Science.gov

Sample records for power introduction experiences

  1. Introduction to Statistically Designed Experiments

    SciTech Connect

    Heaney, Mike

    2016-09-13

    Statistically designed experiments can save researchers time and money by reducing the number of necessary experimental trials, while resulting in more conclusive experimental results. Surprisingly, many researchers are still not aware of this efficient and effective experimental methodology. As reported in a 2013 article from Chemical & Engineering News, there has been a resurgence of this methodology in recent years (http://cen.acs.org/articles/91/i13/Design-Experiments-Makes-Comeback.html?h=2027056365). This presentation will provide a brief introduction to statistically designed experiments. The main advantages will be reviewed along with the some basic concepts such as factorial and fractional factorial designs. The recommended sequential approach to experiments will be introduced and finally a case study will be presented to demonstrate this methodology.

  2. Experience in the development and introduction of a full scale process control system for the PGU-450T power production unit at Mosenergo TETs-27 heat and electric power plant

    SciTech Connect

    Kopsov, A. Ya.; Sviderskii, A. G.; Bilenko, V. A.; Dobrev, E. N.; Ukolov, S. V.; Zhezherya, D. A.; Plotnikov, D. V.; Shavochkin, I. A.; Manevskaya, O. A.; Asoskov, O. G.

    2009-03-15

    This is a description of experience in the development and introduction of a full-scale process control system for the PGU-450T power production unit of station No. 3 at the TETs-27 heat and electric power station of JSC 'Mosenergo' based on the latest, fourth generation program package SPPA-T3000, which is being used for the first time in Russia for steam-gas units. The fundamental technical solutions for the structure of the process control system are described, along with the features of the algorithms for control of the main engineering equipment in electric power plants based on the PGU-450.

  3. JPL solar power experiments

    NASA Technical Reports Server (NTRS)

    Yasui, R. K.

    1976-01-01

    Report describes evolution of photovoltaic power systems designed and built for terrestrial use. Discussion focuses on technological problems impeding further systems development. Experiments and test data on seven types of solar panels and six material test specimens are described in detail.

  4. An introduction to optimal power flow: Theory, formulation, and examples

    SciTech Connect

    Frank, Stephen; Rebennack, Steffen

    2016-05-21

    The set of optimization problems in electric power systems engineering known collectively as Optimal Power Flow (OPF) is one of the most practically important and well-researched subfields of constrained nonlinear optimization. OPF has enjoyed a rich history of research, innovation, and publication since its debut five decades ago. Nevertheless, entry into OPF research is a daunting task for the uninitiated--both due to the sheer volume of literature and because OPF's ubiquity within the electric power systems community has led authors to assume a great deal of prior knowledge that readers unfamiliar with electric power systems may not possess. This article provides an introduction to OPF from an operations research perspective; it describes a complete and concise basis of knowledge for beginning OPF research. The discussion is tailored for the operations researcher who has experience with nonlinear optimization but little knowledge of electrical engineering. Topics covered include power systems modeling, the power flow equations, typical OPF formulations, and common OPF extensions.

  5. 'Single molecule': theory and experiments, an introduction.

    PubMed

    Riveline, Daniel

    2013-01-01

    At scales below micrometers, Brownian motion dictates most of the behaviors. The simple observation of a colloid is striking: a permanent and random motion is seen, whereas inertial forces play a negligible role. This Physics, where velocity is proportional to force, has opened new horizons in biology. The random feature is challenged in living systems where some proteins--molecular motors--have a directed motion whereas their passive behaviors of colloid should lead to a Brownian motion. Individual proteins, polymers of living matter such as DNA, RNA, actin or microtubules, molecular motors, all these objects can be viewed as chains of colloids. They are submitted to shocks from molecules of the solvent. Shapes taken by these biopolymers or dynamics imposed by motors can be measured and modeled from single molecules to their collective effects. Thanks to the development of experimental methods such as optical tweezers, Atomic Force Microscope (AFM), micropipettes, and quantitative fluorescence (such as Förster Resonance Energy Transfer, FRET), it is possible to manipulate these individual biomolecules in an unprecedented manner: experiments allow to probe the validity of models; and a new Physics has thereby emerged with original biological insights. Theories based on statistical mechanics are needed to explain behaviors of these systems. When force-extension curves of these molecules are extracted, the curves need to be fitted with models that predict the deformation of free objects or submitted to a force. When velocity of motors is altered, a quantitative analysis is required to explain the motions of individual molecules under external forces. This lecture will give some elements of introduction to the lectures of the session 'Nanophysics for Molecular Biology'.

  6. 'Single molecule': theory and experiments, an introduction

    PubMed Central

    2013-01-01

    At scales below micrometers, Brownian motion dictates most of the behaviors. The simple observation of a colloid is striking: a permanent and random motion is seen, whereas inertial forces play a negligible role. This Physics, where velocity is proportional to force, has opened new horizons in biology. The random feature is challenged in living systems where some proteins - molecular motors - have a directed motion whereas their passive behaviors of colloid should lead to a Brownian motion. Individual proteins, polymers of living matter such as DNA, RNA, actin or microtubules, molecular motors, all these objects can be viewed as chains of colloids. They are submitted to shocks from molecules of the solvent. Shapes taken by these biopolymers or dynamics imposed by motors can be measured and modeled from single molecules to their collective effects. Thanks to the development of experimental methods such as optical tweezers, Atomic Force Microscope (AFM), micropipettes, and quantitative fluorescence (such as Förster Resonance Energy Transfer, FRET), it is possible to manipulate these individual biomolecules in an unprecedented manner: experiments allow to probe the validity of models; and a new Physics has thereby emerged with original biological insights. Theories based on statistical mechanics are needed to explain behaviors of these systems. When force-extension curves of these molecules are extracted, the curves need to be fitted with models that predict the deformation of free objects or submitted to a force. When velocity of motors is altered, a quantitative analysis is required to explain the motions of individual molecules under external forces. This lecture will give some elements of introduction to the lectures of the session 'Nanophysics for Molecular Biology'. PMID:24565227

  7. The introduction of space technology power systems into developing countries

    NASA Technical Reports Server (NTRS)

    Roberts, Allen F.; Ratajczak, Anthony F.

    1989-01-01

    Between 1978 and 1984, NASA-Lewis was responsible for the design, fabrication, installation and operational support of 57 photovoltaic power systems in 27 countries. These systems were installed in locations not served by a central power system and ranged in size from 40 W for powering street lights to 29 kW for providing power to a complete village. Several of the system projects had socio/economic studies components that provided for an assessment of how the introduction of both electricity and a novel high technology power system affected the users and their society.

  8. Missouri Introduction to Energy and Power Technology Guide.

    ERIC Educational Resources Information Center

    Missouri Univ., Columbia. Instructional Materials Lab.

    This guide provides materials for the first high school specialization course beyond the broad-based foundation provided by the Introduction to Industrial Technology and Exploration of Technology courses. Section I is the Instructor's Guide, which contains suggestions about how the energy and power technology cluster might be taught as a course…

  9. Introduction to Observing System Simulation Experiments (OSSEs)

    NASA Technical Reports Server (NTRS)

    Prive, Nikki C.

    2014-01-01

    This presentation gives a brief overview of Observing System Simulation Experiments (OSSEs), including what OSSEs are, and how and why they are performed. The intent is to educate the audience in light of the OSSE-related sections of the Forecast Improvement Act (H.R. 2413).

  10. The Galicia 3D experiment: an Introduction.

    NASA Astrophysics Data System (ADS)

    Reston, Timothy; Martinez Loriente, Sara; Holroyd, Luke; Merry, Tobias; Sawyer, Dale; Morgan, Julia; Jordan, Brian; Tesi Sanjurjo, Mari; Alexanian, Ara; Shillington, Donna; Gibson, James; Minshull, Tim; Karplus, Marianne; Bayracki, Gaye; Davy, Richard; Klaeschen, Dirk; Papenberg, Cord; Ranero, Cesar; Perez-Gussinye, Marta; Martinez, Miguel

    2014-05-01

    In June and July 2013, scientists from 8 institutions took part in the Galicia 3D seismic experiment, the first ever crustal -scale academic 3D MCS survey over a rifted margin. The aim was to determine the 3D structure of a critical portion of the west Galicia rifted margin. At this margin, well-defined tilted fault blocks, bound by west-dipping faults and capped by synrift sediments are underlain by a bright reflection, undulating on time sections, termed the S reflector and thought to represent a major detachment fault of some kind. Moving west, the crust thins to zero thickness and mantle is unroofed, as evidence by the "Peridotite Ridge" first reported at this margin, but since observed at many other magma-poor margins. By imaging such a margin in detail, the experiment aimed to resolve the processes controlling crustal thinning and mantle unroofing at a type example magma poor margin. The experiment set out to collect several key datasets: a 3D seismic reflection volume measuring ~20x64km and extending down to ~14s TWT, a 3D ocean bottom seismometer dataset suitable for full wavefield inversion (the recording of the complete 3D seismic shots by 70 ocean bottom instruments), the "mirror imaging" of the crust using the same grid of OBS, a single 2D combined reflection/refraction profile extending to the west to determine the transition from unroofed mantle to true oceanic crust, and the seismic imaging of the water column, calibrated by regular deployment of XBTs to measure the temperature structure of the water column. We collected 1280 km2 of seismic reflection data, consisting of 136533 shots recorded on 1920 channels, producing 260 million seismic traces, each ~ 14s long. This adds up to ~ 8 terabytes of data, representing, we believe, the largest ever academic 3D MCS survey in terms of both the area covered and the volume of data. The OBS deployment was the largest ever within an academic 3D survey.

  11. Experiences with solar power

    NASA Astrophysics Data System (ADS)

    Kesselring, P.

    1985-11-01

    Experience with solar thermal plants is reviewed. The component and subsystems development of the last decade and particularly the receiver, collector and heliostat field development is a technical success. Solar specific problems on the system and component level arose, when off the shelf solutions of fossile fired plants were transferred uncritically. It is shown that concentrated solar radiation is a relatively cheap high quality fuel. Other uses than electricity generation are high temperature processes and the production of solar fuels and chemicals. A technical and economic comparison of solar thermal and photovoltaic electricity generation is made.

  12. Power and environmental assessment: Introduction to the special issue

    SciTech Connect

    Cashmore, Matthew; Richardson, Tim

    2013-02-15

    The significance of politics and power dynamics has long been recognised in environmental assessment (EA) research, but there has not been sustained attention to power, either theoretically or empirically. The aim of this special issue is to encourage the EA community to engage more consistently with the issue of power. The introduction represents a ground-clearing exercise intended to clarify the terms of the debate about power in the EA field, and to contribute to the development of a research agenda. Research trends in the field are outlined, and potential analytic and normative lines of inquiry are identified. The contributions to this special issue represent contrasting conceptual and methodological approaches that navigate the analytical and normative terrain of power dynamics in EA. Together, they demonstrate that power cannot be removed from EA policy or practices, and is a necessary research focus for the development of the field. - Highlights: Black-Right-Pointing-Pointer Introduces the themed section on power Black-Right-Pointing-Pointer Provides an overview of the papers in the themed section Black-Right-Pointing-Pointer Identifies research trends and directions for future research.

  13. Ranchero Explosive Pulsed Power Experiments

    SciTech Connect

    Goforth, J.H.; Atchison, W.L.; Deninger, W.J.; Fowler, C.M.; Herrera, D.H.; King, J.C.; Lopez, E.A.; Oona, H.; Reinovsky, R.E.; Stokes, J.L.; Sena, F.C.; Tabaka, L.J.; Tasker, D.G.; Torres, D.T.; Lindemuth, I.R.; Faehl, R.J.; Keinigs, R.K.; Taylor, A.J.; Rodriguez, G.; Oro, D.M.; Garcia, O.F.; parker, J.V.; Broste, W.B.

    1999-06-27

    The authors are developing the Ranchero high explosive pulsed power (HEPP) system to power cylindrically imploding solid-density liners for hydrodynamics experiments. The near-term goal is to conduct experiments in the regime pertinent to the Atlas Capacitor bank. That is, they will attempt to implode liners of {approximately}50 g mass at velocities approaching 15 km/sec. The basic building block of the HEPP system is a coaxial generator with a 304.8 mm diameter stator, and an initial armature diameter of 152 mm. The armature is expanded by a high explosive (HE) charge detonated simultaneously along its axis. They have reported a variety of experiments conducted with generator modules 43 cm long and have presented an initial design for hydrodynamic liner experiments. In this paper they give a synopsis of their first system test, and a status report on the development of a generator module that is 1.4 m long.

  14. Introduction to power-frequency electric and magnetic fields.

    PubMed Central

    Kaune, W T

    1993-01-01

    This paper introduces the reader to electric and magnetic fields, particularly those fields produced by electric power systems and other sources using frequencies in the power-frequency range. Electric fields are produced by electric charges; a magnetic field also is produced if these charges are in motion. Electric fields exert forces on other charges; if in motion, these charges will experience magnetic forces. Power-frequency electric and magnetic fields induce electric currents in conducting bodies such as living organisms. The current density vector is used to describe the distribution of current within a body. The surface of the human body is an excellent shield for power-frequency electric fields, but power-frequency magnetic fields penetrate without significant attenuation; the electric fields induced inside the body by either exposure are comparable in magnitude. Electric fields induced inside a human by most environmental electric and magnetic fields appear to be small in magnitude compared to levels naturally occurring in living tissues. Detection of such fields thus would seem to require the existence of unknown biological mechanisms. Complete characterization of a power-frequency field requires measurement of the magnitudes and electrical phases of the fundamental and harmonic amplitudes of its three vector components. Most available instrumentation measures only a small subset, or some weighted average, of these quantities. Hand-held survey meters have been used widely to measure power-frequency electric and magnetic fields. Automated data-acquisition systems have come into use more recently to make electric- and magnetic-field recordings, covering periods of hours to days, in residences and other environments.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8206045

  15. Introduction

    NASA Astrophysics Data System (ADS)

    Carotenuto, Luigi

    This chapter introduces the context, objectives and structure of the book. This book aims both to contribute to disseminate the knowledge about the scientific research conducted in space and to promote new exploitation of existing data in this field. While space experiments are characterised by a long time for preparation, high costs and few opportunities, significant scientific value is expected from the resulting data for almost scientific disciplines. In this context, ISS is a unique experimental environment for research. As part of its Seventh Framework Programme, the European Commission intends to support further exploitation and valorisation of space experimental data. This book was realised as part of the ULISSE project, co-funded by the European Union. The book intends to provide an introduction to space research with a focus on the experiments performed on the ISS and related disciplines. The book also intends to be a useful guide, not only for scientists but also for teachers, students and newcomers to space research activities.

  16. Introduction to Classical Density Functional Theory by a Computational Experiment

    ERIC Educational Resources Information Center

    Jeanmairet, Guillaume; Levy, Nicolas; Levesque, Maximilien; Borgis, Daniel

    2014-01-01

    We propose an in silico experiment to introduce the classical density functional theory (cDFT). Density functional theories, whether quantum or classical, rely on abstract concepts that are nonintuitive; however, they are at the heart of powerful tools and active fields of research in both physics and chemistry. They led to the 1998 Nobel Prize in…

  17. 78 FR 4477 - Review of Safety Analysis Reports for Nuclear Power Plants, Introduction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-22

    ... COMMISSION Review of Safety Analysis Reports for Nuclear Power Plants, Introduction AGENCY: Nuclear... Plants: LWR Edition.'' The new subsection is the Standard Review Plan (SRP), ``Introduction--Part 2... referenced. The SRP, subsection Introduction--Part 2 is under ADAMS Accession No. ML12142A237. NRC's PDR:...

  18. Introduction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This publication represents an introduction to a special issue of the journal General and Comparative Endocrinology dedicated to Insect Endocrinology. The issue addresses a number of aspects of invertebrate neuropeptide research including identification of novel invertebrate neuropeptide sequences ...

  19. Power and replication - designing powerful experiments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biological research is expensive, with monetary costs to granting agencies and emotional costs to researchers. As such, biological researchers should always follow the mantra, "failure is not an option." A failed experimental design is generally manifested as an experiment with high P-values, leavin...

  20. Introduction

    NASA Video Gallery

    This video provides a quick overview of high-power rocketry as well as a preview for the rest of the High-Power Rocketry video series. The video describes the two recognized rocketry organizations ...

  1. Introduction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The introduction to the second edition of the Compendium of Apple and Pear Diseases contains a general description of genus and species of commercial importance, some general information about growth and fruiting habits as well as recent production statistics. A general description of major scion c...

  2. WISPER: Wirless Space Power Experiment

    NASA Technical Reports Server (NTRS)

    Hawkins, Joseph

    1993-01-01

    The 1993 Advanced Design Project at the University of Alaska Fairbanks was to design a spacecraft as a technology demonstration of wireless power transmission (WPT). With cost effectiveness as a design constraint, a micro-satellite in low earth orbit (LEO) was chosen for the mission. Existing and near term technologies were analyzed and selected for the project. In addition to the conceptual design of the payload, support systems, and structure, the analysis included attention to safety, environmental impact, cost, and schedule for construction and operation. Wireless power beaming is not a new concept. Experimental demonstrations and study efforts have continued since the early 1960's. With the latest progress in transmitter and receiver technology, the next natural step is to beam power from earth to space. This proposed flight demonstration will advance the science of power beaming and prove the viability of various applications of WPT in space. Two methods of power beaming will be examined during the two separate phases of the spacecraft life. The first phase will demonstrate the technology and examine the theory of microwave power transmission at a high frequency. Special aspects of the first phase will include a highly accurate attitude control system and a 14 m inflatable parabolic antenna. The second phase will investigate the utilization of high intensity laser power using modified photovoltaic arrays. Special instrumentation on the spacecraft will measure the conversion efficiency from the received microwave or laser power to direct current power.

  3. Nova pulse power design and operational experience

    NASA Astrophysics Data System (ADS)

    Whitham, K.; Larson, D.; Merritt, B.; Christie, D.

    1987-01-01

    Nova is a 100 TW Nd++ solid state laser designed for experiments with laser fusion at Lawrence Livermore National Laboratory (LLNL). The pulsed power for Nova includes a 58 MJ capacitor bank driving 5336 flashlamps with millisecond pulses and subnanosecond high voltages for electro optics. This paper summarizes the pulsed power designs and the operational experience to date.

  4. Introduction

    NASA Astrophysics Data System (ADS)

    Takayama, Ken; Briggs*, Richard J.

    The motivation for the initial development of linear induction accelerators starting in the early 1960s came mainly from applications requiring intense electron pulses with beam currents and a charge per pulse above the range accessible to RF accelerators, and with particle energies beyond the capabilities of single stage pulsed-power diodes. The linear induction accelerators developed to meet these needs utilize a series of induction cells containing magnetic cores (torroidal geometry) driven directly by pulse modulators (pulsed power sources). This multistage "one-to-one transformer" configuration with non-resonant, low impedance induction cells accelerates kilo-Ampere-scale electron beam current pulses in induction linacs.

  5. Introduction

    NASA Astrophysics Data System (ADS)

    Poprawe, Reinhart

    The motivation for writing this book is at least threefold: the extremely promising laser characteristics of high-power diode lasers; their vast application potential in production processes like welding, soldering, polymer joining, cutting, and surface treatment; and last but not least, a 5-year project called "Modular Diode Laser Tools" funded by the German Federal Ministry of Education and Research, which this book summarizes in terms of results and future outlook.

  6. High Power Helicon Propulsion Experiments

    NASA Astrophysics Data System (ADS)

    Ziemba, Timothy; Slough, John; Winglee, Robert

    2005-02-01

    The High Power Helicon (HPH) under development at the University of Washington may have an attractive application as an electrode-less in-space thruster. Output plasma characteristics show that plasma is created in and near the helicon coil and is accelerated by a helicon induced axial potential downstream away from the HPH. The bulk acceleration of the plasma is believed to be due to a coupling of the plasma electrons to the helicon field, which in turn transfers energy to the ions via an ambipolar electric field. Downstream electric potentials of greater than 150 volts having been measured with the amplitude of the electric field being dependent on experimentally controlled parameters. Time of flight measurements of the plasma transiting downstream show specific impulses (Isp) near 2000 seconds for Argon with calculated thrust levels near 1 Newton for input powers to the plasma in the tens of kilowatts. The system is capable of using different neutral gases as propellants with nitrogen and hydrogen having baseline Isp levels of 3000 and 5000 seconds respectfully giving some variability in Isp and thrust by the choice of propellants. Current work focuses on the determination and optimization of the system efficiencies and increasing output power levels.

  7. TechSolutions 11: An Introduction to Power and Energy

    DTIC Science & Technology

    2009-01-01

    AMMTIAC and WSTIAC, respectively), which are operated by Alion Science and Technology. He has authored numerous technical papers, reports , and...comprehensive, but it does provide a solid background for many of the technical areas of power and energy presented in the other articles in this...publication. http://wstiac.alionscience.com/quarterly http://wstiac.alionscience.com/quarterly Report Documentation Page Form ApprovedOMB No. 0704-0188

  8. Introduction

    PubMed Central

    Taussig, Karen-Sue; Gibbon, Sahra Elizabeth

    2013-01-01

    We introduce this special issue of Medial Anthropology Quarterly on public health genomics by exploring both the unique contribution of ethnographic sensibility that medical anthropologists bring to the study of genomics and some of the key insights offered by the essays in this collection. As anthropologists, we are concerned with the power dynamics and larger cultural commitments embedded in practices associated with public health. We seek to understand, first, the broad significance of genomics as a cultural object and, second, the social action set into motion as researchers seek to translate genomic knowledge and technology into public health benefits. PMID:24214906

  9. High power diode lasers reliability experiment

    NASA Astrophysics Data System (ADS)

    Lu, Guoguang; Xie, Shaofeng; Hao, Mingming; Huang, Yun; En, Yunfei

    2013-12-01

    In order to evaluate and obtain the actual lifetime data of high power laser diodes, an automated high power laser diodes reliability experiment was developed and reported in this paper. This computer controlled setup operates the laser diodes 24 hours a day, the parameters such as output power, wavelength were test once in one hour. The experiment has 60 work stations, the temperature control range is from 25°C to 70°C, and the output power of the aging device is beyond 20W.

  10. Introduction

    NASA Astrophysics Data System (ADS)

    Dum, Ralph

    Various types of diverse networks — communication networks, transport networks, global business networks, networks of friends, or the Internet — shape our daily life and the way we think and act. We depend on various social, economic, and technological networks that weave a tissue of businesses, governments, technologies and that contain us as citizens, users, or customers. We only become aware of our dependence if failures occur in these networks: when cities are plunged into darkness because of a breakdown of the power grid like happened recently in New York, when national economies collapse because of a failure of global financial systems like happened in the South-Asian banking crisis, or when computer viruses spread with mind-boggling speed over information networks destroying or, even worse, exposing sensitive data.

  11. Introduction

    NASA Astrophysics Data System (ADS)

    Diniz, Pedro C.; Juurlink, Ben; Darte, Alain; Karl, Wolfgang

    This topic deals with architecture design and compilation for high performance systems. The areas of interest range from microprocessors to large-scale parallel machines; from general-purpose platforms to specialized hardware (e.g., graphic coprocessors, low-power embedded systems); and from hardware design to compiler technology. On the compilation side, topics of interest include programmer productivity issues, concurrent and/or sequential language aspects, program analysis, transformation, automatic discovery and/or management of parallelism at all levels, and the interaction between the compiler and the rest of the system. On the architecture side, the scope spans system architectures, processor micro-architecture, memory hierarchy, and multi-threading, and the impact of emerging trends.

  12. Introduction:

    PubMed Central

    Hopwood, Nick; Jones, Peter Murray; Kassell, Lauren; Secord, Jim

    2015-01-01

    summary Communication should be central to histories of reproduction, because it has structured how people do and do not reproduce. Yet communication has been so pervasive, and so various, that it is often taken for granted and the historical specificities overlooked. Making communication a frame for histories of reproduction can draw a fragmented field together, including by putting the promotion of esoteric ideas on a par with other practical activities. Paying communication close attention can revitalize the history of reproduction over the long term by highlighting continuities as well as the complex connections between new technologies and new approaches. Themes such as the power of storytelling, the claiming and challenging of expertise, and relations between knowledge and ignorance, secrecy and propriety also invite further study. PMID:26521666

  13. Introduction to Voigt's wind power plant. [energy conversion efficiency

    NASA Technical Reports Server (NTRS)

    Tompkin, J.

    1973-01-01

    The design and operation of a 100 kilowatt wind driven generator are reported. Its high speed three-bladed turbine operates at a height of 50 meters. Blades are rigidly connected to the hub and turbine revolutions change linearly with wind velocity, maintaining a constant speed ratio of blade tip velocity to wind velocity over the full predetermined wind range. Three generators installed in the gondola generate either dc or ac current. Based on local wind conditions, the device has a maximum output of 720 kilowatts at a wind velocity of 16 meters per second. Total electrical capacity is 750 kilowatts, and power output per year is 2,135,000 kilowatt/hours.

  14. Analysis on Possible Introduction of PV System Considering Output Power Fluctuation and Battery Technology Employing Optimal Power Generation Mix Model

    NASA Astrophysics Data System (ADS)

    Komiyama, Ryoichi; Shibata, Saeko; Nakamura, Yosuke; Fujii, Yasumasa

    This paper presents the evaluation on the impact of an extensive introduction of photovoltaic (PV) system and stationary battery technology into optimal power generation mix in Kanto and Kinki region. The introduction of solar PV system is expected to be extensively deployed in Japanese household sector and utility company in order to address the concerns of energy security and climate change. Considering this expected large-scale deployment of PV system in electric power system, it is necessary to investigate the optimal power generation mix which is technologically capable of controlling and accommodating the intermittent output-power fluctuation inherently derived from PV system. On these backgrounds, we develop both solar photovoltaic power generation model and optimal power generation mix model, including stationary battery technology, which are able to explicitly analyze the impact of PV output fluctuation in detailed resolution of time interval like 10 minutes at consecutive 365 days. Simulation results reveal that PV introduction does not necessarily increase battery technology due to the cost competitiveness of thermal power plants in load following requirement caused by PV system. Additionally, on the basis of sensitivity analysis on PV system cost, dramatic cost reduction proves to be indispensable enough for PV to supply a bulk of electricity similarly as thermal and nuclear power plant.

  15. Introduction

    NASA Astrophysics Data System (ADS)

    Yip, Sidney

    The way a scientist looks at the materials world is changing dramatically. Advances in the synthesis of nanostructures and in high-resolution microscopy are allowing us to create and probe assemblies of atoms and molecules at a level that was unimagined only a short time ago — the prospect of manipulating materials for device applications, one atom at a time, is no longer a fantasy. Being able to see and touch the materials up close means that we are more interested than ever in understanding their properties and behavior at the atomic level. Another factor which contributes to the present state of affairs is the advent of large-scale computation, once a rare and highly sophisticated resource accessible only to a few privileged scientists. In the past few years materials modeling, in the broad sense of theory and simulation in integration with experiments, has emerged as a field of research with unique capabilities, most notably the ability to analyze and predict a very wide range of physical structures and phenomena. Some would now say the modeling approach is becoming an equal partner to theory and experiment, the traditional methods of scientific inquiry.

  16. Introduction

    NASA Astrophysics Data System (ADS)

    1998-07-01

    Electron paramagnetic resonance imaging and Overhauser imaging are magnetic resonance techniques for detecting paramagnetic substances (i.e. molecules which have one or more unpaired electron(s) in their outer orbitals). The main impetus for developing these techniques is the intriguing possibility of detecting and imaging the distribution of free radicals in the body. Naturally occurring free radicals are widely believed to be involved in the early development of many diseases, so the ability to localize and quantify them in vivo would have profound implications for many areas of biomedical research. Stable free radicals can also be used as `contrast agents', and following their fate in the body can give useful insights into organ function. Some free radicals and paramagnetic solids have the ability to probe the chemical and physical nature of their surroundings, also offering a wide variety of potential applications, in particular the measurement of oxygen concentrations in tissues. Electron paramagnetic resonance (EPR) was first demonstrated in 1945, the same year that nuclear magnetic resonance (NMR) experiments were first carried out. EPR and NMR are very closely related at the fundamental level, differing mainly in the fact that EPR involves a magnetic resonance experiment on unpaired electrons in the sample, while NMR uses atomic nuclei with non-zero spin. On a practical level, the techniques are also closely related, despite the fact that most EPR experiments are continuous-wave, while virtually all NMR is carried out using pulsed, Fourier-transform methods. Overhauser-based techniques combine both flavours of magnetic resonance in EPR/NMR double-resonance experiments. While NMR has found a valuable place in clinical practice, in the form of magnetic resonance imaging (MRI), biomedical EPR is still in its relative infancy, with about twenty research groups world-wide having the capability to use EPR spectroscopy or imaging to study small animals in vivo. It

  17. The small community solar thermal power experiment

    NASA Technical Reports Server (NTRS)

    Kiceniuk, T.

    1982-01-01

    the objectives and current status of the Small Community Solar Thermal Power Experiment are discussed. The adjustments in programs goals made in response to the changing emphasis in the area of solar energy in national policy are addressed. Planned fabrication and testing activities for the test bed concentrator, power conversion assembly, and control system are outlined.

  18. Introduction

    NASA Astrophysics Data System (ADS)

    de Graauw, T.

    2010-01-01

    First of all, I would like to wish all of you an happy New Year, which I sincerely hope will bring you success, happiness and interesting new opportunities. For us in ALMA, the end of 2009 and the beginning of 2010 have been very exciting and this is once more a special moment in the development of our observatory. After transporting our third antenna to the high altitude Chajnantor plateau, at 5000 meters above sea level, our team successfully combined the outputs of these antennas using "phase closure", a standard method in interferometry. This achievement marks one more milestone along the way to the beginning of Commissioning and Science Verification, CSV, which, once completed, will mark the beginning of Early Science for ALMA. There was an official announcement about this milestone at the AAS meeting early January and we also wanted to share this good news with you through this newsletter, which contains the content of the announcement. In another area, this newsletter contains the progress on site and a presentation of the Atacama Compact Array (ACA). This is the second part of a two part series on antennas, a continuation of the article in the last newsletter. The ACA plays a crucial part in the imaging of extended sources with ALMA. Without the ACA, the ability to produce accurate images would be very restricted. Finally, as you know, we like to show the human face of this great endeavour we are building and this time, we decided to highlight the Department of Technical Services, another fundamental piece working actively to make ALMA the most powerful radio observatory ever built.

  19. Introduction

    NASA Astrophysics Data System (ADS)

    Cohen, Steven C.; Vaníček, Petr

    A symposium entitled "Slow Deformation and Transmission of Stress in the Earth" was convened at the XIXth General Assembly Meeting of the International Union of Geodesy and Geophysics. This monograph is based on presentations made at that symposium which was held on the campus of the University of British Columbia in Vancouver, Canada on August 15th and 17th, 1987. The objective of the symposium was to engage geophysicists and geodesists in a discussion of the mechanisms, models, and measurements of slow deformations and stress transmission in the Earth's crust and mantle. These deformations are characterized by their quasi-static nature in which the effects of acceleration are negligible compared to those due to gravitational, rheological, thermal, chemical, and phase-change stresses. Phenomena such as tectonic plate motions, postglacial rebound, mantle convection, strain accumulation, aseismic strain release, and polar motion-induced deformations are included in this description. For many phenomena the effects of anelasticity and temporal nonlinearity are significant. This view of slow deformations is largely geophysical. From a geodetic point of view, however, the maintenance of accurate coordinates of points on the Earth's surface requires that the geometry of ongoing deformation be taken into account [International Association of Geodesy, 1987]. This necessitates an understanding of the geophysical models of the temporal deformations and their predictive powers. Thus the symposium presenters were challenged to address such key issues as: the current state of understanding of the phenomena of slow deformation and transmission of stress, contrasts between alternative models, applicability of geophysical models to prediction of positional changes, and assessment of model and parameter accuracies. These were formidable challenges and as such were pursued by only some of the authors.

  20. Introduction

    NASA Astrophysics Data System (ADS)

    Schieck, Hans Paetz Gen.

    Spin is an entirely non-classical property of (elementary) particles [1], p. 198. A reference which deals with many aspects of spin (although the—in my mind—seminal Stern-Gerlach experiment (for details see Sect. 8.1 ) is never even mentioned) is "The Story of Spin" by Tomonaga [2] from which we cite: "It is a mysterious beast, and yet its practical effect prevails over the whole of science. The existence of spin, and the statistics associated with it, is the most subtle and ingenious design of Nature—without it the whole universe would collapse" (from the translator's (T. Oka) preface, p. vii). In nuclear physics, the nuclear, nucleon, and even quark spins enter in many ways. Examples are: hyperfine interaction, spin-orbit interaction, tensor force, spin-spin nucleon-nucleon interaction, the relation between spin and statistics which is not only the basis of the periodic table, but markedly influences the scattering of identical particles (e.g.{^{12}C} on {^{12}C} vs.{^{13}C} on ^{13}C,) etc.

  1. Introduction*

    PubMed Central

    Peay, Wayne J.; Rockoff, Maxine L.

    2005-01-01

    Objectives: This paper introduces the special supplement to the Journal of the Medical Library Association (JMLA) that documents the proceedings of the “Symposium on Community-based Health Information Outreach” held on December 2 and 3, 2004, at the National Library of Medicine (NLM). The goal of the symposium was to explore new models of health information outreach that are emerging as technology dramatically changes the abilities of medical and health services libraries to provide resources and services beyond their traditional institutional boundaries, with particular concern for consumer health information outreach through community-based organizations. The symposium's primary objectives were to learn about successful and promising work that had already been done as well as to develop a vision for the future that could inform the NLM's next National Network of Libraries of Medicine (NN/LM) contract. Another objective was to review and assess the NLM's Strategic Plan to Reduce Health Disparities with special emphasis on Native Americans. Method: The paper describes the background events and rationale that led to the NLM's decision to convene the symposium and summarizes the supplement's ten other papers, some of which were presented at the symposium and some of which were written afterward to capture the symposium's working sessions. Results: The symposium convened approximately 150 invited participants with a wide variety of perspectives and experience. Sessions were held to present exemplary outreach projects, to review the NLM's Strategic Plan to Reduce Health Disparities, to summarize the research underpinnings for evaluating outreach projects, and to provide a futurist's perspective. A panel of community representatives gave voice to the participants in outreach projects, and sixteen posters describing outreach projects were available, many of them with community representatives on hand to explain the work. Implications: This JMLA supplement provides a

  2. Introduction

    NASA Astrophysics Data System (ADS)

    Herbst, Eric

    2016-07-01

    The formation of life remains a mystery. In our three-day scientific event, we will hear talks and see posters concerning what astrochemistry and astrobiology can currently tell us about this mystery. The first subject to be explored by our speakers will be astrochemistry, and what has been learned about the formation of complex molecules in star- and planet-forming regions of the interstellar medium. This topic will be sub-divided into three subjects: astronomical observations, laboratory experiments, and simulations of the chemistry leading to large molecules, both in the gas and on the surfaces of interstellar dust particles. Some introductory remarks will be given about these subjects. We will next learn about the roles of comets and exoplanets. We will hear how comets can produce water and complex molecules, and possibly deliver them to nascent planets such as the early earth, and we will learn what current space probes such as Rosetta can tell us about the chemical make-up of comets. Regarding exoplanets, speakers will explore their likely atmospheres, and what complex molecules can be simulated in them. The last part of the event will be divided into various fields of astrobiology, including synthetic approaches to primitive life, paths to observations of life on other worlds, simulations of the origin of life, and the particular role of hydrothermal environments. In summary, we will learn about significant progress in astrochemistry and astrobiology, and yet we will also learn about how much more must be known before we can solve in its entirety the basic problem of how life arose.

  3. Introduction

    NASA Astrophysics Data System (ADS)

    Cohen, E. G. D.

    deduced for irreversible processes (C. Jarzynski). The survey of non-equilibrium steady states in statistical mechanics of classical and quantum systems employs heat bath models and the random matrix theory input. The quantum heat bath analysis and derivation of fluctuation-dissipation theorems is performed by means of the influence functional technique adopted to solve quantum master equations (D. Kusnezov). Chapter II deals with an issue of relaxation and its dynamical theory in both classical and quantum contexts. Pollicott-Ruelle resonance background for the exponential decay scenario is discussed for irreversible processes of diffusion in the Lorentz gas and multibaker models (P. Gaspard). The Pollicott-Ruelle theory reappears as a major inspiration in the survey of the behaviour of ensembles of chaotic systems, with a focus on model systems for which no rigorous results concerning the exponential decay of correlations in time is available (S. Fishman). The observation, that non-equilibrium transport processes in simple classical chaotic systems can be described in terms of fractal structures developing in the system phase space, links their formation and properties with the entropy production in the course of diffusion processes displaying a low dimensional deterministic (chaotic) origin (J. R. Dorfman). Chapter III offers an introduction to the theory of dynamical semigroups. Asymptotic properties of Markov operators and Markov semigroups acting in the set of probability densities (statistical ensemble notion is implicit) are analyzed. Ergodicity, mixing, strong (complete) mixing and sweeping are discussed in the familiar setting of "noise, chaos and fractals" (R. Rudnicki). The next step comprises a passage to quantum dynamical semigroups and completely positive dynamical maps, with an ultimate goal to introduce a consistent framework for the analysis of irreversible phenomena in open quantum systems, where dissipation and decoherence are crucial concepts (R

  4. Introduction

    NASA Technical Reports Server (NTRS)

    Wotring, Virginia E.; Southern, Sarka O.; Mentzer, Mark A.; Rodriquez-Chavez, Isaac

    2014-01-01

    The 2014 SPIE Sensing Technologies for Global Health, Military Medicine and Environmental Monitoring conference embraced a wealth of state-of-the-art information in basic and applied science. This event covered the latest developments in the following areas: Non-invasive Disease Diagnostics for Global Health- This opening series of two consecutive sessions focused on oral biospecimen based rapid assays and point-of-care devices for the detection of pathogens causing infectious diseases, biomarkers for cancer, and analytes for noncommunicable diseases such as diabetes. They also covered presentations on the human proteasome and microbiome with linkage to human diseases and diagnostic approaches. The sessions were built on the past experience and expertise of the National Institutes of Health, National Institutes of Dental and Craniofacial Research. Military Medicine I: Traumatic Brain Injury and PTSD-This assembly covered oral-biomarker based diagnostics for brain damage and TBI as well as prevention and rehabilitation technologies. Neurorehabilitation and noninvasive neuromodulation were also discussed as critical approaches for effective functioning. Military Medicine II: Physiology and Medicine of Extreme Environments and Spaceflight-This scientific segment showcased physiological, pharmacological and diagnostic sensing methodologies during spaceflight per the National Aeronautics and Space Administration as well as military-relevant toxicans and future sensing trends per the Department of Defense. It also included latest technologies to determine hydration status in warfighters, eye surgery using the latest laser technologies, and sensing tools for blood analysis. ? Sensing Technologies for Disease Diagnostics and Environmental Monitoring-This closing series of two consecutive sessions provided the venues to learn and discuss more results on the next generation of diagnostic tools and field technologies for diseases, including biomarker detection by digital

  5. Powerful Learning Experiences and Suzuki Music Teachers

    ERIC Educational Resources Information Center

    Reuning-Hummel, Carrie; Meyer, Allison; Rowland, Gordon

    2016-01-01

    Powerful Learning Experiences (PLEs) of Suzuki music teachers were examined in this fifth study in a series. The definition of a PLE is: "Experiences that stand out in memory because of their high quality, their impact on one's thoughts and actions over time, and their transfer to a wide range of contexts and circumstances." Ten…

  6. Introduction

    NASA Astrophysics Data System (ADS)

    de Laat, Cees; Develder, Chris; Jukan, Admela; Mambretti, Joe

    throughput. The second session groups 3 papers presenting methods, protocols and architectures that enhance capacities in the Networks. The paper titled: “NIC-assisted Cache-Efficient Receive Stack for Message Passing over Ethernet” presents the addition of multiqueue support in the Open-MX receive stack so that all incoming packets for the same process are treated on the same core. It then introduces the idea of binding the target end process near its dedicated receive queue. In general this multiqueue receive stack performs better than the original single queue stack, especially on large communication patterns where multiple processes are involved and manual binding is difficult. The authors of: “A Multipath Fault-Tolerant Routing Method for High-Speed Interconnection Networks” focus on the problem of fault tolerance for high-speed interconnection networks by designing a fault tolerant routing method. The goal was to solve a certain number of link and node failures, considering its impact, and occurrence probability. Their experiments show that their method allows applications to successfully finalize their execution in the presence of several faults, with an average performance value of 97% with respect to the fault-free scenarios. The paper: “Hardware implementation study of the Self-Clocked Fair Queuing Credit Aware (SCFQ-CA) and Deficit Round Robin Credit Aware (DRR-CA) scheduling algorithms” proposes specific implementations of the two schedulers taking into account the characteristics of current high-performance networks. A comparison is presented on the complexity of these two algorithms in terms of silicon area and computation delay. Finally we selected one paper for the special paper session: “A Case Study of Communication Optimizations on 3D Mesh Interconnects”. In this paper the authors present topology aware mapping as a technique to optimize communication on 3-dimensional mesh interconnects and hence improve performance. Results are presented

  7. A Tumbler Experiment as Introduction to Scientific Research.

    ERIC Educational Resources Information Center

    McKnight, Brian Keith

    1989-01-01

    Describes an experiment in which a tumbler is used to simulate the changes that pebbles undergo during stream transport. Provides information on a discussion of results, equipment needed, an additional assignment, and a list of references. (RT)

  8. Loads for pulsed power cylindrical implosion experiments

    SciTech Connect

    Anderson, W.E.; Armijo, E.V.; Barthell, B.L.; Bartos, J.J.; Bush, H.; Foreman, L.R.; Garcia, F.P.; Gobby, P.L.; Gomez, V.M.; Gurule, V.A.

    1994-07-01

    Pulse power can be used to generate high energy density conditions in convergent hollow cylindrical geometry through the use of appropriate electrode configuration and cylindrical loads. Cylindrically symmetric experiments are conducted with the Pegasus-H inductive store, capacitor energized pulse power facility at Los Alamos using both precision machined cylindrical liner loads and low mass vapor deposited cylindrical foil loads. The liner experiments investigate solid density hydrodynamic topics. Foil loads vaporize from Joule heating to generate an imploding cylindrical plasma which can be used to simulate some fluxes associated with fusion energy processes. Similar experiments are conducted with {open_quotes}Procyon{close_quotes} inductive store pulse power assemblies energized by explosively driven magnetic flux compression.

  9. An Introduction to Statistical Design of Experiments in Metallurgical Research,

    DTIC Science & Technology

    1963-01-01

    10 5. Recovery versus conditioning t ime in a three-level experiment...... 13 6. Recovery versus conditioning time in a...35 4. Tests in a factorial experiment to investigate recovery of manga- nese by flotation in which three levels of conditioning time and four...to • the factors Xa and • : ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ical recoveries of for the three fac— - tors and represent- ing the response by means

  10. Satellite Power System (SPS) public outreach experiment

    NASA Technical Reports Server (NTRS)

    Mcneal, S. R.

    1980-01-01

    An outreach experiment was conducted to improve the results of the satellite power system (SPS) concept development and evaluation program. The objectives of the outreach were to: (1) determine the areas of major concern relative to the SPS concept and (2) gain experience with an outreach process for use in future public involvement. The response to the outreach effort was positive, suggesting that the effort extended by the SPS project division to encourage an information exchange with the public was well received. The responses were analyzed and from them some questions and answers about the satellite power system are presented.

  11. An Introduction to Japanese Australian Dust Experiment - JADE

    NASA Astrophysics Data System (ADS)

    Mikami, M.; Leys, J.; Shao, Y.; McTainsh, G.; Ishizuka, M.; Yamada, Y.; Nagashima, H.

    2005-12-01

    Japanese Australian Dust Experiment-JADE was launched in April 2005 as a three year project. The project aims to gain a better understanding of wind erosion processes, including multi-size saltation, multi-size dust emission, and the meteorological/soil-physical conditions that control wind erosion. JADE also aims to develop and test a new wind erosion theory, that will explain the heterogeneous process of wind erosion. This will be incorporated into a numerical wind erosion model to predict streamwise saltation flux and dust emission from the surface. Field experiments are planned on cultivated and pasture land in the Lower Murray Darling Catchment of Australia. Multi-size saltation process and dust emission will be monitored using newly developed sand particle counter (SPC) and optical particle counter (OPC). A portable wind tunnel will be used to calibrate these sensors with orthodox methods and instruments. The first intensive observation is planed in March next year.

  12. The LDEF heat pipe experiment power systems

    NASA Technical Reports Server (NTRS)

    Tiller, S. E.

    1980-01-01

    A heatpipe experiment for a long duration exposure facility is described. The design and configuration of the power system of the spacecraft is reported with emphasis placed on its solar array panels, 12-ampere hour 18-cell nickel battery, and its electronic controller.

  13. The atmospheric lifetime experiment. I - Introduction, instrumentation, and overview

    NASA Technical Reports Server (NTRS)

    Prinn, R. G.; Simmonds, P. G.; Rasmussen, R. A.; Crawford, A. J.; Rosen, R. D.; Alyea, F. N.; Cardelino, C. A.; Cunnold, D. M.; Fraser, P. J.; Lovelock, J. E.

    1983-01-01

    The Atmospheric Lifetime Experiment is designed to determine accurately the atmospheric concentrations of the four halocarbons CFCl3, CF2Cl2, CCl4, and CH3CCl3, and also of N2O with emphasis on measurement of their long-term trends in the atmosphere. Comparison of these concentrations and trends for the four halocarbons with estimates of their industrial emission rates then enables calculations of their global circulation rates and globally averaged atmospheric lifetimes. The experiment utilizes automated dual-column electron-capture gas chromatographs which sample the background air about 4 times daily at the following globally distributed sites: Adrigole, Ireland, Cape Meares, Oregon; Ragged Point, Barbados; Point Matatula, American Samoa, and Cape Grim, Tasmania. The climatology of these 'clean air' sites and their ability to describe the global air mass are reviewed. The instrumentation and methods for data acquisition and processing are then described. An overview of the data obtained and the trends derived during the 3-year period from July 1978 through June 1981 for each of the five species being measured is presented.

  14. The atmospheric lifetime experiment. I - Introduction, instrumentation, and overview

    NASA Astrophysics Data System (ADS)

    Prinn, R. G.; Simmonds, P. G.; Rasmussen, R. A.; Crawford, A. J.; Rosen, R. D.; Alyea, F. N.; Cardelino, C. A.; Cunnold, D. M.; Fraser, P. J.; Lovelock, J. E.

    1983-10-01

    The Atmospheric Lifetime Experiment is designed to determine accurately the atmospheric concentrations of the four halocarbons CFCl3, CF2Cl2, CCl4, and CH3CCl3, and also of N2O with emphasis on measurement of their long-term trends in the atmosphere. Comparison of these concentrations and trends for the four halocarbons with estimates of their industrial emission rates then enables calculations of their global circulation rates and globally averaged atmospheric lifetimes. The experiment utilizes automated dual-column electron-capture gas chromatographs which sample the background air about 4 times daily at the following globally distributed sites: Adrigole, Ireland, Cape Meares, Oregon; Ragged Point, Barbados; Point Matatula, American Samoa, and Cape Grim, Tasmania. The climatology of these 'clean air' sites and their ability to describe the global air mass are reviewed. The instrumentation and methods for data acquisition and processing are then described. An overview of the data obtained and the trends derived during the 3-year period from July 1978 through June 1981 for each of the five species being measured is presented.

  15. Introduction: Young Fatherhood: Lived experiences and policy challenges.

    PubMed

    Neale, Bren

    2016-01-01

    The entry of young people into early parenthood has long been regarded as an issue for social policy and for professional practice in the UK and internationally. Despite a steadily falling trend, most notably since 1998, the UK still has one of the highest rates of teenage pregnancy in Europe, concentrated in the most socially disadvantaged areas of the country (Office for National Statistics, 2015). The majority of these pregnancies are unplanned, with about half resulting in the birth of a child, although the extent to which this should be a cause for concern is a contested issue (Duncan et al., 2010). Considerable research evidence exists on the experiences of young mothers, with a range of interventions designed to meet their needs. However, young fathers (defined as those under the age of 25, a quarter of whom are estimated to be in their teens) have, until recently, been neglected in both research and policy. Over the past decade, small pockets of research evidence on the circumstances, practices and values of young fathers have begun to coalesce into a fledgling evidence base. However, the notion of 'feckless' young men, who are assumed to be absent, or disinterested in 'being there', or, worse, regarded as a potential risk to their children, continues to hold sway, particularly in popular media and some political discourses (Neale and Davies, 2015).

  16. High Power Experiments in VX-10

    NASA Astrophysics Data System (ADS)

    Squire, Jared; Chang-Diaz, Franklin; Araya-Chacon, Gonzalo; Jacobson, Verlin; Glover, Tim; McCaskill, Greg; Vera, Jerry; Baity, Wally; Carter, Mark; Goulding, Rick

    2004-11-01

    In the Advanced Space Propulsion Laboratory VASIMR experiment (VX-10) we have measured a plasma flux to input gas rate ratio near 100power levels up to 10 kW. The plasma source is being developed to supply a dense target with a high degree of ionization for ICRF acceleration of the flow in an expanding magnetic field. An upgrade to 20 kW helicon operations is underway. Recent results at Oak Ridge National Laboratory show enhanced efficiency operation with a high power density, over 5 kW in a 5 cm diameter tube. Our helicon is presently 9 cm in diameter, so comparable power densities will be achieved in VX-10. We have operated with a Boswell double-saddle antenna design with a magnetic cusp just upstream of the antenna. Recently we have converted to a double-helix half-turn antenna. ICRF experiments have been performed as 1.5 kW that show significant plasma flow acceleration, doubling the flow velocity. A 10 kW ICRF upgrade is underway. Results from high total power ( ˜ 30 kW) experiments with this new helicon antenna and ICRF acceleration are presented.

  17. Solar power tower development: Recent experiences

    SciTech Connect

    Tyner, C.; Kolb, G.; Prairie, M.

    1996-12-01

    Recent experiences with the 10 MW{sub e} Solar Two and the 2.5 MW{sub t} TSA (Technology Program Solar Air Receiver) demonstration plants are reported. The heat transfer fluids used in these solar power towers are molten-nitrate salt and atmospheric air, respectively. Lessons learned and suggested technology improvements for next-generation plants are categorized according to subsystem. The next steps to be taken in the commercialization process for each these new power plant technologies is also presented.

  18. An Enzymatic Clinical Chemistry Laboratory Experiment Incorporating an Introduction to Mathematical Method Comparison Techniques

    ERIC Educational Resources Information Center

    Duxbury, Mark

    2004-01-01

    An enzymatic laboratory experiment based on the analysis of serum is described that is suitable for students of clinical chemistry. The experiment incorporates an introduction to mathematical method-comparison techniques in which three different clinical glucose analysis methods are compared using linear regression and Bland-Altman difference…

  19. Apollo experience report: Power generation system

    NASA Technical Reports Server (NTRS)

    Bell, D., III; Plauche, F. M.

    1973-01-01

    A comprehensive review of the design philosophy and experience of the Apollo electrical power generation system is presented. The review of the system covers a period of 8 years, from conception through the Apollo 12 lunar-landing mission. The program progressed from the definition phase to hardware design, system development and qualification, and, ultimately, to the flight phase. Several problems were encountered; however, a technology evolved that enabled resolution of the problems and resulted in a fully manrated power generation system. These problems are defined and examined, and the corrective action taken is discussed. Several recommendations are made to preclude similar occurrences and to provide a more reliable fuel-cell power system.

  20. Photovoltaic array space power plus diagnostics experiment

    NASA Technical Reports Server (NTRS)

    Burger, D. R.

    1990-01-01

    The objective is to summarize the five years of hardware development and fabrication represented by the Photovoltaic Array Space Power Plus Diagnostics (PASP Plus) Instrument. The original PASP Experiment requirements and background is presented along with the modifications which were requested to transform the PASP Experiment into the PASP Plus Instrument. The PASP Plus hardware and software is described. Test results for components and subsystems are given as well as final system tests. Also included are appendices which describe the major subsystems and present supporting documentation such as block diagrams, schematics, circuit board artwork, drawings, test procedures and test reports.

  1. Pulse Detonation Rocket Magnetohydrodynamic Power Experiment

    NASA Technical Reports Server (NTRS)

    Litchford, R. J.; Jones, J. E.; Dobson, C. C.; Cole, J. W.; Thompson, B. R.; Plemmons, D. H.; Turner, M. W.

    2003-01-01

    The production of onboard electrical power by pulse detonation engines is problematic in that they generate no shaft power; however, pulse detonation driven magnetohydrodynamic (MHD) power generation represents one intriguing possibility for attaining self-sustained engine operation and generating large quantities of burst power for onboard electrical systems. To examine this possibility further, a simple heat-sink apparatus was developed for experimentally investigating pulse detonation driven MHD generator concepts. The hydrogen oxygen fired driver was a 90 cm long stainless steel tube having a 4.5 cm square internal cross section and a short Schelkin spiral near the head end to promote rapid formation of a detonation wave. The tube was intermittently filled to atmospheric pressure and seeded with a CsOH/methanol prior to ignition by electrical spark. The driver exhausted through an aluminum nozzle having an area contraction ratio of A*/A(sub zeta) = 1/10 and an area expansion ratio of A(sub zeta)/A* = 3.2 (as limited by available magnet bore size). The nozzle exhausted through a 24-electrode segmented Faraday channel (30.5 cm active length), which was inserted into a 0.6 T permanent magnet assembly. Initial experiments verified proper drive operation with and without the nozzle attachment, and head end pressure and time resolved thrust measurements were acquired. The exhaust jet from the nozzle was interrogated using a polychromatic microwave interferometer yielding an electron number density on the order of 10(exp 12)/cm at the generator entrance. In this case, MHD power generation experiments suffered from severe near-electrode voltage drops and low MHD interaction; i.e., low flow velocity, due to an inherent physical constraint on expansion with the available magnet. Increased scaling, improved seeding techniques, higher magnetic fields, and higher expansion ratios are expected to greatly improve performance.

  2. Plasma focus experiments powered by explosive generators

    NASA Astrophysics Data System (ADS)

    Freeman, B. L.; Caird, R. S.; Erickson, D. J.; Fowler, C. M.; Garn, W. B.; Kruse, H. W.; King, J. C.; Bartram, D. E.; Kruse, P. J.

    1983-03-01

    The plasma focus project began as an effort to develop an intense, pulsed, expendable neutron radiographic source. Since previous efforts to power a plasma focus with explosive generators were successful, we proposed to couple plate generators to a coaxial-geometry plasma focus to achieve this goal. Utilizing a small capacitor bank and a selected set of diagnostics, the explosive experiments were successfully conducted with maximum currents of 1.5 MA to 2.4 MA. A maximum neutron yield of approx. 3 x 10 (11) (DD) neutrons was achieved at the 2.4 MA level. Since the neutron yield did scale as a power of the maximum delivered current, and the neutron-producing source region was small, this approach is an attractive option to achieve a neutron radiographic source. The need for a reliable open-circuiting switch at several megamperes has resulted in postponement of the project.

  3. Photovoltaic array space power plus diagnostics experiment

    NASA Technical Reports Server (NTRS)

    Guidice, Donald A.

    1990-01-01

    The objective of the Photovoltaic Array Space Power Plus Diagnostics (PASP Plus) experiment is to measure the effects of the interaction of the low- to mid-altitude space environment on the performance of a diverse set of small solar-cell arrays (planar and concentrator, representative of present and future military technologies) under differing conditions of velocity-vector orientation and simulated (by biasing) high-voltage operation. Solar arrays to be tested include Si and GaAs planar arrays and several types of GaAs concentrator arrays. Diagnostics (a Langmuir probe and a pressure gauge) and a transient pulse monitor (to measure radiated and conducted EMI during arcing) will be used to determine the impact of the environment on array operation to help verify various interactions models. Results from a successful PASP Plus flight will furnish answers to important interactions questions and provide inputs for design and test standards for photovoltaic space-power subsystems.

  4. High power ICRF experiments on TFTR

    SciTech Connect

    Wilson, J.R.; Hosea, J.C.; Majeski, R.; Phillips, C.K.; Rogers, J.H.; Schilling, G.; Stevens, J.; Taylor, G. ); Murakami, M.; Rasmussen, D.A. ); TFTR Group

    1994-10-15

    ICRF heating experiments have been conducted in a variety of conditions on the TFTR tokamak. Power levels up to 11.4 MW have been applied. During NBI driven supershot discharges the central electron temperature has been increased from 9 kev to 13 kev via [sup 3]He minority heating with 6 MW of RF power. This temperature increase leads to a 70% increase in the projected alpha energy slowing down time. In gas fueled L-mode discharges the energetic hydrogen minority tail is observed to strongly influence the MHD stability of the discharges. Besides the stabilization of the sawtooth instability previously reported, the destabilization of both the m=1 fishbone and the TAE (toroidal Alfven eigenmode) instabilities have been observed. The TAE instability is accompanied with significant ([similar to]10%) loss of high energy ions and degradation in global confinement time.

  5. Introduction to macroscopic power scaling principles for high-order harmonic generation

    NASA Astrophysics Data System (ADS)

    Heyl, C. M.; Arnold, C. L.; Couairon, A.; L'Huillier, A.

    2017-01-01

    This tutorial presents an introduction to power scaling concepts for high-order harmonic generation (HHG) and attosecond pulse production. We present an overview of state-of-the-art HHG-based extreme ultraviolet (XUV) sources, followed by a brief introduction to basic principles underlying HHG and a detailed discussion of macroscopic effects and scaling principles. Particular emphasis is put on a general scaling model that allows the invariant scaling of the HHG process both, to μJ-level driving laser pulses and thus to multi-MHz repetition rates as well as to 100 mJ-or even Joule-level laser pulses, allowing new intensity regimes with attosecond XUV pulses.

  6. Microwave power transmission system studies. Volume 2: Introduction, organization, environmental and spaceborne systems analyses

    NASA Technical Reports Server (NTRS)

    Maynard, O. E.; Brown, W. C.; Edwards, A.; Haley, J. T.; Meltz, G.; Howell, J. M.; Nathan, A.

    1975-01-01

    Introduction, organization, analyses, conclusions, and recommendations for each of the spaceborne subsystems are presented. Environmental effects - propagation analyses are presented with appendices covering radio wave diffraction by random ionospheric irregularities, self-focusing plasma instabilities and ohmic heating of the D-region. Analyses of dc to rf conversion subsystems and system considerations for both the amplitron and the klystron are included with appendices for the klystron covering cavity circuit calculations, output power of the solenoid-focused klystron, thermal control system, and confined flow focusing of a relativistic beam. The photovoltaic power source characteristics are discussed as they apply to interfacing with the power distribution flow paths, magnetic field interaction, dc to rf converter protection, power distribution including estimates for the power budget, weights, and costs. Analyses for the transmitting antenna consider the aperture illumination and size, with associated efficiencies and ground power distributions. Analyses of subarray types and dimensions, attitude error, flatness, phase error, subarray layout, frequency tolerance, attenuation, waveguide dimensional tolerances, mechanical including thermal considerations are included. Implications associated with transportation, assembly and packaging, attitude control and alignment are discussed. The phase front control subsystem, including both ground based pilot signal driven adaptive and ground command approaches with their associated phase errors, are analyzed.

  7. Satellite power system (SPS) public outreach experiment

    SciTech Connect

    McNeal, S.R.

    1980-12-01

    To improve the results of the Satellite Power System (SPS) Concept Development and Evaluation Program, an outreach experiment was conducted. Three public interest groups participated: the L-5 Society (L-5), Citizen's Energy Project (CEP), and the Forum for the Advancement of Students in Science and Technology (FASST). Each group disseminated summary information about SPS to approximately 3000 constituents with a request for feedback on the SPS concept. The objectives of the outreach were to (1) determine the areas of major concern relative to the SPS concept, and (2) gain experience with an outreach process for use in future public involvement. Due to the combined efforts of all three groups, 9200 individuals/organizations received information about the SPS concept. Over 1500 receipients of this information provided feedback. The response to the outreach effort was positive for all three groups, suggesting that the effort extended by the SPS Project Division to encourage an information exchange with the public was well received. The general response to the SPS differed with each group. The L-5 position is very much in favor of SPS; CEP is very much opposed and FASST is relatively neutral. The responses are analyzed, and from the responses some questions and answers about the satellite power system are presented in the appendix. (WHK)

  8. Pulsed power accelerator for material physics experiments

    NASA Astrophysics Data System (ADS)

    Reisman, D. B.; Stoltzfus, B. S.; Stygar, W. A.; Austin, K. N.; Waisman, E. M.; Hickman, R. J.; Davis, J.-P.; Haill, T. A.; Knudson, M. D.; Seagle, C. T.; Brown, J. L.; Goerz, D. A.; Spielman, R. B.; Goldlust, J. A.; Cravey, W. R.

    2015-09-01

    We have developed the design of Thor: a pulsed power accelerator that delivers a precisely shaped current pulse with a peak value as high as 7 MA to a strip-line load. The peak magnetic pressure achieved within a 1-cm-wide load is as high as 100 GPa. Thor is powered by as many as 288 decoupled and transit-time isolated bricks. Each brick consists of a single switch and two capacitors connected electrically in series. The bricks can be individually triggered to achieve a high degree of current pulse tailoring. Because the accelerator is impedance matched throughout, capacitor energy is delivered to the strip-line load with an efficiency as high as 50%. We used an iterative finite element method (FEM), circuit, and magnetohydrodynamic simulations to develop an optimized accelerator design. When powered by 96 bricks, Thor delivers as much as 4.1 MA to a load, and achieves peak magnetic pressures as high as 65 GPa. When powered by 288 bricks, Thor delivers as much as 6.9 MA to a load, and achieves magnetic pressures as high as 170 GPa. We have developed an algebraic calculational procedure that uses the single brick basis function to determine the brick-triggering sequence necessary to generate a highly tailored current pulse time history for shockless loading of samples. Thor will drive a wide variety of magnetically driven shockless ramp compression, shockless flyer plate, shock-ramp, equation of state, material strength, phase transition, and other advanced material physics experiments.

  9. Fuel supply of nuclear power industry with the introduction of fast reactors

    NASA Astrophysics Data System (ADS)

    Muraviev, E. V.

    2014-12-01

    The results of studies conducted for the validation of the updated development strategy for nuclear power industry in Russia in the 21st century are presented. Scenarios with different options for the reprocessing of spent fuel of thermal reactors and large-scale growth of nuclear power industry based on fast reactors of inherent safety with a breeding ratio of ˜1 in a closed nuclear fuel cycle are considered. The possibility of enhanced fuel breeding in fast reactors is also taken into account in the analysis. The potential to establish a large-scale nuclear power industry that covers 100% of the increase in electric power requirements in Russia is demonstrated. This power industry may be built by the end of the century through the introduction of fast reactors (replacing thermal ones) with a gross uranium consumption of up to ˜1 million t and the termination of uranium mining even if the reprocessing of spent fuel of thermal reactors is stopped or suffers a long-term delay.

  10. Accelerating the introduction of HTS products for a broad range of electric power and industrial applications

    NASA Astrophysics Data System (ADS)

    Eaton, Russell

    2002-01-01

    The Department of Energy (DOE), as part of its Superconductivity Program for Electric Systems, is successfully pursuing the development of electric power and industrial devices, incorporating significant high-temperature superconducting (HTS) components or subsystems, through its innovative Superconducting Partnership Initiative (SPI). The objective of the SPI is to accelerate the commercial introduction of the HTS products for a broad range of electric power and industrial applications. DOE's approach to accomplishing the SPI objective is to support cost shared projects carried out by industry led teams. DOE will fund projects to develop HTS devices that are either in (1) the research and development stage (Phase 1), (2) the pre-commercialization stage (Phase II), or (3) the commercial entry stage (Phase III). DOE's industry partners must contribute at least half a project's costs. These teams will include capabilities needed to develop the device as well as to develop the business plan for the commercial product introduction. DOE's partners consist of vertically integrated teams consisting of equipment manufacturers, HTS wire and coil suppliers, national laboratories, and end users, primarily utilities. These partners carry out the multi-year technology development efforts, consisting generally of design, construction, and testing of the HTS system. Finally, commercialization of HTS products will be discussed primarily in terms of benefits these products will have over competing products based upon conventional conductors and the critical need for affordable, practical HTS materials and conductors for these applications. .

  11. AAFE man-made noise experiment project. Volume 1: Introduction experiment definition and requirements

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An experiment was conducted to measure and map the man-made radio frequency emanations which exist at earth orbital altitudes. The major objectives of the program are to develop a complete conceptual experiment and developmental hardware for the collection and processing of data required to produce meaningful statistics on man-made noise level variations as functions of time, frequency, and geographic location. A wide dispersion measurement receiver mounted in a spacecraft operating in a specialized orbit is used to obtain the data. A summary of the experiment designs goals and constraints is provided. The recommended orbit for the spacecraft is defined. The characteristics of the receiver and the antennas are analyzed.

  12. Pulse Detonation Rocket MHD Power Experiment

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Cook, Stephen (Technical Monitor)

    2002-01-01

    magnet assembly were then installed on Marshall Space Flight Center's (MSFC's) rectangular channel pulse detonation research engine. Magnetohydrodynamic (MHD) electrical power extraction experiments were carried out for a range of load impedances in which cesium hydroxide seed (dissolved in methanol) was sprayed into the gaseous oxygen/hydrogen propellants. Positive power extraction was obtained, but preliminary analysis of the data indicated that the plasma electrical conductivity is lower than anticipated and the near-electrode voltage drop is not negligible. It is believed that the electrical conductivity is reduced due to a large population of negative OH ions. This occurs because OH has a strong affinity for capturing free electrons. The effect of near-electrode voltage drop is associated with the high surface-to-volume ratio of the channel (1-inch by 1-inch cross-section) where surface effects play a dominant role. As usual for MHD devices, higher performance will require larger scale devices. Overall, the gathered data is extremely valuable from the standpoint of understanding plasma behavior and for developing empirical scaling laws.

  13. Explosive Pulsed Power Experiments At The Phillips Laboratory

    DTIC Science & Technology

    1997-06-01

    Weapons and Survivability Directorate Phillips Laboratory Kirtland AFB, NM 87117 J. Graham, W. Sornrnars Albuquerque Division Maxwell Technologies... Phillips Laboratory Kirtland AFB, NM 87117 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10...pulse shaping/impedance matching systems are discussed. Introduction Air Force missions utilizing pulsed power technology increasingly require the

  14. LH power modulation experiment on JET

    NASA Astrophysics Data System (ADS)

    Baranov, Y.; Kirov, K.; Goniche, M.; Mailloux, J.; Mayoral, M.-L.; Ongena, J.; Nave, F.

    2009-11-01

    LH power modulation was recently used at JET to quantify experimentally the LH current drive efficiency and power deposition. A new approach was applied for the analysis of the amplitude and phase of electron temperature Te perturbations δTe(kωo) at different harmonics k of the modulation frequency ωo. A solution of the Fokker-Planck equation combined with heat transport modelling was used to study the dependence of the ratio of the perturbation of different harmonics k and n, δTe(kωo)/δTe(nωo), and the phase shift of the harmonics δφ(kωo) on the plasma parameters and electron distribution function plateau width, which is directly connected to the current drive efficiency. The results of the modelling were compared with the experimental data to estimate the current drive efficiency. In addition, LH power deposition profiles were deduced from the radial dependence of δφ(ωo). The maximum of the LH power deposition becomes more peripheral and with a reduced current drive efficiency at higher densities. In H-Mode plasmas, at pedestal densities above the LH accessibility limit, a large fraction of the power is absorbed beyond the separatrix. Finally, the experimental power deposition profiles are more peripheral than the calculated ones obtained from combined ray tracing and Fokker-Planck Plank modelling. The experimental results indicate that the LH power spectrum in the plasma is modified, with more power in the high N// components.

  15. 77 FR 12086 - Final Staff Guidance, Revision 4 to Standard Review Plan; Section 8.1 on Electric Power-Introduction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-28

    ... COMMISSION Final Staff Guidance, Revision 4 to Standard Review Plan; Section 8.1 on Electric Power... ``Electric Power--Introduction,'' (Agencywide Documents Access and Management System (ADAMS) Accession No... Section 8.1 on ``Electric Power--Introduction,'' (ADAMS Accession No. ML111180542) and the companion BTP...

  16. HAARP High Power Experiments and Observations of Ionospheric Interactions

    DTIC Science & Technology

    1996-01-01

    HAARP HIGH POWER EXPERIMENTS AND OBSERVATIONS OF IONOSPHERIC INTERACTIONS Paul Rodriguez(1), Edward Kennedy(2), Paul Kossey(3), Michael Kaiser(4...Initial experiments showed scintillation-like variations in low frequency propagation through the earth’s ionosphere . A HAARP -HIPAS transmission experiment... ionospheric irregularities. Recently, lunar echoes at 8 MHz were detected by WIND. The experiments at HAARP will extend to nonlinear regimes as power

  17. LH power modulation experiment on JET

    SciTech Connect

    Baranov, Y.; Kirov, K.; Mailloux, J.; Mayoral, M.-L.; Nave, F.; Ongena, J.

    2009-11-26

    LH power modulation was recently used at JET to quantify experimentally the LH current drive efficiency and power deposition. A new approach was applied for the analysis of the amplitude and phase of electron temperature T{sub e} perturbations {delta}T{sub e}(k{omega}{sub o}) at different harmonics k of the modulation frequency {omega}{sub o}. A solution of the Fokker-Planck equation combined with heat transport modelling was used to study the dependence of the ratio of the perturbation of different harmonics k and n, {delta}T{sub e}(k{omega}{sub o})/{delta}T{sub e}(n{omega}{sub o}), and the phase shift of the harmonics {delta}{phi}(k{omega}{sub o}) on the plasma parameters and electron distribution function plateau width, which is directly connected to the current drive efficiency. The results of the modelling were compared with the experimental data to estimate the current drive efficiency. In addition, LH power deposition profiles were deduced from the radial dependence of {delta}{phi}({omega}{sub o}). The maximum of the LH power deposition becomes more peripheral and with a reduced current drive efficiency at higher densities. In H-Mode plasmas, at pedestal densities above the LH accessibility limit, a large fraction of the power is absorbed beyond the separatrix. Finally, the experimental power deposition profiles are more peripheral than the calculated ones obtained from combined ray tracing and Fokker-Planck Plank modelling. The experimental results indicate that the LH power spectrum in the plasma is modified, with more power in the high N// components.

  18. Renewables Portfolio Standards: A Factual Introduction toExperience from the United States

    SciTech Connect

    Wiser, R.; Namovicz, C.; Gielecki, M.; Smith, R.

    2007-05-09

    Renewables portfolio standards (RPS) have--since the late 1990s--proliferated at the state level in the United States. What began as a policy idea minted in California and first described in detail in the pages of the 'Electricity Journal' FPT has emerged as an important driver for renewable energy capacity additions in the United States. Over the years, articles in the 'Electricity Journal' have explored the RPS in more detail, identifying both its strengths and weaknesses. The present article provides an introduction to the history, concept, and design of the RPS, reviews early experience with the policy as applied at the state level, and provides a brief overview of Federal RPS proposals to date and the possible relationship between Federal and state RPS policies. Our purpose is to offer a factual introduction to the RPS, as applied and considered in the U.S. Though elements of state RPS design are summarized here, other publications provide a more thorough review of design lessons that emerge from that experience. In addition, the present article does not describe the results of economic analyses of Federal RPS proposals, though we do cite many of the analyses conducted by the U.S. DOE's Energy Information Administration (EIA).

  19. Wind-powered heat pump experiment

    SciTech Connect

    Regan, D.C.

    1983-05-01

    The work described in this report was completed in two parts. The first part was an evaluation of an automotive type freon compressor, which demonstrated that such a device could be operated at slow speeds (600 to 1200 rpm) and still produce useful amounts of heat transfer. This device was evaluated and output measured by temperature measurements made on tanks of water in which the condenser and evaporator coils were immersed. The second portion of the project was to have been a demonstration using a wind turbine as the motive power and construction of a full scale system. However, after several different attempts to construct a working system, the work had to be terminated because the device to convert the wind power to mechanical power for turning the compressor coud never be successfully operated for any extended period of time. A description of the work completed and the reasons for the failure of the concept are delineated.

  20. Starting to Experiment with Wave Power

    ERIC Educational Resources Information Center

    Hare, Jonathan; McCallie, Ellen

    2005-01-01

    Outlined is a simple design for a working wave-powered electrical generator based on one made on the BBC "Rough Science" TV series. The design has been kept deliberately simple to facilitate rapid pupil/student involvement and most importantly so that there is much scope for their own ingenuity and ideas. The generator works on the principle of…

  1. Advance Power Technology Experiment for the Starshine 3 Satellite

    NASA Technical Reports Server (NTRS)

    Jenkins, Phillip; Scheiman, David; Wilt, David; Raffaelle, Ryne; Button, Robert; Smith, Mark; Kerslake, Thomas; Miller, Thomas; Bailey, Sheila (Technical Monitor); Hepp, A. (Technical Monitor)

    2001-01-01

    The Starshine 3 satellite will carry several power technology demonstrations. Since Starshine 3 is primarily a passive experiment and does not need electrical power to successfully complete its mission, the requirement for a highly reliable power system is greatly reduced. This creates an excellent opportunity to test new power technologies. Several government and commercial interests have teamed up to provide Starshine 3 with a small power system using state-of-the-art components. Starshine 3 will also fly novel integrated microelectronic power supplies (IWS) for evaluation.

  2. MSG Power Subsystem Flight Return Experience

    NASA Astrophysics Data System (ADS)

    Giacometti, G.; Canard, JP.; Perron, O.

    2011-10-01

    The Meteosat programme has been running for more than twenty years under ESA leadership. Meteosat Second Generation (MSG) is a series of 4 geostationary satellites developed and procured by the European Space Agency (ESA) on behalf of the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT). Eumetsat is still operating two of the first generation satellites models named MOP3 and MTP1 which are pointed towards the Indian ocean. The European meteorological service is now enhanced by two spacecrafts of the Second Generation (MSG-1 and MSG-2). They have been launched by Ariane 5 in August 2002 and December 2005 respectively. Thales Alenia Space, Prime Contractor of the program, has developed the MSG spacecraft based on a spin-axis stabilized technology. The Electrical Power Subsystem was subcontracted to Astrium GmbH. The Solar Array is composed of 8 body mounted panels, based on Carbon Fibre Reinforced Panel substrate. The Solar network utilizes 7854 Silicon High Eta cells delivering a beginning of life power of 740W. The 28 volts mainbus is regulated using a series shunt regulating concept (S3R type). Two identical SAFT batteries, built from NiCd cells and offering a 29Ah nameplate capacity are connected to the mainbus through battery discharge and charge regulators. Both Solar Array and batteries have been designed to provide power and energy for a nominal 7 years lifetime. These equipments are continuously monitored and are still operating in excellent condition after more than eight and five years in orbit. This paper will present the major electrical design aspects of the power chain and will describe the main parameters performances, which are analysed during the in-orbit operations. Batteries ageing is detailed thanks to reconditioning processed telemetry while the solar array performances over lifetime use dedicated solar array telemetry.

  3. A Power and Particle Flow Analysis of the VASIMR Experiments

    NASA Astrophysics Data System (ADS)

    Bengtson, R. D.; Gibson, J.; Panevsky, M.; Breizman, B. N.; Díaz, F. R. Chang; Baine, M.; Ilin, A. V.; McCaskill, G. E.; Squire, J. P.; Winter, D. S.; Bering, E. A.

    2000-10-01

    We will present a power and particle balance of the VASIMR experiment. Power input is measured with measurements of AC voltage, currents, and their relative phase. Particle flow in is measured with flow meters along with pressure measurements at several locations. Power losses to the wall are measured through thermocouples. Spectroscopic measurements provide an estimate of impurity density, an estimate of radiated power, and electron temperature measurements. A bolometer with an energy sensitivity for energies gives an estimate of total radiated power and is verified with measurements of H_α at several locations. Ion flow velocities are estimated through three techniques: Mach probes, retarding potential analyzer, and spectroscopic measurements. Plasma conditions are measured using Langmuir probes designed to reduce RF interference. These measurements will be combined to present a consistent picture of power and particle flow in VASIMR experiment. Scaling with atomic mass, RF power, and particle flow will also be presented.

  4. The shelf edge exchange processes experiment, SEEP-II: an introduction to hypotheses, results and conclusions

    NASA Astrophysics Data System (ADS)

    Biscaye, Pierre E.; Flagg, Charles N.; Falkowski, Paul G.

    The SEEP (Shelf Edge Exchange Processes)-II experiment was the second of two that took place in the Middle Atlantic Bight (MAB) of the eastern U.S. continental shelf and slope. The experiment included an array of 10 multi-instrumented moorings deployed for 15 months and 10 oceanographic cruises, all designed to address the problem of the fate of continental shelf particulate matter in general, and organic carbon in particular. This paper provides the setting and background for the SEEP Program, the SEEP-II experiment and an introduction to the 18 papers constituting the subject of this special volume. Because those papers lack one of a general nature on the physical oceanographic setting of the experiment, that aspect is treated in somewhat more detail here. The results of the experiment overwhelmingly show that the working hypothesis on which the SEEP Program was undertaken and sponsored by the Department of Energy is not valid. That is, there is not an export to the adjacent slope and open ocean of a large proportion of the particulate matter introduced to and biologically generated in the waters of the continental shelf; most of the biogenic particulate matter is recycled by consumption (bacterial and otherwise) and oxidation on the shelf, and only a small proportion (of order ≪5%) is exported to the adjacent slope. The small amount that is exported appears to be deposited preferentially in the sediments of an area of the slope centered at about 1000 m, and the export and sedimentation to that depocenter appears to increase from the northern to the southern MAB.

  5. Green Power Marketing Abroad: Recent Experience and Trends

    SciTech Connect

    Bird, L.; Wustenhagen, R.; Aabakken, J.

    2002-04-01

    Green power marketing--the act of differentially selling electricity generated wholly or in part from renewable sources--has emerged in more than a dozen countries around the world. This report reviews green power marketing activity abroad to gain additional perspective on consumer demand and to discern key factors or policies that affect the development of green power markets. The objective is to draw lessons from experience in other countries that could be applicable to the U.S. market.

  6. Children's Elementary School Social Experience and Executive Functions Development: Introduction to a Special Section.

    PubMed

    van Lier, Pol A C; Deater-Deckard, Kirby

    2016-01-01

    Children's executive functions, encompassing inhibitory control, working memory and attention are vital for their self-regulation. With the transition to formal schooling, children need to learn to manage their emotions and behavior in a new and complex social environment that with age increases in the intensity of social interactions with peers and teachers. Stronger executive functions skills facilitate children's social development. In addition, new experiences in the social environments of school also may influence executive function development. The focus of this special section is on this potential impact of elementary school social experiences with peers and teacher on the development of children's executive functions. The collection of papers encompass various aspects of peer and teacher social environments, and cover broad as well as specific facets and measures of executive functions including neural responses. The collection of papers sample developmental periods that span preschool through mid-adolescence. In this introduction, we summarize and highlight the main findings of each of the papers, organized around social interactions with peers and interactions with teachers. We conclude our synopsis with implications for future research, and a specific focus on prevention and intervention.

  7. Navy Applications Experience with Small Wind Power Systems

    DTIC Science & Technology

    1985-05-01

    This report describes the experience gained and lesson learned from the ongoing field evaluations of seven small, 2-to 20-kW wind energy conversion... energy conversion systems, Wind energy power conditioning, Inverters, Electromagnetic interference, and Renewable energy sources....The field evaluations are continuing on the small WECS in order to develop operation, maintenance, and reliability data. Keywords: Wind power, Wind

  8. EDF Nuclear Power Plants Operating Experience with MOX fuel

    SciTech Connect

    Thibault, Xavier

    2006-07-01

    EDF started Plutonium recycling in PWR in 1987 and progressively all the 20 reactors, licensed in using MOX fuel, have been loaded with MOX assemblies. At the origin of MOX introduction, these plants operated at full power in base load and the core management limited the irradiation time of MOX fuel assemblies to 3 annual cycles. Since 1995 all these reactors can operate in load follow mode. Since that time, a large amount of experience has been accumulated. This experience is very positive considering: - Receipt, handling, in core behaviour, pool storage and shipment of MOX fuel; - Operation of the various systems of the plant; - Environment impact; - Radioprotection; - Safety file requirements; - Availability for the grid. In order to reduce the fuel cost and to reach a better adequacy between UO{sub 2} fuel reprocessing flow and plutonium consumption, EDF had decided to improve the core management of MOX plants. This new core management call 'MOX Parity' achieves parity for MOX and UO{sub 2} assemblies in term of discharge burn-up. Compared to the current MOX assembly the Plutonium content is increased from 7,08% to 8,65% (equivalent to natural uranium enriched to respectively 3,25% and 3,7%) and the maximum MOX assembly burn-up moves from 42 to 52 GWd/t. This amount of burn-up is obtained from loading MOX assemblies for one additional annual cycle. Some, but limited, adaptations of the plant are necessary. In addition a new MOX fuel assembly has been designed to comply with the safety criteria taking into account the core management performances. These design improvements are based on the results of an important R and D program including numerous experimental tests and post-irradiated fuel examinations. In particular, envelope conditions compared to MOX Parity neutronic solicitations has been extensively investigated in order to get a full knowledge of the in reactor fuel behavior. Moreover, the operating conditions of the plant have been evaluated in many

  9. Experimental Design and Power Calculation for RNA-seq Experiments.

    PubMed

    Wu, Zhijin; Wu, Hao

    2016-01-01

    Power calculation is a critical component of RNA-seq experimental design. The flexibility of RNA-seq experiment and the wide dynamic range of transcription it measures make it an attractive technology for whole transcriptome analysis. These features, in addition to the high dimensionality of RNA-seq data, bring complexity in experimental design, making an analytical power calculation no longer realistic. In this chapter we review the major factors that influence the statistical power of detecting differential expression, and give examples of power assessment using the R package PROPER.

  10. The M8 Power Calibration Experiment (M8CAL)

    SciTech Connect

    Robinson, W. R.; Bauer, T. H.

    1994-05-01

    The M8 calibration experiment was a series of 23 irradiations in TREAT performed to determine the relationship between the fission power generated in the TREAT core and the fission power generated in experiment fuel located in an in-core experiment vehicle and irradiated by core neutrons. The experiment was planned to provide the essential calibration information specifically needed for planning and analysis of the M8 test (and subsequent tests similar in geometry to M8) to be performed in the post-upgrade TREAT core. Irradiations were performed in TREAT cores loaded with a full-slotted (to optimize hodoscope performance) and with a half-slotted (to maximize energy deposition). Tests included a few selected low-power irradiations of fresh IFR-type U-Zr and U-Pu-Zr fuel pins supplemented by multiple irradiations of uranium-zirconium monitor wires ranging from low steady-state power to high-power maximal transients. This report describes the M8CAL test hardware, measurements, analysis assumptions, and methods used to deduce power coupling between the reactor and experiment fuel--including both absolute magnitudes and axial distributions. Power coupling results are reported for fresh IF fuel pins under high-power transient test conditions appropriate to the planned M8 transient test. In line with previous calibration data, measured dependence of power coupling on the specifics of each irradiation is also shown to correlate well with the in-core axial locations of the TREAT control rods. Estimates are made for maximal test fuel energy deposition capabilty in controlled transients.

  11. The VELOCE pulsed power generator for isentropic compression experiments

    SciTech Connect

    Ao, Tommy; Asay, James Russell; Chantrenne, Sophie J.; Hickman, Randall John; Willis, Michael David; Shay, Andrew W.; Grine-Jones, Suzi A.; Hall, Clint Allen; Baer, Melvin R.

    2007-12-01

    Veloce is a medium-voltage, high-current, compact pulsed power generator developed for isentropic and shock compression experiments. Because of its increased availability and ease of operation, Veloce is well suited for studying isentropic compression experiments (ICE) in much greater detail than previously allowed with larger pulsed power machines such as the Z accelerator. Since the compact pulsed power technology used for dynamic material experiments has not been previously used, it is necessary to examine several key issues to ensure that accurate results are obtained. In the present experiments, issues such as panel and sample preparation, uniformity of loading, and edge effects were extensively examined. In addition, magnetohydrodynamic (MHD) simulations using the ALEGRA code were performed to interpret the experimental results and to design improved sample/panel configurations. Examples of recent ICE studies on aluminum are presented.

  12. Symposium Introduction: Stepping into Their Power--The Development of a Teacher Leadership Stance

    ERIC Educational Resources Information Center

    Smulyan, Lisa

    2016-01-01

    This introduction to the symposium on Teacher Leadership describes how a group of teachers have developed a definition of teacher leadership as a stance. The article explores how prior definitions of teacher leadership tend to focus on individual skills or roles. Neoliberal educational policies that emphasize market-based policy, privatization,…

  13. Experiences with Teaching Basic Statistics in an Introduction to Civil Engineering Class.

    ERIC Educational Resources Information Center

    Craddock, James N.

    Following a widespread national trend, in 1996, a new two-credit hour course titled "Introduction to Civil Engineering" was introduced at Southern Illinois University at Carbondale (SIUC). The class has a one-hour lecture per week, and a two-hour lab or small group session. One reason for the introduction of this class was to provide earlier…

  14. China experiments with solar-thermal power production

    NASA Astrophysics Data System (ADS)

    Harris, Margaret

    2009-04-01

    Construction is due to start later this month on an experimental solar-thermal power plant in the shadow of China's Great Wall that will bring clean energy to 30 000 households by 2010. Built on the outskirts of Beijing at a cost of £10m, the 1.5MW Dahan plant will cover an area the size of 10 football pitches, and will serve as a platform for experiments on different solar-power technologies.

  15. Power-Stepped HF Cross Modulation Experiments at HAARP

    NASA Astrophysics Data System (ADS)

    Greene, S.; Moore, R. C.; Langston, J. S.

    2013-12-01

    High frequency (HF) cross modulation experiments are a well established means for probing the HF-modified characteristics of the D-region ionosphere. In this paper, we apply experimental observations of HF cross-modulation to the related problem of ELF/VLF wave generation. HF cross-modulation measurements are used to evaluate the efficiency of ionospheric conductivity modulation during power-stepped modulated HF heating experiments. The results are compared to previously published dependencies of ELF/VLF wave amplitude on HF peak power. The experiments were performed during the March 2013 campaign at the High Frequency Active Auroral Research Program (HAARP) Observatory. HAARP was operated in a dual-beam transmission format: the first beam heated the ionosphere using sinusoidal amplitude modulation while the second beam broadcast a series of low-power probe pulses. The peak power of the modulating beam was incremented in 1-dB steps. We compare the minimum and maximum cross-modulation effect and the amplitude of the resulting cross-modulation waveform to the expected power-law dependence of ELF/VLF wave amplitude on HF power.

  16. Modeling of high power ICRF heating experiments on TFTR

    SciTech Connect

    Phillips, C.K.; Wilson, J.R.; Bell, M.; Fredrickson, E.; Hosea, J.C.; Majeski, R.; Ramsey, A.; Rogers, J.H.; Schilling, G.; Skinner, C.; Stevens, J.E.; Taylor, G.; Wong, K.L. . Plasma Physics Lab.); Khudaleev, A.; Petrov, M.P. ); Murakami, M. )

    1993-01-01

    Over the past two years, ICRF heating experiments have been performed on TFTR in the hydrogen minority heating regime with power levels reaching 11.2 MW in helium-4 majority plasmas and 8.4 MW in deuterium majority plasmas. For these power levels, the minority hydrogen ions, which comprise typically less than 10% of the total electron density, evolve into la very energetic, anisotropic non-Maxwellian distribution. Indeed, the excess perpendicular stored energy in these plasmas associated with the energetic minority tail ions is often as high as 25% of the total stored energy, as inferred from magnetic measurements. Enhanced losses of 0.5 MeV protons consistent with the presence of an energetic hydrogen component have also been observed. In ICRF heating experiments on JET at comparable and higher power levels and with similar parameters, it has been suggested that finite banana width effects have a noticeable effect on the ICRF power deposition. In particular, models indicate that finite orbit width effects lead to a reduction in the total stored energy and of the tail energy in the center of the plasma, relative to that predicted by the zero banana width models. In this paper, detailed comparisons between the calculated ICRF power deposition profiles and experimentally measured quantities will be presented which indicate that significant deviations from the zero banana width models occur even for modest power levels (P[sub rf] [approximately] 6 MW) in the TFTR experiments.

  17. Modeling of high power ICRF heating experiments on TFTR

    SciTech Connect

    Phillips, C.K.; Wilson, J.R.; Bell, M.; Fredrickson, E.; Hosea, J.C.; Majeski, R.; Ramsey, A.; Rogers, J.H.; Schilling, G.; Skinner, C.; Stevens, J.E.; Taylor, G.; Wong, K.L.; Khudaleev, A.; Petrov, M.P.; Murakami, M.

    1993-04-01

    Over the past two years, ICRF heating experiments have been performed on TFTR in the hydrogen minority heating regime with power levels reaching 11.2 MW in helium-4 majority plasmas and 8.4 MW in deuterium majority plasmas. For these power levels, the minority hydrogen ions, which comprise typically less than 10% of the total electron density, evolve into la very energetic, anisotropic non-Maxwellian distribution. Indeed, the excess perpendicular stored energy in these plasmas associated with the energetic minority tail ions is often as high as 25% of the total stored energy, as inferred from magnetic measurements. Enhanced losses of 0.5 MeV protons consistent with the presence of an energetic hydrogen component have also been observed. In ICRF heating experiments on JET at comparable and higher power levels and with similar parameters, it has been suggested that finite banana width effects have a noticeable effect on the ICRF power deposition. In particular, models indicate that finite orbit width effects lead to a reduction in the total stored energy and of the tail energy in the center of the plasma, relative to that predicted by the zero banana width models. In this paper, detailed comparisons between the calculated ICRF power deposition profiles and experimentally measured quantities will be presented which indicate that significant deviations from the zero banana width models occur even for modest power levels (P{sub rf} {approximately} 6 MW) in the TFTR experiments.

  18. Tokamak Physics Experiment (TPX) power supply design and development

    SciTech Connect

    Neumeyer, C.; Bronner, G.; Lu, E.; Ramakrishnan, S.

    1995-04-01

    The Tokamak Physics Experiment (TPX) is an advanced tokamak project aimed at the production of quasi-steady state plasmas with advanced shape, heating, and particle control. TPX is to be built at the Princeton Plasma Physics Laboratory (PPPL) using many of the facilities from the Tokamak Fusion Test Reactor (TFTR). TPX will be the first tokamak to utilize superconducting (SC) magnets in both the toroidal field (TF) and poloidal field (PF) systems. This new feature requires a departure from the traditional tokamak power supply schemes. This paper describes the plan for the adaptation of the PPPL/FTR power system facilities to supply TPX. Five major areas are addressed, namely the AC power system, the TF, PF and Fast Plasma Position Control (FPPC) power supplies, and quench protection for the TF and PF systems. Special emphasis is placed on the development of new power supply and protection schemes.

  19. Fuel Cells for Portable Power: 1. Introduction to DMFCs; 2. Advanced Materials and Concepts for Portable Power Fuel Cells

    SciTech Connect

    Zelenay, Piotr

    2012-07-16

    Thanks to generally less stringent cost constraints, portable power fuel cells, the direct methanol fuel cell (DMFC) in particular, promise earlier market penetration than higher power polymer electrolyte fuel cells (PEFCs) for the automotive and stationary applications. However, a large-scale commercialization of DMFC-based power systems beyond niche applications already targeted by developers will depend on improvements to fuel cell performance and performance durability as well as on the reduction in cost, especially of the portable systems on the higher end of the power spectrum (100-250 W). In this part of the webinar, we will focus on the development of advanced materials (catalysts, membranes, electrode structures, and membrane electrode assemblies) and fuel cell operating concepts capable of fulfilling two key targets for portable power systems: the system cost of $5/W and overall fuel conversion efficiency of 2.0-2.5 kWh/L. Presented research will concentrate on the development of new methanol oxidation catalysts, hydrocarbon membranes with reduced methanol crossover, and improvements to component durability. Time permitted, we will also present a few highlights from the development of electrocatalysts for the oxidation of two alternative fuels for the direct-feed fuel cells: ethanol and dimethyl ether.

  20. HIGH AVERAGE POWER UV FREE ELECTRON LASER EXPERIMENTS AT JLAB

    SciTech Connect

    Douglas, David; Evtushenko, Pavel; Gubeli, Joseph; Hernandez-Garcia, Carlos; Legg, Robert; Neil, George; Powers, Thomas; Shinn, Michelle D; Tennant, Christopher; Williams, Gwyn

    2012-07-01

    Having produced 14 kW of average power at {approx}2 microns, JLAB has shifted its focus to the ultraviolet portion of the spectrum. This presentation will describe the JLab UV Demo FEL, present specifics of its driver ERL, and discuss the latest experimental results from FEL experiments and machine operations.

  1. Myopia Glasses and Optical Power Estimation: An Easy Experiment

    NASA Astrophysics Data System (ADS)

    Ribeiro, Jair Lúcio Prados

    2015-02-01

    Human eye optics is a common high school physics topic and students usually show a great interest during our presentation of this theme. In this article, we present an easy way to estimate a diverging lens' optical power from a simple experiment involving myopia eyeglasses and a smartphone flashlight.

  2. Myopia Glasses and Optical Power Estimation: An Easy Experiment

    ERIC Educational Resources Information Center

    Ribeiro, Jair Lúcio Prados

    2015-01-01

    Human eye optics is a common high school physics topic and students usually show a great interest during our presentation of this theme. In this article, we present an easy way to estimate a diverging lens' optical power from a simple experiment involving myopia eyeglasses and a smartphone flashlight.

  3. Rehabilitation of an anthracite-burning power plant in Ukraine with introduction of coal preparation

    SciTech Connect

    Ruether, J.; Killmeyer, R.; Schimmoller, B.; Gollakota, S.

    1996-12-31

    A study is being carried out jointly by the United States Department of Energy and the Ukrainian Ministry of Power and Electrification for rehabilitation of an anthracite-burning power station in the Donbass region of eastern Ukraine. The power station, named Luganskaya GRES, is laboring under deteriorating coal quality (the ash level is ranging towards 40% compared to the design value of 18%) and the physical plant is in need of repair. Approaches under consideration for the rehabilitation include upgrading the existing 200-MW{sub e} (gross) wall-fired boilers, repowering with circulating fluidized bed combustors, and the use of coal preparation. Coal washability tests conducted as part of the study indicate the coal is amenable to washing. The paper describes approaches to coal preparation being considered that provide design value coal for wall-fired boilers while minimizing rejection of Btus and generation of solid waste.

  4. Applying fuel cell experience to sustainable power products

    NASA Astrophysics Data System (ADS)

    King, Joseph M.; O'Day, Michael J.

    the utility grid, but current standards do not recognize embedded protection functions, and, often, utilities mandate external protective devices. Consequently, current activity to develop such standards under IEEE auspices is important in eliminating the cost of extra protection equipment. Key fuel cell lessons learned from IFC's experience base along with the status of development for future vehicle and stationary power plants at IFC are discussed. These lessons have been applied to the 200 kW stationary fuel cell power plant as the information has become available. They are now being applied to a 50-kW, ambient pressure, polymer electrolyte membrane (PEM) fuel cell power plant that uses gasoline as the fuel. This power plant is intended for experimental bench testing demonstrations associated with vehicle power plant applications.

  5. Introduction to Nuclear Fusion Power and the Design of Fusion Reactors. An Issue-Oriented Module.

    ERIC Educational Resources Information Center

    Fillo, J. A.

    This three-part module focuses on the principles of nuclear fusion and on the likely nature and components of a controlled-fusion power reactor. The physical conditions for a net energy release from fusion and two approaches (magnetic and inertial confinement) which are being developed to achieve this goal are described. Safety issues associated…

  6. Feasibility study on introduction of the bio-fuel power generation in tropical regions

    NASA Astrophysics Data System (ADS)

    1993-03-01

    Study is made on feasibility of introducing the bio-fuel power generation in tropical regions, especially in South East Asia including Okinawa and South America. Biomass promising as bio-fuel is bagasse and palm oil mill dregs; and bagasse is found to be advantageous to the use for large-scaled power generation. Prospective uses of bagasse are a combined use of gasification process and gas turbine power generation, an effective use of gas turbine exhaust heat at sugar cane factories, and a use of the system to be developed which totalizes these two. As to how to carry out the R and D project, since the gasification power generation process itself is a high technology and has partially unknown fields, it is desirable that research and development are conducted in such technologically developed countries as Japan (Okinawa). A developmental plan, therefore, is worked out as such that a pilot plant of approximately 3000kW is to be constructed in Okinawa because the period for bagasse production is at least 3 months there, and a commercial-scale plant is to be constructed and operated in such big bagasse-producing countries as Brazil.

  7. Prognostics of Power Electronics, Methods and Validation Experiments

    NASA Technical Reports Server (NTRS)

    Kulkarni, Chetan S.; Celaya, Jose R.; Biswas, Gautam; Goebel, Kai

    2012-01-01

    Abstract Failure of electronic devices is a concern for future electric aircrafts that will see an increase of electronics to drive and control safety-critical equipment throughout the aircraft. As a result, investigation of precursors to failure in electronics and prediction of remaining life of electronic components is of key importance. DC-DC power converters are power electronics systems employed typically as sourcing elements for avionics equipment. Current research efforts in prognostics for these power systems focuses on the identification of failure mechanisms and the development of accelerated aging methodologies and systems to accelerate the aging process of test devices, while continuously measuring key electrical and thermal parameters. Preliminary model-based prognostics algorithms have been developed making use of empirical degradation models and physics-inspired degradation model with focus on key components like electrolytic capacitors and power MOSFETs (metal-oxide-semiconductor-field-effect-transistor). This paper presents current results on the development of validation methods for prognostics algorithms of power electrolytic capacitors. Particularly, in the use of accelerated aging systems for algorithm validation. Validation of prognostics algorithms present difficulties in practice due to the lack of run-to-failure experiments in deployed systems. By using accelerated experiments, we circumvent this problem in order to define initial validation activities.

  8. Greenhouse gas and air pollutant emission reduction potentials of renewable energy--case studies on photovoltaic and wind power introduction considering interactions among technologies in Taiwan.

    PubMed

    Kuo, Yu-Ming; Fukushima, Yasuhiro

    2009-03-01

    To achieve higher energy security and lower emission of greenhouse gases (GHGs) and pollutants, the development of renewable energy has attracted much attention in Taiwan. In addition to its contribution to the enhancement of reliable indigenous resources, the introduction of renewable energy such as photovoltaic (PV) and wind power systems reduces the emission of GHGs and air pollutants by substituting a part of the carbon- and pollutant-intensive power with power generated by methods that are cleaner and less carbon-intensive. To evaluate the reduction potentials, consequential changes in the operation of different types of existing power plants have to be taken into account. In this study, a linear mathematical programming model is constructed to simulate a power mix for a given power demand in a power market sharing a cost-minimization objective. By applying the model, the emission reduction potentials of capacity extension case studies, including the enhancement of PV and wind power introduction at different scales, were assessed. In particular, the consequences of power mix changes in carbon dioxide, nitrogen oxides, sulfur oxides, and particulates were discussed. Seasonally varying power demand levels, solar irradiation, and wind strength were taken into account. In this study, we have found that the synergetic reduction of carbon dioxide emission induced by PV and wind power introduction occurs under a certain level of additional installed capacity. Investigation of a greater variety of case studies on scenario development with emerging power sources becomes possible by applying the model developed in this study.

  9. Advanced Receiver/Converter Experiments for Laser Wireless Power Transmission

    NASA Technical Reports Server (NTRS)

    Howell, Joe T.; ONeill, Mark; Fork, Richard

    2004-01-01

    For several years NASA Marshall Space Flight Center, UAH and ENTECH have been working on various aspects of space solar power systems. The current activity was just begun in January 2004 to further develop this new photovoltaic concentrator laser receiver/converter technology. During the next few months, an improved prototype will be designed, fabricated, and thoroughly tested under laser illumination. The final paper will describe the new concept, present its advantages over other laser receiver/converter approaches (including planar photovoltaic arrays), and provide the latest experiment results on prototype hardware (including the effects of laser irradiance level and cell temperature). With NASA's new human exploration plans to first return to the Moon, and then to proceed to Mars, the new photovoltaic concentrator laser receiver/converter technology could prove to be extremely useful in providing power to the landing sites and other phases of the missions. For example, to explore the scientifically interesting and likely resource-rich poles of the Moon (which may contain water) or the poles of Mars (which definitely contain water and carbon dioxide), laser power beaming could represent the simplest means of providing power to these regions, which receive little or no sunlight, making solar arrays useless there. In summary, the authors propose a paper on definition and experimental results of a novel photovoltaic concentrator approach for collecting and converting laser radiation to electrical power. The new advanced photovoltaic concentrator laser receiver/converter offers higher performance, lighter weight, and lower cost than competing concepts, and early experimental results are confirming the expected excellent Performance levels. After the small prototypes are successfully demonstrated, a larger array with even better performance is planned for the next phase experiments and demonstrations. Thereafter, a near-term flight experiment of the new technology

  10. The SPi chip as an integrated power management device for serial powering of future HEP experiments

    SciTech Connect

    Trimpl, M.; Deptuch, G.; Gingu, C.; Yarema, R.; Holt, R.; Weber, M.; Kierstead, J.; Lynn, D.; /Brookhaven

    2009-01-01

    Serial powering is one viable and very efficient way to distribute power to future high energy physics (HEP) experiments. One promising way to realize serial powering is to have a power management device on the module level that provides the necessary voltage levels and features monitoring functionality. The SPi (Serial Powering Interface) chip is such a power manager and is designed to meet the requirements imposed by current SLHC upgrade plans. It incorporates a programmable shunt regulator, two linear regulators, current mode ADCs to monitor the current distribution on the module, over-current detection, and also provides module power-down capabilities. Compared to serially powered setups that use discrete components, the SPi offers a higher level of functionality in much less real estate and is designed to be radiation tolerant. Bump bonding techniques are used for chip on board assembly providing the most reliable connection at lowest impedance. This paper gives an overview of the SPi and outlines the main building blocks of the chip. First stand alone tests are presented showing that the chip is ready for operation in serially powered setups.

  11. The learning process of recently graduated nurses in professional situations--experiences of an introduction program.

    PubMed

    Bisholt, Birgitta K M

    2012-04-01

    An increased theoretical focus and decreased clinical training have resulted in sharp criticism from health care institutions of the content of the nursing education program. As a consequence of this criticism, employers offer introduction programs to recently graduated nurses after they have completed their nursing education. This study is part one of a larger research study. The aim of the present study was to analyze and describe how recently graduated nurses learn at the place of work and how they seek a meaning in their encounter with that environment. The research method was ethnographic, and the empirical material was based upon data from participant observations, interviews and field notes. The results disclosed that workplaces using the master-apprentice system as a model for supervising recently graduated nurses during the introduction program. The results also showed that the novices have acquired theoretical knowledge and know what action to take, but may have trouble assessing which part of their knowledge to use. The introduction program constitutes an obstacle in the professional development of the novices.

  12. US nuclear power plant operating cost and experience summaries

    SciTech Connect

    Kohn, W.E.; Reid, R.L.; White, V.S.

    1998-02-01

    NUREG/CR-6577, U.S. Nuclear Power Plant Operating Cost and Experience Summaries, has been prepared to provide historical operating cost and experience information on U.S. commercial nuclear power plants. Cost incurred after initial construction are characterized as annual production costs, representing fuel and plant operating and maintenance expenses, and capital expenditures related to facility additions/modifications which are included in the plant capital asset base. As discussed in the report, annual data for these two cost categories were obtained from publicly available reports and must be accepted as having different degrees of accuracy and completeness. Treatment of inconclusive and incomplete data is discussed. As an aid to understanding the fluctuations in the cost histories, operating summaries for each nuclear unit are provided. The intent of these summaries is to identify important operating events; refueling, major maintenance, and other significant outages; operating milestones; and significant licensing or enforcement actions. Information used in the summaries is condensed from annual operating reports submitted by the licensees, plant histories contained in Nuclear Power Experience, trade press articles, and the Nuclear Regulatory Commission (NRC) web site (www.nrc.gov).

  13. Introduction to the Design and Optimization of Experiments Using Response Surface Methodology. A Gas Chromatography Experiment for the Instrumentation Laboratory

    ERIC Educational Resources Information Center

    Lang, Patricia L.; Miller, Benjamin I.; Nowak, Abigail Tuttle

    2006-01-01

    The study describes how to design and optimize an experiment with multiple factors and multiple responses. The experiment uses fractional factorial analysis as a screening experiment only to identify important instrumental factors and does not use response surface methodology to find the optimal set of conditions.

  14. Power and control choice in aquatic experiments with solvents.

    PubMed

    Green, John W

    2014-04-01

    Aquatic toxicology experiments to determine the effects of chemicals sometimes require the use of a carrier solvent. Such experiments typically include both a negative (water) control group and a solvent control group. False positive rates and power to detect treatment effects in such experiments are compared for six possible strategies for deciding the appropriate control or controls for comparison. The main purpose of the present study is to determine the best use of the two controls in statistical analysis. A secondary purpose is to determine purely on statistical grounds whether both controls are actually needed. The evidence supports using either the solvent control only in all cases or a sequential strategy of combining the water and solvent controls unless the two controls are found to be statistically significantly different, in which case only the solvent control should be used. These results extend, and in some ways contradict, a recently published simulation study.

  15. Space station experiment definition: Advanced power system test bed

    NASA Technical Reports Server (NTRS)

    Pollard, H. E.; Neff, R. E.

    1986-01-01

    A conceptual design for an advanced photovoltaic power system test bed was provided and the requirements for advanced photovoltaic power system experiments better defined. Results of this study will be used in the design efforts conducted in phase B and phase C/D of the space station program so that the test bed capabilities will be responsive to user needs. Critical PV and energy storage technologies were identified and inputs were received from the idustry (government and commercial, U.S. and international) which identified experimental requirements. These inputs were used to develop a number of different conceptual designs. Pros and cons of each were discussed and a strawman candidate identified. A preliminary evolutionary plan, which included necessary precursor activities, was established and cost estimates presented which would allow for a successful implementation to the space station in the 1994 time frame.

  16. The health and social consequences of adverse childhood experiences (ACE) across the lifespan: an introduction to prevention and intervention in the community.

    PubMed

    Larkin, Heather; Shields, Joseph J; Anda, Robert F

    2012-01-01

    This introduction to the themed issue overviews of the Adverse Childhood Experiences (ACE) Study and discusses prevention and intervention with ACE and their consequences in communities. A commentary by Dr. Robert Anda, an ACE Study Co-Principal Investigator, is incorporated within this introduction. Implications of articles within the issue are addressed, and next steps are explored.

  17. African swine fever virus introduction into the EU in 2014: Experience of Latvia.

    PubMed

    Oļševskis, Edvīns; Guberti, Vittorio; Seržants, Mārtiņš; Westergaard, Jørgen; Gallardo, Carmina; Rodze, Ieva; Depner, Klaus

    2016-04-01

    African swine fever (ASF) virus was introduced in Latvia in June 2014. Thirty-two outbreaks in domestic pigs and 217 cases in wild boar were notified in 2014. Twenty-eight outbreaks (87.5%) were primary outbreaks. The contagiosity within pig herds was low. Failure to use simple biosecurity measures to reduce the chance of virus introduction, for example by inadvertent feeding of locally produced virus contaminated fodder were the main causes for the outbreaks in backyard holdings. The infection in wild boar survived locally in two different areas with a low prevalence and a slow spread. The persistence of the infection in wild boar within an area was most probably linked to wild boar scavenging the carcasses of infected wild boar.

  18. Rocket experiment on microwave power transmission with Furoshiki deployment

    NASA Astrophysics Data System (ADS)

    Kaya, Nobuyuki; Iwashita, Masashi; Tanaka, Kohei; Nakasuka, Shinichi; Summerer, Leopold

    2009-07-01

    Huge antennas has many useful applications in space as well as on the ground, for example, Solar Power Satellite to provide electricity to the ground, telecommunication for cellular phones, radars for remote sensing, navigation and observation, and so on. The S-310-36 sounding rocket was successfully launched on 22 January 2006 to verify our newly proposed scheme to construct huge antennas under microgravity condition in space. The rocket experiment has three main objectives, the first objective of which is to verify the Furoshiki deployment system [S. Nakasuka, R. Funase, K. Nakada, N. Kaya, J. Mankins, Large membrane "FUROSHIKI Satellite" applied to phased array antenna and its sounding rocket experiment, in: Proceedings of the 54th International Astronautical Congress, 2003. [1

  19. Flight experience with lightweight, low-power miniaturized instrumentation systems

    NASA Technical Reports Server (NTRS)

    Hamory, Philip J.; Murray, James E.

    1992-01-01

    Engineers at the NASA Dryden Flight Research Facility (NASA-Dryden) have conducted two flight research programs with lightweight, low-power miniaturized instrumentation systems built around commercial data loggers. One program quantified the performance of a radio-controlled model airplane. The other program was a laminar boundary-layer transition experiment on a manned sailplane. The purpose of this paper is to report NASA-Dryden personnel's flight experience with the miniaturized instrumentation systems used on these two programs. The paper will describe the data loggers, the sensors, and the hardware and software developed to complete the systems. The paper also describes how the systems were used and covers the challenges encountered to make them work. Examples of raw data and derived results will be shown as well. Finally, future plans for these systems will be discussed.

  20. Polarization Issues with High Power Injection and Low Power Emission in Fusion Experiments

    SciTech Connect

    Goodman, T. P.; Felici, F.; Udintsev, V. S.

    2009-11-26

    All tokamak experiments using ECCD require setting of the beam elliptical polarization for proper coupling to the plasma. This is done either in the matching optics unit (MOU) at the output of the gyrotron, or in a couple of miter bends of the transmission line. Similarly, oblique ECE receivers require selection of the correct elliptical polarization to provide localized measurements. For the TCV tokamak at the CRPP, gyrotron and oblique-ECE polarizers are characterized during either high- or low- power testing of equipment: for the gyrotrons the behaviour is determined at a single frequency, but for the oblique-ECE the broadband response is needed. These characteristics are included in the calibration database and used during subsequent analysis of the power coupling to, or from, the sources (gyrotron, plasma, or low power transmitting antenna). A more detailed characterization has been carried out (at low power) with the MOU for the EU, 170 GHz, 2 MW, gyrotron prototype for ITER. This paper discusses the methodology and results of these measurements, as well as a review of nearly a decade's worth of experimental data from the 6 gyrotron, 3 MW, 82.6 GHz TCV system. In particular, the consistency between the calibrations and the subsequent data from tokamak experiments is analysed.

  1. Pulsed power driven Magneto-Rayleigh-Taylor experiments.

    SciTech Connect

    Sefkow, Adam B.; Peterson, Kyle J.; Rovang, Dean Curtis; Slutz, Stephen A.; Cuneo, Michael Edward; Vesey, Roger Alan; Herrmann, Mark C.; Sinars, Daniel Brian

    2010-03-01

    Numerical simulations indicate that significant fusion yields (>100 kJ) may be obtained by pulsed-power-driven implosions of cylindrical metal liners onto magnetized and preheated deuterium-tritium fuel. The primary physics risk to this approach is the Magneto-Rayleigh-Taylor (MRT) instability, which operates during both the acceleration and deceleration phase of the liner implosion. We have designed and performed some experiments to study the MRT during the acceleration phase, where the light fluid is purely magnetic. Results from our first series of experiments and plans for future experiments will be presented. According to simulations, an initial axial magnetic field of 10 T is compressed to >100 MG within the liner during the implosion. The magnetic pressure becomes comparable to the plasma pressure during deceleration, which could significantly affect the growth of the MRT instability at the fuel/liner interface. The MRT instability is also important in some astronomical objects such as the Crab Nebula (NGC1962). In particular, the morphological structure of the observed filaments may be determined by the ratio of the magnetic to material pressure and alignment of the magnetic field with the direction of acceleration [Hester, ApJ, 456, 225 1996]. Potential experiments to study this MRT behavior using the Z facility will be presented.

  2. Consequences and countermeasures in a nuclear power accident: Chernobyl experience.

    PubMed

    Kirichenko, Vladimir A; Kirichenko, Alexander V; Werts, Day E

    2012-09-01

    Despite the tragic accidents in Fukushima and Chernobyl, the nuclear power industry will continue to contribute to the production of electric energy worldwide until there are efficient and sustainable alternative sources of energy. The Chernobyl nuclear accident, which occurred 26 years ago in the former Soviet Union, released an immense amount of radioactivity over vast territories of Belarus, Ukraine, and the Russian Federation, extending into northern Europe, and became the most severe accident in the history of the nuclear industry. This disaster was a result of numerous factors including inadequate nuclear power plant design, human errors, and violation of safety measures. The lessons learned from nuclear accidents will continue to strengthen the safety design of new reactor installations, but with more than 400 active nuclear power stations worldwide and 104 reactors in the Unites States, it is essential to reassess fundamental issues related to the Chernobyl experience as it continues to evolve. This article summarizes early and late events of the incident, the impact on thyroid health, and attempts to reduce agricultural radioactive contamination.

  3. Asymmetric Power Boosts Extortion in an Economic Experiment

    PubMed Central

    Hagel, Kristin; Milinski, Manfred

    2016-01-01

    Direct reciprocity is a major mechanism for the evolution of cooperation. Several classical studies have suggested that humans should quickly learn to adopt reciprocal strategies to establish mutual cooperation in repeated interactions. On the other hand, the recently discovered theory of ZD strategies has found that subjects who use extortionate strategies are able to exploit and subdue cooperators. Although such extortioners have been predicted to succeed in any population of adaptive opponents, theoretical follow-up studies questioned whether extortion can evolve in reality. However, most of these studies presumed that individuals have similar strategic possibilities and comparable outside options, whereas asymmetries are ubiquitous in real world applications. Here we show with a model and an economic experiment that extortionate strategies readily emerge once subjects differ in their strategic power. Our experiment combines a repeated social dilemma with asymmetric partner choice. In our main treatment there is one randomly chosen group member who is unilaterally allowed to exchange one of the other group members after every ten rounds of the social dilemma. We find that this asymmetric replacement opportunity generally promotes cooperation, but often the resulting payoff distribution reflects the underlying power structure. Almost half of the subjects in a better strategic position turn into extortioners, who quickly proceed to exploit their peers. By adapting their cooperation probabilities consistent with ZD theory, extortioners force their co-players to cooperate without being similarly cooperative themselves. Comparison to non-extortionate players under the same conditions indicates a substantial net gain to extortion. Our results thus highlight how power asymmetries can endanger mutually beneficial interactions, and transform them into exploitative relationships. In particular, our results indicate that the extortionate strategies predicted from ZD theory

  4. Hepatitis-B vaccine introduction into the routine immunization schedule--Andhra Pradesh experience.

    PubMed

    Kiran, V

    2004-01-01

    Hepatitis B is a viral infection of the liver and is serious global public health problem with a high risk of death from cirrhosis of the liver and liver cancer, diseases that kill about one million persons each year globally. Globally, of the 2 billion people who have been infected with the hepatitis B virus (HBV), more than 350 million have chronic (lifelong) infections. It is preventable with safe and effective vaccines that have been available since 1982. Although the vaccine will not cure chronic hepatitis, it is 95% effective in preventing chronic infections from developing, and is the first vaccine against a major human cancer. More than 160 countries have already added this vaccine to their routine immunization programmes. Available epidemiologic studies in India and AP indicate that India is in intermediate endemic status (with a prevalence of 2 to 7%) and the best way to reduce the prevalence as per the strategies outlined by WHO is to introduce Hep-B vaccine into routine immunization. AP is the first State in India to introduce Hep-B vaccine in the routine immunization in a phased manner. In-spite of the initial apprehensions and slow take up, the program is proven to be successful and Govt. of India has made budgetary provisions in the 10th plan for introduction in rest of India.

  5. Rabies vaccination compliance following introduction of the triennial vaccination interval--the Texas experience.

    PubMed

    Rogers, C L

    2011-06-01

    In 2003 the Texas Board of Health approved a modification to the Texas Administrative Code that permitted pet owners to have their dogs (Canis familiaris) and cats (Felis catus) vaccinated against rabies every 3 years, provided a triennial vaccine was used. The change had been opposed by hundreds in the veterinary community, some concerned that its implementation would be followed by a decrease in rabies vaccination rates. To determine if this decrease had occurred, rabies vaccination rates for 4 years before and after migration to the 3-year vaccination interval were examined. Data for dogs and cats, ≥ 4 months of age, were collected from the Texas Department of Health Rabies Incident Report database. Each animal's record included its current rabies vaccination status. The number of animals that were currently vaccinated against rabies was tallied and the percent vaccinated was calculated. From 1999 through 2002, 46% of dogs were vaccinated against rabies. From 2004 through 2007, 56% of dogs were vaccinated against rabies. From 1999 to 2002, 18% of cats were vaccinated against rabies. From 2004 to 2007, 30% of cats were vaccinated against rabies. There has been a significant increase in the numbers of dogs (P < 0.001), and cats (P < 0.001), vaccinated against rabies since the introduction of the triennial vaccination interval. This observational study documents the positive changes in rabies vaccination rates following migration from a 1-year to 3-year vaccination interval.

  6. Introduction of cryobiopsies in the diagnostics of interstitial lung diseases – experiences in a referral center

    PubMed Central

    Kronborg-White, Sissel; Folkersen, Birgitte; Rasmussen, Torben Riis; Voldby, Nina; Madsen, Line Bille; Rasmussen, Finn; Poletti, Venerino; Bendstrup, Elisabeth

    2017-01-01

    ABSTRACT Introduction: Transbronchial cryobiopsies (cTBB) has emerged as a new method for obtaining lung tissue biopsies in the diagnosis of interstitial lung diseases (ILDs). Until now, it has been used in a few highly specialized interventional centers and has shown promising results in obtaining a definite diagnosis of ILDs. Method: All patients undergoing a cTBB between November 2015 and June 2016 were included in this case series study. Data on patient demographics, high-resolution computed tomography patterns, size and number of biopsies, histology patterns, the contribution to a confident diagnosis and complications were registered. Results: Thirty-eight patients underwent cTBB in the period. cTBB contributed to the diagnosis in 28 (74%) of the 38 patients. Only few complications were observed; pneumothorax was the most frequent complication (10 patients, 26%). In six patients, local bleeding occurred during the procedure and was easily controlled by a Fogarty catheter balloon and in some cases tranexamic acid. Conclusion: Performing cTBB in the diagnostics of ILDs is a safe and feasible procedure. cTBB resulted in a confident diagnosis in 74% of cases. PMID:28326178

  7. Millimeter-Gap Magnetically Insulated Transmission Line Power Flow Experiments

    SciTech Connect

    Hutsel, Brian Thomas; Stoltzfus, Brian S.; Fowler, William E.; LeChien, Keith R.; Mazarakis, Michael G.; Moore, James K.; Mulville, Thomas D.; Savage, Mark E.; Stygar, William A.; McKenney, John L.; Jones, Peter A.; MacRunnels, Diego J.; Long, Finis W.; Porter, John L.

    2014-09-01

    An experiment platform has been designed to study vacuum power flow in magnetically insulated transmission lines (MITLs). The platform was driven by the 400-GW Mykonos-V accelerator. The experiments conducted quantify the current loss in a millimeter-gap MITL with respect to vacuum conditions in the MITL for two different gap distances, 1.0 and 1.3 mm. The current loss for each gap was measured for three different vacuum pump down times. As a ride along experiment, multiple shots were conducted with each set of hardware to determine if there was a conditioning effect to increase current delivery on subsequent shots. The experiment results revealed large differences in performance for the 1.0 and 1.3 mm gaps. The 1.0 mm gap resulted in current loss of 40%-60% of peak current. The 1.3 mm gap resulted in current losses of less than 5% of peak current. Classical MITL models that neglect plasma expansion predict that there should be zero current loss, after magnetic insulation is established, for both of these gaps. The experiments result s indicate that the vacuum pressure or pump down time did not have a significant effect on the measured current loss at vacuum pressures between 1e-4 and 1e-5 Torr. Additionally, there was not repeatable evidence of a conditioning effect that reduced current loss for subsequent full-energy shots on a given set of hardware. It should be noted that the experiments conducted likely did not have large loss contributions due to ion emission from the anode due to the relatively small current densi-ties (25-40 kA/cm) in the MITL that limited the anode temperature rise due to ohmic heating. The results and conclusions from these experiments may have limited applicability to MITLs of high current density (>400 kA/cm) used in the convolute and load region of the Z which experience temperature increases of >400° C and generate ion emission from anode surfaces.

  8. Going Beyond, Going Further: An Inexpensive Experiment for the Introduction of High Performance Liquid Chromatography.

    ERIC Educational Resources Information Center

    Bidlingmeyer, Brian A.; Warren, F. Vincent, Jr.

    1984-01-01

    Background information, materials needed, laboratory procedures, and typical results are provided for five high performance liquid chromatography experiments (three isocratic and two step gradient separations). Suggestions for further experimentation are also provided, including quantitative determinations and separation of charged solutes. (JN)

  9. Inquiry-Based Experiments for Large-Scale Introduction to PCR and Restriction Enzyme Digests

    ERIC Educational Resources Information Center

    Johanson, Kelly E.; Watt, Terry J.

    2015-01-01

    Polymerase chain reaction and restriction endonuclease digest are important techniques that should be included in all Biochemistry and Molecular Biology laboratory curriculums. These techniques are frequently taught at an advanced level, requiring many hours of student and faculty time. Here we present two inquiry-based experiments that are…

  10. Balancing Treatment and Control Groups in Quasi-Experiments: An Introduction to Propensity Scoring

    ERIC Educational Resources Information Center

    Connelly, Brian S.; Sackett, Paul R.; Waters, Shonna D.

    2013-01-01

    Organizational and applied sciences have long struggled with improving causal inference in quasi-experiments. We introduce organizational researchers to propensity scoring, a statistical technique that has become popular in other applied sciences as a means for improving internal validity. Propensity scoring statistically models how individuals in…

  11. Update on PHELIX Pulsed-Power Hydrodynamics Experiments and Modeling

    NASA Astrophysics Data System (ADS)

    Rousculp, Christopher; Reass, William; Oro, David; Griego, Jeffery; Turchi, Peter; Reinovsky, Robert; Devolder, Barbara

    2013-10-01

    The PHELIX pulsed-power driver is a 300 kJ, portable, transformer-coupled, capacitor bank capable of delivering 3-5 MA, 10 μs pulse into a low inductance load. Here we describe further testing and hydrodynamics experiments. First, a 4 nH static inductive load has been constructed. This allows for repetitive high-voltage, high-current testing of the system. Results are used in the calibration of simple circuit models and numerical simulations across a range of bank charges (+/-20 < V0 < +/-40 kV). Furthermore, a dynamic liner-on-target load experiment has been conducted to explore the shock-launched transport of particulates (diam. ~ 1 μm) from a surface. The trajectories of the particulates are diagnosed with radiography. Results are compared to 2D hydro-code simulations. Finally, initial studies are underway to assess the feasibility of using the PHELIX driver as an electromagnetic launcher for planer shock-physics experiments. Work supported by United States-DOE under contract DE-AC52-06NA25396.

  12. Inquiry-based experiments for large-scale introduction to PCR and restriction enzyme digests.

    PubMed

    Johanson, Kelly E; Watt, Terry J

    2015-01-01

    Polymerase chain reaction and restriction endonuclease digest are important techniques that should be included in all Biochemistry and Molecular Biology laboratory curriculums. These techniques are frequently taught at an advanced level, requiring many hours of student and faculty time. Here we present two inquiry-based experiments that are designed for introductory laboratory courses and combine both techniques. In both approaches, students must determine the identity of an unknown DNA sequence, either a gene sequence or a primer sequence, based on a combination of PCR product size and restriction digest pattern. The experimental design is flexible, and can be adapted based on available instructor preparation time and resources, and both approaches can accommodate large numbers of students. We implemented these experiments in our courses with a combined total of 584 students and have an 85% success rate. Overall, students demonstrated an increase in their understanding of the experimental topics, ability to interpret the resulting data, and proficiency in general laboratory skills.

  13. Introduction to the project DUNE, a DUst experiment in a low Nutrient, low chlorophyll Ecosystem

    NASA Astrophysics Data System (ADS)

    Guieu, C.; Dulac, F.; Ridame, C.; Pondaven, P.

    2013-07-01

    The main goal of the project DUNE was to estimate the impact of atmospheric deposition on an oligotrophic ecosystem based on mesocosm experiments simulating strong atmospheric inputs of Aeolian dust. Atmospheric deposition is now recognized as a significant source of macro- and micro-nutrients for the surface ocean, but the quantification of its role on the biological carbon pump is still poorly determined. We proposed in DUNE to investigate the role of atmospheric inputs on the functioning of an oligotrophic system particularly well adapted to this kind of study: the Mediterranean Sea. The Mediterranean Sea - etymologically, sea surrounded by land - is submitted to atmospheric inputs that are very variable both in frequency and intensity. During the thermal stratification period, only atmospheric deposition is prone to fertilize Mediterranean surface waters which has become very oligotrophic due to the nutrient depletion (after the spring bloom). This paper describes the objectives of DUNE and the implementation plan of a series of mesocosms experiments during which either wet or dry and a succession of two wet deposition fluxes of 10 g m-2 of Saharan dust have been simulated. After the presentation of the main biogeochemical initial conditions of the site at the time of each experiment, a general overview of the papers published in this special issue is presented, including laboratory results on the solubility of trace elements in erodible soils in addition to results from the mesocosm experiments. Our mesocosm experiments aimed at being representative of real atmospheric deposition events onto the surface of oligotrophic marine waters and were an original attempt to consider the vertical dimension in the study of the fate of atmospheric deposition within surface waters. Results obtained can be more easily extrapolated to quantify budgets and parameterize processes such as particle migration through a "captured water column". The strong simulated dust deposition

  14. Photovoltaic Array Space Power flight experiment plus diagnostics (PASP+) modules

    NASA Technical Reports Server (NTRS)

    Cooley, William T.; Adams, Steven F.; Reinhardt, Kitt C.; Piszczor, Michael F.

    1992-01-01

    The Photovoltaic Array Space Power Plus Diagnostics flight experiment (PASP+) subsumes twelve solar array modules which represent the state of the art in the space photovoltaic array industry. Each of the twelve modules individually feature specific photovoltaic technologies such as advanced semiconductor materials, multi-bandgap structures, lightweight array designs, advanced interconnect technologies, or concentrator array designs. This paper will describe each module in detail including the configuration, components, materials, anticipated on orbit performance, and some of the aspects of each array technology. The layout of each module and the photovoltaic cells or array cross section will be presented graphically. A discussion on the environmental constraints and materials selection will be included as well as a delineation of the differences between the modules and the baseline array configuration in its intended application.

  15. [Gender power, poverty and contraception: multiparous women's experiences].

    PubMed

    Prates, Cibeli de Souza; Abib, Gilda Maria de Carvalho; de Oliveira, Dora Lúcia Leidens Correa

    2008-12-01

    Multiparity among poor women is associated to vulnerability as a generating or strengthening factor. This is a qualitative and exploratory research that aims at analyzing experiences of contraception among poor multiparae women, considering the influence of gender on their autonomy in choosing the number of children, the moment of getting pregnant, and the contraception strategies. It also aims at analyzing the mechanisms of resistance used by these women in the search for such autonomy. The data were gathered through focus groups. The content analysis suggests that the high number of children these women give birth to is explained by a reduced autonomy in their use of contraception, arising from poverty and gender inequalities. These women face these difficulties using resistance strategies that result in male power disruptions. This research has brought new elements for understanding the multiparity phenomenon in the context of poverty, and it also contributes towards a critical analysis of actions focused on promoting family planning.

  16. An overview of U.S. decommissioning experience -- A basic introduction

    SciTech Connect

    Boing, L.E.

    1998-03-09

    This paper presents an overview of the US experiences in the decommissioning technical area. Sections included are: (1) an overview of the magnitude of the problem, (2) a review of the US decommissioning process, (3) regulation of decommissioning, (4) regulatory and funding requirements for decommissioning, and (5) a general overview of all on-going and completed decommissioning projects to date in the US. The final section presents a review of some issues in the decommissioning area currently being debated in the technical specialists community.

  17. Introduction to the special issue on the 2004 Parkfield earthquake and the Parkfield earthquake prediction experiment

    USGS Publications Warehouse

    Harris, R.A.; Arrowsmith, J.R.

    2006-01-01

    The 28 September 2004 M 6.0 Parkfield earthquake, a long-anticipated event on the San Andreas fault, is the world's best recorded earthquake to date, with state-of-the-art data obtained from geologic, geodetic, seismic, magnetic, and electrical field networks. This has allowed the preearthquake and postearthquake states of the San Andreas fault in this region to be analyzed in detail. Analyses of these data provide views into the San Andreas fault that show a complex geologic history, fault geometry, rheology, and response of the nearby region to the earthquake-induced ground movement. Although aspects of San Andreas fault zone behavior in the Parkfield region can be modeled simply over geological time frames, the Parkfield Earthquake Prediction Experiment and the 2004 Parkfield earthquake indicate that predicting the fine details of future earthquakes is still a challenge. Instead of a deterministic approach, forecasting future damaging behavior, such as that caused by strong ground motions, will likely continue to require probabilistic methods. However, the Parkfield Earthquake Prediction Experiment and the 2004 Parkfield earthquake have provided ample data to understand most of what did occur in 2004, culminating in significant scientific advances.

  18. Flight experience with lightweight, low-power miniaturized instrumentation systems

    NASA Technical Reports Server (NTRS)

    Hamory, Philip J.; Murray, James E.

    1993-01-01

    Engineers at the NASA Dryden Flight Research Facility (NASA-Dryden) have conducted two flight research programs with lightweight, low-power miniaturized instrumentation systems built around commercial data loggers. One program quantified the performance of a radio-controlled model airplane. The other program was a laminar boundary-layer transition experiment on a manned sailplane. NASA-Dryden personnel's flight experience with the miniaturized instrumentation systems used on these two programs is reported. The data loggers, the sensors, and the hardware and software developed to complete the systems are described. How the systems were used is described and the challenges encountered to make them work are covered. Examples of raw data and derived results are shown as well. Finally, future plans for these systems are discussed. For some flight research applications where miniaturized instrumentation is a requirement, the authors conclude that commercially available data loggers and sensors are viable alternatives. In fact, the data loggers and sensors make it possible to gather research-quality data in a timely and cost-effective manner.

  19. Flight experience with lightweight, low-power miniaturized instrumentation systems

    NASA Technical Reports Server (NTRS)

    Hamory, Philip J.; Murray, James E.

    1994-01-01

    Engineers at the NASA Dryden Flight Research Facility (NASA-Dryden) have conducted two flight research programs with lightweight, low-power miniaturized instrumentation systems built around commercial data loggers. One program quantified the performance of a radio-controlled model airplane. The other program was a laminar boundary-layer transition experiment on a manned sailplane. The purpose of this article is to report NASA-Dryden personnel's flight experience with the miniaturized instrumentation systems used on these two programs. This article will describe the data loggers, the sensors, and the hardware and software developed to complete the systems. It also describes how the systems were used and covers the challenges encountered to make them work. Examples of raw data and derived results will be shown as well. For some flight research applications where miniaturized instrumentation is a requirement, the authors conclude that commercially available data loggers and sensors are viable alternatives. In fact, the data loggers and sensors make it possible to gather research-quality data in a timely and cost-effective manner.

  20. The Hawthorne experiments and the introduction of Jean Piaget in American industrial psychology, 1929-1932.

    PubMed

    Hsueh, Yeh

    2002-05-01

    The Hawthorne interview program between 1929 and 1932 was one of the most significant industrial studies in the United States. The Hawthorne researchers applied Jean Piaget's clinical method in their extensive interviews with tens of thousands of workers. Chiefly responsible for the program's methodology was Elton Mayo, an Australian who saw interviewing as a means to promote social cooperation. Previous discussions of the Hawthorne experiments have ignored the influence of Piaget in the social sciences. This article provides an account of Mayo's and the Hawthorne researchers' efforts to fuse Piaget's innovation with burgeoning American industrial psychology. The endeavor was not an isolated event but rather drew on the theories and practice of Janet-Piaget psychology, on the support of the Laura Spelman Rockefeller Memorial Foundation, and on the discourse among social scientists about Piaget's work.

  1. Introduction to project DUNE, a DUst experiment in a low Nutrient, low chlorophyll Ecosystem

    NASA Astrophysics Data System (ADS)

    Guieu, C.; Dulac, F.; Ridame, C.; Pondaven, P.

    2014-01-01

    The main goal of project DUNE was to estimate the impact of atmospheric deposition on an oligotrophic ecosystem based on mesocosm experiments simulating strong atmospheric inputs of eolian mineral dust. Our mesocosm experiments aimed at being representative of real atmospheric deposition events onto the surface of oligotrophic marine waters and were an original attempt to consider the vertical dimension after atmospheric deposition at the sea surface. This introductory paper describes the objectives of DUNE and the implementation plan of a series of mesocosm experiments conducted in the Mediterranean Sea in 2008 and 2010 during which either wet or dry and a succession of two wet deposition fluxes of 10 g m-2 of Saharan dust have been simulated based on the production of dust analogs from erodible soils of a source region. After the presentation of the main biogeochemical initial conditions of the site at the time of each experiment, a general overview of the papers published in this special issue is presented. From laboratory results on the solubility of trace elements in dust to biogeochemical results from the mesocosm experiments and associated modeling, these papers describe how the strong simulated dust deposition events impacted the marine biogeochemistry. Those multidisciplinary results are bringing new insights into the role of atmospheric deposition on oligotrophic ecosystems and its impact on the carbon budget. The dissolved trace metals with crustal origin - Mn, Al and Fe - showed different behaviors as a function of time after the seeding. The increase in dissolved Mn and Al concentrations was attributed to dissolution processes. The observed decrease in dissolved Fe was due to scavenging on sinking dust particles and aggregates. When a second dust seeding followed, a dissolution of Fe from the dust particles was then observed due to the excess Fe binding ligand concentrations present at that time. Calcium nitrate and sulfate were formed in the dust

  2. Subliminal unconscious conflict alpha power inhibits supraliminal conscious symptom experience

    PubMed Central

    Shevrin, Howard; Snodgrass, Michael; Brakel, Linda A. W.; Kushwaha, Ramesh; Kalaida, Natalia L.; Bazan, Ariane

    2013-01-01

    Our approach is based on a tri-partite method of integrating psychodynamic hypotheses, cognitive subliminal processes, and psychophysiological alpha power measures. We present ten social phobic subjects with three individually selected groups of words representing unconscious conflict, conscious symptom experience, and Osgood Semantic negative valence words used as a control word group. The unconscious conflict and conscious symptom words, presented subliminally and supraliminally, act as primes preceding the conscious symptom and control words presented as supraliminal targets. With alpha power as a marker of inhibitory brain activity, we show that unconscious conflict primes, only when presented subliminally, have a unique inhibitory effect on conscious symptom targets. This effect is absent when the unconscious conflict primes are presented supraliminally, or when the target is the control words. Unconscious conflict prime effects were found to correlate with a measure of repressiveness in a similar previous study (Shevrin et al., 1992, 1996). Conscious symptom primes have no inhibitory effect when presented subliminally. Inhibitory effects with conscious symptom primes are present, but only when the primes are supraliminal, and they did not correlate with repressiveness in a previous study (Shevrin et al., 1992, 1996). We conclude that while the inhibition following supraliminal conscious symptom primes is due to conscious threat bias, the inhibition following subliminal unconscious conflict primes provides a neurological blueprint for dynamic repression: it is only activated subliminally by an individual's unconscious conflict and has an inhibitory effect specific only to the conscious symptom. These novel findings constitute neuroscientific evidence for the psychoanalytic concepts of unconscious conflict and repression, while extending neuroscience theory and methods into the realm of personal, psychological meaning. PMID:24046743

  3. Resident and fellow experiences after the introduction of endovascular aneurysm repair for abdominal aortic aneurysm

    PubMed Central

    Sachs, Teviah; Schermerhorn, Marc; Pomposelli, Frank; Cotterill, Philip; O’Malley, James; Landon, Bruce

    2015-01-01

    nonfellowship hospitals. Use of EVAR for rupture is being used more often at fellowship programs. The decline in open repairs performed by vascular fellows, and at fellowship and non-fellowship hospitals, may have important implications for future attending experience. PMID:21620615

  4. On the experience of feeling powerful: perceived power moderates the effect of stereotype threat on women's math performance.

    PubMed

    Van Loo, Katie J; Rydell, Robert J

    2013-03-01

    This research examined whether feeling powerful can eliminate the deleterious effect of stereotype threat (i.e., concerns about confirming a negative self-relevant stereotype) on women's math performance. In Experiments 1 and 2, priming women with high power buffered them from reduced math performance in response to stereotype threat instructions, whereas women in the low and control power conditions showed poorer math performance in response to threat. Experiment 3 found that working memory capacity is one mechanism through which power moderates the effect of threat on women's math performance. In the low and control power conditions, women showed reduced working memory capacity in response to stereotype threat, accounting for threat's effect on performance. In contrast, women in the high power condition did not show reductions in working memory capacity or math performance in response to threat. This work demonstrates that perceived power moderates stereotype threat-based performance effects and explains why this occurs.

  5. High power heating of magnetic reconnection in merging tokamak experiments

    SciTech Connect

    Ono, Y.; Tanabe, H.; Gi, K.; Watanabe, T.; Ii, T.; Yamada, T.; Gryaznevich, M.; Scannell, R.; Conway, N.; Crowley, B.; Michael, C.

    2015-05-15

    Significant ion/electron heating of magnetic reconnection up to 1.2 keV was documented in two spherical tokamak plasma merging experiment on MAST with the significantly large Reynolds number R∼10{sup 5}. Measured 1D/2D contours of ion and electron temperatures reveal clearly energy-conversion mechanisms of magnetic reconnection: huge outflow heating of ions in the downstream and localized heating of electrons at the X-point. Ions are accelerated up to the order of poloidal Alfven speed in the reconnection outflow region and are thermalized by fast shock-like density pileups formed in the downstreams, in agreement with recent solar satellite observations and PIC simulation results. The magnetic reconnection efficiently converts the reconnecting (poloidal) magnetic energy mostly into ion thermal energy through the outflow, causing the reconnection heating energy proportional to square of the reconnecting (poloidal) magnetic field B{sub rec}{sup 2}  ∼  B{sub p}{sup 2}. The guide toroidal field B{sub t} does not affect the bulk heating of ions and electrons, probably because the reconnection/outflow speeds are determined mostly by the external driven inflow by the help of another fast reconnection mechanism: intermittent sheet ejection. The localized electron heating at the X-point increases sharply with the guide toroidal field B{sub t}, probably because the toroidal field increases electron confinement and acceleration length along the X-line. 2D measurements of magnetic field and temperatures in the TS-3 tokamak merging experiment also reveal the detailed reconnection heating mechanisms mentioned above. The high-power heating of tokamak merging is useful not only for laboratory study of reconnection but also for economical startup and heating of tokamak plasmas. The MAST/TS-3 tokamak merging with B{sub p} > 0.4 T will enables us to heat the plasma to the alpha heating regime: T{sub i} > 5 keV without using any additional heating facility.

  6. Power flow estimates during ICRF experiments in VX-10

    NASA Astrophysics Data System (ADS)

    Bengtson, Roger; Sciamma, Ella; Lee, Charles; Chang-Diaz, Franklin; Carrillo, Laurie; Castro-Nieto, Jose; Glover, Tim; Jacobson, Verlin; McCoy, Jim; Squire, Jared; Winter, Scott; Carter, Mark

    2004-11-01

    The VASIMR propulsion concept accelerates ions with ICRF power launched from an antenna on the high field side of the fundamental resonance. We analyze the power flow that goes into accelerating the ions and into electron heating using spectroscopic diagnostics, an interferometer, and a retarding potential analyzer. In particular we will concentrate on measuring the increase in electron temperature. We also measure heat loads on the surrounding walls and structure, with analysis to determine power losses. Results will be compared with calculations.

  7. Photovoltaic-powered refrigerator experiment at Isle Royale National Park

    NASA Technical Reports Server (NTRS)

    Ratajczak, A. F.

    1977-01-01

    The use of a photovoltaic power system to operate an electric refrigerator at a trail construction camp at Isle Royale, Michigan is investigated. The use of P/V power for refrigeration in a remote installation is demonstrated. System design as well as predicted and measured system performance are presented.

  8. Using a Balun Transformer Combiner for High Power Microwave Experiments

    NASA Astrophysics Data System (ADS)

    Kaufman, M. C.; Pesavento, P. V.

    2011-12-01

    A novel coaxial power combiner design has been duplicated that has distinct advantages over other combiner geometries that can handle high power. This design is being applied to combine four 3 kW power supplies to obtain a 10 kW, 5 MHz system for an ICRF antenna on HSX. In the past, Wilkinson type combiners have had limited application to high power systems because of the lack of non-inductive, high power, 100Ω balance loads. With this new design, standard 50Ω dummy loads can be used instead for the balance load. The cost is considerably lower than lumped element combiner designs which are dominated by capacitor costs. At such a relatively low frequency, a 3-dB quarter-wave coupled-line coupler becomes impractically long, and a conventional branch-line hybrid requires 35Ω-line, which is commercially unavailable. The balun combiner uses less transmission line than a ring hybrid and has good bandwidth characteristics even away from its best line impedance. Theoretical calculations and modeling were performed for line impedances from 65Ω to 75Ω. Measurements from a low-power test device show excellent agreement with theory, and construction of the high power system is underway.

  9. Using a Balun Transformer Combiner for High Power RF Experiments

    NASA Astrophysics Data System (ADS)

    Kaufman, M. C.; Pesavento, P. V.

    2011-10-01

    A novel coaxial power combiner design has been duplicated that has distinct advantages over other combiner geometries that can handle high power. This design is being applied to combine four 3 kW power supplies to obtain a 12 kW, 5 MHz system for an ICRF antenna on HSX. In the past, Wilkinson type combiners have had limited application to high power systems because of the lack of non-inductive, high power, 100 Ω balance loads. With this new design, standard 50 Ω dummy loads can be used instead for the balance load. The cost is considerably lower than lumped element combiner designs which are dominated by capacitor costs. At such a relatively low frequency, a 3-dB quarter-wave coupled-line coupler becomes impractically long, and a conventional branch-line hybrid requires 35 Ω-line, which is commercially unavailable. The balun combiner uses less transmission line than a ring hybrid and has good bandwidth characteristics even away from its best line impedance. Theoretical calculations and modeling were performed for line impedances from 65 Ω to 75 Ω. Measurements from a low-power test device show excellent agreement with theory, and construction of the high power system is underway. Work supported by US DOE under Contract No DE-AC05-00OR22725.

  10. Using a Balun Transformer Combiner for High Power Microwave Experiments

    SciTech Connect

    Kaufman, Michael C; Pesavento, Philip V

    2011-01-01

    A novel coaxial power combiner design has been duplicated that has distinct advantages over other combiner geometries that can handle high power. This design is being applied to combine four 3 kW power supplies to obtain a 10 kW, 5 MHz system for an ICRF antenna on HSX. In the past, Wilkinson type combiners have had limited application to high power systems because of the lack of non-inductive, high power, 100 Omega balance loads. With this new design, standard 50 Omega dummy loads can be used instead for the balance load. The cost is considerably lower than lumped element combiner designs which are dominated by capacitor costs. At such a relatively low frequency, a 3-dB quarter-wave coupled-line coupler becomes impractically long, and a conventional branch-line hybrid requires 35 Omega-line, which is commercially unavailable. The balun combiner uses less transmission line than a ring hybrid and has good bandwidth characteristics even away from its best line impedance. Theoretical calculations and modeling were performed for line impedances from 65 Omega to 75 Omega. Measurements from a low-power test device show excellent agreement with theory, and construction of the high power system is underway.

  11. KiloPower Project - KRUSTY Experiment Nuclear Design

    SciTech Connect

    Poston, David Irvin; Godfroy, Thomas; Mcclure, Patrick Ray; Sanchez, Rene Gerardo

    2015-07-20

    This PowerPoint presentation covers the following topics: Reference Kilopower configuration; Reference KRUSTY configuration; KRUSTY design sensitivities; KRUSTY reactivity coefficients; KRUSTY criticality safety and control; KRUSTY core activation/dose; and KRUSTY shielding, room activation/dose.

  12. Green Power Partnership National Top 100 - Dropdown Experiment

    EPA Pesticide Factsheets

    The U.S. EPA's Green Power Partnership is a voluntary program designed to reduce the environmental impact of electricity generation by promoting renewable energy. In return for technical assistance and recognition, partners commit to purchasing a percent

  13. Technology Transfer: Technocultures, Power and Communication--The Australian Experience.

    ERIC Educational Resources Information Center

    More, Elizabeth; Irwin, Harry

    1995-01-01

    Discusses issues of communication and power in the organizational dimensions of international technology transfer, including technoculture differences and strategic political alliances. Theoretical discussion is supplemented by analysis of international technology transfer activities involving Australian participation in the aerospace and…

  14. Experimenting with microbial fuel cells for powering implanted biomedical devices.

    PubMed

    Roxby, Daniel N; Nham Tran; Pak-Lam Yu; Nguyen, Hung T

    2015-08-01

    Microbial Fuel Cell (MFC) technology has the ability to directly convert sugar into electricity by using bacteria. Such a technology could be useful for powering implanted biomedical devices that require a surgery to replace their batteries every couple of years. In steps towards this, parameters such as electrode configuration, inoculation size, stirring of the MFC and single versus dual chamber reactor configuration were tested for their effect on MFC power output. Results indicate that a Top-Bottom electrode configuration, stirring and larger amounts of bacteria in single chamber MFCs, and smaller amounts of bacteria in dual chamber MFCs give increased power outputs. Finally, overall dual chamber MFCs give several fold larger MFC power outputs.

  15. Status of JPL solar powered experiments for terrestrial applications

    NASA Technical Reports Server (NTRS)

    Yasui, R. K.; Goldsmith, J. V.

    1974-01-01

    Results of an ongoing program set up to evaluate solar terrestrial photovoltaic power sources. The results of this program, which now includes a solar array encapsulant and materials test and a solar-powered buoy study, are updated, and the results of efforts to study the dynamic interaction of a solar photovoltaic array and a water electrolysis system coupled to produce hydrogen are reported for the first time.

  16. Buying power in a competitive market (Part II): Public power experience in the new market

    SciTech Connect

    Dahlquist, D.S.

    1995-12-31

    Studies and subsequent contract negotiations engaged in by a municipal electric power agency to obtain alternative power supplies are outlined in the paper. Feasibility studies identified an 80 MW turbine for gas-fired peaking generation to be economically optimal. The request for proposal and contractual agreements to purchase 41 MW of baseload capacity are briefly described. Informal investigations of additional power purchases indicate that baseload power prices have dropped since the original purchase.

  17. Assessment of Zero Power Critical Experiments and Needs for a Fission Surface Power System

    SciTech Connect

    Jim R Parry; John Darrell bess; Brad T. Rearden; Gary A. Harms

    2009-06-01

    The National Aeronautics and Space Administration (NASA) is providing funding to the Department of Energy (DOE) to assess, develop, and test nuclear technologies that could provide surface power to a lunar outpost. Sufficient testing of this fission surface power (FSP) system will need to be completed to enable a decision by NASA for flight development. The near-term goal for the FSP work is to conduct the minimum amount of testing needed to validate the system performance within an acceptable risk. This report attempts to assess the current modeling capabilities and quantify any bias associated with the modeling methods for designing the nuclear reactor. The baseline FSP system is a sodium-potassium (NaK) cooled, fast spectrum reactor with 93% 235U enriched HEU-O2 fuel, SS316 cladding, and beryllium reflectors with B4C control drums. The FSP is to produce approximately 40 kWe net power with a lifetime of at least 8 years at full power. A flight-ready FSP is to be ready for launch and deployment by 2020. Existing benchmarks from the International Criticality Safety Benchmark Evaluation Program (ICSBEP) were reviewed and modeled in MCNP. An average bias of less than 0.6% was determined using the ENDF/B-VII cross-section libraries except in the case of subcritical experiments, which exhibited an average bias of approximately 1.5%. The bias increases with increasing reflector worth of the beryllium. The uncertainties and sensitivities in cross section data for the FSP model and ZPPR-20 configurations were assessed using TSUNAMI-3D. The cross-section covariance uncertainty in the FSP model was calculated as 2.09%, which was dominated by the uncertainty in the 235U(n,?) reactions. Global integral indices were generated in TSUNAMI-IP using pre-release SCALE 6 cross-section covariance data. The ZPPR-20 benchmark models exhibit strong similarity with the FSP model. A penalty assessment was performed to determine the degree of which the FSP model could not be characterized

  18. Faculty Perceptions of and Experiences with Students' Use of Coercive Power

    ERIC Educational Resources Information Center

    Kuhn, Kristine L.

    2016-01-01

    The purpose of this basic qualitative study was to understand how faculty perceive and experience students' use of coercive power in faculty-student relationships. Interviews were used to gather data from faculty members who had experienced students' use of coercive power. Data reveal that students' use of coercive power can negatively impact…

  19. Opportunities for and Barriers to Powerful and Transformative Learning Experiences in Online Learning Environments

    ERIC Educational Resources Information Center

    Bolger, Benjamin B.; Rowland, Gordon; Reuning-Hummel, Carrie; Codner, Stephen

    2011-01-01

    Powerful and transformative learning experiences display characteristics in common with each other. Emerging communication technologies may increase opportunities for powerful and transformative learning experiences. To explore this question, there are four sections to this article. First, it is observed that there are many interesting synergies…

  20. Startup experience with a concentrating photovoltaic power system

    NASA Astrophysics Data System (ADS)

    Kaplan, S. I.

    1982-01-01

    Physical features and startup characteristics of a 240 kW parabolic trough photovoltaic power system are described. The Mississippi County Community College array (Blytheville, AR) comprises 45 rows of linear parabolic troughs oriented N-S, which track E-W by means of a hydraulically driven actuator. The solar input is focussed onto 50/50 water-glycol cooled receiver bars on which Si solar cells are mounted. Nominal operating temperature for the cells is 50 C, with the heat transferred to the building heat supply in the winter. The output is routed through a power conditioning unit for inversion to 480 V ac power, for use by the school or, when the demand is exceeded, for direct transmission into the utility grid. Problems during startup have included misalignment, due to gravitational torquing and twisting, standoff insulation, and tracking during cloudy periods. Output has been 45% of design during the autumn of 1981.

  1. Having the power to forgive: when the experience of power increases interpersonal forgiveness.

    PubMed

    Karremans, Johan C; Smith, Pamela K

    2010-08-01

    The present research examined the association between power, defined in terms of experienced control over outcomes and resources in a relationship, and interpersonal forgiveness. Based on recent findings in the literature suggesting that power is associated with goal directedness, it was hypothesized that high levels of experienced power should facilitate forgiveness, in particular in relationships of strong commitment. The results of three studies, using both correlational and experimental designs, supported this prediction: Power was positively associated with forgiveness, but this effect was stronger in relationships of strong (rather than weak) commitment. This pattern of results was observed for both the inclination to forgive hypothetical offenses and actual forgiveness regarding a past offense. Study 3 provided some preliminary evidence for the role of rumination in the link between power and forgiveness. Implications of these findings for the literature on forgiveness and the literature on social power are discussed.

  2. Practical experiences with worm gearing for spacecraft power transmission applications

    NASA Technical Reports Server (NTRS)

    Purdy, William; Mccown, William

    1989-01-01

    Experiences of several organizations using worm gearing for spacecraft are discussed. Practical aspects and subtleties of using worm gearing for design and operation is included. Knowledge gained from these applications is analyzed, and guidelines for usage are proposed.

  3. Flight experiment of thermal energy storage. [for spacecraft power systems

    NASA Technical Reports Server (NTRS)

    Namkoong, David

    1989-01-01

    Thermal energy storage (TES) enables a solar dynamic system to deliver constant electric power through periods of sun and shade. Brayton and Stirling power systems under current considerations for missions in the near future require working fluid temperatures in the 1100 to 1300+ K range. TES materials that meet these requirements fall into the fluoride family of salts. Salts shrink as they solidify, a change reaching 30 percent for some salts. Hot spots can develop in the TES container or the container can become distorted if the melting salt cannot expand elsewhere. Analysis of the transient, two-phase phenomenon is being incorporated into a three-dimensional computer code. The objective of the flight program is to verify the predictions of the code, particularly of the void location and its effect on containment temperature. The four experimental packages comprising the program will be the first tests of melting and freezing conducted under microgravity.

  4. Herschel and Planck Power System Flight Return Experience

    NASA Astrophysics Data System (ADS)

    Ciancetta, Ezio; Deplus, Nicolas; Zanella, Pietro; Neto, Alessandro; Fernandez, Emilio

    2014-08-01

    Herschel and Planck are space observatories managed by the European Space Agency. The two satellites were launched on May 14, 2009 by a single Ariane-5 launcher and operated in two different Lissajous orbits around the second Lagrangian point (L2), 1.5 million kilometres away from the Earth.Herschel completed its scientific operation in April 2013 and it was passivated on 17 June 2013; Planck has been passivated on 23 October 2013.This paper will first outline the power system design providing a description of the major design drivers, then will provide a synthesis of the behaviour of the Electrical Power System (EPS) in the whole 4-years mission, looking at the performance at launch and during major manoeuvres, verifying the Solar Array degradation with life compared to the expected one and summarizing the main lesson learnt.

  5. High Peak Power Ka-Band Gyrotron Oscillator Experiment.

    DTIC Science & Technology

    1987-09-21

    has also demonstrated frequency tuning over the range 28 to 49 GHz by operating in a family of TE.’ modes, with the azimuthal index m ranging from 4 to...10, by Varia- tion of the guide magnetic field. Operation is in general agrement with the predictions of theory. 1% 20. DISTRIBUTION /AVAILABIUTY OF...proved to be highly efficient, exceptionally high average power millimeter-wave sources.1 Operating at moderate currents and voltages (typically, S50

  6. High power operational experience with the LANSCE Linac

    SciTech Connect

    Rybarcyk, Lawrence J

    2008-01-01

    The heart of the Los Alamos Neutron Science Center (LANSCE) is a pulsed linear accelerator that is used to simultaneously provide H+ and H- beams to several user facilities. This accelerator contains two Cockcroft-Walton style injectors, a 100-MeV drift tube linac and an 800-MeV coupled cavity linac. This presentation will touch on various aspects of the high power operation including performance, tune-up strategy, beam losses and machine protection.

  7. Update on Phelix Pulsed-Power Hydrodynamics Experiments and Modeling

    DTIC Science & Technology

    2013-06-01

    toroidal transformer where their inner conductor forms the primary winding. The whole system resides on a transportable palette that is enclosed within...an EMI shielding box. Figure 1. Schematic of the PHELIX portable pulsed- power system. II. TOROIDAL TRANSFORMER The key technology to...achieving high-current pulses with a small footprint is a toroidal current step-up transformer. The toroidal geometry confines magnetic flux self

  8. Potential of proposed open-cycle OTEC experiments to achieve net power

    SciTech Connect

    Link, H F; Parsons, B K

    1986-06-01

    Researchers at the Solar Energy Research Institute (SERI) conducted systems analysis studies to determine the potential of various experiments to produce net power using the Claude open-cycle ocean thermal energy conversion (OTEC) power system. The proposed experiment test site is to be the Natural Energy Laboratory of Hawaii at Keahole Point. We found that net power is unlikely to be produced in experiment sizes that use less than about 195 kg/s (3000 gpm) of cold water, and that flow rates of 420 kg/s (6500 gpm) are necessary to achieve a net-power production of at least one-half the gross-power output of the experiment.

  9. An original experiment to determine impact of catch crop introduction in a crop rotation on N2O production fate

    NASA Astrophysics Data System (ADS)

    Tallec, Tiphaine; Le Dantec, Valérie; Zawilski, Bartosz; Brut, Aurore; Boussac, Marion; Ferlicoq, Morgan; Ceschia, Eric

    2015-04-01

    The raise in N2O concentration from the preindustrial era (280 ppb) to nowadays (324 ppb) is estimated to account for approximately 6% of the predicted global warming (IPCC 2014). Worldwide, soils are considered to be the dominant source of N2O, releasing an estimated 9.5 Tg N2O-N y-1 (65% of global N2O emissions), of which 36.8% are estimated to originate from agricultural soils (IPCC 2001). Most N2O originating from agricultural soils is a by- or end-product of nitrification or denitrification. The fate of N2O produced by microbiological processes in the subsoil is controlled by biotic (crop species, occurring soil organic matter, human pressure via mineral and organic nitrogen fertilisation) and abiotic (environmental conditions such as temperature, soil moisture, pH, etc.) factors. In cropland, contrary to forest and grassland, long bare soil periods can occurred between winter and summer crops with a high level of mineral (fertilizer) and organic (residues) nitrogen remaining in the soil, causing important emissions of carbon and nitrogen induced by microbial activities. Introduction of catch crop has been identified as an important mitigation option to reduce environmental impact of crops mainly thanks to their ability to increase CO2 fixation, to decrease mineral nitrogen lixiviation and also reduce the potential fate of N2O production. Uncertainty also remains about the impact of released mineral nitrogen coming from crushed catch crop on N2O production if summer crop seedling and mineral nitrogen release are not well synchronized. To verify those assumptions, a unique paired-plot experiment was carried in the south-west of France from September 2013 to august 2014 to test impact of management change on N2O budget and production dynamic. A crop plot was divided into two subplots, one receiving a catch crop (mustard), the other one remaining conventionally managed (bare-soil during winter). This set-up allowed avoiding climate effect. Each subplot was

  10. The Physical Environment: A Powerful Regulator of Experience.

    ERIC Educational Resources Information Center

    Prescott, Elizabeth

    1994-01-01

    Discusses five environmental dimensions (hardness/softness, open/closed, simple/complex, intrusion/seclusion, and high mobility/low mobility) that affect the experiences of children in day-care centers, demonstrating how to consider these dimensions in solving typical problems in child care settings. (MDM)

  11. SNS Ring Operational Experience and Power Ramp Up Status

    SciTech Connect

    Plum, Michael A

    2009-01-01

    The SNS Ring has now been operating for about 3.5 years, and our march continues to increase the beam power to the full design value of 1.4 MW. The Ring is a loss-limited machine, and in general the radioactivation levels are good, but there are some unanticipated hot spots that we are working to improve. High intensity collective effects such as space-charge and beam instability have had minimal impact on beam operations to date. The cross plane coupling issue in the ring to target beam transport line has been solved. We will also discuss the status of equipment upgrades in the high-energy beam transport beam line, the injection-dump beam transport line, the ring, and the ring-to-target beam transport line.

  12. High power microwave source for a plasma wakefield experiment

    NASA Astrophysics Data System (ADS)

    Shafir, G.; Shlapakovski, A.; Siman-Tov, M.; Bliokh, Yu.; Leopold, J. G.; Gleizer, S.; Gad, R.; Rostov, V. V.; Krasik, Ya. E.

    2017-01-01

    The results of the generation of a high-power microwave (˜550 MW, 0.5 ns, ˜9.6 GHz) beam and feasibility of wakefield-excitation with this beam in under-dense plasma are presented. The microwave beam is generated by a backward wave oscillator (BWO) operating in the superradiance regime. The BWO is driven by a high-current electron beam (˜250 keV, ˜1.5 kA, ˜5 ns) propagating through a slow-wave structure in a guiding magnetic field of 2.5 T. The microwave beam is focused at the desired location by a dielectric lens. Experimentally obtained parameters of the microwave beam at its waist are used for numerical simulations, the results of which demonstrate the formation of a bubble in the plasma that has almost 100% electron density modulation and longitudinal and transverse electric fields of several kV/cm.

  13. Power analysis of single-cell RNA-sequencing experiments.

    PubMed

    Svensson, Valentine; Natarajan, Kedar Nath; Ly, Lam-Ha; Miragaia, Ricardo J; Labalette, Charlotte; Macaulay, Iain C; Cvejic, Ana; Teichmann, Sarah A

    2017-04-01

    Single-cell RNA sequencing (scRNA-seq) has become an established and powerful method to investigate transcriptomic cell-to-cell variation, thereby revealing new cell types and providing insights into developmental processes and transcriptional stochasticity. A key question is how the variety of available protocols compare in terms of their ability to detect and accurately quantify gene expression. Here, we assessed the protocol sensitivity and accuracy of many published data sets, on the basis of spike-in standards and uniform data processing. For our workflow, we developed a flexible tool for counting the number of unique molecular identifiers (https://github.com/vals/umis/). We compared 15 protocols computationally and 4 protocols experimentally for batch-matched cell populations, in addition to investigating the effects of spike-in molecular degradation. Our analysis provides an integrated framework for comparing scRNA-seq protocols.

  14. A Free-Form Power Experiment to Enhance Student Creativity

    NASA Astrophysics Data System (ADS)

    Fons, John T.

    2008-01-01

    Laboratory sessions offer students an opportunity to develop creative problem-solving skills and to better understand the nature of the scientific process through hands-on learning. Unfortunately, traditional procedures are often written in such detail, they require students to do little more than follow step-by-step directions. Under those circumstances, students do not have the opportunity for creative and critical thinking and often lose appreciation for the laboratory setting. To encourage student creativity in the lab, I assign a free-form exercise that requires students to measure their power output when performing an activity of their choosing. Students develop their own experimental procedure and analysis restricted only by equipment availability and safety. The short handout I provide for my students contains no formal procedure or guidelines; it simply lists the requirements for their reports.

  15. Ejecta experiments at the Pegasus Pulsed Power facility

    SciTech Connect

    Sorenson, D.S.; Carpenter, B.; King, N.S.P.

    1997-08-01

    When a shock wave interacts at the surface of a metal target, target material can be emitted from the surface called ejecta. The mass, size, shape, and velocity of ejecta varies depending on the initial shock conditions, and target material properties. In order to understand this phenomena, diagnostics have been developed and implemented at the Pegasus Pulsed Power facility located at Los Alamos National Laboratory. The facility provides both radial and axial access for making measurements. There exist optical, laser, and x-ray paths for performing measurements on the target assembly located near the center of the machine. The facility can provide many mega amps of current which is transported to a 5.0 cm diameter, 2.0 cm high aluminum cylinder. The current and associated magnetic field set up forces which implode the aluminum cylinder radially inward. As the aluminum cylinder reaches the appropriate velocity it impacts a target cylinder. Due to this impact, a shock wave is set up in the target and eventually interacts at the inner surface of the target cylinder where ejecta are produced. A 1.5 cm diameter collimator cylinder located inside the target cylinder is used to control the number of ejecta particles that arrive at the center region where ejecta measurements are made. Diagnostics have been developed including in-line Fraunhofer holography and visible shadowgraph. Details of these diagnostics are described.

  16. Reactive high power impulse magnetron sputtering: combining simulation and experiment

    NASA Astrophysics Data System (ADS)

    Kozak, Tomas; Vlcek, Jaroslav

    2016-09-01

    Reactive high-power impulse magnetron sputtering (HiPIMS) has recently been used for preparation of various oxide films with high application potential, such as TiO2, ZrO2, Ta2O5, HfO2, VO2. Using our patented method of pulsed reactive gas flow control with an optimized reactive gas inlet, we achieved significantly higher deposition rates compared to typical continuous dc magnetron depositions. We have developed a time-dependent model of the reactive HiPIMS. The model includes a depth-resolved description of the sputtered target (featuring sputtering, implantation and knock-on implantation processes) and a parametric description of the discharge plasma (dissociation of reactive gas, ionization and return of sputtered atoms and gas rarefaction). The model uses a combination of experimental and simulation data as input. We have calculated the composition of the target and substrate for several deposition conditions. The simulations predict a reduced compound coverage of the target in HiPIMS compared to the continuous dc sputtering regime which explains the increased deposition rate. The simulations show that an increased dissociation of oxygen in a HiPIMS discharge is beneficial to achieve stoichiometric films on the substrate at high deposition rates.

  17. Power Soccer: Experiences of Students Using Power Wheelchairs in a Collegiate Athletic Club

    ERIC Educational Resources Information Center

    Wessel, Roger D.; Wentz, Joel; Markle, Larry L.

    2011-01-01

    Intercollegiate athletics provides an opportunity for improving the societal perceptions and overall quality of life of physically disabled persons. Athletic opportunities in the collegiate atmosphere allow such students to be socially, psychologically, and physically engaged. This study focused on how involvement in a Power Soccer collegiate…

  18. A high voltage power supply for the AE-C and D low energy electron experiment

    NASA Technical Reports Server (NTRS)

    Gillis, J. A.

    1974-01-01

    A description is given of the electrical and mechanical design and operation of high voltage power supplies for space flight use. The supply was used to generate the spiraltron high voltage for low energy electron experiment on AE-C and D. Two versions of the supply were designed and built; one design is referred to as the low power version (AE-C) and the other as the high power version (AE-D). Performance is discussed under all operating conditions.

  19. Cooling System for the Merit High-Power Target Experiment

    NASA Astrophysics Data System (ADS)

    Haug, F.; Pereira, H.; Silva, P.; Pezzetti, M.; Pavlov, O.; Pirotte, O.; Metselaar, J.; Efthymiopoulos, I.; Fabich, A.; Lettry, J.; Kirk, H. G.; McDonald, K. T.; Titus, P.; Bennett, J. R. J.

    2010-04-01

    MERIT is a proof-of-principle experiment of a target station suitable as source for future muon colliders or neutrino factories. When installed at the CERN (European Organization for Nuclear Research) PS (Proton Synchrotron) complex fast-extracted high-intensity proton beams intercepted a free mercury jet inside a normal-conducting, pulsed 15-T capture solenoid magnet cooled with liquid nitrogen. Up to 25 MJ of Joule heat was dissipated in the magnet during a pulse. The fully automated, remotely controlled cryogenic system of novel design permitted the transfer of nitrogen by the sole means of differential pressures inside the vessels. This fast cycling system permitted several hundred tests in less than three weeks during the 2007 data taking campaign.

  20. Power and Flow Experience in Time-Intensive Business Simulation Game

    ERIC Educational Resources Information Center

    Kiili, Kristian; Lainema, Timo

    2010-01-01

    Power is an influential component of social interaction and there are reasons for thinking that it may have important effects both on decision-making and psychological and interpersonal processes. The aim of this paper was to study the relations between the feeling of power, decision-making and flow experience in a collaborative business…

  1. 14 CFR 61.163 - Aeronautical experience: Powered-lift category rating.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... TRANSPORTATION (CONTINUED) AIRMEN CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Airline Transport Pilots § 61.163 Aeronautical experience: Powered-lift category rating. (a) A person who is applying for an airline transport pilot certificate with a powered-lift category rating must have at...

  2. 14 CFR 61.163 - Aeronautical experience: Powered-lift category rating.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... TRANSPORTATION (CONTINUED) AIRMEN CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Airline Transport Pilots § 61.163 Aeronautical experience: Powered-lift category rating. (a) A person who is applying for an airline transport pilot certificate with a powered-lift category rating must have at...

  3. Toward space solar power: Wireless energy transmission experiments past, present and future

    NASA Astrophysics Data System (ADS)

    Little, Frank E.; McSpadden, James O.; Chang, Kai; Kaya, Nobuyuki

    1998-01-01

    Solar power is a reality. Today, increasing numbers of photovoltaic and other solar-powered installations are in service around the world and in space. These uses range from the primary electric power source for satellites, remote site scientific experiments and villages in developing countries to augmenting the commercial electric grid and providing partial power for individual businesses and homeowners in developed countries. In space, electricity generated by photovoltaic conversion of solar energy is the mainstay of power for low Earth and geostationary satellite constellations. Still, for all its acceptance as a benign and environmentally friendly energy source, terrestrial solar power has yet to be seriously considered a viable technology for providing base electrical generating capacity. The obvious reason is sunshine on Earth is too unreliable. In addition to the diurnal and seasonal cycles, inclement weather reduces the average daily period and intensity of insolation. However, the Sun shines constantly in space. The challenge is to harvest and transmit the energy from space to Earth. The concept of space solar power based on microwave wireless energy transmission was first put forth more than 25 years ago by Dr. Peter Glaser. We review historical experiments in wireless energy transmission which have brought the technology from a laboratory curiosity to its present status. Results from recent experiments and their implications for wireless energy transmission as an enabling technology for space solar power are reviewed. Current developments are discussed along with proposed terrestrial and space experiments.

  4. Impact of the introduction of rotavirus vaccine on the timeliness of other scheduled vaccines: the Australian experience.

    PubMed

    Hull, Brynley P; Menzies, Robert; Macartney, Kristine; McIntyre, Peter B

    2013-04-08

    Strict age limits for receipt of rotavirus vaccines and simultaneous use of vaccines requiring two (Rotarix(®)) and three (RotaTeq(®)) doses in Australia may impact on coverage and timeliness of other vaccines in the infant schedule. Using data from the Australian Childhood Immunisation Register (ACIR), coverage and timeliness of rotavirus vaccines and changes in timeliness of other infant vaccines following rotavirus vaccine introduction was examined, with particular emphasis on Indigenous infants in whom coverage is less optimal. Final dose rotavirus coverage reached 83% within 21 months of program commencement but remained 7% lower than other vaccines due in infancy. Coverage was 11-17% lower in Indigenous infants. Adherence to the first dose upper age limits for rotavirus vaccine was high with >97% of children vaccinated by the recommended age, but for subsequent rotavirus doses, receipt beyond the upper age limits was more common, especially in Indigenous children. Following rotavirus vaccine introduction, there were improvements in timeliness of receipt of all doses of DTPa-containing and 7-valent pneumococcal conjugate vaccines. High population coverage can be attained with rotavirus vaccines, even with adherence to strict upper age restrictions for vaccine dose administration. Rotavirus vaccine introduction appears to have impacted upon the timeliness of other concomitantly scheduled vaccines. These factors should be considered when rotavirus programs are introduced.

  5. Experiences in the Application of Project-Based Learning in a Switching-Mode Power Supplies Course

    ERIC Educational Resources Information Center

    Lamar, D. G.; Miaja, P. F.; Arias, M.; Rodriguez, A.; Rodriguez, M.; Vazquez, A.; Hernando, M. M.; Sebastian, J.

    2012-01-01

    This paper presents the introduction of problem-based learning (PBL) in a power electronics course at the University of Oviedo, Gijon, Spain, by means of two practical projects: the design and construction of a switching-mode power supply (SMPS) prototype and the static study of a dc-dc converter topology. The goal of this innovation was for…

  6. Testing the Waters. Duke Power State Park: An Environmental Education Learning Experience Designed for Grades 4-6.

    ERIC Educational Resources Information Center

    Rhinehart, William C.; Beazley, Lea J.

    This learning packet, one in a group of eight, was developed by the Duke Power State Park in North Carolina for Grades 4-6 to learn to identify macroinvertebrates found in Lake Norman. Loose-leaf pages are presented in nine sections that contain: (1) introductions to the North Carolina State Park System, the Duke Power State Park, the park's…

  7. Emotional intimacy power predicts different sexual experiences for men and women.

    PubMed

    Edwards, Gaynor L; Barber, Bonnie L; Dziurawiec, Suzanne

    2014-01-01

    Those who are more emotionally invested in relationships have less power than their partners. Furthermore, less powerful individuals may attempt to equalize power imbalances by offering rewards to their partner and using sex and condom use as exchange resources. Australian young adults reported their condom use and pressured sex experiences in both romantic (n = 708) and casual (n = 118) relationships. Results showed that greater power (lower relative emotional investment) predicted more condom use among those wanting to use condoms. In casual relationships, an interaction with gender showed that women in particular used condoms more when they had more power. Power also interacted with gender for pressured sex and, unexpectedly, men who had more power experienced more pressured sex. The possibility that condom use and pressured sex have different meanings for men and women is explored.

  8. Megawatt Class Nuclear Space Power Systems (MCNSPS) conceptual design and evaluation report. Volume 1: Objectives, summary results and introduction

    NASA Astrophysics Data System (ADS)

    Wetch, J. R.

    1988-09-01

    The objective was to determine which reactor, conversion, and radiator technologies would best fulfill future Megawatt Class Nuclear Space Power System Requirements. Specifically, the requirement was 10 megawatts for 5 years of full power operation and 10 years systems life on orbit. A variety of liquid metal and gas cooled reactors, static and dynamic conversion systems, and passive and dynamic radiators were considered. Four concepts were selected for more detailed study. The concepts are: a gas cooled reactor with closed cycle Brayton turbine-alternator conversion with heat pipe and pumped tube-fin heat rejection; a lithium cooled reactor with a free piston Stirling engine-linear alternator and a pumped tube-fin radiator; a lithium cooled reactor with potassium Rankine turbine-alternator and heat pipe radiator; and a lithium cooled incore thermionic static conversion reactor with a heat pipe radiator. The systems recommended for further development to meet a 10 megawatt long life requirement are the lithium cooled reactor with the K-Rankine conversion and heat pipe radiator, and the lithium cooled incore thermionic reactor with heat pipe radiator.

  9. Megawatt Class Nuclear Space Power Systems (MCNSPS) conceptual design and evaluation report. Volume 1: Objectives, summary results and introduction

    NASA Technical Reports Server (NTRS)

    Wetch, J. R.

    1988-01-01

    The objective was to determine which reactor, conversion, and radiator technologies would best fulfill future Megawatt Class Nuclear Space Power System Requirements. Specifically, the requirement was 10 megawatts for 5 years of full power operation and 10 years systems life on orbit. A variety of liquid metal and gas cooled reactors, static and dynamic conversion systems, and passive and dynamic radiators were considered. Four concepts were selected for more detailed study. The concepts are: a gas cooled reactor with closed cycle Brayton turbine-alternator conversion with heat pipe and pumped tube-fin heat rejection; a lithium cooled reactor with a free piston Stirling engine-linear alternator and a pumped tube-fin radiator; a lithium cooled reactor with potassium Rankine turbine-alternator and heat pipe radiator; and a lithium cooled incore thermionic static conversion reactor with a heat pipe radiator. The systems recommended for further development to meet a 10 megawatt long life requirement are the lithium cooled reactor with the K-Rankine conversion and heat pipe radiator, and the lithium cooled incore thermionic reactor with heat pipe radiator.

  10. An introduction to the design, commissioning and operation of nuclear air cleaning systems for Qinshan Nuclear Power Plant

    SciTech Connect

    Xinliang Chen; Jiangang Qu; Minqi Shi

    1995-02-01

    This paper introduces the design evolution, system schemes and design and construction of main nuclear air cleaning components such as HEPA filter, charcoal adsorber and concrete housing etc. for Qinshan 300MW PWR Nuclear Power Plant (QNPP), the first indigenously designed and constructed nuclear power plant in China. The field test results and in-service test results, since the air cleaning systems were put into operation 18 months ago, are presented and evaluated. These results demonstrate that the design and construction of the air cleaning systems and equipment manufacturing for QNPP are successful and the American codes and standards invoked in design, construction and testing of nuclear air cleaning systems for QNPP are applicable in China. The paper explains that the leakage rate of concrete air cleaning housings can also be assured if sealing measures are taken properly and embedded parts are designed carefully in the penetration areas of the housing and that the uniformity of the airflow distribution upstream the HEPA filters can be achieved generally no matter how inlet and outlet ducts of air cleaning unit are arranged.

  11. High power laser diodes for the NASA direct detection laser transceiver experiment

    NASA Technical Reports Server (NTRS)

    Seery, Bernard D.; Holcomb, Terry L.

    1988-01-01

    High-power semiconductor laser diodes selected for use in the NASA space laser communications experiments are discussed. The diode selection rationale is reviewed, and the laser structure is shown. The theory and design of the third mirror lasers used in the experiments are addressed.

  12. Lived experience in teaching mental health nursing: issues of fear and power.

    PubMed

    Happell, Brenda; Bennetts, Wanda; Harris, Scott; Platania-Phung, Chris; Tohotoa, Jenny; Byrne, Louise; Wynaden, Dianne

    2015-02-01

    Australian mental health policy clearly articulates recovery focus as the underpinning of mental health services. Barriers to achieving a recovery focus are identified in the literature, with negative attitudes of health professionals receiving particular attention. The involvement of people with lived experience of significant mental health challenges and mental health service use is essential to enhancing more positive attitudes. Lived-experience involvement in the education of nurses is evident; however, it is generally limited and implemented on an ad hoc basis. Overall, there is a paucity of literature on this topic. A qualitative exploratory study was undertaken to elicit the views and perceptions of nurse academics and lived-experience educators about the inclusion of lived experience in mental health nursing education. One major theme to emerge from the research was issues of fear and power, which included three subthemes: facing fear, demystifying mental illness, and issues of power. Lived-experience involvement has an important role to play in the education of nurses in addressing fear and demystifying the experience of mental illness. The power that lived-experience educators exercised in their roles varied considerably, and for many, was limited. Therefore, the effectiveness of lived-experience involvement requires a more equitable distribution of power.

  13. The MERIT High-Power Target Experiment at the CERN PS

    SciTech Connect

    McDonald, K.T.; Kirk, H.G.; Park, H.; Tsang, T.; Efthymiopoulos, I.; Fabich, A.; Haug, F.; Lettry, J.; Palm, M.; Pereira, H.; Mokhov, N.; /Fermilab /Oak Ridge /Rutherford

    2009-05-01

    The MERIT experiment was designed as a proof-of-principle test of a target system based on a free mercury jet inside a 15-T solenoid that is capable of sustaining proton beam powers of up to 4 MW. The experiment was run at CERN in the fall of 2007. We describe the results of the tests and their implications.

  14. Benchmark Evaluation of the Medium-Power Reactor Experiment Program Critical Configurations

    SciTech Connect

    Margaret A. Marshall; John D. Bess

    2013-02-01

    A series of small, compact critical assembly (SCCA) experiments were performed in 1962-1965 at the Oak Ridge National Laboratory Critical Experiments Facility (ORCEF) for the Medium-Power Reactor Experiment (MPRE) program. The MPRE was a stainless-steel clad, highly enriched uranium (HEU)-O2 fuelled, BeO reflected reactor design to provide electrical power to space vehicles. Cooling and heat transfer were to be achieved by boiling potassium in the reactor core and passing vapor directly through a turbine. Graphite- and beryllium-reflected assemblies were constructed at ORCEF to verify the critical mass, power distribution, and other reactor physics measurements needed to validate reactor calculations and reactor physics methods. The experimental series was broken into three parts, with the third portion of the experiments representing the beryllium-reflected measurements. The latter experiments are of interest for validating current reactor design efforts for a fission surface power reactor. The entire series has been evaluated as acceptable benchmark experiments and submitted for publication in the International Handbook of Evaluated Criticality Safety Benchmark Experiments and in the International Handbook of Evaluated Reactor Physics Benchmark Experiments.

  15. The MERIT High-Power Target Experiment at the CERN PS

    SciTech Connect

    Kirk, H.G.; Tsang, T.; Efthymiopoulos, I.; Fabich, A.; Haug, F.; Lettry, J.; Palm, M.; Pereira, H.; Mohkov, N.; Striganov, S.; Carroll, A.J. /Oak Ridge /Princeton U. /Rutherford /SUNY, Stony Brook

    2008-06-01

    The MERIT experiment was designed as a proof-of-principle test of a target system based on a free mercury jet inside a 15-T solenoid that is capable of sustaining proton beam powers of up to 4 MW. The experiment was run at CERN in the fall of 2007. We describe the results of the tests and their implications.

  16. Large CFB power plant design and operating experience: Texas-New Mexico Power Company 150 MWe (net) CFB power plant

    SciTech Connect

    Riley, K.; Cleve, K.; Tanca, M.

    1995-12-31

    The first unit of the TNP One CFB power plant was successfully put on line by Texas-New Mexico Power Company (TNP) in Robertson County, Texas, US in 1990. Unit 2 came on line one year later. This grassroots plant fires Texas lignite. The two identical CFB units were each designed for 150 MWe net electrical generation. The units have operated at 155 MWe net for extended periods of time without modifications. The boilers have additional capacity but are limited by the balance of plant. The TNP One plant was awarded the Power Plant of the Year Award by Power magazine in 1991 advancing CFB technology in large generating facilities. The plant was designed for maximum fuel flexibility with guaranteed full load operation on either Texas lignite, western coal or natural gas. The plant has fired the following fuels, to date: lignite (base fuel), natural gas (0--100% with lignite), delayed petroleum coke (0--100% with lignite), plant generated waste oils (small amounts), oil filter fluff (small amounts) and a waste product of pelletized reflective tape. Future testing is planned to test burn shredded tires. While firing all fuels, the plant could attain full load and meet all environmentally permitted emissions without any boiler modifications or compromises in boiler efficiency. This high flexibility of the plant can be attributed to the two large fluidized bed heat exchangers (FBHEs) for steam temperature and combustor temperature control. The facility is a mine mouth operation burning the local Texas lignite. The delayed petroleum cokes fired originated from various supply sources from the Texas/Louisiana area.

  17. Long Duration Exposure Facility (LDEF) low-temperature heat pipe experiment package power system results

    NASA Technical Reports Server (NTRS)

    Tiller, Smith E.; Sullivan, David

    1992-01-01

    An overview of a self-contained Direct Energy Transfer Power System which was developed to provide power to the Long Duration Exposure Facility (LDEF) Low-Temperature Heat Pipe Experiment Package is presented. The power system operated successfully for the entire mission. Data recorded by the onboard recorder shows that the system operated within design specifications. Other than unanticipated overcharging of the battery, the power system operated as expected for nearly 32,000 low earth orbit cycles, and was still operational when tested after the LDEF recovery. Some physical damage was sustained by the solar array panels due to micrometeoroid hits, but there were not electrical failures.

  18. Measure of the impact of future dark energy experiments based on discriminating power among quintessence models

    NASA Astrophysics Data System (ADS)

    Barnard, Michael; Abrahamse, Augusta; Albrecht, Andreas; Bozek, Brandon; Yashar, Mark

    2008-08-01

    We evaluate the ability of future data sets to discriminate among different quintessence dark energy models. This approach gives an alternative (and complementary) measure for assessing the impact of future experiments, as compared with the large body of literature that compares experiments in abstract parameter spaces (such as the well-known w0-wa parameters) and more recent work that evaluates the constraining power of experiments on individual parameter spaces of specific quintessence models. We use the Dark Energy Task Force (DETF) models of future data sets and compare the discriminative power of experiments designated by the DETF as stages 2, 3, and 4 (denoting increasing capabilities). Our work reveals a minimal increase in discriminating power when comparing stage 3 to stage 2, but a very striking increase in discriminating power when going to stage 4 (including the possibility of completely eliminating some quintessence models). We also see evidence that even modest improvements over DETF stage 4 (which many believe are realistic) could result in even more dramatic discriminating power among quintessence dark energy models. We develop and demonstrate the technique of using the independently measured modes of the equation of state (derived from principle component analysis) as a common parameter space in which to compare the different quintessence models, and we argue that this technique is a powerful one. We use the PNGB, Exponential, Albrecht-Skordis, and Inverse Tracker (or inverse power law) quintessence models for this work. One of our main results is that the goal of discriminating among these models sets a concrete measure on the capabilities of future dark energy experiments. Experiments have to be somewhat better than DETF stage 4 simulated experiments to fully meet this goal.

  19. Low density, microcellular, dopable, agar/gelatin foams for pulsed power experiments

    SciTech Connect

    McNamara, W.F.; Aubert, J.H.

    1997-04-01

    Low-density, microcellular foams prepared from the natural polymers agar and gelatin have been developed for pulsed-power physics experiments. Numerous experiments were supported with foams having densities at or below 10 mg/cm{sup 3}. For some of the experiments, the agar/gelatin foam was uniformly doped with metallic elements using soluble salts. Depending on the method of preparation, cell sizes were typically below 10 microns and for one process were below 1.0 micron.

  20. Health effects models for nuclear power plant accident consequence analysis. Part 1, Introduction, integration, and summary: Revision 2

    SciTech Connect

    Evans, J.S.; Abrahmson, S.; Bender, M.A.; Boecker, B.B.; Scott, B.R.; Gilbert, E.S.

    1993-10-01

    This report is a revision of NUREG/CR-4214, Rev. 1, Part 1 (1990), Health Effects Models for Nuclear Power Plant Accident Consequence Analysis. This revision has been made to incorporate changes to the Health Effects Models recommended in two addenda to the NUREG/CR-4214, Rev. 1, Part 11, 1989 report. The first of these addenda provided recommended changes to the health effects models for low-LET radiations based on recent reports from UNSCEAR, ICRP and NAS/NRC (BEIR V). The second addendum presented changes needed to incorporate alpha-emitting radionuclides into the accident exposure source term. As in the earlier version of this report, models are provided for early and continuing effects, cancers and thyroid nodules, and genetic effects. Weibull dose-response functions are recommended for evaluating the risks of early and continuing health effects. Three potentially lethal early effects -- the hematopoietic, pulmonary, and gastrointestinal syndromes are considered. Linear and linear-quadratic models are recommended for estimating the risks of seven types of cancer in adults - leukemia, bone, lung, breast, gastrointestinal, thyroid, and ``other``. For most cancers, both incidence and mortality are addressed. Five classes of genetic diseases -- dominant, x-linked, aneuploidy, unbalanced translocations, and multifactorial diseases are also considered. Data are provided that should enable analysts to consider the timing and severity of each type of health risk.

  1. Introduction of CORC® wires: highly flexible, round high-temperature superconducting wires for magnet and power transmission applications

    NASA Astrophysics Data System (ADS)

    Weiss, Jeremy D.; Mulder, Tim; ten Kate, Herman J.; van der Laan, Danko C.

    2017-01-01

    Conductor on Round Core (CORC®) technology has achieved a long sought-after benchmark by enabling the production of round, multifilament, (RE)Ba2Ca3O7-x coated conductors with practical current densities for use in magnets and power applications. Recent progress, including the demonstration of engineering current density beyond 300 Amm-2 at 4.2 K and 20 T, indicates that CORC® cables are a viable conductor for next generation high field magnets. Tapes with 30 μm substrate thickness and tape widths down to 2 mm have improved the capabilities of CORC® technology by allowing the production of CORC® wires as thin as 3 mm in diameter with the potential to enhance the engineering current density further. An important benefit of the thin CORC® wires is their improved flexibility compared to thicker (7-8 mm diameter) CORC® cables. Critical current measurements were carried out on tapes extracted from CORC® wires made using 2 and 3 mm wide tape after bending the wires to various diameters from 10 to 3.5 cm. These thin wires are highly flexible and retain close to 90% of their original critical current even after bending to a diameter of 3.5 cm. A small 5-turn solenoid was constructed and measured as a function of applied magnetic field, exhibiting an engineering current density of 233 Amm-2 at 4.2 K and 10 T. CORC® wires thus form an attractive solution for applications between 4.2 and 77 K, including high-field magnets that require high current densities with small bending diameters, benefiting from a ready-to-use form (similar to NbTi and contrary to Nb3Sn wires) that does not require additional processing following coil construction.

  2. Tapping the Power of Crustacean Transcriptomics to Address Grand Challenges in Comparative Biology: An Introduction to the Symposium.

    PubMed

    Mykles, Donald L; Burnett, Karen G; Durica, David S; Stillman, Jonathon H

    2016-12-01

    Crustaceans, and decapods in particular (i.e., crabs, shrimp, and lobsters), are a diverse and ecologically and commercially important group of organisms. Understanding responses to abiotic and biotic factors is critical for developing best practices in aquaculture and assessing the effects of changing environments on the biology of these important animals. A relatively small number of decapod crustacean species have been intensively studied at the molecular level; the availability, experimental tractability, and economic relevance factor into the selection of a particular species as a model. Transcriptomics, using high-throughput next generation sequencing (NGS, coupled with RNA sequencing or RNA-seq) is revolutionizing crustacean biology. The 11 symposium papers in this volume illustrate how RNA-seq is being used to study stress response, molting and limb regeneration, immunity and disease, reproduction and development, neurobiology, and ecology and evolution. This symposium occurred on the 10th anniversary of the symposium, "Genomic and Proteomic Approaches to Crustacean Biology", held at the Society for Integrative and Comparative Biology 2006 meeting. Two participants in the 2006 symposium, the late Paul Gross and David Towle, were recognized as leaders who pioneered the use of molecular techniques that would ultimately foster the transcriptomics research reviewed in this volume. RNA-seq is a powerful tool for hypothesis-driven research, as well as an engine for discovery. It has eclipsed the technologies available in 2006, such as microarrays, expressed sequence tags, and subtractive hybridization screening, as the millions of "reads" from NGS enable researchers to de novo assemble a comprehensive transcriptome without a complete genome sequence. The symposium series concludes with a policy paper that gives an overview of the resources available and makes recommendations for developing better tools for functional annotation and pathway and network analysis in

  3. Design and Testing of a Breadboard Electrical Power Control Unit for the Fluid Combustion Facility Experiment

    NASA Technical Reports Server (NTRS)

    Kimnach, Greg L.; Lebron, Ramon C.

    1999-01-01

    The Fluid Combustion Facility (FCF) Project and the Power Technology Division at the NASA Glenn Research Center (GRC) at Lewis Field in Cleveland, OH along with the Sundstrand Corporation in Rockford, IL are jointly developing an Electrical Power Converter Unit (EPCU) for the Fluid Combustion Facility to be flown on the International Space Station (ISS). The FCF facility experiment contains three racks: A core rack, a combustion rack, and a fluids rack. The EPCU will be used as the power interface to the ISS 120V(sub dc) power distribution system by each FCF experiment rack which requires 28V(sub dc). The EPCU is a modular design which contains three 120V(sub dc)-to-28V(sub dc) full-bridge, power converters rated at 1 kW(sub e) each bus transferring input relays and solid-state, current-limiting input switches, 48 current-limiting, solid-state, output switches; and control and telemetry hardware. The EPCU has all controls required to autonomously share load demand between the power feeds and--if absolutely necessary--shed loads. The EPCU, which maximizes the usage of allocated ISS power and minimizes loss of power to loads, can be paralleled with other EPCUs. This paper overviews the electrical design and operating characteristics of the EPCU and presents test data from the breadboard design.

  4. Surface Experiments on a Jupiter Trojan Asteroid in the Solar Powered Sail Mission

    NASA Astrophysics Data System (ADS)

    Okada, Tatsuaki

    2016-04-01

    Introduction: A new mission to a Jupiter Trojan asteroid is under study us-ing a solar-powered sail (SPS), and a science lander is being investigated in the joint study between Japan and Europe [1]. We present here the key sci-entific objectives and the strawman payloads of science experiments on the asteroid. Science Objectives: Jupiter Trojan asteroids are located around the Sun-Jupiter Lagrange points (L4 or L5) and most of them are classified as D- or P-type in asteroid taxonomy, but their origin still remains unknown. A classi-cal (static) model of solar system evolution indicates that they were formed around the Jupiter region and survived until now as the outer end members of asteroids. A new (dynamical) model such as Nice model suggests that they were formed at the far end of the solar system and transferred inward due to dynamical migration of giant planets [2]. Therefore physical, miner-alogical, and isotopic studies of surface materials and volatile compounds could solve their origin, and then the solar system formation [3]. Strawman Payloads: The SPS orbiter will be able to carry a 100 kg class lander with 20 kg mission payloads. Just after landing of the lander, geolog-ical, mineralogical, and geophysical observations will be performed to char-acterize the site using a panoramic optical camera, an infrared hyperspectral imager, a magnetometer, and a thermal radiometer. The surface and subsur-face materials of the asteroid will be collected into a carousel by the bullet-type and the pneumatic drill type samplers, respectively. Samples in the carousel will be investigated by a visible and an infrared microscope, and transferred for performing high resolution mass spectrometry (HRMS). Mass resolution m/dm > 30,000 is expected to investigate isotopic ratios of D/H, 15N/14N, and 18O/16O, as well as molecules from organic matters. A set of strawman payloads are tentatively determined during the lander system study [4]. The constraints to select the strawman

  5. Quantifying Motor Experience in the Infant Brain: EEG Power, Coherence, and Mu Desynchronization

    PubMed Central

    Gonzalez, Sandy L.; Reeb-Sutherland, Bethany C.; Nelson, Eliza L.

    2016-01-01

    The emergence of new motor skills, such as reaching and walking, dramatically changes how infants engage with the world socially and cognitively. Several examples of how motor experience can cascade into cognitive and social development have been documented, yet a significant knowledge gap remains in our understanding of whether these observed behavioral changes are accompanied by underlying neural changes. We propose that electroencephalography (EEG) measures such as power, coherence, and mu desynchronization are optimal tools to quantify motor experience in the infant brain. In this mini-review, we will summarize existing infant research that has separately assessed the relation between motor, cognitive, or social development with coherence, power, or mu desynchronization. We will discuss how the reviewed neural changes seen in seemingly separate developmental domains may be linked based on existing behavioral evidence. We will further propose that power, coherence, and mu desynchronization be used in research exploring the links between motor experience and cognitive and social development. PMID:26925022

  6. High-voltage power supply system for detecting equipment of DSS experiment at JINR Nuclotron

    NASA Astrophysics Data System (ADS)

    Piyadin, S. M.; Ladygin, V. P.; Pilyar, A. V.; Reznikov, S. G.; Janek, M.

    2017-01-01

    The eight-channel high-voltage power supply system based on using the Wenzel Elektronik N1130 module is described. The characteristics of 8DAC-12 and 8ADC-14 types control modules of CAMAC standard designed for high-voltage systems are presented. This system was successfully used to provide the power supply of scintillation detectors in the experiments on the study of the structure of light nuclei at JINR Nuclotron.

  7. A new paradigm on battery powered embedded system design based on User-Experience-Oriented method

    NASA Astrophysics Data System (ADS)

    Wang, Zhuoran; Wu, Yue

    2014-03-01

    The battery sustainable time has been an active research topic recently for the development of battery powered embedded products such as tablets and smart phones, which are determined by the battery capacity and power consumption. Despite numerous efforts on the improvement of battery capacity in the field of material engineering, the power consumption also plays an important role and easier to ameliorate in delivering a desirable user-experience, especially considering the moderate advancement on batteries for decades. In this study, a new Top-Down modelling method, User-Experience-Oriented Battery Powered Embedded System Design Paradigm, is proposed to estimate the target average power consumption, to guide the hardware and software design, and eventually to approach the theoretical lowest power consumption that the application is still able to provide the full functionality. Starting from the 10-hour sustainable time standard, average working current is defined with battery design capacity and set as a target. Then an implementation is illustrated from both hardware perspective, which is summarized as Auto-Gating power management, and from software perspective, which introduces a new algorithm, SleepVote, to guide the system task design and scheduling.

  8. A video wireless capsule endoscopy system powered wirelessly: design, analysis and experiment

    NASA Astrophysics Data System (ADS)

    Pan, Guobing; Xin, Wenhui; Yan, Guozheng; Chen, Jiaoliao

    2011-06-01

    Wireless capsule endoscopy (WCE), as a relatively new technology, has brought about a revolution in the diagnosis of gastrointestinal (GI) tract diseases. However, the existing WCE systems are not widely applied in clinic because of the low frame rate and low image resolution. A video WCE system based on a wireless power supply is developed in this paper. This WCE system consists of a video capsule endoscope (CE), a wireless power transmission device, a receiving box and an image processing station. Powered wirelessly, the video CE has the abilities of imaging the GI tract and transmitting the images wirelessly at a frame rate of 30 frames per second (f/s). A mathematical prototype was built to analyze the power transmission system, and some experiments were performed to test the capability of energy transferring. The results showed that the wireless electric power supply system had the ability to transfer more than 136 mW power, which was enough for the working of a video CE. In in vitro experiments, the video CE produced clear images of the small intestine of a pig with the resolution of 320 × 240, and transmitted NTSC format video outside the body. Because of the wireless power supply, the video WCE system with high frame rate and high resolution becomes feasible, and provides a novel solution for the diagnosis of the GI tract in clinic.

  9. Power-Stepped HF Cross-Modulation Experiments: Simulations and Experimental Observations

    NASA Astrophysics Data System (ADS)

    Greene, S.; Moore, R. C.

    2014-12-01

    High frequency (HF) cross modulation experiments are a well established means for probing the HF-modified characteristics of the D-region ionosphere. The interaction between the heating wave and the probing pulse depends on the ambient and modified conditions of the D-region ionosphere. Cross-modulation observations are employed as a measure of the HF-modified refractive index. We employ an optimized version of Fejer's method that we developed during previous experiments. Experiments were performed in March 2013 at the High Frequency Active Auroral Research Program (HAARP) observatory in Gakona, Alaska. During these experiments, the power of the HF heating signal incrementally increased in order to determine the dependence of cross-modulation on HF power. We found that a simple power law relationship does not hold at high power levels, similar to previous ELF/VLF wave generation experiments. In this paper, we critically compare these experimental observations with the predictions of a numerical ionospheric HF heating model and demonstrate close agreement.

  10. Analysis of failure and maintenance experiences of motor operated valves in a Finnish nuclear power plant

    NASA Astrophysics Data System (ADS)

    Simola, Kaisa; Laakso, Kari

    1992-01-01

    Eight years of operating experiences of 104 motor operated closing valves in different safety systems in nuclear power units were analyzed in a systematic way. The qualitative methods used were Failure Mode and Effect Analysis (FMEA) and Maintenance Effects and Criticality Analysis (MECA). These reliability engineering methods are commonly used in the design stage of equipment. The successful application of these methods for analysis and utilization of operating experiences was demonstrated.

  11. Introduction to RTM Workstation

    DTIC Science & Technology

    2003-07-01

    Several successful experiments were run using different types of resins and fibers for both RTM and VARTM processes. 3. According to DSC measures...INTRODUCTION TO RTM WORKSTATION Jeffrey M. Lawrence Mathieu Devillard Peter Friede Dr. Suresh G. Advani Report Documentation Page Form ApprovedOMB...COVERED - 4. TITLE AND SUBTITLE Introduction To RTM Workstation 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d

  12. Personality Disorder Patients' Perspectives on the Introduction of Imagery within Schema Therapy: A Qualitative Study of Patients' Experiences

    ERIC Educational Resources Information Center

    ten Napel-Schutz, Marieke C.; Abma, Tineke A.; Bamelis, Lotte; Arntz, Arnoud

    2011-01-01

    A qualitative study was done on patients' perspectives on the first phases of imagery work in the context of schema therapy (ST) for personality disorders. Patients participated in a multi-center randomized controlled study of the effectiveness of ST. Patients' experiences and opinions were collected with semistructured in-depth interviews at the…

  13. Introduction to Homogenous Catalysis with Ruthenium-Catalyzed Oxidation of Alcohols: An Experiment for Undergraduate Advanced Inorganic Chemistry Students

    ERIC Educational Resources Information Center

    Miecznikowski, John R.; Caradonna, John P.; Foley, Kathleen M.; Kwiecien, Daniel J.; Lisi, George P.; Martinez, Anthony M.

    2011-01-01

    A three-week laboratory experiment, which introduces students in an advanced inorganic chemistry course to air-sensitive chemistry and catalysis, is described. During the first week, the students synthesize RuCl[subscript 2](PPh[subscript 3])[subscript 3]. During the second and third weeks, the students characterize the formed coordination…

  14. Verification of Space Station Secondary Power System Stability Using Design of Experiment

    NASA Technical Reports Server (NTRS)

    Karimi, Kamiar J.; Booker, Andrew J.; Mong, Alvin C.; Manners, Bruce

    1998-01-01

    This paper describes analytical methods used in verification of large DC power systems with applications to the International Space Station (ISS). Large DC power systems contain many switching power converters with negative resistor characteristics. The ISS power system presents numerous challenges with respect to system stability such as complex sources and undefined loads. The Space Station program has developed impedance specifications for sources and loads. The overall approach to system stability consists of specific hardware requirements coupled with extensive system analysis and testing. Testing of large complex distributed power systems is not practical due to size and complexity of the system. Computer modeling has been extensively used to develop hardware specifications as well as to identify system configurations for lab testing. The statistical method of Design of Experiments (DoE) is used as an analysis tool for verification of these large systems. DOE reduces the number of computer runs which are necessary to analyze the performance of a complex power system consisting of hundreds of DC/DC converters. DoE also provides valuable information about the effect of changes in system parameters on the performance of the system. DoE provides information about various operating scenarios and identification of the ones with potential for instability. In this paper we will describe how we have used computer modeling to analyze a large DC power system. A brief description of DoE is given. Examples using applications of DoE to analysis and verification of the ISS power system are provided.

  15. Can the Maximum Power Principle predict Effective Conductivities of a Confined Aquifer? A Lab Experiment

    NASA Astrophysics Data System (ADS)

    Westhoff, M.; Erpicum, S.; Archambeau, P.; Pirotton, M.; Zehe, E.; Dewals, B.

    2015-12-01

    Power can be performed by a system driven by a potential difference. From a given potential difference, the power that can be subtracted is constraint by the Carnot limit, which follows from the first and second laws of thermodynamics. If the system is such that the flux producing power (with power being the flux times its driving potential difference) also influences the potential difference, a maximum in power can be obtained as a result of the trade-off between the flux and the potential difference. This is referred to as the maximum power principle. It has already been shown that the atmosphere operates close to this maximum power limit when it comes to heat transport from the Equator to the poles, or vertically, from the surface to the atmospheric boundary layer. To reach this state of maximum power, the effective thermal conductivity of the atmosphere is adapted by the creation of convection cells. The aim of this study is to test if the soil's effective hydraulic conductivity also adapts in such a way that it produces maximum power. However, the soil's hydraulic conductivity adapts differently; for example by the creation of preferential flow paths. Here, this process is simulated in a lab experiment, which focuses on preferential flow paths created by piping. In the lab, we created a hydrological analogue to the atmospheric model dealing with heat transport between Equator and poles, with the aim to test if the effective hydraulic conductivity of the sand bed can be predicted with the maximum power principle. The experimental setup consists of two freely draining reservoir connected with each other by a confined aquifer. By adding water to only one reservoir, a potential difference will build up until a steady state is reached. The results will indicate whether the maximum power principle does apply for groundwater flow and how it should be applied. Because of the different way of adaptation of flow conductivity, the results differ from that of the

  16. High-Power Electrostatic Discharges in PETN: Threshold and Scaling Experiments

    SciTech Connect

    Liou, W; McCarrick, J F; Hodgin, R L; Phillips, D F

    2010-03-05

    There is a considerable set of data establishing the safety of PETN-based detonators that are insulted by electrostatic discharge (ESD) from a human body. However, the subject of ESD safety has garnered renewed interest because of the sparse data on high-power, low-impedance discharges that result when the source is a metallic object such as a tool. Experiments on as-built components, using pin-to-cap fault circuits through PETN-based detonators, showed significant evidence of a power dependence but with a very broad energy threshold and some uncertainty in the breakdown path. We have performed a series of experiments using a well-defined arc discharge path and a well-characterized source that is capable of independent variation of energy and power. Studies include threshold variation with power, arc length, powder surface area, and surface vs. bulk discharge paths. We find that an energy threshold variation with power does not appear to exist in the tested range of fractions to tens of MW, and that there are many subtleties to proper energy and power bookkeeping. We also present some test results for PBX 9407.

  17. Tethered Solar Power Satellite for the Near-term Demonstration Experiment

    NASA Astrophysics Data System (ADS)

    Sasaki, S.

    2004-12-01

    Tethered Solar Power Satellite (Tethered-SPS) consisting of a large panel with a capability of power generation/ transmission and a bus system which are connected by multi-wires has been proposed as an innovative solar power satellite. The Tethered-SPS concept is highly robust and potentially low cost, with special features in the integration, construction, attitude control, heat management, and evolutional development strategy. Towards the practical Tethered-SPS of GW level in the future, a demonstration experiment in the near future has been investigated. The basic plan is to place a miniature tethered SPS in the low earth orbit to demonstrate the microwave power transmission to the ground. The demonstrator has a 16 m x 17.6 m panel consisting of 400 power generation/transmission modules and an end mass, which are connected with a truss and tether wires. The attitude is stabilized by the gravity-gradient force so as that the transmitting antennas in the lower plane of the panel are always directed to the ground. The experiment will be able to demonstrate the microwave power transmission more than 100 kW from the orbit to the rectenna on the ground.

  18. Institutional Power: Identity, Politics, and Lived Experiences in the Dance License via Portfolio Process

    ERIC Educational Resources Information Center

    Maloney, Betsy

    2015-01-01

    In this research study, I examined how institutional power affected the experiences of two dance educators attempting to gain their K-12 dance teaching license in Minnesota. My research analyzed the ways in which candidates applying for the portfolio review process constructed, amended, or abandoned their identities as teachers/artists/individuals…

  19. The MERIT High-Power Target Experiment at the CERN PS

    SciTech Connect

    McDonald, K.T.; Kirk, H.G.; Park, H.; Tsang, T.; Efthymiopoulos, I.; Fabich, A.; Haug, F.; Lettry, J.; Palm, M.; Pereira, H.; Mokhov, N.; /Fermilab /Oak Ridge /Princeton U., Plasma Physics Lab. /Rutherford

    2010-05-01

    We report on the analysis of data collected in the MERIT experiment at CERN during the Fall of 2007. These results validate the concept of a free mercury jet inside a high-field solenoid magnet as a target for a pulsed proton beam of 4-MW power, as needed for a future Muon Collider and/or Neutrino Factory.

  20. The MERIT High-Power Target Experiment at the CERN PS.

    SciTech Connect

    Kirk,H.G.; Tsang, T.; Efthymiopoulos, I.; Fabich, A.; Haug, F.; Lettry, J.; Palm, M.; Pereira, H.; Mokhov, N.; Striganov, S.; Carroll, A.J.; Graves, V.B.; Spampinato, P.T.; McDonald, K.T.; Bennett, J.R.J.; Caretta, O.; Loveridge, P.; Park, H.

    2008-06-23

    The MERIT experiment was designed as a proof-of-principle test of a target system based on a free mercury jet inside a 15-T solenoid that is capable of sustaining proton beam powers of up to 4 MW. The experiment was run at CERN in the fall of 2007. We describe the results of the tests and their implications. Plans are being discussed for possible future machines which can deliver proton beams with multi-MW beam powers. A prominent application for these powerful beams will be to produce intense secondary beams suitable for investigating important physics issues. Examples include investigations of rare decay processes and neutrino oscillations. The Neutrino Factory and Muon Collider Collaboration [1] has proposed a target system [2, 3] which will be capable of supporting proton beam powers of 4 MW with the purpose of producing and collecting intense muon beams for eventual use in storage rings. The core of this proposed target system consists of a high-Z, free-flowing liquid mercury jet which intercepts the proton beam within the confines of a high-field (15-20 T) solenoid. An important attribute of this system is that the liquid jet target can be replaced for subsequent proton pulses. The experiment described in this paper was designed to provide a proof-of-principle demonstration of this concept. Preparations for this experiment have been previously reported [4].

  1. Critical and Subcritical 0-Power Experiment at Rensselaer (CaSPER)

    SciTech Connect

    Arthur, Jennifer Ann

    2016-05-09

    This report discusses the 0-power experiment at Rensselaer Polytechnic Institute (CaSPER). Keff simulation results, list-mode multiplication results, and related work are included. The aim of the work is subcritical measurements for code and nuclear data validation.

  2. Power Converter Module of the PHI Experiment on Board of Solar Orbiter

    NASA Astrophysics Data System (ADS)

    Sanchis-Kilders, E.; Ferreres, A.; Gasent-Blesa, J. L.; Osorno, D.; Gilabert, D.; Maset, E.; Ejea, J. B.; Esteve, V.; Jordan, J.; Garrigos, A.; Blanes, J. M.

    2014-08-01

    Power converters for experiments that have to fly on board space missions (satellite, launchers, etc.) have very stringent requirements due to its use in a very harsh environment. The selection of a suitable topology is therefore not only based on standard requirements but in addition, more strict ones have also to be fulfilled. This work shows the design procedure followed to build the Power Converter Module (PCM) for the Polarimetric and Helioseismic Imager (SO/PHI), experiment on board the Solar Orbiter Satellite. The selected topology has been a Push-Pull, for a power level of approximately 35 W and with seven output voltages. Galvanic isolation is needed from primary to secondary, but not between each secondary. Coupled inductors among all outputs have allowed reducing cross regulation. The main design problems solved have been reduction of parasitic capacitance of magnetic elements and closed loop design when using peak current control due to coupling all output inductors together.

  3. An Introduction to System-Level, Steady-State and Transient Modeling and Optimization of High-Power-Density Thermoelectric Generator Devices Made of Segmented Thermoelectric Elements

    NASA Astrophysics Data System (ADS)

    Crane, D. T.

    2011-05-01

    High-power-density, segmented, thermoelectric (TE) elements have been intimately integrated into heat exchangers, eliminating many of the loss mechanisms of conventional TE assemblies, including the ceramic electrical isolation layer. Numerical models comprising simultaneously solved, nonlinear, energy balance equations have been created to simulate these novel architectures. Both steady-state and transient models have been created in a MATLAB/Simulink environment. The models predict data from experiments in various configurations and applications over a broad range of temperature, flow, and current conditions for power produced, efficiency, and a variety of other important outputs. Using the validated models, devices and systems are optimized using advanced multiparameter optimization techniques. Devices optimized for particular steady-state operating conditions can then be dynamically simulated in a transient operating model. The transient model can simulate a variety of operating conditions including automotive and truck drive cycles.

  4. Testing the Waters. Duke Power State Park: An Environmental Education Learning Experience Designed for Grades 4-7.

    ERIC Educational Resources Information Center

    Rinehart, William C., Jr.; Beazley, Lea J.

    This learning packet of hands-on activities was developed by the Duke Power State Park in North Carolina for grades 4-7 to acquaint students with the concepts of water quality, watersheds, aquatic sampling, water pollution, preservation of natural areas, and land use. The loose-leaf book is divided into these sections: (1) introduction to the…

  5. Particle and power balance in a helicon operating with light gases [experiment

    NASA Astrophysics Data System (ADS)

    Bengtson, Roger D.; Gibson, J. N.; Jacobson, V. T.; Chang-Diaz, F. R.; Squire, J. P.; McCaskill, G. E.; McCoy, J. E.; Petro, A. J.; Winter, D. S.; Jamison, H. M.; Bering, E. A.; Glover, T. W.

    2001-10-01

    Measurements of input power, particle flow, radiation, electron density profiles, plasma flow, and electron temperature profiles over a range of input power, magnetic field, and neutral flow were used to do a power and particle balance during operation with light gases H, D, and He in the VASIMR experiment at the Advanced Space Propulsion Laboratory. In addition, an axial pressure scan provided important information about the importance of charge exchange collisions. The pressure in the helicon increases about a factor of 4 when the helicon is turned on. We make the assumption that electron temperature is constant along the axis of the helicon. Several important observations can be made: 1) The electron density increases with power, 2) Plasma flow is important in determining plasma conditions, 3) Radiation losses are large, and 4) charge exchange processes are important.

  6. Power Switching Breadboard Based On Gallium Nitride Transistor: A Return Of Experience

    NASA Astrophysics Data System (ADS)

    Delepaut, Christophe; Le Gallou, Nicolas

    2011-10-01

    Power switching converters for space applications are currently based on Si MOSFET. In the field of RF applications, state-of-the-art amplifiers resort to GaN transistors able to run, in linear mode, at far higher frequencies. GaN transistors have however not only the potential to deal with improved RF power levels, but an inherent capability to sustain higher voltage and space radiations. Therefore, they are well suited for switching applications too. The present paper addresses the use of this technology for DC to DC converters. Based on breadboard return of experience, possible pitfalls and bottlenecks of power switching cells based on GaN transistors are highlighted. It is shown that the development of GaN technology enables power conversion for space at higher switching frequency, thereby increasing bandwidth and reducing filter size.

  7. A Smart Wirelessly Powered Homecage for Long-Term High-Throughput Behavioral Experiments.

    PubMed

    Lee, Byunghun; Kiani, Mehdi; Ghovanloo, Maysam

    2015-09-01

    A wirelessly powered homecage system, called the EnerCage-HC, that is equipped with multicoil wireless power transfer, closed-loop power control, optical behavioral tracking, and a graphic user interface is presented for longitudinal electrophysiology and behavioral neuroscience experiments. The EnerCage-HC system can wirelessly power a mobile unit attached to a small animal subject and also track its behavior in real-time as it is housed inside a standard homecage. The EnerCage-HC system is equipped with one central and four overlapping slanted wire-wound coils with optimal geometries to form three- and four-coil power transmission links while operating at 13.56 MHz. Utilizing multicoil links increases the power transfer efficiency (PTE) compared with conventional two-coil links and also reduces the number of power amplifiers to only one, which significantly reduces the system complexity, cost, and heat dissipation. A Microsoft Kinect installed 90 cm above the homecage localizes the animal position and orientation with 1.6-cm accuracy. Moreover, a power management ASIC, including a high efficiency active rectifier and automatic coil resonance tuning, was fabricated in a 0.35-μm 4M2P standard CMOS process for the mobile unit. The EnerCage-HC achieves a max/min PTE of 36.3%/16.1% at the nominal height of 7 cm. In vivo experiments were conducted on freely behaving rats by continuously delivering 24 mW to the mobile unit for >7 h inside a standard homecage.

  8. A Smart Wirelessly Powered Homecage for Long-Term High-Throughput Behavioral Experiments

    PubMed Central

    Lee, Byunghun; Kiani, Mehdi

    2015-01-01

    A wirelessly powered homecage system, called the EnerCage-HC, that is equipped with multicoil wireless power transfer, closed-loop power control, optical behavioral tracking, and a graphic user interface is presented for longitudinal electrophysiology and behavioral neuroscience experiments. The EnerCage-HC system can wirelessly power a mobile unit attached to a small animal subject and also track its behavior in real-time as it is housed inside a standard homecage. The EnerCage-HC system is equipped with one central and four overlapping slanted wire-wound coils with optimal geometries to form three- and four-coil power transmission links while operating at 13.56 MHz. Utilizing multicoil links increases the power transfer efficiency (PTE) compared with conventional two-coil links and also reduces the number of power amplifiers to only one, which significantly reduces the system complexity, cost, and heat dissipation. A Microsoft Kinect installed 90 cm above the homecage localizes the animal position and orientation with 1.6-cm accuracy. Moreover, a power management ASIC, including a high efficiency active rectifier and automatic coil resonance tuning, was fabricated in a 0.35-μm 4M2P standard CMOS process for the mobile unit. The EnerCage-HC achieves a max/min PTE of 36.3%/16.1% at the nominal height of 7 cm. In vivo experiments were conducted on freely behaving rats by continuously delivering 24 mW to the mobile unit for >7 h inside a standard homecage. PMID:26257586

  9. Perspectives for neutron and gamma spectroscopy in high power laser driven experiments at ELI-NP

    NASA Astrophysics Data System (ADS)

    Negoita, F.; Gugiu, M.; Petrascu, H.; Petrone, C.; Pietreanu, D.; Fuchs, J.; Chen, S.; Higginson, D.; Vassura, L.; Hannachi, F.; Tarisien, M.; Versteegen, M.; Antici, P.; Balabanski, D.; Balascuta, S.; Cernaianu, M.; Dancus, I.; Gales, S.; Neagu, L.; Petcu, C.; Risca, M.; Toma, M.; Turcu, E.; Ursescu, D.

    2015-02-01

    The measurement of energy spectra of neutrons and gamma rays emitted by nuclei, together with charge particles spectroscopy, are the main tools for understanding nuclear phenomena occurring also in high power laser driven experiments. However, the large number of particles emitted in a very short time, in particular the strong X-rays flash produced in laser-target interaction, impose adaptation of technique currently used in nuclear physics experiment at accelerator based facilities. These aspects are discussed (Section 1) in the context of proposed studies at high power laser system of ELI-NP. Preliminary results from two experiments performed at Titan (LLNL) and ELFIE (LULI) facilities using plastic scintillators for neutron detection (Section 2) and LaBr3(Ce) scintillators for gamma detection (Section 3) are presented demonstrating the capabilities and the limitations of the employed methods. Possible improvements of these spectroscopic methods and their proposed implementation at ELI-NP will be discussed as well in the last section.

  10. Plankton dynamics and biogeochemical fluxes in the Costa Rica Dome: introduction to the CRD Flux and Zinc Experiments

    PubMed Central

    Landry, Michael R.; De Verneil, Alain; Goes, Joaquim I.; Moffett, James W.

    2016-01-01

    The Costa Rica Dome (CRD) is an open-ocean upwelling system in the Eastern Tropical Pacific that overlies the ocean's largest oxygen minimum zone (OMZ). The region has unique characteristics, biomass dominance by picophytoplankton, suppressed diatoms, high biomass of higher consumers and presumptive trace metal limitation, but is poorly understood in terms of pelagic stock and process relationships, including productivity and production controls. Here, we describe the goals, project design, physical context and major findings of the Flux and Zinc Experiments cruise conducted in June–July 2010 to assess trophic flux relationships and elemental controls on phytoplankton in the CRD. Despite sampling during a year of suppressed summertime surface chlorophyll, cruise results show high productivity (∼1 g C m−2 day−1), high new production relative to export, balanced production and grazing, disproportionate biomass-specific productivity of large phytoplankton and high zooplankton stocks. Zinc concentrations are low in surface waters relative to phosphorous and silicate in other regions, providing conditions conducive to picophytoplankton, like Synechococcus, with low Zn requirements. Experiments nonetheless highlight phytoplankton limitation or co-limitation by silicic acid, driven by a strong silica pump that is linked to low dissolution of biogenic silica in the cold shallow thermocline of the lower euphotic zone. PMID:27275023

  11. An introduction to analysis of variance (ANOVA) with special reference to data from clinical experiments in optometry.

    PubMed

    Armstrong, R A; Slade, S V; Eperjesi, F

    2000-05-01

    This article is aimed primarily at eye care practitioners who are undertaking advanced clinical research, and who wish to apply analysis of variance (ANOVA) to their data. ANOVA is a data analysis method of great utility and flexibility. This article describes why and how ANOVA was developed, the basic logic which underlies the method and the assumptions that the method makes for it to be validly applied to data from clinical experiments in optometry. The application of the method to the analysis of a simple data set is then described. In addition, the methods available for making planned comparisons between treatment means and for making post hoc tests are evaluated. The problem of determining the number of replicates or patients required in a given experimental situation is also discussed.

  12. Power Analysis of Artificial Selection Experiments Using Efficient Whole Genome Simulation of Quantitative Traits

    PubMed Central

    Kessner, Darren; Novembre, John

    2015-01-01

    Evolve and resequence studies combine artificial selection experiments with massively parallel sequencing technology to study the genetic basis for complex traits. In these experiments, individuals are selected for extreme values of a trait, causing alleles at quantitative trait loci (QTL) to increase or decrease in frequency in the experimental population. We present a new analysis of the power of artificial selection experiments to detect and localize quantitative trait loci. This analysis uses a simulation framework that explicitly models whole genomes of individuals, quantitative traits, and selection based on individual trait values. We find that explicitly modeling QTL provides qualitatively different insights than considering independent loci with constant selection coefficients. Specifically, we observe how interference between QTL under selection affects the trajectories and lengthens the fixation times of selected alleles. We also show that a substantial portion of the genetic variance of the trait (50–100%) can be explained by detected QTL in as little as 20 generations of selection, depending on the trait architecture and experimental design. Furthermore, we show that power depends crucially on the opportunity for recombination during the experiment. Finally, we show that an increase in power is obtained by leveraging founder haplotype information to obtain allele frequency estimates. PMID:25672748

  13. Power analysis of artificial selection experiments using efficient whole genome simulation of quantitative traits.

    PubMed

    Kessner, Darren; Novembre, John

    2015-04-01

    Evolve and resequence studies combine artificial selection experiments with massively parallel sequencing technology to study the genetic basis for complex traits. In these experiments, individuals are selected for extreme values of a trait, causing alleles at quantitative trait loci (QTL) to increase or decrease in frequency in the experimental population. We present a new analysis of the power of artificial selection experiments to detect and localize quantitative trait loci. This analysis uses a simulation framework that explicitly models whole genomes of individuals, quantitative traits, and selection based on individual trait values. We find that explicitly modeling QTL provides qualitatively different insights than considering independent loci with constant selection coefficients. Specifically, we observe how interference between QTL under selection affects the trajectories and lengthens the fixation times of selected alleles. We also show that a substantial portion of the genetic variance of the trait (50-100%) can be explained by detected QTL in as little as 20 generations of selection, depending on the trait architecture and experimental design. Furthermore, we show that power depends crucially on the opportunity for recombination during the experiment. Finally, we show that an increase in power is obtained by leveraging founder haplotype information to obtain allele frequency estimates.

  14. Introduction: The Pan-Eurasian Experiment (PEEX) - multidisciplinary, multiscale and multicomponent research and capacity-building initiative

    NASA Astrophysics Data System (ADS)

    Kulmala, M.; Lappalainen, H. K.; Petäjä, T.; Kurten, T.; Kerminen, V.-M.; Viisanen, Y.; Hari, P.; Sorvari, S.; Bäck, J.; Bondur, V.; Kasimov, N.; Kotlyakov, V.; Matvienko, G.; Baklanov, A.; Guo, H. D.; Ding, A.; Hansson, H.-C.; Zilitinkevich, S.

    2015-11-01

    The Pan-Eurasian Experiment (PEEX) is a multidisciplinary, multiscale and multicomponent research, research infrastructure and capacity-building program. PEEX has originated from a bottom-up approach by the science communities and is aiming at resolving the major uncertainties in Earth system science and global sustainability issues concerning the Arctic and boreal pan-Eurasian regions, as well as China. The vision of PEEX is to solve interlinked, global grand challenges influencing human well-being and societies in northern Eurasia and China. Such challenges include climate change; air quality; biodiversity loss; urbanization; chemicalization; food and freshwater availability; energy production; and use of natural resources by mining, industry, energy production and transport sectors. Our approach is integrative and supra-disciplinary, recognizing the important role of the Arctic and boreal ecosystems in the Earth system. The PEEX vision includes establishing and maintaining long-term, coherent and coordinated research activities as well as continuous, comprehensive research and educational infrastructure and related capacity-building across the PEEX domain. In this paper we present the PEEX structure and summarize its motivation, objectives and future outlook.

  15. Emotional Experience of Caam2 in Teaching: Power and Interpretation of Teachers’ Work

    PubMed Central

    Tsang, Kwok K.; Kwong, Tsun L.

    2016-01-01

    The study explores the social psychological process of teachers’ emotional experiences. Twenty-one secondary schoolteachers in Hong Kong were interviewed. The findings show that the teachers generally felt caam2 (a Cantonese adjective that covers a range of meanings like gloomy, dreadful, tragic, pitiful, pathetic, and miserable) in teaching. The social psychological process of the emotional experience of caam2 involves how teachers interpret the significance of their actual work in attaining the teaching goal of making a difference. If they interpret their work as incapable of fulfilling the goal, they will experience negative emotions in teaching. The findings also suggest that the interpretation is affected by teachers’ power which is unequally distributed according to teachers’ teaching experience and managerial roles. PMID:27679593

  16. GPS Navigation Results from the Low Power Transceiver CANDOS Experiment on STS-107

    NASA Technical Reports Server (NTRS)

    Haas, Lin; Massey, Chris; Baraban, Dmitri; Kelbel, David; Lee, Taesul; Long, Anne; Carpenter, J. Russell

    2003-01-01

    This paper presents the Global Positioning System (GPS) navigation results from the Communications and Savigation Demonstration on Shuttle (CANDOS) experiment flown on STS- 107. The CAkDOS experiment consisted of the Low Power Transceiver (LPT) that hosted the GPS Enhanced Orbit Determination Experiment (GEODE) orbit determination software. All CANDOS test data were recovered during the mission using the LPT's Tracking and Data Relay Satellite System (TDRSS) uplinh'downlink communications capabilit! . An overview of the LPT's navigation software and the GPS experiment timeline is presented. In addition. this paper discusses GEODE performance results. including comparisons ibith the Best Estimate of Trajectory (BET). N.ASA Johnson Space Center (JSC) real-time ground navigation vectors. and post-processed solutions using the Goddard Trajectory Determination System (GTDS).

  17. Pulsed-Power Driven Liner-On-Target Hydrodynamics Experiments Diagnosed with Proton Radiography using PHELIX

    NASA Astrophysics Data System (ADS)

    Oro, D. M.; Rousculp, C. L.; Reass, W. A.; Griego, J. R.; Turchi, P. J.; Reinovsky, R. E.; Saunders, A.; Mariam, F. G.; Morris, C.

    2015-06-01

    The Precision High Energy-density Liner Implosion eXperiment, PHELIX, is a pulsed-power driver capable of delivering multi-mega-ampere currents to cylindrical loads. The pulsed-power system utilizes a high-efficiency transformer to couple a small capacitor bank (~400 kJ) to a ~5 cm diameter cylindrical Al liner. A peak current of ~4 MA causes the liner to implode in 20 - 30 μs and attain speeds of >1 km/s. The PHELIX system is designed to be compatible with the Los Alamos proton radiography facility. Initial experiments with PHELIX explore shocked-ejected particle transport into gas in converging geometries. For these experiments a liner-on-target configuration is employed. To control the initial conditions, micron-sized tungsten particles are used in place of shock-formed ejecta. The inner surface of the cylindrical target is coated with a 0.1 mm uniform layer of W powder. The liner impacts the target generating a shock that launches the W particles off the target surface. The time history of the trajectory of the shocked-ejected particulate is captured in 21 proton radiographs recorded during the experiment. Comparison of 3 experiments, one into vacuum, one into Ar at 8.3 bars and one into Xe at 8.3 bars are discussed. Results are compared to simulations. Work supported by United States-DOE under contract DE-AC52-06NA25396.

  18. CTS United States experiments - A progress report. [Communications Technology Satellite for high power broadcasting

    NASA Technical Reports Server (NTRS)

    Robbins, W. H.; Donoughe, P. L.

    1976-01-01

    The Communications Technology Satellite (CTS) is a high-power broadcast satellite launched by NASA on January 17, 1976. CTS is the first satellite to operate at a frequency of 12 gigahertz and incorporates technology making possible new satellite telecommunications services. CTS is a cooperative program of the United States and Canada. This paper presents the results of the United States experimental activity to date. Wide segments of the population are involved in the Experiments Program, including the scientific community, other government agencies, industry, and the education and health entities. The experiments are associated with both technological objectives and the demonstration of new community and social services via satellite.

  19. Electrical Power System- Experience Return after the Recent Launch of the Three Swarm Satellites

    NASA Astrophysics Data System (ADS)

    Hernando, Lucia; Mourra, Olivier; Caon, Antonio; Schautz, Max; Amann, Manfred; Bergaglio, Bruno

    2014-08-01

    The three Swarm Satellites were launched the 22nd November 2013, by a Russian Rockot launcher at UTC time 12:02:29. The first contact took place at 13:33:51 (UTC time).The aim of this paper is to provide to the reader a return of experience of the electrical activities per- formed in AIT during Launch Campaign, and, to present the Swarm Electrical Power System (EPS) behaviour observed during Launch and Early Orbit Operations (LEOP).

  20. Experience in connecting the power generating units of thermal power plants to automatic secondary frequency regulation within the united power system of Russia

    SciTech Connect

    Zhukov, A. V.; Komarov, A. N.; Safronov, A. N.; Barsukov, I. V.

    2009-05-15

    The principles of central control of the power generating units of thermal power plants by automatic secondary frequency and active power overcurrent regulation systems, and the algorithms for interactions between automatic power control systems for the power production units in thermal power plants and centralized systems for automatic frequency and power regulation, are discussed. The order of switching the power generating units of thermal power plants over to control by a centralized system for automatic frequency and power regulation and by the Central Coordinating System for automatic frequency and power regulation is presented. The results of full-scale system tests of the control of power generating units of the Kirishskaya, Stavropol, and Perm GRES (State Regional Electric Power Plants) by the Central Coordinating System for automatic frequency and power regulation at the United Power System of Russia on September 23-25, 2008, are reported.

  1. Clinical Outcomes and Women’s Experiences before and after the Introduction of Mifepristone into Second-Trimester Medical Abortion Services in South Africa

    PubMed Central

    Harries, Jane; Malaba, Thokozile; Myer, Landon; Patel, Malika; Petro, Gregory; Grossman, Daniel

    2016-01-01

    Objective To document clinical outcomes and women’s experiences following the introduction of mifepristone into South African public sector second-trimester medical abortion services, and compare with historic cohorts receiving misoprostol-only. Methods Repeated cross-sectional observational studies documented service delivery and experiences of women undergoing second-trimester medical abortion in public sector hospitals in the Western Cape, South Africa. Women recruited to the study in 2008 (n = 84) and 2010 (n = 58) received misoprostol only. Those recruited in 2014 (n = 208) received mifepristone and misoprostol. Consenting women were interviewed during hospitalization by study fieldworkers with respect to socio-demographic information, reproductive history, and their experiences with the abortion. Clinical details were extracted from medical charts following discharge. Telephone follow-up interviews to record delayed complications were conducted 2–4 weeks after discharge for the 2014 cohort. Results The 2014 cohort received 200 mg mifepristone, which was self-administered 24–48 hours prior to admission. For all cohorts, following hospital admission, initial misoprostol doses were generally administered vaginally: 800 mcg in the 2014 cohort and 600 mcg in the earlier cohorts. Women received subsequent doses of misoprostol 400 mcg orally every 3–4 hours until fetal expulsion. Thereafter, uterine evacuation of placental tissue was performed as needed. With one exception, all women in all cohorts expelled the fetus. Median time-to-fetal expulsion was reduced to 8.0 hours from 14.5 hours (p<0.001) in the mifepristone compared to the 2010 misoprostol-only cohort (time of fetal expulsion was not recorded in 2008). Uterine evacuation of placental tissue using curettage or vacuum aspiration was more often performed (76% vs. 58%, p<0.001) for those receiving mifepristone; major complication rates were unchanged. Hospitalization duration and extreme pain levels

  2. Acceleration of Dense Flowing Plasmas using ICRF Power in the VASIMR Experiment

    NASA Astrophysics Data System (ADS)

    Squire, Jared P.

    2005-09-01

    ICRF power in the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) concept energizes ions (> 100 eV) in a diverging magnetic field to accelerate a dense (˜ 1019 m-3) flowing plasma to velocities useful for space propulsion (˜100 km/s). Theory predicts that an ICRF slow wave launched from the high field side of the resonance will propagate in the magnetic beach to absorb nearly all of the power at the resonance, thus efficiently converting the RF power to ion kinetic energy. The plasma flows through the resonance only once, so the ions are accelerated in a single pass. This process has proven efficient (˜ 70%) with an ICRF power level of 1.5 kW at about 3.6 MHz in the VASIMR experiment, VX-30, using deuterium plasma created by a helicon operating in flowing mode. We have measured ICRF plasma loading up to 2 ohms, consistent with computational predictions made using Oak Ridge National Laboratory's EMIR code. Recent helicon power upgrades (20 kW at 13.56 MHz) have enabled a 5 cm diameter target plasma for ICRF with an ion flux of over 3×10 20 s-1 and a high degree of ionization. This paper summarizes our ICRF results and presents the latest helicon developments in VX-30.

  3. Acceleration of Dense Flowing Plasmas using ICRF Power in the VASIMR Experiment

    SciTech Connect

    Squire, Jared P.

    2005-09-26

    ICRF power in the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) concept energizes ions (> 100 eV) in a diverging magnetic field to accelerate a dense ({approx} 1019 m-3) flowing plasma to velocities useful for space propulsion ({approx}100 km/s). Theory predicts that an ICRF slow wave launched from the high field side of the resonance will propagate in the magnetic beach to absorb nearly all of the power at the resonance, thus efficiently converting the RF power to ion kinetic energy. The plasma flows through the resonance only once, so the ions are accelerated in a single pass. This process has proven efficient ({approx} 70%) with an ICRF power level of 1.5 kW at about 3.6 MHz in the VASIMR experiment, VX-30, using deuterium plasma created by a helicon operating in flowing mode. We have measured ICRF plasma loading up to 2 ohms, consistent with computational predictions made using Oak Ridge National Laboratory's EMIR code. Recent helicon power upgrades (20 kW at 13.56 MHz) have enabled a 5 cm diameter target plasma for ICRF with an ion flux of over 3x10 20 s-1 and a high degree of ionization. This paper summarizes our ICRF results and presents the latest helicon developments in VX-30.

  4. Evaluation of skill achievement levels and practical experiences of public health nursing students before and after the introduction of the public health nursing course as an elective.

    PubMed

    Suzuki, Yoshimi; Saito, Emiko; Sawai, Minako; Kishi, Emiko; Kakemoto, Satori; Nakada, Harumi; Igarashi, Chiyo; Asahara, Kiyomi

    2016-01-01

    Objective To equip public health nurses (PHNs) with higher qualifications, PHN education is shifting from an integrated curriculum for PHNs and registered nurses to a specific elective system of undergraduate or postgraduate programs. Most colleges in the special wards of Tokyo introduced the elective system in 2014 before the remaining areas. The outcomes of this must be evaluated. This study aimed to evaluate the achievement levels and practical experiences of PHN students at seven colleges in the special wards before and after introduction of the PHN course as an elective.Method Self-administered, anonymous questionnaires were completed by senior PHN students at seven colleges in the special wards who underwent training in 2013, the last year of an integrated curriculum, and in 2014, the first year of the elective system. The target numbers of participants were 663 in 2013 and 136 in 2014 with 20 students from each school exposed to the elective system. Our study focused on whether they achieved the 98 "technical items of PHN training and achievement levels at the time of graduation" required by the Ministry of Health, Labour and Welfare. The study also determined whether participants obtained practical experience in 15 items developed by the special wards based on the standards set for training.Results In 2013, there were 348 total responses (52.5%) and 310 valid responses. In 2014, there were 136 total responses (88.2%) and 120 valid responses. The average achievement rate at which the student answered, "I was able to arrive at it," at an arrival degree level for the 98 technical items was 72.6% in 2014, an increase compared to the 67.9% obtained in 2013. Moreover, the average practical experience rate at which the student answered, "I was able to have an experience," regarding the 15 items was 85.7% in 2014, which constituted an increase compared to 70.5% attained in 2013. However, the number of items with an achievement rate of more than 80% remained

  5. A qualitative study of Iranian nurses' understanding and experiences of professional power

    PubMed Central

    Adib Hagbaghery, Mohsen; Salsali, Mahvash; Ahmadi, Fazlollah

    2004-01-01

    Background Nurses are expected to empower their clients, but they cannot do so if they themselves feel powerless. They must become empowered before they can empower others. Some researchers have emphasized that understanding the concept of power is an important prerequisite of any empowerment program. While many authors have tried to define the concept of power, there is no comprehensive definition. This paper is an attempt to clarify the concept of power in nursing. It also would present a model describing the factors affecting nurse empowerment. Methods We chose the grounded-theory approach for analysis of the participants' experiences and their viewpoints regarding the concept of professional power in nursing. Semi-structured interviews and participant observation methods were used to gather the data. Forty-four participants were interviewed and 12 sessions of observation were carried out. The constant comparative analysis method was used. Results Six main themes emerged from the data: "Application of knowledge and skills", "Having authority", "Being self-confident", "Unification and solidarity", "Being supported" and "Organizational culture and structure". According to the participants, nurses' power is influenced by these six variables. A theoretical model was designed to represent the interrelationships between these six variables. Conclusions Nurses' power depends on gaining and applying professional knowledge and skills. Delegating authority and enhancing self-confidence of the nurses also help them to apply their knowledge in practice. Unification of the nurses and their mutual support play the key roles in development of their collective power and provide a base for better working conditions, professional independence and self-regulation. PMID:15217516

  6. Pegasus II experiments and plans for the Atlas pulsed power facility

    SciTech Connect

    Shlachter, J.S.; Adams, P.J.; Atchison, W.L.

    1997-09-01

    Atlas will be a high-energy (36 MJ stored), high-power ({approximately} 10 TW) pulsed power driver for high energy-density experiments, with an emphasis on hydrodynamics. Scheduled for completion in late 1999, Atlas is designed to produce currents in the 40-50 MA range with a quarter-cycle time of 4-5 {mu}s. It will drive implosions of heavy liners (typically 50 g) with implosion velocities exceeding 20 mm/{mu}s. Under these conditions very high pressures and magnetic fields are produced. Shock pressures in the 50 Mbar range and pressures exceeding 10 Mbar in an adiabatic compression will be possible. By performing flux compression of a seed field, axial magnetic fields in the 2000 T range may be achieved. A variety of concepts have been identified for the first experimental campaigns on Atlas. These experiments include Rayleigh-Taylor instability studies, convergent (e.g., Bell-Plesset type) instability studies, material strength experiments at very high strain and strain rate, hydrodynamic flows in 3-dimensional geometries, equation of state measurements along the hugoniot and adiabats, transport and shock propagation in dense strongly-coupled plasmas, and atomic and condensed matter studies employing ultra-high magnetic fields. Experimental configurations, associated physics issues, and diagnostic strategies are all under investigation as the design of the Atlas facility proceeds. Near-term proof-of-principle experiments employing the smaller Pegasus II capacitor bank have been identified, and several of these experiments have not been performed. This paper discusses a number of recent Pegasus II experiments and identifies several areas of research presently planned on Atlas.

  7. The νGeN experiment at the Kalinin Nuclear Power Plant

    NASA Astrophysics Data System (ADS)

    Belov, V.; Brudanin, V.; Egorov, V.; Filosofov, D.; Fomina, M.; Gurov, Yu.; Korotkova, L.; Lubashevskiy, A.; Medvedev, D.; Pritula, R.; Rozova, I.; Rozov, S.; Sandukovsky, V.; Timkin, V.; Yakushev, E.; Yurkowski, J.; Zhitnikov, I.

    2015-12-01

    The ν GeN is new experiment at the Kalinin Nuclear Power Plant (KNPP) for detection of coherent Neutrino-Ge Nucleus elastic scattering. Recent neutrino and Dark Matter search experiments have revolutionized the detection of rear events, and rear events with low energies, in particular. Experiments have achieved sensitivities on the level of several events per hundred kg of detector material per day with energy thresholds from few hundred eV. This opens up a new unique possibility for experimental detection of neutrino-nucleus coherent scattering that has been considered to be impossible so far. The νGeN project uses low threshold high-purity Ge-detectors (HPGe) developed by JINR (Dubna, Russia) in collaboration with BSI (Baltic Scientific Instruments, Riga, Latvia) for creation of a setup designated for first observation of neutrino coherent scattering on Ge. As a powerful neutrino source the experiment will use electron antineutrinos from one of the power-generating units (reactor unit #3) of the KNPP. The coherent neutrino scattering will be observed using a differential method that compares 1) the spectra measured at the reactor operation and shut-down periods; 2) the spectra measured at different distances from the reactor core during the reactor operation. For a setup placed at a 10 m distance from the center of reactor core and with an energy threshold of 350 eV up to tens of events corresponding to neutrino coherent scattering on Ge are expected to be detected per day in the constructed setup with four HPGe low-energy-threshold detectors (~ 400 grams each). The setup sensitivity will be even more increased by using new detectors with total mass up to 5 kg.

  8. Experiment and theoretical study of the propagation of high power microwave pulse in air breakdown environment

    NASA Technical Reports Server (NTRS)

    Kuo, S. P.; Ren, A.; Zhang, Y. S.

    1991-01-01

    In the study of the propagation of high power microwave pulse, one of the main concerns is how to minimize the energy loss of the pulse before reaching the destination. In the very high power region, one has to prevent the cutoff reflection caused by the excessive ionization in the background air. A frequency auto-conversion process which can lead to reflectionless propagation of powerful EM pulses in self-generated plasmas is studied. The theory shows that under the proper conditions the carrier frequency, omega, of the pulse will indeed shift upward with the growth of plasma frequency, omega(sub pe). Thus, the plasma during breakdown will always remain transparent to the pulse (i.e., omega greater than omega(sub pe)). A chamber experiment to demonstrate the frequency auto-conversion during the pulse propagation through the self-generated plasma is then conducted in a chamber. The detected frequency shift is compared with the theoretical result calculated y using the measured electron density distribution along the propagation path of the pulse. Good agreement between the theory and the experiment results is obtained.

  9. Computational modeling of pulsed-power-driven magnetized target fusion experiments

    SciTech Connect

    Sheehey, P.; Kirkpatrick, R.; Lindemuth, I.

    1995-08-01

    Direct magnetic drive using electrical pulsed power has been considered impractically slow for traditional inertial confinement implosion of fusion targets. However, if the target contains a preheated, magnetized plasma, magnetothermal insulation may allow the near-adiabatic compression of such a target to fusion conditions on a much slower time scale. 100-MJ-class explosive flux compression generators with implosion kinetic energies far beyond those available with conventional fusion drivers, are an inexpensive means to investigate such magnetized target fusion (MTF) systems. One means of obtaining the preheated and magnetized plasma required for an MTF system is the recently reported {open_quotes}MAGO{close_quotes} concept. MAGO is a unique, explosive-pulsed-power driven discharge in two cylindrical chambers joined by an annular nozzle. Joint Russian-American MAGO experiments have reported D-T neutron yields in excess of 10{sup 13} from this plasma preparation stage alone, without going on to the proposed separately driven NM implosion of the main plasma chamber. Two-dimensional MED computational modeling of MAGO discharges shows good agreement to experiment. The calculations suggest that after the observed neutron pulse, a diffuse Z-pinch plasma with temperature in excess of 100 eV is created, which may be suitable for subsequent MTF implosion, in a heavy liner magnetically driven by explosive pulsed power. Other MTF concepts, such as fiber-initiated Z-pinch target plasmas, are also being computationally and theoretically evaluated. The status of our modeling efforts will be reported.

  10. Studies of Tampa Bay Region Power Plant Plumes during the Bay Region Atmospheric Chemistry Experiment (BRACE)

    NASA Astrophysics Data System (ADS)

    Watson, T. B.; Luke, W. T.; Arnold, J. R.; Gunter, L. R.

    2003-12-01

    The NOAA Air Resources Laboratory made aircraft measurements of chemical and meteorological parameters during 21 flights of the NOAA Twin Otter as part of the Bay Region Atmospheric Chemistry Experiment (BRACE). BRACE was conducted in May 2002. The aircraft flew horizontal transects upwind and downwind of the urban area on 13 of these flights to characterize the urban and power plant plumes. Vertical profiles from 60 to 3000 m MSL were made on most flights. Profiles were made over the Gulf of Mexico, Tampa Bay, and various land sites. On many flights, transects were located immediately downwind of the urban region and power plants and at successive distances farther downwind to characterize the horizontal distribution and chemical processing of the plumes as they aged. At each distance, data was collected during multiple passes at different altitudes to characterize the vertical structure. Many of the downwind passes were flown over the Gulf where sources are limited and the plumes can be observed in relative isolation. The contribution of the power plant plumes are analyzed to determine changes in the vertical and horizontal distribution of the plumes; horizontal fluxes of NOx, NOy, and ozone; production of ozone; deposition rates; and changes on successive days of regional background and concentration maxima caused by the power plant emissions.

  11. The generation and amplification of intergalactic magnetic fields in analogue laboratory experiments with high power lasers

    NASA Astrophysics Data System (ADS)

    Gregori, G.; Reville, B.; Miniati, F.

    2015-11-01

    The advent of high-power laser facilities has, in the past two decades, opened a new field of research where astrophysical environments can be scaled down to laboratory dimensions, while preserving the essential physics. This is due to the invariance of the equations of magneto-hydrodynamics to a class of similarity transformations. Here we review the relevant scaling relations and their application in laboratory astrophysics experiments with a focus on the generation and amplification of magnetic fields in cosmic environment. The standard model for the origin of magnetic fields is a multi stage process whereby a vanishing magnetic seed is first generated by a rotational electric field and is then amplified by turbulent dynamo action to the characteristic values observed in astronomical bodies. We thus discuss the relevant seed generation mechanisms in cosmic environment including resistive mechanism, collision-less and fluid instabilities, as well as novel laboratory experiments using high power laser systems aimed at investigating the amplification of magnetic energy by magneto-hydrodynamic (MHD) turbulence. Future directions, including efforts to model in the laboratory the process of diffusive shock acceleration are also discussed, with an emphasis on the potential of laboratory experiments to further our understanding of plasma physics on cosmic scales.

  12. Design and experiment for realization of laser wireless power transmission for small unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Chen, Qi; Zhang, Dechen; Zhu, Dandi; Shi, Qianyun; Gu, Jian; Ai, Yong

    2015-10-01

    Currently various types of aircraft booming and maturing, however, their long-time navigational capability should be improved urgently. This paper aims at studying laser power beaming, which includes the technology of high-efficient photoelectric conversion and APT(acquiring, pointing and tracking) technology, to provide power for flying UAV(unmanned aerial vehicles) and improve their flight endurance. The experiment of testing different types of solar cells under various conditions has been done to choose the solar cell which has the highest photoelectric conversion rate and find its most sensitive wavelength. In addition, the charge management module has been chose on the base of the characteristics of lithium batteries. Besides, a laser APT system was designed and set up, at the same time FSM (Fast Scan Mirror) control program and digital image processing program were used to control the system. The success of the indoor experiment of scan-tracking and charging for the moving UAV model via laser proves that this system is workable. And in this experiment, the photoelectric conversion rate of the whole system is up to 17.55%.

  13. Perspectives for neutron and gamma spectroscopy in high power laser driven experiments at ELI-NP

    SciTech Connect

    Negoita, F. Gugiu, M. Petrascu, H. Petrone, C. Pietreanu, D.; Fuchs, J.; Chen, S.; Higginson, D.; Vassura, L.; Hannachi, F.; Tarisien, M.; Versteegen, M.; Antici, P.; Balabanski, D.; Balascuta, S.; Cernaianu, M.; Dancus, I.; Gales, S.; Neagu, L.; Petcu, C.; and others

    2015-02-24

    The measurement of energy spectra of neutrons and gamma rays emitted by nuclei, together with charge particles spectroscopy, are the main tools for understanding nuclear phenomena occurring also in high power laser driven experiments. However, the large number of particles emitted in a very short time, in particular the strong X-rays flash produced in laser-target interaction, impose adaptation of technique currently used in nuclear physics experiment at accelerator based facilities. These aspects are discussed (Section 1) in the context of proposed studies at high power laser system of ELI-NP. Preliminary results from two experiments performed at Titan (LLNL) and ELFIE (LULI) facilities using plastic scintillators for neutron detection (Section 2) and LaBr{sub 3}(Ce) scintillators for gamma detection (Section 3) are presented demonstrating the capabilities and the limitations of the employed methods. Possible improvements of these spectroscopic methods and their proposed implementation at ELI-NP will be discussed as well in the last section.

  14. A wireless remote high-power laser device for optogenetic experiments

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Gong, Q.; Li, Y. Y.; Li, A. Z.; Zhang, Y. G.; Cao, C. F.; Xu, H. X.; Cui, J.; Gao, J. J.

    2015-04-01

    Optogenetics affords the ability to stimulate genetically targeted neurons in a relatively innocuous manner. Reliable and targetable tools have enabled versatile new classes of investigation in the study of neural systems. However, current hardware systems are generally limited to acute measurements or require external tethering of the system to the light source. Here we provide a low-cost, high-power, remotely controlled blue laser diode (LD) stimulator for the application of optogenetics in neuroscience, focusing on wearable and intelligent devices, which can be carried by monkeys, rats and any other animals under study. Compared with the conventional light emitting diode (LED) device, this LD stimulator has higher efficiency, output power, and stability. Our system is fully wirelessly controlled and suitable for experiments with a large number of animals.

  15. [Psychic power and energy. Relation of self-experience and concept formation in Freudian theory].

    PubMed

    Schott, H G

    1983-01-01

    The concept of psychic energy is very important for the development of Sigmund Freud's theory. It is linked with the problem of psychic power. Both terms--"energy" (Energie) and "power" (Kraft)--are studied within the context of Freud's scientific work. There is a fundamental relation of introspection in practice and scientific description in theory. This relation is reconstructed in three ways: analysis of "psychic work" (psychische Arbeit) as an implication of the self-analysis in Freud's "Interpretation of Dreams"; analysis of the psychological techniques of psychotherapy Freud used; and analysis of the metapsychological theory with its concept of "psychich apparatus" (psychischer Apparat). This interpretation stresses the close relationship of Freud's personal experience as a therapist and self-analyst and his scientific theory with its neurophysiological and psychological terminology.

  16. Development of an Organic Rankine-Cycle power module for a small community solar thermal power experiment

    NASA Technical Reports Server (NTRS)

    Kiceniuk, T.

    1985-01-01

    An organic Rankine-cycle (ORC) power module was developed for use in a multimodule solar power plant to be built and operated in a small community. Many successful components and subsystems, including the reciever, power conversion subsystem, energy transport subsystem, and control subsystem, were tested. Tests were performed on a complete power module using a test bed concentrator in place of the proposed concentrator. All major single-module program functional objectives were met and the multimodule operation presented no apparent problems. The hermetically sealed, self-contained, ORC power conversion unit subsequently successfully completed a 300-hour endurance run with no evidence of wear or operating problems.

  17. Active experiments in geospace plasmas with gigawatts of RF power at HAARP

    NASA Astrophysics Data System (ADS)

    Sheerin, James

    2016-07-01

    The ionosphere provides a relatively quiescent plasma target, stable on timescales of minutes, for a whole host of active plasma experiments. The largest HF transmitter built to date is the HAARP phased-array HF transmitter near Gakona, Alaska which can deliver up to 3.6 Gigawatts (ERP) of CW RF power in the range of 2.8 - 10 MHz to the ionosphere with millisecond pointing, power modulation, and frequency agility. With an ionospheric background thermal energy in the range of only 0.1 eV, this amount of power gives access to the highest regimes of the nonlinearity (RF intensity to thermal pressure) ratio. HAARP's unique features have enabled the conduct of a number of nonlinear plasma experiments in the inter¬action region of overdense ionospheric plasma including generation of artificial aurorae, artificial ionization layers, VLF wave-particle interactions in the magnetosphere, parametric instabilities, stimulated electromagnetic emissions (SEE), strong Langmuir turbulence (SLT) and suprathermal electron acceleration. Diagnostics include the Modular UHF Ionospheric Radar (MUIR) sited at HAARP, the SuperDARN-Kodiak HF radar, spacecraft radio beacons, HF receivers to record stimulated electromagnetic emissions (SEE) and optics for optical emissions. We report on short timescale ponderomotive overshoot effects, artificial field-aligned irregularities (AFAI), the aspect angle dependence of the intensity of the HF-enhanced plasma line, and production of suprathermal electrons. Applications are made to the controlled study of fundamental nonlinear plasma processes of relevance to laboratory plasmas, ionospheric irregularities affecting spacecraft communication and navigation systems, artificial ionization mirrors, wave-particle interactions in the magnetosphere, active global magnetospheric experiments, and many more.

  18. Movable-molybdenum-reflector reactivity experiments for control studies of compact space power reactor concepts

    NASA Technical Reports Server (NTRS)

    Fox, T. A.

    1973-01-01

    An experimental reflector reactivity study was made with a compact cylindrical reactor using a uranyl fluoride - water fuel solution. The reactor was axially unreflected and radially reflected with segments of molybdenum. The reflector segments were displaced incrementally in both the axial and radial dimensions, and the shutdown of each configuration was measured by using the pulsed-neutron source technique. The reactivity effects for axial and radial displacement of reflector segments are tabulated separately and compared. The experiments provide data for control-system studies of compact-space-power-reactor concepts.

  19. Theta13 Neutrino Experiment at the Diablo Canyon Power Plant, LBNL Engineering Summary Report

    SciTech Connect

    Oshatz, Daryl

    2004-03-12

    This summary document describes the results of conceptual design and cost estimates performed by LBNL Engineering staff between October 10, 2003 and March 12, 2004 for the proposed {theta}{sub 13} neutrino experiment at the Diablo Canyon Power Plant (DCPP). This document focuses on the detector room design concept and mechanical engineering issues associated with the neutrino detector structures. Every effort has been made not to duplicate information contained in the last LBNL Engineering Summary Report dated October 10, 2003. Only new or updated information is included in this document.

  20. Power reactor and critical experiment heterogeneity effects assessment for bias factors definition

    SciTech Connect

    Salvatores, M.; Soule, R.; Carta, M.

    1988-09-01

    Heterogeneity effects are compared in a power reactor subassembly of the Superphenix type and in the lattices of the critical experiments performed in the Masurca critical facility. Both the fuel in heterogeneity and the structure tube heterogeneity are evaluated with a two-step method based on the subgroup technique for self-shielding effect evaluation and on the Benoist method for streaming effect evaluation (the DHARMA method). Besides validation with reference calculations for simple geometries, experimental evidence confirms the good performance of the method proposed.

  1. A new VME based high voltage power supply for large experiments

    SciTech Connect

    Ahn, S.C.; Angstadt, R.D.; Droege, T.F.; Johnson, M.E.; MacKinnon, B.A.; McNulty, S.E.; Shea, M.F.; Thompson, R.N.; Watson, M.M. ); Franzini, P. ); Jones, A.A. ); Lopez, M.L. ); Wimpenny, S.J.; Yang, M.J

    1991-11-01

    A new VME based high voltage power supply has been developed for the D{O} experiment at Fermilab. There are three types of supplies delivering up to {plus minus}5.6 kV at 1.0 mA or +2.0 kV at 3.0 mA with a set accuracy of 1.5 V and extremely low voltage ripples. Complete computer control has allowed many special features to be developed for the supply, including user-defined control land monitor groups, variable ramp rates, and advanced histogram and graphic functions. 3 refs.

  2. A new VME based high voltage power supply for large experiments

    SciTech Connect

    Ahn, S.C.; Angstadt, R.D.; Droege, T.F.; Johnson, M.E.; MacKinnon, B.A.; McNulty, S.E.; Shea, M.F.; Thompson, R.N.; Watson, M.M.; Franzini, P.; Jones, A.A.; Lopez, M.L.; Wimpenny, S.J.; Yang, M.J.

    1991-11-01

    A new VME based high voltage power supply has been developed for the D{O} experiment at Fermilab. There are three types of supplies delivering up to {plus_minus}5.6 kV at 1.0 mA or +2.0 kV at 3.0 mA with a set accuracy of 1.5 V and extremely low voltage ripples. Complete computer control has allowed many special features to be developed for the supply, including user-defined control land monitor groups, variable ramp rates, and advanced histogram and graphic functions. 3 refs.

  3. Direct containment heating experiments in Zion Nuclear Power Plant geometry using prototypic materials

    SciTech Connect

    Binder, J.L.; McUmber, L.M.; Spencer, B.W.

    1993-12-31

    Direct Containment Heating (DCH) experiments have been completed which utilize prototypic core materials. The experiments reported on here are a continuation of the Integral Effects Testing (IET) DCH program. The experiments incorporated a 1/40 scale model of the Zion Nuclear Power Plant containment structures. The model included representations of the primary system volume, RPV lower head, cavity and instrument tunnel, and the lower containment structures. The experiments were steam driven. Iron-alumina thermite with chromium was used as a core melt stimulant in the earlier IET experiments. These earlier IET experiments at Argonne National Laboratory (ANL) and Sandia National Laboratories (SNL) provided useful data on the effect of scale on DCH phenomena; however, a significant question concerns the potential experiment distortions introduced by the use of non-prototypic iron/alumina thermite. Therefore, further testing with prototypic materials has been carried out at ANL. Three tests have been completed, DCH-U1A, U1B and U2. DCH-U1A and U1B employed an inerted containment atmosphere and are counterpart to the IET-1RR test with iron/alumina thermite. DCH-U2 employed nominally the same atmosphere composition of its counterpart iron/alumina test, IET-6. All tests, with prototypic material, have produced lower peak containment pressure rises; 45, 111 and 185 kPa in U1A, U1B and U2, compared to 150 and 250 kPa IET-1RR and 6. Hydrogen production, due to metal-steam reactions, was 33% larger in U1B and U2 compared to IET-1RR and IET-6. The pressurization efficiency was consistently lower for the corium tests compared to the IET tests.

  4. PVUSA experience with power conversion for grid-connected photovoltaic systems

    SciTech Connect

    Stolte, W.

    1995-11-01

    The Photovoltaics for Utility Scale Application (PVUSA) project was established to demonstrate photovoltaic (PV) systems in grid-connected utility applications. One of PVUSA`s key objectives is to evaluate the performance, reliability, and cost of the PV balance of system (BOS). Power conditioning units (PCUs) are the interface between the dc PV arrays and the ac utility lines, and have proved to be the most critical element in grid-connected PV systems. There are five different models of PCUs at PVUSA`s Davis and Kerman sites. This report describes the design, testing, performance characteristics, and maintenance history of each of these PCUs. PVUSA required PCUs in the power range 25 kW to 500 kW which could operate automatically and reliably under changing conditions of sunlight and changing conditions on the utility grid. Although a number of manufacturers can provide PCUs in this power range, none of these PCUs have been produced in sufficient quantity to allow refinement of a particular model into the highly reliable unit needed for long-term, unattended operation. Factory tests were useful but limited by the inability to test under full power and changing power conditions. The inability to completely test PCUs at the factory resulted in difficulty during startup, field testing, and subsequent operation. PVUSA has made significant progress in understanding the requirements for PCUs in grid-connected PV applications and improving field performance. This record of PVUSA`s experience with a variety of PCUs is intended to help utilities and their suppliers identify and retain the good performance characteristics of PCUs, and to make improvements where necessary to meet the needs of utilities.

  5. Power Supply System for the Atlas Experiment: Design Specifications, Implementation, Test and First Results

    NASA Astrophysics Data System (ADS)

    Lazzaroni, M.; Citterio, M.; Latorre, S.; Lanza, A.; Cova, P.; Delmonte, N.; Giuliani, F.

    2014-06-01

    The planned upgrade of instrumentation sensitivity in the ATLAS experiment of the Large Hadron Collider (LHC), at CERN, calls for a new type of power distribution architecture. Moreover, power supplies require DC-DC power converters able to work in very hostile environment and maintaining high level of Reliability, Availability, Maintainability and Safety (denoted as RAMS requirements) during the experimental activity. Two main issues need to be discussed: first, electronic devices and equipment must operate in very high background of both charged and neutral particles and high static magnetic field and, second, the increase of the radiation background and the requirements of new front-end electronics are indeed incompatible with the current capability of the actual distribution system. The APOLLO R&D collaboration, funded by the Italian Istituto Nazionale di Fisica Nucleare (INFN), aims to study dedicated topologies of both distribution system and DC-DC power converters and to design, build and test demonstrators, developing the needed technology for the industrialization phase. The collaboration has designed a 3kW, 280V-12V converter (MC) based on the Switch in Line architecture (SIL), a DC to DC phase-shifted converter characterized by a disposition in line of the MOSFETs with good soft switching performances, and in the last year many steps have been taken to enhance the power dissipation and the reliability and to improve the general features of the designed converter. In particular a new water heat sink was designed on the basis of TFD simulation accounting for the layout of the specific converter. Experimental activities in order to characterize both thermal and electrical features of the MC confirm the correctness of the adopted design criteria.

  6. Review of recent theories and experiments for improving high-power microwave window breakdown thresholds

    SciTech Connect

    Chang Chao; Liu Guozhi; Tang Chuanxiang; Chen Changhua; Fang Jinyong

    2011-05-15

    Dielectric window breakdown is a serious challenge in high-power microwave (HPM) transmission and radiation. Breakdown at the vacuum/dielectric interface is triggered by multipactor and finally realized by plasma avalanche in the ambient desorbed or evaporated gas layer above the dielectric. Methods of improving breakdown thresholds are key challenges in HPM systems. First, the main theoretical and experimental progress is reviewed. Next, the mechanisms of multipactor suppression for periodic rectangular and triangular surface profiles by dynamic analysis and particle-in-cell simulations are surveyed. Improved HPM breakdown thresholds are demonstrated by proof-of-principle and multigigawatt experiments. The current theories and experiments of using dc magnetic field to resonantly accelerate electrons to suppress multipactor are also synthesized. These methods of periodic profiles and magnetic field may solve the key issues of HPM vacuum dielectric breakdown.

  7. Long-Term Operating Experience with High-Power Gyrotron Oscillators

    NASA Astrophysics Data System (ADS)

    Felch, Kevin

    2005-10-01

    High-power, megawatt-class gyrotron oscillators have now been used in electron cyclotron heating (ECH) experiments for several years. The long periods of sustained operation have provided important information about the design limits that had initially been placed on the key elements of the gyrotron. In particular, observations made on recent 110 GHz, 1 MW gyrotrons used in ECH experiments on DIII-D at General Atomics indicate that several of the important components of the device, including the electron guns, interaction cavities and diamond output windows, have performed quite well, while analyses of the electron beam collectors on some of the devices indicate that design limits have often been exceeded. Observations made on these gyrotrons will be summarized and plans to address problem areas will be discussed.

  8. Silicon photodiode soft x-ray detectors for pulsed power experiments

    SciTech Connect

    Idzorek, G.C.; Bartlett, R.J.

    1997-10-01

    Silicon photodiodes offer a number of advantages over conventional photocathode type soft x-ray detectors in pulsed power experiments. These include a nominally flat response, insensitivity to surface contamination, low voltage biasing requirements, sensitivity to low energy photons, excellent detector to detector response reproducibility, and ability to operate in poor vacuum or gas backfilled experiments. Silicon photodiodes available from International Radiation Detectors (IRD), Torrance, California have been characterized for absolute photon response from 1 eV to 10 keV photon energy, time response, and signal saturation levels. The authors calibration measurements show factor of ten deviations from the silicon photodiode theoretical flat response due to diode sensitivity outside the center `sensitive area`. Detector response reproducibility between diodes appears to be better than 5%. Time response measurements show a 10-90% rise time of about 0.1 nanoseconds and a fall time of about 0.5 nanoseconds.

  9. Test results of an organic Rankine-cycle power module for a small community solar thermal power experiment

    NASA Technical Reports Server (NTRS)

    Clark, T. B.

    1985-01-01

    The organic Rankine-cycle (ORC) power conversion assembly was tested. Qualification testing of the electrical transport subsystem was also completed. Test objectives were to verify compatibility of all system elements with emphasis on control of the power conversion assembly, to evaluate the performance and efficiency of the components, and to validate operating procedures. After 34 hours of power generation under a wide range of conditions, the net module efficiency exceeded 18% after accounting for all parasitic losses.

  10. HT to HTO conversion and field experiments near Darlington Nuclear Power Generating Station (DNPGS) site.

    PubMed

    Kim, S B; Stuart, M; Bredlaw, M; Festarini, A; Beaton, D

    2014-06-01

    The Canadian input parameters related to tritiated hydrogen gas (HT) used in tritium dose models are currently based on experiments performed at the Chalk River Laboratories (CRL) site in 1986, 1987 and 1994. There is uncertainty in how well other sites experiencing atmospheric HT releases are represented by these data. In order to address this uncertainty, HT to HTO conversion factors were evaluated at different locations near the Darlington Nuclear Power Generating Station (DNPGS) site using various experimental approaches. These were D2 gas exposure chamber experiments, atmospheric tritium measurements, and HTO and OBT measurements in vegetation and soil. In addition to these field experiments, chamber experiments were conducted using HT gas on field soil samples. The suggested Canadian input parameters for atmospheric tritium releases estimate the total fraction of HT oxidized in air and in soil, at the site, to be up to a maximum of 2.4%. Based on the more limited data obtained near DNPGS in early spring, this fraction would likely be closer to 0.5%. The result suggests that current parameters provide a conservative estimate for the DNPGS site.

  11. [From classificational medicine to clinical medicine (the end of the XVIII century to 1870s). Communication 3. The second stage of clinical medicine development: introduction of methods of laboratory experiment and chemical analysis].

    PubMed

    Stochik, A M; Zatravkin, S N

    2011-01-01

    The article concerns the end stage of clinical medicine establishment covering the period from early 1840s to the middle 1870s of the XIX century. Basic scientific achievements related to introduction into practical medicine of the methods of laboratory experiment and chemical analysis are reviewed.

  12. Experiments on solar photovoltaic power generation using concentrator and liquid cooling

    NASA Technical Reports Server (NTRS)

    Beam, B. H.; Hansen, C. F.

    1975-01-01

    Calculations and experimental data are presented leading to the development of a practical, economical solar photovoltaic power supply. The concept involves concentration of sunlight up to about 100 times normal solar intensity in a solar tracking collector and directing this to an array of solar cells. The cells are immersed in water circulated from a thermal reservoir which limits cell temperature rise to about 20 C above ambient during the day and which cools to ambient temperature during the night. Experiments were conducted on solar cells using a Fresnel lens for magnification, a telescope equatorial mount with clock drive, and tap water circulated through the solar cell holder cavity. Test results show that cells operate satisfactorily under these conditions. Power outputs achieved experimentally with cell optimized for 25 suns were linear with concentration to about 15 suns. Cells optimized for 100 suns were not available, but a corresponding linear relation of power output with concentration is anticipated. Test results have been used in a design analysis of the cost of systems utilizing this technique.

  13. High power millimeter wave experiment of ITER relevant electron cyclotron heating and current drive system.

    PubMed

    Takahashi, K; Kajiwara, K; Oda, Y; Kasugai, A; Kobayashi, N; Sakamoto, K; Doane, J; Olstad, R; Henderson, M

    2011-06-01

    High power, long pulse millimeter (mm) wave experiments of the RF test stand (RFTS) of Japan Atomic Energy Agency (JAEA) were performed. The system consists of a 1 MW/170 GHz gyrotron, a long and short distance transmission line (TL), and an equatorial launcher (EL) mock-up. The RFTS has an ITER-relevant configuration, i.e., consisted by a 1 MW-170 GHz gyrotron, a mm wave TL, and an EL mock-up. The TL is composed of a matching optics unit, evacuated circular corrugated waveguides, 6-miter bends, an in-line waveguide switch, and an isolation valve. The EL-mock-up is fabricated according to the current design of the ITER launcher. The Gaussian-like beam radiation with the steering capability of 20°-40° from the EL mock-up was also successfully proved. The high power, long pulse power transmission test was conducted with the metallic load replaced by the EL mock-up, and the transmission of 1 MW/800 s and 0.5 MW/1000 s was successfully demonstrated with no arcing and no damages. The transmission efficiency of the TL was 96%. The results prove the feasibility of the ITER electron cyclotron heating and current drive system.

  14. Case Studies for the Statistical Design of Experiments Applied to Powered Rotor Wind Tunnel Tests

    NASA Technical Reports Server (NTRS)

    Overmeyer, Austin D.; Tanner, Philip E.; Martin, Preston B.; Commo, Sean A.

    2015-01-01

    The application of statistical Design of Experiments (DOE) to helicopter wind tunnel testing was explored during two powered rotor wind tunnel entries during the summers of 2012 and 2013. These tests were performed jointly by the U.S. Army Aviation Development Directorate Joint Research Program Office and NASA Rotary Wing Project Office, currently the Revolutionary Vertical Lift Project, at NASA Langley Research Center located in Hampton, Virginia. Both entries were conducted in the 14- by 22-Foot Subsonic Tunnel with a small portion of the overall tests devoted to developing case studies of the DOE approach as it applies to powered rotor testing. A 16-47 times reduction in the number of data points required was estimated by comparing the DOE approach to conventional testing methods. The average error for the DOE surface response model for the OH-58F test was 0.95 percent and 4.06 percent for drag and download, respectively. The DOE surface response model of the Active Flow Control test captured the drag within 4.1 percent of measured data. The operational differences between the two testing approaches are identified, but did not prevent the safe operation of the powered rotor model throughout the DOE test matrices.

  15. Effect of collisional heat transfer in ICRF power modulation experiment on ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Tsujii, N.; D'Inca, R.; Noterdaeme, J.-M.; Bilato, R.; Bobkov, Vl. V.; Brambilla, M.; van Eester, D.; Harvey, R. W.; Jaeger, E. F.; Lerche, E. A.; Schneider, P.; ASDEX Upgrade Team

    2014-02-01

    ICRF (ion cyclotron range of frequencies) heating experiments were performed in D-H plasmas at various H concentrations on ASDEX Upgrade. The rf power was modulated to measure the electron power deposition profile from electron temperature modulation. To minimize the contribution from indirect collisional heating and the effect of radial transport, the rf power was modulated at 50 Hz. However, peaking of electron temperature modulation was still observed around the hydrogen cyclotron resonance indicating collisional heating contribution. Time dependent simulation of the hydrogen distribution function was performed for the discharges, using the full-wave code AORSA (E.F. Jaeger, et al., Phys. Plasmas, Vol. 8, page 1573 (2001)) coupled to the Fokker-Planck code CQL3D (R.W. Harvey, et al., Proc. IAEA (1992)). In the present experimental conditions, it was found that modulation of the collisional heating was comparable to that of direct wave damping. Impact of radial transport was also analyzed and found to appreciably smear out the modulation profile and reduce the phase delay.

  16. U.S. Nuclear Power Plant Operating Cost and Experience Summaries

    SciTech Connect

    Reid, RL

    2003-09-18

    The ''U.S. Nuclear Power Plant Operating Cost and Experience Summaries'' (NUREG/CR-6577, Supp. 2) report has been prepared to provide historical operating cost and experience information on U.S. commercial nuclear power plants during 2000-2001. Costs incurred after initial construction are characterized as annual production costs, which represent fuel and plant operating and maintenance expenses, and capital expenditures related to facility additions/modifications, which are included in the plant capital asset base. As discussed in the report, annual data for these two cost categories were obtained from publicly available reports and must be accepted as having different degrees of accuracy and completeness. Treatment of inconclusive and incomplete data is discussed. As an aid to understanding the fluctuations in the cost histories, operations summaries for each nuclear unit are provided. The intent of these summaries is to identify important operating events; refueling, major maintenance, and other significant outages; operating milestones; and significant licensing or enforcement actions. Information used in the summaries is condensed from operating reports submitted by the licensees, the Nuclear Regulatory Commission (NRC) database for enforcement actions, and outage reports.

  17. A field application experience of integrating hydrogen technology with wind power in a remote island location

    NASA Astrophysics Data System (ADS)

    Gazey, R.; Salman, S. K.; Aklil-D'Halluin, D. D.

    This paper aims to share the field application experience related to the development of an innovative stand-alone sustainable energy system known as the PURE project. The PURE project has been developed alongside a Knowledge Transfer Partnership (KTP) scheme, which is supported by the UK Department of Trade and Industry and executed by siGEN in collaboration with The Robert Gordon University. The system has been constructed within an industrial estate on the island of Unst in Shetland, 200 miles north of the Scottish mainland. The energy system now supplies five business properties with clean reliable power and utilises wind turbine and hydrogen technology to provide a sustainable energy source. The stored hydrogen gas generated by the system is used as an energy source for periods when electrical demand within the business properties exceeds wind turbine production. The hydrogen is also utilised as a fuel source for transportation and as a transportable energy source for mobile power generation. The paper therefore gives a detailed description of the PURE project and discusses the field experience accumulated during the development and installation of the system. It also shares a number of practical issues that had to be overcome during its integration and operation. The installation of the PURE project has resulted in a number of unexpected conclusions being identified and marks a significant step forward in the accessible deployment of this technology for community use.

  18. Integrating Variable Renewable Energy in Electric Power Markets. Best Practices from International Experience, Summary for Policymakers

    SciTech Connect

    Cochran, Jaquelin; Bird, Lori; Heeter, Jenny; Arent, Douglas J.

    2012-04-30

    Many countries - reflecting very different geographies, markets, and power systems - are successfully managing high levels of variable renewable energy on the electric grid, including that from wind and solar energy. This document summarizes policy best practices that energy ministers and other stakeholders can pursue to ensure that electricity markets and power systems can effectively coevolve with increasing penetrations of variable renewable energy. There is no one-size-fits-all approach; each country studied has crafted its own combination of policies, market designs, and system operations to achieve the system reliability and flexibility needed to successfully integrate renewables. Notwithstanding this diversity, the approaches taken by the countries studied all coalesce around five strategic areas: lead public engagement, particularly for new transmission; coordinate and integrate planning; develop rules for market evolution that enable system flexibility; expand access to diverse resources and geographic footprint of operations; and improve system operations. This study also emphatically underscores the value of countries sharing their experiences. The more diverse and robust the experience base from which a country can draw, the more likely that it will be able to implement an appropriate, optimized, and system-wide approach.

  19. Integrating Variable Renewable Energy in Electric Power Markets: Best Practices from International Experience, Summary for Policymakers

    SciTech Connect

    Cochran, J.; Bird, L.; Heeter, J.; Arent, D. A.

    2012-04-01

    Many countries -- reflecting very different geographies, markets, and power systems -- are successfully managing high levels of variable renewable energy on the electric grid, including that from wind and solar energy. This document summarizes policy best practices that energy ministers and other stakeholders can pursue to ensure that electricity markets and power systems can effectively coevolve with increasing penetrations of variable renewable energy. There is no one-size-fits-all approach; each country studied has crafted its own combination of policies, market designs, and system operations to achieve the system reliability and flexibility needed to successfully integrate renewables. Notwithstanding this diversity, the approaches taken by the countries studied all coalesce around five strategic areas: lead public engagement, particularly for new transmission; coordinate and integrate planning; develop rules for market evolution that enable system flexibility; expand access to diverse resources and geographic footprint of operations; and improve system operations. This study also emphatically underscores the value of countries sharing their experiences. The more diverse and robust the experience base from which a country can draw, the more likely that it will be able to implement an appropriate, optimized, and system-wide approach.

  20. Integrating Variable Renewable Energy in Electric Power Markets. Best Practices from International Experience

    SciTech Connect

    Cochran, Jaquelin; Bird, Lori; Heeter, Jenny; Arent, Douglas J.

    2012-04-30

    Many countries—reflecting very different geographies, markets, and power systems—are successfully managing high levels of variable renewable energy on the electric grid, including that from wind and solar energy. This document summarizes policy best practices that energy ministers and other stakeholders can pursue to ensure that electricity markets and power systems can effectively coevolve with increasing penetrations of variable renewable energy. There is no one-size-fits-all approach; each country studied has crafted its own combination of policies, market designs, and system operations to achieve the system reliability and flexibility needed to successfully integrate renewables. Notwithstanding this diversity, the approaches taken by the countries studied all coalesce around five strategic areas: lead public engagement, particularly for new transmission; coordinate and integrate planning; develop rules for market evolution that enable system flexibility; expand access to diverse resources and geographic footprint of operations; and improve system operations. This study also emphatically underscores the value of countries sharing their experiences. The more diverse and robust the experience base from which a country can draw, the more likely that it will be able to implement an appropriate, optimized, and system-wide approach.

  1. Nonlinear plasma experiments in geospace with gigawatts of RF power at HAARP

    NASA Astrophysics Data System (ADS)

    Sheerin, J. P.; Cohen, Morris B.

    2015-12-01

    The ionosphere is the ionized uppermost layer of our atmosphere (from 70 - 500 km altitude) where free electron densities yield peak critical frequencies in the HF (3 - 30 MHz) range. The ionosphere thus provides a quiescent plasma target, stable on timescales of minutes, for a whole host of active plasma experiments. High power RF experiments on ionospheric plasma conducted in the U.S. have been reported since 1970. The largest HF transmitter built to date is the HAARP phased-array HF transmitter near Gakona, Alaska which can deliver up to 3.6 Gigawatts (ERP) of CW RF power in the range of 2.8 - 10 MHz to the ionosphere with microsecond pointing, power modulation, and frequency agility. With an ionospheric background thermal energy in the range of only 0.1 eV, this amount of power gives access to the highest regimes of the nonlinearity (RF intensity to thermal pressure) ratio. HAARP's unique features have enabled the conduct of a number of unique nonlinear plasma experiments in the interaction region of overdense ionospheric plasma including generation of artificial aurorae, artificial ionization layers, VLF wave-particle interactions in the magnetosphere, parametric instabilities, stimulated electromagnetic emissions (SEE), strong Langmuir turbulence (SLT) and suprathermal electron acceleration. Diagnostics include the Modular UHF Ionospheric Radar (MUIR) sited at HAARP, the SuperDARN-Kodiak HF radar, spacecraft radio beacons, HF receivers to record stimulated electromagnetic emissions (SEE) and telescopes and cameras for optical emissions. We report on short timescale ponderomotive overshoot effects, artificial field-aligned irregularities (AFAI), the aspect angle dependence of the intensity of the HF-enhanced plasma line, and production of suprathermal electrons. One of the primary missions of HAARP, has been the generation of ELF (300 - 3000 Hz) and VLF (3 - 30 kHz) radio waves which are guided to global distances in the Earth-ionosphere waveguide. We review

  2. Nonlinear plasma experiments in geospace with gigawatts of RF power at HAARP

    SciTech Connect

    Sheerin, J. P.; Cohen, Morris B.

    2015-12-10

    The ionosphere is the ionized uppermost layer of our atmosphere (from 70 – 500 km altitude) where free electron densities yield peak critical frequencies in the HF (3 – 30 MHz) range. The ionosphere thus provides a quiescent plasma target, stable on timescales of minutes, for a whole host of active plasma experiments. High power RF experiments on ionospheric plasma conducted in the U.S. have been reported since 1970. The largest HF transmitter built to date is the HAARP phased-array HF transmitter near Gakona, Alaska which can deliver up to 3.6 Gigawatts (ERP) of CW RF power in the range of 2.8 – 10 MHz to the ionosphere with microsecond pointing, power modulation, and frequency agility. With an ionospheric background thermal energy in the range of only 0.1 eV, this amount of power gives access to the highest regimes of the nonlinearity (RF intensity to thermal pressure) ratio. HAARP’s unique features have enabled the conduct of a number of unique nonlinear plasma experiments in the interaction region of overdense ionospheric plasma including generation of artificial aurorae, artificial ionization layers, VLF wave-particle interactions in the magnetosphere, parametric instabilities, stimulated electromagnetic emissions (SEE), strong Langmuir turbulence (SLT) and suprathermal electron acceleration. Diagnostics include the Modular UHF Ionospheric Radar (MUIR) sited at HAARP, the SuperDARN-Kodiak HF radar, spacecraft radio beacons, HF receivers to record stimulated electromagnetic emissions (SEE) and telescopes and cameras for optical emissions. We report on short timescale ponderomotive overshoot effects, artificial field-aligned irregularities (AFAI), the aspect angle dependence of the intensity of the HF-enhanced plasma line, and production of suprathermal electrons. One of the primary missions of HAARP, has been the generation of ELF (300 – 3000 Hz) and VLF (3 – 30 kHz) radio waves which are guided to global distances in the Earth

  3. Phase 1 of the First Small Power System Experiment (engineering Experiment No. 1). Volume 1: Executive Summary. [development and testing of a solar thermal power plant

    NASA Technical Reports Server (NTRS)

    Holl, R. J.

    1979-01-01

    The development of a modular solar thermal power system for application in the 1 to 10 MWe range is presented. The system is used in remote utility applications, small communities, rural areas, and for industrial uses. Investigations are performed on the energy storage requirements and type of energy storage, concentrator design and field optimization, energy transport, and power conversion subsystems. The system utilizes a Rankine cycle, an axial flow steam turbine for power conversion, and heat transfer sodium for collector fluid.

  4. Human observer detection experiments with mammograms and power-law noise.

    PubMed

    Burgess, A E; Jacobson, F L; Judy, P F

    2001-04-01

    We determined contrast thresholds for lesion detection as a function of lesion size in both mammograms and filtered noise backgrounds with the same average power spectrum, P(f)=B/f3. Experiments were done using hybrid images with digital images of tumors added to digitized normal backgrounds, displayed on a monochrome monitor. Four tumors were extracted from digitized specimen radiographs. The lesion sizes were varied by digital rescaling to cover the range from 0.5 to 16 mm. Amplitudes were varied to determine the value required for 92% correct detection in two-alternative forced-choice (2AFC) and 90% for search experiments. Three observers participated, two physicists and a radiologist. The 2AFC mammographic results demonstrated a novel contrast-detail (CD) diagram with threshold amplitudes that increased steadily (with slope of 0.3) with increasing size for lesions larger than 1 mm. The slopes for prewhitening model observers were about 0.4. Human efficiency relative to these models was as high as 90%. The CD diagram slopes for the 2AFC experiments with filtered noise were 0.44 for humans and 0.5 for models. Human efficiency relative to the ideal observer was about 40%. The difference in efficiencies for the two types of backgrounds indicates that breast structure cannot be considered to be pure random noise for 2AFC experiments. Instead, 2AFC human detection with mammographic backgrounds is limited by a combination of noise and deterministic masking effects. The search experiments also gave thresholds that increased with lesion size. However, there was no difference in human results for mammographic and filtered noise backgrounds, suggesting that breast structure can be considered to be pure random noise for this task. Our conclusion is that, in spite of the fact that mammographic backgrounds have nonstationary statistics, models based on statistical decision theory can still be applied successfully to estimate human performance.

  5. Introduction to ultrasonic motors

    SciTech Connect

    Sashida, Toshiiku; Kenjo, Takashi.

    1993-01-01

    The ultrasonic motor, invented in 1980, utilizes the piezoelectric effect in the ultrasonic frequency range to provide the motive force. (In conventional electric motors the motive force is electromagnetic.) The result is a motor with unusually good low-speed high-torque and power-to-weight characteristics. It has already found applications in camera autofocus mechanisms, medical equipment subject to high magnetic fields, and motorized car accessories. Its applications will increase as designers become more familiar with its unique characteristics. This book is the result of a collaboration between the inventor and an expert in conventional electric motors: the result is an introduction to the general theory presented in a way that links it to conventional motor theory. It will be invaluable both to motor designers and to those who design with and use electric motors as an introduction to this important new invention.

  6. 18 CFR 801.0 - Introduction.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Introduction. 801.0 Section 801.0 Conservation of Power and Water Resources SUSQUEHANNA RIVER BASIN COMMISSION GENERAL POLICIES § 801.0 Introduction. (a) The Governors of the States of New York, Pennsylvania, and Maryland,...

  7. 18 CFR 401.0 - Introduction.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Introduction. 401.0 Section 401.0 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE § 401.0 Introduction. (a) The Delaware River Basin...

  8. Combustion-Powered Actuation for Dynamic Stall Suppression - Simulations and Low-Mach Experiments

    NASA Technical Reports Server (NTRS)

    Matalanis, Claude G.; Min, Byung-Young; Bowles, Patrick O.; Jee, Solkeun; Wake, Brian E.; Crittenden, Tom; Woo, George; Glezer, Ari

    2014-01-01

    An investigation on dynamic-stall suppression capabilities of combustion-powered actuation (COMPACT) applied to a tabbed VR-12 airfoil is presented. In the first section, results from computational fluid dynamics (CFD) simulations carried out at Mach numbers from 0.3 to 0.5 are presented. Several geometric parameters are varied including the slot chordwise location and angle. Actuation pulse amplitude, frequency, and timing are also varied. The simulations suggest that cycle-averaged lift increases of approximately 4% and 8% with respect to the baseline airfoil are possible at Mach numbers of 0.4 and 0.3 for deep and near-deep dynamic-stall conditions. In the second section, static-stall results from low-speed wind-tunnel experiments are presented. Low-speed experiments and high-speed CFD suggest that slots oriented tangential to the airfoil surface produce stronger benefits than slots oriented normal to the chordline. Low-speed experiments confirm that chordwise slot locations suitable for Mach 0.3-0.4 stall suppression (based on CFD) will also be effective at lower Mach numbers.

  9. Optical Spectroscopy Experiments on the 500 kA XP Pulsed-Power Generator

    SciTech Connect

    Bell, K. S.; Shelkovenko, T. A.; Pikuz, S. A.; McBride, R. D.; Blesener, I. C.; Knapp, P. F.; Hammer, D. A.; Greenly, J. B.; Maron, Y.

    2009-01-21

    Recent experiments on the 500 kA XP pulsed-power generator at Cornell University have explored the properties of optical spectra in single wires and wire arrays. In the single wire experiments, {approx}1% of the current from XP has been directed through the single wire. Spectra have been recorded using a half-meter spectrometer and a CCD camera located adjacent to the XP pulser. We are studying the visible spectra emitted by the wires and the background light from the machine hardware in order to identify the levels of current per wire for which visible spectroscopy might provide a means to measure magnetic field strength. We have also investigated the dependence of single wire visible spectra on the current, which was measured using a calibrated non-integrating Rogowski coil. UV and XUV diodes were employed to gather information about the temporal structure of the background and wire radiation. The line radiation in the spectra was recorded with wire currents at the few kA level. This is comparable to the first 10 ns of a 32-wire array experiment on 1 Ma generator and a 600-wire array at 20 MA.

  10. Notes from the back room: gender, power, and (In)visibility in women's experiences of masturbation.

    PubMed

    Fahs, Breanne; Frank, Elena

    2014-01-01

    While popular culture has more frequently depicted women's masturbation in recent years, scholarly attention to women's own meaning making about masturbation remains largely absent. Existing research that emphasizes women's masturbation frequency, health correlates, masturbation as a factor in couples therapy, and masturbation as a substitute for partnered sexual behaviors have dominated the research, largely neglecting social identity correlates and women's subjectivities about masturbation. This study drew upon qualitative interviews with 20 women (mean age = 34, SD = 13.35) from diverse backgrounds to illuminate five themes in women's experiences with masturbation: (a) assumptions that most women self-penetrate during masturbation even when primarily using clitoral stimulation; (b) masturbation as sexual labor; (c) masturbation as a threat to male dominance; (d) masturbation as routine tension release; and (e) masturbation as a source of joy, fun, and pleasure. Because women revealed such a diverse set of experiences, we explored the advantages and disadvantages of the invisibility of women's masturbation. As a result of the internalization of stereotypically masculine scripts about sexuality-including an imagined penetrative focus, goal-oriented drive toward orgasm, sex as labor, and masturbation as nonemotional-women's masturbation experiences, regardless of sexual orientation, revealed the power imbalances often present in partnered (hetero)sexual dynamics.

  11. Experiments to investigate direct containment heating phenomena with scaled models of the Surry Nuclear Power Plant

    SciTech Connect

    Blanchat, T.K.; Allen, M.D.; Pilch, M.M.; Nichols, R.T.

    1994-06-01

    The Containment Technology Test Facility (CTTF) and the Surtsey Test Facility at Sandia National Laboratories are used to perform scaled experiments that simulate High Pressure Melt Ejection accidents in a nuclear power plant (NPP). These experiments are designed to investigate the effects of direct containment heating (DCH) phenomena on the containment load. High-temperature, chemically reactive melt (thermite) is ejected by high-pressure steam into a scale model of a reactor cavity. Debris is entrained by the steam blowdown into a containment model where specific phenomena, such as the effect of subcompartment structures, prototypic air/steam/hydrogen atmospheres, and hydrogen generation and combustion, can be studied. Four Integral Effects Tests (IETs) have been performed with scale models of the Surry NPP to investigate DCH phenomena. The 1/61{sup th} scale Integral Effects Tests (IET-9, IET-10, and IET-11) were conducted in CTRF, which is a 1/6{sup th} scale model of the Surry reactor containment building (RCB). The 1/10{sup th} scale IET test (IET-12) was performed in the Surtsey vessel, which had been configured as a 1/10{sup th} scale Surry RCB. Scale models were constructed in each of the facilities of the Surry structures, including the reactor pressure vessel, reactor support skirt, control rod drive missile shield, biological shield wall, cavity, instrument tunnel, residual heat removal platform and heat exchangers, seal table room and seal table, operating deck, and crane wall. This report describes these experiments and gives the results.

  12. Development of effective power supply using electric double layer capacitor for static magnetic field coils in fusion plasma experiments.

    PubMed

    Inomoto, M; Abe, K; Yamada, T; Kuwahata, A; Kamio, S; Cao, Q H; Sakumura, M; Suzuki, N; Watanabe, T; Ono, Y

    2011-02-01

    A cost-effective power supply for static magnetic field coils used in fusion plasma experiments has been developed by application of an electric double layer capacitor (EDLC). A prototype EDLC power supply system was constructed in the form of a series LCR circuit. Coil current of 100 A with flat-top longer than 1 s was successfully supplied to an equilibrium field coil of a fusion plasma experimental apparatus by a single EDLC module with capacitance of 30 F. The present EDLC power supply has revealed sufficient performance for plasma confinement experiments whose discharge duration times are an order of several seconds.

  13. Phase 1 of the First Small Power System Experiment (engineering Experiment No. 1). Volume 2: System Concept Selection. [development and testing of a solar thermal power plant

    NASA Technical Reports Server (NTRS)

    Holl, R. J.

    1979-01-01

    The development of a modular solar thermal power system for application in the 1 to 10 MWe range is presented. The system is used in remote utility applications, small communities, rural areas, and for industrial uses. Systems design and systems optimization studies are conducted which consider plant size, annual capacity factors, and startup time as variables. Investigations are performed on the energy storage requirements and type of energy storage, concentrator design and field optimization, energy transport, and power conversion subsystems. The system utilizes a Rankine cycle, an axial flow steam turbine for power conversion, and heat transfer sodium for collector fluid.

  14. Statistical power and optimal design in experiments in which samples of participants respond to samples of stimuli.

    PubMed

    Westfall, Jacob; Kenny, David A; Judd, Charles M

    2014-10-01

    Researchers designing experiments in which a sample of participants responds to a sample of stimuli are faced with difficult questions about optimal study design. The conventional procedures of statistical power analysis fail to provide appropriate answers to these questions because they are based on statistical models in which stimuli are not assumed to be a source of random variation in the data, models that are inappropriate for experiments involving crossed random factors of participants and stimuli. In this article, we present new methods of power analysis for designs with crossed random factors, and we give detailed, practical guidance to psychology researchers planning experiments in which a sample of participants responds to a sample of stimuli. We extensively examine 5 commonly used experimental designs, describe how to estimate statistical power in each, and provide power analysis results based on a reasonable set of default parameter values. We then develop general conclusions and formulate rules of thumb concerning the optimal design of experiments in which a sample of participants responds to a sample of stimuli. We show that in crossed designs, statistical power typically does not approach unity as the number of participants goes to infinity but instead approaches a maximum attainable power value that is possibly small, depending on the stimulus sample. We also consider the statistical merits of designs involving multiple stimulus blocks. Finally, we provide a simple and flexible Web-based power application to aid researchers in planning studies with samples of stimuli.

  15. 3-Bromopyruvate (3BP) a fast acting, promising, powerful, specific, and effective "small molecule" anti-cancer agent taken from labside to bedside: introduction to a special issue.

    PubMed

    Pedersen, Peter L

    2012-02-01

    Although the "Warburg effect", i.e., elevated glucose metabolism to lactic acid (glycolysis) even in the presence of oxygen, has been recognized as the most common biochemical phenotype of cancer for over 80 years, its biochemical and genetic basis remained unknown for over 50 years. Work focused on elucidating the underlying mechanism(s) of the "Warburg effect" commenced in the author's laboratory in 1969. By 1985 among the novel findings made two related most directly to the basis of the "Warburg effect", the first that the mitochondrial content of tumors exhibiting this phenotype is markedly decreased relative to the tissue of origin, and the second that such mitochondria have markedly elevated amounts of the enzyme hexokinase-2 (HK2) bound to their outer membrane. HK2 is the first of a number of enzymes in cancer cells involved in metabolizing the sugar glucose to lactic acid. At its mitochondrial location HK2 binds at/near the protein VDAC (voltage dependent anion channel), escapes inhibition by its product glucose-6-phosphate, and gains access to mitochondrial produced ATP. As shown by others, it also helps immortalize cancer cells, i.e., prevents cell death. Based on these studies, the author's laboratory commenced experiments to elucidate the gene basis for the overexpression of HK2 in cancer. These studies led to both the discovery of a unique HK2 promoter region markedly activated by both hypoxic conditions and moderately activated by several metabolites (e.g., glucose), Also discovered was the promoter's regulation by epigenetic events (i.e., methylation, demethylation). Finally, the author's laboratory turned to the most important objective. Could they selectively and completely destroy cancerous tumors in animals? This led to the discovery in an experiment conceived, designed, and conducted by Young Ko that the small molecule 3-bromopyruvate (3BP), the subject of this mini-review series, is an incredibly powerful and swift acting anticancer agent

  16. Relational experiences of power and gender for nurse-managers of private hospitals.

    PubMed

    Brito, Maria José Menezes; Montenegro, Lívia Cozer; Alves, Marília

    2010-01-01

    Influenced by increased technology and globalization, Brazilian hospitals are undergoing significant changes. The managerial models focused on the male model are being slowly and gradually replaced, with an expressive participation of female nurses in management positions. Thus, we aimed to uncover some aspects of the relational experiences of power and gender of nine female nurse-managers working in four large and medium-sized private hospitals in Belo Horizonte, MG, Brazil, through a qualitative case study. The results show that management discourses value a managerial style focused on the organizations' humanized aspects, where authoritative styles have no space. In this scenario, the work of female nurse-managers strengthens teamwork, which improves their image and contributes to forming their identity.

  17. Randomized block experimental designs can increase the power and reproducibility of laboratory animal experiments.

    PubMed

    Festing, Michael F W

    2014-01-01

    Randomized block experimental designs have been widely used in agricultural and industrial research for many decades. Usually they are more powerful, have higher external validity, are less subject to bias, and produce more reproducible results than the completely randomized designs typically used in research involving laboratory animals. Reproducibility can be further increased by using time as a blocking factor. These benefits can be achieved at no extra cost. A small experiment investigating the effect of an antioxidant on the activity of a liver enzyme in four inbred mouse strains, which had two replications (blocks) separated by a period of two months, illustrates this approach. The widespread failure to use these designs more widely in research involving laboratory animals has probably led to a substantial waste of animals, money, and scientific resources and slowed down the development of new treatments for human and animal diseases.

  18. High-power targets: experience and R&D for 2 MW

    SciTech Connect

    Hurh, P.; Caretta, O.; Davenne, T.; Densham, C.; Loveridge, P.; Simos, N.; /Brookhaven

    2011-03-01

    High-power particle production targets are crucial elements of future neutrino and other rare particle beams. Fermilab plans to produce a beam of neutrinos (LBNE) with a 2.3 MW proton beam (Project X). Any solid target is unlikely to survive for an extended period in such an environment - many materials would not survive a single beam pulse. We are using our experience with previous neutrino and antiproton production targets, along with a new series of R&D tests, to design a target that has adequate survivability for this beamline. The issues considered are thermal shock (stress waves), heat removal, radiation damage, radiation accelerated corrosion effects, physics/geometry optimization and residual radiation.

  19. The Cosmic Microwave Background Anisotropy Power Spectrum from the BEAST Experiment

    NASA Astrophysics Data System (ADS)

    O'Dwyer, Ian J.; Bersanelli, Marco; Childers, Jeffrey; Figueiredo, Newton; Halevi, Doron; Huey, Greg; Lubin, Philip M.; Maino, Davide; Mandolesi, Nazzareno; Marvil, Joshua; Meinhold, Peter R.; Mejía, Jorge; Natoli, Paolo; O'Neill, Hugh; Pina, Agenor; Seiffert, Michael D.; Stebor, Nathan C.; Tello, Camilo; Villela, Thyrso; Wandelt, Benjamin D.; Williams, Brian; Wuensche, Carlos Alexandre

    2005-05-01

    The Background Emission Anisotropy Scanning Telescope (BEAST) is a 2.2 m off-axis telescope with an eight-element mixed Q-band (38-45 GHz) and Ka-band (26-36 GHz) focal plane, designed for balloon-borne and ground-based studies of the cosmic microwave background (CMB). Here we present the CMB angular power spectrum calculated from 682 hr of data observed with the BEAST instrument. We use a binned pseudo-Cl estimator (the MASTER method). We find results that are consistent with other determinations of the CMB anisotropy for angular wavenumbers l between 100 and 600. We also perform cosmological parameter estimation. The BEAST data alone produce a good constraint on Ωk≡1-Ωtot=-0.074+/-0.070, consistent with a flat universe. A joint parameter estimation analysis with a number of previous CMB experiments produces results consistent with previous determinations.

  20. Magnetised bow shocks and oblique shock interactions: HEDLA experiments on the Magpie pulsed-power facility

    NASA Astrophysics Data System (ADS)

    Burdiak, G. C.; Lebedev, S. V.; Chittenden, J. P.; Clayson, T.; Garcia, C.; Hare, J. D.; Niasse, N.; Suttle, L. G.; Suzuki-Vidal, F.; Frank, A.; Ciardi, A.

    2016-10-01

    We present results from magnetised shock experiments performed on the Magpie ( 1 MA, 250 ns) pulsed-power facility. Shocks are formed around cylindrical and oblique planar obstacles positioned in a supersonic, super-Alfvenic plasma flow (MS = 5 , MA = 2.5 , vf = 70 km/s). The plasma flow is produced by an inverse, exploding wire array z-pinch and carries an embedded magnetic field that is well frozen in (ReM = 20). We show how the structure of bow and oblique shocks is dramatically affected by the orientation of the advected magnetic field with respect to the obstacles. More complex obstacle geometries allow us to study the interaction of multiple magnetised oblique shocks. These systems can cause the annihilation of magnetic flux and the generation of shear flow along a slip layer. Work supported by DOE cooperative agreements No. DE-F03- 02NA00057 and No. DE-SC-0001063.

  1. Dosimetry experiences and lessons learned for radiation dose assessment in Korean nuclear power plants.

    PubMed

    Choi, Jong Rak; Kim, Hee Geun; Kong, Tae Young; Son, Jung Kwon

    2013-07-01

    Since the first Korean nuclear power plant (NPP), Kori 1, commenced operation in 1978, a total of 21 NPPs had been put into operation in Korea by the end of 2011. Radiation doses of NPP workers have been periodically evaluated and controlled within the prescribed dose limit. Radiation dose assessment is carried out monthly by reading personal dosemeters for external radiation exposure, which have traceability in compliance with strict technical guidelines. In the case of the internal radiation exposure, workers who have access to the possible area of polluted air are also evaluated for their internal dose after maintenance task. In this article, the overall situation and experience for the assessment and distribution of radiation doses in Korean NPPs is described.

  2. Introduction of a current waveform, waveshaping technique to limit conduction loss in high-frequency dc-dc converters suitable for space power

    NASA Astrophysics Data System (ADS)

    Miller, Douglas P.

    1990-06-01

    Space power supply manufacturers have tried to increase power density and construct smaller, highly efficient power supplies by increasing switching frequency. Incorporation of a power MOSFET as a switching element alleviates switching loss. However, values of R sub DS(on) (drain-to-source resistance in the on-state) for MOSFET's are of such magnitude to produce greater on-state losses than an equivalent BJT operated in saturation. This research serves to introduce a design concept, pertinent to low-voltage relatively-high-current applications, that minimizes the peak current through the switching element in order to reduce average power loss. Basic waveforms produced by different PWM and resonant mode topologies were examined. Theoretical analysis reveals that a ramp-sine current waveform could cut conduction power loss by at least 18 percent over a conventional Buck switching converter. A 14V, 14W combination quasi-resonant Buck/ZCS, Quasi-Resonant Buck dc-dc converter with an unregulated input voltage of 28 V was built for simplicity to demonstrate one particular waveshaping technique. This converter represents a useful example of an actual circuit which is capable of producing the desired ramp-sine switch-current waveform. Final results confirm improvement in conduction loss enhancing existing power MOSFET technology for use in dc-dc power conversion.

  3. Nonlinear Plasma Experiments in Geospace with Gigawatts of RF Power at HAARP

    NASA Astrophysics Data System (ADS)

    Sheerin, J. P.; Rayyan, N.; Watkins, B. J.; Bristow, W. A.; Bernhardt, P. A.

    2014-10-01

    The HAARP phased-array HF transmitter at Gakona, AK delivers up to 3.6 GW (ERP) of HF power in the range of 2.8 - 10 MHz to the ionosphere with millisecond pointing, power modulation, and frequency agility. HAARP's unique features have enabled the conduct of a number of nonlinear plasma experiments in the interaction region of overdense ionospheric plasma including stimulated electromagnetic emissions (SEE), artificial aurora, artificial ionization layers, VLF wave-particle interactions in the magnetosphere, strong Langmuir turbulence (SLT) and suprathermal electron acceleration. Diagnostics include the Modular UHF Ionospheric Radar (MUIR) sited at HAARP, the SuperDARN-Kodiak HF radar, spacecraft radio beacons, HF receivers to record stimulated electromagnetic emissions (SEE) and telescopes and cameras for optical emissions. We report on short timescale ponderomotive overshoot effects, artificial field-aligned irregularities (AFAI), the aspect angle dependence of the intensity of the plasma line, and suprathermal electrons. Applications are made to the study and control of irregularities affecting spacecraft communication and navigation systems.

  4. Study of thermal control systems for orbiting power systems. Materials experiment carrier thermal control system study

    NASA Technical Reports Server (NTRS)

    Fleming, M. L.

    1980-01-01

    Four possible arrangements of the materials experiment carrier (MEC) and power system (PS) thermal control loops were defined which would provide one kW of heat rejection for each kW of power to the MEC payload. These arrangements were compared to the baseline reference concept which provides only 16 kW heat rejection to show the cost of obtaining symmetry in terms of dollars, weight, complexity, growth potential, ease of integration, technology and total launch weight. The results of these comparisons was that the concept which splits the PS thermal control loop into two systems, one to reject PS waste heat and one payload waste heat, appeared favorable. The fluid selection study resulted in recommendation of FC72 as the MEC heat transport fluid based on the thermal and physical characteristics. The coatings reviewed indicated anodized and alodine treated aluminum surfaces or silver teflon are the best choices for the MEC vehicle where durability is an important factor. For high temperature radiators silver teflon or zinc orthotitanate are recommended choices.

  5. Integrating Variable Renewable Energy in Electric Power Markets: Best Practices from International Experience

    SciTech Connect

    Cochran, J.; Bird, L.; Heeter, J.; Arent, D. A.

    2012-04-01

    Many countries -- reflecting very different geographies, markets, and power systems -- are successfully managing high levels of variable renewable energy on the electric grid, including that from wind and solar energy. This study documents the diverse approaches to effective integration of variable renewable energy among six countries -- Australia (South Australia), Denmark, Germany, Ireland, Spain, and the United States (Western region-Colorado and Texas)-- and summarizes policy best practices that energy ministers and other stakeholders can pursue to ensure that electricity markets and power systems can effectively coevolve with increasing penetrations of variable renewable energy. Each country has crafted its own combination of policies, market designs, and system operations to achieve the system reliability and flexibility needed to successfully integrate renewables. Notwithstanding this diversity, the approaches taken by the countries studied all coalesce around five strategic areas: lead public engagement, particularly for new transmission; coordinate and integrate planning; develop rules for market evolution that enable system flexibility; expand access to diverse resources and geographic footprint of operations; and improve system operations. The ability to maintain a broad ecosystem perspective, to organize and make available the wealth of experiences, and to ensure a clear path from analysis to enactment should be the primary focus going forward.

  6. Operating experience feedback report -- turbine-generator overspeed protection systems: Commercial power reactors. Volume 11

    SciTech Connect

    Ornstein, H.L.

    1995-04-01

    This report presents the results of the US Nuclear Regulatory Commission`s Office for Analysis and Evaluation of Operational Data (AEOD) review of operating experience of main turbine-generator overspeed and overspeed protection systems. It includes an indepth examination of the turbine overspeed event which occurred on November 9, 1991, at the Salem Unit 2 Nuclear Power Plant. It also provides information concerning actions taken by other utilities and the turbine manufacturers as a result of the Salem overspeed event. AEOD`s study reviewed operating procedures and plant practices. It noted differences between turbine manufacturer designs and recommendations for operations, maintenance, and testing, and also identified significant variations in the manner that individual plants maintain and test their turbine overspeed protection systems. AEOD`s study provides insight into the shortcomings in the design, operation, maintenance, testing, and human factors associated with turbine overspeed protection systems. Operating experience indicates that the frequency of turbine overspeed events is higher than previously thought and that the bases for demonstrating compliance with NRC`s General Design Criterion (GDC) 4, Environmental and dynamic effects design bases, may be nonconservative with respect to the assumed frequency.

  7. ADX: a high field, high power density, Advanced Divertor test eXperiment

    NASA Astrophysics Data System (ADS)

    Vieira, R.; Labombard, B.; Marmar, E.; Irby, J.; Shiraiwa, S.; Terry, J.; Wallace, G.; Whyte, D. G.; Wolfe, S.; Wukitch, S.; ADX Team

    2014-10-01

    The MIT PSFC and collaborators are proposing an advanced divertor experiment (ADX) - a tokamak specifically designed to address critical gaps in the world fusion research program on the pathway to FNSF/DEMO. This high field (6.5 tesla, 1.5 MA), high power density (P/S ~ 1.5 MW/m2) facility would utilize Alcator magnet technology to test innovative divertor concepts for next-step DT fusion devices (FNSF, DEMO) at reactor-level boundary plasma pressures and parallel heat flux densities while producing high performance core plasma conditions. The experimental platform would also test advanced lower hybrid current drive (LHCD) and ion-cyclotron range of frequency (ICRF) actuators and wave physics at the plasma densities and magnetic field strengths of a DEMO, with the unique ability to deploy launcher structures both on the low-magnetic-field side and the high-field side - a location where energetic plasma-material interactions can be controlled and wave physics is most favorable for efficient current drive, heating and flow drive. This innovative experiment would perform plasma science and technology R&D necessary to inform the conceptual development and accelerate the readiness-for-deployment of FNSF/DEMO - in a timely manner, on a cost-effective research platform. Supported by DE-FC02-99ER54512.

  8. Orthogonal experiment and analysis of power spectral density on process parameters of pitch tool polishing

    NASA Astrophysics Data System (ADS)

    Meng, Kai; Wan, Yongjian; Wu, Fan; Shen, Lijun; Wu, Hsing-Yu

    2017-02-01

    Mid to high spatial frequency error (MSFR and HSFR) should be strictly controlled in modern optical systems. Pitch tool polishing (PTP) is an effective ultra-smoothing surface manufacturing method to control MSFR and HSFR. But it is difficult to control because it is affected by a lot of factors. The present paper describes the pitch tool polishing study based on eighteen well-planned orthogonal experiments (OA18 matrix). Five main process factors (abrasive particle size, slurry concentration, pad rotation speed, acidity and polishing time) in pitch tool polishing process were investigated. In this study, power spectral density (PSD) based on Fourier analysis of surface topography data obtained by white light interferometer was used as the results of orthogonal experiments instead of material removal rate and surface roughness. A normalization method of PSD was proposed as the range analysis rule. Three parts of spatial frequency bandwidth were selected and discussed. Acidity is the most important factor in part 1 and slurry concentration is the most significant one in part 2; while acidity is the least influenced one in part 3. The result in each part was explained by two-step material removal mechanism. At last, suggestions in low and high spatial frequency are given for pitch tool polishing.

  9. Low-cost space fission power systems utilizing US and former Soviet Union experience and technology

    NASA Astrophysics Data System (ADS)

    Wetch, Joseph R.; Britt, Edward J.; Koester, J. Kent; Gunther, N.; Ponomarev-Stepnoi, N. N.; Nikolaev, Yuri V.; Nikitin, Vladimir

    1997-01-01

    This report summarizes the author's approach to space power total economics. In the past 40 years of U.S. government sponsored space nuclear power developments, total economics has received only token consideration. In the real world, nuclear power has had limited acceptance where it provided the enabling capability i.e. isotopes for low power, long life, deep space missions, or reactor power for underwater nuclear submarines. It was also accepted where it was perceived to be more economic. Examples are nuclear reactor powered aircraft carriers, escort vessels and central station power stations. In any case, real and perceived public and environmental safety must always be included into the economic equation.

  10. Phase 1 of the First Small Power System Experiment (engineering Experiment No. 1). Volume 4: Commercial System Definition. [development and testing of a solar thermal power plant

    NASA Technical Reports Server (NTRS)

    Holl, R. J.

    1979-01-01

    The development and design of a modular solar thermal power system for application in the 1 to 10 MWe range is described. The system is used in remote utility applications, small communities, rural areas, and for industrial uses. The operational reliability, the minimum risk of failure, and the maintenance and repair characteristics are determined and the commercial system design is defined.

  11. A spreadsheet to construct power curves and clarify the meaning of the word equivalent in evaluating experiments with poultry.

    PubMed

    Pesti, G M; Shim, M Y

    2012-09-01

    Persons conducting research trials often want to be able to declare that treatments, or particularly products, are equivalent (will provide indistinguishable results). However, all research trials can ever provide is the probability that the observed differences in an experiment were due to chance. Also, in trials in which variances are high and there are few replications, it is quite easy to declare no significant differences and equivalency. This paper describes a Microsoft Excel spreadsheet that can be used to easily construct experimental power curves. Such curves predict the proportion of experiments that would yield a given level of significance as the difference between the 2 means increases. The spreadsheet uses the mean and variances from an experiment with the Norm.inv and Rand functions of Excel to simulate outcomes from identical experiments. An experiment that declared GMO and normal feed ingredients to be equivalent was used to illustrate the application of power curves. The experiment had 12 replicate pens of broilers per treatment. The outcomes of 90,000 simulated experiments, each with the same overall variance, but 0 through 8 percent differences in treatment means, were graphed. When the published experiment purported to show equivalence, really it showed that a significant difference in growth (P < 0.05) would be expected to be detected 50% of the time if the means were different by 3.1%; a difference of 4.6% in treatment means could be detected 80% of the time by such an experiment. This Excel spreadsheet enables such a power analysis to be conducted. Easy modifications of the spreadsheet can illustrate the influence of changing the variance or number of replications on the expected power of future experiments. The economic impact of small changes in performance is also discussed.

  12. A Framework for Successful Research Experiences in the Classroom: Combining the Power of Technology and Mentors

    NASA Technical Reports Server (NTRS)

    Graff, Paige Valderrama; Stefanov, William L.; Willis, Kim; Runco, Susan; McCollum, Tim; Lindgren, Charles F.; Baker, Marshalyn; Mailhot, Michele

    2011-01-01

    Authentic research opportunities in the classroom are most impactful when they are student-driven and inquiry-based. These experiences are even more powerful when they involve technology and meaningful connections with scientists. In today's classrooms, activities are driven by state required skills, education standards, and state mandated testing. Therefore, programs that incorporate authentic research must address the needs of teachers. NASA's Expedition Earth and Beyond (EEAB) Program has developed a framework that addresses teacher needs and incorporates the use of technology and access to mentors to promote and enhance authentic research in the classroom. EEAB is a student involvement program that facilitates student investigations of Earth or planetary comparisons using NASA data. To promote student-led research, EEAB provides standards-aligned, inquiry-based curricular resources, an implementation structure to facilitate research, educator professional development, and ongoing support. This framework also provides teachers with the option to incorporate the use of technology and connect students with a mentor, both of which can enrich student research experiences. The framework is structured by a modeled 9-step process of science which helps students organize their research. With more schools gaining increased access to technology, EEAB has created an option to help schools take advantage of students' interest and comfort with technology by leveraging the use of available technologies to enhance student research. The use of technology not only allows students to collaborate and share their research, it also provides a mechanism for them to work with a mentor. This framework was tested during the 2010/2011 school year. Team workspaces hosted on Wikispaces for Educators allow students to initiate their research and refine their research question initially without external input. This allows teams to work independently and rely on the skills and interests of

  13. A Framework for Successful Research Experiences in the Classroom: Combining the Power of Technology and Mentors

    NASA Astrophysics Data System (ADS)

    Graff, P. V.; Stefanov, W. L.; Willis, K.; Runco, S.; McCollum, T.; Lindgren, C. F.; Baker, M.; Mailhot, M.

    2011-12-01

    Authentic research opportunities in the classroom are most impactful when they are student-driven and inquiry-based. These experiences are even more powerful when they involve technology and meaningful connections with scientists. In today's classrooms, activities are driven by state required skills, education standards, and state mandated testing. Therefore, programs that incorporate authentic research must address the needs of teachers. NASA's Expedition Earth and Beyond (EEAB) Program has developed a framework that addresses teacher needs and incorporates the use of technology and access to mentors to promote and enhance authentic research in the classroom. EEAB is a student involvement program that facilitates student investigations of Earth or planetary comparisons using NASA data. To promote student-led research, EEAB provides standards-aligned, inquiry-based curricular resources, an implementation structure to facilitate research, educator professional development, and ongoing support. This framework also provides teachers with the option to incorporate the use of technology and connect students with a mentor, both of which can enrich student research experiences. The framework is structured by a modeled 9-step process of science which helps students organize their research. With more schools gaining increased access to technology, EEAB has created an option to help schools take advantage of students' interest and comfort with technology by leveraging the use of available technologies to enhance student research. The use of technology not only allows students to collaborate and share their research, it also provides a mechanism for them to work with a mentor. This framework was tested during the 2010/2011 school year. Team workspaces hosted on Wikispaces for Educators allow students to initiate their research and refine their research question initially without external input. This allows teams to work independently and rely on the skills and interests of

  14. RF Power and Magnetic Field Modulation Experiments with Simple Mirror Geometry in the Central Cell of Hanbit Device

    SciTech Connect

    Lee, S.G.; Bak, J.G.; Jhang, H.G.; Kim, S.S.

    2005-01-15

    The radio frequency (RF) stabilization effects to investigate the characteristics of the interchange instability by RF power and magnetic field modulation experiments were performed near {omega}/{omega}{sub i} {approx} = 1 and with low beta ({approx} 0.1%) plasmas in the central cell of the Hanbit mirror device. Temporal behaviors of the interchange mode were measured and analyzed when the interchange mode was triggered by sudden changes of the RF power and magnetic field intensity.

  15. Phase 1 of the First Small Power System Experiment (engineering Experiment No. 1). Volume 3: Experimental System Descriptions. [development and testing of a solar thermal power plant

    NASA Technical Reports Server (NTRS)

    Holl, R. J.

    1979-01-01

    The design and development of a modular solar thermal power system for application in the 1 to 10 MWe range is described. The system consists of five subsystems: the collector, power conversion, energy transport, energy storage, and the plant control subsystem. The collector subsystem consists of concentrator, receiver, and tower assemblies. The energy transport subsystem uses a mixture of salts with a low melting temperature to transport thermal energy. A steam generator drives a steam Rankine cycle turbine which drives an electrical generator to produce electricity. Thermal and stress analysis tests are performed on each subsystem in order to determine the operational reliability, the minimum risk of failure, and the maintenance and repair characteristics.

  16. PASP Plus: An experiment to measure space-environment effects on photovoltaic power subsystems

    NASA Technical Reports Server (NTRS)

    Guidice, Donald A.

    1992-01-01

    The Photovoltaic Array Space Power Plus Diagnostic experiment (PASP Plus) was accepted as part of the APEX Mission payload aboard a Pegastar satellite to be orbited by a Pegasus launch vehicle in late 1992. The mission's elliptical orbit will allow us to investigate both space plasma and space radiation effects. PASP Plus will have eleven types of solar arrays and a full complement of environmental and interactions diagnostic sensors. Measurements of space-plasma interactions on the various solar arrays will be made at large negative voltages (to investigate arcing parameters) and at large positive voltages (to investigate leakage currents) by biasing the arrays to various levels up to -500 and +500 volts. The long-term deterioration in solar array performance caused by exposure to space radiation will also be investigated; radiation dosage will be measured by an electron/proton dosimeter included in the environmental sensor complement. Experimental results from PASP Plus will help establish cause-and-effect relationships and lead to improved design guidelines and test standards for new-technology solar arrays.

  17. Survey of Field Programmable Gate Array Design Guides and Experience Relevant to Nuclear Power Plant Applications

    SciTech Connect

    Bobrek, Miljko; Bouldin, Don; Holcomb, David Eugene; Killough, Stephen M; Smith, Stephen Fulton; Ward, Christina D

    2007-09-01

    From a safety perspective, it is difficult to assess the correctness of FPGA devices without extensive documentation, tools, and review procedures. NUREG/CR-6463, "Review Guidelines on Software Languages for Use in Nuclear Power Plant Safety Systems," provides guidance to the Nuclear Regulatory Commission (NRC) on auditing of programs for safety systems written in ten high-level languages. A uniform framework for the formulation and discussion of language-specific programming guidelines was employed. Comparable guidelines based on a similar framework are needed for FPGA-based systems. The first task involves evaluation of regulatory experience gained by other countries and other agencies, and those captured in existing standards, to identify regulatory approaches that can be adopted by NRC. If existing regulations do not provide a sufficient regulatory basis for adopting relevant regulatory approaches that are uncovered, ORNL will identify the gaps. Information for this report was obtained through publicly available sources such as published papers and presentations. No proprietary information is represented.

  18. Analysis of gamma-ray dosimetry experiments in the zero power MINERVE facility

    SciTech Connect

    Amharrak, H.; Di Salvo, J.; Lyoussi, A.; Roche, A.; Masson-Fauchier, M.; Bosq, J. C.; Carette, M.

    2011-07-01

    The objective of this study is to develop nuclear heating measurement methods in zero power experimental reactors. These developments contribute to the qualification of photonics calculation schemes for the assessment of gamma heating in the future Jules Horowitz Material Testing Reactor. This paper presents the analysis of thermoluminescent detector (TLD) experiments in the UO{sub 2} core of the MINERVE Research Reactor at the French Alternative Energies and Atomic Energy Commission center in Cadarache. The experimental sources of uncertainty in the gamma dose have been reduced by improving the measurement conditions and the repeatability of the calibration step for each individual TLD. The interpretation of these measurements needs to take into account the calculation of cavity correction factors related to calibration and irradiation configurations, as well as neutron correction calculations. These calculations are based on Monte Carlo simulations of neutron-gamma and gamma-electron transport coupled particles. The comparison between calculated and measured integral gamma-ray absorbed doses in the aluminum material surrounding the TLD shows that calculations slightly overestimate the measurement, with a calculated versus experimental ratio equal to 1.04 {+-} 5.7 % (k=2). (authors)

  19. Phenylnaphthalene as a Heat Transfer Fluid for Concentrating Solar Power: High-Temperature Static Experiments

    SciTech Connect

    Bell, Jason R; Joseph III, Robert Anthony; McFarlane, Joanna; Qualls, A L

    2012-05-01

    Concentrating solar power (CSP) may be an alternative to generating electricity from fossil fuels; however, greater thermodynamic efficiency is needed to improve the economics of CSP operation. One way of achieving improved efficiency is to operate the CSP loop at higher temperatures than the current maximum of about 400 C. ORNL has been investigating a synthetic polyaromatic oil for use in a trough type CSP collector, to temperatures up to 500 C. The oil was chosen because of its thermal stability and calculated low vapor and critical pressures. The oil has been synthesized using a Suzuki coupling mechanism and has been tested in static heating experiments. Analysis has been conducted on the oil after heating and suggests that there may be some isomerization taking place at 450 C, but the fluid appears to remain stable above that temperature. Tests were conducted over one week and further tests are planned to investigate stabilities after heating for months and in flow configurations. Thermochemical data and thermophysical predictions indicate that substituted polyaromatic hydrocarbons may be useful for applications that run at higher temperatures than possible with commercial fluids such as Therminol-VP1.

  20. A Compact, TIM-Based, Pulsed-Power System for Magnetized Target Experiments on OMEGA

    NASA Astrophysics Data System (ADS)

    Gotchev, O. V.; Barbero, M. D.; Jang, N. W.; Knauer, J. P.; Betti, R.

    2006-10-01

    By magnetizing the target and then compressing the magnetic flux to levels sufficient to inhibit thermal transport in the hot spot, one can trigger ignition in massive cryogenic shells imploded with low velocity. The reduction in thermal-conduction losses leads to increased hot-spot temperatures at lower implosion velocities, thus relaxing the energy requirements for ignition. This work describes a compact, pulsed-power system for the generation of a macroscopic seed magnetic field and its integration into such flux-compression experiments on OMEGA. Magnetohydrodynamic simulations predict compression of a 10-T seed field to multimegagauss values. A fast (100-ns) current pulse (up to 60 kA), driven by a TIM-based energy-delivery system, is discharged into a low-mass, double coil that surrounds the laser target. A working prototype has generated a >11-T seed field utilizing a <100-J capacitor bank, laser-triggered spark gap, and a low-impedance (<1-φ) stripline. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC52-92SF19460. N. W. Jang et al., ``Theory and Simulation of Laser-Driven Magnetic Field Compression,'' this conference.

  1. Powering up with indirect reciprocity in a large-scale field experiment.

    PubMed

    Yoeli, Erez; Hoffman, Moshe; Rand, David G; Nowak, Martin A

    2013-06-18

    A defining aspect of human cooperation is the use of sophisticated indirect reciprocity. We observe others, talk about others, and act accordingly. We help those who help others, and we cooperate expecting that others will cooperate in return. Indirect reciprocity is based on reputation, which spreads by communication. A crucial aspect of indirect reciprocity is observability: reputation effects can support cooperation as long as peoples' actions can be observed by others. In evolutionary models of indirect reciprocity, natural selection favors cooperation when observability is sufficiently high. Complimenting this theoretical work are experiments where observability promotes cooperation among small groups playing games in the laboratory. Until now, however, there has been little evidence of observability's power to promote large-scale cooperation in real world settings. Here we provide such evidence using a field study involving 2413 subjects. We collaborated with a utility company to study participation in a program designed to prevent blackouts. We show that observability triples participation in this public goods game. The effect is over four times larger than offering a $25 monetary incentive, the company's previous policy. Furthermore, as predicted by indirect reciprocity, we provide evidence that reputational concerns are driving our observability effect. In sum, we show how indirect reciprocity can be harnessed to increase cooperation in a relevant, real-world public goods game.

  2. Theoretical Optics: An Introduction

    NASA Astrophysics Data System (ADS)

    Römer, Hartmann

    2005-02-01

    Starting from basic electrodynamics, this volume provides a solid, yet concise introduction to theoretical optics, containing topics such as nonlinear optics, light-matter interaction, and modern topics in quantum optics, including entanglement, cryptography, and quantum computation. The author, with many years of experience in teaching and research, goes way beyond the scope of traditional lectures, enabling readers to keep up with the current state of knowledge. Both content and presentation make it essential reading for graduate and phD students as well as a valuable reference for researchers.

  3. Health effects model for nuclear power plant accident consequence analysis. Part I. Introduction, integration, and summary. Part II. Scientific basis for health effects models

    SciTech Connect

    Evans, J.S.; Moeller, D.W.; Cooper, D.W.

    1985-07-01

    Analysis of the radiological health effects of nuclear power plant accidents requires models for predicting early health effects, cancers and benign thyroid nodules, and genetic effects. Since the publication of the Reactor Safety Study, additional information on radiological health effects has become available. This report summarizes the efforts of a program designed to provide revised health effects models for nuclear power plant accident consequence modeling. The new models for early effects address four causes of mortality and nine categories of morbidity. The models for early effects are based upon two parameter Weibull functions. They permit evaluation of the influence of dose protraction and address the issue of variation in radiosensitivity among the population. The piecewise-linear dose-response models used in the Reactor Safety Study to predict cancers and thyroid nodules have been replaced by linear and linear-quadratic models. The new models reflect the most recently reported results of the follow-up of the survivors of the bombings of Hiroshima and Nagasaki and permit analysis of both morbidity and mortality. The new models for genetic effects allow prediction of genetic risks in each of the first five generations after an accident and include information on the relative severity of various classes of genetic effects. The uncertainty in modeloling radiological health risks is addressed by providing central, upper, and lower estimates of risks. An approach is outlined for summarizing the health consequences of nuclear power plant accidents. 298 refs., 9 figs., 49 tabs.

  4. Battery-powered pulsed high density inductively coupled plasma source for pre-ionization in laboratory astrophysics experiments

    NASA Astrophysics Data System (ADS)

    Chaplin, Vernon H.; Bellan, Paul M.

    2015-07-01

    An electrically floating radiofrequency (RF) pre-ionization plasma source has been developed to enable neutral gas breakdown at lower pressures and to access new experimental regimes in the Caltech laboratory astrophysics experiments. The source uses a customized 13.56 MHz class D RF power amplifier that is powered by AA batteries, allowing it to safely float at 3-6 kV with the electrodes of the high voltage pulsed power experiments. The amplifier, which is capable of 3 kW output power in pulsed (<1 ms) operation, couples electrical energy to the plasma through an antenna external to the 1.1 cm radius discharge tube. By comparing the predictions of a global equilibrium discharge model with the measured scalings of plasma density with RF power input and axial magnetic field strength, we demonstrate that inductive coupling (rather than capacitive coupling or wave damping) is the dominant energy transfer mechanism. Peak ion densities exceeding 5 × 1019 m-3 in argon gas at 30 mTorr have been achieved with and without a background field. Installation of the pre-ionization source on a magnetohydrodynamically driven jet experiment reduced the breakdown time and jitter and allowed for the creation of hotter, faster argon plasma jets than was previously possible.

  5. Battery-powered pulsed high density inductively coupled plasma source for pre-ionization in laboratory astrophysics experiments.

    PubMed

    Chaplin, Vernon H; Bellan, Paul M

    2015-07-01

    An electrically floating radiofrequency (RF) pre-ionization plasma source has been developed to enable neutral gas breakdown at lower pressures and to access new experimental regimes in the Caltech laboratory astrophysics experiments. The source uses a customized 13.56 MHz class D RF power amplifier that is powered by AA batteries, allowing it to safely float at 3-6 kV with the electrodes of the high voltage pulsed power experiments. The amplifier, which is capable of 3 kW output power in pulsed (<1 ms) operation, couples electrical energy to the plasma through an antenna external to the 1.1 cm radius discharge tube. By comparing the predictions of a global equilibrium discharge model with the measured scalings of plasma density with RF power input and axial magnetic field strength, we demonstrate that inductive coupling (rather than capacitive coupling or wave damping) is the dominant energy transfer mechanism. Peak ion densities exceeding 5 × 10(19) m(-3) in argon gas at 30 mTorr have been achieved with and without a background field. Installation of the pre-ionization source on a magnetohydrodynamically driven jet experiment reduced the breakdown time and jitter and allowed for the creation of hotter, faster argon plasma jets than was previously possible.

  6. The origin of tablet boudinage: Results from experiments using power-law rock analogs

    NASA Astrophysics Data System (ADS)

    Zulauf, J.; Zulauf, G.; Kraus, R.; Gutiérrez-Alonso, G.; Zanella, F.

    2011-10-01

    We used power-law viscous plasticine ( n = ca. 7) as a rock analog to simulate boudinage of rocks undergoing dislocation creep and brittle fracture. A competent plasticine layer, oriented perpendicular to the main shortening direction, Z, underwent bulk pure flattening inside a less competent plasticine matrix. Computer tomographic analyses of the deformed samples revealed that boudinage results from an initial phase of viscous necking followed by tensile failure along the previously formed necks. The resulting boudins display a polygonal shape in plan-view and are referred to as 'tablet boudins' (in contrast to the square to rectangular shaped chocolate-tablet boudins). The ratio between the plan-view long and short axis, R, ranges from 1.2 to 2.6. The polygonal, non-isometric shape of the tablet boudins can be explained by the strong interaction of concentric and radial tensile fractures. With increasing layer thickness, Hi, the mean diameter of the boudin tablets, Wa, increases, while the number of boudins, N, decreases. Progressive finite strain results in a higher number of the boudins and a smaller mean diameter. The thickness of the boudins, Hf, is almost the same as the initial layer thickness, Hi, while the aspect ratio ( Wd = Wa / Hf) decreases with layer thickness and finite strain. The mean Wd values obtained from all experiments span from ca. 4 to ca. 11. Tablet boudins, described in the present paper, have yet not been described from natural outcrops. The reasons might be that pure flattening strain is not common in nature, and the characterization and evaluation of tablet boudins requires geometrical analysis in three dimensions, which is a difficult task when such structures occur in nature.

  7. Design and experiment on a multi-functioned and programmable piezoelectric ceramic power supply with high precision for speckle interferometry

    NASA Astrophysics Data System (ADS)

    Wang, Biao; Ye, Yan; Wang, Yong-hong; Yang, En-zhen

    2016-01-01

    Speckle interferometry is a method of measuring structure's tiny deformations which requires accurate phase information of interference fringes. The phase information is acquired by micro-displacement produced by piezoelectric ceramic (PZT). In order to drive the PZT micro-displacement actuator, a multi-functioned and programmable PZT power supply with high precision is designed. Calibration experiment has been done to the PZT micro-actuator in speckle interferometry. Some experiments were also done to test its relevant characteristics. The experiment results show that it has high linearity, repeatability, stability, low ripple and can meet the requirement of the reliability and displacement accuracy in speckle interferometry.

  8. Gender power control, sexual experiences, safer sex practices, and potential HIV risk behaviors among young Asian-American women.

    PubMed

    Hahm, Hyeouk Chris; Lee, Jieha; Rough, Kathryn; Strathdee, Steffanie A

    2012-01-01

    We examined the prevalence of three domains of sexual behaviors among young Asian-American women: sexual experiences, safer sex practices, and potential HIV risk behaviors. We also investigated the impact of gender power control on these domains. Among sexually experienced women, 51% reported using condoms during their most recent sex act, 63% reported inconsistent condom use, and 18% reported ever having forced sex. Multiple logistic regression analyses revealed that women's perceived lower relationship power control was not associated with vaginal sex or safer sex practices, but it was powerfully associated with forced sex and all three potential HIV risk behaviors. This study demonstrates that control within young Asian-American women's intimate relationships exerts different associations depending on the type of sexual behavior. The application of the Theory of Gender and Power should be employed with prudence when designing HIV interventions for this population.

  9. Gender Power Control, Sexual Experiences, Safer Sex Practices, and Potential HIV Risk Behaviors Among Young Asian-American Women

    PubMed Central

    Lee, Jieha; Rough, Kathryn; Strathdee, Steffanie A.

    2012-01-01

    We examined the prevalence of three domains of sexual behaviors among young Asian-American women: sexual experiences, safer sex practices, and potential HIV risk behaviors. We also investigated the impact of gender power control on these domains. Among sexually experienced women, 51% reported using condoms during their most recent sex act, 63% reported inconsistent condom use, and 18% reported ever having forced sex. Multiple logistic regression analyses revealed that women’s perceived lower relationship power control was not associated with vaginal sex or safer sex practices, but it was powerfully associated with forced sex and all three potential HIV risk behaviors. This study demonstrates that control within young Asian-American women’s intimate relationships exerts different associations depending on the type of sexual behavior. The application of the Theory of Gender and Power should be employed with prudence when designing HIV interventions for this population. PMID:21259042

  10. Early Experiences with Node-Level Power Capping on the Cray XC40 Platform

    SciTech Connect

    Pedretti, Kevin; Olivier, Stephen Lecler; Ferreira, Kurt Brian; Shipman, Galen; Shu, Wei

    2015-10-01

    Power consumption of extreme-scale supercomputers has become a key performance bottleneck. Yet current practices do not leverage power management opportunities, instead running at ''maximum power''. This is not sustainable. Future systems will need to manage power as a critical resource, directing where it has greatest benefit. Power capping is one mechanism for managing power budgets, however its behavior is not well understood. This paper presents an empirical evaluation of several key HPC workloads running under a power cap on a Cray XC40 system, and provides a comparison of this technique with p-state control, demonstrating the performance differences of each. These results show: 1. Maximum performance requires ensuring the cap is not reached; 2. Performance slowdown under a cap can be attributed to cascading delays which result in unsynchronized performance variability across nodes; and, 3. Due to lag in reaction time, considerable time is spent operating above the set cap. This work provides a timely and much needed comparison of HPC application performance under a power cap and attempts to enable users and system administrators to understand how to best optimize application performance on power-constrained HPC systems.

  11. Introduction to Horticulture. Teacher Edition. Horticulture Series.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This publication is designed to provide a core of instruction for the many different fields in agricultural/horticultural education. This course contains 21 instructional units that cover the following topics: introduction to horticulture; beginning a career in horticulture; hand and power tools; introduction to safety; growing facilities;…

  12. 18 CFR 801.0 - Introduction.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Introduction. 801.0... POLICIES § 801.0 Introduction. (a) The Governors of the States of New York, Pennsylvania, and Maryland, and... basinwide planning programs and projects, and to take independent action as it determines essential...

  13. System-level considerations for the front-end readout ASIC in the CBM experiment from the power supply perspective

    NASA Astrophysics Data System (ADS)

    Kasinski, K.; Koczon, P.; Ayet, S.; Löchner, S.; Schmidt, C. J.

    2017-03-01

    New fixed target experiments using high intensity beams with energy up to 10 AGeV from the SIS100 synchrotron presently being constructed at FAIR/GSI are under preparation. Most of the readout electronics and power supplies are expected to be exposed to a very high flux of nuclear reaction products and have to be radiation tolerant up to 3 MRad (TID) and sustain up to 1014/cm2 of 1 MeV neutron equivalent in their life time. Moreover, the mostly minimum ionising particles under investigation leave very little signal in the sensors. Therefore very low noise level amplitude measurements are required by the front-end electronics for effective tracking. Sensor and interconnecting micro-cable capacitance and series resistance in conjunction with intrinsic noise of the charge sensitive amplifier are dominant noise sources in the system. However, the single-ended architecture of the amplifiers employed for the charge processing channels implies a potential problem with noise contributions from power supply sources. Strict system-level constraints leave very little freedom in selecting a power supply structure optimal with respect to: power efficiency, cooling capabilities and power density on modules, but also noise injection to the front-end via the power supply lines. Design of the power supply and distribution system of the Silicon Tracking System in the CBM experiment together with details on the front-end ASICs (STS -XYTER2) and measurement results of power supply and conditioning electronics (selected DC/DC converter and LDO regulators) are presented.

  14. To Slideware or Not to Slideware: Students' Experiences with PowerPoint vs. Lecture

    ERIC Educational Resources Information Center

    Amare, Nicole

    2006-01-01

    This study analyzes the performance and attitudes of technical writing students in PowerPoint-enhanced and in non-PowerPoint lectures. Four classes of upper-level undergraduates (n = 84) at a mid-sized, Southern university taking a one-semester technical writing course were surveyed at the beginning and end of the course about their perceptions of…

  15. Student Attitudes toward Nuclear Power Plants: A Classroom Experiment in the Field of Environmental Psychology.

    ERIC Educational Resources Information Center

    Spada, Hans; And Others

    1977-01-01

    As part of a senior high school physics unit on nuclear power, changes in student attitudes toward nuclear power plants and problems of energy supply were analyzed. Tests included a situational test, semantic differentials, knowledge or achievement, and a final questionnaire. The results are discussed. (CTM)

  16. "Power, Regulation and Physically Active Identities": The Experiences of Rural and Regional Living Adolescent Girls

    ERIC Educational Resources Information Center

    Casey, M.; Mooney, A.; Smyth, J.; Payne, W.

    2016-01-01

    Drawing on interpretations of Foucault's techniques of power, we explored the discourses and power relations operative between groups of girls that appeared to influence their participation in Physical Education (PE) and outside of school in sport and physical activity (PA) in rural and regional communities. Interviews and focus groups were…

  17. Nano-mineralogical investigation of coal and fly ashes from coal-based captive power plant (India): an introduction of occupational health hazards.

    PubMed

    Oliveira, Marcos L S; Marostega, Fabiane; Taffarel, Silvio R; Saikia, Binoy K; Waanders, Frans B; DaBoit, Kátia; Baruah, Bimala P; Silva, Luis F O

    2014-01-15

    Coal derived nano-particles has been received much concern recently around the world for their adverse effects on human health and the environment during their utilization. In this investigation the mineral matter present in some industrially important Indian coals and their ash samples are addressed. Coal and fly ash samples from the coal-based captive power plant in Meghalaya (India) were collected for different characterization and nano-mineralogy studies. An integrated application of advanced characterization techniques such as X-ray diffraction (XRD), High Resolution-Transmission Electron microscopy (HR-TEM)/(Energy Dispersive Spectroscopy) EDS/(selected-area diffraction pattern) SAED, Field Emission-Scanning Electron Microscopy (FE-SEM)/EDS analysis, and Mössbauer spectroscopy were used to know their extent of risks to the human health when present in coal and fly ash. The study has revealed that the coals contain mainly clay minerals, whilst glass fragments, spinel, quartz, and other minerals in lesser quantities were found to be present in the coal fly ash. Fly ash carbons were present as chars. Indian coal fly ash also found to contain nanominerals and ultrafine particles. The coal-fired power plants are observed to be the largest anthropogenic source of Hg emitted to the atmosphere and expected to increase its production in near future years. The Multi Walled Carbon Nano-Tubes (MWCNTs) are detected in our fly ashes, which contains residual carbonaceous matter responsible for the Hg capture/encapsulation. This detailed investigation on the inter-relationship between the minerals present in the samples and their ash components will also be useful for fulfilling the clean coal technology principles.

  18. Numerical Predictions of Wind Turbine Power and Aerodynamic Loads for the NREL Phase II and IV Combined Experiment Rotor

    NASA Technical Reports Server (NTRS)

    Duque, Earl P. N.; Johnson, Wayne; vanDam, C. P.; Chao, David D.; Cortes, Regina; Yee, Karen

    1999-01-01

    Accurate, reliable and robust numerical predictions of wind turbine rotor power remain a challenge to the wind energy industry. The literature reports various methods that compare predictions to experiments. The methods vary from Blade Element Momentum Theory (BEM), Vortex Lattice (VL), to variants of Reynolds-averaged Navier-Stokes (RaNS). The BEM and VL methods consistently show discrepancies in predicting rotor power at higher wind speeds mainly due to inadequacies with inboard stall and stall delay models. The RaNS methodologies show promise in predicting blade stall. However, inaccurate rotor vortex wake convection, boundary layer turbulence modeling and grid resolution has limited their accuracy. In addition, the inherently unsteady stalled flow conditions become computationally expensive for even the best endowed research labs. Although numerical power predictions have been compared to experiment. The availability of good wind turbine data sufficient for code validation experimental data that has been extracted from the IEA Annex XIV download site for the NREL Combined Experiment phase II and phase IV rotor. In addition, the comparisons will show data that has been further reduced into steady wind and zero yaw conditions suitable for comparisons to "steady wind" rotor power predictions. In summary, the paper will present and discuss the capabilities and limitations of the three numerical methods and make available a database of experimental data suitable to help other numerical methods practitioners validate their own work.

  19. Stability Analysis for a Large-scale Space Power Network, International Space Station and Japanese Experiment Module

    NASA Astrophysics Data System (ADS)

    Komatsu, Masaaki; Arai, Satoaki

    The International Space Station (ISS), which is scheduled to start the operation fully in early 2000’s, is being developed and assembled on orbit since 1998 with international cooperation of the USA, Russia, Europe, Canada, and Japan. Japan participates in this ISS program and will provide the Japanese Experiment Module (JEM, named “Kibo") which will be attached to the ISS core. Japan Aerospace Exploration Agency (JAXA), which is responsible for the JEM system development and integration, has been developed JEM Electric Power System (JEM EPS) as part of the Space Station Electric Power System (EPS). The International Space Station Electric Power System is the world’s largest orbiting direct-current (DC) power system. The ISS electric power is generated by solar arrays, and distributed to the each module in 120 Vdc bus voltage rating. When designing a large-scale Space Power System using direct current (DC), special attention must be placed on the electrical stability and control of the system and individual load on the system. For a large-scale Space Power System, it is not feasible to design the entire system as a whole. Instead, the system can be defined in term of numerous small blocks, and each block then designed individually. The individual blocks are then integrated to form a complete system. The International Space Station (ISS) is one of good example for these issue and concerns as a large-scale Space Power System. This paper describes the approach of the stability analysis for a large-scale space power network.

  20. Operation of Direct Drive Systems: Experiments in Peak Power Tracking and Multi-Thruster Control

    NASA Technical Reports Server (NTRS)

    Snyder, John Steven; Brophy, John R.

    2013-01-01

    Direct-drive power and propulsion systems have the potential to significantly reduce the mass of high-power solar electric propulsion spacecraft, among other advantages. Recent experimental direct-drive work has significantly mitigated or retired the technical risks associated with single-thruster operation, so attention is now moving toward systems-level areas of interest. One of those areas is the use of a Hall thruster system as a peak power tracker to fully use the available power from a solar array. A simple and elegant control based on the incremental conductance method, enhanced by combining it with the unique properties of Hall thruster systems, is derived here and it is shown to track peak solar array power very well. Another area of interest is multi-thruster operation and control. Dualthruster operation was investigated in a parallel electrical configuration, with both thrusters operating from discharge power provided by a single solar array. Startup and shutdown sequences are discussed, and it is shown that multi-thruster operation and control is as simple as for a single thruster. Some system architectures require operation of multiple cathodes while they are electrically connected together. Four different methods to control the discharge current emitted by individual cathodes in this configuration are investigated, with cathode flow rate control appearing to be advantageous. Dual-parallel thruster operation with equal cathode current sharing at total powers up to 10 kW is presented.

  1. Assessment of RELAP5/MOD2 against a natural circulation experiment in Nuclear Power Plant Borssele. International Agreement Report

    SciTech Connect

    Winters, L.

    1993-07-01

    As part of the ICAP (International Code Assessment and Applications Program) agreement between ECN (Netherlands Energy Research Foundation) and USNRC, ECN has performed a number of assessment calculations for the thermohydraulic system analysis code RELAP5/MOD2/36.05. This document describes the assessment of this computer program versus a natural circulation experiment as conducted at the Borssele Nuclear Power Plant. The results of this comparison show that the code RELAP5/MOD2 predicts well the natural circulation behaviour of Nuclear Power Plant Borssele.

  2. Power scaling of Tm3+ doped ZBLAN blue upconversion fiber lasers: modeling and experiments

    NASA Astrophysics Data System (ADS)

    Qin, G.; Huang, S.; Feng, Y.; Shirakawa, A.; Musha, M.; Ueda, K.-I.

    2006-01-01

    Power scaling of Tm3+ doped ZBLAN blue upconversion fiber lasers was investigated by a simple model. Based on our experimental results on blue fiber lasers, we discuss the effects of photodegradation and photocuring, fiber length, the reflectivity of the coupler mirror and fiber core diameter on further enhancement of blue fiber laser, respectively. The optimal parameters (including fiber length, fiber core diameter and the reflectivity of the coupler mirror) for the operation of high power (>1 W) blue fiber laser were presented through simple numerical simulations, which are valuable for the future design of high power blue upconversion fiber laser.

  3. Introduction to the Kinetics of Homogeneous Reactions. Hydrolysis of 2,4-Dinitrophenyl Acetate Catalyzed by Imidazole: A Simple Laboratory Experiment.

    ERIC Educational Resources Information Center

    Levashov, Andrey V.; Ryabov, Alexander D.

    1986-01-01

    Background information, procedures used, typical results obtained, and calculations are provided for a short (4-6 hours) kinetic experiment which includes different methods both in performance and in analysis of the results. The experiment can be modified and extended depending on the level of students and the available laboratory time. (JN)

  4. An experience of the introduction of a blood bank automation system (Ortho AutoVue Innova) in a regional acute hospital.

    PubMed

    Cheng, Yuk Wah; Wilkinson, Jenny M

    2015-08-01

    This paper reports on an evaluation of the introduction of a blood bank automation system (Ortho AutoVue(®) Innova) in a hospital blood bank by considering the performance and workflow as compared with manual methods. The turnaround time was found to be 45% faster than the manual method. The concordance rate was found to be 100% for both ABO/Rh(D) typing and antibody screening in both of the systems and there was no significant difference in detection sensitivity for clinically significant antibodies. The Ortho AutoVue(®) Innova automated blood banking system streamlined the routine pre-transfusion testing in hospital blood bank with high throughput, equivalent sensitivity and reliability as compared with conventional manual method.

  5. Theory Support of Pulsed Power Experiments. Volume 3. E-Beam Chamber Design.

    DTIC Science & Technology

    2014-09-26

    unlimited. 4 -ERFOCR1 NG DRGANiZA ON REPORT 𔃾LMBER(S) S MONITOPING DRGAN’ZA"ON REPGR’ . V8E:S) SSS -R-84-6709-III DNA-TR-84-288-V3 -a ’ 3C’?E P ERFORMi.G...34Multigun Test Tank Simulation With Magnetic Field," SSS -R-81-5028, June 1981 - 5 LIST OF ILLUSTRATIONS Figure Page A-I Geometry of a one meter electrically...special ir)t C ED. APPENDIX MULTIGUN TEST TANK SIMULATION WITH MAGNETIC FIELD (TOPICAL REPORT SSS -R-81-5028, JUNE 1981) A-1 INTRODUCTION The simulation of

  6. Experience during the commissioning of the Swiss Leibstadt nuclear power plant

    SciTech Connect

    Diener, W.

    1988-01-01

    Leibstadt the first 1000 MW class BWR plant in Switzerland was subject to a comprehensive range of tests. The unit included some newly designed equipment on which special tests were made. The progress of the commissioning was subjected to safety authority permits, issued stepwise upon successful conclusion of previous checks. The zone within which the reactor could operate without instabilities was established, and the proper functioning of safety systems consequent upon the introduction of fault conditions was demonstrated. The test results confirmed the values expected and the plant's efficiency and output figures were better than guaranteed. The fulfillment of the commissioning program has, in part, contributed to Leibstadt's first class early commercial performance.

  7. Constraining Polarized Foregrounds for EoR Experiments I: 2D Power Spectra from the PAPER-32 Imaging Array

    NASA Astrophysics Data System (ADS)

    Kohn, S. A.; Aguirre, J. E.; Nunhokee, C. D.; Bernardi, G.; Pober, J. C.; Ali, Z. S.; Bradley, R. F.; Carilli, C. L.; DeBoer, D. R.; Gugliucci, N. E.; Jacobs, D. C.; Klima, P.; MacMahon, D. H. E.; Manley, J. R.; Moore, D. F.; Parsons, A. R.; Stefan, I. I.; Walbrugh, W. P.

    2016-06-01

    Current generation low-frequency interferometers constructed with the objective of detecting the high-redshift 21 cm background aim to generate power spectra of the brightness temperature contrast of neutral hydrogen in primordial intergalactic medium. Two-dimensional (2D) power spectra (power in Fourier modes parallel and perpendicular to the line of sight) that formed from interferometric visibilities have been shown to delineate a boundary between spectrally smooth foregrounds (known as the wedge) and spectrally structured 21 cm background emission (the EoR window). However, polarized foregrounds are known to possess spectral structure due to Faraday rotation, which can leak into the EoR window. In this work we create and analyze 2D power spectra from the PAPER-32 imaging array in Stokes I, Q, U, and V. These allow us to observe and diagnose systematic effects in our calibration at high signal-to-noise within the Fourier space most relevant to EoR experiments. We observe well-defined windows in the Stokes visibilities, with Stokes Q, U, and V power spectra sharing a similar wedge shape to that seen in Stokes I. With modest polarization calibration, we see no evidence that polarization calibration errors move power outside the wedge in any Stokes visibility to the noise levels attained. Deeper integrations will be required to confirm that this behavior persists to the depth required for EoR detection.

  8. Perihelion Power Constraint and Wheel-Off-Loading Impact on BepiColombo's Relativity Experiment

    NASA Astrophysics Data System (ADS)

    Schuster, Anja Katharina; Jehn, Rüdiger

    2016-04-01

    In this paper the consequences of the Perihelion Power Constraint (PPC) are presented along with the impact of the Momentum Wheel-Off-loading (WOL) events on the estimation precision of the post-Newtonian parameters (PNP). This analysis will provide an estimate of the outcome of the relativity experiment in the framework of the joint mission between ESA and JAXA, named BepiColombo. The Mercury Planetary Orbiter (MPO), one of the two scientific elements of the composite spacecraft, aims to verify Einstein's theory of General Relativity plus alternative theories of gravitation to an unprecedented degree of accuracy [1]. The PPC describes the switch-off of the Ka-transponder when Mercury is ±35° around perihelion [2]. This causes a decrease in the quality of radiometric measurements. The implemented PPC distinguishes between different geometries such as inferior and superior constellations. Moreover, it differentiates between the case in which Mercury is close to superior solar conjunction (SSC) while being around perihelion and the one of only being in SSC. Our treatment has the essential effect that the standard deviation of range and doppler measurements is increased in the perihelion region by up to 1.83 ṡ 10-5 km/s (doppler noise). There is no clear trend to be seen in the resulting PNP uncertainties. For instance, the value of the estimation bias of the PNP γ of 8.232 ṡ 10-6 is almost by factor two larger than in the case when the PPC is not activated (4.243 ṡ 10-6). But applying the PPC to the back-up trajectory this trend is not confirmed, since the reverse is true for the γ uncertainty σ(γPPC) < σ(γref). However, the order of magnitude is comparable to the results obtained by Schettino [3], that is 1.04 ṡ 10-6. The influence of the WOL frequency of about 12 hours compared to about 24 hours is investigated. Wheel off-loadings are implemented in the software by increasing the diagonal values of the covariance matrix that correspond to the

  9. Startup experience with the MFTF-B ECRH 100 kV dc power supply

    SciTech Connect

    Bishop, S.R.; Goodman, R.A.; Wilson, J.H.

    1983-11-30

    One of the 24 Accel dc Power Supplies (ADCPS) originally intended for the Mirror Fusion Test Facility (MFTF-B) Neutral Beam Power Supply (NBPS) System has been converted to provide negative polarity output at 90 kV with a load current of 64 A dc. The load duty cycle is a pulse of 30-seconds duration with a pulse repetition period of five minutes. A new control system has been built which will serve as a prototype for the MFTF-B ADCPS controls, and a test setup was built which will be used to test the ADCPS. The Electron Cyclotron Resonance Heating (ECRH) dc Power Supply (DCPS) has been tested under both no-load and dummy-load conditions, under remote control, without notable problems. Test results indicate that the power supply should be reliable and safe to operate, and will meet the load duty requirements.

  10. Alkali deposits found in biomass boilers: The behavior of inorganic material in biomass-fired power boilers -- Field and laboratory experiences. Volume 2

    SciTech Connect

    Baxter, L.L.; Miles, T.R.; Miles, T.R. Jr.; Jenkins, B.M.; Dayton, D.C.; Milne, T.A.; Bryers, R.W.; Oden, L.L.

    1996-03-01

    This report documents the major findings of the Alkali Deposits Investigation, a collaborative effort to understand the causes of unmanageable ash deposits in biomass-fired electric power boilers. Volume 1 of this report provide an overview of the project, with selected highlights. This volume provides more detail and discussion of the data and implications. This document includes six sections. The first, the introduction, provides the motivation, context, and focus for the investigation. The remaining sections discuss fuel properties, bench-scale combustion tests, a framework for considering ash deposition processes, pilot-scale tests of biomass fuels, and field tests in commercially operating biomass power generation stations. Detailed chemical analyses of eleven biomass fuels representing a broad cross-section of commercially available fuels reveal their properties that relate to ash deposition tendencies. The fuels fall into three broad categories: (1) straws and grasses (herbaceous materials); (2) pits, shells, hulls and other agricultural byproducts of a generally ligneous nature; and (3) woods and waste fuels of commercial interest. This report presents a systematic and reasonably detailed analysis of fuel property, operating condition, and boiler design issues that dictate ash deposit formation and property development. The span of investigations from bench-top experiments to commercial operation and observations including both practical illustrations and theoretical background provide a self-consistent and reasonably robust basis to understand the qualitative nature of ash deposit formation in biomass boilers. While there remain many quantitative details to be pursued, this project encapsulates essentially all of the conceptual aspects of the issue. It provides a basis for understanding and potentially resolving the technical and environmental issues associated with ash deposition during biomass combustion. 81 refs., 124 figs., 76 tabs.

  11. Navigation Flight Test Results from the Low Power Transceiver Communications and Navigation Demonstration on Shuttle (CANDOS) Experiment

    NASA Technical Reports Server (NTRS)

    Haas, Lin; Massey, Christopher; Baraban, Dmitri

    2003-01-01

    This paper presents the Global Positioning System (GPS) navigation results from the Communications and Navigation Demonstration on Shuttle (CANDOS) experiment flown on STS-107. This experiment was the initial flight of a Low Power Transceiver (LPT) that featured high capacity space- space and space-ground communications and GPS- based navigation capabilities. The LPT also hosted the GPS Enhanced Orbit Determination Experiment (GEODE) orbit determination software. All CANDOS test data were recovered during the mission using LPT communications links via the Tracking and Data Relay Satellite System (TDRSS). An overview of the LPT s navigation software and the GPS experiment timeline is presented, along with comparisons of test results to the NASA Johnson Space Center (JSC) real-time ground navigation vectors and Best Estimate of Trajectory (BET).

  12. High energy density laboratory astrophysics experiments with supersonic magnetized plasmas on the MAGPIE pulsed-power facility

    NASA Astrophysics Data System (ADS)

    Lebedev, S. V.; Burdiak, G. C.; Chittenden, J. P.; Clayson, T.; Garcia, C.; Hare, J. D.; Suttle, L. G.; Suzuki-Vidal, F.; Frank, A.; Ciardi, A.; Loureiro, N. F.

    2016-10-01

    The use of plasma flows generated by pulsed-power facilities provides a natural platform for designing magnetized HEDLA experiments. The plasma in this case is created and accelerated by the JxB force of the driving, Mega-Ampere level currents, forming plasma flows with embedded, frozen-in magnetic fields. Here we present several recent experiments performed on the MAGPIE pulsed-power facility focusing on studies of the structure of magnetized bow shocks, the dynamics of counter-streaming plasma jets, the formation of shocks in inverse liners, and magnetic reconnection in colliding plasmas. The relatively large spatial and temporal scales characterizing these experimental platforms, together with excellent diagnostic access, allow detailed characterization of the key plasma parameters and quantitative comparison of the experimental results with numerical simulations. Work supported by DOE cooperative Agreements No. DE-F03-02NA00057 and No. DE-SC-0001063.

  13. Closed cycle MHD power generation experiments using a helium-cesium working fluid in the NASA Lewis Facility

    NASA Technical Reports Server (NTRS)

    Sovie, R. J.

    1976-01-01

    The MHD channel in the NASA Lewis Research Center was redesigned and used in closed cycle power generation experiments with a helium-cesium working fluid. The cross sectional dimensions of the channel were reduced to 5 by 16.5 cm to allow operation over a variety of conditions. Experiments have been run at temperatures of 1900-2100 K and Mach numbers from 0.3 to 0.55 in argon and 0.2 in helium. Improvements in Hall voltage isolation and seed vaporization techniques have resulted in significant improvements in performance. Typical values obtained with helium are Faraday open circuit voltage 141 V (92% of uBh) at a magnetic field strength of 1.7 T, power outputs of 2.2 kw for tests with 28 electrodes and 2.1 kw for tests with 17 electrodes. Power densities of 0.6 MW/cu m and Hall fields of about 1100 V/m were obtained in the tests with 17 electrodes, representing a factor of 18 improvement over previously reported results. The V-I curves and current distribution data indicate that while near ideal equilibrium performance is obtained under some conditions, no nonequilibrium power has been generated to date.

  14. Design and experiment of a cross-shaped mode converter for high-power microwave applications

    SciTech Connect

    Peng, Shengren Yuan, Chengwei; Zhong, Huihuang; Fan, Yuwei

    2013-12-15

    A compact mode converter, which is capable of converting a TM{sub 01} mode into a circularly polarized TE{sub 11} mode, was developed and experimentally studied with high-power microwaves. The converter, consisting of two turnstile junctions, is very short along the wave propagation direction, and therefore is suitable for designing compact and axially aligned high-power microwave radiation systems. In this paper, the principle of a converter working at 1.75 GHz is demonstrated, as well as the experimental results. The experimental and simulation results are in good agreement. At the center frequency, the conversion efficiency is more than 95%, the measured axial ratio is about 0.4 dB, and the power-handing capacity is excess of 1.9 GW.

  15. Experience with deuterium-tritium plasmas heated by high power neutral beams

    SciTech Connect

    Grisham, L.R.; Kamperschroer, J.H.; O`Connor, T.; Oldaker, M.; Stevenson, T.; Von Halle, A.

    1996-12-31

    The Tokamak Fusion Test Reactor has operated since November of 1993 with a deuterium-tritium fuel mixture for selected discharges. The majority of the tritium has been introduced as energetic neutral atoms of up to 120 keV injected by the neutral beam systems, with some of the twelve ion sources run on pure tritium and some on deuterium to optimize the fuel mixture in the core plasma. A maximum beam power of 39.6 megawatts has been injected, and deuterium-tritium fusion power production has reached 10.7 megawatts, achieving central fusion power densities comparable to or greater than those expected for the International Thermonuclear Reactor, and allowing the first studies of fusion-produced alpha particle behavior in reactor grade plasmas. Energy confinement in deuterium-tritium plasmas is better than in similar deuterium plasmas for most plasma regimes. Innovative techniques to manipulate the plasma current and pressure profiles are permitting studies of enhanced confinement regimes.

  16. Intermediate photovoltaic system application experiment operational performance report. Volume 8: Newman Power Station, El Paso, Texas

    NASA Astrophysics Data System (ADS)

    1982-02-01

    For the month of January, 1982, performance data are given for a photovoltaic power supply used by a Texas electric utility. Data presented include: daily and monthly electrical energy produced; daily and monthly solar energy incident on the array; daily and monthly array efficiency; plots of energy produced as a function of power levels, voltage, cell temperature, and hour of day; electrical energy supplied by the photovoltaic system to the load and the corresponding dollar value; photovoltaic system efficiency; capacity factor; daily photovoltaic power supplied to the load; daily system availability; hourly and monthly insolation; hourly and monthly ambient temperature; hourly and monthly average wind speed; wind direction distribution; number of freeze/thaw cycles; heating and cooling degree days; hourly cell temperature; daily data acquisition mode and recording interval plot. Also included are brief summaries of problems, operations and maintenance events.

  17. Ultrasound imparted air-recoil resonance (UIAR) method for acoustic power estimation: theory and experiment.

    PubMed

    Kaiplavil, Sreekumar; Rivens, Ian; ter Haar, Gail

    2013-07-01

    Ultrasound imparted air-recoil resonance (UIAR), a new method for acoustic power estimation, is introduced with emphasis on therapeutic high-intensity focused ultrasound (HIFU) monitoring applications. Advantages of this approach over existing practices include fast response; electrical and magnetic inertness, and hence MRI compatibility; portability; high damage threshold and immunity to vibration and interference; low cost; etc. The angle of incidence should be fixed for accurate measurement. However, the transducer-detector pair can be aligned in any direction with respect to the force of gravity. In this sense, the operation of the device is orientation independent. The acoustic response of a pneumatically coupled pair of Helmholtz resonators, with one of them acting as the sensor head, is used for the estimation of acoustic power. The principle is valid in the case of pulsed/ burst as well as continuous ultrasound exposure, the former being more sensitive and accurate. An electro-acoustic theory has been developed for describing the dynamics of pressure flow and resonance in the system considering various thermo- viscous loss mechanisms. Experimental observations are found to be in agreement with theoretical results. Assuming the window damage threshold (~10 J·mm(-2)) and accuracy of RF power estimation are the upper and lower scale-limiting factors, the performance of the device was examined for an RF power range of 5 mW to 100 W with a HIFU transducer operating at 1.70 MHz, and an average nonlinearity of ~1.5% was observed. The device is also sensitive to sub-milliwatt powers. The frequency response was analyzed at 0.85, 1.70, 2.55, and 3.40 MHz and the results are presented with respective theoretical estimates. Typical response time is in the millisecond regime. Output drift is about 3% for resonant and 5% for nonresonant modes. The principle has been optimized to demonstrate a general-purpose acoustic power meter.

  18. Power, Jobs and Bodies: The Experiences of Becoming a Gender Scholar in Doctoral Education

    ERIC Educational Resources Information Center

    Danowitz, Mary Ann

    2016-01-01

    Research suggests that doctoral students' learning and experiences are influenced by their relationships and predominant organizational norms and structures, create gender inequality and discourage or prevent alternative behaviors. However, there is very little empirical information on the nature of doctoral experiences and organizational…

  19. The Power of Work Experiences: Characteristics Critical to Developing Expertise in Strategic Thinking

    ERIC Educational Resources Information Center

    Goldman, Ellen F.

    2008-01-01

    The ability to think strategically is an increasingly important requirement for managers at all organizational levels. HRD (human resource development) professionals have attempted to help develop this ability through work experiences. However, research identifying which work experiences are most beneficial is limited. As a result, HRD efforts may…

  20. A Classroom Experiment on Exchange Rate Determination with Purchasing Power Parity

    ERIC Educational Resources Information Center

    Mitchell, David T.; Rebelein, Robert P.; Schneider, Patricia H.; Simpson, Nicole B.; Fisher, Eric

    2009-01-01

    The authors developed a classroom experiment on exchange rate determination appropriate for undergraduate courses in macroeconomics and international economics. In the experiment, students represent citizens from different countries and need to obtain currency to purchase goods. By participating in an auction to buy currency, students gain a…

  1. Revisiting the Stanford Prison Experiment: A Lesson in the Power of Situation

    ERIC Educational Resources Information Center

    Zimbardo, Philip G.

    2007-01-01

    When he conducted the Stanford prison experiment, Philip G. Zimbardo wanted to know who would win--good people or an evil situation--when they were brought into direct confrontation. The situation won; humanity lost. Out the window went the moral upbringings of the young men involved in the experiment, as well as their middle-class civility. Power…

  2. Apollo experience report: Command and service module electrical power distribution on subsystem

    NASA Technical Reports Server (NTRS)

    Munford, R. E.; Hendrix, B.

    1974-01-01

    A review of the design philosophy and development of the Apollo command and service modules electrical power distribution subsystem, a brief history of the evolution of the total system, and some of the more significant components within the system are discussed. The electrical power distribution primarily consisted of individual control units, interconnecting units, and associated protective devices. Because each unit within the system operated more or less independently of other units, the discussion of the subsystem proceeds generally in descending order of complexity; the discussion begins with the total system, progresses to the individual units of the system, and concludes with the components within the units.

  3. Intermediate photovoltaic system application experiment operational performance. Volume 6: Newman Power Station, El Paso, Texas

    NASA Astrophysics Data System (ADS)

    1982-01-01

    Performance data for the month of December 1981 for a 20 kW peak photovoltaic flat panel power system for an uninterruptable power supply load at an El Paso, Texas utility ae given. Data include monthly total and daily insolation, monthly total and daily electrical energy, and array efficiency. Also plotted are the data acquisition mode and recording intervals for each day of the month. Three site events (maintenance and system problems) are summarized, and missing data from December 25 through December 30 are explained.

  4. Language, Identity, and Power: Navajo and Pueblo Young Adults' Perspectives and Experiences with Competing Language Ideologies

    ERIC Educational Resources Information Center

    Lee, Tiffany S.

    2009-01-01

    Native American languages, contemporary youth identity, and powerful messages from mainstream society and Native communities create complex interactions that require deconstruction for the benefit of Native-language revitalization. This study showed how Native youth negotiate mixed messages such as the necessity of Indigenous languages for…

  5. Power Distance in Online Learning: Experience of Chinese Learners in U.S. Higher Education

    ERIC Educational Resources Information Center

    Zhang, Yi (Leaf)

    2013-01-01

    The purpose of this research study was to explore the influence of Confucian-heritage culture on Chinese learners' online learning and engagement in online discussion in U.S. higher education. More specifically, this research studied Chinese learners' perceptions of power distance and its impact on their interactions with instructors and peers in…

  6. Neijiang Power Plant -- Experiences with the largest CFB boiler in China

    SciTech Connect

    Ye Shenshou; Hotta, A.

    1997-12-31

    The 100 MWe Neijiang Thermal Power Plant owned by Sichuan Electric Power Administration (SEPA) started operation in June 1996. The power plant is equipped with Foster Wheeler CFB Boiler, which is designed to produce 114 kg/s of superheated steam at 98 bar pressure and 540 C temperature. The local Sichuan anthracite coal, which is burned in the boiler, features high ash and high sulphur content and has been difficult to burn in some PC or stoker fired boilers. The new CFB boiler has proven to be very suitable for this coal and large turn-down ratio and good load following capability have been achieved. The Neijiang CFB boiler has demonstrated that the stringent emission levels could be easily achieved with good overall economy. The construction of the project, which was done in a tight schedule jointly with Foster Wheeler and SEPA in close and excellent cooperation, is described in this paper in addition to some technical details of the power plant. Also the observations made during the commissioning as well as the performance data are presented.

  7. Experience with digital power system stabilizers at steam and hydro generating stations

    SciTech Connect

    Bollinger, K.E. ); Nettleton, L. ); Greenwood-Madsen, T. ); Salyzyn, M. )

    1993-06-01

    This paper describes test results from installations of digital PSS at power plants by two Utilities in Western Canada. Reasons for selecting digital versus analog PSS are outlined, stabilizer design objectives are listed, and commissioning and test results are included. It is hoped that the paper will precipitate discussions by others involved in implementing digital PSS.

  8. Conceptual design of an open-cycle ocean thermal energy conversion net power-producing experiment (OC-OTEC NPPE)

    SciTech Connect

    Bharathan, D.; Green, H.J.; Link, H.F.; Parsons, B.K.; Parsons, J.M.; Zangrando, F.

    1990-07-01

    This report describes the conceptual design of an experiment to investigate heat and mass transfer and to assess the viability of open-cycle ocean thermal energy conversion (OC-OTEC). The experiment will be developed in two stages, the Heat- and Mass-Transfer Experimental Apparatus (HMTEA) and the Net Power-Producing Experiment (NPPE). The goal for the HMTEA is to test heat exchangers. The goal for the NPPE is to experimentally verify OC-OTEC's feasibility by installing a turbine and testing the power-generating system. The design effort met the goals of both the HMTEA and the NPPE, and duplication of hardware was minimal. The choices made for the design resource water flow rates are consistent with the availability of cold and warm seawater as a result of the seawater systems upgrade carried out by the US Department of Energy (DOE), the state of Hawaii, and the Pacific International Center for High Technology Research. The choices regarding configuration of the system were made based on projected performance, degree of technical risk, schedule, and cost. The cost for the future phase of the design and the development of the HMTEA/NPPE is consistent with the projected future program funding levels. The HMTEA and NPPE were designed cooperatively by PICHTR, Argonne National Laboratory, and Solar Energy Research Institute under the guidance of DOE. The experiment will be located at the DOE's Seacoast Test Facility at the Natural Energy Laboratory of Hawaii, Kailua-Kona, Hawaii. 71 refs., 41 figs., 34 tabs.

  9. Conceptual design of an Open-Cycle Ocean Thermal Energy Conversion Net Power-Producing Experiment (OC-OTEC NPPE)

    NASA Astrophysics Data System (ADS)

    Bharathan, D.; Green, H. J.; Link, H. F.; Parsons, B. K.; Parsons, J. M.; Zangrando, F.

    1990-07-01

    This report describes the conceptual design of an experiment to investigate heat and mass transfer and to assess the viability of open-cycle ocean thermal energy conversion (OC-OTEC). The experiment will be developed in two stages, the Heat- and Mass-Transfer Experimental Apparatus (HMTEA) and the Net Power-Producing Experiment (NPPE). The goal for the HMTEA is to test heat exchangers. The goal for the NPPE is to experimentally verify OC-OTEC's feasibility by installing a turbine and testing the power-generating system. The design effort met the goals of both the HMTEA and the NPPE, and duplication of hardware was minimal. The choices made for the design resource water flow rates are consistent with the availability of cold and warm seawater as a result of the seawater systems upgrade carried out by the U.S. Department of Energy (DOE), the state of Hawaii, and the Pacific International Center for High Technology Research. The choices regarding configuration of the system were made based on projected performance, degree of technical risk, schedule, and cost. The cost for the future phase of the design and the development of the HMTEA/NPPE is consistent with the projected future program funding levels. The HMTEA and NPPE were designed cooperatively by PICHTR, Argonne National Laboratory, and Solar Energy Research Institute under the guidance of DOE. The experiment will be located at the DOE's Seacoast Test Facility at the Natural Energy Laboratory of Hawaii, Kailua-Kona, Hawaii.

  10. IBA for novice experimentalists. I. Introduction to IBA: mostly symmetries. II. Tests in even-even nuclei: mostly transitional systems. III. Supersymmetries: theory and experiment

    SciTech Connect

    Cizewski, J.A.

    1982-08-01

    The report contains the notes from a series of lectures on the Interacting Boson Approximation (IBA) model. The lectures were presented at Lawrence Livermore National Laboratory on July 28, 30 and August 1, 1982 by Jolie A. Cizewski from Yale University. The IBA was developed by F. Iachello and A. Arima starting about seven years ago to understand collective quadrupole excitations in medium and heavy mass nuclei away from closed shells. Since then the formalism has been extended to odd-mass nuclei and considerable work has gone into understanding the microscopic construction of the bosons in this model. The IBA has been applied to nuclei as light as Zn and Ge and as heavy as U and Pu; to nuclei near closed shells, such as Mo and Hg; to stable nuclei and nuclei far from stability. The present lectures were designed to give the experimentalist an introduction to the IBA and to give specific examples of how it could be applied to understand the structure of heavy even and odd mass nuclei. Much of the emphasis was on the symmetries (and supersymmetries) of the model and how the use of symmetries enabled the relatively straightforward understanding of empirical systems as deviations from these symmetries. The richness of possible applications of the IBA to understanding collective phenomena in nuclei was not fully explored, but rather a few illustrative examples were selected and described in detail. The references, accumulated at the end of this report, provide a more comprehensive, although not complete, list of tests of the IBA in even mass nuclei and the new symmetries in odd mass nuclei. The references also list the main theoretical papers which provide the details of the IBA formalism.

  11. Design of a CO2 laser power control system for a Spacelab microgravity experiment

    NASA Technical Reports Server (NTRS)

    Wenzler, Carl J.; Eichenberg, Dennis J.

    1990-01-01

    The surface tension driven convection experiment (STDCE) is a Space Transportation System flight experiment manifested to fly aboard the USML-1 Spacelab mission. A CO2 laser is used to heat a spot on the surface of silicone oil contained inside a test chamber. Several CO2 laser control systems were evaluated and the selected system will be interfaced with the balance of the experimental hardware to constitute a working engineering model. Descriptions and a discussion of these various design approaches are presented.

  12. 18 CFR 401.0 - Introduction.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Introduction. 401.0 Section 401.0 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE... Access to the Commission's Records and Information. Article 9—General Provisions. (f) These rules...

  13. 18 CFR 801.0 - Introduction.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Introduction. 801.0 Section 801.0 Conservation of Power and Water Resources SUSQUEHANNA RIVER BASIN COMMISSION GENERAL... water and related natural resources of the basin, which includes part of New York, Pennsylvania,...

  14. 18 CFR 801.0 - Introduction.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Introduction. 801.0 Section 801.0 Conservation of Power and Water Resources SUSQUEHANNA RIVER BASIN COMMISSION GENERAL... water and related natural resources of the basin, which includes part of New York, Pennsylvania,...

  15. 18 CFR 801.0 - Introduction.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Introduction. 801.0 Section 801.0 Conservation of Power and Water Resources SUSQUEHANNA RIVER BASIN COMMISSION GENERAL... water and related natural resources of the basin, which includes part of New York, Pennsylvania,...

  16. Investigation of radial power and temperature effects in large-scale reflood experiments. [PWR

    SciTech Connect

    Motley, F.

    1983-01-01

    The largest reflood test facility in the world has been designed and constructed by the Japan Atomic Energy Research Institute (JAERI). The experimental test facility, known as the Cylindrical Core Test Facility (CCTF), models a full-height core section and the four primary loops of a Pressurized Water Reactor (PWR). The radial power distribution and temperature distribution were varied during the testing program. The test results indicate that the radial effects, while noticeable, do not appreciably alter the overall quenching behavior of the facility. The Transient Reactor Analysis Code (TRAC) correctly predicted the experimental results of several of the tests. The code results indicate that the core flow pattern adjusts multidimensionally to mitigate the effects of increased power or stored energy.

  17. Powerful Literacies.

    ERIC Educational Resources Information Center

    Crowther, Jim, Ed.; Hamilton, Mary, Ed.; Tett, Lyn, Ed.

    These 15 papers share a common theme: seeking to promote literacy as a powerful tool for challenging existing inequalities and dependencies. "Powerful Literacies" (Jim Crowther et al.) is an introduction. Section 1 establishes the theoretical and policy frameworks that underpin the book and shows how literacy is situated in different…

  18. Experiences of Healthcare Professionals to the Introduction in Sweden of a Public eHealth Service: Patients' Online Access to their Electronic Health Records.

    PubMed

    Ålander, Ture; Scandurra, Isabella

    2015-01-01

    Patients' increasing demands for medical information, the digitization of health records and the fast spread of Internet access form a basis of introducing new eHealth services. An international trend is to provide access for patients to health information of various kind. In Sweden, access by patients to their proper electronic health record (EHR) has been provided in a pilot county since November 2012. This eHealth service is controversial and criticism has arised from the clinical professions, mainly physicians. Two web surveys were conducted to discover whether the opinions of healthcare professionals differ; between staff that have had experience with patients accessing their own EHR and those who have no such expericence. Experienced nurses found the EHR more important for the patients and a better reform, compared to unexperienced nurses in the rest of the country. Similarly, physicians with their own experience had a more positive attitude compared to non-experienced physicians. The conclusion of this study is that healthcare professionals must be involved in the implementation of public eHealth services such as EHRs and that real experiences of the professionals should be better disseminated to their inexperienced peers.

  19. Design of a full scale model fuel assembly for full power production reactor flow excursion experiments

    SciTech Connect

    Nash, C.A.; Blake, J.E.; Rush, G.C.

    1990-12-31

    A novel full scale production reactor fuel assembly model was designed and built to study thermal-hydraulic effects of postulated Savannah River Site (SRS) nuclear reactor accidents. The electrically heated model was constructed to simulate the unique annular concentric tube geometry of fuel assemblies in SRS nuclear production reactors. Several major design challenges were overcome in order to produce the prototypic geometry and thermal-hydraulic conditions. The two concentric heater tubes (total power over 6 MW and maximum heat flux of 3.5 MW/m{sup 2}) (1.1E+6 BTU/(ft{sup 2}hr)) were designed to closely simulate the thermal characteristics of SRS uranium-aluminum nuclear fuel. The paper discusses the design of the model fuel assembly, which met requirements of maintaining prototypic geometric and hydraulic characteristics, and approximate thermal similarity. The model had a cosine axial power profile and the electrical resistance was compatible with the existing power supply. The model fuel assembly was equipped with a set of instruments useful for code analysis, and durable enough to survive a number of LOCA transients. These instruments were sufficiently responsive to record the response of the fuel assembly to the imposed transient.

  20. Design of a full scale model fuel assembly for full power production reactor flow excursion experiments

    SciTech Connect

    Nash, C.A. ); Blake, J.E.; Rush, G.C. )

    1990-01-01

    A novel full scale production reactor fuel assembly model was designed and built to study thermal-hydraulic effects of postulated Savannah River Site (SRS) nuclear reactor accidents. The electrically heated model was constructed to simulate the unique annular concentric tube geometry of fuel assemblies in SRS nuclear production reactors. Several major design challenges were overcome in order to produce the prototypic geometry and thermal-hydraulic conditions. The two concentric heater tubes (total power over 6 MW and maximum heat flux of 3.5 MW/m{sup 2}) (1.1E+6 BTU/(ft{sup 2}hr)) were designed to closely simulate the thermal characteristics of SRS uranium-aluminum nuclear fuel. The paper discusses the design of the model fuel assembly, which met requirements of maintaining prototypic geometric and hydraulic characteristics, and approximate thermal similarity. The model had a cosine axial power profile and the electrical resistance was compatible with the existing power supply. The model fuel assembly was equipped with a set of instruments useful for code analysis, and durable enough to survive a number of LOCA transients. These instruments were sufficiently responsive to record the response of the fuel assembly to the imposed transient.

  1. ORNL Experience and Challenges Facing Dynamic Wireless Power Charging of EV's

    DOE PAGES

    Miller, John M.; Jones, Perry T.; Li, Jan-Mou; ...

    2015-05-21

    As visionary as dynamic, or in-motion, wireless charging of electric vehicles appears the concept is well over a century old as this paper will show. This is because the concept of magnetic induction dates back to the pioneering work of physicist Michael Faraday in the early 19th century. Today wireless power transfer (WPT) is being standardized for stationary and quasi-stationary charging of electric vehicles (EV). The Society of Automotive Engineers (SAE) has undertaken the standardization of stationary charging and will make this public during 2016. In addition to this the IEEE-SA (Standards Activities) initiated standards development for EV?s in theirmore » EVWPT working group in 2012. This study introduces the many challenges facing EVWPT in not only high power transfer to a moving vehicle and energy management at a utility scale, but communications in a vehicle to infrastructure (V2I) environment and management of high data rates, ultra-low latency, and dealing with communications loss in dense urban areas. Finally, future concepts such as guideway powering of EV?s are presented to illustrate one technical trajectory EVWPT may take.« less

  2. ORNL Experience and Challenges Facing Dynamic Wireless Power Charging of EV's

    SciTech Connect

    Miller, John M.; Jones, Perry T.; Li, Jan-Mou; Onar, Omer C.

    2015-05-21

    As visionary as dynamic, or in-motion, wireless charging of electric vehicles appears the concept is well over a century old as this paper will show. This is because the concept of magnetic induction dates back to the pioneering work of physicist Michael Faraday in the early 19th century. Today wireless power transfer (WPT) is being standardized for stationary and quasi-stationary charging of electric vehicles (EV). The Society of Automotive Engineers (SAE) has undertaken the standardization of stationary charging and will make this public during 2016. In addition to this the IEEE-SA (Standards Activities) initiated standards development for EV?s in their EVWPT working group in 2012. This study introduces the many challenges facing EVWPT in not only high power transfer to a moving vehicle and energy management at a utility scale, but communications in a vehicle to infrastructure (V2I) environment and management of high data rates, ultra-low latency, and dealing with communications loss in dense urban areas. Finally, future concepts such as guideway powering of EV?s are presented to illustrate one technical trajectory EVWPT may take.

  3. Experiment determination of after-operating gas compositions in a transverse-flow CW high power CO 2 laser

    NASA Astrophysics Data System (ADS)

    Cheng, Cheng; Xu, Zhousu

    2005-06-01

    For a high-power CO 2 laser with a close-confined structure, the compositions and ratios of gas mixtures are changed due to electron impacts during the laser-operating period. As a result, the laser performance is gradually degraded, even to non-lasing output. In this paper, three different methods (a chemiluminescence, a titration analysis and a thermal conductivity measurement) are utilized to determine both the compositions and the ratios, according to different thermal and chemical characteristics of the gases. Corresponding experiments are implemented to a typical transverse-flow high-power CO 2 laser after a long-term discharge (around 15 h) with the output power decreased from an initial 3 kW to final 2 kW. There is evidence in the experiments to indicate that CO 2 decreases by 13.2% comparing with an initially optimal content. Also, the produced impurities are mostly CO and O 2 molecules with noticeable concentrations, while nitrogen-oxygen complexes are little in the gas mixtures.

  4. Fine-particle Mn and other metals linked to the introduction of MMT into gasoline in Sydney, Australia: Results of a natural experiment

    NASA Astrophysics Data System (ADS)

    Cohen, D. D.; Gulson, B. L.; Davis, J. M.; Stelcer, E.; Garton, D.; Hawas, O.; Taylor, A.

    Using a combination of accelerator-based ion beam methods we have analysed PM 2.5 particulates for a suite of 21 species (H, C, Na, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Br, Pb) to evaluate the contribution to Sydney (New South Wales, Australia) air associated with the introduction of MMT as a replacement for lead. MMT was discontinued in 2004. Teflon filters representing continuous sampling for a 7 year period from 1998 to 2004 were analysed from two sites: one from Mascot, a suburb close to the Central Business District [CBD ( n=718)] and a high trafficked area, and the other, a relatively rural (background) setting at Richmond, ˜20 km west of the CBD ( n=730). Manganese concentrations in air at the background site increased from a mean of 1.5-1.6 ng m -3 to less than 2 ng m -3 at the time of greatest MMT use whereas those at Mascot increased from about 2 to 5 ng m -3. From the maximum values, the Mn showed a steady decrease at both sites concomitant with the decreasing use of MMT. Lead concentrations in air at both sites decreased from 1998 onwards, concomitant with the phase out of leaded gasoline, attained in 2002. Employing previously determined elemental signatures it was possible to adjust effects from season along with auto emissions and soil. A high correlation was obtained for the relationship between Mn in air and lead replacement gasoline use ( R2 0.83) and an improved correlation for Mn/ Al+Si+K and lead replacement gasoline use ( R2 0.93). In addition, using Mn concentrations normalized to background values of Al+Si+K or Ti to account for the lithogenically derived Mn, the proportion of anthropogenic Mn was approximately 70%. The changes for Mn and Pb detected in the particulates are attributed to the before-during-after use of MMT and decreasing use of lead in gasoline. The values measured in Sydney air are well below the reference concentration of 50 ng Mn m -3. The incremental increases in air, however, are larger than

  5. High power fast wave experiments in LAPD: interaction with density fluctuations and status/plans for ICRH

    NASA Astrophysics Data System (ADS)

    Carter, Troy; Martin, Michael; van Compernolle, Bart; Gekelman, Walter; Pribyl, Pat; Vincena, Stephen; Tripathi, Shreekrishna; van Eester, Dirk; Crombe, Kristel

    2016-10-01

    The LArge Plasma Device (LAPD) at UCLA is a 17 m long, up to 60 cm diameter magnetized plasma column with typical plasma parameters ne 1012 -1013 cm-3, Te 1 - 10 eV, and B 1 kG. A new high-power ( 200 kW) RF system and antenna has been developed for LAPD, enabling the generation of large amplitude fast waves in LAPD. Interaction between the fast waves and density fluctuations is observed, resulting in modulation of the coupled RF power. Two classes of RF-induced density fluctuations are observed. First, a coherent (10 kHz) oscillation is observed spatially near the antenna in response to the initial RF turn-on transient. Second, broadband density fluctuations are enhanced when the RF power is above a threshold a threshold. Strong modulation of the fast wave magnetic fluctuations is observed along with broadening of the primary RF spectral line. Ultimately, high power fast waves will be used for ion heating in LAPD through minority species fundamental heating or second harmonic minority or majority heating. Initial experimental results from heating experiments will be presented along with a discussion of future plans. BaPSF supported by NSF and DOE.

  6. The quest for TPa Hugoniot data: using the DEMG in high velocity pulsed power experiments

    SciTech Connect

    Peterson, Jeff H; Rousculp, Christopher L; Holtkamp, David B; Oro, David M; Griego, Jeffrey R; Atchison, Walter L; Reinovsky, Robert E

    2010-12-20

    ALT-3 is an experiment being designed in collaboration between Russian VNIIEF scientists and LANL that aims to conduct high velocity material experiments to measure shock velocities at pressures near 1 TPa. The DEMG (Disk Explosive Magnetic Generator) is used to drive >60MA currents to accelerate an aluminum liner to speeds in excess of 20 km/s. The 1-D model of the DEMG has been refined from a given current profile to a time-varying inductance. Various techniques are used to model the FOS (Foil Opening Switch) on the DEMG and a refined DEMG model is then used to drive a liner into various targets to determine the optimum design for the experiment and analyze the possible conditions and complications.

  7. Introduction to Geomagnetic Fields

    NASA Astrophysics Data System (ADS)

    Hinze, William J.

    Coincidentally, as I sat down in late October 2003 to read and review the second edition of Wallace H. Campbell's text, Introduction to Geomagnetic Fields, we received warnings from the news media of a massive solar flare and its possible effect on power supply systems and satellite communications. News programs briefly explained the source of Sun-Earth interactions. If you are interested in learning more about the physics of the connection between sun spots and power supply systems and their impact on orbiting satellites, I urge you to become acquainted with Campbell's book. It presents an interesting and informative explanation of the geomagnetic field and its applications to a wide variety of topics, including oil exploration, climate change, and fraudulent claims of the utility of magnetic fields for alleviating human pain. Geomagnetism, the study of the nature and processes of the Earth's magnetic fields and its application to the investigation of the Earth, its processes, and history, is a mature science with a well-developed theoretical foundation and a vast array of observations. It is discussed in varied detail in Earth physics books and most entry-level geoscience texts. The latter treatments largely are driven by the need to discuss paleomagnetism as an essential tool in studying plate tectonics. A more thorough explanation of geomagnetism is needed by many interested scientists in related fields and by laypersons. This is the objective of Campbell's book. It is particularly germane in view of a broad range of geomagnetic topics that are at the forefront of today's science, including environmental magnetism, so-called ``jerks'' observed in the Earth's magnetic field, the perplexing magnetic field of Mars, improved satellite magnetic field observations, and the increasing availability of high-quality continental magnetic anomaly maps, to name only a few.

  8. Laser absorption, power transfer, and radiation symmetry during the first shock of inertial confinement fusion gas-filled hohlraum experiments

    NASA Astrophysics Data System (ADS)

    Pak, A.; Dewald, E. L.; Landen, O. L.; Milovich, J.; Strozzi, D. J.; Berzak Hopkins, L. F.; Bradley, D. K.; Divol, L.; Ho, D. D.; MacKinnon, A. J.; Meezan, N. B.; Michel, P.; Moody, J. D.; Moore, A. S.; Schneider, M. B.; Town, R. P. J.; Hsing, W. W.; Edwards, M. J.

    2015-12-01

    Temporally resolved measurements of the hohlraum radiation flux asymmetry incident onto a bismuth coated surrogate capsule have been made over the first two nanoseconds of ignition relevant laser pulses. Specifically, we study the P2 asymmetry of the incoming flux as a function of cone fraction, defined as the inner-to-total laser beam power ratio, for a variety of hohlraums with different scales and gas fills. This work was performed to understand the relevance of recent experiments, conducted in new reduced-scale neopentane gas filled hohlraums, to full scale helium filled ignition targets. Experimental measurements, matched by 3D view factor calculations, are used to infer differences in symmetry, relative beam absorption, and cross beam energy transfer (CBET), employing an analytic model. Despite differences in hohlraum dimensions and gas fill, as well as in laser beam pointing and power, we find that laser absorption, CBET, and the cone fraction, at which a symmetric flux is achieved, are similar to within 25% between experiments conducted in the reduced and full scale hohlraums. This work demonstrates a close surrogacy in the dynamics during the first shock between reduced-scale and full scale implosion experiments and is an important step in enabling the increased rate of study for physics associated with inertial confinement fusion.

  9. The First Pulsed-Power Z-Pinch Liner-On-Target Hydrodynamics Experiment Diagnosed with Proton Radiography

    NASA Astrophysics Data System (ADS)

    Rousculp, C. L.; Reass, W. A.; Oro, D. M.; Griego, J. R.; Turchi, P. J.; Reinovsky, R. E.; Saunders, A.; Mariam, F. G.; Morris, C.

    2014-10-01

    The first pulse-power driven, dynamic, liner-on-target experiment was successfully conducted at the Los Alamos proton radiography (pRad) facility. 100% data return was achieved on this experiment including a 21-image pRad movie. The experiment was driven with the PHELIX pulsed-power machine that utilizes a high-efficiency (k ~ 0.93) transformer to couple a small capacitor bank (U ~ 300 kJ) to a low inductance condensed-matter experimental load in a Z-pinch configuration. The current pulse (Ipeak = 3.7 MA, δt ~10 μs) was measured via a fiber optic Faraday rotation diagnostic. The experimental load consisted of a cylindrical Al liner (6 cm diam, 3 cm tall, 0.8 mm thick) and a cylindrical Al target (3 cm diam, 3 cm tall, 0.1 mm thick) that was coated with a thin (0.1 mm) uniform layer of tungsten powder (1 micron diam). It is observed that the shock-launched powder layer fully detaches from the target into a spatially correlated, radially converging (vr ~ 800 m/s) ring. The powder distribution is highly modulated in azimuth indicating particle interactions are significant. Results are compared to MHD simulations. Work supported by United States-DOE under Contract DE-AC52-06NA25396.

  10. The Electric Propulsion Space Experiment (ESEX)-A demonstration of high power arcjets for orbit transfer applications

    NASA Astrophysics Data System (ADS)

    Bromaghim, D. R.; Salasovich, R. M.; Leduc, J. R.; Johnson, L. K.

    1998-01-01

    The Electric Propulsion Space Experiment (ESEX) is a high power (30 kW) ammonia arcjet space demonstration sponsored by the Propulsion Directorate of the Phillips Laboratory with TRW as the prime contractor. ESEX is one of nine experiments being launched in early 1998 on board the Advanced Research and Global Observation Satellite (ARGOS). ESEX will demonstrate the feasibility of using a high power arcjet for orbit transfer. ESEX is instrumented with various sensors to address all of the expected interactions with ARGOS including electromagnetic interference, contamination, and radiated thermal loading. The performance of the arcjet will also be measured using ground tracking, an on-board GPS receiver, and on-board accelerometer. In addition to the performance and spacecraft interaction studies, ground-based spectroscopic and radiometric measurements will be performed to observe plume species as well as determine the effect of the arcjet firing on the space environment. ESEX is currently undergoing integrated testing with the spacecraft bus and the eight other experiments to verify the full operability of ARGOS while on-orbit. These tests include basic functionality of the system in addition to the normal suite of environmental tests including electromagnetic interference and compatibility, acoustic and pyroshock testing, and thermal vacuum tests.

  11. Laser absorption, power transfer, and radiation symmetry during the first shock of inertial confinement fusion gas-filled hohlraum experiments

    SciTech Connect

    Pak, A.; Dewald, E. L.; Landen, O. L.; Milovich, J.; Strozzi, D. J.; Berzak Hopkins, L. F.; Bradley, D. K.; Divol, L.; Ho, D. D.; MacKinnon, A. J.; Meezan, N. B.; Michel, P.; Moody, J. D.; Moore, A. S.; Schneider, M. B.; Town, R. P. J.; Hsing, W. W.; Edwards, M. J.

    2015-12-15

    Temporally resolved measurements of the hohlraum radiation flux asymmetry incident onto a bismuth coated surrogate capsule have been made over the first two nanoseconds of ignition relevant laser pulses. Specifically, we study the P2 asymmetry of the incoming flux as a function of cone fraction, defined as the inner-to-total laser beam power ratio, for a variety of hohlraums with different scales and gas fills. This work was performed to understand the relevance of recent experiments, conducted in new reduced-scale neopentane gas filled hohlraums, to full scale helium filled ignition targets. Experimental measurements, matched by 3D view factor calculations, are used to infer differences in symmetry, relative beam absorption, and cross beam energy transfer (CBET), employing an analytic model. Despite differences in hohlraum dimensions and gas fill, as well as in laser beam pointing and power, we find that laser absorption, CBET, and the cone fraction, at which a symmetric flux is achieved, are similar to within 25% between experiments conducted in the reduced and full scale hohlraums. This work demonstrates a close surrogacy in the dynamics during the first shock between reduced-scale and full scale implosion experiments and is an important step in enabling the increased rate of study for physics associated with inertial confinement fusion.

  12. Method to improve the noise figure and saturation power in multi-contact semiconductor optical amplifiers: simulation and experiment.

    PubMed

    Carney, Kevin; Lennox, Robert; Maldonado-Basilio, Ramon; Philippe, Severine; Surre, Frederic; Bradley, Louise; Landais, Pascal

    2013-03-25

    The consequences of tailoring the longitudinal carrier density along the active layer of a multi-contact bulk semiconductor optical amplifier (SOA) are investigated using a rate equation model. It is shown that both the noise figure and output power saturation can be optimized for a fixed total injected bias current. The simulation results are validated by comparison with experiment using a multi-contact SOA. The inter-contact resistance is increased using a focused ion beam in order to optimize the carrier density control. A chip noise figure of 3.8 dB and a saturation output power of 9 dBm are measured experimentally for a total bias current of 150 mA.

  13. The BaR-SPOrt experiment: measuring the CMBP E-mode power spectrum from Dome C

    NASA Astrophysics Data System (ADS)

    Carretti, E.; Cortiglioni, S.; Bernardi, G.; Casarini, L.; Cecchini, S.; Macculi, C.; Ramponi, M.; Sbarra, C.; Ventura, G.; Monari, J.; Poloni, M.; Poppi, S.; Baralis, M.; Peverini, O. A.; Tascone, R.; Virone, G.; Zannoni, M.; Bonometto, S.; Colombo, L.; Gervasi, M.; Sironi, G.; Fabbri, R.; Natale, V.; Nesti, R.; Nicastro, L.; de Bernardis, P.; Masi, S.; de Petris, M.; Boscaleri, A.; Sazhin, M.; Vinyajkin, E.

    The BaR-SPOrt experiment is designed to measure the E-mode power spectrum of the Cosmic Microwave Background Polarization (CMBP) in the multipole range 50 < ℓ < 1000. In the current configuration at 32 GHz it can explore up to ℓ = 400. Recent low frequency observations of the target region show that the synchrotron emission should not contamine the CMBP already at 32 GHz. A 6-month observation of a 6° × 6° sky area during the polar night, in ideal environmental conditions, will allow the Italian-French collaboration to both measure the E mode power spectrum with appropriate sensitivity and perform important tests of the anomalous dust emission. The BaR-SPOrt 32 GHz instrument, now under test and ready for operations by Spring 2005, is proposed for 1 2 years Winter operations at Dome C.

  14. A fast, low-power, 6-bit SAR ADC for readout of strip detectors in the LHCb Upgrade experiment

    NASA Astrophysics Data System (ADS)

    Firlej, M.; Fiutowski, T.; Idzik, M.; Moron, J.; Swientek, K.

    2014-07-01

    The readout of silicon strip sensors in the upgraded Tracker System of Large Hadron Collider beauty (LHCb) experiment will require a novel complex Application Specific Integrated Circuit (ASIC). The ASIC will extract and digitise analogue signal from the sensor and subsequently will perform digital processing and serial data transmission. One of the key processing blocks, placed in each channel, will be an Analogue to Digital Converter (ADC). A prototype of fast, low-power 6-bit Successive Approximation Register (SAR) ADC was designed, fabricated and tested. The measurements of ADC prototypes confirmed simulation results showing excellent overall performance. In particular, very good resolution with Effective Number Of Bits (ENOB) 5.85 was obtained together with very low power consumption of 0.35 mW at 40 MS/s sampling rate. The results of the performed static and dynamic measurements confirm excellent ADC operation for higher sampling rates up to 80 MS/s.

  15. Performance of High-Convergence, Layered DT Implosions on Power-Scaling Experiments at National Ignition Facility

    DOE PAGES

    Smalyuk, V. A.; Atherton, L. J.; Benedetti, L. R.; ...

    2013-10-19

    The radiation-driven, low-adiabat, cryogenic DT layered plastic capsule implosions were carried out on the National Ignition Facility (NIF) to study the sensitivity of performance to peak power and drive duration. An implosion with extended drive and at reduced peak power of 350 TW achieved the highest compression with fuel areal density of ~1.3±0.1 g/cm 2, representing a significant step from previously measured ~1.0 g/cm2 toward a goal of 1.5 g/cm 2. Moreover, for future experiments will focus on understanding and mitigating hydrodynamic instabilities and mix, and improving symmetry required to reach the threshold for thermonuclear ignition on NIF.

  16. Nuclear Power from Fission Reactors. An Introduction.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Technical Information Center.

    The purpose of this booklet is to provide a basic understanding of nuclear fission energy and different fission reaction concepts. Topics discussed are: energy use and production, current uses of fuels, oil and gas consumption, alternative energy sources, fossil fuel plants, nuclear plants, boiling water and pressurized water reactors, the light…

  17. Investigation of lower hybrid physics through power modulation experiments on Alcator C-Moda)

    NASA Astrophysics Data System (ADS)

    Schmidt, A.; Bonoli, P. T.; Meneghini, O.; Parker, R. R.; Porkolab, M.; Shiraiwa, S.; Wallace, G.; Wright, J. C.; Harvey, R. W.; Wilson, J. R.

    2011-05-01

    Lower hybrid current drive (LHCD) is an attractive tool for off-axis current profile control in magnetically confined tokamak plasmas and burning plasmas (ITER), because of its high current drive efficiency. The LHCD system on Alcator C-Mod operates at 4.6 GHz, with ~ 1 MW of coupled power, and can produce a wide range of launched parallel refractive index (n||) spectra. A 32 chord, perpendicularly viewing hard x-ray camera has been used to measure the spatial and energy distribution of fast electrons generated by lower hybrid (LH) waves. Square-wave modulation of LH power on a time scale much faster than the current relaxation time does not significantly alter the poloidal magnetic field inside the plasma and thus allows for realistic modeling and consistent plasma conditions for different n|| spectra. Inverted hard x-ray profiles show clear changes in LH-driven fast electron location with differing n||. Boxcar binning of hard x-rays during LH power modulation allows for ~ 1 ms time resolution which is sufficient to resolve the build-up, steady-state, and slowing-down phases of fast electrons. Ray-tracing/Fokker-Planck modeling in combination with a synthetic hard x-ray diagnostic shows quantitative agreement with the x-ray data for high n|| cases. The time histories of hollow x-ray profiles have been used to measure off-axis fast electron transport in the outer half of the plasma, which is found to be small on a slowing down time scale.

  18. Aluminum-air power cell: the M3-3 experiment

    SciTech Connect

    Maimoni, A.; Muelder, S.A.

    1985-03-01

    The M3-3 experiment was a test of the M3 cell coupled to a crystallizer and hydrocyclone for separation of coarse solids before return of electrolyte to the cell. It was essentially a repeat of the M3-2 experiment, but with increased emphasis to understand the sources of experimental error and the evolution of the particle size distributions during the course of the experiment. A new hydrocyclone, scaled to operation with 1 to 5 cells, was tested in conjunction with peristaltic pumps. The test ran at 14 A for 101 min, followed by 122 A for 269 min at 60/sup 0/C. The main operational problem was failure of the rubber tubing in the peristaltic pump feeding the hydrocyclone. Primary results include reasonable agreement in the material balances and with the calculated crystallization rates, the 50% cut point of the new hydrocyclone at about 8 ..mu..m, and the aluminate concentration decreased from 2.4M to 1.4M in 21 h at 60/sup 0/C in a subsequent batch crystallization experiment. The particle size distributions do not change significantly on aging de-ionized water. It is recommended that electrolyte conductivity should not be used as the only measure of aluminate concentration. More care is required to obtain meaningful samples of suspension from crystallizer vessels. Insufficient stirring in the vessels led to settling of the solids and obtaining non-representative samples.

  19. Mathematics, Power, and Language: Implications from Lived Experiences to Empower English Learners

    ERIC Educational Resources Information Center

    Uribe-Flórez, Lida J.; Araujo, Blanca; Franzak, Mark; Haynes Writer, Jeanette

    2014-01-01

    Because the English learners' (ELs) population is growing in the United States, teacher candidates should be provided with experiences that prepare them to effectively teach and empower linguistically/culturally diverse students. Teacher candidates should be provided with opportunities to learn skills that engage ELs in mathematics. In this…

  20. Getting Growers to Go Digital: The Power of a Positive User Experience

    ERIC Educational Resources Information Center

    McCornack, Brian P.; Johnson, Wendy A.

    2016-01-01

    Using web-based applications is an innovative approach for delivery of Extension resources. For example, myFields.info is a mobile-friendly application focused on directing stakeholders to information at the field level. Acceptance and diffusion of such applications depends on initial experiences resulting from traditional face-to-face…

  1. Supporting Solar Power in Renewables Portfolio Standards: Experience from the United States

    SciTech Connect

    Wiser, Ryan; Barbose, Galen; Holt, Edward

    2010-10-01

    Among the available options for encouraging the increased deployment of renewable electricity, renewables portfolio standards (RPS) have become increasingly popular. The RPS is a relatively new policy mechanism, however, and experience with its use is only beginning to emerge. One key concern that has been voiced is whether RPS policies will offer adequate support to a wide range of renewable energy technologies and applications or whether, alternatively, RPS programs will favor a small number of the currently least-cost forms of renewable energy. This report documents the design of and early experience with state-level RPS programs in the United States that have been specifically tailored to encourage a wider diversity of renewable energy technologies, and solar energy in particular. As shown here, state-level RPS programs specifically designed to support solar have already proven to be an important, albeit somewhat modest, driver for solar energy deployment, and those impacts are projected to continue to build in the coming years. State experience in supporting solar energy with RPS programs is mixed, however, and full compliance with existing requirements has not been achieved. The comparative experiences described herein highlight the opportunities and challenges of applying an RPS to specifically support solar energy, as well as the importance of policy design details to ensuring that program goals are achieved.

  2. Spall experiments in convergent geometry using the atlas pulsed power facility.

    SciTech Connect

    Keinigs, R. K.; Anderson, W. A.; Cerreta, E. K.; Cochrane, J. C. , Jr.; Ladish, J. S.; Lindemuth, I. R.; Oro, D. M.; Rodriguez, G.; Salazar, M. A.; Stokes, J. L.; Taylor, Antoinette J.,; Tonks, D. L.; Thissell, W. R.; Zurek, A. K.

    2002-01-01

    {sm_bullet}Four spall experiments have been performed using Atlas {sm_bullet} Purpose was to investigate damage in convergent geometry {sm_bullet} Impact pressures ranged between 45 kbars - 110 kbars {sm_bullet} Diagnostics included VISAR and axial and radial radiographs {sm_bullet} Targets were recovered for post-metallugical analysis

  3. The Invisible Hand: The Power of Language in Creating Welcoming Postsecondary Learning Experiences

    ERIC Educational Resources Information Center

    Clinton, Lisa C.; Higbee, Jeanne L.

    2011-01-01

    This manuscript discusses from the joint perspectives of an undergraduate student and a faculty member the often invisible role that language can play in providing postsecondary learning experiences that can either include or exclude students on the basis of social identity. The authors discuss ignorance, uncertainty, and political correctness as…

  4. Characteristics of a large multijunction launcher for high-power LHCD experiments on JT-60U

    SciTech Connect

    Seki, M.; Ikeda, Y.; Ushigusa, K.; Naito, O.; Kondoh, T.; Wolfe, S.W.; Imai, T. )

    1994-10-15

    This paper presents overview of a large multijunction launcher for JT-60U. The launcher is featured by the multijunction module with the oversized taper waveguide, in order to simplify structure of the launcher. This launcher allows high performances of current drive and current profile control by using very sharp and highly directive spectrum. Initial result of coupling property is also described. A good coupling was observed at a power level of [similar to]0.8 MW with plasma-launcher distance of [lt]14 cm.

  5. The experience of a Power Nap Center in the largest city of Brazil.

    PubMed

    Santos-Silva, Rogerio; Jankavski, Camila; Lorenzi-Filho, Geraldo

    2016-01-01

    We evaluated the frequency of naps and features of nappers who took a nap in a Power Nap Center located in downtown area of São Paulo. Company database was retrospectively analyzed and 4.625 naps were evaluated (January-December 2014). Most naps (57%) lasted 30 min. 33% of subjects took a nap more than once a week (73% male). Progressive growth in the number of naps across the months was observed (January=110 to December=505). Results suggest that the society is sleep deprived and taking a nap during the day could be an important strategy to improve quality of life and increase productivity.

  6. Development of high power CW 3.7 GHz klystrons for fusion experiments on Tore Supra

    SciTech Connect

    Magne, R.; Armitano, A.; Berger-By, G.; Bouquey, F.; Corbel, E.; Delpech, L.; Mollard, P.; Prou, M.; Samaille, F.; Volpe, D.; Beunas, A.; Kazarian, F.

    2011-07-01

    In the frame of the CIMES project, a collaborative effort between Association Euratom-CEA and Thales Electron Devices (TED) has led to the development of a high power CW klystron TH 2103 C, working at 3.7 GHz, for plasma heating and current drive for the Tokamak Tore Supra. A prototype has been manufactured and thoroughly tested on water load in December 2007 to verify that all the parameters met the specifications. The paper will present in detail the process and results of the test of the klystrons.

  7. Conceptual design of a 1013 -W pulsed-power accelerator for megajoule-class dynamic-material-physics experiments

    NASA Astrophysics Data System (ADS)

    Stygar, W. A.; Reisman, D. B.; Stoltzfus, B. S.; Austin, K. N.; Ao, T.; Benage, J. F.; Breden, E. W.; Cooper, R. A.; Cuneo, M. E.; Davis, J.-P.; Ennis, J. B.; Gard, P. D.; Greiser, G. W.; Gruner, F. R.; Haill, T. A.; Hutsel, B. T.; Jones, P. A.; LeChien, K. R.; Leckbee, J. J.; Lewis, S. A.; Lucero, D. J.; McKee, G. R.; Moore, J. K.; Mulville, T. D.; Muron, D. J.; Root, S.; Savage, M. E.; Sceiford, M. E.; Spielman, R. B.; Waisman, E. M.; Wisher, M. L.

    2016-07-01

    We have developed a conceptual design of a next-generation pulsed-power accelerator that is optimized for megajoule-class dynamic-material-physics experiments. Sufficient electrical energy is delivered by the accelerator to a physics load to achieve—within centimeter-scale samples—material pressures as high as 1 TPa. The accelerator design is based on an architecture that is founded on three concepts: single-stage electrical-pulse compression, impedance matching, and transit-time-isolated drive circuits. The prime power source of the accelerator consists of 600 independent impedance-matched Marx generators. Each Marx comprises eight 5.8-GW bricks connected electrically in series, and generates a 100-ns 46-GW electrical-power pulse. A 450-ns-long water-insulated coaxial-transmission-line impedance transformer transports the power generated by each Marx to a system of twelve 2.5-m-radius water-insulated conical transmission lines. The conical lines are connected electrically in parallel at a 66-cm radius by a water-insulated 45-post sextuple-post-hole convolute. The convolute sums the electrical currents at the outputs of the conical lines, and delivers the combined current to a single solid-dielectric-insulated radial transmission line. The radial line in turn transmits the combined current to the load. Since much of the accelerator is water insulated, we refer to it as Neptune. Neptune is 40 m in diameter, stores 4.8 MJ of electrical energy in its Marx capacitors, and generates 28 TW of peak electrical power. Since the Marxes are transit-time isolated from each other for 900 ns, they can be triggered at different times to construct-over an interval as long as 1 μ s -the specific load-current time history required for a given experiment. Neptune delivers 1 MJ and 20 MA in a 380-ns current pulse to an 18 -m Ω load; hence Neptune is a megajoule-class 20-MA arbitrary waveform generator. Neptune will allow the international scientific community to conduct dynamic

  8. Preliminary clinical experience with a new radioisotope-powered cardiac pacemaker.

    PubMed

    Smyth, N P; Magovern, G J; Cushing, W J; Keshishian, J M; Kelly, L C; Dixon, M

    1976-02-01

    A small light-weight nuclear-powered pacer has been developed. The pulse generator weight 61 Gm. and occupies a volume of 33 sq. cm. It is a standard R-wave inhibited (VVI) demand pulse generator. The unit has met all United States and foreign atomic energy commission safety specifications including mechanical shock, industrial fire, accidental crush, cremation, impact, and corrosion. Its calculated life is in excess of 20 years. The unit has been shown to be insensitive to electromagnetic interference (EMI) over a wide range of commonly encountered sources of interference. An extensive dog testing program has been carried out and is continuing. The United States Atomic Energy Commission (AEC) has issued a license to conduct clinical trials. These began in October, 1974, and a total of 30 units of 30 units have been implanted so far. An equal number of chemical battery-powered pulse generators has been implanted in a control series of 30 patients. Preliminary results have been gratifying.

  9. Can we estimate the cellular phone RF peak output power with a simple experiment?

    NASA Astrophysics Data System (ADS)

    Fioreze, Maycon; dos Santos Junior, Sauli; Goncalves Hönnicke, Marcelo

    2016-07-01

    Cellular phones are becoming increasingly useful tools for students. Since cell phones operate in the microwave bandwidth, they can be used to motivate students to demonstrate and better understand the properties of electromagnetic waves. However, since these waves operate at higher frequencies (L-band, from 800 MHz to 2 GHz) it is not simple to detect them. Usually, expensive real-time high frequency oscilloscopes are required. Indirect measurements are also possible through heat-based and diode-detector-based radio-frequency (RF) power sensors. Another didactic and intuitive way is to explore a simple and inexpensive detection system, based on the interference effect caused in the electronic circuit of TV and PC soundspeakers, and to try to investigate different properties of the cell phones’ RF electromagnetic waves, such as its power and modulated frequency. This manuscript proposes a trial to quantify these measurements, based on a simple Friis equation model and the time constant of the circuit used in the detection system, in order to show it didactically to the students and even allow them also to explore such a simple detection system at home.

  10. Operating experience with the southwire 30-meter high-temperature superconducting power cable

    NASA Astrophysics Data System (ADS)

    Stovall, J. P.; Lue, J. W.; Demko, J. A.; Fisher, P. W.; Gouge, M. J.; Hawsey, R. A.; Armstrong, J. W.; Hughey, R. L.; Lindsay, D. T.; Roden, M. L.; Sinha, U. K.; Tolbert, J. C.

    2002-05-01

    Southwire Company is operating a high-temperature superconducting (HTS) cable system at its corporate headquarters. The 30-m long, 3-phase cable system is powering three Southwire manufacturing plants and is rated at 12.4-kV, 1250-A, 60-Hz. Cooling is provided by a pressurized liquid nitrogen system operating at 70-80 K. The cables were energized on January 5, 2000 for on-line testing and operation and in April 2000 were placed into extended service. As of June 1, 2001, the HTS cables have provided 100% of the customer load for 8000 hours. The cryogenic system has been in continuous operation since November 1999. The HTS cable system has not been the cause of any power outages to the average 20 MW industrial load served by the cable. The cable has been exposed to short-circuit currents caused by load-side faults without damage. Based upon field measurements described herein, the cable critical current-a key performance parameter-remains the same and has not been affected by the hours of real-world operation, further proving the viability of this promising technology.

  11. Virtual Constraint Control of a Powered Prosthetic Leg: From Simulation to Experiments with Transfemoral Amputees

    PubMed Central

    Lenzi, Tommaso; Hargrove, Levi J.; Sensinger, Jonathon W.

    2014-01-01

    Recent powered (or robotic) prosthetic legs independently control different joints and time periods of the gait cycle, resulting in control parameters and switching rules that can be difficult to tune by clinicians. This challenge might be addressed by a unifying control model used by recent bipedal robots, in which virtual constraints define joint patterns as functions of a monotonic variable that continuously represents the gait cycle phase. In the first application of virtual constraints to amputee locomotion, this paper derives exact and approximate control laws for a partial feedback linearization to enforce virtual constraints on a prosthetic leg. We then encode a human-inspired invariance property called effective shape into virtual constraints for the stance period. After simulating the robustness of the partial feedback linearization to clinically meaningful conditions, we experimentally implement this control strategy on a powered transfemoral leg. We report the results of three amputee subjects walking overground and at variable cadences on a treadmill, demonstrating the clinical viability of this novel control approach. PMID:25558185

  12. Methods of the aerodynamical experiments with simulation of massflow-traction ratio of the power unit

    NASA Astrophysics Data System (ADS)

    Lokotko, A. V.

    2016-10-01

    Modeling massflow-traction characteristics of the power unit (PU) may be of interest in the study of aerodynamic characteristics (ADC) aircraft models with full dynamic likeness, and in the study of the effect of interference PU. These studies require the use of a number of processing methods. These include: 1) The method of delivery of the high-pressure body of jets model engines on the sensitive part of the aerodynamic balance. 2) The method of estimate accuracy and reliability of measurement thrust generated by the jet device. 3) The method of implementation of the simulator SU in modeling the external contours of the nacelle, and the conditions at the inlet and outlet. 4) The method of determining the traction simulator PU. 5) The method of determining the interference effect from the work of power unit on the ADC of model. 6) The method of producing hot jets of jet engines. The paper examines implemented in ITAM methodology applied to testing in a supersonic wind tunnel T-313.

  13. Phenylnaphthalene Derivatives as Heat Transfer Fluids for Concentrating Solar Power: Loop Experiments and Final Report

    SciTech Connect

    McFarlane, Joanna; Bell, Jason R; Felde, David K; Joseph III, Robert Anthony; Qualls, A L; Weaver, Samuel P

    2013-02-01

    ORNL and subcontractor Cool Energy completed an investigation of higher-temperature, organic thermal fluids for solar thermal applications. Although static thermal tests showed promising results for 1-phenylnaphthalene, loop testing at temperatures to 450 C showed that the material isomerized at a slow rate. In a loop with a temperature high enough to drive the isomerization, the higher melting point byproducts tended to condense onto cooler surfaces. So, as experienced in loop operation, eventually the internal channels of cooler components such as the waste heat rejection exchanger may become coated or clogged and loop performance will decrease. Thus, pure 1-phenylnaphthalene does not appear to be a fluid that would have a sufficiently long lifetime (years to decades) to be used in a loop at the increased temperatures of interest. Hence a decision was made not to test the ORNL fluid in the loop at Cool Energy Inc. Instead, Cool Energy tested and modeled power conversion from a moderate-temperature solar loop using coupled Stirling engines. Cool Energy analyzed data collected on third and fourth generation SolarHeart Stirling engines operating on a rooftop solar field with a lower temperature (Marlotherm) heat transfer fluid. The operating efficiencies of the Stirling engines were determined at multiple, typical solar conditions, based on data from actual cycle operation. Results highlighted the advantages of inherent thermal energy storage in the power conversion system.

  14. Experience and prospects of oil shale utilization for power production in Russia

    NASA Astrophysics Data System (ADS)

    Potapov, O. P.

    2016-09-01

    Due to termination of work at the Leningrad Shale Deposit, the Russian shale industry has been liquidated, including not only shale mining and processing but also research and engineering (including design) activities, because this deposit was the only commercially operated complex in Russia. UTT-3000 plants with solid heat carrier, created mainly by the Russian specialists under scientific guidance of members of Krzhizhanovsky Power Engineering Institute, passed under the control of Estonian engineers, who, alongside with their operation in Narva, construct similar plants in Kohtla-Jarve, having renamed the Galoter Process into the Enifit or Petroter. The main idea of this article is to substantiate the expediency of revival of the oil shale industry in Russia. Data on the UTT-3000 plants' advantages, shale oils, and gas properties is provided. Information on investments in an UTT-3000 plant and estimated cost of Leningrad oil shale mining at the Mezhdurechensk Strip Mine is given. For more detailed technical and economic assessment of construction of a complex for oil shale extraction and processing, it is necessary to develop a feasibility study, which should be the first stage of this work. Creation of such a complex will make it possible to produce liquid and gaseous power fuel from oil shale of Leningrad Deposit and provide the opportunity to direct for export the released volumes of oil and gas for the purposes of Russian budget currency replenishment.

  15. Proof-of-Concept Experiments on a Gallium-Based Ignitron for Pulsed Power Applications

    NASA Technical Reports Server (NTRS)

    Ali, H. K.; Hanson, V. S.; Polzin, K. A.; Pearson, J. B.

    2015-01-01

    Ignitrons are electrical switching devices that operate at switching times that are on the order of microseconds, can conduct high currents of thousands of amps, and are capable of holding off tens of thousands of volts between pulses. They consist of a liquid metal pool within an evacuated tube that serves both the cathode and the source of atoms and electrons for an arc discharge. Facing the liquid metal pool is an anode suspended above the cathode, with a smaller ignitor electrode tip located just above the surface of the cathode. The ignitron can be charged to significant voltages, with a potential difference of thousands of volts between anode and cathode. When an ignition pulse is delivered from the ignitor electrode to the cathode, a small amount of the liquid metal is vaporized and subsequently ionized, with the high voltage between the anode and cathode causing the gas to bridge the gap between the two electrodes. The electrons and ions move rapidly towards the anode and cathode, respectively, with the ions liberating still more atoms from the liquid metal cathode surface as a high-current plasma arc discharge is rapidly established. This arc continues in a self-sustaining fashion until the potential difference between the anode and cathode drops below some critical value. Ignitrons have been used in a variety of pulsed power applications, including the railroad industry, industrial chemical processing, and high-power arc welding. In addition, they might prove useful in terrestrial power grid applications, serving as high-current fault switches, quickly shunting dangerous high-current or high-voltage spikes safely to ground. The motivation for this work stemmed from the fact that high-power, high-reliability, pulsed power devices like the ignitron have been used for ground testing in-space pulsed electric thruster technologies, and the continued use of ignitrons could prove advantageous to the future development and testing of such thrusters. Previous

  16. Active core profile and transport modification by application of ion Bernstein wave power in the Princeton Beta Experiment-Modification

    SciTech Connect

    LeBlanc, B.; Batha, S.; Bell, R.; Bernabei, S.; Blush, L.; de la Luna, E.; Doerner, R.; Dunlap, J.; England, A.; Garcia, I.; Ignat, D.; Isler, R.; Jones, S.; Kaita, R.; Kaye, S.; Kugel, H.; Levinton, F.; Luckhardt, S.; Mutoh, T.; Okabayashi, M.; Ono, M.; Paoletti, F.; Paul, S.; Petravich, G.; Post-Zwicker, A.; Sauthoff, N.; Schmitz, L.; Sesnic, S.; Takahashi, H.; Talvard, M.; Tighe, W.; Tynan, G.; von Goeler, S.; Woskov, P.; Zolfaghari, A. )

    1995-03-01

    Application of Ion Bernstein Wave Heating (IBWH) into the Princeton Beta Experiment-Modification (PBX-M) [Phys. Fluids B [bold 2], 1271 (1990)] tokamak stabilizes sawtooth oscillations and generates peaked density profiles. A transport barrier, spatially correlated with the IBWH power deposition profile, is observed in the core of IBWH-assisted neutral beam injection (NBI) discharges. A precursor to the fully developed barrier is seen in the soft x-ray data during edge localized mode (ELM) activity. Sustained IBWH operation is conducive to a regime where the barrier supports large [del][ital n][sub [ital e

  17. Preliminary analysis of fluctuations in the received uplink-beacon-power data obtained from the GOLD experiments

    NASA Technical Reports Server (NTRS)

    Jeganathan, M.; Wilson, K. E.; Lesh, J. R.

    1996-01-01

    Uplink data from recent free-space optical communication experiments carried out between the Table Mountain Facility and the Japanese Engineering Test Satellite are used to study fluctuations caused by beam propagation through the atmosphere. The influence of atmospheric scintillation, beam wander and jitter, and multiple uplink beams on the statistics of power received by the satellite is analyzed and compared to experimental data. Preliminary analysis indicates the received signal obeys an approximate lognormal distribution, as predicted by the weak-turbulence model, but further characterization of other sources of fluctuations is necessary for accurate link predictions.

  18. Preliminary Analysis of Fluctuations in the Received Uplink-Beacon-Power Data Obtained From the GOLD Experiments

    NASA Technical Reports Server (NTRS)

    Jeganathan, M.; Wilson, K. E.; Lesh, J. R.

    1996-01-01

    Uplink data from recent free-space optical communication experiments carried out between the Table Mountain Facility and the Japanese Engineering Test Satellite are used to study fluctuations caused by beam propagation through the atmosphere. The influence of atmospheric scintillation, beam wander and jitter, and multiple uplink beams on the statistics of power received by the satellite is analyzed and compared to experimental data. Preliminary analysis indicates the received signal obeys an approximate lognormal distribution, as predicted by the weak-turbulence model, but further characterization of other sources of fluctuations is necessary for accurate link predictions.

  19. Optical pyrometer system for collisionless shock experiments in high-power laser-produced plasmas

    SciTech Connect

    Morita, T.; Sakawa, Y.; Kuramitsu, Y.; Sano, T.; Takabe, H.; Dono, S.; Ide, T.; Tanji, H.; Shiroshita, A.; Shibata, S.; Aoki, H.; Waugh, J. N.; Woolsey, N. C.; Gregory, C. D.

    2012-10-15

    A temporally and spatially resolved optical pyrometer system has been fielded on Gekko XII experiments. The system is based on the self-emission measurements with a gated optical imager (GOI) and a streaked optical pyrometer (SOP). Both detectors measure the intensity of the self-emission from laser-produced plasmas at the wavelength of 450 nm with a bandpass filter with a width of {approx}10 nm in FWHM. The measurements were calibrated with different methods, and both results agreed with each other within 30% as previously reported [T. Morita et al., Astrophys. Space Sci. 336, 283 (2011)]. As a tool for measuring the properties of low-density plasmas, the system is applicable for the measurements of the electron temperature and density in collisionless shock experiments [Y. Kuramitsu et al., Phys. Rev. Lett. 106, 175002 (2011)].

  20. Introduction to machine learning.

    PubMed

    Baştanlar, Yalin; Ozuysal, Mustafa

    2014-01-01

    The machine learning field, which can be briefly defined as enabling computers make successful predictions using past experiences, has exhibited an impressive development recently with the help of the rapid increase in the storage capacity and processing power of computers. Together with many other disciplines, machine learning methods have been widely employed in bioinformatics. The difficulties and cost of biological analyses have led to the development of sophisticated machine learning approaches for this application area. In this chapter, we first review the fundamental concepts of machine learning such as feature assessment, unsupervised versus supervised learning and types of classification. Then, we point out the main issues of designing machine learning experiments and their performance evaluation. Finally, we introduce some supervised learning methods.

  1. Analysis and evaluation of ZPPR (Zero Power Physics Reactor) critical experiments for a 100 kilowatt-electric space reactor

    SciTech Connect

    McFarlane, H.F.; Collins, P.J.; Carpenter, S.G.; Olsen, D.N.; Smith, D.M.; Schaefer, R.W. ); Doncals, R.A.; Andre, S.V.; Porter, C.A. ); Cowan, C.L; Stewart, S.L.; Protsik, R. . Astro Space Div.)

    1990-01-01

    ZPPR critical experiments were used for physics testing the reactor design of the SP-100, a 100-kW thermoelectric LMR that is being developed to provide electrical power for space applications. These tests validated all key physics characteristics of the design, including the ultimate safety in the event of a launch or re-entry accident. Both the experiments and the analysis required the use of techniques not previously applied to fast reactor designs. A few significant discrepancies between the experimental and calculated results leave opportunities for further optimization. An initial investigation has been made into application of the ZPPR-20 results, along with those of other relevant integral data, to the SP-100 design. 13 refs., 5 figs., 7 tabs.

  2. Design and experiment of wireless power transfer systems via electromagnetic field near-zone region

    NASA Astrophysics Data System (ADS)

    Wang, Wensong; Chen, Yinchao; Yang, Shuhui; Chan, Allan; Wang, Yi; Cao, Qunsheng

    2016-10-01

    This paper presents the fundamental principle, circuit implementation and measurement of wireless power transfer (WPT) technology through both Colpitts and Hartley oscillation prototype circuits. The Colpitts and Hartley oscillation prototypes are used to convert DC voltages into AC ones. Meanwhile, both half- and full-wave rectification circuits are designed correspondingly for AC/DC voltage conversion. In addition, the orientation and distance effects between the transmitting and receiving coils are investigated. The self-inductance, mutual-inductance and coupling coefficient for the coupled inductors are extracted as a function of distance and frequency by using an equivalent T-circuit network and a derived Z-parameter matrix. The proposed WPT systems operate at around 3.6 MHz and the transferred voltage is measured at the WPT receiving terminal. The measured results indicate that the two proposed WPT systems can operate properly for potential short-distance applications.

  3. A compact ultranarrow high-power laser system for experiments with 578 nm ytterbium clock transition

    SciTech Connect

    Cappellini, G.; Lombardi, P.; Mancini, M.; Pagano, G.; Pizzocaro, M.; Fallani, L.; Catani, J.

    2015-07-15

    In this paper, we present the realization of a compact, high-power laser system able to excite the ytterbium clock transition at 578 nm. Starting from an external-cavity laser based on a quantum dot chip at 1156 nm with an intra-cavity electro-optic modulator, we were able to obtain up to 60 mW of visible light at 578 nm via frequency doubling. The laser is locked with a 500 kHz bandwidth to an ultra-low-expansion glass cavity stabilized at its zero coefficient of thermal expansion temperature through an original thermal insulation and correction system. This laser allowed the observation of the clock transition in fermionic {sup 173}Y b with a <50 Hz linewidth over 5 min, limited only by a residual frequency drift of some 0.1 Hz/s.

  4. Integrating Variable Renewable Energy in Electric Power Markets: Best Practices from International Experience (Fact Sheet)

    SciTech Connect

    Not Available

    2014-10-01

    Many countries--reflecting very different geographies, markets, and power systems--are successfully managing high levels of variable renewable energy (RE) on the grid. Australia (South Australia), Denmark, Germany, Ireland, Spain, and the United States (Colorado and Texas), for example, have effectively integrated variable RE utilizing diverse approaches. Analysis of the results from these case studies reveals a wide range of mechanisms that can be used to accommodate high penetrations of variable RE (e.g., from new market designs to centralized planning). Nevertheless, the myriad approaches collectively suggest that governments can best enable variable RE grid integration by implementing best practices in five areas of intervention: lead public engagement, particularly for new transmission; coordinate and integrate planning; develop rules for market evolution that enable system flexibility; expand access to diverse resources and geographic footprint of operations; and improve system operations.

  5. The photovoltaic-powered water desalination plant 'SORO' design, start up, operating experience

    NASA Astrophysics Data System (ADS)

    Neuhaeusser, G.; Mohn, J.; Petersen, G.

    Design features, operational parameters, and test results of a year of operation of the SORO prototype photovoltaic (PV) reverse osmosis salt water desalinization plant are described. Chemicals are added to the salt water to control the pH, prevent formation of compounds which could plug the flow system, and kill bacteria and slime which might grow in the solution. The water is pressurized and forced into contact with membranes which separate the fresh water from the brackish or sea water. The flow rate in the project was 180 l/h, with the main electrical energy load being the high pressure pump and the well pump. Batteries are charged before current is switched to power the desalinization system. The plant yielded 1.50 cu of fresh water/day and is concluded to be a viable design for scale-up to larger production figures, besides being economically competitive with solar desalinization installations where the salt content is 2000 ppm.

  6. Operating experience with a 250 kW el molten carbonate fuel cell (MCFC) power plant

    NASA Astrophysics Data System (ADS)

    Bischoff, Manfred; Huppmann, Gerhard

    The MTU MCFC program is carried out by a European consortium comprising the German companies MTU Friedrichshafen GmbH, Ruhrgas AG and RWE Energie AG as well as the Danish company Energi E2 S/A. MTU acts as consortium leader. The company shares a license and technology exchange agreement with Fuel Cell Energy Inc., Danbury, CT, USA (formerly Energy Research Corp., ERC). The program was started in 1990 and covers a period of about 10 years. The highlights of this program to date are: Considerable improvements regarding component stability have been demonstrated on laboratory scale. Manufacturing technology has been developed to a point which enables the consortium to fabricate the porous components on a 250 cm 2 scale. Several large area stacks with 5000-7660 cm 2 cell area and a power range of 3-10 kW have been tested at the facilities in Munich (Germany) and Kyndby (Denmark). These stacks have been supplied by FCE. As far as the system design is concerned it was soon realized that conventional systems do not hold the promise for competitive power plants. A system analysis led to the conclusion that a new innovative design approach is required. As a result the "Hot Module" system was developed by the consortium. A Hot Module combines all the components of a MCFC system operating at the similar temperatures and pressures into a common thermally insulated vessel. In August 1997 the consortium started its first full size Hot Module MCFC test plant at the facilities of Ruhrgas AG in Dorsten, Germany. The stack was assembled in Munich using 292 cell packages purchased from FCE. The plant is based on the consortium's unique and proprietary "Hot Module" concept. It operates on pipeline natural gas and was grid connected on 16 August 1997. After a total of 1500 h of operation, the plant was intentionally shut down in a controlled manner in April 1998 for post-test analysis. The Hot Module system concept has demonstrated its functionality. The safety concept has been

  7. Volume 1 - Introduction

    EPA Pesticide Factsheets

    An introduction to the Emissions Inventory Improvement Program (EIIP) materials. Describes EIIP development, use of EIIP, inventory staff training, and planning, development, documentation, and reporting of inventories.

  8. Experience from design, prototyping and production of a DC-DC conversion powering scheme for the CMS Phase-1 Pixel Upgrade

    NASA Astrophysics Data System (ADS)

    Feld, Lutz; Karpinski, Waclaw; Klein, Katja; Lipinski, Martin; Preuten, Marius; Rauch, Max; Schmitz, Stefan; Wlochal, Michael

    2017-02-01

    The CMS pixel detector will be replaced during the technical stop 2016/2017. To allow the new pixel detector to be powered with the legacy cable plant and power supplies, a novel powering scheme based on DC-DC conversion will be employed. After the successful conclusion of an extensive development and prototyping phase, mass production of 1800 DC-DC converters as well as motherboards and other power PCBs has now been completed. This contribution reviews the lessons learned from the development of the power system for the Phase-1 pixel detector, and summarizes the experience gained from the production phase.

  9. Introduction of a National Minimum Wage Reduced Depressive Symptoms in Low-Wage Workers: A Quasi-Natural Experiment in the UK.

    PubMed

    Reeves, Aaron; McKee, Martin; Mackenbach, Johan; Whitehead, Margaret; Stuckler, David

    2016-04-04

    Does increasing incomes improve health? In 1999, the UK government implemented minimum wage legislation, increasing hourly wages to at least £3.60. This policy experiment created intervention and control groups that can be used to assess the effects of increasing wages on health. Longitudinal data were taken from the British Household Panel Survey. We compared the health effects of higher wages on recipients of the minimum wage with otherwise similar persons who were likely unaffected because (1) their wages were between 100 and 110% of the eligibility threshold or (2) their firms did not increase wages to meet the threshold. We assessed the probability of mental ill health using the 12-item General Health Questionnaire. We also assessed changes in smoking, blood pressure, as well as hearing ability (control condition). The intervention group, whose wages rose above the minimum wage, experienced lower probability of mental ill health compared with both control group 1 and control group 2. This improvement represents 0.37 of a standard deviation, comparable with the effect of antidepressants (0.39 of a standard deviation) on depressive symptoms. The intervention group experienced no change in blood pressure, hearing ability, or smoking. Increasing wages significantly improves mental health by reducing financial strain in low-wage workers. © 2016 The Authors. Health Economics published by John Wiley & Sons Ltd.

  10. Introduction: The Pan-Eurasian Experiment (PEEX) - multi-disciplinary, multi-scale and multi-component research and capacity building initiative

    NASA Astrophysics Data System (ADS)

    Kulmala, M.; Lappalainen, H. K.; Petäjä, T.; Kurten, T.; Kerminen, V.-M.; Viisanen, Y.; Hari, P.; Bondur, V.; Kasimov, N.; Kotlyakov, V.; Matvienko, G.; Baklanov, A.; Guo, H. D.; Ding, A.; Hansson, H.-C.; Zilitinkevich, S.

    2015-08-01

    The Pan-Eurasian Experiment (PEEX) is a multi-disciplinary, multi-scale and multi-component research, research infrastructure and capacity building program. PEEX has originated from a bottom-up approach by the science communities, and is aiming at resolving the major uncertainties in Earth System Science and global sustainability issues concerning the Arctic and boreal Pan-Eurasian regions, as well as China. The vision of PEEX is to solve interlinked global grand challenges influencing human well-being and societies in northern Eurasia and China. Such challenges include climate change, air quality, biodiversity loss, urbanization, chemicalization, food and fresh water availability, energy production and use of natural resources by mining, industry, energy production and transport sectors. Our approach is integrative and supra-disciplinary, recognizing the important role of the Arctic and boreal ecosystems in the Earth system. The PEEX vision includes establishing and maintaining long-term, coherent and coordinated research activities as well as continuous, comprehensive research and educational infrastructures and related capacity building across the PEEX domain. In this paper we present the PEEX structure, summarize its motivation, objectives and future outlook.

  11. Experiments to investigate direct containment heating phenomena with scaled models of the Calvert Cliffs Nuclear Power Plant

    SciTech Connect

    Blanchat, T.K.; Pilch, M.M.; Allen, M.D.

    1997-02-01

    The Surtsey Test Facility is used to perform scaled experiments simulating High Pressure Melt Ejection accidents in a nuclear power plant (NPP). The experiments investigate the effects of direct containment heating (DCH) on the containment load. The results from Zion and Surry experiments can be extrapolated to other Westinghouse plants, but predicted containment loads cannot be generalized to all Combustion Engineering (CE) plants. Five CE plants have melt dispersal flow paths which circumvent the main mitigation of containment compartmentalization in most Westinghouse PWRs. Calvert Cliff-like plant geometries and the impact of codispersed water were addressed as part of the DCH issue resolution. Integral effects tests were performed with a scale model of the Calvert Cliffs NPP inside the Surtsey test vessel. The experiments investigated the effects of codispersal of water, steam, and molten core stimulant materials on DCH loads under prototypic accident conditions and plant configurations. The results indicated that large amounts of coejected water reduced the DCH load by a small amount. Large amounts of debris were dispersed from the cavity to the upper dome (via the annular gap). 22 refs., 84 figs., 30 tabs.

  12. Interferometric adaptive optics for high-power laser beam correction in fast ignition experiments

    SciTech Connect

    Homoelle, D C; Baker, K L; Patel, P K; Utterback, E; Rushford, M C; Siders, C W; Barty, C J

    2009-10-22

    We present the design for a high-speed adaptive optics system that will be used to achieve the necessary laser pointing and beam-quality performance for initial fast-ignition coupling experiments. This design makes use of a 32 x 32 pixellated MEMS device as the adaptive optic and a two-channel interferometer as the wave-front sensor. We present results from a system testbed that demonstrates improvement of the Strehl ratio from 0.09 to 0.61 and stabilization of beam pointing from {approx}75{micro}rad to <2{micro}rad.

  13. A 15-T Pulsed Solenoid for a High-Power Target Experiment

    SciTech Connect

    Kirk,H.G.; Efthymiopoulos, I.; Fabich, A.; Haug, R.; Titus, P.; McDonald, K. T.; Bennett, J. R. J.; Edgecock, T. R.

    2006-06-26

    The MERIT experiment, to be run at CERN in 2007, is a proof-of-principle test for a target system that converts a 4-MW proton beam into a high-intensity muon beam for either a neutrino factory complex or a muon collider. The target system is based on a free mercury jet that intercepts an intense proton beam inside a 15-T solenoidal magnetic field. Here, we describe the design and initial performance of the 15-T, liquid-nitrogen-precooled, copper solenoid magnet.

  14. A 15-T Pulsed Solenoid for a High-Power Target Experiment

    SciTech Connect

    Kirk,H.G.; Efthymiopoulos, I.; Fabich, A.; Haug, F.; Pereira, H.; Titus, P.; McDonald, K.T.; Bennett, J.R.J.

    2008-06-23

    The MERIT experiment, which ran at CERN in 2007, is a proof-of-principle test for a target system that converts a 4-MW proton beam into a high-intensity muon beam for either a neutrino factory complex or a muon collider. The target system is based on a free mercury jet that intercepts an intense proton beam inside a 15-T solenoidal magnetic field. Here, we describe the design and performance of the 15-T, liquid-nitrogen-precooled, copper solenoid magnet.

  15. The relationship of aerobic capacity, anaerobic peak power and experience to performance in CrossFit exercise.

    PubMed

    Bellar, D; Hatchett, A; Judge, L W; Breaux, M E; Marcus, L

    2015-11-01

    CrossFit is becoming increasingly popular as a method to increase fitness and as a competitive sport in both the Unites States and Europe. However, little research on this mode of exercise has been performed to date. The purpose of the present investigation involving experienced CrossFit athletes and naïve healthy young men was to investigate the relationship of aerobic capacity and anaerobic power to performance in two representative CrossFit workouts: the first workout was 12 minutes in duration, and the second was based on the total time to complete the prescribed exercise. The participants were 32 healthy adult males, who were either naïve to CrossFit exercise or had competed in CrossFit competitions. Linear regression was undertaken to predict performance on the first workout (time) with age, group (naïve or CrossFit athlete), VO2max and anaerobic power, which were all significant predictors (p < 0.05) in the model. The second workout (repetitions), when examined similarly using regression, only resulted in CrossFit experience as a significant predictor (p < 0.05). The results of the study suggest that a history of participation in CrossFit competition is a key component of performance in CrossFit workouts which are representative of those performed in CrossFit, and that, in at least one these workouts, aerobic capacity and anaerobic power are associated with success.

  16. Ultrasonic power transfer from a spherical acoustic wave source to a free-free piezoelectric receiver: Modeling and experiment

    NASA Astrophysics Data System (ADS)

    Shahab, S.; Gray, M.; Erturk, A.

    2015-03-01

    Contactless powering of small electronic components has lately received growing attention for wireless applications in which battery replacement or tethered charging is undesired or simply impossible, and ambient energy harvesting is not a viable solution. As an alternative to well-studied methods of contactless energy transfer, such as the inductive coupling method, the use of ultrasonic waves transmitted and received by piezoelectric devices enables larger power transmission distances, which is critical especially for deep-implanted electronic devices. Moreover, energy transfer by means of acoustic waves is well suited in situations where no electromagnetic fields are allowed. The limited literature of ultrasonic acoustic energy transfer is mainly centered on proof-of-concept experiments demonstrating the feasibility of this method, lacking experimentally validated modeling efforts for the resulting multiphysics problem that couples the source and receiver dynamics with domain acoustics. In this work, we present fully coupled analytical, numerical, and experimental multiphysics investigations for ultrasonic acoustic energy transfer from a spherical wave source to a piezoelectric receiver bar that operates in the 33-mode of piezoelectricity. The fluid-loaded piezoelectric receiver under free-free mechanical boundary conditions is shunted to an electrical load for quantifying the electrical power output for a given acoustic source strength of the transmitter. The analytical acoustic-piezoelectric structure interaction modeling framework is validated experimentally, and the effects of system parameters are reported along with optimal electrical loading and frequency conditions of the receiver.

  17. Ultrasonic power transfer from a spherical acoustic wave source to a free-free piezoelectric receiver: Modeling and experiment

    SciTech Connect

    Shahab, S.; Gray, M.; Erturk, A.

    2015-03-14

    Contactless powering of small electronic components has lately received growing attention for wireless applications in which battery replacement or tethered charging is undesired or simply impossible, and ambient energy harvesting is not a viable solution. As an alternative to well-studied methods of contactless energy transfer, such as the inductive coupling method, the use of ultrasonic waves transmitted and received by piezoelectric devices enables larger power transmission distances, which is critical especially for deep-implanted electronic devices. Moreover, energy transfer by means of acoustic waves is well suited in situations where no electromagnetic fields are allowed. The limited literature of ultrasonic acoustic energy transfer is mainly centered on proof-of-concept experiments demonstrating the feasibility of this method, lacking experimentally validated modeling efforts for the resulting multiphysics problem that couples the source and receiver dynamics with domain acoustics. In this work, we present fully coupled analytical, numerical, and experimental multiphysics investigations for ultrasonic acoustic energy transfer from a spherical wave source to a piezoelectric receiver bar that operates in the 33-mode of piezoelectricity. The fluid-loaded piezoelectric receiver under free-free mechanical boundary conditions is shunted to an electrical load for quantifying the electrical power output for a given acoustic source strength of the transmitter. The analytical acoustic-piezoelectric structure interaction modeling framework is validated experimentally, and the effects of system parameters are reported along with optimal electrical loading and frequency conditions of the receiver.

  18. The relationship of aerobic capacity, anaerobic peak power and experience to performance in CrossFit exercise

    PubMed Central

    Hatchett, A; Judge, LW; Breaux, ME; Marcus, L

    2015-01-01

    CrossFit is becoming increasingly popular as a method to increase fitness and as a competitive sport in both the Unites States and Europe. However, little research on this mode of exercise has been performed to date. The purpose of the present investigation involving experienced CrossFit athletes and naïve healthy young men was to investigate the relationship of aerobic capacity and anaerobic power to performance in two representative CrossFit workouts: the first workout was 12 minutes in duration, and the second was based on the total time to complete the prescribed exercise. The participants were 32 healthy adult males, who were either naïve to CrossFit exercise or had competed in CrossFit competitions. Linear regression was undertaken to predict performance on the first workout (time) with age, group (naïve or CrossFit athlete), VO2max and anaerobic power, which were all significant predictors (p < 0.05) in the model. The second workout (repetitions), when examined similarly using regression, only resulted in CrossFit experience as a significant predictor (p < 0.05). The results of the study suggest that a history of participation in CrossFit competition is a key component of performance in CrossFit workouts which are representative of those performed in CrossFit, and that, in at least one these workouts, aerobic capacity and anaerobic power are associated with success. PMID:26681834

  19. Complication rates associated with the introduction of new technology into the clinical health care setting correlate with operator experience and training

    NASA Astrophysics Data System (ADS)

    See, William A.; Cooper, Christopher S.; Fisher, Ronald J.

    1994-12-01

    At three months and at one year following completion of a formal training course in laparoscopic urologic surgery, course participants were surveyed as to their interim laparoscopic experience. Data regarding practice setting, subspecialization, course attendance (alone or with a partner), nature and training of surgical assistant, and additional training subsequent to the course was collected. These variables were then correlated with information on the number and nature of surgical complications encountered subsequent to the course. In the three months following course completion, surgeons who performed clinical procedures without additional training were 3.39 times more likely to have at least one complication compared to surgeons who sought additional training (p equals 0.030). One year following course completion surgeons who had attended the training course alone, were in solo practice, or performed laparoscopic surgery with a variable assistant, were, respectively, 4.85, 7.74, and 4.80 times more likely to have had a complication than their counterparts who attend the course with a partner, were in group practice, or who operated with the same assistant (p equals 0.004, p equals 0.001, and p equals 0.002). At both three months and one year following training, laparoscopic complication rates of individual surgeons (number of complications/number of cases) demonstrated a highly significant inverse correlation with the number of laparoscopic procedures performed. These data suggest that the rate of complications associated with the clinical `learning' curve can be decreased by additional education following an initial course in laparoscopy. An ongoing clinical association with surgeons performing similar procedures appears to decrease long-term complication rates. Findings from this study argue for the regulation of the clinical application of new surgical skills acquired in the post-residency setting, and maintenance of the new skills through continuing

  20. Educational Experiences in Oceanography through Hands-On Involvement with Surface Drifters: an Introduction to Ocean Currents, Engineering, Data Collection, and Computer Science

    NASA Astrophysics Data System (ADS)

    Anderson, T.

    2015-12-01

    The Northeast Fisheries Science Center's (NEFSC) Student Drifters Program is providing education opportunities for students of all ages. Using GPS-tracked ocean drifters, various educational institutions can provide students with hands-on experience in physical oceanography, engineering, and computer science. In building drifters many high school and undergraduate students may focus on drifter construction, sometimes designing their own drifter or attempting to improve current NEFSC models. While learning basic oceanography younger students can build drifters with the help of an educator and directions available on the studentdrifters.org website. Once drifters are deployed, often by a local mariner or oceanographic partner, drifter tracks can be visualised on maps provided at http://nefsc.noaa.gov/drifter. With the lesson plans available for those interested in computer science, students may download, process, and plot the drifter position data with basic Python code provided. Drifter tracks help students to visualize ocean currents, and also allow them to understand real particle tracking applications such as in search and rescue, oil spill dispersion, larval transport, and the movement of injured sea animals. Additionally, ocean circulation modelers can use student drifter paths to validate their models. The Student Drifters Program has worked with over 100 schools, several of them having deployed drifters on the West Coast. Funding for the program often comes from individual schools and small grants but in the future will preferably come from larger government grants. NSF, Sea-Grant, NOAA, and EPA are all possible sources of funding, especially with the support of multiple schools and large marine education associations. The Student Drifters Program is a unique resource for educators, students, and scientists alike.

  1. Study of the power exhaust and the role of impurities in the Torus Experiment for Technological Oriented Research (TEXTOR)

    NASA Astrophysics Data System (ADS)

    Pospieszczyk, A.; Samm, U.; Bertschinger, G.; Bogen, P.; Claassen, H. A.; Esser, G.; Gerhauser, H.; Hey, J. D.; Hintz, E.; Könen, L.; Lie, Y. T.; Rusbüldt, D.; Schorn, R. P.; Schweer, B.; Tokar, M.; Winter, J.; Durodie, F.; Koch, R.; Messiaen, A. M.; Ongena, J.; Telesca, G.; Vanderplas, R. E.; van Nieuwenhove, R.; van Oost, G.; van Wassenhove, G.; Weynants, R. R.

    1995-06-01

    Controlled application of radiating impurities in the boundary layer can help to solve the problem of power exhaust in a fusion reactor. Experiments in the Torus Experiment for Technological Oriented Research (TEXTOR) [J. Nucl. Mater. 145-147, 3 (1987)] are presented, which show that impurities with sufficiently high atomic number (≥10) are well suited for this purpose. Injection of neon, a gas recycled at the wall, enabled the establishment of a quasistationary radiating boundary layer, from which more than 90% of the input power was emitted. The required neon density was established by means of a feedback control for the neon influx, which was made possible by the toroidal pump limiter Advanced Limiter Technology (ALT-II) [J. Nucl. Mater. 162-164, 115 (1989)]. Alternatively, or in addition silicon was introduced as a condensing element—either by surface reactions from siliconized walls or by silane [SiH(D)4] injection—which revealed self-controlling mechanisms effective with changing plasma parameters. In neither case was a significant increase in central impurity concentration observed and good energy confinement time was maintained up to the highest plasma densities. Based on the information from various refined edge diagnostics, the underlying mechanisms for the buildup of a radiating plasma mantle and the interdependences of neon and silicon on other impurities are discussed.

  2. Development of High-Field ST Merging Experiment: TS-U for High Power Reconnection Heating

    NASA Astrophysics Data System (ADS)

    Ono, Y.; Koike, H.; Tanabe, H.; Himeno, S.; Ishida, S.; Kimura, K.; Kawanami, M.; Narita, M.; Takahata, Y.; Yokoyama, T.; Inomoto, M.; Cheng, C. Z.

    2016-10-01

    We are developing high-magnetic field ST merging/ reconnection experiment TS-U with Brec = 0.3-0.5T, based on our scaling law of reconnection heating energy proportional to square of the reconnecting (poloidal) magnetic field Brec. This scaling law indicates that the high-Brec ST merging will heat ions to the burning plasma regime without using any additional heating facility. Its mechanism is that the reconnection outflow accelerates mainly ions up to the poloidal Alfven speed like the Sweet-Parker model. The shock-like density pileups thermalize the accelerated ions in the down-streams in agreement with recent solar satellite observations and PIC simulation results. We already documented significant ion heating of spheromak and ST mergings up to 0.25keV in TS-3 and 1.2keV in MAST, leading us to the high-Brec merging experiment TS-U. It is noted that high-resolution (>500 channel) 2D measurements of ion and electron temperatures is being developed for the purpose of solving all acceleration and heating effects of magnetic reconnection, such as the huge outflow heating of ions in the downstream and electron heating localized at the X-point.

  3. A Proof-of-Principal Experiment for a High-Power Target System

    SciTech Connect

    Kirk,H.G.; Samulyak, R.; Simos, N.; Tsang, T.; Efthymiopoulos, I.; Fabich, A.; Haseroth, H.; Haug, F.; Lettry, J.; Graves, V. B.; Spampinato, P. T.; McDonald, K. T.; Bennett, J. R. J.; Edgecock, T. R.

    2006-06-26

    The MERIT experiment, to be run at CERN in 2007, is a proof-of-principle test for a target system that converts a 4-MW proton beam into a high-intensity muon beam for either a neutrino factory complex or a muon collider. The target system is based on a free mercury jet that intercepts an intense proton beam inside a 15-T solenoidal magnetic field. A muon collider or neutrino factory requires intense beams of muons, which are obtained from the decay of pions. Pion production by a proton beam is maximized by use of a high-Z target such as mercury. A liquid jet target has the advantages over a solid target that a flowing jet can readily remove heat and that it is immune to radiation damage. However the proton beam energy disrupts the jet and the system could be operationally unstable. Efficient capture of low-energy secondary pions (for transfer into the subsequent muon accelerator complex) requires that the target system be immersed in a strong magnetic field of solenoidal geometry. This magnetic field should stabilize the mercury flow in regions of nearly uniform field, but it perturbs the liquid metal jet as it enters the field. Hence, the behavior of the mercury jet plus an intense proton beam inside a strong magnetic field needs to be understood better before resources are committed to a larger facility. The MERIT experiment is to be conducted at CERN in 2007 for this purpose.

  4. All-Russia Thermal Engineering Institute experience in using difficult to burn fuels in the power industry

    NASA Astrophysics Data System (ADS)

    Tugov, A. N.; Ryabov, G. A.; Shtegman, A. V.; Ryzhii, I. A.; Litun, D. S.

    2016-07-01

    This article presents the results of the research carried out at the All-Russia Thermal Engineering Institute (VTI) aimed at using saline coal, municipal solid waste and bark waste, sunflower husk, and nesting/ manure materials from poultry farms. The results of saline coal burning experience in Troitsk and Verkhny Tagil thermal power plants (TPP) show that when switching the boiler to this coal, it is necessary to take into account its operating reliability and environmental safety. Due to increased chlorine content in saline coal, the concentration of hydrogen chloride can make over 500 mg/m3. That this very fact causes the sharp increase of acidity in sludge and the resulting damage of hydraulic ash removal system equipment at these power stations has been proven. High concentration of HCl can trigger damage of the steam superheater due to high-temperature corrosion and result in a danger of low-temperature corrosion of air heating surfaces. Besides, increased HCl emissions worsen the environmental characteristics of the boiler operation on the whole. The data on waste-to-energy research for municipal solid waste (MSW) has been generalized. Based on the results of mastering various technologies of MSW thermal processing at special plants nos. 2 and 4 in Moscow, as well as laboratory, bench, and industrial studies, the principal technical solutions to be implemented in the modern domestic thermal power plant with the installed capacity of 24 MW and MSW as the primary fuel type has been developed. The experience of the VTI in burning various kinds of organic waste—bark waste, sunflower husk, and nesting/manure materials from poultry farms—has been analyzed.

  5. MIR Solar Array Return Experiment: Power Performance Measurements and Molecular Contamination Analysis Results

    NASA Technical Reports Server (NTRS)

    Visentine, James; Kinard, William; Brinker, David; Scheiman, David; Banks, Bruce; Albyn, Keith; Hornung, Steve; See, Thomas

    2001-01-01

    A solar array segment was recently removed from the Mir core module and returned for ground-based analysis. The segment, which is similar to the ones the Russians have provided for the FGB and Service Modules, was microscopically examined and disassembled by US and Russian science teams. Laboratory analyses have shown the segment to he heavily contaminated by an organic silicone coating, which was converted to an organic silicate film by reactions with atomic oxygen within the. orbital flight environment. The source of the contaminant was a silicone polymer used by the Russians as an adhesive and bonding agent during segment construction. During its life cycle, the array experienced a reduction in power performance from approx. 12%, when it was new and first deployed, to approx. 5%, when it was taken out of service. However, current-voltage measurements of three contaminated cells and three pristine, Russian standard cells have shown that very little degradation in solar array performance was due to the silicate contaminants on the solar cell surfaces. The primary sources of performance degradation is attributed to "thermal hot-spotting" or electrical arcing; orbital debris and micrometeoroid impacts; and possibly to the degradation of the solar cells and interconnects caused by radiation damage from high energy protons and electrons.

  6. The small community solar thermal power experiment. Parabolic dish technology for industrial process heat application

    NASA Technical Reports Server (NTRS)

    Polzien, R. E.; Rodriguez, D.

    1981-01-01

    Aspects of incorporating a thermal energy transport system (ETS) into a field of parabolic dish collectors for industrial process heat (IPH) applications were investigated. Specific objectives are to: (1) verify the mathematical optimization of pipe diameters and insulation thicknesses calculated by a computer code; (2) verify the cost model for pipe network costs using conventional pipe network construction; (3) develop a design and the associated production costs for incorporating risers and downcomers on a low cost concentrator (LCC); (4) investigate the cost reduction of using unconventional pipe construction technology. The pipe network design and costs for a particular IPH application, specifically solar thermally enhanced oil recovery (STEOR) are analyzed. The application involves the hybrid operation of a solar powered steam generator in conjunction with a steam generator using fossil fuels to generate STEOR steam for wells. It is concluded that the STEOR application provides a baseline pipe network geometry used for optimization studies of pipe diameter and insulation thickness, and for development of comparative cost data, and operating parameters for the design of riser/downcomer modifications to the low cost concentrator.

  7. Design of Biomass Gasification and Combined Heat and Power Plant Based on Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Haydary, Juma; Jelemenský, Ľudovít

    Three types of wooden biomass were characterized by calorimetric measurements, proximate and elemental analysis, thermogravimetry, kinetics of thermal decomposition and gas composition. Using the Aspen steady state simulation, a plant with the processing capacity of 18 ton/h of biomass was modelled based on the experimental data obtained under laboratory conditions. The gasification process has been modelled in two steps. The first step of the model describes the thermal decomposition of the biomass based on a kinetic model and in the second step, the equilibrium composition of syngas is calculated by the Gibbs free energy of the expected components. The computer model of the plant besides the reactor model includes also a simulation of other plant facilities such as: feed drying employing the energy from the process, ash and tar separation, gas-steam cycle, and hot water production heat exchangers. The effect of the steam to air ratio on the conversion, syngas composition, and reactor temperature was analyzed. Employment of oxygen and air for partial combustion was compared. The designed computer model using all Aspen simulation facilities can be applied to study different aspects of biomass gasification in a Combined Heat and Power plant.

  8. Advances in Isentropic Compression Experiments (ICE) Using High Explosive Pulsed Power

    NASA Astrophysics Data System (ADS)

    Tasker, D. G.; Goforth, J. H.; Oona, H.; Fowler, C. M.; King, J. C.; Herrera, D.; Torres, D.

    2004-07-01

    We are developing a prototype high explosive pulsed power (HEPP) system to obtain isentropic Equation of State (EOS) data with the Asay technique. Our prototype system comprises a flat-plate explosive driven magnetic flux compression generator (FCG), an explosively formed fuse (EFF) opening switch, and a series of explosively-actuated closing switches. The FCG is capable of producing ˜10 MA into suitable loads, and, at a length of 216 mm, the EFF will sustain voltages in excess of 200 kV. The load has an inductance of ˜3 to 10 nH, allowing up to ˜7 MA to be delivered in times of ˜0.5 μs. This prototype will produce isentropic compression profiles in excess of 2 Mbar in a material such as tungsten. We will obtain isentropic EOS data for copper at pressures up to ˜1.5 Mbar with the prototype system, immediately after this conference; eventually we plan to reach several tens of Mbar with larger, more advanced systems.

  9. Ground testing of array modules for the photovoltaic array space power (PASP) experiment

    NASA Technical Reports Server (NTRS)

    Morris, Robert K.; Grier, Norman T.

    1987-01-01

    One of the objectives of the PASP experiment is the verification of cost-effective ground simulations of high-voltage solar array/space-environment interactions by comparing the results with flight data. These ground tests consist of electrical characterization, thermal cycling, and plasma chamber simulations. The results of the latter tests are reported. Five array modules which are representative of the flight arrays were tested. The module types are planar silicon, planar gallium arsenide, planar silicon passivated with an integrally deposited cover glass, mini-Cassegrainian concentrator, and SLATS concentrator. The modules were biased to -1000 V in varying plasma densities from 4 x 103 to 2 x 105 e-/cu cm. Each array was tested in both dark and illuminated conditions with a load resistance. In addition to monitoring arcing during the plasma tests, the arrays were visually inspected and electrically characterized before and after exposure in the chamber. The electrical results are tabulated and briefly discussed.

  10. a High-Power Microwave Transmission and Launching System for Plasma Heating on the Ornl ATF Experiment.

    NASA Astrophysics Data System (ADS)

    Bigelow, Timothy Stuart

    1990-01-01

    A high power microwave transmission and launching system has been developed for Electron Cyclotron Heating (ECH) of plasmas in the Advanced Toroidal Facility (ATF) fusion confinement experiment at Oak Ridge National Laboratory. Microwave power is generated by two 53 GHz, 200 KW cw gyrotron tubes. A waveguide transmission and launching system for each tube has been designed and built with the goal of depositing the maximum amount of power at the center of the plasma. Centralized deposition of the microwave power is possible at high frequencies by use of a launcher with a narrow radiated beamwidth and carefully controlled polarization to couple to electrons at the cyclotron resonant surface. In order for the transmission systems to operate at this high frequency and power level, highly over-moded waveguides have been used to reduce losses and arcing. To produce a narrow, polarized beam, the waveguide system was designed for minimum parasitic mode conversion so that the launcher can operate with nearly a single input mode. Several waveguide components were developed for the waveguide system including: a waveguide mode analyzing directional coupler, a rippled-wall mode converter, improved miter bends, and vacuum pumpout sections. To determine the mode purity of these components and efficiency of the system, laboratory measurement techniques for over-moded waveguide component evaluation were developed. A polarization controlled beam launcher was developed which launches a ~ 12 cm (-20 dB) beamwidth linearly polarized beam. The plane of polarization can be rotated to allow optimum coupling to either extra-ordinary or ordinary plasma waves. The transmission and launching system performed reliably. Modeling of electromagnetic wave propagation in the ATF plasma and measurement of beam absorption and plasma parameters were performed to determine the overall effectiveness of the ECH system. A coupled-mode wave propagation code was written to investigate the effect of magnetic

  11. The overvoltage protection module for the power supply system for the pixel detector at Belle II experiment at KEK

    SciTech Connect

    Kapusta, P.; Kisielewski, B.

    2015-07-01

    In this paper the overvoltage protection modules (OVP) for the power supply (PS) system of the Belle II pixel detector (PXD) are described. The aim of the OVP is to protect the detector and associated electronics against overvoltage conditions. Most critical in the system are voltages supplying the front-end ASICs. The PXD detector consists of the DEPFET sensor modules with integrated chips like the Drain Current Digitizer, the Switcher and the Data Handling Processor. These chips, implemented in modern sub-micron technologies, are quite vulnerable to variations in the supply voltages. The PXD will be placed in the Belle II experiment as close as possible to the interaction point, where access during experiment is very limited or even impossible, thus the PS and OVP systems exploit the remote-sensing method. Overvoltage conditions are due to failures of the PS itself, wrong setting of the output voltages or transient voltages coming out of hard noisy environment of the experiment. The OVP modules are parts of the PS modules. For powering the PXD 40 PS modules are placed 15 m outside the Belle II spectrometer. Each one is equipped with the OVP board. All voltages (22) are grouped in 4 domains: Analog, Digital, Steering and Gate which have independent grounds. The OVP boards are designed from integrated circuits from Linear Technology. All configurations were simulated with the Spice program. The control electronics is designed in a Xilinx CPLD. Two types of integrated circuits were used. LT4356 surge stopper protects loads from high voltage transients. The output voltages are limited to a safe value and also protect loads against over current faults. For less critical voltages, the LTC2912 voltage monitors are used that detect under-voltage and overvoltage events. It has to be noted that the OVP system is working independently of any other protection of the PS system, which increases its overall reliability. (authors)

  12. The CERTO Beacon on CASSIOPE/e-POP and Experiments Using High-Power HF Ionospheric Heaters

    NASA Astrophysics Data System (ADS)

    Siefring, Carl L.; Bernhardt, Paul A.; James, H. Gordon; Parris, Richard Todd

    2015-06-01

    A new Coherent Electromagnetic Radio Tomography (CERTO) beacon is on the CASSIOPE satellite and part of the enhanced-Polar Outflow Probe (e-POP) suite of scientific instruments. CERTO signals can be used to measure ionospheric Total Electron Content (TEC) and radio scintillations along propagation paths between CERTO and receivers. The combination of CERTO and the array of e-POP in-situ diagnostics form a powerful tool for studying ionospheric plasma processes that have not been previously possible. Of note, the combination CERTO and the Radio Receiver Instrument (RRI), a modern digital receiver, which measures between 10 Hz to 18 MHz in selectable bands allows for innovative High Frequency (HF) radio propagation experiments. The use of high-power HF ionospheric heating facilities for such experiments further allows for repeatable studies of a number of important plasma processes. The new CERTO beacon transmits un-modulated, phase-coherent waves at 150, 400, and 1067 MHz with either right-hand-circular or linear polarization and TEC is measured using either differential phase and/or Faraday rotation. With a linear array of CERTO receivers, TEC data can be used for tomographic imaging of the ionosphere yielding two-dimensional maps of the plasma below the satellite orbit. In addition, the three CERTO frequencies cover a wide range for determination of radio scintillation effects caused by diffraction from propagation through ionospheric irregularities. We will describe the CERTO beacon and several potential innovative experiments using HF heating facilities in conjunction with CERTO, the RRI and other e-POP instruments.

  13. Conceptual designs of two petawatt-class pulsed-power accelerators for high-energy-density-physics experiments

    DOE PAGES

    Stygar, W. A.; Awe, T. J.; Bennett, N L; ...

    2015-11-30

    ) simulations suggest Z 300 will deliver 4.3 MJ to the liner, and achieve a yield on the order of 18 MJ. Z 800 is 52 m in diameter and stores 130 MJ. This accelerator generates 890 TW at the output of its LTD system, and delivers 65 MA in 113 ns to a MagLIF target. The peak electrical power at the MagLIF liner is 2500 TW. The principal goal of Z 800 is to achieve high-yield thermonuclear fusion; i.e., a yield that exceeds the energy initially stored by the accelerator’s capacitors. 2D MHD simulations suggest Z 800 will deliver 8.0 MJ to the liner, and achieve a yield on the order of 440 MJ. Z 300 and Z 800, or variations of these accelerators, will allow the international high-energy-density-physics community to conduct advanced inertial-confinement-fusion, radiation-physics, material-physics, and laboratory-astrophysics experiments over heretofore-inaccessible parameter regimes.« less

  14. Conceptual designs of two petawatt-class pulsed-power accelerators for high-energy-density-physics experiments

    SciTech Connect

    Stygar, W. A.; Awe, T. J.; Bennett, N L; Breden, E. W.; Campbell, E. M.; Clark, R. E.; Cooper, R. A.; Cuneo, M. E.; Ennis, J. B.; Fehl, D. L.; Genoni, T. C.; Gomez, M. R.; Greiser, G. W.; Gruner, F. R.; Herrmann, M. C.; Hutsel, B. T.; Jennings, C. A.; Jobe, D. O.; Jones, B. M.; Jones, M. C.; Jones, P. A.; Knapp, P. F.; Lash, J. S.; LeChien, K. R.; Leckbee, J. J.; Leeper, R. J.; Lewis, S. A.; Long, F. W.; Lucero, D. J.; Madrid, E. A.; Martin, M. R.; Matzen, M. K.; Mazarakis, M. G.; McBride, R. D.; McKee, G. R.; Miller, C. L.; Moore, J. K.; Mostrom, C. B.; Mulville, T. D.; Peterson, K. J.; Porter, J. L.; Reisman, D. B.; Rochau, G. A.; Rochau, G. E.; Rose, D. V.; Savage, M. E.; Sceiford, M. E.; Schmit, P. F.; Schneider, R. F.; Schwarz, J.; Sefkow, A. B.; Sinars, D. B.; Slutz, S. A.; Spielman, R. B.; Stoltzfus, B. S.; Thoma, C.; Vesey, R. A.; Wakeland, P. E.; Welch, D. R.; Wisher, M. L.; Woodworth, J. R.; Bailey, J. E.; Rovang, D. C.

    2015-11-30

    ) simulations suggest Z 300 will deliver 4.3 MJ to the liner, and achieve a yield on the order of 18 MJ. Z 800 is 52 m in diameter and stores 130 MJ. This accelerator generates 890 TW at the output of its LTD system, and delivers 65 MA in 113 ns to a MagLIF target. The peak electrical power at the MagLIF liner is 2500 TW. The principal goal of Z 800 is to achieve high-yield thermonuclear fusion; i.e., a yield that exceeds the energy initially stored by the accelerator’s capacitors. 2D MHD simulations suggest Z 800 will deliver 8.0 MJ to the liner, and achieve a yield on the order of 440 MJ. Z 300 and Z 800, or variations of these accelerators, will allow the international high-energy-density-physics community to conduct advanced inertial-confinement-fusion, radiation-physics, material-physics, and laboratory-astrophysics experiments over heretofore-inaccessible parameter regimes.

  15. Conceptual designs of two petawatt-class pulsed-power accelerators for high-energy-density-physics experiments

    NASA Astrophysics Data System (ADS)

    Stygar, W. A.; Awe, T. J.; Bailey, J. E.; Bennett, N. L.; Breden, E. W.; Campbell, E. M.; Clark, R. E.; Cooper, R. A.; Cuneo, M. E.; Ennis, J. B.; Fehl, D. L.; Genoni, T. C.; Gomez, M. R.; Greiser, G. W.; Gruner, F. R.; Herrmann, M. C.; Hutsel, B. T.; Jennings, C. A.; Jobe, D. O.; Jones, B. M.; Jones, M. C.; Jones, P. A.; Knapp, P. F.; Lash, J. S.; LeChien, K. R.; Leckbee, J. J.; Leeper, R. J.; Lewis, S. A.; Long, F. W.; Lucero, D. J.; Madrid, E. A.; Martin, M. R.; Matzen, M. K.; Mazarakis, M. G.; McBride, R. D.; McKee, G. R.; Miller, C. L.; Moore, J. K.; Mostrom, C. B.; Mulville, T. D.; Peterson, K. J.; Porter, J. L.; Reisman, D. B.; Rochau, G. A.; Rochau, G. E.; Rose, D. V.; Rovang, D. C.; Savage, M. E.; Sceiford, M. E.; Schmit, P. F.; Schneider, R. F.; Schwarz, J.; Sefkow, A. B.; Sinars, D. B.; Slutz, S. A.; Spielman, R. B.; Stoltzfus, B. S.; Thoma, C.; Vesey, R. A.; Wakeland, P. E.; Welch, D. R.; Wisher, M. L.; Woodworth, J. R.

    2015-11-01

    suggest Z 300 will deliver 4.3 MJ to the liner, and achieve a yield on the order of 18 MJ. Z 800 is 52 m in diameter and stores 130 MJ. This accelerator generates 890 TW at the output of its LTD system, and delivers 65 MA in 113 ns to a MagLIF target. The peak electrical power at the MagLIF liner is 2500 TW. The principal goal of Z 800 is to achieve high-yield thermonuclear fusion; i.e., a yield that exceeds the energy initially stored by the accelerator's capacitors. 2D MHD simulations suggest Z 800 will deliver 8.0 MJ to the liner, and achieve a yield on the order of 440 MJ. Z 300 and Z 800, or variations of these accelerators, will allow the international high-energy-density-physics community to conduct advanced inertial-confinement-fusion, radiation-physics, material-physics, and laboratory-astrophysics experiments over heretofore-inaccessible parameter regimes.

  16. Electron Acceleration and Ionization Production in High-Power Heating Experiments at HAARP

    NASA Astrophysics Data System (ADS)

    Mishin, E. V.; Pedersen, T.

    2012-12-01

    Recent ionospheric modification experiments with the 3.6 MW transmitter at the High Frequency Active Auroral Research Program (HAARP) facility in Alaska led to discovery of artificial ionization descending from the nominal interaction altitude in the background F-region ionosphere by ~60-80 km. Artificial ionization production is indicated by significant 427.8 nm emissions from the 1st negative band of N2+ and the appearance of transmitter-induced bottomside traces in ionosonde data during the periods of most intense optical emissions. However, the exact mechanisms producing the artificial plasmas remain to be determined. Yet the only existing theoretical models explain the development of artificial plasma as an ionizing wavefront moving downward due to ionization by electrons accelerated by HF-excited strong Langmuir turbulence (SLT) generated near the plasma resonance, where the pump frequency matches the plasma frequency. However, the observations suggest also the significance of interactions with upper hybrid and electron Bernstein waves near multiples of the electron gyrofrequency. We describe recent observations and discuss suitable acceleration mechanisms.

  17. Measurement of the cosmic microwave background polarization lensing power spectrum with the POLARBEAR experiment.

    PubMed

    Ade, P A R; Akiba, Y; Anthony, A E; Arnold, K; Atlas, M; Barron, D; Boettger, D; Borrill, J; Chapman, S; Chinone, Y; Dobbs, M; Elleflot, T; Errard, J; Fabbian, G; Feng, C; Flanigan, D; Gilbert, A; Grainger, W; Halverson, N W; Hasegawa, M; Hattori, K; Hazumi, M; Holzapfel, W L; Hori, Y; Howard, J; Hyland, P; Inoue, Y; Jaehnig, G C; Jaffe, A; Keating, B; Kermish, Z; Keskitalo, R; Kisner, T; Le Jeune, M; Lee, A T; Linder, E; Leitch, E M; Lungu, M; Matsuda, F; Matsumura, T; Meng, X; Miller, N J; Morii, H; Moyerman, S; Myers, M J; Navaroli, M; Nishino, H; Paar, H; Peloton, J; Quealy, E; Rebeiz, G; Reichardt, C L; Richards, P L; Ross, C; Schanning, I; Schenck, D E; Sherwin, B; Shimizu, A; Shimmin, C; Shimon, M; Siritanasak, P; Smecher, G; Spieler, H; Stebor, N; Steinbach, B; Stompor, R; Suzuki, A; Takakura, S; Tomaru, T; Wilson, B; Yadav, A; Zahn, O

    2014-07-11

    Gravitational lensing due to the large-scale distribution of matter in the cosmos distorts the primordial cosmic microwave background (CMB) and thereby induces new, small-scale B-mode polarization. This signal carries detailed information about the distribution of all the gravitating matter between the observer and CMB last scattering surface. We report the first direct evidence for polarization lensing based on purely CMB information, from using the four-point correlations of even- and odd-parity E- and B-mode polarization mapped over ∼30 square degrees of the sky measured by the POLARBEAR experiment. These data were analyzed using a blind analysis framework and checked for spurious systematic contamination using null tests and simulations. Evidence for the signal of polarization lensing and lensing B modes is found at 4.2σ (stat+sys) significance. The amplitude of matter fluctuations is measured with a precision of 27%, and is found to be consistent with the Lambda cold dark matter cosmological model. This measurement demonstrates a new technique, capable of mapping all gravitating matter in the Universe, sensitive to the sum of neutrino masses, and essential for cleaning the lensing B-mode signal in searches for primordial gravitational waves.

  18. Introduction to Pathogenic Protozoa

    DTIC Science & Technology

    2011-06-01

    1 1 Introduction Mary K. Klassen-Fischer and Ronald C. Neafie Introduction Protozoa Protozoa are single-celled eukaryotic animals first dis...phylogeny of protozoa , see Table 1.1. A recent trend is to replace the term “ protozoa ” with “protista.” For these topics we retain “pro- tozoa” and...JUN 2011 2. REPORT TYPE 3. DATES COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE Introduction to Pathogenic Protozoa 5a. CONTRACT

  19. [Introduction to nursing aesthetics].

    PubMed

    Chen, Chen-Jung; Tsai, Chuan-Hsiu; Chen, Yi-Chang

    2011-04-01

    Empirical, aesthetic, ethical, and personal knowing are the four fundamental patterns of knowledge inquiry. Of these, the aesthetic knowing pattern is least discussed in nursing literature. This article discusses the definition of nursing aesthetics; its utilization in practice; and correlations between aesthetics and clinical practice. One of the advantages inherent to nursing is its ability to deliver skillful care directly to patients. Skillful performance is essential to reduce discrepancies between goals and patterns. Aesthetic nursing addresses more than the form of nursing. It further addresses the crucial elements of nursing knowledge. The science of nursing is influential in its ability to attain harmony among abundant empiric content, power of beneficence, and pleasure of aesthetic experience. In clinical practice, nurses can employ aesthetic nursing through various channels to create meaning and promote the professional image of nurses. Concepts listed in this article may be utilized in clinical supervision, practice and education.

  20. Ares I Avionics Introduction

    NASA Technical Reports Server (NTRS)

    Marchant, Christopher C.

    2009-01-01

    The Ares I is the next generation human-rated launcher for the United States Constellation program. This system is required to provide single fault tolerance within defined crew safety and mission reliability limits. As part of the effort to achieve those safety goals, Ares I includes an avionics subsystem built as a multistring, voting architecture. The avionics design draws upon experience gained from building fly-by-wire systems for Shuttle, X- 38, and Seawolf. Architectural drivers for the avionics design include using proven technologies with existing suppliers of space rated parts for critical functions (to reduce overall development risk), easing the software development effort by using an off-theshelf, DO-178B certifiable, ARINC-653 operating system in the main flight computers, minimizing mutual data and power connections that might lead to a common-mode hardware failure of the redundant avionics strings, and centralizing overall Ares I command & control within the Upper Stage.

  1. The impact of three recent coal-fired power plant closings on Pittsburgh air quality: A natural experiment.

    PubMed

    Russell, Marie C; Belle, Jessica H; Liu, Yang

    2017-01-01

    Relative to the rest of the United States, the region of southwestern Pennsylvania, including metropolitan Pittsburgh, experiences high ambient concentrations of fine particulate matter (PM2.5), which is known to be associated with adverse respiratory and cardiovascular health impacts. This study evaluates whether the closing of three coal-fired power plants within the southwestern Pennsylvania region resulted in a significant decrease in PM2.5 concentration. Both PM2.5 data obtained from EPA ground stations in the study region and aerosol optical depth (AOD) data retrieved from the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments onboard the Terra and Aqua satellites were used to investigate regional air quality from January 2011 through December 2014. The impact of the plant closings on PM2.5 concentration and AOD was evaluated using a series of generalized additive models. The model results show that monthly fuel consumption of the Elrama plant, which closed in October of 2012, and monthly fuel consumption of both the Mitchell and Hatfield's Ferry plants, which closed in October of 2013, were significant predictors of both PM2.5 concentration and AOD at EPA ground stations in the study region, after controlling for multiple meteorological factors and long-term, region-wide air quality improvements. The model's power to predict PM2.5 concentration increased from an adjusted R(2) of 0.61 to 0.68 after excluding data from ground stations with higher uncertainty due to recent increases in unconventional natural gas extraction activities. After preliminary analyses of mean PM2.5 concentration and AOD showed a downward trend following each power plant shutdown, results from a series of generalized additive models confirmed that the activity of the three plants that closed, measured by monthly fuel consumption, was highly significant in predicting both AOD and PM2.5 at 12 EPA ground stations; further research on PM2.5 emissions from unconventional

  2. Engineering development of a digital replacement protection system at an operating US PWR nuclear power plant: Installation and operational experiences

    SciTech Connect

    Miller, M.H.

    1995-04-01

    The existing Reactor Protection Systems (RPSs) at most US PWRs are systems which reflect 25 to 30 year-old designs, components and manufacturing techniques. Technological improvements, especially in relation to modern digital systems, offer improvements in functionality, performance, and reliability, as well as reductions in maintenance and operational burden. The Nuclear power industry and the US nuclear regulators are poised to move forward with the issues that have slowed the transition to modern digital replacements for nuclear power plant safety systems. The electric utility industry is now more than ever being driven by cost versus benefit decisions. Properly designed, engineered, and installed digital systems can provide adequate cost-benefit and allow continued nuclear generated electricity. This paper describes various issues and areas related to an ongoing RPS replacement demonstration project which are pertinant for a typical US nuclear plant to consider cost-effective replacement of an aging analog RPS with a modern digital RPS. The following subject areas relative to the Oconee Nuclear Station ISAT{trademark} Demonstrator project are discussed: Operator Interface Development; Equipment Qualification; Validation and Verification of Software; Factory Testing; Field Changes and Verification Testing; Utility Operational, Engineering and Maintenance; Experiences with Demonstration System; and Ability to operate in parallel with the existing Analog RPS.

  3. Closed cycle MHD power generation experiments using a helium-cesium working fluid in the NASA Lewis Facility

    NASA Technical Reports Server (NTRS)

    Sovie, R. J.

    1976-01-01

    A MHD channel, which was previously operated for over 500 hours of thermal operation, ten thermal cycles, and 200 cesium injection tests, was removed from the facility and redesigned. The cross sectional dimensions of the channel were reduced to 5 by 16.5 cm to allow operation over a variety of conditions. The redesigned channel has been operated for well over 300 hours, 10 thermal cycles, and 150 cesium injection tests with no problems. Experiments have been run at temperatures of 1900-2100 K and Mach numbers from 0.3 to 0.55 in argon and 0.2 in helium. The best results to date have been obtained in the helium tests. Power outputs of 2.2 kw for tests with 28 electrodes and 2.1 kw for tests with 17 electrodes were realized. Power densities of 0.6 MW/cu m and Hall fields of about 1,100 V/m were obtained in the tests with 17 electrodes.

  4. Introduction: Invertebrate Neuropeptides XIII

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This publication represents an introduction to the thirteenth in a series of special issues of the Peptides journal dedicated to invertebrate neuropeptides. The issue addresses a number of aspects of invertebrate neuropeptide research including identification of novel invertebrate neuropeptide sequ...

  5. Introduction: Invertebrate Neuropeptides XV

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This publication represents an introduction to the fifteenth in a series of special issues of the Peptides journal dedicated to invertebrate neuropeptides. The issue addresses a number of aspects of invertebrate neuropeptide research including identification of novel invertebrate neuropeptide seque...

  6. Introduction: Invertebrate Neuropeptides XIV

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This publication represents an introduction to the thirteenth in a series of special issues of the Peptides journal dedicated to invertebrate neuropeptides. The issue addresses a number of aspects of invertebrate neuropeptide research including identification of novel invertebrate neuropeptide sequ...

  7. Introduction: Invertebrate Neuropeptides XVI

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This publication represents an introduction to the sixteenth in a series of special issues of the Peptides journal dedicated to invertebrate neuropeptides. The issue addresses a number of aspects of invertebrate neuropeptide research including identification of novel invertebrate neuropeptide seque...

  8. Corrected Article: Measure of the impact of future dark energy experiments based on discriminating power among quintessence models [Phys. Rev. D 78, 043528 (2008)

    NASA Astrophysics Data System (ADS)

    Barnard, Michael; Abrahamse, Augusta; Albrecht, Andreas; Bozek, Brandon; Yashar, Mark

    2009-12-01

    We evaluate the ability of future data sets to discriminate among different quintessence dark energy models. This approach gives an alternative (and complementary) measure for assessing the impact of future experiments, as compared with the large body of literature that compares experiments in abstract parameter spaces (such as the well-known w0-wa parameters) and more recent work that evaluates the constraining power of experiments on individual parameter spaces of specific quintessence models. We use the Dark Energy Task Force (DETF) models of future data sets and compare the discriminative power of experiments designated by the DETF as stages 2, 3, and 4 (denoting increasing capabilities). Our work reveals a minimal increase in discriminating power when comparing stage 3 to stage 2, but a very striking increase in discriminating power when going to stage 4 (including the possibility of completely eliminating some quintessence models). We also see evidence that even modest improvements over DETF stage 4 (which many believe are realistic) could result in even more dramatic discriminating power among quintessence dark energy models. We develop and demonstrate the technique of using the independently measured modes of the equation of state (derived from principle component analysis) as a common parameter space in which to compare the different quintessence models, and we argue that this technique is a powerful one. We use the pseudo-Nambu-Goldstone boson, exponential, Albrecht-Skordis, and inverse tracker (or inverse power law) quintessence models for this work. One of our main results is that the goal of discriminating among these models sets a concrete measure on the capabilities of future dark energy experiments. Experiments have to be somewhat better than DETF stage 4 simulated experiments to fully meet this goal.

  9. [Disaster nursing: one nurse's role and experience during the Fukushima Power Plant disaster following the Great East Japan Earthquake].

    PubMed

    Kamei, Yukari; Lee, Shao-Huai

    2012-06-01

    The Richter-scale 9.0 earthquake that struck Northeast Japan on March 11th, 2011 caused a tsunami that damaged the Fukushima No. 1 Power Plant and released enormous amounts of radiation into the environment. Many area residents were evacuated to several protected fallout shelters. Prior to the tsunami, Fukashima had around 505,760 residents over 65 years of age, comprising 24.9% of the city's pre-tsunami population of Fukushima (City of Fukushima, 2011). The high proportion of elderly contributed to difficulties encountered in evacuating and caring for Fukushima citizens in the immediate aftermath of the disaster. The first author participated in disaster relief efforts in two fallout shelters in Fukushima. This article was written to share her post-disaster care experience and learned knowledge with medical care professionals in Taiwan and other high earthquake risk areas. The article also offers guidelines on appropriate medical personnel response and behavior with regard to disaster response. We hope this experience-sharing offers positive suggestions for the future and facilitates improved disaster-care education in East Asia and enhanced international cooperation on disaster rescue.

  10. 14 CFR 34.80 - Introduction.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Test Procedures for Engine Smoke Emissions (Aircraft Gas Turbine Engines) § 34.80 Introduction. Except as provided under § 34.5, the... of new and in-use gas turbine engines with the applicable standards set forth in this part. The...

  11. 14 CFR 34.60 - Introduction.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Test Procedures for Engine Exhaust Gaseous Emissions (Aircraft and Aircraft Gas Turbine Engines) § 34.60 Introduction. (a) Except as provided... determine the conformity of new aircraft gas turbine engines with the applicable standards set forth in...

  12. A Smart Cage With Uniform Wireless Power Distribution in 3D for Enabling Long-Term Experiments With Freely Moving Animals.

    PubMed

    Mirbozorgi, S Abdollah; Bahrami, Hadi; Sawan, Mohamad; Gosselin, Benoit

    2016-04-01

    This paper presents a novel experimental chamber with uniform wireless power distribution in 3D for enabling long-term biomedical experiments with small freely moving animal subjects. The implemented power transmission chamber prototype is based on arrays of parallel resonators and multicoil inductive links, to form a novel and highly efficient wireless power transmission system. The power transmitter unit includes several identical resonators enclosed in a scalable array of overlapping square coils which are connected in parallel to provide uniform power distribution along x and y. Moreover, the proposed chamber uses two arrays of primary resonators, facing each other, and connected in parallel to achieve uniform power distribution along the z axis. Each surface includes 9 overlapped coils connected in parallel and implemented into two layers of FR4 printed circuit board. The chamber features a natural power localization mechanism, which simplifies its implementation and ease its operation by avoiding the need for active detection and control mechanisms. A single power surface based on the proposed approach can provide a power transfer efficiency (PTE) of 69% and a power delivered to the load (PDL) of 120 mW, for a separation distance of 4 cm, whereas the complete chamber prototype provides a uniform PTE of 59% and a PDL of 100 mW in 3D, everywhere inside the chamber with a size of 27×27×16 cm(3).

  13. Geophysical variables and behavior: CIV. Power-frequency magnetic field transients (5 microtesla) and reports of haunt experiences within an electronically dense house.

    PubMed

    Persinger, M A; Koren, S A; O'Connor, R P

    2001-06-01

    Magnetic field measurements for power frequencies were measured continuously over two 24-hr. periods for a small house in which two adults who exhibited above normal occurrences of complex partial epileptic-like experiences had reported "waves of fear", tactile sensations, nightmares, apparitions, and a sensed presence. The experiences occurred within an area in which irregular amplitude modulations between 1 microT and 5 microT (50 mG) from 60-Hz sources, with durations of a few seconds to several tens of seconds, were measured. This case suggests that transient, complex temporal patterns of power-frequency magnetic fields generated by less than optimal grounding in dwellings and telluric currents may be sufficient to evoke experiences in the brains of sensitive individuals. Cultural labels, applied by the experients, then affect the explanations and expectancies for these experiences.

  14. A high current pulsed power generator CQ-3-MMAF with co-axial cable transmitting energy for material dynamics experiments

    NASA Astrophysics Data System (ADS)

    Wang, Guiji; Chen, Xuemiao; Cai, Jintao; Zhang, Xuping; Chong, Tao; Luo, Binqiang; Zhao, Jianheng; Sun, Chengwei; Tan, Fuli; Liu, Cangli; Wu, Gang

    2016-06-01

    A high current pulsed power generator CQ-3-MMAF (Multi-Modules Assembly Facility, MMAF) was developed for material dynamics experiments under ramp wave and shock loadings at the Institute of Fluid Physics (IFP), which can deliver 3 MA peak current to a strip-line load. The rise time of the current is 470 ns (10%-90%). Different from the previous CQ-4 at IFP, the CQ-3-MMAF energy is transmitted by hundreds of co-axial high voltage cables with a low impedance of 18.6 mΩ and low loss, and then hundreds of cables are reduced and converted to tens of cables into a vacuum chamber by a cable connector, and connected with a pair of parallel metallic plates insulated by Kapton films. It is composed of 32 capacitor and switch modules in parallel. The electrical parameters in short circuit are with a capacitance of 19.2 μF, an inductance of 11.7 nH, a resistance of 4.3 mΩ, and working charging voltage of 60 kV-90 kV. It can be run safely and stable when charged from 60 kV to 90 kV. The vacuum of loading chamber can be up to 10-2 Pa, and the current waveforms can be shaped by discharging in time sequences of four groups of capacitor and switch modules. CQ-3-MMAF is an adaptive machine with lower maintenance because of its modularization design. The COMSOL Multi-physics® code is used to optimize the structure of some key components and calculate their structural inductance for designs, such as gas switches and cable connectors. Some ramp wave loading experiments were conducted to check and examine the performances of CQ-3-MMAF. Two copper flyer plates were accelerated to about 3.5 km/s in one shot when the working voltage was charged to 70 kV. The velocity histories agree very well. The dynamic experiments of some polymer bonded explosives and phase transition of tin under ramp wave loadings were also conducted. The experimental data show that CQ-3-MMAF can be used to do material dynamics experiments in high rate and low cost shots. Based on this design concept, the peak

  15. High velocity flyer plates launched by magnetic pressure on pulsed power generator CQ-4 and applied in shock Hugoniot experiments

    NASA Astrophysics Data System (ADS)

    Zhang, Xuping; Wang, Guiji; Zhao, Jianheng; Tan, Fuli; Luo, Binqiang; Sun, Chengwei

    2014-05-01

    High velocity flyer plates with good flatness and some thickness have being widely used to the field of shock physics for characterizations of materials under dynamical loading. The techniques of magnetically driven high-velocity flyer plates are further researched based on our pulsed power generators CQ-4 and some good results got on Sandia's Z machine. With large current of several mega-amperes, the loading surface of electrode panel will suffer acute phase transitions caused from magnetic diffusion and Joule heating, and the thickness and flatness of the flyer plates will change with time. In order to obtain the flyer plates with high performances for shock physics, some researches on electrode panels were done by means of LS-DYNA980 software with electro-magnetic package. Two typical configurations for high velocity flyer plates were compared from distribution uniformity of magnetic field in simulation. The results show that the configuration with counter-bore with "notch" and "ear" is better than the other. Then, with the better configuration panels, some experiments were designed and done to validate the simulation results and obtain high velocity flyer plates with good flatness for one-dimensional strain shock experiments on CQ-4. The velocity profiles of the flyer plates were measured by displacement interferometer systems for any reflectors. And the planarity of flyer plates was measured by using the optical fiber pins array for recording the flyer arrival time. The peak velocities of 8.7 km/s with initial dimension of 10 × 7.2 × 0.62 mm for aluminum flyer plates have been achieved. And the flyer plate with initial size of 12 × 9.2 × 0.73 mm was accelerated to velocity of 6.5 km/s with the flatness of less than 11 ns in the central region of 6 mm in diameter and the effective thickness of about 0.220 mm. Based on these work, the symmetrical impact experiments were performed to obtain the high accuracy Hugoniot data of OFHC (oxygen free high conductance

  16. A high current pulsed power generator CQ-3-MMAF with co-axial cable transmitting energy for material dynamics experiments.

    PubMed

    Wang, Guiji; Chen, Xuemiao; Cai, Jintao; Zhang, Xuping; Chong, Tao; Luo, Binqiang; Zhao, Jianheng; Sun, Chengwei; Tan, Fuli; Liu, Cangli; Wu, Gang

    2016-06-01

    A high current pulsed power generator CQ-3-MMAF (Multi-Modules Assembly Facility, MMAF) was developed for material dynamics experiments under ramp wave and shock loadings at the Institute of Fluid Physics (IFP), which can deliver 3 MA peak current to a strip-line load. The rise time of the current is 470 ns (10%-90%). Different from the previous CQ-4 at IFP, the CQ-3-MMAF energy is transmitted by hundreds of co-axial high voltage cables with a low impedance of 18.6 mΩ and low loss, and then hundreds of cables are reduced and converted to tens of cables into a vacuum chamber by a cable connector, and connected with a pair of parallel metallic plates insulated by Kapton films. It is composed of 32 capacitor and switch modules in parallel. The electrical parameters in short circuit are with a capacitance of 19.2 μF, an inductance of 11.7 nH, a resistance of 4.3 mΩ, and working charging voltage of 60 kV-90 kV. It can be run safely and stable when charged from 60 kV to 90 kV. The vacuum of loading chamber can be up to 10(-2) Pa, and the current waveforms can be shaped by discharging in time sequences of four groups of capacitor and switch modules. CQ-3-MMAF is an adaptive machine with lower maintenance because of its modularization design. The COMSOL Multi-physics® code is used to optimize the structure of some key components and calculate their structural inductance for designs, such as gas switches and cable connectors. Some ramp wave loading experiments were conducted to check and examine the performances of CQ-3-MMAF. Two copper flyer plates were accelerated to about 3.5 km/s in one shot when the working voltage was charged to 70 kV. The velocity histories agree very well. The dynamic experiments of some polymer bonded explosives and phase transition of tin under ramp wave loadings were also conducted. The experimental data show that CQ-3-MMAF can be used to do material dynamics experiments in high rate and low cost shots. Based on this design concept, the peak

  17. An Introduction to Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Batchelor, G. K.

    2000-02-01

    First published in 1967, Professor Batchelor's classic work is still one of the foremost texts on fluid dynamics. His careful presentation of the underlying theories of fluids is still timely and applicable, even in these days of almost limitless computer power. This reissue ensures that a new generation of graduate students experiences the elegance of Professor Batchelor's writing.

  18. Cosmic ray composition between 10 to the 15th power - 10 to the 17th power eV obtained by air shower experiments

    NASA Technical Reports Server (NTRS)

    Muraki, Y.

    1985-01-01

    Based on the air shower data, the chemical composition of the primary cosmic rays in the energy range 10 to the 15th power - 10 to the 17th power eV was obtained. The method is based on a well known N sub e-N sub mu and N sub e-N sub gamma. The simulation is calibrated by the CERN SPS pp collider results.

  19. Fall Protection Introduction, #33462

    SciTech Connect

    Chochoms, Michael

    2016-06-23

    The proper use of fall prevention and fall protection controls can reduce the risk of deaths and injuries caused by falls. This course, Fall Protection Introduction (#33462), is designed as an introduction to various types of recognized fall prevention and fall protection systems at Los Alamos National Laboratory (LANL), including guardrail systems, safety net systems, fall restraint systems, and fall arrest systems. Special emphasis is given to the components, inspection, care, and storage of personal fall arrest systems (PFASs). This course also presents controls for falling object hazards and emergency planning considerations for persons who have fallen.

  20. Power and Politics in the Classroom: The Effect of Student Roles in Simulations

    ERIC Educational Resources Information Center

    Baranowski, Michael; Weir, Kimberly

    2010-01-01

    We argue that power roles can make a significant difference in how students experience in-class simulations. To test this, students who participated in Congressional simulations in one of the author's introduction to American politics classes were surveyed concerning their views of Congress, the legislative process, and the simulation experience.…

  1. Reanalysis of the gas-cooled fast reactor experiments at the zero power facility proteus - Spectral indices

    SciTech Connect

    Perret, G.; Pattupara, R. M.; Girardin, G.; Chawla, R.

    2012-07-01

    The gas-cooled fast reactor (GCFR) concept was investigated experimentally in the PROTEUS zero power facility at the Paul Scherrer Inst. during the 1970's. The experimental program was aimed at neutronics studies specific to the GCFR and at the validation of nuclear data in fast spectra. A significant part of the program used thorium oxide and thorium metal fuel either distributed quasi-homogeneously in the reference PuO{sub 2}/UO{sub 2} lattice or introduced in the form of radial and axial blanket zones. Experimental results obtained at the time are still of high relevance in view of the current consideration of the Gas-cooled Fast Reactor (GFR) as a Generation-IV nuclear system, as also of the renewed interest in the thorium cycle. In this context, some of the experiments have been modeled with modern Monte Carlo codes to better account for the complex PROTEUS whole-reactor geometry and to allow validating recent continuous neutron cross-section libraries. As a first step, the MCNPX model was used to test the JEFF-3.1, JEFF-3.1.1, ENDF/B-VII.0 and JENDL-3.3 libraries against spectral indices, notably involving fission and capture of {sup 232}Th and {sup 237}Np, measured in GFR-like lattices. (authors)

  2. Active core profile and transport modification by application of ion Bernstein wave power in the Princeton Beta Experiment-Modification

    NASA Astrophysics Data System (ADS)

    LeBlanc, B.; Batha, S.; Bell, R.; Bernabei, S.; Blush, L.; de la Luna, E.; Doerner, R.; Dunlap, J.; England, A.; Garcia, I.; Ignat, D.; Isler, R.; Jones, S.; Kaita, R.; Kaye, S.; Kugel, H.; Levinton, F.; Luckhardt, S.; Mutoh, T.; Okabayashi, M.; Ono, M.; Paoletti, F.; Paul, S.; Petravich, G.; Post-Zwicker, A.; Sauthoff, N.; Schmitz, L.; Sesnic, S.; Takahashi, H.; Talvard, M.; Tighe, W.; Tynan, G.; von Goeler, S.; Woskov, P.; Zolfaghari, A.

    1995-03-01

    Application of Ion Bernstein Wave Heating (IBWH) into the Princeton Beta Experiment-Modification (PBX-M) [Phys. Fluids B 2, 1271 (1990)] tokamak stabilizes sawtooth oscillations and generates peaked density profiles. A transport barrier, spatially correlated with the IBWH power deposition profile, is observed in the core of IBWH-assisted neutral beam injection (NBI) discharges. A precursor to the fully developed barrier is seen in the soft x-ray data during edge localized mode (ELM) activity. Sustained IBWH operation is conducive to a regime where the barrier supports large ∇ne, ∇Te, ∇νφ, and ∇Ti, delimiting the confinement zone. This regime is reminiscent of the H(high) mode, but with a confinement zone moved inward. The core region has better than H-mode confinement while the peripheral region is L(low)-mode-like. The peaked profile enhances NBI core deposition and increases nuclear reactivity. An increase in central Ti results from χi reduction (compared to the H mode) and better beam penetration. Bootstrap current fractions of up to 0.32-0.35 locally and 0.28 overall were obtained when an additional NBI burst is applied to this plasma.

  3. Introduction to Childhood Studies

    ERIC Educational Resources Information Center

    Kehily, Mary Jane, Ed.

    2004-01-01

    Educationalists and social scientists are increasingly interested in childhood as a distinct social category, and Childhood Studies is now a recognized area of research and analysis. This book brings together the key themes of Childhood Studies in a broad and accessible introduction for students and practitioners working in this field.…

  4. Why SRS Matters - Introduction

    SciTech Connect

    Hunt, Paul

    2015-01-21

    A video series presenting an overview of the Savannah River Site's (SRS) mission and operations. Each episode features a specific area/operation and how it contributes to help make the world safer. This episode provides an introduction to the SRS mission and operations.

  5. Introduction to Relational Programming.

    DTIC Science & Technology

    1981-06-01

    such as Russell’s "rami- tied type theory." In most other respects our notation follows that of Carnap 11] and Whitehead and Russell [8]. There is no... Carnap , R. Introduction to Symbolic Logic and its Applica- tions, Dover, 1958. [2] Childs, D.L. Feasibility of a set-theoretic data structure based on a

  6. Writing the introduction.

    PubMed

    Peh, W C; Ng, K H

    2008-10-01

    The introduction section of a scientific paper aims to introduce a specific topic and to stimulate the reader's interest. It provides background information about what has already been done by others, supported by a limited number of relevant references. The reader should be informed about the purpose of the paper, what it will address, and how it relates to previous work.

  7. An Introduction to Akan.

    ERIC Educational Resources Information Center

    Berry, Jack; Aidoo, Agnes Akosua

    This introduction to Akan is designed to provide the basic structures and vocabulary that a non-native speaker would need to use Akan. The text is based on the Asante dialect of Akan, and is divided into twenty units. Each unit consists of a conversation given in English and Asante, drills for the classroom or individual practice, grammar notes,…

  8. Why SRS Matters - Introduction

    ScienceCinema

    Hunt, Paul

    2016-08-26

    A video series presenting an overview of the Savannah River Site's (SRS) mission and operations. Each episode features a specific area/operation and how it contributes to help make the world safer. This episode provides an introduction to the SRS mission and operations.

  9. Introduction to International Trade.

    ERIC Educational Resources Information Center

    Crummett, Dan M.; Crummett, Jerrie

    This set of student and teacher guides is intended for use in a course to prepare students for entry-level employment in such occupational areas in international trade as business/finance, communications, logistics, and marketing. The following topics are covered in the course's five instructional units: introduction to careers in international…

  10. Mauritian Creole: An Introduction.

    ERIC Educational Resources Information Center

    Goodman, Morris F.; And Others

    The format of this 23-unit course in Mauritian Creole is based on "microwave" cycles, each cycle beginning with the introduction of new material and ending with the use of that material in communication. A small amount of new material is introduced at a time (usually in a monolog, drill, or dialog) which, after a brief bit of practice is…

  11. Introduction to Film.

    ERIC Educational Resources Information Center

    Burns, Gary

    There are numerous ways to structure the introduction to film course so as to meet the needs of the different types of students who typically enroll. Assuming there is no production component in the course, the teacher is left with two major approaches to choose from--historical and aesthetic. The units in the course will typically be built around…

  12. Introduction to Shakespeare: English.

    ERIC Educational Resources Information Center

    Hargraves, Richard

    The "Introduction to Shakespeare" course in the Quinmester Program involves the careful study of the tragedy "Romeo and Juliet" and the comedy "The Taming of the Shrew," emphasizing language, development of character and theme. The course also includes the study of biographical data relevant to the evolution of…

  13. An Introduction to Psycholinguistics

    ERIC Educational Resources Information Center

    Jodai, Hojat

    2011-01-01

    This paper is written to have a preliminary introduction about psycholinguistics. Psycholinguistics or psychology of language is the study of the interrelation between linguistic factors and psychological aspects. The main subject of research in psycholinguistics is the study of cognitive processes that underlie the comprehension and production of…

  14. Introduction to HACCP.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction to HACCP Deana R. Jones, Ph.D. Egg Safety and Quality Research Unit USDA-Agricultural Research Service Russell Research Center Athens, GA Deana.Jones@ars.usda.gov HACCP is an acronym for Hazard Analysis and Critical Control Point and was initially developed by the Pillsbury Company a...

  15. Primary cosmic ray spectrum in the 10 to the 12th power - 10 to the 16th power eV energy range from the NUSEX experiment

    NASA Technical Reports Server (NTRS)

    Battistoni, G.; Bellotti, E.; Bloise, C.; Bologna, G.; Campana, P.; Castagnoli, C.; Castellina, A.; Chiarella, V.; Ciocio, A.; Cundy, D.

    1985-01-01

    A primary cosmic ray spectrum was derived which fits both experimental multiple muon rates and the all-nucleon flux derived from the single muon intensities underground. In the frame of the interaction model developed by Gaisser, Elbert and Stanev, it is possible to reproduce NUSEX muon data with a primary composition in which the iron spectrum is only slightly flatter than the proton one. This result rules out the popular idea that the primary composition varies drastically with increasing energy, leading to the dominance of heavier nuclei at energies 10 to the 15th power to 10 to the 16th power eV.

  16. "Sometimes I Can be Anything." Power, Gender, and Identity in a Primary Classroom. The Practitioner Inquiry Series.

    ERIC Educational Resources Information Center

    Gallas, Karen

    This book examines research on young children's experiences with and understanding of gender, race, and power, highlighting interactions within first and second grade classrooms. The introduction explains gender, race, and power issues. Chapter 1, "Teacher Research: Texts and Subtexts," describes the research project. Chapter 2, "The Gender…

  17. [Experience in organization of joint actions of expert divisions during the accident at P.S. Podporozniy Sayano-Shushenskaya hydroelectric power station].

    PubMed

    Kolkutin, V V; Ivanov, P L; Fetisov, V A; Afanas'ev, S A; Dorozhkin, O A; Vognerubov, R N; Kuznetsov, T L

    2010-01-01

    The authors illustrate positive experience in organization and coordination of joint actions of expert divisions of different sectors during the accident at P.S. Podporozniy Sayano-Shushenskaya hydroelectric power station in August 2009. Special emphasis is laid on the participation of experts of quick-reaction teams formed by territorial forensic medical bureaus, mobile and supporting forces from the adjacent regions.

  18. Phase 1 of the First Small Power System Experiment (engineering Experiment No. 1). Volume 5: Supporting Analyses and Trade Studies. [development and testing of a solar thermal power plant

    NASA Technical Reports Server (NTRS)

    Holl, R. J.

    1979-01-01

    The development and design of a modular solar thermal power system for application in the 1 to 10 MWe range is described. The system is used in remote utility applications, small communities, rural areas, and for industrial uses. Thermal and stress analyses are performed on the collector subsystem, energy storage subsystem, energy transport subsystem, the power conversion subsystem, and the plant control subsystem.

  19. Determination of the emissions from an aircraft auxiliary power unit (APU) during the Alternative Aviation Fuel Experiment (AAFEX).

    PubMed

    Kinsey, John S; Timko, Michael T; Herndon, Scott C; Wood, Ezra C; Yu, Zhenhong; Miake-Lye, Richard C; Lobo, Prem; Whitefield, Philip; Hagen, Donald; Wey, Changlie; Anderson, Bruce E; Beyersdorf, Andreas J; Hudgins, Charles H; Thornhill, K Lee; Winstead, Edward; Howard, Robert; Bulzan, Dan I; Tacina, Kathleen B; Knighton, W Berk

    2012-04-01

    The emissions from a Garrett-AiResearch (now Honeywell) Model GTCP85-98CK auxiliary power unit (APU) were determined as part of the National Aeronautics and Space Administration's (NASA's) Alternative Aviation Fuel Experiment (AAFEX) using both JP-8 and a coal-derived Fischer Tropsch fuel (FT-2). Measurements were conducted by multiple research organizations for sulfur dioxide (SO2, total hydrocarbons (THC), carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx), speciated gas-phase emissions, particulate matter (PM) mass and number, black carbon, and speciated PM. In addition, particle size distribution (PSD), number-based geometric mean particle diameter (GMD), and smoke number were also determined from the data collected. The results of the research showed PM mass emission indices (EIs) in the range of 20 to 700 mg/kg fuel and PM number EIs ranging from 0.5 x 10(15) to 5 x 10(15) particles/kg fuel depending on engine load and fuel type. In addition, significant reductions in both the SO2 and PM EIs were observed for the use of the FT fuel. These reductions were on the order of approximately 90% for SO2 and particle mass EIs and approximately 60% for the particle number EI, with similar decreases observed for black carbon. Also, the size of the particles generated by JP-8 combustion are noticeably larger than those emitted by the APU burning the FT fuel with the geometric mean diameters ranging from 20 to 50 nm depending on engine load and fuel type. Finally, both particle-bound sulfate and organics were reduced during FT-2 combustion. The PM sulfate was reduced by nearly 100% due to lack of sulfur in the fuel, with the PM organics reduced by a factor of approximately 5 as compared with JP-8.

  20. Intermediate photovoltaic-system application: Experiment operational performance report. Volume 1 for Newman Power Station site, El Paso, Texas

    NASA Astrophysics Data System (ADS)

    1981-07-01

    A project is described for application of a photovoltaic power supply to computers that control the operation of a combined cycle power plant. The photovoltaic power supply will be used with an existing DC facility. The project is briefly outlined, and the participants are listed. Relevant weather data and reference operating conditions are given and four operational and collection modes are described. System specifications are given and the solar array, protection, and data acquisition and instrumentation subsystems are described.