Sample records for power laser program

  1. A NASA high-power space-based laser research and applications program

    NASA Technical Reports Server (NTRS)

    Deyoung, R. J.; Walberg, G. D.; Conway, E. J.; Jones, L. W.

    1983-01-01

    Applications of high power lasers are discussed which might fulfill the needs of NASA missions, and the technology characteristics of laser research programs are outlined. The status of the NASA programs or lasers, laser receivers, and laser propulsion is discussed, and recommendations are presented for a proposed expanded NASA program in these areas. Program elements that are critical are discussed in detail.

  2. Department of Defense high power laser program guidance

    NASA Astrophysics Data System (ADS)

    Muller, Clifford H.

    1994-06-01

    The DoD investment of nominally $200 million per year is focused on four high power laser (HPL) concepts: Space-Based Laser (SBL), a Ballistic Missile Defense Organization effort that addresses boost-phase intercept for Theater Missile Defense and National Missile Defense; Airborne Laser (ABL), an Air Force effort that addresses boost-phase intercept for Theater Missile Defense; Ground-Based Laser (GBL), an Air Force effort addressing space control; and Anti-Ship Missile Defense (ASMD), a Navy effort addressing ship-based defense. Each organization is also supporting technology development with the goal of achieving less expensive, brighter, and lighter high power laser systems. These activities represent the building blocks of the DoD program to exploit the compelling characteristics of the high power laser. Even though DoD's HPL program are focused and moderately strong, additional emphasis in a few technical areas could help reduce risk in these programs. In addition, a number of options are available for continuing to use the High-Energy Laser System Test Facility (HELSTF) at White Sands Missile Range. This report provides a brief overview and guidance for the five efforts which comprise the DoD HPL program (SBL, ABL, GBL, ASMD, HELSTF).

  3. Systems analysis on laser beamed power

    NASA Technical Reports Server (NTRS)

    Zeiders, Glenn W., Jr.

    1993-01-01

    The NASA SELENE power beaming program is intended to supply cost-effective power to space assets via Earth-based lasers and active optics systems. Key elements of the program are analyzed, the overall effort is reviewed, and recommendations are presented.

  4. FALCON reactor-pumped laser description and program overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1989-12-01

    The FALCON (Fission Activated Laser CONcept) reactor-pumped laser program at Sandia National Laboratories is examining the feasibility of high-power systems pumped directly by the energy from a nuclear reactor. In this concept we use the highly energetic fission fragments from neutron induced fission to excite a large volume laser medium. This technology has the potential to scale to extremely large optical power outputs in a primarily self-powered device. A laser system of this type could also be relatively compact and capable of long run times without refueling.

  5. Laser program annual report, 1977. Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bender, C.F.; Jarman, B.D.

    1978-07-01

    An overview is given of the laser fusion program. The solid-state program covers the Shiva and Nova projects. Laser components, control systems, alignment systems, laser beam diagnostics, power conditioning, and optical components are described. The fusion experimental program concerns the diagnostics and data acquisition associated with Argus and Shiva. (MOW)

  6. Academician Basov, high-power lasers, and the antimissile defense problem

    NASA Astrophysics Data System (ADS)

    Zarubin, Peter Vasilievich

    2013-02-01

    A review of the extensive program of the pioneering research and development of high-power lasers and laser radar undertaken in the USSR during the years 1964 to 1978 under the scientific supervision of N.G. Basov is presented. In the course of this program, many high-energy lasers with unique properties were created, new big research and design teams were formed, and the laser production and testing facilities were extended and developed. The program was fulfilled at many leading research institutions and design bureaus of the USSR Academy of Sciences and defense industry.

  7. A simple approach to industrial laser safety.

    PubMed

    Lewandowski, Michael A; Hinz, Michael W

    2005-02-01

    Industrial applications of lasers include marking, welding, cutting, and other material processing. Lasers used in these ways have significant power output but are generally designed to limit operator exposure to direct or scattered laser radiation to harmless levels in order to meet the Federal Laser Product Performance Standard (21CFR1040) for Class 1 laser products. Interesting challenges occur when companies integrate high power lasers into manufacturing or process control equipment. A significant part of the integration process is developing engineering and administrative controls to produce an acceptable level of laser safety while balancing production, maintenance, and service requirements. 3M Company uses a large number of high power lasers in numerous manufacturing processes. Whether the laser is purchased as a Class 1 laser product or whether it is purchased as a Class 4 laser and then integrated into a manufacturing application, 3M Company has developed an industrial laser safety program that maintains a high degree of laser safety while facilitating the rapid and economical integration of laser technology into the manufacturing workplace. This laser safety program is based on the requirements and recommendations contained in the American National Standard for Safe Use of Lasers, ANSI Z136.1. The fundamental components of the 3M program include hazard evaluation, engineering, administrative, and procedural controls, protective equipment, signs and labels, training, and re-evaluation upon change. This program is implemented in manufacturing facilities and has resulted in an excellent history of laser safety and an effective and efficient use of laser safety resources.

  8. Inertial Confinement Fusion Annual Report 1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kauffman, Robert L.

    The ICF Program has undergone a significant change in 1999 with the decommissioning of the Nova laser and the transfer of much of the experimental program to the OMEGA laser at the University of Rochester. The Nova laser ended operations with the final experiment conducted on May 27, 1999. This marked the end to one of DOE's most successful experimental facilities. Since its commissioning in 1985, Nova performed 13,424 experiments supporting ICF, Defense Sciences, high-power laser research, and basic science research. At the time of its commissioning, Nova was the world's most powerful laser. Its early experiments demonstrated that 3ωmore » light could produce high-drive, low-preheat environment required for indirect-drive ICE. In the early 1990s, the technical program on Nova for indirect drive ignition was defined by the Nova technical contract established by National Academy Review of ICF in 1990. Successful completion of this research program contributed significantly to the recommendation by the ICF Advisory Committee in 1995 to proceed with the construction of the National Ignition Facility? Nova experiments also demonstrated the utility of high-powered lasers for studying the physics of interest to Defense Sciences. Now, high-powered lasers along with pulsed-power machines are the principal facilities for studying high energy density science in DOE's Stockpile Stewardship Program (SSP). In 1997, one beam of Nova was converted to a short pulsed beam producing a petawatt of power in subpicosecond pulses. The petawatt beam was used for pioneering research in short-pulse laser-matter interactions relevant to fast ignitor ICF and short pulsed x-ray, electron, and particle production for use as probes. Nova is being disassembled and the space is being used to support NIF construction. Nova components are being distributed to a number of other laser laboratories around the world for reuse as determined by DOE. This report summarizes the research performed by the ICF Program in FY1999. The report is divided into five sections corresponding to the major areas of program activities. These are sections on (1) ignition target physics experiments theory and modeling, (2) high energy density experimental science, (3) target development, fabrication, and handling, (4) NIF laser development, and (5) optics technology development.« less

  9. High Average Power Raman Conversion in Diamond: ’Eyesafe’ Output and Fiber Laser Conversion

    DTIC Science & Technology

    2015-06-19

    Eyesafe’ output and fiber laser conversion 5a. CONTRACT NUMBER FA2386-12-1-4055 5b. GRANT NUMBER Grant 12RSZ077_124055 5c. PROGRAM ELEMENT...generating 380 W was demonstrated using a 630 W Ybdoped fiber laser system. In each case the performance was unsaturated and limited by the available pump...converter for conventional high power laser technologies including Nd doped lasers and Yb-doped fiber lasers. Diamond’s power handling capability now

  10. Safety approaches for high power modular laser operation

    NASA Astrophysics Data System (ADS)

    Handren, R. T.

    1993-03-01

    Approximately 20 years ago, a program was initiated at the Lawrence Livermore National Laboratory (LLNL) to study the feasibility of using lasers to separate isotopes of uranium and other materials. Of particular interest was the development of a uranium enrichment method for the production of commercial nuclear power reactor fuel to replace current more expensive methods. The Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) Program progressed to the point where a plant-scale facility to demonstrate commercial feasibility was built and is being tested. The U-AVLIS Program uses copper vapor lasers which pump frequency selective dye lasers to photoionize uranium vapor produced by an electron beam. The selectively ionized isotopes are electrostatically collected. The copper lasers are arranged in oscillator/amplifier chains. The current configuration consists of 12 chains, each with a nominal output of 800 W for a system output in excess of 9 kW. The system requirements are for continuous operation (24 h a day, 7 days a week) and high availability. To meet these requirements, the lasers are designed in a modular form allowing for rapid change-out of the lasers requiring maintenance. Since beginning operation in early 1985, the copper lasers have accumulated over 2 million unit hours at a greater than 90% availability. The dye laser system provides approximately 2.5 kW average power in the visible wavelength range. This large-scale laser system has many safety considerations, including high-power laser beams, high voltage, and large quantities (approximately 3000 gal) of ethanol dye solutions. The Laboratory's safety policy requires that safety controls be designed into any process, equipment, or apparatus in the form of engineering controls. Administrative controls further reduce the risk to an acceptable level. Selected examples of engineering and administrative controls currently being used in the U-AVLIS Program are described.

  11. Laser Program annual report 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Neal, E.M.; Murphy, P.W.; Canada, J.A.

    1989-07-01

    This report discusses the following topics: target design and experiments; target materials development; laboratory x-ray lasers; laser science and technology; high-average-power solid state lasers; and ICF applications studies.

  12. Far field and wavefront characterization of a high-power semiconductor laser for free space optical communications

    NASA Technical Reports Server (NTRS)

    Cornwell, Donald M., Jr.; Saif, Babak N.

    1991-01-01

    The spatial pointing angle and far field beamwidth of a high-power semiconductor laser are characterized as a function of CW power and also as a function of temperature. The time-averaged spatial pointing angle and spatial lobe width were measured under intensity-modulated conditions. The measured pointing deviations are determined to be well within the pointing requirements of the NASA Laser Communications Transceiver (LCT) program. A computer-controlled Mach-Zehnder phase-shifter interferometer is used to characterize the wavefront quality of the laser. The rms phase error over the entire pupil was measured as a function of CW output power. Time-averaged measurements of the wavefront quality are also made under intensity-modulated conditions. The measured rms phase errors are determined to be well within the wavefront quality requirements of the LCT program.

  13. Output power stability of a HCN laser using a stepping motor for the EAST interferometer system

    NASA Astrophysics Data System (ADS)

    Zhang, J. B.; Wei, X. C.; Liu, H. Q.; Shen, J. J.; Zeng, L.; Jie, Y. X.

    2015-11-01

    The HCN laser on EAST is a continuous wave glow discharge laser with 3.4 m cavity length and 120 mW power output at 337 μ m wavelength. Without a temperature-controlled system, the cavity length of the laser is very sensitive to the environmental temperature. An external power feedback control system is applied on the HCN laser to stabilize the laser output power. The feedback system is composed of a stepping motor, a PLC, a supervisory computer, and the corresponding control program. One step distance of the stepping motor is 1 μ m and the time response is 0.5 s. Based on the power feedback control system, a stable discharge for the HCN laser is obtained more than eight hours, which satisfies the EAST experiment.

  14. SOVRaD - A Digest of Recent Soviet R and D Articles. Volume 2, Number 6, 1976

    DTIC Science & Technology

    1976-06-01

    6 Laser- Powered Rocket Model 1 High- Power CO2 Laser Radiation Effect in SF6 1 Tests With 9-Beam Laser Fusion Systems 1 Focusing Optics For...Boundary Layer 6 Deformation Theory of Artif.cial Muscles . 6 Dolphin Swimming Stereophotogrammetry 7 Stable Spark Gap for High- Power Pulsers 7...8 Resume of Soviet Tokamak Program .............. 9 First Measurements of Tokamak-10 Plasma , . . 10 Electrochemical Power Generation 11

  15. Technical challenges for the future of high energy lasers

    NASA Astrophysics Data System (ADS)

    LaFortune, K. N.; Hurd, R. L.; Fochs, S. N.; Rotter, M. D.; Pax, P. H.; Combs, R. L.; Olivier, S. S.; Brase, J. M.; Yamamoto, R. M.

    2007-02-01

    The Solid-State, Heat-Capacity Laser (SSHCL) program at Lawrence Livermore National Laboratory is a multi-generation laser development effort scalable to the megawatt power levels with current performance approaching 100 kilowatts. This program is one of many designed to harness the power of lasers for use as directed energy weapons. There are many hurdles common to all of these programs that must be overcome to make the technology viable. There will be a in-depth discussion of the general issues facing state-of-the-art high energy lasers and paths to their resolution. Despite the relative simplicity of the SSHCL design, many challenges have been uncovered in the implementation of this particular system. An overview of these and their resolution are discussed. The overall system design of the SSHCL, technological strengths and weaknesses, and most recent experimental results will be presented.

  16. The Laser Cutter: A Terrific Addition to Your Tech Program

    ERIC Educational Resources Information Center

    Buxton, Richard

    2007-01-01

    A laser cutter has found a very welcome home in the technology program at Thomas Jefferson High School for Science and Technology. It has proven an easy-to-use major addition. Lasers come in different types, sizes and power ratings, which means several things must be taken into consideration when selecting the right one for the technology program.…

  17. Development of high-power dye laser chain

    NASA Astrophysics Data System (ADS)

    Konagai, Chikara; Kimura, Hironobu; Fukasawa, Teruichiro; Seki, Eiji; Abe, Motohisa; Mori, Hideo

    2000-01-01

    Copper vapor laser (CVL) pumped dye laser (DL) system, both in a master oscillator power amplifier (MOPA) configuration, has been developed for Atomic Vapor Isotope Separation program in Japan. Dye laser output power of about 500 W has been proved in long-term operations over 200 hours. High power fiber optic delivery system is utilized in order to efficiently transport kilowatt level CVL beams to the DL MOPA. Single model CVL pumped DL oscillator has been developed and worked for 200 hours within +/- 0.1 pm wavelength stability. Phase modulator for spreading spectrum to the linewidth of hyperfine structure has been developed and demonstrated.

  18. High-power lasers for directed-energy applications.

    PubMed

    Sprangle, Phillip; Hafizi, Bahman; Ting, Antonio; Fischer, Richard

    2015-11-01

    In this article, we review and discuss the research programs at the Naval Research Laboratory (NRL) on high-power lasers for directed-energy (DE) applications in the atmosphere. Physical processes affecting propagation include absorption/scattering, turbulence, and thermal blooming. The power levels needed for DE applications require combining a number of lasers. In atmospheric turbulence, there is a maximum intensity that can be placed on a target that is independent of the initial beam spot size and laser beam quality. By combining a number of kW-class fiber lasers, scientists at the NRL have successfully demonstrated high-power laser propagation in a turbulent atmosphere and wireless recharging. In the NRL experiments, four incoherently combined fiber lasers having a total power of 5 kW were propagated to a target 3.2 km away. These successful high-power experiments in a realistic atmosphere formed the basis of the Navy's Laser Weapon System. We compare the propagation characteristics of coherently and incoherently combined beams without adaptive optics. There is little difference in the energy on target between coherently and incoherently combined laser beams for multi-km propagation ranges and moderate to high levels of turbulence. Unlike incoherent combining, coherent combining places severe constraints on the individual lasers. These include the requirement of narrow power spectral linewidths in order to have long coherence times as well as polarization alignment of all the lasers. These requirements are extremely difficult for high-power lasers.

  19. Numerical simulation of hydrogen fluorine overtone chemical lasers

    NASA Astrophysics Data System (ADS)

    Chen, Jinbao; Jiang, Zhongfu; Hua, Weihong; Liu, Zejin; Shu, Baihong

    1998-08-01

    A two-dimensional program was applied to simulate the chemical dynamic process, gas dynamic process and lasing process of a combustion-driven CW HF overtone chemical lasers. Some important parameters in the cavity were obtained. The calculated results included HF molecule concentration on each vibration energy level while lasing, averaged pressure and temperature, zero power gain coefficient of each spectral line, laser spectrum, the averaged laser intensity, output power, chemical efficiency and the length of lasing zone.

  20. Theoretical studies of solar pumped lasers

    NASA Technical Reports Server (NTRS)

    Harries, Wynford L.

    1990-01-01

    One concept for collecting solar energy is to use large solar collectors and then use lasers as energy converters whose output beams act as transmission lines to deliver the energy to a destination. The efficiency of the process would be improved if the conversion could be done directly using solar pumped lasers, and the possibility of making such lasers is studied. There are many applications for such lasers, and these are examined. By including the applications first, the requirements for the lasers will be more evident. They are especially applicable to the Space program, and include cases where no other methods of delivering power seem possible. Using the lasers for conveying information and surveillance is also discussed. Many difficulties confront the designer of an efficient system for power conversion. These involve the nature of the solar spectrum, the method of absorbing the energy, the transfer of power into laser beams, and finally, the far field patterns of the beams. The requirements of the lasers are discussed. Specific laser configurations are discussed. The thrust is into gas laser systems, because for space applications, the laser could be large, and also the medium would be uniform and not subject to thermal stresses. Dye and solid lasers are treated briefly. For gas lasers, a chart of the various possibilities is shown, and the various families of gas lasers divided according to the mechanisms of absorbing solar radiation and of lasing. Several specific models are analyzed and evaluated. Overall conclusions for the program are summarized, and the performances of the lasers related to the requirements of various applications.

  1. Four Dimensional Analysis of Free Electron Lasers in the Amplifier Configuration

    DTIC Science & Technology

    2007-12-01

    FEL. The power capability of this device was so much greater than that of conventional klystrons and magnetrons that records for peak power ...understand the four dimensional behavior of the high power FEL amplifier. The simulation program required dimensionless input parameters, which make...33 OPTICAL PARAMETERS inP Seed laser power inT Seed pulse duration S Distance to First Optic 0Z Rayleigh length 2 0 0 WZ π λ= λ

  2. Prospects of very high power CO{sub 2} laser in welding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goussain, J.C.; Vire, S.

    1996-12-31

    A 45 kW laser system was recently installed at Institut de Soudure (IS) in France in order to evaluate the possibilities of such high power beams in welding. Some results of welding various materials (Ta6V, C-steel, Cr-Ni alloys), different thicknesses (>30 mm) and large components (several meters) are presented. Some recent installations of high power laser equipment already integrated into production site or under development in shipbuilding and steel fabrication are described. Finally the objectives of an important R and D program launched recently for exploring the different aspects of laser welding in thick section steel fabrication is outlined.

  3. Control system of an excitation power supply for fast axial flow CO2 lasersupda

    NASA Astrophysics Data System (ADS)

    Li, Bo; Jia, Xinting; Yuan, Hao; Gao, Yuhu; Wang, Youqing

    2009-08-01

    A switching power control system of fast axial flow CO2 lasers based on DSP is presented. The key techniques are described in detail, include the control principle, realization method and program design. The experiment showed that the system make the laser discharge stably and work in multi-mode. The discharge current can be adjusted from 3mA to 85mA continuously. 20-2000Hz frequency, 0-100% duty cycle laser pulse is achieved. The power supply can improve the processing efficiency and quality.

  4. Development of Electron Beam Pumped KrF Lasers for Fusion Energy

    DTIC Science & Technology

    2008-01-01

    Direct drive with krypton fluoride (KrF) lasers is an attractive approach to inertial fusion energy (IFE): KrF lasers have outstanding beam spatial...attractive power plant [3]. In view of these advances, several world-wide programs are underway to develop KrF lasers for fusion energy . These include

  5. Ar-Xe Laser: The Path to a Robust, All-Electric Shipboard Directed Energy Weapon

    DTIC Science & Technology

    2008-12-18

    Krypton Fluoride (KrF) laser for fusion energy and is sponsored by the Department of Energy’s (DOE) High Average Power Laser (HAPL) program. DOE...Electronics Conference, Arlington VA, October 2007. 9. “Electron Beam Pumped Lasers for Fusion Energy and Directed Energy Applications”, presented by

  6. Silicon Carbide Defect Qubits/Quantum Memory with Field-Tuning: OSD Quantum Science and Engineering Program (QSEP)

    DTIC Science & Technology

    2017-08-01

    accessories for mounting e. Laser power supply f. TEC power supply 12. Optical filters from SEMROCK ®, THORLABS Inc., EDMUND OPTICS® a. 532-nm, laser...line filter ( SEMROCK ®) b. 550-nm, hard-coated, short-pass filter (THORLABS Inc.) c. 532-nm long-pass filter ( SEMROCK ®) d. 808-nm laser-line filter... SEMROCK ®) e. 850-nm /10-nm full width at half maximum (FWHM) bandpass filter ( SEMROCK ®) f. 980-nm bandpass filter ( SEMROCK ®) g. 976-nm laser-line

  7. Satellite power system concept development and evaluation program. Volume 2: System definition

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The system level results of the system definition studies performed by NASA as a part of the Department of Energy/NASA satellite power system concept development and evaluation program are summarized. System requirements and guidelines are discussed as well as the major elements that comprise the reference system and its design options. Alternative system approaches including different system sizes, solid state amplifier (microwave) concepts, and laser power transmission system cost summaries are reviewed. An overview of the system analysis and planning efforts is included. The overall study led to the conclusion that the reference satellite power system concept is a feasible baseload source of electrical power and, within the assumed guidelines, the minimum cost per kilowatt is achieved at the maximum output of 5 gigawatts to the utility grid. Major unresolved technical issues include maximum allowable microwave power density in the ionosphere and performance/mass characteristics of laser power transmission systems.

  8. Laser Communication Demonstration System (LSCS) and Future Mobile Satellite Services

    NASA Technical Reports Server (NTRS)

    Chen, C. -C.; Lesh, J. R.

    1995-01-01

    The Laser Communications Demonstration System (LCDS) is a proposed in-orbit demonstration of high data rate laser communications technology conceived jointly by NASA and U.S. industry. The program objectives are to stimulate industry development and to demonstrate the readiness of high data rate optical communications in Earth Orbit. For future global satellite communication systems using intersatellite links (ISLs), laser communications technology can offer reduced mass , reduced power requirements, and increased channel bandwidths without regulatory restraint. This paper provides comparisons with radio systems and status of the program.

  9. EAGLE: relay mirror technology development

    NASA Astrophysics Data System (ADS)

    Hartman, Mary; Restaino, Sergio R.; Baker, Jeffrey T.; Payne, Don M.; Bukley, Jerry W.

    2002-06-01

    EAGLE (Evolutionary Air & Space Global Laser Engagement) is the proposed high power weapon system with a high power laser source, a relay mirror constellation, and the necessary ground and communications links. The relay mirror itself will be a satellite composed of two optically-coupled telescopes/mirrors used to redirect laser energy from ground, air, or space based laser sources to distant points on the earth or space. The receiver telescope captures the incoming energy, relays it through an optical system that cleans up the beam, then a separate transmitter telescope/mirror redirects the laser energy at the desired target. Not only is it a key component in extending the range of DoD's current laser weapon systems, it also enables ancillary missions. Furthermore, if the vacuum of space is utilized, then the atmospheric effects on the laser beam propagation will be greatly attenuated. Finally, several critical technologies are being developed to make the EAGLE/Relay Mirror concept a reality, and the Relay Mirror Technology Development Program was set up to address them. This paper will discuss each critical technology, the current state of the work, and the future implications of this program.

  10. Thermally induced distortion of a high-average-power laser system by an optical transport system

    NASA Astrophysics Data System (ADS)

    Chow, Robert; Ault, Linda E.; Taylor, John R.; Jedlovec, Don

    1999-11-01

    The atomic vapor laser isotope separation process uses high- average power lasers that have the commercial potential to enrich uranium for the electric power utilities. The transport of the laser beam through the laser system to the separation chambers requires high performance optical components, most of which have either fused silica or Zerodur as the substrate material. One of the requirements of the optical components is to preserve the wavefront quality of the laser beam that propagate over long distances. Full aperture tests with the high power process lasers and finite element analysis (FEA) have been performed on the transport optics. The wavefront distortions of the various sections of the transport path were measured with diagnostic Hartmann sensor packages. The FEA results were derived from an in-house thermal-structural- optical code which is linked to the commercially available CodeV program. In comparing the measured and predicted results, the bulk absorptance of fused silica was estimated to about 50 ppm/cm in the visible wavelength regime. Wavefront distortions will be reported on optics made from fused silica and Zerodur substrate materials.

  11. 8TH International Laser Physics Workshop Lphys󈨧 Budapest, July 2-6, 1999, Program

    DTIC Science & Technology

    1999-07-05

    Gerhard J. MUller (Germany) Rudolf Steiner (Germany) Symposium Status and Future Directions of High-Power Laser Installations Co-Chairs: See Leang...Sciences, Kazan. Russia I.A. Shcherbakov General Physics Institute. Russian Academy of Sciences. Moscow, Russia R. Steiner Institute of Laser Technologies...14.50-15.15 R. Steiner , A. Pohl, A. Bentele, T. Meier (Ulm, Germany) Laser Doppler sensor for laser assisted injection 30 SEMINAR 5 --- LASER METHODS IN

  12. Laser Science & Technology Program Annual Report - 2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, H-L

    2001-03-20

    The Laser Science and Technology (LS&T) Program Annual Report 2001 provides documentation of the achievements of the LLNL LS&T Program during the April 2001 to March 2002 period using three formats: (1) an Overview that is a narrative summary of important results for the year; (2) brief summaries of research and development activity highlights within the four Program elements: Advanced Lasers and Components (AL&C), Laser Optics and Materials (LO&M), Short Pulse Laser Applications and Technologies (SPLAT), and High-Energy Laser System and Tests (HELST); and (3) a compilation of selected articles and technical reports published in reputable scientific or technology journalsmore » in this period. All three elements (Annual Overview, Activity Highlights, and Technical Reports) are also on the Web: http://laser.llnl.gov/lasers/pubs/icfq.html. The underlying mission for the LS&T Program is to develop advanced lasers, optics, and materials technologies and applications to solve problems and create new capabilities of importance to the Laboratory and the nation. This mission statement has been our guide for defining work appropriate for our Program. A major new focus of LS&T beginning this past year has been the development of high peak power short-pulse capability for the National Ignition Facility (NIF). LS&T is committed to this activity.« less

  13. Solar Pumped Lasers and Their Applications

    NASA Technical Reports Server (NTRS)

    Lee, Ja H.

    1991-01-01

    Since 1980, NASA has been pursuing high power solar lasers as part of the space power beaming program. Materials in liquid, solid, and gas phases have been evaluated against the requirements for solar pumping. Two basic characteristics of solar insolation, namely its diffuse irradiance and 5800 K blackbody-like spectrum, impose rather stringent requirements for laser excitation. However, meeting these requirements is not insurmountable as solar thermal energy technology has progressed today, and taking advantage of solar pumping lasers is becoming increasingly attractive. The high density photons of concentrated solar energy have been used for mainly electric power generation and thermal processing of materials by the DOE Solar Thermal Technologies Program. However, the photons can interact with materials through many other direct kinetic paths, and applications of the concentrated photons could be extended to processes requiring photolysis, photosynthesis, and photoexcitation. The use of solar pumped lasers on Earth seems constrained by economics and sociopolitics. Therefore, prospective applications may be limited to those that require use of quantum effects and coherency of the laser in order to generate extremely high value products and services when conventional and inexpensive means are ineffective or impossible. The new applications already proposed for concentrated solar photons, such as destruction of hazardous waste, production of renewable fuel, production of fertilizer, and air/water pollution controls, may benefit from the use of inexpensive solar pumped laser matched with the photochemical kinetics of these processes.

  14. Laser power beaming applications and technology

    NASA Astrophysics Data System (ADS)

    Burke, Robert J.; Cover, Ralph A.; Curtin, Mark S.; Dinius, R.; Lampel, Michael C.

    1994-05-01

    Beaming laser energy to spacecraft has important economic potential. It promises significant reduction in the cost of access to space, for commercial and government missions. While the potential payoff is attractive, existing technologies perform the same missions and the keys to market penetration for power beaming are a competitive cost and a schedule consistent with customers' plans. Rocketdyne is considering these questions in the context of a commercial enterprise -- thus, evaluation of the requirements must be done based on market assessments and recognition that significant private funding will be involved. It is in the context of top level business considerations that the technology requirements are being assessed and the program being designed. These considerations result in the essential elements of the development program. Since the free electron laser is regarded as the `long pole in the tent,' this paper summarizes Rocketdyne's approach for a timely, cost-effective program to demonstrate an FEL capable of supporting an initial operating capability.

  15. Status and future prospects of laser fusion and high power laser applications

    NASA Astrophysics Data System (ADS)

    Mima, Kunioki

    2010-08-01

    In Asia, there are many institutes for the R&D of high power laser science and applications. They are 5 major institutes in Japan, 4 major institutes in China, 2 institutes in Korea, and 3 institutes in India. The recent achievements and future prospects of those institutes will be over viewed. In the laser fusion research, the FIREX-I project in Japan has been progressing. The 10kJ short pulse LFEX laser has completed and started the experiments with a single beam. About 1kJ pulse energy will be injected into a cone target. The experimental results of the FIREX experiments will be presented. As the target design for the experiments, a new target, namely, a double cone target was proposed, in which the high energy electrons are well confined and the heating efficiency is significantly improved. Together with the fusion experiments, Osaka University has carried out laboratory astrophysics experiments on photo ionizing plasmas to observe a unique X-ray spectrum from non-LTE plasmas. In 2008, Osaka university has started a new Photon research center in relation with the new program: Consortium for Photon Science and Technology: C-PhoST, in which ultra intense laser plasmas research and related education will be carried out for 10 years. At APRI, JAEA, the fundamental science on the relativistic laser plasmas and the applications of laser particle acceleration has been developed. The application of laser ion acceleration has been investigated on the beam cancer therapy since 2007. In China, The high power glass laser: Shenguan-II and a peta watt beam have been operated to work on radiation hydro dynamics at SIOFM Shanghai. The laser material and optics are developed at SIOFM and LFRC. The IAPCM and the IOP continued the studies on radiation hydrodynamics and on relativistic laser plasmas interactions. At LFRC in China, the construction of Shenguan III glass laser of 200kJ in blue has progressed and will be completed in 2012. Together with the Korean program, I will overview the above Asian programs.

  16. A quality assurance program for clinical PDT

    NASA Astrophysics Data System (ADS)

    Dimofte, Andreea; Finlay, Jarod; Ong, Yi Hong; Zhu, Timothy C.

    2018-02-01

    Successful outcome of Photodynamic therapy (PDT) depends on accurate delivery of prescribed light dose. A quality assurance program is necessary to ensure that light dosimetry is correctly measured. We have instituted a QA program that include examination of long term calibration uncertainty of isotropic detectors for light fluence rate, power meter head intercomparison for laser power, stability of the light-emitting diode (LED) light source integrating sphere as a light fluence standard, laser output and calibration of in-vivo reflective fluorescence and absorption spectrometers. We examined the long term calibration uncertainty of isotropic detector sensitivity, defined as fluence rate per voltage. We calibrate the detector using the known calibrated light fluence rate of the LED light source built into an internally baffled 4" integrating sphere. LED light sources were examined using a 1mm diameter isotropic detector calibrated in a collimated beam. Wavelengths varying from 632nm to 690nm were used. The internal LED method gives an overall calibration accuracy of +/- 4%. Intercomparison among power meters was performed to determine the consistency of laser power and light fluence rate measured among different power meters. Power and fluence readings were measured and compared among detectors. A comparison of power and fluence reading among several power heads shows long term consistency for power and light fluence rate calibration to within 3% regardless of wavelength. The standard LED light source is used to calibrate the transmission difference between different channels for the diffuse reflective absorption and fluorescence contact probe as well as isotropic detectors used in PDT dose dosimeter.

  17. Qualification and Selection of Flight Diode Lasers for Space Applications

    NASA Technical Reports Server (NTRS)

    Liebe, Carl C.; Dillon, Robert P.; Gontijo, Ivair; Forouhar, Siamak; Shapiro, Andrew A.; Cooper, Mark S.; Meras, Patrick L.

    2010-01-01

    The reliability and lifetime of laser diodes is critical to space missions. The Nuclear Spectroscopic Telescope Array (NuSTAR) mission includes a metrology system that is based upon laser diodes. An operational test facility has been developed to qualify and select, by mission standards, laser diodes that will survive the intended space environment and mission lifetime. The facility is situated in an electrostatic discharge (ESD) certified clean-room and consist of an enclosed temperature-controlled stage that can accommodate up to 20 laser diodes. The facility is designed to characterize a single laser diode, in addition to conducting laser lifetime testing on up to 20 laser diodes simultaneously. A standard laser current driver is used to drive a single laser diode. Laser diode current, voltage, power, and wavelength are measured for each laser diode, and a method of selecting the most adequate laser diodes for space deployment is implemented. The method consists of creating histograms of laser threshold currents, powers at a designated current, and wavelengths at designated power. From these histograms, the laser diodes that illustrate a performance that is outside the normal are rejected and the remaining lasers are considered spaceborne candidates. To perform laser lifetime testing, the facility is equipped with 20 custom laser drivers that were designed and built by California Institute of Technology specifically to drive NuSTAR metrology lasers. The laser drivers can be operated in constant-current mode or alternating-current mode. Situated inside the enclosure, in front of the laser diodes, are 20 power-meter heads to record laser power throughout the duration of lifetime testing. Prior to connecting a laser diode to the current source for characterization and lifetime testing, a background program is initiated to collect current, voltage, and resistance. This backstage data collection enables the operational test facility to have full laser diode traceablity.

  18. Fabrication and optimization of 1.55-μm InGaAsP/InP high-power semiconductor diode laser

    NASA Astrophysics Data System (ADS)

    Qing, Ke; Shaoyang, Tan; Songtao, Liu; Dan, Lu; Ruikang, Zhang; Wei, Wang; Chen, Ji

    2015-09-01

    A comprehensive design optimization of 1.55-μm high power InGaAsP/InP board area lasers is performed aiming at increasing the internal quantum efficiency (ηi) while maintaining the low internal loss (αi) of the device, thereby achieving high power operation. Four different waveguide structures of broad area lasers were fabricated and characterized in depth. Through theoretical analysis and experiment verifications, we show that laser structures with stepped waveguide and thin upper separate confinement layer will result in high ηi and overall slope efficiency. A continuous wave (CW) single side output power of 160 mW was obtained for an uncoated laser with a 50-μm active area width and 1 mm cavity length. Project supported by the National Natural Science Foundation of China (Nos. 61274046, 61201103) and the National High Technology Research and Development Program of China (No. 2013AA014202).

  19. System technology for laser-assisted milling with tool integrated optics

    NASA Astrophysics Data System (ADS)

    Hermani, Jan-Patrick; Emonts, Michael; Brecher, Christian

    2013-02-01

    High strength metal alloys and ceramics offer a huge potential for increased efficiency (e. g. in engine components for aerospace or components for gas turbines). However, mass application is still hampered by cost- and time-consuming end-machining due to long processing times and high tool wear. Laser-induced heating shortly before machining can reduce the material strength and improve machinability significantly. The Fraunhofer IPT has developed and successfully realized a new approach for laser-assisted milling with spindle and tool integrated, co-rotating optics. The novel optical system inside the tool consists of one deflection prism to position the laser spot in front of the cutting insert and one focusing lens. Using a fiber laser with high beam quality the laser spot diameter can be precisely adjusted to the chip size. A high dynamic adaption of the laser power signal according to the engagement condition of the cutting tool was realized in order not to irradiate already machined work piece material. During the tool engagement the laser power is controlled in proportion to the current material removal rate, which has to be calculated continuously. The needed geometric values are generated by a CAD/CAM program and converted into a laser power signal by a real-time controller. The developed milling tool with integrated optics and the algorithm for laser power control enable a multi-axis laser-assisted machining of complex parts.

  20. Fiber Laser Arrays

    DTIC Science & Technology

    2006-05-03

    AFRL-DE-PS- AFRL-DE-PS- TR-2006-1059 TR-2006-1059 FIBER LASER ARRAYS Thomas B. Simpson L-3 Communications-Jaycor 3394...LEANNE J HENRY, Lt Col, USAF L. BRUCE SIMPSON, SES Chief, High Power Solid State Laser Branch Director, Directed Energy Directorate...SUBTITLE Fiber Laser Arrays 5c. PROGRAM ELEMENT NUMBER 62605F 5d. PROJECT NUMBER 4866 5e. TASK NUMBER LR 6. AUTHOR(S) Thomas B. Simpson

  1. CO2 laser annealing of 50-microns-thick silicon solar cells

    NASA Technical Reports Server (NTRS)

    Walker, F. E.

    1979-01-01

    A test program is conducted to determine thin solar cell annealing effects using a laser energy source. A CO2 continuous-wave laser was used in annealing experiments on 50 micrometers-thick silicon solar cells after proton irradiation. Test cells were irradiated to a fluence of 1.0 x 10 to the 12th power protons/sq cm with 1.9 MeV protons. After irradiation, those cells receiving full proton dosage were degraded by an average of 30% in output power. In annealing tests laser beam exposure times on the solar cell varied from 2 seconds to 16 seconds reaching cell temperatures of from 400 C to 500 C. Under those conditions annealing test results showed recovery in cell output power of from 33% to 90%.

  2. Thermally induced distortion of high average power laser system by an optical transport system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ault, L; Chow, R; Taylor, Jedlovec, D

    1999-03-31

    The atomic vapor laser isotope separation process uses high-average power lasers that have the commercial potential to enrich uranium for the electric power utilities. The transport of the laser beam through the laser system to the separation chambers requires high performance optical components, most of which have either fused silica or Zerodur as the substrate material. One of the requirements of the optical components is to preserve the wavefront quality of the laser beam that propagate over long distances. Full aperture tests with the high power process lasers and finite element analysis (FEA) have been performed on the transport optics.more » The wavefront distortions of the various sections of the transport path were measured with diagnostic Hartmann sensor packages. The FEA results were derived from an in-house thermal-structural-optical code which is linked to the commercially available CodeV program. In comparing the measured and predicted results, the bulk absorptance of fused silica was estimated to about 50 ppm/cm in the visible wavelength regime. Wavefront distortions are reported on optics made from fused silica and Zerodur substrate materials.« less

  3. FALCON nuclear-reactor-pumped laser program and wireless power transmission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lipinski, R.J.; Pickard, P.S.

    1992-12-31

    FALCON is a high-power, reactor-pumped laser concept. The major strengths of a reactor-pumped laser are (1) simple, modular construction, (2) long-duration, closed-cycle capability, (3) self-contained power, (4) compact size, and (5) a variety of wavelengths (from visible to infrared). Reactor-pumped lasing has been demonstrated experimentally in various mixtures of xenon, argon, neon, and helium at wavelengths of 585, 703, 725, 1271, 1733, 1792, 2032, 2630, 2650, and 3370 nm with intrinsic efficiency as high as 2.5%. Powers up to 300 W for 2 ms have been demonstrated. Projected beam quality for FALCON is good enough that frequency doubling at reasonablemore » efficiencies could be expected to yield wavelengths at 353, 363, 636, 867, 896, 1016, 1315, 1325, and 1685 nm. Appropriate missions for FALCON are described and include power beaming to satellites, the moon, and unmanned surveillance planes; lunar mapping; space debris removal; and laser propulsion.« less

  4. FALCON nuclear-reactor-pumped laser program and wireless power transmission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lipinski, R.J.; Pickard, P.S.

    1992-01-01

    FALCON is a high-power, reactor-pumped laser concept. The major strengths of a reactor-pumped laser are (1) simple, modular construction, (2) long-duration, closed-cycle capability, (3) self-contained power, (4) compact size, and (5) a variety of wavelengths (from visible to infrared). Reactor-pumped lasing has been demonstrated experimentally in various mixtures of xenon, argon, neon, and helium at wavelengths of 585, 703, 725, 1271, 1733, 1792, 2032, 2630, 2650, and 3370 nm with intrinsic efficiency as high as 2.5%. Powers up to 300 W for 2 ms have been demonstrated. Projected beam quality for FALCON is good enough that frequency doubling at reasonablemore » efficiencies could be expected to yield wavelengths at 353, 363, 636, 867, 896, 1016, 1315, 1325, and 1685 nm. Appropriate missions for FALCON are described and include power beaming to satellites, the moon, and unmanned surveillance planes; lunar mapping; space debris removal; and laser propulsion.« less

  5. All solid-state high power visible laser

    NASA Technical Reports Server (NTRS)

    Grossman, William M.

    1993-01-01

    The overall objective of this Phase 2 effort was to develop and deliver to NASA a high repetition rate laser-diode-pumped solid-state pulsed laser system with output in the green portion of the spectrum. The laser is for use in data communications, and high efficiency, short pulses, and low timing jitter are important features. A short-pulse 1 micron laser oscillator, a new multi-pass amplifier to boost the infrared power, and a frequency doubler to take the amplified infrared pulsed laser light into the green. This produced 1.5 W of light in the visible at a pulse repetition rate of 20 kHz in the laboratory. The pulses have a full-width at half maximum of near 1 ns. The results of this program are being commercialized.

  6. Conductive Channel for Energy Transmission

    NASA Astrophysics Data System (ADS)

    Apollonov, Victor V.

    2011-11-01

    For many years the attempts to create conductive channels of big length were taken in order to study the upper atmosphere and to settle special tasks, related to energy transmission. There upon the program of creation of "Impulsar" represents a great interest, as this program in a combination with high-voltage high repetition rate electrical source can be useful to solve the above mentioned problems (N. Tesla ideas for the days of high power lasers). The principle of conductive channel production can be shortly described as follows. The "Impulsar"—laser jet engine vehicle—propulsion take place under the influence of powerful high repetition rate pulse-periodic laser radiation. In the experiments the CO2—laser and solid state Nd:YAG laser systems had been used. Active impulse appears thanks to air breakdown (<30 km) or to the breakdown of ablated material on the board (>30 km), placed in the vicinity of the focusing mirror-acceptor of the breakdown waves. With each pulse of powerful laser the device rises up, leaving a bright and dense trace of products with high degree of ionization and metallization by conductive nano-particles due to ablation. Conductive dust plasma properties investigation in our experiments was produced by two very effective approaches: high power laser controlled ablation and by explosion of wire. Experimental and theoretical results of conductive canal modeling will be presented. The estimations show that with already experimentally demonstrated figures of specific thrust impulse the lower layers of the Ionosphere can be reached in several ten seconds that is enough to keep the high level of channel conductivity and stability with the help of high repetition rate high voltage generator. Some possible applications for new technology are highlighted.

  7. Multidisciplinary approaches to radiation-balanced lasers (MARBLE): a MURI program by AFOSR (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Sheik-Bahae, Mansoor

    2017-02-01

    An overview of the diverse research activities under the newly funded MURI project by AFOSR will be presented. The main goal is to advance the science of radiation-balanced lasers, also known as athermal lasers, in order to mitigate the thermal degradation of the high-power laser beams. The MARBLE project involves researchers from four universities and spans research activities in rare-earth doped crystals and fibers to semiconductor disc lasers.

  8. Perspective on One Decade of Laser Propulsion Research at Air Force Research Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larson, C. William

    The Air Force Laser Propulsion Program spanned nearly 10-years and included about 35-weeks of experimental research with the Pulsed Laser Vulnerability Test System of the High Energy Laser Systems Test Facility at White Sands Missile Range, New Mexico, WSMR/HELSTF/PLVTS. PLVTS is a pulsed CO2 laser that produces up to 10 kW of power in {approx}10 cm{sup 2} spot at wavelength of 10.6 microns. The laser is capable of a pulse repetition rate up to 25 Hz, with pulse durations of about 20 microseconds. During the program basic research was conducted on the production of propulsion thrust from laser energy throughmore » heating of air and ablation of various candidate rocket propellant fuels. Flight tests with an ablation fuel (Delrin) and air were accomplished with a model Laser Lightcraft vehicle that was optimized for propulsion by the PLVTS at its maximum power output, 10 kW at 25 Hz, 400 J/pulse. Altitudes exceeding 200-feet were achieved with ablation fuels. The most recent contributions to the technology included development of a mini-thruster standard for testing of chemically enhanced fuels and theoretical calculations on the performance of formulations containing ammonium nitrate and Delrin. Results of these calculations will also be reported here.« less

  9. Perspective on One Decade of Laser Propulsion Research at Air Force Research Laboratory

    NASA Astrophysics Data System (ADS)

    Larson, C. William

    2008-04-01

    The Air Force Laser Propulsion Program spanned nearly 10-years and included about 35-weeks of experimental research with the Pulsed Laser Vulnerability Test System of the High Energy Laser Systems Test Facility at White Sands Missile Range, New Mexico, WSMR/HELSTF/PLVTS. PLVTS is a pulsed CO2 laser that produces up to 10 kW of power in ˜10 cm2 spot at wavelength of 10.6 microns. The laser is capable of a pulse repetition rate up to 25 Hz, with pulse durations of about 20 microseconds. During the program basic research was conducted on the production of propulsion thrust from laser energy through heating of air and ablation of various candidate rocket propellant fuels. Flight tests with an ablation fuel (Delrin) and air were accomplished with a model Laser Lightcraft vehicle that was optimized for propulsion by the PLVTS at its maximum power output, 10 kW at 25 Hz, 400 J/pulse. Altitudes exceeding 200-feet were achieved with ablation fuels. The most recent contributions to the technology included development of a mini-thruster standard for testing of chemically enhanced fuels and theoretical calculations on the performance of formulations containing ammonium nitrate and Delrin. Results of these calculations will also be reported here.

  10. Formation of short high-power laser radiation pulses in excimer mediums

    NASA Astrophysics Data System (ADS)

    Losev, V. F., Sr.; Ivanov, N. G.; Panchenko, Yu. N.

    2007-06-01

    Presently an excimer mediums continue are examined as one of variants for formation of powerful and over powerful pulses of laser radiation with duration from units of nanosecond up to tens femtosecond. The researches on such powerful installations as "NIKE" (USA) and << SUPER ASHURA >>, Japan) proceed in this direction. The main advantage of excimer mediums is the opportunity to work in a frequency mode, absence of restriction on the size of active area, high uniformity of a gas working medium, high efficiency (up to 10 %) and wide spectral range of laser radiation (KrF, XeCl ~ 2nm, XeF (C-A), Xe IICl ~ 50-100 nanometers). Research in area of high quality laser beams formation in excimer mediums and its amplification in high power amplifiers are carried out the long time in Institute of High Current Electronics SB RAS, Tomsk, Russia. The wide aperture XeCl laser system of MELS-4k is used for these investigations. Last time we take part in program on development of high power excimer laser system with a petawatt level of power. This system supposes the formation and amplification high quality laser beams with different pulse duration from units of nanosecond up to tens femtosecond. We research the possibility of laser beams formation in excimer mediums with ps-ns pulse duration having the low noise and divergence near to diffraction limit. In other hand, we are developing the wide aperture XeF(C-A) amplifier with optical pump on base electron accelerator. According to our estimations of the XeF(C-A) amplifier based on the converter of e-beam energy to the Xe II* fluorescence at 172 nm will allow to obtain up to 100 TW peak power in a 30 fs pulse.

  11. High-energy laser-summator based on Raman scattering principle

    NASA Astrophysics Data System (ADS)

    Eugeniy Mikhalovich, Zemskov; Zarubin, Peter Vasilievich; Cook, Joung

    2013-02-01

    This paper is a summary of the history, theory, and development efforts of summator, an all-in-one device that coherently combines multiple high-power laser beams, lowers the beam divergence, and shifts the wavelength based on stimulated Raman scattering principle in USSR from early 1960s to late 1970s. This was a part of the Terra-3 program, which was an umbrella program of highly classified high-energy laser weapons development efforts. Some parts of the Terra-3 program, specifically the terminal missile defense portion, were declassified recently, including the information on summator development efforts.

  12. Closed-cycle gas dynamic laser design investigation

    NASA Technical Reports Server (NTRS)

    Ketch, G. W.; Young, W. E.

    1977-01-01

    A conceptual design study was made of a closed cycle gas-dynamic laser to provide definition of the major components in the laser loop. The system potential application is for long range power transmission by way of high power laser beams to provide satellite propulsion energy for orbit changing or station keeping. A parametric cycle optimization was conducted to establish the thermodynamic requirements for the system components. A conceptual design was conducted of the closed cycle system and the individual components to define physical characteristics and establish the system size and weight. Technology confirmation experimental demonstration programs were outlined to develop, evaluate, and demonstrate the technology base needed for this closed cycle GDL system.

  13. Space Applications Industrial Laser System (SAILS)

    NASA Technical Reports Server (NTRS)

    Mccay, T. D.; Bible, J. B.; Mueller, R. E.

    1993-01-01

    A program is underway to develop a YAG laser based materials processing workstation to fly in the cargo bay of the Space Shuttle. This workstation, called Space Applications Industrial Laser System (SAILS), will be capable of cutting and welding steel, aluminum, and Inconel alloys of the type planned for use in constructing the Space Station Freedom. As well as demonstrating the ability of a YAG laser to perform remote (fiber-optic delivered) repair and fabrication operations in space, fundamental data will be collected on these interactions for comparison with terrestrial data and models. The flight system, scheduled to fly in 1996, will be constructed as three modules using standard Get-Away-Special (GAS) canisters. The first module holds the laser head and cooling system, while the second contains a high peak power electrical supply. The third module houses the materials processing workstation and the command and data acquisition subsystems. The laser head and workstation cansisters are linked by a fiber-optic cable to transmit the laser light. The team assembled to carry out this project includes Lumonics Industrial Products (laser), Tennessee Technological University (structural analysis and fabrication), Auburn University Center for Space Power (electrical engineering), University of Waterloo (low-g laser process consulting), and CSTAR/UTSI (data acquisition, control, software, integration, experiment design). This report describes the SAILS program and highlights recent activities undertaken at CSTAR.

  14. Nonlinear guiding of picosecond CO2 laser pulses in atmosphere(Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Tochitsky, Sergei

    2017-05-01

    During the last 20 years much attention has been given to the study of propagation of short intense laser pulses for which the peak power exceeds the critical power of self-focusing, Pcr. For a laser power P < Pcr, a dynamic equilibrium between the Kerr self-focusing, diffraction and defocusing caused by laser-ionized plasma result in the production of a high intensity laser filament in air within which a variety of nonlinear optical phenomena are observed. However, research in the 0.8-1 μm range so far has shown a fundamental limitation of guided energy to a few mJ transported within an 100 μm single channel. A long-wavelength, 0 10 μm CO2 laser is a promising candidate for nonlinear guiding because expected high Pcr values according to the modeling should allow for the increase of energy (and therefore power) in a self-guided beam from mJ (GW) to few Joules (TW). During the last decade a significant progress has been achieved in amplification of picosecond pulses to terawatt and recently to <10 TW power level at UCLA and ATF BNL. Such powerful 10 μm lasers open possibility for nonlinear propagation studies in an atmospheric window with high transmission. As a natural first step in a our program on picosecond CO2 laser filamentation, we have made first measurements of Kerr coefficients of air and air constituents around 10 μm. We also undertook direct measurements of n2 of air by analyzing nonlinear self-focusing in air using a 3 ps, 600 GW pulses of the BNL CO2 laser.

  15. Long range laser propagation: power scaling and beam quality issues

    NASA Astrophysics Data System (ADS)

    Bohn, Willy L.

    2010-09-01

    This paper will address long range laser propagation applications where power and, in particular beam quality issues play a major role. Hereby the power level is defined by the specific mission under consideration. I restrict myself to the following application areas: (1)Remote sensing/Space based LIDAR, (2) Space debris removal (3)Energy transmission, and (4)Directed energy weapons Typical examples for space based LIDARs are the ADM Aeolus ESA mission using the ALADIN Nd:YAG laser with its third harmonic at 355 nm and the NASA 2 μm Tm:Ho:LuLiF convectively cooled solid state laser. Space debris removal has attracted more attention in the last years due to the dangerous accumulation of debris in orbit which become a threat to the satellites and the ISS space station. High power high brightness lasers may contribute to this problem by partially ablating the debris material and hence generating an impulse which will eventually de-orbit the debris with their subsequent disintegration in the lower atmosphere. Energy transmission via laser beam from space to earth has long been discussed as a novel long term approach to solve the energy problem on earth. In addition orbital transfer and stationkeeping are among the more mid-term applications of high power laser beams. Finally, directed energy weapons are becoming closer to reality as corresponding laser sources have matured due to recent efforts in the JHPSSL program. All of this can only be realized if he laser sources fulfill the necessary power requirements while keeping the beam quality as close as possible to the diffraction limited value. And this is the rationale and motivation of this paper.

  16. Scientific program and abstracts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerich, C.

    1983-01-01

    The Fifth International Conference on High-Power Particle Beams is organized jointly by the Lawrence Livermore National Laboratory and Physics International Company. As in the previous conferences in this series, the program includes the following topics: high-power, electron- and ion-beam acceleration and transport; diode physics; high-power particle beam interaction with plasmas and dense targets; particle beam fusion (inertial confinement); collective ion acceleration; particle beam heating of magnetically confined plasmas; and generation of microwave/free-electron lasers.

  17. About Losses in Pumping Generators of High-Power Electrodischarge Excimer Lasers

    NASA Astrophysics Data System (ADS)

    Ivanov, N. G.; Losev, V. F.

    2015-04-01

    Energy losses in pumping systems of discharge high-power lasers are investigated. To estimate the losses, the discharge circuit operation was modeled, and its calculation was performed using the program PSpice. Results of measurements and calculations demonstrate that the resistance of a rail gap with electric field distortion exceeds several times the resistance of a single-channel gap without field distortion. A difference in the resistances is explained by different mechanisms of discharge burning: in the first case diffusion mechanism and in the second case the spark mechanism. The low efficiency of the high-power excimer lasers (~1%) is explained by high energy losses in the rail gap that reach more than 50% of the initially stored energy.

  18. Effects of vacuum exposure on stress and spectral shift of high reflective coatings

    NASA Astrophysics Data System (ADS)

    Stolz, C. J.; Taylor, J. R.; Eickelberg, W. K.; Lindh, J. D.

    1992-06-01

    The Atomic Vapor Laser Isotope Laser Separation (AVLIS) program operates the world's largest average power dye laser; the dye laser beams are combined, formatted, and transported in vacuum. The optical system is aligned at atmosphere, while the system must meet requirements in vacuum. Therefore, coating performance must be characterized in both atmosphere and vacuum. Changes in stress and spectral shift in ambient and vacuum environments are reported for conventional and dense multilayer dielectric coatings.

  19. Fiber lasers and amplifiers for science and exploration at NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.; Abshire, James; Allan, Graham R.; Stephen Mark

    2005-01-01

    We discuss present and near-term uses for high-power fiber lasers and amplifiers for NASA- specific applications including planetary topography and atmospheric spectroscopy. Fiber lasers and amplifiers offer numerous advantages for both near-term and future deployment of instruments on exploration and science remote sensing orbiting satellites. Ground-based and airborne systems provide an evolutionary path to space and a means for calibration and verification of space-borne systems. We present experimental progress on both the fiber transmitters and instrument prototypes for ongoing development efforts. These near-infrared instruments are laser sounders and lidars for measuring atmospheric carbon dioxide, oxygen, water vapor and methane and a pseudo-noise (PN) code laser ranging system. The associated fiber transmitters include high-power erbium, ytterbium, neodymium and Raman fiber amplifiers. In addition, we will discuss near-term fiber laser and amplifier requirements and programs for NASA free space optical communications, planetary topography and atmospheric spectroscopy.

  20. High power diode pumped solid state (DPSS) laser systems active media robust modeling and analysis

    NASA Astrophysics Data System (ADS)

    Kashef, Tamer M.; Mokhtar, Ayman M.; Ghoniemy, Samy A.

    2018-02-01

    Diode side-pumped solid-state lasers have the potential to yield high quality laser beams with high efficiency and reliability. This paper summarizes the results of simulation of the most predominant active media that are used in high power diode pumped solid-state (DPSS) laser systems. Nd:YAG, Nd:glass, and Nd:YLF rods laser systems were simulated using the special finite element analysis software program LASCAD. A performance trade off analysis for Nd:YAG, Nd:glass, and Nd:YLF rods was performed in order to predict the system optimized parameters and to investigate thermally induced thermal fracture that may occur due to heat load and mechanical stress. The simulation results showed that at the optimized values Nd:YAG rod achieved the highest output power of 175W with 43% efficiency and heat load of 1.873W/mm3. A negligible changes in laser output power, heat load, stress, and temperature distributions were observed when the Nd:YAG rod length was increased from 72 to 80mm. Simulation of Nd:glass at different rod diameters at the same pumping conditions showed better results for mechanical stress and thermal load than that of Nd:YAG and Nd:YLF which makes it very suitable for high power laser applications especially for large rod diameters. For large rod diameters Nd:YLF is mechanically weaker and softer crystal compared to Nd:YAG and Nd:glass due to its poor thermomechanical properties which limits its usage to only low to medium power systems.

  1. High Power and Frequency-Agile Optical Parametric Oscillators for Airborne DIAL Measurements of CH4 and H2O

    NASA Astrophysics Data System (ADS)

    Nehrir, A. R.; Shuman, T.; Chuang, T.; Hair, J. W.; Refaat, T. F.; Ismail, S.; Kooi, S. A.; Notari, A.

    2014-12-01

    Atmospheric methane (CH4) has the second largest radiative forcing of the long-lived greenhouse gasses (GHG) after carbon dioxide. However, methane's much shorter atmospheric lifetime and much stronger warming potential make its radiative forcing equivalent to that for CO2 over a 20-year time horizon which makes CH4 a particularly attractive target for mitigation strategies. Similar to CH4, water vapor (H2O) is the most dominant of the short-lived GHG in the atmosphere and plays a key role in many atmospheric processes. Atmospheric H2O concentrations span over four orders of magnitude from the planetary boundary layer where high impact weather initiates to lower levels in the upper troposphere and lower stratosphere (UTLS) where water vapor has significant and long term impacts on the Earth's radiation budget. NASA Langley has fostered the technology development with Fibertek, Inc. to develop frequency agile and high power (> 3 W) pulsed lasers using similar architectures in the 1645 nm and 935 nm spectral bands for DIAL measurements of CH4 and H2O, respectively. Both systems utilize high power 1 kHz pulse repetition frequency Nd:YAG lasers to generate high power laser emission at the desired wavelength via optical parametric oscillators (OPO). The CH4 OPO, currently in its final build stage in a SBIR Phase II program has demonstrated >2 W average power with injection seeding from a distributed feedback (DFB) laser during risk reduction experiments. The H2O OPO has demonstrated high power operation (>2 W) during the SBIR Phase I program while being injection seeded with a DFB laser, and is currently funded via an SBIR Phase II to build a robust system for future integration into an airborne water vapor DIAL system capable of profiling from the boundary layer up to the UTLS. Both systems have demonstrated operation with active OPO wavelength control to allow for optimization of the DIAL measurements for operation at different altitudes and geographic regions. An update on the progress of the CH4 and H2O laser development will be presented which will focus on key laser characteristics such as pulse energy, frequency agility and spectral purity. DIAL simulations will also be presented based on the expected and measured laser characteristics and system parameters in anticipation of future system(s) development.

  2. Frequency stabilization of diode-laser-pumped solid state lasers

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1988-01-01

    The goal of the NASA Sunlite program is to fly two diode-laser-pumped solid-state lasers on the space shuttle and while doing so to perform a measurement of their frequency stability and temporal coherence. These measurements will be made by combining the outputs of the two lasers on an optical radiation detector and spectrally analyzing the beat note. Diode-laser-pumped solid-state lasers have several characteristics that will make them useful in space borne experiments. First, this laser has high electrical efficiency. Second, it is of a technology that enables scaling to higher powers in the future. Third, the laser can be made extremely reliable, which is crucial for many space based applications. Fourth, they are frequency and amplitude stable and have high temporal coherence. Diode-laser-pumped solid-state lasers are inherently efficient. Recent results have shown 59 percent slope efficiency for a diode-laser-pumped solid-state laser. As for reliability, the laser proposed should be capable of continuous operation. This is possible because the diode lasers can be remote from the solid state gain medium by coupling through optical fibers. Diode lasers are constructed with optical detectors for monitoring their output power built into their mounting case. A computer can actively monitor the output of each diode laser. If it sees any variation in the output power that might indicate a problem, the computer can turn off that diode laser and turn on a backup diode laser. As for stability requirements, it is now generally believed that any laser can be stabilized if the laser has a frequency actuator capable of tuning the laser frequency as far as it is likely to drift in a measurement time.

  3. TEA CO 2 Laser Simulator: A software tool to predict the output pulse characteristics of TEA CO 2 laser

    NASA Astrophysics Data System (ADS)

    Abdul Ghani, B.

    2005-09-01

    "TEA CO 2 Laser Simulator" has been designed to simulate the dynamic emission processes of the TEA CO 2 laser based on the six-temperature model. The program predicts the behavior of the laser output pulse (power, energy, pulse duration, delay time, FWHM, etc.) depending on the physical and geometrical input parameters (pressure ratio of gas mixture, reflecting area of the output mirror, media length, losses, filling and decay factors, etc.). Program summaryTitle of program: TEA_CO2 Catalogue identifier: ADVW Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADVW Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computer: P.IV DELL PC Setup: Atomic Energy Commission of Syria, Scientific Services Department, Mathematics and Informatics Division Operating system: MS-Windows 9x, 2000, XP Programming language: Delphi 6.0 No. of lines in distributed program, including test data, etc.: 47 315 No. of bytes in distributed program, including test data, etc.:7 681 109 Distribution format:tar.gz Classification: 15 Laser Physics Nature of the physical problem: "TEA CO 2 Laser Simulator" is a program that predicts the behavior of the laser output pulse by studying the effect of the physical and geometrical input parameters on the characteristics of the output laser pulse. The laser active medium consists of a CO 2-N 2-He gas mixture. Method of solution: Six-temperature model, for the dynamics emission of TEA CO 2 laser, has been adapted in order to predict the parameters of laser output pulses. A simulation of the laser electrical pumping was carried out using two approaches; empirical function equation (8) and differential equation (9). Typical running time: The program's running time mainly depends on both integration interval and step; for a 4 μs period of time and 0.001 μs integration step (defaults values used in the program), the running time will be about 4 seconds. Restrictions on the complexity: Using a very small integration step might leads to stop the program run due to the huge number of calculating points and to a small paging file size of the MS-Windows virtual memory. In such case, it is recommended to enlarge the paging file size to the appropriate size, or to use a bigger value of integration step.

  4. Design and testing of low intensity laser biostimulator.

    PubMed

    Valchinov, Emil S; Pallikarakis, Nicolas E

    2005-01-13

    The non-invasive nature of laser biostimulation has made lasers an attractive alternative in Medical Acupuncture at the last 25 years. However, there is still an uncertainty as to whether they work or their effect is just placebo. Although a plethora of scientific papers published about the topic showing positive clinical results, there is still a lack of objective scientific proofs about the biostimulation effect of lasers in Medical Acupuncture. The objective of this work was to design and build a low cost portable laser device for stimulation of acupuncture points, considered here as small localized biosources (SLB), without stimulating any sensory nerves via shock or heat and to find out a suitable method for objectively evaluating its stimulating effect. The design is aimed for studying SLB potentials provoked by laser stimulus, in search for objective proofs of the biostimulation effect of lasers used in Medical Acupuncture. The proposed biostimulator features two operational modes: program mode and stimulation mode and two output polarization modes: linearly and circularly polarized laser emission. In program mode, different user-defined stimulation protocols can be created and memorized. The laser output can be either continuous or pulse modulated. Each stimulation session consists of a pre-defined number of successive continuous or square pulse modulated sequences of laser emission. The variable parameters of the laser output are: average output power, pulse width, pulse period, and continuous or pulsed sequence duration and repetition period. In stimulation mode the stimulus is automatically applied according to the pre-programmed protocol. The laser source is 30 mW AlGaInP laser diode with an emission wavelength of 685 nm, driven by a highly integrated driver. The optical system designed for beam collimation and polarization change uses single collimating lens with large numerical aperture, linear polarizer and a quarter-wave retardation plate. The proposed method for testing the device efficiency employs a biofeedback from the subject by recording the biopotentials evoked by the laser stimulus at related distant SLB sites. Therefore measuring of SLB biopotentials caused by the stimulus would indicate that a biopotential has been evoked at the irradiated site and has propagated to the measurement sites, rather than being caused by local changes of the electrical skin conductivity. A prototype device was built according to the proposed design using relatively inexpensive and commercially available components. The laser output can be pulse modulated from 0.1 to 1000 Hz with a duty factor from 10 to 90%. The average output power density can be adjusted in the range 24-480 mW/cm2, where the total irradiation is limited to 2 Joule per stimulation session. The device is controlled by an 8-bit RISC Flash microcontroller with internal RAM and EEPROM memory, which allows for a wide range of different stimulation protocols to be implemented and memorized. The integrated laser diode driver with its onboard light power control loop provides safe and consistent laser modulation. The prototype was tested on the right Tri-Heater (TH) acupuncture meridian according to the proposed method. Laser evoked potentials were recorded from most of the easily accessible SLB along the meridian under study. They appear like periodical spikes with a repetition rate from 0.05 to 10 Hz and amplitude range 0.1-1 mV. The prototype's specifications were found to be better or comparable to those of other existing devices. It features low component count, small size and low power consumption. Because of the low power levels used the possibility of sensory nerve stimulation via the phenomenon of shock or heat is excluded. Thus senseless optical stimulation is achieved. The optical system presented offers simple and cost effective way for beam collimation and polarization change. The novel method proposed for testing the device efficiency allows for objectively recording of SLB potentials evoked by laser stimulus. Based on the biopotential records obtained with this method, a scientifically based conclusion can be drawn about the effectiveness of the commercially available devices for low-level laser therapy used in Medical Acupuncture. The prototype tests showed that with the biostimulator presented, SLB could be effectively stimulated at low power levels. However more studies are needed to derive a general conclusion about the SLB biostimulation mechanism of lasers and their most effective power and optical settings.

  5. New High Gain Target Design for a Laser Fusion Power Plant

    DTIC Science & Technology

    2000-06-07

    target with a minimum energy gain, about 100. Demonstration of ignition or low gain is only important for fusion energy if it leads into a target concept...nonlinear saturation of these instabilities. Our approach is to try to avoid them. 4. A Development Path to Fusion Energy The laser and target concept...on the exact date required to develop fusion energy , it would be worthwhile for a power plant development program to provide enough time and funds

  6. Inertial Confinement Fusion Annual Report 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Correll, D

    The ICF Annual Report provides documentation of the achievements of the LLNL ICF Program during the fiscal year by the use of two formats: (1) an Overview that is a narrative summary of important results for the fiscal year and (2) a compilation of the articles that previously appeared in the ICF Quarterly Report that year. Both the Overview and Quarterly Report are also on the Web at http://lasers.llnl.gov/lasers/pubs/icfq.html. Beginning in Fiscal Year 1997, the fourth quarter issue of the ICF Quarterly was no longer printed as a separate document but rather included in the ICF Annual. This change providedmore » a more efficient process of documenting our accomplishments with-out unnecessary duplication of printing. In addition we introduced a new document, the ICF Program Monthly Highlights. Starting with the September 1997 issue and each month following, the Monthly Highlights will provide a brief description of noteworthy activities of interest to our DOE sponsors and our stakeholders. The underlying theme for LLNL's ICF Program research continues to be defined within DOE's Defense Programs missions and goals. In support of these missions and goals, the ICF Program advances research and technology development in major interrelated areas that include fusion target theory and design, target fabrication, target experiments, and laser and optical science and technology. While in pursuit of its goal of demonstrating thermonuclear fusion ignition and energy gain in the laboratory, the ICF Program provides research and development opportunities in fundamental high-energy-density physics and supports the necessary research base for the possible long-term application of inertial fusion energy for civilian power production. ICF technologies continue to have spin-off applications for additional government and industrial use. In addition to these topics, the ICF Annual Report covers non-ICF funded, but related, laser research and development and associated applications. We also provide a short summary of the quarterly activities within Nova laser operations, Beamlet laser operations, and National Ignition Facility laser design. LLNL's ICF Program falls within DOE's national ICF program, which includes the Nova and Beamlet (LLNL), OMEGA (University of Rochester Laboratory for Laser Energetics), Nike (Naval Research Laboratory), and Trident (Los Alamos National Laboratory) laser facilities. The Particle Beam Fusion Accelerator (Z) and Saturn pulsed-power facilities are at Sandia National Laboratories. General Atomics, Inc., develops and provides many of the targets for the above experimental facilities. Many of the ICF Annual Report articles are co-authored with our colleagues from these other ICF institutions.« less

  7. ARPA/NRL X-Ray Laser Program - Semiannual Technical Report to Defense Advanced Research Projects Agency, 1 January 1975-30 June 1975

    DTIC Science & Technology

    1975-09-01

    being conducted with highly- stripped carbon ions emitted fron a laser -irradiated surface and ^xpandin- into a background gas . The...obtained from reported measurement s of noble gas lasers indicate that the amplifiers will operate in I depletion mode, providing pulse powers in the...pumping appears to be the easier alternative and it will be pursued. The alternative amplifier approach involving electron beam pumped noble gas lasers

  8. A review of the Thermoelectronic Laser Energy Converter /TELEC/ Program at Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Alger, D. L.; Manista, E. J.; Thompson, R. W.

    1978-01-01

    The investigation of the Thermoelectronic Laser Energy Converter (TELEC) concept at the Lewis Research Center (LeRC) began with a feasibility study of a 1 megawatt sized TELEC system. The TELEC was to use either cesium vapor or hydrogen as the plasma medium. The cesium vapor TELEC appears to be the more practical device studied with an overall calculated conversion efficiency of greater than 48%. Following this study, a small TELEC cell was fabricated which demonstrated the conversion of a small amount of laser power to electrical power. The cell developed a short circuit current of 0.7 amperes and an open circuit voltage, as extrapolated from volt-ampere curves, of about 1.5 volts. Work is now in progress to construct and test a cesium vapor TELEC capable of absorbing 20% of an incident 10 kW, 10.6 micrometer beam, and converting 35% of this power to electrical power.

  9. High-power VCSELs for smart munitions

    NASA Astrophysics Data System (ADS)

    Geske, Jon; MacDougal, Michael; Cole, Garrett; Snyder, Donald

    2006-08-01

    The next generation of low-cost smart munitions will be capable of autonomously detecting and identifying targets aided partly by the ability to image targets with compact and robust scanning rangefinder and LADAR capabilities. These imaging systems will utilize arrays of high performance, low-cost semiconductor diode lasers capable of achieving high peak powers in pulses ranging from 5 to 25 nanoseconds in duration. Aerius Photonics is developing high-power Vertical-Cavity Surface-Emitting Lasers (VCSELs) to meet the needs of these smart munitions applications. The authors will report the results of Aerius' development program in which peak pulsed powers exceeding 60 Watts were demonstrated from single VCSEL emitters. These compact packaged emitters achieved pulse energies in excess of 1.5 micro-joules with multi kilo-hertz pulse repetition frequencies. The progress of the ongoing effort toward extending this performance to arrays of VCSEL emitters and toward further improving laser slope efficiency will be reported.

  10. Laser at 532 nm by intracavity frequency-doubling in BBO

    NASA Astrophysics Data System (ADS)

    Yuan, Xiandan; Wang, Jinsong; Chen, Yongqi; Wu, Yulong; Qi, Yunfei; Sun, Meijiao; Wang, Qi

    2017-06-01

    A simple and compact linear resonator green laser at 532 nm is generated by intracavity frequency-doubling of a diode-side-pumped acousto-optically (AO) Q-switched Nd:YAG laser at 1064 nm. Two acousto-optic Q-switches were placed orthogonally with each other to improve the hold-off capacity. As high as 214 W of continuous-wave (CW) and 154 W of quasi-continuous-wave (QCW) output power at 1064 nm were obtained when the pumping power was 1598 W. The type I phase-matched BBO crystal was used as the nonlinear medium in the second harmonic generation. A green laser with an average output power of 37 W was obtained at a repetition rate of 20 kHz and a pulse width of 54 ns, which corresponds to pulse energy of 1.85 mJ per pulse and a peak power 34.26 kW, respectively. Project supported by the Beijing Engineering Technology Research Center of All-Solid-State Lasers Advanced Manufacturing, the National High Technology Research and Development Program of China (No. 2014AA032607), and the National Natural Science Foundation of China (Nos. 61404135, 61405186, 61308032, 61308033).

  11. Tunable solid-state laser technology for applications to scientific and technological experiments from space

    NASA Technical Reports Server (NTRS)

    Allario, F.; Taylor, L. V.

    1986-01-01

    Current plans for the Earth Observing System (EOS) include development of a lidar facility to conduct scientific experiments from a polar orbiting platforms. A recommended set of experiments were scoped, which includes techniques of atmospheric backscatter (Lidar), Differential Absorption Lidar (DIAL), altimetry, and retroranging. Preliminary assessments of the resources (power, weight, volume) required by the Eos Lidar Facility were conducted. A research program in tunable solid state laser technology was developed, which includes laser materials development, modeling and experiments on the physics of solid state laser materials, and development of solid state laser transmitters with a strong focus on Eos scientific investigations. Some of the system studies that were conducted which highlight the payoff of solid state laser technology for the Eos scientific investigations will be discussed. Additionally, a summary of some promising research results which have recently emerged from the research program will be presented.

  12. Fiber Raman laser and amplifier pumped by Nd3+:YVO4 solid state laser

    NASA Astrophysics Data System (ADS)

    Liu, Deming; Zhang, Minming; Liu, Shuang; Nie, Mingju; Wang, Ying

    2005-04-01

    Pumping source is the key technology of fiber Raman amplifiers (FRA) which are important for ultra long haul and high bit rate dense wavelength division multiplexing (DWDM) systems. In this paper the research work of the project, "Fiber Raman Laser and Amplifier pumped by Nd3+:YVO4 Solid State Laser", supported by the National High-tech Program (863-program) of China is introduced, in which a novel 14xx nm pump module with fine characteristics of high efficiency, simplicity, compactness and low cost is researched and developed. A compact 1342 nm Nd3+:YVO4 diode pumped solid state laser (DPSSL) module is developed with the total laser power of 655mW and the slope efficiency of 42.6% pumped by a 2W 808nm laser diode (LD). A special C-lens fiber collimator is designed to couple the 1342nm laser beam into a piece of single mode fiber (SMF) and the coupling efficiency of 80% is reached. The specific 14xx nm output laser is generated from a single stage Raman resonator which includes a pair of fiber Bragg gratings and a piece of Germanic-silicate or Phospho-silicate fiber pumped by such DPSSL module. The slope efficiency for conversion from 1342 to 14xx nm radiation is 75% and the laser power is more than 300mW each. Finally, Raman gain experiments are carried out with 100km SMF. 100 nm bandwidth with 10dB on-off Raman gain and 1.1dB gain flatness is achieved by pumped at 1425, 1438, 1455 and 1490nm.

  13. Enabling the space exploration initiative: NASA's exploration technology program in space power

    NASA Technical Reports Server (NTRS)

    Bennett, Gary L.; Cull, Ronald C.

    1991-01-01

    Space power requirements for Space Exploration Initiative (SEI) are reviewed, including the results of a NASA 90-day study and reports by the National Research Council, the American Institute of Aeronautics and Astronautics (AIAA), NASA, the Advisory Committee on the Future of the U.S. Space Program, and the Synthesis Group. The space power requirements for the SEI robotic missions, lunar spacecraft, Mars spacecraft, and human missions are summarized. Planning for exploration technology is addressed, including photovoltaic, chemical and thermal energy conversion; high-capacity power; power and thermal management for the surface, Earth-orbiting platform and spacecraft; laser power beaming; and mobile surface systems.

  14. Semiconductor Reference Oscillator Development for Coherent Detection Optical Remote Sensing Applications

    NASA Technical Reports Server (NTRS)

    Tratt, David M.; Mansour, Kamjou; Menzies, Robert T.; Qiu, Yueming; Forouhar, Siamak; Maker, Paul D.; Muller, Richard E.

    2001-01-01

    The NASA Earth Science Enterprise Advanced Technology Initiatives Program is supporting a program for the development of semiconductor laser reference oscillators for application to coherent optical remote sensing from Earth orbit. Local oscillators provide the frequency reference required for active spaceborne optical remote sensing concepts that involve heterodyne (coherent) detection. Two recent examples of such schemes are Doppler wind lidar and tropospheric carbon dioxide measurement by laser absorption spectrometry, both of which are being proposed at a wavelength of 2.05 microns. Frequency-agile local oscillator technology is important to such applications because of the need to compensate for large platform-induced Doppler components that would otherwise interfere with data interpretation. Development of frequency-agile local oscillator approaches has heretofore utilized the same laser material as the transmitter laser (Tm,Ho:YLF in the case of the 2.05-micron wavelength mentioned above). However, a semiconductor laser-based frequency-agile local oscillator offers considerable scope for reduced mechanical complexity and improved frequency agility over equivalent crystal laser devices, while their potentially faster tuning capability suggest the potential for greater scanning versatility. The program we report on here is specifically tasked with the development of prototype novel architecture semiconductor lasers with the power, tunability, and spectral characteristics required for coherent Doppler lidar. The baseline approach for this work is the distributed feedback (DFB) laser, in which gratings are etched into the semiconductor waveguide structures along the entire length of the laser cavity. However, typical DFB lasers at the wavelength of interest have linewidths that exhibit unacceptable growth when driven at the high currents and powers that are required for the Doppler lidar application. Suppression of this behavior by means of corrugation pitch-modulation (using a detuned central section to prevent intensity peaking in the center of the cavity) is currently under investigation to achieve the required performance goals.

  15. Programmable controlled mode-locked fiber laser using a digital micromirror device.

    PubMed

    Liu, Wu; Fan, Jintao; Xie, Chen; Song, Youjian; Gu, Chenlin; Chai, Lu; Wang, Chingyue; Hu, Minglie

    2017-05-15

    A digital micromirror device (DMD)-based arbitrary spectrum amplitude shaper is incorporated into a large-mode-area photonic crystal fiber laser cavity. The shaper acts as an in-cavity programmable filter and provides large tunable dispersion from normal to anomalous. As a result, mode-locking is achieved in different dispersion regimes with watt-level high output power. By programming different filter profiles on the DMD, the laser generates femtosecond pulse with a tunable central wavelength and controllable bandwidth. Under conditions of suitable cavity dispersion and pump power, design-shaped spectra are directly obtained by varying the amplitude transfer function of the filter. The results show the versatility of the DMD-based in-cavity filter for flexible control of the pulse dynamics in a mode-locked fiber laser.

  16. Small Business Innovation Research (SBIR) Program, FY 1994. Program Solicitation 94.1, Closing Date: 14 January 1994

    DTIC Science & Technology

    1994-01-01

    is to design and develop a diode laser and ssociated driver circuitry with i•eh peak power, high pulse repetition frequency (PRF), and good beam...Computer modeling tools shall be used to design and optimize breadboard model of a multi-terminal high speed ring bus for flight critical applications... design , fabricate, and test a fiber optic interface device which will improve coupling of high energy, pulsed lasers into commercial fiber optics at a

  17. Solar photovoltaic research and development program of the Air Force Aero Propulsion Laboratory. [silicon solar cell applicable to satellite power systems

    NASA Technical Reports Server (NTRS)

    Wise, J.

    1979-01-01

    Progress is reported in the following areas: laser weapon effects, solar silicon solar cell concepts, and high voltage hardened, high power system technology. Emphasis is placed on solar cells with increased energy conversion efficiency and radiation resistance characteristics for application to satellite power systems.

  18. A review of the thermoelectronic laser energy converter (TELEC) program at Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Alger, D. L.; Manista, E. J.; Thompson, R. W.

    1978-01-01

    The investigation of the Thermoelectronic Laser Energy Converter (TELEC) concept began with a feasibility study of a 1 megawatt sized TELEC system. The TELEC was to use either cesium vapor or hydrogen as the plasma medium. The cesium vapor TELEC appears to be the more practical device studied with an overall calculated conversion efficiency of greater than 48%. Following this study, a small TELEC cell was fabricated which demonstrated the conversion of a small amount of laser power to electrical power. The cell developed a short circuit current of 0.7 amperes and an open circuit voltage, as extrapolated from volt-ampere curves, of about 1.5 volts.

  19. The TELEC - A plasma type of direct energy converter. [Thermo-Electronic Laser Energy Converter for electric power generation

    NASA Technical Reports Server (NTRS)

    Britt, E. J.

    1978-01-01

    The Thermo-Electronic Laser Energy Converter (TELEC) is a high-power density plasma device designed to convert a 10.6-micron CO2 laser beam into electric power. Electromagnetic radiation is absorbed in plasma electrons, creating a high-electron temperature. Energetic electrons diffuse from the plasma and strike two electrodes having different areas. The larger electrode collects more electrons and there is a net transport of current. An electromagnetic field is generated in the external circuit. A computer program has been designed to analyze TELEC performance allowing parametric variation for optimization. Values are presented for TELEC performance as a function of cesium pressure and for current density and efficiency as a function of output voltage. Efficiency is shown to increase with pressure, reaching a maximum over 45%.

  20. The Laser Institute of Technology for Education and Research at Camden County College: how it has changed and evolved after 20 years

    NASA Astrophysics Data System (ADS)

    Seeber, Fred P.

    2009-06-01

    The Laser Institute of Technology for Education and Research (LITER), nationally and internationally recognized in the field of Photonics, is a state of the art facility built in 1989 on the campus of Camden County College, Blackwood, NJ. This building consists of six high power laser labs, five low power laser labs and four fiber-optic laboratories. It also contains classrooms and research labs and the facility houses over $5,000,000 in equipment. This paper will discuss the evolution of this facility in regards to enrollment in its photonics programs, funding for new equipment purchases and maintaining and updating the facility in laser safety requirements as required by the ANSI Z-136.5 Standard for Educational Institutions. The paper will also discuss how OP-TEC (The National Center for Optics and Photonics Education) has helped to keep this Laser Institute at the cutting edge of photonics education.

  1. Optical Characterization of Pulse Laser Deposition of Thin Films of Hard Materials Using RHEED and AFM Techniques

    DTIC Science & Technology

    2011-12-20

    diamond thin-film generation. PLD is initiated by laser ablation, which is essentially evaporation of a material by a high - powered laser. Subsequently...COVERED (From - To) 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) 5d...PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

  2. Mid infrared LHS system packaging using flexible waveguides

    NASA Technical Reports Server (NTRS)

    Yu, Chung

    1987-01-01

    As mid IR fiber optic systems are rapidly approaching a reality, so is the feasibility of fiber optic laser heterodyne systems. Laser heterodyne spectroscopy for high resolution monitoring of atmospheric gaseous pollutants is necessarily in the mid IR, the region in which the absorption signature of gaseous species is most prominent. It so happens that the lowest theoretical loss due to Rayleigh-Brillouin scattering also lies in the mid IR. Prospects of highly efficient laser heterodyne systems are thus very good. Such fibers are now beginning to be commercially available, and a test program is being conducted for such fibers with ambient temperature ranging from cryogenic to above room, and stringest mechanical flexibility requirements. Preliminary results are encouraging. A program is being started to explore the possibility of mid IR fiber optic device applications, by taking advantage of this phonon rich region. The potential long interaction length in fibers coupled with predicted extremely low losses point to stimulated Brillouin scattering based devices in the mW range. The generation of backscattered sBs at low laser powers is significant not only as an ultimate power limiting factor for laser transmission in fibers in the mid IR, but also the presence of frequency-shifted multiple order sBs Stokes and antiStokes lines will certainly have severe effect on the laser beats crucial in high resolution heterodyne spectroscopy.

  3. High Power Laser Diode Array Qualification and Guidelines for Space Flight Environments

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.; Eegholm, Niels; Stephen, Mark; Leidecker, Henning; Plante, Jeannette; Meadows, Byron; Amzajerdian, Farzin; Jamison, Tracee; LaRocca, Frank

    2006-01-01

    High-power laser diode arrays (LDAs) are used for a variety of space-based remote sensor laser programs as an energy source for diode-pumped solid-state lasers. LDAs have been flown on NASA missions including MOLA, GLAS and MLA and have continued to be viewed as an important part of the laser-based instrument component suite. There are currently no military or NASA-grade, -specified, or - qualified LDAs available for "off-the-shelf" use by NASA programs. There has also been no prior attempt to define a standard screening and qualification test flow for LDAs for space applications. Initial reliability studies have also produced good results from an optical performance and stability standpoint. Usage experience has shown, howeve that the current designs being offered may be susceptible to catastrophic failures due to their physical construction (packaging) combined with the electro-optical operational modes and the environmental factors of space application. design combined with operational mode was at the root of the failures which have greatly reduced the functionality of the GLAS instrument. The continued need for LDAs for laser-based science instruments and past catastrophic failures of this part type demand examination of LDAs in a manner which enables NASA to select, buy, validate and apply them in a manner which poses as little risk to the success of the mission as possible.

  4. Design definition of the Laser Atmospheric Wind Sounder (LAWS), phase 2. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The LAWS phase 1 and phase 2 studies have been completed on schedule and have led to significant advances in CO2 laser development. The Phase 2 Design Definition Study has shown that a large scanning mirror/high pulse energy laser LAWS Instrument is feasible and within the existing technology. The capability to monitor wind velocities with backscatter ratios of 10(exp 11) m(exp -1) SR(exp -1) is feasible. The weight budget allocated for the baseline LAWS is adequate, and sufficient reserves exist with the potential downsized configuration. With the possible decrease in available power from the baseline of 2.2 kW guideline, power and shot management is critical for the baseline configuration (15 to 20 J). This is particularly true during the 100 day occultation period each year. With the downsized configurations (5 to 7 J), power management is still necessary during the occultation but is primarily limited to shot management over the polar regions. The breadboard effort has produced significant laser advances for a tight 18 month schedule and the minimum budgets available from NASA, Lockheed, and TDS. Using the NASA funds and Lockheed and TDS fixed assets budgets, the breadboard was designed, fabricated, and brought on-line with first laser light within 16 months after ATP. First laser beam was obtained on 21 April 1992 at a 5 J power level. Tests since then have been conducted at sustained, repetitive pulse levels of over 7 J and 20 Hz. This is an increase of over two or three times greater than any system previously developed from this type laser. Increased power levels and additional life tests will be accomplished in the next LAWS phase. The Lockheed LAWS design will operate in the gravity gradient mode on-orbit, and all possible instrument vibration and jitter modes have been considered. Adequate pointing stability and control is state-of-the-art technology for the critical time periods, frequency rates, and control responses required by LAWS. Lockheed recommends a 6-1/2 year phase C/D program for LAWS to provide adequate feedback from the engineering unit and the qualification unit to the final flight unit. Assuming a one year period for LAWS integration to the spacecraft, followed by a six-month period for launch vehicle integration, LAWS could be successfully developed and launched in eight years. Our baseline design or downsized design can be accommodated by either the Atlas 2AS or the Delta launch vehicles. Lockheed's recommendation is that, based on the successful phase 2 design study and breadboard program, a follow-on 18 month extended breadboard testing program and additional system engineering studies, primarily in interfacing with a to be defined platform, be initiated. This should be immediately followed by the phase C/D program, leading to a LAWS launch in late 2001 or early 2002.

  5. Department of Defense High Power Laser Program Guidance

    DTIC Science & Technology

    1994-06-06

    Air Force Phillips Laboratory . Through FY94, laboratory operational funding, including civilian... Laboratory Effort and Air Materiel Command Ground-Based Laser (GBL) - Space Control USSPACECOM AF Phillips Laboratory Effort Point Defense Demonstration - Anti...ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING I.GANIZATION Phi 1l i ps Laboratory /LID REPORT numP•R 3550 Aberdeen Avenue, S.E. Kirtland AFB, NM

  6. Semiconductor laser joint study program with Rome Laboratory

    NASA Astrophysics Data System (ADS)

    Schaff, William J.; Okeefe, Sean S.; Eastman, Lester F.

    1994-09-01

    A program to jointly study vertical-cavity surface emitting lasers (VCSEL) for high speed vertical optical interconnects (VOI) has been conducted under an ES&E between Rome Laboratory and Cornell University. Lasers were designed, grown, and fabricated at Cornell University. A VCSEL measurement laboratory has been designed, built, and utilized at Rome Laboratory. High quality VCSEL material was grown and characterized by fabricating conventional lateral cavity lasers that emitted at the design wavelength of 1.04 microns. The VCSEL's emit at 1.06 microns. Threshold currents of 16 mA at 4.8 volts were obtained for 30 microns diameter devices. Output powers of 5 mW were measured. This is 500 times higher power than from the light emitting diodes employed previously for vertical optical interconnects. A new form of compositional grading using a cosinusoidal function has been developed and is very successful for reducing diode series resistance for high speed interconnection applications. A flip-chip diamond package compatible with high speed operation of 16 VCSEL elements has been designed and characterized. A flip-chip device binding effort at Rome Laboratory was also designed and initiated. This report presents details of the one-year effort, including process recipes and results.

  7. Blue laser system for photo-dynamic therapy

    NASA Astrophysics Data System (ADS)

    Dabu, R.; Carstocea, B.; Blanaru, C.; Pacala, O.; Stratan, A.; Ursu, D.; Stegaru, F.

    2007-03-01

    A blue laser system for eye diseases (age related macular degeneration, sub-retinal neo-vascularisation in myopia and presumed ocular histoplasmosis syndrome - POHS) photo-dynamic therapy, based on riboflavin as photosensitive substance, has been developed. A CW diode laser at 445 nm wavelength was coupled through an opto-mechanical system to the viewing path of a bio-microscope. The laser beam power in the irradiated area is adjustable between 1 mW and 40 mW, in a spot of 3-5 mm diameter. The irradiation time can be programmed in the range of 1-19 minutes. Currently, the laser system is under clinic tests.

  8. Space electric power design study. [laser energy conversion

    NASA Technical Reports Server (NTRS)

    Martini, W. R.

    1976-01-01

    The conversion of laser energy to electrical energy is discussed. Heat engines in which the laser heats the gas inside the engine through a window as well as heat engines in which the gas is heated by a thermal energy storage reservoir which has been heated by laser radiation are both evaluated, as well as the necessary energy storage, transmission and conversion components needed for a full system. Preliminary system concepts are presented and a recommended development program is outlined. It appears possible that a free displacer Stirling engine operating directly a linear electric generator can convert 65% of the incident laser energy into electricity.

  9. Annular resonators for high-power chemical lasers

    NASA Astrophysics Data System (ADS)

    Wade, Richard C.

    1993-08-01

    Resonators capable of extracting highly coherent energy from DF and HF chemical laser annular gain media have been under investigation for weapon application since 1974. This survey article traces the background of interest in these devices, describes the various concepts that have been experimentally and analytically investigated, and discusses the issues associated with their operation. From the discussion of issues, preferred concepts are selected. Applicability of these concepts to high-power operation is addressed through discussions of past and ongoing high-power demonstration programs and the issues facing their application to weapon sized devices capable of strategic and tactical missions such as ballistic missile defense (BMD), theater missile defense (TMD), and anti satellite (ASAT).

  10. Laser paint removal

    NASA Astrophysics Data System (ADS)

    Mallets, T.

    1983-12-01

    The Laser Paint Stripper program is a three phase effort which includes: feasibility demonstration; prototype optimization; and implementation at our Air Logistic Centers (depots) by FY88. Major technical areas that make up the automated system include: (1) laser device with power and uptime to handle the number and size of aircraft (F-16 vs C-5A); (2) the beam transport and manipulation system; (3) controls for beam/aircraft safety, alignment, and surface condition sensors; (4) integration software; and (5) cleanup of residue products.

  11. High Power Dye Lasers

    DTIC Science & Technology

    1975-09-30

    sphere is greatly reduced when compared to the axial flow dye cell. This is because the focusing optics can only direct light from a limited angle into...Distribution in Flashlamp . . . „ [ [ TTIH Flashlamp Cooling and Thermal Limits [ [ [ ii~ik Optical Characteristics ’,,: •*••••••••••• il-ib...Tracing Program e Dye Pumping System Laser Tests ! 1 i * * TTT’I Laser Output Fall Off !!!.’!!!" ’ TTT’H Single Shot Optical Distortion TTT’I

  12. The NASA Beyond Einstein Program

    NASA Technical Reports Server (NTRS)

    White, Nicholas E.

    2004-01-01

    The Laser Interferometer Space Antenna (LISA) mission is part of NASA s Beyond Einstein program. This program seeks to answer the questions What Powered the Big Bang?, What happens at the edge of a Black Hole?, and What is Dark Energy?. LISA IS the first mission to be launched in this new program. This paper will give an overview of the Beyond Einstein program, its current status and where LISA fits in.

  13. Numerical simulations of the optical gain of crystalline fiber doped by rare earth and transition ion

    NASA Astrophysics Data System (ADS)

    Daoui, A. K.; Boubir, B.; Adouane, A.; Demagh, N.; Ghoumazi, M.

    2015-02-01

    A fiber laser is a laser whose gain medium is a doped fiber, although lasers whose cavity is made wholly of fibers have also been called fiber lasers. The gain media in a fiber laser is usually fiber doped with rare-earth ions, such as erbium (Er), neodymium (Nd), ytterbium (Yb), thulium (Tm), or praseodymium (Pr), which is doped into the core of the optical fiber, similar to those used to transmit telecommunications signals. Fiber lasers find many applications in materials processing, including cutting, welding, drilling, and marking metal. To maximize their market penetration, it is necessary to increase their output power. In this work, we present a detailed study based on the numerical simulation using MATLAB, of one of the principal characteristics of a fiber laser doped with rare earth ions and transition ion. The gain depends on several parameters such as the length of the doped fiber, the density, the pump power, noise, etc.). The used program resolves the state equations in this context together with those governing the light propagation phenomena. The developed code can also be used to study the dynamic operating modes of a doped fiber laser.

  14. Estimation of the laser cutting operating cost by support vector regression methodology

    NASA Astrophysics Data System (ADS)

    Jović, Srđan; Radović, Aleksandar; Šarkoćević, Živče; Petković, Dalibor; Alizamir, Meysam

    2016-09-01

    Laser cutting is a popular manufacturing process utilized to cut various types of materials economically. The operating cost is affected by laser power, cutting speed, assist gas pressure, nozzle diameter and focus point position as well as the workpiece material. In this article, the process factors investigated were: laser power, cutting speed, air pressure and focal point position. The aim of this work is to relate the operating cost to the process parameters mentioned above. CO2 laser cutting of stainless steel of medical grade AISI316L has been investigated. The main goal was to analyze the operating cost through the laser power, cutting speed, air pressure, focal point position and material thickness. Since the laser operating cost is a complex, non-linear task, soft computing optimization algorithms can be used. Intelligent soft computing scheme support vector regression (SVR) was implemented. The performance of the proposed estimator was confirmed with the simulation results. The SVR results are then compared with artificial neural network and genetic programing. According to the results, a greater improvement in estimation accuracy can be achieved through the SVR compared to other soft computing methodologies. The new optimization methods benefit from the soft computing capabilities of global optimization and multiobjective optimization rather than choosing a starting point by trial and error and combining multiple criteria into a single criterion.

  15. High Power Laser Diode Arrays for 2-Micron Solid State Coherent Lidars Applications

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Meadows, Byron; Kavaya, Michael J.; Singh, Upendra; Sudesh, Vikas; Baker, Nathaniel

    2003-01-01

    Laser diode arrays are critical components of any diode-pumped solid state laser systems, constraining their performance and reliability. Laser diode arrays (LDAs) are used as the pump source for energizing the solid state lasing media to generate an intense coherent laser beam with a high spatial and spectral quality. The solid state laser design and the characteristics of its lasing materials define the operating wavelength, pulse duration, and power of the laser diodes. The pump requirements for high pulse energy 2-micron solid state lasers are substantially different from those of more widely used 1-micron lasers and in many aspects more challenging [1]. Furthermore, the reliability and lifetime demanded by many coherent lidar applications, such as global wind profiling from space and long-range clear air turbulence detection from aircraft, are beyond the capability of currently available LDAs. In addition to the need for more reliable LDAs with longer lifetime, further improvement in the operational parameters of high power quasi-cw LDAs, such as electrical efficiency, brightness, and duty cycle, are also necessary for developing cost-effective 2-micron coherent lidar systems for applications that impose stringent size, heat dissipation, and power constraints. Global wind sounding from space is one of such applications, which is the main driver for this work as part of NASA s Laser Risk Reduction Program. This paper discusses the current state of the 792 nm LDA technology and the technology areas being pursued toward improving their performance. The design and development of a unique characterization facility for addressing the specific issues associated with the LDAs for pumping 2-micron coherent lidar transmitters and identifying areas of technological improvement will be described. Finally, the results of measurements to date on various standard laser diode packages, as well as custom-designed packages with potentially longer lifetime, will be reported.

  16. Nuclear Science and Applications with the Next Generation of High-Power Lasers and Brilliant Low-Energy Gamma Beams at ELI-NP

    NASA Astrophysics Data System (ADS)

    Gales, S.; ELI-NP Team

    2015-10-01

    The development of high power lasers and the combination of such novel devices with accelerator technology has enlarged the science reach of many research fields, in particular High Energy, Nuclear and Astrophysics as well as societal applications in Material Science, Nuclear Energy and Medicine. The European Strategic Forum for Research Infrastructures (ESFRI) has selected a proposal based on these new premises called "ELI" for Extreme Light Infrastructure. ELI will be built as a network of three complementary pillars at the frontier of laser technologies. The ELI-NP pillar (NP for Nuclear Physics) is under construction near Bucharest (Romania) and will develop a scientific program using two 10 PW class lasers and a Back Compton Scattering High Brilliance and Intense Low Energy Gamma Beam, a marriage of Laser and Accelerator technology at the frontier of knowledge. In the present paper, the technical and scientific status of the project as well as the applications of the gamma source will be discussed.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Afanas'ev, Yurii V; Zavestovskaya, I N; Zvorykin, V D

    A review of reports made on the International Forum on Advanced High-Power Lasers and Applications, which was held at the beginning of November 1999 in Osaka (Japan), is presented. Five conferences were held during the forum on High-Power Laser Ablation, High-Power Lasers in Energy Engineering, High-Power Lasers in Civil Engineering and Architecture, High-Power Lasers in Manufacturing, and Advanced High-Power Lasers. The following trends in the field of high-power lasers and their applications were presented: laser fusion, laser applications in space, laser-triggered lightning, laser ablation of materials by short and ultrashort pulses, application of high-power lasers in manufacturing, application of high-powermore » lasers in mining, laser decommissioning and decontamination of nuclear reactors, high-power solid-state and gas lasers, x-ray and free-electron lasers. One can find complete information on the forum in SPIE, vols. 3885-3889. (chronicle)« less

  18. High-speed assembly language (80386/80387) programming for laser spectra scan control and data acquisition providing improved resolution water vapor spectroscopy

    NASA Technical Reports Server (NTRS)

    Allen, Robert J.

    1988-01-01

    An assembly language program using the Intel 80386 CPU and 80387 math co-processor chips was written to increase the speed of data gathering and processing, and provide control of a scanning CW ring dye laser system. This laser system is used in high resolution (better than 0.001 cm-1) water vapor spectroscopy experiments. Laser beam power is sensed at the input and output of white cells and the output of a Fabry-Perot. The assembly language subroutine is called from Basic, acquires the data and performs various calculations at rates greater than 150 faster than could be performed by the higher level language. The width of output control pulses generated in assembly language are 3 to 4 microsecs as compared to 2 to 3.7 millisecs for those generated in Basic (about 500 to 1000 times faster). Included are a block diagram and brief description of the spectroscopy experiment, a flow diagram of the Basic and assembly language programs, listing of the programs, scope photographs of the computer generated 5-volt pulses used for control and timing analysis, and representative water spectrum curves obtained using these programs.

  19. Laserthermia: a new computer-controlled contact Nd: YAG system for interstitial local hyperthermia.

    PubMed

    Daikuzono, N; Suzuki, S; Tajiri, H; Tsunekawa, H; Ohyama, M; Joffe, S N

    1988-01-01

    Contact Nd:YAG laser surgery is assuming a greater importance in endoscopic and open surgery, allowing coagulation, cutting, and vaporization with greater precision and safety. A new contact probe allows a wider angle of irradiation and diffusion of low-power laser energy (less than 5 watts), using the interstitial technique for producing local hyperthermia. Temperature sensors that monitor continuously can be placed directly into the surrounding tissue or tumor. Using a computer program interfaced with the laser and sensors, a controlled and stable temperature (e.g., 42 degrees C) can be produced in a known volume of tissue over a prolonged period of time (e.g., 20-40 min). This new laserthermia system, using a single low-power Nd:YAG laser for interstitial local hyperthermia, may offer many new advantages in the experimental treatment and clinical management of carcinoma. A multiple system is now being developed.

  20. ALPS yield optimization cutting program

    Treesearch

    P. Klinkhachorn; J.P. Franklin; Charles W. McMillin; H.A. Huber

    1989-01-01

    This paper reports ongoing work on a series of computer programs developed to automate hardwood lumber processing in a furniture roughmill. The program computes the placement of cuttings on lumber, based on a description of each board in terms of shape and defect location, and a cutting bill. These results are suitable for use with a high-power laser to cut the parts...

  1. Broad area quantum cascade lasers operating in pulsed mode above 100 °C λ ∼4.7 μm

    NASA Astrophysics Data System (ADS)

    Zhao, Yue; Yan, Fangliang; Zhang, Jinchuan; Liu, Fengqi; Zhuo, Ning; Liu, Junqi; Wang, Lijun; Wang, Zhanguo

    2017-07-01

    We demonstrate a broad area (400 μm) high power quantum cascade laser (QCL). A total peak power of 62 W operating at room temperature is achieved at λ ∼4.7 μm. The temperature dependence of the peak power characteristic is given in the experiment, and also the temperature of the active zone is simulated by a finite-element-method (FEM). We find that the interface roughness of the active core has a great effect on the temperature of the active zone and can be enormously improved using the solid source molecular beam epitaxy (MBE) growth system. Project supported by the National Basic Research Program of China (No. 2013CB632801), the National Key Research and Development Program (No. 2016YFB0402303), the National Natural Science Foundation of China (Nos. 61435014, 61627822, 61574136, 61306058, 61404131), the Key Projects of Chinese Academy of Sciences (No. ZDRW-XH-20164), and the Beijing Natural Science Foundation (No. 4162060).

  2. Spectroscopic and radiation-resistant properties of Er,Pr:GYSGG laser crystal operated at 2.79 μm

    NASA Astrophysics Data System (ADS)

    Zhao, Xu-Yao; Sun, Dun-Lu; Luo, Jian-Qiao; Zhang, Hui-Li; Fang, Zhong-Qing; Quan, Cong; Li, Xiu-Li; Cheng, Mao-Jie; Zhang, Qing-Li; Yin, Shao-Tang

    2017-06-01

    Not Available Project supported by the National Key Research and Development Program of China (Grant No. 2016YFB1102301), the National Natural Science Foundation of China (Grant Nos. 51272254, 61405206, and 51502292), and the Open Research Fund of the State Key Laboratory of Pulsed Power Laser Technology, Electronic Engineering Institute, China (Grant No. SKL2015KF01).

  3. Laser space communication experiment: Modulator technology

    NASA Technical Reports Server (NTRS)

    Goodwin, F. E.

    1973-01-01

    Results are presented of a contractual program to develop the modulator technology necessary for a 10.6 micron laser communication system using cadmium telluride as the modulator material. The program consisted of the following tasks: (1) The growth of cadmium telluride crystals of sufficient size and purity and with the necessary optical properties for use as laser modulator rods. (2) Develop a low loss antireflection coating for the cadmium telluride rods. (3) Design and build a modulator capable of 300 MHz modulation. (4) Develop a modulator driver capable of a data rate of 300 MBits/sec, 12 W rms output power, and 40 percent efficiency. (5) Assemble and test the modulator system. All design goals were met and the system was built and tested.

  4. Single, composite, and ceramic Nd:YAG 946-nm lasers

    NASA Astrophysics Data System (ADS)

    Lan, Rui-Jun; Yang, Guang; Zheng-Ping, Wang

    2015-06-01

    Single, composite crystal and ceramic continuous wave (CW) 946-nm Nd:YAG lasers are demonstrated, respectively. The ceramic laser behaves better than the crystal laser. With 5-mm long ceramic, a CW output power of 1.46 W is generated with an optical conversion efficiency of 13.9%, while the slope efficiency is 17.9%. The optimal ceramic length for a 946-nm laser is also calculated. Project supported by the National Natural Science Foundation of China (Grant No. 61405171), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2012FQ014), and the Science and Technology Program of the Shandong Higher Education Institutions of China (Grant No. J13LJ05).

  5. High power visible diode laser for the treatment of eye diseases by laser coagulation

    NASA Astrophysics Data System (ADS)

    Heinrich, Arne; Hagen, Clemens; Harlander, Maximilian; Nussbaumer, Bernhard

    2015-03-01

    We present a high power visible diode laser enabling a low-cost treatment of eye diseases by laser coagulation, including the two leading causes of blindness worldwide (diabetic retinopathy, age-related macular degeneration) as well as retinopathy of prematurely born children, intraocular tumors and retinal detachment. Laser coagulation requires the exposure of the eye to visible laser light and relies on the high absorption of the retina. The need for treatment is constantly increasing, due to the demographic trend, the increasing average life expectancy and medical care demand in developing countries. The World Health Organization reacts to this demand with global programs like the VISION 2020 "The right to sight" and the following Universal Eye Health within their Global Action Plan (2014-2019). One major point is to motivate companies and research institutes to make eye treatment cheaper and easily accessible. Therefore it becomes capital providing the ophthalmology market with cost competitive, simple and reliable technologies. Our laser is based on the direct second harmonic generation of the light emitted from a tapered laser diode and has already shown reliable optical performance. All components are produced in wafer scale processes and the resulting strong economy of scale results in a price competitive laser. In a broader perspective the technology behind our laser has a huge potential in non-medical applications like welding, cutting, marking and finally laser-illuminated projection.

  6. Development of on-line laser power monitoring system

    NASA Astrophysics Data System (ADS)

    Ding, Chien-Fang; Lee, Meng-Shiou; Li, Kuan-Ming

    2016-03-01

    Since the laser was invented, laser has been applied in many fields such as material processing, communication, measurement, biomedical engineering, defense industries and etc. Laser power is an important parameter in laser material processing, i.e. laser cutting, and laser drilling. However, the laser power is easily affected by the environment temperature, we tend to monitor the laser power status, ensuring there is an effective material processing. Besides, the response time of current laser power meters is too long, they cannot measure laser power accurately in a short time. To be more precisely, we can know the status of laser power and help us to achieve an effective material processing at the same time. To monitor the laser power, this study utilize a CMOS (Complementary metal-oxide-semiconductor) camera to develop an on-line laser power monitoring system. The CMOS camera captures images of incident laser beam after it is split and attenuated by beam splitter and neutral density filter. By comparing the average brightness of the beam spots and measurement results from laser power meter, laser power can be estimated. Under continuous measuring mode, the average measuring error is about 3%, and the response time is at least 3.6 second shorter than thermopile power meters; under trigger measuring mode which enables the CMOS camera to synchronize with intermittent laser output, the average measuring error is less than 3%, and the shortest response time is 20 millisecond.

  7. ARL Eye Safer Fiber Laser Testbed Lab View Automation and Control

    DTIC Science & Technology

    2013-09-01

    output voltage value in volts. gpc n Program the output current value in amperes. grst Reset and bring the power supplies to safe state. gout n...Turn the output on/off: gout 1 = turn on, gout 0 = turn off Figure 4 shows the front panel of power supplies and back panel RS 485 link. 4

  8. High power gas laser - Applications and future developments

    NASA Technical Reports Server (NTRS)

    Hertzberg, A.

    1977-01-01

    Fast flow can be used to create the population inversion required for lasing action, or can be used to improve laser operation, for example by the removal of waste heat. It is pointed out that at the present time all lasers which are capable of continuous high-average power employ flow as an indispensable aspect of operation. High power laser systems are discussed, taking into account the gasdynamic laser, the HF supersonic diffusion laser, and electric discharge lasers. Aerodynamics and high power lasers are considered, giving attention to flow effects in high-power gas lasers, aerodynamic windows and beam manipulation, and the Venus machine. Applications of high-power laser technology reported are related to laser material working, the employment of the laser in controlled fusion machines, laser isotope separation and photochemistry, and laser power transmission.

  9. NASA Lidar system support and MOPA technology demonstration

    NASA Technical Reports Server (NTRS)

    Laughman, L. M.; Capuano, B.; Wayne, R. J.

    1986-01-01

    A series of lidar design and technology demonstration tasks in support of a CO2 lidar program is discussed. The first of these tasks is discussed in Section VI of this report under the heading of NASA Optical Lidar Design and it consists of detailed recommendations for the layout of a CO2 Doppler lidar incorporating then existing NASA optical components and mounts. The second phase of this work consisted of the design, development, and delivery to NASA of a novel acousto-optic laser frequency stabilization system for use with the existing NASA ring laser transmitter. The second major task in this program encompasses the design and experimental demonstration of a master oscillator-power amplifier (MOPA) laser transmitter utilizing a commercially available laser as the amplifier. The MOPA design including the low chirp master oscillator is discussed in detail. Experimental results are given for one, two and three pass amplification. The report includes operating procedures for the MOPA system.

  10. Defense Advanced Research Projects Agency Fiscal Year 1982 Research & Development Program. Summary Statement by Dr. Robert R. Fossum, Director Before the Research & Development Subcommittee of the House Armed Services Committee

    DTIC Science & Technology

    1981-03-12

    feasibility of a laser suitable for space opera- tion. Its objective is to demonstrate tte laser device technology in 11-37 tion, Its i extracting a high power...acoustic signal processing testbed will officially transfer to the Navy Undersea Surveillance Office at the end of FY 1982. This gives the Navy a...advanced undersea vehicle programs. 2. Air Vehicles and Weapons This addresses innovative concepts such as the X-Wing and the Forward Swept Wing

  11. DARPA-NRL Laser Program Annual Technical Report to Defense Advanced Research Projects Agency

    DTIC Science & Technology

    1980-04-30

    sorption could be removed or significantly reduced then the output power and efficiency of the XeCl laser could be further improved. Figure 1 plots...to 30 nm closer to the visible than the experimentally observed ab- sorption peak for Xe2+ (Fig. 3). Figure 3 is a plot of the measured absorption in...radiation in o00 argon-xenon and neon-xenon mixtures. A reduction in ab- No:X: HCt 41. sorption at the laser wavelength was observed when small r’ NEN

  12. Flight-Ready TDLAS Combustion Sensor for the HIFiRE 2 Hypersonic Research Program

    DTIC Science & Technology

    2009-09-01

    Noise Sources 20 5.7 Total System Performance 21 6.0 ZOLO ARCHITECTURE 22 7.0 DESIGN DETAILS 23 7.1 Laser and Drive Electronics 23 7.2 Fiber Couplers...targets 8 2 Tunable Diode Laser Absorption Spectroscopy experiment 9 3 Light absorption by water vapor near 1393 nm 10 4a light transmission vs time 10...20 13 multimode fiber modal noise 21 14 TDLAS sensor architecture 22 15 sensor exploded view 23 16 sensor outline and mounting 23 17 laser power and

  13. Methods for determining optical power, for power-normalizing laser measurements, and for stabilizing power of lasers via compliance voltage sensing

    DOEpatents

    Taubman, Matthew S; Phillips, Mark C

    2015-04-07

    A method is disclosed for power normalization of spectroscopic signatures obtained from laser based chemical sensors that employs the compliance voltage across a quantum cascade laser device within an external cavity laser. The method obviates the need for a dedicated optical detector used specifically for power normalization purposes. A method is also disclosed that employs the compliance voltage developed across the laser device within an external cavity semiconductor laser to power-stabilize the laser mode of the semiconductor laser by adjusting drive current to the laser such that the output optical power from the external cavity semiconductor laser remains constant.

  14. Comparison of electrically driven lasers for space power transmission

    NASA Technical Reports Server (NTRS)

    Deyoung, R. J.; Lee, J. H.; Williams, M. D.; Schuster, G.; Conway, E. J.

    1988-01-01

    High-power lasers in space could provide power for a variety of future missions such as spacecraft electric power requirements and laser propulsion. This study investigates four electrically pumped laser systems, all scaled to 1-MW laser output, that could provide power to spacecraft. The four laser systems are krypton fluoride, copper vapor, laser diode array, and carbon dioxide. Each system was powered by a large solar photovoltaic array which, in turn, provided power for the appropriate laser power conditioning subsystem. Each system was block-diagrammed, and the power and efficiency were found for each subsystem block component. The copper vapor system had the lowest system efficiency (6 percent). The CO2 laser was found to be the most readily scalable but has the disadvantage of long laser wavelength.

  15. Teaching of laser medical topics: Latvian experience

    NASA Astrophysics Data System (ADS)

    Spigulis, Janis

    2002-10-01

    Pilot program for Master's studies on Biomedical Optics has been developed and launched at University of Latvia in 1995. The Curriculum contains several basic subjects like Fundamentals of Biomedical Optics, Medical Lightguides, Anatomy and Physiology, Lasers and Non-coherent Light Sources, Optical Instrumentation for Healthcare, Optical Methods for Patient Treatment, Basic Physics, etc. Special English Terminology and Laboratory-Clinical Praxis are also involved, and the Master Theses is the final step for the degree award. Recently a new extensive short course for medical laser users "Lasers and Bio-optics in Medicine" has been prepared in the PowerPoint format and successfully presented in Latvia, Lithuania and Sweden.

  16. Low-power laser therapy for carpal tunnel syndrome: effective optical power

    PubMed Central

    Chen, Yan; Zhao, Cheng-qiang; Ye, Gang; Liu, Can-dong; Xu, Wen-dong

    2016-01-01

    Low-power laser therapy has been used for the non-surgical treatment of mild to moderate carpal tunnel syndrome, although its efficacy has been a long-standing controversy. The laser parameters in low-power laser therapy are closely related to the laser effect on human tissue. To evaluate the efficacy of low-power laser therapy, laser parameters should be accurately measured and controlled, which has been ignored in previous clinical trials. Here, we report the measurement of the effective optical power of low-power laser therapy for carpal tunnel syndrome. By monitoring the backside reflection and scattering laser power from human skin at the wrist, the effective laser power can be inferred. Using clinical measurements from 30 cases, we found that the effective laser power differed significantly among cases, with the measured laser reflection coefficient ranging from 1.8% to 54%. The reflection coefficient for 36.7% of these 30 cases was in the range of 10–20%, but for 16.7% of cases, it was higher than 40%. Consequently, monitoring the effective optical power during laser irradiation is necessary for the laser therapy of carpal tunnel syndrome. PMID:27630706

  17. Reliable high-power diode lasers: thermo-mechanical fatigue aspects

    NASA Astrophysics Data System (ADS)

    Klumel, Genady; Gridish, Yaakov; Szafranek, Igor; Karni, Yoram

    2006-02-01

    High power water-cooled diode lasers are finding increasing demand in biomedical, cosmetic and industrial applications, where repetitive cw (continuous wave) and pulsed cw operation modes are required. When operating in such modes, the lasers experience numerous complete thermal cycles between "cold" heat sink temperature and the "hot" temperature typical of thermally equilibrated cw operation. It is clearly demonstrated that the main failure mechanism directly linked to repetitive cw operation is thermo-mechanical fatigue of the solder joints adjacent to the laser bars, especially when "soft" solders are used. Analyses of the bonding interfaces were carried out using scanning electron microscopy. It was observed that intermetallic compounds, formed already during the bonding process, lead to the solders fatigue both on the p- and n-side of the laser bar. Fatigue failure of solder joints in repetitive cw operation reduces useful lifetime of the stacks to hundreds hours, in comparison with more than 10,000 hours lifetime typically demonstrated in commonly adopted non-stop cw reliability testing programs. It is shown, that proper selection of package materials and solders, careful design of fatigue sensitive parts and burn-in screening in the hard pulse operation mode allow considerable increase of lifetime and reliability, without compromising the device efficiency, optical power density and compactness.

  18. NEET-AMM Final Technical Report on Laser Direct Manufacturing (LDM) for Nuclear Power Components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Scott; Baca, Georgina; O'Connor, Michael

    2015-12-31

    Final technical report summarizes the program progress and technical accomplishments of the Laser Direct Manufacturing (LDM) for Nuclear Power Components project. A series of experiments varying build process parameters (scan speed and laser power) were conducted at the outset to establish the optimal build conditions for each of the alloys. Fabrication was completed in collaboration with Quad City Manufacturing Laboratory (QCML). The density of all sample specimens was measured and compared to literature values. Optimal build process conditions giving fabricated part densities close to literature values were chosen for making mechanical test coupons. Test coupons whose principal axis is onmore » the x-y plane (perpendicular to build direction) and on the z plane (parallel to build direction) were built and tested as part of the experimental build matrix to understand the impact of the anisotropic nature of the process.. Investigations are described 316L SS, Inconel 600, 718 and 800 and oxide dispersion strengthed 316L SS (Yttria) alloys.« less

  19. Research and Development in Optical Communications

    NASA Technical Reports Server (NTRS)

    Wilson, Keith

    2004-01-01

    A report in the form of lecture slides summarizes the optical-communications program of NASA s Jet Propulsion Laboratory (JPL) and describes the JPL Optical Communications Telescope Laboratory (OCTL) and its role in the program. The purpose of the program is to develop equipment and techniques for laser communication between (1) ground stations and (2) spacecraft (both near Earth and in deep space) and aircraft. The OCTL is an astronomical- style telescope facility that includes a 1-m-diameter, 75.8-m-focal length telescope in an elevation/azimuth mount, plus optical and electronic subsystems for tracking spacecraft and aircraft, receiving laser signals from such moving targets, and transmitting high-power laser signals to such targets. Near-term research at the OCTL is expected to focus on mitigating the effects of atmospheric scintillation on uplinks and on beacon-assisted tracking of ground stations by stations in deep space. Near-term experiments are expected to be performed with retroreflector-equipped aircraft and Earth-orbiting spacecraft techniques to test mathematical models of propagation of laser beams, multiple-beam strategies to mitigate uplink scintillation, and pointing and tracking accuracy of the telescope.

  20. Visions of tomorrow: A focus on national space transportation issues; Proceedings of the Twenty-fifth Goddard Memorial Symposium, Greenbelt, MD, Mar. 18-20, 1987

    NASA Technical Reports Server (NTRS)

    Soffen, Gerald A. (Editor)

    1987-01-01

    The present conference on U.S. space transportation systems development discusses opportunities for aerospace students in prospective military, civil, industrial, and scientific programs, current strategic conceptualization and program planning for future U.S. space transportation, the DOD space transportation plan, NASA space transportation plans, medium launch vehicle and commercial space launch services, the capabilities and availability of foreign launch vehicles, and the role of commercial space launch systems. Also discussed are available upper stage systems, future space transportation needs for space science and applications, the trajectory analysis of a low lift/drag-aeroassisted orbit transfer vehicle, possible replacements for the Space Shuttle, LEO to GEO with combined electric/beamed-microwave power from earth, the National Aerospace Plane, laser propulsion to earth orbit, and a performance analysis for a laser-powered SSTO vehicle.

  1. Advanced excimer laser technologies enable green semiconductor manufacturing

    NASA Astrophysics Data System (ADS)

    Fukuda, Hitomi; Yoo, Youngsun; Minegishi, Yuji; Hisanaga, Naoto; Enami, Tatsuo

    2014-03-01

    "Green" has fast become an important and pervasive topic throughout many industries worldwide. Many companies, especially in the manufacturing industries, have taken steps to integrate green initiatives into their high-level corporate strategies. Governments have also been active in implementing various initiatives designed to increase corporate responsibility and accountability towards environmental issues. In the semiconductor manufacturing industry, there are growing concerns over future environmental impact as enormous fabs expand and new generation of equipments become larger and more powerful. To address these concerns, Gigaphoton has implemented various green initiatives for many years under the EcoPhoton™ program. The objective of this program is to drive innovations in technology and services that enable manufacturers to significantly reduce both the financial and environmental "green cost" of laser operations in high-volume manufacturing environment (HVM) - primarily focusing on electricity, gas and heat management costs. One example of such innovation is Gigaphoton's Injection-Lock system, which reduces electricity and gas utilization costs of the laser by up to 50%. Furthermore, to support the industry's transition from 300mm to the next generation 450mm wafers, technologies are being developed to create lasers that offer double the output power from 60W to 120W, but reducing electricity and gas consumption by another 50%. This means that the efficiency of lasers can be improve by up to 4 times in 450mm wafer production environments. Other future innovations include the introduction of totally Heliumfree Excimer lasers that utilize Nitrogen gas as its replacement for optical module purging. This paper discusses these and other innovations by Gigaphoton to enable green manufacturing.

  2. Fiber-Based, Trace-Gas, Laser Transmitter Technology Development for Space

    NASA Technical Reports Server (NTRS)

    Stephen, Mark; Yu, Anthony; Chen, Jeffrey; Nicholson, Jeffrey; Engin, Doruk; Mathason, Brian; Wu, Stewart; Allan, Graham; Hasselbrack, William; Gonzalez, Brayler; hide

    2015-01-01

    NASA’s Goddard Space Flight Center (GSFC) is working on maturing the technology readiness of a laser transmitter designed for use in atmospheric CO2 remote-sensing. GSFC has been developing an airplane-based CO2 lidar instrument over several years to demonstrate the efficacy of the instrumentation and measurement technique and to link the science models to the instrument performance. The ultimate goal is to make space-based satellite measurements with global coverage. In order to accomplish this, we must demonstrate the technology readiness and performance of the components as well as demonstrate the required power-scaling to make the link with the required signal-to-noise-ratio (SNR). To date, all the instrument components have been shown to have the required performance with the exception of the laser transmitter.In this program we are working on a fiber-based master oscillator power amplifier (MOPA) laser transmitter architecture where we will develop a ruggedized package and perform the relevant environmental tests to demonstrate TRL-6. In this paper we will review our transmitter architecture and progress on the performance and packaging of the laser transmitter.

  3. Laser Doppler systems in pollution monitoring

    NASA Technical Reports Server (NTRS)

    Miller, C. R.; Sonnenschein, C. M.; Herget, W. F.; Huffaker, R. M.

    1976-01-01

    The paper reports on a program undertaken to determine the feasibility of using a laser Doppler velocimeter (LDV) to measure smoke-stack gas exit velocity, particulate concentration, and mass flow. Measurements made with a CO2 laser Doppler radar system at a coal-burning power plant are compared with in-stack measurements made by a pitot tube. The operational principles of a LDV are briefly described along with the system employed in the present study. Data discussed include typical Doppler spectra from smoke-stack effluents at various laser elevation angles, the measured velocity profile across the stack exit, and the LDV-measured exit velocity as a function of the exit velocity measured by the in-stack instrument. The in-stack velocity is found to be about 14% higher than the LDV velocity, but this discrepancy is regarded as a systematic error. In general, linear relationships are observed between the laser data, the exit velocity, and the particulate concentration. It is concluded that an LDV has the capability of determining both the mass concentration and the mass flow from a power-plant smoke stack.

  4. Nuclear Science and Applications with the Next Generation of High-Power Lasers and Brilliant Low-Energy Gamma Beams at ELI-NP

    NASA Astrophysics Data System (ADS)

    Gales, S.

    The development of high power lasers and the combination of such novel devices with accelerator technology has enlarged the science reach of many research fields, in particular Particle and Nuclear Physics, Astrophysics as well as societal applications in Material Science, Nuclear Energy and Medicine. The European Strategic Forum for Research Infrastructures (ESFRI) has selected a proposal based on these new premises called "ELI" for Extreme Light Infrastructure. ELI will be built as a network of three complementary pillars at the frontier of laser technologies. The ELI-NP pillar (NP for Nuclear Physics) is under construction near Bucharest (Romania) and will develop a scientific program using two 10 PW lasers and a Compton back-scattering high-brilliance and intense low-energy gamma beam, a marriage of laser and accelerator technology at the frontier of knowledge. In the present paper, the technical description of the facility, the present status of the project as well as the science, applications and future perspectives will be discussed.

  5. Nuclear Science and Applications with the Next Generation of High-Power Lasers and Brilliant Low-Energy Gamma Beams at ELI-NP

    NASA Astrophysics Data System (ADS)

    Gales, S.

    2015-11-01

    The development of high-power lasers and the combination of such novel devices with accelerator technology has enlarged the science reach of many research fields, in particular high-energy nuclear physics and astrophysics, as well as societal applications in material science, nuclear energy and medicine. The European Strategic Forum for Research Infrastructures (ESFRI) has selected a proposal based on these new premises called "ELI" for Extreme Light Infrastructure. ELI will be built as a network of three complementary pillars at the frontier of laser technologies. The ELI-NP pillar (NP for nuclear physics) is under construction near Bucharest (Romania) and will develop a scientific program using two 10-PW lasers and a Compton back-scattering high-brilliance and intense low-energy gamma beam, a marriage of laser and accelerator technology at the frontier of knowledge. In the present paper, the technical description of the facility, the present status of the project as well as the science, applications and future perspectives will be discussed.

  6. Fiber-based, trace-gas, laser transmitter technology development for space

    NASA Astrophysics Data System (ADS)

    Stephen, Mark; Yu, Anthony; Chen, Jeffrey; Nicholson, Jeffrey; Engin, Doruk; Mathason, Brian; Wu, Stewart; Allan, Graham; Hasselbrack, William; Gonzales, Brayler; Han, Lawrence; Numata, Kenji; Storm, Mark; Abshire, James

    2015-09-01

    NASA's Goddard Space Flight Center (GSFC) is working on maturing the technology readiness of a laser transmitter designed for use in atmospheric CO2 remote-sensing. GSFC has been developing an airplane-based CO2 lidar instrument over several years to demonstrate the efficacy of the instrumentation and measurement technique and to link the science models to the instrument performance. The ultimate goal is to make space-based satellite measurements with global coverage. In order to accomplish this, we must demonstrate the technology readiness and performance of the components as well as demonstrate the required power-scaling to make the link with the required signal-to-noise-ratio (SNR). To date, all the instrument components have been shown to have the required performance with the exception of the laser transmitter. In this program we are working on a fiber-based master oscillator power amplifier (MOPA) laser transmitter architecture where we will develop a ruggedized package and perform the relevant environmental tests to demonstrate TRL-6. In this paper we will review our transmitter architecture and progress on the performance and packaging of the laser transmitter.

  7. Phototherapy for Improvement of Performance and Exercise Recovery: Comparison of 3 Commercially Available Devices.

    PubMed

    De Marchi, Thiago; Schmitt, Vinicius Mazzochi; Danúbia da Silva Fabro, Carla; da Silva, Larissa Lopes; Sene, Juliane; Tairova, Olga; Salvador, Mirian

    2017-05-01

      Recent studies suggest the prophylactic use of low-powered laser/light has ergogenic effects on athletic performance and postactivity recovery. Manufacturers of high-powered lasers/light devices claim that these can produce the same clinical benefits with increased power and decreased irradiation time; however, research with high-powered lasers is lacking.   To evaluate the magnitude of observed phototherapeutic effects with 3 commercially available devices.   Randomized double-blind placebo-controlled study.   Laboratory.   Forty healthy untrained male participants.   Participants were randomized into 4 groups: placebo, high-powered continuous laser/light, low-powered continuous laser/light, or low-powered pulsed laser/light (comprising both lasers and light-emitting diodes). A single dose of 180 J or placebo was applied to the quadriceps.   Maximum voluntary contraction, delayed-onset muscle soreness (DOMS), and creatine kinase (CK) activity from baseline to 96 hours after the eccentric exercise protocol.   Maximum voluntary contraction was maintained in the low-powered pulsed laser/light group compared with placebo and high-powered continuous laser/light groups in all time points (P < .05). Low-powered pulsed laser/light demonstrated less DOMS than all groups at all time points (P < .05). High-powered continuous laser/light did not demonstrate any positive effects on maximum voluntary contraction, CK activity, or DOMS compared with any group at any time point. Creatine kinase activity was decreased in low-powered pulsed laser/light compared with placebo (P < .05) and high-powered continuous laser/light (P < .05) at all time points. High-powered continuous laser/light resulted in increased CK activity compared with placebo from 1 to 24 hours (P < .05).   Low-powered pulsed laser/light demonstrated better results than either low-powered continuous laser/light or high-powered continuous laser/light in all outcome measures when compared with placebo. The increase in CK activity using the high-powered continuous laser/light compared with placebo warrants further research to investigate its effect on other factors related to muscle damage.

  8. The Air Force concentrating photovoltaic array program

    NASA Technical Reports Server (NTRS)

    Geis, Jack W.

    1987-01-01

    A summary is given of Air Force solar concentrator projects beginning with the Rockwell International study program in 1977. The Satellite Materials Hardening Programs (SMATH) explored and developed techniques for hardening planar solar cell array power systems to the combined nuclear and laser radiation threat environments. A portion of program dollars was devoted to developing a preliminary design for a hardened solar concentrator. The results of the Survivable Concentrating Photovoltaic Array (SCOPA) program, and the design, fabrication and flight qualification of a hardened concentrator panel are discussed.

  9. Enabling lunar and space missions by laser power transmission

    NASA Technical Reports Server (NTRS)

    Deyoung, R. J.; Nealy, J. E.; Humes, D. H.; Meador, W. E.

    1992-01-01

    Applications are proposed for laser power transmission on the Moon. A solar-pumped laser in lunar orbit would beam power to the lunar surface for conversion into either electricity or propulsion needs. For example, lunar rovers could be much more flexible and lighter than rovers using other primary power sources. Also, laser power could be absorbed by lunar soil to create a hard glassy surface for dust-free roadways and launch pads. Laser power could also be used to power small lunar rockets or orbital transfer vehicles, and finally, photovoltaic laser converters could power remote excavation vehicles and human habitats. Laser power transmission is shown to be a highly flexible, enabling primary power source for lunar missions.

  10. Solar-pumped laser for free space power transmission

    NASA Technical Reports Server (NTRS)

    Lee, Ja H.

    1989-01-01

    Laser power transmission; laser systems; space-borne and available lasers; 2-D and 1 MW laser diode array systems; technical issues; iodine solar pumped laser system; and laser power transmission applications are presented. This presentation is represented by viewgraphs only.

  11. Optics assembly for high power laser tools

    DOEpatents

    Fraze, Jason D.; Faircloth, Brian O.; Zediker, Mark S.

    2016-06-07

    There is provided a high power laser rotational optical assembly for use with, or in high power laser tools for performing high power laser operations. In particular, the optical assembly finds applications in performing high power laser operations on, and in, remote and difficult to access locations. The optical assembly has rotational seals and bearing configurations to avoid contamination of the laser beam path and optics.

  12. Advanced space propulsion concepts

    NASA Technical Reports Server (NTRS)

    Lapointe, Michael R.

    1993-01-01

    The NASA Lewis Research Center has been actively involved in the evaluation and development of advanced spacecraft propulsion. Recent program elements have included high energy density propellants, electrode less plasma thruster concepts, and low power laser propulsion technology. A robust advanced technology program is necessary to develop new, cost-effective methods of spacecraft propulsion, and to continue to push the boundaries of human knowledge and technology.

  13. Electric motor for laser-mechanical drilling

    DOEpatents

    Grubb, Daryl L.; Faircloth, Brian O.; Zediker, Mark S.

    2015-07-07

    A high power laser drilling system utilizing an electric motor laser bottom hole assembly. A high power laser beam travels within the electric motor for advancing a borehole. High power laser drilling system includes a down hole electrical motor having a hollow rotor for conveying a high power laser beam through the electrical motor.

  14. Lasers in space

    NASA Astrophysics Data System (ADS)

    Michaelis, M. M.; Forbes, A.; Bingham, R.; Kellett, B. J.; Mathye, A.

    2008-05-01

    A variety of laser applications in space, past, present, future and far future are reviewed together with the contributions of some of the scientists and engineers involved, especially those that happen to have South African connections. Historically, two of the earliest laser applications in space, were atmospheric LIDAR and lunar ranging. These applications involved atmospheric physicists, several astronauts and many of the staff recruited into the Soviet and North American lunar exploration programmes. There is a strong interest in South Africa in both LIDAR and lunar ranging. Shortly after the birth of the laser (and even just prior) theoretical work on photonic propulsion and space propulsion by laser ablation was initiated by Georgii Marx, Arthur Kantrowitz and Eugen Saenger. Present or near future experimental programs are developing in the following fields: laser ablation propulsion, possibly coupled with rail gun or gas gun propulsion; interplanetary laser transmission; laser altimetry; gravity wave detection by space based Michelson interferometry; the de-orbiting of space debris by high power lasers; atom laser interferometry in space. Far future applications of laser-photonic space-propulsion were also pioneered by Carl Sagan and Robert Forward. They envisaged means of putting Saenger's ideas into practice. Forward also invented a laser based method for manufacturing solid antimatter or SANTIM, well before the ongoing experiments at CERN with anti-hydrogen production and laser-trapping. SANTIM would be an ideal propellant for interstellar missions if it could be manufactured in sufficient quantities. It would be equally useful as a power source for the transmission of information over light year distances. We briefly mention military lasers. Last but not least, we address naturally occurring lasers in space and pose the question: "did the Big Bang lase?"

  15. A flexible master oscillator for a pulse-burst laser system

    NASA Astrophysics Data System (ADS)

    Den Hartog, D. J.; Young, W. C.

    2015-12-01

    A new master oscillator is being installed in the pulse-burst laser system used for high-rep-rate Thomson scattering on the MST experiment. This new master oscillator will enable pulse repetition rates up to 1 MHz, with the ability to program a burst of pulses with arbitrary and varying time separation between each pulse. In addition, the energy of each master oscillator pulse can be adjusted to compensate for gain variations in the power amplifier section of the laser system. This flexibility is accomplished by chopping a CW laser source with a high-bandwidth acousto-optic modulator (AOM). The laser source is a Laser Quantum ventus 1064 diode-pumped solid-state laser with continuous output power variable from 100 to 500 mW. The 1064 nm, 2.7 mm diameter polarized beam is focused into the gallium phosphide crystal of a Brimrose AOM, which deflects the beam by approximately 60 mR when driven by the 400 MHz fixed frequency driver. Beam deflection is controlled by a simple digital input pulse, and is capable of producing deflected pulses of less than 20 ns width at repetition rates much greater than 1 MHz. These deflected pulses from the output of the AOM are collimated and propagated into the laser amplifier system, where they will be amplified to ~ 2 J/pulse and injected into the MST plasma.

  16. Instrumental sensing of stationary source emissions. [sulphur dioxide remote sensing for coal-burning power plants

    NASA Technical Reports Server (NTRS)

    Herget, W. F.; Conner, W. D.

    1977-01-01

    A variety of programs have been conducted within EPA to evaluate the capability of various ground-based remote-sensing techniques for measuring the SO2 concentration, velocity, and opacity of effluents from coal-burning power plants. The results of the remote measurements were compared with the results of instack measurements made using EPA reference methods. Attention is given to infrared gas-filter correlation radiometry for SO2 concentration, Fourier-transform infrared spectroscopy for SO2 concentration, ultraviolet matched-filter correlation spectroscopy for SO2 concentration, infrared and ultraviolet television for velocity and SO2 concentration, infrared laser-Doppler velocimetry for plume velocity, and visible laser radar for plume opacity.

  17. CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: LASER POWER MEASUREMENTS

    EPA Science Inventory

    Laser power abstract
    The reliability of the confocal laser-scanning microscope (CLSM) to obtain intensity measurements and quantify fluorescence data is dependent on using a correctly aligned machine that contains a stable laser power. The laser power test appears to be one ...

  18. Design investigation of solar powered lasers for space applications

    NASA Technical Reports Server (NTRS)

    Taussig, R.; Bruzzone, C.; Quimby, D.; Nelson, L.; Christiansen, W.; Neice, S.; Cassady, P.; Pindroh, A.

    1979-01-01

    The feasibility of solar powered lasers for continuous operation in space power transmission was investigated. Laser power transmission in space over distances of 10 to 100 thousand kilometers appears possible. A variety of lasers was considered, including solar-powered GDLs and EDLs, and solar-pumped lasers. An indirect solar-pumped laser was investigated which uses a solar-heated black body cavity to pump the lasant. Efficiencies in the range of 10 to 20 percent are projected for these indirect optically pumped lasers.

  19. COMPARISON OF FEMTOSECOND AND NANOSECOND TWO PHOTON ABSORPTION LASER INDUCED FLUORESCENCE (TALIF) OF ATOMIC OXYGEN IN ATMOSPHERIC PRESSURE PLASMAS

    DTIC Science & Technology

    2016-08-01

    OXYGEN IN ATMOSPHERIC PRESSURE PLASMAS James D. Scofield (AFRL/RQQE) and James R. Gord (AFRL/RQTC) Electrical Systems Branch, Power and Control...Division (AFRL/RQQE) Combustion Branch, Turbine Engine Division (AFRL/RQTC) Jacob B. Schmidt and Sukesh Roy Spectral Energies LLC Brian Sands...LASER-INDUCED FLUORESCENCE (TALIF) OF ATOMIC OXYGEN IN ATMOSPHERIC PRESSURE PLASMAS 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER 5c. PROGRAM

  20. Research on laser detonation pulse circuit with low-power based on super capacitor

    NASA Astrophysics Data System (ADS)

    Wang, Hao-yu; Hong, Jin; He, Aifeng; Jing, Bo; Cao, Chun-qiang; Ma, Yue; Chu, En-yi; Hu, Ya-dong

    2018-03-01

    According to the demand of laser initiating device miniaturization and low power consumption of weapon system, research on the low power pulse laser detonation circuit with super capacitor. Established a dynamic model of laser output based on super capacitance storage capacity, discharge voltage and programmable output pulse width. The output performance of the super capacitor under different energy storage capacity and discharge voltage is obtained by simulation. The experimental test system was set up, and the laser diode of low power pulsed laser detonation circuit was tested and the laser output waveform of laser diode in different energy storage capacity and discharge voltage was collected. Experiments show that low power pulse laser detonation based on super capacitor energy storage circuit discharge with high efficiency, good transient performance, for a low power consumption requirement, for laser detonation system and low power consumption and provide reference light miniaturization of engineering practice.

  1. High power multiple wavelength diode laser stack for DPSSL application without temperature control

    NASA Astrophysics Data System (ADS)

    Hou, Dong; Yin, Xia; Wang, Jingwei; Chen, Shi; Zhan, Yun; Li, Xiaoning; Fan, Yingmin; Liu, Xingsheng

    2018-02-01

    High power diode laser stack is widely used in pumping solid-state laser for years. Normally an integrated temperature control module is required for stabilizing the output power of solid-state laser, as the output power of the solid-state laser highly depends on the emission wavelength and the wavelength shift of diode lasers according to the temperature changes. However the temperature control module is inconvenient for this application, due to its large dimension, high electric power consumption and extra adding a complicated controlling system. Furthermore, it takes dozens of seconds to stabilize the output power when the laser system is turned on. In this work, a compact hard soldered high power conduction cooled diode laser stack with multiple wavelengths is developed for stabilizing the output power of solid-state laser in a certain temperature range. The stack consists of 5 laser bars with the pitch of 0.43mm. The peak output power of each bar in the diode laser stack reaches as much as 557W and the combined lasing wavelength spectrum profile spans 15nm. The solidstate laser, structured with multiple wavelength diode laser stacks, allows the ambient temperature change of 65°C without suddenly degrading the optical performance.

  2. Characterization of quantum well laser diodes for application within the AMRDEC HWIL facilities

    NASA Astrophysics Data System (ADS)

    Saylor, Daniel A.; Bender, Matt; Cantey, Thomas M.; Beasley, D. B.; Buford, Jim A.

    2004-08-01

    The U.S. Army's Research, Development, and Engineering Command's (RDECOM) Aviation and Missile Research, Development, and Engineering Center (AMRDEC) provides Hardware-in-the-Loop (HWIL) test support to numerous tactical and theatre missile programs. Critical to the successful execution of these tests is the state-of-the-art technologies employed in the visible and infrared scene projector systems. This paper describes the results of characterizations tests performed on new mid-wave infrared (MWIR) quantum well laser diodes recently provided to AMRDEC by the Naval Research Labs and Sarnoff Industries. These lasers provide a +10X imrovement in MWIR output over the previous technology of lead-salt laser diodes. Performance data on output power, linearity, and solid-angle coverage are presented. A discussion of the laser packages is also provided.

  3. Laser-driven ion acceleration at BELLA

    NASA Astrophysics Data System (ADS)

    Bin, Jianhui; Steinke, Sven; Ji, Qing; Nakamura, Kei; Treffert, Franziska; Bulanov, Stepan; Roth, Markus; Toth, Csaba; Schroeder, Carl; Esarey, Eric; Schenkel, Thomas; Leemans, Wim

    2017-10-01

    BELLA is a high repetiton rate PW laser and we used it for high intensity laser plasma acceleration experiments. The BELLA-i program is focused on relativistic laser plasma interaction such as laser driven ion acceleration, aiming at establishing an unique collaborative research facility providing beam time to selected external groups for fundamental physics and advanced applications. Here we present our first parameter study of ion acceleration driven by the BELLA-PW laser with truly high repetition rate. The laser repetition rate of 1Hz allows for scanning the laser pulse duration, relative focus location and target thickness for the first time at laser peak powers of above 1 PW. Furthermore, the long focal length geometry of the experiment (f ∖65) and hence, large focus size provided ion beams of reduced divergence and unprecedented charge density. This work was supported by the Director, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

  4. Some recent studies on laser cladding and dissimilar welding

    NASA Astrophysics Data System (ADS)

    Kaul, Rakesh; Ganesh, P.; Paul, C. P.; Albert, S. K.; Mudali, U. Kamachi; Nath, A. K.

    2006-01-01

    Indigenous development of high power CO II laser technology and industrial application of lasers represent two important mandates of the laser program, being pursued at Centre for Advanced Technology (CAT), India. The present paper describes some of the important laser material processing studies, involving cladding and dissimilar welding, performed in authors' laboratory. The first case study describes how low heat input characteristics of laser cladding process has been successfully exploited for suppressing dilution in "Colmonoy6" (a nickel-base hardfacing alloy) deposits on austenitic stainless steel components. Crack free hardfaced deposits were obtained by controlling heating and cooling rates associated with laser treatment. The results show significant advantage over Colmonoy 6 deposits made by GTAW, where a 2.5 mm thick region of dilution (with reduced hardness) develops next to substrateiclad interface. The next work involves laser-assisted deposition of graded "Stellite6" (a Co-base hardfacing alloy) with smooth transition in chemical composition and hardness for enhanced resistance against cracking, esp. under thermal cycling conditions. The following two case studies demonstrate significant improvement in corrosion properties of type 304L stainless steel by laser surface alloying, achieved through cladding route. The following case study demonstrates engineering of fusion zone microstructure of end plug dissimilar weld (between alloy D9 and type 3 16M stainless steel) by controlled preferential displacement of focused laser beam, which, in-turn, enhanced its resistance against solidification cracking. Crater appearing at the termination point of laser weld is also eliminated by ramping of laser power towards the end of laser welding. The last case study involves engineering of fusion zone microstructure of dissimilar laser weld between type 304 austenitic stainless steel and stabilized 17%Cr ferritic stainless steel by controlling welding parameters.

  5. Potential converter for laser-power beaming

    NASA Technical Reports Server (NTRS)

    Walker, Gilbert H.; Williams, Michael D.; Schuster, Gregory L.; Iles, Peter A.

    1991-01-01

    Future space missions, such as those associated with the Space Exploration Initiative (SEI), will require large amounts of power for operation of bases, rovers, and orbit transfer vehicles. One method for supplying this power is to beam power from a spaced based or Earth based laser power station to a receiver where laser photons can be converted to electricity. Previous research has described such laser power stations orbiting the Moon and beaming power to a receiver on the surface of the Moon by using arrays of diode lasers. Photovoltaic converters that can be efficiently used with these diode lasers are described.

  6. Long distance high power optical laser fiber break detection and continuity monitoring systems and methods

    DOEpatents

    Rinzler, Charles C.; Gray, William C.; Faircloth, Brian O.; Zediker, Mark S.

    2016-02-23

    A monitoring and detection system for use on high power laser systems, long distance high power laser systems and tools for performing high power laser operations. In particular, the monitoring and detection systems provide break detection and continuity protection for performing high power laser operations on, and in, remote and difficult to access locations.

  7. Intense laser beams; Proceedings of the Meeting, Los Angeles, CA, Jan. 23, 24, 1992

    NASA Technical Reports Server (NTRS)

    Wade, Richard C. (Editor); Ulrich, Peter B. (Editor)

    1992-01-01

    Various papers on intense laser beams are presented. Individual topics addressed include: novel methods of copper vapor laser excitation, UCLA IR FEL, lasing characteristics of a large-bore copper vapor laser (CVL), copper density measurement of a large-bore CVL, high-power XeCl excimer laser, solid state direct-drive circuit for pumping gas lasers, united energy model for FELs, intensity and frequency instabilities in double-mode CO2 lasers, comparison of output power stabilities of CO and CO2 lasers, increasing efficiency of sealed-off CO lasers, thermal effects in singlet delta oxygen generation, optical extraction from the chemical oxygen-iodine laser medium, generation and laser diagnostic analysis of bismuth fluoride. Also discussed are: high-Q resonator design for an HF overtone chemical lasers, improved coatings for HF overtone lasers, scaled atmospheric blooming experiment, simulation on producing conjugate field using deformable mirrors, paraxial theory of amplitude correction, potential capabilities of adaptive optical systems in the atmosphere, power beaming research at NASA, system evaluations of laser power beaming options, performance projections for laser beam power to space, independent assessment of laser power beaming options, removal of atmospheric CFCs by lasers, efficiency of vaporization cutting by CVL.

  8. Comparison of laser and power bleaching techniques in tooth color change.

    PubMed

    Fekrazad, Reza; Alimazandarani, Shervin; Kalhori, Katayoun Am; Assadian, Hadi; Mirmohammadi, Seyed-Mahdi

    2017-04-01

    Laser-assisted bleaching uses laser beam to accelerate release of free radicals within the bleaching gel to decrease time of whitening procedure. The aim of this study was to compare the efficacy of power bleaching using Opalescence Xtra Boost® and laser bleaching technique using LaserSmile gel and diode laser as an activator in their tooth whitening capacity. Student t test showed that the laser bleaching group significantly outperformed the power bleaching group in changing ∆E ( p =0.977). Similarly, while comparing the groups in changing ∆L, the laser bleaching group indicated significantly superior results ( p =0.953). Statistical data from student t test while comparing the groups in changing the parameter of yellowness indicated that samples in laser bleaching group underwent a more significant reduction than power-bleached samples ( p =0.85). Correspondingly, changes in whiteness were statistically tested through student t test, showing that laser bleaching technique increased whiteness of the samples significantly more than those treated by power bleaching ( p =0.965). The digital color evaluation data was in accordance with spectrophotometry and showed that laser bleaching outperformed power bleaching technique. Both techniques were able to increase whiteness and decrease yellowness ratio of the samples. ΔE decrease for laser bleaching and power bleaching groups were 3.05 and 1.67, respectively. Tooth color change in laser bleaching group was 1.88 times more than that of power bleaching group ( p <0.001). It could be concluded that under the conditions of this study, both laser-assisted and power bleaching techniques were capable of altering tooth color change, but laser bleaching was deemed a more efficient technique in this regard. Key words: Laser, power bleaching, tooth color introduction.

  9. High-power ultraviolet 278-nm laser from fourth-harmonic generation of an Nd:YAG amplifier in CsB3O5 crystal

    NASA Astrophysics Data System (ADS)

    He, Miao; Yang, Feng; Dong, Cheng; Wang, Zhi-Chao; Yuan, Lei; Xu, Yi-Ting; Zhang, Guo-Chun; Wang, Zhi-Min; Bo, Yong; Peng, Qin-Jun; Cui, Da-Fu; Wu, Yi-Cheng; Xu, Zu-Yan

    2018-05-01

    Not Available Project supported by the National Natural Science Foundation Program of China (Grant Nos. 11504389 and 61505226), the National Key Research Development Program of China (Grant Nos. 2016YFB040203 and 61535013), and the National Development Project for Major Scientific Research Facility of China (Grant No. ZDYZ2012-2).

  10. Space Solar Power Technology Demonstration for Lunar Polar Applications: Laser-Photovoltaic Wireless Power Transmission

    NASA Technical Reports Server (NTRS)

    Henley, M. W.; Fikes, J. C.; Howell, J.; Mankins, J. C.; Howell, Joe T. (Technical Monitor)

    2002-01-01

    Space Solar Power technology offers unique benefits for near-term NASA space science missions, which can mature this technology for other future applications. "Laser-Photo-Voltaic Wireless Power Transmission" (Laser-PV WPT) is a technology that uses a laser to beam power to a photovoltaic receiver, which converts the laser's light into electricity. Future Laser-PV WPT systems may beam power from Earth to satellites or large Space Solar Power satellites may beam power to Earth, perhaps supplementing terrestrial solar photo-voltaic receivers. In a near-term scientific mission to the moon, Laser-PV WPT can enable robotic operations in permanently shadowed lunar polar craters, which may contain ice. Ground-based technology demonstrations are proceeding, to mature the technology for this initial application, in the moon's polar regions.

  11. Comparisons of selected laser beam power missions to conventionally powered missions

    NASA Technical Reports Server (NTRS)

    Bozek, John M.; Oleson, Steven R.; Landis, Geoffrey A.; Stavnes, Mark W.

    1993-01-01

    Earth-based laser sites beaming laser power to space assets have shown benefits over competing power system concepts for specific missions. Missions analyzed in this report that show benefits of laser beam power are low Earth orbit (LEO) to geosynchronous Earth orbit (GEO) transfer, LEO to low lunar orbit (LLO) cargo missions, and lunar-base power. Both laser- and solar-powered orbit-transfer vehicles (OTV's) make a 'tug' concept viable, which substantially reduces cumulative initial mass to LEO in comparison to chemical propulsion concepts. Lunar cargo missions utilizing laser electric propulsion from Earth-orbit to LLO show substantial mass saving to LEO over chemical propulsion systems. Lunar-base power system options were compared on a landed-mass basis. Photovoltaics with regenerative fuel cells, reactor-based systems, and laser-based systems were sized to meet a generic lunar-base power profile. A laser-based system begins to show landed mass benefits over reactor-based systems when proposed production facilities on the Moon require power levels greater than approximately 300 kWe. Benefit/cost ratios of laser power systems for an OTV, both to GEO and LLO, and for a lunar base were calculated to be greater than 1.

  12. Wide-field airborne laser diode array illuminator: demonstration results

    NASA Astrophysics Data System (ADS)

    Suiter, H. R.; Holloway, J. H., Jr.; Tinsley, K. R.; Pham, C. N.; Kloess, E. C., III; Witherspoon, N. H.; Stetson, S.; Crosby, F.; Nevis, A.; McCarley, K. A.; Seales, T. C.

    2005-06-01

    The Airborne Littoral Reconnaissance Technology (ALRT) program has successfully demonstrated the Wide-Field Airborne Laser Diode Array Illuminator (ALDAI-W). This illuminator is designed to illuminate a large area from the air with limited power, weight, and volume. A detection system, of which the ALDAI-W is a central portion, is capable of detecting surface-laid minefields in absolute darkness, extending the allowed mission times to night operations. This will be an overview report, giving processing results and suggested paths for additional development.

  13. Accelerating Into the Future: From 0 to GeV in a Few Centimeters (LBNL Summer Lecture Series)

    ScienceCinema

    Leemans, Wim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Accelerator and Fusion Research Division (AFRD) and Laser Optics and Accelerator Systems Integrated Studies (LOASIS)

    2018-05-04

    Summer Lecture Series 2008: By exciting electric fields in plasma-based waveguides, lasers accelerate electrons in a fraction of the distance conventional accelerators require. The Accelerator and Fusion Research Division's LOASIS program, headed by Wim Leemans, has used 40-trillion-watt laser pulses to deliver billion-electron-volt (1 GeV) electron beams within centimeters. Leemans looks ahead to BELLA, 10-GeV accelerating modules that could power a future linear collider.

  14. Accelerating Into the Future: From 0 to GeV in a Few Centimeters (LBNL Summer Lecture Series)

    ScienceCinema

    Leemans, Wim [LOASIS Program, AFRD

    2017-12-09

    July 8, 2008 Berkeley Lab lecture: By exciting electric fields in plasma-based waveguides, lasers accelerate electrons in a fraction of the distance conventional accelerators require. The Accelerator and Fusion Research Division's LOASIS program, headed by Wim Leemans, has used 40-trillion-watt laser pulses to deliver billion-electron-volt (1 GeV) electron beams within centimeters. Leemans looks ahead to BELLA, 10-GeV accelerating modules that could power a future linear collider.

  15. High power, high signal-to-noise ratio single-frequency 1μm Brillouin all-fiber laser

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Hou, Yubin; Zhang, Qian; Jin, Dongchen; Sun, Ruoyu; Shi, Hongxing; Liu, Jiang; Wang, Pu

    2016-03-01

    We demonstrate a high-power, high signal-to-noise ratio single-frequency 1 μm Brillouin all-fiber laser with high slope efficiency. The Brillouin laser system consists of a high-power single-frequency fiber laser and a single-pass Brillouin ring cavity. The high-power single-frequency fiber laser is one-stage master-oscillator power amplifier with the maximum output power of 10.33 W, the signal-to-noise ratio of 50 dB and the slope efficiency of 46%. The Brillouin fiber laser is pumped by the amplified laser with a linewidth of 33 kHz and an output power of 2.61 W limited by the damage threshold of the optical isolator. By optimizing the length of the Brillouin ring cavity to 10 m, stable singlefrequency Brillouin fiber laser is obtained with 3 kHz linewidth owing to the linewidth narrowing effect. At the launched pump power of 2.15 W, the Brillouin fiber laser generates maximum output power of 1.4 W with a slope efficiency of 79% and the optical signal-to-noise ratio of 77 dB.

  16. New Submount Requirement of Conductively Cooled Laser Diodes for Lidar Applications

    NASA Technical Reports Server (NTRS)

    Mo, S. Y.; Cutler, A. D.; Choi, S. H.; Lee, M. H.; Singh, U. N.

    2000-01-01

    New submount technology is essential for the development of conductively cooled high power diode laser. The simulation and experimental results indicate that thermal conductivity of submount for high power laser-diode must be at least 600 W/m/k or higher for stable operation. We have simulated several theoretical thermal model based on new submount designs and characterized high power diode lasers to determine temperature effects on the performances of laser diodes. The characterization system measures the beam power, output beam profile, temperature distribution, and spectroscopic property of high power diode laser. The characterization system is composed of four main parts: an infrared imaging camera, a CCD camera, a monochromator, and a power meter. Thermal characteristics of two commercial-grade CW 20-W diode laser bars with open heat-sink type were determined with respect to the line shift of emission spectra and beam power stability. The center wavelength of laser emission has a tendency to shift toward longer wavelength as the driving current and heat sink temperature are increased. The increase of heat sink temperature decreases the output power of the laser bar too. Such results lay the guidelines for the design of new submount for high power laser-diodes.

  17. 2013 R&D 100 Award: New tech could mean more power for fiber lasers

    ScienceCinema

    Dawson, Jay

    2018-01-16

    An LLNL team of six physicists has developed a new technology that is a stepping stone to enable some of the limitations on high-power fiber lasers to be overcome. Their technology, dubbed "Efficient Mode-Converters for High-Power Fiber Amplifiers," allows the power of fiber lasers to be increased while maintaining high beam quality. Currently, fiber lasers are used in machining, on factory floors and in a number of defense applications and can produce tens of kilowatts of power.The conventional fiber laser design features a circular core and has fundamental limitations that make it impractical to allow higher laser power unless the core area is increased. LLNL researchers have pioneered a design to increase the laser's core area along the axis of the ribbon fiber. Their design makes it difficult to use a conventional laser beam, so the LLNL team converted the beam into a profile that propagates into the ribbon fiber and is converted back once it is amplified. The use of this LLNL technology will permit the construction of higher power lasers for lower costs and increase the power of fiber lasers from tens of kilowatts of power to about 100 kilowatts and potentially even higher.

  18. Short cavity active mode locking fiber laser for optical sensing and imaging

    NASA Astrophysics Data System (ADS)

    Lee, Hwi Don; Han, Ga Hee; Jeong, Syung Won; Jeong, Myung Yung; Kim, Chang-Seok; Shin, Jun Geun; Lee, Byeong Ha; Eom, Tae Joong

    2014-05-01

    We demonstrate a highly linear wavenumber- swept active mode locking (AML) fiber laser for optical sensing and imaging without any wavenumber-space resampling process. In this all-electric AML wavenumber-swept mechanism, a conventional wavelength selection filter is eliminated and, instead, the suitable programmed electric modulation signal is directly applied to the gain medium. Various types of wavenumber (or wavelength) tunings can be implemented because of the filter-less cavity configuration. Therefore, we successfully demonstrate a linearly wavenumber-swept AML fiber laser with 26.5 mW of output power to obtain an in-vivo OCT image at the 100 kHz swept rate.

  19. National direct-drive program on OMEGA and the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Goncharov, V. N.; Regan, S. P.; Campbell, E. M.; Sangster, T. C.; Radha, P. B.; Myatt, J. F.; Froula, D. H.; Betti, R.; Boehly, T. R.; Delettrez, J. A.; Edgell, D. H.; Epstein, R.; Forrest, C. J.; Glebov, V. Yu; Harding, D. R.; Hu, S. X.; Igumenshchev, I. V.; Marshall, F. J.; McCrory, R. L.; Michel, D. T.; Seka, W.; Shvydky, A.; Stoeckl, C.; Theobald, W.; Gatu-Johnson, M.

    2017-01-01

    A major advantage of the laser direct-drive (DD) approach to ignition is the increased fraction of laser drive energy coupled to the hot spot and relaxed hot-spot requirements for the peak pressure and convergence ratios relative to the indirect-drive approach at equivalent laser energy. With the goal of a successful ignition demonstration using DD, the recently established national strategy has several elements and involves multiple national and international institutions. These elements include the experimental demonstration on OMEGA cryogenic implosions of hot-spot conditions relevant for ignition at MJ-scale energies available at the National Ignition Facility (NIF) and developing an understanding of laser-plasma interactions and laser coupling using DD experiments on the NIF. DD designs require reaching central stagnation pressures in excess of 100 Gbar. The current experiments on OMEGA have achieved inferred peak pressures of 56 Gbar (Regan et al 2016 Phys. Rev. Lett. 117 025001). Extensive analysis of the cryogenic target experiments and two- and three-dimensional simulations suggest that power balance, target offset, and target quality are the main limiting factors in target performance. In addition, cross-beam energy transfer (CBET) has been identified as the main mechanism reducing laser coupling. Reaching the goal of demonstrating hydrodynamic equivalence on OMEGA includes improving laser power balance, target position, and target quality at shot time. CBET must also be significantly reduced and several strategies have been identified to address this issue.

  20. Design of 20 W fiber-coupled green laser diode by Zemax

    NASA Astrophysics Data System (ADS)

    Qi, Yunfei; Zhao, Pengfei; Wu, Yulong; Chen, Yongqi; Zou, Yonggang

    2017-09-01

    We represent a design of a 20 W, fiber-coupled diode laser module based on 26 single emitters at 520 nm. The module can produce more than 20 W output power from a standard fiber with core diameter of 400 μm and numerical aperture (NA) of 0.22. To achieve a 20 W laser beam, the spatial beam combination and polarization beam combination by polarization beam splitter are used to combine output of 26 single emitters into a single beam, and then an aspheric lens is used to couple the combined beam into an optical fiber. The simulation shows that the total coupling efficiency is more than 95%. Project supported by the National Key R& D Program of China (No. 2016YFB0402105), the Key Deployment Program of the Chinese Academy of Sciences (No. KGZD-SW-T01-2), and the National Natural Science Foundation of China (No. 61404135).

  1. Advances in high power linearly polarized fiber laser and its application

    NASA Astrophysics Data System (ADS)

    Zhou, Pu; Huang, Long; Ma, Pengfei; Xu, Jiangming; Su, Rongtao; Wang, Xiaolin

    2017-10-01

    Fiber lasers are now attracting more and more research interest due to their advantages in efficiency, beam quality and flexible operation. Up to now, most of the high power fiber lasers have random distributed polarization state. Linearlypolarized (LP) fiber lasers, which could find wide application potential in coherent detection, coherent/spectral beam combining, nonlinear frequency conversion, have been a research focus in recent years. In this paper, we will present a general review on the achievements of various kinds of high power linear-polarized fiber laser and its application. The recent progress in our group, including power scaling by using power amplifier with different mechanism, high power linearly polarized fiber laser with diversified properties, and various applications of high power linear-polarized fiber laser, are summarized. We have achieved 100 Watt level random distributed feedback fiber laser, kilowatt level continuous-wave (CW) all-fiber polarization-maintained fiber amplifier, 600 watt level average power picosecond polarization-maintained fiber amplifier and 300 watt level average power femtosecond polarization-maintained fiber amplifier. In addition, high power linearly polarized fiber lasers have been successfully applied in 5 kilowatt level coherent beam combining, structured light field and ultrasonic generation.

  2. A 1-D Study of the Ignition Space for Magnetic Indirect (X-ray) Drive Targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cobble, James Allen; Sinars, Daniel Brian

    The ICF program today is investigating three approaches to achieving multi-MJ fusion yields and ignition: (1) laser indirect (x-ray) drive on the National Ignition Facility (NIF), (2) laser direct drive (primarily on the Omega laser facility at the University of Rochester), and (3) magnetic direct drive on the Z pulsed power facility. In this white paper we briefly consider a fourth approach, magnetic indirect drive, in which pulsedpower- driven x-ray sources are used in place of laser driven sources. We first look at some of the x-ray sources studied on Z prior to 2007 before the pulsed power ICF programmore » shifted to magnetic direct drive. We then show results from a series of 1D Helios calculations of double-shell capsules that suggest that these sources, scaled to higher temperatures, could be a promising path to achieving multi-MJ fusion yields and ignition. We advocate here that more detailed design calculations with widely accepted 2D/3D ICF codes should be conducted for a better assessment of the prospects.« less

  3. A High Power Frequency Doubled Fiber Laser

    NASA Technical Reports Server (NTRS)

    Thompson, Robert J.; Tu, Meirong; Aveline, Dave; Lundblad, Nathan; Maleki, Lute

    2003-01-01

    This viewgraph presentation reports on the development of a high power 780 nm laser suitable for space applications of laser cooling. A possible solution is to use frequency doubling of high power 1560 nm telecom lasers. The presentation shows a diagram of the frequency conversion, and a graph of the second harmonic generation in one crystal, and the use of the cascading crystals. Graphs show the second harmonic power as a function of distance between crystals, second harmonic power vs. pump power, tunability of laser systems.

  4. High-power ultralong-wavelength Tm-doped silica fiber laser cladding-pumped with a random distributed feedback fiber laser

    PubMed Central

    Jin, Xiaoxi; Du, Xueyuan; Wang, Xiong; Zhou, Pu; Zhang, Hanwei; Wang, Xiaolin; Liu, Zejin

    2016-01-01

    We demonstrated a high-power ultralong-wavelength Tm-doped silica fiber laser operating at 2153 nm with the output power exceeding 18 W and the slope efficiency of 25.5%. A random distributed feedback fiber laser with the center wavelength of 1173 nm was employed as pump source of Tm-doped fiber laser for the first time. No amplified spontaneous emissions or parasitic oscillations were observed when the maximum output power reached, which indicates that employing 1173 nm random distributed feedback fiber laser as pump laser is a feasible and promising scheme to achieve high-power emission of long-wavelength Tm-doped fiber laser. The output power of this Tm-doped fiber laser could be further improved by optimizing the length of active fiber, reflectivity of FBGs, increasing optical efficiency of pump laser and using better temperature management. We also compared the operation of 2153 nm Tm-doped fiber lasers pumped with 793 nm laser diodes, and the maximum output powers were limited to ~2 W by strong amplified spontaneous emission and parasitic oscillation in the range of 1900–2000 nm. PMID:27416893

  5. High-power ultralong-wavelength Tm-doped silica fiber laser cladding-pumped with a random distributed feedback fiber laser.

    PubMed

    Jin, Xiaoxi; Du, Xueyuan; Wang, Xiong; Zhou, Pu; Zhang, Hanwei; Wang, Xiaolin; Liu, Zejin

    2016-07-15

    We demonstrated a high-power ultralong-wavelength Tm-doped silica fiber laser operating at 2153 nm with the output power exceeding 18 W and the slope efficiency of 25.5%. A random distributed feedback fiber laser with the center wavelength of 1173 nm was employed as pump source of Tm-doped fiber laser for the first time. No amplified spontaneous emissions or parasitic oscillations were observed when the maximum output power reached, which indicates that employing 1173 nm random distributed feedback fiber laser as pump laser is a feasible and promising scheme to achieve high-power emission of long-wavelength Tm-doped fiber laser. The output power of this Tm-doped fiber laser could be further improved by optimizing the length of active fiber, reflectivity of FBGs, increasing optical efficiency of pump laser and using better temperature management. We also compared the operation of 2153 nm Tm-doped fiber lasers pumped with 793 nm laser diodes, and the maximum output powers were limited to ~2 W by strong amplified spontaneous emission and parasitic oscillation in the range of 1900-2000 nm.

  6. The NASA high power carbon dioxide laser: A versatile tool for laser applications

    NASA Technical Reports Server (NTRS)

    Lancashire, R. B.; Alger, D. L.; Manista, E. J.; Slaby, J. G.; Dunning, J. W.; Stubbs, R. M.

    1976-01-01

    A closed-cycle, continuous wave, carbon dioxide high power laser has been designed and fabricated to support research for the identification and evaluation of possible high power laser applications. The device is designed to generate up to 70 kW of laser power in annular shape beams from 1 to 9 cm in diameter. Electric discharge, either self sustained or electron beam sustained, is used for excitation. This laser facility provides a versatile tool on which research can be performed to advance the state-of-the-art technology of high power CO2 lasers in such areas as electric excitation, laser chemistry, and quality of output beams. The facility provides a well defined, continuous wave beam for various application experiments, such as propulsion, power conversion, and materials processing.

  7. Apparatus for advancing a wellbore using high power laser energy

    DOEpatents

    Zediker, Mark S.; Land, Mark S.; Rinzler, Charles C.; Faircloth, Brian O.; Koblick, Yeshaya; Moxley, Joel F.

    2014-09-02

    Delivering high power laser energy to form a borehole deep into the earth using laser energy. Down hole laser tools, laser systems and laser delivery techniques for advancement, workover and completion activities. A laser bottom hole assembly (LBHA) for the delivery of high power laser energy to the surfaces of a borehole, which assembly may have laser optics, a fluid path for debris removal and a mechanical means to remove earth.

  8. Solar power satellite system definition study. Volume 3: Laser SPS analysis, phase 3

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The potential use of lasers for transmitting power to Earth from Solar Power Satellites was examined. Free electron lasers appear most promising and would have some benefits over microwave power transmission. Further research in laser technology is needed.

  9. Investigation of temperature feedback signal parameters during neoplasms treatment by diode laser radiation

    NASA Astrophysics Data System (ADS)

    Belikov, Andrey V.; Gelfond, Mark L.; Shatilova, Ksenia V.; Semyashkina, Yulia V.

    2016-04-01

    Dynamics of temperature signal in operation area and laser power at nevus, papilloma, and keratoma in vivo removal by a 980+/-10 nm diode laser with "blackened" tip operating in continuous (CW) mode and with temperature feedback (APC) mode are presented. Feedback allows maintaining temperature in the area of laser treatment at a preset level by regulating power of diode laser radiation (automatic power control). Temperature in the area of laser treatment was controlled by measuring the amplitude of thermal radiation, which occurs when tissue is heated by laser radiation. Removal of neoplasm was carried out in CW mode with laser radiation average power of 12.5+/-0.5 W; mean temperature in the area of laser treatment was 900+/-10°C for nevus, 800+/-15°C for papilloma, and 850+/-20°C for keratoma. The same laser radiation maximal power (12.5 W) and targeted temperature (900°C) were set for nevus removal in APC mode. The results of investigation are real time oscillograms of the laser power and temperature in the area of laser treatment at neoplasms removal in two described above modes. Simultaneously with the measurement of laser power and the temperature in the area of laser treatment video recording of surgeon manipulations was carried out. We discuss the correlation between the power of the laser radiation, the temperature in the area of laser treatment and consistency of surgeon manipulation. It is shown that the method of removal (excision with or without traction, scanning) influences the temperature in the area of laser treatment. It was found, that at removal of nevus with temperature feedback (APC) mode to achieve comparable with CW mode temperature in the area of laser treatment (900+/-10°C) 20-50% less laser power is required. Consequently, removing these neoplasms in temperature feedback mode can be less traumatic than the removal in CW mode.

  10. Atmospheric Propagation and Combining of High-Power Lasers

    DTIC Science & Technology

    2015-09-08

    Brightness-scaling potential of actively phase- locked solid state laser arrays,” IEEE J. Sel. Topics Quantum Electron., vol. 13, no. 3, pp. 460–472, May...attempting to phase- lock high-power lasers, which is not encountered when phase- locking low-power lasers, for example mW power levels. Regardless, we...technology does not currently exist. This presents a challenging problem when attempting to phase- lock high-power lasers, which is not encountered when

  11. The design and development of CO2 medium-level laser power calibration system for industrial and medical applications in Thailand

    NASA Astrophysics Data System (ADS)

    Nontapot, Kanokwan

    2018-03-01

    The carbon dioxide laser (CO2 laser) is one of the most useful and is the highest CW laser at the present. The laser produces infrared light at 10.6 um. Due to its high power, CO2 lasers are usually used in industrial applications such as cutting and welding, or for engraving at less power. CO2 lasers are also used widely in medical applications, such as laser surgery, skin resurfacing, and removing mold, due to water (biological tissue) absorb light at this wavelength very well. CO2 lasers are also used as LIDAR laser source for military range finding applications because of the transparency of the atmosphere to infrared light. Due to the increasing use of CO2 lasers laser in industrial and medical applications in Thailand, the National Institute of Metrology (Thailand) has set up a CO2 laser power calibration system and provide calibration service to customers this year. The service support calibration of medium-level laser power at wavelength of 10.6 um and at power range 100 mW-10W. The design and development of the calibration system will be presented.

  12. Theoretical study and design of third-order random fiber laser

    NASA Astrophysics Data System (ADS)

    Xie, Zhaoxin; Shi, Wei; Fu, Shijie; Sheng, Quan; Yao, Jianquan

    2018-02-01

    We present result of achieving a random fiber laser at a working wavelength of 1178nm while pumping at 1018nm. The laser power is realized by 200m long cavity which includes three high reflectivity fiber Bragg gratings. This simple and efficient random fiber laser could provide a novel approach to realize low-threshold and high-efficiency 1178nm long wavelength laser. We theoretically analyzed the laser power in random fiber lasers at different pump power by changing three high reflectivity fiber Bragg gratings. We also calculated the forward and backward power of 1st-order stokes, 2nd-order stokes, 3rd-order stokes. With the theoretical analysis, we optimize the cavity's reflectivity to get higher laser power output. The forward random laser exhibits larger gain, the backward random laser has lower gain. By controlling the value of angle-cleaved end fiber's reflectivity to 3×10-7, when the high reflectivity increases from 0.01 to 0.99, the laser power increases, using this proposed configuration, the 1178nm random laser can be generated easily and stably.

  13. Control system for high power laser drilling workover and completion unit

    DOEpatents

    Zediker, Mark S; Makki, Siamak; Faircloth, Brian O; DeWitt, Ronald A; Allen, Erik C; Underwood, Lance D

    2015-05-12

    A control and monitoring system controls and monitors a high power laser system for performing high power laser operations. The control and monitoring system is configured to perform high power laser operation on, and in, remote and difficult to access locations.

  14. III International Conference on Laser and Plasma Researches and Technologies

    NASA Astrophysics Data System (ADS)

    2017-12-01

    A.P. Kuznetsov and S.V. Genisaretskaya III Conference on Plasma and Laser Research and Technologies took place on January 24th until January 27th, 2017 at the National Research Nuclear University "MEPhI" (NRNU MEPhI). The Conference was organized by the Institute for Laser and Plasma Technologies and was supported by the Competitiveness Program of NRNU MEPhI. The conference program consisted of nine sections: • Laser physics and its application • Plasma physics and its application • Laser, plasma and radiation technologies in industry • Physics of extreme light fields • Controlled thermonuclear fusion • Modern problems of theoretical physics • Challenges in physics of solid state, functional materials and nanosystems • Particle accelerators and radiation technologies • Modern trends of quantum metrology. The conference is based on scientific fields as follows: • Laser, plasma and radiation technologies in industry, energetic, medicine; • Photonics, quantum metrology, optical information processing; • New functional materials, metamaterials, “smart” alloys and quantum systems; • Ultrahigh optical fields, high-power lasers, Mega Science facilities; • High-temperature plasma physics, environmentally-friendly energetic based on controlled thermonuclear fusion; • Spectroscopic synchrotron, neutron, laser research methods, quantum mechanical calculation and computer modelling of condensed media and nanostructures. More than 250 specialists took part in the Conference. They represented leading Russian scientific research centers and universities (National Research Centre "Kurchatov Institute", A.M. Prokhorov General Physics Institute, P.N. Lebedev Physical Institute, Troitsk Institute for Innovation and Fusion Research, Joint Institute for Nuclear Research, Moscow Institute of Physics and Tecnology and others) and leading scientific centers and universities from Germany, France, USA, Canada, Japan. We would like to thank heartily all of the speakers, participants, organizing and program committee members for their contribution to the conference.

  15. 2013 R&D 100 Award: New tech could mean more power for fiber lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dawson, Jay

    2014-04-03

    An LLNL team of six physicists has developed a new technology that is a stepping stone to enable some of the limitations on high-power fiber lasers to be overcome. Their technology, dubbed "Efficient Mode-Converters for High-Power Fiber Amplifiers," allows the power of fiber lasers to be increased while maintaining high beam quality. Currently, fiber lasers are used in machining, on factory floors and in a number of defense applications and can produce tens of kilowatts of power.The conventional fiber laser design features a circular core and has fundamental limitations that make it impractical to allow higher laser power unless themore » core area is increased. LLNL researchers have pioneered a design to increase the laser's core area along the axis of the ribbon fiber. Their design makes it difficult to use a conventional laser beam, so the LLNL team converted the beam into a profile that propagates into the ribbon fiber and is converted back once it is amplified. The use of this LLNL technology will permit the construction of higher power lasers for lower costs and increase the power of fiber lasers from tens of kilowatts of power to about 100 kilowatts and potentially even higher.« less

  16. Injection locking of a high power ultraviolet laser diode for laser cooling of ytterbium atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hosoya, Toshiyuki; Miranda, Martin; Inoue, Ryotaro

    2015-07-15

    We developed a high-power laser system at a wavelength of 399 nm for laser cooling of ytterbium atoms with ultraviolet laser diodes. The system is composed of an external cavity laser diode providing frequency stabilized output at a power of 40 mW and another laser diode for amplifying the laser power up to 220 mW by injection locking. The systematic method for optimization of our injection locking can also be applied to high power light sources at any other wavelengths. Our system does not depend on complex nonlinear frequency-doubling and can be made compact, which will be useful for providing light sources formore » laser cooling experiments including transportable optical lattice clocks.« less

  17. Non-intrusive beam power monitor for high power pulsed or continuous wave lasers

    DOEpatents

    Hawsey, Robert A.; Scudiere, Matthew B.

    1993-01-01

    A system and method for monitoring the output of a laser is provided in which the output of a photodiode disposed in the cavity of the laser is used to provide a correlated indication of the laser power. The photodiode is disposed out of the laser beam to view the extraneous light generated in the laser cavity whose intensity has been found to be a direct correlation of the laser beam output power level. Further, the system provides means for monitoring the phase of the laser output beam relative to a modulated control signal through the photodiode monitor.

  18. New Active Remote-sensing Capabilities: Laser Ablation Spectrometer and Lidar Atmospheric Species Profile Measurements

    NASA Technical Reports Server (NTRS)

    DeYoung, R. J.; Bergstralh, J. T.

    2005-01-01

    Introduction: With the anticipated development of high-capacity fission power and electric propulsion for deep-space missions, it will become possible to propose experiments that demand higher power than current technologies (e.g. radioisotope power sources) provide. Jupiter Icy Moons Orbiter (JIMO), the first mission in the Project Prometheus program, will explore the icy moons of Jupiter with a suite of high-capability experiments that take advantage of the high power levels (and indirectly, the high data rates) that fission power affords. This abstract describes two high-capability active-remote-sensing experiments that will be logical candidates for subsequent Prometheus-class missions.

  19. Laser aircraft. [using kerosene

    NASA Technical Reports Server (NTRS)

    Hertzberg, A.; Sun, K.; Jones, W. S.

    1979-01-01

    The concept of a laser-powered aircraft is discussed. Laser flight would be completely compatible with existing airports and air-traffic control, with the airplane using kerosene only power, up to a cruising altitude of 9 km where the laser satellite would lock on and beam laser energy to it. Two major components make up the laser turbofan, a heat exchanger for converting laser radiation into thermal energy, and conventional turbomachinery. The laser power satellite would put out 42 Mw using a solar-powered thermal engine to generate electrical power for the closed-cycle supersonic electric discharge CO laser, whose radiators, heat exchangers, supersonic diffuser, and ducting will amount to 85% of the total subsystem mass. Relay satellites will be used to intercept the beam from the laser satellite, correct outgoing beam aberrations, and direct the beam to the next target. A 300-airplane fleet with transcontinental range is projected to save enough kerosene to equal the energy content of the entire system, including power and relay satellites, in one year.

  20. Laser power conversion system analysis, volume 2

    NASA Technical Reports Server (NTRS)

    Jones, W. S.; Morgan, L. L.; Forsyth, J. B.; Skratt, J. P.

    1979-01-01

    The orbit-to-ground laser power conversion system analysis investigated the feasibility and cost effectiveness of converting solar energy into laser energy in space, and transmitting the laser energy to earth for conversion to electrical energy. The analysis included space laser systems with electrical outputs on the ground ranging from 100 to 10,000 MW. The space laser power system was shown to be feasible and a viable alternate to the microwave solar power satellite. The narrow laser beam provides many options and alternatives not attainable with a microwave beam.

  1. CO2 laser preionisation

    NASA Technical Reports Server (NTRS)

    Spiers, Gary D.

    1991-01-01

    The final report for work done during the reporting period of January 25, 1990 to January 24, 1991 is presented. A literature survey was conducted to identify the required parameters for effective preionization in TEA CO2 lasers and the methods and techniques for characterizing preionizers are reviewed. A numerical model of the LP-140 cavity was used to determine the cause of the transverse mode stability improvement obtained when the cavity was lengthened. The measurement of the voltage and current discharge pulses on the LP-140 were obtained and their subsequent analysis resulted in an explanation for the low efficiency of the laser. An assortment of items relating to the development of high-voltage power supplies is also provided. A program for analyzing the frequency chirp data files obtained with the HP time and frequency analyzer is included. A program to calculate the theoretical LIMP chirp is also included and a comparison between experiment and theory is made. A program for calculating the CO2 linewidth and its dependence on gas composition and pressure is presented. The program also calculates the number of axial modes under the FWHM of the line for a given resonator length. A graphical plot of the results is plotted.

  2. High-power beam combining: a step to a future laser weapon system

    NASA Astrophysics Data System (ADS)

    Protz, Rudolf; Zoz, Jürgen; Geidek, Franz; Dietrich, Stephan; Fall, Michael

    2012-11-01

    Due to the enormous progress in the field of high-power fiber lasers during the last years commercial industrial fiber lasers are now available, which deliver a near-diffraction limited beam with power levels up to10kW. For the realization of a future laser weapon system, which can be used for Counter-RAM or similar air defence applications, a laser source with a beam power at the level of 100kW or more is required. At MBDA Germany the concept for a high-energy laser weapon system is investigated, which is based on such existing industrial laser sources as mentioned before. A number of individual high-power fiber laser beams are combined together, using one common beam director telescope. By this "geometric" beam coupling scheme, sufficient laser beam power for an operational laser weapon system can be achieved. The individual beams from the different lasers are steered by servo-loops, using fast tip-tilt mirrors. This principle enables the concentration of the total laser beam power at the common focal point on a distant target, also allowing fine tracking of target movements and first order compensation of turbulence effects on laser beam propagation. The proposed beam combination concept was demonstrated using several experimental set-ups. Different experiments were performed, to investigate laser beam target interaction and target fine tracking also at large distances. Content and results of these investigations are reported. An example for the lay-out of an Air Defence High Energy Laser Weapon (ADHELW ) is given. It can be concluded, that geometric high-power beam combining is an important step for the realization of a laser weapon system in the near future.

  3. End-pumped 300 W continuous-wave ytterbium-doped all-fiber laser with master oscillator multi-stage power amplifiers configuration.

    PubMed

    Yin, Shupeng; Yan, Ping; Gong, Mali

    2008-10-27

    An end-pumped ytterbium-doped all-fiber laser with 300 W output in continuous regime was reported, which was based on master oscillator multi-stage power amplifiers configuration. Monolithic fiber laser system consisted of an oscillator stage and two amplifier stages. Total optical-optical efficiency of monolithic fiber laser was approximately 65%, corresponding to 462 W of pump power coupled into laser system. We proposed a new method to connect power amplifier stage, which was crucial for the application of end-pumped combiner in high power MOPAs all-fiber laser.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grubb, Daryl L.; Faircloth, Brian O.; Zediker, Mark S.

    A high power laser drilling system utilizing an electric motor laser bottom hole assembly. A high power laser beam travels within the electric motor for performing a laser operation. A system includes a down hole electrical motor having a hollow rotor for conveying a high power laser beam having a wavelength less than 1060 nm through the electrical motor.

  5. A low cost hermetic packaging for high power industry fiber lasers

    NASA Astrophysics Data System (ADS)

    Ding, Jianwu; Liu, Jinhui

    2018-02-01

    For water-cooled fiber lasers, humidity and the resulting water-condensation has always been the biggest threat for laser reliability or power degradation, especially when used in harsh industrial environment. Here we present an innovative fiber laser packaging method featuring cast aluminum frame and an almost screw-free exterior packaging. A CW fiber laser with 1.5KW laser output power in such a compact and light-weight package has been demonstrated with an excellent beam quality and power stability for industry applications.

  6. Infrared laser system

    DOEpatents

    Cantrell, Cyrus D.; Carbone, Robert J.; Cooper, Ralph S.

    1977-01-01

    An infrared laser system and method for isotope separation may comprise a molecular gas laser oscillator to produce a laser beam at a first wavelength, Raman spin flip means for shifting the laser to a second wavelength, a molecular gas laser amplifier to amplify said second wavelength laser beam to high power, and optical means for directing the second wavelength, high power laser beam against a desired isotope for selective excitation thereof in a mixture with other isotopes. The optical means may include a medium which shifts the second wavelength high power laser beam to a third wavelength, high power laser beam at a wavelength coincidental with a corresponding vibrational state of said isotope and which is different from vibrational states of other isotopes in the gas mixture.

  7. Infrared laser system

    DOEpatents

    Cantrell, Cyrus D.; Carbone, Robert J.; Cooper, Ralph

    1982-01-01

    An infrared laser system and method for isotope separation may comprise a molecular gas laser oscillator to produce a laser beam at a first wavelength, Raman spin flip means for shifting the laser to a second wavelength, a molecular gas laser amplifier to amplify said second wavelength laser beam to high power, and optical means for directing the second wavelength, high power laser beam against a desired isotope for selective excitation thereof in a mixture with other isotopes. The optical means may include a medium which shifts the second wavelength high power laser beam to a third wavelength, high power laser beam at a wavelength coincidental with a corresponding vibrational state of said isotope and which is different from vibrational states of other isotopes in the gas mixture.

  8. Hundred-watt-level high power random distributed feedback Raman fiber laser at 1150 nm and its application in mid-infrared laser generation.

    PubMed

    Zhang, Hanwei; Zhou, Pu; Wang, Xiong; Du, Xueyuan; Xiao, Hu; Xu, Xiaojun

    2015-06-29

    Two kinds of hundred-watt-level random distributed feedback Raman fiber have been demonstrated. The optical efficiency can reach to as high as 84.8%. The reported power and efficiency of the random laser is the highest one as we know. We have also demonstrated that the developed random laser can be further used to pump a Ho-doped fiber laser for mid-infrared laser generation. Finally, 23 W 2050 nm laser is achieved. The presented laser can obtain high power output efficiently and conveniently and opens a new direction for high power laser sources at designed wavelength.

  9. Effect of volatile compounds on excimer laser power delivery.

    PubMed

    Van Horn, Stewart D; Hovanesian, John A; Maloney, Robert K

    2002-01-01

    To determine whether vapors from perfume, hairspray, oil-based paint, or water-based paint affect excimer laser beam power delivery at the corneal surface. We measured the power delivery of an Apex Plus laser before, during, and after exposure to vapors from the following volatile compounds: three types of perfume, hair spray, an oil-based paint, and a water-based paint. A digital calorimeter was used to measure the steady-state beam power of the laser during laser discharge at the corneal plane. Multiple trials were run with each compound, and the change in laser energy over time was examined to determine if any of the compounds caused degradation of the laser optics. The presence of a volatile compound in the room caused no change in mean laser energy in comparison to before and after the compound was present. However, perfumes caused a progressive decline in laser beam power throughout the trials. Controlling for this progressive decline, there was no significant difference from perfume to perfume. None of the compounds tested caused a decline in laser beam power while present in the room. However, the presence of any perfume caused a deterioration in beam power over time, suggesting a degradation of the laser optics for all perfumes. Laser centers should consider advising their patients and staff to not wear perfumes in the laser suite.

  10. Fiber laser at 2 μm for soft tissue surgery

    NASA Astrophysics Data System (ADS)

    Ghosh, Aditi; Pal, Debasis; Sen, Ranjan; Pal, Atasi

    2014-11-01

    Strong water absorption at 2 μm generated recent interest in lasers at this wavelength for soft tissue surgery. A fiber Bragg grating-based, all-fiber, continuous-wave, cladding pumped, thulium-doped fiber laser at 1.95 μm is configured. The thulium-doped active fiber with octagonal-shaped inner cladding is pumped at 808 nm (total power of 17 W) with six laser diodes through a combiner. The laser power of 3.3 W (after elimination of unabsorbed pump power through a passive fiber) with slope efficiency of 23% (against launched pump power) is achieved. The linear variation of laser power with pump offers scope of further power scaling.

  11. Complete indium-free CW 200W passively cooled high power diode laser array using double-side cooling technology

    NASA Astrophysics Data System (ADS)

    Wang, Jingwei; Zhu, Pengfei; Liu, Hui; Liang, Xuejie; Wu, Dihai; Liu, Yalong; Yu, Dongshan; Zah, Chung-en; Liu, Xingsheng

    2017-02-01

    High power diode lasers have been widely used in many fields. To meet the requirements of high power and high reliability, passively cooled single bar CS-packaged diode lasers must be robust to withstand thermal fatigue and operate long lifetime. In this work, a novel complete indium-free double-side cooling technology has been applied to package passively cooled high power diode lasers. Thermal behavior of hard solder CS-package diode lasers with different packaging structures was simulated and analyzed. Based on these results, the device structure and packaging process of double-side cooled CS-packaged diode lasers were optimized. A series of CW 200W 940nm high power diode lasers were developed and fabricated using hard solder bonding technology. The performance of the CW 200W 940nm high power diode lasers, such as output power, spectrum, thermal resistance, near field, far field, smile, lifetime, etc., is characterized and analyzed.

  12. Bibliography of short wavelength chemical laser research

    NASA Astrophysics Data System (ADS)

    Perram, Glen P.

    1993-05-01

    High power short wavelength chemical laser (SWCL) systems offer great advantages for strategic and tactical military applications, including both weapons and imaging missions. The promise of very high brightness, high mass efficiency, and wavelength agility has justified a modest basic research program for more than a decade. Significant progress towards the demonstration of a visible chemical laser has been made during the past few years. Highly efficient methods of chemically producing metastable electronic states at concentrations exceeding 3 x 10(exp 16) molecules/cu cm have been developed. Energy transfer from these metastables to suitable lasant species has been used to demonstrate gain in the visible. Chemically generated gain of 0.029 %/cm on the (A-X) electronic transition in bismuth fluoride has been demonstrated using pulsed thermolysis of fluorine azide and trimethyl bismuth mixtures. Recently, a table-top shock facility has been used to achieve unsaturated lasing in the same system. During the past ten years, over 400 articles and reports have resulted from this research program. This bibliography summarizes this Department of Defense sponsored research on short wavelength chemical lasers since 1980.

  13. Fiber Based Seed Laser for CO 2 Ultrafast Laser Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yuchuan

    A compact and effective 10-micron femtosecond laser with pulse duration <500fs and repetition rate of >100Hz or smaller is desirable by DOE for seeding CO 2 ultrafast laser systems to improve the stability, reliability and efficiency in generating 10-micron laser from GW up to 100TW peak power, which is irreplaceable in driving an accelerator for particle beam generation due to the efficiency proportional to the square of the laser wavelength. Agiltron proposes a fiber based ultrafast 10-micron seed laser that can provide the required specifications and high performance. Its success will directly benefit DOE’s compact proton and ion sources. Themore » innovative technology can be used for ultrafast laser generation over the whole mid-IR range, and speed up the development of mid-IR laser applications. Agiltron, Inc. has successfully completed all tasks and demonstrated the feasibility of a fiber based 10-micron ultrafast laser in Phase I of the Program. We built a mode-locked fiber laser that generated < 400fs ultrafast laser pulses and successfully controlled the repetition rate to be the required 100Hz. Using this mode-locked laser, we demonstrated the feasibility of parametric femtosecond laser generation based on frequency down conversion. The experimental results agree with our simulation results. The investigation results of Phase I will be used to optimize the design of the laser system and build a fully functional prototype for delivery to the DOE in the Phase II program. The prototype development in Phase II program will be in the collaboration with Professor Chandrashekhar Joshi, the leader of UCLA Laser-Plasma group. Prof. Joshi discovered a new mechanism for generation of monoenergetic proton/ion beams: Shock Wave Acceleration in a near critical density plasma and demonstrated that high-energy proton beams using CO 2 laser driven collisionless shocks in a gas jet plasma, which opened an opportunity to develop a rather compact high-repetition rate ion source for medical and other applications which could be significantly cheaper than that based on RF acceleration. We propose an output energy >1 μJ, one order of magnitude higher than the DOE original requirement. The performance of the prototype will be tested at UCLA by directly seeding the CO 2 laser system driving an accelerator.« less

  14. Solar-pumped lasers for space power transmission

    NASA Technical Reports Server (NTRS)

    Taussig, R.; Bruzzone, C.; Nelson, L.; Quimby, D.; Christiansen, W.

    1979-01-01

    Multi-Megawatt CW solar-pumped lasers appear to be technologically feasible for space power transmission in the 1990s time frame. A new concept for a solar-pumped laser is presented which utilizes an intermediate black body cavity to provide a uniform optical pumping environment for the lasant, either CO or CO2. Reradiation losses are minimized with resulting high efficiency operation. A 1 MW output laser may weigh as little as 8000 kg including solar collector, black body cavity, laser cavity and ducts, pumps, power systems and waste heat radiator. The efficiency of such a system will be on the order of 10 to 20%. Details of the new concept, laser design, comparison to competing solar-powered lasers and applications to a laser solar power satellite (SPS) concept are presented.

  15. PREFACE: The fifth International Conference on Inertial Fusion Sciences and Applications (IFSA2007)

    NASA Astrophysics Data System (ADS)

    Azechi, Hiroshi; Hammel, Bruce; Gauthier, Jean-Claude

    2008-06-01

    The Fifth International Conference on Inertial Fusion Sciences and Applications (IFSA 2007) was held on 9-14 September 2007 at Kobe International Conference Center in Kobe, Japan. The host organizations for this conference were Osaka University and the Institute of Laser Engineering (ILE) at Osaka University; and co-organized by the Institute Lasers and Plasmas (ILP) in France, the Commissariatá l'Energie Atomique (CEA), Lawrence Livermore National Laboratory (LLNL), National Institute for Fusion Science (NIFS) in Japan, and Kansai Photon Science Institute (KPSI), Japan Atomic Energy Agency (JAEA). The conference objective was to review the state of the art of research in inertial fusion sciences and applications since the last conference held in Biarritz, France, in 2005. 470 abstracts were accepted, and 448 persons from 18 countries attended the conference. These Proceedings contain 287 of the papers presented at IFSA 2007. This collection of papers represents the manuscripts submitted to and passing the peer review process. The program was organized with some specific features: The reviews of influential programs appeared both at the very beginning and at the very end of the Conference to attract attendance throughout the Conference. Each poster session had the same time period as a single oral session, thereby avoiding overlap with oral talks. The everyday program was structured to be as similar as possible so the attendees could easily recognize the program. With a goal of achieving inertial fusion ignition and burn propagation in the laboratory, researchers presented the exciting advances in both traditional hot spot ignition and fast ignition approach, including status report of USA's National Ignition Facility (NIF), French Laser Magajoule (LMJ), Japanese Fast Ignition Realization Experiment (FIREX), and European High Power laser Energy Research (HiPER). A particular emphasis of the meeting was that the `physics of inertial fusion' category was dominated by fast-ignition and related ultra-intense laser interaction. Progress in direct drive over the past few years resulted in the achievement of high-density cryogenic implosions at OMEGA. Continuous progresses in hohlraum physics gave confidence in the achievement of ignition at NIF and LMJ. Advances in Z-pinch included double-hohlraum irradiation symmetry and the PW laser beam for the Z-facility. Progress of laser material development for IFE driver was a very interesting topic of inertial fusion energy drivers, including KrF and DPSSL lasers and particle beams. Of special interest, a future session was focused on strategy of inertial fusion energy development. Laboratory tours were held in the middle of the Conference. The Laser for Fusion EXperiments (LFEX), a new high-energy petawatt laser at ILE, was one of the key attractions of IFSA 2007. 83 participants toured LFEX and GEKKO XII lasers, and 35 joined a tour of KPSA-JAEA. In parallel to the tour, the `Symposium on Academics-Industries Cooperation for Applications of High-Power Lasers' was held with more than 90 participants mostly from the industrial community. These Proceedings start with special chapters on the keynote and focus speeches and the Teller lectures. The keynotes and focus give an overview of progress in inertial fusion in Asia, North America, and Europe. The Teller lectures show the contributions of this year's two winners: Brian Thomas of AWE, UK and Kunioki Mima of ILE. The remainder of the Proceedings is divided into three parts. Part A covers the physics of inertial fusion; Part B covers laser, particle beams, and fusion technology including IFE reactors and target fabrication; and Part C covers science and technology applications such as laboratory astrophysics, laser particle acceleration, x-ray and EUV sources, and new applications of intense lasers. These parts are further divided into chapters covering specific areas of science or technology. Within each chapter the talks relevant to that subject are gathered. The IFSA International Organizing Committee and Scientific Advisory Board appreciate the efforts of inertial fusion researchers worldwide in making IFSA 2007 an extremely successful conference. The proceedings were published with the support of Dr Y Sakawa, Dr H Homma, Ms S Karasuyama, Ms M Odagiri, and Ms I Kobatake. Kunioki Mima Co-chair Hiroshi Azechi Technical Program Committee Co-chair John Lindl Co-chair Bruce Hammel Technical Program Committee Co-chair Christine Labaune Co-chair Jean-Claude Gauthier Technical Program Committee Co-chair

  16. Design investigation of solar-powered lasers for space applications

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The feasibility of using solar powered continuous wave (CW) lasers for space power transmission was investigated. Competing conceptual designs are considered. Optical pumping is summarized. Solar pumped Lasant type lasers are outlined. Indirect solar pumped lasers are considered.

  17. Plasma Jet Interaction with Thomson Scattering Probe Laser

    NASA Astrophysics Data System (ADS)

    Byvank, Tom; Banasek, Jacob; Potter, William; Kusse, Bruce

    2016-10-01

    Thomson scattering systems can diagnose plasma temperatures and velocities. When probing a plasma jet with the Thomson scattering laser, we observe a laser-plasma interaction that inputs energy into the plasma jet. The absorbed energy causes a bubble of low density ( 5*1017 cm-2) in the jet (unperturbed 1018 cm-2). A pulsed power machine (1 MA peak current, 100 ns rise time) with a radial foil (15 μm thick Al) configuration generates the plasma jet. We compare the effects of using 10 J and 1 J laser energies, for which the 10 J laser is a larger perturbation. We discuss how the interaction affects the Thomson scattering temperature and velocity measurements. Work supported by National Nuclear Security Administration (NNSA) Stewardship Sciences Academic Programs under Department of Energy (DOE) Cooperative Agreement DE-NA0001836 and National Science Foundation (NSF) Grant PHY-1102471.

  18. Design and comparison of laser windows for high-power lasers

    NASA Astrophysics Data System (ADS)

    Niu, Yanxiong; Liu, Wenwen; Liu, Haixia; Wang, Caili; Niu, Haisha; Man, Da

    2014-11-01

    High-power laser systems are getting more and more widely used in industry and military affairs. It is necessary to develop a high-power laser system which can operate over long periods of time without appreciable degradation in performance. When a high-energy laser beam transmits through a laser window, it is possible that the permanent damage is caused to the window because of the energy absorption by window materials. So, when we design a high-power laser system, a suitable laser window material must be selected and the laser damage threshold of the window must be known. In this paper, a thermal analysis model of high-power laser window is established, and the relationship between the laser intensity and the thermal-stress field distribution is studied by deducing the formulas through utilizing the integral-transform method. The influence of window radius, thickness and laser intensity on the temperature and stress field distributions is analyzed. Then, the performance of K9 glass and the fused silica glass is compared, and the laser-induced damage mechanism is analyzed. Finally, the damage thresholds of laser windows are calculated. The results show that compared with K9 glass, the fused silica glass has a higher damage threshold due to its good thermodynamic properties. The presented theoretical analysis and simulation results are helpful for the design and selection of high-power laser windows.

  19. Laser radar range and detection performance for MEMS corner cube retroreflector arrays

    NASA Astrophysics Data System (ADS)

    Grasso, Robert J.; Odhner, Jefferson E.; Stewart, Hamilton; McDaniel, Robert V.

    2004-12-01

    BAE SYSTEMS reports on a program to characterize the performance of MEMS corner cube retroreflector arrays under laser illumination. These arrays have significant military and commercial application in the areas of: 1) target identification; 2) target tracking; 3) target location; 4) identification friend-or-foe (IFF); 5) parcel tracking, and; 6) search and rescue assistance. BAE SYSTEMS has theoretically determined the feasibility of these devices to learn if sufficient signal-to-noise performance exists to permit a cooperative laser radar sensor to be considered for device location and interrogation. Results indicate that modest power-apertures are required to achieve SNR performance consistent with high probability of detection and low false alarm rates.

  20. Laser radar range and detection performance for MEMS corner cube retroreflector arrays

    NASA Astrophysics Data System (ADS)

    Grasso, Robert J.; Jost, Steven R.; Smith, M. J.; McDaniel, Robert V.

    2004-01-01

    BAE SYSTEMS reports on a program to characterize the performance of MEMS corner cube retroreflector arrays under laser illumination. These arrays have significant military and commercial application in the areas of: (1) target identification; (2) target tracking; (3) target location; (4) identification friend-or-foe (IFF); (5) parcel tracking, and; (6) search and rescue assistance. BAE SYSTEMS has theoretically determined the feasibility of these devices to learn if sufficient signal-to-noise performance exists to permit a cooperative laser radar sensor to be considered for device location and interrogation. Results indicate that modest power-apertures are required to achieve SNR performance consistent with high probability of detection and low false alarm rates.

  1. Investigation of Plasma Surface Interactions with the PISCES ELM Laser System

    NASA Astrophysics Data System (ADS)

    Umstadter, K. R.; Baldwin, M.; Hanna, J.; Doerner, R.; Lynch, T.; Palmer, T.; Tynan, G. R.

    2007-11-01

    When an ELM occurs in tokamaks, up to 30% of the pedestal energy can be deposited on the wall of the tokamak causing heating & material loss due to sublimation, evaporation and melt splashing of plasma facing components (PFCs) and expansion of the ejected material into the plasma. We have explored heat pulses using an electrical power circuit to draw electrons from the plasma to heat samples ohmically. This system is limited in power to ˜250kJ/m^2 at the minimum pulse width of 10ms and depletes the plasma column, complicating spectroscopy. We have completed calculations that indicate that a pulsed laser system can be used to simulate the heat pulse of ELMs. We are integrating laser systems into the existing PFC research program in PISCES, a laboratory facility capable of reproducing plasma-materials interactions expected during normal operation of large tokamaks. Two Nd:YAG lasers capable of delivering up to 50J of energy over various pulsewidths are used for the experiments. Laser heat pulse only, H+/D+ plasma only, and laser+plasma experiments were conducted and initial results indicate that metals behave very differently while exposed to plasma and simultaneous heat pulses. We will also discuss initial results for carbon PFCs and material transport into the plasma. Supported by US DoE grant DE-FG02-07ER-54912.

  2. Minimizing scatter-losses during pre-heat for magneto-inertial fusion targets

    NASA Astrophysics Data System (ADS)

    Geissel, Matthias; Harvey-Thompson, Adam J.; Awe, Thomas J.; Bliss, David E.; Glinsky, Michael E.; Gomez, Matthew R.; Harding, Eric; Hansen, Stephanie B.; Jennings, Christopher; Kimmel, Mark W.; Knapp, Patrick; Lewis, Sean M.; Peterson, Kyle; Schollmeier, Marius; Schwarz, Jens; Shores, Jonathon E.; Slutz, Stephen A.; Sinars, Daniel B.; Smith, Ian C.; Speas, C. Shane; Vesey, Roger A.; Weis, Matthew R.; Porter, John L.

    2018-02-01

    The size, temporal and spatial shape, and energy content of a laser pulse for the pre-heat phase of magneto-inertial fusion affect the ability to penetrate the window of the laser-entrance-hole and to heat the fuel behind it. High laser intensities and dense targets are subject to laser-plasma-instabilities (LPI), which can lead to an effective loss of pre-heat energy or to pronounced heating of areas that should stay unexposed. While this problem has been the subject of many studies over the last decades, the investigated parameters were typically geared towards traditional laser driven Inertial Confinement Fusion (ICF) with densities either at 10% and above or at 1% and below the laser's critical density, electron temperatures of 3-5 keV, and laser powers near (or in excess of) 1 × 1015 W/cm2. In contrast, Magnetized Liner Inertial Fusion (MagLIF) [Slutz et al., Phys. Plasmas 17, 056303 (2010) and Slutz and Vesey, Phys. Rev. Lett. 108, 025003 (2012)] currently operates at 5% of the laser's critical density using much thicker windows (1.5-3.5 μm) than the sub-micron thick windows of traditional ICF hohlraum targets. This article describes the Pecos target area at Sandia National Laboratories using the Z-Beamlet Laser Facility [Rambo et al., Appl. Opt. 44(12), 2421 (2005)] as a platform to study laser induced pre-heat for magneto-inertial fusion targets, and the related progress for Sandia's MagLIF program. Forward and backward scattered light were measured and minimized at larger spatial scales with lower densities, temperatures, and powers compared to LPI studies available in literature.

  3. Stochastic-analytic approach to the calculation of multiply scattered lidar returns

    NASA Astrophysics Data System (ADS)

    Gillespie, D. T.

    1985-08-01

    The problem of calculating the nth-order backscattered power of a laser firing short pulses at time zero into an homogeneous cloud with specified scattering and absorption parameters, is discussed. In the problem, backscattered power is measured at any time less than zero by a small receiver colocated with the laser and fitted with a forward looking conical baffle. Theoretical calculations are made on the premise that the laser pulse is composed of propagating photons which are scattered and absorbed by the cloud particles in a probabilistic manner. The effect of polarization was not taken into account in the calculations. An exact formula is derived for backscattered power, based on direct physical arguments together with a rigorous analysis of random variables. It is shown that, for values of n less than or equal to 2, the obtained formula is a well-behaved (3n-4) dimensionless integral. The computational feasibility of the integral formula is demonstrated for a model cloud of isotropically scattering particles. An analytical formula is obtained for a value of n = 2, and a Monte Carlo program was used to obtain numerical results for values of n = 3, . . ., 6.

  4. Satellite Power Systems (SPS) laser studies. Volume 1: Laser environmental impact study

    NASA Technical Reports Server (NTRS)

    Beverly, R. E., III

    1980-01-01

    The environmental impact of space to Earth power transmission using space borne laser subsystems is emphasized. A laser system is defined, estimates of relevant efficiencies for laser power generation and atmospheric transmission are developed, and a comparison is made to a microwave system. Ancillary issues, such as laser beam spreading, safety and security, mass and volume estimates and technology growth are considered.

  5. Laser Research and Development Studies for Laser Guide Star Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pennington, D.; Beach, R.; Ebbers, C.

    2000-02-23

    In this paper we consider two CW solid state laser approaches to a 589 nm LGS system. Both are based on the technique of sum-frequency generation, but differ in the cavity architecture. Both technologies are very promising and are worth of further consideration. This preliminary proposal is intended to encompass both designs. A down select shall be performed early in the project execution to focus on the most promising option. The two design options consist of: (1) A dual-frequency resonator with intra-cavity doubling in LB0 offers the promise of a simple architecture and may scale more easily to high power.more » This design has been shown to be highly reliable, efficient and high power when used in frequency-doubled Nd:YAG lasers for programs at LLNL and in commercial products. The challenge in this design is the demonstration of a high power13 18 nm oscillator with adequate suppression of the 1064 nm line. (2) A MOPA based design uses commercial low power oscillators to produce both wavelengths, then amplifies the wavelengths before doubling. This design requires the demonstration of a 1318 nm amplifier, though the design is scaled from a kW CW amplifier already delivered to a customer at a different wavelength. The design must also demonstrate high power scaling of sum-frequency generation in the relatively new nonlinear material, PPLN. The first step in the process would be to further evaluate the two conceptual options for technical feasibility, cost and constructability. Then a down selection to one design would be conducted. Finally, R&D on that design would then proceed. Minimal testing should be required for this selection. The majority of the funding received would be allocated to development of the design selected.« less

  6. Green high-power tunable external-cavity GaN diode laser at 515  nm.

    PubMed

    Chi, Mingjun; Jensen, Ole Bjarlin; Petersen, Paul Michael

    2016-09-15

    A 480 mW green tunable diode laser system is demonstrated for the first time to our knowledge. The laser system is based on a GaN broad-area diode laser and Littrow external-cavity feedback. The green laser system is operated in two modes by switching the polarization direction of the laser beam incident on the grating. When the laser beam is p-polarized, an output power of 50 mW with a tunable range of 9.2 nm is achieved. When the laser beam is s-polarized, an output power of 480 mW with a tunable range of 2.1 nm is obtained. This constitutes the highest output power from a tunable green diode laser system.

  7. Research and Development of a High Power-Laser Driven Electron-Accelerator Suitable for Applications

    DTIC Science & Technology

    2011-06-12

    autocorrelator to measure the temporal duration, an optical imaging system to correct for phase front tilt and a FROG device to measure and optimize the... Phase II Task Summary . . . . . . . . . . . . . . . . . . . . . 4 D.1 Module I: High-Energy Electron Accelerator . . . . . . 4 D.2 Module II: High-Energy...During Phase I of the HRS program, the team from the University of Ne- braska, Lincoln (UNL) made use of the unique capabilities of their high-power

  8. Powered by a laser beam directed at it from a pedestal, a model plane makes the first flight of an aircraft powered by laser energy inside a building at NASA Marshall.

    NASA Image and Video Library

    2003-09-18

    Powered by a laser beam directed at it from a center pedestal, a lightweight model plane makes the first flight of an aircraft powered by laser energy inside a building at NASA's Marshall Space Flight Center.

  9. Wavelength switchable high-power diode-side-pumped rod Tm:YAG Laser around 2µm.

    PubMed

    Wang, Caili; Du, Shifeng; Niu, Yanxiong; Wang, Zhichao; Zhang, Chao; Bian, Qi; Guo, Chuan; Xu, Jialin; Bo, Yong; Peng, Qinjun; Cui, Dafu; Zhang, Jingyuan; Lei, Wenqiang; Xu, Zuyan

    2013-03-25

    We report a high-power diode-side-pumped rod Tm:YAG laser operated at either 2.07 or 2.02 µm depending on the transmission of pumped output coupler. The laser yields 115W of continuous-wave output power at 2.07 µm with 5% output coupling, which is the highest output power for all solid-state 2.07 μm cw rod Tm:YAG laser reported so far. With an output coupler of 10% transmission, the center wavelength of the laser is switched to 2.02 μm with an output power of 77.1 W. This is the first observation of high-power wavelength switchable diode-side-pumped rod Tm:YAG laser around 2 µm.

  10. Laser-diode pumped 40-W Yb:YAG ceramic laser.

    PubMed

    Hao, Qiang; Li, Wenxue; Pan, Haifeng; Zhang, Xiaoyi; Jiang, Benxue; Pan, Yubai; Zeng, Heping

    2009-09-28

    We demonstrated a high-power continuous-wave (CW) polycrystalline Yb:YAG ceramic laser pumped by fiber-pigtailed laser diode at 968 nm with 400 mum fiber core. The Yb:YAG ceramic laser performance was compared for different Yb(3+) ion concentrations in the ceramics by using a conventional end-pump laser cavity consisting of two flat mirrors with output couplers of different transmissions. A CW laser output of 40 W average power with M(2) factor of 5.8 was obtained with 5 mol% Yb concentration under 120 W incident pump power. This is to the best of our knowledge the highest output power in end-pumped bulk Yb:YAG ceramic laser.

  11. Facilities to Support Beamed Energy Launch Testing at the Laser Hardened Materials Evaluation Laboratory (LHMEL)

    NASA Astrophysics Data System (ADS)

    Lander, Michael L.

    2003-05-01

    The Laser Hardened Materials Evaluation Laboratory (LHMEL) has been characterizing material responses to laser energy in support of national defense programs and the aerospace industry for the past 26 years. This paper reviews the overall resources available at LHMEL to support fundamental materials testing relating to impulse coupling measurement and to explore beamed energy launch concepts. Located at Wright-Patterson Air Force Base, Ohio, LHMEL is managed by the Air Force Research Laboratory Materials Directorate AFRL/MLPJ and operated by Anteon Corporation. The facility's advanced hardware is centered around carbon dioxide lasers producing output power up to 135kW and neodymium glass lasers producing up to 10 kilojoules of repetitively pulsed output. The specific capabilities of each laser device and related optical systems are discussed. Materials testing capabilities coupled with the laser systems are also described including laser output and test specimen response diagnostics. Environmental simulation capabilities including wind tunnels and large-volume vacuum chambers relevant to beamed energy propulsion are also discussed. This paper concludes with a summary of the procedures and methods by which the facility can be accessed.

  12. Recent development on high-power tandem-pumped fiber laser

    NASA Astrophysics Data System (ADS)

    Zhou, Pu; Xiao, Hu; Leng, Jinyong; Zhang, Hanwei; Xu, Jiangmin; Wu, Jian

    2016-11-01

    High power fiber laser is attracting more and more attention due to its advantage in excellent beam quality, high electricto- optical conversion efficiency and compact system configuration. Power scaling of fiber laser is challenged by the brightness of pump source, nonlinear effect, modal instability and so on. Pumping active fiber by using high-brightness fiber laser instead of common laser diode may be the solution for the brightness limitation. In this paper, we will present the recent development of various kinds of high power fiber laser based on tandem pumping scheme. According to the absorption property of Ytterbium-doped fiber, Thulium-doped fiber and Holmium-doped fiber, we have theoretically studied the fiber lasers that operate at 1018 nm, 1178 nm and 1150 nm, respectively in detail. Consequently, according to the numerical results we have optimized the fiber laser system design, and we have achieved (1) 500 watt level 1018nm Ytterbium-doped fiber laser (2) 100 watt level 1150 nm fiber laser and 100 watt level random fiber laser (3) 30 watt 1178 nm Ytterbium-doped fiber laser, 200 watt-level random fiber laser. All of the above-mentioned are the record power for the corresponded type of fiber laser to the best of our knowledge. By using the high-brightness fiber laser operate at 1018 nm, 1178 nm and 1150 nm that we have developed, we have achieved the following high power fiber laser (1) 3.5 kW 1090 nm Ytterbium-doped fiber amplifier (2) 100 watt level Thulium-doped fiber laser and (3) 50 watt level Holmium -doped fiber laser.

  13. High power single-frequency and frequency-doubled laser with active compensation for the thermal lens effect of terbium gallium garnet crystal.

    PubMed

    Yin, Qiwei; Lu, Huadong; Su, Jing; Peng, Kunchi

    2016-05-01

    The thermal lens effect of terbium gallium garnet (TGG) crystal in a high power single-frequency laser severely limits the output power and the beam quality of the laser. By inserting a potassium dideuterium phosphate (DKDP) slice with negative thermo-optical coefficient into the laser resonator, the harmful influence of the thermal lens effect of the TGG crystal can be effectively mitigated. Using this method, the stable range of the laser is broadened, the bistability phenomenon of the laser during the process of changing the pump power is completely eliminated, the highest output power of an all-solid-state continuous-wave intracavity-frequency-doubling single-frequency laser at 532 nm is enhanced to 30.2 W, and the beam quality of the laser is significantly improved.

  14. High-power quantum-dot tapered tunable external-cavity lasers based on chirped and unchirped structures.

    PubMed

    Haggett, Stephanie; Krakowski, Michel; Montrosset, Ivo; Cataluna, Maria Ana

    2014-09-22

    A high-power tunable external cavity laser configuration with a tapered quantum-dot semiconductor optical amplifier at its core is presented, enabling a record output power for a broadly tunable semiconductor laser source in the 1.2 - 1.3 µm spectral region. Two distinct optical amplifiers are investigated, using either chirped or unchirped quantum-dot structures, and their merits are compared, considering the combination of tunability and high output power generation. At 1230 nm, the chirped quantum-dot laser achieved a maximum power of 0.62 W and demonstrated nearly 100-nm tunability. The unchirped laser enabled a tunability range of 32 nm and at 1254 nm generated a maximum power of 0.97 W, representing a 22-fold increase in output power compared with similar narrow-ridge external-cavity lasers at the same current density.

  15. Design and characterization of a novel power over fiber system integrating a high power diode laser

    NASA Astrophysics Data System (ADS)

    Perales, Mico; Yang, Mei-huan; Wu, Cheng-liang; Hsu, Chin-wei; Chao, Wei-sheng; Chen, Kun-hsein; Zahuranec, Terry

    2017-02-01

    High power 9xx nm diode lasers along with MH GoPower's (MHGP's) flexible line of Photovoltaic Power Converters (PPCs) are spurring high power applications for power over fiber (PoF), including applications for powering remote sensors and sensors monitoring high voltage equipment, powering high voltage IGBT gate drivers, converters used in RF over Fiber (RFoF) systems, and system power applications, including powering UAVs. In PoF, laser power is transmitted over fiber, and is converted to electricity by photovoltaic cells (packaged into Photovoltaic Power Converters, or PPCs) which efficiently convert the laser light. In this research, we design a high power multi-channel PoF system, incorporating a high power 976 nm diode laser, a cabling system with fiber break detection, and a multichannel PPC-module. We then characterizes system features such as its response time to system commands, the PPC module's electrical output stability, the PPC-module's thermal response, the fiber break detection system response, and the diode laser optical output stability. The high power PoF system and this research will serve as a scalable model for those interested in researching, developing, or deploying a high power, voltage isolated, and optically driven power source for high reliability utility, communications, defense, and scientific applications.

  16. A Flexible Master Oscillator for a Thomson Scattering Pulse-Burst Laser System

    NASA Astrophysics Data System (ADS)

    den Hartog, D. J.; Young, W. C.

    2015-11-01

    A new master oscillator will be installed in the pulse-burst laser system used for high-rep-rate Thomson scattering on the MST experiment. This new master oscillator will enable pulse repetition rates up to 1 MHz, with the ability to program a burst of pulses with arbitrary and varying time separation between each pulse. In addition, the energy of each master oscillator pulse can be adjusted to compensate for gain variations in the power amplifier section of the laser system. This flexibility is accomplished by chopping a CW laser source with a high-bandwidth acousto-optic modulator (AOM). The laser source is a 1064 nm diode-pumped solid-state laser with continuous output power variable from 100 to 500 mW. The 2 mm diameter polarized beam is focused into the gallium phosphide crystal of the AOM, which deflects the beam by approximately 60 mrad. Beam deflection is controlled by a simple digital input pulse, and is capable of producing laser pulses of less than 20 ns width at repetition rates much greater than 1 MHz. These pulses from the output of the AOM will be collimated and propagated into the laser amplifier system, where they will be amplified to ~ 2 J/pulse and injected into the MST plasma. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences under Award Number DE-FC02-05ER54814, and by the National Science Foundation under Award Number PHY-0821899.

  17. Power balance on a multibeam laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sampat, Sid; Kelly, John H.; Kosc, Tanya Z.

    Inertial confinement fusion (ICF) cryogenic experiments on the 60-beam OMEGA laser have strict requirements for the laser energy delivered on target to be power balanced in order to maximize target-irradiation uniformity. For OMEGA, this quantity (power balance) is inferred from measurements of the time-integrated energy and time-resolved, spatially integrated temporal profile of each of the 60 beams at the output of the laser. The work presented here proposes a general definition of power balance as measured at the laser output and discusses the conditions that are fundamental to achieving laser power balance. Power balance necessitates equal gain across all stagesmore » of amplification, equal net losses across each amplifier stage, equal frequency conversion (from 1053 nm to 351 nm) of all 60 beams, and equal beam path lengths (beam timing). Typical OMEGA ICF laser pulse shapes consist of one or more short (100-ps) “pickets” followed by a shaped “drive” pulse of 1 to 2 ns. For these experiments, power balance is assessed for the pickets and the drive independently, with the ultimate goal of achieving root-mean-square (rms) imbalance across all 60 beams of less than 2% rms on both. Our work presents a comprehensive summary of laser shot campaigns conducted to significantly improve laser power balance from typical rms values of 4.7% and 5.2%, respectively, to the 3% level for both features along with a discussion of future work required to further reduce the rms power imbalance of the laser system.« less

  18. Power balance on a multibeam laser

    NASA Astrophysics Data System (ADS)

    Sampat, S.; Kelly, J. H.; Kosc, T. Z.; Rigatti, A. L.; Kwiatkowski, J.; Donaldson, W. R.; Romanofsky, M. H.; Waxer, L. J.; Dean, R.; Moshier, R.

    2018-02-01

    Inertial confinement fusion (ICF) cryogenic experiments on the 60-beam OMEGA laser have strict requirements for the laser energy delivered on target to be power balanced in order to maximize target-irradiation uniformity. For OMEGA, this quantity (power balance) is inferred from measurements of the time-integrated energy and time-resolved, spatially integrated temporal profile of each of the 60 beams at the output of the laser. The work presented here proposes a general definition of power balance as measured at the laser output and discusses the conditions that are fundamental to achieving laser power balance. Power balance necessitates equal gain across all stages of amplification, equal net losses across each amplifier stage, equal frequency conversion (from 1053 nm to 351 nm) of all 60 beams, and equal beam path lengths (beam timing). Typical OMEGA ICF laser pulse shapes consist of one or more short (100-ps) "pickets" followed by a shaped "drive" pulse of 1 to 2 ns. For these experiments, power balance is assessed for the pickets and the drive independently, with the ultimate goal of achieving root-mean-square (rms) imbalance across all 60 beams of less than 2% rms on both. This work presents a comprehensive summary of laser shot campaigns conducted to significantly improve laser power balance from typical rms values of 4.7% and 5.2%, respectively, to the 3% level for both features along with a discussion of future work required to further reduce the rms power imbalance of the laser system.

  19. Power balance on a multibeam laser

    DOE PAGES

    Sampat, Sid; Kelly, John H.; Kosc, Tanya Z.; ...

    2018-02-15

    Inertial confinement fusion (ICF) cryogenic experiments on the 60-beam OMEGA laser have strict requirements for the laser energy delivered on target to be power balanced in order to maximize target-irradiation uniformity. For OMEGA, this quantity (power balance) is inferred from measurements of the time-integrated energy and time-resolved, spatially integrated temporal profile of each of the 60 beams at the output of the laser. The work presented here proposes a general definition of power balance as measured at the laser output and discusses the conditions that are fundamental to achieving laser power balance. Power balance necessitates equal gain across all stagesmore » of amplification, equal net losses across each amplifier stage, equal frequency conversion (from 1053 nm to 351 nm) of all 60 beams, and equal beam path lengths (beam timing). Typical OMEGA ICF laser pulse shapes consist of one or more short (100-ps) “pickets” followed by a shaped “drive” pulse of 1 to 2 ns. For these experiments, power balance is assessed for the pickets and the drive independently, with the ultimate goal of achieving root-mean-square (rms) imbalance across all 60 beams of less than 2% rms on both. Our work presents a comprehensive summary of laser shot campaigns conducted to significantly improve laser power balance from typical rms values of 4.7% and 5.2%, respectively, to the 3% level for both features along with a discussion of future work required to further reduce the rms power imbalance of the laser system.« less

  20. A directed search for extraterrestrial laser signals

    NASA Technical Reports Server (NTRS)

    Betz, A.

    1991-01-01

    The focus of NASA's Search for Extraterrestrial Intelligence (SETI) Program is on microwave frequencies, where receivers have the best sensitivities for the detection of narrowband signals. Such receivers, when coupled to existing radio telescopes, form an optimal system for broad area searches over the sky. For a directed search, however, such as toward specific stars, calculations show that infrared wavelengths can be equally as effective as radio wavelengths for establishing an interstellar communication link. This is true because infrared telescopes have higher directivities (gains) that effectively compensate for the lower sensitivities of infrared receivers. The result is that, for a given level of transmitted power, the signal to noise ratio for communications is equally as good at infrared and radio wavelengths. It should also be noted that the overall sensitivities of both receiver systems are quite close to their respective fundamental limits: background thermal noise for the radio frequency system and quantum noise for the infrared receiver. Consequently, the choice of an optimum communication frequency may well be determined more by the achievable power levels of transmitters rather than the ultimate sensitivities of receivers at any specific frequency. In the infrared, CO2 laser transmitters with power levels greater than 1 MW can already be built on Earth. For a slightly more advanced civilization, a similar but enormously more powerful laser may be possible using a planetary atmosphere rich in CO2. Because of these possibilities and our own ignorance of what is really the optimum search frequency, a search for narrowband signals at infrared frequencies should be a part of a balanced SETI Program. Detection of narrowband infrared signals is best done with a heterodyne receiver functionally identical to a microwave spectral line receiver. We have built such a receiver for the detection of CO2 laser radiation at wavelengths near 10 microns. The spectrometer uses a high-speed HgCdTe diode as the photomixer and a small CO2 laser as the local oscillator. Output signals in the intermediate frequency range 0.1-2.6 GHz are processed by a 1000-channel acousto-optic signal processor. The receiver is being used on a 1.5-m telescope on Mt. Wilson to survey a selected sample of 150 nearby stars. The current status of the work is discussed along with future project plans.

  1. FIBER LASER CONSTRUCTION AND THEORY INCLUDING FIBER BRAGG GRATINGS Photonic Crystal Fibers (PCFs) and applications of gas filled PCFs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutton, Jacob O.

    The principles used in fiber lasers have been around for a while but it is only within the past few years that fiber lasers have become commercially available and used in high power laser applications. This paper will focus on the basic design principles of fiber lasers, including fiber Bragg gratings, principles of operation, and forms of non-linear effects. It will describe the type and associated doping of the fiber used and difficult designs used to guide energy from the pump to the active medium. Topics covered include fiber laser design, fiber Bragg gratings, materials used, differences in quantum energymore » loss, thermo-optical effects, stimulated Raman scattering, Brillouin scattering, photonic crystal fibers and applications of gas filled Photonic Crystal Fibers (PCFs). Thanks to fiber lasers, the energy required to produce high power lasers has greatly dropped and as such we can now produce kW power using a standard 120V 15A circuit. High power laser applications are always requiring more power. The fiber laser can now deliver the greater power that these applications demand. Future applications requiring more power than can be combined using standard materials or configurations will need to be developed to overcome the high energy density and high non-linear optical scattering effects present during high power operations.« less

  2. Saturation of the laser-induced narrowband coherent synchrotron radiation process: Experimental observation at a storage ring

    NASA Astrophysics Data System (ADS)

    Hosaka, M.; Yamamoto, N.; Takashima, Y.; Szwaj, C.; Le Parquier, M.; Evain, C.; Bielawski, S.; Adachi, M.; Zen, H.; Tanikawa, T.; Kimura, S.; Katoh, M.; Shimada, M.; Takahashi, T.

    2013-02-01

    We study the efficiency limitation affecting laser-induced coherent synchrotron radiation (CSR) at high laser power. Experiments are made on the UVSOR-II storage ring in conditions of narrowband terahertz CSR emission. While, at moderate power, CSR power increases quadratically with laser power, a noticeable decrease in efficiency and eventually a decrease in CSR power is observed experimentally at high power. Details of the underlying process are analyzed numerically. As the saturation effect depends almost instantaneously on the laser intensity, the saturation occurs locally in longitudinal space. This has important consequences on the modulation pattern induced on the electron bunch.

  3. High power high repetition rate VCSEL array side-pumped pulsed blue laser

    NASA Astrophysics Data System (ADS)

    van Leeuwen, Robert; Zhao, Pu; Chen, Tong; Xu, Bing; Watkins, Laurence; Seurin, Jean-Francois; Xu, Guoyang; Miglo, Alexander; Wang, Qing; Ghosh, Chuni

    2013-03-01

    High power, kW-class, 808 nm pump modules based on the vertical-cavity surface-emitting laser (VCSEL) technology were developed for side-pumping of solid-state lasers. Two 1.2 kW VCSEL pump modules were implemented in a dual side-pumped Q-switched Nd:YAG laser operating at 946 nm. The laser output was frequency doubled in a BBO crystal to produce pulsed blue light. With 125 μs pump pulses at a 300 Hz repetition rate 6.1 W QCW 946 nm laser power was produced. The laser power was limited by thermal lensing in the Nd:YAG rod.

  4. Monolithic fiber laser oscillator with record high power

    NASA Astrophysics Data System (ADS)

    Yang, Baolai; Shi, Chen; Zhang, Hanwei; Ye, Qing; Pi, Haoyang; Tao, Rumao; Wang, Xiaolin; Ma, Pengfei; Leng, Jinyong; Chen, Zilun; Zhou, Pu; Xu, Xiaojun; Chen, Jinbao; Liu, Zejin

    2018-07-01

    With an increasing output power, the power scaling of monolithic fiber laser oscillators faces the severe limitations of stimulated Raman scattering (SRS) and the transverse mode instability (TMI) effect. In this work, we report a high power monolithic fiber laser oscillator with a maximum output power of 5.2 kW, which is realized with a trade-off design between the SRS and TMI. The monolithic fiber laser oscillator is constructed with ytterbium-doped fiber with a core/inner cladding diameter of 25/400 µm and corresponding home-made FBG. High-power 915 nm laser diodes are employed as a pump source and are distributed in a bidirectional-pump configuration. By optimizing the bidirectional pump proportion, the monolithic fiber laser oscillator is scaled up to 5.2 kW with a slope efficiency of ~63%. Operating at 5.2 kW, the intensity of the Raman stokes light is ~22 dB below the signal laser and the beam quality (M2-factor) is ~2.2. To the best of our knowledge, this is a record high power for monolithic fiber laser oscillators.

  5. High power diode lasers for solid-state laser pumps

    NASA Technical Reports Server (NTRS)

    Linden, Kurt J.; Mcdonnell, Patrick N.

    1994-01-01

    The development and commercial application of high power diode laser arrays for use as solid-state laser pumps is described. Such solid-state laser pumps are significantly more efficient and reliable than conventional flash-lamps. This paper describes the design and fabrication of diode lasers emitting in the 780 - 900 nm spectral region, and discusses their performance and reliability. Typical measured performance parameters include electrical-to-optical power conversion efficiencies of 50 percent, narrow-band spectral emission of 2 to 3 nm FWHM, pulsed output power levels of 50 watts/bar with reliability values of over 2 billion shots to date (tests to be terminated after 10 billion shots), and reliable operation to pulse lengths of 1 ms. Pulse lengths up to 5 ms have been demonstrated at derated power levels, and CW performance at various power levels has been evaluated in a 'bar-in-groove' laser package. These high-power 1-cm stacked-bar arrays are now being manufactured for OEM use. Individual diode laser bars, ready for package-mounting by OEM customers, are being sold as commodity items. Commercial and medical applications of these laser arrays include solid-state laser pumping for metal-working, cutting, industrial measurement and control, ranging, wind-shear/atmospheric turbulence detection, X-ray generation, materials surface cleaning, microsurgery, ophthalmology, dermatology, and dental procedures.

  6. Application of Low level Lasers in Dentistry (Endodontic)

    PubMed Central

    Asnaashari, Mohammad; Safavi, Nassimeh

    2013-01-01

    Low level lasers, cold or soft lasers: These lasers do not produce thermal effects on tissues and induce photoreactions in cells through light stimulation which is called photobiostimulation. Power of these lasers is usually under 250mW. The main point differentiating low level lasers and high power ones is the activation of photochemical reactions without heat formation. The most important factor to achieve this light characteristic in lasers is not their power, but their power density for each surfa ceunit (i.e cm2). Density lower than 670mW/cm2, can induce the stimulatory effects of low level lasers without thermal effects. Low level lasers (therapeutic) used today as treatment adjunctive devices in medicine and dentistry. Numerous studies have been performed on the applications of low level lasers in patient pain reduction. Mechanisms of pain reduction with therapeutic lasers and their application are expressed, and the studies realized in this field are presented. PMID:25606308

  7. Research and development studies for MHD/coal power flow train components. Technical progress report, 1 September 1979-31 August 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bloom, M. H.

    1980-01-01

    The aim of this program is to contribute to certain facets of the development of the MHD/coal power system, and particularly the CDIF of DOE with regard to its flow train. Consideration is given specifically to the electrical power take-off, the diagnostic and instrumentation systems, the combustor and MHD channel technology, and electrode alternatives. Within the constraints of the program, high priorities were assigned to the problems of power take-off and the related characteristics of the MHD channel, and to the establishment of a non-intrusive, laser-based diagnostic system. The next priority was given to the combustor modeling and to amore » significantly improved analysis of particle combustion. Separate abstracts were prepared for nine of the ten papers included. One paper was previously included in the data base. (WHK)« less

  8. 1047 nm laser diode master oscillator Nd:YLF power amplifier laser system

    NASA Technical Reports Server (NTRS)

    Yu, A. W.; Krainak, M. A.; Unger, G. L.

    1993-01-01

    A master oscillator power amplifier (MOPA) laser transmitter system at 1047 nm wavelength using a semiconductor laser diode and a diode pumped solid state (Nd:YLF) laser (DPSSL) amplifier is described. A small signal gain of 23 dB, a near diffraction limited beam, 1 Gbit/s modulation rates and greater than 0.6 W average power are achieved. This MOPA laser has the advantage of amplifying the modulation signal from the laser diode master oscillator (MO) with no signal degradation.

  9. Micro-scanning mirrors for high-power laser applications in laser surgery

    NASA Astrophysics Data System (ADS)

    Sandner, Thilo; Kimme, Simon; Grasshoff, Thomas; Todt, Ulrich; Graf, Alexander; Tulea, Cristian; Lenenbach, Achim; Schenk, Harald

    2014-03-01

    We present two novel micro scanning mirrors with large aperture and HR dielectric coatings suitable for high power laser applications in a miniaturized laser-surgical instrument for neurosurgery to cut skull tissue. An electrostatic driven 2D-raster scanning mirror with 5x7.1mm aperture is used for dynamic steering of a ps-laser beam of the laser cutting process. A second magnetic 2D-beam steering mirror enables a static beam correction of a hand guided laser instrument. Optimizations of a magnetic gimbal micro mirror with 6 mm x 8 mm mirror plate are presented; here static deflections of 3° were reached. Both MEMS devices were successfully tested with a high power ps-laser at 532nm up to 20W average laser power.

  10. Optimal laser wavelength for efficient laser power converter operation over temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Höhn, O., E-mail: oliver.hoehn@ise.fraunhofer.de; Walker, A. W.; Bett, A. W.

    2016-06-13

    A temperature dependent modeling study is conducted on a GaAs laser power converter to identify the optimal incident laser wavelength for optical power transmission. Furthermore, the respective temperature dependent maximal conversion efficiencies in the radiative limit as well as in a practically achievable limit are presented. The model is based on the transfer matrix method coupled to a two-diode model, and is calibrated to experimental data of a GaAs photovoltaic device over laser irradiance and temperature. Since the laser wavelength does not strongly influence the open circuit voltage of the laser power converter, the optimal laser wavelength is determined tomore » be in the range where the external quantum efficiency is maximal, but weighted by the photon flux of the laser.« less

  11. Stretched Lens Array (SLA) for Collection and Conversion of Infrared Laser Light: 45% Efficiency Demonstrated for Near-Term 800 W/kg Space Power System

    NASA Technical Reports Server (NTRS)

    O'Neill, Mark; Howell, Joe; Fikes, John; Fork, Richard; Phillips, Dane; Aiken, Dan; McDanal, A. J.

    2006-01-01

    For the past 2% years, our team has been developing a unique photovoltaic concentrator array for collection and conversion of infrared laser light. This laser-receiving array has evolved from the solar-receiving Stretched Lens Array (SLA). The laser-receiving version of SLA is being developed for space power applications when or where sunlight is not available (e.g., the eternally dark lunar polar craters). The laser-receiving SLA can efficiently collect and convert beamed laser power from orbiting spacecraft or other sources (e.g., solar-powered lasers on the permanently illuminated ridges of lunar polar craters). A dual-use version of SLA can produce power from sunlight during sunlit portions of the mission, and from beamed laser light during dark portions of the mission. SLA minimizes the cost and mass of photovoltaic cells by using gossamer-like Fresnel lenses to capture and focus incoming light (solar or laser) by a factor of 8.5X, thereby providing a cost-effective, ultra-light space power system.

  12. Influence of fundamental mode fill factor on disk laser output power and laser beam quality

    NASA Astrophysics Data System (ADS)

    Cheng, Zhiyong; Yang, Zhuo; Shao, Xichun; Li, Wei; Zhu, Mengzhen

    2017-11-01

    An three-dimensional numerical model based on finite element method and Fox-Li method with angular spectrum diffraction theoy is developed to calculate the output power and power density distribution of Yb:YAG disk laser. We invest the influence of fundamental mode fill factor(the ratio of fundamental mode size and pump spot size) on the output power and laser beam quality. Due to aspherical aberration and soft aperture effect in laser disk, high beam quality can be achieve with relative lower efficiency. The highest output power of fundamental laser mode is influenced by the fundamental mode fill factor. Besides we find that optimal mode fill factor increase with pump spot size.

  13. Development of optical diagnostics for performance evaluation of arcjet thrusters

    NASA Technical Reports Server (NTRS)

    Cappelli, Mark A.

    1995-01-01

    Laser and optical emission-based measurements have been developed and implemented for use on low-power hydrogen arcjet thrusters and xenon-propelled electric thrusters. In the case of low power hydrogen arcjets, these laser induce fluorescence measurements constitute the first complete set of data that characterize the velocity and temperature field of such a device. The research performed under the auspices of this NASA grant includes laser-based measurements of atomic hydrogen velocity and translational temperature, ultraviolet absorption measurements of ground state atomic hydrogen, Raman scattering measurements of the electronic ground state of molecular hydrogen, and optical emission based measurements of electronically excited atomic hydrogen, electron number density, and electron temperature. In addition, we have developed a collisional-radiative model of atomic hydrogen for use in conjunction with magnetohydrodynamic models to predict the plasma radiative spectrum, and near-electrode plasma models to better understand current transfer from the electrodes to the plasma. In the final year of the grant, a new program aimed at developing diagnostics for xenon plasma thrusters was initiated, and results on the use of diode lasers for interrogating Hall accelerator plasmas has been presented at recent conferences.

  14. Development of high-power CO2 lasers and laser material processing

    NASA Astrophysics Data System (ADS)

    Nath, Ashish K.; Choudhary, Praveen; Kumar, Manoj; Kaul, R.

    2000-02-01

    Scaling laws to determine the physical dimensions of the active medium and optical resonator parameters for designing convective cooled CO2 lasers have been established. High power CW CO2 lasers upto 5 kW output power and a high repetition rate TEA CO2 laser of 500 Hz and 500 W average power incorporated with a novel scheme for uniform UV pre- ionization have been developed for material processing applications. Technical viability of laser processing of several engineering components, for example laser surface hardening of fine teeth of files, laser welding of martensitic steel shroud and titanium alloy under-strap of turbine, laser cladding of Ni super-alloy with stellite for refurbishing turbine blades were established using these lasers. Laser alloying of pre-placed SiC coating on different types of aluminum alloy, commercially pure titanium and Ti-6Al-4V alloy, and laser curing of thermosetting powder coating have been also studied. Development of these lasers and results of some of the processing studies are briefly presented here.

  15. Laser power transmission

    NASA Technical Reports Server (NTRS)

    Conway, Edmund J.

    1992-01-01

    An overview of previous studies related to laser power transmission is presented. Particular attention is given to the use of solar pumped lasers for space power applications. Three general laser mechanisms are addressed: photodissociation lasing driven by sunlight, photoexcitation lasing driven directly by sunlight, and photoexcitation lasing driven by thermal radiation.

  16. Method and apparatus for tuning high power lasers

    DOEpatents

    Hutchinson, Donald P.; Vandersluis, Kenneth L.

    1977-04-19

    This invention relates to high power gas lasers that are adapted to be tuned to a desired lasing wavelength through the use of a gas cell to lower the gain at a natural lasing wavelength and "seeding" the laser with a beam from a low power laser which is lasing at the desired wavelength. This tuning is accomplished with no loss of power and produces a pulse with an altered pulse shape. It is potentially applicable to all gas lasers.

  17. Parametric study of laser photovoltaic energy converters

    NASA Technical Reports Server (NTRS)

    Walker, G. H.; Heinbockel, J. H.

    1987-01-01

    Photovoltaic converters are of interest for converting laser power to electrical power in a space-based laser power system. This paper describes a model for photovoltaic laser converters and the application of this model to a neodymium laser silicon photovoltaic converter system. A parametric study which defines the sensitivity of the photovoltaic parameters is described. An optimized silicon photovoltaic converter has an efficiency greater than 50 percent for 1000 W/sq cm of neodymium laser radiation.

  18. High Power High Efficiency Diode Laser Stack for Processing

    NASA Astrophysics Data System (ADS)

    Gu, Yuanyuan; Lu, Hui; Fu, Yueming; Cui, Yan

    2018-03-01

    High-power diode lasers based on GaAs semiconductor bars are well established as reliable and highly efficient laser sources. As diode laser is simple in structure, small size, longer life expectancy with the advantages of low prices, it is widely used in the industry processing, such as heat treating, welding, hardening, cladding and so on. Respectively, diode laser could make it possible to establish the practical application because of rectangular beam patterns which are suitable to make fine bead with less power. At this power level, it can have many important applications, such as surgery, welding of polymers, soldering, coatings and surface treatment of metals. But there are some applications, which require much higher power and brightness, e.g. hardening, key hole welding, cutting and metal welding. In addition, High power diode lasers in the military field also have important applications. So all developed countries have attached great importance to high-power diode laser system and its applications. This is mainly due their low performance. In this paper we will introduce the structure and the principle of the high power diode stack.

  19. Improving the Reliability and Modal Stability of High Power 870 nm AlGaAs CSP Laser Diodes for Applications to Free Space Communication Systems

    NASA Technical Reports Server (NTRS)

    Connolly, J. C.; Alphonse, G. A.; Carlin, D. B.; Ettenberg, M.

    1991-01-01

    The operating characteristics (power-current, beam divergence, etc.) and reliability assessment of high-power CSP lasers is discussed. The emission wavelength of these lasers was optimized at 860 to 880 nm. The operational characteristics of a new laser, the inverse channel substrate planar (ICSP) laser, grown by metalorganic chemical vapor deposition (MOCVD), is discussed and the reliability assessment of this laser is reported. The highlights of this study include a reduction in the threshold current value for the laser to 15 mA and a degradation rate of less than 2 kW/hr for the lasers operating at 60 mW of peak output power.

  20. Fabrication of a 20.5-inch-diameter segmented silicon annular optic prototype for the ROMA program

    NASA Astrophysics Data System (ADS)

    Hassell, Frank R.; Groark, Frank M.

    1995-10-01

    Recent advancements in single crystal silicon material science and fabrication capabilities and very low absorption (VLA) multi-layer dielectric coating technology have led to the development of uncooled, large aperture, high power mirrors for high energy laser (HEL) systems. Based on this success, a segmented single-crystal silicon substrate concept has been selected as the baseline fabrication approach for uncooled 1.2 meter diameter resonator annular optics for the Alpha space based high energy laser. The objective of this Resonator Optics Materials Assessment (ROMA) task was to demonstrate all of the key fabrication processes required to fabricate the full sized annular optics for the Alpha space based high energy laser. This paper documents the fabrication of a half-scale annular optic prototype (AOP) of the Alpha laser rear cone.

  1. Tapered-Wiggler Free-Electron Laser Oscillator Program.

    DTIC Science & Technology

    1984-05-01

    16 ) are usually ruled in substrates of pyrex or copper (for infrared applications). Typical CW S damage levels at 2.06 /lm wavelength are 10 XW/cm 2...degradation limit WW2 ; 2r/.D, (1) where r is either the average power or single-pulse integrated energy exposure within the cavity, whichever is

  2. 808nm high-power high-efficiency GaAsP/GaInP laser bars

    NASA Astrophysics Data System (ADS)

    Wang, Ye; Yang, Ye; Qin, Li; Wang, Chao; Yao, Di; Liu, Yun; Wang, Lijun

    2008-11-01

    808nm high power diode lasers, which is rapidly maturing technology technically and commercially since the introduction in 1999 of complete kilowatt-scale diode laser systems, have important applications in the fields of industry and pumping solid-state lasers (DPSSL). High power and high power conversion efficiency are extremely important in diode lasers, and they could lead to new applications where space, weight and electrical power are critical. High efficiency devices generate less waste heat, which means less strain on the cooling system and more tolerance to thermal conductivity variation, a lower junction temperature and longer lifetimes. Diode lasers with Al-free materials have superior power conversion efficiency compared with conventional AlGaAs/GaAs devices because of their lower differential series resistance and higher thermal conductivity. 808nm GaAsP/GaInP broad-waveguide emitting diode laser bars with 1mm cavity length have been fabricated. The peak power can reach to 100.9W at 106.5A at quasicontinuous wave operation (200μs, 1000Hz). The maximum power conversion efficiency is 57.38%. Based on these high power laser bars, we fabricate a 1x3 arrays, the maximum power is 64.3W in continuous wave mode when the current is 25.0A. And the threshold current is 5.9A, the slope efficiency is 3.37 W/A.

  3. Benefits of low-power lasers on oral soft tissue

    NASA Astrophysics Data System (ADS)

    Eduardo, Carlos d. P.; Cecchini, Silvia C. M.; Cecchini, Renata C.

    1996-04-01

    The last five years have represented a great advance in relation to laser development. Countries like Japan, United States, French, England, Israel and others, have been working on the association of researches and clinical applications, in the field of laser. Low power lasers like He-Ne laser, emitting at 632,8 nm and Ga-As-Al laser, at 790 nm, have been detached acting not only as a coadjutant but some times as an specific treatment. Low power lasers provide non thermal effect at wavelengths believed to stimulate circulation and cellular activity. These lasers have been used to promote wound healing and reduce inflammation edema and pain. This work presents a five year clinical study with good results related to oral tissue healing. Oral cavity lesions, like herpes and aphthous ulcers were irradiated with Ga-Al- As laser. In both cases, an excellent result was obtained. The low power laser application decrease the painful sintomatology immediately and increase the reparation process of these lesions. An excellent result was obtained with application of low power laser in herpetic lesions associated with a secondary infection situated at the lip commissure covering the internal tissue of the mouth. The healing occurred after one week. An association of Ga-Al-As laser and Nd:YAG laser have been also proven to be good therapy for these kind of lesions. This association of low and high power laser has been done since 1992 and it seems to be a complement of the conventional therapies.

  4. Review Of Laser Lightcraft Propulsion System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Eric W.; Mead, Franklin B. Jr

    Laser-powered 'Lightcraft' systems that deliver nano-satellites to LEO have been studied for the Air Force Research Laboratory (AFRL). The study was built on the extensive Lightcraft laser propulsion technology already developed by theoretical and experimental work by the AFRL's Propulsion Directorate at Edwards AFB, CA. Here we review the history and engineering-physics of the laser Lightcraft system and its propulsive performance. We will also review the effectiveness and cost of a Lightcraft vehicle powered by a high-energy laser beam. One result of this study is the significant influence of laser wavelength on the power lost during laser beam propagation throughmore » Earth's atmosphere and in space. It was discovered that energy and power losses in the laser beam are extremely sensitive to wavelength for Earth-To-Orbit missions, and this significantly affects the amount of mass that can be placed into orbit for a given maximum amount of radiated power from a ground-based laser.« less

  5. Heterodyne laser diagnostic system

    DOEpatents

    Globig, Michael A.; Johnson, Michael A.; Wyeth, Richard W.

    1990-01-01

    The heterodyne laser diagnostic system includes, in one embodiment, an average power pulsed laser optical spectrum analyzer for determining the average power of the pulsed laser. In another embodiment, the system includes a pulsed laser instantaneous optical frequency measurement for determining the instantaneous optical frequency of the pulsed laser.

  6. Comparative study of Nd:KGW lasers pumped at 808 nm and 877 nm

    NASA Astrophysics Data System (ADS)

    Huang, Ke; Ge, Wen-Qi; Zhao, Tian-Zhuo; He, Jian-Guo; Feng, Chen-Yong; Fan, Zhong-Wei

    2015-10-01

    The laser performance and thermal analysis of Nd:KGW laser continuously pumped by 808 nm and 877 nm are comparatively investigated. Output power of 670 mW and 1587 mW, with nearly TEM00 mode, are achieved respectively at 808 nm pump and 877 nm pump. Meanwhile, a high-power passively Q-switched Nd:KGW/Cr4+:YAG laser pumped at 877 nm is demonstrated. An average output power of 1495 mW is obtained at pump power of 5.22 W while the laser is operating at repetition of 53.17 kHz. We demonstrate that 877 nm diode laser is a more potential pump source for Nd:KGW lasers.

  7. Mathematical modeling of a photovoltaic-laser energy converter for iodine laser radiation

    NASA Technical Reports Server (NTRS)

    Walker, Gilbert H.; Heinbockel, John H.

    1987-01-01

    Space-based laser power systems will require converters to change laser radiation into electricity. Vertical junction photovoltaic converters are promising devices for this use. A promising laser for the laser power station is the t-C4F9I laser which emits radiation at a wavelength of 1.315 microns. This paper describes the results of mathematical modeling of a photovoltaic-laser energy converter for use with this laser. The material for this photovoltaic converter is Ga(53)In(47)As which has a bandgap energy of 0.94 eV, slightly below the energy of the laser photons (0.943 eV). Results of a study optimizing the converter parameters are presented. Calculated efficiency for a 1000 vertical junction converter is 42.5 percent at a power density of 1 x 10 to the 3d power w/sq cm.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthews, D.L.; Rosen, M.D.

    One of the elusive dreams of laser physicists has been the development of an x-ray laser. After 25 years of waiting, the x-ray laser has at last entered the scientific scene, although those now in operation are still laboratory prototypes. They produce soft x rays down to about five nanometers. X-ray lasers retain the usual characteristics of their optical counterparts: a very tight beam, spatial and temporal coherence, and extreme brightness. Present x-ray lasers are nearly 100 times brighter that the next most powerful x-ray source in the world: the electron synchrotron. Although Lawrence Livermore National Laboratory (LLNL) is widelymore » known for its hard-x-ray laser program which has potential applications in the Strategic Defense Initiative, the soft x-ray lasers have no direct military applications. These lasers, and the scientific tools that result from their development, may one day have a place in the design and diagnosis of both laser fusion and hard x-ray lasers. The soft x-ray lasers now in operation at the LLNL have shown great promise but are still in the primitive state. Once x-ray lasers become reliable, efficient, and economical, they will have several important applications. Chief among them might be the creation of holograms of microscopic biological structures too small to be investigated with visible light. 5 figs.« less

  9. Space and energy. [space systems for energy generation, distribution and control

    NASA Technical Reports Server (NTRS)

    Bekey, I.

    1976-01-01

    Potential contributions of space to energy-related activities are discussed. Advanced concepts presented include worldwide energy distribution to substation-sized users using low-altitude space reflectors; powering large numbers of large aircraft worldwide using laser beams reflected from space mirror complexes; providing night illumination via sunlight-reflecting space mirrors; fine-scale power programming and monitoring in transmission networks by monitoring millions of network points from space; prevention of undetected hijacking of nuclear reactor fuels by space tracking of signals from tagging transmitters on all such materials; and disposal of nuclear power plant radioactive wastes in space.

  10. Effect of interface layer on the performance of high power diode laser arrays

    NASA Astrophysics Data System (ADS)

    Zhang, Pu; Wang, Jingwei; Xiong, Lingling; Li, Xiaoning; Hou, Dong; Liu, Xingsheng

    2015-02-01

    Packaging is an important part of high power diode laser (HPLD) development and has become one of the key factors affecting the performance of high power diode lasers. In the package structure of HPLD, the interface layer of die bonding has significant effects on the thermal behavior of high power diode laser packages and most degradations and failures in high power diode laser packages are directly related to the interface layer. In this work, the effects of interface layer on the performance of high power diode laser array were studied numerically by modeling and experimentally. Firstly, numerical simulations using finite element method (FEM) were conducted to analyze the effects of voids in the interface layer on the temperature rise in active region of diode laser array. The correlation between junction temperature rise and voids was analyzed. According to the numerical simulation results, it was found that the local temperature rise of active region originated from the voids in the solder layer will lead to wavelength shift of some emitters. Secondly, the effects of solder interface layer on the spectrum properties of high power diode laser array were studied. It showed that the spectrum shape of diode laser array appeared "right shoulder" or "multi-peaks", which were related to the voids in the solder interface layer. Finally, "void-free" techniques were developed to minimize the voids in the solder interface layer and achieve high power diode lasers with better optical-electrical performances.

  11. Qualification of Laser Diode Arrays for Mercury Laser Altimeter

    NASA Technical Reports Server (NTRS)

    Stephen, Mark; Vasilyev, Aleksey; Schafer, John; Allan, Graham R.

    2004-01-01

    NASA's requirements for high reliability, high performance satellite laser instruments have driven the investigation of many critical components; specifically, 808 nm laser diode array (LDA) pump devices. Performance of Quasi-CW, High-power, laser diode arrays under extended use is presented. We report the optical power over several hundred million pulse operation and the effect of power cycling and temperature cycling of the laser diode arrays. Data on the initial characterization of the devices is also presented.

  12. Advanced chip designs and novel cooling techniques for brightness scaling of industrial, high power diode laser bars

    NASA Astrophysics Data System (ADS)

    Heinemann, S.; McDougall, S. D.; Ryu, G.; Zhao, L.; Liu, X.; Holy, C.; Jiang, C.-L.; Modak, P.; Xiong, Y.; Vethake, T.; Strohmaier, S. G.; Schmidt, B.; Zimer, H.

    2018-02-01

    The advance of high power semiconductor diode laser technology is driven by the rapidly growing industrial laser market, with such high power solid state laser systems requiring ever more reliable diode sources with higher brightness and efficiency at lower cost. In this paper we report simulation and experimental data demonstrating most recent progress in high brightness semiconductor laser bars for industrial applications. The advancements are in three principle areas: vertical laser chip epitaxy design, lateral laser chip current injection control, and chip cooling technology. With such improvements, we demonstrate disk laser pump laser bars with output power over 250W with 60% efficiency at the operating current. Ion implantation was investigated for improved current confinement. Initial lifetime tests show excellent reliability. For direct diode applications <1 um smile and >96% polarization are additional requirements. Double sided cooling deploying hard solder and optimized laser design enable single emitter performance also for high fill factor bars and allow further power scaling to more than 350W with 65% peak efficiency with less than 8 degrees slow axis divergence and high polarization.

  13. Apparatuses and methods for laser reading of thermoluminescent phosphors

    DOEpatents

    Braunlich, Peter F.; Tetzlaff, Wolfgang

    1989-01-01

    Apparatuses and methods for rapidly reading thermoluminescent phosphors to determine the amount of luminescent energy stored therein. The stored luminescent energy is interpreted as a measure of the total exposure of the thermoluminescent phosphor to ionizing radiation. The thermoluminescent phosphor reading apparatus uses a laser to generate a laser beam. The laser beam power level is monitored by a laser power detector and controlled to maintain the power level at a desired value or values which can vary with time. A shutter or other laser beam interrupting means is used to control exposure of the thermoluminescent phosphor to the laser beam. The laser beam can be equalized using an opitcal equalizer so that the laser beam has an approximately uniform power density across the beam. The heated thermoluminescent phosphor emits a visible or otherwise detectable luminescent emission which is measured as an indication of the radiation exposure of the thermoluminscent phosphors. Also disclosed are preferred signal processing and control circuits including one system using a digital computer. Also disclosed are time-profiled laser power cycles for pre-anneal, read and post-anneal treatment of phosphors.

  14. Theoretical And Experimental Investigations On The Plasma Of A CO2 High Power Laser

    NASA Astrophysics Data System (ADS)

    Abel, W.; Wallter, B.

    1984-03-01

    The CO2 high power laser is increasingly used in material processing. This application of the laser has to meet some requirements: at one hand the laser is a tool free of wastage, but at the other hand is to guarantee that the properties of that tool are constant in time. Therefore power, geometry and mode of the beam have to be stable over long intervalls, even if the laser is used in rough industrial environment. Otherwise laser material processing would not be competitive. The beam quality is affected by all components of the laser - by the CO2 plasma and its IR - amplification, by the resonator which at last generates the beam by optical feedback, and also by the electric power supply whose effects on the plasma may be measured at the laser beam. A transversal flow laser has been developed at the Technical University of Vienna in cooperation with VOest-Alpine AG, Linz (Austria). This laser produces 1 kW of beam power with unfolded resonator. It was subject to investigations presented in this paper.

  15. Power blue and green laser diodes and their applications

    NASA Astrophysics Data System (ADS)

    Hager, Thomas; Strauß, Uwe; Eichler, Christoph; Vierheilig, Clemens; Tautz, Sönke; Brüderl, Georg; Stojetz, Bernhard; Wurm, Teresa; Avramescu, Adrian; Somers, André; Ristic, Jelena; Gerhard, Sven; Lell, Alfred; Morgott, Stefan; Mehl, Oliver

    2013-03-01

    InGaN based green laser diodes with output powers up to 50mW are now well established for variety of applications ranging from leveling to special lighting effects and mobile projection of 12lm brightness. In future the highest market potential for visible single mode profile lasers might be laser projection of 20lm. Therefore direct green single-mode laser diodes with higher power are required. We found that self heating was the limiting factor for higher current operation. We present power-current characteristics of improved R and D samples with up to 200mW in cw-operation. An optical output power of 100mW is reached at 215mA, a current level which is suitable for long term operation. Blue InGaN laser diodes are also the ideal source for phosphor based generation of green light sources of high luminance. We present a light engine based on LARP (Laser Activated Remote Phosphor) which can be used in business projectors of several thousand lumens on screen. We discuss the advantages of a laser based systems in comparison with LED light engines. LARP requires highly efficient blue power laser diodes with output power above 1W. Future market penetration of LARP will require lower costs. Therefore we studied new designs for higher powers levels. R and D chips with power-current characteristics up to 4W in continuous wave operation on C-mount at 25°C are presented.

  16. Applications of picosecond lasers and pulse-bursts in precision manufacturing

    NASA Astrophysics Data System (ADS)

    Knappe, Ralf

    2012-03-01

    Just as CW and quasi-CW lasers have revolutionized the materials processing world, picosecond lasers are poised to change the world of micromachining, where lasers outperform mechanical tools due to their flexibility, reliability, reproducibility, ease of programming, and lack of mechanical force or contamination to the part. Picosecond lasers are established as powerful tools for micromachining. Industrial processes like micro drilling, surface structuring and thin film ablation benefit from a process, which provides highest precision and minimal thermal impact for all materials. Applications such as microelectronics, semiconductor, and photovoltaic industries use picosecond lasers for maximum quality, flexibility, and cost efficiency. The range of parts, manufactured with ps lasers spans from microscopic diamond tools over large printing cylinders with square feet of structured surface. Cutting glass for display and PV is a large application, as well. With a smart distribution of energy into groups of ps-pulses at ns-scale separation (known as burst mode) ablation rates can be increased by one order of magnitude or more for some materials, also providing a better surface quality under certain conditions. The paper reports on the latest results of the laser technology, scaling of ablation rates, and various applications in ps-laser micromachining.

  17. Design of welding parameters for laser welding of thin-walled stainless steel tubes using numerical simulation

    NASA Astrophysics Data System (ADS)

    Nagy, M.; Behúlová, M.

    2017-11-01

    Nowadays, the laser technology is used in a wide spectrum of applications, especially in engineering, electronics, medicine, automotive, aeronautic or military industries. In the field of mechanical engineering, the laser technology reaches the biggest increase in the automotive industry, mainly due to the introduction of automation utilizing 5-axial movements. Modelling and numerical simulation of laser welding processes has been exploited with many advantages for the investigation of physical principles and complex phenomena connected with this joining technology. The paper is focused on the application of numerical simulation to the design of welding parameters for the circumferential laser welding of thin-walled exhaust pipes from theAISI 304 steel for automotive industry. Using the developed and experimentally verified simulation model for laser welding of tubes, the influence of welding parameters including the laser velocity from 30 mm.s-1 to 60 mm.s-1 and the laser power from 500 W to 1200 W on the temperature fields and dimensions of fusion zone was investigated using the program code ANSYS. Based on obtained results, the welding schedule for the laser beam welding of thin-walled tubes from the AISI 304 steel was suggested.

  18. High efficiency laser-pumped emerald lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, S.T.

    1987-09-25

    Highly efficient laser operation has been achieved in emerald. In a quasi-cw laser-pumped emerald laser, 64% output slope efficiency has been measured at 768 nm, corresponding to a laser quantum yield of 76%. An output power of 1.6 W was reached at 3.6 W of pump power at 647.1 nm from a krypton laser, and was pump power limited. The emerald laser has a tuning range of 720 to 842 nm. The round trip loss excluding the excited state absorption (ESA) is 0.4%/cm. These results indicate the high laser efficiency and the high optical quality of the emerald attainable inmore » the present laser.« less

  19. Influence of peak power in ablation rate of dental hard tissues: mathematical model

    NASA Astrophysics Data System (ADS)

    Colojoara, Carmen; Gabay, Shimon; van der Meulen, Freerk W.; van Gemert, Martin J. C.

    1996-12-01

    Pulsed Er:YAG and CO2 lasers should be suitable instruments for dentin and enamel ablation because both tissues have absorption peaks for radiation at 2.9 and 9.6 micrometers wavelengths. This is the context of our research that emphasizes the way in which the diameter and the depth of the crater made in enamel and dentin with the laser Er:YAG and CO2 is influenced in quantity and quality. Freshly extracted human third molar were used for this experiment. The laser source is Er:YAG Kavo Key dental model 1240 and CO2 Laser Sonics LS 860. The dimensions of the obtained craters were measured using the optical microscopy method. The obtained results were modelled experimentally with programs: GRAPHER and STATGRAPHICS. After the mathematical processing to the results what we obtain is relevant regarding the influence of the key parameters in the efficiency of the ablation according to the type of laser. On the whole, from our research results that both lasers ablate efficiently the dentin when the laser energy is between 200 and 300 mJ.

  20. Ground-Based and Space-Based Laser Beam Power Applications

    NASA Technical Reports Server (NTRS)

    Bozek, John M.

    1995-01-01

    A space power system based on laser beam power is sized to reduce mass, increase operational capabilities, and reduce complexity. The advantages of laser systems over solar-based systems are compared as a function of application. Power produced from the conversion of a laser beam that has been generated on the Earth's surface and beamed into cislunar space resulted in decreased round-trip time for Earth satellite electric propulsion tugs and a substantial landed mass savings for a lunar surface mission. The mass of a space-based laser system (generator in space and receiver near user) that beams down to an extraterrestrial airplane, orbiting spacecraft, surface outpost, or rover is calculated and compared to a solar system. In general, the advantage of low mass for these space-based laser systems is limited to high solar eclipse time missions at distances inside Jupiter. The power system mass is less in a continuously moving Mars rover or surface outpost using space-based laser technology than in a comparable solar-based power system, but only during dust storm conditions. Even at large distances for the Sun, the user-site portion of a space-based laser power system (e.g., the laser receiver component) is substantially less massive than a solar-based system with requisite on-board electrochemical energy storage.

  1. Kilohertz Pulse Repetition Frequency Slab Ti:sapphire Lasers with High Average Power (10 W)

    NASA Astrophysics Data System (ADS)

    Wadsworth, William J.; Coutts, David W.; Webb, Colin E.

    1999-11-01

    High-average-power broadband 780-nm slab Ti:sapphire lasers, pumped by a kilohertz pulse repetition frequency copper vapor laser (CVL), were demonstrated. These lasers are designed for damage-free power scaling when pumped by CVL s configured for maximum output power (of order 100 W) but with poor beam quality ( M 2 300 ). A simple Brewster-angled slab laser side pumped by a CVL produced 10-W average power (1.25-mJ pulses at 8 kHz) with 4.2-ns FWHM pulse duration at an absolute efficiency of 15% (68-W pump power). Thermal lensing in the Brewster slab laser resulted in multitransverse mode output, and pump absorption was limited to 72% by the maximum doping level for commercially available Ti:sapphire (0.25%). A slab laser with a multiply folded zigzag path was therefore designed and implemented that produced high-beam-quality (TEM 00 -mode) output when operated with cryogenic cooling and provided a longer absorption path for the pump. Excessive scattering of the Ti:sapphire beam at the crystal surfaces limited the efficiency of operation for the zigzag laser, but fluorescence diagnostic techniques, gain measurement, and modeling suggest that efficient power extraction ( 15 W TEM 00 , 23% efficiency) from this laser would be possible for crystals with an optical quality surface polish.

  2. Q-switched slab RF discharge CO laser

    NASA Astrophysics Data System (ADS)

    Ionin, A. A.; Kochetkov, Yu V.; Kozlov, A. Yu; Mokrousova, D. V.; Seleznev, L. V.; Sinitsyn, D. V.; Sunchugasheva, E. S.; Zemtsov, D. S.

    2017-05-01

    A compact repetitively pulsed cryogenically cooled slab RF discharge CO laser with double path V-type laser resonator equipped with external Q-switching system based on rotating mirror was developed and studied. The laser produced mid-IR (λ ~ 5-7 µm) radiation pulses of ~1 ÷ 2 µs duration (FWHM), peak power up to ~3 kW, and pulse repetition rate up to 130 Hz. Averaged output laser power reached 0.5 W, the laser spectrum consisted of ~80 laser lines with individual peak power up to 80 W.

  3. Integrated injection-locked semiconductor diode laser

    DOEpatents

    Hadley, G. Ronald; Hohimer, John P.; Owyoung, Adelbert

    1991-01-01

    A continuous wave integrated injection-locked high-power diode laser array is provided with an on-chip independently-controlled master laser. The integrated injection locked high-power diode laser array is capable of continuous wave lasing in a single near-diffraction limited output beam at single-facet power levels up to 125 mW (250 mW total). Electronic steering of the array emission over an angle of 0.5 degrees is obtained by varying current to the master laser. The master laser injects a laser beam into the slave array by reflection of a rear facet.

  4. NASA/USRA advanced space design program: The laser powered interorbital vehicle

    NASA Technical Reports Server (NTRS)

    1989-01-01

    A preliminary design is presented for a low-thrust Laser Powered Interorbital Vehicle (LPIV) intended for cargo transportation between an earth space station and a lunar base. The LPIV receives its power from two iodide laser stations, one orbiting the earth and the other located on the surface of the moon. The selected mission utilizes a spiral trajectory, characteristic of a low-thrust spacecraft, requiring 8 days for a lunar rendezvous and an additional 9 days for return. The ship's configuration consists primarily of an optical train, two hydrogen plasma engines, a 37.1 m box beam truss, a payload module, and fuel tanks. The total mass of the vehicle fully loaded is 63300 kg. A single plasma, regeneratively cooled engine design is incorporated into the two 500 N engines. These are connected to the spacecraft by turntables which allow the vehicle to thrust tangentially to the flight path. Proper collection and transmission of the laser beam to the thrust chambers is provided through the optical train. This system consists of the 23 m diameter primary mirror, a convex parabolic secondary mirror, a beam splitter and two concave parabolic tertiary mirrors. The payload bay is capable of carrying 18000 kg of cargo. The module is located opposite the primary mirror on the main truss. Fuel tanks carrying a maximum of 35000 kg of liquid hydrogen are fastened to tracks which allow the tanks to be moved perpendicular to the main truss. This capability is required to prevent the center of mass from moving out of the thrust vector line. The laser beam is located and tracked by means of an acquisition, pointing and tracking system which can be locked onto the space-based laser station. Correct orientation of the spacecraft with the laser beam is maintained by control moment gyros and reaction control rockets. Additionally an aerobrake configuration was designed to provide the option of using the atmospheric drag in place of propulsion for a return trajectory.

  5. Injection locking of a low cost high power laser diode at 461 nm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pagett, C. J. H.; Moriya, P. H., E-mail: paulohisao@ifsc.usp.br; Celistrino Teixeira, R.

    2016-05-15

    Stable laser sources at 461 nm are important for optical cooling of strontium atoms. In most existing experiments, this wavelength is obtained by frequency doubling infrared lasers, since blue laser diodes either have low power or large emission bandwidths. Here, we show that injecting less than 10 mW of monomode laser radiation into a blue multimode 500 mW high power laser diode is capable of slaving at least 50% of the power to the desired frequency. We verify the emission bandwidth reduction by saturation spectroscopy on a strontium gas cell and by direct beating of the slave with the mastermore » laser. We also demonstrate that the laser can efficiently be used within the Zeeman slower for optical cooling of a strontium atomic beam.« less

  6. Beam shaping in high-power laser systems with using refractive beam shapers

    NASA Astrophysics Data System (ADS)

    Laskin, Alexander; Laskin, Vadim

    2012-06-01

    Beam Shaping of the spatial (transverse) profile of laser beams is highly desirable by building optical systems of high-power lasers as well in various applications with these lasers. Pumping of the crystals of Ti:Sapphire lasers by the laser radiation with uniform (flattop) intensity profile improves performance of these ultrashort pulse high-power lasers in terms of achievable efficiency, peak-power and stability, output beam profile. Specifications of the solid-state lasers built according to MOPA configuration can be also improved when radiation of the master oscillator is homogenized and then is amplified by the power amplifier. Features of building these high power lasers require that a beam shaping solution should be capable to work with single mode and multimode beams, provide flattop and super-Gauss intensity distributions, the consistency and divergence of a beam after the intensity re-distribution should be conserved and low absorption provided. These specific conditions are perfectly fulfilled by the refractive field mapping beam shapers due to their unique features: almost lossless intensity profile transformation, low output divergence, high transmittance and flatness of output beam profile, extended depth of field, adaptability to real intensity profiles of TEM00 and multimode laser sources. Combining of the refractive field mapping beam shapers with other optical components, like beam-expanders, relay imaging lenses, anamorphic optics makes it possible to generate the laser spots of necessary shape, size and intensity distribution. There are plenty of applications of high-power lasers where beam shaping bring benefits: irradiating photocathode of Free Electron Lasers (FEL), material ablation, micromachining, annealing in display making techniques, cladding, heat treating and others. This paper will describe some design basics of refractive beam shapers of the field mapping type, with emphasis on the features important for building and applications of high-power laser sources. There will be presented results of applying the refractive beam shapers in real installations.

  7. Active cooling of pulse compression diffraction gratings for high energy, high average power ultrafast lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alessi, David A.; Rosso, Paul A.; Nguyen, Hoang T.

    Laser energy absorption and subsequent heat removal from diffraction gratings in chirped pulse compressors poses a significant challenge in high repetition rate, high peak power laser development. In order to understand the average power limitations, we have modeled the time-resolved thermo-mechanical properties of current and advanced diffraction gratings. We have also developed and demonstrated a technique of actively cooling Petawatt scale, gold compressor gratings to operate at 600W of average power - a 15x increase over the highest average power petawatt laser currently in operation. As a result, combining this technique with low absorption multilayer dielectric gratings developed in ourmore » group would enable pulse compressors for petawatt peak power lasers operating at average powers well above 40kW.« less

  8. Active cooling of pulse compression diffraction gratings for high energy, high average power ultrafast lasers

    DOE PAGES

    Alessi, David A.; Rosso, Paul A.; Nguyen, Hoang T.; ...

    2016-12-26

    Laser energy absorption and subsequent heat removal from diffraction gratings in chirped pulse compressors poses a significant challenge in high repetition rate, high peak power laser development. In order to understand the average power limitations, we have modeled the time-resolved thermo-mechanical properties of current and advanced diffraction gratings. We have also developed and demonstrated a technique of actively cooling Petawatt scale, gold compressor gratings to operate at 600W of average power - a 15x increase over the highest average power petawatt laser currently in operation. As a result, combining this technique with low absorption multilayer dielectric gratings developed in ourmore » group would enable pulse compressors for petawatt peak power lasers operating at average powers well above 40kW.« less

  9. Propagation of High Power Pulses of 10.6 micrometers Radiation from A CO2 TEA Laser of Novel Design through Clouds Produced by Adiabatic Expansion in the Laboratory

    DTIC Science & Technology

    1976-07-01

    A AD PROPAGATION OF HIGH POWER PULSES OF 10.6 pm RADIATION FROM A C02 TEA LASER OF NOVEL DESIGN THROUGH CLOUDS PRODUCED BY ADIABATIC E•XPANS:’)N IN...PART A: CO2 LASER uEVELOPMENT Al High Power CO2 TEA Laser 2 A2 CW CO2 Laser 6 References 8 Diagrams 9 PART 8: CLOUD PROLDUCTION 61 Cloud Chamber...offer versatility, efficienr-y and high power . This report is concerned with the attenuation of 10.eum radiatiins, both high power pulsL.o and 04, by

  10. High-power laser with Nd:YAG single-crystal fiber grown by the micro-pulling-down technique

    NASA Astrophysics Data System (ADS)

    Didierjean, Julien; Castaing, Marc; Balembois, François; Georges, Patrick; Perrodin, Didier; Fourmigué, Jean Marie; Lebbou, Kherreddine; Brenier, Alain; Tillement, Olivier

    2006-12-01

    We present optical characterization and laser results achieved with single-crystal fibers directly grown by the micro-pulling-down technique. We investigate the spectroscopic and optical quality of the fiber, and we present the first laser results. We achieved a cw laser power of 10 W at 1064 nm for an incident pump power of 60 W at 808 nm and 360 kW peak power for 12 ns pulses at 1 kHz in the Q-switched regime. It is, to the best of our knowledge, the highest laser power ever achieved with directly grown single-crystal fibers.

  11. Systems and assemblies for transferring high power laser energy through a rotating junction

    DOEpatents

    Norton, Ryan J.; McKay, Ryan P.; Fraze, Jason D.; Rinzler, Charles C.; Grubb, Daryl L.; Faircloth, Brian O.; Zediker, Mark S.

    2016-01-26

    There are provided high power laser devices and systems for transmitting a high power laser beam across a rotating assembly, including optical slip rings and optical rotational coupling assemblies. These devices can transmit the laser beam through the rotation zone in free space or within a fiber.

  12. Atmospheric propagation and combining of high power lasers: comment.

    PubMed

    Goodno, Gregory D; Rothenberg, Joshua E

    2016-10-10

    Nelson et al. [Appl. Opt.55, 1757 (2016)APOPAI0003-693510.1364/AO.55.001757] recently concluded that coherent beam combining and remote phase locking of high-power lasers are fundamentally limited by the laser source linewidth. These conclusions are incorrect and not relevant to practical high-power coherently combined laser architectures.

  13. Chaotic LIDAR for Naval Applications

    DTIC Science & Technology

    2014-08-29

    Perot Fiber Laser PD ^^ /- x —► -(YDF\\ {SMFV X — FBG 1 0 r utput FBG 70 Fabry-Perot Laser Output Pump Power (mW) Fig 2. Fabry-Perot...chaotic fiber laser. Left: Block diagram of the laser. Right: Output power versus pump power. (PD: Pump Diode; FBG : Fiber Braggs Grating; YDF: Ytterbium

  14. Application and the key technology on high power fiber-optic laser in laser weapon

    NASA Astrophysics Data System (ADS)

    Qu, Zhou; Li, Qiushi; Meng, Haihong; Sui, Xin; Zhang, Hongtao; Zhai, Xuhua

    2014-12-01

    The soft-killing laser weapon plays an important role in photoelectric defense technology. It can be used for photoelectric detection, search, blinding of photoelectric sensor and other devices on fire control and guidance devices, therefore it draws more and more attentions by many scholars. High power fiber-optic laser has many virtues such as small volume, simple structure, nimble handling, high efficiency, qualified light beam, easy thermal management, leading to blinding. Consequently, it may be used as the key device of soft-killing laser weapon. The present study introduced the development of high power fiber-optic laser and its main features. Meanwhile the key technology of large mode area (LMA) optical fiber design, the beam combination technology, double-clad fiber technology and pumping optical coupling technology was stated. The present study is aimed to design high doping LMA fiber, ensure single mode output by increasing core diameter and decrease NA. By means of reducing the spontaneous emission particle absorbed by fiber core and Increasing the power density in the optical fiber, the threshold power of nonlinear effect can increase, and the power of single fiber will be improved. Meantime, high power will be obtained by the beam combination technology. Application prospect of high power fiber laser in photoelectric defense technology was also set forth. Lastly, the present study explored the advantages of high power fiber laser in photoelectric defense technology.

  15. A developmental perspective on high power laser facility technology for ICF

    NASA Astrophysics Data System (ADS)

    Zhu, Jianqiang; Sun, Mingying; Liu, Chong; Guo, Yajing; Yang, Lin; Yang, Pengqian; Zhang, Yanli; Wang, Bingyan; Liu, Cheng; Li, Yangshuai; Ren, Zhiyuan; Liu, Dean; Liu, Zhigang; Jiao, Zhaoyang; Ren, Lei; Zhang, Guowen; Fan, Quantang; Feng, Tao; Lin, Zunqi

    2018-02-01

    The latest progress on high power laser facilities in NLHPLP was reported. Based on a high power laser prototype, damage behavior of 3ω optics was experimentally tested, and the key influencing factors contributed to laser-induced damage in optics were deeply analyzed. The latest experimental results of advanced precision measurement for optical quality applied in the high power laser facility were introduced. At last, based on the accumulated works of 3ω elements damage behavior status in our laboratory, beam expanding scheme was presented to increase the total maximum output 3ω energy properly and decrease the laser induced damage risking of ω optics simultaneously.

  16. High average power scaleable thin-disk laser

    DOEpatents

    Beach, Raymond J.; Honea, Eric C.; Bibeau, Camille; Payne, Stephen A.; Powell, Howard; Krupke, William F.; Sutton, Steven B.

    2002-01-01

    Using a thin disk laser gain element with an undoped cap layer enables the scaling of lasers to extremely high average output power values. Ordinarily, the power scaling of such thin disk lasers is limited by the deleterious effects of amplified spontaneous emission. By using an undoped cap layer diffusion bonded to the thin disk, the onset of amplified spontaneous emission does not occur as readily as if no cap layer is used, and much larger transverse thin disks can be effectively used as laser gain elements. This invention can be used as a high average power laser for material processing applications as well as for weapon and air defense applications.

  17. High-power diode-side-pumped rod Tm:YAG laser at 2.07 μm.

    PubMed

    Wang, Caili; Niu, Yanxiong; Du, Shifeng; Zhang, Chao; Wang, Zhichao; Li, Fangqin; Xu, Jialin; Bo, Yong; Peng, Qinjun; Cui, Dafu; Zhang, Jingyuan; Xu, Zuyan

    2013-11-01

    We report a high-power diode-laser (LD) side-pumped rod Tm:YAG laser of around 2 μm. The laser was water-cooled at 8°C and yielded a maximum output power of 267 W at 2.07 μm, which is the highest output power for an all solid-state cw 2.07 μm rod Tm:YAG laser reported as far as we know. The corresponding optical-optical conversion efficiency was 20.7%, and the slope efficiency was about 29.8%, respectively.

  18. Potential of laser for SPS power transmission

    NASA Technical Reports Server (NTRS)

    Bain, C. N.

    1978-01-01

    Research on the feasibility of using a laser subsystem as an additional option for the transmission of the satellite power system (STS) power is presented. Current laser work and predictions for future laser performance provide a level of confidence that the development of a laser power transmission system is technologically feasible in the time frame required to develop the SBS. There are significant economic advantages in lower ground distribution costs and a reduction of more than two orders of magnitude in real estate requirements for ground based receiving/conversion sites.

  19. Comparative study of high power Tm:YLF and Tm:LLF slab lasers in continuous wave regime.

    PubMed

    Berrou, Antoine; Collett, Oliver J P; Morris, Daniel; Esser, M J Daniel

    2018-04-16

    We report on Tm:YLF and Tm:LLF slab lasers (1.5 x 11 x 20 mm 3 ) end pumped from one end with a high-brightness 792 nm laser diode stack. These two lasers are compared under identical pump conditions in continuous-wave regime. A stronger negative thermal lens in Tm:LLF than in Tm:YLF is highlighted, making it more difficult to operate the Tm:LLF laser under stable lasing conditions. In a configuration where the high reflectivity cavity mirror has a radius of curvature of r = 150 mm, the Tm:YLF (Tm:LLF) laser produces a maximum output power of 150 W (143 W) for 428 W of incident pump power (respectively). For a second cavity configuration where the high reflectivity cavity mirror has a radius of curvature of r = 500 mm, the Tm:YLF laser produces a maximum output power of 164 W for 412 W of incident pump power and a 57% slope efficiency with respect to the absorbed pump power. The emitted wavelength of these two lasers are measured as a function of the output coupler reflectivity and it shows that Tm:LLF laser emits at a longer wavelength than Tm:YLF.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zediker, Mark S.; Land, Mark S.; Rinzler, Charles C.

    A system, apparatus and methods for delivering high power laser energy to perform laser operations in oil fields and to form a borehole deep into the earth using laser energy. A laser downhole assembly for the delivery of high power laser energy to surfaces and areas in a borehole, which assembly may have laser optics and a fluid path.

  1. Brief state-of-the-art review on optical communications for the NASA ISES workshop

    NASA Technical Reports Server (NTRS)

    Hendricks, Herbert D.

    1990-01-01

    The current state of the art of optical communications is briefly reviewed. This review covers NASA programs, DOD and other government agency programs, commercial aerospace programs, and foreign programs. Included is a brief summary of a recent NASA workshop on optical communications. The basic conclusions from all the program reviews is that optical communications is a technology ready to be accepted but needed to be demonstrated. Probably the most advanced and sophisticated optical communications system is the Laser Intersatellite Transmission Experiment (LITE) system developed for flight on the Advanced Communications Technology Satellite (ACTS). Optical communications technology is available for the applications of data communications at data rates in the under 300 MBits/sec for nearly all applications under 2 times GEO distances. Applications for low-earth orbiter (LEO) to ground will allow data rates in the multi-GBits/sec range. Higher data rates are limited by currently available laser power. Phased array lasers offer technology which should eliminate this problem. The major problem of cloud coverage can probably be eliminated by look ahead pointing, multiple ground stations, and knowledge of weather conditions to control the pointing. Most certainly, optical communications offer a new spectral region to relieve the RF bands and very high data communications rates that will be required in less than 10 years to solve the communications problems on Earth.

  2. Improvement of laser keyhole formation with the assistance of arc plasma in the hybrid welding process of magnesium alloy

    NASA Astrophysics Data System (ADS)

    Liu, Liming; Hao, Xinfeng

    2009-11-01

    In the previous work, low-power laser/arc hybrid welding technique is used to weld magnesium alloy and high-quality weld joints are obtained. In order to make clear the interactions between low-power laser pulse and arc plasma, the effect of arc plasma on laser pulse is studied in this article. The result shows that the penetration of low-power laser welding with the assistance of TIG arc is more than two times deeper than that of laser welding alone and laser welding transforms from thermal-conduction mode to keyhole mode. The plasma behaviors and spectra during the welding process are studied, and the transition mechanism of laser-welding mode is analyzed in detail. It is also found that with the assistance of arc plasma, the threshold value of average power density to form keyhole welding for YAG laser is only 3.3×10 4 W/cm 2, and the average peak power density is 2.6×10 5 W/cm 2 in the present experiment. Moreover, the distribution of energy density during laser pulse is modulated to improve the formation and stability of laser keyholes.

  3. Improving Reliability of High Power Quasi-CW Laser Diode Arrays for Pumping Solid State Lasers

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Meadows, Byron L.; Baker, Nathaniel R.; Barnes, Bruce W.; Baggott, Renee S.; Lockard, George E.; Singh, Upendra N.; Kavaya, Michael J.

    2005-01-01

    Most Lidar applications rely on moderate to high power solid state lasers to generate the required transmitted pulses. However, the reliability of solid state lasers, which can operate autonomously over long periods, is constrained by their laser diode pump arrays. Thermal cycling of the active regions is considered the primary reason for rapid degradation of the quasi-CW high power laser diode arrays, and the excessive temperature rise is the leading suspect in premature failure. The thermal issues of laser diode arrays are even more drastic for 2-micron solid state lasers which require considerably longer pump pulses compared to the more commonly used pump arrays for 1-micron lasers. This paper describes several advanced packaging techniques being employed for more efficient heat removal from the active regions of the laser diode bars. Experimental results for several high power laser diode array devices will be reported and their performance when operated at long pulsewidths of about 1msec will be described.

  4. Laser Wakefield Acceleration Experiments Using HERCULES Laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsuoka, T.; McGuffey, C.; Dollar, F.

    2009-07-25

    Laser wakefield acceleration (LWFA) in a supersonic gas-jet using a self-guided laser pulse was studied by changing laser power and plasma electron density. The recently upgraded HERCULES laser facility equipped with wavefront correction enables a peak intensity of 6.1x10{sup 19} W/cm{sup 2} at laser power of 80 TW to be delivered to the gas-jet using F/10 focusing optics. We found that electron beam charge was increased significantly with an increase of laser power from 30 TW to 80 TW and showed density threshold behavior at a fixed laser power. We also studied the influence of laser focusing conditions by changingmore » the f-number of the optics to F/15 and found an increase in density threshold for electron production compared to the F/10 configuration. The analysis of different phenomena such as betatron motion of electrons, side scattering of the laser pulse for different focusing conditions, the influence of plasma density down ramp on LWFA are shown.« less

  5. Highly efficient, versatile, self-Q-switched, high-repetition-rate microchip laser generating Ince–Gaussian modes for optical trapping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jun Dong; Yu He; Xiao Zhou

    2016-03-31

    Lasers operating in the Ince-Gaussian (IG) mode have potential applications for optical manipulation of microparticles and formation of optical vortices, as well as for optical trapping and optical tweezers. Versatile, self-Q-switched, high-peak-power, high-repetition-rate Cr, Nd:YAG microchip lasers operating in the IG mode are implemented under tilted, tightly focused laser-diode pumping. An average output power of over 2 W is obtained at an absorbed pump power of 6.4 W. The highest optical-to-optical efficiency of 33.2% is achieved at an absorbed pump power of 3.9 W. Laser pulses with a pulse energy of 7.5 μJ, pulse width of 3.5 ns and peakmore » power of over 2 kW are obtained. A repetition rate up to 335 kHz is reached at an absorbed pump power of 5.8 W. Highly efficient, versatile, IG-mode lasers with a high repetition rate and a high peak power ensure a better flexibility in particle manipulation and optical trapping. (control of laser radiation parameters)« less

  6. Compact diode-pumped continuous-wave and passively Q-switched Nd:GYSO laser at 1.07 μm

    NASA Astrophysics Data System (ADS)

    Lin, Zhi; Huang, Xiaoxu; Lan, Jinglong; Cui, Shengwei; Wang, Yi; Xu, Bin; Luo, Zhengqian; Xu, Huiying; Cai, Zhiping; Xu, Xiaodong; Zhang, Xiaoyan; Wang, Jun; Xu, Jun

    2016-08-01

    We report diode-pumped continuous-wave (CW) and Q-switched Nd:GYSO lasers using a compact two-mirror linear laser cavity. Single-wavelength laser emissions at 1074.11 nm with 4.1-W power and at 1058.27 nm with 1.47-W power have been obtained in CW mode. The slope efficiencies with respect to the absorbed pump powers are 48.5% and 22.9%, respectively. Wavelength tunability is also demonstrated with range of about 8 nm. Using a MoS2 saturable absorber, maximum average output power up to 410 mW at 1074 nm can be yielded with absorbed pump power 6.41 W and the maximum pulse energy reaches 1.20 μJ with pulse repetition rate of 342.5 kHz and shortest pulse width of 810 ns. The CW laser results represent the best laser performance and the Q-switching also present the highest output power for Q-switched Nd3+ lasers with MoS2 as saturable absorber.

  7. The effects of TGG crystal length on output power and beam quality of a unidirectional ring Nd:YVO4 laser with and without second harmonic generation

    NASA Astrophysics Data System (ADS)

    Ahmadi, A.; Avazpour, A.; Nadgaran, H.; Mousavi, M.

    2018-04-01

    The effect of terbium gallium garnet (TGG ) crystal length on 1064 and 532 nm output powers and beam quality of a unidirectional ring Nd:YVO4 laser is investigated. In the case of 1064 nm (without nonlinear crystal), the laser output power without considerating the effect of TGG crystal was computed theoretically. Then three TGG crystals with different lengths were placed in the laser setup one by one. A systematic decrease in output power was observed by increasing the TGG crystal length. The experiment was repeated in the case of 532 nm. It was found that in a 532 nm laser, higher laser efficiency and small beam quality degradation can be achieved by increasing the TGG crystal length leading to a 5.7 W green laser with 27 W pump power. The power stability and beam quality were 0.8% for 30 min and less than 1.3, respectively.

  8. Next-generation fiber lasers enabled by high-performance components

    NASA Astrophysics Data System (ADS)

    Kliner, D. A. V.; Victor, B.; Rivera, C.; Fanning, G.; Balsley, D.; Farrow, R. L.; Kennedy, K.; Hampton, S.; Hawke, R.; Soukup, E.; Reynolds, M.; Hodges, A.; Emery, J.; Brown, A.; Almonte, K.; Nelson, M.; Foley, B.; Dawson, D.; Hemenway, D. M.; Urbanek, W.; DeVito, M.; Bao, L.; Koponen, J.; Gross, K.

    2018-02-01

    Next-generation industrial fiber lasers enable challenging applications that cannot be addressed with legacy fiber lasers. Key features of next-generation fiber lasers include robust back-reflection protection, high power stability, wide power tunability, high-speed modulation and waveform generation, and facile field serviceability. These capabilities are enabled by high-performance components, particularly pump diodes and optical fibers, and by advanced fiber laser designs. We summarize the performance and reliability of nLIGHT diodes, fibers, and next-generation industrial fiber lasers at power levels of 500 W - 8 kW. We show back-reflection studies with up to 1 kW of back-reflected power, power-stability measurements in cw and modulated operation exhibiting sub-1% stability over a 5 - 100% power range, and high-speed modulation (100 kHz) and waveform generation with a bandwidth 20x higher than standard fiber lasers. We show results from representative applications, including cutting and welding of highly reflective metals (Cu and Al) for production of Li-ion battery modules and processing of carbon fiber reinforced polymers.

  9. Loss of power output and laser fibre degradation during 120 watt lithium-triborate HPS laser vaporisation of the prostate

    NASA Astrophysics Data System (ADS)

    Hermanns, Thomas; Sulser, Tullio; Hefermehl, Lukas J.; Strebel, Daniel; Michel, Maurice-Stephan; Müntener, Michael; Meier, Alexander H.; Seifert, Hans-Helge

    2009-02-01

    It has recently been shown that laser fibre deterioration leads to a significant decrease of power output during 80 W potassium titanyl phosphate (KTP) laser vaporisation (LV) of the prostate. This decrease results in inefficient vaporisation especially towards the end of the procedure. For the new 120 W lithium-triborate (LBO) High Performance System (HPS) laser not only higher power but also changes in beam characteristics and improved fibre quality have been advertised. However, high laser power has been identified as a risk factor for laser fibre degradation. Between July and September 2008 25 laser fibres were investigated during routine 120 W LBO-LV in 20 consecutive patients. Laser beam power was measured at baseline and after the application of every 25 kJ during the LV procedure. Postoperatively, the surgeon subjectively rated the performance of the respective fibre on a scale from 1 to 4 (1 indicating perfect and 4 insufficient performance). Additionally, microscopic examination of the fibre tip was performed. Median energy applied was 212 kJ. Changes of power output were similar for all fibres. Typically, a steep decrease of power output within the first 50 kJ was followed by a continuous mild decrease until the end of the procedure. After the application of 50 kJ the median power output was 63% (58-73% interquartile range) of the baseline value. The median power output at the end of the 275 kJ-lifespan of the fibres was 42% (40-47%). The median surgeons' rating of the overall performance of the laser fibres was 2 and the median estimated final decrease of power output 60%. Some degree of degradation at the emission window was microscopically detectable in all cases after the procedure. However, even after the application of 275 kJ, these structural changes were only moderate. Minor degradation of the laser fibre was associated with a significant decrease of power output during 120 W LBO-LV. However, following an early, steep decrease, power output remained relatively constant on a medium level for the rest of the fibre's lifespan. The subjective rating by the surgeons is in accordance with these findings. Improved properties of the LBO laser and enhanced fibre quality resulted in an only moderate decrease of power output which allowed for a consistently effective performance.

  10. Photon-Counting Multikilohertz Microlaser Altimeters for Airborne and Spaceborne Topographic Measurements

    NASA Technical Reports Server (NTRS)

    Degnan, John J.; Smith, David E. (Technical Monitor)

    2000-01-01

    We consider the optimum design of photon-counting microlaser altimeters operating from airborne and spaceborne platforms under both day and night conditions. Extremely compact Q-switched microlaser transmitters produce trains of low energy pulses at multi-kHz rates and can easily generate subnanosecond pulse-widths for precise ranging. To guide the design, we have modeled the solar noise background and developed simple algorithms, based on Post-Detection Poisson Filtering (PDPF), to optimally extract the weak altimeter signal from a high noise background during daytime operations. Practical technology issues, such as detector and/or receiver dead times, have also been considered in the analysis. We describe an airborne prototype, being developed under NASA's instrument Incubator Program, which is designed to operate at a 10 kHz rate from aircraft cruise altitudes up to 12 km with laser pulse energies on the order of a few microjoules. We also analyze a compact and power efficient system designed to operate from Mars orbit at an altitude of 300 km and sample the Martian surface at rates up to 4.3 kHz using a 1 watt laser transmitter and an 18 cm telescope. This yields a Power-Aperture Product of 0.24 W-square meter, corresponding to a value almost 4 times smaller than the Mars Orbiting Laser Altimeter (0. 88W-square meter), yet the sampling rate is roughly 400 times greater (4 kHz vs 10 Hz) Relative to conventional high power laser altimeters, advantages of photon-counting laser altimeters include: (1) a more efficient use of available laser photons providing up to two orders of magnitude greater surface sampling rates for a given laser power-telescope aperture product; (2) a simultaneous two order of magnitude reduction in the volume, cost and weight of the telescope system; (3) the unique ability to spatially resolve the source of the surface return in a photon counting mode through the use of pixellated or imaging detectors; and (4) improved vertical and transverse spatial resolution resulting from both (1) and (3). Furthermore, because of significantly lower laser pulse energies, the microaltimeter is inherently more eyesafe to observers on the ground and less prone to internal optical damage, which can terminate a space mission prematurely.

  11. Miniature solid-state lasers for pointing, illumination, and warning devices

    NASA Astrophysics Data System (ADS)

    Brown, D. C.; Singley, J. M.; Yager, E.; Kowalewski, K.; Lotito, B.; Guelzow, J.; Hildreth, J.; Kuper, J. W.

    2008-04-01

    In this paper we review the current status of and progress towards higher power and more wavelength diverse diode-pumped solid-state miniature lasers. Snake Creek Lasers now offers unprecedented continuous wave (CW) output power from 9.0 mm and 5.6 mm TO type packages, including the smallest green laser in the world, the MicroGreen TM laser, and the highest density green laser in the world, the MiniGreen TM laser. In addition we offer an infrared laser, the MiniIR TM, operating at 1064 nm, and have just introduced a blue Mini laser operating at 473 nm in a 9.0 mm package. Recently we demonstrated over 1 W of output power at 1064 nm from a 12 mm TO type package, and green output power from 300-500 mW from the same 12 mm package. In addition, the company is developing a number of other innovative new miniature CW solid-state lasers operating at 750 nm, 820 nm, 458 nm, and an eye-safe Q-switched laser operating at 1550 nm. We also review recently demonstrated combining volume Bragg grating (VBG) technology has been combined with automatic power control (APC) to produce high power MiniGreen TM lasers whose output is constant to +/- 10 % over a wide temperature range, without the use of a thermoelectric cooler (TEC). This technology is expected to find widespread application in military and commercial applications where wide temperature operation is particularly important. It has immediate applications in laser pointers, illuminators, and laser flashlights, and displays.

  12. High-efficient Nd:YAG microchip laser for optical surface scanning

    NASA Astrophysics Data System (ADS)

    Šulc, Jan; Jelínková, Helena; Nejezchleb, Karel; Škoda, Václav

    2017-12-01

    A CW operating, compact, high-power, high-efficient diode pumped 1064nm laser, based on Nd:YAG active medium, was developed for optical surface scanning and mapping applications. To enhance the output beam quality, laser stability, and compactness, a microchip configuration was used. In this arrangement the resonator mirrors were deposited directly on to the laser crystal faces. The Nd-doping concentration was 1 at.% Nd/Y. The Nd:YAG crystal was 5mm long. The laser resonator without pumping radiation recuperation was investigated {the output coupler was transparent for pumping radiation. For the generated laser radiation the output coupler reflectivity was 95%@1064 nm. The diameter of the samples was 5 mm. For the laser pumping two arrangements were investigated. Firstly, a fibre coupled laser diode operating at wavelength 808nm was used in CW mode. The 400 ¹m fiber was delivering up to 14W of pump power amplitude to the microchip laser. The maximum CW output power of 7.2W @ 1064nm in close to TEM00 beam was obtained for incident pumping power 13.7W @ 808 nm. The differential efficiency in respect to the incident pump power reached 56 %. Secondly, a single-emitter, 1W laser diode operating at 808nm was used for Nd:YAG microchip pumping. The laser pumping was directly coupled into the microchip laser using free-space lens optics. Slope efficiency up to 70% was obtained in stable, high-quality, 1064nm laser beam with CW power up to 350mW. The system was successfully used for scanning of super-Gaussian laser mirrors reflectivity profile.

  13. 3.1 W narrowband blue external cavity diode laser

    NASA Astrophysics Data System (ADS)

    Peng, Jue; Ren, Huaijin; Zhou, Kun; Li, Yi; Du, Weichuan; Gao, Songxin; Li, Ruijun; Liu, Jianping; Li, Deyao; Yang, Hui

    2018-03-01

    We reported a high-power narrowband blue diode laser which is suitable for subsequent nonlinear frequency conversion into the deep ultraviolet (DUV) spectral range. The laser is based on an external cavity diode laser (ECDL) system using a commercially available GaN-based high-power blue laser diode emitting at 448 nm. Longitudinal mode selection is realized by using a surface diffraction grating in Littrow configuration. The diffraction efficiency of the grating was optimized by controlling the polarization state of the laser beam incident on the grating. A maximum optical output power of 3.1 W in continuous-wave operation with a spectral width of 60 pm and a side-mode suppression ratio (SMSR) larger than 10 dB at 448.4 nm is achieved. Based on the experimental spectra and output powers, the theoretical efficiency and output power of the subsequent nonlinear frequency conversion were calculated according to the Boyd- Kleinman theory. The single-pass conversion efficiency and output power is expected to be 1.9×10-4 and 0.57 mW, respectively, at the 3.1 W output power of the ECDL. The high-power narrowband blue diode laser is very promising as pump source in the subsequent nonlinear frequency conversion.

  14. Effects of laser power density on static and dynamic mechanical properties of dissimilar stainless steel welded joints

    NASA Astrophysics Data System (ADS)

    Wei, Yan-Peng; Li, Mao-Hui; Yu, Gang; Wu, Xian-Qian; Huang, Chen-Guang; Duan, Zhu-Ping

    2012-10-01

    The mechanical properties of laser welded joints under impact loadings such as explosion and car crash etc. are critical for the engineering designs. The hardness, static and dynamic mechanical properties of AISI304 and AISI316 L dissimilar stainless steel welded joints by CO2 laser were experimentally studied. The dynamic strain-stress curves at the strain rate around 103 s-1 were obtained by the split Hopkinson tensile bar (SHTB). The static mechanical properties of the welded joints have little changes with the laser power density and all fracture occurs at 316 L side. However, the strain rate sensitivity has a strong dependence on laser power density. The value of strain rate factor decreases with the increase of laser power density. The welded joint which may be applied for the impact loading can be obtained by reducing the laser power density in the case of welding quality assurance.

  15. Analysis of High-Power Diode Laser Heating Effects on HY-80 Steel for Laser Assisted Friction Stir Welding Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiechec, Maxwell; Baker, Brad; McNelley, Terry

    In this research, several conditions of high power diode laser heated HY-80 steel were characterized to determine the viability of using such lasers as a preheating source before friction stir welding in order to reduce frictional forces thereby reducing tool wear and increasing welding speeds. Differences in microstructures within heat affected zones were identified at specific laser powers and traverse speeds. Vickers hardness values were recorded and analyzed to validate the formation of additional martensite in diode laser heated regions of HY-80 steel. Conditions that produced little to no additional martensite were identified and relationships among high power diode lasermore » power, traverse speed, and martensite formation were determined. The development of heat affected zones, change in grain structure, and creation of additional martensite in HY-80 can be prevented through the optimization of laser amperage and transverse speed.« less

  16. Efficient 10 kW diode-pumped Nd:YAG rod laser

    NASA Astrophysics Data System (ADS)

    Akiyama, Yasuhiro; Takada, Hiroyuki; Sasaki, Mitsuo; Yuasa, Hiroshi; Nishida, Naoto

    2003-03-01

    As a tool for high speed and high precision material processing such as cutting and welding, we developed a rod-type all-solid-state laser with an average power of more than 10 kW, an electrical-optical efficiency of more than 20%, and a laser head volume of less than 0.05 m3. We developed a highly efficient diode pumped module, and successfully obtained electrical-optical efficiencies of 22% in CW operation and 26% in QCW operation at multi-kW output powers. We also succeeded to reduce the laser head volume, and obtained the output power of 12 kW with an efficiency of 23%, and laser head volume of 0.045 m3. We transferred the technology to SHIBAURA mechatronics corp., who started to provide the LD pumped Nd:YAG laser system with output power up to 4.5 kW. We are now continuing development for further high power laser equipment.

  17. Particle acceleration on a chip: A laser-driven micro-accelerator for research and industry

    NASA Astrophysics Data System (ADS)

    Yoder, R. B.; Travish, G.

    2013-03-01

    Particle accelerators are conventionally built from radio-frequency metal cavities, but this technology limits the maximum energy available and prevents miniaturization. In the past decade, laser-powered acceleration has been intensively studied as an alternative technology promising much higher accelerating fields in a smaller footprint and taking advantage of recent advances in photonics. Among the more promising approaches are those based on dielectric field-shaping structures. These ``dielectric laser accelerators'' (DLAs) scale with the laser wavelength employed and can be many orders of magnitude smaller than conventional accelerators; DLAs may enable the production of high-intensity, ultra-short relativistic electron bunches in a chip-scale device. When combined with a high- Z target or an optical-period undulator, these systems could produce high-brilliance x-rays from a breadbox-sized device having multiple applications in imaging, medicine, and homeland security. In our research program we have developed one such DLA, the Micro-Accelerator Platform (MAP). We describe the fundamental physics, our fabrication and testing program, and experimental results to date, along with future prospects for MAP-based light-sources and some remaining challenges. Supported in part by the Defense Threat Reduction Agency and National Nuclear Security Administration.

  18. Method and apparatus for delivering high power laser energy over long distances

    DOEpatents

    Zediker, Mark S; Rinzler, Charles C; Faircloth, Brian O; Koblick, Yeshaya; Moxley, Joel F

    2015-04-07

    Systems, devices and methods for the transmission and delivery of high power laser energy deep into the earth and for the suppression of associated nonlinear phenomena. Systems, devices and methods for the laser drilling of a borehole in the earth. These systems can deliver high power laser energy down a deep borehole, while maintaining the high power to advance such boreholes deep into the earth and at highly efficient advancement rates.

  19. Radiation Effects on an Active Ytterbium doped Fiber Laser

    DTIC Science & Technology

    laser. While the gain medium of the laser was irradiated , the power was measured in-situ and the spectrum was recorded intermittently. The results...with a lower initial power. Power recovery experiments were conducted post- irradiation with the fiber laser off and actively lasing. Passively, the...total power recovery of 12.6 and 4.4 for YDF1 and YDF2 respectively. The active recovery rate declined as the number of days following irradiation

  20. Comparison for 1030nm DBR-tapered diode lasers with 10W central lobe output power and different grating layouts for wavelength stabilization and lateral spatial mode filtering

    NASA Astrophysics Data System (ADS)

    Müller, André; Zink, Christof; Fricke, Jörg; Bugge, Frank; Erbert, Götz; Sumpf, Bernd; Tränkle, Günther

    2018-02-01

    1030 nm DBR tapered diode lasers with different lateral layouts are presented. The layout comparison includes lasers with straight waveguide and grating, tapered waveguide and straight grating, and straight waveguide and tapered grating. The lasers provide narrowband emission and optical output powers up to 15 W. The highest diffraction-limited central lobe output power of 10.5 W is obtained for lasers with tapered gratings only. Small variations in central lobe output power with RW injection current density also indicate the robustness of that layout. For lasers with tapered waveguides, high RW injection current densities up to 150 A/mm2 have to be applied in order to obtain high central lobe output powers. Lasers with straight waveguide and grating operate best at low RW injection current densities, 50 A/mm2 applied in this study. Using the layout optimizations discussed in this study may help to increase the application potential of DBR tapered diode lasers.

  1. Generation of Ince-Gaussian beams in highly efficient, nanosecond Cr, Nd:YAG microchip lasers

    NASA Astrophysics Data System (ADS)

    Dong, J.; Ma, J.; Ren, Y. Y.; Xu, G. Z.; Kaminskii, A. A.

    2013-08-01

    Direct generation of higher-order Ince-Gaussian (IG) beams from laser-diode end-pumped Cr, Nd:YAG self-Q-switched microchip lasers was achieved with high efficiency and high repetition rate. An average output power of over 2 W was obtained at an absorbed pump power of 8.2 W a corresponding optical-to-optical efficiency of 25% was achieved. Various IG modes with nanosecond pulse width and peak power of over 2 kW were obtained in laser-diode pumped Cr, Nd:YAG microchip lasers under different pump power levels by applying a tilted, large area pump beam. The effect of the inversion population distribution induced by the tilted pump beam and nonlinear absorption of Cr4+-ions for different pump power levels on the oscillation of higher-order IG modes in Cr, Nd:YAG microchip lasers is addressed. The higher-order IG mode oscillation has a great influence on the laser performance of Cr, Nd:YAG microchip lasers.

  2. Studies on output characteristics of stable dual-wavelength ytterbium-doped photonic crystal fiber laser

    NASA Astrophysics Data System (ADS)

    Tian, Hongchun; Zhang, Sa; Hou, Zhiyun; Xia, Changming; Zhou, Guiyao; Zhang, Wei; Liu, Jiantao; Wu, Jiale; Fu, Jian

    2016-06-01

    A stable dual-wavelength ytterbium-doped photonic crystal fiber laser pumped by a 976 nm laser diode has been demonstrated at room temperature. Single-wavelength, dual-wavelength laser oscillations are observed when the fiber laser operates under different pump power by using different length of fibers. Stable dual-wavelength radiation around 1045 nm and 1075 nm has been generated simultaneously at a high pump power directly from an ytterbium-doped fiber laser without using any spectral control mechanism. A small core ytterbium-doped PCF fabricated by the powder sinter direction drawn rod technology is used as gain medium. The pump power and fiber length which can affect the output characteristics of dual-wavelength fiber laser are analyzed in the experiment. Experiments confirm that higher pump power and longer fiber length favors 1075 nm output; lower pump power and shorter fiber length favors 1045 nm output. Those results have a good reference in multi-wavelength fiber laser.

  3. Material Processing with High Power CO2-Lasers

    NASA Astrophysics Data System (ADS)

    Bakowsky, Lothar

    1986-10-01

    After a period of research and development lasertechnique now is regarded as an important instrument for flexible, economic and fully automatic manufacturing. Especially cutting of flat metal sheets with high power C02-lasers and CNC controlled two or three axes handling systems is a wide spread. application. Three dimensional laser cutting, laser-welding and -heat treatment are just at the be ginning of industrial use in production lines. The main. advantages of laser technology. are - high. accuracy - high, processing velocity - law thermal distortion. - no tool abrasion. The market for laser material processing systems had 1985 a volume of 300 Mio S with growth rates between, 20 % and 30 %. The topic of this lecture are hiTrh. power CO2-lasers. Besides this systems two others are used as machining tools, Nd-YAG- and Eximer lasers. All applications of high. power CO2-lasers to industrial material processing show that high processing velocity and quality are only guaranteed in case of a stable intensity. profile on the workpiece. This is only achieved by laser systems without any power and mode fluctuations and by handling systems of high accuracy. Two applications in the automotive industry are described, below as examples for laser cutting and laser welding of special cylindrical motor parts.

  4. Overview and future direction for blackbody solar-pumped lasers

    NASA Technical Reports Server (NTRS)

    Deyoung, R. J.

    1988-01-01

    A review of solar-pumped blackbody lasers is given which addresses their present status and suggests future research directions. The blackbody laser concept is one system proposed to scale to multimegawatt power levels for space-to-space power transmissions for such applications as onboard spacecraft electrical or propulsion needs. Among the critical technical issues are the scalability to high powers and the laser wavelength which impacts the transmission optics size as well as the laser-to-electric converter at the receiver. Because present blackbody solar-pumped lasers will have laser wavelengths longer than 4 microns, simple photovoltaic converters cannot be used, and transmission optics will be large. Thus, future blackbody laser systems should emphasize near visible laser wavelengths.

  5. Progress in high-power continuous-wave quantum cascade lasers [Invited].

    PubMed

    Figueiredo, Pedro; Suttinger, Matthew; Go, Rowel; Tsvid, Eugene; Patel, C Kumar N; Lyakh, Arkadiy

    2017-11-01

    Multi-watt continuous-wave room temperature operation with efficiency exceeding 10% has been demonstrated for quantum cascade lasers essentially in the entire mid-wave and long-wave infrared spectral regions. Along with interband cascade lasers, these devices are the only room-temperature lasers that directly convert electrical power into mid- and long-infrared optical power. In this paper, we review the progress in high-power quantum cascade lasers made over the last 10 years. Specifically, an overview of the most important active region, waveguide, and thermal design techniques is presented, and various aspects of die packaging for high-power applications are discussed. Prospects of power scaling with lateral device dimensions for reaching optical power level in the range from 10 W to 20 W are also analyzed. Finally, coherent and spectral beam-combining techniques for very high-power infrared platforms are discussed.

  6. High-power direct green laser oscillation of 598 mW in Pr(3+)-doped waterproof fluoroaluminate glass fiber excited by two-polarization-combined GaN laser diodes.

    PubMed

    Nakanishi, Jun; Horiuchi, Yuya; Yamada, Tsuyoshi; Ishii, Osamu; Yamazaki, Masaaki; Yoshida, Minoru; Fujimoto, Yasushi

    2011-05-15

    We demonstrated a high-power and highly efficient Pr-doped waterproof fluoride glass fiber laser at 522.2 nm excited by two-polarization-combined GaN laser diodes and achieved a subwatt output power of 598 mW and slope efficiency of 43.0%. This system will enable us to make a vivid laser display, a photocoagulation laser for eye surgery, a color confocal scanning laser microscope, and an effective laser for material processing. Direct visible ultrashort pulse generation is also expected. © 2011 Optical Society of America

  7. High-powered CO2 -lasers and noise control

    NASA Astrophysics Data System (ADS)

    Honkasalo, Antero; Kuronen, Juhani

    High-power CO2 -lasers are being more and more widely used for welding, drilling and cutting in machine shops. In the near future, different kinds of surface treatments will also become routine practice with laser units. The industries benefitting most from high power lasers will be: the automotive industry, shipbuilding, the offshore industry, the aerospace industry, the nuclear and the chemical processing industries. Metal processing lasers are interesting from the point of view of noise control because the working tool is a laser beam. It is reasonable to suppose that the use of such laser beams will lead to lower noise levels than those connected with traditional metal processing methods and equipment. In the following presentation, the noise levels and possible noise-control problems attached to the use of high-powered CO2 -lasers are studied.

  8. 970-nm ridge waveguide diode laser bars for high power DWBC systems

    NASA Astrophysics Data System (ADS)

    Wilkens, Martin; Erbert, Götz; Wenzel, Hans; Knigge, Andrea; Crump, Paul; Maaßdorf, Andre; Fricke, Jörg; Ressel, Peter; Strohmaier, Stephan; Schmidt, Berthold; Tränkle, Günther

    2018-02-01

    de lasers are key components in material processing laser systems. While mostly used as pump sources for solid state or fiber lasers, direct diode laser systems using dense wavelength multiplexing have come on the market in recent years. These systems are realized with broad area lasers typically, resulting in beam quality inferior to disk or fiber lasers. We will present recent results of highly efficient ridge waveguide (RW) lasers, developed for dense-wavelength-beamcombining (DWBC) laser systems expecting beam qualities comparable to solid state laser systems and higher power conversion efficiencies (PCE). The newly developed RW lasers are based on vertical structures with an extreme double asymmetric large optical cavity. Besides a low vertical divergence these structures are suitable for RW-lasers with (10 μm) broad ridges, emitting in a single mode with a good beam quality. The large stripe width enables a lateral divergence below 10° (95 % power content) and a high PCE by a comparably low series resistance. We present results of single emitters and small test arrays under different external feedback conditions. Single emitters can be tuned from 950 nm to 975 nm and reach 1 W optical power with more than 55 % PCE and a beam quality of M2 < 2 over the full wavelength range. The spectral width is below 30 pm FWHM. 5 emitter arrays were stabilized using the same setup. Up to now we reached 3 W optical power, limited by power supply, with 5 narrow spectral lines.

  9. Spectral and power characteristics of a 5% Tm : KLu(WO4)2 Nm-cut minislab laser passively Q-switched by a Cr2+ : ZnSe crystal

    NASA Astrophysics Data System (ADS)

    Vatnik, S. M.; Vedin, I. A.; Kurbatov, P. F.; Smolina, E. A.; Pavlyuk, A. A.; Korostelin, Yu. V.; Skasyrsky, Ya. K.

    2017-12-01

    Laser characteristics of a 5%Tm : KLu(WO4)2 Nm-cut minislab laser passively Q-switched by a Cr2+ : ZnSe saturable absorber are presented. At a pump power of 21 W, the average laser power at a wavelength of 1.91 μm was 3.2 W (pulse duration 35 ns, pulse energy 0.3 mJ). The maximum slope efficiency of the laser in the Q-switched regime was 31%; the loss in power with respect to the cw regime did not exceed 17%. At pump powers above 15 W, the dependence of the output power in the Q-switched regime on the pump power considerably differed from linear, which was explained by the formation of a thermal lens in the saturable absorber volume. The experimental energies and durations of laser pulses well agree with the values calculated from rate equations.

  10. Laser bottom hole assembly

    DOEpatents

    Underwood, Lance D; Norton, Ryan J; McKay, Ryan P; Mesnard, David R; Fraze, Jason D; Zediker, Mark S; Faircloth, Brian O

    2014-01-14

    There is provided for laser bottom hole assembly for providing a high power laser beam having greater than 5 kW of power for a laser mechanical drilling process to advance a borehole. This assembly utilizes a reverse Moineau motor type power section and provides a self-regulating system that addresses fluid flows relating to motive force, cooling and removal of cuttings.

  11. Integrated injection-locked semiconductor diode laser

    DOEpatents

    Hadley, G.R.; Hohimer, J.P.; Owyoung, A.

    1991-02-19

    A continuous wave integrated injection-locked high-power diode laser array is provided with an on-chip independently-controlled master laser. The integrated injection locked high-power diode laser array is capable of continuous wave lasing in a single near-diffraction limited output beam at single-facet power levels up to 125 mW (250 mW total). Electronic steering of the array emission over an angle of 0.5 degrees is obtained by varying current to the master laser. The master laser injects a laser beam into the slave array by reflection of a rear facet. 18 figures.

  12. [The design of all solid-state tunable pulsed Ti:sapphire laser system].

    PubMed

    Chen, Zhe; Ku, Geng; Wan, Junchao; Wang, Wei; Zhou, Chuanqing

    2013-05-01

    This paper presented a design of broadly all solid-state tunable pulsed Ti:sapphire laser with high power and stable performance. The laser was pumped by custom-made Nd:YAG laser which had water cooling system and amplified by two stage amplifier. The method accomplished tunable output of all solid-state tunable pulsed Ti:sapphire laser by modifying the reflection angle of the back mirror. We investigated the relationship between the power of the pumping laser and the all solid-state tunable pulsed Ti: sapphire laser by changing the power of the pumping source.

  13. Satellite Power System (SPS) laser studies. Volume 2: Meteorological effects on laser beam propagation and direct solar pumped lasers for the SPS

    NASA Technical Reports Server (NTRS)

    Beverly, R. E., III

    1980-01-01

    The primary emphasis of this research activity was to investigate the effect of the environment on laser power transmission/reception from space to ground. Potential mitigation techniques to minimize the environment effect by a judicious choice of laser operating parameters was investigated. Using these techniques, the availability of power at selected sites was determined using statistical meteorological data for each site.

  14. Solar pumped laser technology options for space power transmission

    NASA Technical Reports Server (NTRS)

    Conway, E. J.

    1986-01-01

    An overview of long-range options for in-space laser power transmission is presented. The focus is on the new technology and research status of solar-pumped lasers and their solar concentration needs. The laser options include gas photodissociation lasers, optically-pumped solid-state lasers, and blackbody-pumped transfer lasers. The paper concludes with a summary of current research thrusts.

  15. High-power free-electron lasers-technology and future applications

    NASA Astrophysics Data System (ADS)

    Socol, Yehoshua

    2013-03-01

    Free-electron laser (FEL) is an all-electric, high-power, high beam-quality source of coherent radiation, tunable - unlike other laser sources - at any wavelength within wide spectral region from hard X-rays to far-IR and beyond. After the initial push in the framework of the “Star Wars” program, the FEL technology benefited from decades of R&D and scientific applications. Currently, there are clear signs that the FEL technology reached maturity, enabling real-world applications. E.g., successful and unexpectedly smooth commissioning of the world-first X-ray FEL in 2010 increased in one blow by more than an order of magnitude (40×) wavelength region available by FEL technology and thus demonstrated that the theoretical predictions just keep true in real machines. Experience of ordering turn-key electron beamlines from commercial companies is a further demonstration of the FEL technology maturity. Moreover, successful commissioning of the world-first multi-turn energy-recovery linac demonstrated feasibility of reducing FEL size, cost and power consumption by probably an order of magnitude in respect to previous configurations, opening way to applications, previously considered as non-feasible. This review takes engineer-oriented approach to discuss the FEL technology issues, keeping in mind applications in the fields of military and aerospace, next generation semiconductor lithography, photo-chemistry and isotope separation.

  16. Intersatellite communications optoelectronics research at the Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.

    1992-01-01

    A review is presented of current optoelectronics research and development at the NASA Goddard Space Flight Center for high-power, high-bandwidth laser transmitters; high-bandwidth, high-sensitivity optical receivers; pointing, acquisition, and tracking components; and experimental and theoretical system modeling at the NASA Goddard Space Flight Center. Program hardware and space flight opportunities are presented.

  17. NASA Tech Briefs, August 1995. Volume 19, No. 8

    NASA Technical Reports Server (NTRS)

    1995-01-01

    There is a special focus on computer graphics and simulation in this issue. Topics covered include : Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer programs, Mechanics; Machinery; Fabrication Technology; and Mathematics and Information Sciences. There is a section on for Laser Technology, which includes a feature on Moving closer to the suns power.

  18. Optoelectronics research for communication programs at the Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.

    1991-01-01

    Current optoelectronics research and development of high-power, high-bandwidth laser transmitters, high-bandwidth, high-sensitivity optical receivers, pointing, acquisition and tracking components, and experimental and theoretical system modeling at the NASA Goddard Space Flight Center is reviewed. Program hardware and space flight milestones are presented. It is believed that these experiments will pave the way for intersatellite optical communications links for both the NASA Advanced Tracking and Data Relay Satellite System and commercial users in the 21st century.

  19. Effect of low-level laser stimulation on EEG.

    PubMed

    Wu, Jih-Huah; Chang, Wen-Dien; Hsieh, Chang-Wei; Jiang, Joe-Air; Fang, Wei; Shan, Yi-Chia; Chang, Yang-Chyuan

    2012-01-01

    Conventional laser stimulation at the acupoint can induce significant brain activation, and the activation is theoretically conveyed by the sensory afferents. Whether the insensible low-level Laser stimulation outside the acupoint could also evoke electroencephalographic (EEG) changes is not known. We designed a low-level laser array stimulator (6 pcs laser diode, wavelength 830 nm, output power 7 mW, and operation frequency 10 Hz) to deliver insensible laser stimulations to the palm. EEG activities before, during, and after the laser stimulation were collected. The amplitude powers of each EEG frequency band were analyzed. We found that the low-level laser stimulation was able to increase the power of alpha rhythms and theta waves, mainly in the posterior head regions. These effects lasted at least 15 minutes after cessation of the laser stimulation. The amplitude power of beta activities in the anterior head regions decreased after laser stimulation. We thought these EEG changes comparable to those in meditation.

  20. Generation of 3.5 W of diffraction-limited green light from SHG of a single tapered diode laser in a cascade of nonlinear crystals

    NASA Astrophysics Data System (ADS)

    Hansen, Anders K.; Jensen, Ole B.; Sumpf, Bernd; Erbert, Götz; Unterhuber, Angelika; Drexler, Wolfgang; Andersen, Peter E.; Petersen, Paul Michael

    2014-02-01

    Many applications, e.g., within biomedicine stand to benefit greatly from the development of diode laser-based multi- Watt efficient compact green laser sources. The low power of existing diode lasers in the green area (about 100 mW) means that the most promising approach remains nonlinear frequency conversion of infrared tapered diode lasers. Here, we describe the generation of 3.5 W of diffraction-limited green light from SHG of a single tapered diode laser, itself yielding 10 W at 1063 nm. This SHG is performed in single pass through a cascade of two PPMgO:LN crystals with re-focusing and dispersion compensating optics between the two nonlinear crystals. In the low-power limit, such a cascade of two crystals has the theoretical potential for generation of four times as much power as a single crystal without adding significantly to the complexity of the system. The experimentally achieved power of 3.5 W corresponds to a power enhancement greater than 2 compared to SHG in each of the crystals individually and is the highest visible output power generated by frequency conversion of a single diode laser. Such laser sources provide the necessary pump power for biophotonics applications, such as optical coherence tomography or multimodal imaging devices, e.g., FTCARS-OCT, based on a strongly pumped ultrafast Ti:Sapphire laser.

  1. Overview on the high power excimer laser technology

    NASA Astrophysics Data System (ADS)

    Liu, Jingru

    2013-05-01

    High power excimer laser has essential applications in the fields of high energy density physics, inertial fusion energy and industry owing to its advantages such as short wavelength, high gain, wide bandwidth, energy scalable and repetition operating ability. This overview is aimed at an introduction and evaluation of enormous endeavor of the international high power excimer laser community in the last 30 years. The main technologies of high power excimer laser are reviewed, which include the pumping source technology, angular multiplexing and pulse compressing, beam-smoothing and homogenous irradiation, high efficiency and repetitive operation et al. A high power XeCl laser system developed in NINT of China is described in detail.

  2. High-power highly stable passively Q-switched fiber laser based on monolayer graphene

    NASA Astrophysics Data System (ADS)

    Wu, Hanshuo; Song, Jiaxin; Wu, Jian; Xu, Jiangming; Xiao, Hu; Leng, Jinyong; Zhou, Pu

    2018-03-01

    We demonstrate a monolayer graphene-based passively Q-switched fiber laser with three-stage amplifiers that can deliver an average power of over 80 W at 1064 nm. The highest average power achieved is 84.1 W, with a pulse energy of 1.67 mJ. To the best of our knowledge this is the first report of a high-power passively Q-switched fiber laser in the 1 µm range. More importantly, the Q-switched fiber laser operated stably during a week of tests for a few hours per day, which proves the stability and practical application potential of graphene in high-power pulsed fiber lasers.

  3. High-power disk lasers: advances and applications

    NASA Astrophysics Data System (ADS)

    Havrilla, David; Ryba, Tracey; Holzer, Marco

    2012-03-01

    Though the genesis of the disk laser concept dates to the early 90's, the disk laser continues to demonstrate the flexibility and the certain future of a breakthrough technology. On-going increases in power per disk, and improvements in beam quality and efficiency continue to validate the genius of the disk laser concept. As of today, the disk principle has not reached any fundamental limits regarding output power per disk or beam quality, and offers numerous advantages over other high power resonator concepts, especially over monolithic architectures. With about 2,000 high power disk lasers installations, and a demand upwards of 1,000 lasers per year, the disk laser has proven to be a robust and reliable industrial tool. With advancements in running cost, investment cost and footprint, manufacturers continue to implement disk laser technology with more vigor than ever. This paper will explain recent advances in disk laser technology and process relevant features of the laser, like pump diode arrangement, resonator design and integrated beam guidance. In addition, advances in applications in the thick sheet area and very cost efficient high productivity applications like remote welding, remote cutting and cutting of thin sheets will be discussed.

  4. Stabilized diode seed laser for flight and space-based remote lidar sensing applications

    NASA Astrophysics Data System (ADS)

    McNeil, Shirley; Pandit, Pushkar; Battle, Philip; Rudd, Joe; Hovis, Floyd

    2017-08-01

    AdvR, through support of the NASA SBIR program, has developed fiber-based components and sub-systems that are routinely used on NASA's airborne missions, and is now developing an environmentally hardened, diode-based, locked wavelength, seed laser for future space-based high spectral resolution lidar applications. The seed laser source utilizes a fiber-coupled diode laser, a fiber-coupled, calibrated iodine reference module to provide an absolute wavelength reference, and an integrated, dual-element, nonlinear optical waveguide component for second harmonic generation, spectral formatting and wavelength locking. The diode laser operates over a range close to 1064.5 nm, provides for stabilization of the seed to the desired iodine transition and allows for a highly-efficient, fully-integrated seed source that is well-suited for use in airborne and space-based environments. A summary of component level environmental testing and spectral purity measurements with a seeded Nd:YAG laser will be presented. A direct-diode, wavelength-locked seed laser will reduce the overall size weight and power (SWaP) requirements of the laser transmitter, thus directly addressing the need for developing compact, efficient, lidar component technologies for use in airborne and space-based environments.

  5. Solid-state lasers for coherent communication and remote sensing

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1992-01-01

    Semiconductor-diode laser-pumped solid-state lasers have properties that are superior to other lasers for the applications of coherent communication and remote sensing. These properties include efficiency, reliability, stability, and capability to be scaled to higher powers. We have demonstrated that an optical phase-locked loop can be used to lock the frequency of two diode-pumped 1.06 micron Nd:YAG lasers to levels required for coherent communication. Monolithic nonplanar ring oscillators constructed from solid pieces of the laser material provide better than 10 kHz frequency stability over 0.1 sec intervals. We have used active feedback stabilization of the cavity length of these lasers to demonstrate 0.3 Hz frequency stabilization relative to a reference cavity. We have performed experiments and analysis to show that optical parametric oscillators (OPO's) reproduce the frequency stability of the pump laser in outputs that can be tuned to arbitrary wavelengths. Another measurement performed in this program has demonstrated the sub-shot-noise character of correlations of the fluctuations in the twin output of OPO's. Measurements of nonlinear optical coefficients by phase-matched second harmonic generation are helping to resolve inconsistency in these important parameters.

  6. Measurement of the main and critical parameters for optimal laser treatment of heart disease

    NASA Astrophysics Data System (ADS)

    Kabeya, FB; Abrahamse, H.; Karsten, AE

    2017-10-01

    Laser light is frequently used in the diagnosis and treatment of patients. As in traditional treatments such as medication, bypass surgery, and minimally invasive ways, laser treatment can also fail and present serious side effects. The true reason for laser treatment failure or the side effects thereof, remains unknown. From the literature review conducted, and experimental results generated we conclude that an optimal laser treatment for coronary artery disease (named heart disease) can be obtained if certain critical parameters are correctly measured and understood. These parameters include the laser power, the laser beam profile, the fluence rate, the treatment time, as well as the absorption and scattering coefficients of the target treatment tissue. Therefore, this paper proposes different, accurate methods for the measurement of these critical parameters to determine the optimal laser treatment of heart disease with a minimal risk of side effects. The results from the measurement of absorption and scattering properties can be used in a computer simulation package to predict the fluence rate. The computing technique is a program based on the random number (Monte Carlo) process and probability statistics to track the propagation of photons through a biological tissue.

  7. Control over high peak-power laser light and laser-driven X-rays

    NASA Astrophysics Data System (ADS)

    Zhao, Baozhen; Banerjee, Sudeep; Yan, Wenchao; Zhang, Ping; Zhang, Jun; Golovin, Grigory; Liu, Cheng; Fruhling, Colton; Haden, Daniel; Chen, Shouyuan; Umstadter, Donald

    2018-04-01

    An optical system was demonstrated that enables continuous control over the peak power level of ultrashort duration laser light. The optical characteristics of amplified and compressed femtosecond-duration light from a chirped-pulse amplification laser are shown to remain invariant and maintain high-fidelity using this system. When the peak power was varied by an order-of-magnitude, up to its maximum attainable value, the phase, spectral bandwidth, polarization state, and focusability of the light remained constant. This capability led to precise control of the focused laser intensity and enabled a correspondingly high level of control over the power of an all-laser-driven Thomson X-ray light source.

  8. All-fiber linearly polarized high power 2-μm single mode Tm-fiber laser for plastic processing and Ho-laser pumping applications

    NASA Astrophysics Data System (ADS)

    Scholle, K.; Schäfer, M.; Lamrini, S.; Wysmolek, M.; Steinke, M.; Neumann, J.; Fuhrberg, P.

    2018-02-01

    In this paper we present a high power, polarized 2 μm Thulium-doped fiber laser with high beam quality. Such laser systems are ideally suited for the processing of plastic materials which are highly transparent in the visible and 1 μm wavelength range and for the pumping of laser sources for the mid-IR wavelength region. For most applications polarized lasers are beneficial, as they can be easily protected from back reflections and combined with other laser sources or power scaled by polarization combining. The Tm-doped fiber laser is pumped in an all-fiber configuration by using a fiber coupled pump diode emitting around 790 nm. This pumping scheme allows the exploitation of the crossrelaxation process to populate the upper laser level. A compact and robust laser configuration was achieved by using an all-fiber configuration with single mode fibers and fiber Bragg gratings (FBG). Different FBG pairs with wavelength around 2 μm were tested. To achieve stable polarized output power the fibers with the FBG were 90° twisted at the splices. Stable linearly polarized output power up to 38 W with an extinction ratio of up to 50:1 was observed. With respect to the diode output power an optical-to-optical efficiency of 51 % was reached with a correspondent slope efficiency of 52 %. The emission linewidth at maximum power was measured to be < 0.3 nm which is well suitable for Ho-laser pumping. First tests of the precise processing of highly transparent plastic materials demonstrate the potentials of these laser systems.

  9. Room temperature continuous wave operation of quantum cascade laser at λ ~ 9.4 μm

    NASA Astrophysics Data System (ADS)

    Hou, Chuncai; Zhao, Yue; Zhang, Jinchuan; Zhai, Shenqiang; Zhuo, Ning; Liu, Junqi; Wang, Lijun; Liu, Shuman; Liu, Fengqi; Wang, Zhanguo

    2018-03-01

    Continuous wave (CW) operation of long wave infrared (LWIR) quantum cascade lasers (QCLs) is achieved up to a temperature of 303 K. For room temperature CW operation, the wafer with 35 stages was processed into buried heterostructure lasers. For a 2-mm-long and 10-μm-wide laser with high-reflectivity (HR) coating on the rear facet, CW output power of 45 mW at 283 K and 9 mW at 303 K is obtained. The lasing wavelength is around 9.4 μm locating in the LWIR spectrum range. Project supported by the National Key Research And Development Program (No. 2016YFB0402303), the National Natural Science Foundation of China (Nos. 61435014, 61627822, 61574136, 61774146, 61674144, 61404131), the Key Projects of Chinese Academy of Sciences (Nos. ZDRW-XH-2016-4, QYZDJ-SSW-JSC027), and the Beijing Natural Science Foundation (No. 4162060, 4172060).

  10. The development of fluorides for high power laser optics

    NASA Astrophysics Data System (ADS)

    Ready, J. F.; Vora, H.

    1980-07-01

    The laser assisted thermonuclear fusion program has need for improved optical materials with high transmission in the ultraviolet, and with low values of nonlinear index of refraction. Lithium fluoride possesses a combination of optical properties which are of use. Single crystalline LiF is limited by low mechanical strength. The technique of press forging to increase the mechanical strength is investigated. LiF single crystals were press forged over the temperature range 300 - 600 deg C to produce fine grained polycrystalline material. Optical homogenity at 633, stress birefringence, scattering at 633, residual absorption over the spectral range 339 - 3800 nm, and laser damage thresholds for 1 ns, 1064 nm and 700 ps, 266 nm laser pulses are evaluated. Single crystals can be press forged without seriously degrading their optical properties. Yield strength in compression, proportional limit and fracture strength in 3 and 4 point bending, fracture energy, and threshold for microyield are discussed.

  11. Optical Properties of Lithium Terbium Fluoride and Implications for Performance in High Power Lasers (Postprint)

    DTIC Science & Technology

    2016-02-01

    Maximum 200 words) LiTbF4 has the potential to replace traditional magneto-optic (MO) garnet materials as a Faraday rotator in high power laser systems...TERMS LiTbF4; magneto-optic (MO) garnet materials; Faraday rotator; high power laser; Verdet constant; Sellmeier; optical isolator 16. SECURITY... Faraday rotator in high power laser systems due to its high Verdet constant. New measurements are reported of the ordinary and extraor- dinary

  12. Atmospheric propagation and combining of high-power lasers.

    PubMed

    Nelson, W; Sprangle, P; Davis, C C

    2016-03-01

    In this paper, we analyze beam combining and atmospheric propagation of high-power lasers for directed-energy (DE) applications. The large linewidths inherent in high-power fiber and slab lasers cause random phase and intensity fluctuations that occur on subnanosecond time scales. Coherently combining these high-power lasers would involve instruments capable of precise phase control and operation at rates greater than ∼10  GHz. To the best of our knowledge, this technology does not currently exist. This presents a challenging problem when attempting to phase lock high-power lasers that is not encountered when phase locking low-power lasers, for example, at milliwatt power levels. Regardless, we demonstrate that even if instruments are developed that can precisely control the phase of high-power lasers, coherent combining is problematic for DE applications. The dephasing effects of atmospheric turbulence typically encountered in DE applications will degrade the coherent properties of the beam before it reaches the target. Through simulations, we find that coherent beam combining in moderate turbulence and over multikilometer propagation distances has little advantage over incoherent combining. Additionally, in cases of strong turbulence and multikilometer propagation ranges, we find nearly indistinguishable intensity profiles and virtually no difference in the energy on the target between coherently and incoherently combined laser beams. Consequently, we find that coherent beam combining at the transmitter plane is ineffective under typical atmospheric conditions.

  13. Green lasers are beyond power limits mandated by safety standards.

    PubMed

    Lee, M H; Fox, K; Goldwasser, S; Lau, D W M; Aliahmad, B; Sarossy, M

    2016-08-01

    There has been an increasing number of reports of people losing vision from laser exposure from pocket laser pointers despite the safety limit of 1 milliwatt (1mW) imposed by the Australian government. We hypothesize that this is because commercially available red and green laser pointers are exceeding their labeled power outputs. We tested the power outputs of 4 red and 4 green lasers which were purchased for less than AUD$30 each. The average of 10 measurements was recorded for each laser. We found that 3 out of 4 red lasers conformed to the 1mW safety standard; in contrast, all of the green lasers exceeded this limit, with one of the lasers recording an output of 127.9 mW. This contrast in compliance is explained by the construction of these lasers - green lasers are typically Diode Pumped Solid State (DPSS) lasers that can emit excessive infrared (IR) radiation with poor workmanship or inconsistent adherence to practices of safe design and quality control; red lasers are diode lasers which have limited power outputs due to `Catastrophic Optical Damage' (COD). Relevant professional bodies ought to advocate more strongly for stringent testing, quality control and licensing of DPSS lasers with a view towards government intervention to banning green laser pointer use.

  14. [Development of a High Power Green Laser Therapeutic Equipment for Hyperplasia of Prostate].

    PubMed

    Liang, Jie; Kang, Hongxiang; Shen, Benjian; Zhao, Lusheng; Wu, Xinshe; Chen, Peng; Chang, Aihong; Guo Hua; Guo, Jiayu

    2015-09-01

    The basic theory of high power green laser equipment for prostate hyperplasia therapy and the components of the system developed are introduced. Considering the requirements of the clinical therapy, the working process of the high power green laser apparatus are designed and the laser with stable output at 120 W is achieved. The controlling hardware and application software are developed, and the safety step is designed. The high power green laser apparatus manufactured with characteristics of stable output, multifunctional and friendly interface provides a choices of prostate hyperplasia therapy for using nationalization instrument.

  15. High-power and highly efficient diode-cladding-pumped holmium-doped fluoride fiber laser operating at 2.94 microm.

    PubMed

    Jackson, Stuart D

    2009-08-01

    A high-power diode-cladding-pumped Ho(3+), Pr(3+)-doped fluoride glass fiber laser is demonstrated. The laser produced a maximum output power of 2.5 W at a slope efficiency of 32% using diode lasers emitting at 1,150 nm. The long-emission wavelength of 2.94 microm measured at maximum pump power, which is particularly suited to medical applications, indicates that tailoring of the proportion of Pr(3+) ions can provide specific emission wavelengths while providing sufficient de-excitation of the lower laser level.

  16. A cladding-pumped, tunable holmium doped fiber laser.

    PubMed

    Simakov, Nikita; Hemming, Alexander; Clarkson, W Andrew; Haub, John; Carter, Adrian

    2013-11-18

    We present a tunable, high power cladding-pumped holmium doped fiber laser. The laser generated >15 W CW average power across a wavelength range of 2.043 - 2.171 μm, with a maximum output power of 29.7 W at 2.120 μm. The laser also produced 18.2 W when operating at 2.171 µm. To the best of our knowledge this is the highest power operation of a holmium doped laser at a wavelength >2.15 µm. We discuss the significance of background losses and fiber design for achieving efficient operation in holmium doped fibers.

  17. Diode-pumped continuous-wave Nd:Gd3Ga5O12 lasers at 1406, 1415 and 1423 nm

    NASA Astrophysics Data System (ADS)

    Lin, Haifeng; Zhu, Wenzhang; Xiong, Feibing; Ruan, Jianjian

    2018-05-01

    We report a diode-pumped continuous-wave Nd:Gd3Ga5O12 (GGG) laser operating at 1.4 μm spectral region. A dual-wavelength laser at 1423 and 1406 nm is achieved with output power of about 2.59 W at absorbed pump power of 13.4 W. Further increasing the pump power, simultaneous tri-wavelength laser at 1423, 1415 and 1406 nm is also obtained with a maximum output power of 3.96 W at absorbed pump power of 18.9 W. Single-wavelength lasing is also realized at the three emission lines using an intracavity etalon. The laser result is believed to be the highest output power achieved in Nd:GGG crystal, at present, to the best of our knowledge.

  18. Theoretical and experimental study on the Nd:YAG/BaWO4/KTP yellow laser generating 8.3 W output power.

    PubMed

    Cong, Zhenhua; Zhang, Xingyu; Wang, Qingpu; Liu, Zhaojun; Chen, Xiaohan; Fan, Shuzhen; Zhang, Xiaolei; Zhang, Huaijin; Tao, Xutang; Li, Shutao

    2010-06-07

    A diode-side-pumped actively Q-switched intracavity frequency-doubled Nd:YAG/BaWO(4)/KTP Raman laser is studied experimentally and theoretically. Rate equations are used to analyze the Q-switched yellow laser by considering the transversal distributions of the intracavity photon density and the inversion population density. An 8.3 W 590 nm laser is obtained with a 125.8 W 808 nm pump power and a 15 kHz pulse repetition frequency. The corresponding optical conversion efficiency from diode laser to yellow laser is 6.57%, much higher than that of the former reported side-pumped yellow laser. The output powers with respect to the incident pump power are in agreement with the theoretical results on the whole.

  19. E-beam-pumped semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Rice, Robert R.; Shanley, James F.; Ruggieri, Neil F.

    1995-04-01

    The collapse of the Soviet Union opened many areas of laser technology to the West. E-beam- pumped semiconductor lasers (EBSL) were pursued for 25 years in several Soviet Institutes. Thin single crystal screens of II-VI alloys (ZnxCd1-xSe, CdSxSe1-x) were incorporated in laser CRTs to produce scanned visible laser beams at average powers greater than 10 W. Resolutions of 2500 lines were demonstrated. MDA-W is conducting a program for ARPA/ESTO to assess EBSL technology for high brightness, high resolution RGB laser projection application. Transfer of II-VI crystal growth and screen processing technology is underway, and initial results will be reported. Various techniques (cathodoluminescence, one- and two-photon laser pumping, etc.) have been used to assess material quality and screen processing damage. High voltage (75 kV) video electronics were procured in the U.S. to operate test EBSL tubes. Laser performance was documented as a function of screen temperature, beam voltage and current. The beam divergence, spectrum, efficiency and other characteristics of the laser output are being measured. An evaluation of the effect of laser operating conditions upon the degradation rate is being carried out by a design-of-experiments method. An initial assessment of the projected image quality will be performed.

  20. Method and apparatus for monitoring the power of a laser beam

    DOEpatents

    Paris, R.D.; Hackel, R.P.

    1996-02-06

    A method for monitoring the power of a laser beam in real time is disclosed. At least one optical fiber is placed through the laser beam, where a portion of light from the laser beam is coupled into the optical fiber. The optical fiber may be maintained in a stationary position or moved periodically over a cross section of the laser beam to couple light from each area traversed. Light reaching both fiber ends is monitored according to frequency and processed to determine the power of the laser beam. 6 figs.

  1. Method and apparatus for monitoring the power of a laser beam

    DOEpatents

    Paris, Robert D.; Hackel, Richard P.

    1996-01-01

    A method for monitoring the power of a laser beam in real time is disclosed. At least one optical fiber is placed through the laser beam, where a portion of light from the laser beam is coupled into the optical fiber. The optical fiber may be maintained in a stationary position or moved periodically over a cross section of the laser beam to couple light from each area traversed. Light reaching both fiber ends is monitored according to frequency and processed to determine the power of the laser beam.

  2. Beam-guidance optics for high-power fiber laser systems

    NASA Astrophysics Data System (ADS)

    Mohring, Bernd; Tassini, Leonardo; Protz, Rudolf; Zoz, Jürgen

    2013-05-01

    The realization of a high-energy laser weapon system by coupling a large number of industrial high-power fiber lasers is investigated. To perform the combination of the individual beams of the different fiber lasers within the optical path of the laser weapon, a special optical set-up is used. Each optical component is realized either as reflective component oras refractive optics. Both possibilities were investigated by simulations and experiments. From the results, the general aspects for the layout of the beam-guidance optics for a high-power fiber laser system are derived.

  3. Gasdynamic lasers and photon machines.

    NASA Technical Reports Server (NTRS)

    Christiansen, W. H.; Hertzberg, A.

    1973-01-01

    The basic operational highlights of CO2-N2 gasdynamic lasers (GDL's) are described. Features common to powerful gas lasers are indicated. A simplified model of the vibrational kinetics of the system is presented, and the importance of rapid expansion nozzles is shown from analytic solutions of the equations. A high-power pulsed GDL is described, along with estimations of power extraction. A closed-cycle laser is suggested, leading to a description of a photon generator/engine. Thermodynamic analysis of the closed-cycle laser illustrates in principle the possibility of direct conversion of laser energy to work.

  4. Analysis of UV-excited fluorochromes by flow cytometry using near-ultraviolet laser diodes.

    PubMed

    Telford, William G

    2004-09-01

    Violet laser diodes have become common and reliable laser sources for benchtop flow cytometers. While these lasers are very useful for a variety of violet and some ultraviolet-excited fluorochromes (e.g., DAPI), they do not efficiently excite most UV-stimulated probes. In this study, the next generation of InGaN near-UV laser diodes (NUVLDs) emitting in the 370-375-nm range have been evaluated as laser sources for cuvette-based flow cytometers. Several NUVLDs, ranging in wavelength from 370 to 374 nm and in power level from 1.5 to 10 mW, were mounted on a BD Biosciences LSR II and evaluated for their ability to excite cells labeled with the UV DNA binding dye DAPI, several UV phenotyping fluorochromes (including Alexa Fluor 350, Marina Blue, and quantum dots), and the fluorescent calcium chelator indo-1. NUVLDs at the 8-10-mW power range gave detection sensitivity levels comparable to more powerful solid-state and ion laser sources, using low-fluorescence microsphere beads as measurement standards. NUVLDs at all tested power levels allowed extremely high-resolution DAPI cell cycle analysis, and sources in the 8-10-mW power range excited Alexa Fluor 350, Marina Blue, and a variety of quantum dots at virtually the same signal-to-noise ratios as more powerful UV sources. These evaluations indicate that near-UV laser diodes installed on a cuvette-based flow cytometer performed nearly as well as more powerful solid-state UV lasers on the same instrumentation, and comparably to more powerful ion lasers on a jet-in-air system, and. Despite their limited power, integration of these small and inexpensive lasers into benchtop flow cytometers should allow the use of flow cytometric applications requiring UV excitation on a wide variety of instruments. Copyright 2004 Wiley-Liss, Inc.

  5. Completely monolithic linearly polarized high-power fiber laser oscillator

    NASA Astrophysics Data System (ADS)

    Belke, Steffen; Becker, Frank; Neumann, Benjamin; Ruppik, Stefan; Hefter, Ulrich

    2014-03-01

    We have demonstrated a linearly polarized cw all-in-fiber oscillator providing 1 kW of output power and a polarization extinction ratio (PER) of up to 21.7 dB. The design of the laser oscillator is simple and consists of an Ytterbium-doped polarization maintaining large mode area (PLMA) fiber and suitable fiber Bragg gratings (FBG) in matching PLMA fibers. The oscillator has nearly diffraction-limited beam quality (M² < 1.2). Pump power is delivered via a high power 6+1:1 pump coupler. The slope efficiency of the laser is 75 %. The electro/optical efficiency of the complete laser system is ~30 % and hence in the range of Rofin's cw non-polarized fiber lasers. Choosing an adequate bending diameter for the Yb-doped PLMA fiber, one polarization mode as well as higher order modes are sufficiently supressed1. Resulting in a compact and robust linearly polarized high power single mode laser without external polarizing components. Linearly polarized lasers are well established for one dimensional cutting or welding applications. Using beam shaping optics radially polarized laser light can be generated to be independent from the angle of incident to the processing surface. Furthermore, high power linearly polarized laser light is fundamental for nonlinear frequency conversion of nonlinear materials.

  6. 11-kW direct diode laser system with homogenized 55 × 20 mm2 Top-Hat intensity distribution

    NASA Astrophysics Data System (ADS)

    Köhler, Bernd; Noeske, Axel; Kindervater, Tobias; Wessollek, Armin; Brand, Thomas; Biesenbach, Jens

    2007-02-01

    In comparison with other laser systems diode lasers are characterized by a unique overall efficiency, a small footprint and high reliability. However, one major drawback of direct diode laser systems is the inhomogeneous intensity distribution in the far field. Furthermore the output power of current commercially available systems is limited to about 6 kW. We report on a diode laser system with 11 kW output power at a single wavelength of 940 nm aiming for customer specific large area treatment. To the best of our knowledge this is the highest output power reported so far for a direct diode laser system. In addition to the high output power the intensity distribution of the laser beam is homogenized in both axes leading to a 55 x 20 mm2 Top-Hat intensity profile at a working distance of 400 mm. Homogeneity of the intensity distribution is better than 90%. The intensity in the focal plane is 1 kW/cm2. We will present a detailed characterization of the laser system, including measurements of power, power stability and intensity distribution of the homogenized laser beam. In addition we will compare the experimental data with the results of non-sequential raytracing simulations.

  7. High power laser perforating tools and systems

    DOEpatents

    Zediker, Mark S; Rinzler, Charles C; Faircloth, Brian O; Koblick, Yeshaya; Moxley, Joel F

    2014-04-22

    ystems devices and methods for the transmission of 1 kW or more of laser energy deep into the earth and for the suppression of associated nonlinear phenomena. Systems, devices and methods for the laser perforation of a borehole in the earth. These systems can deliver high power laser energy down a deep borehole, while maintaining the high power to perforate such boreholes.

  8. High power laser workover and completion tools and systems

    DOEpatents

    Zediker, Mark S; Rinzler, Charles C; Faircloth, Brian O; Koblick, Yeshaya; Moxley, Joel F

    2014-10-28

    Workover and completion systems, devices and methods for utilizing 10 kW or more laser energy transmitted deep into the earth with the suppression of associated nonlinear phenomena. Systems and devices for the laser workover and completion of a borehole in the earth. These systems and devices can deliver high power laser energy down a deep borehole, while maintaining the high power to perform laser workover and completion operations in such boreholes deep within the earth.

  9. Numerical and experimental determination of weld pool shape during high-power diode laser welding

    NASA Astrophysics Data System (ADS)

    Klimpel, Andrzej; Lisiecki, Aleksander; Szymanski, Andrzej; Hoult, Anthony P.

    2003-10-01

    In this paper, results of investigations on the shape of weld pool during High Power Diode Laser (HPDL) welding are presented. The results of tests showed that the shape of weld pool and mechanism of laser welding with a rectangular pattern of 808 nm laser radiation differs distinctly from previous laser welding mechanisms. For all power densities the conduction mode welds were observed and weld pool geometry depends significantly on the welding parameters.

  10. Laser output power stabilization for direct laser writing system by using an acousto-optic modulator.

    PubMed

    Kim, Dong Ik; Rhee, Hyug-Gyo; Song, Jae-Bong; Lee, Yun-Woo

    2007-10-01

    We present experimental results on the output power stabilization of an Ar(+) laser for a direct laser writing system (LWS). Instability of the laser output power in the LWS cause resolution fluctuations of being fabricated diffractive optical elements or computer-generated holograms. For the purpose of reducing the power fluctuations, we have constituted a feedback loop with an acousto-optic modulator, a photodetector, and a servo controller. In this system, we have achieved the stability of +/-0.20% for 12 min and the relative intensity noise level of 2.1 x 10(-7) Hz(-12) at 100 Hz. In addition, we applied our system to a 2 mW internal mirror He-Ne laser. As a consequence, we achieved the output power stability of +/-0.12% for 25 min.

  11. Atmospheric propagation of high power laser radiation at different weather conditions

    NASA Astrophysics Data System (ADS)

    Pargmann, Carsten; Hall, Thomas; Duschek, Frank; Handke, Jürgen

    2016-05-01

    Applications based on the propagation of high power laser radiation through the atmosphere are limited in range and effect, due to weather dependent beam wandering, beam deterioration, and scattering processes. Security and defense related application examples are countermeasures against hostile projectiles and the powering of satellites and aircrafts. For an examination of the correlations between weather condition and laser beam characteristics DLR operates at Lampoldshausen a 130 m long free transmission laser test range. Sensors around this test range continuously monitor turbulence strength, visibility, precipitation, temperature, and wind speed. High power laser radiation is obtained by a TruDisk 6001 disk laser (Trumpf company) yielding a maximum output power of 6 kW at a wavelength of 1030 nm. The laser beam is expanded to 180 mm and focused along the beam path. Power and intensity distribution are measured before and after propagation, providing information about the atmospheric transmission and alterations of diameter and position of the laser beam. Backscattered laser light is acquired by a photo receiver. As a result, measurements performed at different weather conditions show a couple of correlations to the characteristics of the laser beam. The experimental results are compared to a numerical analysis. The calculations are based on the Maxwell wave equation in Fresnel approximation. The turbulence is considered by the introduction of phase screens and the "von Karman" spectrum.

  12. Modeling of high efficiency solar cells under laser pulse for power beaming applications

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.; Landis, Geoffrey A.

    1994-01-01

    Solar cells have been used to convert sunlight to electrical energy for many years and also offer great potential for non-solar energy conversion applications. Their greatly improved performance under monochromatic light compared to sunlight, makes them suitable as photovoltaic (PV) receivers in laser power beaming applications. Laser beamed power to a PV array receiver could provide power to satellites, an orbital transfer vehicle, or a lunar base. Gallium arsenide (GaAs) and indium phosphide (InP) solar cells have calculated efficiencies of more than 50 percent under continuous illumination at the optimum wavelength. Currently high power free-electron lasers are being developed which operate in pulsed conditions. Understanding cell behavior under a laser pulse is important in the selection of the solar cell material and the laser. An experiment by NAsA lewis and JPL at the AVLIS laser facility in Livermore, CA presented experimental data on cell performance under pulsed laser illumination. Reference 5 contains an overview of technical issues concerning the use of solar cells for laser power conversion, written before the experiments were performed. As the experimental results showed, the actual effects of pulsed operation are more complicated. Reference 6 discusses simulations of the output of GaAs concentrator solar cells under pulsed laser illumination. The present paper continues this work, and compares the output of Si and GaAs solar cells.

  13. Efficient high-power narrow-linewidth all-fibred linearly polarized ytterbium laser source

    NASA Astrophysics Data System (ADS)

    Bertrand, Anthony; Liégeois, Flavien; Hernandez, Yves; Giannone, Domenico

    2012-06-01

    We report on experimental results on a high power, all-fibred, linearly polarized, mode-locked laser at 1.03 μm. The laser generates pulses of 40 ps wide at a repetition rate of 52 MHz, exhibiting 12 kW peak power. Dispersion in optical fibres is controlled to obtain both high power and narrow spectral linewidth. The average output power reached is 25 W with a spectral linewidth of 380 pm and a near diffraction limit beam (M2 < 1.2). This laser is an ideal candidate for applications like IR spectroscopy, where high peak power and narrow linewidth are required for subsequent wavelength conversion.

  14. Training and use of lasers in postgraduate orthodontic programs in the United States and Canada.

    PubMed

    Dansie, Chase O; Park, Jae Hyun; Makin, Inder Raj S

    2013-06-01

    This study was designed to determine if orthodontic residents are being trained to use lasers in the postgraduate orthodontic residency programs of the United States and Canada. An anonymous electronic survey was sent to the program director/chair of each of the seventy orthodontic residency programs, and thirty-seven (53 percent) of the programs responded. Of these thirty-seven programs, twenty-eight (76 percent) reported providing patient treatment with lasers in the orthodontic graduate program, eight (22 percent) said they do not provide treatment in the orthodontic graduate program, and one program (3 percent) reported providing laser training but not using lasers on patients. Gingivectomy and canine exposure were reported as the most common procedures that residents perform with a laser, while debonding of orthodontic brackets was the least common procedure performed with a laser. A diode laser was the most common type of laser used. Of the eight programs (22 percent) not offering laser training, four indicated having no plans to begin using lasers or training on their use. The other four indicated that they have plans to incorporate laser use in the future.

  15. Method and apparatus for reading thermoluminescent phosphors

    DOEpatents

    Braunlich, Peter F.; Tetzlaff, Wolfgang

    1987-01-01

    An apparatus and method for rapidly reading thermoluminescent phosphors to determine the amount of luminescent energy stored therein. The stored luminescent energy is interpreted as a measure of the total exposure of the thermoluminescent phosphor to ionizing radiation. The thermoluminescent phosphor reading apparatus uses a laser to generate a laser beam. The laser beam power level is monitored by a laser power detector and controlled to maintain the power level nearly constant. A shutter or other laser beam interrupting means is used to control exposure of the thermoluminescent phosphor to the laser beam. The laser beam can be equalized using an optical equalizer so that the laser beam has an approximately uniform power density across the beam. The heated thermoluminescent phosphor emits a visible or otherwise detectable luminescent emission which is measured as an indication of the radiation exposure of the thermoluminescent phosphors. Also disclosed are preferred signal processing and control circuits.

  16. Study, optimization, and design of a laser heat engine. [for satellite applications

    NASA Technical Reports Server (NTRS)

    Taussig, R. T.; Cassady, P. E.; Zumdieck, J. F.

    1978-01-01

    Laser heat engine concepts, proposed for satellite applications, are analyzed to determine which engine concept best meets the requirements of high efficiency (50 percent or better), continuous operation in space using near-term technology. The analysis of laser heat engines includes the thermodynamic cycles, engine design, laser power sources, collector/concentrator optics, receiving windows, absorbers, working fluids, electricity generation, and heat rejection. Specific engine concepts, optimized according to thermal efficiency, are rated by their technological availability and scaling to higher powers. A near-term experimental demonstration of the laser heat engine concept appears feasible utilizing an Otto cycle powered by CO2 laser radiation coupled into the engine through a diamond window. Higher cycle temperatures, higher efficiencies, and scalability to larger sizes appear to be achievable from a laser heat engine design based on the Brayton cycle and powered by a CO laser.

  17. New generation of compact high power disk lasers

    NASA Astrophysics Data System (ADS)

    Feuchtenbeiner, Stefanie; Zaske, Sebastian; Schad, Sven-Silvius; Gottwald, Tina; Kuhn, Vincent; Kumkar, Sören; Metzger, Bernd; Killi, Alexander; Haug, Patrick; Speker, Nicolai

    2018-02-01

    New technological developments in high power disk lasers emitting at 1030 nm are presented. These include the latest generation of TRUMPF's TruDisk product line offering high power disk lasers with up to 6 kW output power and beam qualities of up to 4 mm*mrad. With these compact devices a footprint reduction of 50% compared to the previous model could be achieved while at the same time improving robustness and increasing system efficiency. In the context of Industry 4.0, the new generation of TruDisk lasers features a synchronized data recording of all sensors, offering high-quality data for virtual analyses. The lasers therefore provide optimal hardware requirements for services like Condition Monitoring and Predictive Maintenance. We will also discuss its innovative and space-saving cooling architecture. It allows operation of the laser under very critical ambient conditions. Furthermore, an outlook on extending the new disk laser platform to higher power levels will be given. We will present a disk laser with 8 kW laser power out of a single disk with a beam quality of 5 mm*mrad using a 125 μm fiber, which makes it ideally suited for cutting and welding applications. The flexibility of the disk laser platform also enables the realization of a wide variety of beam guiding setups. As an example a new scheme called BrightLine Weld will be discussed. This technology allows for an almost spatter free laser welding process, even at high feed rates.

  18. Enhancement of laser power-efficiency by control of spatial hole burning interactions

    NASA Astrophysics Data System (ADS)

    Ge, Li; Malik, Omer; Türeci, Hakan E.

    2014-11-01

    The laser is an out-of-equilibrium nonlinear wave system where the interplay of the cavity geometry and nonlinear wave interactions mediated by the gain medium determines the self-organized oscillation frequencies and the associated spatial field patterns. In the steady state, a constant energy flux flows through the laser from the pump to the far field, with the ratio of the total output power to the input power determining the power-efficiency. Although nonlinear wave interactions have been modelled and well understood since the early days of laser theory, their impact on the power-efficiency of a laser system is poorly understood. Here, we show that spatial hole burning interactions generally decrease the power-efficiency. We then demonstrate how spatial hole burning interactions can be controlled by a spatially tailored pump profile, thereby boosting the power-efficiency, in some cases by orders of magnitude.

  19. Influence of resonator length on catastrophic optical damage in high-power AlGaInP broad-area lasers

    NASA Astrophysics Data System (ADS)

    Bou Sanayeh, Marwan

    2017-05-01

    The increasing importance of extracting high optical power out of semiconductor lasers motivated several studies in catastrophic optical damage (COD) level improvement. In this study, the influence of the resonator length in high-power broad-area (BA) AlGaInP lasers on COD is presented. For the analyses, several 638 nm AlGaInP 60 μm BA lasers from the same wafer were used. Resonator lengths of 900, 1200, 1500, and 1800 μm were compared. In order to independently examine the effect of the resonator length on the maximum power reached by the lasers before COD (PCOD), the lasers used are uncoated and unmounted, and PCOD under pulsed mode was determined. It was found that higher output powers and eventually higher PCOD can be achieved using longer resonators; however, it was also found that this is mainly useful when working at high output powers far away from the laser threshold, since the threshold current and slope efficiency worsen when the resonator length increases.

  20. High power laser-mechanical drilling bit and methods of use

    DOEpatents

    Grubb, Daryl L.; Kolachalam, Sharath K.; Faircloth, Brian O.; Rinzler, Charles C.; Allen, Erik C.; Underwood, Lance D.; Zediker, Mark S.

    2017-02-07

    An apparatus with a high power laser-mechanical bit for use with a laser drilling system and a method for advancing a borehole. The laser-mechanical bit has a beam path and mechanical removal devices that provide for the removal of laser-affected rock to advance a borehole.

  1. Nonimaging concentrators for diode-pumped slab lasers

    NASA Astrophysics Data System (ADS)

    Lacovara, Philip; Gleckman, Philip L.; Holman, Robert L.; Winston, Roland

    1991-10-01

    Diode-pumped slab lasers require concentrators for high-average power operation. We detail the properties of diode lasers and slab lasers which set the concentration requirements and the concentrator design methodologies that are used, and describe some concentrator designs used in high-average power slab lasers at Lincoln Laboratory.

  2. Laser technologies for ultrasensitive groundwater dating using long-lived isotopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Backus, Sterling

    In this phase I work, we propose to construct and demonstrate a 103 nm laser based on resonantly enhanced and phase matched fifth harmonic generation in hollow waveguides driven by a high power, low cost and compact ultrafast fiber laser. (Figure 4) This VUV laser source can potentially produce >100 milliwatts of VUV light at 103 nm with pulse repetition-rates of 100 kHz to 100 MHz, ideal for the above-mentioned applications. This technology is state-of-the-art and potentially compact, fieldable, low-cost, and of broad interest for a variety of science and technology applications. Laser-based VUV sources in the past have exhibitedmore » low repetition rate, low efficiency, low beam quality, and are based on expensive laser sources. Our approch is to combine ultrafast fiber laser drive technology, ultrafast pulses, and our proven waveguide technology, to create a high repetition rate, high average power VUV source for producing high yield metastable Krypton. At KMLabs we have been offering EUV light sources employing the high harmonic generation (HHG) process driven by high-power femtosecond lasers for >5 years now. Recently, we have developed much smaller scale (briefcase size), but still high average power femtosecond fiber laser sources to supply other markets, and create new ones. By combining these new laser sources with our patented waveguide frequency upconversion technology, we expect to be able to obtain >20mW average power initially, with potentially much higher powers depending on wavelength, in an affordable VUV product. For comparison, our current EUV light sources based on ti:sapphire generate an average power of ~5 µW (albeit at shorter 29 nm wavelength), and we are aware of one other supplier that has developed a VUV (112 nm) light source with ~10-20 µW power.« less

  3. Finite element analysis of space debris removal by high-power lasers

    NASA Astrophysics Data System (ADS)

    Xue, Li; Jiang, Guanlei; Yu, Shuang; Li, Ming

    2015-08-01

    With the development of space station technologies, irradiation of space debris by space-based high-power lasers, can locally generate high-temperature plasmas and micro momentum, which may achieve the removal of debris through tracking down. Considered typical square-shaped space debris of material Ti with 5cm×5cm size, whose thermal conductivity, density, specific heat capacity and emissivity are 7.62W/(m·°C), 4500kg/m3, 0.52J/(kg·°C) and 0.3,respectively, based on the finite element analysis of ANSYS, each irradiation of space debris by high-power lasers with power density 106W/m2 and weapons-grade lasers with power density 3000W/m2 are simulated under space environment, and the temperature curves due to laser thermal irradiation are obtained and compared. Results show only 2s is needed for high-power lasers to make the debris temperature reach to about 10000K, which is the threshold temperature for plasmas-state conversion. While for weapons-grade lasers, it is 13min needed. Using two line elements (TLE), and combined with the coordinate transformation from celestial coordinate system to site coordinate system, the visible period of space debris is calculated as 5-10min. That is, in order to remove space debris by laser plasmas, the laser power density should be further improved. The article provides an intuitive and visual feasibility analysis method of space debris removal, and the debris material and shape, laser power density and spot characteristics are adjustable. This finite element analysis method is low-cost, repeatable and adaptable, which has an engineering-prospective applications.

  4. Direct diode lasers and their advantages for materials processing and other applications

    NASA Astrophysics Data System (ADS)

    Fritsche, Haro; Ferrario, Fabio; Koch, Ralf; Kruschke, Bastian; Pahl, Ulrich; Pflueger, Silke; Grohe, Andreas; Gries, Wolfgang; Eibl, Florian; Kohl, Stefanie; Dobler, Michael

    2015-03-01

    The brightness of diode lasers is improving continuously and has recently started to approach the level of some solid state lasers. The main technology drivers over the last decade were improvements of the diode laser output power and divergence, enhanced optical stacking techniques and system design, and most recently dense spectral combining. Power densities at the work piece exceed 1 MW/cm2 with commercially available industrial focus optics. These power densities are sufficient for cutting and welding as well as ablation. Single emitter based diode laser systems further offer the advantage of fast current modulation due their lower drive current compared to diode bars. Direct diode lasers may not be able to compete with other technologies as fiber or CO2-lasers in terms of maximum power or beam quality. But diode lasers offer a range of features that are not possible to implement in a classical laser. We present an overview of those features that will make the direct diode laser a very valuable addition in the near future, especially for the materials processing market. As the brightness of diode lasers is constantly improving, BPP of less than 5mm*mrad have been reported with multikW output power. Especially single emitter-based diode lasers further offer the advantage of very fast current modulation due to their low drive current and therefore low drive voltage. State of the art diode drivers are already demonstrated with pulse durations of <10μs and repetition rates can be adjusted continuously from several kHz up to cw mode while addressing power levels from 0-100%. By combining trigger signals with analog modulations nearly any kind of pulse form can be realized. Diode lasers also offer a wide, adaptable range of wavelengths, and wavelength stabilization. We report a line width of less than 0.1nm while the wavelength stability is in the range of MHz which is comparable to solid state lasers. In terms of applications, especially our (broad) wavelength combining technology for power scaling opens the window to new processes of cutting or welding and process control. Fast power modulation through direct current control allows pulses of several microseconds with hundreds of watts average power. Spot sizes of less than 100 μm are obtained at the work piece. Such a diode system allows materials processing with a pulse parameter range that is hardly addressed by any other laser system. High productivity material ablation with cost effective lasers is enabled. The wide variety of wavelengths, high brightness, fast power modulation and high efficiency of diode lasers results in a strong pull of existing markets, but also spurs the development of a wide variety of new applications.

  5. Closed cycle electric discharge laser design investigation

    NASA Technical Reports Server (NTRS)

    Baily, P. K.; Smith, R. C.

    1978-01-01

    Closed cycle CO2 and CO electric discharge lasers were studied. An analytical investigation assessed scale-up parameters and design features for CO2, closed cycle, continuous wave, unstable resonator, electric discharge lasing systems operating in space and airborne environments. A space based CO system was also examined. The program objectives were the conceptual designs of six CO2 systems and one CO system. Three airborne CO2 designs, with one, five, and ten megawatt outputs, were produced. These designs were based upon five minute run times. Three space based CO2 designs, with the same output levels, were also produced, but based upon one year run times. In addition, a conceptual design for a one megawatt space based CO laser system was also produced. These designs include the flow loop, compressor, and heat exchanger, as well as the laser cavity itself. The designs resulted in a laser loop weight for the space based five megawatt system that is within the space shuttle capacity. For the one megawatt systems, the estimated weight of the entire system including laser loop, solar power generator, and heat radiator is less than the shuttle capacity.

  6. Effects of laser power density and initial grain size in laser shock punching of pure copper foil

    NASA Astrophysics Data System (ADS)

    Zheng, Chao; Zhang, Xiu; Zhang, Yiliang; Ji, Zhong; Luan, Yiguo; Song, Libin

    2018-06-01

    The effects of laser power density and initial grain size on forming quality of holes in laser shock punching process were investigated in the present study. Three different initial grain sizes as well as three levels of laser power densities were provided, and then laser shock punching experiments of T2 copper foil were conducted. Based upon the experimental results, the characteristics of shape accuracy, fracture surface morphology and microstructures of punched holes were examined. It is revealed that the initial grain size has a noticeable effect on forming quality of holes punched by laser shock. The shape accuracy of punched holes degrades with the increase of grain size. As the laser power density is enhanced, the shape accuracy can be improved except for the case in which the ratio of foil thickness to initial grain size is approximately equal to 1. Compared with the fracture surface morphology in the quasistatic loading conditions, the fracture surface after laser shock can be divided into three zones including rollover, shearing and burr. The distribution of the above three zones strongly relates with the initial grain size. When the laser power density is enhanced, the shearing depth is not increased, but even diminishes in some cases. There is no obvious change of microstructures with the enhancement of laser power density. However, while the initial grain size is close to the foil thickness, single-crystal shear deformation may occur, suggesting that the ratio of foil thickness to initial grain size has an important impact on deformation behavior of metal foil in laser shock punching process.

  7. Laser multiplexing system

    DOEpatents

    Johnson, Steve A.; English, Jr., Ronald Edward; White, Ronald K.

    2001-01-01

    A plurality of copper lasers, as radiant power sources, emits a beam of power carrying radiation. A plurality of fiber injection assemblies receives power from the plurality of copper lasers and injects such power into a plurality of fibers for individually transmitting the received power to a plurality of power-receiving devices. The power-transmitting fibers of the system are so arranged that power is delivered therethrough to each of the power-receiving devices such that, even if a few of the radiant power sources and/or fibers fail, the power supply to any of the power receiving devices will not completely drop to zero but will drop by the same proportionate amount.

  8. Effect of Laser Power and Scan Speed on Melt Pool Characteristics of Commercially Pure Titanium (CP-Ti)

    NASA Astrophysics Data System (ADS)

    Kusuma, Chandrakanth; Ahmed, Sazzad H.; Mian, Ahsan; Srinivasan, Raghavan

    2017-07-01

    Selective laser melting (SLM) is an additive manufacturing technique that creates complex parts by selectively melting metal powder layer-by-layer using a laser. In SLM, the process parameters decide the quality of the fabricated component. In this study, single beads of commercially pure titanium (CP-Ti) were melted on a substrate of the same material using an in-house built SLM machine. Multiple combinations of laser power and scan speed were used for single bead fabrication, while the laser beam diameter and powder layer thickness were kept constant. This experimental study investigated the influence of laser power, scan speed, and laser energy density on the melt pool formation, surface morphology, geometry (width and height), and hardness of solidified beads. In addition, the observed unfavorable effect such as inconsistency in melt pool width formation is discussed. The results show that the quality, geometry, and hardness of solidified melt pool are significantly affected by laser power, scanning speed, and laser energy density.

  9. Research and development of neodymium phosphate laser glass for high power laser application

    NASA Astrophysics Data System (ADS)

    Hu, Lili; He, Dongbing; Chen, Huiyu; Wang, Xin; Meng, Tao; Wen, Lei; Hu, Junjiang; Xu, Yongchun; Li, Shunguang; Chen, Youkuo; Chen, Wei; Chen, Shubin; Tang, Jingping; Wang, Biao

    2017-01-01

    Neodymium phosphate laser glass is a key optical element for high-power laser facility. In this work, the latest research and development of neodymium phosphate laser glass at the Shanghai Institute of Optics and Fine Mechanics (SIOM), China, is addressed. Neodymium phosphate laser glasses, N31, N41, NAP2, and NAP4, for high peak power and high average power applications have been developed. The properties of these glasses are presented and compared to those of other commercial neodymium phosphate laser glass from the Schott and Hoya companies and the Vavilov State Optical Institute (GOI), Russia. Continuous melting and edge cladding are the two key fabrication techniques that are used for the mass production of neodymium phosphate laser glass slabs. These techniques for the fabrication of large-aperture N31 neodymium phosphate laser glass slabs with low stress birefringence and residual reflectivity have been developed by us The effect of acid etching on the microstructure, optical transmission, and mechanical properties of NAP2 glass is also discussed.

  10. Research and development of neodymium phosphate laser glass for high power laser application

    NASA Astrophysics Data System (ADS)

    Hu, Lili; He, Dongbing; Chen, Huiyu; Wang, Xin; Meng, Tao; Wen, Lei; Hu, Junjiang; Xu, Yongchun; Li, Shunguang; Chen, Youkuo; Chen, Wei; Chen, Shubin; Tang, Jingping; Wang, Biao

    2016-12-01

    Neodymium phosphate laser glass is a key optical element for high-power laser facility. In this work, the latest research and development of neodymium phosphate laser glass at the Shanghai Institute of Optics and Fine Mechanics (SIOM), China, is addressed. Neodymium phosphate laser glasses, N31, N41, NAP2, and NAP4, for high peak power and high average power applications have been developed. The properties of these glasses are presented and compared to those of other commercial neodymium phosphate laser glass from the Schott and Hoya companies and the Vavilov State Optical Institute (GOI), Russia. Continuous melting and edge cladding are the two key fabrication techniques that are used for the mass production of neodymium phosphate laser glass slabs. These techniques for the fabrication of large-aperture N31 neodymium phosphate laser glass slabs with low stress birefringence and residual reflectivity have been developed by us The effect of acid etching on the microstructure, optical transmission, and mechanical properties of NAP2 glass is also discussed.

  11. A solar simulator-pumped gas laser for the direct conversion of solar energy

    NASA Technical Reports Server (NTRS)

    Weaver, W. R.; Lee, J. H.

    1981-01-01

    Most proposed space power systems are comprised of three general stages, including the collection of the solar radiation, the conversion to a useful form, and the transmission to a receiver. The solar-pumped laser, however, effectively eliminates the middle stage and offers direct photon-to-photon conversion. The laser is especially suited for space-to-space power transmission and communication because of minimal beam spread, low power loss over large distances, and extreme energy densities. A description is presented of the first gas laser pumped by a solar simulator that is scalable to high power levels. The lasant is an iodide C3F7I that as a laser-fusion driver has produced terawatt peak power levels.

  12. Analysis of laser jamming to satellite-based detector

    NASA Astrophysics Data System (ADS)

    Wang, Si-wen; Guo, Li-hong; Guo, Ru-hai

    2009-07-01

    The reconnaissance satellite, communication satellite and navigation satellite used in the military applications have played more and more important role in the advanced technique wars and already become the significant support and aid system for military actions. With the development of all kinds of satellites, anti-satellite laser weapons emerge as the times require. The experiments and analyses of laser disturbing CCD (charge coupled detector) in near ground have been studied by many research groups, but their results are not suitable to the case that using laser disturbs the satellite-based detector. Because the distance between the satellite-based detector and the ground is very large, it is difficult to damage it directly. However the optical receive system of satellite detector has large optical gain, so laser disturbing satellite detector is possible. In order to determine its feasibility, the theoretical analyses and experimental study are carried out in the paper. Firstly, the influence factors of laser disturbing satellite detector are analyzed in detail, which including laser power density on the surface of the detector after long distance transmission, and laser power density threshold for disturbing etc. These factors are not only induced by the satellite orbit, but dependence on the following parameters: laser average power in the ground, laser beam quality, tracing and aiming precision and atmospheric transmission. A calculation model is developed by considering all factors which then the power density entering into the detector can be calculated. Secondly, the laser disturbing experiment is performed by using LD (laser diode) with the wavelength 808 nm disturbing CCD 5 kilometer away, which the disturbing threshold value is obtained as 3.55×10-4mW/cm2 that coincides with other researcher's results. Finally, using the theoretical model, the energy density of laser on the photosensitive surface of MSTI-3 satellite detector is estimated as about 100mW/cm2, which is largely exceed the disturbing threshold and therefore verify the feasibility of using this kind of laser disturbing the satellite-based detector. According to the results. using the similar laser power density absolutely saturate the requirements to laser disturbing satellite-based detector. If considering the peak power of pulsed laser, even decrease laser average power, it is also possible to damage the detector. This result will provide the reliable evidences to evaluate the effect of laser disturbing satellite-based detector.

  13. University of Rochester, Laboratory for Laser Energetics

    NASA Astrophysics Data System (ADS)

    1987-01-01

    In FY86 the Laboratory has produced a list of accomplishments in which it takes pride. LLE has met every laser-fusion program milestone to date in a program of research for direct-drive ultraviolet laser fusion originally formulated in 1981. LLE scientists authored or co-authored 135 scientific papers during 1985 to 1986. The collaborative experiments with NRL, LANL, and LLNL have led to a number of important ICF results. The cryogenic target system developed by KMS Fusion for LLE will be used in future high-density experiments on OMEGA to demonstrate the compression of thermonuclear fuel to 100 to 200 times that of solid (20 to 40 g/cm) in a test of the direct-drive concept, as noted in the National Academy of Sciences' report. The excellence of the advanced technology efforts at LLE is illustrated by the establishment of the Ultrafast Science Center by the Department of Defense through the Air Force Office of Scientific Research. Research in the Center will concentrate on bridging the gap between high-speed electronics and ultrafast optics by providing education, research, and development in areas critical to future communications and high-speed computer systems. The Laboratory for Laser Energetics continues its pioneering work on the interaction of intense radiation with matter. This includes inertial-fusion and advanced optical and optical electronics research; training people in the technology and applications of high-power, short-pulse lasers; and interacting with the scientific community, business, industry, and government to promote the growth of laser technology.

  14. Efficient, frequency-stable laser-diode-pumped Nd:YAG laser

    NASA Technical Reports Server (NTRS)

    Zhou, B.; Kane, T. J.; Dixon, G. J.; Byer, R. L.

    1985-01-01

    One of the main goals of the study was to demonstrate a low-power efficient Nd:YAG laser oscillator for applications in remote coherent Doppler anemometry. An electrical-to-optical slope efficiency of 6.5 percent has been achieved by using commercially available CW laser diodes of up to 100 mW to pump monolithic Nd:YAG rod lasers. The observed Nd:YAG oscillation threshold is at 2.3 mW of laser-diode output power, i.e., a small fraction of the rated output power. The highest Nd:YAG CW output power reached is 4.4 mW at an overall electrical-to-optical efficiency of 1.5 percent. The frequency jitter is less than 10 kHz in 0.3 s.

  15. Investigation on efficiency declines due to spectral overlap between LDAs pump and laser medium in high power double face pumped slab laser

    NASA Astrophysics Data System (ADS)

    Lang, Ye; Chen, Yanzhong; Liao, Lifen; Guo, Guangyan; He, Jianguo; Fan, Zhongwei

    2018-03-01

    In high power diode lasers, the input cooling water temperature would affect both output power and output spectrum. In double face pumped slab laser, the spectrum of two laser diode arrays (LDAs) must be optimized for efficiency reason. The spectrum mismatch of two LDAs would result in energy storing decline. In this work, thermal induced efficiency decline due to spectral overlap between high power LDAs and laser medium was investigated. A numerical model was developed to describe the energy storing variation with changing LDAs cooling water temperature and configuration (series/parallel connected). A confirmatory experiment was conducted using a double face pumped slab module. The experiment results show good agreements with simulations.

  16. Fully utilizing high power diode lasers by synergizing diode laser light sources and beam shaping micro-optics

    NASA Astrophysics Data System (ADS)

    Fan, Yingmin; Wang, Jingwei; Cai, Lei; Mitra, Thomas; Hauschild, Dirk; Zah, Chung-En; Liu, Xingsheng

    2018-02-01

    High power diode lasers (HPDLs) offer the highest wall-plug efficiency, highest specific power (power-to-weight ratio), arguably the lowest cost and highest reliability among all laser types. However, the poor beam quality of commercially HPDLs is the main bottleneck limiting their direct applications requiring high brightness at least in one dimension. In order to expand the applications of HPDLs, beam shaping and optical design are essential. In this work, we report the recent progresses on maximizing applications of HPDLs by synergizing diode laser light source and beam shaping micro-optics. Successful examples of matching of diode laser light sources and beam shaping micro-optics driving new applications are presented.

  17. High-power all-fiber ultra-low noise laser

    NASA Astrophysics Data System (ADS)

    Zhao, Jian; Guiraud, Germain; Pierre, Christophe; Floissat, Florian; Casanova, Alexis; Hreibi, Ali; Chaibi, Walid; Traynor, Nicholas; Boullet, Johan; Santarelli, Giorgio

    2018-06-01

    High-power ultra-low noise single-mode single-frequency lasers are in great demand for interferometric metrology. Robust, compact all-fiber lasers represent one of the most promising technologies to replace the current laser sources in use based on injection-locked ring resonators or multi-stage solid-state amplifiers. Here, a linearly polarized high-power ultra-low noise all-fiber laser is demonstrated at a power level of 100 W. Special care has been taken in the study of relative intensity noise (RIN) and its reduction. Using an optimized servo actuator to directly control the driving current of the pump laser diode, we obtain a large feedback bandwidth of up to 1.3 MHz. The RIN reaches - 160 dBc/Hz between 3 and 20 kHz.

  18. A high-pressure carbon dioxide gasdynamic laser

    NASA Technical Reports Server (NTRS)

    Kuehn, D. M.

    1973-01-01

    A carbon dioxide gasdynamic laser was operated over a range of reservoir pressure and temperature, test-gas mixture, and nozzle geometry. A significant result is the dominant influence of nozzle geometry on laser power at high pressure. High reservoir pressure can be effectively utilized to increase laser power if nozzle geometry is chosen to efficiently freeze the test gas. Maximum power density increased from 3.3 W/cu cm of optical cavity volume for an inefficient nozzle to 83.4 W/cu cm at 115 atm for a more efficient nozzle. Variation in the composition of the test gas also caused large changes in laser power output. Most notable is the influence of the catalyst (helium or water vapor) that was used to depopulate the lower vibrational state of the carbon dioxide. Water caused an extreme deterioration of laser power at high pressure (100 atm), whereas, at low pressure the laser for the two catalysts approached similar values. It appears that at high pressure the depopulation of the upper laser level of the carbon dioxide by the water predominates over the lower state depopulation, thus destroying the inversion.

  19. High power disk lasers: advances and applications

    NASA Astrophysics Data System (ADS)

    Havrilla, David; Holzer, Marco

    2011-02-01

    Though the genesis of the disk laser concept dates to the early 90's, the disk laser continues to demonstrate the flexibility and the certain future of a breakthrough technology. On-going increases in power per disk, and improvements in beam quality and efficiency continue to validate the genius of the disk laser concept. As of today, the disk principle has not reached any fundamental limits regarding output power per disk or beam quality, and offers numerous advantages over other high power resonator concepts, especially over monolithic architectures. With well over 1000 high power disk lasers installations, the disk laser has proven to be a robust and reliable industrial tool. With advancements in running cost, investment cost and footprint, manufacturers continue to implement disk laser technology with more vigor than ever. This paper will explain important details of the TruDisk laser series and process relevant features of the system, like pump diode arrangement, resonator design and integrated beam guidance. In addition, advances in applications in the thick sheet area and very cost efficient high productivity applications like remote welding, remote cutting and cutting of thin sheets will be discussed.

  20. Photovoltaic conversion of laser power to electrical power

    NASA Technical Reports Server (NTRS)

    Walker, G. H.; Heinbockel, J. H.

    1986-01-01

    Photovoltaic laser to electric converters are attractive for use with a space-based laser power station. This paper presents the results of modeling studies for a silicon vertical junction converter used with a Nd laser. A computer code was developed for the model and this code was used to conduct a parametric study for a Si vertical junction converter consisting of one p-n junction irradiated with a Nd laser. These calculations predict an efficiency over 50 percent for an optimized converter.

  1. Investigation of the laser pumping power impact on the operating regimes of a laser passively Q-switched by a saturated absorber

    NASA Astrophysics Data System (ADS)

    Benarab, Mustapha; Mokdad, Rabah; Djellout, Hocine; Benfdila, Arezki; Lamrous, Omar; Meyrueis, Patrick

    2011-09-01

    We have adapted the point model for the study of an all-fiber laser doped with Nd3+ and Q-switched by a saturable fiber absorber doped with Cr4+. Calculations of the output power of the 1084 nm laser are considered as a function of the pump power supplied by a 790 nm laser diode. The analysis of the simulation results reveals the existence of pulsed, sinusoidal, and dc operating regimes.

  2. Laser diode and pumped Cr:Yag passively Q-switched yellow-green laser at 543 nm

    NASA Astrophysics Data System (ADS)

    Yao, Y.; Ling, Zhao; Li, B.; Qu, D. P.; Zhou, K.; Zhang, Y. B.; Zhao, Y.; Zheng, Q.

    2013-03-01

    Efficient and compact yellow green pulsed laser output at 543 nm is generated by frequency doubling of a passively Q-switched end diode-pumped Nd:YVO4 laser at 1086 nm under the condition of sup-pressing the higher gain transition near 1064 nm. With 15 W of diode pump power and the frequency doubling crystal LBO, as high as 1.58 W output power at 543 nm is achieved. The optical to optical conversion efficiency from the corresponding Q-switched fundamental output to the yellow green output is 49%. The peak power of the Q-switched yellow green pulse laser is up to 30 kW with 5 ns pulse duration. The output power stability over 8 hours is better than 2.56% at the maximum output power. To the best of our knowledge, this is the highest watt-level laser at 543 nm generated by frequency doubling of a passively Q-switched end diode pumped Nd:YVO4 laser at 1086 nm.

  3. High-power thulium-doped fiber laser in an all-fiber configuration

    NASA Astrophysics Data System (ADS)

    Baravets, Yauhen; Todorov, Filip; Honzatko, Pavel

    2016-12-01

    High-power Tm-doped fiber lasers are greatly suitable for various applications, such as material processing, medicine, environmental monitoring and topography. In this work we present an all-fiber narrowband CW laser in near fundamental mode operation based on a Tm-doped double-clad active fiber pumped by 793 nm laser diodes with a central wavelength stabilized at 2039 nm by a fiber Bragg grating. The achieved output power is 60 W with a slope efficiency of 46%. The measured beam quality factor is less than 1.4. Further increasing of the output power is possible using various power scaling techniques, for example, coherent combination of several Tm-doped fiber lasers. The developed fiber laser could be employed for welding, cutting and marking of thermoplastics in industry, minimally invasive surgery in medicine or sensors in lidar systems. Future improvements of thulium fiber lasers are possible due to the extremely wide gain-bandwidth of the active medium and the rapid growth of 2-μm fiber components production.

  4. 2μm all fiber multi-wavelength Tm/Ho co-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Zhang, Junhong; Jiang, Qiuxia; Wang, Xiaofa

    2017-10-01

    A 2 μm all fiber multi-wavelength Tm/Ho co-doped fiber laser based on a simple ring cavity is experimentally demonstrated. Compared with other 2 μm multi-wavelength Tm/Ho co-doped fiber lasers, the multi-wavelength fiber laser is obtained by the gain saturation effect and inhomogeneous broadening effect without any frequency selector component, filter component or polarization-dependent component. When the pump power is about 304 mW, the fiber laser enters into single-wavelength working state around 1967.76 nm. Further increasing the pump power to 455 mW, a stable dual-wavelength laser is obtained at room temperature. The bimodal power difference between λ1 and λ2 is 5.528 dB. The fluctuations of wavelength and power are less than 0.03 nm and 0.264 dB in an hour, which demonstrates that the multi-wavelength fiber laser works at a stable state. Furthermore, a research about the relationship between the pump power and the output spectra has been made.

  5. Laser absorption phenomena in flowing gas devices

    NASA Technical Reports Server (NTRS)

    Chapman, P. K.; Otis, J. H.

    1976-01-01

    A theoretical and experimental investigation is presented of inverse Bremsstrahlung absorption of CW CO2 laser radiation in flowing gases seeded with alkali metals. In order to motivate this development, some simple models are described of several space missions which could use laser powered rocket vehicles. Design considerations are given for a test call to be used with a welding laser, using a diamond window for admission of laser radiation at power levels in excess of 10 kW. A detailed analysis of absorption conditions in the test cell is included. The experimental apparatus and test setup are described and the results of experiments presented. Injection of alkali seedant and steady state absorption of the laser radiation were successfully demonstrated, but problems with the durability of the diamond windows at higher powers prevented operation of the test cell as an effective laser powered thruster.

  6. High-power narrow-linewidth quasi-CW diode-pumped TEM00 1064 nm Nd:YAG ring laser.

    PubMed

    Liu, Yuan; Wang, Bao-shan; Xie, Shi-yong; Bo, Yong; Wang, Peng-yuan; Zuo, Jun-wei; Xu, Yi-ting; Xu, Jia-lin; Peng, Qin-jun; Cui, Da-fu; Xu, Zu-yan

    2012-04-01

    We demonstrated a high average power, narrow-linewidth, quasi-CW diode-pumped Nd:YAG 1064 nm laser with near-diffraction-limited beam quality. A symmetrical three-mirror ring cavity with unidirectional operation elements and an etalon was employed to realize the narrow-linewidth laser output. Two highly efficient laser modules and a 90° quartz rotator for birefringence compensation were used for the high output power. The maximum average output power of 62.5 W with the beam quality factor M(2) of 1.15 was achieved under a pump power of 216 W at a repetition rate of 500 Hz, corresponding to the optical-to-optical conversion efficiency of 28.9%. The linewidth of the laser at the maximum output power was measured to be less than 0.2 GHz.

  7. Development of high-average-power DPSSL with high beam quality

    NASA Astrophysics Data System (ADS)

    Nakai, Sadao; Kanabe, Tadashi; Kawashima, Toshiyuki; Yamanaka, Masanobu; Izawa, Yasukazu; Nakatuka, Masahiro; Kandasamy, Ranganathan; Kan, Hirofumi; Hiruma, Teruo; Niino, Masayuki

    2000-08-01

    The recent progress of high power diode laser is opening new fields of laser and its application. We are developing high average power diode pumped solid state laser DPSSL for laser fusion power plant, for space propulsion and for various applications in industry. The common features or requirements of our High Average-power Laser for Nuclear-fusion Application (HALNA) are large pulse energy with relatively low repetition of few tens Hz, good beam quality of order of diffraction limit and high efficiency more than 10%. We constructed HALNA 10 (10J X 10 Hz) and tested the performance to clarify the scalability to higher power system. We have obtained in a preliminary experiment a 8.5 J output energy at 0.5 Hz with beam quality of 2 times diffraction limited far-field pattern.

  8. Driver development of IFE power plant in Japan Collaborative process with industry and industrial applications

    NASA Astrophysics Data System (ADS)

    Nakai, S.; Yamanaka, M.; Kitagawa, Y.; Fujita, K.; Heya, M.; Mima, K.; Izawa, Y.; Nakatsuka, M.; Murakami, M.; Ueda, K.; Sasaki, T.; Mori, Y.; Kanabe, T.; Hiruma, T.; Kan, H.; Kawashima, T.

    2006-06-01

    The typical specifications of the laser driver for a commercial IFE power plant are (1) total energy (MJ/pulse) with a tailored 20-40 ns pulse, (2) repetition operation (˜ 10 Hz), (3) efficiency (˜ 10%) with enough robustness and low cost. The key elements of the DPSSL driver technology are under development with HALNA. The HALNA 10 (High Average-power Laser for Nuclear-fusion Application) demonstrated 10 J × 10 Hz operation and the HALNA 100 (100 J × 10 Hz) is now under construction. By using the high average power and high intensity lasers, new industrial applications are being proceeded. The collaborative process for the development of high power laser with industry and for the industrial applications is effective and essential in the development of the laser driver for IFE power plant.

  9. High power diode lasers emitting from 639 nm to 690 nm

    NASA Astrophysics Data System (ADS)

    Bao, L.; Grimshaw, M.; DeVito, M.; Kanskar, M.; Dong, W.; Guan, X.; Zhang, S.; Patterson, J.; Dickerson, P.; Kennedy, K.; Li, S.; Haden, J.; Martinsen, R.

    2014-03-01

    There is increasing market demand for high power reliable red lasers for display and cinema applications. Due to the fundamental material system limit at this wavelength range, red diode lasers have lower efficiency and are more temperature sensitive, compared to 790-980 nm diode lasers. In terms of reliability, red lasers are also more sensitive to catastrophic optical mirror damage (COMD) due to the higher photon energy. Thus developing higher power-reliable red lasers is very challenging. This paper will present nLIGHT's released red products from 639 nm to 690nm, with established high performance and long-term reliability. These single emitter diode lasers can work as stand-alone singleemitter units or efficiently integrate into our compact, passively-cooled Pearl™ fiber-coupled module architectures for higher output power and improved reliability. In order to further improve power and reliability, new chip optimizations have been focused on improving epitaxial design/growth, chip configuration/processing and optical facet passivation. Initial optimization has demonstrated promising results for 639 nm diode lasers to be reliably rated at 1.5 W and 690nm diode lasers to be reliably rated at 4.0 W. Accelerated life-test has started and further design optimization are underway.

  10. Copper vapor laser modular packaging assembly

    DOEpatents

    Alger, Terry W.; Ault, Earl R.; Moses, Edward I.

    1992-01-01

    A modularized packaging arrangement for one or more copper vapor lasers and associated equipment is disclosed herein. This arrangement includes a single housing which contains the laser or lasers and all their associated equipment except power, water and neon, and means for bringing power, water, and neon which are necessary to the operation of the lasers into the container for use by the laser or lasers and their associated equipment.

  11. Copper vapor laser modular packaging assembly

    DOEpatents

    Alger, T.W.; Ault, E.R.; Moses, E.I.

    1992-12-01

    A modularized packaging arrangement for one or more copper vapor lasers and associated equipment is disclosed herein. This arrangement includes a single housing which contains the laser or lasers and all their associated equipment except power, water and neon, and means for bringing power, water, and neon which are necessary to the operation of the lasers into the container for use by the laser or lasers and their associated equipment. 2 figs.

  12. Recent development of disk lasers at TRUMPF

    NASA Astrophysics Data System (ADS)

    Schad, Sven-Silvius; Gottwald, Tina; Kuhn, Vincent; Ackermann, Matthias; Bauer, Dominik; Scharun, Michael; Killi, Alexander

    2016-03-01

    The disk laser is one of the most important laser concepts for today's industrial laser market. Offering high brilliance at low cost, high optical efficiency and great application flexibility the disk laser paved the way for many industrial laser applications. Over the past years power and brightness increased and the disk laser turned out to be a very versatile laser source, not only for welding but also for cutting. Both, the quality and speed of cutting are superior to CO2-based lasers for a vast majority of metals, and, most important, in a broad thickness range. In addition, due to the insensitivity against back reflections the disk laser is well suited for cutting highly reflective metal such as brass or copper. These advantages facilitate versatile cutting machines and explain the high and growing demand for disk lasers for applications besides welding applications that can be observed today. From a today's perspective the disk principle has not reached any fundamental limits regarding output power per disk or beam quality, and offers numerous advantages over other high power resonator concepts, especially over fiber lasers or direct diode lasers. This paper will give insight in the latest progress in kilowatt class cw disk laser technology at TRUMPF and will discuss recent power scaling results as well.

  13. Highly efficient, versatile, self-Q-switched, high-repetition-rate microchip laser generating Ince-Gaussian modes for optical trapping

    NASA Astrophysics Data System (ADS)

    Dong, Jun; He, Yu; Zhou, Xiao; Bai, Shengchuang

    2016-03-01

    Lasers operating in the Ince-Gaussian (IG) mode have potential applications for optical manipulation of microparticles and formation of optical vortices, as well as for optical trapping and optical tweezers. Versatile, self-Q-switched, high-peak-power, high-repetition-rate Cr, Nd:YAG microchip lasers operating in the IG mode are implemented under tilted, tightly focused laser-diode pumping. An average output power of over 2 W is obtained at an absorbed pump power of 6.4 W. The highest optical-to-optical efficiency of 33.2% is achieved at an absorbed pump power of 3.9 W. Laser pulses with a pulse energy of 7.5 μJ, pulse width of 3.5 ns and peak power of over 2 kW are obtained. A repetition rate up to 335 kHz is reached at an absorbed pump power of 5.8 W. Highly efficient, versatile, IG-mode lasers with a high repetition rate and a high peak power ensure a better flexibility in particle manipulation and optical trapping.

  14. Laser Powered Launch Vehicle Performance Analyses

    NASA Technical Reports Server (NTRS)

    Chen, Yen-Sen; Liu, Jiwen; Wang, Ten-See (Technical Monitor)

    2001-01-01

    The purpose of this study is to establish the technical ground for modeling the physics of laser powered pulse detonation phenomenon. Laser powered propulsion systems involve complex fluid dynamics, thermodynamics and radiative transfer processes. Successful predictions of the performance of laser powered launch vehicle concepts depend on the sophisticate models that reflects the underlying flow physics including the laser ray tracing the focusing, inverse Bremsstrahlung (IB) effects, finite-rate air chemistry, thermal non-equilibrium, plasma radiation and detonation wave propagation, etc. The proposed work will extend the base-line numerical model to an efficient design analysis tool. The proposed model is suitable for 3-D analysis using parallel computing methods.

  15. High-power AlGaAs channeled substrate planar diode lasers for spaceborne communications

    NASA Technical Reports Server (NTRS)

    Connolly, J. C.; Goldstein, B.; Pultz, G. N.; Slavin, S. E.; Carlin, D. B.; Ettenberg, M.

    1988-01-01

    A high power channeled substrate planar AlGaAs diode laser with an emission wavelength of 8600 to 8800 A was developed. The optoelectronic behavior (power current, single spatial and spectral behavior, far field characteristics, modulation, and astigmatism properties) and results of computer modeling studies on the performance of the laser are discussed. Lifetest data on these devices at high output power levels is also included. In addition, a new type of channeled substrate planar laser utilizing a Bragg grating to stabilize the longitudinal mode was demonstrated. The fabrication procedures and optoelectronic properties of this new diode laser are described.

  16. Influence of dispersion stretching of ultrashort UV laser pulse on the critical power for self-focusing

    NASA Astrophysics Data System (ADS)

    Ionin, A. A.; Mokrousova, D. V.; Piterimov, D. A.; Seleznev, L. V.; Sinitsyn, D. V.; Sunchugasheva, E. S.

    2018-04-01

    The critical power for self-focusing in air for ultrashort ultraviolet laser pulses, stretched due to dispersion from 90 to 730 fs, was experimentally measured. It was shown that the pulse duration enhancement due to its propagation in condensed media leads to an almost linear decrease in the critical power for self-focusing. It was also observed that when the pulse peak power exceeds the critical one, the maximum of linear plasma distribution along the ultraviolet laser filament does not shift in the direction opposite to the laser pulse propagation, as observed for infrared laser filaments, but remains at the geometrical focus.

  17. Beam control of high-power broad-area photonic crystal lasers using ladderlike groove structure

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Wang, Lijie; Shu, Shili; Tian, Sicong; Lu, Zefeng; Hou, Guanyu; Lu, Huanyu; Tong, Cunzhu; Wang, Lijun

    2017-06-01

    The high-power broad-area (BA) photonic bandgap crystal (PBC) diode laser is promising as a high-brightness laser source, however, it suffers from poor lateral beam quality owing to the intrinsic drawback of BA lasers. In this paper, a ladderlike groove structure (LLGS) was proposed to improve both the lateral beam quality and emission power of BA PBC lasers. An approximately 15.4% improvement in output power and 25.2% decrease in the lateral beam parameter product (BPP) were realized and the underlying mechanism was discussed. On the basis of the one-dimensional PBC epitaxial structure, a stable vertical far field was demonstrated.

  18. Diode laser satellite systems for beamed power transmission

    NASA Technical Reports Server (NTRS)

    Williams, M. D.; Kwon, J. H.; Walker, G. H.; Humes, D. H.

    1990-01-01

    A power system composed of an orbiting laser satellite and a surface-based receiver/converter is described. Power is transmitted from the satellite to the receiver/converter by laser beam. The satellite components are: (1) solar collector; (2) blackbody; (3) photovoltaic cells; (4) heat radiators; (5) laser system; and (6) transmission optics. The receiver/converter components are: receiver dish; lenticular lens; photocells; and heat radiator. Although the system can be adapted to missions at many locations in the solar system, only two are examined here: powering a lunar habitat; and powering a lunar rover. Power system components are described and their masses, dimensions, operating powers, and temperatures, are estimated using known or feasible component capabilities. The critical technologies involved are discussed and other potential missions are mentioned.

  19. Blue laser diode (450 nm) systems for welding copper

    NASA Astrophysics Data System (ADS)

    Silva Sa, M.; Finuf, M.; Fritz, R.; Tucker, J.; Pelaprat, J.-M.; Zediker, M. S.

    2018-02-01

    This paper will discuss the development of high power blue laser systems for industrial applications. The key development enabling high power blue laser systems is the emergence of high power, high brightness laser diodes at 450 nm. These devices have a high individual brightness rivaling their IR counterparts and they have the potential to exceed their performance and price barriers. They also have a very high To resulting in a 0.04 nm/°C wavelength shift. They have a very stable lateral far-field profile which can be combined with other diodes to achieve a superior brightness. This paper will report on the characteristics of the blue laser diodes, their integration into a modular laser system suitable for scaling the output power to the 1 kW level and beyond. Test results will be presented for welding of copper with power levels ranging from 150 Watts to 600 Watts

  20. Long-duration high-efficiency operation of a continuously pulsed copper laser utilizing copper bromide as a lasant

    NASA Technical Reports Server (NTRS)

    Chen, C. J.; Bhanji, A. M.; Russell, G. R.

    1978-01-01

    A copper laser utilizing copper bromide as a lasant and neon as the buffer gas has been operated at an average laser power of between 16 and 19.5 W for a period of 68 h. Lasing was attained at a pulsing rate of 16.7 kHz in a quartz discharge tube 2.5-cm in diameter with an electrode separation of 200 cm. The laser energy/pulse and peak power/pulse corresponding to an average power of 19.5 W are 1.2 mJ and 30 kW, respectively. The ratio of laser power at 510.6 and 578.2 nm varied from 3.9 to 1.1 corresponding to a total average laser power of 4 and 18 W, respectively. The highest wall plug and capacitor efficiency measured during 68 h of operation were 0.7 and 1.1%, respectively.

  1. Laser-driven plasma photonic crystals for high-power lasers

    NASA Astrophysics Data System (ADS)

    Lehmann, G.; Spatschek, K. H.

    2017-05-01

    Laser-driven plasma density gratings in underdense plasma are shown to act as photonic crystals for high power lasers. The gratings are created by counterpropagating laser beams that trap electrons, followed by ballistic ion motion. This leads to strong periodic plasma density modulations with a lifetime on the order of picoseconds. The grating structure is interpreted as a plasma photonic crystal time-dependent property, e.g., the photonic band gap width. In Maxwell-Vlasov and particle-in-cell simulations it is demonstrated that the photonic crystals may act as a frequency filter and mirror for ultra-short high-power laser pulses.

  2. 300-mW narrow-linewidth deep-ultraviolet light generation at 193 nm by frequency mixing between Yb-hybrid and Er-fiber lasers.

    PubMed

    Xuan, Hongwen; Zhao, Zhigang; Igarashi, Hironori; Ito, Shinji; Kakizaki, Kouji; Kobayashi, Yohei

    2015-04-20

    A narrow-linewidth, high average power deep-ultraviolet (DUV) coherent laser emitting at 193 nm is demonstrated by frequency mixing a Yb-hybrid laser with an Er-fiber laser. The Yb-hybrid laser consists of Yb-fiber lasers and an Yb:YAG amplifier. The average output power of the 193 nm laser is 310 mW at 6 kHz, which corresponds to a pulse energy of 51 μJ. To the best of our knowledge, this is the highest average power and pulse energy ever reported for a narrow-linewidth 193 nm light generated by a combination of solid-state and fiber lasers with frequency mixing. We believe this laser will be beneficial for the application of interference lithography by seeding an injection-locking ArF eximer laser.

  3. Contribution of the polarization moments of different rank to the integral CPT signal

    NASA Astrophysics Data System (ADS)

    Taskova, E.; Alipieva, E.; Todorov, G.

    2016-01-01

    In the present work we investigate the relation of the polarization moments having different ranks with the tensor components which form the observable integral CPT signal, in the presence of a stray magnetic field. A numerical experiment with parameters close to the real ones is performed, using a program based on the irreducible tensor operator formalism1. The integral fluorescent signal is calculated for the non-polarized fluorescence at different laser power excitation. Detailed analysis of the numerical solutions for all tensor components which describe population and alignment allows visualizing the dynamics of their behavior in dependence on the experimental geometry and laboratory magnetic field B'. The dependence of population f00, longitudinal f02 and transverse f22 alignment in the presence of transverse magnetic field is investigated. The shape and sign of the resonance change with laser power.

  4. Optimization of TM-Doped Phosphosilicate Glass for High Power Fiber Lasers

    DTIC Science & Technology

    2016-04-28

    During the program, we have set up a test facility for Tm-doped fiber lasers with pump power of 300W at 790nm. We have fabricated a large number...efficiency. Our results show the OH level in our fabrication process is adequate. We have found there is evidence of high background loss at ~2µm being...Tower……………………………………………………………………………………………………………5 Photonic bandgap fiber fabrications ……………………………………………………………………………………………6 RESULTS AND DISCUSSIONS

  5. The advantages and disadvantages of using the TREAT reactor for nuclear laser experiments

    NASA Astrophysics Data System (ADS)

    Dickson, P. W.; Snyder, A. M.; Imel, G. R.; McConnell, R. J.

    The Transient Reactor Test Facility (TREAT) is a large air-cooled test facility located at the Idaho National Engineering Laboratory. Two of the major design features of TREAT, its large size and its being an air-cooled reactor, provide clues to both its advantages and disadvantages for supporting nuclear laser experiments. Its large size, which is dictated by the dilute uranium/graphite fuel, permits accommodation of geometrically large experiments. However, TREAT's large size also results in relatively long transients so that the energy deposited in an experiment is large relative to the peak power available from the reactor. TREAT's air-cooling mode of operation allows its configuration to be changed fairly readily. Due to air cooling, the reactor cools down slowly, permitting only one full power transient a day, which can be a disadvantage in some experimental programs. The reactor is capable of both steady-state or transient operation.

  6. Design and simulation of a novel high-efficiency cooling heat-sink structure using fluid-thermodynamics

    NASA Astrophysics Data System (ADS)

    Hongqi, Jing; Li, Zhong; Yuxi, Ni; Junjie, Zhang; Suping, Liu; Xiaoyu, Ma

    2015-10-01

    A novel high-efficiency cooling mini-channel heat-sink structure has been designed to meet the package technology demands of high power density laser diode array stacks. Thermal and water flowing characteristics have been simulated using the Ansys-Fluent software. Owing to the increased effective cooling area, this mini-channel heat-sink structure has a better cooling effect when compared with the traditional macro-channel heat-sinks. Owing to the lower flow velocity in this novel high efficient cooling structure, the chillers' water-pressure requirement is reduced. Meanwhile, the machining process of this high-efficiency cooling mini-channel heat-sink structure is simple and the cost is relatively low, it also has advantages in terms of high durability and long lifetime. This heat-sink is an ideal choice for the package of high power density laser diode array stacks. Project supported by the Defense Industrial Technology Development Program (No. B1320133033).

  7. Multiplex electric discharge gas laser system

    NASA Technical Reports Server (NTRS)

    Laudenslager, James B. (Inventor); Pacala, Thomas J. (Inventor)

    1987-01-01

    A multiple pulse electric discharge gas laser system is described in which a plurality of pulsed electric discharge gas lasers are supported in a common housing. Each laser is supplied with excitation pulses from a separate power supply. A controller, which may be a microprocessor, is connected to each power supply for controlling the application of excitation pulses to each laser so that the lasers can be fired simultaneously or in any desired sequence. The output light beams from the individual lasers may be combined or utilized independently, depending on the desired application. The individual lasers may include multiple pairs of discharge electrodes with a separate power supply connected across each electrode pair so that multiple light output beams can be generated from a single laser tube and combined or utilized separately.

  8. Solar-pumped solid state Nd lasers

    NASA Technical Reports Server (NTRS)

    Williams, M. D.; Zapata, L.

    1985-01-01

    Solid state neodymium lasers are considered candidates for space-based polar-pumped laser for continuous power transmission. Laser performance for three different slab laser configurations has been computed to show the excellent power capability of such systems if heat problems can be solved. Ideas involving geometries and materials are offered as potential solutions to the heat problem.

  9. Stable TEM00-mode Nd:YAG solar laser operation by a twisted fused silica light-guide

    NASA Astrophysics Data System (ADS)

    Bouadjemine, R.; Liang, D.; Almeida, J.; Mehellou, S.; Vistas, C. R.; Kellou, A.; Guillot, E.

    2017-12-01

    To improve the output beam stability of a TEM00-mode solar-pumped laser, a twisted fused silica light-guide was used to achieve uniform pumping along a 3 mm diameter and 50 mm length Nd:YAG rod. The concentrated solar power at the focal spot of a primary parabolic mirror with 1.18 m2 effective collection area was efficiently coupled to the entrance aperture of a 2D-CPC/2V-shaped pump cavity, within which the thin laser rod was pumped. Optimum solar laser design parameters were found through ZEMAX© non-sequential ray-tracing and LASCAD© laser cavity analysis codes. 2.3 W continuous-wave TEM00-mode 1064 nm laser power was measured, corresponding to 1.96 W/m2 collection efficiency and 2.2 W laser beam brightness figure of merit. Excellent TEM00-mode laser beam profile at M2 ≤ 1.05 and very good output power stability of less than 1.6% were achieved. Heliostat orientation error dependent laser power variation was considerably less than previous solar laser pumping schemes.

  10. Macro-channel cooled high power fiber coupled diode lasers exceeding 1.2kW of output power

    NASA Astrophysics Data System (ADS)

    Koenning, Tobias; Alegria, Kim; Wang, Zuolan; Segref, Armin; Stapleton, Dean; Faßbender, Wilhelm; Flament, Marco; Rotter, Karsten; Noeske, Axel; Biesenbach, Jens

    2011-03-01

    We report on a new series of fiber coupled diode laser modules exceeding 1.2kW of single wavelength optical power from a 400um / 0.2NA fiber. The units are constructed from passively cooled laser bars as opposed to other comparably powered, commercially available modules that use micro-channel heat-sinks. Micro-channel heat sinks require cooling water to meet demanding specifications and are therefore prone to failures due to contamination and increase the overall cost to operate and maintain the laser. Dilas' new series of high power fiber coupled diode lasers are designed to eliminate micro channel coolers and their associated failure mechanisms. Low-smile soldering processes were developed to maximize the brightness available from each diode laser bar. The diode laser brightness is optimally conserved using Dilas' recently developed propriety laser bar stacking geometry and optics. A total of 24 bars are coupled into a single fiber core using a polarization multiplexing scheme. The modular design permits further power scaling through wavelength multiplexing. Other customer critical features such as industrial grade fibers, pilot beams, fiber interlocks and power monitoring are standard features on these modules. The optical design and the beam parameter calculations will be presented to explain the inherit design trade offs. Results for single and dual wavelengths modules will be presented.

  11. The Laser Mega-Joule : LMJ & PETAL status and Program Overview

    NASA Astrophysics Data System (ADS)

    Miquel, J.-L.; Lion, C.; Vivini, P.

    2016-03-01

    The laser Megajoule (LMJ), developed by the French Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), will be a cornerstone of the French Simulation Program, which combines improvement of physics models, high performance numerical simulation, and experimental validation. The LMJ facility is under construction at CEA CESTA near Bordeaux and will provide the experimental capabilities to study High-Energy Density Physics (HEDP). One of its goals is to obtain ignition and burn of DT-filled capsules imploded, through indirect drive scheme, inside rugby-shape hohlraum. The PETAL project consists in the addition of one short-pulse (ps) ultra-high-power, high-energy beam (kJ) to the LMJ facility. PETAL will offer a combination of a very high intensity multi-petawatt beam, synchronized with the nanosecond beams of the LMJ. This combination will expand the LMJ experimental field on HEDP. This paper presents an update of LMJ & PETAL status, together with the development of the overall program including targets, plasma diagnostics and simulation tools.

  12. Power beaming research at NASA

    NASA Technical Reports Server (NTRS)

    Rather, John D. G.

    1992-01-01

    NASA's current research activities to evaluate laser power beaming systems are summarized with regard to their applications of greatest interest. Key technical certainties and uncertainties pertaining to laser power beaming systems appropriate for space applications are quantified. A path of development is presented that includes maturation of key technology components for reliable laser and millimeter wave power beaming systems during the 1990s.

  13. Development of thermally controlled HALNA DPSSL for inertial fusion energy

    NASA Astrophysics Data System (ADS)

    Matsumoto, Osamu; Yasuhara, Ryo; Kurita, Takashi; Ikegawa, Tadashi; Sekine, Takashi; Kawashima, Toshiyuki; Kawanaka, Junji; Norimatsu, Takayoshi; Miyanaga, Noriaki; Izawa, Yasukazu; Nakatsuka, Masahiro; Miyamoto, Masahiro; Kan, Hirofumi; Furukawa, Hiroyuki; Motokoshi, Shinji

    2006-02-01

    We have been developing a high average-power laser system for science and industry applications that can generate an output of 20 J per pulse at 10-Hz operation. Water-cooled Nd:glass zig-zag slab is pumped with 803-nm AlGaAs laser-diode modules. To efficiently extract energy from the laser medium, the laser beam alternately passes through dual zig-zag slab amplifier modules. Twin LD modules equipped on each slab amplifier module pump the laser medium with a peak power density of 2.5 kW/cm2. In high power laser system, thermal load in the laser medium causes serious thermal effects. We arranged cladding glasses on the top and bottom of the laser slab to reduce thermal effects.

  14. Design Investigation of Solar Powered Lasers for Space Applications

    DTIC Science & Technology

    1979-05-01

    Brayton Cycle Power Units 64 3.4 Heat Exchanger 75 3.5 Waste Heat Radiator 79 3.6 Solar Powered Gas Dynamic Laser 82 3.7 Solar Powered Electric... Brayton Cycle Space Power Units 65 10 Supersonic C02 GDL (1 MW) 85 11 Specific Weights for Comparative Evaluation of Solar Lasers 88 12 Subsonic C02...for the Brayton Cycle Power Units 61 21 Solar Radiation Boiler-Receiver Solar Radiation from the Collectors in Focussed (at left) on the

  15. Laser power conversion system analysis, volume 1

    NASA Technical Reports Server (NTRS)

    Jones, W. S.; Morgan, L. L.; Forsyth, J. B.; Skratt, J. P.

    1979-01-01

    The orbit-to-orbit laser energy conversion system analysis established a mission model of satellites with various orbital parameters and average electrical power requirements ranging from 1 to 300 kW. The system analysis evaluated various conversion techniques, power system deployment parameters, power system electrical supplies and other critical supplies and other critical subsystems relative to various combinations of the mission model. The analysis show that the laser power system would not be competitive with current satellite power systems from weight, cost and development risk standpoints.

  16. An investigation on capability of hybrid Nd:YAG laser-TIG welding technology for AA2198 Al-Li alloy

    NASA Astrophysics Data System (ADS)

    Faraji, Amir Hosein; Moradi, Mahmoud; Goodarzi, Massoud; Colucci, Pietro; Maletta, Carmine

    2017-09-01

    This paper surveys the capability of the hybrid laser-arc welding in comparison with lone laser welding for AA2198 aluminum alloy experimentally. In the present research, a continuous Nd:YAG laser with a maximum power of 2000 W and a 350 A electric arc were used as two combined welding heat sources. In addition to the lone laser welding experiments, two strategies were examined for hybrid welding; the first one was low laser power (100 W) accompanied by high arc energy, and the second one was high laser power (2000 W) with low arc energy. Welding speed and arc current varied in the experiments. The influence of heat input on weld pool geometry was surveyed. The macrosection, microhardness profile and microstructure of the welded joints were studied and compared. The results indicated that in lone laser welding, conduction mode occurred and keyhole was not formed even in low welding speeds and thus the penetration depth was so low. It was also found that the second approach (high laser power accompanied with low arc energy) is superior to the first one (low laser power accompanied with high arc energy) in hybrid laser-arc welding of Al2198, since lower heat input was needed for full penetration weld and as a result a smaller HAZ was created.

  17. A real-time laser feedback control method for the three-wave laser source used in the polarimeter-interferometer diagnostic on Joint-TEXT tokamak

    NASA Astrophysics Data System (ADS)

    Xiong, C. Y.; Chen, J.; Li, Q.; Liu, Y.; Gao, L.

    2014-12-01

    A three-wave laser polarimeter-interferometer, equipped with three independent far-infrared laser sources, has been developed on Joint-TEXT (J-TEXT) tokamak. The diagnostic system is capable of high-resolution temporal and phase measurement of the Faraday angle and line-integrated density. However, for long-term operation (>10 min), the free-running lasers can lead to large drifts of the intermediate frequencies (˜100-˜500 kHz/10 min) and decay of laser power (˜10%-˜20%/10 min), which act to degrade diagnostic performance. In addition, these effects lead to increased maintenance cost and limit measurement applicability to long pulse/steady state experiments. To solve this problem, a real-time feedback control method of the laser source is proposed. By accurately controlling the length of each laser cavity, both the intermediate frequencies and laser power can be simultaneously controlled: the intermediate frequencies are controlled according to the pre-set values, while the laser powers are maintained at an optimal level. Based on this approach, a real-time feedback control system has been developed and applied on J-TEXT polarimeter-interferometer. Long-term (theoretically no time limit) feedback of intermediate frequencies (maximum change less than ±12 kHz) and laser powers (maximum relative power change less than ±7%) has been successfully achieved.

  18. A real-time laser feedback control method for the three-wave laser source used in the polarimeter-interferometer diagnostic on Joint-TEXT tokamak.

    PubMed

    Xiong, C Y; Chen, J; Li, Q; Liu, Y; Gao, L

    2014-12-01

    A three-wave laser polarimeter-interferometer, equipped with three independent far-infrared laser sources, has been developed on Joint-TEXT (J-TEXT) tokamak. The diagnostic system is capable of high-resolution temporal and phase measurement of the Faraday angle and line-integrated density. However, for long-term operation (>10 min), the free-running lasers can lead to large drifts of the intermediate frequencies (∼100-∼500 kHz/10 min) and decay of laser power (∼10%-∼20%/10 min), which act to degrade diagnostic performance. In addition, these effects lead to increased maintenance cost and limit measurement applicability to long pulse/steady state experiments. To solve this problem, a real-time feedback control method of the laser source is proposed. By accurately controlling the length of each laser cavity, both the intermediate frequencies and laser power can be simultaneously controlled: the intermediate frequencies are controlled according to the pre-set values, while the laser powers are maintained at an optimal level. Based on this approach, a real-time feedback control system has been developed and applied on J-TEXT polarimeter-interferometer. Long-term (theoretically no time limit) feedback of intermediate frequencies (maximum change less than ±12 kHz) and laser powers (maximum relative power change less than ±7%) has been successfully achieved.

  19. High-energy laser activities at MBDA Germany

    NASA Astrophysics Data System (ADS)

    Mohring, Bernd; Dietrich, Stephan; Tassini, Leonardo; Protz, Rudolf; Geidek, Franz; Zoz, Jürgen

    2013-05-01

    At MBDA Germany a concept for a high-energy laser weapon system is investigated, which is based on existing industrial laser sources. Due to the enormous progress in the field of high-power fiber lasers, commercial industrial fiber lasers are now available delivering a nearly-diffraction limited beam quality with power levels of up to 10 kW. By using a geometric beam coupling scheme, a number of individual high-power fiber laser beams are combined together using one common beam director telescope. A total laser beam power of more than 100 kW can be achieved, which is sufficient for an operational laser weapon system. The individual beams from the different lasers are steered by servo-loops using fast tip-tilt mirrors. This principle enables the concentration of the total laser beam power at one common focal point on a distant target, also allowing fine tracking of target movements and first-order compensation of turbulence effects on laser beam propagation. The proposed beam combination concept was demonstrated by using different experimental set-ups. A number of experiments were performed successfully to investigate laser beam target interaction and target fine tracking, also at large distances and at moving targets. Content and results of these investigations are reported, which demonstrate the complete engagement sequence for a C-RAM scenario. This includes subsequent steps of target acquisition by radar and IR optics, followed by large angle coarse tracking, active fine tracking and destruction of the target by the laser system. This successful implementation of geometric beam combining is an important step for the realization of a laser weapon system in the near future.

  20. A highly efficient and compact long pulse Nd:YAG rod laser with 540 J of pulse energy for welding application.

    PubMed

    Choubey, Ambar; Vishwakarma, S C; Misra, Pushkar; Jain, R K; Agrawal, D K; Arya, R; Upadhyaya, B N; Oak, S M

    2013-07-01

    We have developed an efficient and high average power flash lamp pumped long pulse Nd:YAG laser capable of generating 1 kW of average output power with maximum 540 J of single pulse energy and 20 kW of peak power. The laser pulse duration can be varied from 1 to 40 ms and repetition rate from 1 to 100 Hz. A compact and robust laser pump chamber and resonator was designed to achieve this high average and peak power. It was found that this laser system provides highest single pulse energy as compared to other long pulsed Nd:YAG laser systems of similar rating. A slope efficiency of 5.4% has been achieved, which is on higher side for typical lamp pumped solid-state lasers. This system will be highly useful in laser welding of materials such as aluminium and titanium. We have achieved 4 mm deep penetration welding of these metals under optimized conditions of output power, pulse energy, and pulse duration. The laser resonator was optimized to provide stable operation from single shot to 100 Hz of repetition rate. The beam quality factor was measured to be M(2) ~ 91 and pulse-to-pulse stability of ±3% for the multimode operation. The laser beam was efficiently coupled through an optical fiber of 600 μm core diameter and 0.22 numerical aperture with power transmission of 90%.

  1. DoD Key Technologies Plan

    DTIC Science & Technology

    1992-07-01

    methodologies ; software performance analysis; software testing; and concurrent languages. Finally, efforts in algorithms, which are primarily designed to upgrade...These codes provide a powerful research tool for testing new concepts and designs prior to experimental implementation. DoE’s laser program has also...development, and specially designed production facilities. World leadership in bth non -fluorinated and fluorinated materials resides in the U.S. but Japan

  2. Laser spark distribution and ignition system

    DOEpatents

    Woodruff, Steven [Morgantown, WV; McIntyre, Dustin L [Morgantown, WV

    2008-09-02

    A laser spark distribution and ignition system that reduces the high power optical requirements for use in a laser ignition and distribution system allowing for the use of optical fibers for delivering the low peak energy pumping pulses to a laser amplifier or laser oscillator. An optical distributor distributes and delivers optical pumping energy from an optical pumping source to multiple combustion chambers incorporating laser oscillators or laser amplifiers for inducing a laser spark within a combustion chamber. The optical distributor preferably includes a single rotating mirror or lens which deflects the optical pumping energy from the axis of rotation and into a plurality of distinct optical fibers each connected to a respective laser media or amplifier coupled to an associated combustion chamber. The laser spark generators preferably produce a high peak power laser spark, from a single low power pulse. The laser spark distribution and ignition system has application in natural gas fueled reciprocating engines, turbine combustors, explosives and laser induced breakdown spectroscopy diagnostic sensors.

  3. A contribution to laser range imaging technology

    NASA Technical Reports Server (NTRS)

    Defigueiredo, Rui J. P.; Denney, Bradley S.

    1991-01-01

    The goal of the project was to develop a methodology for fusion of a Laser Range Imaging Device (LRID) and camera data. Our initial work in the project led to the conclusion that none of the LRID's that were available were sufficiently adequate for this purpose. Thus we spent the time and effort on the development of the new LRID with several novel features which elicit the desired fusion objectives. In what follows, we describe the device developed and built under contract. The Laser Range Imaging Device (LRID) is an instrument which scans a scene using a laser and returns range and reflection intensity data. Such a system would be extremely useful in scene analysis in industry and space applications. The LRID will be eventually implemented on board a mobile robot. The current system has several advantages over some commercially available systems. One improvement is the use of X-Y galvonometer scanning mirrors instead of polygonal mirrors present in some systems. The advantage of the X-Y scanning mirrors is that the mirror system can be programmed to provide adjustable scanning regions. For each mirror there are two controls accessible by the computer. The first is the mirror position and the second is a zoom factor which modifies the amplitude of the position of the parameter. Another advantage of the LRID is the use of a visible low power laser. Some of the commercial systems use a higher intensity invisible laser which causes safety concerns. By using a low power visible laser, not only can one see the beam and avoid direct eye contact, but also the lower intensity reduces the risk of damage to the eye, and no protective eyeware is required.

  4. Efficacy of different therapy regimes of low-power laser in painful osteoarthritis of the knee: a double-blind and randomized-controlled trial.

    PubMed

    Gur, Ali; Cosut, Abdulkadir; Sarac, Aysegul Jale; Cevik, Remzi; Nas, Kemal; Uyar, Asur

    2003-01-01

    A prospective, double-blind, randomized, and controlled trial was conducted in patients with knee osteoarthritis (OA) to evaluate the efficacy of infrared low-power Gallium-Arsenide (Ga-As) laser therapy (LPLT) and compared two different laser therapy regimes. Ninety patients were randomly assigned to three treatment groups by one of the nontreating authors by drawing 1 of 90 envelopes labeled 'A' (Group I: actual LPLT consisted of 5 minutes, 3 J total dose + exercise; 30 patients), 'B' (Group II: actual LPLT consisted of 3 minutes, 2 J total dose + exercise; 30 patients), and 'C' (Group III: placebo laser group + exercise; 30 patients). All patients received a total of 10 treatments, and exercise therapy program was continued during study (14 weeks). Subjects, physician, and data analysts were unaware of the code for active or placebo laser until the data analysis was complete. All patients were evaluated with respect to pain, degree of active knee flexion, duration of morning stiffness, painless walking distance and duration, and the Western Ontario and Mc Master Universities Osteoarthritis Index (WOMAC) at week 0, 6, 10, and 14. Statistically significant improvements were indicated in respect to all parameters such as pain, function, and quality of life (QoL) measures in the post-therapy period compared to pre-therapy in both active laser groups (P < 0.01). Improvements in all parameters of the Group I and in parameters, such as pain and WOMAC of the Group II, were more statistically significant when compared with placebo laser group (P < 0.05). Our study demonstrated that applications of LPLT in different dose and duration have not affected results and both therapy regimes were a safe and effective method in treatment of knee OA. Copyright 2003 Wiley-Liss, Inc.

  5. High power laser downhole cutting tools and systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zediker, Mark S; Rinzler, Charles C; Faircloth, Brian O

    Downhole cutting systems, devices and methods for utilizing 10 kW or more laser energy transmitted deep into the earth with the suppression of associated nonlinear phenomena. Systems and devices for the laser cutting operations within a borehole in the earth. These systems and devices can deliver high power laser energy down a deep borehole, while maintaining the high power to perform cutting operations in such boreholes deep within the earth.

  6. High-power laser diodes at various wavelengths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emanuel, M.A.

    High power laser diodes at various wavelengths are described. First, performance and reliability of an optimized large transverse mode diode structure at 808 and 941 nm are presented. Next, data are presented on a 9.5 kW peak power array at 900 nm having a narrow emission bandwidth suitable for pumping Yb:S-FAP laser materials. Finally, results on a fiber-coupled laser diode array at {approx}730 nm are presented.

  7. Average power scaling of UV excimer lasers drives flat panel display and lidar applications

    NASA Astrophysics Data System (ADS)

    Herbst, Ludolf; Delmdahl, Ralph F.; Paetzel, Rainer

    2012-03-01

    Average power scaling of 308nm excimer lasers has followed an evolutionary path over the last two decades driven by diverse industrial UV laser microprocessing markets. Recently, a new dual-oscillator and beam management concept for high-average power upscaling of excimer lasers has been realized, for the first time enabling as much as 1.2kW of stabilized UV-laser average output power at a UV wavelength of 308nm. The new dual-oscillator concept enables low temperature polysilicon (LTPS) fabrication to be extended to generation six glass substrates. This is essential in terms of a more economic high-volume manufacturing of flat panel displays for the soaring smartphone and tablet PC markets. Similarly, the cost-effective production of flexible displays is driven by 308nm excimer laser power scaling. Flexible displays have enormous commercial potential and can largely use the same production equipment as is used for rigid display manufacturing. Moreover, higher average output power of 308nm excimer lasers aids reducing measurement time and improving the signal-to-noise ratio in the worldwide network of high altitude Raman lidar stations. The availability of kW-class 308nm excimer lasers has the potential to take LIDAR backscattering signal strength and achievable altitude to new levels.

  8. Design of a high-power, high-brightness Nd:YAG solar laser.

    PubMed

    Liang, Dawei; Almeida, Joana; Garcia, Dário

    2014-03-20

    A simple high-power, high-brightness Nd:YAG solar laser pumping approach is presented in this paper. The incoming solar radiation is both collected and concentrated by four Fresnel lenses and redirected toward a Nd:YAG laser head by four plane-folding mirrors. A fused-silica secondary concentrator is used to compress the highly concentrated solar radiation to a laser rod. Optimum pumping conditions and laser resonator parameters are found through ZEMAX and LASCAD numerical analysis. Solar laser power of 96 W is numerically calculated, corresponding to the collection efficiency of 24  W/m². A record-high solar laser beam brightness figure of merit of 9.6 W is numerically achieved.

  9. Apparatus and method for generating continuous wave 16. mu. m laser radiation using gaseous CF/sub 4/

    DOEpatents

    Telle, J.M.

    1984-05-01

    Apparatus and method for generating continuous wave 16 ..mu..m laser radiation using gaseous CF/sub 4/. Laser radiation at 16 ..mu..m has been observed in a cooled static cell containing low pressure CF/sub 4/ optically pumped by an approximately 3 W output power c-w CO/sub 2/ laser. The laser cavity employed was a multiple-pass off-axis-path two spherical mirror ring resonator. Unidirectional CF/sub 4/ laser output power at 615 cm/sup -1/ exceeded 2 mW. Computer calculations indicate that for modest pump powers of about 40 W, approximately 1 W of emitted laser radiation at 16 ..mu..m might be obtained.

  10. Apparatus and method for generating continuous wave 16 .mu.m laser radiation using gaseous CF.sub.4

    DOEpatents

    Telle, John M.

    1986-01-01

    Apparatus and method for generating continuous wave 16 .mu.m laser radiation using gaseous CF.sub.4. Laser radiation at 16 .mu.m has been observed in a cooled static cell containing low pressure CF.sub.4 optically pumped by an approximately 3 W output power cw CO.sub.2 laser. The laser cavity employed was a multiple-pass off-axis-path two spherical mirror ring resonator. Unidirectional CF.sub.4 laser output power at 615 cm.sup.-1 exceeded 2 mW. Computer calculations indicate that for modest pump powers of about 40 W, approximately 1 W of emitted laser radiation at 16 .mu.m might be obtained.

  11. Low threshold and high efficiency solar-pumped laser with Fresnel lens and a grooved Nd:YAG rod

    NASA Astrophysics Data System (ADS)

    Guan, Zhe; Zhao, Changming; Yang, Suhui; Wang, Yu; Ke, Jieyao; Gao, Fengbin; Zhang, Haiyang

    2016-11-01

    Sunlight is considered as a new efficient source for direct optical-pumped solid state lasers. High-efficiency solar pumped lasers with low threshold power would be more promising than semiconductor lasers with large solar panel in space laser communication. Here we report a significant advance in solar-pumped laser threshold by pumping Nd:YAG rod with a grooved sidewall. Two-solar pumped laser setups are devised. In both cases, a Fresnel lens is used as the primary sunlight concentrator. Gold-plated conical cavity with a liquid light-guide lens is used as the secondary concentrator to further increase the solar energy concentration. In the first setup, solar pumping a 6mm diameter Nd:YAG rod, maximum laser power of 31.0W/m2 cw at 1064nm is produced, which is higher than the reported record, and the slope efficiency is 4.98% with the threshold power on the surface of Fresnel lens is 200 W. In the second setup, a 5 mm diameter laser rod output power is 29.8W/m2 with a slope efficiency of 4.3%. The threshold power of 102W is obtained, which is 49% lower than the former. Meanwhile, the theoretical calculating of the threshold power and slope efficiency of the solar-pumped laser has been established based on the rate-equation of a four-level system. The results of the finite element analysis by simulation software are verified in experiment. The optimization of the conical cavity by TraceProsoftware and the optimization of the laser resonator by LASCADare useful for the design of a miniaturization solar- pumped laser.

  12. Efficient, high-power, and radially polarized fiber laser

    PubMed Central

    Lin, Di; Xia, Kegui; Li, Jianlang; Li, Ruxin; Ueda, Ken-ichi; Li, Guoqiang; Li, Xiaojun

    2017-01-01

    We demonstrate an ytterbium-doped fiber laser that emits high-power radially polarized light efficiently. In this study, a photonic crystal grating (PCG) was used as a polarization-selective output coupler, and the power of the radially polarized laser reached 2.42 W with a slope efficiency of 45.9% and a polarization purity of 96%. The results reveal that the inclusion of the PCG mirror into the fiber laser are particularly promising for generating high-power radially polarized light efficiently in view of its many important applications. PMID:20596223

  13. Mode-locked Ti:sapphire laser oscillators pumped by wavelength-multiplexed laser diodes

    NASA Astrophysics Data System (ADS)

    Sugiyama, Naoto; Tanaka, Hiroki; Kannari, Fumihiko

    2018-05-01

    We directly pumped a Ti:sapphire laser by combining 478 and 520 nm laser diodes to prevent the effect of absorption loss induced by the pump laser of shorter wavelengths (∼450 nm). We obtain a continuous-wave output power of 660 mW at a total incident pump power of 3.15 W. We demonstrate mode locking using a semiconductor saturable absorber mirror, and 126 fs pulses were obtained at a repetition rate of 192 MHz. At the maximum pump power, the average output power is 315 mW. Shorter mode-locked pulses of 42 and 48 fs were respectively achieved by Kerr-lens mode locking with average output powers of 280 and 360 mW at a repetition rate of 117 MHz.

  14. Review on recent research progress on laser power measurement based on light pressure

    NASA Astrophysics Data System (ADS)

    Lai, WenChang; Zhou, Pu

    2018-03-01

    Accurate measuring the laser power is one of the most important issue to evaluate the performance of high power laser. For the time being, most of the demonstrated technique could be attributed to direct measuring route. Indirect measuring laser power based on light pressure, which has been under intensive investigation, has the advantages such as fast response, real-time measuring and high accuracy, compared with direct measuring route. In this paper, we will review several non-traditional methods based on light pressure to precisely measure the laser power proposed recently. The system setup, measuring principle and scaling methods would be introduced and analyzed in detail. We also compare the benefit and the drawback of these methods and analyze the uncertainties of the measurements.

  15. High-Power Single-Mode 2.65-micron InGaAsSb/AlInGaAsSb Diode Lasers

    NASA Technical Reports Server (NTRS)

    Frez, Clifford F.; Briggs, Ryan M.; Forouhar, Siamak; Borgentun, Carl E.; Gupta, James

    2013-01-01

    Central to the advancement of both satellite and in-situ science are improvements in continuous-wave and pulsed infrared laser systems coupled with integrated miniaturized optics and electronics, allowing for the use of powerful, single-mode light sources aboard both satellite and unmanned aerial vehicle platforms. There is a technological gap in supplying adequate laser sources to address the mid-infrared spectral window for spectroscopic characterization of important atmospheric gases. For high-power applications between 2 to 3 micron, commercial laser technologies are unsuitable because of limitations in output power. For instance, existing InP-based laser systems developed for fiber-based telecommunications cannot be extended to wavelengths longer than 2 micron. For emission wavelengths shorter than 3 micron, intersubband devices, such as infrared quantum cascade lasers, become inefficient due to band-offset limitations. To date, successfully demonstrated singlemode GaSb-based laser diodes emitting between 2 and 3 micron have employed lossy metal Bragg gratings for distributed- feedback coupling, which limits output power due to optical absorption. By optimizing both the quantum well design and the grating fabrication process, index-coupled distributed-feedback 2.65-micron lasers capable of emitting in excess of 25 mW at room temperature have been demonstrated. Specifically, lasers at 3,777/cm (2.65 micron) have been realized to interact with strong absorption lines of HDO and other isotopologues of H2O. With minor modifications of the optical cavity and quantum well designs, lasers can be fabricated at any wavelength within the 2-to-3-micron spectral window with similar performance. At the time of this reporting, lasers with this output power and wavelength accuracy are not commercially available. Monolithic ridge-waveguide GaSb lasers were fabricated that utilize secondorder lateral Bragg gratings to generate single-mode emission from InGaAsSb/ AlInGaAsSb multi-quantum well structures. The device fabrication utilizes etched index-coupled gratings in the top AlGaAsSb cladding of the laser chip along the ridge waveguide, whereas commercial lasers that emit close to this wavelength include loss-coupled metal gratings that limit the output power of the laser. Semiconductor-laser-based spectrometers can be used to replace gas sensors currently used in industry and government. With the availability of high-power laser sources at mid-infrared wavelengths, sensors can target strong fundamental gas absorption lines to maximize instrument sensitivity.

  16. Effect of high power CO2 and Yb:YAG laser radiation on the characteristics of TIG arc in atmospherical pressure argon and helium

    NASA Astrophysics Data System (ADS)

    Wu, Shikai; Xiao, Rongshi

    2015-04-01

    The effects of laser radiation on the characteristics of the DC tungsten inert gas (TIG) arc were investigated by applying a high power slab CO2 laser and a Yb:YAG disc laser. Experiment results reveal that the arc voltage-current curve shifts downwards, the arc column expands, and the arc temperature rises while the high power CO2 laser beam vertically interacts with the TIG arc in argon. With the increase of the laser power, the voltage-current curve of the arc shifts downwards more significantly, and the closer the laser beam impingement on the arc to the cathode, the more the decrease in arc voltage. Moreover, the arc column expansion and the arc temperature rise occur mainly in the region between the laser beam incident position and the anode. However, the arc characteristics hardly change in the cases of the CO2 laser-helium arc and YAG laser-arc interactions. The reason is that the inverse Bremsstrahlung absorption coefficients are greatly different due to the different electron densities of the argon and helium arcs and the different wave lengths of CO2 and YAG lasers.

  17. High peak power Q-switched Er:YAG laser with two polarizers and its ablation performance for hard dental tissues.

    PubMed

    Yang, Jingwei; Wang, Li; Wu, Xianyou; Cheng, Tingqing; Jiang, Haihe

    2014-06-30

    An electro-optically Q-switched high-energy Er:YAG laser with two polarizers is proposed. By using two Al(2)O(3) polarizing plates and a LiNbO(3) crystal with Brewster angle, the polarization efficiency is significantly improved. As a result, 226 mJ pulse energy with 62 ns pulse width is achieved at the repetition rate of 3 Hz, the corresponding peak power is 3.6 MW. To our knowledge, such a high peak power has not been reported in literature. With our designed laser, in-vitro teeth were irradiated under Q-switched and free-running modes. Results of a laser ablation experiment on hard dental tissue with the high-peak-power laser demonstrates that the Q-switched Er:YAG laser has higher ablation precision and less thermal damage than the free-running Er:YAG laser.

  18. High-power dual-wavelength Ho-doped fiber laser at >2 μm tandem pumped by a 1.15 μm fiber laser

    PubMed Central

    Jin, Xiaoxi; Lou, Zhaokai; Chen, Yizhu; Zhou, Pu; Zhang, Hanwei; Xiao, Hu; Liu, Zejin

    2017-01-01

    We demonstrated a high-power continuous-wave (CW) dual-wavelength Ho-doped fiber laser (HDFL) at 2049 nm and 2153 nm with a simple coupled-cavity configuration. A ~100 W laser diode-pumped fiber laser at 1150 nm served as the pump source. The maximum output power reached ~22.3 W and the slope efficiency was 23%. By altering the incident pump power, the power ratio of two signal wavelengths could be tuned in a large range due to gain competition. As far as we know, this is the first CW dual-wavelength HDFL with the power exceeding ten-watt-level, and the first dual-wavelength HDFL with the central wavelengths exceeding 2.0 μm and 2.15 μm respectively. PMID:28181571

  19. High-power dual-wavelength Ho-doped fiber laser at >2 μm tandem pumped by a 1.15 μm fiber laser

    NASA Astrophysics Data System (ADS)

    Jin, Xiaoxi; Lou, Zhaokai; Chen, Yizhu; Zhou, Pu; Zhang, Hanwei; Xiao, Hu; Liu, Zejin

    2017-02-01

    We demonstrated a high-power continuous-wave (CW) dual-wavelength Ho-doped fiber laser (HDFL) at 2049 nm and 2153 nm with a simple coupled-cavity configuration. A ~100 W laser diode-pumped fiber laser at 1150 nm served as the pump source. The maximum output power reached ~22.3 W and the slope efficiency was 23%. By altering the incident pump power, the power ratio of two signal wavelengths could be tuned in a large range due to gain competition. As far as we know, this is the first CW dual-wavelength HDFL with the power exceeding ten-watt-level, and the first dual-wavelength HDFL with the central wavelengths exceeding 2.0 μm and 2.15 μm respectively.

  20. Self-mode-locking operation of a diode-end-pumped Tm:YAP laser with watt-level output power

    NASA Astrophysics Data System (ADS)

    Zhang, Su; Zhang, Xinlu; Huang, Jinjer; Wang, Tianhan; Dai, Junfeng; Dong, Guangzong

    2018-03-01

    We report on a high power continuous wave (CW) self-mode-locked Tm:YAP laser pumped by a 792 nm laser diode. Without any additional mode-locking elements in the cavity, stable and self-starting mode-locking operation has been realized. The threshold pump power of the CW self-mode-locked Tm:YAP laser is only 5.4 W. The maximum average output power is as high as 1.65 W at the pump power of 12 W, with the repetition frequency of 468 MHz and the center wavelength of 1943 nm. To the best of our knowledge, this is the first CW self-mode-locked Tm:YAP laser. The experiment results show that the Tm:YAP crystal is a promising gain medium for realizing the high power self-mode-locking operation at 2 µm.

  1. Factors affecting color strength of printing on film-coated tablets by UV laser irradiation: TiO2 particle size, crystal structure, or concentration in the film, and the irradiated UV laser power.

    PubMed

    Hosokawa, Akihiro; Kato, Yoshiteru

    2011-08-01

    The purpose of this article is to study factors affecting color strength of printing on film-coated tablets by ultraviolet (UV) laser irradiation: particle size, crystal structure, or concentration of titanium dioxide (TiO2) in film, and irradiated UV laser power. Hydroxypropylmethylcellulose films containing 4.0% of TiO2, of which BET particle sizes were ranging from 126.1 to 219.8 nm, were irradiated 3.14W of UV laser at a wavelength 355 nm to study effects of TiO2 particle size and crystal structure on the printing. The films containing TiO2 concentration ranging from 1.0 to 7.7% were irradiated 3.14 or 5.39W of the UV laser to study effect of TiO2 concentration on the printing. The film containing 4.0% of TiO2, was irradiated the UV laser up to 6.42W to study effect of the UV laser power on the printing. The color strength of the printed films was estimated by a spectrophotometer as total color difference (dE). Particle size, crystal structure, and concentration of TiO2 in the films did not affect the printing. In the relationship between the irradiated UV laser power and dE, there found an inflection point (1.6W). When the UV laser power was below 1.6W, the films were not printed. When it was beyond the point, total color difference increased linearly in proportion with the irradiated laser power. The color strength of the printing on film was not changed by TiO2 particle size, crystal structure, and concentration, but could be controlled by regulating the irradiated UV laser power beyond the inflection point.

  2. Robust modeling and performance analysis of high-power diode side-pumped solid-state laser systems.

    PubMed

    Kashef, Tamer; Ghoniemy, Samy; Mokhtar, Ayman

    2015-12-20

    In this paper, we present an enhanced high-power extrinsic diode side-pumped solid-state laser (DPSSL) model to accurately predict the dynamic operations and pump distribution under different practical conditions. We introduce a new implementation technique for the proposed model that provides a compelling incentive for the performance assessment and enhancement of high-power diode side-pumped Nd:YAG lasers using cooperative agents and by relying on the MATLAB, GLAD, and Zemax ray tracing software packages. A large-signal laser model that includes thermal effects and a modified laser gain formulation and incorporates the geometrical pump distribution for three radially arranged arrays of laser diodes is presented. The design of a customized prototype diode side-pumped high-power laser head fabricated for the purpose of testing is discussed. A detailed comparative experimental and simulation study of the dynamic operation and the beam characteristics that are used to verify the accuracy of the proposed model for analyzing the performance of high-power DPSSLs under different conditions are discussed. The simulated and measured results of power, pump distribution, beam shape, and slope efficiency are shown under different conditions and for a specific case, where the targeted output power is 140 W, while the input pumping power is 400 W. The 95% output coupler reflectivity showed good agreement with the slope efficiency, which is approximately 35%; this assures the robustness of the proposed model to accurately predict the design parameters of practical, high-power DPSSLs.

  3. 3 kW single stage all-fiber Yb-doped single-mode fiber laser for highly reflective and highly thermal conductive materials processing

    NASA Astrophysics Data System (ADS)

    Ikoma, S.; Nguyen, H. K.; Kashiwagi, M.; Uchiyama, K.; Shima, K.; Tanaka, D.

    2017-02-01

    A 3 kW single stage all-fiber Yb-doped single-mode fiber laser with bi-directional pumping configuration has been demonstrated. Our newly developed high-power LD modules are employed for a high available pump power of 4.9 kW. The length of the delivery fiber is 20 m which is long enough to be used in most of laser processing machines. An output power of 3 kW was achieved at a pump power of 4.23 kW. The slope efficiency was 70%. SRS was able to be suppressed at the same output power by increasing ratio of backward pump power. The SRS level was improved by 5dB when 57% backward pump ratio was adopted compared with the case of 50%. SRS was 35dB below the laser power at the output power of 3 kW even with a 20-m delivery fiber. The M-squared factor was 1.3. Single-mode beam quality was obtained. To evaluate practical utility of the 3 kW single-mode fiber laser, a Bead-on-Plate (BoP) test onto a pure copper plate was executed. The BoP test onto a copper plate was made without stopping or damaging the laser system. That indicates our high power single-mode fiber lasers can be used practically in processing of materials with high reflectivity and high thermal conductivity.

  4. Visible high power fiber coupled diode lasers

    NASA Astrophysics Data System (ADS)

    Köhler, Bernd; Drovs, Simon; Stoiber, Michael; Dürsch, Sascha; Kissel, Heiko; Könning, Tobias; Biesenbach, Jens; König, Harald; Lell, Alfred; Stojetz, Bernhard; Löffler, Andreas; Strauß, Uwe

    2018-02-01

    In this paper we report on further development of fiber coupled high-power diode lasers in the visible spectral range. New visible laser modules presented in this paper include the use of multi single emitter arrays @ 450 nm leading to a 120 W fiber coupled unit with a beam quality of 44 mm x mrad, as well as very compact modules with multi-W output power from 405 nm to 640 nm. However, as these lasers are based on single emitters, power scaling quickly leads to bulky laser units with a lot of optical components to be aligned. We also report on a new approach based on 450 nm diode laser bars, which dramatically reduces size and alignment effort. These activities were performed within the German government-funded project "BlauLas": a maximum output power of 80 W per bar has been demonstrated @ 450 nm. We show results of a 200 μm NA0.22 fiber coupled 35 W source @ 450 nm, which has been reduced in size by a factor of 25 compared to standard single emitter approach. In addition, we will present a 200 μm NA0.22 fiber coupled laser unit with an output power of 135 W.

  5. Characterization of High-power Quasi-cw Laser Diode Arrays

    NASA Technical Reports Server (NTRS)

    Stephen, Mark A.; Vasilyev, Aleksey; Troupaki, Elisavet; Allan, Graham R.; Kashem, Nasir B.

    2005-01-01

    NASA s requirements for high reliability, high performance satellite laser instruments have driven the investigation of many critical components; specifically, 808 nm laser diode array (LDA) pump devices. Performance and comprehensive characterization data of Quasi-CW, High-power, laser diode arrays is presented.

  6. Unidirectional photonic wire laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khalatpour, Ali; Reno, John L.; Kherani, Nazir P.

    Photonic wire lasers are a new genre of lasers that have a transverse dimension much smaller than the wavelength. Unidirectional emission is highly desirable as most of the laser power will be in the desired direction. Owing to their small lateral dimension relative to the wavelength, however, the mode mostly propagates outside the solid core. Consequently, conventional approaches to attach a highly reflective element to the rear facet, whether a thin film or a distributed Bragg reflector, are not applicable. In this paper, we propose a simple and effective technique to achieve unidirectionality. Terahertz quantum-cascade lasers with distributed feedback (DFB)more » were chosen as the platform of the photonic wire lasers. Unidirectionality is achieved with a power ratio of the forward/backward of about eight, and the power of the forward-emitting laser is increased by a factor of 1.8 compared with a reference bidirectional DFB laser. Finally and furthermore, we achieved a wall plug power efficiency of ~1%.« less

  7. Thermal Investigation of Interaction between High-power CW-laser Radiation and a Water-jet

    NASA Astrophysics Data System (ADS)

    Brecher, Christian; Janssen, Henning; Eckert, Markus; Schmidt, Florian

    The technology of a water guided laser beam has been industrially established for micro machining. Pulsed laser radiation is guided via a water jet (diameter: 25-250 μm) using total internal reflection. Due to the cylindrical jet shape the depth of field increases to above 50 mm, enabling parallel kerfs compared to conventional laser systems. However higher material thicknesses and macro geometries cannot be machined economically viable due to low average laser powers. Fraunhofer IPT has successfully combined a high-power continuous-wave (CW) fiber laser (6 kW) and water jet technology. The main challenge of guiding high-power laser radiation in water is the energy transferred to the jet by absorption, decreasing its stability. A model of laser water interaction in the water jet has been developed and validated experimentally. Based on the results an upscaling of system technology to 30 kW is discussed, enabling a high potential in cutting challenging materials at high qualities and high speeds.

  8. Narrow linewidth picosecond UV pulsed laser with mega-watt peak power.

    PubMed

    Huang, Chunning; Deibele, Craig; Liu, Yun

    2013-04-08

    We demonstrate a master oscillator power amplifier (MOPA) burst mode laser system that generates 66 ps/402.5 MHz pulses with mega-watt peak power at 355 nm. The seed laser consists of a single frequency fiber laser (linewidth < 5 KHz), a high bandwidth electro-optic modulator (EOM), a picosecond pulse generator, and a fiber based preamplifier. A very high extinction ratio (45 dB) has been achieved by using an adaptive bias control of the EOM. The multi-stage Nd:YAG amplifier system allows a uniformly temporal shaping of the macropulse with a tunable pulse duration. The light output from the amplifier is converted to 355 nm, and over 1 MW peak power is obtained when the laser is operating in a 5-μs/10-Hz macropulse mode. The laser output has a transform-limited spectrum with a very narrow linewidth of individual longitudinal modes. The immediate application of the laser system is the laser-assisted hydrogen ion beam stripping for the Spallation Neutron Source (SNS).

  9. Investigation of ASE and SRS effects on 1018nm short-wavelength Yb3+-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Xie, Zhaoxin; Shi, Wei; Sheng, Quan; Fu, Shijie; Fang, Qiang; Zhang, Haiwei; Bai, Xiaolei; Shi, Guannan; Yao, Jianquan

    2017-03-01

    1018nm short wavelength Yb3+-doped fiber laser can be widely used for tandem-pumped fiber laser system in 1 μm regime because of its high brightness and low quantum defect (QD). In order to achieve 1018nm short wavelength Yb3+-doped fiber laser with high output power, a steady-state rate equations considering the amplified spontaneous emission (ASE) and Stimulated Raman Scattering (SRS) has been established. We theoretically analyzed the ASE and SRS effects in 1018nm short wavelength Yb3+-doped fiber laser and the simulation results show that the ASE is the main restriction rather than SRS for high power 1018nm short wavelength Yb3+-doped fiber laser, besides the high temperature of fiber is also the restriction for high output power. We use numerical solution of steady-state rate equations to discuss how to suppress ASE in 1018nm short wavelength fiber laser and how to achieve high power 1018nm short-wavelength fiber laser.

  10. Unidirectional photonic wire laser

    DOE PAGES

    Khalatpour, Ali; Reno, John L.; Kherani, Nazir P.; ...

    2017-08-07

    Photonic wire lasers are a new genre of lasers that have a transverse dimension much smaller than the wavelength. Unidirectional emission is highly desirable as most of the laser power will be in the desired direction. Owing to their small lateral dimension relative to the wavelength, however, the mode mostly propagates outside the solid core. Consequently, conventional approaches to attach a highly reflective element to the rear facet, whether a thin film or a distributed Bragg reflector, are not applicable. In this paper, we propose a simple and effective technique to achieve unidirectionality. Terahertz quantum-cascade lasers with distributed feedback (DFB)more » were chosen as the platform of the photonic wire lasers. Unidirectionality is achieved with a power ratio of the forward/backward of about eight, and the power of the forward-emitting laser is increased by a factor of 1.8 compared with a reference bidirectional DFB laser. Finally and furthermore, we achieved a wall plug power efficiency of ~1%.« less

  11. Continuous-wave broadly tunable Cr 2+:ZnSe laser pumped by a thulium fiber laser

    NASA Astrophysics Data System (ADS)

    Sennaroglu, Alphan; Demirbas, Umit; Vermeulen, Nathalie; Ottevaere, Heidi; Thienpont, Hugo

    2006-12-01

    We describe a compact, broadly tunable, continuous-wave (cw) Cr 2+:ZnSe laser pumped by a thulium fiber laser at 1800 nm. In the experiments, a polycrystalline ZnSe sample with a chromium concentration of 9.5 × 10 18 cm -3 was used. Free-running laser output was around 2500 nm. Output couplers with transmissions of 3%, 6%, and 15% were used to characterize the power performance of the laser. Best power performance was obtained with a 15% transmitting output coupler. In this case, as high as 640 mW of output power was obtained with 2.5 W of pump power at a wavelength of 2480 nm. The stimulated emission cross-section values determined from laser threshold data and emission measurements were in good agreement. Finally, broad, continuous tuning of the laser was demonstrated between 2240 and 2900 nm by using an intracavity Brewster cut MgF 2 prism and a single set of optics.

  12. Life testing of metal-ceramic CO2 lasers

    NASA Technical Reports Server (NTRS)

    Fahlen, T. S.; Radecki, D. J.; Reynolds, R. S.; Targ, R.

    1971-01-01

    The main purpose of this program was to determine the life characteristics of nine space-qualified, metal-ceramic CO2 lasers. Lifetimes ranged between about 400 hours to over 2000 hours (the limit of testing) with a high degree of consistency in like groups. In all cases the tubes which had failed could be restored to near their original power by doubling the cathode current for 30 minutes. Periodic rejuvenation allowed operation for the full 2000 hours on all tubes. The failure mechanism appears to involve formation of NiO and C on the nickel cathode emission surface with subsequent absorption of tube gases.

  13. Characterization of inertial confinement fusion (ICF) targets using PIXE, RBS, and STIM analysis.

    PubMed

    Li, Yongqiang; Liu, Xue; Li, Xinyi; Liu, Yiyang; Zheng, Yi; Wang, Min; Shen, Hao

    2013-08-01

    Quality control of the inertial confinement fusion (ICF) target in the laser fusion program is vital to ensure that energy deposition from the lasers results in uniform compression and minimization of Rayleigh-Taylor instabilities. The technique of nuclear microscopy with ion beam analysis is a powerful method to provide characterization of ICF targets. Distribution of elements, depth profile, and density image of ICF targets can be identified by particle-induced X-ray emission, Rutherford backscattering spectrometry, and scanning transmission ion microscopy. We present examples of ICF target characterization by nuclear microscopy at Fudan University in order to demonstrate their potential impact in assessing target fabrication processes.

  14. 303 nm continuous wave ultraviolet laser generated by intracavity frequency-doubling of diode-pumped Pr3+:LiYF4 laser

    NASA Astrophysics Data System (ADS)

    Zhu, Pengfei; Zhang, Chaomin; Zhu, Kun; Ping, Yunxia; Song, Pei; Sun, Xiaohui; Wang, Fuxin; Yao, Yi

    2018-03-01

    We demonstrate an efficient and compact ultraviolet laser at 303 nm generated by intracavity frequency doubling of a continuous wave (CW) laser diode-pumped Pr3+:YLiF4 laser at 607 nm. A cesium lithium borate (CLBO) crystal, cut for critical type I phase matching at room temperature, is used for second-harmonic generation (SHG) of the fundamental laser. By using an InGaN laser diode array emitting at 444.3 nm with a maximum incident power of 10 W, as high as 68 mW of CW output power at 303 nm is achieved. The output power stability in 4 h is better than 2.85%. To the best of our knowledge, this is high efficient UV laser generated by frequency doubling of an InGaN laser diode array pumped Pr3+:YLiF4 laser.

  15. Spectral diagnostics of a vapor-plasma plume produced during welding titanium with a high-power ytterbium fiber laser

    NASA Astrophysics Data System (ADS)

    Uspenskiy, S. A.; Petrovskiy, V. N.; Bykovskiy, D. P.; Mironov, V. D.; Prokopova, N. M.; Tret'yakov, E. V.

    2015-03-01

    This work is devoted to the research of welding plume during high power ytterbium fiber laser welding of a titanium alloy in the Ar shielding gas environment. High speed video observation of a vapor-plasma plume for visualization of processes occurring at laser welding was carried out. The coefficient of the inverse Bremsstrahlung absorption of laser radiation is calculated for a plasma welding plume by results of spectrometer researches. The conclusion deals with the impact of plasma on a high-power fiber laser radiation.

  16. Molecular Dynamics Simulations of Laser Powered Carbon Nanotube Gears

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Globus, Al; Han, Jie; Chancellor, Marisa K. (Technical Monitor)

    1997-01-01

    Dynamics of laser powered carbon nanotube gears is investigated by molecular dynamics simulations with Brenner's hydrocarbon potential. We find that when the frequency of the laser electric field is much less than the intrinsic frequency of the carbon nanotube, the tube exhibits an oscillatory pendulam behavior. However, a unidirectional rotation of the gear with oscillating frequency is observed under conditions of resonance between the laser field and intrinsic gear frequencies. The operating conditions for stable rotations of the nanotube gears, powered by laser electric fields are explored, in these simulations.

  17. Inactivation of Viruses by Coherent Excitations with a Low Power Visible Femtosecond Laser

    DTIC Science & Technology

    2007-06-05

    visible femtosecond laser having a wavelength of 425 nm and a pulse width of 100 fs, we show that M13 phages were inactivated when the laser power density...was greater than or equal to 50 MW/cm2. The inactivation of M13 phages was determined by plaque counts and had been found to depend on the pulse width...visible femtosecond laser having a wavelength of 425 nm and a pulse width of 100 fs, we show that M13 phages were inactivated when the laser power

  18. Phased laser array for generating a powerful laser beam

    DOEpatents

    Holzrichter, John F.; Ruggiero, Anthony J.

    2004-02-17

    A first injection laser signal and a first part of a reference laser beam are injected into a first laser element. At least one additional injection laser signal and at least one additional part of a reference laser beam are injected into at least one additional laser element. The first part of a reference laser beam and the at least one additional part of a reference laser beam are amplified and phase conjugated producing a first amplified output laser beam emanating from the first laser element and an additional amplified output laser beam emanating from the at least one additional laser element. The first amplified output laser beam and the additional amplified output laser beam are combined into a powerful laser beam.

  19. On the exploration of effect of critical beam power on the propagation of Gaussian laser beam in collisionless magnetized plasma

    NASA Astrophysics Data System (ADS)

    Urunkar, T. U.; Valkunde, A. T.; Vhanmore, B. D.; Gavade, K. M.; Patil, S. D.; Takale, M. V.

    2018-05-01

    It is quite known that critical power of the laser plays vital role in the propagation of Gaussian laser beam in collisionless plasma. The nonlinearity in dielectric constant considered herein is due to the ponderomotive force. In the present analysis, the interval of critical beam power has been explored to sustain the competition between diffraction and self-focusing of Gaussian laser beam during propagation in collisionless magnetized plasma. Differential equation for beam-width parameter has been established by using WKB and paraxial approximations under parabolic equation approach. The effect of critical power on the propagation of Gaussian laser beam has been presented graphically and discussed.

  20. High power 808 nm vertical cavity surface emitting laser with multi-ring-shaped-aperture structure

    NASA Astrophysics Data System (ADS)

    Hao, Y. Q.; Shang, C. Y.; Feng, Y.; Yan, C. L.; Zhao, Y. J.; Wang, Y. X.; Wang, X. H.; Liu, G. J.

    2011-02-01

    The carrier conglomeration effect has been one of the main problems in developing electrically pumped high power vertical cavity surface emitting laser (VCSEL) with large aperture. We demonstrate a high power 808 nm VCSEL with multi-ring-shaped-aperture (MRSA) to weaken the carrier conglomeration effect. Compared with typical VCSEL with single large aperture (SLA), the 300-μm-diameter VCSEL with MRSA has more uniform near field and far field patterns. Moreover, MRSA laser exhibits maximal CW light output power 0.3 W which is about 3 times that of SLA laser. And the maximal wall-plug efficiency of 17.4% is achieved, higher than that of SLA laser by 10%.

  1. Advancement of High Power Quasi-CW Laser Diode Arrays For Space-based Laser Instruments

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Meadows, Byron L.; Baker, nathaniel R.; Baggott, Renee S.; Singh, Upendra N.; Kavaya, Michael J.

    2004-01-01

    Space-based laser and lidar instruments play an important role in NASA s plans for meeting its objectives in both Earth Science and Space Exploration areas. Almost all the lidar instrument concepts being considered by NASA scientist utilize moderate to high power diode-pumped solid state lasers as their transmitter source. Perhaps the most critical component of any solid state laser system is its pump laser diode array which essentially dictates instrument efficiency, reliability and lifetime. For this reason, premature failures and rapid degradation of high power laser diode arrays that have been experienced by laser system designers are of major concern to NASA. This work addresses these reliability and lifetime issues by attempting to eliminate the causes of failures and developing methods for screening laser diode arrays and qualifying them for operation in space.

  2. Photovoltaic receivers for laser beamed power in space

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    1991-01-01

    There has recently been a resurgence of interest in the use of beamed power to support space exploration activities. One of the most promising beamed power concepts uses a laser beam to transmit power to a remote photovoltaic array. Large lasers can be located on cloud-free sites at one or more ground locations and illuminate solar arrays to a level sufficient to provide operating power. Issues involved in providing photovoltaic receivers for such applications are discussed.

  3. Diode lasers optimized in brightness for fiber laser pumping

    NASA Astrophysics Data System (ADS)

    Kelemen, M.; Gilly, J.; Friedmann, P.; Hilzensauer, S.; Ogrodowski, L.; Kissel, H.; Biesenbach, J.

    2018-02-01

    In diode laser applications for fiber laser pumping and fiber-coupled direct diode laser systems high brightness becomes essential in the last years. Fiber coupled modules benefit from continuous improvements of high-power diode lasers on chip level regarding output power, efficiency and beam characteristics resulting in record highbrightness values and increased pump power. To gain high brightness not only output power must be increased, but also near field widths and far field angles have to be below a certain value for higher power levels because brightness is proportional to output power divided by beam quality. While fast axis far fields typically show a current independent behaviour, for broadarea lasers far-fields in the slow axis suffer from a strong current and temperature dependence, limiting the brightness and therefore their use in fibre coupled modules. These limitations can be overcome by carefully optimizing chip temperature, thermal lensing and lateral mode structure by epitaxial and lateral resonator designs and processing. We present our latest results for InGaAs/AlGaAs broad-area single emitters with resonator lengths of 4mm emitting at 976nm and illustrate the improvements in beam quality over the last years. By optimizing the diode laser design a record value of the brightness for broad-area lasers with 4mm resonator length of 126 MW/cm2sr has been demonstrated with a maximum wall-plug efficiency of more than 70%. From these design also pump modules based on 9 mini-bars consisting of 5 emitters each have been realized with 360W pump power.

  4. Mid-IR lasers based on transition metal and rare-earth ion doped crystals

    NASA Astrophysics Data System (ADS)

    Mirov, S.; Fedorov, V.; Martyshkin, D.; Moskalev, I.; Mirov, M.; Vasilyev, S.

    2015-05-01

    We report a novel design of CW Cr2+:ZnS/ZnSe laser systems and demonstrate record output powers of 27.5 W at 2.45 μm and 13.9 W at 2.94 μm with slope efficiencies of 63.7% and 37.4%, respectively. Power scaling of ultra-fast Cr2+:ZnS/ZnSe Kerr mode-locked lasers beyond 2 W level, as well as the shortest pulse duration of 29 fs, are also reported. New development of Fe:ZnSe laser with average output power > 35 W at 4.1 μm output wavelength and 100 Hz pulse repetition rate (PRR) was achieved in a nonselective cavity. With intracavity prim selector, wavelength tunability of 3.88-4.17 μm was obtained with maximum average output power of 23 W. We also report new results on Tm-fiber pumped passively and actively Q-switched Ho:YAG laser systems. High peak power actively Q-switched Ho:YAG laser demonstrates stable operation with pulse energy > 50 mJ, 12 ns pulse duration, and 100-1000 Hz PRR which correspondents to more than 4 MW peak power. The actively Q-switched Ho:YAG laser system optimized for high repetition rate delivers 40 W average output power at 10-100 kHz PRR. The Ho:YAG laser with passive Q-switcher demonstrates constant 5 mJ output energy from 200 Hz to 2.23 kHz PRR with optical slope efficiency with respect to Tm-fiber laser of ~43%.

  5. The Multidisk Diode-Pumped High Power Yb:YAG Laser Amplifier of High-Intensity Laser System with 1 kHz Repetition Rate

    NASA Astrophysics Data System (ADS)

    Kuptsov, G. V.; Petrov, V. V.; Petrov, V. A.; Laptev, A. V.; Kirpichnikov, A. V.; Pestryakov, E. V.

    2018-04-01

    The source of instabilities in the multidisk diode-pumped high power Yb:YAG laser amplifier with cryogenic closed-loop cooling in the laser amplification channel of the high-intensity laser system with 1 kHz repetition rate was determined. Dissected copper mounts were designed and used to suppress instabilities and to achieve repeatability of the system. The equilibrium temperature dependency of the active elements on average power was measured. The seed laser for the multidisk amplifier was numerically simulated and designed to allow one to increase pulses output energy after the amplifier up to 500 mJ.

  6. High efficiency 2 micrometer laser utilizing wing-pumped Tm.sup.3+ and a laser diode array end-pumping architecture

    DOEpatents

    Beach, Raymond J.

    1997-01-01

    Wing pumping a Tm.sup.3+ doped, end pumped solid state laser generates 2 .mu.m laser radiation at high average powers with high efficiency. Using laser diode arrays to end-pump the laser rod or slab in the wing of the Tm.sup.3+ absorption band near 785 nm results in 2-for-1 quantum efficiency in Tm.sup.3+ because high Tm.sup.3+ concentrations can be used. Wing pumping allows the thermal power generated in the rod or slab to be distributed over a large enough volume to make thermal management practical in the laser gain medium even at high average power operation. The approach is applicable to CW, Q-switched, and rep-pulsed free-laser operation.

  7. High efficiency 2 micrometer laser utilizing wing-pumped Tm{sup 3+} and a laser diode array end-pumping architecture

    DOEpatents

    Beach, R.J.

    1997-11-18

    Wing pumping a Tm{sup 3+} doped, end pumped solid state laser generates 2 {micro}m laser radiation at high average powers with high efficiency. Using laser diode arrays to end-pump the laser rod or slab in the wing of the Tm{sup 3+} absorption band near 785 nm results in 2-for-1 quantum efficiency in Tm{sup 3+} because high Tm{sup 3+} concentrations can be used. Wing pumping allows the thermal power generated in the rod or slab to be distributed over a large enough volume to make thermal management practical in the laser gain medium even at high average power operation. The approach is applicable to CW, Q-switched, and rep-pulsed free-laser operation. 7 figs.

  8. The high-power iodine laser

    NASA Astrophysics Data System (ADS)

    Brederlow, G.; Fill, E.; Witte, K. J.

    The book provides a description of the present state of the art concerning the iodine laser, giving particular attention to the design and operation of pulsed high-power iodine lasers. The basic features of the laser are examined, taking into account aspects of spontaneous emission lifetime, hyperfine structure, line broadening and line shifts, stimulated emission cross sections, the influence of magnetic fields, sublevel relaxation, the photodissociation of alkyl iodides, flashlamp technology, excitation in a direct discharge, chemical excitation, and questions regarding the chemical kinetics of the photodissociation iodine laser. The principles of high-power operation are considered along with aspects of beam quality and losses, the design and layout of an iodine laser system, the scalability and prospects of the iodine laser, and the design of the single-beam Asterix III laser.

  9. Fiber optic cables for transmission of high-power laser pulses in spaceflight applications

    NASA Astrophysics Data System (ADS)

    Thomes, W. J.; Ott, M. N.; Chuska, R. F.; Switzer, R. C.; Blair, D. E.

    2017-11-01

    Lasers with high peak power pulses are commonly used in spaceflight missions for a wide range of applications, from LIDAR systems to optical communications. Due to the high optical power needed, the laser has to be located on the exterior of the satellite or coupled through a series of free space optics. This presents challenges for thermal management, radiation resistance, and mechanical design. Future applications will require multiple lasers located close together, which further complicates the design. Coupling the laser energy into a fiber optic cable allows the laser to be relocated to a more favorable position on the spacecraft. Typical fiber optic termination procedures are not sufficient for injection of these high-power laser pulses without catastrophic damage to the fiber endface. In the current study, we will review the causes of fiber damage during high-power injection and discuss our new manufacturing procedures that overcome these issues to permit fiber use with high reliability in these applications. We will also discuss the proper methods for launching the laser pulses into the fiber to avoid damage and how this is being implemented for current spaceflight missions.

  10. Fiber Optic Cables for Transmission of High-Power Laser Pulses in Spaceflight Applications

    NASA Technical Reports Server (NTRS)

    Thomes, W. J., Jr.; Ott, M. N.; Chuska, R. F.; Switzer, R. C.; Blair, D. E.

    2010-01-01

    Lasers with high peak power pulses are commonly used in spaceflight missions for a wide range of applications, from LIDAR systems to optical communications. Due to the high optical power needed, the laser has to be located on the exterior of the satellite or coupled through a series of free space optics. This presents challenges for thermal management, radiation resistance, and mechanical design. Future applications will require multiple lasers located close together, which further complicates the design. Coupling the laser energy into a fiber optic cable allows the laser to be relocated to a more favorable position on the spacecraft. Typical fiber optic termination procedures are not sufficient for injection of these high-power laser pulses without catastrophic damage to the fiber endface. In the current study, we will review the causes of fiber damage during high-power injection and discuss our new manufacturing procedures that overcome these issues to permit fiber use with high reliability in these applications. We will also discuss the proper methods for launching the laser pulses into the fiber to avoid damage and how this is being implemented for current spaceflight missions.

  11. Trends in high power laser applications in civil engineering

    NASA Astrophysics Data System (ADS)

    Wignarajah, Sivakumaran; Sugimoto, Kenji; Nagai, Kaori

    2005-03-01

    This paper reviews the research and development efforts made on the use of lasers for material processing in the civil engineering industry. Initial investigations regarding the possibility of using lasers in civil engineering were made in the 1960s and '70s, the target being rock excavation. At that time however, the laser powers available were too small for any practical application utilization. In the 1980's, the technology of laser surface cleaning of historically important structures was developed in Europe. In the early 1990s, techniques of laser surface modification, including glazing and coloring of concrete, roughening of granite stones, carbonization of wood were pursued, mainly in Japan. In the latter part of the decade, techniques of laser decontamination of concrete surfaces in nuclear facilities were developed in many countries, and field tests were caried out in Japan. The rapid advances in development of diode lasers and YAG lasers with high power outputs and efficiencies since the late 1990's have led to a revival of worldwide interest in the use of lasers for material processing in civil engineering. The authors believe that, in the next 10 years or so, the advent of compact high power lasers is likely to lead to increased use of lasers of material processing in the field of civil engineering.

  12. Efficient upconversion-pumped continuous wave Er3+:LiLuF4 lasers

    NASA Astrophysics Data System (ADS)

    Moglia, Francesca; Müller, Sebastian; Reichert, Fabian; Metz, Philip W.; Calmano, Thomas; Kränkel, Christian; Heumann, Ernst; Huber, Günter

    2015-04-01

    We report on detailed spectroscopic investigations and efficient visible upconversion laser operation of Er3+:LiLuF4. This material allows for efficient resonant excited-state-absorption (ESA) pumping at 974 nm. Under spectroscopic conditions without external feedback, ESA at the laser wavelength of 552 nm prevails stimulated emission. Under lasing conditions in a resonant cavity, the high intracavity photon density bleaches the ESA at 552 nm, allowing for efficient cw laser operation. We obtained the highest output power of any room-temperature crystalline upconversion laser. The laser achieves a cw output power of 774 mW at a slope efficiency of 19% with respect to the incident pump power delivered by an optically-pumped semiconductor laser. The absorption efficiency of the pump radiation is estimated to be below 50%. To exploit the high confinement in waveguides for this laser, we employed femtosecond-laser pulses to inscribe a cladding of parallel tracks of modified material into Er3+:LiLuF4 crystals. The core material allows for low-loss waveguiding at pump and laser wavelengths. Under Ti:sapphire pumping at 974 nm, the first crystalline upconversion waveguide laser has been realized. We obtained waveguide-laser operation with up to 10 mW of output power at 553 nm.

  13. LISK-BROOM: A laser concept for clearing space junk

    NASA Astrophysics Data System (ADS)

    Phipps, Claude

    1994-10-01

    A mathematical model predicts the economical effectiveness of using powerful laser beams for cleaning space junk. The propelling force comes from the ablation caused by repetitive laser pulses. Lasers will use Earth-based power to de-orbit waste objects in cooperation with observatory telescopes. (AIP)

  14. The influence of laser pulse waveform on laser-TIG hybrid welding of AZ31B magnesium alloy

    NASA Astrophysics Data System (ADS)

    Song, Gang; Luo, Zhimin

    2011-01-01

    By dividing laser pulse duration into two parts, three kinds of laser waveforms are designed, including a high power density pulse (HPDP) laser in a short duration set at the beginning of the laser waveform. This paper aims to find out the laser pulse waveform and idiographic critical values of HPDP, which can affect the magnesium penetration in laser-tungsten inert gas (TIG) hybrid welding. Results show that when the laser pulse duration of HPDP is not more than 0.4 ms, the welding penetration values of lasers with HPDP are larger than otherwise. Also, the welding penetration values of laser with HPDP have increased by up to 26.1%. It has been found that with HPDP, the laser can form the keyhole more easily because the interaction between laser and the plate is changed, when the TIG arc preheats the plate. Besides, the laser with high power density and short duration strikes on the plates so heavily that the corresponding background power can penetrate into the bottom of the keyhole and maintain the keyhole open, which facilitates the final welding penetration.

  15. Holmium:YAG surgical lasers.

    PubMed

    1995-03-01

    "Holmium:YAG (Ho:YAG)" is the shorthand name for a family of solid-state lasers that use the doping element holmium in a laser crystal (e.g., YAG [yttrium-aluminum-garnet]) and that emit energy at approximately 2.1 microns. This wavelength is relatively new to medicine and has been used in laser surgery for only about the last six years. Like the carbon dioxide (CO2) laser when it was first used clinically, the Ho:YAG laser is poised for rapid and wide-spread use. Ho:YAG lasers, like CO2 lasers, offer precise cutting with minimal damage to adjacent tissue; however, unlike CO2 lasers, they also offer fiberoptic delivery (which is ideal for endoscopic use) and the ability to treat tissue in a liquid-filled environment (e.g., saline, blood). The initial specialty for which the Ho:YAG laser was used was arthroscopic surgery, especially diskectomy. Today, it is effectively used in many surgical specialties, including general surgery, urology, laparoscopy, neurosurgery, lithotripsy, angioplasty, orthopedic surgery (which includes procedures such as meniscectomy, bone sculpting [may also be performed in plastic surgery], and some experimental surgery, such as cartilage shrinking to tighten loose joints), and dentistry. Because of its broad range of potential applications, it has been called the "Swiss Army Knife" of lasers. High-powered Ho:YAG lasers, which enable surgeons to work more quickly and cut more smoothly, have been made available only within the last three years (units offering > 20 W) to 18 months (units offering > 60 W). Because of this rapid increase, high-powered units are still relatively expensive, and it is not yet clear whether maximum power outputs will continue to increase or whether the cost of higher-power units will begin to come down. Although low-power and high-power Ho:YAG lasers can be used for the same procedures, their different ranges of possible clinical techniques make them better suited to different applications: low-power units are preferable for small-joint and some head-and-neck surgeries or for office use, and high-power units are more suitable for use in major surgery, such as gastrointestinal surgery or surgery in large joints. This evaluation includes two units at both ends of the Ho:YAG power spectrum--one 10 W and one 60 W--and thus provides a guide to evaluating other Ho:YAG lasers that are currently available or that will be entering the market.(ABSTRACT TRUNCATED AT 400 WORDS)

  16. Future directions in 980-nm pump lasers: submarine deployment to low-cost watt-class terrestrial pumps

    NASA Astrophysics Data System (ADS)

    Gulgazov, Vadim N.; Jackson, Gordon S.; Lascola, Kevin M.; Major, Jo S.; Parke, Ross; Richard, Tim; Rossin, Victor V.; Zhang, Kai

    1999-09-01

    The demands of global bandwidth and distribution are rising rapidly as Internet usage grows. This fundamentally means that more photons are flowing within optical cables. While transmitting sources launches some optical power, the majority of the optical power that is present within modern telecommunication systems originates from optical amplifiers. In addition, modern optical amplifiers offer flat optical gain over broad wavelength bands, thus making possible dense wavelength de-multiplexing (DWDM) systems. Optical amplifier performance, and by extension the performance of the laser pumps that drive them, is central to the future growth of both optical transmission and distribution systems. Erbium-doped amplifiers currently dominate optical amplifier usage. These amplifiers absorb pump light at 980 nm and/or 1480 nm, and achieve gain at wavelengths around 1550 nm. 980 nm pumps achieve better noise figures and are therefore used for the amplification of small signals. Due to the quantum defect, 1480 nm lasers deliver more signal photon per incident photon. In addition, 1480 nm lasers are less expensive than 980 nm lasers. Thus, 1480 nm pump lasers are used for amplification in situations where noise is not critical. The combination of these traits leads to the situation where many amplifiers contain 980 nm lasers to pump the input section of the Er- doped fiber with 1480 nm lasers being used to pump the latter section of Er fiber. This can be thought of as using 980 nm lasers to power an optical pre-amplifier with the power amplification function being pump with 1480 nm radiation. This paper will focus on 980 nm pump lasers and the impact that advances in 980 nm pump technology will have on optical amplification systems. Currently, 980 nm technology is rapidly advancing in two areas, power and reliability. Improving reliability is becoming increasingly important as amplifiers move towards employing more pump lasers and using these pump lasers without redundancy. Since the failure rate allowable for an amplifier is not a function of the number of pumps employed in the amplifier, the allowable failure rate of an individual pump laser is decreasing for next-generation amplifiers. This will lead to specifications for terrestrial pumps well below 1000 FIT, and may lead to the case where high power amplifiers need laser pump reliability to approach 100 FIT. In addition, 980 nm laser diodes are now being deployed in submarine systems where failure rates lower than 100 FIT are commonly specified. It is obvious that both terrestrial and submarine markets are pushing allowable failure rates for pumps for optical amplifiers to continually decrease. A second push for improvement is in the output power of 980 nm pump modules. There exist a number of motivations for increasing the output power of pump lasers. First, each additional channel in a DWDM system requires additional power. To first order, a doubling in channel count implies a doubling in pump power. Second, larger amplifiers require multiple pumps. Higher output power from pump modules allows for fewer pumps, less complicated control systems and smaller size amplifiers. The discussion of this paper will focus on how current development progress of 980 nm laser diodes addresses these issues: better reliability and higher output powers.

  17. Rugged passively cooled high power laser fiber optic connectors and methods of use

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rinzler, Charles C.; Gray, William C.; Fraze, Jason D.

    2016-06-07

    There are provided high power laser connectors and couplers and methods that are capable of providing high laser power without the need for active cooling to remote, harsh and difficult to access locations and under difficult and harsh conditions and to manage and mitigate the adverse effects of back reflections.

  18. Blue 450nm high power semiconductor continuous wave laser bars exceeding rollover output power of 80W

    NASA Astrophysics Data System (ADS)

    König, H.; Lell, A.; Stojetz, B.; Ali, M.; Eichler, C.; Peter, M.; Löffler, A.; Strauss, U.; Baumann, M.; Balck, A.; Malchus, J.; Krause, V.

    2018-02-01

    Industrial material processing like cutting or welding of metals is rather energy efficient using direct diode or diode pumped solid state lasers. However, many applications cannot be addressed by established infrared laser technology due to fundamental material properties of the workpiece: For example materials like copper or gold have too low absorption in the near infrared wavelength range to be processed efficiently by use of existing high power laser systems. The huge interest to enable high power kW systems with more suitable wavelengths in the blue spectral range triggered the German funded research project 'BLAULAS': Therein the feasibility and capability of CW operating high power laser bars based on the GaN material system was investigated by Osram and Laserline. High performance bars were enabled by defeating fundamental challenges like material quality as well as the chip processes, both of which differ significantly from well-known IR laser bars. The research samples were assembled on actively cooled heat sinks with hard solder technology. For the first time an output power of 98W per bar at 60A drive current was achieved. Conversion efficiency as high as 46% at 50W output power was demonstrated.

  19. Advancements in high-power diode laser stacks for defense applications

    NASA Astrophysics Data System (ADS)

    Pandey, Rajiv; Merchen, David; Stapleton, Dean; Patterson, Steve; Kissel, Heiko; Fassbender, Wilhlem; Biesenbach, Jens

    2012-06-01

    This paper reports on the latest advancements in vertical high-power diode laser stacks using micro-channel coolers, which deliver the most compact footprint, power scalability and highest power/bar of any diode laser package. We present electro-optical (E-O) data on water-cooled stacks with wavelengths ranging from 7xx nm to 9xx nm and power levels of up to 5.8kW, delivered @ 200W/bar, CW mode, and a power-conversion efficiency of >60%, with both-axis collimation on a bar-to-bar pitch of 1.78mm. Also, presented is E-O data on a compact, conductively cooled, hardsoldered, stack package based on conventional CuW and AlN materials, with bar-to-bar pitch of 1.8mm, delivering average power/bar >15W operating up to 25% duty cycle, 10ms pulses @ 45C. The water-cooled stacks can be used as pump-sources for diode-pumped alkali lasers (DPALs) or for more traditional diode-pumped solid-state lasers (DPSSL). which are power/brightness scaled for directed energy weapons applications and the conductively-cooled stacks as illuminators.

  20. Progress in Laser Risk Reduction for 1 micron lasers at GSFC

    NASA Technical Reports Server (NTRS)

    Heaps, William S.

    2007-01-01

    In recent years, lasers have proven themselves to be invaluable to a variety of remote sensing applications. LIDAR techniques have been used to measure atmospheric aerosols and a variety of trace species, profile winds, and develop high resolution topographical maps. Often it would be of great advantage to make these measurements from an orbiting satellite. Unfortunately, the space environment is a challenging one for the high power lasers that would enable many LIDAR missions. Optical mounts must maintain precision alignment during and after launch. Outgassing materials in the vacuum of space lead to contamination of laser optics. Electronic components and optical materials must survive the space environment, including a vacuum atmosphere, thermal cycling, and radiation exposure. Laser designs must be lightweight, compact, and energy efficient. Many LIDAR applications require frequency conversion systems that have never been designed or tested for use in space. For the last six years the National Aeronautical and Space Administration (NASA) has undertaken a program specifically directed at addressing the durability and long term reliability issues that face space-borne lasers. The effort is shared between NASA Goddard Space Flight Center in Greenbelt, Maryland, and NASA Langley Research Center in Hampton, Virginia. This paper is an overview of the issues facing space-borne lasers and the efforts that Goddard has been pursuing to address them.

  1. Advanced Wavefront Control Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olivier, S S; Brase, J M; Avicola, K

    2001-02-21

    Programs at LLNL that involve large laser systems--ranging from the National Ignition Facility to new tactical laser weapons--depend on the maintenance of laser beam quality through precise control of the optical wavefront. This can be accomplished using adaptive optics, which compensate for time-varying aberrations that are often caused by heating in a high-power laser system. Over the past two decades, LLNL has developed a broad capability in adaptive optics technology for both laser beam control and high-resolution imaging. This adaptive optics capability has been based on thin deformable glass mirrors with individual ceramic actuators bonded to the back. In themore » case of high-power lasers, these adaptive optics systems have successfully improved beam quality. However, as we continue to extend our applications requirements, the existing technology base for wavefront control cannot satisfy them. To address this issue, this project studied improved modeling tools to increase our detailed understanding of the performance of these systems, and evaluated novel approaches to low-order wavefront control that offer the possibility of reduced cost and complexity. We also investigated improved beam control technology for high-resolution wavefront control. Many high-power laser systems suffer from high-spatial-frequency aberrations that require control of hundreds or thousands of phase points to provide adequate correction. However, the cost and size of current deformable mirrors can become prohibitive for applications requiring more than a few tens of phase control points. New phase control technologies are becoming available which offer control of many phase points with small low-cost devices. The goal of this project was to expand our wavefront control capabilities with improved modeling tools, new devices that reduce system cost and complexity, and extensions to high spatial and temporal frequencies using new adaptive optics technologies. In FY 99, the second year of this project, work was performed in four areas (1) advanced modeling tools for deformable mirrors (2) low-order wavefront correctors with Alvarez lenses, (3) a direct phase measuring heterdyne wavefront sensor, and (4) high-spatial-frequency wavefront control using spatial light modulators.« less

  2. Diffusion-cooled high-power single-mode waveguide CO2 laser for transmyocardial revascularization

    NASA Astrophysics Data System (ADS)

    Berishvili, I. I.; Bockeria, L. A.; Egorov, E. N.; Golubev, Vladimir S.; Galushkin, Michail G.; Kheliminsky, A. A.; Panchenko, Vladislav Y.; Roshin, A. P.; Sigaev, I. Y.; Vachromeeva, M. N.; Vasiltsov, Victor V.; Yoshina, V. I.; Zabelin, Alexandre M.; Zelenov, Evgenii V.

    1999-01-01

    The paper presents the results on investigations and development of multichannel waveguide CO2 laser with diffusion cooling of active medium excited by discharge of audio-frequency alternating current. The description of high-power single-mode CO2 laser with average beam power up to 1 kW is presented. The result of measurement of the laser basic parameters are offered, as well as the outcomes of performances of the laser head with long active zone, operating in waveguide mode. As an example of application of these laser, various capabilities a description of the developed medical system 'Genom' used in the transmyocardial laser revascularization (TMLR) procedure and clinical results of the possibilities of the TMLR in the surgical treatment are presented.

  3. Study on the amplifier experiment of end-pumped long pulse slab laser

    NASA Astrophysics Data System (ADS)

    Jin, Quanwei; Chen, Xiaoming; Jiang, JianFeng; Pang, Yu; Tong, Lixin; Li, Mi; Hu, Hao; Lv, Wenqiang; Gao, Qingsong; Tang, Chun

    2018-03-01

    The amplifier experiment research of end-pumped long pulse slab laser is developed, the results of out-put energy, optical-optical efficiency and pulse waveform are obtained at different experiment conditions, such as peak pumped power, amplifier power and pumped pulse width. The seed laser is CW fundamental transverse-mode operation fiber laser, the laser medium is composited Nd:YAG slab. Under end-pumped and the 2 passes, the laser obtain 7.65J out-put energy and 43.1% optical-optical efficiency with 45kW peak-pumped power and 386μs pump pulse width. The experimental results provide the basic for the optimization design to high frequency, high energy and high beam-quality slab lasers.

  4. Semiconductor optoelectronic devices for free-space optical communications

    NASA Technical Reports Server (NTRS)

    Katz, J.

    1983-01-01

    The properties of individual injection lasers are reviewed, and devices of greater complexity are described. These either include or are relevant to monolithic integration configurations of the lasers with their electronic driving circuitry, power combining methods of semiconductor lasers, and electronic methods of steering the radiation patterns of semiconductor lasers and laser arrays. The potential of AlGaAs laser technology for free-space optical communications systems is demonstrated. These solid-state components, which can generate and modulate light, combine the power of a number of sources and perform at least part of the beam pointing functions. Methods are proposed for overcoming the main drawback of semiconductor lasers, that is, their inability to emit the needed amount of optical power in a single-mode operation.

  5. Simulation of Temperature Field Distribution for Cutting the Temperated Glass by Ultraviolet Laser

    NASA Astrophysics Data System (ADS)

    Yang, B. J.; He, Y. C.; Dai, F.; Lin, X. C.

    2017-03-01

    The finite element software ANSYS was adopted to simulate the temperature field distribution for laser cutting tempered glass, and the influence of different process parameters, including laser power, glass thickness and cutting speed, on temperature field distribution was studied in detail. The results show that the laser power has a greater influence on temperature field distribution than other paremeters, and when the laser power gets to 60W, the highest temperature reaches 749°C, which is higher than the glass softening temperature. It reflects the material near the laser spot is melted and the molten slag is removed by the high-energy water beam quickly. Finally, through the water guided laser cutting tempered glass experiment the FEM theoretical analysis was verified.

  6. High-power 0.87-micron channel substrate planar lasers for spaceborne communications

    NASA Technical Reports Server (NTRS)

    Connolly, J. C.; Stewart, T. R.; Gilbert, D. B.; Slavin, S. E.; Carlin, D. B.

    1988-01-01

    High-power single-mode channeled-substrate planar AlGaAs diode lasers are being developed for reliable high-power operation for use as sources in spaceborne optical communication systems. The CSP laser structure has been optimized for operation at an emission wavelength of 870 nm. Such devices have exhibited output powers in excess of 80 mW CW at an operating temperature of 80 C.

  7. Laser acoustic emission thermal technique (LAETT): a technique for generating acoustic emission in dental composites.

    PubMed

    Duray, S J; Lee, S Y; Menis, D L; Gilbert, J L; Lautenschlager, E P; Greener, E H

    1996-01-01

    This study was designed to investigate a new method for generating interfacial debonding between the resin matrix and filler particles of dental composites. A pilot study was conducted to evaluate laser-induced acoustic emission in dental resins filled with varying quantities of particles. Model systems of 50/50 BisGMA/TEGDMA resin reinforced with 0, 25, and 75 wt% 5-10 micrometers silanated BaSiO(6) were analyzed. The sample size was 3.5 mm diameter x 0.25-0.28 mm thick. A continuous wave CO2 laser (Synrad Infrared Gas Laser Model 48-1) was used to heat the composite samples. Acoustic events were detected, recorded and processed by a model 4610 Smart Acoustic Monitor (SAM) with a 1220A preamp (Physical Acoustic Corp.) as a function of laser power. Initially, the acoustic signal from the model composites produced a burst pattern characteristic of fracturing, about 3.7 watts laser power. Acoustic emission increased with laser power up to about 6 watts. At laser powers above 6 watts, the acoustic emission remained constant. The amount of acoustic emission followed the trend: unfilled resin > composite with 25 wt% BaSiO(6) > composite with 75 wt% BaSiO(6). Acoustic emission generated by laser thermal heating is dependent on the weight percent of filler particles in the composite and the amount of laser power. For this reason, laser thermal acoustic emission might be useful as a nondestructive form of analysis of dental composites.

  8. 3D Monte Carlo simulation of light propagation for laser acupuncture and optimization of illumination parameters

    NASA Astrophysics Data System (ADS)

    Zhong, Fulin; Li, Ting; Pan, Boan; Wang, Pengbo

    2017-02-01

    Laser acupuncture is an effective photochemical and nonthermal stimulation of traditional acupuncture points with lowintensity laser irradiation, which is advantageous in painless, sterile, and safe compared to traditional acupuncture. Laser diode (LD) provides single wavelength and relatively-higher power light for phototherapy. The quantitative effect of illumination parameters of LD in use of laser acupuncture is crucial for practical operation of laser acupuncture. However, this issue is not fully demonstrated, especially since experimental methodologies with animals or human are pretty hard to address to this issue. For example, in order to protect viability of cells and tissue, and get better therapeutic effect, it's necessary to control the output power varied at 5mW 10mW range, while the optimized power is still not clear. This study aimed to quantitatively optimize the laser output power, wavelength, and irradiation direction with highly realistic modeling of light transport in acupunctured tissue. A Monte Carlo Simulation software for 3D vowelized media and the highest-precision human anatomical model Visible Chinese Human (VCH) were employed. Our 3D simulation results showed that longer wavelength/higher illumination power, larger absorption in laser acupuncture; the vertical direction emission of the acupuncture laser results in higher amount of light absorption in both the acupunctured voxel of tissue and muscle layer. Our 3D light distribution of laser acupuncture within VCH tissue model is potential to be used in optimization and real time guidance in clinical manipulation of laser acupuncture.

  9. Lasers in Esthetic Dentistry: Soft Tissue Photobiomodulation, Hard Tissue Decontamination, and Ceramics Conditioning

    PubMed Central

    Ramalho, Karen Müller; de Freitas, Patrícia Moreira; Correa-Aranha, Ana Cecília; Bello-Silva, Marina Stella; Lopes, Roberta Marques da Graça; Eduardo, Carlos de Paula

    2014-01-01

    The increasing concern and the search for conservative dental treatments have resulted in the development of several new technologies. Low and high power lasers can be cited as one of these new technologies. Low power lasers act at cellular level leading to pain reduction, modulation of inflammation, and improvement of tissue healing. High power lasers act by increasing temperature and have the potential to promote microbial reduction and ablation of hard and soft tissues. The clinical application of both low and high power lasers requires specific knowledge concerning laser interaction with biological tissues, so that the correct irradiation protocol can be established. The present case report describes the clinical steps of two metal-ceramic crowns development in a 60-year-old patient. Three different laser wavelengths were applied throughout the treatment with different purposes: Nd:YAG laser (1,064 nm) for dentin decontamination, diode (660 nm) for soft tissue biomodulation, and Er:YAG laser (2,940 nm) for inner ceramic surface conditioning. Lasers were successfully applied in the present case report as coadjutant in the treatment. This coadjutant technology can be a potential tool to assist treatment to reach the final success. PMID:25147746

  10. Independent assessment of laser power beaming options

    NASA Technical Reports Server (NTRS)

    Ponikvar, Donald R.

    1992-01-01

    Technical and architectural issues facing a laser power beaming system are discussed. Issues regarding the laser device, optics, beam control, propagation, and lunar site are examined. Environmental and health physics aspects are considered.

  11. A quantitative thermal and thermomechanical analysis for design optimization and robustness assessment of microassembled high power Yb:CaF2 thin-disk Laser

    NASA Astrophysics Data System (ADS)

    Joly, S.; Lemesre, M.-A.; Levrier, B.; Lyszyk, C.; Plano, B.; Courjaud, A.; Taira, T.; Bechou, L.

    2018-09-01

    While considerable effort in the field of high power laser research has been dedicated to evolving thin-disk Lasers into the kilowatt range, thermal and residual stress management remain a critical issue and need to be addressed. In this paper, a quantitative thermal and thermomechanical analysis is presented for design optimization and robustness of high power diode pumped thin-disk ytterbium Lasers based on thermal and thermomechanical Finite Element Method (FEM) simulations. In particular, Yb:CaF2 Lasers are examined with respect to the design and selection of the bonding interface material. Results propose the use of a metallic Au80Sn20 hard solder of greater than 20 μm thickness as a superior solution to adhesive bonding for the prevention of Laser crystal failure under high optical pumping power while maintaining sufficient resistance to mechanical strain. Thermal IR characterizations under "safe" CW pumping power validate our predicted FEM Multiphysics models. Finally, an essentially void-free Au80Sn20 soldering process has been demonstrated for the mounting of Yb:CaF2 crystals onto a CuW heat sink. He currently acts as a Full Professor in electronics and physics at the University of Bordeaux. His research field addresses characterization, physical and failure mechanisms modeling and methods for reliability prediction of optoelectronic/photonic micro and nano-assemblied devices (LEDs, laser diodes, fiber laser, optical amplifier, photodetectors, fibered optical module…) for different applications (telecommunications, medical, space...). Research interests focus on Design for Reliability at the early stage of the development of the device including design, fabrication, characterization and aging effects on packaged optoelectronic materials and functions which involves the exploration of the physics of the light-matter interactions as well as the understanding degradation processes. Since 2010 is currently the manager of the "Reliability Assessment of Micro and Nano-assemblied Devices" Research Group (EDMiNA) at IMS Laboratory. He is the author or co-author of more than 180 regular papers and international conferences. He has also chaired different sessions in international conferences and acts as a reviewer of peer-reviewed journals from Elsevier (Microelectronics Reliab., Optics and Laser Technology…), IOP (Optics Letters), IEEE (Photonics Technology Letters, Devices and Materials Reliability, Electron Devices…). He has managed over 20 PhDs grants and post-docs addressing projects focusing both on fundamental aspects as well as applied research with national and European industrial partnerships with over 5M€ of funding. He is involved in several French and European committees acting as reviewer expert for National Research Agency (ANR) and CATRENE/EURIPIDES programs. Since March 2016, he is appointed Visiting Professor at the French-Canadian Joint Lab LN2 - University of Sherbrooke (Qc, Canada) working on packaging and design for reliability of devices and systems for photonic applications.

  12. 980-nm, 15-W cw laser diodes on F-mount-type heat sinks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bezotosnyi, V V; Krokhin, O N; Oleshchenko, V A

    2015-12-31

    We have studied the key optical emission parameters of laser diodes (emission wavelength, 980 nm; stripe contact width, 95 μm) mounted directly on F- and C-mount-type copper heat sinks, without intermediate elements (submounts). When effectively cooled by a thermoelectric microcooler, the lasers on the F-mount operated stably at output powers up to 20 W. The lasers were tested for reliable operation at an output power of 15 W for 100 h, and no decrease in output power was detected to within measurement accuracy. The experimentally determined maximum total efficiency is 71.7% and the efficiency at a nominal output power ofmore » 15 W is 61%. We compare parameters of the laser diodes mounted on C- and F-mounts and discuss the advantages of the F-mounts. (lasers)« less

  13. Wavelength stabilized multi-kW diode laser systems

    NASA Astrophysics Data System (ADS)

    Köhler, Bernd; Unger, Andreas; Kindervater, Tobias; Drovs, Simon; Wolf, Paul; Hubrich, Ralf; Beczkowiak, Anna; Auch, Stefan; Müntz, Holger; Biesenbach, Jens

    2015-03-01

    We report on wavelength stabilized high-power diode laser systems with enhanced spectral brightness by means of Volume Holographic Gratings. High-power diode laser modules typically have a relatively broad spectral width of about 3 to 6 nm. In addition the center wavelength shifts by changing the temperature and the driving current, which is obstructive for pumping applications with small absorption bandwidths. Wavelength stabilization of high-power diode laser systems is an important method to increase the efficiency of diode pumped solid-state lasers. It also enables power scaling by dense wavelength multiplexing. To ensure a wide locking range and efficient wavelength stabilization the parameters of the Volume Holographic Grating and the parameters of the diode laser bar have to be adapted carefully. Important parameters are the reflectivity of the Volume Holographic Grating, the reflectivity of the diode laser bar as well as its angular and spectral emission characteristics. In this paper we present detailed data on wavelength stabilized diode laser systems with and without fiber coupling in the spectral range from 634 nm up to 1533 nm. The maximum output power of 2.7 kW was measured for a fiber coupled system (1000 μm, NA 0.22), which was stabilized at a wavelength of 969 nm with a spectral width of only 0.6 nm (90% value). Another example is a narrow line-width diode laser stack, which was stabilized at a wavelength of 1533 nm with a spectral bandwidth below 1 nm and an output power of 835 W.

  14. Numerical investigation on high power mid-infrared supercontinuum fiber lasers pumped at 3 µm.

    PubMed

    Wei, Chen; Zhu, Xiushan; Norwood, Robert A; Song, Feng; Peyghambarian, N

    2013-12-02

    High power mid-infrared (mid-IR) supercontinuum (SC) laser sources in the 3-12 µm region are of great interest for a variety of applications in many fields. Although various mid-IR SC laser sources have been proposed and investigated experimentally and theoretically in the past several years, power scaling of mid-IR SC lasers beyond 3 μm with infrared edges extending beyond 7 μm are still challenges because the wavelengths of most previously used pump sources are below 2 μm. These problems can be solved with the recent development of mode-locked fiber lasers at 3 μm. In this paper, high power mid-IR SC laser sources based on dispersion engineered tellurite and chalcogenide fibers and pumped by ultrafast lasers at 3 µm are proposed and investigated. Our simulation results show that, when a W-type tellurite fiber with a zero dispersion wavelength (ZDW) of 2.7 µm is pumped at 2.78 μm, the power proportion of the SC laser beyond 3 µm can exceed 40% and the attainable SC output power of the proposed solid-cladding tellurite fiber is one order of magnitude higher than that of existing microstructured tellurite fibers. Our calculation also predicts that a very promising super-broadband mid-IR SC fiber laser source covering two atmospheric windows and molecules' "fingerprint" region can be obtained with a microstructured As2Se3 chalcogenide fiber pumped at 2.78 μm.

  15. Laser prospects for SPS and restoration of the ozone layer

    NASA Technical Reports Server (NTRS)

    Kruzhilin, Yuri

    1992-01-01

    Large-scale applications of high-power lasers are considered (special experiments are described to confirm the feasibility of these applications) to achieve also large-scale environmental advantages. The possibility of producing electric energy by Laser-Solar Power Satellites in the near future is discussed. A full-scale experimental L-SPS satellite is suggested as a module of a global space energy network. Electric power of about 10 MW at the surface of the Earth is achievable as a result of energy conversion of laser radiation. L-SPS is based on the greatest advantages of present optics and laser techniques. Specialized-scale experiments are carried out and described. L-SPS project could provide real electricity for consumers not later than by highly developed fusion techniques, and the environmental aftereffects are quite favorable. A new method of power supply for satellites is suggested, based on the connection of an on-board electric circuit directly with the ground-based power grid by means of laser beams.

  16. Prototype laser-diode-pumped solid state laser transmitters

    NASA Technical Reports Server (NTRS)

    Kane, Thomas J.; Cheng, Emily A. P.; Wallace, Richard W.

    1989-01-01

    Monolithic, diode-pumped Nd:YAG ring lasers can provide diffraction-limited, single-frequency, narrow-linewidth, tunable output which is adequate for use as a local oscillator in a coherent communication system. A laser was built which had a linewidth of about 2 kHz, a power of 5 milliwatts, and which was tunable over a range of 30 MHz in a few microseconds. This laser was phase-locked to a second, similar laser. This demonstrates that the powerful technique of heterodyne detection is possible with a diode-pumped laser used as the local oscillator. Laser diode pumping of monolithic Nd:YAG rings can lead to output powers of hundreds of milliwatts from a single laser. A laser was built with a single-mode output of 310 mW. Several lasers can be chained together to sum their power, while maintaining diffraction-limited, single frequency operation. This technique was demonstrated with two lasers, with a total output of 340 mW, and is expected to be practical for up to about ten lasers. Thus with lasers of 310 mW, output of up to 3 W is possible. The chaining technique, if properly engineered, results in redundancy. The technique of resonant external modulation and doubling is designed to efficiently convert the continuous wave, infrared output of our lasers into low duty-cycle pulsed green output. This technique was verified through both computer modeling and experimentation. Further work would be necessary to develop a deliverable system using this technique.

  17. Neodymium-doped phosphate fiber lasers with an all-solid microstructured inner cladding.

    PubMed

    Zhang, Guang; Zhou, Qinling; Yu, Chunlei; Hu, Lili; Chen, Danping

    2012-06-15

    We report on high-power fiber lasers based on index-guiding, all-solid neodymium-doped (Nd-doped) phosphate photonic crystal fiber (PCF) with a hexagonal-shaped inner cladding. The optimum fiber laser with a 36 cm length active fiber, generated up to 7.92 W output power at 1053 nm, which benefited from a high absorption coefficient for pump power due to its noncircular inner cladding. The guiding properties of the all-solid PCF were also investigated. A stable mode with a donut-shaped profile and a power-dependent laser beam quality have been observed experimentally and analyzed.

  18. 75 W 40% efficiency single-mode all-fiber erbium-doped laser cladding pumped at 976 nm.

    PubMed

    Kotov, L V; Likhachev, M E; Bubnov, M M; Medvedkov, O I; Yashkov, M V; Guryanov, A N; Lhermite, J; Février, S; Cormier, E

    2013-07-01

    Optimization of Yb-free Er-doped fiber for lasers and amplifiers cladding pumped at 976 nm was performed in this Letter. The single-mode fiber design includes an increased core diameter of 34 μm and properly chosen erbium and co-dopant concentrations. We demonstrate an all-fiber high power laser and power amplifier based on this fiber with the record slope efficiency of 40%. To the best of our knowledge, the achieved output power of 75 W is the highest power reported for such lasers.

  19. Dependence of injection locking of a TEA CO2 laser on intensity of injected radiation

    NASA Technical Reports Server (NTRS)

    Oppenheim, U. P.; Menzies, R. T.; Kavaya, M. J.

    1982-01-01

    The results of an experimental study to determine the minimum required injected power to control the output frequency of a TEA CO2 laser are reported. A CW CO2 waveguide laser was used as the injection oscillator. Both the power and the frequency of the injected radiation were varied, while the TEA resonator cavity length was adjusted to match the frequency of the injected signal. Single-longitudinal mode (SLM) TEA laser radiation was produced for injected power levels which are several orders of magnitude below those previously reported. The ratio of SLM output power to injection power exceeded 10 to the 12th at the lowest levels of injected intensity.

  20. Method and apparatus for delivering high power laser energy over long distances

    DOEpatents

    Zediker, Mark S; Rinzler, Charles C; Faircloth, Brian O; Koblick, Yeshaya; Moxley, Joel F

    2013-08-20

    Systems, devices and methods for the transmission of 1 kW or more of laser energy deep into the earth and for the suppression of associated nonlinear phenomena. Systems, devices and methods for the laser drilling of a borehole in the earth. These systems can deliver high power laser energy down a deep borehole, while maintaining the high power to advance such boreholes deep into the earth and at highly efficient advancement rates.

Top