. This type of model is used for predicting the date of the next visit, overall spending, and spending for different types of products and brands. For some type of stores (for example, a supermarket) and stable customers, it is possible to forecast the shopping lists rather accurately. The forecasting techniques are discussed. The forecasting results can be used for on- line direct marketing, customer retention, and inventory management. The customer model can also be used as a generative model for simulating the customer's purchasing behavior in different situations and for estimating customer's features.
Do we need demographic data to forecast plant population dynamics?
Tredennick, Andrew T.; Hooten, Mevin B.; Adler, Peter B.
2017-01-01
Rapid environmental change has generated growing interest in forecasts of future population trajectories. Traditional population models built with detailed demographic observations from one study site can address the impacts of environmental change at particular locations, but are difficult to scale up to the landscape and regional scales relevant to management decisions. An alternative is to build models using population-level data that are much easier to collect over broad spatial scales than individual-level data. However, it is unknown whether models built using population-level data adequately capture the effects of density-dependence and environmental forcing that are necessary to generate skillful forecasts.Here, we test the consequences of aggregating individual responses when forecasting the population states (percent cover) and trajectories of four perennial grass species in a semi-arid grassland in Montana, USA. We parameterized two population models for each species, one based on individual-level data (survival, growth and recruitment) and one on population-level data (percent cover), and compared their forecasting accuracy and forecast horizons with and without the inclusion of climate covariates. For both models, we used Bayesian ridge regression to weight the influence of climate covariates for optimal prediction.In the absence of climate effects, we found no significant difference between the forecast accuracy of models based on individual-level data and models based on population-level data. Climate effects were weak, but increased forecast accuracy for two species. Increases in accuracy with climate covariates were similar between model types.In our case study, percent cover models generated forecasts as accurate as those from a demographic model. For the goal of forecasting, models based on aggregated individual-level data may offer a practical alternative to data-intensive demographic models. Long time series of percent cover data already exist for many plant species. Modelers should exploit these data to predict the impacts of environmental change.
Forecasting of Average Monthly River Flows in Colombia
NASA Astrophysics Data System (ADS)
Mesa, O. J.; Poveda, G.
2006-05-01
The last two decades have witnessed a marked increase in our knowledge of the causes of interannual hydroclimatic variability and our ability to make predictions. Colombia, located near the seat of the ENSO phenomenon, has been shown to experience negative (positive) anomalies in precipitation in concert with El Niño (La Niña). In general besides the Pacific Ocean, Colombia has climatic influences from the Atlantic Ocean and the Caribbean Sea through the tropical forest of the Amazon basin and the savannas of the Orinoco River, in top of the orographic and hydro-climatic effects introduced by the Andes. As in various other countries of the region, hydro-electric power contributes a large proportion (75 %) of the total electricity generation in Colombia. Also, most agriculture is rain-fed dependant, and domestic water supply relies mainly on surface waters from creeks and rivers. Besides, various vector borne tropical diseases intensify in response to rain and temperature changes. Therefore, there is a direct connection between climatic fluctuations and national and regional economies. This talk specifically presents different forecasts of average monthly stream flows for the inflow into the largest reservoir used for hydropower generation in Colombia, and illustrates the potential economic savings of such forecasts. Because of planning of the reservoir operation, the most appropriated time scale for this application is the annual to interannual. Fortunately, this corresponds to the scale at which hydroclimate variability understanding has improved significantly. Among the different possibilities we have explored: traditional statistical ARIMA models, multiple linear regression, natural and constructed analogue models, the linear inverse model, neural network models, the non-parametric regression splines (MARS) model, regime dependant Markovian models and one we termed PREBEO, which is based on spectral bands decomposition using wavelets. Most of the methods make use of the climatic observations and the general prediction models of ENSO which are routinely reported in various sources (http://www.cpc.ncep.noaa.gov/). We will compare the forecasting skills of the models, depending on lead time and initial month of forecasting. Besides ENSO indices, tropical Atlantic sea surface temperatures and the North Atlantic Oscillation index are relevant for these predictions in Colombia. Clear-cut benefits of these predictions are evident for the operation of the system. Ever since the 1991-1992 ENSO event the government, power companies and big consumers realized on its importance and routinely incorporated it into their operational planning. On the contrary, this new knowledge has not been useful for the expansion of the system to accommodate the increasing demand. Some kind of resonance between the scale of fluctuation of climate and the memory of decision makers produces a hydro-illogical cycle of urgency during El Niño dry times and of unawareness during La Niña abundance.
Fishing for Novel Approaches to Ecosystem Service Forecasts
The ecosystem service concept provides a powerful framework for conserving species and the environments they depend upon. Describing current distributions of ecosystem services and forecasting their future distributions have therefore become central objectives in many conservati...
NASA Astrophysics Data System (ADS)
Qi, Weiran; Miao, Hongxia; Miao, Xuejiao; Xiao, Xuanxuan; Yan, Kuo
2016-10-01
In order to ensure the safe and stable operation of the prefabricated substations, temperature sensing subsystem, temperature remote monitoring and management subsystem, forecast subsystem are designed in the paper. Wireless temperature sensing subsystem which consists of temperature sensor and MCU sends the electrical equipment temperature to the remote monitoring center by wireless sensor network. Remote monitoring center can realize the remote monitoring and prediction by monitoring and management subsystem and forecast subsystem. Real-time monitoring of power equipment temperature, history inquiry database, user management, password settings, etc., were achieved by monitoring and management subsystem. In temperature forecast subsystem, firstly, the chaos of the temperature data was verified and phase space is reconstructed. Then Support Vector Machine - Particle Swarm Optimization (SVM-PSO) was used to predict the temperature of the power equipment in prefabricated substations. The simulation results found that compared with the traditional methods SVM-PSO has higher prediction accuracy.
Research on regional numerical weather prediction
NASA Technical Reports Server (NTRS)
Kreitzberg, C. W.
1976-01-01
Extension of the predictive power of dynamic weather forecasting to scales below the conventional synoptic or cyclonic scales in the near future is assessed. Lower costs per computation, more powerful computers, and a 100 km mesh over the North American area (with coarser mesh extending beyond it) are noted at present. Doubling the resolution even locally (to 50 km mesh) would entail a 16-fold increase in costs (including vertical resolution and halving the time interval), and constraints on domain size and length of forecast. Boundary conditions would be provided by the surrounding 100 km mesh, and time-varying lateral boundary conditions can be considered to handle moving phenomena. More physical processes to treat, more efficient numerical techniques, and faster computers (improved software and hardware) backing up satellite and radar data could produce further improvements in forecasting in the 1980s. Boundary layer modeling, initialization techniques, and quantitative precipitation forecasting are singled out among key tasks.
Ultra-Short-Term Wind Power Prediction Using a Hybrid Model
NASA Astrophysics Data System (ADS)
Mohammed, E.; Wang, S.; Yu, J.
2017-05-01
This paper aims to develop and apply a hybrid model of two data analytical methods, multiple linear regressions and least square (MLR&LS), for ultra-short-term wind power prediction (WPP), for example taking, Northeast China electricity demand. The data was obtained from the historical records of wind power from an offshore region, and from a wind farm of the wind power plant in the areas. The WPP achieved in two stages: first, the ratios of wind power were forecasted using the proposed hybrid method, and then the transformation of these ratios of wind power to obtain forecasted values. The hybrid model combines the persistence methods, MLR and LS. The proposed method included two prediction types, multi-point prediction and single-point prediction. WPP is tested by applying different models such as autoregressive moving average (ARMA), autoregressive integrated moving average (ARIMA) and artificial neural network (ANN). By comparing results of the above models, the validity of the proposed hybrid model is confirmed in terms of error and correlation coefficient. Comparison of results confirmed that the proposed method works effectively. Additional, forecasting errors were also computed and compared, to improve understanding of how to depict highly variable WPP and the correlations between actual and predicted wind power.
Short-term electric power demand forecasting based on economic-electricity transmission model
NASA Astrophysics Data System (ADS)
Li, Wenfeng; Bai, Hongkun; Liu, Wei; Liu, Yongmin; Wang, Yubin Mao; Wang, Jiangbo; He, Dandan
2018-04-01
Short-term electricity demand forecasting is the basic work to ensure safe operation of the power system. In this paper, a practical economic electricity transmission model (EETM) is built. With the intelligent adaptive modeling capabilities of Prognoz Platform 7.2, the econometric model consists of three industrial added value and income levels is firstly built, the electricity demand transmission model is also built. By multiple regression, moving averages and seasonal decomposition, the problem of multiple correlations between variables is effectively overcome in EETM. The validity of EETM is proved by comparison with the actual value of Henan Province. Finally, EETM model is used to forecast the electricity consumption of the 1-4 quarter of 2018.
Forecasting peaks of seasonal influenza epidemics.
Nsoesie, Elaine; Mararthe, Madhav; Brownstein, John
2013-06-21
We present a framework for near real-time forecast of influenza epidemics using a simulation optimization approach. The method combines an individual-based model and a simple root finding optimization method for parameter estimation and forecasting. In this study, retrospective forecasts were generated for seasonal influenza epidemics using web-based estimates of influenza activity from Google Flu Trends for 2004-2005, 2007-2008 and 2012-2013 flu seasons. In some cases, the peak could be forecasted 5-6 weeks ahead. This study adds to existing resources for influenza forecasting and the proposed method can be used in conjunction with other approaches in an ensemble framework.
International Cooperative for Aerosol Prediction Workshop on Aerosol Forecast Verification
NASA Technical Reports Server (NTRS)
Benedetti, Angela; Reid, Jeffrey S.; Colarco, Peter R.
2011-01-01
The purpose of this workshop was to reinforce the working partnership between centers who are actively involved in global aerosol forecasting, and to discuss issues related to forecast verification. Participants included representatives from operational centers with global aerosol forecasting requirements, a panel of experts on Numerical Weather Prediction and Air Quality forecast verification, data providers, and several observers from the research community. The presentations centered on a review of current NWP and AQ practices with subsequent discussion focused on the challenges in defining appropriate verification measures for the next generation of aerosol forecast systems.
NASA Technical Reports Server (NTRS)
Benedetti, Angela; Reid, Jeffrey S.; Colarco, Peter R.
2011-01-01
The purpose of this workshop was to reinforce the working partnership between centers who are actively involved in global aerosol forecasting, and to discuss issues related to forecast verification. Participants included representatives from operational centers with global aerosol forecasting requirements, a panel of experts on Numerical Weather Prediction and Air Quality forecast verification, data providers, and several observers from the research community. The presentations centered on a review of current NWP and AQ practices with subsequent discussion focused on the challenges in defining appropriate verification measures for the next generation of aerosol forecast systems.
Forecasting municipal solid waste generation using artificial intelligence modelling approaches.
Abbasi, Maryam; El Hanandeh, Ali
2016-10-01
Municipal solid waste (MSW) management is a major concern to local governments to protect human health, the environment and to preserve natural resources. The design and operation of an effective MSW management system requires accurate estimation of future waste generation quantities. The main objective of this study was to develop a model for accurate forecasting of MSW generation that helps waste related organizations to better design and operate effective MSW management systems. Four intelligent system algorithms including support vector machine (SVM), adaptive neuro-fuzzy inference system (ANFIS), artificial neural network (ANN) and k-nearest neighbours (kNN) were tested for their ability to predict monthly waste generation in the Logan City Council region in Queensland, Australia. Results showed artificial intelligence models have good prediction performance and could be successfully applied to establish municipal solid waste forecasting models. Using machine learning algorithms can reliably predict monthly MSW generation by training with waste generation time series. In addition, results suggest that ANFIS system produced the most accurate forecasts of the peaks while kNN was successful in predicting the monthly averages of waste quantities. Based on the results, the total annual MSW generated in Logan City will reach 9.4×10(7)kg by 2020 while the peak monthly waste will reach 9.37×10(6)kg. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOT National Transportation Integrated Search
1983-01-01
The research on which this paper is based was performed as part of a study to develop a system for generating a one-to-two year forecast of monthly cash flows for the Virginia Department of Highways and Transportation. It revealed that presently used...
Image of NCEP Logo WHERE AMERICA'S CLIMATE AND WEATHER SERVICES BEGIN Inventory of Data Products on Generated Products Image of horizontal rule Global Forecast System (GFS) GFS Ensemble Forecast System (GEFS of horizontal rule External Products Image of horizontal rule Canadian Ensemble Forecast System
Fire danger rating over Mediterranean Europe based on fire radiative power derived from Meteosat
NASA Astrophysics Data System (ADS)
Pinto, Miguel M.; DaCamara, Carlos C.; Trigo, Isabel F.; Trigo, Ricardo M.; Feridun Turkman, K.
2018-02-01
We present a procedure that allows the operational generation of daily forecasts of fire danger over Mediterranean Europe. The procedure combines historical information about radiative energy released by fire events with daily meteorological forecasts, as provided by the Satellite Application Facility for Land Surface Analysis (LSA SAF) and the European Centre for Medium-Range Weather Forecasts (ECMWF). Fire danger is estimated based on daily probabilities of exceedance of daily energy released by fires occurring at the pixel level. Daily probability considers meteorological factors by means of the Canadian Fire Weather Index (FWI) and is estimated using a daily model based on a generalized Pareto distribution. Five classes of fire danger are then associated with daily probability estimated by the daily model. The model is calibrated using 13 years of data (2004-2016) and validated against the period of January-September 2017. Results obtained show that about 72 % of events releasing daily energy above 10 000 GJ belong to the extreme
class of fire danger, a considerably high fraction that is more than 1.5 times the values obtained when using the currently operational Fire Danger Forecast module of the European Forest Fire Information System (EFFIS) or the Fire Risk Map (FRM) product disseminated by the LSA SAF. Besides assisting in wildfire management, the procedure is expected to help in decision making on prescribed burning within the framework of agricultural and forest management practices.
NASA Astrophysics Data System (ADS)
Pérez-Tomás, Amador; Chikoidze, Ekaterine; Jennings, Michael R.; Russell, Stephen A. O.; Teherani, Ferechteh H.; Bove, Philippe; Sandana, Eric V.; Rogers, David J.
2018-03-01
Oxides represent the largest family of wide bandgap (WBG) semiconductors and also offer a huge potential range of complementary magnetic and electronic properties, such as ferromagnetism, ferroelectricity, antiferroelectricity and high-temperature superconductivity. Here, we review our integration of WBG and ultra WBG semiconductor oxides into different solar cells architectures where they have the role of transparent conductive electrodes and/or barriers bringing unique functionalities into the structure such above bandgap voltages or switchable interfaces. We also give an overview of the state-of-the-art and perspectives for the emerging semiconductor β- Ga2O3, which is widely forecast to herald the next generation of power electronic converters because of the combination of an UWBG with the capacity to conduct electricity. This opens unprecedented possibilities for the monolithic integration in solar cells of both self-powered logic and power electronics functionalities. Therefore, WBG and UWBG oxides have enormous promise to become key enabling technologies for the zero emissions smart integration of the internet of things.
2017-07-01
forecasts and observations on a common grid, which enables the application a number of different spatial verification methods that reveal various...forecasts of continuous meteorological variables using categorical and object-based methods . White Sands Missile Range (NM): Army Research Laboratory (US... Research version of the Weather Research and Forecasting Model adapted for generating short-range nowcasts and gridded observations produced by the
2010-01-01
The Regional Short-Term Energy Model (RSTEM) uses macroeconomic variables such as income, employment, industrial production and consumer prices at both the national and regional1 levels as explanatory variables in the generation of the Short-Term Energy Outlook (STEO). This documentation explains how national macroeconomic forecasts are used to update regional macroeconomic forecasts through the RSTEM Macro Bridge procedure.
A New Integrated Weighted Model in SNOW-V10: Verification of Categorical Variables
NASA Astrophysics Data System (ADS)
Huang, Laura X.; Isaac, George A.; Sheng, Grant
2014-01-01
This paper presents the verification results for nowcasts of seven categorical variables from an integrated weighted model (INTW) and the underlying numerical weather prediction (NWP) models. Nowcasting, or short range forecasting (0-6 h), over complex terrain with sufficient accuracy is highly desirable but a very challenging task. A weighting, evaluation, bias correction and integration system (WEBIS) for generating nowcasts by integrating NWP forecasts and high frequency observations was used during the Vancouver 2010 Olympic and Paralympic Winter Games as part of the Science of Nowcasting Olympic Weather for Vancouver 2010 (SNOW-V10) project. Forecast data from Canadian high-resolution deterministic NWP system with three nested grids (at 15-, 2.5- and 1-km horizontal grid-spacing) were selected as background gridded data for generating the integrated nowcasts. Seven forecast variables of temperature, relative humidity, wind speed, wind gust, visibility, ceiling and precipitation rate are treated as categorical variables for verifying the integrated weighted forecasts. By analyzing the verification of forecasts from INTW and the NWP models among 15 sites, the integrated weighted model was found to produce more accurate forecasts for the 7 selected forecast variables, regardless of location. This is based on the multi-categorical Heidke skill scores for the test period 12 February to 21 March 2010.
How can monthly to seasonal forecasts help to better manage power systems? (Invited)
NASA Astrophysics Data System (ADS)
Dubus, L.; Troccoli, A.
2013-12-01
The energy industry increasingly depends on weather and climate, at all space and time scales. This is especially true in countries with volunteer renewable energies development policies. There is no doubt that Energy and Meteorology is a burgeoning inter-sectoral discipline. It is also clear that the catalyst for the stronger interaction between these two sectors is the renewed and fervent interest in renewable energies, especially wind and solar power. Recent progress in meteorology has led to a marked increase in the knowledge of the climate system and in the ability to forecast climate on monthly to seasonal time scales. Several studies have already demonstrated the effectiveness of using these forecasts for energy operations, for instance for hydro-power applications. However, it is also obvious that scientific progress on its own is not sufficient to increase the value of weather forecasts. The process of integration of new meteorological products into operational tools and decision making processes is not straightforward but it is at least as important as the scientific discovery. In turn, such integration requires effective communication between users and providers of these products. We will present some important aspects of energy systems in which monthly to seasonal forecasts can bring useful, if not vital, information, and we will give some examples of encouraging energy/meteorology collaborations. We will also provide some suggestions for a strengthened collaboration into the future.
Tsunami Forecast Progress Five Years After Indonesian Disaster
NASA Astrophysics Data System (ADS)
Titov, Vasily V.; Bernard, Eddie N.; Weinstein, Stuart A.; Kanoglu, Utku; Synolakis, Costas E.
2010-05-01
Almost five years after the 26 December 2004 Indian Ocean tragedy, tsunami warnings are finally benefiting from decades of research toward effective model-based forecasts. Since the 2004 tsunami, two seminal advances have been (i) deep-ocean tsunami measurements with tsunameters and (ii) their use in accurately forecasting tsunamis after the tsunami has been generated. Using direct measurements of deep-ocean tsunami heights, assimilated into numerical models for specific locations, greatly improves the real-time forecast accuracy over earthquake-derived magnitude estimates of tsunami impact. Since 2003, this method has been used to forecast tsunamis at specific harbors for different events in the Pacific and Indian Oceans. Recent tsunamis illustrated how this technology is being adopted in global tsunami warning operations. The U.S. forecasting system was used by both research and operations to evaluate the tsunami hazard. Tests demonstrated the effectiveness of operational tsunami forecasting using real-time deep-ocean data assimilated into forecast models. Several examples also showed potential of distributed forecast tools. With IOC and USAID funding, NOAA researchers at PMEL developed the Community Model Interface for Tsunami (ComMIT) tool and distributed it through extensive capacity-building sessions in the Indian Ocean. Over hundred scientists have been trained in tsunami inundation mapping, leading to the first generation of inundation models for many Indian Ocean shorelines. These same inundation models can also be used for real-time tsunami forecasts as was demonstrated during several events. Contact Information Vasily V. Titov, Seattle, Washington, USA, 98115
Comparison of Conventional and ANN Models for River Flow Forecasting
NASA Astrophysics Data System (ADS)
Jain, A.; Ganti, R.
2011-12-01
Hydrological models are useful in many water resources applications such as flood control, irrigation and drainage, hydro power generation, water supply, erosion and sediment control, etc. Estimates of runoff are needed in many water resources planning, design development, operation and maintenance activities. River flow is generally estimated using time series or rainfall-runoff models. Recently, soft artificial intelligence tools such as Artificial Neural Networks (ANNs) have become popular for research purposes but have not been extensively adopted in operational hydrological forecasts. There is a strong need to develop ANN models based on real catchment data and compare them with the conventional models. In this paper, a comparative study has been carried out for river flow forecasting using the conventional and ANN models. Among the conventional models, multiple linear, and non linear regression, and time series models of auto regressive (AR) type have been developed. Feed forward neural network model structure trained using the back propagation algorithm, a gradient search method, was adopted. The daily river flow data derived from Godavari Basin @ Polavaram, Andhra Pradesh, India have been employed to develop all the models included here. Two inputs, flows at two past time steps, (Q(t-1) and Q(t-2)) were selected using partial auto correlation analysis for forecasting flow at time t, Q(t). A wide range of error statistics have been used to evaluate the performance of all the models developed in this study. It has been found that the regression and AR models performed comparably, and the ANN model performed the best amongst all the models investigated in this study. It is concluded that ANN model should be adopted in real catchments for hydrological modeling and forecasting.
The circadian profile of epilepsy improves seizure forecasting.
Karoly, Philippa J; Ung, Hoameng; Grayden, David B; Kuhlmann, Levin; Leyde, Kent; Cook, Mark J; Freestone, Dean R
2017-08-01
It is now established that epilepsy is characterized by periodic dynamics that increase seizure likelihood at certain times of day, and which are highly patient-specific. However, these dynamics are not typically incorporated into seizure prediction algorithms due to the difficulty of estimating patient-specific rhythms from relatively short-term or unreliable data sources. This work outlines a novel framework to develop and assess seizure forecasts, and demonstrates that the predictive power of forecasting models is improved by circadian information. The analyses used long-term, continuous electrocorticography from nine subjects, recorded for an average of 320 days each. We used a large amount of out-of-sample data (a total of 900 days for algorithm training, and 2879 days for testing), enabling the most extensive post hoc investigation into seizure forecasting. We compared the results of an electrocorticography-based logistic regression model, a circadian probability, and a combined electrocorticography and circadian model. For all subjects, clinically relevant seizure prediction results were significant, and the addition of circadian information (combined model) maximized performance across a range of outcome measures. These results represent a proof-of-concept for implementing a circadian forecasting framework, and provide insight into new approaches for improving seizure prediction algorithms. The circadian framework adds very little computational complexity to existing prediction algorithms, and can be implemented using current-generation implant devices, or even non-invasively via surface electrodes using a wearable application. The ability to improve seizure prediction algorithms through straightforward, patient-specific modifications provides promise for increased quality of life and improved safety for patients with epilepsy. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Utilization of Model Predictive Control to Balance Power Absorption Against Load Accumulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abbas, Nikhar; Tom, Nathan M
2017-06-03
Wave energy converter (WEC) control strategies have been primarily focused on maximizing power absorption. The use of model predictive control strategies allows for a finite-horizon, multiterm objective function to be solved. This work utilizes a multiterm objective function to maximize power absorption while minimizing the structural loads on the WEC system. Furthermore, a Kalman filter and autoregressive model were used to estimate and forecast the wave exciting force and predict the future dynamics of the WEC. The WEC's power-take-off time-averaged power and structural loads under a perfect forecast assumption in irregular waves were compared against results obtained from the Kalmanmore » filter and autoregressive model to evaluate model predictive control performance.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abbas, Nikhar; Tom, Nathan
Wave energy converter (WEC) control strategies have been primarily focused on maximizing power absorption. The use of model predictive control strategies allows for a finite-horizon, multiterm objective function to be solved. This work utilizes a multiterm objective function to maximize power absorption while minimizing the structural loads on the WEC system. Furthermore, a Kalman filter and autoregressive model were used to estimate and forecast the wave exciting force and predict the future dynamics of the WEC. The WEC's power-take-off time-averaged power and structural loads under a perfect forecast assumption in irregular waves were compared against results obtained from the Kalmanmore » filter and autoregressive model to evaluate model predictive control performance.« less
Applicability of internet search index for asthma admission forecast using machine learning.
Luo, Li; Liao, Chengcheng; Zhang, Fengyi; Zhang, Wei; Li, Chunyang; Qiu, Zhixin; Huang, Debin
2018-04-15
This study aimed to determine whether a search index could provide insight into trends in asthma admission in China. An Internet search index is a powerful tool to monitor and predict epidemic outbreaks. However, whether using an internet search index can significantly improve asthma admissions forecasts remains unknown. The long-term goal is to develop a surveillance system to help early detection and interventions for asthma and to avoid asthma health care resource shortages in advance. In this study, we used a search index combined with air pollution data, weather data, and historical admissions data to forecast asthma admissions using machine learning. Results demonstrated that the best area under the curve in the test set that can be achieved is 0.832, using all predictors mentioned earlier. A search index is a powerful predictor in asthma admissions forecast, and a recent search index can reflect current asthma admissions with a lag-effect to a certain extent. The addition of a real-time, easily accessible search index improves forecasting capabilities and demonstrates the predictive potential of search index. Copyright © 2018 John Wiley & Sons, Ltd.
Supplier Short Term Load Forecasting Using Support Vector Regression and Exogenous Input
NASA Astrophysics Data System (ADS)
Matijaš, Marin; Vukićcević, Milan; Krajcar, Slavko
2011-09-01
In power systems, task of load forecasting is important for keeping equilibrium between production and consumption. With liberalization of electricity markets, task of load forecasting changed because each market participant has to forecast their own load. Consumption of end-consumers is stochastic in nature. Due to competition, suppliers are not in a position to transfer their costs to end-consumers; therefore it is essential to keep forecasting error as low as possible. Numerous papers are investigating load forecasting from the perspective of the grid or production planning. We research forecasting models from the perspective of a supplier. In this paper, we investigate different combinations of exogenous input on the simulated supplier loads and show that using points of delivery as a feature for Support Vector Regression leads to lower forecasting error, while adding customer number in different datasets does the opposite.
NASA Astrophysics Data System (ADS)
De Felice, Matteo; Petitta, Marcello; Ruti, Paolo
2014-05-01
Photovoltaic diffusion is steadily growing on Europe, passing from a capacity of almost 14 GWp in 2011 to 21.5 GWp in 2012 [1]. Having accurate forecast is needed for planning and operational purposes, with the possibility to model and predict solar variability at different time-scales. This study examines the predictability of daily surface solar radiation comparing ECMWF operational forecasts with CM-SAF satellite measurements on the Meteosat (MSG) full disk domain. Operational forecasts used are the IFS system up to 10 days and the System4 seasonal forecast up to three months. Forecast are analysed considering average and variance of errors, showing error maps and average on specific domains with respect to prediction lead times. In all the cases, forecasts are compared with predictions obtained using persistence and state-of-art time-series models. We can observe a wide range of errors, with the performance of forecasts dramatically affected by orography and season. Lower errors are on southern Italy and Spain, with errors on some areas consistently under 10% up to ten days during summer (JJA). Finally, we conclude the study with some insight on how to "translate" the error on solar radiation to error on solar power production using available production data from solar power plants. [1] EurObserver, "Baromètre Photovoltaïque, Le journal des énergies renouvables, April 2012."
NASA Astrophysics Data System (ADS)
Bender, S.; Burgess, A.; Goodale, C. E.; Mattmann, C. A.; Miller, W. P.; Painter, T. H.; Rittger, K. E.; Stokes, M.; Werner, K.
2013-12-01
Water managers in the western United States depend heavily on the timing and magnitude of snowmelt-driven runoff for municipal supply, irrigation, maintenance of environmental flows, and power generation. The Colorado Basin River Forecast Center (CBRFC) of the National Weather Service issues operational forecasts of snowmelt-driven streamflow for watersheds within the Colorado River Basin (CRB) and eastern Great Basin (EGB), across a wide variety of scales. Therefore, the CBRFC and its stakeholders consider snowpack observations to be highly valuable. Observations of fractional snow covered area (fSCA) from satellite-borne instrumentation can better inform both forecasters and water users with respect to subsequent snowmelt runoff, particularly when combined with observations from ground-based station networks and/or airborne platforms. As part of a multi-year collaborative effort, CBRFC has partnered with the Jet Propulsion Laboratory (JPL) under funding from NASA to incorporate observations of fSCA from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) into the operational CBRFC hydrologic forecasting and modeling process. In the first year of the collaboration, CBRFC and NASA/JPL integrated snow products into the forecasting and decision making processes of the CBRFC and showed preliminary improvement in operational streamflow forecasts. In late 2012, CBRFC and NASA/JPL began retrospective analysis of relationships between the MODIS Snow Covered Area and Grain size (MODSCAG) fSCA and streamflow patterns for several watersheds within the CRB and the EGB. During the 2013 snowmelt runoff season, CBRFC forecasters used MODIS-derived fSCA semi-quantitatively as a binary indicator of the presence or lack of snow. Indication of the presence or lack of snow by MODIS assisted CBRFC forecasters in determining the cause of divergence between modeled and recently observed streamflow. Several examples of improved forecasts from across the CRB and EGB, informed by MODIS-derived fSCA, are described. Our analysis shows the value of MODIS fSCA to CBRFC and to users of CBRFC's streamflow forecasts. The relationships between the MODIS fSCA and the melt season streamflow vary with the magnitude of runoff, which is important to resource managers. The analysis also emphasizes the importance of the invaluable collaboration between an operational forecasting agency (CBRFC) and a research-oriented agency (NASA/JPL) specializing in remote sensing science. The collaboration is expected to continue over the next several years as CBRFC and JPL work to further improve modeling of snowmelt and prediction of snowmelt-driven streamflow in the CRB and EGB.
Forecasting hotspots using predictive visual analytics approach
Maciejewski, Ross; Hafen, Ryan; Rudolph, Stephen; Cleveland, William; Ebert, David
2014-12-30
A method for forecasting hotspots is provided. The method may include the steps of receiving input data at an input of the computational device, generating a temporal prediction based on the input data, generating a geospatial prediction based on the input data, and generating output data based on the time series and geospatial predictions. The output data may be configured to display at least one user interface at an output of the computational device.
A Comparison of Synoptic Classification Methods for Application to Wind Power Prediction
NASA Astrophysics Data System (ADS)
Fowler, P.; Basu, S.
2008-12-01
Wind energy is a highly variable resource. To make it competitive with other sources of energy for integration on the power grid, at the very least, a day-ahead forecast of power output must be available. In many grid operations worldwide, next-day power output is scheduled in 30 minute intervals and grid management routinely occurs at real time. Maintenance and repairs require costly time to complete and must be scheduled along with normal operations. Revenue is dependent on the reliability of the entire system. In other words, there is financial and managerial benefit to short-term prediction of wind power. One approach to short-term forecasting is to combine a data centric method such as an artificial neural network with a physically based approach like numerical weather prediction (NWP). The key is in associating high-dimensional NWP model output with the most appropriately trained neural network. Because neural networks perform the best in the situations they are designed for, one can hypothesize that if one can identify similar recurring states in historical weather data, this data can be used to train multiple custom designed neural networks to be used when called upon by numerical prediction. Identifying similar recurring states may offer insight to how a neural network forecast can be improved, but amassing the knowledge and utilizing it efficiently in the time required for power prediction would be difficult for a human to master, thus showing the advantage of classification. Classification methods are important tools for short-term forecasting because they can be unsupervised, objective, and computationally quick. They primarily involve categorizing data sets in to dominant weather classes, but there are numerous ways to define a class and a great variety in interpretation of the results. In the present study a collection of classification methods are used on a sampling of atmospheric variables from the North American Regional Reanalysis data set. The results will be discussed in relation to their use for short-term wind power forecasting by neural networks.
Guo, Xiaopeng; Ren, Dongfang; Guo, Xiaodan
2018-06-01
Recently, Chinese state environmental protection administration has brought out several PM10 reduction policies to control the coal consumption strictly and promote the adjustment of power structure. Under this new policy environment, a suitable analysis method is required to simulate the upcoming major shift of China's electric power structure. Firstly, a complete system dynamics model is built to simulate China's evolution path of power structure with constraints of PM10 reduction considering both technical and economical factors. Secondly, scenario analyses are conducted under different clean-power capacity growth rates to seek applicable policy guidance for PM10 reduction. The results suggest the following conclusions. (1) The proportion of thermal power installed capacity will decrease to 67% in 2018 with a dropping speed, and there will be an accelerated decline in 2023-2032. (2) The system dynamics model can effectively simulate the implementation of the policy, for example, the proportion of coal consumption in the forecast model is 63.3% (the accuracy rate is 95.2%), below policy target 65% in 2017. (3) China should promote clean power generation such as nuclear power to meet PM10 reduction target.
Hydrological Forecasting Practices in Brazil
NASA Astrophysics Data System (ADS)
Fan, Fernando; Paiva, Rodrigo; Collischonn, Walter; Ramos, Maria-Helena
2016-04-01
This work brings a review on current hydrological and flood forecasting practices in Brazil, including the main forecasts applications, the different kinds of techniques that are currently being employed and the institutions involved on forecasts generation. A brief overview of Brazil is provided, including aspects related to its geography, climate, hydrology and flood hazards. A general discussion about the Brazilian practices on hydrological short and medium range forecasting is presented. Detailed examples of some hydrological forecasting systems that are operational or in a research/pre-operational phase using the large scale hydrological model MGB-IPH are also presented. Finally, some suggestions are given about how the forecasting practices in Brazil can be understood nowadays, and what are the perspectives for the future.
Linden, Ariel
2018-05-11
Interrupted time series analysis (ITSA) is an evaluation methodology in which a single treatment unit's outcome is studied serially over time and the intervention is expected to "interrupt" the level and/or trend of that outcome. ITSA is commonly evaluated using methods which may produce biased results if model assumptions are violated. In this paper, treatment effects are alternatively assessed by using forecasting methods to closely fit the preintervention observations and then forecast the post-intervention trend. A treatment effect may be inferred if the actual post-intervention observations diverge from the forecasts by some specified amount. The forecasting approach is demonstrated using the effect of California's Proposition 99 for reducing cigarette sales. Three forecast models are fit to the preintervention series-linear regression (REG), Holt-Winters (HW) non-seasonal smoothing, and autoregressive moving average (ARIMA)-and forecasts are generated into the post-intervention period. The actual observations are then compared with the forecasts to assess intervention effects. The preintervention data were fit best by HW, followed closely by ARIMA. REG fit the data poorly. The actual post-intervention observations were above the forecasts in HW and ARIMA, suggesting no intervention effect, but below the forecasts in the REG (suggesting a treatment effect), thereby raising doubts about any definitive conclusion of a treatment effect. In a single-group ITSA, treatment effects are likely to be biased if the model is misspecified. Therefore, evaluators should consider using forecast models to accurately fit the preintervention data and generate plausible counterfactual forecasts, thereby improving causal inference of treatment effects in single-group ITSA studies. © 2018 John Wiley & Sons, Ltd.
Sabry, A H; W Hasan, W Z; Ab Kadir, M Z A; Radzi, M A M; Shafie, S
2018-01-01
The power system always has several variations in its profile due to random load changes or environmental effects such as device switching effects when generating further transients. Thus, an accurate mathematical model is important because most system parameters vary with time. Curve modeling of power generation is a significant tool for evaluating system performance, monitoring and forecasting. Several numerical techniques compete to fit the curves of empirical data such as wind, solar, and demand power rates. This paper proposes a new modified methodology presented as a parametric technique to determine the system's modeling equations based on the Bode plot equations and the vector fitting (VF) algorithm by fitting the experimental data points. The modification is derived from the familiar VF algorithm as a robust numerical method. This development increases the application range of the VF algorithm for modeling not only in the frequency domain but also for all power curves. Four case studies are addressed and compared with several common methods. From the minimal RMSE, the results show clear improvements in data fitting over other methods. The most powerful features of this method is the ability to model irregular or randomly shaped data and to be applied to any algorithms that estimating models using frequency-domain data to provide state-space or transfer function for the model.
W. Hasan, W. Z.
2018-01-01
The power system always has several variations in its profile due to random load changes or environmental effects such as device switching effects when generating further transients. Thus, an accurate mathematical model is important because most system parameters vary with time. Curve modeling of power generation is a significant tool for evaluating system performance, monitoring and forecasting. Several numerical techniques compete to fit the curves of empirical data such as wind, solar, and demand power rates. This paper proposes a new modified methodology presented as a parametric technique to determine the system’s modeling equations based on the Bode plot equations and the vector fitting (VF) algorithm by fitting the experimental data points. The modification is derived from the familiar VF algorithm as a robust numerical method. This development increases the application range of the VF algorithm for modeling not only in the frequency domain but also for all power curves. Four case studies are addressed and compared with several common methods. From the minimal RMSE, the results show clear improvements in data fitting over other methods. The most powerful features of this method is the ability to model irregular or randomly shaped data and to be applied to any algorithms that estimating models using frequency-domain data to provide state-space or transfer function for the model. PMID:29351554
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parks, K.; Wan, Y. H.; Wiener, G.
2011-10-01
The focus of this report is the wind forecasting system developed during this contract period with results of performance through the end of 2010. The report is intentionally high-level, with technical details disseminated at various conferences and academic papers. At the end of 2010, Xcel Energy managed the output of 3372 megawatts of installed wind energy. The wind plants span three operating companies1, serving customers in eight states2, and three market structures3. The great majority of the wind energy is contracted through power purchase agreements (PPAs). The remainder is utility owned, Qualifying Facilities (QF), distributed resources (i.e., 'behind the meter'),more » or merchant entities within Xcel Energy's Balancing Authority footprints. Regardless of the contractual or ownership arrangements, the output of the wind energy is balanced by Xcel Energy's generation resources that include fossil, nuclear, and hydro based facilities that are owned or contracted via PPAs. These facilities are committed and dispatched or bid into day-ahead and real-time markets by Xcel Energy's Commercial Operations department. Wind energy complicates the short and long-term planning goals of least-cost, reliable operations. Due to the uncertainty of wind energy production, inherent suboptimal commitment and dispatch associated with imperfect wind forecasts drives up costs. For example, a gas combined cycle unit may be turned on, or committed, in anticipation of low winds. The reality is winds stayed high, forcing this unit and others to run, or be dispatched, to sub-optimal loading positions. In addition, commitment decisions are frequently irreversible due to minimum up and down time constraints. That is, a dispatcher lives with inefficient decisions made in prior periods. In general, uncertainty contributes to conservative operations - committing more units and keeping them on longer than may have been necessary for purposes of maintaining reliability. The downside is costs are higher. In organized electricity markets, units that are committed for reliability reasons are paid their offer price even when prevailing market prices are lower. Often, these uplift charges are allocated to market participants that caused the inefficient dispatch in the first place. Thus, wind energy facilities are burdened with their share of costs proportional to their forecast errors. For Xcel Energy, wind energy uncertainty costs manifest depending on specific market structures. In the Public Service of Colorado (PSCo), inefficient commitment and dispatch caused by wind uncertainty increases fuel costs. Wind resources participating in the Midwest Independent System Operator (MISO) footprint make substantial payments in the real-time markets to true-up their day-ahead positions and are additionally burdened with deviation charges called a Revenue Sufficiency Guarantee (RSG) to cover out of market costs associated with operations. Southwest Public Service (SPS) wind plants cause both commitment inefficiencies and are charged Southwest Power Pool (SPP) imbalance payments due to wind uncertainty and variability. Wind energy forecasting helps mitigate these costs. Wind integration studies for the PSCo and Northern States Power (NSP) operating companies have projected increasing costs as more wind is installed on the system due to forecast error. It follows that reducing forecast error would reduce these costs. This is echoed by large scale studies in neighboring regions and states that have recommended adoption of state-of-the-art wind forecasting tools in day-ahead and real-time planning and operations. Further, Xcel Energy concluded reduction of the normalized mean absolute error by one percent would have reduced costs in 2008 by over $1 million annually in PSCo alone. The value of reducing forecast error prompted Xcel Energy to make substantial investments in wind energy forecasting research and development.« less
Economic Rebalancing and Electricity Demand in China
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Gang; Lin, Jiang; Yuan, Alexandria
Understanding the relationship between economic growth and electricity use is essential for power systems planning. This need is particularly acute now in China, as the Chinese economy is going through a transition to a more consumption and service oriented economy. This study uses 20 years of provincial data on gross domestic product (GDP) and electricity consumption to examine the relationship between these two factors. We observe a plateauing effect of electricity consumption in the richest provinces, as the electricity demand saturates and the economy develops and moves to a more service-based economy. There is a wide range of forecasts formore » electricity use in 2030, ranging from 5,308 to 8,292 kWh per capita, using different estimating functions, as well as in existing studies. It is therefore critical to examine more carefully the relationship between electricity use and economic development, as China transitions to a new growth phase that is likely to be less energy and resource intensive. The results of this study suggest that policymakers and power system planners in China should seriously re-evaluate power demand projections and the need for new generation capacity to avoid over-investment that could lead to stranded generation assets.« less
"Ask Argonne" - Edwin Campos, Research Meteorologist, Part 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwin Campos
2013-05-08
Dr. Edwin Campos is a Research Meteorologist at Argonne National Laboratory. For the last two decades, he has studied weather, and in particular, clouds. Clouds are one of the most uncertain variables in climate predictions and are often related to transportation hazards. Clouds can also impact world-class sporting events like the Olympics. You may have questions about the role of clouds, or weather, on our daily lives. How is severe weather monitored for airports? What is the impact of clouds and wind on the generation of electricity? One of the projects Edwin is working on is short-term forecasting as itmore » relates to solar electricity. For this, Edwin's team is partnering with industry and academia to study new ways of forecasting clouds, delivering technologies that will allow the incorporation of more solar power into the electric grid. Post a question for Edwin as a comment below, and it might get answered in the follow-up video we'll post in the next few weeks.« less
"Ask Argonne" - Edwin Campos, Research Meteorologist, Part 1
Edwin Campos
2017-12-09
Dr. Edwin Campos is a Research Meteorologist at Argonne National Laboratory. For the last two decades, he has studied weather, and in particular, clouds. Clouds are one of the most uncertain variables in climate predictions and are often related to transportation hazards. Clouds can also impact world-class sporting events like the Olympics. You may have questions about the role of clouds, or weather, on our daily lives. How is severe weather monitored for airports? What is the impact of clouds and wind on the generation of electricity? One of the projects Edwin is working on is short-term forecasting as it relates to solar electricity. For this, Edwin's team is partnering with industry and academia to study new ways of forecasting clouds, delivering technologies that will allow the incorporation of more solar power into the electric grid. Post a question for Edwin as a comment below, and it might get answered in the follow-up video we'll post in the next few weeks.
Prediction of Winter Storm Tracks and Intensities Using the GFDL fvGFS Model
NASA Astrophysics Data System (ADS)
Rees, S.; Boaggio, K.; Marchok, T.; Morin, M.; Lin, S. J.
2017-12-01
The GFDL Finite-Volume Cubed-Sphere Dynamical core (FV3) is coupled to a modified version of the Global Forecast System (GFS) physics and initial conditions, to form the fvGFS model. This model is similar to the one being implemented as the next-generation operational weather model for the NWS, which is also FV3-powered. Much work has been done to verify fvGFS tropical cyclone prediction, but little has been done to verify winter storm prediction. These costly and dangerous storms impact parts of the U.S. every year. To verify winter storms we ran the NCEP operational cyclone tracker, developed at GFDL, on semi-real-time 13 km horizontal resolution fvGFS forecasts. We have found that fvGFS compares well to the operational GFS in storm track and intensity, though often predicts slightly higher intensities. This presentation will show the track and intensity verification from the past two winter seasons and explore possible reasons for bias.
Chowell, Gerardo; Viboud, Cécile
2016-10-01
The increasing use of mathematical models for epidemic forecasting has highlighted the importance of designing models that capture the baseline transmission characteristics in order to generate reliable epidemic forecasts. Improved models for epidemic forecasting could be achieved by identifying signature features of epidemic growth, which could inform the design of models of disease spread and reveal important characteristics of the transmission process. In particular, it is often taken for granted that the early growth phase of different growth processes in nature follow early exponential growth dynamics. In the context of infectious disease spread, this assumption is often convenient to describe a transmission process with mass action kinetics using differential equations and generate analytic expressions and estimates of the reproduction number. In this article, we carry out a simulation study to illustrate the impact of incorrectly assuming an exponential-growth model to characterize the early phase (e.g., 3-5 disease generation intervals) of an infectious disease outbreak that follows near-exponential growth dynamics. Specifically, we assess the impact on: 1) goodness of fit, 2) bias on the growth parameter, and 3) the impact on short-term epidemic forecasts. Designing transmission models and statistical approaches that more flexibly capture the profile of epidemic growth could lead to enhanced model fit, improved estimates of key transmission parameters, and more realistic epidemic forecasts.
NASA Astrophysics Data System (ADS)
Si, Y.; Li, X.; Li, T.; Huang, Y.; Yin, D.
2016-12-01
The cascade reservoirs in Upper Yellow River (UYR), one of the largest hydropower bases in China, play a vital role in peak load and frequency regulation for Northwest China Power Grid. The joint operation of this system has been put forward for years whereas has not come into effect due to management difficulties and inflow uncertainties, and thus there is still considerable improvement room for hydropower production. This study presents a decision support framework incorporating long- and short-term operation of the reservoir system. For long-term operation, we maximize hydropower production of the reservoir system using historical hydrological data of multiple years, and derive operating rule curves for storage reservoirs. For short-term operation, we develop a program consisting of three modules, namely hydrologic forecast module, reservoir operation module and coordination module. The coordination module is responsible for calling the hydrologic forecast module to acquire predicted inflow within a short-term horizon, and transferring the information to the reservoir operation module to generate optimal release decision. With the hydrologic forecast information updated, the rolling short-term optimization is iterated until the end of operation period, where the long-term operating curves serve as the ending storage target. As an application, the Digital Yellow River Integrated Model (referred to as "DYRIM", which is specially designed for runoff-sediment simulation in the Yellow River basin by Tsinghua University) is used in the hydrologic forecast module, and the successive linear programming (SLP) in the reservoir operation module. The application in the reservoir system of UYR demonstrates that the framework can effectively support real-time decision making, and ensure both computational accuracy and speed. Furthermore, it is worth noting that the general framework can be extended to any other reservoir system with any or combination of hydrological model(s) to forecast and any solver to optimize the operation of reservoir system.
1992 five year battery forecast
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amistadi, D.
1992-12-01
Five-year trends for automotive and industrial batteries are projected. Topic covered include: SLI shipments; lead consumption; automotive batteries (5-year annual growth rates); industrial batteries (standby power and motive power); estimated average battery life by area/country for 1989; US motor vehicle registrations; replacement battery shipments; potential lead consumption in electric vehicles; BCI recycling rates for lead-acid batteries; US average car/light truck battery life; channels of distribution; replacement battery inventory end July; 2nd US battery shipment forecast.
Exploring the calibration of a wind forecast ensemble for energy applications
NASA Astrophysics Data System (ADS)
Heppelmann, Tobias; Ben Bouallegue, Zied; Theis, Susanne
2015-04-01
In the German research project EWeLiNE, Deutscher Wetterdienst (DWD) and Fraunhofer Institute for Wind Energy and Energy System Technology (IWES) are collaborating with three German Transmission System Operators (TSO) in order to provide the TSOs with improved probabilistic power forecasts. Probabilistic power forecasts are derived from probabilistic weather forecasts, themselves derived from ensemble prediction systems (EPS). Since the considered raw ensemble wind forecasts suffer from underdispersiveness and bias, calibration methods are developed for the correction of the model bias and the ensemble spread bias. The overall aim is to improve the ensemble forecasts such that the uncertainty of the possible weather deployment is depicted by the ensemble spread from the first forecast hours. Additionally, the ensemble members after calibration should remain physically consistent scenarios. We focus on probabilistic hourly wind forecasts with horizon of 21 h delivered by the convection permitting high-resolution ensemble system COSMO-DE-EPS which has become operational in 2012 at DWD. The ensemble consists of 20 ensemble members driven by four different global models. The model area includes whole Germany and parts of Central Europe with a horizontal resolution of 2.8 km and a vertical resolution of 50 model levels. For verification we use wind mast measurements around 100 m height that corresponds to the hub height of wind energy plants that belong to wind farms within the model area. Calibration of the ensemble forecasts can be performed by different statistical methods applied to the raw ensemble output. Here, we explore local bivariate Ensemble Model Output Statistics at individual sites and quantile regression with different predictors. Applying different methods, we already show an improvement of ensemble wind forecasts from COSMO-DE-EPS for energy applications. In addition, an ensemble copula coupling approach transfers the time-dependencies of the raw ensemble to the calibrated ensemble. The calibrated wind forecasts are evaluated first with univariate probabilistic scores and additionally with diagnostics of wind ramps in order to assess the time-consistency of the calibrated ensemble members.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gagnon, Pieter J
Misforecasting the adoption of customer-owned distributed photovoltaics (DPV) can have operational and financial implications for utilities - forecasting capabilities can be improved, but generally at a cost. This paper informs this decision-space by quantifying the costs of misforecasting across a wide range of DPV growth rates and misforecast severities. Using a simplified probabilistic method presented within, an analyst can make a first-order estimate of the financial benefit of improving a utility's forecasting capabilities, and thus be better informed about whether to make such an investment. For example, we show that a utility with 10 TWh per year of retail electricmore » sales who initially estimates that the increase in DPV's contribution to total generation could range from 2 to 7.5 percent over the next 15 years could expect total present-value savings of approximately 4 million dollars if they could keep the severity of successive five-year misforecasts within plus or minus 25 percent. We also have more general discussions about how misforecasting DPV impacts the buildout and operation of the bulk power system - for example, we observed that misforecasting DPV most strongly influenced the amount of utility-scale PV that gets built, due to the similarity in the energy and capacity services offered by the two solar technologies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gagnon, Pieter J; Stoll, Brady; Mai, Trieu T
Misforecasting the adoption of customer-owned distributed photovoltaics (DPV) can have operational and financial implications for utilities - forecasting capabilities can be improved, but generally at a cost.This paper informs this decision-space by quantifying the costs of misforecasting across a wide range of DPV growth rates and misforecast severities. Using a simplified probabilistic method presented within, an analyst can make a first-order estimate of the financial benefit of improving a utility's forecasting capabilities, and thus be better informed about whether to make such an investment. For example, we show that a utility with 10 TWh per year of retail electric salesmore » who initially estimates that the increase in DPV's contribution to total generation could range from 2 percent to 7.5 percent over the next 15 years could expect total present-value savings of approximately $4 million if they could keep the severity of successive five-year misforecasts within +/- 25 percent. We also have more general discussions about how misforecasting DPV impacts the buildout and operation of the bulk power system - for example, we observed that misforecasting DPV most strongly influenced the amount of utility-scale PV that gets built, due to the similarity in the energy and capacity services offered by the two solar technologies.« less
Forecasting volatility with neural regression: a contribution to model adequacy.
Refenes, A N; Holt, W T
2001-01-01
Neural nets' usefulness for forecasting is limited by problems of overfitting and the lack of rigorous procedures for model identification, selection and adequacy testing. This paper describes a methodology for neural model misspecification testing. We introduce a generalization of the Durbin-Watson statistic for neural regression and discuss the general issues of misspecification testing using residual analysis. We derive a generalized influence matrix for neural estimators which enables us to evaluate the distribution of the statistic. We deploy Monte Carlo simulation to compare the power of the test for neural and linear regressors. While residual testing is not a sufficient condition for model adequacy, it is nevertheless a necessary condition to demonstrate that the model is a good approximation to the data generating process, particularly as neural-network estimation procedures are susceptible to partial convergence. The work is also an important step toward developing rigorous procedures for neural model identification, selection and adequacy testing which have started to appear in the literature. We demonstrate its applicability in the nontrivial problem of forecasting implied volatility innovations using high-frequency stock index options. Each step of the model building process is validated using statistical tests to verify variable significance and model adequacy with the results confirming the presence of nonlinear relationships in implied volatility innovations.
Validation of Seasonal Forecast of Indian Summer Monsoon Rainfall
NASA Astrophysics Data System (ADS)
Das, Sukanta Kumar; Deb, Sanjib Kumar; Kishtawal, C. M.; Pal, Pradip Kumar
2015-06-01
The experimental seasonal forecast of Indian summer monsoon (ISM) rainfall during June through September using Community Atmosphere Model (CAM) version 3 has been carried out at the Space Applications Centre Ahmedabad since 2009. The forecasts, based on a number of ensemble members (ten minimum) of CAM, are generated in several phases and updated on regular basis. On completion of 5 years of experimental seasonal forecasts in operational mode, it is required that the overall validation or correctness of the forecast system is quantified and that the scope is assessed for further improvements of the forecast over time, if any. The ensemble model climatology generated by a set of 20 identical CAM simulations is considered as the model control simulation. The performance of the forecast has been evaluated by assuming the control simulation as the model reference. The forecast improvement factor shows positive improvements, with higher values for the recent forecasted years as compared to the control experiment over the Indian landmass. The Taylor diagram representation of the Pearson correlation coefficient (PCC), standard deviation and centered root mean square difference has been used to demonstrate the best PCC, in the order of 0.74-0.79, recorded for the seasonal forecast made during 2013. Further, the bias score of different phases of experiment revealed the fact that the ISM rainfall forecast is affected by overestimation in predicting the low rain-rate (less than 7 mm/day), but by underestimation in the medium and high rain-rate (higher than 11 mm/day). Overall, the analysis shows significant improvement of the ISM forecast over the last 5 years, viz. 2009-2013, due to several important modifications that have been implemented in the forecast system. The validation exercise has also pointed out a number of shortcomings in the forecast system; these will be addressed in the upcoming years of experiments to improve the quality of the ISM prediction.
Individual versus superensemble forecasts of seasonal influenza outbreaks in the United States.
Yamana, Teresa K; Kandula, Sasikiran; Shaman, Jeffrey
2017-11-01
Recent research has produced a number of methods for forecasting seasonal influenza outbreaks. However, differences among the predicted outcomes of competing forecast methods can limit their use in decision-making. Here, we present a method for reconciling these differences using Bayesian model averaging. We generated retrospective forecasts of peak timing, peak incidence, and total incidence for seasonal influenza outbreaks in 48 states and 95 cities using 21 distinct forecast methods, and combined these individual forecasts to create weighted-average superensemble forecasts. We compared the relative performance of these individual and superensemble forecast methods by geographic location, timing of forecast, and influenza season. We find that, overall, the superensemble forecasts are more accurate than any individual forecast method and less prone to producing a poor forecast. Furthermore, we find that these advantages increase when the superensemble weights are stratified according to the characteristics of the forecast or geographic location. These findings indicate that different competing influenza prediction systems can be combined into a single more accurate forecast product for operational delivery in real time.
Individual versus superensemble forecasts of seasonal influenza outbreaks in the United States
Kandula, Sasikiran; Shaman, Jeffrey
2017-01-01
Recent research has produced a number of methods for forecasting seasonal influenza outbreaks. However, differences among the predicted outcomes of competing forecast methods can limit their use in decision-making. Here, we present a method for reconciling these differences using Bayesian model averaging. We generated retrospective forecasts of peak timing, peak incidence, and total incidence for seasonal influenza outbreaks in 48 states and 95 cities using 21 distinct forecast methods, and combined these individual forecasts to create weighted-average superensemble forecasts. We compared the relative performance of these individual and superensemble forecast methods by geographic location, timing of forecast, and influenza season. We find that, overall, the superensemble forecasts are more accurate than any individual forecast method and less prone to producing a poor forecast. Furthermore, we find that these advantages increase when the superensemble weights are stratified according to the characteristics of the forecast or geographic location. These findings indicate that different competing influenza prediction systems can be combined into a single more accurate forecast product for operational delivery in real time. PMID:29107987
Real-time forecasts of dengue epidemics
NASA Astrophysics Data System (ADS)
Yamana, T. K.; Shaman, J. L.
2015-12-01
Dengue is a mosquito-borne viral disease prevalent in the tropics and subtropics, with an estimated 2.5 billion people at risk of transmission. In many areas with endemic dengue, disease transmission is seasonal but prone to high inter-annual variability with occasional severe epidemics. Predicting and preparing for periods of higher than average transmission is a significant public health challenge. Here we present a model of dengue transmission and a framework for optimizing model simulations with real-time observational data of dengue cases and environmental variables in order to generate ensemble-based forecasts of the timing and severity of disease outbreaks. The model-inference system is validated using synthetic data and dengue outbreak records. Retrospective forecasts are generated for a number of locations and the accuracy of these forecasts is quantified.
Ensemble Bayesian forecasting system Part I: Theory and algorithms
NASA Astrophysics Data System (ADS)
Herr, Henry D.; Krzysztofowicz, Roman
2015-05-01
The ensemble Bayesian forecasting system (EBFS), whose theory was published in 2001, is developed for the purpose of quantifying the total uncertainty about a discrete-time, continuous-state, non-stationary stochastic process such as a time series of stages, discharges, or volumes at a river gauge. The EBFS is built of three components: an input ensemble forecaster (IEF), which simulates the uncertainty associated with random inputs; a deterministic hydrologic model (of any complexity), which simulates physical processes within a river basin; and a hydrologic uncertainty processor (HUP), which simulates the hydrologic uncertainty (an aggregate of all uncertainties except input). It works as a Monte Carlo simulator: an ensemble of time series of inputs (e.g., precipitation amounts) generated by the IEF is transformed deterministically through a hydrologic model into an ensemble of time series of outputs, which is next transformed stochastically by the HUP into an ensemble of time series of predictands (e.g., river stages). Previous research indicated that in order to attain an acceptable sampling error, the ensemble size must be on the order of hundreds (for probabilistic river stage forecasts and probabilistic flood forecasts) or even thousands (for probabilistic stage transition forecasts). The computing time needed to run the hydrologic model this many times renders the straightforward simulations operationally infeasible. This motivates the development of the ensemble Bayesian forecasting system with randomization (EBFSR), which takes full advantage of the analytic meta-Gaussian HUP and generates multiple ensemble members after each run of the hydrologic model; this auxiliary randomization reduces the required size of the meteorological input ensemble and makes it operationally feasible to generate a Bayesian ensemble forecast of large size. Such a forecast quantifies the total uncertainty, is well calibrated against the prior (climatic) distribution of predictand, possesses a Bayesian coherence property, constitutes a random sample of the predictand, and has an acceptable sampling error-which makes it suitable for rational decision making under uncertainty.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Hantao; Li, Fangxing; Fang, Xin
Our paper deals with extended-term energy storage (ES) arbitrage problems to maximize the annual revenue in deregulated power systems with high penetration wind power. The conventional ES arbitrage model takes the locational marginal prices (LMP) as an input and is unable to account for the impacts of ES operations on system LMPs. This paper proposes a bi-level ES arbitrage model, where the upper level maximizes the ES arbitrage revenue and the lower level simulates the market clearing process considering wind power and ES. The bi-level model is formulated as a mathematical program with equilibrium constraints (MPEC) and then recast intomore » a mixed-integer linear programming (MILP) using strong duality theory. Wind power fluctuations are characterized by the GARCH forecast model and the forecast error is modeled by forecast-bin based Beta distributions. Case studies are performed on a modified PJM 5-bus system and an IEEE 118-bus system with a weekly time horizon over an annual term to show the validity of the proposed bi-level model. The results from the conventional model and the bi-level model are compared under different ES power and energy ratings, and also various load and wind penetration levels.« less
Cui, Hantao; Li, Fangxing; Fang, Xin; ...
2017-10-04
Our paper deals with extended-term energy storage (ES) arbitrage problems to maximize the annual revenue in deregulated power systems with high penetration wind power. The conventional ES arbitrage model takes the locational marginal prices (LMP) as an input and is unable to account for the impacts of ES operations on system LMPs. This paper proposes a bi-level ES arbitrage model, where the upper level maximizes the ES arbitrage revenue and the lower level simulates the market clearing process considering wind power and ES. The bi-level model is formulated as a mathematical program with equilibrium constraints (MPEC) and then recast intomore » a mixed-integer linear programming (MILP) using strong duality theory. Wind power fluctuations are characterized by the GARCH forecast model and the forecast error is modeled by forecast-bin based Beta distributions. Case studies are performed on a modified PJM 5-bus system and an IEEE 118-bus system with a weekly time horizon over an annual term to show the validity of the proposed bi-level model. The results from the conventional model and the bi-level model are compared under different ES power and energy ratings, and also various load and wind penetration levels.« less
Probabilistic Weather Information Tailored to the Needs of Transmission System Operators
NASA Astrophysics Data System (ADS)
Alberts, I.; Stauch, V.; Lee, D.; Hagedorn, R.
2014-12-01
Reliable and accurate forecasts for wind and photovoltaic (PV) power production are essential for stable transmission systems. A high potential for improving the wind and PV power forecasts lies in optimizing the weather forecasts, since these energy sources are highly weather dependent. For this reason the main objective of the German research project EWeLiNE is to improve the quality the underlying numerical weather predictions towards energy operations. In this project, the German Meteorological Service (DWD), the Fraunhofer Institute for Wind Energy and Energy System Technology, and three of the German transmission system operators (TSOs) are working together to improve the weather and power forecasts. Probabilistic predictions are of particular interest, as the quantification of uncertainties provides an important tool for risk management. Theoretical considerations suggest that it can be advantageous to use probabilistic information to represent and respond to the remaining uncertainties in the forecasts. However, it remains a challenge to integrate this information into the decision making processes related to market participation and power systems operations. The project is planned and carried out in close cooperation with the involved TSOs in order to ensure the usability of the products developed. It will conclude with a demonstration phase, in which the improved models and newly developed products are combined into a process chain and used to provide information to TSOs in a real-time decision support tool. The use of a web-based development platform enables short development cycles and agile adaptation to evolving user needs. This contribution will present the EWeLiNE project and discuss ideas on how to incorporate probabilistic information into the users' current decision making processes.
Modeling of a Robust Confidence Band for the Power Curve of a Wind Turbine.
Hernandez, Wilmar; Méndez, Alfredo; Maldonado-Correa, Jorge L; Balleteros, Francisco
2016-12-07
Having an accurate model of the power curve of a wind turbine allows us to better monitor its operation and planning of storage capacity. Since wind speed and direction is of a highly stochastic nature, the forecasting of the power generated by the wind turbine is of the same nature as well. In this paper, a method for obtaining a robust confidence band containing the power curve of a wind turbine under test conditions is presented. Here, the confidence band is bound by two curves which are estimated using parametric statistical inference techniques. However, the observations that are used for carrying out the statistical analysis are obtained by using the binning method, and in each bin, the outliers are eliminated by using a censorship process based on robust statistical techniques. Then, the observations that are not outliers are divided into observation sets. Finally, both the power curve of the wind turbine and the two curves that define the robust confidence band are estimated using each of the previously mentioned observation sets.
Modeling of a Robust Confidence Band for the Power Curve of a Wind Turbine
Hernandez, Wilmar; Méndez, Alfredo; Maldonado-Correa, Jorge L.; Balleteros, Francisco
2016-01-01
Having an accurate model of the power curve of a wind turbine allows us to better monitor its operation and planning of storage capacity. Since wind speed and direction is of a highly stochastic nature, the forecasting of the power generated by the wind turbine is of the same nature as well. In this paper, a method for obtaining a robust confidence band containing the power curve of a wind turbine under test conditions is presented. Here, the confidence band is bound by two curves which are estimated using parametric statistical inference techniques. However, the observations that are used for carrying out the statistical analysis are obtained by using the binning method, and in each bin, the outliers are eliminated by using a censorship process based on robust statistical techniques. Then, the observations that are not outliers are divided into observation sets. Finally, both the power curve of the wind turbine and the two curves that define the robust confidence band are estimated using each of the previously mentioned observation sets. PMID:27941604
Using Flow Charts to Visualize the Decision-Making Process in Space Weather Forecasting
NASA Astrophysics Data System (ADS)
Aung, M. T. Y.; Myat, T.; Zheng, Y.; Mays, M. L.; Ngwira, C.; Damas, M. C.
2016-12-01
Our society today relies heavily on technological systems such as satellites, navigation systems, power grids and aviation. These systems are very sensitive to space weather disturbances. When Earth-directed space weather driven by the Sun arrives at the Earth, it causes changes to the Earth's radiation environment and the magnetosphere. Strong disturbances in the magnetosphere of the Earth are responsible for geomagnetic storms that can last from hours to days depending on strength of storms. Geomagnetic storms can severely impact critical infrastructure on Earth, such as the electric power grid, and Solar Energetic Particles that can endanger life in outer space. How can we lessen these adverse effects? They can be lessened through the early warning signals sent by space weather forecasters before CME or high-speed stream arrives. A space weather forecaster's duty is to send predicted notifications to high-tech industries and NASA missions so that they could take extra measures for protection. NASA space weather forecasters make prediction decisions by following certain steps and processes from the time an event occurs at the sun all the way to the impact locations. However, there has never been a tool that helps these forecasters visualize the decision process until now. A flow chart is created to help forecasters visualize the decision process. This flow chart provides basic knowledge of space weather and can be used to train future space weather forecasters. It also helps to cut down the training period and increase consistency in forecasting. The flow chart is also a great reference for people who are already familiar with space weather.
Designing effective power sector reform: A road map for the republic of Georgia
NASA Astrophysics Data System (ADS)
Kurdgelashvili, Lado
Around the world, network utilities (i.e., electricity, natural gas, railway, telecommunications, and water supply industries) are undergoing major structural transformation. A new wave of market liberalization, together with rapid technological changes, has challenged the previously dominant monopoly organization of these industries. A global trend toward deregulation and restructuring is evident in countries at different levels of social and economic development. The challenges of transition from a monopolistic to an open market competitive structure are numerous. Understanding these problems and finding solutions are essential to successful restructuring. In developing countries and economies in transition (i.e., the Eastern Europe and the former Soviet Union), government-owned utilities are often considered to be highly inefficient. The dominant power sector restructuring strategies seek to promote economic efficiency through a gradual introduction of competition into the power sector. Five components of power sector reform are commonly proposed by the World Bank and others for these countries: commercialization, privatization, establishment of an independent regulatory agency, unbundling and gradual introduction of competition in generation and retail markets. The Republic of Georgia, like many economies in transition (e.g., Hungary, Ukraine, and Kazakhstan) has followed this reform model. However, outcomes of the reform have not been as promised. The acute economic problems facing Georgia after it regained independence have compounded problems in the power sector. A review of Georgia's utility reforms reveals that the country has undertaken electricity industry restructuring without giving substantial consideration to the problems that these reforms might have created within the industry or society. The main task of this dissertation is to find the restructuring model, which can best serve economic, social and environmental goals under circumstances similar to those in economies of transition. The dissertation provides a guide for policy makers in the energy sector for implementing power sector reform. At first the dissertation offers a general overview of different models of power sector organization, regulatory frameworks and market arrangements, and the potential impact of reform on social welfare. This knowledge is then applied for analysis of power sector reform in the Republic of Georgia. Social welfare analysis (SWA) is a major analytical tool used in the research for assessing the potential impacts of different power sector organization models on various stakeholders. Through the research it was identified that power industry arrangements in different countries have their particularities; however, after some level of simplification, power sector organization models can fit into one of three broad categories: (1) Government control and regulation of generation and retail segments of the power industry. (2) Full scale competition in the generation segment and retail choice. (3) Partial government control of the generation segment and limited retail choice. For SWA of different power market arrangement scenarios, electricity supply and demand curves had to be derived; for this purpose electricity demand forecasting and power supply evaluation methodologies were developed. This dissertation combines SWA, accepted demand forecasting methods and established power supply evaluation techniques to assess power sector performance under specified policy scenarios relevant to the circumstances of economies in transition such as the Republic of Georgia. Detailed analyses are performed for understanding possible outcomes with the introduction of different reform models. In addition, specific options for incorporating sustainable energy alternatives in the energy planning process are identified and assessed in economic, environmental and social terms. Special attention is given to market-based instruments for promoting sustainable energy options (e.g., renewable portfolio standards, energy conservation and energy efficiency programs) and social policies (e.g., lifeline rates, local employment). Results obtained from the detailed analysis of policy options for Georgia guide recommendations for a reform of the power sector.
A retrospective evaluation of traffic forecasting techniques.
DOT National Transportation Integrated Search
2016-08-01
Traffic forecasting techniquessuch as extrapolation of previous years traffic volumes, regional travel demand models, or : local trip generation rateshelp planners determine needed transportation improvements. Thus, knowing the accuracy of t...
Interactive Forecasting with the National Weather Service River Forecast System
NASA Technical Reports Server (NTRS)
Smith, George F.; Page, Donna
1993-01-01
The National Weather Service River Forecast System (NWSRFS) consists of several major hydrometeorologic subcomponents to model the physics of the flow of water through the hydrologic cycle. The entire NWSRFS currently runs in both mainframe and minicomputer environments, using command oriented text input to control the system computations. As computationally powerful and graphically sophisticated scientific workstations became available, the National Weather Service (NWS) recognized that a graphically based, interactive environment would enhance the accuracy and timeliness of NWS river and flood forecasts. Consequently, the operational forecasting portion of the NWSRFS has been ported to run under a UNIX operating system, with X windows as the display environment on a system of networked scientific workstations. In addition, the NWSRFS Interactive Forecast Program was developed to provide a graphical user interface to allow the forecaster to control NWSRFS program flow and to make adjustments to forecasts as necessary. The potential market for water resources forecasting is immense and largely untapped. Any private company able to market the river forecasting technologies currently developed by the NWS Office of Hydrology could provide benefits to many information users and profit from providing these services.
NASA Astrophysics Data System (ADS)
Amien, S.; Yoga, W.; Fahmi, F.
2018-02-01
Synchronous generators are a major tool in an electrical energy generating systems, the load supplied by the generator is unbalanced. This paper discusses the effect of synchronous generator temperature on the condition of balanced load and unbalanced load, which will then be compared with the measurement result of both states of the generator. Unbalanced loads can be caused by various asymmetric disturbances in the power system and the failure of load forecasting studies so that the load distribution in each phase is not the same and causing the excessive heat of the generator. The method used in data collection was by using an infrared thermometer and resistance calculation method. The temperature comparison result between the resistive, inductive and capacitive loads in the highest temperature balance occured when the generator is loaded with a resistive load, where T = 31.9 ° C and t = 65 minutes. While in a state of unbalanced load the highest temperature occured when the generator is loaded with a capacitive load, where T = 40.1 ° C and t = 60 minutes. By understanding this behavior, we can maintain the generator for longer operation life.
Carbon Dioxide Emissions Effects of Grid-Scale Electricity Storage in a Decarbonizing Power System
Craig, Michael T.; Jaramillo, Paulina; Hodge, Bri-Mathias
2018-01-03
While grid-scale electricity storage (hereafter 'storage') could be crucial for deeply decarbonizing the electric power system, it would increase carbon dioxide (CO 2) emissions in current systems across the United States. To better understand how storage transitions from increasing to decreasing system CO 2 emissions, we quantify the effect of storage on operational CO 2 emissions as a power system decarbonizes under a moderate and strong CO 2 emission reduction target through 2045. Under each target, we compare the effect of storage on CO 2 emissions when storage participates in only energy, only reserve, and energy and reserve markets. Wemore » conduct our study in the Electricity Reliability Council of Texas (ERCOT) system and use a capacity expansion model to forecast generator fleet changes and a unit commitment and economic dispatch model to quantify system CO 2 emissions with and without storage. We find that storage would increase CO 2 emissions in the current ERCOT system, but would decrease CO 2 emissions in 2025 through 2045 under both decarbonization targets. Storage reduces CO 2 emissions primarily by enabling gas-fired generation to displace coal-fired generation, but also by reducing wind and solar curtailment. We further find that the market in which storage participates drives large differences in the magnitude, but not the direction, of the effect of storage on CO 2 emissions.« less
Carbon Dioxide Emissions Effects of Grid-Scale Electricity Storage in a Decarbonizing Power System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Craig, Michael T.; Jaramillo, Paulina; Hodge, Bri-Mathias
While grid-scale electricity storage (hereafter 'storage') could be crucial for deeply decarbonizing the electric power system, it would increase carbon dioxide (CO 2) emissions in current systems across the United States. To better understand how storage transitions from increasing to decreasing system CO 2 emissions, we quantify the effect of storage on operational CO 2 emissions as a power system decarbonizes under a moderate and strong CO 2 emission reduction target through 2045. Under each target, we compare the effect of storage on CO 2 emissions when storage participates in only energy, only reserve, and energy and reserve markets. Wemore » conduct our study in the Electricity Reliability Council of Texas (ERCOT) system and use a capacity expansion model to forecast generator fleet changes and a unit commitment and economic dispatch model to quantify system CO 2 emissions with and without storage. We find that storage would increase CO 2 emissions in the current ERCOT system, but would decrease CO 2 emissions in 2025 through 2045 under both decarbonization targets. Storage reduces CO 2 emissions primarily by enabling gas-fired generation to displace coal-fired generation, but also by reducing wind and solar curtailment. We further find that the market in which storage participates drives large differences in the magnitude, but not the direction, of the effect of storage on CO 2 emissions.« less
Carbon dioxide emissions effects of grid-scale electricity storage in a decarbonizing power system
NASA Astrophysics Data System (ADS)
Craig, Michael T.; Jaramillo, Paulina; Hodge, Bri-Mathias
2018-01-01
While grid-scale electricity storage (hereafter ‘storage’) could be crucial for deeply decarbonizing the electric power system, it would increase carbon dioxide (CO2) emissions in current systems across the United States. To better understand how storage transitions from increasing to decreasing system CO2 emissions, we quantify the effect of storage on operational CO2 emissions as a power system decarbonizes under a moderate and strong CO2 emission reduction target through 2045. Under each target, we compare the effect of storage on CO2 emissions when storage participates in only energy, only reserve, and energy and reserve markets. We conduct our study in the Electricity Reliability Council of Texas (ERCOT) system and use a capacity expansion model to forecast generator fleet changes and a unit commitment and economic dispatch model to quantify system CO2 emissions with and without storage. We find that storage would increase CO2 emissions in the current ERCOT system, but would decrease CO2 emissions in 2025 through 2045 under both decarbonization targets. Storage reduces CO2 emissions primarily by enabling gas-fired generation to displace coal-fired generation, but also by reducing wind and solar curtailment. We further find that the market in which storage participates drives large differences in the magnitude, but not the direction, of the effect of storage on CO2 emissions.
Medium term municipal solid waste generation prediction by autoregressive integrated moving average
DOE Office of Scientific and Technical Information (OSTI.GOV)
Younes, Mohammad K.; Nopiah, Z. M.; Basri, Noor Ezlin A.
2014-09-12
Generally, solid waste handling and management are performed by municipality or local authority. In most of developing countries, local authorities suffer from serious solid waste management (SWM) problems and insufficient data and strategic planning. Thus it is important to develop robust solid waste generation forecasting model. It helps to proper manage the generated solid waste and to develop future plan based on relatively accurate figures. In Malaysia, solid waste generation rate increases rapidly due to the population growth and new consumption trends that characterize the modern life style. This paper aims to develop monthly solid waste forecasting model using Autoregressivemore » Integrated Moving Average (ARIMA), such model is applicable even though there is lack of data and will help the municipality properly establish the annual service plan. The results show that ARIMA (6,1,0) model predicts monthly municipal solid waste generation with root mean square error equals to 0.0952 and the model forecast residuals are within accepted 95% confident interval.« less
Medium term municipal solid waste generation prediction by autoregressive integrated moving average
NASA Astrophysics Data System (ADS)
Younes, Mohammad K.; Nopiah, Z. M.; Basri, Noor Ezlin A.; Basri, Hassan
2014-09-01
Generally, solid waste handling and management are performed by municipality or local authority. In most of developing countries, local authorities suffer from serious solid waste management (SWM) problems and insufficient data and strategic planning. Thus it is important to develop robust solid waste generation forecasting model. It helps to proper manage the generated solid waste and to develop future plan based on relatively accurate figures. In Malaysia, solid waste generation rate increases rapidly due to the population growth and new consumption trends that characterize the modern life style. This paper aims to develop monthly solid waste forecasting model using Autoregressive Integrated Moving Average (ARIMA), such model is applicable even though there is lack of data and will help the municipality properly establish the annual service plan. The results show that ARIMA (6,1,0) model predicts monthly municipal solid waste generation with root mean square error equals to 0.0952 and the model forecast residuals are within accepted 95% confident interval.
Multivariate postprocessing techniques for probabilistic hydrological forecasting
NASA Astrophysics Data System (ADS)
Hemri, Stephan; Lisniak, Dmytro; Klein, Bastian
2016-04-01
Hydrologic ensemble forecasts driven by atmospheric ensemble prediction systems need statistical postprocessing in order to account for systematic errors in terms of both mean and spread. Runoff is an inherently multivariate process with typical events lasting from hours in case of floods to weeks or even months in case of droughts. This calls for multivariate postprocessing techniques that yield well calibrated forecasts in univariate terms and ensure a realistic temporal dependence structure at the same time. To this end, the univariate ensemble model output statistics (EMOS; Gneiting et al., 2005) postprocessing method is combined with two different copula approaches that ensure multivariate calibration throughout the entire forecast horizon. These approaches comprise ensemble copula coupling (ECC; Schefzik et al., 2013), which preserves the dependence structure of the raw ensemble, and a Gaussian copula approach (GCA; Pinson and Girard, 2012), which estimates the temporal correlations from training observations. Both methods are tested in a case study covering three subcatchments of the river Rhine that represent different sizes and hydrological regimes: the Upper Rhine up to the gauge Maxau, the river Moselle up to the gauge Trier, and the river Lahn up to the gauge Kalkofen. The results indicate that both ECC and GCA are suitable for modelling the temporal dependences of probabilistic hydrologic forecasts (Hemri et al., 2015). References Gneiting, T., A. E. Raftery, A. H. Westveld, and T. Goldman (2005), Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation, Monthly Weather Review, 133(5), 1098-1118, DOI: 10.1175/MWR2904.1. Hemri, S., D. Lisniak, and B. Klein, Multivariate postprocessing techniques for probabilistic hydrological forecasting, Water Resources Research, 51(9), 7436-7451, DOI: 10.1002/2014WR016473. Pinson, P., and R. Girard (2012), Evaluating the quality of scenarios of short-term wind power generation, Applied Energy, 96, 12-20, DOI: 10.1016/j.apenergy.2011.11.004. Schefzik, R., T. L. Thorarinsdottir, and T. Gneiting (2013), Uncertainty quantification in complex simulation models using ensemble copula coupling, Statistical Science, 28, 616-640, DOI: 10.1214/13-STS443.
Modeling spot markets for electricity and pricing electricity derivatives
NASA Astrophysics Data System (ADS)
Ning, Yumei
Spot prices for electricity have been very volatile with dramatic price spikes occurring in restructured market. The task of forecasting electricity prices and managing price risk presents a new challenge for market players. The objectives of this dissertation are: (1) to develop a stochastic model of price behavior and predict price spikes; (2) to examine the effect of weather forecasts on forecasted prices; (3) to price electricity options and value generation capacity. The volatile behavior of prices can be represented by a stochastic regime-switching model. In the model, the means of the high-price and low-price regimes and the probabilities of switching from one regime to the other are specified as functions of daily peak load. The probability of switching to the high-price regime is positively related to load, but is still not high enough at the highest loads to predict price spikes accurately. An application of this model shows how the structure of the Pennsylvania-New Jersey-Maryland market changed when market-based offers were allowed, resulting in higher price spikes. An ARIMA model including temperature, seasonal, and weekly effects is estimated to forecast daily peak load. Forecasts of load under different assumptions about weather patterns are used to predict changes of price behavior given the regime-switching model of prices. Results show that the range of temperature forecasts from a normal summer to an extremely warm summer cause relatively small increases in temperature (+1.5%) and load (+3.0%). In contrast, the increases in prices are large (+20%). The conclusion is that the seasonal outlook forecasts provided by NOAA are potentially valuable for predicting prices in electricity markets. The traditional option models, based on Geometric Brownian Motion are not appropriate for electricity prices. An option model using the regime-switching framework is developed to value a European call option. The model includes volatility risk and allows changes in prices and volatility to be correlated. The results show that the value of a power plant is much higher using the financial option model than using traditional discounted cash flow.
Towards the intrahour forecasting of direct normal irradiance using sky-imaging data.
Nou, Julien; Chauvin, Rémi; Eynard, Julien; Thil, Stéphane; Grieu, Stéphane
2018-04-01
Increasing power plant efficiency through improved operation is key in the development of Concentrating Solar Power (CSP) technologies. To this end, one of the most challenging topics remains accurately forecasting the solar resource at a short-term horizon. Indeed, in CSP plants, production is directly impacted by both the availability and variability of the solar resource and, more specifically, by Direct Normal Irradiance (DNI). The present paper deals with a new approach to the intrahour forecasting (the forecast horizon [Formula: see text] is up to [Formula: see text] ahead) of DNI, taking advantage of the fact that this quantity can be split into two terms, i.e. clear-sky DNI and the clear sky index. Clear-sky DNI is forecasted from DNI measurements, using an empirical model (Ineichen and Perez, 2002) combined with a persistence of atmospheric turbidity. Moreover, in the framework of the CSPIMP (Concentrating Solar Power plant efficiency IMProvement) research project, PROMES-CNRS has developed a sky imager able to provide High Dynamic Range (HDR) images. So, regarding the clear-sky index, it is forecasted from sky-imaging data, using an Adaptive Network-based Fuzzy Inference System (ANFIS). A hybrid algorithm that takes inspiration from the classification algorithm proposed by Ghonima et al. (2012) when clear-sky anisotropy is known and from the hybrid thresholding algorithm proposed by Li et al. (2011) in the opposite case has been developed to the detection of clouds. Performance is evaluated via a comparative study in which persistence models - either a persistence of DNI or a persistence of the clear-sky index - are included. Preliminary results highlight that the proposed approach has the potential to outperform these models (both persistence models achieve similar performance) in terms of forecasting accuracy: over the test data used, RMSE (the Root Mean Square Error) is reduced of about [Formula: see text], with [Formula: see text], and [Formula: see text], with [Formula: see text].
DOT National Transportation Integrated Search
1985-01-01
The research on which this report is based was performed as part of a study to develop an improved system for generating a two-year forecast of monthly cash flows for the Virginia Department of Highways and Transportation. It revealed that current te...
NASA Astrophysics Data System (ADS)
Aksoy, Hafzullah; Dahamsheh, Ahmad
2018-07-01
For forecasting monthly precipitation in an arid region, the feed forward back-propagation, radial basis function and generalized regression artificial neural networks (ANNs) are used in this study. The ANN models are improved after incorporation of a Markov chain-based algorithm (MC-ANNs) with which the percentage of dry months is forecasted perfectly, thus generation of any non-physical negative precipitation is eliminated. Due to the fact that recorded precipitation time series are usually shorter than the length needed for a proper calibration of ANN models, synthetic monthly precipitation data are generated by Thomas-Fiering model to further improve the performance of forecasting. For case studies from Jordan, it is seen that only a slightly better performance is achieved with the use of MC and synthetic data. A conditional statement is, therefore, established and imbedded into the ANN models after the incorporation of MC and support of synthetic data, to substantially improve the ability of the models for forecasting monthly precipitation in arid regions.
Forecasting of hourly load by pattern recognition in a small area power system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dehdashti-Shahrokh, A.
1982-01-01
An intuitive, logical, simple and efficient method of forecasting hourly load in a small area power system is presented. A pattern recognition approach is used in developing the forecasting model. Pattern recognition techniques are powerful tools in the field of artificial intelligence (cybernetics) and simulate the way the human brain operates to make decisions. Pattern recognition is generally used in analysis of processes where the total physical nature behind the process variation is unkown but specific kinds of measurements explain their behavior. In this research basic multivariate analyses, in conjunction with pattern recognition techniques, are used to develop a linearmore » deterministic model to forecast hourly load. This method assumes that load patterns in the same geographical area are direct results of climatological changes (weather sensitive load), and have occurred in the past as a result of similar climatic conditions. The algorithm described in here searches for the best possible pattern from a seasonal library of load and weather data in forecasting hourly load. To accommodate the unpredictability of weather and the resulting load, the basic twenty-four load pattern was divided into eight three-hour intervals. This division was made to make the model adaptive to sudden climatic changes. The proposed method offers flexible lead times of one to twenty-four hours. The results of actual data testing had indicated that this proposed method is computationally efficient, highly adaptive, with acceptable data storage size and accuracy that is comparable to many other existing methods.« less
Quasi-most unstable modes: a window to 'À la carte' ensemble diversity?
NASA Astrophysics Data System (ADS)
Homar Santaner, Victor; Stensrud, David J.
2010-05-01
The atmospheric scientific community is nowadays facing the ambitious challenge of providing useful forecasts of atmospheric events that produce high societal impact. The low level of social resilience to false alarms creates tremendous pressure on forecasting offices to issue accurate, timely and reliable warnings.Currently, no operational numerical forecasting system is able to respond to the societal demand for high-resolution (in time and space) predictions in the 12-72h time span. The main reasons for such deficiencies are the lack of adequate observations and the high non-linearity of the numerical models that are currently used. The whole weather forecasting problem is intrinsically probabilistic and current methods aim at coping with the various sources of uncertainties and the error propagation throughout the forecasting system. This probabilistic perspective is often created by generating ensembles of deterministic predictions that are aimed at sampling the most important sources of uncertainty in the forecasting system. The ensemble generation/sampling strategy is a crucial aspect of their performance and various methods have been proposed. Although global forecasting offices have been using ensembles of perturbed initial conditions for medium-range operational forecasts since 1994, no consensus exists regarding the optimum sampling strategy for high resolution short-range ensemble forecasts. Bred vectors, however, have been hypothesized to better capture the growing modes in the highly nonlinear mesoscale dynamics of severe episodes than singular vectors or observation perturbations. Yet even this technique is not able to produce enough diversity in the ensembles to accurately and routinely predict extreme phenomena such as severe weather. Thus, we propose a new method to generate ensembles of initial conditions perturbations that is based on the breeding technique. Given a standard bred mode, a set of customized perturbations is derived with specified amplitudes and horizontal scales. This allows the ensemble to excite growing modes across a wider range of scales. Results show that this approach produces significantly more spread in the ensemble prediction than standard bred modes alone. Several examples that illustrate the benefits from this approach for severe weather forecasts will be provided.
DOT National Transportation Integrated Search
2012-06-01
Our current ability to forecast demand on tolled facilities has not kept pace with advances in decision sciences and : technological innovation. The current forecasting methods suffer from lack of descriptive power of actual behavior because : of the...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mbamalu, G.A.N.; El-Hawary, M.E.
The authors propose suboptimal least squares or IRWLS procedures for estimating the parameters of a seasonal multiplicative AR model encountered during power system load forecasting. The proposed method involves using an interactive computer environment to estimate the parameters of a seasonal multiplicative AR process. The method comprises five major computational steps. The first determines the order of the seasonal multiplicative AR process, and the second uses the least squares or the IRWLS to estimate the optimal nonseasonal AR model parameters. In the third step one obtains the intermediate series by back forecast, which is followed by using the least squaresmore » or the IRWLS to estimate the optimal season AR parameters. The final step uses the estimated parameters to forecast future load. The method is applied to predict the Nova Scotia Power Corporation's 168 lead time hourly load. The results obtained are documented and compared with results based on the Box and Jenkins method.« less
Integrated Forecast-Decision Systems For River Basin Planning and Management
NASA Astrophysics Data System (ADS)
Georgakakos, A. P.
2005-12-01
A central application of climatology, meteorology, and hydrology is the generation of reliable forecasts for water resources management. In principle, effective use of forecasts could improve water resources management by providing extra protection against floods, mitigating the adverse effects of droughts, generating more hydropower, facilitating recreational activities, and minimizing the impacts of extreme events on the environment and the ecosystems. In practice, however, realization of these benefits depends on three requisite elements. First is the skill and reliability of forecasts. Second is the existence of decision support methods/systems with the ability to properly utilize forecast information. And third is the capacity of the institutional infrastructure to incorporate the information provided by the decision support systems into the decision making processes. This presentation discusses several decision support systems (DSS) using ensemble forecasting that have been developed by the Georgia Water Resources Institute for river basin management. These DSS are currently operational in Africa, Europe, and the US and address integrated water resources and energy planning and management in river basins with multiple water uses, multiple relevant temporal and spatial scales, and multiple decision makers. The article discusses the methods used and advocates that the design, development, and implementation of effective forecast-decision support systems must bring together disciplines, people, and institutions necessary to address today's complex water resources challenges.
Forecasting paratransit services demand : review and recommendations.
DOT National Transportation Integrated Search
2013-06-01
Travel demand forecasting tools for Floridas paratransit services are outdated, utilizing old national trip : generation rate generalities and simple linear regression models. In its guidance for the development of : mandated Transportation Disadv...
NASA Astrophysics Data System (ADS)
Kalecinski, Natacha; Haeffelin, Martial; Badosa, Jordi; Periard, Christophe
2013-04-01
Solar photovoltaic power is a predominant source of electrical power on Reunion Island, regularly providing near 30% of electrical power demand for a few hours per day. However solar power on Reunion Island is strongly modulated by clouds in small temporal and spatial scales. Today regional regulations require that new solar photovoltaic plants be combined with storage systems to reduce electrical power fluctuations on the grid. Hence cloud and solar irradiance forecasting becomes an important tool to help optimize the operation of new solar photovoltaic plants on Reunion Island. Reunion Island, located in the South West of the Indian Ocean, is exposed to persistent trade winds, most of all in winter. In summer, the southward motion of the ITCZ brings atmospheric instabilities on the island and weakens trade winds. This context together with the complex topography of Reunion Island, which is about 60 km wide, with two high summits (3070 and 2512 m) connected by a 1500 m plateau, makes cloudiness very heterogeneous. High cloudiness variability is found between mountain and coastal areas and between the windward, leeward and lateral regions defined with respect to the synoptic wind direction. A detailed study of local dynamics variability is necessary to better understand cloud life cycles around the island. In the presented work, our approach to explore the short-term solar irradiance forecast at local scales is to use the deterministic output from a meso-scale numerical weather prediction (NWP) model, AROME, developed by Meteo France. To start we evaluate the performance of the deterministic forecast from AROME by using meteorological measurements from 21 meteorological ground stations widely spread around the island (and with altitudes from 8 to 2245 m). Ground measurements include solar irradiation, wind speed and direction, relative humidity, air temperature, precipitation and pressure. Secondly we study in the model the local dynamics and thermodynamics that control cloud development and solar irradiance in order to define new predictors to improve probabilistic forecast of solar irradiance.
Forecasting stock market volatility: Do realized skewness and kurtosis help?
NASA Astrophysics Data System (ADS)
Mei, Dexiang; Liu, Jing; Ma, Feng; Chen, Wang
2017-09-01
In this study, we investigate the predictability of the realized skewness (RSK) and realized kurtosis (RKU) to stock market volatility, that has not been addressed in the existing studies. Out-of-sample results show that RSK, which can significantly improve forecast accuracy in mid- and long-term, is more powerful than RKU in forecasting volatility. Whereas these variables are useless in short-term forecasting. Furthermore, we employ the realized kernel (RK) for the robustness analysis and the conclusions are consistent with the RV measures. Our results are of great importance for portfolio allocation and financial risk management.
Documentation of volume 3 of the 1978 Energy Information Administration annual report to congress
NASA Astrophysics Data System (ADS)
1980-02-01
In a preliminary overview of the projection process, the relationship between energy prices, supply, and demand is addressed. Topics treated in detail include a description of energy economic interactions, assumptions regarding world oil prices, and energy modeling in the long term beyond 1995. Subsequent sections present the general approach and methodology underlying the forecasts, and define and describe the alternative projection series and their associated assumptions. Short term forecasting, midterm forecasting, long term forecasting of petroleum, coal, and gas supplies are included. The role of nuclear power as an energy source is also discussed.