Dimmable electronic ballasts by variable power density modulation technique
NASA Astrophysics Data System (ADS)
Borekci, Selim; Kesler, Selami
2014-11-01
Dimming can be accomplished commonly by switching frequency and pulse density modulation techniques and a variable inductor. In this study, a variable power density modulation (VPDM) control technique is proposed for dimming applications. A fluorescent lamp is operated in several states to meet the desired lamp power in a modulation period. The proposed technique has the same advantages of magnetic dimming topologies have. In addition, a unique and flexible control technique can be achieved. A prototype dimmable electronic ballast is built and experiments related to it have been conducted. As a result, a 36WT8 fluorescent lamp can be driven for a desired lamp power from several alternatives without modulating the switching frequency.
Coherent communication link using diode-pumped lasers
NASA Technical Reports Server (NTRS)
Kane, Thomas J.; Wallace, Richard W.
1989-01-01
Work toward developing a diffraction limited, single frequency, modulated transmitter suitable for coherent optical communication or direct detection communication is discussed. Diode pumped, monolithic Nd:YAG nonplanar ring oscillators were used as the carrier beam. An external modulation technique which can handle high optical powers, has moderate modulation voltage, and which can reach modulation rates of 1 GHz was invented. Semiconductor laser pumped solid-state lasers which have high output power (0.5 Watt) and which oscillate at a single frequency, in a diffraction limited beam, at the wavelength of 1.06 microns were built. A technique for phase modulating the laser output by 180 degrees with a 40-volt peak to peak driving voltage is demonstrated. This technique can be adapted for amplitude modulation of 100 percent with the same voltage. This technique makes use of a resonant bulk modulator, so it does not have the power handling limitations of guided wave modulators.
Status and Trend of Automotive Power Packaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, Zhenxian
2012-01-01
Comprehensive requirements in aspects of cost, reliability, efficiency, form factor, weight, and volume for power electronics modules in modern electric drive vehicles have driven the development of automotive power packaging technology intensively. Innovation in materials, interconnections, and processing techniques is leading to enormous improvements in power modules. In this paper, the technical development of and trends in power module packaging are evaluated by examining technical details with examples of industrial products. The issues and development directions for future automotive power module packaging are also discussed.
Optical rangefinding applications using communications modulation technique
NASA Astrophysics Data System (ADS)
Caplan, William D.; Morcom, Christopher John
2010-10-01
A novel range detection technique combines optical pulse modulation patterns with signal cross-correlation to produce an accurate range estimate from low power signals. The cross-correlation peak is analyzed by a post-processing algorithm such that the phase delay is proportional to the range to target. This technique produces a stable range estimate from noisy signals. The advantage is higher accuracy obtained with relatively low optical power transmitted. The technique is useful for low cost, low power and low mass sensors suitable for tactical use. The signal coding technique allows applications including IFF and battlefield identification systems.
Interference Resilient Sigma Delta-Based Pulse Oximeter.
Shokouhian, Mohsen; Morling, Richard; Kale, Izzet
2016-06-01
Ambient light and optical interference can severely affect the performance of pulse oximeters. The deployment of a robust modulation technique to drive the pulse oximeter LEDs can reduce these unwanted effects and increases the resilient of the pulse oximeter against artificial ambient light. The time division modulation technique used in conventional pulse oximeters can not remove the effect of modulated light coming from surrounding environment and this may cause huge measurement error in pulse oximeter readings. This paper presents a novel cross-coupled sigma delta modulator which ensures that measurement accuracy will be more robust in comparison with conventional fixed-frequency oximeter modulation technique especially in the presence of pulsed artificial ambient light. Moreover, this novel modulator gives an extra control over the pulse oximeter power consumption leading to improved power management.
Combinatorial pulse position modulation for power-efficient free-space laser communications
NASA Technical Reports Server (NTRS)
Budinger, James M.; Vanderaar, M.; Wagner, P.; Bibyk, Steven
1993-01-01
A new modulation technique called combinatorial pulse position modulation (CPPM) is presented as a power-efficient alternative to quaternary pulse position modulation (QPPM) for direct-detection, free-space laser communications. The special case of 16C4PPM is compared to QPPM in terms of data throughput and bit error rate (BER) performance for similar laser power and pulse duty cycle requirements. The increased throughput from CPPM enables the use of forward error corrective (FEC) encoding for a net decrease in the amount of laser power required for a given data throughput compared to uncoded QPPM. A specific, practical case of coded CPPM is shown to reduce the amount of power required to transmit and receive a given data sequence by at least 4.7 dB. Hardware techniques for maximum likelihood detection and symbol timing recovery are presented.
On the power spectral density of quadrature modulated signals. [satellite communication
NASA Technical Reports Server (NTRS)
Yan, T. Y.
1981-01-01
The conventional (no-offset) quadriphase modulation technique suffers from the fact that hardlimiting will restore the frequency sidelobes removed by proper filtering. Thus, offset keyed quadriphase modulation techniques are often proposed for satellite communication with bandpass hardlimiting. A unified theory is developed which is capable of describing the power spectral density before and after the hardlimiting process. Using the in-phase and the quadrature phase channel with arbitrary pulse shaping, analytical results are established for generalized quadriphase modulation. In particular MSK, OPSK or the recently introduced overlapped raised cosine keying all fall into this general category. It is shown that for a linear communication channel, the power spectral density of the modulated signal remains unchanged regardless of the offset delay. Furthermore, if the in phase and the quadrature phase channel have identical pulse shapes without offset, the spectrum after bandpass hardlimiting will be identical to that of the conventional QPSK modulation. Numerical examples are given for various modulation techniques. A case of different pulse shapes in the in phase and the quadrature phase channel is also considered.
NASA Technical Reports Server (NTRS)
Hoffman, James Patrick; Del Castillo, Linda; Miller, Jennifer; Jenabi, Masud; Hunter, Donald; Birur, Gajanana
2011-01-01
The higher output power densities required of modern radar architectures, such as the proposed DESDynI [Deformation, Ecosystem Structure, and Dynamics of Ice] SAR [Synthetic Aperture Radar] Instrument (or DSI) require increasingly dense high power electronics. To enable these higher power densities, while maintaining or even improving hardware reliability, requires advances in integrating advanced thermal packaging technologies into radar transmit/receive (TR) modules. New materials and techniques have been studied and compared to standard technologies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hammel, T.E.; Srinivas, V.
1978-11-01
This initial definition of the power degradation prediction technique outlines a model for predicting SIG/Galileo mean EOM power using component test data and data from a module power degradation demonstration test program. (LCL)
Occupational Safety. Hand Tools. Pre-Apprenticeship Phase 1 Training.
ERIC Educational Resources Information Center
Lane Community Coll., Eugene, OR.
This self-paced student training module on safety when using hand tools is one of a number of modules developed for Pre-apprenticeship Phase 1 Training. Purpose of the module is to teach students the correct safety techniques for operating common hand- and arm-powered tools, including selection, maintenance, technique, and uses. The module may…
NASA Astrophysics Data System (ADS)
Khan, Mansoor; Yong, Wang; Mustafa, Ehtasham
2017-07-01
After the rapid advancement in the field of power electronics devices and drives for last few decades, there are different kinds of Pulse Width Modulation techniques which have been brought to the market. The applications ranging from industrial appliances to military equipment including the home appliances. The vey common application for the PWM is three phase voltage source inverter, which is used to convert DC to AC in the homes to supply the power to the house in case electricity failure, usually named as Un-interrupted Power Supply. In this paper Space Vector Pulse Width Modulation techniques is discussed and analysed under the control technique named as Field Oriented Control. The working and implementation of this technique has been studied by implementing on the three phase bridge inverter. The technique is used to control the Permanente Magnet Synchronous Motor. The drive system is successfully implemented in MATLAB/Simulink using the mathematical equation and algorithm to achieve the satisfactory results. PI type of controller is used to tuned ers of the motothe parametr i.e. torque and current.
Some failure modes and analysis techniques for terrestrial solar cell modules
NASA Technical Reports Server (NTRS)
Shumka, A.; Stern, K. H.
1978-01-01
Analysis data are presented on failed/defective silicon solar cell modules of various types and produced by different manufacturers. The failure mode (e.g., internal short and open circuits, output power degradation, isolation resistance degradation, etc.) are discussed in detail and in many cases related to the type of technology used in the manufacture of the modules; wherever applicable, appropriate corrective actions are recommended. Consideration is also given to some failure analysis techniques that are applicable to such modules, including X-ray radiography, capacitance measurement, cell shunt resistance measurement by the shadowing technique, steady-state illumination test station for module performance illumination, laser scanning techniques, and the SEM.
NASA Astrophysics Data System (ADS)
Lindsay, I. D.; Groß, P.; Lee, C. J.; Adhimoolam, B.; Boller, K.-J.
2006-12-01
We describe the implementation of the wavelength- and frequency-modulation spectroscopy techniques using a singly-resonant optical parametric oscillator (OPO) pumped by a fiber-amplified diode laser. Frequency modulation of the diode laser was transferred to the OPO’s mid-infrared idler output, avoiding the need for external modulation devices. This approach thus provides a means of implementing these important techniques with powerful, widely tunable, mid-infrared sources while retaining the simple, flexible modulation properties of diode lasers.
Bi-Frequency Modulated Quasi-Resonant Converters: Theory and Applications
NASA Astrophysics Data System (ADS)
Zhang, Yuefeng
1995-01-01
To avoid the variable frequency operation of quasi -resonant converters, many soft-switching PWM converters have been proposed, all of them require an auxiliary switch, which will increase the cost and complexity of the power supply system. In this thesis, a new kind of technique for quasi -resonant converters has been proposed, which is called the bi-frequency modulation technique. By operating the quasi-resonant converters at two switching frequencies, this technique enables quasi-resonant converters to achieve the soft-switching, at fixed switching frequencies, without an auxiliary switch. The steady-state analysis of four commonly used quasi-resonant converters, namely, ZVS buck, ZCS buck, ZVS boost, and ZCS boost converter has been presented. Using the concepts of equivalent sources, equivalent sinks, and resonant tank, the large signal models of these four quasi -resonant converters were developed. Based on these models, the steady-state control characteristics of BFM ZVS buck, BFM ZCS buck, BFM ZVS boost, and BFM ZCS boost converter have been derived. The functional block and design consideration of the bi-frequency controller were presented, and one of the implementations of the bi-frequency controller was given. A complete design example has been presented. Both computer simulations and experimental results have verified that the bi-frequency modulated quasi-resonant converters can achieve soft-switching, at fixed switching frequencies, without an auxiliary switch. One of the application of bi-frequency modulation technique is for EMI reduction. The basic principle of using BFM technique for EMI reduction was introduced. Based on the spectral analysis, the EMI performances of the PWM, variable-frequency, and bi-frequency modulated control signals was evaluated, and the BFM control signals show the lowest EMI emission. The bi-frequency modulated technique has also been applied to the power factor correction. A BFM zero -current switching boost converter has been designed for the power factor correction, and the simulation results show that the power factor has been improved.
High efficiency RF amplifier development over wide dynamic range for accelerator application
NASA Astrophysics Data System (ADS)
Mishra, Jitendra Kumar; Ramarao, B. V.; Pande, Manjiri M.; Joshi, Gopal; Sharma, Archana; Singh, Pitamber
2017-10-01
Superconducting (SC) cavities in an accelerating section are designed to have the same geometrical velocity factor (βg). For these cavities, Radio Frequency (RF) power needed to accelerate charged particles varies with the particle velocity factor (β). RF power requirement from one cavity to other can vary by 2-5 dB within the accelerating section depending on the energy gain in the cavity and beam current. In this paper, we have presented an idea to improve operating efficiency of the SC RF accelerators using envelope tracking technique. A study on envelope tracking technique without feedback is carried out on a 1 kW, 325 MHz, class B (conduction angle of 180 degrees) tuned load power amplifier (PA). We have derived expressions for the efficiency and power output for tuned load amplifier operating on the envelope tracking technique. From the derived expressions, it is observed that under constant load resistance to the device (MOSFET), optimum amplifier efficiency is invariant whereas output power varies with the square of drain bias voltage. Experimental results on 1 kW PA module show that its optimum efficiency is always greater than 62% with variation less than 5% from mean value over 7 dB dynamic range. Low power amplifier modules are the basic building block for the high power amplifiers. Therefore, results for 1 kW PA modules remain valid for the high power solid state amplifiers built using these PA modules. The SC RF accelerators using these constant efficiency power amplifiers can improve overall accelerator efficiency.
NASA Technical Reports Server (NTRS)
Prasad, Narashimha S.; Taylor, Patrick J.; Trivedi, Sudhir B.; Kutcher, Susan
2010-01-01
We report the results of fabrication and testing of a thermoelectric power generation module. The module was fabricated using a new "flip-chip" module assembly technique that is scalable and modular. This technique results in a low value of contact resistivity ( < or = 10(exp 5) Ohms-sq cm). It can be used to leverage new advances in thin-film and nanostructured materials for the fabrication of new miniature thermoelectric devices. It may also enable monolithic integration of large devices or tandem arrays of devices on flexible or curved surfaces. Under mild testing, a power of 22 mW/sq cm was obtained from small (<100 K) temperature differences. At higher, more realistic temperature differences, approx.500 K, where the efficiency of these materials greatly improves, this power density would scale to between 0.5 and 1 Watt/cm2. These results highlight the excellent potential for the generation and scavenging of electrical power of practical and usable magnitude for remote applications using thermoelectric power generation technologies.
Brillouin Amplification--A Powerful New Scheme for Microwave Photonic Communications
NASA Technical Reports Server (NTRS)
Yao, S.; Maleki, L.
1997-01-01
We introduce the Brillouin selective sideband amplification technique and demonstrate many important applications of this technique in photonic microwave systems, including efficient phase modulation to amplitude modulation conversion, photonic frequency multiplication, photonic signal mixing with gain, and frequency multiplied signal up conversion.
Optimal time-domain technique for pulse width modulation in power electronics
NASA Astrophysics Data System (ADS)
Mayergoyz, I.; Tyagi, S.
2018-05-01
Optimal time-domain technique for pulse width modulation is presented. It is based on exact and explicit analytical solutions for inverter circuits, obtained for any sequence of input voltage rectangular pulses. Two optimal criteria are discussed and illustrated by numerical examples.
A modular Space Station/Base electrical power system - Requirements and design study.
NASA Technical Reports Server (NTRS)
Eliason, J. T.; Adkisson, W. B.
1972-01-01
The requirements and procedures necessary for definition and specification of an electrical power system (EPS) for the future space station are discussed herein. The considered space station EPS consists of a replaceable main power module with self-contained auxiliary power, guidance, control, and communication subsystems. This independent power source may 'plug into' a space station module which has its own electrical distribution, control, power conditioning, and auxiliary power subsystems. Integration problems are discussed, and a transmission system selected with local floor-by-floor power conditioning and distribution in the station module. This technique eliminates the need for an immediate long range decision on the ultimate space base power sources by providing capability for almost any currently considered option.
NASA Astrophysics Data System (ADS)
Hsu, Yi-Cheng, Sr.; Tsai, Y. C.; Hung, Y. S.; Cheng, W. H.
2005-08-01
One of the greatest challenges in the packaging of laser modules using laser welding technique is to use a reliable and accurate joining process. However, during welding, due to the material property difference between welded components, the rapid solidification of the welded region and the associated material shrinkage often introduced a post-weld-shift (PWS) between welded components. For a typical single-mode fiber application, if the PWS induced fiber alignment shift by the laser welding joining process is even a few micrometers, up to 50 % or greater loss in the coupled power may occur. The fiber alignment shift of the PWS effect in the laser welding process has a significant impact on the laser module package yield. Therefore, a detailed understanding of the effects of PWS on the fiber alignment shifts in laser-welded laser module packages and then the compensation of the fiber alignment shifts due to PWS effects are the key research subjects in laser welding techniques for optoelectronic packaging applications. Previously, the power losses due to PWS in butterfly-type laser module packages have been qualitatively corrected by applying the laser hammering technique to the direction of the detected shift. Therefore, by applying an elastic deformation to the welded components and by observing the corresponding power variation, the direction and magnitude of the PWS may be predicted. Despite numerous studies on improving the fabrication yields of laser module packaging using the PWS correction in laser welding techniques by a qualitative estimate, limited information is available for the quantitative understanding of the PWS induced fiber alignment shift which can be useful in designing and fabricating high-yield and high-performance laser module packages. The purpose of this paper is to present a quantitative probing of the PWS induced fiber alignment shift in laser-welded butterfly-type laser module packaging by employing a novel technique of a high-magnification camera with image capture system (HMCICS). The benefit of using the HMCICS technique to determine the fiber alignment shift are quantitatively measure and compensate the PWS direction and magnitude during the laser-welded laser module packages. This study makes it possible to probe the nonlinear behavior of the PWS by using a novel HMCICS technique that results in a real time quantitative compensation of the PWS in butterfly-type laser module packages, when compared to the currently available qualitatively estimated techniques to correct the PWS2. Therefore, the reliable butterfly-type laser modules with high yield and high performance used in lightwave transmission systems may thus be developed and fabricated.
High average power magnetic modulator for metal vapor lasers
Ball, Don G.; Birx, Daniel L.; Cook, Edward G.; Miller, John L.
1994-01-01
A three-stage magnetic modulator utilizing magnetic pulse compression designed to provide a 60 kV pulse to a copper vapor laser at a 4.5 kHz repetition rate is disclosed. This modulator operates at 34 kW input power. The circuit includes a step up auto transformer and utilizes a rod and plate stack construction technique to achieve a high packing factor.
NASA Astrophysics Data System (ADS)
Saito, Terubumi; Tatsuta, Muneaki; Abe, Yamato; Takesawa, Minato
2018-02-01
We have succeeded in the direct measurement for solar cell/module internal conversion efficiency based on a calorimetric method or electrical substitution method by which the absorbed radiant power is determined by replacing the heat absorbed in the cell/module with the electrical power. The technique is advantageous in that the reflectance and transmittance measurements, which are required in the conventional methods, are not necessary. Also, the internal quantum efficiency can be derived from conversion efficiencies by using the average photon energy. Agreements of the measured data with the values estimated from the nominal values support the validity of this technique.
NASA Technical Reports Server (NTRS)
Harris, S. E.; Siegman, A. E.; Kuizenga, D. J.; Kung, A. H.; Young, J. F.; Bekkers, G. W.; Bloom, D. M.; Newton, J. H.; Phillion, D. W.
1975-01-01
The generation of tunable visible, infrared, and ultraviolet light is examined, along with the control of this light by means of novel mode-locking and modulation techniques. Transient mode-locking of the Nd:YAG laser and generation of short tunable pulses in the visible and the alkali metal inert gas excimer laser systems were investigated. Techniques for frequency conversion of high power and high energy laser radiation are discussed, along with high average power blue and UV laser light sources.
Apollo Onboard Navigation Techniques
NASA Technical Reports Server (NTRS)
Interbartolo, Michael
2009-01-01
This viewgraph presentation reviews basic navigation concepts, describes coordinate systems and identifies attitude determination techniques including Primary Guidance, Navigation and Control System (PGNCS) IMU management and Command and Service Module Stabilization and Control System/Lunar Module (LM) Abort Guidance System (AGS) attitude management. The presentation also identifies state vector determination techniques, including PGNCS coasting flight navigation, PGNCS powered flight navigation and LM AGS navigation.
Electromagnetic braking for Mars spacecraft
NASA Technical Reports Server (NTRS)
Holt, A. C.
1986-01-01
Aerobraking concepts are being studied to improve performance and cost effectiveness of propulsion systems for Mars landers and Mars interplanetary spacecraft. Access to megawatt power levels (nuclear power coupled to high-storage inductive or capacitive devices) on a manned Mars interplanetary spacecraft may make feasible electromagnetic braking and lift modulation techniques which were previously impractical. Using pulsed microwave and magnetic field technology, potential plasmadynamic braking and hydromagnetic lift modulation techniques have been identified. Entry corridor modulation to reduce loads and heating, to reduce vertical descent rates, and to expand horizontal and lateral landing ranges are possible benefits. In-depth studies are needed to identify specific design concepts for feasibility assessments. Standing wave/plasma sheath interaction techniques appear to be promising. The techniques may require some tailoring of spacecraft external structures and materials. In addition, rapid response guidance and control systems may require the use of structurally embedded sensors coupled to expert systems or to artificial intelligence systems.
NASA Astrophysics Data System (ADS)
Almasoudi, Fahad M.; Alatawi, Khaled S.; Matin, Mohammad
2017-08-01
Implementation of transformerless inverters in PV grid-tied system offer great benefits such as high efficiency, light weight, low cost, etc. Most of the proposed transformerless inverters in literature are verified for only real power application. Currently, international standards such as VDE-AR-N 4105 has demanded that PV grid-tied inverters should have the ability of controlling a specific amount of reactive power. Generation of reactive power cannot be accomplished in single phase transformerless inverter topologies because the existing modulation techniques are not adopted for a freewheeling path in the negative power region. This paper enhances a previous high efficiency proposed H6 trnasformerless inverter with SiC MOSFETs and demonstrates new operating modes for the generation of reactive power. A proposed pulse width modulation (PWM) technique is applied to achieve bidirectional current flow through freewheeling state. A comparison of the proposed H6 transformerless inverter using SiC MOSFETs and Si MOSFTEs is presented in terms of power losses and efficiency. The results show that reactive power control is attained without adding any additional active devices or modification to the inverter structure. Also, the proposed modulation maintains a constant common mode voltage (CM) during every operating mode and has low leakage current. The performance of the proposed system verifies its effectiveness in the next generation PV system.
Pulse Compression Techniques for Laser Generated Ultrasound
NASA Technical Reports Server (NTRS)
Anastasi, R. F.; Madaras, E. I.
1999-01-01
Laser generated ultrasound for nondestructive evaluation has an optical power density limit due to rapid high heating that causes material damage. This damage threshold limits the generated ultrasound amplitude, which impacts nondestructive evaluation inspection capability. To increase ultrasound signal levels and improve the ultrasound signal-to-noise ratio without exceeding laser power limitations, it is possible to use pulse compression techniques. The approach illustrated here uses a 150mW laser-diode modulated with a pseudo-random sequence and signal correlation. Results demonstrate the successful generation of ultrasonic bulk waves in aluminum and graphite-epoxy composite materials using a modulated low-power laser diode and illustrate ultrasound bandwidth control.
Edge compression techniques for visualization of dense directed graphs.
Dwyer, Tim; Henry Riche, Nathalie; Marriott, Kim; Mears, Christopher
2013-12-01
We explore the effectiveness of visualizing dense directed graphs by replacing individual edges with edges connected to 'modules'-or groups of nodes-such that the new edges imply aggregate connectivity. We only consider techniques that offer a lossless compression: that is, where the entire graph can still be read from the compressed version. The techniques considered are: a simple grouping of nodes with identical neighbor sets; Modular Decomposition which permits internal structure in modules and allows them to be nested; and Power Graph Analysis which further allows edges to cross module boundaries. These techniques all have the same goal--to compress the set of edges that need to be rendered to fully convey connectivity--but each successive relaxation of the module definition permits fewer edges to be drawn in the rendered graph. Each successive technique also, we hypothesize, requires a higher degree of mental effort to interpret. We test this hypothetical trade-off with two studies involving human participants. For Power Graph Analysis we propose a novel optimal technique based on constraint programming. This enables us to explore the parameter space for the technique more precisely than could be achieved with a heuristic. Although applicable to many domains, we are motivated by--and discuss in particular--the application to software dependency analysis.
NASA Technical Reports Server (NTRS)
Watson, Karen
1990-01-01
The Space Station Module/Power Management and Distribution (SSM/PMAD) testbed was developed to study the tertiary power management on modules in large spacecraft. The main goal was to study automation techniques, not necessarily develop flight ready systems. Because of the confidence gained in many of automation strategies investigated, it is appropriate to study, in more detail, implementation strategies in order to find better trade-offs for nearer to flight ready systems. These trade-offs particularly concern the weight, volume, power consumption, and performance of the automation system. These systems, in their present implementation are described.
Bubble memory module for spacecraft application
NASA Technical Reports Server (NTRS)
Hayes, P. J.; Looney, K. T.; Nichols, C. D.
1985-01-01
Bubble domain technology offers an all-solid-state alternative for data storage in onboard data systems. A versatile modular bubble memory concept was developed. The key module is the bubble memory module which contains all of the storage devices and circuitry for accessing these devices. This report documents the bubble memory module design and preliminary hardware designs aimed at memory module functional demonstration with available commercial bubble devices. The system architecture provides simultaneous operation of bubble devices to attain high data rates. Banks of bubble devices are accessed by a given bubble controller to minimize controller parts. A power strobing technique is discussed which could minimize the average system power dissipation. A fast initialization method using EEPROM (electrically erasable, programmable read-only memory) devices promotes fast access. Noise and crosstalk problems and implementations to minimize these are discussed. Flight memory systems which incorporate the concepts and techniques of this work could now be developed for applications.
Pérez, Daniel; Gasulla, Ivana; Capmany, José; Fandiño, Javier S; Muñoz, Pascual; Alavi, Hossein
2016-09-05
We develop, analyze and apply a linearization technique based on dual parallel Mach-Zehnder modulator to self-beating microwave photonics systems. The approach enables broadband low-distortion transmission and reception at expense of a moderate electrical power penalty yielding a small optical power penalty (<1 dB).
Modified Dual Three-Pulse Modulation technique for single-phase inverter topology
NASA Astrophysics Data System (ADS)
Sree Harsha, N. R.; Anitha, G. S.; Sreedevi, A.
2016-01-01
In a recent paper, a new modulation technique called Dual Three Pulse Modulation (DTPM) was proposed to improve the efficiency of the power converters of the Electric/Hybrid/Fuel-cell vehicles. It was simulated in PSIM 9.0.4 and uses analog multiplexers to generate the modulating signals for the DC/DC converter and inverter. The circuit used is complex and many other simulation softwares do not support the analog multiplexers as well. Also, the DTPM technique produces modulating signals for the converter, which are essentially needed to produce the modulating signals for the inverter. Hence, it cannot be used efficiently to switch the valves of a stand-alone inverter. We propose a new method to generate the modulating signals to switch MOSFETs of a single phase Dual-Three pulse Modulation based stand-alone inverter. The circuits proposed are simulated in Multisim 12.0. We also show an alternate way to switch a DC/DC converter in a way depicted by DTPM technique both in simulation (MATLAB/Simulink) and hardware. The circuitry is relatively simple and can be used for the further investigations of DTPM technique.
NASA Technical Reports Server (NTRS)
Moser, D. T.
1972-01-01
The power spectrum of phase modulation imposed upon satellite radio signals by the inhomogeneous F-region of the ionosphere (100 - 500 km) was studied. Tapes of the S-66 Beacon B Satellite recorded during the period 1964 - 1966 were processed to yield or record the frequency of modulation induced on the signals by ionospheric dispersion. This modulation is produced from the sweeping across the receiving station as the satellite transits of the two dimensional spatial phase pattern are produced on the ground. From this a power spectrum of structure sizes comprising the diffracting mechanism was determined using digital techniques. Fresnel oscillations were observed and analyzed along with some comments on the statistical stationarity of the shape of the power spectrum observed.
Modulated Chlorophyll "a" Fluorescence: A Tool for Teaching Photosynthesis
ERIC Educational Resources Information Center
Marques da Silva, Jorge; Bernardes da Silva, Anabela; Padua, Mario
2007-01-01
"In vivo" chlorophyll "a" fluorescence is a key technique in photosynthesis research. The recent release of a low cost, commercial, modulated fluorometer enables this powerful technology to be used in education. Modulated chlorophyll a fluorescence measurement "in vivo" is here proposed as a tool to demonstrate basic…
Robust, Rework-able Thermal Electronic Packaging: Applications in High Power TR Modules for Space
NASA Technical Reports Server (NTRS)
Hoffman, James Patrick; Del Castillo, Linda; Hunter, Don; Miller, Jennifer
2012-01-01
The higher output power densities required of modern radar architectures, such as the proposed DESDynI [Deformation, Ecosystem Structure, and Dynamics of Ice] SAR [Synthetic Aperture Radar] Instrument (or DSI) require increasingly dense high power electronics. To enable these higher power densities, while maintaining or even improving hardware reliability, requires improvements in integrating advanced thermal packaging technologies into radar transmit/receive (TR) modules. New materials and techniques have been studied and are now being implemented side-by-side with more standard technology typically used in flight hardware.
NASA Astrophysics Data System (ADS)
Khallaf, Haitham S.; Elfiqi, Abdulaziz E.; Shalaby, Hossam M. H.; Sampei, Seiichi; Obayya, Salah S. A.
2018-06-01
We investigate the performance of hybrid L-ary quadrature-amplitude modulation-multi-pulse pulse-position modulation (LQAM-MPPM) techniques over exponentiated Weibull (EW) fading free-space optical (FSO) channel, considering both weather and pointing-error effects. Upper bound and approximate-tight upper bound expressions for the bit-error rate (BER) of LQAM-MPPM techniques over EW FSO channels are obtained, taking into account the effects of fog, beam divergence, and pointing-error. Setup block diagram for both the transmitter and receiver of the LQAM-MPPM/FSO system are introduced and illustrated. The BER expressions are evaluated numerically and the results reveal that LQAM-MPPM technique outperforms ordinary LQAM and MPPM schemes under different fading levels and weather conditions. Furthermore, the effect of modulation-index is investigated and it turned out that a modulation-index greater than 0.4 is required in order to optimize the system performance. Finally, the effect of pointing-error introduces a great power penalty on the LQAM-MPPM system performance. Specifically, at a BER of 10-9, pointing-error introduces power penalties of about 45 and 28 dB for receiver aperture sizes of DR = 50 and 200 mm, respectively.
NASA Astrophysics Data System (ADS)
Stranz, Andrej; Waag, Andreas; Peiner, Erwin
2015-06-01
Operation of thermoelectric generator (TEG) modules based on bismuth telluride alloys at temperatures higher than 250°C is mostly limited by the melting point of the assembly solder. Although the thermoelectric parameters of bismuth telluride materials degrade for temperatures >130°C, the power output of the module can be enhanced with an increase in the temperature difference. For this, a temperature-stable joining technique, especially for the hot side of the modules, is required. Fabrication and process parameters of TEG modules consisting of bismuth telluride legs, alumina ceramics and copper interconnects using a joining technique based on pressure-assisted silver powder sintering are described. Measurements of the thermal force, electrical resistance, and output power are presented that were performed for hot side module temperatures up to 350°C and temperature differences higher than 300°C. Temperature cycling and results measured during extended high-temperature operation are addressed.
Performance optimization of a photovoltaic chain conversion by the PWM control
NASA Astrophysics Data System (ADS)
Rezoug, M. R.; Chenni, R.
2017-02-01
The interest of the research technique of maximum power point tracking, exposed by this article, lays in the fact of work instantly on the real characteristic of the photovoltaic module. This work is based on instantaneous measurements of its terminals' current & voltage as well as the exploitation of the characteristic "Power - Duty Cycle" to define rapidly the Duty cycle in which power reaches its maximum value. To ensure instantaneous tracking of the point of maximum power, we use "DC/DC Converter" based on "Pulse Wave Modulation's (PWM) Command" controlled by an algorithm implanted in a microcontroller's memory. This algorithm responds to the quick changes in climate (sunlight and temperature). To identify the control parameters "VPV & IPV" at any change in operating conditions, sensors are projected. this algorithm applied to the Duty cycle of the static converter enables the control of power supplied by the photovoltaic generator thanks to oscillatory movement around the MPP. Our article highlights the importance of this technique which lays in its simplicity and performance in changing climatic conditions. This efficiency is confirmed by experimental tests and this technique will improve its predecessors.
Fiber Bragg grating Fabry-Perot cavity sensor based on pulse laser demodulation technique
NASA Astrophysics Data System (ADS)
Gao, Fangfang; Chen, Jianfeng; Liu, Yunqi; Wang, Tingyun
2011-12-01
We demonstrate a fiber laser sensing technique based on fiber Bragg grating Fabry-Perot (FBG-FP) cavity interrogated by pulsed laser, where short pulses generated from active mode-locked erbium-doped fiber ring laser and current modulated DFB laser are adopted. The modulated laser pulses launched into the FBG-FP cavity produce a group of reflected pulses. The optical loss in the cavity can be determined from the power ratio of the first two pulses reflected from the cavity. This technique does not require high reflectivity FBGs and is immune to the power fluctuation of the light source. Two short pulse laser sources were compared experimentally with each other on pulse width, pulse stability, pulse chirp and sensing efficiency.
NASA Astrophysics Data System (ADS)
Kumar Singh, Vinay; Dalal, U. D.
2017-06-01
To inhibit the effect of non-linearity of the LEDs leading to a significant increase in the peak to average power ratio (PAPR) of the OFDM signals in the Visible light communication (VLC) we propose a frequency modulated constant envelope OFDM (FM CE-OFDM) technique. The abrupt amplitude variations in the OFDM signal are frequency modulated before being applied to the LED for electro-optical conversion resulting in a constant envelope signal. The LED is maintained in the linear region of operation by this constant envelope signal at sufficient DC bias. The proposed technique reduces the PAPR to the least possible value ≈0 dB. We theoretically analyze and perform numerical simulations to assess the enhancement of the proposed system. The optimal modulation index is found to be 0.3. The metrics pertaining to the evaluation of the phase discontinuity is derived and is found to be lesser for the FM CE-OFDM as compared to the phase modulated (PM) CE-OFDM. The receiver sensitivity is improved by 1.6 dB for a transmission distance of 2 m for the FM CE-OFDM as compared to the PM CE-OFDM at the FEC threshold. We compare the BER performance of the ideal OFDM (without the non linearity of LED), power back-off OFDM, PM CE-OFDM and FM CE-OFDM in an optical wireless channel (OWC) scenario. The FM CE-OFDM has an improvement of 2.1 dB SNR at the FEC threshold as compared to the PM CE-OFDM. It also shows an improvement of 11 dB when compared with the power back-off technique used in the VLC systems for 10 dB power back-off.
NASA Technical Reports Server (NTRS)
Sun, Xiaoli; Abshire, James B.
2011-01-01
Integrated path differential absorption (IPDA) lidar can be used to remotely measure the column density of gases in the path to a scattering target [1]. The total column gas molecular density can be derived from the ratio of the laser echo signal power with the laser wavelength on the gas absorption line (on-line) to that off the line (off-line). 80th coherent detection and direct detection IPDA lidar have been used successfully in the past in horizontal path and airborne remote sensing measurements. However, for space based measurements, the signal propagation losses are often orders of magnitude higher and it is important to use the most efficient laser modulation and detection technique to minimize the average laser power and the electrical power from the spacecraft. This paper gives an analysis the receiver signal to noise ratio (SNR) of several laser modulation and detection techniques versus the average received laser power under similar operation environments. Coherent detection [2] can give the best receiver performance when the local oscillator laser is relatively strong and the heterodyne mixing losses are negligible. Coherent detection has a high signal gain and a very narrow bandwidth for the background light and detector dark noise. However, coherent detection must maintain a high degree of coherence between the local oscillator laser and the received signal in both temporal and spatial modes. This often results in a high system complexity and low overall measurement efficiency. For measurements through atmosphere the coherence diameter of the received signal also limits the useful size of the receiver telescope. Direct detection IPDA lidars are simpler to build and have fewer constraints on the transmitter and receiver components. They can use much larger size 'photon-bucket' type telescopes to reduce the demands on the laser transmitter. Here we consider the two most widely used direct detection IPDA lidar techniques. The first technique uses two CW seeder lasers, one on-line and one offline that are intensity modulated by two different frequency sine-waves signals before being amplified by a common laser amplifier. The receiver uses narrowband amplitude demodulation, or lock-in, Signal processing at the given laser modulation frequencies [3,4]. The laser transmitter operates in a quasi CW mode with the peak power equal to twice the average power. The on-line and off-line lasers can be transmitted at the same time without interference. Another direct detection technique uses a low duty cycle pulsed laser modulation [5,6] with the laser wavelengths alternating between on-line and off-line on successive pulses. The receiver uses time resolved detection and can also provide simultaneous target range measurement. With a lower laser duty cycle it requires a much higher peak laser power for the same average power.
NASA Technical Reports Server (NTRS)
Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.
2014-01-01
NASA Langley Research Center in collaboration with ITT Exelis have been experimenting with Continuous Wave (CW) laser absorption spectrometer (LAS) as a means of performing atmospheric CO2 column measurements from space to support the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission.Because range resolving Intensity Modulated (IM) CW lidar techniques presented here rely on matched filter correlations, autocorrelation properties without side lobes or other artifacts are highly desirable since the autocorrelation function is critical for the measurements of lidar return powers, laser path lengths, and CO2 column amounts. In this paper modulation techniques are investigated that improve autocorrelation properties. The modulation techniques investigated in this paper include sine waves modulated by maximum length (ML) sequences in various hardware configurations. A CW lidar system using sine waves modulated by ML pseudo random noise codes is described, which uses a time shifting approach to separate channels and make multiple, simultaneous online/offline differential absorption measurements. Unlike the pure ML sequence, this technique is useful in hardware that is band pass filtered as the IM sine wave carrier shifts the main power band. Both amplitude and Phase Shift Keying (PSK) modulated IM carriers are investigated that exibit perfect autocorrelation properties down to one cycle per code bit. In addition, a method is presented to bandwidth limit the ML sequence based on a Gaussian filter implemented in terms of Jacobi theta functions that does not seriously degrade the resolution or introduce side lobes as a means of reducing aliasing and IM carrier bandwidth.
1995 second modulator-klystron workshop: A modulator-klystron workshop for future linear colliders
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-03-01
This second workshop examined the present state of modulator design and attempted an extrapolation for future electron-positron linear colliders. These colliders are currently viewed as multikilometer-long accelerators consisting of a thousand or more RF sources with 500 to 1,000, or more, pulsed power systems. The workshop opened with two introductory talks that presented the current approaches to designing these linear colliders, the anticipated RF sources, and the design constraints for pulse power. The cost of main AC power is a major economic consideration for a future collider, consequently the workshop investigated efficient modulator designs. Techniques that effectively apply the artmore » of power conversion, from the AC mains to the RF output, and specifically, designs that generate output pulses with very fast rise times as compared to the flattop. There were six sessions that involved one or more presentations based on problems specific to the design and production of thousands of modulator-klystron stations, followed by discussion and debate on the material.« less
Thermal control of power supplies with electronic packaging techniques
NASA Technical Reports Server (NTRS)
1975-01-01
The analysis, design, and development work to reduce the weight and size of a standard modular power supply with a 350 watt output was summarized. By integrating low cost commercial heat pipes in the redesign of this power supply, weight was reduced by 30% from that of the previous design. The temperature was also appreciably reduced, increasing the environmental capability of the unit. A demonstration unit with a 100 watt output and a 15 volt regulator module, plus simulated output modules, was built and tested to evaluate the thermal performance of the redesigned power supply.
Fuzzy Logic Controlled Solar Module for Driving Three- Phase Induction Motor
NASA Astrophysics Data System (ADS)
Afiqah Zainal, Nurul; Sooi Tat, Chan; Ajisman
2016-02-01
Renewable energy produced by solar module gives advantages for generated three- phase induction motor in remote area. But, solar module's ou tput is uncertain and complex. Fuzzy logic controller is one of controllers that can handle non-linear system and maximum power of solar module. Fuzzy logic controller used for Maximum Power Point Tracking (MPPT) technique to control Pulse-Width Modulation (PWM) for switching power electronics circuit. DC-DC boost converter used to boost up photovoltaic voltage to desired output and supply voltage source inverter which controlled by three-phase PWM generated by microcontroller. IGBT switched Voltage source inverter (VSI) produced alternating current (AC) voltage from direct current (DC) source to control speed of three-phase induction motor from boost converter output. Results showed that, the output power of solar module is optimized and controlled by using fuzzy logic controller. Besides that, the three-phase induction motor can be drive and control using VSI switching by the PWM signal generated by the fuzzy logic controller. This concluded that the non-linear system can be controlled and used in driving three-phase induction motor.
An AWG-based 10 Gbit/s colorless WDM-PON system using a chirp-managed directly modulated laser
NASA Astrophysics Data System (ADS)
Latif, Abdul; Yu, Chong-xiu; Xin, Xiang-jun; Husain, Aftab; Hussain, Ashiq; Munir, Abid; Khan, Yousaf
2012-09-01
We propose an arrayed waveguide grating (AWG)-based 10 Gbit/s per channel full duplex wavelength division multiplexing passive optical network (WDM-PON). A chirp managed directly modulated laser with return-to-zero (RZ) differential phase shift keying (DPSK) modulation technique is utilized for downlink (DL) direction, and then the downlink signal is re-modulated for the uplink (UL) direction using intensity modulation technique with the data rate of 10 Gbit/s per channel. A successful WDM-PON transmission operation with the data rate of 10 Gbit/s per channel over a distance of 25 km without any optical amplification or dispersion compensation is demonstrated with low power penalty.
Pseudo-Random Modulation of a Laser Diode for Generating Ultrasonic Longitudinal Waves
NASA Technical Reports Server (NTRS)
Madaras, Eric I.; Anatasi, Robert F.
2004-01-01
Laser generated ultrasound systems have historically been more complicated and expensive than conventional piezoelectric based systems, and this fact has relegated the acceptance of laser based systems to niche applications for which piezoelectric based systems are less suitable. Lowering system costs, while improving throughput, increasing ultrasound signal levels, and improving signal-to-noise are goals which will help increase the general acceptance of laser based ultrasound. One current limitation with conventional laser generated ultrasound is a material s damage threshold limit. Increasing the optical power to generate more signal eventually damages the material being tested due to rapid, high heating. Generation limitations for laser based ultrasound suggests the use of pulse modulation techniques as an alternate generation method. Pulse modulation techniques can spread the laser energy over time or space, thus reducing laser power densities and minimizing damage. Previous experiments by various organizations using spatial or temporal pulse modulation have been shown to generate detectable surface, plate, and bulk ultrasonic waves with narrow frequency bandwidths . Using narrow frequency bandwidths improved signal detectability, but required the use of expensive and powerful lasers and opto-electronic systems. The use of a laser diode to generate ultrasound is attractive because of its low cost, small size, light weight, simple optics and modulation capability. The use of pulse compression techniques should allow certain types of laser diodes to produce usable ultrasonic signals. The method also does not need to be limited to narrow frequency bandwidths. The method demonstrated here uses a low power laser diode (approximately 150 mW) that is modulated by controlling the diode s drive current and the resulting signal is recovered by cross correlation. A potential application for this system which is briefly demonstrated is in detecting signals in thick composite materials where attenuation is high and signal amplitude and bandwidth are at a premium.
Conversion efficiency of skutterudite-based thermoelectric modules.
Salvador, James R; Cho, Jung Y; Ye, Zuxin; Moczygemba, Joshua E; Thompson, Alan J; Sharp, Jeffrey W; Koenig, Jan D; Maloney, Ryan; Thompson, Travis; Sakamoto, Jeffrey; Wang, Hsin; Wereszczak, Andrew A
2014-06-28
Presently, the only commercially available power generating thermoelectric (TE) modules are based on bismuth telluride (Bi2Te3) alloys and are limited to a hot side temperature of 250 °C due to the melting point of the solder interconnects and/or generally poor power generation performance above this point. For the purposes of demonstrating a TE generator or TEG with higher temperature capability, we selected skutterudite based materials to carry forward with module fabrication because these materials have adequate TE performance and are mechanically robust. We have previously reported the electrical power output for a 32 couple skutterudite TE module, a module that is type identical to ones used in a high temperature capable TEG prototype. The purpose of this previous work was to establish the expected power output of the modules as a function of varying hot and cold side temperatures. Recent upgrades to the TE module measurement system built at the Fraunhofer Institute for Physical Measurement Techniques allow for the assessment of not only the power output, as previously described, but also the thermal to electrical energy conversion efficiency. Here we report the power output and conversion efficiency of a 32 couple, high temperature skutterudite module at varying applied loading pressures and with different interface materials between the module and the heat source and sink of the test system. We demonstrate a 7% conversion efficiency at the module level when a temperature difference of 460 °C is established. Extrapolated values indicate that 7.5% is achievable when proper thermal interfaces and loading pressures are used.
Simultaneous Power Deposition Detection of Two EC Beams with the BIS Analysis in Moving TCV Plasmas
NASA Astrophysics Data System (ADS)
Curchod, L.; Pochelon, A.; Decker, J.; Felici, F.; Goodman, T. P.; Moret, J.-M.; Paley, J. I.
2009-11-01
Modulation of power amplitude is a widespread to determine the radial absorption profile of externally launched power in fusion plasmas. There are many techniques to analyze the plasma response to such a modulation. The break-in-slope (BIS) analysis can draw an estimated power deposition profile for each power step up. In this paper, the BIS analysis is used to monitor the power deposition location of one or two EC power beams simultaneously in a non-stationary plasma being displaced vertically in the TCV tokamak vessel. Except from radial discrepancies, the results have high time resolution and compare well with simulations from the R2D2-C3PO-LUKE ray-tracing and Fokker-Planck code suite.
An Efficient Modulation Strategy for Cascaded Photovoltaic Systems Suffering From Module Mismatch
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Cheng; Zhang, Kai; Xiong, Jian
Modular multilevel cascaded converter (MMCC) is a promising technique for medium/high-voltage high-power photovoltaic systems due to its modularity, scalability, and capability of distributed maximum power point tracking (MPPT) etc. However, distributed MPPT under module-mismatch might polarize the distribution of ac output voltages as well as the dc-link voltages among the modules, distort grid currents, and even cause system instability. For the better acceptance in practical applications, such issues need to be well addressed. Based on mismatch degree that is defined to consider both active power distribution and maximum modulation index, this paper presents an efficient modulation strategy for a cascaded-H-bridge-basedmore » MMCC under module mismatch. It can operate in loss-reducing mode or range-extending mode. By properly switching between the two modes, performance indices such as system efficiency, grid current quality, and balance of dc voltages, can be well coordinated. In this way, the MMCC system can maintain high-performance over a wide range of operating conditions. As a result, effectiveness of the proposed modulation strategy is proved with experiments.« less
An Efficient Modulation Strategy for Cascaded Photovoltaic Systems Suffering From Module Mismatch
Wang, Cheng; Zhang, Kai; Xiong, Jian; ...
2017-09-26
Modular multilevel cascaded converter (MMCC) is a promising technique for medium/high-voltage high-power photovoltaic systems due to its modularity, scalability, and capability of distributed maximum power point tracking (MPPT) etc. However, distributed MPPT under module-mismatch might polarize the distribution of ac output voltages as well as the dc-link voltages among the modules, distort grid currents, and even cause system instability. For the better acceptance in practical applications, such issues need to be well addressed. Based on mismatch degree that is defined to consider both active power distribution and maximum modulation index, this paper presents an efficient modulation strategy for a cascaded-H-bridge-basedmore » MMCC under module mismatch. It can operate in loss-reducing mode or range-extending mode. By properly switching between the two modes, performance indices such as system efficiency, grid current quality, and balance of dc voltages, can be well coordinated. In this way, the MMCC system can maintain high-performance over a wide range of operating conditions. As a result, effectiveness of the proposed modulation strategy is proved with experiments.« less
Development of high-efficiency power amplifiers for PIP2 (Project X), Phase II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raab, Frederick
The Fermi Lab PIP II (formerly Project X) accelerator will require the generation of over a megawatt of radio-frequency (RF) power at 325 and 650 MHz. This Phase-II SBIR grant developed techniques to generate this RF power efficienly. The basis of this approach is a system comprising high-efficiency RF power amplifiers, high-efficiency class-S modulators to maintain efficiency at all power levels, and low-loss power combiners. A digital signal processor adjusts signal parameters to obtain the maximum efficiency while producing a signal of the desired amplitude and phase. Components of 4-kW prototypes were designed, assembled, and tested. The 500-W modules producemore » signals at 325 MHz with an overall efficiency of 83 percent and signals at 650 MHz with an overall efficiency of 79 percent. This efficiency is nearly double that available from conventional techniques, which makes it possible to cut the power consumption nearly in half. The system is designed to be scalable to the multi-kilowatt level and can be adapted to other DoE applications.« less
Health Monitoring System Based on Intra-Body Communication
NASA Astrophysics Data System (ADS)
Razak, A. H. A.; Ibrahim, I. W.; Ayub, A. H.; Amri, M. F.; Hamzi, M. H.; Halim, A. K.; Ahmad, A.; Junid, S. A. M. Al
2015-11-01
This paper presents a model of a Body Area Network (BAN) health monitoring system based on Intra-Body Communication. Intra-body Communication (IBC) is a communication technique that uses the human body as a medium for electrical signal communication. One of the visions in the health care industry is to provide autonomous and continuous self and the remote health monitoring system. This can be achieved via BAN, LAN and WAN integration. The BAN technology itself consists of short range data communication modules, sensors, controller and actuators. The information can be transmitted to the LAN and WAN via the RF technology such as Bluetooth, ZigBee and ANT. Although the implementations of RF communication have been successful, there are still limitations in term of power consumption, battery lifetime, interferences and signal attenuations. One of the solutions for Medical Body Area Network (MBANs) to overcome these issues is by using an IBC technique because it can operate at lower frequencies and power consumption compared to the existing techniques. The first objective is to design the IBC's transmitter and receiver modules using the off the shelf components. The specifications of the modules such as frequency, data rate, modulation and demodulation coding system were defined. The individual module were designed and tested separately. The modules was integrated as an IBC system and tested for functionality then was implemented on PCB. Next objective is to model and implement the digital parts of the transmitter and receiver modules on the Altera's FPGA board. The digital blocks were interfaced with the FPGA's on board modules and the discrete components. The signals that have been received from the transmitter were converted into a proper waveform and it can be viewed via external devices such as oscilloscope and Labview. The signals such as heartbeats or pulses can also be displayed on LCD. In conclusion, the IBC project presents medical health monitoring model that operates at the range of 21 MHz frequency and reduce the power consumption for a longer battery lifetime.
Automation in the Space Station module power management and distribution Breadboard
NASA Technical Reports Server (NTRS)
Walls, Bryan; Lollar, Louis F.
1990-01-01
The Space Station Module Power Management and Distribution (SSM/PMAD) Breadboard, located at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama, models the power distribution within a Space Station Freedom Habitation or Laboratory module. Originally designed for 20 kHz ac power, the system is now being converted to high voltage dc power with power levels on a par with those expected for a space station module. In addition to the power distribution hardware, the system includes computer control through a hierarchy of processes. The lowest level process consists of fast, simple (from a computing standpoint) switchgear, capable of quickly safing the system. The next level consists of local load center processors called Lowest Level Processors (LLP's). These LLP's execute load scheduling, perform redundant switching, and shed loads which use more than scheduled power. The level above the LLP's contains a Communication and Algorithmic Controller (CAC) which coordinates communications with the highest level. Finally, at this highest level, three cooperating Artificial Intelligence (AI) systems manage load prioritization, load scheduling, load shedding, and fault recovery and management. The system provides an excellent venue for developing and examining advanced automation techniques. The current system and the plans for its future are examined.
NASA Astrophysics Data System (ADS)
Zunoubi, Mohammad R.; Anderson, Brian; Naderi, Shadi A.; Madden, Timothy J.; Dajani, Iyad
2017-03-01
The development of high-power fiber lasers is of great interest due to the advantages they offer relative to other laser technologies. Currently, the maximum power from a reportedly single-mode fiber amplifier stands at 10 kW. Though impressive, this power level was achieved at the cost of a large spectral linewidth, making the laser unsuitable for coherent or spectral beam combination techniques required to reach power levels necessary for airborne tactical applications. An effective approach in limiting the SBS effect is to insert an electro-optic phase modulator at the low-power end of a master oscillator power amplifier (MOPA) system. As a result, the optical power is spread among spectral sidebands; thus raising the overall SBS threshold of the amplifier. It is the purpose of this work to present a comprehensive numerical scheme that is based on the extended nonlinear Schrodinger equations that allows for accurate analysis of phase modulated fiber amplifier systems in relation to the group velocity dispersion and Kerr nonlinearities and their effect on the coherent beam combining efficiency. As such, we have simulated a high-power MOPA system modulated via filtered pseudo-random bit sequence format for different clock rates and power levels. We show that at clock rates of ≥30 GHz, the combination of GVD and self-phase modulation may lead to a drastic drop in beam combining efficiency at the multi-kW level. Furthermore, we extend our work to study the effect of cross-phase modulation where an amplifier is seeded with two laser sources.
Molecular solid-state inverter-converter system
NASA Technical Reports Server (NTRS)
Birchenough, A. G.
1973-01-01
A modular approach for aerospace electrical systems has been developed, using lightweight high efficiency pulse width modulation techniques. With the modular approach, a required system is obtained by paralleling modules. The modular system includes the inverters and converters, a paralleling system, and an automatic control and fault-sensing protection system with a visual annunciator. The output is 150 V dc, or a low distortion three phase sine wave at 120 V, 400 Hz. Input power is unregulated 56 V dc. Each module is rated 2.5 kW or 3.6 kVA at 0.7 power factor.
Kubo, Takahiro; Taniguchi, Tomohiro; Tadanaga, Osamu; Sakurai, Naoya; Kimura, Hideaki; Hadama, Hisaya; Asobe, Masaki
2010-02-01
We propose an in-line monitoring technique that uses 650 nm visible light for performing maintenance work on Fiber-to-the-home (FTTH) network quickly without the need for measuring skills or external devices. This technique is characterized by visible light (650 nm) generated by an SHG module from the 1.3 microm-band line signal. We fabricate a 1.3 microm-band quasi phase matched LiNbO(3) (QPM-LN) module, and the measure the 650 nm second harmonic (SH) power to test the proposed short-pulse modulation method. The results confirm the feasibility of the short-pulse modulation method with different peak factors (PFs) (1.0-7.3). We also examine the effect of short-pulse modulation on system performance at the optical receiver by measuring the bit error rate (BER) of received data (1.25 Gb/s). The BER is basically unaffected by the PF (1.0-5.5). This means that the proposed technique has little influence on data reception as regards PF (1.0-5.5).
ERIC Educational Resources Information Center
Macek, Victor C.
The nine Reactor Statics Modules are designed to introduce students to the use of numerical methods and digital computers for calculation of neutron flux distributions in space and energy which are needed to calculate criticality, power distribution, and fuel burnup for both slow neutron and fast neutron fission reactors. The last module, RS-9,…
Hybrid acousto-optic and digital equalization for microwave digital radio channels
NASA Astrophysics Data System (ADS)
Anderson, C. S.; Vanderlugt, A.
1990-11-01
Digital radio transmission systems use complex modulation schemes that require powerful signal-processing techniques to correct channel distortions and to minimize BERs. This paper proposes combining the computation power of acoustooptic processing and the accuracy of digital processing to produce a hybrid channel equalizer that exceeds the performance of digital equalization alone. Analysis shows that a hybrid equalizer for 256-level quadrature amplitude modulation (QAM) performs better than a digital equalizer for 64-level QAM.
Algebraic and geometric structures of analytic partial differential equations
NASA Astrophysics Data System (ADS)
Kaptsov, O. V.
2016-11-01
We study the problem of the compatibility of nonlinear partial differential equations. We introduce the algebra of convergent power series, the module of derivations of this algebra, and the module of Pfaffian forms. Systems of differential equations are given by power series in the space of infinite jets. We develop a technique for studying the compatibility of differential systems analogous to the Gröbner bases. Using certain assumptions, we prove that compatible systems generate infinite manifolds.
Vibration Method for Tracking the Resonant Mode and Impedance of a Microwave Cavity
NASA Technical Reports Server (NTRS)
Barmatz, M.; Iny, O.; Yiin, T.; Khan, I.
1995-01-01
A vibration technique his been developed to continuously maintain mode resonance and impedance much between a constant frequency magnetron source and resonant cavity. This method uses a vibrating metal rod to modulate the volume of the cavity in a manner equivalent to modulating an adjustable plunger. A similar vibrating metal rod attached to a stub tuner modulates the waveguide volume between the source and cavity. A phase sensitive detection scheme determines the optimum position of the adjustable plunger and stub turner during processing. The improved power transfer during the heating of a 99.8% pure alumina rod was demonstrated using this new technique. Temperature-time and reflected power-time heating curves are presented for the cases of no tracking, impedance tracker only, mode tracker only and simultaneous impedance and mode tracking. Controlled internal melting of an alumina rod near 2000 C using both tracking units was also demonstrated.
NASA Technical Reports Server (NTRS)
Hayden, W. L.; Robinson, L. H.
1972-01-01
Spectral analyses of angle-modulated communication systems is studied by: (1) performing a literature survey of candidate power spectrum computational techniques, determining the computational requirements, and formulating a mathematical model satisfying these requirements; (2) implementing the model on UNIVAC 1230 digital computer as the Spectral Analysis Program (SAP); and (3) developing the hardware specifications for a data acquisition system which will acquire an input modulating signal for SAP. The SAP computational technique uses extended fast Fourier transform and represents a generalized approach for simple and complex modulating signals.
NASA Astrophysics Data System (ADS)
Song, Xizi; Xu, Yanbin; Dong, Feng
2017-04-01
Electrical resistance tomography (ERT) is a promising measurement technique with important industrial and clinical applications. However, with limited effective measurements, it suffers from poor spatial resolution due to the ill-posedness of the inverse problem. Recently, there has been an increasing research interest in hybrid imaging techniques, utilizing couplings of physical modalities, because these techniques obtain much more effective measurement information and promise high resolution. Ultrasound modulated electrical impedance tomography (UMEIT) is one of the newly developed hybrid imaging techniques, which combines electric and acoustic modalities. A linearized image reconstruction method based on power density is proposed for UMEIT. The interior data, power density distribution, is adopted to reconstruct the conductivity distribution with the proposed image reconstruction method. At the same time, relating the power density change to the change in conductivity, the Jacobian matrix is employed to make the nonlinear problem into a linear one. The analytic formulation of this Jacobian matrix is derived and its effectiveness is also verified. In addition, different excitation patterns are tested and analyzed, and opposite excitation provides the best performance with the proposed method. Also, multiple power density distributions are combined to implement image reconstruction. Finally, image reconstruction is implemented with the linear back-projection (LBP) algorithm. Compared with ERT, with the proposed image reconstruction method, UMEIT can produce reconstructed images with higher quality and better quantitative evaluation results.
Coding/modulation trade-offs for Shuttle wideband data links
NASA Technical Reports Server (NTRS)
Batson, B. H.; Huth, G. K.; Trumpis, B. D.
1974-01-01
This paper describes various modulation and coding schemes which are potentially applicable to the Shuttle wideband data relay communications link. This link will be capable of accommodating up to 50 Mbps of scientific data and will be subject to a power constraint which forces the use of channel coding. Although convolutionally encoded coherent binary PSK is the tentative signal design choice for the wideband data relay link, FM techniques are of interest because of the associated hardware simplicity and because an FM system is already planned to be available for transmission of television via relay satellite to the ground. Binary and M-ary FSK are considered as candidate modulation techniques, and both coherent and noncoherent ground station detection schemes are examined. The potential use of convolutional coding is considered in conjunction with each of the candidate modulation techniques.
FM-UWB: Towards a Robust, Low-Power Radio for Body Area Networks
Kopta, Vladimir; Farserotu, John; Enz, Christian
2017-01-01
The Frequency Modulated Ultra-Wideband (FM-UWB) is known as a low-power, low-complexity modulation scheme targeting low to moderate data rates in applications such as wireless body area networks. In this paper, a thorough review of all FM-UWB receivers and transmitters reported in literature is presented. The emphasis is on trends in power reduction that exhibit an improvement by a factor 20 over the past eight years, showing the high potential of FM-UWB. The main architectural and circuit techniques that have led to this improvement are highlighted. Seldom explored potential of using higher data rates and more complex modulations is demonstrated as a way to increase energy efficiency of FM-UWB. Multi-user communication over a single Radio Frequency (RF) channel is explored in more depth and multi-channel transmission is proposed as an extension of standard FM-UWB. The two techniques provide means of decreasing network latency, improving performance, and allow the FM-UWB to accommodate the increasing number of sensor nodes in the emerging applications such as High-Density Wireless Sensor Networks. PMID:28481248
Metting van Rijn, A C; Peper, A; Grimbergen, C A
1991-07-01
A multichannel instrumentation amplifier, developed to be used in a miniature universal eight-channel amplifier module, is described. After discussing the specific properties of a bioelectric recording, the difficulties of meeting the demanded specifications with a design based on operational amplifiers are reviewed. Because it proved impossible to achieve the demanded combination of low noise and low power consumption using commercially available operational amplifiers, an amplifier equipped with an input stage with discrete transistors was developed. A new design concept was used to expand the design to a multichannel version with an equivalent input noise voltage of 0.35 microV RMS in a bandwidth of 0.1-100 Hz and a power consumption of 0.6 mW per channel. The results of this study are applied to miniature, universal, eight-channel amplifier modules, manufactured with thick-film production techniques. The modules can be coupled to satisfy the demand for a multiple of eight channels. The low power consumption enables the modules to be used in all kinds of portable and telemetry measurement systems and simplifies the power supply in stationary measurement systems.
Solar dynamic power for the Space Station
NASA Technical Reports Server (NTRS)
Archer, J. S.; Diamant, E. S.
1986-01-01
This paper describes a computer code which provides a significant advance in the systems analysis capabilities of solar dynamic power modules. While the code can be used to advantage in the preliminary analysis of terrestrial solar dynamic modules its real value lies in the adaptions which make it particularly useful for the conceptualization of optimized power modules for space applications. In particular, as illustrated in the paper, the code can be used to establish optimum values of concentrator diameter, concentrator surface roughness, concentrator rim angle and receiver aperture corresponding to the main heat cycle options - Organic Rankine and Brayton - and for certain receiver design options. The code can also be used to establish system sizing margins to account for the loss of reflectivity in orbit or the seasonal variation of insolation. By the simulation of the interactions among the major components of a solar dynamic module and through simplified formulations of the major thermal-optic-thermodynamic interactions the code adds a powerful, efficient and economic analytical tool to the repertory of techniques available for the design of advanced space power systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takahashi, Ryosuke; Okajima, Takaharu, E-mail: okajima@ist.hokudai.ac.jp
We present multi-frequency force modulation atomic force microscopy (AFM) for mapping the complex shear modulus G* of living cells as a function of frequency over the range of 50–500 Hz in the same measurement time as the single-frequency force modulation measurement. The AFM technique enables us to reconstruct image maps of rheological parameters, which exhibit a frequency-dependent power-law behavior with respect to G{sup *}. These quantitative rheological measurements reveal a large spatial variation in G* in this frequency range for single cells. Moreover, we find that the reconstructed images of the power-law rheological parameters are much different from those obtained inmore » force-curve or single-frequency force modulation measurements. This indicates that the former provide information about intracellular mechanical structures of the cells that are usually not resolved with the conventional force measurement methods.« less
Modulation and synchronization technique for MF-TDMA system
NASA Technical Reports Server (NTRS)
Faris, Faris; Inukai, Thomas; Sayegh, Soheil
1994-01-01
This report addresses modulation and synchronization techniques for a multi-frequency time division multiple access (MF-TDMA) system with onboard baseband processing. The types of synchronization techniques analyzed are asynchronous (conventional) TDMA, preambleless asynchronous TDMA, bit synchronous timing with a preamble, and preambleless bit synchronous timing. Among these alternatives, preambleless bit synchronous timing simplifies onboard multicarrier demultiplexer/demodulator designs (about 2:1 reduction in mass and power), requires smaller onboard buffers (10:1 to approximately 3:1 reduction in size), and provides better frame efficiency as well as lower onboard processing delay. Analysis and computer simulation illustrate that this technique can support a bit rate of up to 10 Mbit/s (or higher) with proper selection of design parameters. High bit rate transmission may require Doppler compensation and multiple phase error measurements. The recommended modulation technique for bit synchronous timing is coherent QPSK with differential encoding for the uplink and coherent QPSK for the downlink.
Bertoluzzi, Luca; Bisquert, Juan
2017-01-05
The optimization of solar energy conversion devices relies on their accurate and nondestructive characterization. The small voltage perturbation techniques of impedance spectroscopy (IS) have proven to be very powerful to identify the main charge storage modes and charge transfer processes that control device operation. Here we establish the general connection between IS and light modulated techniques such as intensity modulated photocurrent (IMPS) and photovoltage spectroscopies (IMVS) for a general system that converts light to energy. We subsequently show how these techniques are related to the steady-state photocurrent and photovoltage and the external quantum efficiency. Finally, we express the IMPS and IMVS transfer functions in terms of the capacitive and resistive features of a general equivalent circuit of IS for the case of a photoanode used for solar fuel production. We critically discuss how much knowledge can be extracted from the combined use of those three techniques.
Gain compression and its dependence on output power in quantum dot lasers
NASA Astrophysics Data System (ADS)
Zhukov, A. E.; Maximov, M. V.; Savelyev, A. V.; Shernyakov, Yu. M.; Zubov, F. I.; Korenev, V. V.; Martinez, A.; Ramdane, A.; Provost, J.-G.; Livshits, D. A.
2013-06-01
The gain compression coefficient was evaluated by applying the frequency modulation/amplitude modulation technique in a distributed feedback InAs/InGaAs quantum dot laser. A strong dependence of the gain compression coefficient on the output power was found. Our analysis of the gain compression within the frame of the modified well-barrier hole burning model reveals that the gain compression coefficient decreases beyond the lasing threshold, which is in a good agreement with the experimental observations.
Ku, Yuen-Ching; Chan, Chun-Kit; Chen, Lian-Kuan
2007-06-15
We propose and experimentally demonstrate a novel in-band optical signal-to-noise ratio (OSNR) monitoring technique using a phase-modulator-embedded fiber loop mirror. This technique measures the in-band OSNR accurately by observing the output power of a fiber loop mirror filter, where the transmittance is adjusted by an embedded phase modulator driven by a low-frequency periodic signal. The measurement errors are less than 0.5 dB for an OSNR between 0 and 40 dB in a 10 Gbit/s non-return-to-zero system. This technique was also shown experimentally to have high robustness against various system impairments and high feasibility to be deployed in practical implementation.
NASA Astrophysics Data System (ADS)
Gill, Douglas M.; Rasras, Mahmoud; Tu, Kun-Yii; Chen, Young-Kai; White, Alice E.; Patel, Sanjay S.; Carothers, Daniel; Pomerene, Andrew; Kamocsai, Robert; Beattie, James; Kopa, Anthony; Apsel, Alyssa; Beals, Mark; Mitchel, Jurgen; Liu, Jifeng; Kimerling, Lionel C.
2008-02-01
Integrating electronic and photonic functions onto a single silicon-based chip using techniques compatible with mass-production CMOS electronics will enable new design paradigms for existing system architectures and open new opportunities for electro-optic applications with the potential to dramatically change the management, cost, footprint, weight, and power consumption of today's communication systems. While broadband analog system applications represent a smaller volume market than that for digital data transmission, there are significant deployments of analog electro-optic systems for commercial and military applications. Broadband linear modulation is a critical building block in optical analog signal processing and also could have significant applications in digital communication systems. Recently, broadband electro-optic modulators on a silicon platform have been demonstrated based on the plasma dispersion effect. The use of the plasma dispersion effect within a CMOS compatible waveguide creates new challenges and opportunities for analog signal processing since the index and propagation loss change within the waveguide during modulation. We will review the current status of silicon-based electrooptic modulators and also linearization techniques for optical modulation.
Zheng, Xuezhe; Chang, Eric; Amberg, Philip; Shubin, Ivan; Lexau, Jon; Liu, Frankie; Thacker, Hiren; Djordjevic, Stevan S; Lin, Shiyun; Luo, Ying; Yao, Jin; Lee, Jin-Hyoung; Raj, Kannan; Ho, Ron; Cunningham, John E; Krishnamoorthy, Ashok V
2014-05-19
We report the first complete 10G silicon photonic ring modulator with integrated ultra-efficient CMOS driver and closed-loop wavelength control. A selective substrate removal technique was used to improve the ring tuning efficiency. Limited by the thermal tuner driver output power, a maximum open-loop tuning range of about 4.5nm was measured with about 14mW of total tuning power including the heater driver circuit power consumption. Stable wavelength locking was achieved with a low-power mixed-signal closed-loop wavelength controller. An active wavelength tracking range of > 500GHz was demonstrated with controller energy cost of only 20fJ/bit.
FPGA Techniques Based New Hybrid Modulation Strategies for Voltage Source Inverters
Sudha, L. U.; Baskaran, J.; Elankurisil, S. A.
2015-01-01
This paper corroborates three different hybrid modulation strategies suitable for single-phase voltage source inverter. The proposed method is formulated using fundamental switching and carrier based pulse width modulation methods. The main tale of this proposed method is to optimize a specific performance criterion, such as minimization of the total harmonic distortion (THD), lower order harmonics, switching losses, and heat losses. The proposed method is articulated using fundamental switching and carrier based pulse width modulation methods. Thus, the harmonic pollution in the power system will be reduced and the power quality will be augmented with better harmonic profile for a target fundamental output voltage. The proposed modulation strategies are simulated in MATLAB r2010a and implemented in a Xilinx spartan 3E-500 FG 320 FPGA processor. The feasibility of these modulation strategies is authenticated through simulation and experimental results. PMID:25821852
Advanced digital modulation: Communication techniques and monolithic GaAs technology
NASA Technical Reports Server (NTRS)
Wilson, S. G.; Oliver, J. D., Jr.; Kot, R. C.; Richards, C. R.
1983-01-01
Communications theory and practice are merged with state-of-the-art technology in IC fabrication, especially monolithic GaAs technology, to examine the general feasibility of a number of advanced technology digital transmission systems. Satellite-channel models with (1) superior throughput, perhaps 2 Gbps; (2) attractive weight and cost; and (3) high RF power and spectrum efficiency are discussed. Transmission techniques possessing reasonably simple architectures capable of monolithic fabrication at high speeds were surveyed. This included a review of amplitude/phase shift keying (APSK) techniques and the continuous-phase-modulation (CPM) methods, of which MSK represents the simplest case.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Network. (r) Transmit Power Control (TPC). A feature that enables a U-NII device to dynamically switch... control level. Power must be summed across all antennas and antenna elements. The average must not include... modulation techniques and provide a wide array of high data rate mobile and fixed communications for...
Code of Federal Regulations, 2013 CFR
2013-10-01
... Network. (r) Transmit Power Control (TPC). A feature that enables a U-NII device to dynamically switch... control level. Power must be summed across all antennas and antenna elements. The average must not include... modulation techniques and provide a wide array of high data rate mobile and fixed communications for...
Berny, Stephane; Blouin, Nicolas; Distler, Andreas; Egelhaaf, Hans-Joachim; Krompiec, Michal; Lohr, Andreas; Lozman, Owen R; Morse, Graham E; Nanson, Lana; Pron, Agnieszka; Sauermann, Tobias; Seidler, Nico; Tierney, Steve; Tiwana, Priti; Wagner, Michael; Wilson, Henry
2016-05-01
The technology behind a large area array of flexible solar cells with a unique design and semitransparent blue appearance is presented. These modules are implemented in a solar tree installation at the German pavilion in the EXPO2015 in Milan/IT. The modules show power conversion efficiencies of 4.5% and are produced exclusively using standard printing techniques for large-scale production.
Ultracompact electro-optic phase modulator based on III-V-on-silicon microdisk resonator.
Lloret, J; Kumar, R; Sales, S; Ramos, F; Morthier, G; Mechet, P; Spuesens, T; Van Thourhout, D; Olivier, N; Fédéli, J-M; Capmany, J
2012-06-15
A novel ultracompact electro-optic phase modulator based on a single 9 μm-diameter III-V microdisk resonator heterogeneously integrated on and coupled to a nanophotonic waveguide is presented. Modulation is enabled by effective index modification through carrier injection. Proof-of-concept implementation involving binary phase shift keying modulation format is assembled. A power imbalance of ∼0.6 dB between both symbols and a modulation rate up to 1.8 Gbps are demonstrated without using any special driving technique.
Kilowatt high-efficiency narrow-linewidth monolithic fiber amplifier operating at 1034 nm
NASA Astrophysics Data System (ADS)
Naderi, Nader A.; Flores, Angel; Anderson, Brian M.; Rowland, Ken; Dajani, Iyad
2016-03-01
Power scaling investigation of a narrow-linewidth, Ytterbium-doped all-fiber amplifier operating at 1034 nm is presented. Nonlinear stimulated Brillouin scattering (SBS) effects were suppressed through the utilization of an external phase modulation technique. Here, the power amplifier was seeded with a spectrally broadened master oscillator and the results were compared using both pseudo-random bit sequence (PRBS) and white noise source (WNS) phase modulation formats. By utilizing an optical band pass filter as well as optimizing the length of fiber used in the pre-amplifier stages, we were able to appreciably suppress unwanted amplified spontaneous emission (ASE). Notably, through PRBS phase modulation, greater than two-fold enhancement in threshold power was achieved when compared to the WNS modulated case. Consequently, by further optimizing both the power amplifier length and PRBS pattern at a clock rate of 3.5 GHz, we demonstrated 1 kilowatt of power with a slope efficiency of 81% and an overall ASE content of less than 1%. Beam quality measurements at 1 kilowatt provided near diffraction-limited operation (M2 < 1.2) with no sign of modal instability. To the best of our knowledge, the power scaling results achieved in this work represent the highest power reported for a spectrally narrow all-fiber amplifier operating at < 1040 nm in Yb-doped silica-based fiber.
Multiplex gas chromatography for use in space craft
NASA Technical Reports Server (NTRS)
Valentin, J. R.
1985-01-01
Gas chromatography is a powerful technique for the analysis of gaseous mixtures. Some limitations in this technique still exist which can be alleviated with multiplex gas chromatography (MGC). In MGC, rapid multiple sample injections are made into the column without having to wait for one determination to be finished before taking a new sample. The resulting data must then be reduced using computational methods such as cross correlation. In order to efficiently perform multiplexgas chromatography, experiments in the laboratory and on board future space craft, skills, equipment, and computer software were developed. Three new techniques for modulating, i.e., changing, sample concentrations were demonstrated by using desorption, decomposition, and catalytic modulators. In all of them, the need for a separate gas stream as the carrier was avoided by placing the modulator at the head of the column to directly modulate a sample stream. Finally, the analysis of an environmental sample by multiplex chromatography was accomplished by employing silver oxide to catalytically modulate methane in ambient air.
Modulation doping of quantum dot laser active area and its impact on lasing performance
NASA Astrophysics Data System (ADS)
Konoplev, S. S.; Savelyev, A. V.; Korenev, V. V.; Maximov, M. V.; Zhukov, A. E.
2015-11-01
We present a theoretical study of modulation doping of active region in the quantum dot (QD) laser and corresponding issues of QD charge neutrality violation, a band diagram of the laser and charge carriers distribution in the structure. Modulation doping is discussed as a possible technique to control laser output characteristics. It was shown that modulation doping leads to an increase of threshold current of lasing through excited QD optical transition together with power emission from QD ground state.
120W, NA_0.15 fiber coupled LD module with 125-μm clad/NA 0.22 fiber by spatial coupling method
NASA Astrophysics Data System (ADS)
Ishige, Yuta; Kaji, Eisaku; Katayama, Etsuji; Ohki, Yutaka; Gajdátsy, Gábor; Cserteg, András.
2018-02-01
We have fabricated a fiber coupled semiconductor laser diode module by means of spatial beam combining of single emitter broad area semiconductor laser diode chips in the 9xx nm band. In the spatial beam multiplexing method, the numerical aperture of the output light from the optical fiber increases by increasing the number of laser diodes coupled into the fiber. To reduce it, we have tried the approach to improving assembly process technology. As a result, we could fabricate laser diode modules having a light output power of 120W or more and 95% power within NA of 0.15 or less from a single optical fiber with 125-μm cladding diameter. Furthermore, we have obtained that the laser diode module maintaining high coupling efficiency can be realized even around the fill factor of 0.95. This has been achieved by improving the optical alignment method regarding the fast axis stack pitch of the laser diodes in the laser diode module. Therefore, without using techniques such as polarization combining and wavelength combining, high output power was realized while keeping small numerical aperture. This contributes to a reduction in unit price per light output power of the pumping laser diode module.
Rieche, Marie; Komenský, Tomás; Husar, Peter
2011-01-01
Radio Frequency Identification (RFID) systems in healthcare facilitate the possibility of contact-free identification and tracking of patients, medical equipment and medication. Thereby, patient safety will be improved and costs as well as medication errors will be reduced considerably. However, the application of RFID and other wireless communication systems has the potential to cause harmful electromagnetic disturbances on sensitive medical devices. This risk mainly depends on the transmission power and the method of data communication. In this contribution we point out the reasons for such incidents and give proposals to overcome these problems. Therefore a novel modulation and transmission technique called Gaussian Derivative Frequency Modulation (GDFM) is developed. Moreover, we carry out measurements to show the inteference properties of different modulation schemes in comparison to our GDFM.
A High Performance Delta-Sigma Modulator for Neurosensing
Xu, Jian; Zhao, Menglian; Wu, Xiaobo; Islam, Md. Kafiul; Yang, Zhi
2015-01-01
Recorded neural data are frequently corrupted by large amplitude artifacts that are triggered by a variety of sources, such as subject movements, organ motions, electromagnetic interferences and discharges at the electrode surface. To prevent the system from saturating and the electronics from malfunctioning due to these large artifacts, a wide dynamic range for data acquisition is demanded, which is quite challenging to achieve and would require excessive circuit area and power for implementation. In this paper, we present a high performance Delta-Sigma modulator along with several design techniques and enabling blocks to reduce circuit area and power. The modulator was fabricated in a 0.18-μm CMOS process. Powered by a 1.0-V supply, the chip can achieve an 85-dB peak signal-to-noise-and-distortion ratio (SNDR) and an 87-dB dynamic range when integrated over a 10-kHz bandwidth. The total power consumption of the modulator is 13 μW, which corresponds to a figure-of-merit (FOM) of 45 fJ/conversion step. These competitive circuit specifications make this design a good candidate for building high precision neurosensors. PMID:26262623
NASA Astrophysics Data System (ADS)
Patel, Dhananjay; Singh, Vinay Kumar; Dalal, U. D.
2016-07-01
This work addresses the analytical and numerical investigations of the transmission performance of an optical Single Sideband (SSB) modulation technique generated by a Mach Zehnder Modulator (MZM) with a 90° and 120° hybrid coupler. It takes into account the problem of chromatic dispersion in single mode fibers in Passive Optical Networks (PON), which severely degrades the performance of the system. Considering the transmission length of the fiber, the SSB modulation generated by maintaining a phase shift of π/2 between the two electrodes of the MZM provides better receiver sensitivity. However, the power of higher-order harmonics generated due to the nonlinearity of the MZM is directly proportional to the modulation index, making the SSB look like a quasi-double sideband (DSB) and causing power fading due to chromatic dispersion. To eliminate one of the second-order harmonics, the SSB signal based on an MZM with a 120° hybrid coupler is simulated. An analytical model of conventional SSB using 90° and 120° hybrid couplers is established. The latter suppresses unwanted (upper/lower) first-order and second-order (lower/upper) sidebands. For the analysis, a varying quadrature amplitude modulation (QAM) Orthogonal Frequency Division Multiplexing (OFDM) signal with a data rate of 5 Gb/s is upconverted using both of the SSB techniques and is transmitted over a distance of 75 km in Single Mode Fiber (SMF). The simulation results show that the SSB with 120° hybrid coupler proves to be more immune to chromatic dispersion as compared to the conventional SSB technique. This is in tandem with the theoretical analysis presented in the article.
NASA Astrophysics Data System (ADS)
Morgan, I.; Benjamin, J. D.
1985-08-01
Methods of powering devices to which only ac contact can be made and receiving data transmitted back from them are described. Such devices include medical implants which communicate with the external environment via ultrasound or rf links. Two breadboard systems were built to demonstrate the techniques. In both the device is powered by picking up an ac input and rectifying it. A signal voltage detected by the device is encoded as a frequency, transmitted and decoded. In one case this is performed on a separate channel from that used to power the device. In the other only one channel is used for both signals, and data is transmitted by modulating the impedance presented by the device. The resulting modulation of the input signal is picked up by the external circuit and decoded.
NASA Technical Reports Server (NTRS)
Simon, M. K.; Polydoros, A.
1981-01-01
This paper examines the performance of coherent QPSK and QASK systems combined with FH or FH/PN spread spectrum techniques in the presence of partial-band multitone or noise jamming. The worst-case jammer and worst-case performance are determined as functions of the signal-to-background noise ratio (SNR) and signal-to-jammer power ratio (SJR). Asymptotic results for high SNR are shown to have a linear dependence between the jammer's optimal power allocation and the system error probability performance.
Wireless power and data transmission strategies for next-generation capsule endoscopes
NASA Astrophysics Data System (ADS)
Puers, R.; Carta, R.; Thoné, J.
2011-05-01
Capsular endoscopy is becoming increasingly popular as an alternative to traditional gastro-intestinal (GI) examination techniques. However, the breakthrough of these devices is hindered by the limited amount of power that can be stored in a tiny pill. Most commercial devices use two watch batteries that can only provide an average power of 25 mW for about 6 h, certainly not sufficient for advanced robotic features. A dedicated inductive powering system, operating at 1 MHz to limit the human body absorption, has been developed which was proven to support the transfer of over 300 mW. The system relies on a condensed set of orthogonal ferrite coils, embedded in the capsule, and an external unit based on a Helmholtz coil driven by a class E amplifier. Control data can be sent through the inductive link by modulating the power carrier, whereas a dedicated high data rate RF link is used to transfer the images from the capsule to the base station. Besides evaluating the compatibility with radio transmission, several demonstrators were assembled combining the wireless powering system with various locomotion strategies and LED illumination. This paper describes the design and implementation of the inductive powering system, its combination with data transmission techniques and the testing activity with other capsule-dedicated modules.
Reliability and performance experience with flat-plate photovoltaic modules
NASA Technical Reports Server (NTRS)
Ross, R. G., Jr.
1982-01-01
Statistical models developed to define the most likely sources of photovoltaic (PV) array failures and the optimum method of allowing for the defects in order to achieve a 20 yr lifetime with acceptable performance degradation are summarized. Significant parameters were the cost of energy, annual power output, initial cost, replacement cost, rate of module replacement, the discount rate, and the plant lifetime. Acceptable degradation allocations were calculated to be 0.0001 cell failures/yr, 0.005 module failures/yr, 0.05 power loss/yr, a 0.01 rate of power loss/yr, and a 25 yr module wear-out length. Circuit redundancy techniques were determined to offset cell failures using fault tolerant designs such as series/parallel and bypass diode arrangements. Screening processes have been devised to eliminate cells that will crack in operation, and multiple electrical contacts at each cell compensate for the cells which escape the screening test and then crack when installed. The 20 yr array lifetime is expected to be achieved in the near-term.
IEEE Conference Record of 1976 Twelfth Modulator Symposium, New York City, 4-5 February 1976.
1976-01-01
itches; ig Power Switches for Intermittent Operation; High Power M’ dulators for Intermittent Operation; Charging Systems; Circuit Techniques; Line Type... INTERMITTENT OPERATION Adiabatic Mode Operation Of Thyratrons For Megawatt Average Power Applications, John E. Creedon. Joseph W. McGowan. Anthon J...142 The SPS Fast Pulsed Magnet Systems. P. F Faugeras. E. Frick, C. G. Harrison, H. Kuhn
Realization of time keeping alarming system based on CTI technique
NASA Astrophysics Data System (ADS)
Cai, Cheng-Lin; Dong, Shao-Wu
2003-12-01
An application of CTI (Computer Telephone Integration) technique to fault alarming in time keeping system is presented in this paper. Two key parts of this alarming system, telephone phonic card and TTS (Text To Speech) are briefly introduced. A series of events and methods for programming interface based on ActiveX control (phonic.OCX) is discussed, and an alarming program module is developed. The alarming program module can be used in reporting accidents for time keeping system, and can also be applied to power supply system and environmental monitoring system.
Solar simulators vs outdoor module performance in the Negev Desert
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faiman, D
The power output of photovoltaic cells depends on the intensity of the incoming light, its spectral content and the cell temperature. In order to be able to predict the performance of a pv system, therefore, it is of paramount importance to be able to quantify cell performance in a reproducible manner. The standard laboratory technique for this purpose is to employ a solar simulator and a calibrated reference cell. Such a setup enables module performance to be assessed under constant, standard, illumination and temperature conditions. However, this technique has three inherent weaknesses.
N-Scan®: New Vibro-Modulation System for Crack Detection, Monitoring and Characterization
NASA Astrophysics Data System (ADS)
Zagrai, Andrei; Donskoy, Dimitri; Lottiaux, Jean-Louis
2004-02-01
In recent years, an innovative vibro-modulation technique has been introduced for the detection of contact-type interfaces such as cracks, debondings, and delaminations. The technique utilizes the effect of nonlinear interaction of ultrasound and vibrations at the interface of the defect. Vibration varies the contact area of the interface, modulating a passing ultrasonic wave. The modulation manifests itself as additional side-band spectral components with the combination frequencies in the spectrum of the received signal. The presence of these components allows for the detection and differentiation of the contact-type defects from other structural and material inhomogeneities. The vibro-modulation technique has been implemented in the N-SCAN® damage detection system providing a cost effective solution for the complex NDT problems. N-SCAN® proved to be very effective for damage detection and characterization in structures and structural components of simple and complex geometries made of steel, aluminum, composites, and other materials. Examples include 24 foot-long gun barrels, stainless steel pipes used in nuclear power plants, aluminum automotive parts, steel train couplers, etc. This paper describes the basic principles of the nonlinear vibro-modulation NDE technique, some theoretical background for nonlinear interaction, and justification of signal processing algorithms. The laboratory experiment is presented for a set of specimens with the calibrated cracks and the quantitative characterization of fatigue damage is given in terms of a modulation index. The paper also discusses examples of practical implementation and application of the technique.
Silicon Heterojunction System Field Performance
Jordan, Dirk C.; Deline, Chris; Johnston, Steve; ...
2017-11-17
A silicon heterostructure photovoltaic system fielded for 10 years has been investigated in detail. The system has shown degradation, but at a rate similar to an average Si system, and still within the module warranty level. The power decline is dominated by a nonlinear Voc loss rather than more typical changes in Isc or Fill Factor. Modules have been evaluated using multiple techniques including: dark and light I-V measurement, Suns-Voc, thermal imaging, and quantitative electroluminescence. All techniques indicate that recombination and series resistance in the cells have increased along with a decrease of factor 2 in minority carrier lifetime. Performancemore » changes are fairly uniform across the module, indicating changes occur primarily within the cells.« less
Four-dimensional modulation and coding: An alternate to frequency-reuse
NASA Technical Reports Server (NTRS)
Wilson, S. G.; Sleeper, H. A.
1983-01-01
Four dimensional modulation as a means of improving communication efficiency on the band-limited Gaussian channel, with the four dimensions of signal space constituted by phase orthogonal carriers (cos omega sub c t and sin omega sub c t) simultaneously on space orthogonal electromagnetic waves are discussed. "Frequency reuse' techniques use such polarization orthogonality to reuse the same frequency slot, but the modulation is not treated as four dimensional, rather a product of two-d modulations, e.g., QPSK. It is well known that, higher dimensionality signalling affords possible improvements in the power bandwidth sense. Four-D modulations based upon subsets of lattice-packings in four-D, which afford simplification of encoding and decoding are described. Sets of up to 1024 signals are constructed in four-D, providing a (Nyquist) spectral efficiency of up to 10 bps/Hz. Energy gains over the reuse technique are in the one to three dB range t equal bandwidth.
Four-dimensional modulation and coding - An alternate to frequency-reuse
NASA Technical Reports Server (NTRS)
Wilson, S. G.; Sleeper, H. A.; Srinath, N. K.
1984-01-01
Four dimensional modulation as a means of improving communication efficiency on the band-limited Gaussian channel, with the four dimensions of signal space constituted by phase orthogonal carriers (cos omega sub c t and sin omega sub c t) simultaneously on space orthogonal electromagnetic waves are discussed. 'Frequency reuse' techniques use such polarization orthogonality to reuse the same frequency slot, but the modulation is not treated as four dimensional, rather a product of two-D modulations, e.g., QPSK. It is well known that, higher dimensionality signalling affords possible improvements in the power bandwidth sense. Four-D modulations based upon subsets of lattice-packings in four-D, which afford simplification of encoding and decoding are described. Sets of up to 1024 signals are constructed in four-D, providing a (Nyquist) spectral efficiency of up to 10 bps/Hz. Energy gains over the reuse technique are in the one to three dB range t equal bandwidth.
Scheme for predictive fault diagnosis in photo-voltaic modules using thermal imaging
NASA Astrophysics Data System (ADS)
Jaffery, Zainul Abdin; Dubey, Ashwani Kumar; Irshad; Haque, Ahteshamul
2017-06-01
Degradation of PV modules can cause excessive overheating which results in a reduced power output and eventually failure of solar panel. To maintain the long term reliability of solar modules and maximize the power output, faults in modules need to be diagnosed at an early stage. This paper provides a comprehensive algorithm for fault diagnosis in solar modules using infrared thermography. Infrared Thermography (IRT) is a reliable, non-destructive, fast and cost effective technique which is widely used to identify where and how faults occurred in an electrical installation. Infrared images were used for condition monitoring of solar modules and fuzzy logic have been used to incorporate intelligent classification of faults. An automatic approach has been suggested for fault detection, classification and analysis. IR images were acquired using an IR camera. To have an estimation of thermal condition of PV module, the faulty panel images were compared to a healthy PV module thermal image. A fuzzy rule-base was used to classify faults automatically. Maintenance actions have been advised based on type of faults.
Methods to Control EMI Noises Produced in Power Converter Systems
NASA Astrophysics Data System (ADS)
Mutoh, Nobuyoshi; Ogata, Mitukatu
A new method to control EMI noises produced in power converters (rectifier and inverter) composed of IPMs (Intelligent Power Modules) is studied especially focusing on differential mode noises. The differential mode noises are occurred due to switching operations of the PWM control. As they are diffused into the ground through stray capacitors distributed between the ground and the power transmission lines and machine frames, differential mode noises should be confined and suppressed within the smallest area where power converters are laid out. It is impossible to control differential mode noises easily occurring diffusion by the conventional methods like filtering techniques. So, a new EMI noise control method using a multi-power circuit technique is proposed. The proposed method of the effectiveness has been verified through simulations and experiments.
Circuit for Communication Over Power Lines
NASA Technical Reports Server (NTRS)
Krasowski, Michael J.; Prokop, Normal F.; Greer, Lawrence C., III; Nappier, Jennifer
2011-01-01
Many distributed systems share common sensors and instruments along with a common power line supplying current to the system. A communication technique and circuit has been developed that allows for the simple inclusion of an instrument, sensor, or actuator node within any system containing a common power bus. Wherever power is available, a node can be added, which can then draw power for itself, its associated sensors, and actuators from the power bus all while communicating with other nodes on the power bus. The technique modulates a DC power bus through capacitive coupling using on-off keying (OOK), and receives and demodulates the signal from the DC power bus through the same capacitive coupling. The circuit acts as serial modem for the physical power line communication. The circuit and technique can be made of commercially available components or included in an application specific integrated circuit (ASIC) design, which allows for the circuit to be included in current designs with additional circuitry or embedded into new designs. This device and technique moves computational, sensing, and actuation abilities closer to the source, and allows for the networking of multiple similar nodes to each other and to a central processor. This technique also allows for reconfigurable systems by adding or removing nodes at any time. It can do so using nothing more than the in situ power wiring of the system.
A spin-modulated telescope for measurement of cosmic microwave background anisotropy
NASA Astrophysics Data System (ADS)
Staren, John William
The measurement of anisotropy in the Cosmic Microwave Background (CMB) advances our knowledge of the early Universe from which the radiation originated. The angular power spectrum of CMB anisotropy at sub-degree scales depends heavily on comsological parameters such as Ob, O 0 and H0. In pursuit of critical power spectrum measurements over a range of angular scales, a spin-modulated telescope with a single cryogenic amplifier used in a total power radiometer is designed, built and tested. The new technique of spin-modulation with a spinning flat mirror canted 2.5° relative to its spin axis modulates the beam in a 10° oval pattern on the sky at 2.5 Hz. This rapid two-dimensional modulation of the beam is tested at balloon altitudes to minimize the atmospheric offset and determine the efficacy of the scan and telescope design. Maps of over 600 and 400 square degrees are made of regions observed using the spin-modulation and a 20° azimuth scan. These maps yield a 95% confidence level flat band power upper limit of DeltaTℓ = Tcmb(ℓ(ℓ + 1)Cℓ/2pi)0.5 < 77 muK at ℓ = 38 and are free of systematics effects and striping due to long-term drifts in our amplifier to the levels tested here. Planning for the next telescope, with multiple amplifiers, is performed to ensure its success.
A Multi-Cycle Q-Modulation for Dynamic Optimization of Inductive Links.
Lee, Byunghun; Yeon, Pyungwoo; Ghovanloo, Maysam
2016-08-01
This paper presents a new method, called multi-cycle Q-modulation, which can be used in wireless power transmission (WPT) to modulate the quality factor (Q) of the receiver (Rx) coil and dynamically optimize the load impedance to maximize the power transfer efficiency (PTE) in two-coil links. A key advantage of the proposed method is that it can be easily implemented using off-the-shelf components without requiring fast switching at or above the carrier frequency, which is more suitable for integrated circuit design. Moreover, the proposed technique does not need any sophisticated synchronization between the power carrier and Q-modulation switching pulses. The multi-cycle Q-modulation is analyzed theoretically by a lumped circuit model, and verified in simulation and measurement using an off-the-shelf prototype. Automatic resonance tuning (ART) in the Rx, combined with multi-cycle Q-modulation helped maximizing PTE of the inductive link dynamically in the presence of environmental and loading variations, which can otherwise significantly degrade the PTE in multi-coil settings. In the prototype conventional 2-coil link, the proposed method increased the power amplifier (PA) plus inductive link efficiency from 4.8% to 16.5% at ( R L = 1 kΩ, d 23 = 3 cm), and from 23% to 28.2% at ( R L = 100 Ω, d 23 = 3 cm) after 11% change in the resonance capacitance, while delivering 168.1 mW to the load (PDL).
Wu, Hunter; Sealy, Kylee; Gilchrist, Aaron
2015-09-01
An apparatus for switch wear leveling includes a switching module that controls switching for two or more pairs of switches in a switching power converter. The switching module controls switches based on a duty cycle control technique and closes and opens each switch in a switching sequence. The pairs of switches connect to a positive and negative terminal of a DC voltage source. For a first switching sequence a first switch of a pair of switches has a higher switching power loss than a second switch of the pair of switches. The apparatus includes a switch rotation module that changes the switching sequence of the two or more pairs of switches from the first switching sequence to a second switching sequence. The second switch of a pair of switches has a higher switching power loss than the first switch of the pair of switches during the second switching sequence.
High-frequency ac power distribution in Space Station
NASA Technical Reports Server (NTRS)
Tsai, Fu-Sheng; Lee, Fred C. Y.
1990-01-01
A utility-type 20-kHz ac power distribution system for the Space Station, employing resonant power-conversion techniques, is presented. The system converts raw dc voltage from photovoltaic cells or three-phase LF ac voltage from a solar dynamic generator into a regulated 20-kHz ac voltage for distribution among various loads. The results of EASY5 computer simulations of the local and global performance show that the system has fast response and good transient behavior. The ac bus voltage is effectively regulated using the phase-control scheme, which is demonstrated with both line and load variations. The feasibility of paralleling the driver-module outputs is illustrated with the driver modules synchronized and sharing a common feedback loop. An HF sinusoidal ac voltage is generated in the three-phase ac input case, when the driver modules are phased 120 deg away from one another and their outputs are connected in series.
Synchronous Stroboscopic Electronic Speckle Pattern Interferometry
NASA Astrophysics Data System (ADS)
Soares, Oliverio D. D.
1986-10-01
Electronic Speckle Pattern Interferometry (E.S.P.I) oftenly called Electronic Holography is a practical powerful technique in non-destructive testing. Practical capabilities of the technique have been improved by fringe betterment and the control of analysis in the time domain, in particular, the scanning of the vibration cycle, with introduction of: synchronized amplitude and phase modulated pulse illumination, microcomputer control, fibre optics design, and moire evaluation techniques.
1984-12-01
The concept proposed is an electro - optic technique that would make it possible to spatially modulate a high power pulsed laser beam to thermoelastically induce focused ultrasound in a test material. Being a purely electro - optic device, the modulator, and therefore the depth at which the acoustic focus occurs, can be programmed electronically at electronic speeds. If successful, it would become possible to scan ultrasound continuously in three dimensions within the component or structure under test. (Author)
NASA Astrophysics Data System (ADS)
1984-12-01
The concept proposed is an electro-optic technique that would make it possible to spatially modulate a high power pulsed laser beam to thermoelastically induce focused ultrasound in a test material. Being a purely electro-optic device, the modulator, and therefore the depth at which the acoustic focus occurs, can be programmed electronically at electronic speeds. If successful, it would become possible to scan ultrasound continuously in three dimensions within the component or structure under test.
Space station common module power system network topology and hardware development
NASA Technical Reports Server (NTRS)
Landis, D. M.
1985-01-01
Candidate power system newtork topologies for the space station common module are defined and developed and the necessary hardware for test and evaluation is provided. Martin Marietta's approach to performing the proposed program is presented. Performance of the tasks described will assure systematic development and evaluation of program results, and will provide the necessary management tools, visibility, and control techniques for performance assessment. The plan is submitted in accordance with the data requirements given and includes a comprehensive task logic flow diagram, time phased manpower requirements, a program milestone schedule, and detailed descriptions of each program task.
Evaluation of a satellite laser ranging technique using pseudonoise code modulated laser diodes
NASA Technical Reports Server (NTRS)
Ball, Carolyn Kay
1987-01-01
Several types of Satellite Laser Ranging systems exist, operating with pulsed, high-energy lasers. The distance between a ground point and an orbiting satellite can be determined to within a few centimeters. A new technique substitutes pseudonoise code modulated laser diodes, which are much more compact, reliable and less costly, for the lasers now used. Since laser diode technology is only now achieving sufficiently powerful lasers, the capabilities of the new technique are investigated. Also examined are the effects of using an avalanche photodiode detector instead of a photomultiplier tube. The influence of noise terms (including background radiation, detector dark and thermal noise and speckle) that limit the system range and performance is evaluated.
Modulated and continuous-wave operations of low-power thulium (Tm:YAP) laser in tissue welding
NASA Astrophysics Data System (ADS)
Bilici, Temel; Tabakoğlu, Haşim Özgür; Topaloğlu, Nermin; Kalaycıoğlu, Hamit; Kurt, Adnan; Sennaroglu, Alphan; Gülsoy, Murat
2010-05-01
Our aim is to explore the welding capabilities of a thulium (Tm:YAP) laser in modulated and continuous-wave (CW) modes of operation. The Tm:YAP laser system developed for this study includes a Tm:YAP laser resonator, diode laser driver, water chiller, modulation controller unit, and acquisition/control software. Full-thickness incisions on Wistar rat skin were welded by the Tm:YAP laser system at 100 mW and 5 s in both modulated and CW modes of operation (34.66 W/cm2). The skin samples were examined during a 21-day healing period by histology and tensile tests. The results were compared with the samples closed by conventional suture technique. For the laser groups, immediate closure at the surface layers of the incisions was observed. Full closures were observed for both modulated and CW modes of operation at day 4. The tensile forces for both modulated and CW modes of operation were found to be significantly higher than the values found by conventional suture technique. The 1980-nm Tm:YAP laser system operating in both modulated and CW modes maximizes the therapeutic effect while minimizing undesired side effects of laser tissue welding. Hence, it is a potentially important alternative tool to the conventional suturing technique.
NASA Astrophysics Data System (ADS)
Shao, Yufeng
2016-03-01
In this letter, we present the generation, the peak-to average power ratio (PAPR) reduction, the heterodyne detection, the self-mixing reception, and the transmission performance evaluation of 16QAM-OFDM signals in 60 GHz radio over fiber (RoF) system using Discrete multitone (DMT) modulation and Better Than Nyquist pulse shaping (BTN-PS) technique. DMT modulation is introduced in the RoF system, in-phase and quadrature (IQ) will not be required using BTN-PS method, and the computation complexity is much lower than other published techniques for reduced PAPR in the RoF system. In the experiment, 5 Gb/s 16QAM-OFDM downlink signals are transmitted over 42 km SMF-28 and a 0.4 m wireless channel. The experimental results show that the receiver sensitivity is effectively enhanced using this method. Therefore, the introduced BTN-PS technique and its application is a competitive scheme for reducing PAPR, and enhancing the receiver sensitivity in future RoF system.
Phase-I investigation of high-efficiency power amplifiers for 325 and 650 MHz
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raab, Frederick
2018-01-27
This Phase-I SBIR grant investigated techniques for high-efficiency power amplification for DoE particle accelerators such as Project X that operate at 325 and 650 MHz. The recommended system achieves high efficiency, high reliability, and hot-swap capability by integrating class-F power amplifiers, class-S modulators, power combiners, and a digital signal processor. Experimental evaluations demonstrate the production of 120 W per transistor with overall efficiencies from 86 percent at 325 MHz and 80 percent at 650 MHz.
NASA Technical Reports Server (NTRS)
Venkataraman, T. S.; Eidson, W. W.; Cohen, L. D.; Farina, J. D.; Acquista, C.
1983-01-01
The position and velocity of optically levitated glass spheres (radii 10-20 microns) movng in a gas are measured accurately, rapidly, and continuously using a high-speed rotating polygon mirror. The experimental technique developed here has repeatable position accuracies better than 20 microns. Each measurement takes less than 1 microsec and can be repeated every 100 microsec. The position of the levitated glass spheres can be manipulated accurately by modulating the laser power with an acoustic optic modulator. The technique provides a fast and accurate method to study general particle dynamics in a fluid.
Measuring of nonlinear properties of spatial light modulator with different wavelengths
NASA Astrophysics Data System (ADS)
Khalid, Farah G.; Younis Al-Dabagh, Samar; Ahmed, Sudad S.; Mahmood, Aseel I.; Al-Naimee, Kais
2018-05-01
The non-linear optical properties of Spatial Light Modulator(SLM) represented by Nonlinear Refractive Index (NLR) and nonlinear Absorption coefficient has been measured in this work using highly sensitive method known as Z-scan technique for different wavelengths (red and green). The capability to do instant measurements of different nonlinear optical parameters lead to consider these techniques as a one of the most desired and effective methods that could apply for different materials. The results showed that the NLR were in the same power for the different wavelengths while the nonlinear absorption is higher in case of green laser.
Mitigation of Rayleigh crosstalk using noise suppression technique in 10-Gb/s REAM-SOA.
Jeong, Jong Sool; Kim, Hyun-Soo; Choi, Byung-Seok; Kim, Dong Churl; Kim, Ki-Soo; Park, Mi-Ran; Kwon, O-Kyun
2012-11-19
We demonstrate a mitigation of Rayleigh back-scattering (RBS) impact in 10-Gb/s reflective electroabsorption modulator monolithically integrated with semiconductor optical amplifier (REAM-SOA). The technique is based on the intensity-noise suppression of the centralized incoherent seed-light, which enables smooth evolution of deployed DWDM applications. We exhibit the power penalty of less than 1 dB at the large RBS crosstalk value of about 8 dB when the optical power of seed-light is lowered about -10 dBm.
NASA Astrophysics Data System (ADS)
Na, Byungkeun; Bae, Inshik; Park, Gi Jung; Chang, Hong-Young
2016-09-01
Multi-frequency capacitively coupled plasma (CCP) has been studied to independently control the ion energy and the ion flux; pulsing technique is used to reduce the electron temperature and finally the charging effects. The use of these techniques is a key to high aspect ratio contact (HARC) etching in the recent semiconductor processing. In this study, the characteristics of pulsed dual frequency (DF) CCP is investigated. Two separate powers of 3 MHz and 40 MHz are delivered to the powered electrode of an asymmetric CCP, and each frequency is modulated by an external 1 kHz pulse. Due to the complexity of the RF compensation in DF CCP, the characteristics of the plasma and the sheath are analyzed by high speed impedance measurement. The transient behavior of pulse modulated DF CCP is analyzed based on the result of continuous wave (CW) DF CCP. The optimized experimental condition for high ion energy will be presented. The difference between electronegative oxygen plasma and electropositive argon plasma is discussed as well.
Minimizing forced outage risk in generator bidding
NASA Astrophysics Data System (ADS)
Das, Dibyendu
Competition in power markets has exposed the participating companies to physical and financial uncertainties. Generator companies bid to supply power in a day-ahead market. Once their bids are accepted by the ISO they are bound to supply power. A random outage after acceptance of bids forces a generator to buy power from the expensive real-time hourly spot market and sell to the ISO at the set day-ahead market clearing price, incurring losses. A risk management technique is developed to assess this financial risk associated with forced outages of generators and then minimize it. This work presents a risk assessment module which measures the financial risk of generators bidding in an open market for different bidding scenarios. The day-ahead power market auction is modeled using a Unit Commitment algorithm and a combination of Normal and Cauchy distributions generate the real time hourly spot market. Risk profiles are derived and VaRs are calculated at 98 percent confidence level as a measure of financial risk. Risk Profiles and VaRs help the generators to analyze the forced outage risk and different factors affecting it. The VaRs and the estimated total earning for different bidding scenarios are used to develop a risk minimization module. This module will develop a bidding strategy of the generator company such that its estimated total earning is maximized keeping the VaR below a tolerable limit. This general framework of a risk management technique for the generating companies bidding in competitive day-ahead market can also help them in decisions related to building new generators.
Chirped-pulse coherent-OTDR with predistortion
NASA Astrophysics Data System (ADS)
Xiong, Ji; Jiang, Jialin; Wu, Yue; Chen, Yongxiang; Xie, Lianlian; Fu, Yun; Wang, Zinan
2018-03-01
In this paper, a novel method for generating high-quality chirped pulses with IQ modulator is studied theoretically and experimentally, which is a crucial building block for high-performance coherent optical time-domain reflectometry (COTDR). In order to compensate the nonlinearity of the modulator transfer function, we present a predistortion technique for chirped-pulse coherent optical time-domain reflectometry (CP-COTDR), the arcsin predistortion method and the single sideband with a suppressed carrier analog modulation used to generate the high quality chirped optical pulse. The high order sidebands, due to the large amplitude of the modulation signal and the nonlinear transfer function of the IQ modulator, can be relieved by the predistortion process, which means the power and the quality of the generated chirped pulse has been improved. In the experiment, this method increases the peak power of the chirped pulse by 4.2 dB compared to the case without predistortion process, as for the CP-COTDR system, this method increases the signal-to-noise ratio of the demodulated phase variation by 6.3 dB.
Handling Nonlinearities in ELF/VLF Generation Using Modulated Heating at HAARP
NASA Astrophysics Data System (ADS)
Jin, G.; Spasojevic, M.; Cohen, M.; Inan, U. S.
2011-12-01
George Jin Maria Spasojevic Morris Cohen Umran Inan Stanford University Modulated HF heating of the D-region ionosphere near the auroral electrojet can generate extremely low frequency (ELF) waves in the kilohertz range. This process is nonlinear and generates harmonics at integer multiples of the ELF modulation frequency. The nonlinear distortion has implications for any communications applications since the harmonics contain a substantial fraction of the signal power and use up bandwidth. We examine two techniques for handling the nonlinearity. First we modulate the HF heating with a non-sinusoidal envelope designed to create a sinusoidal change in the Hall conductivity at a particular altitude in the ionosphere to minimize any generated harmonics. The modulation waveform is generated by inverting a numerical HF heating model, starting from the desired conductivity time series, and obtaining the HF power envelope that will result in that conductivity. The second technique attempts to use the energy in the harmonics to improve bit error rates when digital modulation is applied to the ELF carrier. In conventional quadrature phase-shift keying (QPSK), where a ELF carrier is phase-shifted by 0°, 90°, 180°, and 270° in order to transmit a pair of bits, the even harmonics cannot distinguish between the four possible shifts. By using different phase values, all the energy in the harmonics can contribute to determining the phase of the carrier and thus improve the bit error rate.
Ultra-low-power wireless transmitter for neural prostheses with modified pulse position modulation.
Goodarzy, Farhad; Skafidas, Stan E
2014-01-01
An ultra-low-power wireless transmitter for embedded bionic systems is proposed, which achieves 40 pJ/b energy efficiency and delivers 500 kb/s data using the medical implant communication service frequency band (402-405 MHz). It consumes a measured peak power of 200 µW from a 1.2 V supply while occupying an active area of 0.0016 mm(2) in a 130 nm technology. A modified pulse position modulation technique called saturated amplified signal is proposed and implemented, which can reduce the overall and per bit transferred power consumption of the transmitter while reducing the complexity of the transmitter architectures, and hence potentially shrinking the size of the implemented circuitry. The design is capable of being fully integrated on single-chip solutions for surgically implanted bionic systems, wearable devices and neural embedded systems.
Augmentation of the space station module power management and distribution breadboard
NASA Technical Reports Server (NTRS)
Walls, Bryan; Hall, David K.; Lollar, Louis F.
1991-01-01
The space station module power management and distribution (SSM/PMAD) breadboard models power distribution and management, including scheduling, load prioritization, and a fault detection, identification, and recovery (FDIR) system within a Space Station Freedom habitation or laboratory module. This 120 VDC system is capable of distributing up to 30 kW of power among more than 25 loads. In addition to the power distribution hardware, the system includes computer control through a hierarchy of processes. The lowest level consists of fast, simple (from a computing standpoint) switchgear that is capable of quickly safing the system. At the next level are local load center processors, (LLP's) which execute load scheduling, perform redundant switching, and shed loads which use more than scheduled power. Above the LLP's are three cooperating artificial intelligence (AI) systems which manage load prioritizations, load scheduling, load shedding, and fault recovery and management. Recent upgrades to hardware and modifications to software at both the LLP and AI system levels promise a drastic increase in speed, a significant increase in functionality and reliability, and potential for further examination of advanced automation techniques. The background, SSM/PMAD, interface to the Lewis Research Center test bed, the large autonomous spacecraft electrical power system, and future plans are discussed.
A Wideband Satcom Based Avionics Network with CDMA Uplink and TDM Downlink
NASA Technical Reports Server (NTRS)
Agrawal, D.; Johnson, B. S.; Madhow, U.; Ramchandran, K.; Chun, K. S.
2000-01-01
The purpose of this paper is to describe some key technical ideas behind our vision of a future satcom based digital communication network for avionics applications The key features of our design are as follows: (a) Packetized transmission to permit efficient use of system resources for multimedia traffic; (b) A time division multiplexed (TDM) satellite downlink whose physical layer is designed to operate the satellite link at maximum power efficiency. We show how powerful turbo codes (invented originally for linear modulation) can be used with nonlinear constant envelope modulation, thus permitting the satellite amplifier to operate in a power efficient nonlinear regime; (c) A code division multiple access (CDMA) satellite uplink, which permits efficient access to the satellite from multiple asynchronous users. Closed loop power control is difficult for bursty packetized traffic, especially given the large round trip delay to the satellite. We show how adaptive interference suppression techniques can be used to deal with the ensuing near-far problem; (d) Joint source-channel coding techniques are required both at the physical and the data transport layer to optimize the end-to-end performance. We describe a novel approach to multiple description image encoding at the data transport layer in this paper.
Development of a 33 kV, 20 A long pulse converter modulator for high average power klystron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reghu, T.; Mandloi, V.; Shrivastava, Purushottam
Research, design, and development of high average power, long pulse modulators for the proposed Indian Spallation Neutron Source are underway at Raja Ramanna Centre for Advanced Technology. With this objective, a prototype of long pulse modulator capable of delivering 33 kV, 20 A at 5 Hz repetition rate has been designed and developed. Three Insulated Gate Bipolar Transistors (IGBT) based switching modules driving high frequency, high voltage transformers have been used to generate high voltage output. The IGBT based switching modules are shifted in phase by 120° with respect to each other. The switching frequency is 25 kHz. Pulses ofmore » 1.6 ms pulse width, 80 μs rise time, and 70 μs fall time have been achieved at the modulator output. A droop of ±0.6% is achieved using a simple segmented digital droop correction technique. The total fault energy transferred to the load during fault has been measured by conducting wire burn tests and is found to be within 3.5 J.« less
Development of a 33 kV, 20 A long pulse converter modulator for high average power klystron
NASA Astrophysics Data System (ADS)
Reghu, T.; Mandloi, V.; Shrivastava, Purushottam
2014-05-01
Research, design, and development of high average power, long pulse modulators for the proposed Indian Spallation Neutron Source are underway at Raja Ramanna Centre for Advanced Technology. With this objective, a prototype of long pulse modulator capable of delivering 33 kV, 20 A at 5 Hz repetition rate has been designed and developed. Three Insulated Gate Bipolar Transistors (IGBT) based switching modules driving high frequency, high voltage transformers have been used to generate high voltage output. The IGBT based switching modules are shifted in phase by 120° with respect to each other. The switching frequency is 25 kHz. Pulses of 1.6 ms pulse width, 80 μs rise time, and 70 μs fall time have been achieved at the modulator output. A droop of ±0.6% is achieved using a simple segmented digital droop correction technique. The total fault energy transferred to the load during fault has been measured by conducting wire burn tests and is found to be within 3.5 J.
Autonomously managed electrical power systems
NASA Technical Reports Server (NTRS)
Callis, Charles P.
1986-01-01
The electric power systems for future spacecraft such as the Space Station will necessarily be more sophisticated and will exhibit more nearly autonomous operation than earlier spacecraft. These new power systems will be more reliable and flexible than their predecessors offering greater utility to the users. Automation approaches implemented on various power system breadboards are investigated. These breadboards include the Hubble Space Telescope power system test bed, the Common Module Power Management and Distribution system breadboard, the Autonomusly Managed Power System (AMPS) breadboard, and the 20 kilohertz power system breadboard. Particular attention is given to the AMPS breadboard. Future plans for these breadboards including the employment of artificial intelligence techniques are addressed.
A Novel MEMS Gyro North Finder Design Based on the Rotation Modulation Technique
Zhang, Yongjian; Zhou, Bin; Song, Mingliang; Hou, Bo; Xing, Haifeng; Zhang, Rong
2017-01-01
Gyro north finders have been widely used in maneuvering weapon orientation, oil drilling and other areas. This paper proposes a novel Micro-Electro-Mechanical System (MEMS) gyroscope north finder based on the rotation modulation (RM) technique. Two rotation modulation modes (static and dynamic modulation) are applied. Compared to the traditional gyro north finders, only one single MEMS gyroscope and one MEMS accelerometer are needed, reducing the total cost since high-precision gyroscopes and accelerometers are the most expensive components in gyro north finders. To reduce the volume and enhance the reliability, wireless power and wireless data transmission technique are introduced into the rotation modulation system for the first time. To enhance the system robustness, the robust least square method (RLSM) and robust Kalman filter (RKF) are applied in the static and dynamic north finding methods, respectively. Experimental characterization resulted in a static accuracy of 0.66° and a dynamic repeatability accuracy of 1°, respectively, confirming the excellent potential of the novel north finding system. The proposed single gyro and single accelerometer north finding scheme is universal, and can be an important reference to both scientific research and industrial applications. PMID:28452936
NASA Astrophysics Data System (ADS)
Kim, S.; Adams, D. E.; Sohn, H.
2013-01-01
As the wind power industry has grown rapidly in the recent decade, maintenance costs have become a significant concern. Due to the high repair costs for wind turbine blades, it is especially important to detect initial blade defects before they become structural failures leading to other potential failures in the tower or nacelle. This research presents a method of detecting cracks on wind turbine blades using the Vibo-Acoustic Modulation technique. Using Vibro-Acoustic Modulation, a crack detection test is conducted on a WHISPER 100 wind turbine in its operating environment. Wind turbines provide the ideal conditions in which to utilize Vibro-Acoustic Modulation because wind turbines experience large structural vibrations. The structural vibration of the wind turbine balde was used as a pumping signal and a PZT was used to generate the probing signal. Because the non-linear portion of the dynamic response is more sensitive to the presence of a crack than the environmental conditions or operating loads, the Vibro-Acoustic Modulation technique can provide a robust structural health monitoring approach for wind turbines. Structural health monitoring can significantly reduce maintenance costs when paired with predictive modeling to minimize unscheduled maintenance.
Integration of frequency modulated constant envelope technique with ADO-OFDM to impede PAPR in VLC
NASA Astrophysics Data System (ADS)
Singh, Vinay Kumar; Dalal, U. D.
2018-07-01
A novel technique of combating the effects of high peak to average power ratio (PAPR) arising due to the non-linearity of the LED in a typical optical-OFDM (O-OFDM) for visible light communication (VLC) systems used in optical wireless channel (OWC) is proposed in this research work. The concept of constant envelope (CE) using frequency modulation (FM) for a composite O-OFDM system formed by uniting Asymmetrically Clipped Optical OFDM (ACO-OFDM) and Direct Current biased Optical OFDM (DCO-OFDM) termed as ADO-OFDM is mathematically presented with its numerical simulation results. The proposed system FM-CE-ADO-OFDM shows improvement in the PAPR with narrowing down to the least possible 0 dB theoretically. The analysis is extended to be compared with the phase modulation (PM) technique of CE-OFDM. The magnitude of phase discontinuity in the two systems is evaluated in the form of metrics yielding favorable results for the proposed system. This system is as spectrally efficient as the DCO-OFDM and as power efficient as the ACO-OFDM with the added advantage of major reduction in the effects due to PAPR arising as a result of the nonlinearity of the LED . The so formed FM-CE-ADO-OFDM is fed to the LED biased in the linear most region of its operation for simulation purpose. We also evaluate the depth of modulation required to obtain least bit error rate (BER). The frequency modulation at 30% depth has been observed to give suitable performance. The entire system is evaluated for an OWC length of 2m resembling the indoor illumination scenario. The receiver sensitivity shows an improvement of 1.2 dB at the FEC threshold for the proposed system.
Vesapogu, Joshi Manohar; Peddakotla, Sujatha; Kuppa, Seetha Rama Anjaneyulu
2013-01-01
With the advancements in semiconductor technology, high power medium voltage (MV) Drives are extensively used in numerous industrial applications. Challenging technical requirements of MV Drives is to control multilevel inverter (MLI) with less Total harmonic distortion (%THD) which satisfies IEEE standard 519-1992 harmonic guidelines and less switching losses. Among all modulation control strategies for MLI, Selective harmonic elimination (SHE) technique is one of the traditionally preferred modulation control technique at fundamental switching frequency with better harmonic profile. On the other hand, the equations which are formed by SHE technique are highly non-linear in nature, may exist multiple, single or even no solution at particular modulation index (MI). However, in some MV Drive applications, it is required to operate over a range of MI. Providing analytical solutions for SHE equations during the whole range of MI from 0 to 1, has been a challenging task for researchers. In this paper, an attempt is made to solve SHE equations by using deterministic and stochastic optimization methods and comparative harmonic analysis has been carried out. An effective algorithm which minimizes %THD with less computational effort among all optimization algorithms has been presented. To validate the effectiveness of proposed MPSO technique, an experiment is carried out on a low power proto type of three phase CHB 11- level Inverter using FPGA based Xilinx's Spartan -3A DSP Controller. The experimental results proved that MPSO technique has successfully solved SHE equations over all range of MI from 0 to 1, the %THD obtained over major range of MI also satisfies IEEE 519-1992 harmonic guidelines too.
Non-parametric PCM to ADM conversion. [Pulse Code to Adaptive Delta Modulation
NASA Technical Reports Server (NTRS)
Locicero, J. L.; Schilling, D. L.
1977-01-01
An all-digital technique to convert pulse code modulated (PCM) signals into adaptive delta modulation (ADM) format is presented. The converter developed is shown to be independent of the statistical parameters of the encoded signal and can be constructed with only standard digital hardware. The structure of the converter is simple enough to be fabricated on a large scale integrated circuit where the advantages of reliability and cost can be optimized. A concise evaluation of this PCM to ADM translation technique is presented and several converters are simulated on a digital computer. A family of performance curves is given which displays the signal-to-noise ratio for sinusoidal test signals subjected to the conversion process, as a function of input signal power for several ratios of ADM rate to Nyquist rate.
Active mode locking of lasers by piezoelectrically induced diffraction modulation
NASA Astrophysics Data System (ADS)
Krausz, F.; Turi, L.; Kuti, Cs.; Schmidt, A. J.
1990-04-01
A new amplitude-modulation mode-locking technique is presented. Acoustic waves are generated directly on the faces of a resonant photoelastic medium. The created standing waves cause a highly efficient diffraction modulation of light. The modulation depth of standing-wave mode lockers is related to material and drive parameters and a figure of merit is introduced. With a lithium niobate crystal modulation depths over 10 are achieved at 1.054 μm and 1 W of radio frequency power. Using this device for the active mode locking of a continuous-wave Nd:glass laser pulses as short as 3.8 ps are produced at a repetition rate of 66 MHz. Limitations of amplitude-modulation mode locking by standing acoustic waves are discussed.
40-Gb/s directly-modulated photonic crystal lasers under optical injection-locking
NASA Astrophysics Data System (ADS)
Chen, Chin-Hui; Takeda, Koji; Shinya, Akihiko; Nozaki, Kengo; Sato, Tomonari; Kawaguchi, Yoshihiro; Notomi, Masaya; Matsuo, Shinji
2011-08-01
CMOS integrated circuits (IC) usually requires high data bandwidth for off-chip input/output (I/O) data transport with sufficiently low power consumption in order to overcome pin-count limitation. In order to meet future requirements of photonic network interconnect, we propose an optical output device based on an optical injection-locked photonic crystal (PhC) laser to realize low-power and high-speed off-chip interconnects. This device enables ultralow-power operation and is suitable for highly integrated photonic circuits because of its strong light-matter interaction in the PhC nanocavity and ultra-compact size. High-speed operation is achieved by using the optical injection-locking (OIL) technique, which has been shown as an effective means to enhance modulation bandwidth beyond the relaxation resonance frequency limit. In this paper, we report experimental results of the OIL-PhC laser under various injection conditions and also demonstrate 40-Gb/s large-signal direct modulation with an ultralow energy consumption of 6.6 fJ/bit.
ANN based Real-Time Estimation of Power Generation of Different PV Module Types
NASA Astrophysics Data System (ADS)
Syafaruddin; Karatepe, Engin; Hiyama, Takashi
Distributed generation is expected to become more important in the future generation system. Utilities need to find solutions that help manage resources more efficiently. Effective smart grid solutions have been experienced by using real-time data to help refine and pinpoint inefficiencies for maintaining secure and reliable operating conditions. This paper proposes the application of Artificial Neural Network (ANN) for the real-time estimation of the maximum power generation of PV modules of different technologies. An intelligent technique is necessary required in this case due to the relationship between the maximum power of PV modules and the open circuit voltage and temperature is nonlinear and can't be easily expressed by an analytical expression for each technology. The proposed ANN method is using input signals of open circuit voltage and cell temperature instead of irradiance and ambient temperature to determine the estimated maximum power generation of PV modules. It is important for the utility to have the capability to perform this estimation for optimal operating points and diagnostic purposes that may be an early indicator of a need for maintenance and optimal energy management. The proposed method is accurately verified through a developed real-time simulator on the daily basis of irradiance and cell temperature changes.
Zgaren, Mohamed; Moradi, Arash; Sawan, Mohamad
2015-01-01
Energy-efficient and high-data rate are desired in biomedical devices transceivers. A high-performance transmitter (Tx) and an ultra-low-power receiver (Rx) dedicated to medical implants communications operating at Industrial, Scientific and Medical (ISM) frequency band are presented. Tx benefits from a new efficient Frequency-Shift Keying (FSK) modulation technique which provides up to 20 Mb/s of data-rate and consumes only 0.084 nJ/b validated through fabrication. The receiver consists of an FSK-to-ASK conversion based receiver with OOK fully passive wake-up device (WuRx). This WuRx is battery less with energy harvesting technique which plays an important role in making the RF transceiver energy-efficient. The Rx is achieved with a reduced hardware architecture which does not use an accurate local oscillator, high-Q external inductor and I/Q signal path. The Rx shows -78 dBm sensitivity for 8 Mbps data rate while consuming 639 μW. The proposed circuits are implemented in IBM 0.13 μm CMOS technology with 1.2 V supply voltage.
Accurate formula for dissipative interaction in frequency modulation atomic force microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suzuki, Kazuhiro; Matsushige, Kazumi; Yamada, Hirofumi
2014-12-08
Much interest has recently focused on the viscosity of nano-confined liquids. Frequency modulation atomic force microscopy (FM-AFM) is a powerful technique that can detect variations in the conservative and dissipative forces between a nanometer-scale tip and a sample surface. We now present an accurate formula to convert the dissipation power of the cantilever measured during the experiment to damping of the tip-sample system. We demonstrated the conversion of the dissipation power versus tip-sample separation curve measured using a colloidal probe cantilever on a mica surface in water to the damping curve, which showed a good agreement with the theoretical curve.more » Moreover, we obtained the damping curve from the dissipation power curve measured on the hydration layers on the mica surface using a nanometer-scale tip, demonstrating that the formula allows us to quantitatively measure the viscosity of a nano-confined liquid using FM-AFM.« less
Diffractive optical elements for transformation of modes in lasers
Sridharan, Arun K.; Pax, Paul H.; Heebner, John E.; Drachenberg, Derrek R.; Armstrong, James P.; Dawson, Jay W.
2015-09-01
Spatial mode conversion modules are described, with the capability of efficiently transforming a given optical beam profile, at one plane in space into another well-defined optical beam profile at a different plane in space, whose detailed spatial features and symmetry properties can, in general, differ significantly. The modules are comprised of passive, high-efficiency, low-loss diffractive optical elements, combined with Fourier transform optics. Design rules are described that employ phase retrieval techniques and associated algorithms to determine the necessary profiles of the diffractive optical components. System augmentations are described that utilize real-time adaptive optical techniques for enhanced performance as well as power scaling.
Diffractive optical elements for transformation of modes in lasers
Sridharan, Arun K; Pax, Paul H; Heebner, John E; Drachenberg, Derrek R.; Armstrong, James P.; Dawson, Jay W.
2016-06-21
Spatial mode conversion modules are described, with the capability of efficiently transforming a given optical beam profile, at one plane in space into another well-defined optical beam profile at a different plane in space, whose detailed spatial features and symmetry properties can, in general, differ significantly. The modules are comprised of passive, high-efficiency, low-loss diffractive optical elements, combined with Fourier transform optics. Design rules are described that employ phase retrieval techniques and associated algorithms to determine the necessary profiles of the diffractive optical components. System augmentations are described that utilize real-time adaptive optical techniques for enhanced performance as well as power scaling.
NASA Astrophysics Data System (ADS)
Prakash, Roopa; Choudhury, Vishal; Arun, S.; Supradeepa, V. R.
2018-02-01
Continuous-wave(CW) supercontinuum sources find applications in various domains such as imaging, spectroscopy, test and measurement. They are generated by pumping an optical fiber with a CW laser in the anomalous-dispersion region close to its zero-dispersion wavelength. Modulation instability(MI) sidebands are created, and further broadened and equalized by additional nonlinear processes generating the supercontinuum. This necessitates high optical powers and at lower powers, only MI sidebands can be seen without the formation of the supercontinuum. Obtaining a supercontinuum at low, easily manageable optical powers is attractive for many applications, but current techniques cannot achieve this. In this work, we propose a new mechanism for low power supercontinuum generation utilizing the modified MI gain spectrum for a line-broadened, decorrelated pump. A novel two-stage generation mechanism is demonstrated, where the first stage constituting standard telecom fiber slightly broadens the input pump linewidth. However, this process in the presence of dispersion, acts to de-correlate the different spectral components of the pump signal. When this is sent through highly nonlinear fiber near its zero-dispersion wavelength, the shape of the MI gain spectrum is modified, and this process naturally results in the generation of a broadband, equalized supercontinuum source at much lower powers than possible using conventional single stage spectral broadening. Here, we demonstrate a 0.5W supercontinuum source pumped using a 4W Erbium-Ytterbium co-doped fiber laser with a bandwidth spanning from 1300nm to 2000nm. We also demonstrate an interesting behaviour of this technique of relative insensitivity to the pump wavelength vis-a-vis zero-dispersion wavelength of the fiber.
Injection locking of optomechanical oscillators via acoustic waves
NASA Astrophysics Data System (ADS)
Huang, Ke; Hossein-Zadeh, Mani
2018-04-01
Injection locking is a powerful technique for synchronization of oscillator networks and controlling the phase and frequency of individual oscillators using similar or other types of oscillators. Here, we present the first demonstration of injection locking of a radiation-pressure driven optomechanical oscillator (OMO) via acoustic waves. As opposed to previously reported techniques (based on pump modulation or direct application of a modulated electrostatic force), injection locking of OMO via acoustic waves does not require optical power modulation or physical contact with the OMO and it can easily be implemented on various platforms. Using this approach we have locked the phase and frequency of two distinct modes of a microtoroidal silica OMO to a piezoelectric transducer (PZT). We have characterized the behavior of the injection locked OMO with three acoustic excitation configurations and showed that even without proper acoustic impedance matching the OMO can be locked to the PZT and tuned over 17 kHz with only -30 dBm of RF power fed to the PZT. The high efficiency, simplicity and scalability of the proposed approach paves the road toward a new class of photonic systems that rely on synchronization of several OMOs to a single or multiple RF oscillators with applications in optical communication, metrology and sensing. Beyond its practical applications, injection locking via acoustic waves can be used in fundamental studies in quantum optomechanics where thermal and optical isolation of the OMO are critical.
Remote double resonance coupling of radar energy to ionospheric irregularities
NASA Technical Reports Server (NTRS)
Kennel, C. F.
1971-01-01
Experimental results indicate that low frequency modulation of a high power radar beam, tuned to one of the critical frequencies of the ionosphere, may produce field-aligned density irregularities when the modulation frequency matches an ionospheric eigenfrequency. By choosing the radar carrier frequency and polarization, a number of interaction layers were selected. The variety of possible excitations shows that the double resonance technique may be adaptable to a number of different objectives.
Rapid Mars transits with exhaust-modulated plasma propulsion
NASA Technical Reports Server (NTRS)
Chang-Diaz, Franklin R.; Braden, Ellen; Johnson, Ivan; Hsu, Michael M.; Yang, Tien Fang
1995-01-01
The operational characteristics of the Exhaust-Modulated Plasma Rocket are described. Four basic human and robotic mission scenarios to Mars are analyzed using numerical optimization techniques at variable specific impulse and constant power. The device is well suited for 'split-sprint' missions, allowing fast, one-way low-payload human transits of 90 to 104 days, as well as slower, 180-day, high-payload robotic precursor flights. Abort capabilities, essential for human missions, are also explored.
Study of the Power Supply Ripple Effect on teh Dynamics at SPEAR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terebilo, A.; Pellegrini, C.; /UCLA
For long term stability analysis time variation of tunes is important. We have proposed and tested a technique for measuring the magnitude of this variation. This was made possible by using tune extraction algorithms that require small number of turns thus giving an instantaneous tune of the machine. In this paper we demonstrate the measured effect of the tune modulation with 60 Hz power supplies ripple, power line interference from SLAC linac operating at 30 Hz repetition rate, and nonperiodic variation.
Comparison of four MPPT techniques for PV systems
NASA Astrophysics Data System (ADS)
Atik, L.; Petit, P.; Sawicki, J. P.; Ternifi, Z. T.; Bachir, G.; Aillerie, M.
2016-07-01
The working behavior of a module / PV array is non-linear and highly dependent on working conditions. As a given condition, there is only one point at which the level of available power at its output is maximum. This point varies with time, enlightenment and temperature. To ensure optimum operation, the use of MPPT control allows us to extract the maximum power. This paper presents a comparative study of four widely-adopted MPPT algorithms, such as Perturb and Observe, Incremental Conductance, Measurements of the variation of the open circuit voltage or of the short-circuit current. Their performance is evaluated using, for all these techniques. In particular, this study compares the behaviors of each technique in presence of solar irradiation variations and temperature fluctuations. These MPPT techniques will be compared using the Matlab / Simulink tool.
De Paëpe, Gaël; Lewandowski, Józef R; Griffin, Robert G
2008-03-28
We introduce a family of solid-state NMR pulse sequences that generalizes the concept of second averaging in the modulation frame and therefore provides a new approach to perform magic angle spinning dipolar recoupling experiments. Here, we focus on two particular recoupling mechanisms-cosine modulated rotary resonance (CMpRR) and cosine modulated recoupling with isotropic chemical shift reintroduction (COMICS). The first technique, CMpRR, is based on a cosine modulation of the rf phase and yields broadband double-quantum (DQ) (13)C recoupling using >70 kHz omega(1,C)/2pi rf field for the spinning frequency omega(r)/2=10-30 kHz and (1)H Larmor frequency omega(0,H)/2pi up to 900 MHz. Importantly, for p>or=5, CMpRR recouples efficiently in the absence of (1)H decoupling. Extension to lower p values (3.5
Detector power linearity requirements and verification techniques for TMI direct detection receivers
NASA Technical Reports Server (NTRS)
Reinhardt, Victor S. (Inventor); Shih, Yi-Chi (Inventor); Toth, Paul A. (Inventor); Reynolds, Samuel C. (Inventor)
1997-01-01
A system (36, 98) for determining the linearity of an RF detector (46, 106). A first technique involves combining two RF signals from two stable local oscillators (38, 40) to form a modulated RF signal having a beat frequency, and applying the modulated RF signal to a detector (46) being tested. The output of the detector (46) is applied to a low frequency spectrum analyzer (48) such that a relationship between the power levels of the first and second harmonics generated by the detector (46) of the beat frequency of the modulated RF signal are measured by the spectrum analyzer (48) to determine the linearity of the detector (46). In a second technique, an RF signal from a local oscillator (100) is applied to a detector (106) being tested through a first attenuator (102) and a second attenuator (104). The output voltage of the detector (106) is measured when the first attenuator (102) is set to a particular attenuation value and the second attenuator (104) is switched between first and second attenuation values. Further, the output voltage of the detector (106) is measured when the first attenuator (102) is set to another attenuation value, and the second attenuator (104) is again switched between the first and second attenuation values. A relationship between the voltage outputs determines the linearity of the detector (106).
Digitally synthesized beat frequency-multiplexed fluorescence lifetime spectroscopy
Chan, Jacky C. K.; Diebold, Eric D.; Buckley, Brandon W.; Mao, Sien; Akbari, Najva; Jalali, Bahram
2014-01-01
Frequency domain fluorescence lifetime imaging is a powerful technique that enables the observation of subtle changes in the molecular environment of a fluorescent probe. This technique works by measuring the phase delay between the optical emission and excitation of fluorophores as a function of modulation frequency. However, high-resolution measurements are time consuming, as the excitation modulation frequency must be swept, and faster low-resolution measurements at a single frequency are prone to large errors. Here, we present a low cost optical system for applications in real-time confocal lifetime imaging, which measures the phase vs. frequency spectrum without sweeping. Deemed Lifetime Imaging using Frequency-multiplexed Excitation (LIFE), this technique uses a digitally-synthesized radio frequency comb to drive an acousto-optic deflector, operated in a cat’s-eye configuration, to produce a single laser excitation beam modulated at multiple beat frequencies. We demonstrate simultaneous fluorescence lifetime measurements at 10 frequencies over a bandwidth of 48 MHz, enabling high speed frequency domain lifetime analysis of single- and multi-component sample mixtures. PMID:25574449
NASA Astrophysics Data System (ADS)
Lodhi, Ehtisham; Lodhi, Zeeshan; Noman Shafqat, Rana; Chen, Fieda
2017-07-01
Photovoltaic (PV) system usually employed The Maximum power point tracking (MPPT) techniques for increasing its efficiency. The performance of the PV system perhaps boosts by controlling at its apex point of power, in this way maximal power can be given to load. The proficiency of a PV system usually depends upon irradiance, temperature and array architecture. PV array shows a non-linear style for V-I curve and maximal power point on V-P curve also varies with changing environmental conditions. MPPT methods grantees that a PV module is regulated at reference voltage and to produce entire usage of the maximal output power. This paper gives analysis between two widely employed Perturb and Observe (P&O) and Incremental Conductance (INC) MPPT techniques. Their performance is evaluated and compared through theoretical analysis and digital simulation on the basis of response time and efficiency under varying irradiance and temperature condition using Matlab/Simulink.
NASA Astrophysics Data System (ADS)
Chen, Ming; Peng, Miao; Zhou, Hui; Zheng, Zhiwei; Tang, Xionggui; Maivan, Lap
2017-12-01
To further improve receiver sensitivity of spectrally-efficient guard-band direct-detection optical orthogonal frequency-division multiplexing (OFDM) with twin single-side-band (SSB) modulation technique, an optical IQ modulator (IQM) is employed to optimize optical carrier-to-signal power ratio (CSPR). The CSPRs for the guard-band twin-SSB-OFDM signal generated by using dual-drive Mach-Zehnder modulator (DD-MZM) and optical IQM are theoretically analyzed and supported by simulations. The optimal CSPR for the two types of guard-band twin-SSB-OFDM are identified. The simulations exhibit that the error vector magnitude (EVM) performance of the IQM-enabled guard-band twin-SSB-OFDM is improved by more than 4-dB compared to that of the twin-SSB-OFDM enabled by DD-MZM after 80-km single-mode fiber (SMF) transmission. In addition, more than 3-dB and 10 dB receiver sensitivity improvements in terms of received optical power (ROP) and optical signal-to-noise ratio (OSNR) are also achieved, respectively.
Active mode locking of lasers by piezoelectrically induced diffraction modulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krausz, F.; Turi, L.; Kuti, C.
A new amplitude-modulation mode-locking technique is presented. Acoustic waves are generated directly on the faces of a resonant photoelastic medium. The created standing waves cause a highly efficient diffraction modulation of light. The modulation depth of standing-wave mode lockers is related to material and drive parameters and a figure of merit is introduced. With a lithium niobate crystal modulation depths over 10 are achieved at 1.054 {mu}m and 1 W of radio frequency power. Using this device for the active mode locking of a continuous-wave Nd:glass laser pulses as short as 3.8 ps are produced at a repetition rate ofmore » 66 MHz. Limitations of amplitude-modulation mode locking by standing acoustic waves are discussed.« less
Photonic Materials and Devices for RF (mmW) Sensing and Imaging
2012-12-31
wave encoding thereby eliminating the need for bulky LO distribution cables. Also, optical processing techniques can be utilized to provide simple... optical powers, can be close to unity and low -noise photodetectors make the detection of exceedingly low power millimeter-waves practical. In... optically -filtering the modulated signal to pass only a single sideband and detecting the resultant optical signal with a low -noise photodetector we have
High resolution (<1nm) interferometric fiber-optic sensor of vibrations in high-power transformers.
Garcia-Souto, Jose A; Lamela-Rivera, Horacio
2006-10-16
A novel fiber-optic interferometric sensor is presented for vibrations measurements and analysis. In this approach, it is shown applied to the vibrations of electrical structures within power transformers. A main feature of the sensor is that an unambiguous optical phase measurement is performed using the direct detection of the interferometer output, without external modulation, for a more compact and stable implementation. High resolution of the interferometric measurement is obtained with this technique (<1 nm). The optical-fiber transducer is also specifically designed for magnifying the localized vibrations in order to modulate deeply the interferometric signal. Other advantages of the implementation for measurements within transformers are also highlighted.
Improving energy efficiency of Embedded DRAM Caches for High-end Computing Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mittal, Sparsh; Vetter, Jeffrey S; Li, Dong
2014-01-01
With increasing system core-count, the size of last level cache (LLC) has increased and since SRAM consumes high leakage power, power consumption of LLCs is becoming a significant fraction of processor power consumption. To address this, researchers have used embedded DRAM (eDRAM) LLCs which consume low-leakage power. However, eDRAM caches consume a significant amount of energy in the form of refresh energy. In this paper, we propose ESTEEM, an energy saving technique for embedded DRAM caches. ESTEEM uses dynamic cache reconfiguration to turn-off a portion of the cache to save both leakage and refresh energy. It logically divides the cachemore » sets into multiple modules and turns-off possibly different number of ways in each module. Microarchitectural simulations confirm that ESTEEM is effective in improving performance and energy efficiency and provides better results compared to a recently-proposed eDRAM cache energy saving technique, namely Refrint. For single and dual-core simulations, the average saving in memory subsystem (LLC+main memory) on using ESTEEM is 25.8% and 32.6%, respectively and average weighted speedup are 1.09X and 1.22X, respectively. Additional experiments confirm that ESTEEM works well for a wide-range of system parameters.« less
Multiple polarization states of vector soliton in fiber laser
NASA Astrophysics Data System (ADS)
Chen, Weicheng; Xu, Wencheng; Cao, Hui; Han, Dingan
2007-11-01
Vector soliton is obtained in erbium-doped fiber laser via nonlinear polarization rotation techniques. In experiment, we observe the every 4- and 7-pulse sinusoidal peak modulation. Temporal pulse sinusoidal peak modulation owes to evolution behavior of vector solitons in multiple polarization states. The polarizer in the laser modulates the mode-locked pulses with different polarization states into periodical pulse train intensities modulation. Moreover, the increasing pumping power lead to the appearance of the harmonic pulses and change the equivalent beat length to accelerate the polarization rotation. When the laser cavity length is the n-th multiple ratios to the beat length to maintain the mode-locking, the mode-locked vector soliton is in n-th multiple polarization states, exhibiting every n-pulse sinusoidal peak modulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gross, Cory Thomas
2008-01-01
The focus of this dissertation is the development of techniques with which to enhance the existing abilities of inductively coupled plasma mass spectrometry (ICP-MS). ICP-MS is a powerful technique for trace metal analysis in samples of many types, but like any technique it has certain strengths and weaknesses. Attempts are made to improve upon those strengths and to overcome certain weaknesses.
NASA Astrophysics Data System (ADS)
Yuan, Yi; Chen, Yudong; Li, Xiaoli
2016-02-01
A novel technique, transcranial focused ultrasonic-magnetic stimulation (tFUMS), has been developed for noninvasive brain modulation in vivo. tFUMS has a higher spatial resolution (<2 mm) and a higher penetration depth than other noninvasive neuromodulation methods. The in vivo animal experimental results show that tFUMS can not only increase the power of local field potentials and the firing rate of the neurons, but also enhance the effect of transcranial focused ultrasound stimulation on the neuromodulation. The results demonstrate that tFUMS can modulate brain oscillatory activities by stimulating brain tissues.
Modulated heat pulse propagation and partial transport barriers in chaotic magnetic fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castillo-Negrete, Diego del; Blazevski, Daniel
2016-04-15
Direct numerical simulations of the time dependent parallel heat transport equation modeling heat pulses driven by power modulation in three-dimensional chaotic magnetic fields are presented. The numerical method is based on the Fourier formulation of a Lagrangian-Green's function method that provides an accurate and efficient technique for the solution of the parallel heat transport equation in the presence of harmonic power modulation. The numerical results presented provide conclusive evidence that even in the absence of magnetic flux surfaces, chaotic magnetic field configurations with intermediate levels of stochasticity exhibit transport barriers to modulated heat pulse propagation. In particular, high-order islands andmore » remnants of destroyed flux surfaces (Cantori) act as partial barriers that slow down or even stop the propagation of heat waves at places where the magnetic field connection length exhibits a strong gradient. Results on modulated heat pulse propagation in fully stochastic fields and across magnetic islands are also presented. In qualitative agreement with recent experiments in large helical device and DIII-D, it is shown that the elliptic (O) and hyperbolic (X) points of magnetic islands have a direct impact on the spatio-temporal dependence of the amplitude of modulated heat pulses.« less
NASA Astrophysics Data System (ADS)
Reisgen, Uwe; Schleser, Markus; Mokrov, Oleg; Zabirov, Alexander
2011-06-01
A two dimensional transient numerical analysis and computational module for simulation of electrical and thermal characteristics during electrode melting and metal transfer involved in Gas-Metal-Arc-Welding (GMAW) processes is presented. Solution of non-linear transient heat transfer equation is carried out using a control volume finite difference technique. The computational module also includes controlling and regulation algorithms of industrial welding power sources. The simulation results are the current and voltage waveforms, mean voltage drops at different parts of circuit, total electric power, cathode, anode and arc powers and arc length. We describe application of the model for normal process (constant voltage) and for pulsed processes with U/I and I/I-modulation modes. The comparisons with experimental waveforms of current and voltage show that the model predicts current, voltage and electric power with a high accuracy. The model is used in simulation package SimWeld for calculation of heat flux into the work-piece and the weld seam formation. From the calculated heat flux and weld pool sizes, an equivalent volumetric heat source according to Goldak model, can be generated. The method was implemented and investigated with the simulation software SimWeld developed by the ISF at RWTH Aachen University.
Modulation of Polarization for Phase Extraction in Holographic Interferometry with Two References
NASA Astrophysics Data System (ADS)
Rodriguez-Zurita, G.; Vázquez-Castillo, J.-F.; Toto-Arellano, N.-I.; Meneses-Fabian, C.; Jiménez-Montero, L.-E.
2010-04-01
Heterodyne holographic interferometry allows high accuracy for phase-difference extraction between two wave fronts, especially when they are previously recorded in the same recording medium. In part, this is because the wave fronts can be affected by the recording process in a very similar way. The double reconstruction of a double-exposure hologram with two independent references results in a two-beam holographic interferometer with an arm conveying a wave modulated in frequency when using heterodyne techniques. The heterodyne frequency has been usually introduced with a plane mirror attached to a piezo-electric stack driven with a suitable variable power supply. For holographic interferometry, however, less attention has been devoted to alternative phase retrieval variants as, for example, phase-shifting with modulation of polarization or Fourier methods. In this work, we propose and demonstrate the basic capabilities of modulation of polarization performing as a phase-shifting technique for holographic interferometry with two references in a phase-stepping scheme. Experimental results are provided.
Determination of the excess noise of avalanche photodiodes integrated in 0.35-μm CMOS technologies
NASA Astrophysics Data System (ADS)
Jukić, Tomislav; Brandl, Paul; Zimmermann, Horst
2018-04-01
The excess noise of avalanche photodiodes (APDs) integrated in a high-voltage (HV) CMOS process and in a pin-photodiode CMOS process, both with 0.35-μm structure sizes, is described. A precise excess noise measurement technique is applied using a laser source, a spectrum analyzer, a voltage source, a current meter, a cheap transimpedance amplifier, and a personal computer with a MATLAB program. In addition, usage for on-wafer measurements is demonstrated. The measurement technique is verified with a low excess noise APD as a reference device with known ratio k = 0.01 of the impact ionization coefficients. The k-factor of an APD developed in HV CMOS is determined more accurately than known before. In addition, it is shown that the excess noise of the pin-photodiode CMOS APD depends on the optical power for avalanche gains above 35 and that modulation doping can suppress this power dependence. Modulation doping, however, increases the excess noise.
Asymmetric Dual-Band Tracking Technique for Optimal Joint Processing of BDS B1I and B1C Signals
Wang, Chuhan; Cui, Xiaowei; Ma, Tianyi; Lu, Mingquan
2017-01-01
Along with the rapid development of the Global Navigation Satellite System (GNSS), satellite navigation signals have become more diversified, complex, and agile in adapting to increasing market demands. Various techniques have been developed for processing multiple navigation signals to achieve better performance in terms of accuracy, sensitivity, and robustness. This paper focuses on a technique for processing two signals with separate but adjacent center frequencies, such as B1I and B1C signals in the BeiDou global system. The two signals may differ in modulation scheme, power, and initial phase relation and can be processed independently by user receivers; however, the propagation delays of the two signals from a satellite are nearly identical as they are modulated on adjacent frequencies, share the same reference clock, and undergo nearly identical propagation paths to the receiver, resulting in strong coherence between the two signals. Joint processing of these signals can achieve optimal measurement performance due to the increased Gabor bandwidth and power. In this paper, we propose a universal scheme of asymmetric dual-band tracking (ASYM-DBT) to take advantage of the strong coherence, the increased Gabor bandwidth, and power of the two signals in achieving much-reduced thermal noise and more accurate ranging results when compared with the traditional single-band algorithm. PMID:29035350
Asymmetric Dual-Band Tracking Technique for Optimal Joint Processing of BDS B1I and B1C Signals.
Wang, Chuhan; Cui, Xiaowei; Ma, Tianyi; Zhao, Sihao; Lu, Mingquan
2017-10-16
Along with the rapid development of the Global Navigation Satellite System (GNSS), satellite navigation signals have become more diversified, complex, and agile in adapting to increasing market demands. Various techniques have been developed for processing multiple navigation signals to achieve better performance in terms of accuracy, sensitivity, and robustness. This paper focuses on a technique for processing two signals with separate but adjacent center frequencies, such as B1I and B1C signals in the BeiDou global system. The two signals may differ in modulation scheme, power, and initial phase relation and can be processed independently by user receivers; however, the propagation delays of the two signals from a satellite are nearly identical as they are modulated on adjacent frequencies, share the same reference clock, and undergo nearly identical propagation paths to the receiver, resulting in strong coherence between the two signals. Joint processing of these signals can achieve optimal measurement performance due to the increased Gabor bandwidth and power. In this paper, we propose a universal scheme of asymmetric dual-band tracking (ASYM-DBT) to take advantage of the strong coherence, the increased Gabor bandwidth, and power of the two signals in achieving much-reduced thermal noise and more accurate ranging results when compared with the traditional single-band algorithm.
Noise-Coupled Image Rejection Architecture of Complex Bandpass ΔΣAD Modulator
NASA Astrophysics Data System (ADS)
San, Hao; Kobayashi, Haruo
This paper proposes a new realization technique of image rejection function by noise-coupling architecture, which is used for a complex bandpass ΔΣAD modulator. The complex bandpass ΔΣAD modulator processes just input I and Q signals, not image signals, and the AD conversion can be realized with low power dissipation. It realizes an asymmetric noise-shaped spectra, which is desirable for such low-IF receiver applications. However, the performance of the complex bandpass ΔΣAD modulator suffers from the mismatch between internal analog I and Q paths. I/Q path mismatch causes an image signal, and the quantization noise of the mirror image band aliases into the desired signal band, which degrades the SQNDR (Signal to Quantization Noise and Distortion Ratio) of the modulator. In our proposed modulator architecture, an extra notch for image rejection is realized by noise-coupled topology. We just add some passive capacitors and switches to the modulator; the additional integrator circuit composed of an operational amplifier in the conventional image rejection realization is not necessary. Therefore, the performance of the complex modulator can be effectively raised without additional power dissipation. We have performed simulation with MATLAB to confirm the validity of the proposed architecture. The simulation results show that the proposed architecture can achieve the realization of image-rejection effectively, and improve the SQNDR of the complex bandpass ΔΣAD modulator.
NASA Astrophysics Data System (ADS)
Donskoy, Dmitri; Ekimov, Alexander; Luzzato, Emile; Lottiaux, Jean-Louis; Stoupin, Stanislav; Zagrai, Andrei
2003-08-01
In recent years, innovative vibro-modulation technique has been introduced for detection of contact-type interfaces such as cracks, debondings, and delaminations. The technique utilizes the effect of nonlinear interaction of ultrasound and vibrations at the interface of the defect. Vibration varies on the contact area of the interface modulating passing through ultrasonic wave. The modulation manifests itself as additional side-band spectral components with the combination frequencies in the spectrum of the received signal. The presence of these components allows for detection and differentiation of the contact-type defects from other structural and material inhomogeneities. Vibro-modulation technique has been implemented in N-SCAN damage detection system. The system consists of a digital synthesizer, high and low frequency amplifiers, a magnetostrictive shaker, ultrasonic transducers and a PC-based data acquisition/processing station with N-SCAN software. The ability of the system to detect contact-type defects was experimentally verified using specimens of simple and complex geometries made of steel, aluminum, composites and other structural materials. N-SCAN proved to be very effective for nondestructive testing of full-scale structures ranging from 24 foot-long gun barrels to stainless steel pipes used in nuclear power plants. Among advantages of the system are applicability for the wide range of structural materials and for structures with complex geometries, real time data processing, convenient interface for system operation, simplicity of interpretation of results, no need for sensor scanning along structure, onsite inspection of large structures at a fraction of time as compared with conventional techniques. This paper describes the basic principles of nonlinear vibro-modulation NDE technique, some theoretical background for nonlinear interaction and justification of signal processing algorithm. It is also presents examples of practical implementation and application of the technique.
Controlling chaotic behavior in CO2 and other lasers
NASA Astrophysics Data System (ADS)
1993-06-01
Additional substantial experimental progress has been made, in the third month of the project, in setting up equipment and testing for producing chaotic behavior with a CO2 laser. The project goal is to synchronize and control chaos in CO2 and other lasers, and thereby increase the power in ensembles of coupled laser sources. Numerous investigations into the chaos regime have been made, a second CO2 laser has been brought on stream, and work is progressing in the fourth month toward coupling the two lasers and control of the first laser. It is also intended to submit at least two papers to the Second Experimental Chaos Conference which is supported by the Office of Naval Research. Abstracts to those two papers are attached. Last month's report discussed the experimental investigation of nonlinear dynamics of CO2 lasers which involved a new technique of inducing chaos. In this new technique, an acoustically modulated feedback of the laser light was used and led to chaotic dynamics at a very low modulation frequency of 375 Hz. Since then, new results have been obtained by an Electro-Optical Modulation (EOM) technique. In the new setup, the electro-optical modulator is placed in an external cavity outside the laser.
Comparison of four MPPT techniques for PV systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atik, L., E-mail: lotfi.atik@univ-usto.dz; Ternifi, Z. T.; Université de Lorraine, LMOPS, EA 4423, 57070 Metz
2016-07-25
The working behavior of a module / PV array is non-linear and highly dependent on working conditions. As a given condition, there is only one point at which the level of available power at its output is maximum. This point varies with time, enlightenment and temperature. To ensure optimum operation, the use of MPPT control allows us to extract the maximum power. This paper presents a comparative study of four widely-adopted MPPT algorithms, such as Perturb and Observe, Incremental Conductance, Measurements of the variation of the open circuit voltage or of the short-circuit current. Their performance is evaluated using, formore » all these techniques. In particular, this study compares the behaviors of each technique in presence of solar irradiation variations and temperature fluctuations. These MPPT techniques will be compared using the Matlab / Simulink tool.« less
High Power Amplifier and Power Supply
NASA Technical Reports Server (NTRS)
Duong, Johnny; Stride, Scot; Harvey, Wayne; Haque, Inam; Packard, Newton; Ng, Quintin; Ispirian, Julie Y.; Waian, Christopher; Janes, Drew
2008-01-01
A document discusses the creation of a high-voltage power supply (HVPS) that is able to contain voltages up to -20 kV, keep electrical field strengths to below 200 V/mil (approximately equal to 7.87 kV/mm), and can provide a 200-nanosecond rise/fall time focus modulator swinging between cathode potential of 16.3 kV and -19.3 kV. This HVPS can protect the 95-GHz, pulsed extended interaction klystron (EIK) from arcs/discharges from all sources, including those from within the EIK fs vacuum envelope. This innovation has a multi-winding pulse transformer design, which uses new winding techniques to provide the same delays and rise/fall times (less than 10 nanoseconds) at different potential levels ranging from -20 kV to -16 kV. Another feature involves a high-voltage printed-wiring board that was corona-free at -20 kV DC with a 3- kV AC swing. The corona-free multilayer high-voltage board is used to simulate fields of less than 200 V/mil (approximately equal to 7.87 kV/mm) at 20 kV DC. Drive techniques for the modulator FETs (field-effect transistors) (four to 10 in a series) were created to change states (3,000-V swing) without abrupt steps, while still maintaining required delays and transition times. The packing scheme includes a potting mold to house a ten-stage modulator in the space that, in the past, only housed a four-stage modulator. Problems keeping heat down were solved using aluminum oxide substrate in the high-voltage section to limit temperature rise to less than 10 while withstanding -20 kV DC voltage and remaining corona-free.
NASA Astrophysics Data System (ADS)
Guan, Rui; Xu, Wei; Yang, Zhaohui; Huang, Nuo; Wang, Jin-Yuan; Chen, Ming
2017-11-01
In this paper, we propose a subcarrier-index modulation-based asymmetrically clipped optical orthogonal frequency division multiplexing (SACO-OFDM) scheme for optical wireless communication (OWC) systems, which benefits from the subcarrier-index modulation (SIM) and asymmetrically clipped optical orthogonal frequency division multiplexing (ACO-OFDM) techniques. SACO-OFDM conveys additional information via the subcarrier indexing, and the error rate of the bit transmitted by the subcarrier indexing is much lower than that of the conventional M-ary modulation scheme. On the other hand, as the signal constellation in M-ary modulation is relieved, SACO-OFDM has simple transceiver structure and low detection complexity. Moreover, considering the spectral, an enhanced SACO-OFDM (ESACO-OFDM) using even subcarriers is proposed. In this technique, the odd subcarriers are activated for SACO-OFDM, and the imaginary part of even subcarriers are activated for pulse-amplitude-modulated discrete multitone (PAM-DMT). Clearly, ESACO-OFDM achieves better spectral efficiency than the conventional optical OFDM, since all subcarriers are used for data transmission. Simulation results verify the significant bit error rate (BER) and peak-to-average power ratio (PAPR) improvement by the proposed ESACO-OFDM, especially for the medium-to-high signal-to-noise ratio (SNR) regime.
A New Technique for Troubleshooting Large Capacitive Energy Storage Banks
2013-06-01
The Power Conditioning System (PCS) of the National Ignition Facility ( NIF ) like many pulse power systems relies on large numbers of inductively...troubleshooting time. II. THEORY OF OPERATION A simplified schematic diagram of the National Ignition Facility ( NIF ) Main Energy Storage Module (MESM...across the capacitor or a null in the current supplied by the generator. In the case of the NIF bank the resonant frequency turns out to be very close
High-brightness 9xxnm fiber coupled diode lasers
NASA Astrophysics Data System (ADS)
Liu, Rui; Jiang, Xiaochen; Yang, Thomas; He, Xiaoguang; Gao, Yanyan; Zhu, Jing; Zhang, Tujia; Guo, Weirong; Wang, Baohua; Guo, Zhijie; Zhang, Luyan; Chen, Louisa
2015-03-01
We developed a high brightness fiber coupled diode laser module providing more than 140W output power from a 105μm NA 0.15 fiber at the wavelength of 915nm.The high brightness module has an electrical to optical efficiency better than 45% and power enclosure more than 90% within NA 0.13. It is based on multi-single emitters using optical and polarization beam combining and fiber coupling technique. With the similar technology, over 100W of optical power into a 105μm NA 0.15 fiber at 976nm is also achieved which can be compatible with the volume Bragg gratings to receive narrow and stabilized spectral linewidth. The light within NA 0.12 is approximately 92%. The reliability test data of single and multiple single emitter laser module under high optical load are also presented and analyzed using a reliability model with an emitting aperture optimized for coupling into 105μm core fiber. The total MTTF shows exceeding 100,000 hours within 60% confidence level. The packaging processes and optical design are ready for commercial volume production.
Low Cost Anti-Jam Digital Data-Links Techniques Investigations. Volume II.
1979-05-01
to spectrum-spreading factors of the order of lO 3 to 104. It is also shown that the amount of gain is a function not only of the interference to...from a standard coherent product demodulation of the band-pass radio-frequency signal. A vector-Markov data generating model is hypothesized, as in...E/N( where S is total carrier power, K is number of samples per symbol, and L(AO) is a modulation loss factor of the modulation index, A . L(AO
A study of universal modulation techniques applied to satellite data collection
NASA Technical Reports Server (NTRS)
1980-01-01
A universal modulation and frequency control system for use with data collection platform (DCP) transmitters is examined. The final design discussed can, under software/firmwave control, generate all of the specific digital data modulation formats currently used in the NASA satellite data collection service and can simultaneously synthesize the proper RF carrier frequencies employed. A novel technique for DCP time and frequency control is presented. The emissions of NBS radio station WWV/WWVH are received, detected, and finally decoded in microcomputer software to generate a highly accurate time base for the platform; with the assistance of external hardware, the microcomputer also directs the recalibration of all DCP oscillators to achieve very high frequency accuracies and low drift rates versus temperature, supply voltage, and time. The final programmable DCP design also employs direct microcomputer control of data reduction, formatting, transmitter switching, and system power management.
NASA Astrophysics Data System (ADS)
Jagodzinski, Jeremy James
2007-12-01
The development to date of a diode-laser based velocimeter providing point-velocity-measurements in unseeded flows using molecular Rayleigh scattering is discussed. The velocimeter is based on modulated filtered Rayleigh scattering (MFRS), a novel variation of filtered Rayleigh scattering (FRS), utilizing modulated absorption spectroscopy techniques to detect a strong absorption of a relatively weak Rayleigh scattered signal. A rubidium (Rb) vapor filter is used to provide the relatively strong absorption; alkali metal vapors have a high optical depth at modest vapor pressures, and their narrow linewidth is ideally suited for high-resolution velocimetry. Semiconductor diode lasers are used to generate the relatively weak Rayleigh scattered signal; due to their compact, rugged construction diode lasers are ideally suited for the environmental extremes encountered in many experiments. The MFRS technique utilizes the frequency-tuning capability of diode lasers to implement a homodyne detection scheme using lock-in amplifiers. The optical frequency of the diode-based laser system used to interrogate the flow is rapidly modulated about a reference frequency in the D2-line of Rb. The frequency modulation is imposed on the Rayleigh scattered light that is collected from the probe volume in the flow under investigation. The collected frequency modulating Rayleigh scattered light is transmitted through a Rb vapor filter before being detected. The detected modulated absorption signal is fed to two lock-in amplifers synchronized with the modulation frequency of the source laser. High levels of background rejection are attained since the lock-ins are both frequency and phase selective. The two lock-in amplifiers extract different Fourier components of the detected modulated absorption signal, which are ratioed to provide an intensity normalized frequency dependent signal from a single detector. A Doppler frequency shift in the collected Rayleigh scattered light due to a change in the velocity of the flow under investigation results in a change in the detected modulated absorption signal. This change in the detected signal provides a quantifiable measure of the Doppler frequency shift, and hence the velocity in the probe volume, provided that the laser source exhibits acceptable levels of frequency stability (determined by the magnitude of the velocities being measured). An extended cavity diode laser (ECDL) in the Littrow configuration provides frequency tunable, relatively narrow-linewidth lasing for the MFRS velocimeter. Frequency stabilization of the ECDL is provided by a proportional-integral-differential (PID) controller based on an error signal in the reference arm of the experiment. The optical power of the Littrow laser source is amplified by an antireflection coated (AR coated) broad stripe diode laser. The single-mode, frequency-modulatable, frequency-stable O(50 mW) of optical power provided by this extended cavity diode laser master oscillator power amplifier (ECDL-MOPA) system provided sufficient scattering signal from a condensing jet of CO2 to implement the MFRS technique in the frequency-locked mode of operation.
NASA Astrophysics Data System (ADS)
Nehra, Monika; Kedia, Deepak
2018-04-01
A CO-OFDM system combines the advantages of both coherent detection and OFDM modulation for future high speed fiber transmission. In this paper, we propose an I/Q modulation technique using dual-drive MZMs for high rate 10 Gb/s CO-OFDM system. The proposed modulator provides 10.63 dBm improved optical spectra compared to a single dual-drive MZM. The simulation results in terms of BER and Q factor are quite satisfactory upto a transmission reach of 3,000 km and that to without making use of any dispersion compensation. A BER of about 8.03×10-10 and 15.06 dB Q factor have been achieved at -10.43 dBm received optical power.
Kiani, Mehdi; Ghovanloo, Maysam
2015-02-01
A fully-integrated near-field wireless transceiver has been presented for simultaneous data and power transmission across inductive links, which operates based on pulse delay modulation (PDM) technique. PDM is a low-power carrier-less modulation scheme that offers wide bandwidth along with robustness against strong power carrier interference, which makes it suitable for implantable neuroprosthetic devices, such as retinal implants. To transmit each bit, a pattern of narrow pulses are generated at the same frequency of the power carrier across the transmitter (Tx) data coil with specific time delays to initiate decaying ringing across the tuned receiver (Rx) data coil. This ringing shifts the zero-crossing times of the undesired power carrier interference on the Rx data coil, resulting in a phase shift between the signals across Rx power and data coils, from which the data bit stream can be recovered. A PDM transceiver prototype was fabricated in a 0.35- μm standard CMOS process, occupying 1.6 mm(2). The transceiver achieved a measured 13.56 Mbps data rate with a raw bit error rate (BER) of 4.3×10(-7) at 10 mm distance between figure-8 data coils, despite a signal-to-interference ratio (SIR) of -18.5 dB across the Rx data coil. At the same time, a class-D power amplifier, operating at 13.56 MHz, delivered 42 mW of regulated power across a separate pair of high-Q power coils, aligned with the data coils. The PDM data Tx and Rx power consumptions were 960 pJ/bit and 162 pJ/bit, respectively, at 1.8 V supply voltage.
Integration Testing of a Modular Discharge Supply for NASA's High Voltage Hall Accelerator Thruster
NASA Technical Reports Server (NTRS)
Pinero, Luis R.; Kamhawi, hani; Drummond, Geoff
2010-01-01
NASA s In-Space Propulsion Technology Program is developing a high performance Hall thruster that can fulfill the needs of future Discovery-class missions. The result of this effort is the High Voltage Hall Accelerator thruster that can operate over a power range from 0.3 to 3.5 kW and a specific impulse from 1,000 to 2,800 sec, and process 300 kg of xenon propellant. Simultaneously, a 4.0 kW discharge power supply comprised of two parallel modules was developed. These power modules use an innovative three-phase resonant topology that can efficiently supply full power to the thruster at an output voltage range of 200 to 700 V at an input voltage range of 80 to 160 V. Efficiencies as high as 95.9 percent were measured during an integration test with the NASA103M.XL thruster. The accuracy of the master/slave current sharing circuit and various thruster ignition techniques were evaluated.
The Promise of Open Educational Resources
ERIC Educational Resources Information Center
Smith, Marshall S.; Casserly, Catherine M.
2006-01-01
Open educational resources (OER) include full courses, course materials, modules, textbooks, streaming videos, tests, software, and any other tools, materials, or techniques used to either support access to knowledge, or have an impact on teaching, learning, and research. At the heart of the OER movement is the simple and powerful idea that the…
Demonstration of a Submillimeter-Wave HEMT Oscillator Module at 330 GHz
NASA Technical Reports Server (NTRS)
Radisic, Vesna; Deal, W. R.; Mei, X. B.; Yoshida, Wayne; Liu, P. H.; Uyeda, Jansen; Lai, Richard; Samoska, Lorene; Fung, King Man; Gaier, Todd;
2010-01-01
In this work, radial transitions have been successfully mated with a HEMT-based MMIC (high-electron-mobility-transistor-based monolithic microwave integrated circuit) oscillator circuit. The chip has been assembled into a WR2.2 waveguide module for the basic implementation with radial E-plane probe transitions to convert the waveguide mode to the MMIC coplanar waveguide mode. The E-plane transitions have been directly integrated onto the InP substrate to couple the submillimeter-wave energy directly to the waveguides, thus avoiding wire-bonds in the RF path. The oscillator demonstrates a measured 1.7 percent DC-RF efficiency at the module level. The oscillator chip uses 35-nm-gate-length HEMT devices, which enable the high frequency of oscillation, creating the first demonstration of a packaged waveguide oscillator that operates over 300 GHz and is based on InP HEMT technology. The oscillator chip is extremely compact, with dimensions of only 1.085 x 320 sq mm for a total die size of 0.35 sq mm. This fully integrated, waveguide oscillator module, with an output power of 0.27 mW at 330 GHz, can provide low-mass, low DC-power-consumption alternatives to existing local oscillator schemes, which require high DC power consumption and large mass. This oscillator module can be easily integrated with mixers, multipliers, and amplifiers for building high-frequency transmit and receive systems at submillimeter wave frequencies. Because it requires only a DC bias to enable submillimeter wave output power, it is a simple and reliable technique for generating power at these frequencies. Future work will be directed to further improving the applicability of HEMT transistors to submillimeter wave and terahertz applications. Commercial applications include submillimeter-wave imaging systems for hidden weapons detection, airport security, homeland security, and portable low-mass, low-power imaging systems
Contactless Electroluminescence Imaging for Cell and Module Characterization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, Steve
2015-06-14
Module performance can be characterized by imaging using baseline and periodic images to track defects and degradation. Both thermal images, which can be acquired during sunny operating conditions, and photoluminescence images, which could be acquired at night, can be collected without electrical connection. Electroluminescence (EL) images, which are useful to detect many types of defects such as cracks, interconnect and solder faults, and resistances, have typically required electrical connection to drive current in the cells and modules. Here, a contactless EL imaging technique is proposed, which provides an EL image without the need for electrical connection to drive current throughmore » the module. Such EL imaging has the capability to be collected at night without disruption to daytime power generation.« less
X-ray verification of an optically aligned off-plane grating module
NASA Astrophysics Data System (ADS)
Donovan, Benjamin D.; McEntaffer, Randall L.; Tutt, James H.; DeRoo, Casey T.; Allured, Ryan; Gaskin, Jessica A.; Kolodziejczak, Jeffery J.
2018-01-01
Off-plane x-ray reflection gratings are theoretically capable of achieving high resolution and high diffraction efficiencies over the soft x-ray bandpass, making them an ideal technology to implement on upcoming x-ray spectroscopy missions. To achieve high effective area, these gratings must be aligned into grating modules. X-ray testing was performed on an aligned grating module to assess the current optical alignment methods. Results indicate that the grating module achieved the desired alignment for an upcoming x-ray spectroscopy suborbital rocket payload with modest effective area and resolving power. These tests have also outlined a pathway towards achieving the stricter alignment tolerances of future x-ray spectrometer payloads, which require improvements in alignment metrology, grating fabrication, and testing techniques.
Investigation of test methods, material properties, and processes for solar cell encapsulants
NASA Technical Reports Server (NTRS)
1984-01-01
Photovoltaic (PV) modules consist of a string of electrically interconnected silicon solar cells capable of producing practical quantities of electrical power when exposed to sunlight. To insure high reliability and long term performance, the functional components of the solar cell module must be adequately protected from the environment by some encapsulation technique. The encapsulation system must provide mechanical support for the cells and corrosion protection for the electrical components. The goal of the program is to identify and develop encapsulation systems consistent with the PV module operating requirements of 30 year life and a target cost of $0.70 per peak watt ($70 per square meter) (1980 dollars). Assuming a module efficiency of ten percent, which is equivalent to a power output of 100 watts per square meter in midday sunlight, the capital cost of the modules may be calculated to be $70.00 per square meter. Out of this cost goal, only 20 percent is available for encapsulation due to the high cost of the cells, interconnects, and other related components. The encapsulation cost allocation may then be stated as $14.00 per square meter, included all coatings, pottant and mechanical supports for the cells.
NASA Technical Reports Server (NTRS)
Hackett, Timothy M.; Bilen, Sven G.; Ferreira, Paulo Victor R.; Wyglinski, Alexander M.; Reinhart, Richard C.
2016-01-01
In a communications channel, the space environment between a spacecraft and an Earth ground station can potentially cause the loss of a data link or at least degrade its performance due to atmospheric effects, shadowing, multipath, or other impairments. In adaptive and coded modulation, the signal power level at the receiver can be used in order to choose a modulation-coding technique that maximizes throughput while meeting bit error rate (BER) and other performance requirements. It is the goal of this research to implement a generalized interacting multiple model (IMM) filter based on Kalman filters for improved received power estimation on software-dened radio (SDR) technology for satellite communications applications. The IMM filter has been implemented in Verilog consisting of a customizable bank of Kalman filters for choosing between performance and resource utilization. Each Kalman filter can be implemented using either solely a Schur complement module (for high area efficiency) or with Schur complement, matrix multiplication, and matrix addition modules (for high performance). These modules were simulated and synthesized for the Virtex II platform on the JPL Radio Experimenter Development System (EDS) at NASA Glenn Research Center. The results for simulation, synthesis, and hardware testing are presented.
Pulse width modulation inverter with battery charger
Slicker, James M.
1985-01-01
An inverter is connected between a source of DC power and a three-phase AC induction motor, and a microprocessor-based circuit controls the inverter using pulse width modulation techniques. In the disclosed method of pulse width modulation, both edges of each pulse of a carrier pulse train are equally modulated by a time proportional to sin .theta., where .theta. is the angular displacement of the pulse center at the motor stator frequency from a fixed reference point on the carrier waveform. The carrier waveform frequency is a multiple of the motor stator frequency. The modulated pulse train is then applied to each of the motor phase inputs with respective phase shifts of 120.degree. at the stator frequency. Switching control commands for electronic switches in the inverter are stored in a random access memory (RAM) and the locations of the RAM are successively read out in a cyclic manner, each bit of a given RAM location controlling a respective phase input of the motor. The DC power source preferably comprises rechargeable batteries and all but one of the electronic switches in the inverter can be disabled, the remaining electronic switch being part of a "flyback" DC-DC converter circuit for recharging the battery.
Pulse width modulation inverter with battery charger
NASA Technical Reports Server (NTRS)
Slicker, James M. (Inventor)
1985-01-01
An inverter is connected between a source of DC power and a three-phase AC induction motor, and a microprocessor-based circuit controls the inverter using pulse width modulation techniques. In the disclosed method of pulse width modulation, both edges of each pulse of a carrier pulse train are equally modulated by a time proportional to sin .theta., where .theta. is the angular displacement of the pulse center at the motor stator frequency from a fixed reference point on the carrier waveform. The carrier waveform frequency is a multiple of the motor stator frequency. The modulated pulse train is then applied to each of the motor phase inputs with respective phase shifts of 120.degree. at the stator frequency. Switching control commands for electronic switches in the inverter are stored in a random access memory (RAM) and the locations of the RAM are successively read out in a cyclic manner, each bit of a given RAM location controlling a respective phase input of the motor. The DC power source preferably comprises rechargeable batteries and all but one of the electronic switches in the inverter can be disabled, the remaining electronic switch being part of a flyback DC-DC converter circuit for recharging the battery.
NASA Technical Reports Server (NTRS)
Jackson, F. C.
1979-01-01
Two simple microwave radar techniques that are potentially capable of providing routine satellite measurements of the directional spectrum of ocean waves were developed. One technique, the short pulse technique, makes use of very short pulses to resolve ocean surface wave contrast features in the range direction; the other technique, the two frequency correlation technique makes use of coherency in the transmitted waveform to detect the large ocean wave contrast modulation as a beat or mixing frequency in the power backscattered at two closely separated microwave frequencies. A frequency domain analysis of the short pulse and two frequency systems shows that the two measurement systems are essentially duals; they each operate on the generalized (three frequency) fourth-order statistical moment of the surface transfer function in different, but symmetrical ways, and they both measure the same directional contrast modulation spectrum. A three dimensional physical optics solution for the fourth-order moment was obtained for backscatter in the near vertical, specular regime, assuming Gaussian surface statistics.
EML Array fabricated by SAG technique monolithically integrated with a buried ridge AWG multiplexer
NASA Astrophysics Data System (ADS)
Xu, Junjie; Liang, Song; Zhang, Zhike; An, Junming; Zhu, Hongliang; Wang, Wei
2017-06-01
We report the fabrication of a ten channel electroabsorption modulated DFB laser (EML) array. Different emission wavelengths of the laser array are obtained by selective area growth (SAG) technique, which is also used for the integration of electroabsorption modulators (EAM) with the lasers. An arrayed waveguide grating (AWG) combiner is integrated monolithically with the laser array by butt-joint regrowth (BJR) technique. A buried ridge waveguide structure is adopted for the AWG combiner. A self aligned fabrication procedure is adopted for the fabrication of the waveguide structure of the device to eliminate the misalignment between the laser active waveguide and the passive waveguide. A Ti thin film heater is integrated for each laser in the array. With the help of the heaters, ten laser emissions with 1.8 nm channel spacing are obtained. The integrated EAM has a larger than 11 dB static extinction ratios and larger than 8 GHz small signal modulation bandwidths. The light power collected in the output waveguide of the AWG is larger than -13 dBm for each wavelength.
Performance analysis of cooperative virtual MIMO systems for wireless sensor networks.
Rafique, Zimran; Seet, Boon-Chong; Al-Anbuky, Adnan
2013-05-28
Multi-Input Multi-Output (MIMO) techniques can be used to increase the data rate for a given bit error rate (BER) and transmission power. Due to the small form factor, energy and processing constraints of wireless sensor nodes, a cooperative Virtual MIMO as opposed to True MIMO system architecture is considered more feasible for wireless sensor network (WSN) applications. Virtual MIMO with Vertical-Bell Labs Layered Space-Time (V-BLAST) multiplexing architecture has been recently established to enhance WSN performance. In this paper, we further investigate the impact of different modulation techniques, and analyze for the first time, the performance of a cooperative Virtual MIMO system based on V-BLAST architecture with multi-carrier modulation techniques. Through analytical models and simulations using real hardware and environment settings, both communication and processing energy consumptions, BER, spectral efficiency, and total time delay of multiple cooperative nodes each with single antenna are evaluated. The results show that cooperative Virtual-MIMO with Binary Phase Shift Keying-Wavelet based Orthogonal Frequency Division Multiplexing (BPSK-WOFDM) modulation is a promising solution for future high data-rate and energy-efficient WSNs.
Performance Analysis of Cooperative Virtual MIMO Systems for Wireless Sensor Networks
Rafique, Zimran; Seet, Boon-Chong; Al-Anbuky, Adnan
2013-01-01
Multi-Input Multi-Output (MIMO) techniques can be used to increase the data rate for a given bit error rate (BER) and transmission power. Due to the small form factor, energy and processing constraints of wireless sensor nodes, a cooperative Virtual MIMO as opposed to True MIMO system architecture is considered more feasible for wireless sensor network (WSN) applications. Virtual MIMO with Vertical-Bell Labs Layered Space-Time (V-BLAST) multiplexing architecture has been recently established to enhance WSN performance. In this paper, we further investigate the impact of different modulation techniques, and analyze for the first time, the performance of a cooperative Virtual MIMO system based on V-BLAST architecture with multi-carrier modulation techniques. Through analytical models and simulations using real hardware and environment settings, both communication and processing energy consumptions, BER, spectral efficiency, and total time delay of multiple cooperative nodes each with single antenna are evaluated. The results show that cooperative Virtual-MIMO with Binary Phase Shift Keying-Wavelet based Orthogonal Frequency Division Multiplexing (BPSK-WOFDM) modulation is a promising solution for future high data-rate and energy-efficient WSNs. PMID:23760087
Photovoltaic roofing tile systems
NASA Astrophysics Data System (ADS)
Melchior, B.
The integration of photovoltaic (PV) systems in architecture is discussed. A PV-solar roofing tile system with polymer concrete base; PV-roofing tile with elastomer frame profiles and aluminum profile frames; contact technique; and solar cell modules measuring technique are described. Field tests at several places were conducted on the solar generator, electric current behavior, battery station, electric installation, power conditioner, solar measuring system with magnetic bubble memory technique, data transmission via telephone modems, and data processing system. The very favorable response to the PV-compact system proves the commercial possibilities of photovoltaic integration in architecture.
Laser prospects for SPS and restoration of the ozone layer
NASA Technical Reports Server (NTRS)
Kruzhilin, Yuri
1992-01-01
Large-scale applications of high-power lasers are considered (special experiments are described to confirm the feasibility of these applications) to achieve also large-scale environmental advantages. The possibility of producing electric energy by Laser-Solar Power Satellites in the near future is discussed. A full-scale experimental L-SPS satellite is suggested as a module of a global space energy network. Electric power of about 10 MW at the surface of the Earth is achievable as a result of energy conversion of laser radiation. L-SPS is based on the greatest advantages of present optics and laser techniques. Specialized-scale experiments are carried out and described. L-SPS project could provide real electricity for consumers not later than by highly developed fusion techniques, and the environmental aftereffects are quite favorable. A new method of power supply for satellites is suggested, based on the connection of an on-board electric circuit directly with the ground-based power grid by means of laser beams.
NASA Astrophysics Data System (ADS)
Singh, Vinay Kumar; Dalal, U. D.
2017-10-01
In this research literature we present a unique optical OFDM system for Visible Light Communication (VLC) intended for indoor application which uses a non conventional transform-Fast Hartley Transform and an effective method to reduce the peak to average power ratio (PAPR) of the OFDM signal based on frequency modulation leading to a constant envelope (CE) signal. The proposed system is analyzed by a complete mathematical model and verified by the concurrent simulations results. The use of the non conventional transform makes the system computationally more desirable as it does not require the Hermitian symmetry constraint to yield real signals. The frequency modulation of the baseband signal converge random peaks into a CE signal. This leads to alleviation of the non linearity effects of the LED used in the link for electrical to optical conversion. The PAPR is reduced to 2 dB by this technique in this work. The impact of the modulation index on the performance of the system is also investigated. An optimum modulation depth of 30% gives better results. The additional phase discontinuity incurring on the demodulated signal at the receiver is also significantly reduced. A comparison of the improvement in phase discontinuity of the proposed technique of combating the PAPR with the previously known phase modulation technique is also presented in this work. Based on the channel metrics we evaluate the system performance and report an improvement of 1.2 dB at the FEC threshold. The proposed system is simple in design and computationally efficient and this can be incorporated into the present VLC system without much alteration thereby making it a cost effective solution.
Spectral and Power Stability Tests of Deep UV LEDs for AC Charge Management
NASA Astrophysics Data System (ADS)
Sun, Ke-Xun; Higuchi, Sei; Goh, Allex; Allard, Brett; Gill, Dale; Buchman, Saps; Byer, Robert
2006-11-01
Deep ultraviolet (UV) LEDs have recently been used in AC charge management experiments to support gravitational reference sensors for future space missions. The UV LED based charge management system offers compact size, light weight, and low power consumption compared to plasma sources. The AC charge management technique, which is enabled by easy modulation of UV LED output, achieves higher dynamic range for charge control. Further, the high modulation frequency, which is out of the gravitational wave detection band, reduces disturbances to the proof mass. However, there is a need to test and possibly improve the lifetime of UV LEDs, which were developed only a year ago. We have initiated a series of spectral and power stability tests for UV LEDs and designed experiments according to the requirements of AC charge management. We operate UV LEDs with a modulated current drive and maintain the operating temperature at 22 °C,28 similar to the LISA spacecraft working condition. The testing procedures involve measuring the baseline spectral shape and output power level prior to the beginning of the tests and then re-measuring the same quantities periodically. As of the date of submission (August 28th, 2006), we have operated a UV LED for more than 2,700 hours.
Beam combining and SBS suppression in white noise and pseudo-random modulated amplifiers
NASA Astrophysics Data System (ADS)
Anderson, Brian; Flores, Angel; Holten, Roger; Ehrenreich, Thomas; Dajani, Iyad
2015-03-01
White noise phase modulation (WNS) and pseudo-random binary sequence phase modulation (PRBS) are effective techniques for mitigation of nonlinear effects such as stimulated Brillouin scattering (SBS); thereby paving the way for higher power narrow linewidth fiber amplifiers. However, detailed studies comparing both coherent beam combination and the SBS suppression of these phase modulation schemes have not been reported. In this study an active fiber cutback experiment is performed comparing the enhancement factor of a PRBS and WNS broadened seed as a function of linewidth and fiber length. Furthermore, two WNS and PRBS modulated fiber lasers are coherently combined to measure and compare the fringe visibility and coherence length as a function of optical path length difference. Notably, the discrete frequency comb of PRBS modulation provides a beam combining re-coherence effect where the lasers periodically come back into phase. Significantly, this may reduce path length matching complexity in coherently combined fiber laser systems.
Complex modulation using tandem polarization modulators
NASA Astrophysics Data System (ADS)
Hasan, Mehedi; Hall, Trevor
2017-11-01
A novel photonic technique for implementing frequency up-conversion or complex modulation is proposed. The proposed circuit consists of a sandwich of a quarter-wave plate between two polarization modulators, driven, respectively, by an in-phase and quadrature-phase signals. The operation of the circuit is modelled using a transmission matrix method. The theoretical prediction is then validated by simulation using an industry-standard software tool. The intrinsic conversion efficiency of the architecture is improved by 6 dB over a functionally equivalent design based on dual parallel Mach-Zehnder modulators. Non-ideal scenarios such as imperfect alignment of the optical components and power imbalances and phase errors in the electric drive signals are also analysed. As light travels, along one physical path, the proposed design can be implemented using discrete components with greater control of relative optical path length differences. The circuit can further be integrated in any material platform that offers electro-optic polarization modulators.
Modeling of power control schemes in induction cooking devices
NASA Astrophysics Data System (ADS)
Beato, Alessio; Conti, Massimo; Turchetti, Claudio; Orcioni, Simone
2005-06-01
In recent years, with remarkable advancements of power semiconductor devices and electronic control systems, it becomes possible to apply the induction heating technique for domestic use. In order to achieve the supply power required by these devices, high-frequency resonant inverters are used: the force commutated, half-bridge series resonant converter is well suited for induction cooking since it offers an appropriate balance between complexity and performances. Power control is a key issue to attain efficient and reliable products. This paper describes and compares four power control schemes applied to the half-bridge series resonant inverter. The pulse frequency modulation is the most common control scheme: according to this strategy, the output power is regulated by varying the switching frequency of the inverter circuit. Other considered methods, originally developed for induction heating industrial applications, are: pulse amplitude modulation, asymmetrical duty cycle and pulse density modulation which are respectively based on variation of the amplitude of the input supply voltage, on variation of the duty cycle of the switching signals and on variation of the number of switching pulses. Each description is provided with a detailed mathematical analysis; an analytical model, built to simulate the circuit topology, is implemented in the Matlab environment in order to obtain the steady-state values and waveforms of currents and voltages. For purposes of this study, switches and all reactive components are modelled as ideal and the "heating-coil/pan" system is represented by an equivalent circuit made up of a series connected resistance and inductance.
Imran, Tayyab; Lee, Yong S; Nam, Chang H; Hong, Kyung-Han; Yu, Tae J; Sung, Jae H
2007-01-08
We have stabilized and electronically controlled the carrier-envelope phase (CEP) of high-power femtosecond laser pulses, generated in a grating-based chirped-pulse amplification kHz Ti:sapphire laser, using the direct locking technique [Opt. Express 13, 2969 (2005)] combined with a slow feedback loop. An f-2f spectral interferometer has shown the CEP stabilities of 1.2 rad with the direct locking loop applied to the oscillator and of 180 mrad with an additional slow feedback loop, respectively. The electronic CEP modulations that can be easily realized in the direct locking loop are also demonstrated with the amplified pulses.
Asymmetric optical image encryption using Kolmogorov phase screens and equal modulus decomposition
NASA Astrophysics Data System (ADS)
Kumar, Ravi; Bhaduri, Basanta; Quan, Chenggen
2017-11-01
An asymmetric technique for optical image encryption is proposed using Kolmogorov phase screens (KPSs) and equal modulus decomposition (EMD). The KPSs are generated using the power spectral density of Kolmogorov turbulence. The input image is first randomized and then Fresnel propagated with distance d. Further, the output in the Fresnel domain is modulated with a random phase mask, and the gyrator transform (GT) of the modulated image is obtained with an angle α. The EMD is operated on the GT spectrum to get the complex images, Z1 and Z2. Among these, Z2 is reserved as a private key for decryption and Z1 is propagated through a medium consisting of four KPSs, located at specified distances, to get the final encrypted image. The proposed technique provides a large set of security keys and is robust against various potential attacks. Numerical simulation results validate the effectiveness and security of the proposed technique.
High range free space optic transmission using new dual diffuser modulation technique
NASA Astrophysics Data System (ADS)
Rahman, A. K.; Julai, N.; Jusoh, M.; Rashidi, C. B. M.; Aljunid, S. A.; Anuar, M. S.; Talib, M. F.; Zamhari, Nurdiani; Sahari, S. k.; Tamrin, K. F.; Jong, Rudiyanto P.; Zaidel, D. N. A.; Mohtadzar, N. A. A.; Sharip, M. R. M.; Samat, Y. S.
2017-11-01
Free space optical communication fsoc is vulnerable with fluctuating atmospheric. This paper focus analyzes the finding of new technique dual diffuser modulation (ddm) to mitigate the atmospheric turbulence effect. The performance of fsoc under the presence of atmospheric turbulence will cause the laser beam keens to (a) beam wander, (b) beam spreading and (c) scintillation. The most deteriorate the fsoc is scintillation where it affected the wavefront cause to fluctuating signal and ultimately receiver can turn into saturate or loss signal. Ddm approach enhances the detecting bit `1' and bit `0' and improves the power received to combat with turbulence effect. The performance focus on signal-to-noise (snr) and bit error rate (ber) where the numerical result shows that the ddm technique able to improves the range where estimated approximately 40% improvement under weak turbulence and 80% under strong turbulence.
Coherent beam combining of collimated fiber array based on target-in-the-loop technique
NASA Astrophysics Data System (ADS)
Li, Xinyang; Geng, Chao; Zhang, Xiaojun; Rao, Changhui
2011-11-01
Coherent beam combining (CBC) of fiber array is a promising way to generate high power and high quality laser beams. Target-in-the-loop (TIL) technique might be an effective way to ensure atmosphere propagation compensation without wavefront sensors. In this paper, we present very recent research work about CBC of collimated fiber array using TIL technique at the Key Lab on Adaptive Optics (KLAO), CAS. A novel Adaptive Fiber Optics Collimator (AFOC) composed of phase-locking module and tip/tilt control module was developed. CBC experimental setup of three-element fiber array was established. Feedback control is realized using stochastic parallel gradient descent (SPGD) algorithm. The CBC based on TIL with piston and tip/tilt correction simultaneously is demonstrated. And the beam pointing to locate or sweep position of combined spot on target was achieved through TIL technique too. The goal of our work is achieve multi-element CBC for long-distance transmission in atmosphere.
New Modulation Method and Control Strategies for Power Electronics Inverters
NASA Astrophysics Data System (ADS)
Aleenejad, Mohsen
The DC to AC power Converters (so-called Inverters) are widely used in industrial applications. The MLIs are becoming increasingly popular in industrial apparatus aimed at medium to high power conversion applications. In comparison to the conventional inverters, they feature superior characteristics such as lower total harmonic distortion (THD), higher efficiency, and lower switching voltage stress. Nevertheless, the superior characteristics come at the price of a more complex topology with an increased number of power electronic switches. The increased number of power electronics switches results in more complicated control strategies for the inverter. Moreover, as the number of power electronic switches increases, the chances of fault occurrence of the switches increases, and thus the inverter's reliability decreases. Due to the extreme monetary ramifications of the interruption of operation in commercial and industrial applications, high reliability for power inverters utilized in these sectors is critical. As a result, developing simple control strategies for normal and fault-tolerant operation of MLIs has always been an interesting topic for researchers in related areas. The purpose of this dissertation is to develop new control and fault-tolerant strategies for the multilevel power inverter. For the normal operation of the inverter, a new high switching frequency technique is developed. The proposed method extends the utilization of the dc link voltage while minimizing the dv/dt of the switches. In the event of a fault, the line voltages of the faulty inverters are unbalanced and cannot be applied to the 3-phase loads. For the faulty condition of the inverter, three novel fault-tolerant techniques are developed. The proposed fault-tolerant strategies generate balanced line voltages without bypassing any healthy and operative inverter element, makes better use of the inverter capacity and generates higher output voltage. These strategies exploit the advantages of the Selective Harmonic Elimination (SHE) and Space Vector Modulation (SVM) methods in conjunction with a slightly modified Fundamental Phase Shift Compensation (FPSC) technique to generate balanced voltages and manipulate voltage harmonics at the same time. The proposed strategies are applicable to several classes of MLIs with three or more voltage levels.
MEMS-based power generation techniques for implantable biosensing applications.
Lueke, Jonathan; Moussa, Walied A
2011-01-01
Implantable biosensing is attractive for both medical monitoring and diagnostic applications. It is possible to monitor phenomena such as physical loads on joints or implants, vital signs, or osseointegration in vivo and in real time. Microelectromechanical (MEMS)-based generation techniques can allow for the autonomous operation of implantable biosensors by generating electrical power to replace or supplement existing battery-based power systems. By supplementing existing battery-based power systems for implantable biosensors, the operational lifetime of the sensor is increased. In addition, the potential for a greater amount of available power allows additional components to be added to the biosensing module, such as computational and wireless and components, improving functionality and performance of the biosensor. Photovoltaic, thermovoltaic, micro fuel cell, electrostatic, electromagnetic, and piezoelectric based generation schemes are evaluated in this paper for applicability for implantable biosensing. MEMS-based generation techniques that harvest ambient energy, such as vibration, are much better suited for implantable biosensing applications than fuel-based approaches, producing up to milliwatts of electrical power. High power density MEMS-based approaches, such as piezoelectric and electromagnetic schemes, allow for supplemental and replacement power schemes for biosensing applications to improve device capabilities and performance. In addition, this may allow for the biosensor to be further miniaturized, reducing the need for relatively large batteries with respect to device size. This would cause the implanted biosensor to be less invasive, increasing the quality of care received by the patient.
Optically powered active sensing system for Internet Of Things
NASA Astrophysics Data System (ADS)
Gao, Chen; Wang, Jin; Yin, Long; Yang, Jing; Jiang, Jian; Wan, Hongdan
2014-10-01
Internet Of Things (IOT) drives a significant increase in the extent and type of sensing technology and equipment. Sensors, instrumentation, control electronics, data logging and transmission units comprising such sensing systems will all require to be powered. Conventionally, electrical powering is supplied by batteries or/and electric power cables. The power supply by batteries usually has a limited lifetime, while the electric power cables are susceptible to electromagnetic interference. In fact, the electromagnetic interference is the key issue limiting the power supply in the strong electromagnetic radiation area and other extreme environments. The novel alternative method of power supply is power over fiber (PoF) technique. As fibers are used as power supply lines instead, the delivery of the power is inherently immune to electromagnetic radiation, and avoids cumbersome shielding of power lines. Such a safer power supply mode would be a promising candidate for applications in IOT. In this work, we built up optically powered active sensing system, supplying uninterrupted power for the remote active sensors and communication modules. Also, we proposed a novel maximum power point tracking technique for photovoltaic power convertors. In our system, the actual output efficiency greater than 40% within 1W laser power. After 1km fiber transmission and opto-electric power conversion, a stable electric power of 210mW was obtained, which is sufficient for operating an active sensing system.
W-band PELDOR with 1 kW microwave power: molecular geometry, flexibility and exchange coupling.
Reginsson, Gunnar W; Hunter, Robert I; Cruickshank, Paul A S; Bolton, David R; Sigurdsson, Snorri Th; Smith, Graham M; Schiemann, Olav
2012-03-01
A technique that is increasingly being used to determine the structure and conformational flexibility of biomacromolecules is Pulsed Electron-Electron Double Resonance (PELDOR or DEER), an Electron Paramagnetic Resonance (EPR) based technique. At X-band frequencies (9.5 GHz), PELDOR is capable of precisely measuring distances in the range of 1.5-8 nm between paramagnetic centres but the orientation selectivity is weak. In contrast, working at higher frequencies increases the orientation selection but usually at the expense of decreased microwave power and PELDOR modulation depth. Here it is shown that a home-built high-power pulsed W-band EPR spectrometer (HiPER) with a large instantaneous bandwidth enables one to achieve PELDOR data with a high degree of orientation selectivity and large modulation depths. We demonstrate a measurement methodology that gives a set of PELDOR time traces that yield highly constrained data sets. Simulating the resulting time traces provides a deeper insight into the conformational flexibility and exchange coupling of three bisnitroxide model systems. These measurements provide strong evidence that W-band PELDOR may prove to be an accurate and quantitative tool in assessing the relative orientations of nitroxide spin labels and to correlate those orientations to the underlying biological structure and dynamics. Copyright © 2012 Elsevier Inc. All rights reserved.
Control and performance of the AGS and AGS Booster Main Magnet Power Supplies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reece, R.K.; Casella, R.; Culwick, B.
1993-06-01
Techniques for precision control of the main magnet power supplies for the AGS and AGS Booster synchrotron will be discussed. Both synchrotrons are designed to operate in a Pulse-to-Pulse Modulation (PPM) environment with a Supercycle Generator defining and distributing global timing events for the AGS Facility. Details of modelling, real-time feedback and feedforward systems, generation and distribution of real time field data, operational parameters and an overview of performance for both machines are included.
Control and performance of the AGS and AGS Booster Main Magnet Power Supplies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reece, R.K.; Casella, R.; Culwick, B.
1993-01-01
Techniques for precision control of the main magnet power supplies for the AGS and AGS Booster synchrotron will be discussed. Both synchrotrons are designed to operate in a Pulse-to-Pulse Modulation (PPM) environment with a Supercycle Generator defining and distributing global timing events for the AGS Facility. Details of modelling, real-time feedback and feedforward systems, generation and distribution of real time field data, operational parameters and an overview of performance for both machines are included.
Performance of adaptive DD-OFDM multicore fiber links and its relation with intercore crosstalk.
Alves, Tiago M F; Luís, Ruben S; Puttnam, Benjamin J; Cartaxo, Adolfo V T; Awaji, Yoshinari; Wada, Naoya
2017-07-10
Adaptive direct-detection (DD) orthogonal frequency-division multiplexing (OFDM) is proposed to guarantee signal quality over time in weakly-coupled homogenous multicore fiber (MCFs) links impaired by stochastic intercore crosstalk (ICXT). For the first time, the received electrical power of the ICXT and the performance of the adaptive DD-OFDM MCF link are experimentally monitored quasi-simultaneously over a 210 hour period. Experimental results show that the time evolution of the error vector magnitude due to the ICXT can be suitably estimated from the normalized power of the detected crosstalk. The detected crosstalk results from the beating between the carrier in the test core and ICXT originating from the carrier and modulated signal from interfering core. The results show that the operation of DD-OFDM systems employing fixed modulation can be severely impaired by the presence of ICXT that may unpredictable vary in both power and frequency. The system may suffer from deleterious impact of moderate ICXT levels over a time duration of several hours or from peak ICXT levels occurring over a number of minutes. Such power fluctuations can lead to large variations in bit error ratio (BER) for static modulation schemes. Here, we show that BER fluctuations may be minimized by the use of adaptive modulation techniques and that in particular, the adaptive OFDM is a viable solution to guarantee link quality in MCF-based systems. An experimental model of an adaptive DD-OFDM MCF link shows an average throughput of 12 Gb/s that represents a reduction of only 9% compared to the maximum throughput measured without ICXT and an improvement of 23% relative to throughput obtained with static modulation.
An electro-optic modulator-assisted wavevector-resolving Brillouin light scattering setup.
Neumann, T; Schneider, T; Serga, A A; Hillebrands, B
2009-05-01
Brillouin light scattering spectroscopy is a powerful technique which incorporates several extensions such as space-, time-, phase-, and wavevector-resolution. Here, we report on the improvement of the wavevector-resolving setup by including an electro-optic modulator. This provides a reference to calibrate the position of the diaphragm hole which is used for wavevector selection. The accuracy of this calibration is only limited by the accuracy of the wavevector measurement itself. To demonstrate the validity of the approach the wavevectors of dipole-dominated spin waves excited by a microstrip antenna were measured.
Electroabsorption-modulated widely tunable DBR laser transmitter for WDM-PONs.
Han, Liangshun; Liang, Song; Wang, Huitao; Qiao, Lijun; Xu, Junjie; Zhao, Lingjuan; Zhu, Hongliang; Wang, Baojun; Wang, Wei
2014-12-01
We present an InP based distributed Bragg reflector (DBR) laser transmitter which has a wide wavelength tuning range and a high chip output power for wavelength division multiplexing passive optical network (WDM-PON) applications. By butt-jointing InGaAsP with 1.45 µm emission wavelength as the material of the grating section, the laser wavelength can be tuned for over 13 nm by the DBR current. Accompanied by varying the chip temperature, the tuning range can be further enlarged to 16 nm. With the help of the integrated semiconductor optical amplifier (SOA), the largest chip output power is over 30 mW. The electroabsorption modulator (EAM) is integrated into the device by the selective-area growth (SAG) technique. The 3 dB small signal modulation bandwidth of the EAM is over 13 GHz. The device has both a simple tuning scheme and a simple fabrication procedure, making it suitable for low cost massive production which is desirable for WDM-PON uses.
Advanced insulated gate bipolar transistor gate drive
Short, James Evans [Monongahela, PA; West, Shawn Michael [West Mifflin, PA; Fabean, Robert J [Donora, PA
2009-08-04
A gate drive for an insulated gate bipolar transistor (IGBT) includes a control and protection module coupled to a collector terminal of the IGBT, an optical communications module coupled to the control and protection module, a power supply module coupled to the control and protection module and an output power stage module with inputs coupled to the power supply module and the control and protection module, and outputs coupled to a gate terminal and an emitter terminal of the IGBT. The optical communications module is configured to send control signals to the control and protection module. The power supply module is configured to distribute inputted power to the control and protection module. The control and protection module outputs on/off, soft turn-off and/or soft turn-on signals to the output power stage module, which, in turn, supplies a current based on the signal(s) from the control and protection module for charging or discharging an input capacitance of the IGBT.
NASA Astrophysics Data System (ADS)
Biswas, S.; Kumbhakar, P.
2017-02-01
We have reported here, for the first time, to the best of our knowledge, a high nonlinear refractive index (n2e) of a natural pigment extracted from Hibiscus rosa-sinensis leaves by using spatial self-phase modulation technique (SSPM) with a low power CW He-Ne laser radiation at 632.8 nm. It is found by UV-Vis absorption spectroscopic analysis that chlrophyll-a, chlrophyll-b and carotenoid are present in the pigment extract with 56%, 25% and 19%, respectively. The photoluminescence (PL) emission characteristics of the extracted samples have also been measured at room temperature as well as in the temperature range of 283-333 K to investigate the effect of temperature on luminescent properties of the sample. By analyzing the SSPM experimental data, the nonlinear refractive index value of pigment extract has been determined to be 3.5 × 10- 5 cm2/W. The large nonlinear refractive index has been assigned due to asymmetrical structure, molecular reorientation and thermally induced nonlinearity in the sample. The presented results might open new avenues for the green and economical technique of syntheses of organic dyes with such a large nonlinear optical property.
Improved measurement linearity and precision for AMCW time-of-flight range imaging cameras.
Payne, Andrew D; Dorrington, Adrian A; Cree, Michael J; Carnegie, Dale A
2010-08-10
Time-of-flight range imaging systems utilizing the amplitude modulated continuous wave (AMCW) technique often suffer from measurement nonlinearity due to the presence of aliased harmonics within the amplitude modulation signals. Typically a calibration is performed to correct these errors. We demonstrate an alternative phase encoding approach that attenuates the harmonics during the sampling process, thereby improving measurement linearity in the raw measurements. This mitigates the need to measure the system's response or calibrate for environmental changes. In conjunction with improved linearity, we demonstrate that measurement precision can also be increased by reducing the duty cycle of the amplitude modulated illumination source (while maintaining overall illumination power).
Cost-effective bidirectional digitized radio-over-fiber systems employing sigma delta modulation
NASA Astrophysics Data System (ADS)
Lee, Kyung Woon; Jung, HyunDo; Park, Jung Ho
2016-11-01
We propose a cost effective digitized radio-over-fiber (D-RoF) system employing a sigma delta modulation (SDM) and a bidirectional transmission technique using phase modulated downlink and intensity modulated uplink. SDM is transparent to different radio access technologies and modulation formats, and more suitable for a downlink of wireless system because a digital to analog converter (DAC) can be avoided at the base station (BS). Also, Central station and BS share the same light source by using a phase modulation for the downlink and an intensity modulation for the uplink transmission. Avoiding DACs and light sources have advantages in terms of cost reduction, power consumption, and compatibility with conventional wireless network structure. We have designed a cost effective bidirectional D-RoF system using a low pass SDM and measured the downlink and uplink transmission performance in terms of error vector magnitude, signal spectra, and constellations, which are based on the 10MHz LTE 64-QAM standard.
Structural materials by powder HIP for fusion reactors
NASA Astrophysics Data System (ADS)
Dellis, C.; Le Marois, G.; van Osch, E. V.
1998-10-01
Tokamak blankets have complex shapes and geometries with double curvature and embedded cooling channels. Usual manufacturing techniques such as forging, bending and welding generate very complex fabrication routes. Hot Isostatic Pressing (HIP) is a versatile and flexible fabrication technique that has a broad range of commercial applications. Powder HIP appears to be one of the most suitable techniques for the manufacturing of such complex shape components as fusion reactor modules. During the HIP cycle, consolidation of the powder is made and porosity in the material disappears. This involves a variation of 30% in volume of the component. These deformations are not isotropic due to temperature gradients in the part and the stiffness of the canister. This paper discusses the following points: (i) Availability of manufacturing process by powder HIP of 316LN stainless steel (ITER modules) and F82H martensitic steel (ITER Test Module and DEMO blanket) with properties equivalent to the forged one.(ii) Availability of powerful modelling techniques to simulate the densification of powder during the HIP cycle, and to control the deformation of components during consolidation by improving the canister design.(iii) Material data base needed for simulation of the HIP process, and the optimisation of canister geometry.(iv) Irradiation behaviour on powder HIP materials from preliminary results.
Investigation on the Maximum Power Point in Solar Panel Characteristics Due to Irradiance Changes
NASA Astrophysics Data System (ADS)
Abdullah, M. A.; Fauziah Toha, Siti; Ahmad, Salmiah
2017-03-01
One of the disadvantages of the photovoltaic module as compared to other renewable resources is the dynamic characteristics of solar irradiance due to inconsistency weather condition and surrounding temperature. Commonly, a photovoltaic power generation systems consist of an embedded control system to maximize the power generation due to the inconsistency in irradiance. In order to improve the simplicity of the power optimization control, this paper present the characteristic of Maximum Power Point with various irradiance levels for Maximum Power Point Tracking (MPPT). The technique requires a set of data from photovoltaic simulation model to be extrapolated as a standard relationship between irradiance and maximum power. The result shows that the relationship between irradiance and maximum power can be represented by a simplified quadratic equation. The first section in your paper
622-Mbps Orthogonal Frequency Division Multiplexing (OFDM) Digital Modem Implemented
NASA Technical Reports Server (NTRS)
Kifle, Muli; Bizon, Thomas P.; Nguyen, Nam T.; Tran, Quang K.; Mortensen, Dale J.
2002-01-01
Future generation space communications systems feature significantly higher data rates and relatively smaller frequency spectrum allocations than systems currently deployed. This requires the application of bandwidth- and power-efficient signal transmission techniques. There are a number of approaches to implementing such techniques, including analog, digital, mixed-signal, single-channel, or multichannel systems. In general, the digital implementations offer more advantages; however, a fully digital implementation is very difficult because of the very high clock speeds required. Multichannel techniques are used to reduce the sampling rate. One such technique, multicarrier modulation, divides the data into a number of low-rate channels that are stacked in frequency. Orthogonal frequency division multiplexing (OFDM), a form of multicarrier modulation, is being proposed for numerous systems, including mobile wireless and digital subscriber link communication systems. In response to this challenge, NASA Glenn Research Center's Communication Technology Division has developed an OFDM digital modem (modulator and demodulator) with an aggregate information throughput of 622 Mbps. The basic OFDM waveform is constructed by dividing an incoming data stream into four channels, each using either 16- ary quadrature amplitude modulation (16-QAM) or 8-phase shift keying (8-PSK). An efficient implementation for an OFDM architecture is being achieved using the combination of a discrete Fourier transform (DFT) at the transmitter to digitally stack the individual carriers, inverse DFT at the receiver to perform the frequency translations, and a polyphase filter to facilitate the pulse shaping.
Tone calibration technique: A digital signaling scheme for mobile applications
NASA Technical Reports Server (NTRS)
Davarian, F.
1986-01-01
Residual carrier modulation is conventionally used in a communication link to assist the receiver with signal demodulation and detection. Although suppressed carrier modulation has a slight power advantage over the residual carrier approach in systems enjoying a high level of stability, it lacks sufficient robustness to be used in channels severely contaminated by noise, interference and propagation effects. In mobile links, in particular, the vehicle motion and multipath waveform propagation affect the received carrier in an adverse fashion. A residual carrier scheme that uses a pilot carrier to calibrate a mobile channel against multipath fading anomalies is described. The benefits of this scheme, known as tone calibration technique, are described. A brief study of the system performance in the presence of implementation anomalies is also given.
Development of Manufacturing Technology to Accelerate Cost Reduction of Low Concentration and
DOE Office of Scientific and Technical Information (OSTI.GOV)
Detrick, Adam
The purpose of this project was to accelerate deployment of cost-effective US-based manufacturing of Solaria’s unique c-Si module technology. This effort successfully resulted in the development of US-based manufacturing technology to support two highly-differentiated, market leading product platforms. The project was initially predicated on developing Solaria’s low-concentration PV (LCPV) module technology which at the time of the award was uniquely positioned to exceed the SunShot price goal of $0.50/Wp for standard c-Si modules. The Solaria LCPV module is a 2.5x concentrator that leverages proven, high-reliability PV module materials and low silicon cell usage into a technology package that already hadmore » the lowest direct material cost and leading Levelized Cost of Electricity (LCOE). With over 25 MW commercially deployed globally, the Solaria module was well positioned to continue to lead in PV module cost reduction. Throughout the term of the contract, market conditions changed dramatically and so to did Solaria’s product offerings to support this. However, the manufacturing technology developed for the LCPV module was successfully leveraged and optimized to support two new and different product platforms. BIPV “PowerVision” and High-efficiency “PowerXT” modules. The primary barrier to enabling high-volume PV module manufacturing in the US is the high manual labor component in certain unique aspects of our manufacturing process. The funding was used to develop unique manufacturing automation which makes the manual labor components of these key processes more efficient and increase throughput. At the core of Solaria’s product offerings are its unique and proprietary techniques for dicing and re-arranging solar cells into modules with highly-differentiated characteristics that address key gaps in the c-Si market. It is these techniques that were successfully evolved and deployed into US-based manufacturing site with SunShot funding. Today, Solaria is currently positioned to become the market leader with these two technologies over the coming 24 months largely due to the successful innovations of the underlying manufacturing technology. This success will leverage US-based manufacturing technology and the associated US-jobs to support. Solaria views the project as highly successful and a great example of SunShot funding enabling the creating of US jobs and the deployment of ubiquitous solar energy products.« less
A Compact Low-Power Driver Array for VCSELs in 65-nm CMOS Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeng, Zhiyao; Sun, Kexu; Wang, Guanhua
This article presents a compact low-power 4 x 10 Gb/s quad-driver module for Vertical-Cavity Surface-Emitting Laser (VCSEL) arrays in a 65 nm CMOS technology. The side-by-side drivers can be directly wire bonded to the VCSEL diode array, supporting up to 4 channels. To increase the bandwidth of the driver, an internal feed-forward path is added for pole-zero cancellation, without increasing the power consumption. An edge-configurable pre-emphasis technique is proposed to achieve high bandwidth and minimize the asymmetry of the fall and rise times of the driver output current. Measurement results demonstrate a RMS jitter of 0.68 ps for 10 Gb/smore » operation. Tests demonstrate negligible crosstalk between channels. Under irradiation, the modulation amplitude degrades less than 5% up to 300 Mrad ionizing dose. Finally, the area of the quaddriver array is 500 μm by 1000 μm and the total power consumption for the entire driver array chip is 130 mW for the typical current setting.« less
A Compact Low-Power Driver Array for VCSELs in 65-nm CMOS Technology
Zeng, Zhiyao; Sun, Kexu; Wang, Guanhua; ...
2017-05-08
This article presents a compact low-power 4 x 10 Gb/s quad-driver module for Vertical-Cavity Surface-Emitting Laser (VCSEL) arrays in a 65 nm CMOS technology. The side-by-side drivers can be directly wire bonded to the VCSEL diode array, supporting up to 4 channels. To increase the bandwidth of the driver, an internal feed-forward path is added for pole-zero cancellation, without increasing the power consumption. An edge-configurable pre-emphasis technique is proposed to achieve high bandwidth and minimize the asymmetry of the fall and rise times of the driver output current. Measurement results demonstrate a RMS jitter of 0.68 ps for 10 Gb/smore » operation. Tests demonstrate negligible crosstalk between channels. Under irradiation, the modulation amplitude degrades less than 5% up to 300 Mrad ionizing dose. Finally, the area of the quaddriver array is 500 μm by 1000 μm and the total power consumption for the entire driver array chip is 130 mW for the typical current setting.« less
NASA Astrophysics Data System (ADS)
Hejri, Mohammad; Mokhtari, Hossein; Azizian, Mohammad Reza; Söder, Lennart
2016-04-01
Parameter extraction of the five-parameter single-diode model of solar cells and modules from experimental data is a challenging problem. These parameters are evaluated from a set of nonlinear equations that cannot be solved analytically. On the other hand, a numerical solution of such equations needs a suitable initial guess to converge to a solution. This paper presents a new set of approximate analytical solutions for the parameters of a five-parameter single-diode model of photovoltaic (PV) cells and modules. The proposed solutions provide a good initial point which guarantees numerical analysis convergence. The proposed technique needs only a few data from the PV current-voltage characteristics, i.e. open circuit voltage Voc, short circuit current Isc and maximum power point current and voltage Im; Vm making it a fast and low cost parameter determination technique. The accuracy of the presented theoretical I-V curves is verified by experimental data.
SiC Multi-Chip Power Modules as Power-System Building Blocks
NASA Technical Reports Server (NTRS)
Lostetter, Alexander; Franks, Steven
2007-01-01
The term "SiC MCPMs" (wherein "MCPM" signifies "multi-chip power module") denotes electronic power-supply modules containing multiple silicon carbide power devices and silicon-on-insulator (SOI) control integrated-circuit chips. SiC MCPMs are being developed as building blocks of advanced expandable, reconfigurable, fault-tolerant power-supply systems. Exploiting the ability of SiC semiconductor devices to operate at temperatures, breakdown voltages, and current densities significantly greater than those of conventional Si devices, the designs of SiC MCPMs and of systems comprising multiple SiC MCPMs are expected to afford a greater degree of miniaturization through stacking of modules with reduced requirements for heat sinking. Moreover, the higher-temperature capabilities of SiC MCPMs could enable operation in environments hotter than Si-based power systems can withstand. The stacked SiC MCPMs in a given system can be electrically connected in series, parallel, or a series/parallel combination to increase the overall power-handling capability of the system. In addition to power connections, the modules have communication connections. The SOI controllers in the modules communicate with each other as nodes of a decentralized control network, in which no single controller exerts overall command of the system. Control functions effected via the network include synchronization of switching of power devices and rapid reconfiguration of power connections to enable the power system to continue to supply power to a load in the event of failure of one of the modules. In addition to serving as building blocks of reliable power-supply systems, SiC MCPMs could be augmented with external control circuitry to make them perform additional power-handling functions as needed for specific applications: typical functions could include regulating voltages, storing energy, and driving motors. Because identical SiC MCPM building blocks could be utilized in a variety of ways, the cost and difficulty of designing new, highly reliable power systems would be reduced considerably. Several prototype DC-to-DC power-converter modules containing SiC power-switching devices were designed and built to demonstrate the feasibility of the SiC MCPM concept. In anticipation of a future need for operation at high temperature, the circuitry in the modules includes high-temperature inductors and capacitors. These modules were designed to be stacked to construct a system of four modules electrically connected in series and/or parallel. The packaging of the modules is designed to satisfy requirements for series and parallel interconnection among modules, high power density, high thermal efficiency, small size, and light weight. Each module includes four output power connectors two for serial and two for parallel output power connections among the modules. Each module also includes two signal connectors, electrically isolated from the power connectors, that afford four zones for signal interconnections among the SOI controllers. Finally, each module includes two input power connectors, through which it receives power from an in-line power bus. This design feature is included in anticipation of a custom-designed power bus incorporating sockets compatible with snap-on type connectors to enable rapid replacement of failed modules.
Prototype laser-diode-pumped solid state laser transmitters
NASA Technical Reports Server (NTRS)
Kane, Thomas J.; Cheng, Emily A. P.; Wallace, Richard W.
1989-01-01
Monolithic, diode-pumped Nd:YAG ring lasers can provide diffraction-limited, single-frequency, narrow-linewidth, tunable output which is adequate for use as a local oscillator in a coherent communication system. A laser was built which had a linewidth of about 2 kHz, a power of 5 milliwatts, and which was tunable over a range of 30 MHz in a few microseconds. This laser was phase-locked to a second, similar laser. This demonstrates that the powerful technique of heterodyne detection is possible with a diode-pumped laser used as the local oscillator. Laser diode pumping of monolithic Nd:YAG rings can lead to output powers of hundreds of milliwatts from a single laser. A laser was built with a single-mode output of 310 mW. Several lasers can be chained together to sum their power, while maintaining diffraction-limited, single frequency operation. This technique was demonstrated with two lasers, with a total output of 340 mW, and is expected to be practical for up to about ten lasers. Thus with lasers of 310 mW, output of up to 3 W is possible. The chaining technique, if properly engineered, results in redundancy. The technique of resonant external modulation and doubling is designed to efficiently convert the continuous wave, infrared output of our lasers into low duty-cycle pulsed green output. This technique was verified through both computer modeling and experimentation. Further work would be necessary to develop a deliverable system using this technique.
High-Performance Silicon-Germanium-Based Thermoelectric Modules for Gas Exhaust Energy Scavenging
NASA Astrophysics Data System (ADS)
Romanjek, K.; Vesin, S.; Aixala, L.; Baffie, T.; Bernard-Granger, G.; Dufourcq, J.
2015-06-01
Some of the energy used in transportation and industry is lost as heat, often at high-temperatures, during conversion processes. Thermoelectricity enables direct conversion of heat into electricity, and is an alternative to the waste-heat-recovery technology currently used, for example turbines and other types of thermodynamic cycling. The performance of thermoelectric (TE) materials and modules has improved continuously in recent decades. In the high-temperature range ( T hot side > 500°C), silicon-germanium (SiGe) alloys are among the best TE materials reported in the literature. These materials are based on non-toxic elements. The Thermoelectrics Laboratory at CEA (Commissariat à l'Energie Atomique et aux Energies Alternatives) has synthesized n and p-type SiGe pellets, manufactured TE modules, and integrated these into thermoelectric generators (TEG) which were tested on a dedicated bench with hot air as the source of heat. SiGe TE samples of diameter 60 mm were created by spark-plasma sintering. For n-type SiGe doped with phosphorus the peak thermoelectric figure of merit reached ZT = 1.0 at 700°C whereas for p-type SiGe doped with boron the peak was ZT = 0.75 at 700°C. Thus, state-of-the-art conversion efficiency was obtained while also achieving higher production throughput capacity than for competing processes. A standard deviation <4% in the electrical resistance of batches of ten pellets of both types was indicative of high reproducibility. A silver-paste-based brazing technique was used to assemble the TE elements into modules. This assembly technique afforded low and repeatable electrical contact resistance (<3 nΩ m2). A test bench was developed for measuring the performance of TE modules at high temperatures (up to 600°C), and thirty 20 mm × 20 mm TE modules were produced and tested. The results revealed the performance was reproducible, with power output reaching 1.9 ± 0.2 W for a 370 degree temperature difference. When the temperature difference was increased to 500°C, electrical power output increased to >3.6 W. An air-water heat exchanger was developed and 30 TE modules were clamped and connected electrically. The TEG was tested under vacuum on a hot-air test bench. The measured output power was 45 W for an air flow of 16 g/s at 750°C. The hot surface of the TE module reached 550°C under these conditions. Silicon-germanium TE modules can survive such temperatures, in contrast with commercial modules based on bismuth telluride, which are limited to 400°C.
Method and apparatus for pulse width modulation control of an AC induction motor
Geppert, Steven; Slicker, James M.
1984-01-01
An inverter is connected between a source of DC power and a three-phase AC induction motor, and a micro-processor-based circuit controls the inverter using pulse width modulation techniques. In the disclosed method of pulse width modulation, both edges of each pulse of a carrier pulse train are equally modulated by a time proportional to sin .THETA., where .THETA. is the angular displacement of the pulse center at the motor stator frequency from a fixed reference point on the carrier waveform. The carrier waveform frequency is a multiple of the motor stator frequency. The modulated pulse train is then applied to each of the motor phase inputs with respective phase shifts of 120.degree. at the stator frequency. Switching control commands of electronic switches in the inverter are stored in a random access memory (RAM) and the locations of the RAM are successively read out in a cyclic manner, each bit of a given RAM location controlling a respective phase input of the motor. The DC power source preferably comprises rechargeable batteries and all but one of the electronic switches in the inverter can be disabled, the remaining electronic switch being part of a "flyback" DC-DC converter circuit for recharging the battery.
Method and apparatus for pulse width modulation control of an AC induction motor
NASA Technical Reports Server (NTRS)
Geppert, Steven (Inventor); Slicker, James M. (Inventor)
1984-01-01
An inverter is connected between a source of DC power and a three-phase AC induction motor, and a micro-processor-based circuit controls the inverter using pulse width modulation techniques. In the disclosed method of pulse width modulation, both edges of each pulse of a carrier pulse train are equally modulated by a time proportional to sin .THETA., where .THETA. is the angular displacement of the pulse center at the motor stator frequency from a fixed reference point on the carrier waveform. The carrier waveform frequency is a multiple of the motor stator frequency. The modulated pulse train is then applied to each of the motor phase inputs with respective phase shifts of 120.degree. at the stator frequency. Switching control commands of electronic switches in the inverter are stored in a random access memory (RAM) and the locations of the RAM are successively read out in a cyclic manner, each bit of a given RAM location controlling a respective phase input of the motor. The DC power source preferably comprises rechargeable batteries and all but one of the electronic switches in the inverter can be disabled, the remaining electronic switch being part of a flyback DC-DC converter circuit for recharging the battery.
Yb-doped large-mode-area laser fiber fabricated by halide-gas-phase-doping technique
NASA Astrophysics Data System (ADS)
Peng, Kun; Wang, Yuying; Ni, Li; Wang, Zhen; Gao, Cong; Zhan, Huan; Wang, Jianjun; Jing, Feng; Lin, Aoxiang
2015-06-01
In this manuscript, we designed a rare-earth-halide gas-phase-doping setup to fabricate a large-mode-area fiber for high power laser applications. YbCl3 and AlCl3 halides are evaporated, carried respectively and finally mixed with usual host gas material SiCl4 at the hot zone of MCVD system. Owing to the all-gas-phasing reaction process and environment, the home-made Yb-doped fiber preform has a homogeneous large core and modulated refractive index profile to keep high beam quality. The drawn fiber core has a small numerical aperture of 0.07 and high Yb concentration of 9500 ppm. By using a master oscillator power amplifier system, nearly kW-level (951 W) laser output power was obtained with a slope efficiency of 83.3% at 1063.8 nm, indicating the competition and potential of the halide-gas-phase-doping technique for high power laser fiber fabrication.
Baseband pulse shaping techniques for nonlinearly amplified pi/4-QPSK and QAM systems
NASA Technical Reports Server (NTRS)
Feher, Kamilo
1991-01-01
A new generation of multi-stage pi/4-shifted QPSK and of superposed quadrature-amplitude-modulated (SQAM) modulators-coherent demodulators (modems) and of continuous phase modulated (CPM)-gaussian premodulation filtered minimum-shift-keying (MGMSK) systems is proposed and studied. These modems will lead to bandwidth and power efficient satellite communications systems designs. As an illustrative application, a baseband processing technique pi/4-controlled transition PSK (pi/4-CTPSK) is described. To develop a cost and power efficient design strategy, we assume that nonlinear, fully saturated high power amplifiers (HPA) are utilized in the satellite earth station transmitter and in the satellite transponder. Modem structures which could lead to application specific integrated circuit (ASIC) satellite on-board processing universal modem applications are also considered. Multistate GMSK (i.e., MGMSK) signal generation methods by means of two or more RF combined nonlinearly amplified SQAM modems and by one multistate (in-phase and quadrature-baseband premodulation filtered-superposed) SQAM architecture and one RF nonlinear amplifier are studied. During the SQAM modem development phase we investigate the potential system advantages of the pi/4-shifted logic. The bandwidth efficiency of the proposed multistate GMSK and baseband filtered PAM-FM modulator (a new class in the CPM family) will be significantly higher than that of conventional G-MSK systems. To optimize the practical P(sub e) = f((E sub b)/(N sub o)) performance we consider improved coherent demodulation MGMSK structures such as deviated-frequency locking coherent demodulators. For relative low bit rate SATCOM applications, e.g., bit rates less than 300 kb/s, phase noise tracking cancellation (for fixed site earth station) and phase noise cancellation as well as Doppler compensation (for satellite to mobile earth station) applications may be required. We study digital channel sounding methods which could cancel the phase noise-caused degradations of CPM and GMSK modems.
Long-range distributed optical fiber hot-wire anemometer based on chirped-pulse ΦOTDR.
Garcia-Ruiz, Andres; Dominguez-Lopez, Alejandro; Pastor-Graells, Juan; Martins, Hugo F; Martin-Lopez, Sonia; Gonzalez-Herraez, Miguel
2018-01-08
We demonstrate a technique allowing to develop a fully distributed optical fiber hot-wire anemometer capable of reaching a wind speed uncertainty of ≈ ±0.15m/s (±0.54km/h) at only 60 mW/m of dissipated power in the sensing fiber, and within only four minutes of measurement time. This corresponds to similar uncertainty values than previous papers on distributed optical fiber anemometry but requires two orders of magnitude smaller dissipated power and covers at least one order of magnitude longer distance. This breakthrough is possible thanks to the extreme temperature sensitivity and single-shot performance of chirped-pulse phase-sensitive optical time domain reflectometry (ΦOTDR), together with the availability of metal-coated fibers. To achieve these results, a modulated current is fed through the metal coating of the fiber, causing a modulated temperature variation of the fiber core due to Joule effect. The amplitude of this temperature modulation is strongly dependent on the wind speed at which the fiber is subject. Continuous monitoring of the temperature modulation along the fiber allows to determine the wind speed with singular low power injection requirements. Moreover, this procedure makes the system immune to temperature drifts of the fiber, potentially allowing for a simple field deployment. Being a much less power-hungry scheme, this method also allows for monitoring over much longer distances, in the orders of 10s of km. We expect that this system can have application in dynamic line rating and lateral wind monitoring in railway catenary wires.
Antenna coupled photonic wire lasers
Kao, Tsung-Kao; Cai, Xiaowei; Lee, Alan W. M.; ...
2015-06-22
Slope efficiency (SE) is an important performance metric for lasers. In conventional semiconductor lasers, SE can be optimized by careful designs of the facet (or the modulation for DFB lasers) dimension and surface. However, photonic wire lasers intrinsically suffer low SE due to their deep sub-wavelength emitting facets. Inspired by microwave engineering techniques, we show a novel method to extract power from wire lasers using monolithically integrated antennas. These integrated antennas significantly increase the effective radiation area, and consequently enhance the power extraction efficiency. When applied to wire lasers at THz frequency, we achieved the highest single-side slope efficiency (~450more » mW/A) in pulsed mode for DFB lasers at 4 THz and a ~4x increase in output power at 3 THz compared with a similar structure without antennas. This work demonstrates the versatility of incorporating microwave engineering techniques into laser designs, enabling significant performance enhancements.« less
Kumarasabapathy, N.; Manoharan, P. S.
2015-01-01
This paper proposes a fuzzy logic based new control scheme for the Unified Power Quality Conditioner (UPQC) for minimizing the voltage sag and total harmonic distortion in the distribution system consequently to improve the power quality. UPQC is a recent power electronic module which guarantees better power quality mitigation as it has both series-active and shunt-active power filters (APFs). The fuzzy logic controller has recently attracted a great deal of attention and possesses conceptually the quality of the simplicity by tackling complex systems with vagueness and ambiguity. In this research, the fuzzy logic controller is utilized for the generation of reference signal controlling the UPQC. To enable this, a systematic approach for creating the fuzzy membership functions is carried out by using an ant colony optimization technique for optimal fuzzy logic control. An exhaustive simulation study using the MATLAB/Simulink is carried out to investigate and demonstrate the performance of the proposed fuzzy logic controller and the simulation results are compared with the PI controller in terms of its performance in improving the power quality by minimizing the voltage sag and total harmonic distortion. PMID:26504895
MEMS-Based Power Generation Techniques for Implantable Biosensing Applications
Lueke, Jonathan; Moussa, Walied A.
2011-01-01
Implantable biosensing is attractive for both medical monitoring and diagnostic applications. It is possible to monitor phenomena such as physical loads on joints or implants, vital signs, or osseointegration in vivo and in real time. Microelectromechanical (MEMS)-based generation techniques can allow for the autonomous operation of implantable biosensors by generating electrical power to replace or supplement existing battery-based power systems. By supplementing existing battery-based power systems for implantable biosensors, the operational lifetime of the sensor is increased. In addition, the potential for a greater amount of available power allows additional components to be added to the biosensing module, such as computational and wireless and components, improving functionality and performance of the biosensor. Photovoltaic, thermovoltaic, micro fuel cell, electrostatic, electromagnetic, and piezoelectric based generation schemes are evaluated in this paper for applicability for implantable biosensing. MEMS-based generation techniques that harvest ambient energy, such as vibration, are much better suited for implantable biosensing applications than fuel-based approaches, producing up to milliwatts of electrical power. High power density MEMS-based approaches, such as piezoelectric and electromagnetic schemes, allow for supplemental and replacement power schemes for biosensing applications to improve device capabilities and performance. In addition, this may allow for the biosensor to be further miniaturized, reducing the need for relatively large batteries with respect to device size. This would cause the implanted biosensor to be less invasive, increasing the quality of care received by the patient. PMID:22319362
NASA Astrophysics Data System (ADS)
Haque, Shatil
This research is focused on the processing of an innovative three-dimensional packaging architecture for power electronics building blocks with soldered device interconnections and subsequent characterization of the module's critical interfaces. A low-cost approach termed metal posts interconnected parallel plate structure (MPIPPS) was developed for packaging high-performance modules of power electronics building blocks (PEBB). The new concept implemented direct bonding of copper posts, not wire bonding of fine aluminum wires, to interconnect power devices as well as joining the different circuit planes together. We have demonstrated the feasibility of this packaging approach by constructing PEBB modules (consisting of Insulated Gate Bipolar Transistors (IGBTs), diodes, and a few gate driver elements and passive components). In the 1st phase of module fabrication with IGBTs with Si3N 4 passivation, we had successfully fabricated packaged devices and modules using the MPIPPS technique. These modules were tested electrically and thermally, and they operated at pulse-switch and high power stages up to 6kW. However, in the 2nd phase of module fabrication with polyimide passivated devices, we experienced significant yield problems due to metallization difficulties of these devices. The under-bump metallurgy scheme for the development of a solderable interface involved sputtering of Ti-Ni-Cu and Cr-Cu, and an electroless deposition of Zn-Ni-Au metallization. The metallization process produced excellent yield in the case of Si3N4 passivated devices. However, under the same metallization schemes, devices with a polyimide passivation exhibited inconsistent electrical contact resistance. We found that organic contaminants such as hydrocarbons remain in the form of thin monolayers on the surface, even in the case of as-received devices from the manufacturer. Moreover, in the case of polyimide passivated devices, plasma cleaning introduced a few carbon constituents on the surface, which was not observed in the case of Si3N4 passivated devices. X-Ray Photoelectron Spectroscopy (XPS) Spectra showed evidence of possible carbon contaminants, such as carbide (˜282.9eV) and graphite (˜284.3eV) on the surface at binding energies below the binding energy of the hydrocarbon peak (C 1s at 285eV). Whereas above the hydrocarbon peak energy level, carbon-nitrogen compounds, single bond carbon compounds (˜285.9eV) and double bond carbon compounds (˜288.5eV) were evident. The majority of the carbon composition on the pad surface was associated with hydrocarbons, which were hydrophobic in nature, thus making the device contact pad less wettable. (Abstract shortened by UMI.)
High-efficiency L-band T/R Module: Development Results
NASA Technical Reports Server (NTRS)
Edelstein, Wendy N.; Andricos, Constantine; Wang, Feiyu; Rutled, David B.
2005-01-01
Future interferometric synthetic aperture radar (InSAR) systems require electronically scanned phased-array antennas, where the transmit/receive (T/R) module is a key component. The T/R module efficiency is a critical figure of merit and has direct implications on the power dissipation and power generation requirements of the system. Significant improvements in the efficiency of the T/R module will make SAR missions more feasible and affordable. The results of two high-efficiency T/R modules are presented, each based on different power amplifier technologies. One module uses a 30W GaAs Class-AlB power amplifier and the second module uses a 70W LD-MOS Class-ElF power amplifier, where both modules use a common low power section. Each module operates over an 80MHz bandwidth at L-band (1.2GHz) with an overall module efficiency greater than 58%. We will present the results of these two T/R modules that have been designed, built and tested.
Gas sensing using wavelength modulation spectroscopy
NASA Astrophysics Data System (ADS)
Viveiros, D.; Ribeiro, J.; Flores, D.; Ferreira, J.; Frazao, O.; Santos, J. L.; Baptista, J. M.
2014-08-01
An experimental setup has been developed for different gas species sensing based on the Wavelength Modulation Spectroscopy (WMS) principle. The target is the measurement of ammonia, carbon dioxide and methane concentrations. The WMS is a rather sensitive technique for detecting atomic/molecular species presenting the advantage that it can be used in the near-infrared region using optical telecommunications technology. In this technique, the laser wavelength and intensity are modulated applying a sine wave signal through the injection current, which allows the shift of the detection bandwidth to higher frequencies where laser intensity noise is reduced. The wavelength modulated laser light is tuned to the absorption line of the target gas and the absorption information can be retrieved by means of synchronous detection using a lock-in amplifier, where the amplitude of the second harmonic of the laser modulation frequency is proportional to the gas concentration. The amplitude of the second harmonic is normalised by the average laser intensity and detector gain through a LabVIEW® application, where the main advantage of normalising is that the effects of laser output power fluctuations and any variations in laser transmission, or optical-electrical detector gain are eliminated. Two types of sensing heads based on free space light propagation with different optical path length were used, permitting redundancy operation and technology validation.
NASA. Lewis Research Center Advanced Modulation and Coding Project: Introduction and overview
NASA Technical Reports Server (NTRS)
Budinger, James M.
1992-01-01
The Advanced Modulation and Coding Project at LeRC is sponsored by the Office of Space Science and Applications, Communications Division, Code EC, at NASA Headquarters and conducted by the Digital Systems Technology Branch of the Space Electronics Division. Advanced Modulation and Coding is one of three focused technology development projects within the branch's overall Processing and Switching Program. The program consists of industry contracts for developing proof-of-concept (POC) and demonstration model hardware, university grants for analyzing advanced techniques, and in-house integration and testing of performance verification and systems evaluation. The Advanced Modulation and Coding Project is broken into five elements: (1) bandwidth- and power-efficient modems; (2) high-speed codecs; (3) digital modems; (4) multichannel demodulators; and (5) very high-data-rate modems. At least one contract and one grant were awarded for each element.
Koban, Leonie; Ninck, Markus; Li, Jun; Gisler, Thomas; Kissler, Johanna
2010-07-27
Emotional stimuli are preferentially processed compared to neutral ones. Measuring the magnetic resonance blood-oxygen level dependent (BOLD) response or EEG event-related potentials, this has also been demonstrated for emotional versus neutral words. However, it is currently unclear whether emotion effects in word processing can also be detected with other measures such as EEG steady-state visual evoked potentials (SSVEPs) or optical brain imaging techniques. In the present study, we simultaneously performed SSVEP measurements and near-infrared diffusing-wave spectroscopy (DWS), a new optical technique for the non-invasive measurement of brain function, to measure brain responses to neutral, pleasant, and unpleasant nouns flickering at a frequency of 7.5 Hz. The power of the SSVEP signal was significantly modulated by the words' emotional content at occipital electrodes, showing reduced SSVEP power during stimulation with pleasant compared to neutral nouns. By contrast, the DWS signal measured over the visual cortex showed significant differences between stimulation with flickering words and baseline periods, but no modulation in response to the words' emotional significance. This study is the first investigation of brain responses to emotional words using simultaneous measurements of SSVEPs and DWS. Emotional modulation of word processing was detected with EEG SSVEPs, but not by DWS. SSVEP power for emotional, specifically pleasant, compared to neutral words was reduced, which contrasts with previous results obtained when presenting emotional pictures. This appears to reflect processing differences between symbolic and pictorial emotional stimuli. While pictures prompt sustained perceptual processing, decoding the significance of emotional words requires more internal associative processing. Reasons for an absence of emotion effects in the DWS signal are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
2013-09-26
The Gremlin sofrware package is a performance analysis approach targeted to support the Co-Design process for future systems. It consists of a series of modules that can be used to alter a machine's behavior with the goal of emulating future machine properties. The modules can be divided into several classes; the most significant ones are detailed below. PowGre is a series of modules that help explore the power consumption properties of applications and to determine the impact of power constraints on applications. Most of them use low-level processor interfaces to directly control voltage and frequency settings as well as permore » nodes, socket, or memory power bounds. MemGre are memory Gremlins and implement a new performance analysis technique that captures the application's effective use of the storage capacity of different levels of the memory hierarchy as well as the bandwidth between adjacent levels. The approach models various memory components as resources and measures how much of each resource the application uses from the application's own perspective. To the application a given amount of a resource is "used" if not having this amount will degrade the application's performance. This is in contrast to the hardware-centric perspective that considers "use" as any hardware action that utilizes the resource, even if it has no effect on performance. ResGre are Gremlins that use fault injection techniques to emulate higher fault rates than currently present in today's systems. Faults can be injected through various means, including network interposition, static analysis, and code modification, or direct application notification. ResGre also includes patches to previously released LLNL codes that can counteract and react to injected failures.« less
Design of a 2.4-GHz CMOS monolithic fractional-N frequency synthesizer
NASA Astrophysics Data System (ADS)
Shu, Keliu
The wireless communication technology and market have been growing rapidly since a decade ago. The high demand market is a driving need for higher integration in the wireless transceivers. The trend is to achieve low-cost, small form factor and low power consumption. With the ever-reducing feature size, it is becoming feasible to integrate the RF front-end together with the baseband in the low-cost CMOS technology. The frequency synthesizer is a key building block in the RF front-end of the transceivers. It is used as a local oscillator for frequency translation and channel selection. The design of a 2.4-GHz low-power frequency synthesizer in 0.35mum CMOS is a challenging task mainly due to the high-speed prescaler. In this dissertation, a brief review of conventional PLL and frequency synthesizers is provided. Design techniques of a 2.4-GHz monolithic SigmaDelta fractional-N frequency synthesizer are investigated. Novel techniques are proposed to tackle the speed and integration bottlenecks of high-frequency PLL. A low-power and inherently glitch-free phase-switching prescaler and an on-chip loop filter with capacitance multiplier are developed. Compared with the existing and popular dual-path topology, the proposed loop filter reduces circuit complexity and its power consumption and noise are negligible. Furthermore, a third-order three-level digital SigmaDelta modulator topology is employed to reduce the phase noise generated by the modulator. Suitable PFD and charge-pump designs are employed to reduce their nonlinearity effects and thus minimize the folding of the SigmaDelta modulator-shaped phase noise. A prototype of the fractional-N synthesizer together with some standalone building blocks is designed and fabricated in TSMC 0.35mum CMOS through MOSIS. The prototype frequency synthesizer and standalone prescaler and loop filter are characterized. The feasibility and practicality of the proposed prescaler and loop filter are experimentally verified.
NOVEL TECHNIQUE OF POWER CONTROL IN MAGNETRON TRANSMITTERS FOR INTENSE ACCELERATORS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kazakevich, G.; Johnson, R.; Neubauer, M.
A novel concept of a high-power magnetron transmitter allowing dynamic phase and power control at the frequency of locking signal is proposed. The transmitter compensating parasitic phase and amplitude modulations inherent in Superconducting RF (SRF) cavities within closed feedback loops is intended for powering of the intensity-frontier superconducting accelerators. The con- cept uses magnetrons driven by a sufficient resonant (in- jection-locking) signal and fed by the voltage which can be below the threshold of self-excitation. This provides an extended range of power control in a single magnetron at highest efficiency minimizing the cost of RF power unit and the operationmore » cost. Proof-of-principle of the proposed concept demonstrated in pulsed and CW regimes with 2.45 GHz, 1kW magnetrons is discussed here. A conceptual scheme of the high-power transmitter allowing the dynamic wide-band phase and y power controls is presented and discussed.« less
A small terminal for satellite communication systems
NASA Technical Reports Server (NTRS)
Xiong, Fuqin; Wu, Dong; Jin, Min
1994-01-01
A small portable, low-cost satellite communications terminal system incorporating a modulator/demodulator and convolutional-Viterbi coder/decoder is described. Advances in signal processing and error-correction techniques in combination with higher power and higher frequencies aboard satellites allow for more efficient use of the space segment. This makes it possible to design small economical earth stations. The Advanced Communications Technology Satellite (ACTS) was chosen to test the system. ACTS, operating at the Ka band incorporates higher power, higher frequency, frequency and spatial reuse using spot beams and polarization.
Received optical power calculations for optical communications link performance analysis
NASA Technical Reports Server (NTRS)
Marshall, W. K.; Burk, B. D.
1986-01-01
The factors affecting optical communication link performance differ substantially from those at microwave frequencies, due to the drastically differing technologies, modulation formats, and effects of quantum noise in optical communications. In addition detailed design control table calculations for optical systems are less well developed than corresponding microwave system techniques, reflecting the relatively less mature state of development of optical communications. Described below are detailed calculations of received optical signal and background power in optical communication systems, with emphasis on analytic models for accurately predicting transmitter and receiver system losses.
Some Aspects of an Air-Core Single-Coil Magnetic Suspension System
NASA Technical Reports Server (NTRS)
Hamlet, Irvin L.; Kilgore, Robert A.
1966-01-01
This paper presents some of the technical aspects in the development at the Langley Research Center of an air-cove, dual-wound, single-coil, magnetic-suspension system with one-dimensional control. Overall electrical system design features and techniques are discussed in addition to the problems of control and stability. Special treatment is given to the operation of a dual-wound, high-current support coil which provides the bias fields and superimposed modulated field. Other designs features include a six-phase, solid-state power stage for modulation of the relatively large magnitude control current, and an associated six-phase trigger circuit.
PAPR reduction in FBMC using an ACE-based linear programming optimization
NASA Astrophysics Data System (ADS)
van der Neut, Nuan; Maharaj, Bodhaswar TJ; de Lange, Frederick; González, Gustavo J.; Gregorio, Fernando; Cousseau, Juan
2014-12-01
This paper presents four novel techniques for peak-to-average power ratio (PAPR) reduction in filter bank multicarrier (FBMC) modulation systems. The approach extends on current PAPR reduction active constellation extension (ACE) methods, as used in orthogonal frequency division multiplexing (OFDM), to an FBMC implementation as the main contribution. The four techniques introduced can be split up into two: linear programming optimization ACE-based techniques and smart gradient-project (SGP) ACE techniques. The linear programming (LP)-based techniques compensate for the symbol overlaps by utilizing a frame-based approach and provide a theoretical upper bound on achievable performance for the overlapping ACE techniques. The overlapping ACE techniques on the other hand can handle symbol by symbol processing. Furthermore, as a result of FBMC properties, the proposed techniques do not require side information transmission. The PAPR performance of the techniques is shown to match, or in some cases improve, on current PAPR techniques for FBMC. Initial analysis of the computational complexity of the SGP techniques indicates that the complexity issues with PAPR reduction in FBMC implementations can be addressed. The out-of-band interference introduced by the techniques is investigated. As a result, it is shown that the interference can be compensated for, whilst still maintaining decent PAPR performance. Additional results are also provided by means of a study of the PAPR reduction of the proposed techniques at a fixed clipping probability. The bit error rate (BER) degradation is investigated to ensure that the trade-off in terms of BER degradation is not too severe. As illustrated by exhaustive simulations, the SGP ACE-based technique proposed are ideal candidates for practical implementation in systems employing the low-complexity polyphase implementation of FBMC modulators. The methods are shown to offer significant PAPR reduction and increase the feasibility of FBMC as a replacement modulation system for OFDM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lentine, Anthony L.; Cox, Jonathan Albert
Methods and systems for stabilizing a resonant modulator include receiving pre-modulation and post-modulation portions of a carrier signal, determining the average power from these portions, comparing an average input power to the average output power, and operating a heater coupled to the modulator based on the comparison. One system includes a pair of input structures, one or more processing elements, a comparator, and a control element. The input structures are configured to extract pre-modulation and post-modulation portions of a carrier signal. The processing elements are configured to determine average powers from the extracted portions. The comparator is configured to comparemore » the average input power and the average output power. The control element operates a heater coupled to the modulator based on the comparison.« less
Power-Stepped HF Cross Modulation Experiments at HAARP
NASA Astrophysics Data System (ADS)
Greene, S.; Moore, R. C.; Langston, J. S.
2013-12-01
High frequency (HF) cross modulation experiments are a well established means for probing the HF-modified characteristics of the D-region ionosphere. In this paper, we apply experimental observations of HF cross-modulation to the related problem of ELF/VLF wave generation. HF cross-modulation measurements are used to evaluate the efficiency of ionospheric conductivity modulation during power-stepped modulated HF heating experiments. The results are compared to previously published dependencies of ELF/VLF wave amplitude on HF peak power. The experiments were performed during the March 2013 campaign at the High Frequency Active Auroral Research Program (HAARP) Observatory. HAARP was operated in a dual-beam transmission format: the first beam heated the ionosphere using sinusoidal amplitude modulation while the second beam broadcast a series of low-power probe pulses. The peak power of the modulating beam was incremented in 1-dB steps. We compare the minimum and maximum cross-modulation effect and the amplitude of the resulting cross-modulation waveform to the expected power-law dependence of ELF/VLF wave amplitude on HF power.
Novel techniques for optical performance monitoring in optical systems
NASA Astrophysics Data System (ADS)
Ku, Yuen Ching
The tremendous increase of data traffic in the worldwide Internet has driven the rapid development of optical networks to migrate from numerous point-to-point links towards meshed, transparent optical networks with dynamically routed light paths. This increases the need for appropriate network supervision methods. In view of this, optical performance monitoring (OPM) has emerged as an indispensable element for the quality assurance of an optical network. This thesis is devoted to the proposal of several new and accurate techniques to monitor different optical impairments so as to enhance proper network management. When the optical signal is carried on fiber links with optical amplifiers, the accumulated amplified spontaneous emission (ASE) noise will result in erroneous detection of the received signals. The first part of the thesis presents a novel, simple, and robust in-band optical signal to noise ratio (OSNR) monitoring technique using phase modulator embedded fiber loop mirror (PM-FLM). This technique measures the in-band OSNR accurately by observing the output power of a fiber loop mirror filter, where the transmittance is adjusted by an embedded phase modulator driven by a low-frequency periodic signal. The robustness against polarization mode dispersion, chromatic dispersion, bit-rate, and partially polarized noise is experimentally demonstrated. Chromatic dispersion (CD) is due to the fact that light with different frequencies travel at different speeds inside fiber. It causes pulse spreading and intersymbol interference (ISI) which would severely degrade the transmission performance. By feeding a signal into a fiber loop which consists of a high-birefringence (Hi-Bi) fiber, we experimentally show that the amount of experienced dispersion can be deduced from the RF power at a specific selected frequency which is determined by the length of the Hi-Bi fiber. Experimental results show that this technique can provide high monitoring resolution and dynamic range. Polarization mode dispersion (PMD) splits an optical pulse into two orthogonally polarized pulses traveling along the fiber at different speeds, causing crosstalk and ISI. The third part of the thesis demonstrates two different PMD monitoring schemes. The first one is based on the analysis of frequency-resolved state-of-polarization (SOP) rotation, with signal spectrum broadened by self-phase modulation (SPM) effect. Experimental results show that the use of broadened signal spectrum induced by SPM not only relaxes the filter requirement and reduces the computational complexity, but also improves the estimation accuracy, and extends the monitoring range of the pulsewidth. The second one is based on the delay-tap asynchronous waveform sampling technique. By examining the statistical distribution of the measured scatter plot, unambiguous PMD measurement range up to 50% of signal bit-period is demonstrated. The final part of the thesis focuses on the monitoring of alignment status between the pulse carver and data modulator in an optical system. We again employ the two-tap asynchronous sampling technique to perform such kind of monitoring in RZ-OOK transmission system. Experimental results show that both the misalignment direction and magnitude can be successfully determined. Besides, we propose and experimentally demonstrate the use of off-center optical filtering technique to capture the amount of spectrum broadening induced by the misalignment between the pulse-carver and the data modulator in RZ-DPSK transmission system. The same technique was also applied to monitor the synchronization between the old and the new data in synchronized phase re-modulation (SPRM) system.
Integrated unaligned resonant modulator tuning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zortman, William A.; Lentine, Anthony L.
Methods and systems for tuning a resonant modulator are disclosed. One method includes receiving a carrier signal modulated by the resonant modulator with a stream of data having an approximately equal number of high and low bits, determining an average power of the modulated carrier signal, comparing the average power to a predetermined threshold, and operating a tuning device coupled to the resonant modulator based on the comparison of the average power and the predetermined threshold. One system includes an input structure, a plurality of processing elements, and a digital control element. The input structure is configured to receive, frommore » the resonant modulator, a modulated carrier signal. The plurality of processing elements are configured to determine an average power of the modulated carrier signal. The digital control element is configured to operate a tuning device coupled to the resonant modulator based on the average power of the modulated carrier signal.« less
Adaptive Power Control for Space Communications
NASA Technical Reports Server (NTRS)
Thompson, Willie L., II; Israel, David J.
2008-01-01
This paper investigates the implementation of power control techniques for crosslinks communications during a rendezvous scenario of the Crew Exploration Vehicle (CEV) and the Lunar Surface Access Module (LSAM). During the rendezvous, NASA requires that the CEV supports two communication links: space-to-ground and crosslink simultaneously. The crosslink will generate excess interference to the space-to-ground link as the distances between the two vehicles decreases, if the output power is fixed and optimized for the worst-case link analysis at the maximum distance range. As a result, power control is required to maintain the optimal power level for the crosslink without interfering with the space-to-ground link. A proof-of-concept will be described and implemented with Goddard Space Flight Center (GSFC) Communications, Standard, and Technology Lab (CSTL).
Development of a DC-DC conversion powering scheme for the CMS Phase-1 pixel upgrade
NASA Astrophysics Data System (ADS)
Feld, L.; Fimmers, C.; Karpinski, W.; Klein, K.; Lipinski, M.; Preuten, M.; Rauch, M.; Rittich, D.; Sammet, J.; Wlochal, M.
2014-01-01
A novel powering scheme based on the DC-DC conversion technique will be exploited to power the CMS Phase-1 pixel detector. DC-DC buck converters for the CMS pixel project have been developed, based on the AMIS5 ASIC designed by CERN. The powering system of the Phase-1 pixel detector is described and the performance of the converter prototypes is detailed, including power efficiency, stability of the output voltage, shielding, and thermal management. Results from a test of the magnetic field tolerance of the DC-DC converters are reported. System tests with pixel modules using many components of the future pixel barrel system are summarized. Finally first impressions from a pre-series of 200 DC-DC converters are presented.
Constraints on drivers for visible light communications emitters based on energy efficiency.
Del Campo-Jimenez, Guillermo; Perez-Jimenez, Rafael; Lopez-Hernandez, Francisco Jose
2016-05-02
In this work we analyze the energy efficiency constraints on drivers for Visible light communication (VLC) emitters. This is the main reason why LED is becoming the main source of illumination. We study the effect of the waveform shape and the modulation techniques on the overall energy efficiency of an LED lamp. For a similar level of illumination, we calculate the emitter energy efficiency ratio η (PLED/PTOTAL) for different signals. We compare switched and sinusoidal signals and analyze the effect of both OOK and OFDM modulation techniques depending on the power supply adjustment, level of illumination and signal amplitude distortion. Switched and OOK signals present higher energy efficiency behaviors (0.86≤η≤0.95) than sinusoidal and OFDM signals (0.53≤η≤0.79).
Performance Evaluation of High Speed Multicarrier System for Optical Wireless Communication
NASA Astrophysics Data System (ADS)
Mathur, Harshita; Deepa, T.; Bartalwar, Sophiya
2018-04-01
Optical wireless communication (OWC) in the infrared and visible range is quite impressive solution, especially where radio communication face challenges. Visible light communication (VLC) uses visible light over a range of 400 and 800 THz and is a subdivision of OWC technologies. With an increasing demand for use of wireless communications, wireless access via Wi-Fi is facing many challenges especially in terms of capacity, availability, security and efficiency. VLC uses intensity modulation and direct detection (IM/DD) techniques and hence they require the signals to certainly be real valued positive sequences. These constraints pose limitation on digital modulation techniques. These limitations result in spectrum-efficiency or power-efficiency losses. In this paper, we investigate an amplitude shift keying (ASK) based orthogonal frequency division multiplexing (OFDM) signal transmission scheme using LabVIEW for VLC technology.
Demonstration of the feasibility of an integrated x ray laboratory for planetary exploration
NASA Technical Reports Server (NTRS)
Franco, E. D.; Kerner, J. A.; Koppel, L. N.; Boyle, M. J.
1993-01-01
The identification of minerals and elemental compositions is an important component in the geological and exobiological exploration of the solar system. X ray diffraction and fluorescence are common techniques for obtaining these data. The feasibility of combining these analytical techniques in an integrated x ray laboratory compatible with the volume, mass, and power constraints imposed by many planetary missions was demonstrated. Breadboard level hardware was developed to cover the range of diffraction lines produced by minerals, clays, and amorphous; and to detect the x ray fluorescence emissions of elements from carbon through uranium. These breadboard modules were fabricated and used to demonstrate the ability to detect elements and minerals. Additional effort is required to establish the detection limits of the breadboard modules and to integrate diffraction and fluorescence techniques into a single unit. It was concluded that this integrated x ray laboratory capability will be a valuable tool in the geological and exobiological exploration of the solar system.
Electric field feedback for Magneto(elasto)Electric magnetometer development
NASA Astrophysics Data System (ADS)
Yang, M.-T.; Zhuang, X.; Sing, M. Lam Chok; Dolabdjian, C.; Finkel, P.; Li, J.; Viehland, D.
2017-12-01
Magneto(elasto)Electric (ME) sensors based on magnetostrictive-piezoelectric composites have been investigated to evaluate their performances to sense a magnetic signal. Previous results have shown that the dielectric loss noise in the piezoelectric layer exhibits as the dominant intrinsic noise at low frequencies, which limits the sensor performances. Also, it has intrinsically no DC capability. To avoid a part of this limitation, modulation detection methods are evaluated through a frequency up-conversion technique [1-4]. Moreover, classical magnetic field feedback techniques can be used to increase the dynamic range, the sensing stability and the system linearity, too. In this paper, we propose a new method to feedback the system by using both the magneto-capacitance modulation and an electric field feedback technique. Our development shows the feasibility of the method and the results match with the theoretical description and material properties. Even if the present results are not totally satisfactory, they give the proof of concept and yield a way for the development of very low power magnetometers.
NASA Technical Reports Server (NTRS)
Doreswamy, Rajiv
1990-01-01
The Marshall Space Flight Center (MSFC) owns and operates a space station module power management and distribution (SSM-PMAD) testbed. This system, managed by expert systems, is used to analyze and develop power system automation techniques for Space Station Freedom. The Lewis Research Center (LeRC), Cleveland, Ohio, has developed and implemented a space station electrical power system (EPS) testbed. This system and its power management controller are representative of the overall Space Station Freedom power system. A virtual link is being implemented between the testbeds at MSFC and LeRC. This link would enable configuration of SSM-PMAD as a load center for the EPS testbed at LeRC. This connection will add to the versatility of both systems, and provide an environment of enhanced realism for operation of both testbeds.
NASA Astrophysics Data System (ADS)
Puhan, Pratap Sekhar; Ray, Pravat Kumar; Panda, Gayadhar
2016-12-01
This paper presents the effectiveness of 5/5 Fuzzy rule implementation in Fuzzy Logic Controller conjunction with indirect control technique to enhance the power quality in single phase system, An indirect current controller in conjunction with Fuzzy Logic Controller is applied to the proposed shunt active power filter to estimate the peak reference current and capacitor voltage. Current Controller based pulse width modulation (CCPWM) is used to generate the switching signals of voltage source inverter. Various simulation results are presented to verify the good behaviour of the Shunt active Power Filter (SAPF) with proposed two levels Hysteresis Current Controller (HCC). For verification of Shunt Active Power Filter in real time, the proposed control algorithm has been implemented in laboratory developed setup in dSPACE platform.
Space Power Free-Piston Stirling Engine Scaling Study
NASA Technical Reports Server (NTRS)
Jones, D.
1989-01-01
The design feasibility study is documented of a single cylinder, free piston Stirling engine/linear alternator (FPSE/LA) power module generating 150 kW-electric (kW sub e), and the determination of the module's maximum feasible power level. The power module configuration was specified to be a single cylinder (single piston, single displacer) FPSE/LA, with tuning capacitors if required. The design requirements were as follows: (1) Maximum electrical power output; (2) Power module thermal efficiency equal to or greater than 20 percent at a specific mass of 5 to 8 kg/kW(sub e); (3) Heater wall temperature/cooler wall temperature = 1050 K/525 K; (4) Sodium heat-pipe heat transport system, pumped loop NaK (sodium-potassium eutectic mixture) rejection system; (5) Maximum power module vibration amplitude = 0.0038 cm; and (6) Design life = 7 years (60,000 hr). The results show that a single cylinder FPSE/LA is capable of meeting program goals and has attractive scaling attributes over the power range from 25 to 150 kW(sub e). Scaling beyond the 150 kW(sub e) power level, the power module efficiency falls and the power module specific mass reaches 10 kg/kW(sub e) at a power output of 500 kW(sub e). A discussion of scaling rules for the engine, alternator, and heat transport systems is presented, along with a detailed description of the conceptual design of a 150 kW(sub e) power module that meets the requirements. Included is a discussion of the design of a dynamic balance system. A parametric study of power module performance conducted over the power output range of 25 to 150 kW(sub e) for temperature ratios of 1.7, 2.0, 2.5, and 3.0 is presented and discussed. The results show that as the temperature ratio decreases, the efficiency falls and specific mass increases. At a temperature ratio of 1.7, the 150 kW(sub e) power module cannot satisfy both efficiency and specific mass goals. As the power level increases from 25 to 150 kW(sub e) at a fixed temperature ratio, power module efficiency is seen to increase slightly, but at the expense of increased specific mass. An empirical equation relating power module thermal efficiency as a function of power module specific mass, power output, and temperature ratio is developed. Alternative configurations to the single cylinder, direct coupled linear alternator approach are also evaluated, but are shown to have technical drawbacks that lessen their attractiveness. The dynamic balance assembly mass (moving mass and structure) represents 20 to 30 percent of the total single cylinder power module mass. Joining two modules in a balanced opposed configuration eliminates the need for the balancer, and a hot end junction can be made without significant addition of structural mass. Recommendations are made for evaluation of advanced heat pipe concepts, tests of radial flow heat exchangers, and evaluation of high temperature alternator materials.
1990-10-15
Officer MOIE Program manager SSD/MSSB AFSTC/WCO OL-AB UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE REPORT DOCUMENTATION PAGE la . REPORT SECURITY...34 Metrologia , 9, 1973, pp. 107-112. 2. H. Hellwig, S. Jarvis, D. J. Glaze, D. Halford, and H. E. Bell, "Time domain velocity selection modulation as a
ERIC Educational Resources Information Center
Aragón, Sonia; Lapresa, Daniel; Arana, Javier; Anguera, M. Teresa; Garzón, Belén
2017-01-01
Polar coordinate analysis is a powerful data reduction technique based on the Zsum statistic, which is calculated from adjusted residuals obtained by lag sequential analysis. Its use has been greatly simplified since the addition of a module in the free software program HOISAN for performing the necessary computations and producing…
NASA Technical Reports Server (NTRS)
Simons, Rainee N (Inventor); Wintucky, Edwin G (Inventor)
2013-01-01
One or more embodiments of the present invention pertain to an all solid-state microwave power module. The module includes a plurality of solid-state amplifiers configured to amplify a signal using a low power stage, a medium power stage, and a high power stage. The module also includes a power conditioner configured to activate a voltage sequencer (e.g., bias controller) when power is received from a power source. The voltage sequencer is configured to sequentially apply voltage to a gate of each amplifier and sequentially apply voltage to a drain of each amplifier.
NASA Technical Reports Server (NTRS)
Simons, Rainee N. (Inventor); Wintucky, Edwin G. (Inventor)
2015-01-01
One or more embodiments of the present invention pertain to an all solid-state microwave power module. The module includes a plurality of solid-state amplifiers configured to amplify a signal using a low power stage, a medium power stage, and a high power stage. The module also includes a power conditioner configured to activate a voltage sequencer (e.g., bias controller) when power is received from a power source. The voltage sequencer is configured to sequentially apply voltage to a gate of each amplifier and sequentially apply voltage to a drain of each amplifier.
A W-band integrated power module using MMIC MESFET power amplifiers and varactor doublers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, T.C.; Chen, Seng Woon; Pande, K.
1993-12-01
A high-performance integrated power module using U-band MMIC MESFET power amplifiers in conjunction with W-band MMIC high efficiency varactor doublers has been developed for millimeter-wave system applications. This paper presents the design, fabrication, and performance of this W-band integrated power module. Measured results of the complete integrated power module show an output power of 90 mW with an overall associated gain of 29.5 dB at 94 GHz. A saturated power of over 95 mW was also achieved. These results represent the highest reported power and gain at W-band using MESFET and varactor frequency doubling technologies. This integrated power module ismore » suitable for the future 94 GHz missile seeker applications.« less
Driving working memory with frequency-tuned noninvasive brain stimulation.
Albouy, Philippe; Baillet, Sylvain; Zatorre, Robert J
2018-04-29
Frequency-tuned noninvasive brain stimulation is a recent approach in cognitive neuroscience that involves matching the frequency of transcranially applied electromagnetic fields to that of specific oscillatory components of the underlying neurophysiology. The objective of this method is to modulate ongoing/intrinsic brain oscillations, which correspond to rhythmic fluctuations of neural excitability, to causally change behavior. We review the impact of frequency-tuned noninvasive brain stimulation on the research field of human working memory. We argue that this is a powerful method to probe and understand the mechanisms of memory functions, targeting specifically task-related oscillatory dynamics, neuronal representations, and brain networks. We report the main behavioral and neurophysiological outcomes published to date, in particular, how functionally relevant oscillatory signatures in signal power and interregional connectivity yield causal changes of working memory abilities. We also present recent developments of the technique that aim to modulate cross-frequency coupling in polyrhythmic neural activity. Overall, the method has led to significant advances in our understanding of the mechanisms of systems neuroscience, and the role of brain oscillations in cognition and behavior. We also emphasize the translational impact of noninvasive brain stimulation techniques in the development of therapeutic approaches. © 2018 New York Academy of Sciences.
Aida, Kazuo; Sugie, Toshihiko
2011-12-12
We propose a method of testing transmission fiber lines and distributed amplifiers. Multipath interference (MPI) is detected as a beat spectrum between a multipath signal and a direct signal using a synthesized chirped test signal with lightwave frequencies of f(1) and f(2) periodically emitted from a distributed feedback laser diode (DFB-LD). This chirped test pulse is generated using a directly modulated DFB-LD with a drive signal calculated using a digital signal processing technique (DSP). A receiver consisting of a photodiode and an electrical spectrum analyzer (ESA) detects a baseband power spectrum peak appearing at the frequency of the test signal frequency deviation (f(1)-f(2)) as a beat spectrum of self-heterodyne detection. Multipath interference is converted from the spectrum peak power. This method improved the minimum detectable MPI to as low as -78 dB. We discuss the detailed design and performance of the proposed test method, including a DFB-LD drive signal calculation algorithm with DSP for synthesis of the chirped test signal and experiments on single-mode fibers with discrete reflections. © 2011 Optical Society of America
W-Band Technology and Techniques for Analog Millimeter-Wave Photonics
2015-08-19
being the average laser power at angular frequency ω. The constant κ is introduced such that ( )* 20 0 2P E E κ= . The term ( )tφ is the optical...typical link gain equations. Multiplexing techniques, which are not trivial with W-Band modulation, are described. 19-08-2015 Memorandum Office of...1 2 BASIC LINK CONFIGURATIONS………………………………………….……….… 2 3 COMPONENT TECHNOLOGY…………….……………….………..….…………….. 5 4 MULTIPLEXING TECHNIQUES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, K.F.; Garcia, R.C.; Rusthoi, D.P.
1995-05-01
The Ground Test Accelerator (GTA) had the objective Of Producing a high-brightness, high-current H-beam. The major components were a 35 keV injector, a Radio Frequency Quadrupole (RFQ), an intertank matching section (IMS), and a drift tube linac (DTL), consisting of 10 modules. A technique for measuring the transverse phase-space of high-power density beams has been developed and tested. This diagnostic has been applied to the GTA H-beam. Experimental results are compared to the slit and collector technique for transverse phase-space measurements and to simulations.
Comparing bandwidth requirements for digital baseband signals.
NASA Technical Reports Server (NTRS)
Houts, R. C.; Green, T. A.
1972-01-01
This paper describes the relative bandwidth requirements of the common digital baseband signaling techniques used for data transmission. Bandwidth considerations include the percentage of total power in a properly encoded PN sequence passed at bandwidths of 0.5, 1, 2 and 3 times the reciprocal of the bit interval. The signals considered in this study are limited to the binary class. The study compares such signaling techniques as delay modulation, bipolar, biternary, duobinary, pair selected ternary and time polarity control in addition to the conventional NRZ, RZ and BI-phi schemes.
Power module assemblies with staggered coolant channels
Herron, Nicholas Hayden; Mann, Brooks S; Korich, Mark D
2013-07-16
A manifold is provided for supporting a power module assembly with a plurality of power modules. The manifold includes a first manifold section. The first face of the first manifold section is configured to receive the first power module, and the second face of the first manifold section defines a first cavity with a first baseplate thermally coupled to the first power module. The first face of the second manifold section is configured to receive the second power module, and the second face of the second manifold section defines a second cavity with a second baseplate thermally coupled to the second power module. The second face of the first manifold section and the second face of the second manifold section are coupled together such that the first cavity and the second cavity form a coolant channel. The first cavity is at least partially staggered with respect to second cavity.
Optimal strategy for polarization modulation in the LSPE-SWIPE experiment
NASA Astrophysics Data System (ADS)
Buzzelli, A.; de Bernardis, P.; Masi, S.; Vittorio, N.; de Gasperis, G.
2018-01-01
Context. Cosmic microwave background (CMB) B-mode experiments are required to control systematic effects with an unprecedented level of accuracy. Polarization modulation by a half wave plate (HWP) is a powerful technique able to mitigate a large number of the instrumental systematics. Aims: Our goal is to optimize the polarization modulation strategy of the upcoming LSPE-SWIPE balloon-borne experiment, devoted to the accurate measurement of CMB polarization at large angular scales. Methods: We departed from the nominal LSPE-SWIPE modulation strategy (HWP stepped every 60 s with a telescope scanning at around 12 deg/s) and performed a thorough investigation of a wide range of possible HWP schemes (either in stepped or continuously spinning mode and at different azimuth telescope scan-speeds) in the frequency, map and angular power spectrum domain. In addition, we probed the effect of high-pass and band-pass filters of the data stream and explored the HWP response in the minimal case of one detector for one operation day (critical for the single-detector calibration process). We finally tested the modulation performance against typical HWP-induced systematics. Results: Our analysis shows that some stepped HWP schemes, either slowly rotating or combined with slow telescope modulations, represent poor choices. Moreover, our results point out that the nominal configuration may not be the most convenient choice. While a large class of spinning designs provides comparable results in terms of pixel angle coverage, map-making residuals and BB power spectrum standard deviations with respect to the nominal strategy, we find that some specific configurations (e.g., a rapidly spinning HWP with a slow gondola modulation) allow a more efficient polarization recovery in more general real-case situations. Conclusions: Although our simulations are specific to the LSPE-SWIPE mission, the general outcomes of our analysis can be easily generalized to other CMB polarization experiments.
Experimental quantification of the true efficiency of carbon nanotube thin-film thermophones.
Bouman, Troy M; Barnard, Andrew R; Asgarisabet, Mahsa
2016-03-01
Carbon nanotube thermophones can create acoustic waves from 1 Hz to 100 kHz. The thermoacoustic effect that allows for this non-vibrating sound source is naturally inefficient. Prior efforts have not explored their true efficiency (i.e., the ratio of the total acoustic power to the electrical input power). All previous works have used the ratio of sound pressure to input electrical power. A method for true power efficiency measurement is shown using a fully anechoic technique. True efficiency data are presented for three different drive signal processing techniques: standard alternating current (AC), direct current added to alternating current (DCAC), and amplitude modulation of an alternating current (AMAC) signal. These signal processing techniques are needed to limit the frequency doubling non-linear effects inherent to carbon nanotube thermophones. Each type of processing affects the true efficiency differently. Using a 72 W(rms) input signal, the measured efficiency ranges were 4.3 × 10(-6) - 319 × 10(-6), 1.7 × 10(-6) - 308 × 10(-6), and 1.2 × 10(-6) - 228 × 10(-6)% for AC, DCAC, and AMAC, respectively. These data were measured in the frequency range of 100 Hz to 10 kHz. In addition, the effects of these processing techniques relative to sound quality are presented in terms of total harmonic distortion.
Automatic Layout Design for Power Module
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ning, Puqi; Wang, Fei; Ngo, Khai
The layout of power modules is one of the key points in power module design, especially for high power densities, where couplings are increased. In this paper, along with the design example, an automatic design processes by using a genetic algorithm are presented. Some practical considerations and implementations are introduced in the optimization of module layout design.
Power electronics for low power arcjets
NASA Technical Reports Server (NTRS)
Hamley, John A.; Hill, Gerald M.
1991-01-01
In anticipation of the needs of future light-weight, low-power spacecraft, arcjet power electronics in the 100 to 400 W operating range were developed. Limited spacecraft power and thermal control capacity of these small spacecraft emphasized the need for high efficiency. Power topologies similar to those in the higher 2 kW and 5 to 30 kW power range were implemented, including a four transistor bridge switching circuit, current mode pulse-width modulated control, and an output current averaging inductor with an integral pulse generation winding. Reduction of switching transients was accomplished using a low inductance power distribution network, and no passive snubber circuits were necessary for power switch protection. Phase shift control of the power bridge was accomplished using an improved pulse width modulation to phase shift converter circuit. These features, along with conservative magnetics designs allowed power conversion efficiencies of greater than 92.5 percent to be achieved into resistive loads over the entire operating range of the converter. Electromagnetic compatibility requirements were not considered in this work, and control power for the converter was derived from AC mains. Addition of input filters and control power converters would result in an efficiency of on the order of 90 percent for a flight unit. Due to the developmental nature of arcjet systems at this power level, the exact nature of the thruster/power processor interface was not quantified. Output regulation and current ripple requirements of 1 and 20 percent respectively, as well as starting techniques, were derived from the characteristics of the 2 kW system but an open circuit voltage in excess of 175 V was specified. Arcjet integration tests were performed, resulting in successful starts and stable arcjet operation at power levels as low as 240 W with simulated hydrazine propellants.
NASA Astrophysics Data System (ADS)
Kondratjevs, K.; Zabasta, A.; Selmanovs-Pless, V.
2016-02-01
In recent years, there has been significant research focus that revolves around harvesting and minimising energy consumption by wireless sensor network nodes. When a sensor node is depleted of energy, it becomes unresponsive and disconnected from the network that can significantly influence the performance of the whole network. The purpose of the present research is to create a power supply management module in order to provide stable operating voltage for autonomous operations of radio signal repeaters, sensors or gateways of WSN. The developed management module is composed of a solar panel, lithium battery and power supply management module. The novelty of the research is the management module, which ensures stable and uninterrupted operations of electronic equipment in various power supply modes in different situations, simultaneously ensuring energy protection and sustainability of the module components. The management module is able to provide power supply of 5 V for electronics scheme independently, without power interruption switching between power sources and power flows in different directions.
A distributed control approach for power and energy management in a notional shipboard power system
NASA Astrophysics Data System (ADS)
Shen, Qunying
The main goal of this thesis is to present a power control module (PCON) based approach for power and energy management and to examine its control capability in shipboard power system (SPS). The proposed control scheme is implemented in a notional medium voltage direct current (MVDC) integrated power system (IPS) for electric ship. To realize the control functions such as ship mode selection, generator launch schedule, blackout monitoring, and fault ride-through, a PCON based distributed power and energy management system (PEMS) is developed. The control scheme is proposed as two-layer hierarchical architecture with system level on the top as the supervisory control and zonal level on the bottom as the decentralized control, which is based on the zonal distribution characteristic of the notional MVDC IPS that was proposed as one of the approaches for Next Generation Integrated Power System (NGIPS) by Norbert Doerry. Several types of modules with different functionalities are used to derive the control scheme in detail for the notional MVDC IPS. Those modules include the power generation module (PGM) that controls the function of generators, the power conversion module (PCM) that controls the functions of DC/DC or DC/AC converters, etc. Among them, the power control module (PCON) plays a critical role in the PEMS. It is the core of the control process. PCONs in the PEMS interact with all the other modules, such as power propulsion module (PPM), energy storage module (ESM), load shedding module (LSHED), and human machine interface (HMI) to realize the control algorithm in PEMS. The proposed control scheme is implemented in real time using the real time digital simulator (RTDS) to verify its validity. To achieve this, a system level energy storage module (SESM) and a zonal level energy storage module (ZESM) are developed in RTDS to cooperate with PCONs to realize the control functionalities. In addition, a load shedding module which takes into account the reliability of power supply (in terms of quality of service) is developed. This module can supply uninterruptible power to the mission critical loads. In addition, a multi-agent system (MAS) based framework is proposed to implement the PCON based PEMS through a hardware setup that is composed of MAMBA boards and FPGA interface. Agents are implemented using Java Agent DEvelopment Framework (JADE). Various test scenarios were tested to validate the approach.
NASA Astrophysics Data System (ADS)
Ravikiran, L.; Radhakrishnan, K.; Dharmarasu, N.; Agrawal, M.; Wang, Zilong; Bruno, Annalisa; Soci, Cesare; Lihuang, Tng; Kian Siong, Ang
2016-09-01
GaN Schottky metal-semiconductor-metal (MSM) UV photodetectors were fabricated on a 600 nm thick GaN layer, grown on 100 mm Si (111) substrate using an ammonia-MBE growth technique. In this report, the effect of device dimensions, applied bias and input power on the linearity of the GaN Schottky-based MSM photodetectors on Si substrate were investigated. Devices with larger interdigitated spacing, ‘S’ of 9.0 μm between the fingers resulted in good linearity and flat responsivity characteristics as a function of input power with an external quantum efficiency (EQE) of ˜33% at an applied bias of 15 V and an input power of 0.8 W m-2. With the decrease of ‘S’ to 3.0 μm, the EQE was found to increase to ˜97%. However, devices showed non linearity and drop in responsivity from flatness at higher input power. Moreover, the position of dropping from flatter responsivity was found to shift to lower powers with increased bias. The drop in the responsivity was attributed to the modulation of conductance in the MSM due to the trapping of electrons at the dislocations, resulting in the formation of depletion regions around them. In devices with lower ‘S’, both the image force reduction and the enhanced collection efficiency increased the photocurrent as well as the charging of the dislocations. This resulted in the increased depletion regions around the dislocations leading to the modulation of conductance and non-linearity.
Three-Level De-Multiplexed Dual-Branch Complex Delta-Sigma Transmitter.
Arfi, Anis Ben; Elsayed, Fahmi; Aflaki, Pouya M; Morris, Brad; Ghannouchi, Fadhel M
2018-02-20
In this paper, a dual-branch topology driven by a Delta-Sigma Modulator (DSM) with a complex quantizer, also known as the Complex Delta Sigma Modulator (CxDSM), with a 3-level quantized output signal is proposed. By de-multiplexing the 3-level Delta-Sigma-quantized signal into two bi-level streams, an efficiency enhancement over the operational frequency range is achieved. The de-multiplexed signals drive a dual-branch amplification block composed of two switch-mode back-to-back power amplifiers working at peak power. A signal processing technique known as quantization noise reduction with In-band Filtering (QNRIF) is applied to each of the de-multiplexed streams to boost the overall performances; particularly the Adjacent Channel Leakage Ratio (ACLR). After amplification, the two branches are combined using a non-isolated combiner, preserving the efficiency of the transmitter. A comprehensive study on the operation of this topology and signal characteristics used to drive the dual-branch Switch-Mode Power Amplifiers (SMPAs) was established. Moreover, this work proposes a highly efficient design of the amplification block based on a back-to-back power topology performing a dynamic load modulation exploiting the non-overlapping properties of the de-multiplexed Complex DSM signal. For experimental validation, the proposed de-multiplexed 3-level Delta-Sigma topology was implemented on the BEEcube™ platform followed by the back-to-back Class-E switch-mode power amplification block. The full transceiver is assessed using a 4th-Generation mobile communications standard LTE (Long Term Evolution) standard 1.4 MHz signal with a peak to average power ratio (PAPR) of 8 dB. The dual-branch topology exhibited a good linearity and a coding efficiency of the transmitter chain higher than 72% across the band of frequency from 1.8 GHz to 2.7 GHz.
PROPERTIES OF THE 24 DAY MODULATION IN GX 13+1 FROM NEAR-INFRARED AND X-RAY OBSERVATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corbet, Robin H. D.; Pearlman, Aaron B.; Buxton, Michelle
2010-08-10
A 24 day period for the low-mass X-ray binary (LMXB) GX 13+1 was previously proposed on the basis of seven years of RXTE All-Sky Monitor (ASM) observations and it was suggested that this was the orbital period of the system. This would make it one of the longest known orbital periods for a Galactic LMXB powered by Roche lobe overflow. We present here the results of (1) K-band photometry obtained with the SMARTS Consortium CTIO 1.3 m telescope on 68 nights over a 10 month interval; (2) continued monitoring with the RXTE ASM, analyzed using a semi-weighted power spectrum insteadmore » of the data filtering technique previously used; and (3) Swift Burst Alert Telescope (BAT) hard X-ray observations. Modulation near 24 days is seen in both the K band and additional statistically independent ASM X-ray observations. However, the modulation in the ASM is not strictly periodic. The periodicity is also not detected in the Swift BAT observations, but modulation at the same relative level as seen with the ASM cannot be ruled out. If the 24 day period is the orbital period of system, this implies that the X-ray modulation is caused by structure that is not fixed in location. A possible mechanism for the X-ray modulation is the dipping behavior recently reported from XMM-Newton observations.« less
An integrated open-cavity system for magnetic bead manipulation.
Abu-Nimeh, F T; Salem, F M
2013-02-01
Superparamagnetic beads are increasingly used in biomedical assays to manipulate, transport, and maneuver biomaterials. We present a low-cost integrated system designed in bulk CMOS to manipulate and separate biomedical magnetic beads. The system consists of 8 × 8 coil-arrays suitable for single bead manipulation, or collaborative multi-bead manipulation, using pseudo-parallel executions. We demonstrate the flexibility of the design in terms of different coil sizes, DC current levels, and layout techniques. In one array module example, the size of a single coil is 30 μm × 30 μm and the full array occupies an area of 248 μm × 248 μm in 0.5 μm CMOS technology. The programmable DC current source supports 8 discrete levels up to 1.5 mA. The total power consumption of the entire module is 9 mW when running at full power.
Buset, Jonathan M; El-Sahn, Ziad A; Plant, David V
2012-06-18
We demonstrate an improved overlapped-subcarrier multiplexed (O-SCM) WDM PON architecture transmitting over a single feeder using cost sensitive intensity modulation/direct detection transceivers, data re-modulation and simple electronics. Incorporating electronic equalization and Reed-Solomon forward-error correction codes helps to overcome the bandwidth limitation of a remotely seeded reflective semiconductor optical amplifier (RSOA)-based ONU transmitter. The O-SCM architecture yields greater spectral efficiency and higher bit rates than many other SCM techniques while maintaining resilience to upstream impairments. We demonstrate full-duplex 5 Gb/s transmission over 20 km and analyze BER performance as a function of transmitted and received power. The architecture provides flexibility to network operators by relaxing common design constraints and enabling full-duplex operation at BER ∼ 10(-10) over a wide range of OLT launch powers from 3.5 to 8 dBm.
Power-law modulation of the scalar power spectrum from a heavy field with a monomial potential
NASA Astrophysics Data System (ADS)
Huang, Qing-Guo; Pi, Shi
2018-04-01
The effects of heavy fields modulate the scalar power spectrum during inflation. We analytically calculate the modulations of the scalar power spectrum from a heavy field with a separable monomial potential, i.e. V(phi)~ phin. In general the modulation is characterized by a power-law oscillation which is reduced to the logarithmic oscillation in the case of n=2.
NASA Astrophysics Data System (ADS)
Ullah, Rahat; Liu, Bo; Zhang, Qi; Saad Khan, Muhammad; Ahmad, Ibrar; Ali, Amjad; Khan, Razaullah; Tian, Qinghua; Yan, Cheng; Xin, Xiangjun
2016-09-01
An architecture for flattened and broad spectrum multicarriers is presented by generating 60 comb lines from pulsed laser driven by user-defined bit stream in cascade with three modulators. The proposed scheme is a cost-effective architecture for optical line terminal (OLT) in wavelength division multiplexed passive optical network (WDM-PON) system. The optical frequency comb generator consists of a pulsed laser in cascade with a phase modulator and two Mach-Zehnder modulators driven by an RF source incorporating no phase shifter, filter, or electrical amplifier. Optical frequency comb generation is deployed in the simulation environment at OLT in WDM-PON system supports 1.2-Tbps data rate. With 10-GHz frequency spacing, each frequency tone carries data signal of 20 Gbps-based differential quadrature phase shift keying (DQPSK) in downlink transmission. We adopt DQPSK-based modulation technique in the downlink transmission because it supports 2 bits per symbol, which increases the data rate in WDM-PON system. Furthermore, DQPSK format is tolerant to different types of dispersions and has a high spectral efficiency with less complex configurations. Part of the downlink power is utilized in the uplink transmission; the uplink transmission is based on intensity modulated on-off keying. Minimum power penalties have been observed with excellent eye diagrams and other transmission performances at specified bit error rates.
NASA Technical Reports Server (NTRS)
1979-01-01
Cost data generated for the evolutionary power module concepts selected are reported. The initial acquisition costs (design, development, and protoflight unit test costs) were defined and modeled for the baseline 25 kW power module configurations. By building a parametric model of this initial building block, the cost of the 50 kW and the 100 kW power modules were derived by defining only their configuration and programmatic differences from the 25 kW baseline module. Variations in cost for the quantities needed to fulfill the mission scenarios were derived by applying appropriate learning curves.
The 25 kW power module evolution study. Part 1: Payload requirements and growth scenarios
NASA Technical Reports Server (NTRS)
1978-01-01
Payload power level requirements and their general impact on the baseline and growth versions of the 25 kW power module during the 1983 to 1990 period are discussed. Extended duration Orbiter sortie flight, supported by a power module, with increased payload power requirements per flight, and free-flyer payload missions are included. Other payload disciplines considered, but not emphasized for the 1983 to 1986 period include astrophysics/astronomy, earth observations, solar power satellite, and life sciences. Of these, only the solar power satellite is a prime driver for the power module.
Performance of MIMO-OFDM using convolution codes with QAM modulation
NASA Astrophysics Data System (ADS)
Astawa, I. Gede Puja; Moegiharto, Yoedy; Zainudin, Ahmad; Salim, Imam Dui Agus; Anggraeni, Nur Annisa
2014-04-01
Performance of Orthogonal Frequency Division Multiplexing (OFDM) system can be improved by adding channel coding (error correction code) to detect and correct errors that occur during data transmission. One can use the convolution code. This paper present performance of OFDM using Space Time Block Codes (STBC) diversity technique use QAM modulation with code rate ½. The evaluation is done by analyzing the value of Bit Error Rate (BER) vs Energy per Bit to Noise Power Spectral Density Ratio (Eb/No). This scheme is conducted 256 subcarrier which transmits Rayleigh multipath fading channel in OFDM system. To achieve a BER of 10-3 is required 10dB SNR in SISO-OFDM scheme. For 2×2 MIMO-OFDM scheme requires 10 dB to achieve a BER of 10-3. For 4×4 MIMO-OFDM scheme requires 5 dB while adding convolution in a 4x4 MIMO-OFDM can improve performance up to 0 dB to achieve the same BER. This proves the existence of saving power by 3 dB of 4×4 MIMO-OFDM system without coding, power saving 7 dB of 2×2 MIMO-OFDM and significant power savings from SISO-OFDM system.
Lee, Seung-Hun; Kim, Hyoung-Jun; Song, Jong-In
2014-01-13
A broadband photonic single sideband (SSB) frequency up-converter based on the cross polarization modulation (XPolM) effect in a semiconductor optical amplifier (SOA) is proposed and experimentally demonstrated. An optical radio frequency (RF) signal in the form of an optical single sideband (OSSB) is generated by the photonic SSB frequency up-converter to solve the power fading problem caused by fiber chromatic dispersion. The generated OSSB RF signal has almost identical optical carrier power and optical sideband power. This SSB frequency up-conversion scheme shows an almost flat electrical RF power response as a function of the RF frequency in a range from 31 GHz to 75 GHz after 40 km single mode fiber (SMF) transmission. The photonic SSB frequency up-conversion technique shows negligible phase noise degradation. The phase noise of the up-converted RF signal at 49 GHz for an offset of 10 kHz is -93.17 dBc/Hz. Linearity analysis shows that the photonic SSB frequency up-converter has a spurious free dynamic range (SFDR) value of 79.51 dB · Hz(2/3).
Arbitrary-shaped Brillouin microwave photonic filter by manipulating a directly modulated pump.
Wei, Wei; Yi, Lilin; Jaouën, Yves; Hu, Weisheng
2017-10-15
We present a cost-effective gigahertz-wide arbitrary-shaped microwave photonic filter based on stimulated Brillouin scattering in fiber using a directly modulated laser (DML). After analyzing the relationship between the spectral power density and the modulation current of the DML, we manage to precisely adjust the optical spectrum of the DML, thereby controlling the Brillouin filter response arbitrarily for the first time, to the best of our knowledge. The filter performance is evaluated by amplifying a 500 Mb/s non-return-to-zero on-off keying signal using a 1 GHz rectangular filter. The comparison between the proposed DML approach and the previous approach adopting a complex IQ modulator shows similar filter flexibility, shape fidelity, and noise performance, proving that the DML-based Brillouin filter technique is a cost-effective and valid solution for microwave photonic applications.
Cheng, Min-Chi; Chi, Yu-Chieh; Li, Yi-Cheng; Tsai, Cheng-Ting; Lin, Gong-Ru
2014-06-30
By up-shifting the relaxation oscillation peak and suppressing its relative intensity noise in a weak-resonant-cavity Fabry-Perot laser diode (WRC-FPLD) under intense injection-locking, the directly modulated transmission of optical 16 quadrature amplitude modulation (QAM) orthogonal frequency division multiplexing (OFDM) data-stream is demonstrated. The total bit rate of up to 20 Gbit/s within 5-GHz bandwidth is achieved by using the OFDM subcarrier pre-leveling technique. With increasing the injection-locking power from -12 to -3 dBm, the effective reduction on threshold current of the WRC-FPLD significantly shifts its relaxation oscillation frequency from 5 to 7.5 GHz. This concurrently induces an up-shift of the peak relative intensity noise (RIN) of the WRC-FPLD, and effectively suppresses the background RIN level to -104 dBc/Hz within the OFDM band between 3 and 6 GHz. The enhanced signal-to-noise ratio from 16 to 20 dB leads to a significant reduction of bit-error-rate (BER) of the back-to-back transmitted 16-QAM-OFDM data from 1.3 × 10(-3) to 5 × 10(-5), which slightly degrades to 1.1 × 10(-4) after 25-km single-mode fiber (SMF) transmission. However, the enlarged injection-locking power from -12 to -3 dBm inevitably declines the modulation throughput and increases its negative throughput slope from -0.8 to -1.9 dBm/GHz. After pre-leveling the peak amplitude of the OFDM subcarriers to compensate the throughput degradation of the directly modulated WRC-FPLD, the BER under 25-km SMF transmission can be further improved to 3 × 10(-5) under a receiving power of -3 dBm.
Active phase locking of thirty fiber channels using multilevel phase dithering method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Zhimeng; Luo, Yongquan, E-mail: yongquan-l@sina.com; Liu, Cangli
2016-03-15
An active phase locking of a large-scale fiber array with thirty channels has been demonstrated experimentally. In the experiment, the first group of thirty phase controllers is used to compensate the phase noises between the elements and the second group of thirty phase modulators is used to impose additional phase disturbances to mimic the phase noises in the high power fiber amplifiers. A multi-level phase dithering algorithm using dual-level rectangular-wave phase modulation and time division multiplexing can achieve the same phase control as single/multi-frequency dithering technique, but without coherent demodulation circuit. The phase locking efficiency of 30 fiber channels ismore » achieved about 98.68%, 97.82%, and 96.50% with no additional phase distortion, modulated phase distortion I (±1 rad), and phase distortion II (±2 rad), corresponding to the phase error of λ/54, λ/43, and λ/34 rms. The contrast of the coherent combined beam profile is about 89%. Experimental results reveal that the multi-level phase dithering technique has great potential in scaling to a large number of laser beams.« less
Optimisation of wavelength modulated Raman spectroscopy: towards high throughput cell screening.
Praveen, Bavishna B; Mazilu, Michael; Marchington, Robert F; Herrington, C Simon; Riches, Andrew; Dholakia, Kishan
2013-01-01
In the field of biomedicine, Raman spectroscopy is a powerful technique to discriminate between normal and cancerous cells. However the strong background signal from the sample and the instrumentation affects the efficiency of this discrimination technique. Wavelength Modulated Raman spectroscopy (WMRS) may suppress the background from the Raman spectra. In this study we demonstrate a systematic approach for optimizing the various parameters of WMRS to achieve a reduction in the acquisition time for potential applications such as higher throughput cell screening. The Signal to Noise Ratio (SNR) of the Raman bands depends on the modulation amplitude, time constant and total acquisition time. It was observed that the sampling rate does not influence the signal to noise ratio of the Raman bands if three or more wavelengths are sampled. With these optimised WMRS parameters, we increased the throughput in the binary classification of normal human urothelial cells and bladder cancer cells by reducing the total acquisition time to 6 s which is significantly lower in comparison to previous acquisition times required for the discrimination between similar cell types.
Design and operating experience of a 40 MW, highly-stabilized power supply
NASA Astrophysics Data System (ADS)
Boenig, Heinrich J.; Ferner, James A.; Bogdan, Ferenc; Morris, Gary C.; Rumrill, Ron S.
Four 10 MW, highly-stabilized power supply modules have been installed at the National High Magnetic Field Laboratory in Tallahassee, FL, to energize water-cooled, resistive, high-field research magnets. The power supply modules achieve a long term current stability if 10 ppM over a 12 h period with a short term ripple and noise variation of less than 10 ppM over a time period of one cycle. The power supply modules can operate independently, feeding four separate magnets, or two, three or four modules can operate in parallel. Each power supply module consists of a 12.5 kV vacuum circuit breaker, two three-winding, step-down transformers, a 24-pulse rectifier with interphase reactors, and a passive and an active filter. Two different transformer tap settings allow rated dc supply output voltages of 400 and 500 V. The rated current of a supply module is 17 kA and each supply module has a one-hour overload capability of 20 kA. The isolated output terminals of each power supply module are connected to a reversing switch. An extensive high-current bus system allows the modules to be connected to 16 magnet cells. This paper presents the detailed design of the power supply components. Various test results taken during the commissioning phase with a 10 MW resistive load and results taken with the research magnets are shown. The effects of the modules on the electrical supply system and the operational behavior of the power factor correction/harmonic filters are described. Included also are results of a power supply module feeding a superconducting magnet during quench propagation tests. Problems with the power supply design and solutions are presented. Some suggestions on how to improve the performance of these supplies are outlined.
Early Oscillation Detection Technique for Hybrid DC/DC Converters
NASA Technical Reports Server (NTRS)
Wang, Bright L.
2011-01-01
Oscillation or instability is a situation that must be avoided for reliable hybrid DC/DC converters. A real-time electronics measurement technique was developed to detect catastrophic oscillations at early stages for hybrid DC/DC converters. It is capable of identifying low-level oscillation and determining the degree of the oscillation at a unique frequency for every individual model of the converters without disturbing their normal operations. This technique is specially developed for space-used hybrid DC/DC converters, but it is also suitable for most of commercial and military switching-mode power supplies. This is a weak-electronic-signal detection technique to detect hybrid DC/DC converter oscillation presented as a specific noise signal at power input pins. It is based on principles of feedback control loop oscillation and RF signal modulations, and is realized by using signal power spectral analysis. On the power spectrum, a channel power amplitude at characteristic frequency (CPcf) and a channel power amplitude at switching frequency (CPsw) are chosen as oscillation level indicators. If the converter is stable, the CPcf is a very small pulse and the CPsw is a larger, clear, single pulse. At early stage of oscillation, the CPcf increases to a certain level and the CPsw shows a small pair of sideband pulses around it. If the converter oscillates, the CPcf reaches to a higher level and the CPsw shows more high-level sideband pulses. A comprehensive stability index (CSI) is adopted as a quantitative measure to accurately assign a degree of stability to a specific DC/DC converter. The CSI is a ratio of normal and abnormal power spectral density, and can be calculated using specified and measured CPcf and CPsw data. The novel and unique feature of this technique is the use of power channel amplitudes at characteristic frequency and switching frequency to evaluate stability and identify oscillations at an early stage without interfering with a DC/DC converter s normal operation. This technique eliminates the probing problem of a gain/phase margin method by connecting the power input to a spectral analyzer. Therefore, it is able to evaluate stability for all kinds of hybrid DC/DC converters with or without remote sense pins, and is suitable for real-time and in-circuit testing. This frequency-domain technique is more sensitive to detect oscillation at early stage than the time-domain method using an oscilloscope.
A low-cost, tunable laser lock without laser frequency modulation
NASA Astrophysics Data System (ADS)
Shea, Margaret E.; Baker, Paul M.; Gauthier, Daniel J.
2015-05-01
Many experiments in optical physics require laser frequency stabilization. This can be achieved by locking to an atomic reference using saturated absorption spectroscopy. Often, the laser frequency is modulated and phase sensitive detection used. This method, while well-proven and robust, relies on expensive components, can introduce an undesirable frequency modulation into the laser, and is not easily frequency tuned. Here, we report a simple locking scheme similar to those implemented previously. We modulate the atomic resonances in a saturated absorption setup with an AC magnetic field created by a single solenoid. The same coil applies a DC field that allows tuning of the lock point. We use an auto-balanced detector to make our scheme more robust against laser power fluctuations and stray magnetic fields. The coil, its driver, and the detector are home-built with simple, cheap components. Our technique is low-cost, simple to setup, tunable, introduces no laser frequency modulation, and only requires one laser. We gratefully acknowledge the financial support of the NSF through Grant # PHY-1206040.
Heterodyne method for high specificity gas detection.
NASA Technical Reports Server (NTRS)
Dimeff, J.; Donaldson, R. W.; Gunter, W. D., Jr.; Jaynes, D. N.; Margozzi, A. P.; Deboo, G. J.; Mcclatchie, E. A.; Williams, K. G.
1971-01-01
This paper describes a new technique for measuring trace quantities of gases. The technique involves the use of a reference cell (containing a known amount of the gas being sought) and a sample cell (containing an unknown amount of the same gas) wherein the gas densities are modulated. Light passing through the two cells in sequence is modulated in intensity at the vibrational-rotational lines characteristic of the absorption spectrum for the gas of interest. Since the absorption process is nonlinear, modulating the two absorption cells at two different frequencies gives rise to a heterodyning effect, which in turn introduces sum and difference frequencies in the detected signal. Measuring the ratio of the difference frequency signal for example, to the signal introduced by the reference cell provides a normalized measure of the amount of the gas in the sample cell. The readings produced are thereby independent of source intensity, window transparency, and detector sensitivity. Experimental evaluation of the technique suggests that it should be applicable to a wide range of gases, that it should be able to reject spurious signals due to unwanted gases, and that it should be sensitive to concentrations of the order of 10 to the minus 8th power when used with a sample cell of only 20 cm length.
Module Fifteen: Special Topics; Basic Electricity and Electronics Individualized Learning System.
ERIC Educational Resources Information Center
Bureau of Naval Personnel, Washington, DC.
The final module emphasizes utilizing the information learned in modules 1-14 to analyze and evaluate the power supply constructed in Module 0. The module contains the following narrative--power supply evaluation; experiment 1--resistance analysis of the half-wave and semiconductor power supply; experiment 2--voltage analysis of the half-wave and…
NASA Astrophysics Data System (ADS)
Ibrahim, Wael Refaat Anis
The present research involves the development of several fuzzy expert systems for power quality analysis and diagnosis. Intelligent systems for the prediction of abnormal system operation were also developed. The performance of all intelligent modules developed was either enhanced or completely produced through adaptive fuzzy learning techniques. Neuro-fuzzy learning is the main adaptive technique utilized. The work presents a novel approach to the interpretation of power quality from the perspective of the continuous operation of a single system. The research includes an extensive literature review pertaining to the applications of intelligent systems to power quality analysis. Basic definitions and signature events related to power quality are introduced. In addition, detailed discussions of various artificial intelligence paradigms as well as wavelet theory are included. A fuzzy-based intelligent system capable of identifying normal from abnormal operation for a given system was developed. Adaptive neuro-fuzzy learning was applied to enhance its performance. A group of fuzzy expert systems that could perform full operational diagnosis were also developed successfully. The developed systems were applied to the operational diagnosis of 3-phase induction motors and rectifier bridges. A novel approach for learning power quality waveforms and trends was developed. The technique, which is adaptive neuro fuzzy-based, learned, compressed, and stored the waveform data. The new technique was successfully tested using a wide variety of power quality signature waveforms, and using real site data. The trend-learning technique was incorporated into a fuzzy expert system that was designed to predict abnormal operation of a monitored system. The intelligent system learns and stores, in compressed format, trends leading to abnormal operation. The system then compares incoming data to the retained trends continuously. If the incoming data matches any of the learned trends, an alarm is instigated predicting the advent of system abnormal operation. The incoming data could be compared to previous trends as well as matched to trends developed through computer simulations and stored using fuzzy learning.
Proposal for an optical multicarrier generator based on single silicon micro-ring modulator
NASA Astrophysics Data System (ADS)
Bhowmik, Bishanka Brata; Gupta, Sumanta
2015-08-01
We propose an optical multicarrier generation technique using silicon micro-ring modulator (MRM) and analyze the scheme. Numerical studies have been done for three types MRMs having different power coupling coefficients. The proposed scheme is found to generate four optical carriers having 12.5 GHz spacing. According to simulation, the maximum side-mode-suppression ratio (SMSR) of ~16.3 dB with flatness of ~0.2 dB is achieved by using this scheme. The minimum extinction ratio (ER) of the generated carriers is found to be more than 35 dB. We also propose modulator driver circuit to generate RF signal, which is needed to generate multicarrier using MRM. The effect of coupling coefficient on the SMSR of the generated carriers is also investigated.
ELF/VLF Wave Generation via HF Modulation of the Equatorial Electrojet at Arecibo Observatory
NASA Astrophysics Data System (ADS)
Flint, Q. A.; Moore, R. C.; Burch, H.; Erdman, A.; Wilkes, R.
2017-12-01
In this work we generate ELF/VLF waves by modulating the conductivity of the lower ionosphere using the HF heater at Arecibo. For many years, researchers have generated ELF/VLF waves using the powerful HF transmitters at HAARP, but few have attempted to do the same in the mid- to low- latitude region. While HAARP users have benefitted from the auroral electrojet, we attempt to exploit the equatorial electrojet to generate radio waves. On 31 July 2017, we transmitted at an HF frequency of 5.1 MHz (X-Mode) applying sinusoidal amplitude modulation in a step-like fashion from 0-5 kHz in 200 Hz steps over 10 seconds at 100% peak power to approximate a linear frequency ramp. We also transmitted 10-second-long fixed frequency tones spaced from 1 to 5 kHz. The frequency sweep is a helpful visual tool to identify generated waves, but is also used to determine optimal modulation frequencies for future campaigns. The tones allow us to perform higher SNR analysis. Ground-based B-field VLF receivers recorded the amplitude and phase of the generated radio waves. We employ time-of-arrival techniques to determine the altitude of the ELF/VLF signal source. In this paper, we present the initial analysis of these experimental results.
Single frequency RF powered ECG telemetry system
NASA Technical Reports Server (NTRS)
Ko, W. H.; Hynecek, J.; Homa, J.
1979-01-01
It has been demonstrated that a radio frequency magnetic field can be used to power implanted electronic circuitry for short range telemetry to replace batteries. A substantial reduction in implanted volume can be achieved by using only one RF tank circuit for receiving the RF power and transmitting the telemetered information. A single channel telemetry system of this type, using time sharing techniques, was developed and employed to transmit the ECG signal from Rhesus monkeys in primate chairs. The signal from the implant is received during the period when the RF powering radiation is interrupted. The ECG signal is carried by 20-microsec pulse position modulated pulses, referred to the trailing edge of the RF powering pulse. Satisfactory results have been obtained with this single frequency system. The concept and the design presented may be useful for short-range long-term implant telemetry systems.
Components for IFOG based inertial measurement units using active and passive polymer materials
NASA Astrophysics Data System (ADS)
Ashley, Paul R.; Temmen, Mark G.; Diffey, William M.; Sanghadasa, Mohan; Bramson, Michael D.; Lindsay, Geoffrey A.; Guenthner, Andrew J.
2006-08-01
Highly accurate, compact, and low cost inertial measurement units (IMUs) are needed for precision guidance in navigation systems. Active and passive polymer materials have been successfully used in fabricating two of the key guided-wave components, the phase modulator and the optical transceiver, for IMUs based on the interferometric fiber optic gyroscope (IFOG) technology. Advanced hybrid waveguide fabrication processes and novel optical integration techniques have been introduced. Backscatter compensated low loss phase modulators with low half-wave drive voltage (V π) have been fabricated with CLD- and FTC- type high performance electro-optic chromophores. A silicon-bench architecture has been used in fabricating high gain low noise transceivers with high optical power while maintaining the spectral quality and long lifetime. Gyro bias stability of less than 0.02 deg/hr has been demonstrated with these components. A review of the novel concepts introduced, fabrication and integration techniques developed and performance achieved are presented.
Enhanced Impurity-Free Intermixing Bandgap Engineering for InP-Based Photonic Integrated Circuits
NASA Astrophysics Data System (ADS)
Cui, Xiao; Zhang, Can; Liang, Song; Zhu, Hong-Liang; Hou, Lian-Ping
2014-04-01
Impurity-free intermixing of InGaAsP multiple quantum wells (MQW) using sputtering Cu/SiO2 layers followed by rapid thermal processing (RTP) is demonstrated. The bandgap energy could be modulated by varying the sputtering power and time of Cu, RTP temperature and time to satisfy the demands for lasers, modulators, photodetector, and passive waveguides for the photonic integrated circuits with a simple procedure. The blueshift of the bandgap wavelength of MQW is experimentally investigated on different sputtering and annealing conditions. It is obvious that the introduction of the Cu layer could increase the blueshift more greatly than the common impurity free vacancy disordering technique. A maximum bandgap blueshift of 172 nm is realized with an annealing condition of 750°C and 200s. The improved technique is promising for the fabrication of the active/passive optoelectronic components on a single wafer with simple process and low cost.
NASA Astrophysics Data System (ADS)
Cunge, G.; Bodart, P.; Brihoum, M.; Boulard, F.; Chevolleau, T.; Sadeghi, N.
2012-04-01
This paper reviews recent progress in the development of time-resolved diagnostics to probe high-density pulsed plasma sources. We focus on time-resolved measurements of radicals' densities in the afterglow of pulsed discharges to provide useful information on production and loss mechanisms of free radicals. We show that broad-band absorption spectroscopy in the ultraviolet and vacuum ultraviolet spectral domain and threshold ionization modulated beam mass spectrometry are powerful techniques for the determination of the time variation of the radicals' densities in pulsed plasmas. The combination of these complementary techniques allows detection of most of the reactive species present in industrial etching plasmas, giving insights into the physico-chemistry reactions involving these species. As an example, we discuss briefly the radicals' kinetics in the afterglow of a SiCl4/Cl2/Ar discharge.
Generation of ultra-wide and flat optical frequency comb based on electro absorption modulator
NASA Astrophysics Data System (ADS)
Ujjwal; Thangaraj, Jaisingh
2018-05-01
A novel technique is proposed for the generation of ultra-wide and flat optical frequency comb (OFC) based on serially cascading three stages of electro absorption modulators (EAMs) through sinusoidal radio frequency (RF) signals by setting frequencies at f GHz, f/2 GHz and f/4 GHz. Here, the first stage acts as subcarrier generator, the second stage acts as subcarrier doubler, and the third stage acts as subcarrier quadrupler. In addition, a higher number of subcarriers can easily be generated by adjusting the driving sinusoidal RF signal. In this paper, cascading three stages of EAMs driven by 50 GHz, 25 GHz and 12.5 GHz clock sources, we obtain 272 subcarriers with spacing of 2.5 GHz and power deviation within 1 dB. Theoretical analysis of serially cascaded EAMs for subcarrier generation is also investigated. Principal analysis and simulation of this technique are demonstrated.
Effective switching frequency multiplier inverter
Su, Gui-Jia [Oak Ridge, TN; Peng, Fang Z [Okemos, MI
2007-08-07
A switching frequency multiplier inverter for low inductance machines that uses parallel connection of switches and each switch is independently controlled according to a pulse width modulation scheme. The effective switching frequency is multiplied by the number of switches connected in parallel while each individual switch operates within its limit of switching frequency. This technique can also be used for other power converters such as DC/DC, AC/DC converters.
Low-cost optical interconnect module for parallel optical data links
NASA Astrophysics Data System (ADS)
Noddings, Chad; Hirsch, Tom J.; Olla, M.; Spooner, C.; Yu, Jason J.
1995-04-01
We have designed, fabricated, and tested a prototype parallel ten-channel unidirectional optical data link. When scaled to production, we project that this technology will satisfy the following market penetration requirements: (1) up to 70 meters transmission distance, (2) at least 1 gigabyte/second data rate, and (3) 0.35 to 0.50 MByte/second volume selling price. These goals can be achieved by means of the assembly innovations described in this paper: a novel alignment method that is integrated with low-cost, few chip module packaging techniques, yielding high coupling and reducing the component count. Furthermore, high coupling efficiency increases projected reliability reducing the driver's power requirements.
NASA Technical Reports Server (NTRS)
Lipo, Thomas A.; Sood, Pradeep K.
1987-01-01
Static power conversion systems have traditionally utilized dc current or voltage source links for converting power from one ac or dc form to another since it readily achieves the temporary energy storage required to decouple the input from the output. Such links, however, result in bulky dc capacitors and/or inductors and lead to relatively high losses in the converters due to stresses on the semiconductor switches. The feasibility of utilizing a high frequency sinusoidal voltage link to accomplish the energy storage and decoupling function is examined. In particular, a type of resonant six pulse bridge interface converter is proposed which utilizes zero voltage switching principles to minimize switching losses and uses an easy to implement technique for pulse density modulation to control the amplitude, frequency, and the waveshape of the synthesized low frequency voltage or current. Adaptation of the proposed topology for power conversion to single-phase ac and dc voltage or current outputs is shown to be straight forward. The feasibility of the proposed power circuit and control technique for both active and passive loads are verified by means of simulation and experiment.
Recent Progress on PEDOT-Based Thermoelectric Materials
Wei, Qingshuo; Mukaida, Masakazu; Kirihara, Kazuhiro; Naitoh, Yasuhisa; Ishida, Takao
2015-01-01
The thermoelectric properties of poly(3,4-ethylenedioxythiophene) (PEDOT)-based materials have attracted attention recently because of their remarkable electrical conductivity, power factor, and figure of merit. In this review, we summarize recent efforts toward improving the thermoelectric properties of PEDOT-based materials. We also discuss thermoelectric measurement techniques and several unsolved problems with the PEDOT system such as the effect of water absorption from the air and the anisotropic thermoelectric properties. In the last part, we describe our work on improving the power output of thermoelectric modules by using PEDOT, and we outline the potential applications of polymer thermoelectric generators. PMID:28787968
Recent Progress on PEDOT-Based Thermoelectric Materials.
Wei, Qingshuo; Mukaida, Masakazu; Kirihara, Kazuhiro; Naitoh, Yasuhisa; Ishida, Takao
2015-02-16
The thermoelectric properties of poly(3,4-ethylenedioxythiophene) (PEDOT)-based materials have attracted attention recently because of their remarkable electrical conductivity, power factor, and figure of merit. In this review, we summarize recent efforts toward improving the thermoelectric properties of PEDOT-based materials. We also discuss thermoelectric measurement techniques and several unsolved problems with the PEDOT system such as the effect of water absorption from the air and the anisotropic thermoelectric properties. In the last part, we describe our work on improving the power output of thermoelectric modules by using PEDOT, and we outline the potential applications of polymer thermoelectric generators.
Static inverter with synchronous output waveform synthesized by time-optimal-response feedback
NASA Technical Reports Server (NTRS)
Kernick, A.; Stechschulte, D. L.; Shireman, D. W.
1976-01-01
Time-optimal-response 'bang-bang' or 'bang-hang' technique, using four feedback control loops, synthesizes static-inverter sinusoidal output waveform by self-oscillatory but yet synchronous pulse-frequency-modulation (SPFM). A single modular power stage per phase of ac output entails the minimum of circuit complexity while providing by feedback synthesis individual phase voltage regulation, phase position control and inherent compensation simultaneously for line and load disturbances. Clipped sinewave performance is described under off-limit load or input voltage conditions. Also, approaches to high power levels, 3-phase arraying and parallel modular connection are given.
Frequency-domain nonlinear optics in two-dimensionally patterned quasi-phase-matching media.
Phillips, C R; Mayer, B W; Gallmann, L; Keller, U
2016-07-11
Advances in the amplification and manipulation of ultrashort laser pulses have led to revolutions in several areas. Examples include chirped pulse amplification for generating high peak-power lasers, power-scalable amplification techniques, pulse shaping via modulation of spatially-dispersed laser pulses, and efficient frequency-mixing in quasi-phase-matched nonlinear crystals to access new spectral regions. In this work, we introduce and demonstrate a new platform for nonlinear optics which has the potential to combine these separate functionalities (pulse amplification, frequency transfer, and pulse shaping) into a single monolithic device that is bandwidth- and power-scalable. The approach is based on two-dimensional (2D) patterning of quasi-phase-matching (QPM) gratings combined with optical parametric interactions involving spatially dispersed laser pulses. Our proof of principle experiment demonstrates this technique via mid-infrared optical parametric chirped pulse amplification of few-cycle pulses. Additionally, we present a detailed theoretical and numerical analysis of such 2D-QPM devices and how they can be designed.
NASA Technical Reports Server (NTRS)
1979-01-01
Candidate power module confugurations which will directly support an evolutionary scenario allowing growth from 25 kW to 100 kW are described. The growth rationale is structured to support a nominal scenario for sortie mission support to the POrbiter and to free-flying payloads during the 1983 to 1990 era.
Design of power cable grounding wire anti-theft monitoring system
NASA Astrophysics Data System (ADS)
An, Xisheng; Lu, Peng; Wei, Niansheng; Hong, Gang
2018-01-01
In order to prevent the serious consequences of the power grid failure caused by the power cable grounding wire theft, this paper presents a GPRS based power cable grounding wire anti-theft monitoring device system, which includes a camera module, a sensor module, a micro processing system module, and a data monitoring center module, a mobile terminal module. Our design utilize two kinds of methods for detecting and reporting comprehensive image, it can effectively solve the problem of power and cable grounding wire box theft problem, timely follow-up grounded cable theft events, prevent the occurrence of electric field of high voltage transmission line fault, improve the reliability of the safe operation of power grid.
NASA Astrophysics Data System (ADS)
Harrell, Lee; Moore, Eric; Lee, Sanggap; Hickman, Steven; Marohn, John
2011-03-01
We present data and theoretical signal and noise calculations for a protocol using parametric amplification to evade the inherent tradeoff between signal and detector frequency noise in force-gradient magnetic resonance force microscopy signals, which are manifested as a modulated frequency shift of a high- Q microcantilever. Substrate-induced frequency noise has a 1 / f frequency dependence, while detector noise exhibits an f2 dependence on modulation frequency f . Modulation of sample spins at a frequency that minimizes these two contributions typically results in a surface frequency noise power an order of magnitude or more above the thermal limit and may prove incompatible with sample spin relaxation times as well. We show that the frequency modulated force-gradient signal can be used to excite the fundamental resonant mode of the cantilever, resulting in an audio frequency amplitude signal that is readily detected with a low-noise fiber optic interferometer. This technique allows us to modulate the force-gradient signal at a sufficiently high frequency so that substrate-induced frequency noise is evaded without subjecting the signal to the normal f2 detector noise of conventional demodulation.
Maximum likelihood sequence estimation for optical complex direct modulation.
Che, Di; Yuan, Feng; Shieh, William
2017-04-17
Semiconductor lasers are versatile optical transmitters in nature. Through the direct modulation (DM), the intensity modulation is realized by the linear mapping between the injection current and the light power, while various angle modulations are enabled by the frequency chirp. Limited by the direct detection, DM lasers used to be exploited only as 1-D (intensity or angle) transmitters by suppressing or simply ignoring the other modulation. Nevertheless, through the digital coherent detection, simultaneous intensity and angle modulations (namely, 2-D complex DM, CDM) can be realized by a single laser diode. The crucial technique of CDM is the joint demodulation of intensity and differential phase with the maximum likelihood sequence estimation (MLSE), supported by a closed-form discrete signal approximation of frequency chirp to characterize the MLSE transition probability. This paper proposes a statistical method for the transition probability to significantly enhance the accuracy of the chirp model. Using the statistical estimation, we demonstrate the first single-channel 100-Gb/s PAM-4 transmission over 1600-km fiber with only 10G-class DM lasers.
Direct diode lasers and their advantages for materials processing and other applications
NASA Astrophysics Data System (ADS)
Fritsche, Haro; Ferrario, Fabio; Koch, Ralf; Kruschke, Bastian; Pahl, Ulrich; Pflueger, Silke; Grohe, Andreas; Gries, Wolfgang; Eibl, Florian; Kohl, Stefanie; Dobler, Michael
2015-03-01
The brightness of diode lasers is improving continuously and has recently started to approach the level of some solid state lasers. The main technology drivers over the last decade were improvements of the diode laser output power and divergence, enhanced optical stacking techniques and system design, and most recently dense spectral combining. Power densities at the work piece exceed 1 MW/cm2 with commercially available industrial focus optics. These power densities are sufficient for cutting and welding as well as ablation. Single emitter based diode laser systems further offer the advantage of fast current modulation due their lower drive current compared to diode bars. Direct diode lasers may not be able to compete with other technologies as fiber or CO2-lasers in terms of maximum power or beam quality. But diode lasers offer a range of features that are not possible to implement in a classical laser. We present an overview of those features that will make the direct diode laser a very valuable addition in the near future, especially for the materials processing market. As the brightness of diode lasers is constantly improving, BPP of less than 5mm*mrad have been reported with multikW output power. Especially single emitter-based diode lasers further offer the advantage of very fast current modulation due to their low drive current and therefore low drive voltage. State of the art diode drivers are already demonstrated with pulse durations of <10μs and repetition rates can be adjusted continuously from several kHz up to cw mode while addressing power levels from 0-100%. By combining trigger signals with analog modulations nearly any kind of pulse form can be realized. Diode lasers also offer a wide, adaptable range of wavelengths, and wavelength stabilization. We report a line width of less than 0.1nm while the wavelength stability is in the range of MHz which is comparable to solid state lasers. In terms of applications, especially our (broad) wavelength combining technology for power scaling opens the window to new processes of cutting or welding and process control. Fast power modulation through direct current control allows pulses of several microseconds with hundreds of watts average power. Spot sizes of less than 100 μm are obtained at the work piece. Such a diode system allows materials processing with a pulse parameter range that is hardly addressed by any other laser system. High productivity material ablation with cost effective lasers is enabled. The wide variety of wavelengths, high brightness, fast power modulation and high efficiency of diode lasers results in a strong pull of existing markets, but also spurs the development of a wide variety of new applications.
A 25kW fiber-coupled diode laser for pumping applications
NASA Astrophysics Data System (ADS)
Malchus, Joerg; Krause, Volker; Koesters, Arnd; Matthews, David G.
2014-03-01
In this paper we report the development of a new fiber-coupled diode laser for pumping applications capable of generating 25 kW with four wavelengths. The delivery fiber has 2.0 mm core diameter and 0.22 NA resulting in a Beam Parameter Product (BPP) of 220 mm mrad. To achieve the specifications mentioned above a novel beam transformation technique has been developed combining two high power laser stacks in one common module. After fast axis collimation and beam reformatting a beam with a BPP of 200 mm mrad x 40 mm mrad in the slow and fast-axis is generated. Based on this architecture a customer-specific pump laser with 25 kW optical output power has been developed, in which two modules are polarization multiplexed for each wavelength (980nm, 1020nm, 1040m and 1060nm). After slow-axis collimation these wavelengths are combined using dense wavelength coupling before focusing onto the fiber endface. This new laser is based on a turn-key platform, allowing straight-forward integration into any pump application. The complete system has a footprint of less than 1.4m² and a height of less than 1.8m. The laser diodes are water cooled, achieve a wall-plug efficiency of up to 60%, and have a proven lifetime of <30,000 hours. The new beam transformation techniques open up prospects for the development of pump sources with more than 100kW of optical output power.
High-performance 1.3-μm laser diode by LP-MOVPE
NASA Astrophysics Data System (ADS)
Li, TongNing; Ji, Jin-yan; Yan, Xin-min; Liu, Tao; Ning, Zhou; Liu, Jiang; Liu, Zi-li; Huang, Ge-fan
1996-09-01
The progress in 1.3 micrometers wavelength InGaAsP/InP lasers for optic fiber communication and subscriber loop applications is reviewed. By using LP-MOVPE/LPE epitaxy techniques, the performance of commercial optical devices is considerably improved. The bandwidth of the 1.3 micrometers uncooled MQW-LD module could be high to 1.6GHz, threshold current Ith < 15mA, maximum fiber output power Pf >= 20mW while uniformity, reproducible, high yield are achieved. Further by growing active layer with compressive strained structure the lowest threshold current Ith equals 3.8mA was achieved with high reflection coating and the temperature performance of the SL-MQW-LD has been greatly improved, the change of slop efficiency at 25 degrees C and 85 degrees C is less than 1 dB. Using the holographic technique a high power 1.31 micrometers InGaAsP/InP multiquantum well distributed feedback laser has also been developed. The fiber output power of butterfly packaged module with optic isolator Pf > 10mW, threshold current Ith < 18mA, slop efficiency Es > 22 percent and side mode suppression ratio SMSR > 40dB. The composite triple beat CTB < -66dBc and the composite second order CSO < -56dBc by test frequencies equals 55.25 to approximately 289.25MHz with 40 NCTA channels, the carrier to noise ration CNR > 50 dB and the relative intensity noise RIN < -160dB/Hz.
NASA Astrophysics Data System (ADS)
Isoe, G. M.; Wassin, S.; Gamatham, R. R. G.; Leitch, A. W. R.; Gibbon, T. B.
2017-11-01
Optical fibre communication technologies are playing important roles in data centre networks (DCNs). Techniques for increasing capacity and flexibility for the inter-rack/pod communications in data centres have drawn remarkable attention in recent years. In this work, we propose a low complexity, reliable, alternative technique for increasing DCN capacity and flexibility through multi-signal modulation onto a single mode VCSEL carrier. A 20 Gbps 4-PAM data signal is directly modulated on a single mode 10 GHz bandwidth VCSEL carrier at 1310 nm, therefore, doubling the network bit rate. Carrier spectral efficiency is further maximized by modulating its phase attribute with a 2 GHz reference frequency (RF) clock signal. We, therefore, simultaneously transmit a 20 Gbps 4-PAM data signal and a phase modulated 2 GHz RF signal using a single mode 10 GHz bandwidth VCSEL carrier. It is the first time a single mode 10 GHz bandwidth VCSEL carrier is reported to simultaneously transmit a directly modulated 4-PAM data signal and a phase modulated RF clock signal. A receiver sensitivity of -10. 52 dBm was attained for a 20 Gbps 4-PAM VCSEL transmission. The 2 GHz phase modulated RF clock signal introduced a power budget penalty of 0.21 dB. Simultaneous distribution of both data and timing signals over shared infrastructure significantly increases the aggregated data rate at different optical network units within the DCN, without expensive optics investment. We further demonstrate on the design of a software-defined digital signal processing assisted receiver to efficiently recover the transmitted signal without employing costly receiver hardware.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smed, T.; Andersson, G.
In this paper, damping of slow oscillations with active and reactive power modulation of HVDC-links is analyzed with the aim of gaining a physical insight into the problem. The analysis shows that active power modulation is efficient when applied to a short mass-scaled electrical distance from one of the swinging machines, and reactive power modulation is most efficient when there exists a well-defined power flow direction and the modulation is made at a point close to the electrical midpoint between the swinging machines. It is shown that the intuitively appealing feedback signals frequency and derivative of the voltage are appropriatemore » for active and reactive power modulation, respectively. The impact of the constraints imposed by the HVDC equations are analyzed, and it is determined when the implicit reactive power modulation resulting from constant [gamma] control may be detrimental for the damping.« less
Thin film absorption characterization by focus error thermal lensing
NASA Astrophysics Data System (ADS)
Domené, Esteban A.; Schiltz, Drew; Patel, Dinesh; Day, Travis; Jankowska, E.; Martínez, Oscar E.; Rocca, Jorge J.; Menoni, Carmen S.
2017-12-01
A simple, highly sensitive technique for measuring absorbed power in thin film dielectrics based on thermal lensing is demonstrated. Absorption of an amplitude modulated or pulsed incident pump beam by a thin film acts as a heat source that induces thermal lensing in the substrate. A second continuous wave collimated probe beam defocuses after passing through the sample. Determination of absorption is achieved by quantifying the change of the probe beam profile at the focal plane using a four-quadrant detector and cylindrical lenses to generate a focus error signal. This signal is inherently insensitive to deflection, which removes noise contribution from point beam stability. A linear dependence of the focus error signal on the absorbed power is shown for a dynamic range of over 105. This technique was used to measure absorption loss in dielectric thin films deposited on fused silica substrates. In pulsed configuration, a single shot sensitivity of about 20 ppm is demonstrated, providing a unique technique for the characterization of moving targets as found in thin film growth instrumentation.
A regenerable carbon dioxide removal and oxygen recovery system for the Japanese Experiment Module.
Otsuji, K; Hirao, M; Satoh, S
1987-01-01
The Japanese Space Station Program is now under Phase B study by the National Space Development Agency of Japan in participation with the U.S. Space Station Program. A Japanese Space Station participation will be a dedicated pressurized module to be attached to the U.S. Space Station, and is called Japanese Experiment Module (JEM). Astronaut scientists will conduct various experimental operations there. Thus an environment control and life support system is required. Regenerable carbon dioxide removal and collection technique as well as oxygen recovery technique has been studied and investigated for several years. A regenerable carbon dioxide removal subsystem using steam desorbed solid amine and an oxygen recovery subsystem using Sabatier methane cracking have a good possibility for the application to the Japanese Experiment Module. Basic performance characteristics of the carbon dioxide removal and oxygen recovery subsystem are presented according to the results of a fundamental performance test program. The trace contaminant removal process is also investigated and discussed. The solvent recovery plant for the regeneration of various industrial solvents, such as hydrocarbons, alcohols and so on, utilizes the multi-bed solvent adsorption and steam desorption process, which is very similar to the carbon dioxide removal subsystem. Therefore, to develop essential components including adsorption tank (bed), condenser. process controller and energy saving system, the technology obtained from the experience to construct solvent recovery plant can be easily and effectively applicable to the carbon dioxide removal subsystem. The energy saving efficiency is evaluated for blower power reduction, steam reduction and waste heat utilization technique. According to the above background, the entire environment control and life support system for the Japanese Experiment Module including the carbon dioxide removal and oxygen recovery subsystem is evaluated and proposed.
Implementation of thermoelectric module for cooling process of microscale experimental room
NASA Astrophysics Data System (ADS)
Gołebiowska, Justyna; Żelazna, Agnieszka; Zioło, Paweł
2017-08-01
Thermoelectric modules, also known as Peltier modules, are used for cooling small devices and also, according to literature, in refrigeration. They can be an alternative to conventional refrigeration systems based on the use of compressors chillers powered by AC power. Peltier modules are powered by direct current (DC), which allows to power them directly supply by photovoltaic modules. In this paper operation of thermoelectric module used for cooling experimental room of cubature 0.125 m3 is presented. The study involves investigation of temperatures achieved on the cold and hot sides of module and inside the experimental room depending on the values of module supplying current. These studies provide an introduction to the assessment of the influence of different methods of heat removal on the hot side of thermoelectric module on cooling efficiency of whole system.
Advanced control of neutral beam injected power in DIII-D
Pawley, Carl J.; Crowley, Brendan J.; Pace, David C.; ...
2017-03-23
In the DIII-D tokamak, one of the most powerful techniques to control the density, temperature and plasma rotation is by eight independently modulated neutral beam sources with a total power of 20 MW. The rapid modulation requires a high degree of reproducibility and precise control of the ion source plasma and beam acceleration voltage. Recent changes have been made to the controls to provide a new capability to smoothly vary the beam current and beam voltage during a discharge, while maintaining the modulation capability. The ion source plasma inside the arc chamber is controlled through feedback from the Langmuir probesmore » measuring plasma density near the extraction end. To provide the new capability, the plasma control system (PCS) has been enabled to change the Langmuir probe set point and the beam voltage set point in real time. When the PCS varies the Langmuir set point, the plasma density is directly controlled in the arc chamber, thus changing the beam current (perveance) and power going into the tokamak. Alternately, the PCS can sweep the beam voltage set point by 20 kV or more and adjust the Langmuir probe setting to match, keeping the perveance constant and beam divergence at a minimum. This changes the beam power and average neutral particle energy, which changes deposition in the tokamak plasma. The ion separating magnetic field must accurately match the beam voltage to protect the beam line. To do this, the magnet current control accurately tracks the beam voltage set point. In conclusion, these new capabilities allow continuous in-shot variation of neutral beam ion energy to complement« less
High Performance Power Module for Hall Effect Thrusters
NASA Technical Reports Server (NTRS)
Pinero, Luis R.; Peterson, Peter Y.; Bowers, Glen E.
2002-01-01
Previous efforts to develop power electronics for Hall thruster systems have targeted the 1 to 5 kW power range and an output voltage of approximately 300 V. New Hall thrusters are being developed for higher power, higher specific impulse, and multi-mode operation. These thrusters require up to 50 kW of power and a discharge voltage in excess of 600 V. Modular power supplies can process more power with higher efficiency at the expense of complexity. A 1 kW discharge power module was designed, built and integrated with a Hall thruster. The breadboard module has a power conversion efficiency in excess of 96 percent and weighs only 0.765 kg. This module will be used to develop a kW, multi-kW, and high voltage power processors.
Development of an automated electrical power subsystem testbed for large spacecraft
NASA Technical Reports Server (NTRS)
Hall, David K.; Lollar, Louis F.
1990-01-01
The NASA Marshall Space Flight Center (MSFC) has developed two autonomous electrical power system breadboards. The first breadboard, the autonomously managed power system (AMPS), is a two power channel system featuring energy generation and storage and 24-kW of switchable loads, all under computer control. The second breadboard, the space station module/power management and distribution (SSM/PMAD) testbed, is a two-bus 120-Vdc model of the Space Station power subsystem featuring smart switchgear and multiple knowledge-based control systems. NASA/MSFC is combining these two breadboards to form a complete autonomous source-to-load power system called the large autonomous spacecraft electrical power system (LASEPS). LASEPS is a high-power, intelligent, physical electrical power system testbed which can be used to derive and test new power system control techniques, new power switching components, and new energy storage elements in a more accurate and realistic fashion. LASEPS has the potential to be interfaced with other spacecraft subsystem breadboards in order to simulate an entire space vehicle. The two individual systems, the combined systems (hardware and software), and the current and future uses of LASEPS are described.
NASA Astrophysics Data System (ADS)
Shi, Jin-Wei; Wei, Chia-Chien; Chen, Jyehong; Ledentsov, N. N.; Yang, Ying-Jay
2017-02-01
Vertical-cavity surface-emitting lasers (VCSELs) has become the most important light source in the booming market of short-reach (< 300 meters) optical interconnect (OI). The next generation OI has been targeted at 56 Gbit/sec data rate per channel (CEI-56G) with the total data rate up to 400 Gbit/sec. However, the serious modal dispersion of multi-mode fiber (MMF), limited speed of VCSEL, and its high resistance (> 150 Ω) seriously limits the >50 Gbit/sec linking distance (< 10 m) by using only on-off keying (OOK) modulation scheme without any signal processing techniques. In contrast to OOK, 4-PAM modulation format is attractive for >50 Gbit/sec transmission due to that it can save one-half of the required bandwidth. Nevertheless, a 4.7 dB optical power penalty and the linearity of transmitter would become issues in the 4-PAM linking performance. Besides, in the modern OI system, the optics transreceiver module must be packaged as close as possible with the integrated circuits (ICs). The heat generated from ICs will become an issue in speed of VSCEL. Here, we review our recent work about 850 nm VCSEL, which has unique Zn-diffusion/oxide-relief apertures and special p- doping active layer with strong wavelength detuning to further enhance its modulation speed and high-temperature (85°C) performances. Single-mode (SM) devices with high-speed ( 26 GHz), reasonable resistance ( 70 Ω) and moderate output power ( 1.5 mW) can be achieved. Error-free 54 Gbit/sec OOK transmission through 1km MMF has been realized by using such SM device with signal processing techniques. Besides, the volterra nonlinear equalizer has been applied in our 4-PAM 64 Gbit/sec transmission through 2-km OM4 MMF, which significantly enhance the linearity of device and outperforms fed forward equalization (FFE) technique. Record high bit-rate distance product of 128.km is confirmed for optical-interconnect applications.
Multi-beam range imager for autonomous operations
NASA Technical Reports Server (NTRS)
Marzwell, Neville I.; Lee, H. Sang; Ramaswami, R.
1993-01-01
For space operations from the Space Station Freedom the real time range imager will be very valuable in terms of refuelling, docking as well as space exploration operations. For these applications as well as many other robotics and remote ranging applications, a small potable, power efficient, robust range imager capable of a few tens of km ranging with 10 cm accuracy is needed. The system developed is based on a well known pseudo-random modulation technique applied to a laser transmitter combined with a novel range resolution enhancement technique. In this technique, the transmitter is modulated by a relatively low frequency of an order of a few MHz to enhance the signal to noise ratio and to ease the stringent systems engineering requirements while accomplishing a very high resolution. The desired resolution cannot easily be attained by other conventional approaches. The engineering model of the system is being designed to obtain better than 10 cm range accuracy simply by implementing a high precision clock circuit. In this paper we present the principle of the pseudo-random noise (PN) lidar system and the results of the proof of experiment.
Farzan, Faranak; Vernet, Marine; Shafi, Mouhsin M D; Rotenberg, Alexander; Daskalakis, Zafiris J; Pascual-Leone, Alvaro
2016-01-01
The concurrent combination of transcranial magnetic stimulation (TMS) with electroencephalography (TMS-EEG) is a powerful technology for characterizing and modulating brain networks across developmental, behavioral, and disease states. Given the global initiatives in mapping the human brain, recognition of the utility of this technique is growing across neuroscience disciplines. Importantly, TMS-EEG offers translational biomarkers that can be applied in health and disease, across the lifespan, and in humans and animals, bridging the gap between animal models and human studies. However, to utilize the full potential of TMS-EEG methodology, standardization of TMS-EEG study protocols is needed. In this article, we review the principles of TMS-EEG methodology, factors impacting TMS-EEG outcome measures, and the techniques for preventing and correcting artifacts in TMS-EEG data. To promote the standardization of this technique, we provide comprehensive guides for designing TMS-EEG studies and conducting TMS-EEG experiments. We conclude by reviewing the application of TMS-EEG in basic, cognitive and clinical neurosciences, and evaluate the potential of this emerging technology in brain research.
Farzan, Faranak; Vernet, Marine; Shafi, Mouhsin M. D.; Rotenberg, Alexander; Daskalakis, Zafiris J.; Pascual-Leone, Alvaro
2016-01-01
The concurrent combination of transcranial magnetic stimulation (TMS) with electroencephalography (TMS-EEG) is a powerful technology for characterizing and modulating brain networks across developmental, behavioral, and disease states. Given the global initiatives in mapping the human brain, recognition of the utility of this technique is growing across neuroscience disciplines. Importantly, TMS-EEG offers translational biomarkers that can be applied in health and disease, across the lifespan, and in humans and animals, bridging the gap between animal models and human studies. However, to utilize the full potential of TMS-EEG methodology, standardization of TMS-EEG study protocols is needed. In this article, we review the principles of TMS-EEG methodology, factors impacting TMS-EEG outcome measures, and the techniques for preventing and correcting artifacts in TMS-EEG data. To promote the standardization of this technique, we provide comprehensive guides for designing TMS-EEG studies and conducting TMS-EEG experiments. We conclude by reviewing the application of TMS-EEG in basic, cognitive and clinical neurosciences, and evaluate the potential of this emerging technology in brain research. PMID:27713691
Ultrasensitive Laser Spectroscopy in Solids: Single-Molecule Detection
1989-10-25
spite of detection intensity constraints necessary to avoid power broadening, the optical absorption spectrum of single molecules of pentacene In p...molecule detection, or SMD) would provide a useful tool for the study of local host-absorber interactions where tihe absorbing ,ontor is essentially at...modulation techniques 7. 8 for the model system composed of pentacene substitutional impurities in p-terphenyl crystals at 1.5K. The pontacene molecules can
Non-Epitaxial Thin-Film Indium Phosphide Photovoltaics: Growth, Devices, and Cost Analysis
NASA Astrophysics Data System (ADS)
Zheng, Maxwell S.
In recent years, the photovoltaic market has grown significantly as module prices have continued to come down. Continued growth of the field requires higher efficiency modules at lower manufacturing costs. In particular, higher efficiencies reduce the area needed for a given power output, thus reducing the downstream balance of systems costs that scale with area such as mounting frames, installation, and soft costs. Cells and modules made from III-V materials have the highest demonstrated efficiencies to date but are not yet at the cost level of other thin film technologies, which has limited their large-scale deployment. There is a need for new materials growth, processing and fabrication techniques to address this major shortcoming of III-V semiconductors. Chapters 2 and 3 explore growth of InP on non-epitaxial Mo substrates by MOCVD and CSS, respectively. The results from these studies demonstrate that InP optoelectronic quality is maintained even by growth on non-epitaxial metal substrates. Structural characterization by SEM and XRD show stoichiometric InP can be grown in complete thin films on Mo. Photoluminescence measurements show peak energies and widths to be similar to those of reference wafers of similar doping concentrations. In chapter 4 the TF-VLS growth technique is introduced and cells fabricated from InP produced by this technique are characterized. The TF-VLS method results in lateral grain sizes of >500 mum and exhibits superior optoelectronic quality. First generation devices using a n-TiO2 window layer along with p-type TF-VLS grown InP have reached ˜12.1% power conversion efficiency under 1 sun illumination with VOC of 692 mV, JSC of 26.9 mA/cm2, and FF of 65%. The cells are fabricated using all non-epitaxial processing. Optical measurements show the InP in these cells have the potential to support a higher VOC of ˜795 mV, which can be achieved by improved device design. Chapter 5 describes a cost analysis of a manufacturing process using an InP cell as the active layer in a monolithically integrated module. Importantly, TF-VLS growth avoids the hobbles of traditional growth: the epitaxial wafer substrate, low utilization efficiency of expensive metalorganic precursors, and high capital depreciation costs due to low throughput. Production costs are projected to be 0.76/W(DC) for the benchmark case of 12% efficient modules and would decrease to 0.40/W(DC) for the long-term potential case of 24% efficient modules.
All-optical modulation in Mid-Wavelength Infrared using porous Si membranes
Park, Sung Jin; Zakar, Ammar; Zerova, Vera L.; Chekulaev, Dimitri; Canham, Leigh T.; Kaplan, Andre
2016-01-01
We demonstrate for the first time the possibility of all-optical modulation of self-standing porous Silicon (pSi) membrane in the Mid-Wavelength Infrared (MWIR) range using femtosecond pump-probe techniques. To study optical modulation, we used pulses of an 800 nm, 60 femtosecond for pump and a MWIR tunable probe in the spectral range between 3.5 and 4.4 μm. We show that pSi possesses a natural transparency window centred around 4 μm. Yet, about 55% of modulation contrast can be achieved by means of optical excitation at the pump power of 60 mW (4.8 mJ/cm2). Our analysis shows that the main mechanism of the modulation is interaction of the MWIR signal with the free charge carrier excited by the pump. The time-resolved measurements showed a sub-picosecond rise time and a recovery time of about 66 ps, which suggests a modulation speed performance of ~15 GHz. This optical modulation of pSi membrane in MWIR can be applied to a variety of applications such as thermal imaging and free space communications. PMID:27440224
Laser-based sensor for detection of hazardous gases in the air using waveguide CO2 laser.
Gondal, Mohammed A; Bakhtiari, Imran A; Dastageer, Abdul K
2007-06-01
A spectrometer based on the principle of photoacoustic spectroscopy has been developed recently at our laboratory for the detection of hazardous gases such as O3, C2H4, SO2, NO2 and SF6. In most of our earlier works, we employed a mechanical chopper to modulate the laser beam and this chopper modulation has the crucial disadvantage of instability in the chopper frequency. Even a minor shift of about 1 Hz in the modulation frequency could significantly reduce the photoacoustic signal by an order of magnitude at the acoustic resonant mode of the photoacoustic cell. To overcome this problem, we developed a photoacoustic spectrometer where a wave guided CW CO2 laser beam is modulated electronically with the external frequency generator. Our preliminary results show that the electronic modulation of CO2 laser beam improved the sensitivity of our spectrometer by a factor of 6. The parametric dependence of photoacoustic signal on laser power, modulation frequency and trace gas concentration, was investigated and the comparison between the two modulation techniques is presented in this paper for detection of trace gases such as C2H4.
Spectral shaping of an all-fiber torsional acousto-optic tunable filter.
Ko, Jeakwon; Lee, Kwang Jo; Kim, Byoung Yoon
2014-12-20
Spectral shaping of an all-fiber torsional acousto-optic (AO) tunable filter is studied. The technique is based on the axial modulation of AO coupling strength along a highly birefringent optical fiber, which is achieved by tailoring the outer diameter of the fiber along its propagation axis. Two kinds of filter spectral shaping schemes-Gaussian apodization and matched filtering with triple resonance peaks-are proposed and numerically investigated under realistic experimental conditions: at the 50-cm-long AO interaction length of the fiber and at half of the original fiber diameter as the minimum thickness of the tailored fiber section. The results show that the highest peak of sidelobe spectra in filter transmission is suppressed from 11.64% to 0.54% via Gaussian modulation of the AO coupling coefficient (κ). Matched filtering with triple resonance peaks operating with a single radio frequency signal is also achieved by cosine modulation of κ, of which the modulation period determines the spectral distance between two satellite peaks located in both wings of the main resonance peak. The splitting of two satellite peaks in the filter spectra reaches 48.2 nm while the modulation period varies from 7.7 to 50 cm. The overall peak power of two satellite resonances is calculated to be 22% of the main resonance power. The results confirm the validity and practicality of our approach, and we predict robust and stable operation of the designed all-fiber torsional AO filters.
High-Power, High-Speed Electro-Optic Pockels Cell Modulator
NASA Technical Reports Server (NTRS)
Hawthorne, Justin; Battle, Philip
2013-01-01
Electro-optic modulators rely on a change in the index of refraction for the optical wave as a function of an applied voltage. The corresponding change in index acts to delay the wavefront in the waveguide. The goal of this work was to develop a high-speed, high-power waveguide- based modulator (phase and amplitude) and investigate its use as a pulse slicer. The key innovation in this effort is the use of potassium titanyl phosphate (KTP) waveguides, making the highpower, polarization-based waveguide amplitude modulator possible. Furthermore, because it is fabricated in KTP, the waveguide component will withstand high optical power and have a significantly higher RF modulation figure of merit (FOM) relative to lithium niobate. KTP waveguides support high-power TE and TM modes - a necessary requirement for polarization-based modulation as with a Pockels cell. High-power fiber laser development has greatly outpaced fiber-based modulators in terms of its maturity and specifications. The demand for high-performance nonlinear optical (NLO) devices in terms of power handling, efficiency, bandwidth, and useful wavelength range has driven the development of bulk NLO options, which are limited in their bandwidth, as well as waveguide based LN modulators, which are limited by their low optical damage threshold. Today, commercially available lithium niobate (LN) modulators are used for laser formatting; however, because of photorefractive damage that can reduce transmission and increase requirements on bias control, LN modulators cannot be used with powers over several mW, dependent on wavelength. The high-power, high-speed modulators proposed for development under this effort will enable advancements in several exciting fields including lidarbased remote sensing, atomic interferometry, free-space laser communications, and others.
Power-Amplifier Module for 145 to 165 GHz
NASA Technical Reports Server (NTRS)
Samoska, Lorene; Peralta, Alejandro
2007-01-01
A power-amplifier module that operates in the frequency range of 145 to 165 GHz has been designed and constructed as a combination of (1) a previously developed monolithic microwave integrated circuit (MMIC) power amplifier and (2) a waveguide module. The amplifier chip was needed for driving a high-electron-mobility-transistor (HEMT) frequency doubler. While it was feasible to connect the amplifier and frequency-doubler chips by use of wire bonds, it was found to be much more convenient to test the amplifier and doubler chips separately. To facilitate separate testing, it was decided to package the amplifier and doubler chips in separate waveguide modules. Figure 1 shows the resulting amplifier module. The amplifier chip was described in "MMIC HEMT Power Amplifier for 140 to 170 GHz" (NPO-30127), NASA Tech Briefs, Vol. 27, No. 11, (November 2003), page 49. To recapitulate: This is a three-stage MMIC power amplifier that utilizes HEMTs as gain elements. The amplifier was originally designed to operate in the frequency range of 140 to 170 GHz. The waveguide module is based on a previously developed lower frequency module, redesigned to support operation in the frequency range of 140 to 220 GHz. Figure 2 presents results of one of several tests of the amplifier module - measurements of output power and gain as functions of input power at an output frequency of 150 GHz. Such an amplifier module has many applications to test equipment for power sources above 100 GHz.
Design of an Input-Parallel Output-Parallel LLC Resonant DC-DC Converter System for DC Microgrids
NASA Astrophysics Data System (ADS)
Juan, Y. L.; Chen, T. R.; Chang, H. M.; Wei, S. E.
2017-11-01
Compared with the centralized power system, the distributed modularized power system is composed of several power modules with lower power capacity to provide a totally enough power capacity for the load demand. Therefore, the current stress of the power components in each module can then be reduced, and the flexibility of system setup is also enhanced. However, the parallel-connected power modules in the conventional system are usually controlled to equally share the power flow which would result in lower efficiency in low loading condition. In this study, a modular power conversion system for DC micro grid is developed with 48 V dc low voltage input and 380 V dc high voltage output. However, in the developed system control strategy, the numbers of power modules enabled to share the power flow is decided according to the output power at lower load demand. Finally, three 350 W power modules are constructed and parallel-connected to setup a modular power conversion system. From the experimental results, compared with the conventional system, the efficiency of the developed power system in the light loading condition is greatly improved. The modularized design of the power system can also decrease the power loss ratio to the system capacity.
Development status of the small community solar power system
NASA Technical Reports Server (NTRS)
Pons, R. L.
1982-01-01
The development status and test results for the Small Community Solar Thermal Power Experiment are presented. Activities on the phase 2 power module development effort are presented with emphasis on the receiver, the plant control subsystem, and the energy transport subsystem. The components include a single prototype power module consisting of a parabolic dish concentrator, a power conversion assembly (PCA), and a multiple-module plant control subsystem. The PCA consists of a cavity receiver coupled to an organic Rankine cycle engine-alternator unit defined as the power conversion subsystem; the PCA is mounted at the focus of a parabolic dish concentrator. At a solar insolation of 100 W/sq m and ambient temperature of 28 C (82 F), the power module produces approximately 20 kW of 3-phase, 3 kHz ac power, depending on the concentrator employed. A ground-mounted rectifier to the central collection site where it is supplied directly to the common dc bus which collects the power from all modules in the plant.
Optimal fault-tolerant control strategy of a solid oxide fuel cell system
NASA Astrophysics Data System (ADS)
Wu, Xiaojuan; Gao, Danhui
2017-10-01
For solid oxide fuel cell (SOFC) development, load tracking, heat management, air excess ratio constraint, high efficiency, low cost and fault diagnosis are six key issues. However, no literature studies the control techniques combining optimization and fault diagnosis for the SOFC system. An optimal fault-tolerant control strategy is presented in this paper, which involves four parts: a fault diagnosis module, a switching module, two backup optimizers and a controller loop. The fault diagnosis part is presented to identify the SOFC current fault type, and the switching module is used to select the appropriate backup optimizer based on the diagnosis result. NSGA-II and TOPSIS are employed to design the two backup optimizers under normal and air compressor fault states. PID algorithm is proposed to design the control loop, which includes a power tracking controller, an anode inlet temperature controller, a cathode inlet temperature controller and an air excess ratio controller. The simulation results show the proposed optimal fault-tolerant control method can track the power, temperature and air excess ratio at the desired values, simultaneously achieving the maximum efficiency and the minimum unit cost in the case of SOFC normal and even in the air compressor fault.
NASA Technical Reports Server (NTRS)
Kiceniuk, T.
1985-01-01
An organic Rankine-cycle (ORC) power module was developed for use in a multimodule solar power plant to be built and operated in a small community. Many successful components and subsystems, including the reciever, power conversion subsystem, energy transport subsystem, and control subsystem, were tested. Tests were performed on a complete power module using a test bed concentrator in place of the proposed concentrator. All major single-module program functional objectives were met and the multimodule operation presented no apparent problems. The hermetically sealed, self-contained, ORC power conversion unit subsequently successfully completed a 300-hour endurance run with no evidence of wear or operating problems.
Injection locking of optomechanical oscillators via acoustic waves.
Huang, Ke; Hossein-Zadeh, Mani
2018-04-02
Injection locking is an effective technique for synchronization of oscillator networks and controlling the phase and frequency of individual oscillators. As such, exploring new mechanisms for injection locking of emerging oscillators is important for their usage in various systems. Here, we present the first demonstration of injection locking of a radiation pressure driven optomechanical oscillator (OMO) via acoustic waves. As opposed to previously reported techniques (based on pump modulation or direct application of a modulated electrostatic force), injection locking of OMO via acoustic waves does not require optical power modulation or physical contact with the OMO and it can be easily implemented on various platforms to lock different types of OMOs independent of their size and structure. Using this approach we have locked the phase and frequency of two distinct modes of a microtoroidal silica OMO to a piezoelectric transducer (PZT). We have characterized the behavior of the injection locked OMO with three acoustic excitation configurations and showed that even without proper acoustic impedance, matching the OMO can be locked to the PZT and tuned over 17 kHz with only -30 dBm of RF power fed to the PZT. The high efficiency, simplicity, and scalability of the proposed approach paves the road toward a new class of photonic systems that rely on synchronization of several OMOs to a single or multiple RF oscillators with applications in optical communication, metrology, and sensing. Beyond its practical applications, injection locking via acoustic waves can be used in fundamental studies in quantum optomechanics where thermal and optical isolation of the OMO are critical.
Components for monolithic fiber chirped pulse amplification laser systems
NASA Astrophysics Data System (ADS)
Swan, Michael Craig
The first portion of this work develops techniques for generating femtosecond-pulses from conventional fabry-perot laser diodes using nonlinear-spectral-broadening techniques in Yb-doped positive dispersion fiber ampliers. The approach employed an injection-locked fabry-perot laser diode followed by two stages of nonlinear-spectral-broadening to generate sub-200fs pulses. This thesis demonstrated that a 60ps gain-switched fabry-perot laser-diode can be injection-locked to generate a single-longitudinal-mode pulse and compressed by nonlinear spectral broadening to 4ps. Two problems have been identified that must be resolved before moving forward with this approach. First, gain-switched pulses from a standard diode-laser have a number of characteristics not well suited for producing clean self-phase-modulation-broadened pulses, such as an asymmetric temporal shape, which has a long pulse tail. Second, though parabolic pulse formation occurs for any arbitrary temporal input pulse profile, deviation from the optimum parabolic input results in extensively spectrally modulated self-phase-modulation-broadened pulses. In conclusion, the approach of generating self-phase-modulation-broadened pulses from pulsed laser diodes has to be modified from the initial approach explored in this thesis. The first Yb-doped chirally-coupled-core ber based systems are demonstrated and characterized in the second portion of this work. Robust single-mode performance independent of excitation or any other external mode management techniques have been demonstrated in Yb-doped chirally-coupled-core fibers. Gain and power efficiency characteristics are not compromised in any way in this novel fiber structure up to the 87W maximum power achieved. Both the small signal gain at 1064nm of 30.3dB, and the wavelength dependence of the small signal gain were comparable to currently deployed large-mode-area-fiber technology. The efficiencies of the laser and amplifier were measured to be 75% and 54% respectively. With the inherent design tradeoff between the fundamental mode loss and higher order mode suppression, loss effects on system efficiency in different configurations were investigated. From these investigations it was seen that the slope-efficiency depends only on the total loss of the active fiber, and that when loss is present, the counter-propagating configuration has substantial advantages over the co-propagating case. In this thesis chirally-coupled-core fiber as the technological basis for the next generation of monolithic high power fiber laser systems has been established.
Coordinated control strategy for improving the two drops of the wind storage combined system
NASA Astrophysics Data System (ADS)
Qian, Zhou; Chenggen, Wang; Jing, Bu
2018-05-01
In the power system with high permeability wind power, due to wind power fluctuation, the operation of large-scale wind power grid connected to the system brings challenges to the frequency stability of the system. When the doubly fed wind power generation unit does not reserve spare capacity to participate in the system frequency regulation, the system frequency will produce two drops in different degrees when the wind power exits frequency modulation and enters the speed recovery stage. To solve this problem, based on the complementary advantages of wind turbines and energy storage systems in power transmission and frequency modulation, a wind storage combined frequency modulation strategy based on sectional control is proposed in this paper. Based on the TOP wind power frequency modulation strategy, the wind power output reference value is determined according to the linear relationship between the output and the speed of the wind turbine, and the auxiliary wind power load reduction is controlled when the wind power exits frequency modulation into the speed recovery stage, so that the wind turbine is recovered to run at the optimal speed. Then, according to the system frequency and the wind turbine operation state, set the energy storage system frequency modulation output. Energy storage output active support is triggered during wind speed recovery. And then when the system frequency to return to the normal operating frequency range, reduce energy storage output or to exit frequency modulation. The simulation results verify the effectiveness of the proposed method.
Assessment of the Free-piston Stirling Convertor as a Long Life Power Convertor for Space
NASA Technical Reports Server (NTRS)
Schreiber, Jeffrey G.
2001-01-01
There is currently a renewed interest in the use of free-piston Stirling power convertors for space power applications. More specifically, the Stirling convertor is being developed to be part of the Stirling Radioisotope Power System to supply electric power to spacecraft for NASA deep space science missions. The current development effort involves the Department of Energy, Germantown, MD, the NASA Glenn Research Center, Cleveland, OH, and the Stirling Technology Company, Kennewick, WA. The Stirling convertor will absorb heat supplied from the decay of plutonium dioxide contained in the General Purpose Heat Source modules and convert it into electricity to power the spacecraft. For many years the "potentials" of the free-piston Stirling convertor have been publicized by it's developers. Among these "potentials" were long life and high reliability. This paper will present an overview of the critical areas that enable long life of the free-piston Stirling power convertor, and present some of the techniques that have been used when long life has been achieved.
Energy storage options for space power
NASA Astrophysics Data System (ADS)
Hoffman, H. W.; Martin, J. F.; Olszewski, M.
Including energy storage in a space power supply enhances the feasibility of using thermal power cycles (Rankine or Brayton) and providing high-power pulses. Superconducting magnets, capacitors, electrochemical batteries, thermal phase-change materials (PCM), and flywheels are assessed; the results obtained suggest that flywheels and phase-change devices hold the most promise. Latent heat storage using inorganic salts and metallic eutectics offers thermal energy storage densities of 1500 kJ/kg to 2000 kJ/kg at temperatures to 1675 K. Innovative techniques allow these media to operate in direct contact with the heat engine working fluid. Enhancing thermal conductivity and/or modifying PCM crystallization habit provide other options. Flywheels of low-strain graphite and Kevlar fibers have achieved mechanical energy storage densities of 300 kJ/kg. With high-strain graphite fibers, storage densities appropriate to space power needs (about 500 kJ/kg) seem feasible. Coupling advanced flywheels with emerging high power density homopolar generators and compulsators could result in electric pulse-power storage modules of significantly higher energy density.
Low profile, highly configurable, current sharing paralleled wide band gap power device power module
McPherson, Brice; Killeen, Peter D.; Lostetter, Alex; Shaw, Robert; Passmore, Brandon; Hornberger, Jared; Berry, Tony M
2016-08-23
A power module with multiple equalized parallel power paths supporting multiple parallel bare die power devices constructed with low inductance equalized current paths for even current sharing and clean switching events. Wide low profile power contacts provide low inductance, short current paths, and large conductor cross section area provides for massive current carrying. An internal gate & source kelvin interconnection substrate is provided with individual ballast resistors and simple bolted construction. Gate drive connectors are provided on either left or right size of the module. The module is configurable as half bridge, full bridge, common source, and common drain topologies.
Non-Flow Through Fuel Cell Power Module Demonstration on the SCARAB Rover
NASA Technical Reports Server (NTRS)
Jakupca, Ian; Guzik, Monica; Bennett, William R.; Edwards, Lawrence
2017-01-01
NASA demonstrated the Advanced Product Water Removal (APWR) Non-Flow-Through (NFT) PEM fuel cell technology by powering the Scarab rover over three-(3) days of field operations. The latest generation APWR NFT fuel cell stackwas packaged by the Advanced Exploration Systems (AES) Modular Power Systems (AMPS) team into a nominallyrated 1-kW fuel cell power module. This power module was functionally verified in a laboratory prior to field operations on the Scarab rover, which concluded on 2 September 2015. During this demonstration, the power module satisfied all required success criteria by supporting all electrical loads as the Scarab navigated the NASA Glenn Research Center.
Advanced techniques and technology for efficient data storage, access, and transfer
NASA Technical Reports Server (NTRS)
Rice, Robert F.; Miller, Warner
1991-01-01
Advanced techniques for efficiently representing most forms of data are being implemented in practical hardware and software form through the joint efforts of three NASA centers. These techniques adapt to local statistical variations to continually provide near optimum code efficiency when representing data without error. Demonstrated in several earlier space applications, these techniques are the basis of initial NASA data compression standards specifications. Since the techniques clearly apply to most NASA science data, NASA invested in the development of both hardware and software implementations for general use. This investment includes high-speed single-chip very large scale integration (VLSI) coding and decoding modules as well as machine-transferrable software routines. The hardware chips were tested in the laboratory at data rates as high as 700 Mbits/s. A coding module's definition includes a predictive preprocessing stage and a powerful adaptive coding stage. The function of the preprocessor is to optimally process incoming data into a standard form data source that the second stage can handle.The built-in preprocessor of the VLSI coder chips is ideal for high-speed sampled data applications such as imaging and high-quality audio, but additionally, the second stage adaptive coder can be used separately with any source that can be externally preprocessed into the 'standard form'. This generic functionality assures that the applicability of these techniques and their recent high-speed implementations should be equally broad outside of NASA.
Optically powered oil tank multichannel detection system with optical fiber link
NASA Astrophysics Data System (ADS)
Yu, Zhijing
1998-08-01
A novel oil tanks integrative parameters measuring system with optically powered are presented. To realize optical powered and micro-power consumption multiple channels and parameters detection, the system has taken the PWM/PPM modulation, ratio measurement, time division multiplexing and pulse width division multiplexing techniques. Moreover, the system also used special pulse width discriminator and single-chip microcomputer to accomplish signal pulse separation, PPM/PWM signal demodulation, the error correction of overlapping pulse and data processing. This new transducer has provided with high characteristics: experimental transmitting distance is 500m; total consumption of the probes is less than 150 (mu) W; measurement error: +/- 0.5 degrees C and +/- 0.2 percent FS. The measurement accuracy of the liquid level and reserves is mainly determined by the pressure accuracy. Finally, some points of the experiment are given.
Scanning thermal plumes. [from power plant condensers
NASA Technical Reports Server (NTRS)
Scarpace, F. L.; Madding, R. P.; Green, T., III
1974-01-01
In order to study the behavior and effects of thermal plumes associated with the condenser cooling of power plants, thermal line scans are periodically made from aircraft over all power plants along the Wisconsin shore of Lake Michigan. Simultaneous ground truth is also gathered with a radiometer. Some sequential imagery has been obtained for periods up to two hours to study short term variations in the surface temperature of the plume. The article concentrates on the techniques used to analyze thermal scanner data for a single power plant which was studied intensively. The calibration methods, temperature dependence of the thermal scanner, and calculation of the modulation transfer function for the scanner are treated. It is concluded that obtaining quantitative surface-temperature data from thermal scanning is a nontrivial task. Accuracies up to plus or minus 0.1 C are attainable.
NASA Astrophysics Data System (ADS)
Laithwaite, E. R.; Kuznetsov, S. B.
1980-09-01
A new technique of continuously generating reactive power from the stator of a brushless induction machine is conceived and tested on a 10-kw linear machine and on 35 and 150 rotary cage motors. An auxiliary magnetic wave traveling at rotor speed is artificially created by the space-transient attributable to the asymmetrical stator winding. At least two distinct windings of different pole-pitch must be incorporated. This rotor wave drifts in and out of phase repeatedly with the stator MMF wave proper and the resulting modulation of the airgap flux is used to generate reactive VA apart from that required for magnetization or leakage flux. The VAR generation effect increases with machine size, and leading power factor operation of the entire machine is viable for large industrial motors and power system induction generators.
An 802.11 n wireless local area network transmission scheme for wireless telemedicine applications.
Lin, C F; Hung, S I; Chiang, I H
2010-10-01
In this paper, an 802.11 n transmission scheme is proposed for wireless telemedicine applications. IEEE 802.11n standards, a power assignment strategy, space-time block coding (STBC), and an object composition Petri net (OCPN) model are adopted. With the proposed wireless system, G.729 audio bit streams, Joint Photographic Experts Group 2000 (JPEG 2000) clinical images, and Moving Picture Experts Group 4 (MPEG-4) video bit streams achieve a transmission bit error rate (BER) of 10-7, 10-4, and 103 simultaneously. The proposed system meets the requirements prescribed for wireless telemedicine applications. An essential feature of this proposed transmission scheme is that clinical information that requires a high quality of service (QoS) is transmitted at a high power transmission rate with significant error protection. For maximizing resource utilization and minimizing the total transmission power, STBC and adaptive modulation techniques are used in the proposed 802.11 n wireless telemedicine system. Further, low power, direct mapping (DM), low-error protection scheme, and high-level modulation are adopted for messages that can tolerate a high BER. With the proposed transmission scheme, the required reliability of communication can be achieved. Our simulation results have shown that the proposed 802.11 n transmission scheme can be used for developing effective wireless telemedicine systems.
Design Considerations for Gun Propellant Climatic Storage Chambers.
1982-11-01
Schematic diagram of thermal element 5 4. Prototype Lhermal element 6 5. Power control circuit diagram 7 6. Power control module 7 7. Temperature...plates. Each plate is powered through a triac and temperature control circuit as shown in figure 5. Figure 6 is a photograph of an assembled power control...SHEATER PLATES Figure 5. Power control circuit diagram 4 f Figure 6. Power control module WSR.L-0295-TR -8- Figure 7. Temperature control module 9 -WSRL
Agent-based power sharing scheme for active hybrid power sources
NASA Astrophysics Data System (ADS)
Jiang, Zhenhua
The active hybridization technique provides an effective approach to combining the best properties of a heterogeneous set of power sources to achieve higher energy density, power density and fuel efficiency. Active hybrid power sources can be used to power hybrid electric vehicles with selected combinations of internal combustion engines, fuel cells, batteries, and/or supercapacitors. They can be deployed in all-electric ships to build a distributed electric power system. They can also be used in a bulk power system to construct an autonomous distributed energy system. An important aspect in designing an active hybrid power source is to find a suitable control strategy that can manage the active power sharing and take advantage of the inherent scalability and robustness benefits of the hybrid system. This paper presents an agent-based power sharing scheme for active hybrid power sources. To demonstrate the effectiveness of the proposed agent-based power sharing scheme, simulation studies are performed for a hybrid power source that can be used in a solar car as the main propulsion power module. Simulation results clearly indicate that the agent-based control framework is effective to coordinate the various energy sources and manage the power/voltage profiles.
Nanophotonic projection system.
Aflatouni, Firooz; Abiri, Behrooz; Rekhi, Angad; Hajimiri, Ali
2015-08-10
Low-power integrated projection technology can play a key role in development of low-cost mobile devices with built-in high-resolution projectors. Low-cost 3D imaging and holography systems are also among applications of such a technology. In this paper, an integrated projection system based on a two-dimensional optical phased array with fast beam steering capability is reported. Forward biased p-i-n phase modulators with 200MHz bandwidth are used per each array element for rapid phase control. An optimization algorithm is implemented to compensate for the phase dependent attenuation of the p-i-n modulators. Using rapid vector scanning technique, images were formed and recorded within a single snapshot of the IR camera.
Liquid cooled approaches for high density avionics
NASA Astrophysics Data System (ADS)
Levasseur, Robert
Next-generation aircraft will require avionics that provide greater system performance in a smaller volume, a process that requires highly developed thermal management techniques. To meet this need, a liquid-cooled approach has been developed to replace the conventional air-cooled approach for high-power applications. Liquid-cooled chassis and flow-through modules have been developed to limit junction temperatures to acceptable levels. Liquid cooling also permits emergency operation after loss of coolant for longer time intervals, which is desirable for flight-critical airborne applications. Activity to date has emphasized the development of chassis and modules that support the US Department of Defense's (DoD) two-level maintenance initiative as governed by the Joint Integrated Avionics Working Group (JIAWG).
pyNSMC: A Python Module for Null-Space Monte Carlo Uncertainty Analysis
NASA Astrophysics Data System (ADS)
White, J.; Brakefield, L. K.
2015-12-01
The null-space monte carlo technique is a non-linear uncertainty analyses technique that is well-suited to high-dimensional inverse problems. While the technique is powerful, the existing workflow for completing null-space monte carlo is cumbersome, requiring the use of multiple commandline utilities, several sets of intermediate files and even a text editor. pyNSMC is an open-source python module that automates the workflow of null-space monte carlo uncertainty analyses. The module is fully compatible with the PEST and PEST++ software suites and leverages existing functionality of pyEMU, a python framework for linear-based uncertainty analyses. pyNSMC greatly simplifies the existing workflow for null-space monte carlo by taking advantage of object oriented design facilities in python. The core of pyNSMC is the ensemble class, which draws and stores realized random vectors and also provides functionality for exporting and visualizing results. By relieving users of the tedium associated with file handling and command line utility execution, pyNSMC instead focuses the user on the important steps and assumptions of null-space monte carlo analysis. Furthermore, pyNSMC facilitates learning through flow charts and results visualization, which are available at many points in the algorithm. The ease-of-use of the pyNSMC workflow is compared to the existing workflow for null-space monte carlo for a synthetic groundwater model with hundreds of estimable parameters.
Waveguide Power-Amplifier Module for 80 to 150 GHz
NASA Technical Reports Server (NTRS)
Samoska, Lorene; Weinreb, Sander; Peralta, Alejandro
2006-01-01
A waveguide power-amplifier module capable of operating over the frequency range from 80 to 150 GHz has been constructed. The module comprises a previously reported power amplifier packaged in a waveguide housing that is compatible with WR-8 waveguides. (WR- 8 is a standard waveguide size for the nominal frequency range from 90 to 140 GHz.) The waveguide power-amplifier module is robust and can be bolted to test equipment and to other electronic circuits with which the amplifier must be connected for normal operation.
Electronic Equipment Proposal to Improve the Photovoltaic Systems Efficiency
NASA Astrophysics Data System (ADS)
Flores-Mena, J. E.; Juárez Morán, L. A.; Díaz Reyes, J.
2011-05-01
This paper reports a new technique proposal to improve the photovoltaic systems. It was made to design and implement an electronic system that will detect, capture, and transfer the maximum power of the photovoltaic (PV) panel to optimize the supplied power of a solar panel. The electronic system works on base technical proposal of electrical sweeping of electric characteristics using capacitive impedance. The maximum power is transformed and the solar panel energy is sent to an automotive battery. This electronic system reduces the energy lost originated when the solar radiation level decreases or the PV panel temperature is increased. This electronic system tracks, captures, and stores the PV module's maximum power into a capacitor. After, a higher voltage level step-up circuit was designed to increase the voltage of the PV module's maximum power and then its current can be sent to a battery. The experimental results show that the developed electronic system has 95% efficiency. The measurement was made to 50 W, the electronic system works rightly with solar radiation rate from 100 to 1,000 W m - 2 and the PV panel temperature rate changed from 1 to 75°C. The main advantage of this electronic system compared with conventional methods is the elimination of microprocessors, computers, and sophisticated numerical approximations, and it does not need any small electrical signals to track the maximum power. The proposed method is simple, fast, and it is also cheaper.
NASA Technical Reports Server (NTRS)
Hindson, W. S.; Hardy, G. H.; Innis, R. C.
1982-01-01
The essential features of using pitch attitude for glidepath control in conjunction with longitudinal thrust modulation for speed control are described, using a simple linearized model for a powered-lift STOL aircraft operating on the backside of the drag curve and at a fixed setting of propulsive lift. It is shown that an automatic speed-hold system incorporating heave-damping augmentation can allow use of the front-side control technique with satisfactory handling qualities, and the results of previous flight investigations are reviewed. Manual control considerations, as they might be involved following failure of the automatic system, are emphasized. The influence of alternative cockpit controller configurations and flight-director display features were assessed for their effect on the control task, which consisted of a straight-in steep approach flown at constant speed in simulated instrument conditions.
Advanced photovoltaic power systems using tandem GaAs/GaSb concentrator modules
NASA Technical Reports Server (NTRS)
Fraas, L. M.; Kuryla, M. S.; Pietila, D. A.; Sundaram, V. S.; Gruenbaum, P. E.; Avery, J. E.; Dihn, V.; Ballantyne, R.; Samuel, C.
1992-01-01
In 1989, Boeing announced the fabrication of a tandem gallium concentrator solar cell with an energy conversion efficiency of 30 percent. This research breakthrough has now led to panels which are significantly smaller, lighter, more radiation resistant, and potentially less expensive than the traditional silicon flat plate electric power supply. The new Boeing tandem concentrator (BTC) module uses an array of lightweight silicone Fresnel lenses mounted on the front side of a light weight aluminum honeycomb structure to focus sunlight onto small area solar cells mounted on a thin back plane. This module design is shown schematically. The tandem solar cell in this new module consists of a gallium arsenide light sensitive cell with a 24 percent energy conversion efficiency stacked on top of a gallium antimonide infrared sensitive cell with a conversion efficiency of 6 percent. This gives a total efficiency 30 percent for the cell-stack. The lens optical efficiency is typically 85 percent. Discounting for efficiency losses associated with lens packing, cell wiring, and cell operating temperature still allows for a module efficiency of 22 percent which leads to a module power density of 300 Watts/sq. m. This performance provides more than twice the power density available from a single crystal silicon flat plate module and at least four times the power density available from amorphous silicon modules. The fact that the lenses are only 0.010 ft. thick and the aluminum foil back plane is only 0.003 ft. thick leads to a very lightweight module. Although the cells are an easy to handle thickness of 0.020 ft., the fact that they are small, occupying one-twenty-fifth of the module area, means that they add little to the module weight. After summing all the module weights and given the high module power, we find that we are able to fabricate BTC modules with specific power of 100 watts/kg.
GBLD10+: a compact low-power 10 Gb/s VCSEL driver
Zhang, T.; Kulis, S.; Gui, P.; ...
2016-01-13
We report the design and implementation of the GBLD10+, a low-power 10 Gb/s VCSEL driver for High Energy Physics (HEP) applications. With new circuit techniques, the driver consumes only 31 mW and occupies a small area of 400 μm × 1750 μm including the IO PADs and sealrings. These characteristics allow for multiple GBLD10+ ICs to be assembled side by side in a compact module, with each one directly wire bonded to one VCSEL diode. Finally, this makes the GBLD10+ a suitable candidate for the Versatile Link PLUS (VL +) project, offering flexibility in configuring multiple transmitters and receivers.
Heo, Youn-Jung; Jung, Yen-Sook; Hwang, Kyeongil; Kim, Jueng-Eun; Yeo, Jun-Seok; Lee, Sehyun; Jeon, Ye-Jin; Lee, Donmin; Kim, Dong-Yu
2017-11-15
For the first time, the photovoltaic modules composed of small molecule were successfully fabricated by using roll-to-roll compatible printing techniques. In this study, blend films of small molecules, BTR and PC 71 BM were slot-die coated using a halogen-free solvent system. As a result, high efficiencies of 7.46% and 6.56% were achieved from time-consuming solvent vapor annealing (SVA) treatment and roll-to-roll compatible solvent additive approaches, respectively. After successful verification of our roll-to-roll compatible method on small-area devices, we further fabricated large-area photovoltaic modules with a total active area of 10 cm 2 , achieving a power conversion efficiency (PCE) of 4.83%. This demonstration of large-area photovoltaic modules through roll-to-roll compatible printing methods, even based on a halogen-free solvent, suggests the great potential for the industrial-scale production of organic solar cells (OSCs).
Imprint of non-linear effects on HI intensity mapping on large scales
DOE Office of Scientific and Technical Information (OSTI.GOV)
Umeh, Obinna, E-mail: umeobinna@gmail.com
Intensity mapping of the HI brightness temperature provides a unique way of tracing large-scale structures of the Universe up to the largest possible scales. This is achieved by using a low angular resolution radio telescopes to detect emission line from cosmic neutral Hydrogen in the post-reionization Universe. We use general relativistic perturbation theory techniques to derive for the first time the full expression for the HI brightness temperature up to third order in perturbation theory without making any plane-parallel approximation. We use this result and the renormalization prescription for biased tracers to study the impact of nonlinear effects on themore » power spectrum of HI brightness temperature both in real and redshift space. We show how mode coupling at nonlinear order due to nonlinear bias parameters and redshift space distortion terms modulate the power spectrum on large scales. The large scale modulation may be understood to be due to the effective bias parameter and effective shot noise.« less
A new method for blood velocity measurements using ultrasound FMCW signals.
Kunita, Masanori; Sudo, Masamitsu; Inoue, Shinya; Akahane, Mutsuhiro
2010-05-01
The low peak power of frequency-modulated continuous wave (FMCW) radar makes it attractive for various applications, including vehicle collision warning systems and airborne radio altimeters. This paper describes a new ultrasound Doppler measurement system that measures blood flow velocity based on principles similar to those of FMCW radar. We propose a sinusoidal wave for FM modulation and introduce a new demodulation technique for obtaining Doppler information with high SNR and range resolution. Doppler signals are demodulated with a reference FMCW signal to adjust delay times so that they are equal to propagation times between the transmitter and the receiver. Analytical results suggest that Doppler signals can be obtained from a selected position, as with a sample volume in pulse wave Doppler systems, and that the resulting SNR is nearly identical to that obtained with continuous wave (CW) Doppler systems. Additionally, clutter power is less than that of CW Doppler systems. The analytical results were verified by experiments involving electronic circuits and Doppler ultrasound phantoms.
NASA Astrophysics Data System (ADS)
Pan, Xingchen; Liu, Cheng; Zhu, Jianqiang
2018-02-01
Coherent modulation imaging providing fast convergence speed and high resolution with single diffraction pattern is a promising technique to satisfy the urgent demands for on-line multiple parameter diagnostics with single setup in high power laser facilities (HPLF). However, the influence of noise on the final calculated parameters concerned has not been investigated yet. According to a series of simulations with twenty different sampling beams generated based on the practical parameters and performance of HPLF, the quantitative analysis based on statistical results was first investigated after considering five different error sources. We found the background noise of detector and high quantization error will seriously affect the final accuracy and different parameters have different sensitivity to different noise sources. The simulation results and the corresponding analysis provide the potential directions to further improve the final accuracy of parameter diagnostics which is critically important to its formal applications in the daily routines of HPLF.
Imprint of non-linear effects on HI intensity mapping on large scales
NASA Astrophysics Data System (ADS)
Umeh, Obinna
2017-06-01
Intensity mapping of the HI brightness temperature provides a unique way of tracing large-scale structures of the Universe up to the largest possible scales. This is achieved by using a low angular resolution radio telescopes to detect emission line from cosmic neutral Hydrogen in the post-reionization Universe. We use general relativistic perturbation theory techniques to derive for the first time the full expression for the HI brightness temperature up to third order in perturbation theory without making any plane-parallel approximation. We use this result and the renormalization prescription for biased tracers to study the impact of nonlinear effects on the power spectrum of HI brightness temperature both in real and redshift space. We show how mode coupling at nonlinear order due to nonlinear bias parameters and redshift space distortion terms modulate the power spectrum on large scales. The large scale modulation may be understood to be due to the effective bias parameter and effective shot noise.
Improving Small Signal Stability through Operating Point Adjustment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Zhenyu; Zhou, Ning; Tuffner, Francis K.
2010-09-30
ModeMeter techniques for real-time small signal stability monitoring continue to mature, and more and more phasor measurements are available in power systems. It has come to the stage to bring modal information into real-time power system operation. This paper proposes to establish a procedure for Modal Analysis for Grid Operations (MANGO). Complementary to PSS’s and other traditional modulation-based control, MANGO aims to provide suggestions such as increasing generation or decreasing load for operators to mitigate low-frequency oscillations. Different from modulation-based control, the MANGO procedure proactively maintains adequate damping for all time, instead of reacting to disturbances when they occur. Effectmore » of operating points on small signal stability is presented in this paper. Implementation with existing operating procedures is discussed. Several approaches for modal sensitivity estimation are investigated to associate modal damping and operating parameters. The effectiveness of the MANGO procedure is confirmed through simulation studies of several test systems.« less
Hippler, Michael; Mohr, Christian; Keen, Katherine A; McNaghten, Edward D
2010-07-28
Cavity-enhanced resonant photoacoustic spectroscopy with optical feedback cw diode lasers (OF-CERPAS) is introduced as a novel technique for ultratrace gas analysis and high-resolution spectroscopy. In the scheme, a single-mode cw diode laser (3 mW, 635 nm) is coupled into a high-finesse linear cavity and stabilized to the cavity by optical feedback. Inside the cavity, a build-up of laser power to at least 2.5 W occurs. Absorbing gas phase species inside the cavity are detected with high sensitivity by the photoacoustic effect using a microphone embedded in the cavity. To increase sensitivity further, coupling into the cavity is modulated at a frequency corresponding to a longitudinal resonance of an organ pipe acoustic resonator (f=1.35 kHz and Q approximately 10). The technique has been characterized by measuring very weak water overtone transitions near 635 nm. Normalized noise-equivalent absorption coefficients are determined as alpha approximately 4.4x10(-9) cm(-1) s(1/2) (1 s integration time) and 2.6x10(-11) cm(-1) s(1/2) W (1 s integration time and 1 W laser power). These sensitivities compare favorably with existing state-of-the-art techniques. As an advantage, OF-CERPAS is a "zero-background" method which increases selectivity and sensitivity, and its sensitivity scales with laser power.
Thermo-mechanical actuator-based miniature tagging module for localization in capsule endoscopy
NASA Astrophysics Data System (ADS)
Chandrappan, Jayakrishnan; Ruiqi, Lim; Su, Nandar; Yen Yi, Germaine Hoe; Vaidyanathan, Kripesh
2011-04-01
Capsule endoscopy is a frontline medical diagnostic tool for the gastro intestinal tract disorders. During diagnosis, efficient localization techniques are essential to specify a pathological area that may require further diagnosis or treatment. This paper presents the development of a miniature tagging module that relies on a novel concept to label the region of interest and has the potential to integrate with a capsule endoscope. The tagging module is a compact thermo-mechanical actuator loaded with a biocompatible micro tag. A low power microheater attached to the module serves as the thermal igniter for the mechanical actuator. At optimum temperature, the actuator releases the micro tag instantly and penetrates the mucosa layer of a GI tract, region of interest. Ex vivo animal trials are conducted to verify the feasibility of the tagging module concept. X-ray imaging is used to detect the location of the micro tag embedded in the GI tract wall. The method is successful, and radiopaque micro tags can provide valuable pre-operative position information on the infected area to facilitate further clinical procedures.
Wang, Zhiqiang; Shi, Xiaojie; Tolbert, Leon M.; ...
2014-04-30
Here we present a board-level integrated silicon carbide (SiC) MOSFET power module for high temperature and high power density application. Specifically, a silicon-on-insulator (SOI)-based gate driver capable of operating at 200°C ambient temperature is designed and fabricated. The sourcing and sinking current capability of the gate driver are tested under various ambient temperatures. Also, a 1200 V/100 A SiC MOSFET phase-leg power module is developed utilizing high temperature packaging technologies. The static characteristics, switching performance, and short-circuit behavior of the fabricated power module are fully evaluated at different temperatures. Moreover, a buck converter prototype composed of the SOI gate drivermore » and SiC power module is built for high temperature continuous operation. The converter is operated at different switching frequencies up to 100 kHz, with its junction temperature monitored by a thermosensitive electrical parameter and compared with thermal simulation results. The experimental results from the continuous operation demonstrate the high temperature capability of the power module at a junction temperature greater than 225°C.« less
Lunar Module Electrical Power System Design Considerations and Failure Modes
NASA Technical Reports Server (NTRS)
Interbartolo, Michael
2009-01-01
This slide presentation reviews the design and redesign considerations of the Apollo lunar module electrical power system. Included in the work are graphics showing the lunar module power system. It describes the in-flight failures, and the lessons learned from these failures.
Jerome, Jason; Heck, Detlef H.
2011-01-01
Optical manipulation of neuronal activity has rapidly developed into the most powerful and widely used approach to study mechanisms related to neuronal connectivity over a range of scales. Since the early use of single site uncaging to map network connectivity, rapid technological development of light modulation techniques has added important new options, such as fast scanning photostimulation, massively parallel control of light stimuli, holographic uncaging, and two-photon stimulation techniques. Exciting new developments in optogenetics complement neurotransmitter uncaging techniques by providing cell-type specificity and in vivo usability, providing optical access to the neural substrates of behavior. Here we review the rapid evolution of methods for the optical manipulation of neuronal activity, emphasizing crucial recent developments. PMID:22275886
Jerome, Jason; Heck, Detlef H
2011-01-01
Optical manipulation of neuronal activity has rapidly developed into the most powerful and widely used approach to study mechanisms related to neuronal connectivity over a range of scales. Since the early use of single site uncaging to map network connectivity, rapid technological development of light modulation techniques has added important new options, such as fast scanning photostimulation, massively parallel control of light stimuli, holographic uncaging, and two-photon stimulation techniques. Exciting new developments in optogenetics complement neurotransmitter uncaging techniques by providing cell-type specificity and in vivo usability, providing optical access to the neural substrates of behavior. Here we review the rapid evolution of methods for the optical manipulation of neuronal activity, emphasizing crucial recent developments.
Villa, M P; Calcagnini, G; Pagani, J; Paggi, B; Massa, F; Ronchetti, R
2000-02-01
Power spectrum analysis of heart rate variability (HRV) is a noninvasive technique that provides a quantitative assessment of cardiovascular neural control. Using this technique, we studied the autonomic nervous system changes induced by sleep in 14 healthy subjects: 7 infants (mean age, 9.40 +/- 2.32 months) and 7 children (mean age, 8.93 +/- 0.65 years) during a standard all-night polysomnographic recording. Our primary aim was to assess the effect of sleep stage and age on short-term HRV during sleep in healthy infants and children. Power spectral density was estimated by autoregressive modeling over 250 consecutive R-R intervals. In this study, we mainly considered two spectral components: the high-frequency (HF) component (0.15 to 0.40 Hz), which reflects parasympathetic cardiovascular modulation; and the low-frequency (LF) component (0.04 to 0.15 Hz), generally considered due to both parasympathetic and sympathetic modulation. Heart rate was higher (p < 0.01 in all sleep stages) and total power lower (p < 0. 02) in infants than in children. HF power was higher in children than in infants (p < 0.05). In infants and children, the ratio between LF and HF powers changed with the various sleep stages (p < 0.02 in infants; p < 0.01 in children): it decreased during deep sleep and increased during rapid eye movement sleep. However, it was invariably lower in children than in infants. These findings show that the sleep stage and age both significantly influence short-term HRV during sleep in healthy infants and children. Hence, to provide unbiased results, HRV studies investigating the effects of age on autonomic nervous system activity should segment sleep into the five stages. In addition, despite a relatively small study sample, our data confirm greater parasympathetic control during sleep in children than in infants.
Resonator-Based Silicon Electro-Optic Modulator with Low Power Consumption
NASA Astrophysics Data System (ADS)
Xin, Maoqing; Danner, Aaron J.; Eng Png, Ching; Thor Lim, Soon
2009-04-01
This paper demonstrates, via simulation, an electro-optic modulator based on a subwavelength Fabry-Perot resonator cavity with low power consumption of 86 µW/µm. This is, to the best of our knowledge, the lowest power reported for silicon photonic bandgap modulators. The device is modulated at a doped p-i-n junction overlapping the cavity in a silicon waveguide perforated with etched holes, with the doping area optimized for minimum power consumption. The surface area of the entire device is only 2.1 µm2, which compares favorably to other silicon-based modulators. A modulation speed of at least 300 MHz is detected from the electrical simulator after sidewall doping is introduced which is suitable for sensing or fiber to the home (FTTH) technologies, where speed can be traded for low cost and power consumption. The device does not rely on ultra-high Q, and could serve as a sensor, modulator, or passive filter with built-in calibration.
Performance Analysis of the Automotive TEG with Respect to the Geometry of the Modules
NASA Astrophysics Data System (ADS)
Yu, C. G.; Zheng, S. J.; Deng, Y. D.; Su, C. Q.; Wang, Y. P.
2017-05-01
Recently there has been increasing interest in applying thermoelectric technology to recover waste heat in automotive exhaust gas. Due to the limited space in the vehicle, it's meaningful to improve the TEG (thermoelectric generator) performance by optimizing the module geometry. This paper analyzes the performance of bismuth telluride modules for two criteria (power density and power output per area), and researches the relationship between the performance and the geometry of the modules. A geometry factor is defined for the thermoelectric element to describe the module geometry, and a mathematical model is set up to study the effects of the module geometry on its performance. It has been found out that the optimal geometry factors for maximum output power, power density and power output per unit area are different, and the value of the optimal geometry factors will be affected by the volume of the thermoelectric material and the thermal input. The results can be referred to as the basis for optimizing the performance of the thermoelectric modules.
Czjzek, Mirjam; Ficko-Blean, Elizabeth
2017-01-01
The various modules in multimodular carbohydrate-active enzymes (CAZymes) may function in catalysis, carbohydrate binding, protein-protein interactions or as linkers. Here, we describe how combining the biophysical techniques of Small Angle X-ray Scattering (SAXS) and macromolecular X-ray crystallography (XRC) provides a powerful tool for examination into questions related to overall structural organization of ultra multimodular CAZymes.
Manufacturing Technology Study on Radio Frequency Power Modules Packaging Techniques.
1981-01-01
compromised; in most cases, it was found to be higher than our original process. An accelerated high 125 I temperature aging test was performed to attain...sealing glasses without some oxynen. Alternatively, there are many high temperature amorphous type glasses which satisfactorily fire in nitrogen but...achieve some degree of crystalization when fired at high temperature . In using the high temperatures (900°C range) the effect on the previously printed
Electric Field Distribution in High Voltage Power Modules Using Finite Element Simulations
NASA Astrophysics Data System (ADS)
Wang, Zhao; Liu, Yaoning
2018-03-01
With the development of the high voltage insulated gate bipolar transistor (IGBT) power module, it leads to serious problems concerning the electric field insulation. The electric field capabilities of the silicone gels used in the power module encapsulation directly affect the module insulation. Some solutions have been developed to optimize the electric field and reliability. In this letter, the finite element simulation was used to analyze and localize the maximum electric field position; solutions were proposed to improve the module insulation. It’s demonstrated that BaTiO3 silicone composite is a promising insulation material for high voltage power device.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spataru, Sergiu; Hacke, Pater; Sera, Dezso
2015-09-15
We analyze the degradation of multi-crystalline silicon photovoltaic modules undergoing simultaneous thermal, mechanical, and humidity stress testing to develop a dark environmental chamber in-situ measurement procedure for determining module power loss. From the analysis we determine three main categories of failure modes associated with the module degradation consisting of: shunting, recombination losses, increased series resistance losses, and current mismatch losses associated with a decrease in photo-current generation by removal of some cell areas due to cell fractures. Based on the analysis, we propose an in-situ module power loss monitoring procedure that relies on dark current-voltage measurements taken during the stressmore » test, and initial and final module flash testing, to determine the power degradation characteristic of the module.« less
Nonlinear Burn Control and Operating Point Optimization in ITER
NASA Astrophysics Data System (ADS)
Boyer, Mark; Schuster, Eugenio
2013-10-01
Control of the fusion power through regulation of the plasma density and temperature will be essential for achieving and maintaining desired operating points in fusion reactors and burning plasma experiments like ITER. In this work, a volume averaged model for the evolution of the density of energy, deuterium and tritium fuel ions, alpha-particles, and impurity ions is used to synthesize a multi-input multi-output nonlinear feedback controller for stabilizing and modulating the burn condition. Adaptive control techniques are used to account for uncertainty in model parameters, including particle confinement times and recycling rates. The control approach makes use of the different possible methods for altering the fusion power, including adjusting the temperature through auxiliary heating, modulating the density and isotopic mix through fueling, and altering the impurity density through impurity injection. Furthermore, a model-based optimization scheme is proposed to drive the system as close as possible to desired fusion power and temperature references. Constraints are considered in the optimization scheme to ensure that, for example, density and beta limits are avoided, and that optimal operation is achieved even when actuators reach saturation. Supported by the NSF CAREER award program (ECCS-0645086).
Design and Construction of Manned Lunar Base
NASA Astrophysics Data System (ADS)
Li, Zhijie
2016-07-01
Building manned lunar base is one of the core aims of human lunar exploration project, which is also an important way to carry out the exploitation and utilization of lunar in situ resources. The most important part of manned lunar base is the design and construction of living habitation and many factors should be considered including science objective and site selection. Through investigating and research, the scientific goals of manned lunar base should be status and characteristics ascertainment of lunar available in situ resources, then developing necessary scientific experiments and utilization of lunar in situ resources by using special environment conditions of lunar surface. The site selection strategy of manned lunar base should rely on scientific goals according to special lunar surface environment and engineering capacity constraints, meanwhile, consulting the landing sites of foreign unmanned and manned lunar exploration, and choosing different typical regions of lunar surface and analyzing the landform and physiognomy, reachability, thermal environment, sunlight condition, micro meteoroids protection and utilization of in situ resources, after these steps, a logical lunar living habitation site should be confirmed. This paper brings out and compares three kinds of configurations with fabricating processes of manned lunar base, including rigid module, flexible and construction module manned lunar base. 1.The rigid habitation module is usually made by metal materials. The design and fabrication may consult the experience of space station, hence with mature technique. Because this configuration cannot be folded or deployed, which not only afford limit working and living room for astronauts, but also needs repetitious cargo transit between earth and moon for lunar base extending. 2. The flexible module habitation can be folded in fairing while launching. When deploying on moon, the configuration can be inflatable or mechanically-deployed, which means under the condition of the same volume it has less weight than rigid module, but based on durable, high hermetic, low density and elastic modulus advanced materials. 3.The construction habitation has high expansibility and various configurations by using in situ resources as construction materials, but this technique is difficult to implement since it involves deep exploitation of lunar resources. Aiming at different missions' objects and development periods, three different patterns talked above can be chosen as the scheme of lunar base habitation establishments. But each of them is too simple to adapt high-level lunar base during a long period. Thereby, based on the design of rigid module and flexible module, this paper brings out an assumed scheme of an integrated lunar base, and the exterior part of lunar base is built by using construction technique. The design of lunar base follows the principle of crew-robot coordinated exploration, which functions automatically in a long period and short period with attention by astronauts. The technique characteristics are as follows: life period ≥ 8 years; 6 astronauts; single lunar surface mission period ≥ 3 months. The inner main body of integrated manned lunar base consists of habitation module, laboratory module and support module. In order to afford security and comfortableness, the habitation module provides astronauts kitchen, bedroom, gymnasium, toilet, and so on. The laboratory module is used for science experiments, which involves plant cultivation devices and animal cultivation devices of bioregenerative life support system. The communication system, main computer, central control system and backup powers are arranged in the support module. For convenience of outside working and emergency rescue, every module with two exports is connected with other modules or lunar rovers. In order to solve the problems of waste treatment, atmosphere/water regeneration and food supply, this paper designed a bioregenerative life support system based on physical/chemic-regenerative life support system, which includes microbial waste treatment system, plants cultivation system and animal-protein production system. Energy is another important aspect needs to be solved when building lunar base habitation. The steps of lunar base building process are divided into lunar surface landing, transport, unloading, assembly and construction. Thus the activity systems including lunar lander, lunar chain block, various lunar rovers, robots and 3D printing machine are needed while building a lunar base. For the sake of enough power support for these facilities, the integrated manned lunar base will use solar + nuclear energy plus regenerative fuel cell together with 180kW power to satisfy the requirement of power supply. Besides these two questions talked above, the lunar base habitation also needs to solve the problem of lunar dust protection. Lunar dust grains are sharp and have electrostatic adsorption, which means this kind of dust may damage the functions of spacesuit, lunar rover and other equipments, and it may cause diseases if breathed by astronauts, consequently, lunar dust protection and cleaning mechanism needs to be founded and the anti-dust, automatic dust removal and self-cleaning materials need to be used. At last, this paper puts forward corresponding advices about building lunar base by using international collaboration. Out of question, the construction of lunar base is a huge project, it is very hard to be accomplished by any country alone since lots of uncertain complications exist there. By this token, international collaboration is a certain development direction, and lots of aerospace countries have already achieved the breakout of correlation key technologies, in order to avoid unnecessary waste, the dispersive advantageous resources need to be combined together.
NASA Astrophysics Data System (ADS)
Dai, Peng; Zhang, Jisheng; Zheng, Jinhai
2017-12-01
The Taiwan Strait has recently been proposed as a promising site for dynamic tidal power systems because of its shallow depth and strong tides. Dynamic tidal power is a new concept for extracting tidal potential energy in which a coast-perpendicular dike is used to create water head and generate electricity via turbines inserted in the dike. Before starting such a project, the potential power output and hydrodynamic impacts of the dike must be assessed. In this study, a two-dimensional numerical model based on the Delft3D-FLOW module is established to simulate tides in China. A dike module is developed to account for turbine processes and estimate power output by integrating a special algorithm into the model. The domain decomposition technique is used to divide the computational zone into two subdomains with grid refinement near the dike. The hydrodynamic processes predicted by the model, both with and without the proposed construction, are examined in detail, including tidal currents and tidal energy flux. The predicted time-averaged power yields with various opening ratios are presented. The results show that time-averaged power yield peaks at an 8% opening ratio. For semidiurnal tides, the flow velocity increases in front of the head of the dike and decreases on either side. For diurnal tides, these changes are complicated by the oblique incidence of tidal currents with respect to the dike as well as by bathymetric features. The dike itself blocks the propagation of tidal energy flux.
CIDME: Short distances measured with long chirp pulses.
Doll, Andrin; Qi, Mian; Godt, Adelheid; Jeschke, Gunnar
2016-12-01
Frequency-swept pulses have recently been introduced as pump pulses into double electron-electron resonance (DEER) experiments. A limitation of this approach is that the pump pulses need to be short in comparison to dipolar evolution periods. The "chirp-induced dipolar modulation enhancement" (CIDME) pulse sequence introduced in this work circumvents this limitation by means of longitudinal storage during the application of one single or two consecutive pump pulses. The resulting six-pulse sequence is closely related to the five-pulse "relaxation-induced dipolar modulation enhancement" (RIDME) pulse sequence: While dipolar modulation in RIDME is due to stochastic spin flips during longitudinal storage, modulation in CIDME is due to the pump pulse during longitudinal storage. Experimentally, CIDME is examined for Gd-Gd and nitroxide-nitroxide distance determination using a high-power Q-band spectrometer. Since longitudinal storage results in a 50% signal loss, comparisons between DEER using short chirp pump pulses of 64ns duration and CIDME using longer pump pulses are in favor of DEER. While the lower sensitivity restrains the applicability of CIDME for routine distance determination on high-power spectrometers, this result is not to be generalized to spectrometers having lower power and to specialized "non-routine" applications or different types of spin labels. In particular, the advantage of prolonged CIDME pump pulses is demonstrated for experiments at large frequency offset between the pumped and observed spins. At a frequency separation of 1GHz, where broadening due to dipolar pseudo-secular contributions becomes largely suppressed, a Gd-Gd modulation depth larger than 10% is achieved. Moreover, a CIDME experiment at deliberately reduced power underlines the potential of the new technique for spectrometers with lower power, as often encountered at higher microwave frequencies. With longitudinal storage times T below 10μs, however, CIDME appears rather susceptible to artifacts. For nitroxide-nitroxide experiments, these currently inhibit a faithful data analysis. To facilitate further developments, the artifacts are characterized experimentally. In addition, effects that are specific to the high spin of S=7/2 Gd-centers are examined. Herein, population transfer within the observer spin's multiplet due to the pump pulse as well as excitation of dipolar harmonics are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.
A sub-nW 2.4 GHz Transmitter for Low Data-Rate Sensing Applications
Mercier, Patrick P.; Bandyopadhyay, Saurav; Lysaght, Andrew C.; Stankovic, Konstantina M.; Chandrakasan, Anantha P.
2015-01-01
This paper presents the design of a narrowband transmitter and antenna system that achieves an average power consumption of 78 pW when operating at a duty-cycled data rate of 1 bps. Fabricated in a 0.18 µm CMOS process, the transmitter employs a direct-RF power oscillator topology where a loop antenna acts as a both a radiative and resonant element. The low-complexity single-stage architecture, in combination with aggressive power gating techniques and sizing optimizations, limited the standby power of the transmitter to only 39.7 pW at 0.8 V. Supporting both OOK and FSK modulations at 2.4 GHz, the transmitter consumed as low as 38 pJ/bit at an active-mode data rate of 5 Mbps. The loop antenna and integrated diodes were also used as part of a wireless power transfer receiver in order to kick-start the system power supply during energy harvesting operation. PMID:26246641
Space Station Freedom photovoltaic power module design status
NASA Technical Reports Server (NTRS)
Jimenez, Amador P.; Hoberecht, Mark A.
1989-01-01
Electric power generation for the Space Station Freedom will be provided by four photovoltaic (PV) power modules using silicon solar cells during phase I operation. Each PV power module requires two solar arrays with 32,800 solar cells generating 18.75 kW of dc power for a total of 75 kW. A portion of this power will be stored in nickel-hydrogen batteries for use during eclipse, and the balance will be processed and converted to 20 kHz ac power for distribution to end users through the power management and distribution system. The design incorporates an optimized thermal control system, pointing and tracking provision with the application of gimbals, and the use of orbital replacement units to achieve modularization. The design status of the PV power module, as derived from major trade studies, is discussed at hardware levels ranging from component to system. Details of the design are presented where appropriate.
Space Station Freedom photovoltaic power module design status
NASA Technical Reports Server (NTRS)
Jimenez, Amador P.; Hoberecht, Mark A.
1989-01-01
Electric power generation for Space Station Freedom will be provided by four photovoltaic (PV) power modules using silicon solar cells during Phase 1 operation. Each PV power module requires two solar arrays with 32,800 solar cells generating 18.75 kW of dc power for a total of 75 kW. A portion of this power will be stored in nickel-hydrogen batteries for use during eclipse, and the balance will be processed and converted to 20 kHz ac power for distribution to end users through the power management and distribution system. The design incorporates an optimized thermal control system, pointing and tracking provision with the application of gimbals, and the use of orbital replacement units (ORU's) to achieve modularization. Design status of the PV power module, as derived from major trade studies, is discussed at hardware levels ranging from component to system. Details of the design are presented where appropriate.
NASA Astrophysics Data System (ADS)
Mathews, A. J.; Gang, G.; Levinson, R.; Zbijewski, W.; Kawamoto, S.; Siewerdsen, J. H.; Stayman, J. W.
2017-03-01
Acquisition of CT images with comparable diagnostic power can potentially be achieved with lower radiation exposure than the current standard of care through the adoption of hardware-based fluence-field modulation (e.g. dynamic bowtie filters). While modern CT scanners employ elements such as static bowtie filters and tube-current modulation, such solutions are limited in the fluence patterns that they can achieve, and thus are limited in their ability to adapt to broad classes of patient morphology. Fluence-field modulation also enables new applications such as region-of-interest imaging, task specific imaging, reducing measurement noise or improving image quality. The work presented in this paper leverages a novel fluence modulation strategy that uses "Multiple Aperture Devices" (MADs) which are, in essence, binary filters, blocking or passing x-rays on a fine scale. Utilizing two MAD devices in series provides the capability of generating a large number of fluence patterns via small relative motions between the MAD filters. We present the first experimental evaluation of fluence-field modulation using a dual-MAD system, and demonstrate the efficacy of this technique with a characterization of achievable fluence patterns and an investigation of experimental projection data.
Design and implementation of quadrature bandpass sigma-delta modulator used in low-IF RF receiver
NASA Astrophysics Data System (ADS)
Ge, Binjie; Li, Yan; Yu, Hang; Feng, Xiaoxing
2018-05-01
This paper presents the design and implementation of quadrature bandpass sigma-delta modulator. A pole movement method for transforming real sigma-delta modulator to a quadrature one is proposed by detailed study of the relationship of noise-shaping center frequency and integrator pole position in sigma-delta modulator. The proposed modulator uses sampling capacitor sharing switched capacitor integrator, and achieves a very small feedback coefficient by a series capacitor network, and those two techniques can dramatically reduce capacitor area. Quantizer output-dependent dummy capacitor load for reference voltage buffer can compensate signal-dependent noise that is caused by load variation. This paper designs a quadrature bandpass Sigma-Delta modulator for 2.4 GHz low IF receivers that achieve 69 dB SNDR at 1 MHz BW and -1 MHz IF with 48 MHz clock. The chip is fabricated with SMIC 0.18 μm CMOS technology, it achieves a total power current of 2.1 mA, and the chip area is 0.48 mm2. Project supported by the National Natural Science Foundation of China (Nos. 61471245, U1201256), the Guangdong Province Foundation (No. 2014B090901031), and the Shenzhen Foundation (Nos. JCYJ20160308095019383, JSGG20150529160945187).
E-beam high voltage switching power supply
Shimer, Daniel W.; Lange, Arnold C.
1997-01-01
A high power, solid state power supply is described for producing a controllable, constant high voltage output under varying and arcing loads suitable for powering an electron beam gun or other ion source. The present power supply is most useful for outputs in a range of about 100-400 kW or more. The power supply is comprised of a plurality of discrete switching type dc-dc converter modules, each comprising a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, and an output rectifier for producing a dc voltage at the output of each module. The inputs to the converter modules are fed from a common dc rectifier/filter and are linked together in parallel through decoupling networks to suppress high frequency input interactions. The outputs of the converter modules are linked together in series and connected to the input of the transmission line to the load through a decoupling and line matching network. The dc-dc converter modules are phase activated such that for n modules, each module is activated equally 360.degree./n out of phase with respect to a successive module. The phased activation of the converter modules, combined with the square current waveforms out of the step up transformers, allows the power supply to operate with greatly reduced output capacitance values which minimizes the stored energy available for discharge into an electron beam gun or the like during arcing. The present power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle using simulated voltage feedback signals and voltage feedback loops. Circuitry is also provided for sensing incipient arc currents reflected at the output of the power supply and for simultaneously decoupling the power supply circuitry from the arcing load.
E-beam high voltage switching power supply
Shimer, D.W.; Lange, A.C.
1997-03-11
A high power, solid state power supply is described for producing a controllable, constant high voltage output under varying and arcing loads suitable for powering an electron beam gun or other ion source. The present power supply is most useful for outputs in a range of about 100-400 kW or more. The power supply is comprised of a plurality of discrete switching type dc-dc converter modules, each comprising a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, and an output rectifier for producing a dc voltage at the output of each module. The inputs to the converter modules are fed from a common dc rectifier/filter and are linked together in parallel through decoupling networks to suppress high frequency input interactions. The outputs of the converter modules are linked together in series and connected to the input of the transmission line to the load through a decoupling and line matching network. The dc-dc converter modules are phase activated such that for n modules, each module is activated equally 360{degree}/n out of phase with respect to a successive module. The phased activation of the converter modules, combined with the square current waveforms out of the step up transformers, allows the power supply to operate with greatly reduced output capacitance values which minimizes the stored energy available for discharge into an electron beam gun or the like during arcing. The present power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle using simulated voltage feedback signals and voltage feedback loops. Circuitry is also provided for sensing incipient arc currents reflected at the output of the power supply and for simultaneously decoupling the power supply circuitry from the arcing load. 7 figs.
College curriculum-sharing via CTS. [Communications Technology Satellite
NASA Technical Reports Server (NTRS)
Hudson, H. E.; Guild, P. D.; Coll, D. C.; Lumb, D. R.
1975-01-01
Domestic communication satellites and video compression techniques will increase communication channel capacity and reduce cost of video transmission. NASA Ames Research Center, Stanford University and Carleton University are participants in an experiment to develop, demonstrate, and evaluate college course sharing techniques via satellite using video compression. The universities will exchange televised seminar and lecture courses via CTS. The experiment features real-time video compression with channel coding and quadra-phase modulation for reducing transmission bandwidth and power requirements. Evaluation plans and preliminary results of Carleton surveys on student attitudes to televised teaching are presented. Policy implications for the U.S. and Canada are outlined.
Automatic Layout Design for Power Module
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ning, Puqi; Wang, Fei; Ngo, Khai
The layout of power modules is one of the most important elements in power module design, especially for high power densities, where couplings are increased. In this paper, an automatic design process using a genetic algorithm is presented. Some practical considerations are introduced in the optimization of the layout design of the module. This paper presents a process for automatic layout design for high power density modules. Detailed GA implementations are introduced both for outer loop and inner loop. As verified by a design example, the results of the automatic design process presented here are better than those from manualmore » design and also better than the results from a popular design software. This automatic design procedure could be a major step toward improving the overall performance of future layout design.« less
Power Generation Evaluated on a Bismuth Telluride Unicouple Module
NASA Astrophysics Data System (ADS)
Hu, Xiaokai; Nagase, Kazuo; Jood, Priyanka; Ohta, Michihiro; Yamamoto, Atsushi
2015-06-01
The power generated by a thermoelectric unicouple module made of Bi2Te3 alloy was evaluated by use of a newly developed instrument. An electrical load was connected to the module, and the terminal voltage and output power of the module were obtained by altering electric current. Water flow was used to cool the cold side of the module and for heat flow measurement, by monitoring inlet and outlet temperatures. When the electric current was increased, heat flow was enhanced as a result of the Peltier effect and Joule heating. Voltage, power, heat flow, and efficiency as functions of current were determined for hot-side temperatures from 50 to 220°C. Maximum power output and peak conversion efficiency could thus be easily derived for each temperature.
NASA Astrophysics Data System (ADS)
Maolikul, S.; Kiatgamolchai, S.; Chavarnakul, T.
2012-06-01
In the context of information and communication technology (ICT) trend for worldwide individuals, social life becomes digital and portable consumer electronic devices (PCED) powered by conventional power supply from batteries have been evolving through miniaturization and various function integration. Thermoelectric generators (TEG) were hypothesized for its potential role of battery charger to serve the shining PCED market. Hence, this paper, mainly focusing at the metropolitan market in Thailand, aimed to conduct architectural innovation foresight and to develop scenarios on potential exploitation approach of PCED battery power supply with TEG charger converting power from ambient heat source adjacent to individual's daily life. After technical review and assessment for TEG potential and battery aspect, the business research was conducted to analyze PCED consumer behavior for their PCED utilization pattern, power supply lack problems, and encountering heat sources/sinks in 3 modes: daily life, work, and leisure hobbies. Based on the secondary data analysis from literature and National Statistical Office of Thailand, quantitative analysis was applied using the cluster probability sampling methodology, statistically, with the sample size of 400 at 0.05 level of significance. In addition, the qualitative analysis was conducted to emphasize the rationale of consumer's behavior using in-depth qualitative interview. Scenario planning technique was also used to generate technological and market trend foresight. Innovation field and potential scenario for matching technology with market was proposed in this paper. The ingredient for successful commercialization of battery power supply with TEG charger for PCED market consists of 5 factors as follows: (1) PCED characteristic, (2) potential ambient heat sources/sinks, (3) battery module, (4) power management module, and the final jigsaw (5) characteristic and adequate arrangement of TEG modules. The foresight outcome for the potential innovations represents a case study in the pilot commercialization of TEG technology for some interesting niche markets in metropolitan area of Thailand, and, thus, can be the clue for product development related to TEG for market-driven application in other similar requirement conditions and contexts as well.
NASA Astrophysics Data System (ADS)
Gregorio, Fernando; Cousseau, Juan; Werner, Stefan; Riihonen, Taneli; Wichman, Risto
2011-12-01
The design of predistortion techniques for broadband multiple input multiple output-OFDM (MIMO-OFDM) systems raises several implementation challenges. First, the large bandwidth of the OFDM signal requires the introduction of memory effects in the PD model. In addition, it is usual to consider an imbalanced in-phase and quadrature (IQ) modulator to translate the predistorted baseband signal to RF. Furthermore, the coupling effects, which occur when the MIMO paths are implemented in the same reduced size chipset, cannot be avoided in MIMO transceivers structures. This study proposes a MIMO-PD system that linearizes the power amplifier response and compensates nonlinear crosstalk and IQ imbalance effects for each branch of the multiantenna system. Efficient recursive algorithms are presented to estimate the complete MIMO-PD coefficients. The algorithms avoid the high computational complexity in previous solutions based on least squares estimation. The performance of the proposed MIMO-PD structure is validated by simulations using a two-transmitter antenna MIMO system. Error vector magnitude and adjacent channel power ratio are evaluated showing significant improvement compared with conventional MIMO-PD systems.
Fatigue degradation and electric recovery in Silicon solar cells embedded in photovoltaic modules
Paggi, Marco; Berardone, Irene; Infuso, Andrea; Corrado, Mauro
2014-01-01
Cracking in Silicon solar cells is an important factor for the electrical power-loss of photovoltaic modules. Simple geometrical criteria identifying the amount of inactive cell areas depending on the position of cracks with respect to the main electric conductors have been proposed in the literature to predict worst case scenarios. Here we present an experimental study based on the electroluminescence (EL) technique showing that crack propagation in monocrystalline Silicon cells embedded in photovoltaic (PV) modules is a much more complex phenomenon. In spite of the very brittle nature of Silicon, due to the action of the encapsulating polymer and residual thermo-elastic stresses, cracked regions can recover the electric conductivity during mechanical unloading due to crack closure. During cyclic bending, fatigue degradation is reported. This pinpoints the importance of reducing cyclic stresses caused by vibrations due to transportation and use, in order to limit the effect of cracking in Silicon cells. PMID:24675974
Evaluation of Information Leakage from Cryptographic Hardware via Common-Mode Current
NASA Astrophysics Data System (ADS)
Hayashi, Yu-Ichi; Homma, Naofumi; Mizuki, Takaaki; Sugawara, Takeshi; Kayano, Yoshiki; Aoki, Takafumi; Minegishi, Shigeki; Satoh, Akashi; Sone, Hideaki; Inoue, Hiroshi
This paper presents a possibility of Electromagnetic (EM) analysis against cryptographic modules outside their security boundaries. The mechanism behind the information leakage is explained from the view point of Electromagnetic Compatibility: electric fluctuation released from cryptographic modules can conduct to peripheral circuits based on ground bounce, resulting in radiation. We demonstrate the consequence of the mechanism through experiments where the ISO/IEC standard block cipher AES (Advanced Encryption Standard) is implemented on an FPGA board and EM radiations from power and communication cables are measured. Correlation Electromagnetic Analysis (CEMA) is conducted in order to evaluate the information leakage. The experimental results show that secret keys are revealed even though there are various disturbing factors such as voltage regulators and AC/DC converters between the target module and the measurement points. We also discuss information-suppression techniques as electrical-level countermeasures against such CEMAs.
Advanced Code-Division Multiplexers for Superconducting Detector Arrays
NASA Astrophysics Data System (ADS)
Irwin, K. D.; Cho, H. M.; Doriese, W. B.; Fowler, J. W.; Hilton, G. C.; Niemack, M. D.; Reintsema, C. D.; Schmidt, D. R.; Ullom, J. N.; Vale, L. R.
2012-06-01
Multiplexers based on the modulation of superconducting quantum interference devices are now regularly used in multi-kilopixel arrays of superconducting detectors for astrophysics, cosmology, and materials analysis. Over the next decade, much larger arrays will be needed. These larger arrays require new modulation techniques and compact multiplexer elements that fit within each pixel. We present a new in-focal-plane code-division multiplexer that provides multiplexing elements with the required scalability. This code-division multiplexer uses compact lithographic modulation elements that simultaneously multiplex both signal outputs and superconducting transition-edge sensor (TES) detector bias voltages. It eliminates the shunt resistor used to voltage bias TES detectors, greatly reduces power dissipation, allows different dc bias voltages for each TES, and makes all elements sufficiently compact to fit inside the detector pixel area. These in-focal plane code-division multiplexers can be combined with multi-GHz readout based on superconducting microresonators to scale to even larger arrays.
Variable length adjacent partitioning for PTS based PAPR reduction of OFDM signal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ibraheem, Zeyid T.; Rahman, Md. Mijanur; Yaakob, S. N.
2015-05-15
Peak-to-Average power ratio (PAPR) is a major drawback in OFDM communication. It leads the power amplifier into nonlinear region operation resulting into loss of data integrity. As such, there is a strong motivation to find techniques to reduce PAPR. Partial Transmit Sequence (PTS) is an attractive scheme for this purpose. Judicious partitioning the OFDM data frame into disjoint subsets is a pivotal component of any PTS scheme. Out of the existing partitioning techniques, adjacent partitioning is characterized by an attractive trade-off between cost and performance. With an aim of determining effects of length variability of adjacent partitions, we performed anmore » investigation into the performances of a variable length adjacent partitioning (VL-AP) and fixed length adjacent partitioning in comparison with other partitioning schemes such as pseudorandom partitioning. Simulation results with different modulation and partitioning scenarios showed that fixed length adjacent partition had better performance compared to variable length adjacent partitioning. As expected, simulation results showed a slightly better performance of pseudorandom partitioning technique compared to fixed and variable adjacent partitioning schemes. However, as the pseudorandom technique incurs high computational complexities, adjacent partitioning schemes were still seen as favorable candidates for PAPR reduction.« less
Application handbook for a Standardized Control Module (SCM) for DC-DC converters, volume 1
NASA Astrophysics Data System (ADS)
Lee, F. C.; Mahmoud, M. F.; Yu, Y.
1980-04-01
The standardized control module (SCM) was developed for application in the buck, boost and buck/boost DC-DC converters. The SCM used multiple feedback loops to provide improved input line and output load regulation, stable feedback control system, good dynamic transient response and adaptive compensation of the control loop for changes in open loop gain and output filter time constraints. The necessary modeling and analysis tools to aid the design engineer in the application of the SCM to DC-DC Converters were developed. The SCM functional block diagram and the different analysis techniques were examined. The average time domain analysis technique was chosen as the basic analytical tool. The power stage transfer functions were developed for the buck, boost and buck/boost converters. The analog signal and digital signal processor transfer functions were developed for the three DC-DC Converter types using the constant on time, constant off time and constant frequency control laws.
Devgan, Preetpaul S; Diehl, John F; Urick, Vincent J; Sunderman, Christopher E; Williams, Keith J
2009-05-25
We present a technique using a dual-output Mach-Zehnder modulator (MZM) with two wavelength inputs, one operating at low-bias and the other operating at high-bias, in order to cancel unwanted even-order harmonics in analog optical links. By using a dual-output MZM, this technique allows for two suppressed optical carriers to be transmitted to the receiver. Combined with optical amplification and balanced differential detection, the RF power of the fundamental is increased by 2 dB while the even-order harmonic is reduced by 47 dB, simultaneously. The RF noise figure and third-order spurious-free dynamic range (SFDR(3)) are improved by 5.4 dB and 3.6 dB, respectively. Using a wavelength sensitive, low V(pi) MZM allows the two wavelengths to be within 5.5 nm of each other for a frequency band from 10 MHz to 100 MHz and 10 nm for 1 GHz.
Application handbook for a Standardized Control Module (SCM) for DC-DC converters, volume 1
NASA Technical Reports Server (NTRS)
Lee, F. C.; Mahmoud, M. F.; Yu, Y.
1980-01-01
The standardized control module (SCM) was developed for application in the buck, boost and buck/boost DC-DC converters. The SCM used multiple feedback loops to provide improved input line and output load regulation, stable feedback control system, good dynamic transient response and adaptive compensation of the control loop for changes in open loop gain and output filter time constraints. The necessary modeling and analysis tools to aid the design engineer in the application of the SCM to DC-DC Converters were developed. The SCM functional block diagram and the different analysis techniques were examined. The average time domain analysis technique was chosen as the basic analytical tool. The power stage transfer functions were developed for the buck, boost and buck/boost converters. The analog signal and digital signal processor transfer functions were developed for the three DC-DC Converter types using the constant on time, constant off time and constant frequency control laws.
An Experimental Realization of a Chaos-Based Secure Communication Using Arduino Microcontrollers.
Zapateiro De la Hoz, Mauricio; Acho, Leonardo; Vidal, Yolanda
2015-01-01
Security and secrecy are some of the important concerns in the communications world. In the last years, several encryption techniques have been proposed in order to improve the secrecy of the information transmitted. Chaos-based encryption techniques are being widely studied as part of the problem because of the highly unpredictable and random-look nature of the chaotic signals. In this paper we propose a digital-based communication system that uses the logistic map which is a mathematically simple model that is chaotic under certain conditions. The input message signal is modulated using a simple Delta modulator and encrypted using a logistic map. The key signal is also encrypted using the same logistic map with different initial conditions. In the receiver side, the binary-coded message is decrypted using the encrypted key signal that is sent through one of the communication channels. The proposed scheme is experimentally tested using Arduino shields which are simple yet powerful development kits that allows for the implementation of the communication system for testing purposes.
Fiber-ring laser-based intracavity photoacoustic spectroscopy for trace gas sensing.
Wang, Qiang; Wang, Zhen; Chang, Jun; Ren, Wei
2017-06-01
We demonstrated a novel trace gas sensing method based on fiber-ring laser intracavity photoacoustic spectroscopy. This spectroscopic technique is a merging of photoacoustic spectroscopy (PAS) with a fiber-ring cavity for sensitive and all-fiber gas detection. A transmission-type PAS gas cell (resonant frequency f0=2.68 kHz) was placed inside the fiber-ring laser to fully utilize the intracavity laser power. The PAS signal was excited by modulating the laser wavelength at f0/2 using a custom-made fiber Bragg grating-based modulator. We used this spectroscopic technique to detect acetylene (C2H2) at 1531.6 nm as a proof of principle. With a low Q-factor (4.9) of the PAS cell, our sensor achieved a good linear response (R2=0.996) to C2H2 concentration and a minimum detection limit of 390 ppbv at 2-s response time.
NASA Ames Research Center 60 MW Power Supply Modernization
NASA Technical Reports Server (NTRS)
Choy, Yuen Ching; Ilinets, Boris V.; Miller, Ted; Nagel, Kirsten (Technical Monitor)
2001-01-01
The NASA Ames Research Center 60 MW DC Power Supply was built in 1974 to provide controlled DC power for the Thermophysics Facility Arc Jet Laboratory. The Power Supply has gradually losing reliability due to outdated technology and component life limitation. NASA has decided to upgrade the existing rectifier modules with contemporary high-power electronics and control equipment. NASA plans to complete this project in 2001. This project includes a complete replacement of obsolete thyristor stacks in all six rectifier modules and rectifier bridge control system. High power water-cooled thyristors and freewheeling diodes will be used. The rating of each of the six modules will be 4000 A at 5500 V. The control firing angle signal will be sent from the Facility Control System to six modules via fiberoptic cable. The Power Supply control and monitoring system will include a Master PLC in the Facility building and a Slave PLC in each rectifier module. This system will also monitor each thyristor level in each stack and the auxiliary equipment.
A comparison of radioisotope Brayton and Stirling system for lunar surface mobile power
NASA Astrophysics Data System (ADS)
Harty, Richard B.
1991-01-01
A study was performed by the Rocketdyne Division of Rockwell 2.5-kWe modular dynamic isotope power system (DIPS) using a Stirling power conversion system. The results of this study were compared with similar results performed under the DIPS program using a Brayton power conversion system. The study indicated that the Stirling power module has 20% lower mass and 40% lower radiator area than the Brayton module. However, the study also revealed that because the Stirling power module requires a complex heat pipe arrangment to transport heat from the isotope to the Stirling heater head and a pumped NaK heat rejection loop, the Stirling module is much more difficult to integrate with the isotope heat source and heat rejection system.
The AC photovoltaic module is here!
NASA Astrophysics Data System (ADS)
Strong, Steven J.; Wohlgemuth, John H.; Wills, Robert H.
1997-02-01
This paper describes the design, development, and performance results of a large-area photovoltaic module whose electrical output is ac power suitable for direct connection to the utility grid. The large-area ac PV module features a dedicated, integrally mounted, high-efficiency dc-to-ac power inverter with a nominal output of 250 watts (STC) at 120 Vac, 60 H, that is fully compatible with utility power. The module's output is connected directly to the building's conventional ac distribution system without need for any dc wiring, string combiners, dc ground-fault protection or additional power-conditioning equipment. With its advantages, the ac photovoltaic module promises to become a universal building block for use in all utility-interactive PV systems. This paper discusses AC Module design aspects and utility interface issues (including islanding).
Self-phase modulation and two-photon absorption imaging of cells and active neurons
NASA Astrophysics Data System (ADS)
Fischer, Martin C.; Liu, Henry; Piletic, Ivan R.; Ye, Tong; Yasuda, Ryohei; Warren, Warren S.
2007-02-01
Even though multi-photon fluorescence microscopy offers higher resolution and better penetration depth than traditional fluorescence microscopy, its use is restricted to the detection of molecules that fluoresce. Two-photon absorption (TPA) imaging can provide contrast in non-fluorescent molecules while retaining the high resolution and sectioning capabilities of nonlinear imaging modalities. In the long-wavelength water window, tissue TPA is dominated by the endogenous molecules melanin and hemoglobin with an almost complete absence of endogenous two-photon fluorescence. A complementary nonlinear contrast mechanism is self-phase modulation (SPM), which can provide intrinsic signatures that can depend on local tissue anisotropy, chemical environment, or other structural properties. We have developed a spectral hole refilling measurement technique for TPA and SPM measurements using shaped ultrafast laser pulses. Here we report on a microscopy setup to simultaneously acquire 3D, high-resolution TPA and SPM images. We have acquired data in mounted B16 melanoma cells with very modest laser power levels. We will also discuss the possible application of this measurement technique to neuronal imaging. Since SPM is sensitive to material structure we can expect SPM properties of neurons to change during neuronal firing. Using our hole-refilling technique we have now demonstrated strong novel intrinsic nonlinear signatures of neuronal activation in a hippocampal brain slice. The observed changes in nonlinear signal upon collective activation were up to factors of two, unlike other intrinsic optical signal changes on the percent level. These results show that TPA and SPM imaging can provide important novel functional contrast in tissue using very modest power levels suitable for in vivo applications.
NASA Astrophysics Data System (ADS)
Barabanov, A. A.; Papchenko, B. P.; Pichkhadze, K. M.; Rebrov, S. G.; Semenkin, A. V.; Sysoev, V. K.; Yanchur, S. V.
2016-12-01
The concept of interconnected satellite systems for various scientific and engineering applications based on small spacecraft and a transport and power module with a nuclear power plant is discussed. The system is connected by laser radiation from the transport and power module that supplies power to small satellites, establishes high-speed data transmission, and is used to perform high-precision measurements of intersatellite distances. Several practical use cases for such a connected system are considered.
A new topology and control method for electromagnetic transmitter power supplies
NASA Astrophysics Data System (ADS)
Zhang, Yiming; Zhang, Jialin; Yuan, Dakang
2017-04-01
As essential equipment for electromagnetic exploration, electromagnetic transmitter reverse the steady power supply with desired frequency and transmit the power through grounding electrodes. To obtain effective geophysical data during deep exploration, the transmitter needs to be high-voltage, high-current, with high-accuracy output, and yet compact and light. The researches on the power supply technologies for high-voltage high-power electromagnetic transmitter is of significant importance to the deep geophysical explorations. Therefore, the performance of electromagnetic transmitter is mainly subject to the following two aspects: the performance of emission current and voltage, and the power density. These requirements bring technical difficulties to the development of power supplies. Conventionally, high-frequency switching power supplies are applied in the design of a high-power transmitter power supply. However, the structure of the topology is complicate, which may reduce the controllability of the output voltage and the reliability of the system. Without power factor control, the power factor of the structure is relatively low. Moreover high switching frequency causes high loss. With the development of the PWM (pulse width modulation) technique, its merits of simple structure, low loss, convenient control and unit power factor have made it popular in electrical energy feedback, active filter, and power factor compensation. Studies have shown that using PWM converters and space vector modulation have become the trend in designing transmitter power supply. However, the earth load exhibits different impedances at different frequencies. Thus ensuing high-accuracy and a stable output from a transmitter power supply in harsh environment has become a key topic in the design of geophysical exploration instruments. Based on SVPWM technology, an electromagnetic transmitter power supply has been designed and its control strategy has been studied. The transmitting system is composed of power supply, SVPWM converter, and power inverter units. The functions of the units are as follows: (1) power supply: a generator providing power with three phase; (2) SVPWM converter: convert AC to DC output; (3) power inverter unit: the inverter is used to convert DC to AC output whose frequency, amplitude and waveform are variable. In the SVPWM technique, the active current and the reactive current are controlled separately, and each variable is analyzed individually, thus the power factor of the system is improved. Through controlling the PWM converter at the generation side, we can get any power factor. Usually the power factor of the generation side is set to 1. Finally, simulation and experimental results validate both the correctness of the established model and the effectiveness of the control method. We can acquire unity power factor for the input and steady current for the output. They also demonstrated that the electromagnetic transmitter power supply designed in this study can meet the practical needs of field geological exploration. We can improve the utilization of the transmitter system.
Inverter power module with distributed support for direct substrate cooling
Miller, David Harold [San Pedro, CA; Korich, Mark D [Chino Hills, CA; Ward, Terence G [Redondo Beach, CA; Mann, Brooks S [Redondo Beach, CA
2012-08-21
Systems and/or methods are provided for an inverter power module with distributed support for direct substrate cooling. An inverter module comprises a power electronic substrate. A first support frame is adapted to house the power electronic substrate and has a first region adapted to allow direct cooling of the power electronic substrate. A gasket is interposed between the power electronic substrate and the first support frame. The gasket is configured to provide a seal between the first region and the power electronic substrate. A second support frame is adapted to house the power electronic substrate and joined to the first support frame to form the seal.
User interface design principles for the SSM/PMAD automated power system
NASA Technical Reports Server (NTRS)
Jakstas, Laura M.; Myers, Chris J.
1991-01-01
Martin Marietta has developed a user interface for the space station module power management and distribution (SSM/PMAD) automated power system testbed which provides human access to the functionality of the power system, as well as exemplifying current techniques in user interface design. The testbed user interface was designed to enable an engineer to operate the system easily without having significant knowledge of computer systems, as well as provide an environment in which the engineer can monitor and interact with the SSM/PMAD system hardware. The design of the interface supports a global view of the most important data from the various hardware and software components, as well as enabling the user to obtain additional or more detailed data when needed. The components and representations of the SSM/PMAD testbed user interface are examined. An engineer's interactions with the system are also described.
Adaptive beam shaping for improving the power coupling of a two-Cassegrain-telescope
NASA Astrophysics Data System (ADS)
Ma, Haotong; Hu, Haojun; Xie, Wenke; Zhao, Haichuan; Xu, Xiaojun; Chen, Jinbao
2013-08-01
We demonstrate the adaptive beam shaping for improving the power coupling of a two-Cassegrain-telescope based on the stochastic parallel gradient descent (SPGD) algorithm and dual phase only liquid crystal spatial light modulators (LC-SLMs). Adaptive pre-compensation the wavefront of projected laser beam at the transmitter telescope is chosen to improve the power coupling efficiency. One phase only LC-SLM adaptively optimizes phase distribution of the projected laser beam and the other generates turbulence phase screen. The intensity distributions of the dark hollow beam after passing through the turbulent atmosphere with and without adaptive beam shaping are analyzed in detail. The influence of propagation distance and aperture size of the Cassegrain-telescope on coupling efficiency are investigated theoretically and experimentally. These studies show that the power coupling can be significantly improved by adaptive beam shaping. The technique can be used in optical communication, deep space optical communication and relay mirror.
Exercise of the SSM/PMAD Breadboard. [Space Station Module/Power Management And Distribution
NASA Technical Reports Server (NTRS)
Walls, Bryan
1989-01-01
The Space Station Module Power Management and Distribution (SSM/PMAD) Breadboard is a test facility designed for advanced development of space power automation. Originally designed for 20-kHz power, the system is being converted to work with direct current (dc). Power levels are on a par with those expected for a Space Station module. Some of the strengths and weaknesses of the SSM/PMAD system in design and function are examined, and the future directions foreseen for the system are outlined.
Control system development for a 1 MW/e/ solar thermal power plant
NASA Technical Reports Server (NTRS)
Daubert, E. R.; Bergthold, F. M., Jr.; Fulton, D. G.
1981-01-01
The point-focusing distributed receiver power plant considered consists of a number of power modules delivering power to a central collection point. Each power module contains a parabolic dish concentrator with a closed-cycle receiver/turbine/alternator assembly. Currently, a single-module prototype plant is under construction. The major control system tasks required are related to concentrator pointing control, receiver temperature control, and turbine speed control. Attention is given to operational control details, control hardware and software, and aspects of CRT output display.
A comparison of radioisotope Brayton and Stirling systems for lunar surface mobile power
NASA Astrophysics Data System (ADS)
Harty, Richard B.
A study was performed by the Rocketdyne Division of Rockwell International on a 2.5-kWe modular dynamic isotope power system (DIPS) using a Stirling power conversion system. The results of this study were compared with similar results performed under the DIPS program using a Brayton power conversion system. The application considered was for lunar mobile power sources in the power range of 2.5 kWe to 15 kWe. The study indicated that the Stirling power module has 20 percent lower mass and 40 percent lower radiator area than the Brayton module. However, the study also revealed that because the Stirling power module requires a complex heat pipe arrangement to transport heat from the isotope to the Stirling heater head and a pumped NaK heat rejection loop, the Stirling module is much more difficult to integrate with the isotope heat source and heat rejection system.
RF pulse compression for future linear colliders
NASA Astrophysics Data System (ADS)
Wilson, Perry B.
1995-07-01
Future (nonsuperconducting) linear colliders will require very high values of peak rf power per meter of accelerating structure. The role of rf pulse compression in producing this power is examined within the context of overall rf system design for three future colliders at energies of 1.0-1.5 TeV, 5 TeV, and 25 TeV. In order to keep the average AC input power and the length of the accelerator within reasonable limits, a collider in the 1.0-1.5 TeV energy range will probably be built at an x-band rf frequency, and will require a peak power on the order of 150-200 MW per meter of accelerating structure. A 5 TeV collider at 34 GHz with a reasonable length (35 km) and AC input power (225 MW) would require about 550 MW per meter of structure. Two-beam accelerators can achieve peak powers of this order by applying dc pulse compression techniques (induction linac modules) to produce the drive beam. Klystron-driven colliders achieve high peak power by a combination of dc pulse compression (modulators) and rf pulse compression, with about the same overall rf system efficiency (30-40%) as a two-beam collider. A high gain (6.8) three-stage binary pulse compression system with high efficiency (80%) is described, which (compared to a SLED-II system) can be used to reduce the klystron peak power by about a factor of two, or alternatively, to cut the number of klystrons in half for a 1.0-1.5 TeV x-band collider. For a 5 TeV klystron-driven collider, a high gain, high efficiency rf pulse compression system is essential.
Miniaturized radioisotope solid state power sources
NASA Astrophysics Data System (ADS)
Fleurial, J.-P.; Snyder, G. J.; Patel, J.; Herman, J. A.; Caillat, T.; Nesmith, B.; Kolawa, E. A.
2000-01-01
Electrical power requirements for the next generation of deep space missions cover a wide range from the kilowatt to the milliwatt. Several of these missions call for the development of compact, low weight, long life, rugged power sources capable of delivering a few milliwatts up to a couple of watts while operating in harsh environments. Advanced solid state thermoelectric microdevices combined with radioisotope heat sources and energy storage devices such as capacitors are ideally suited for these applications. By making use of macroscopic film technology, microgenrators operating across relatively small temperature differences can be conceptualized for a variety of high heat flux or low heat flux heat source configurations. Moreover, by shrinking the size of the thermoelements and increasing their number to several thousands in a single structure, these devices can generate high voltages even at low power outputs that are more compatible with electronic components. Because the miniaturization of state-of-the-art thermoelectric module technology based on Bi2Te3 alloys is limited due to mechanical and manufacturing constraints, we are developing novel microdevices using integrated-circuit type fabrication processes, electrochemical deposition techniques and high thermal conductivity substrate materials. One power source concept is based on several thermoelectric microgenerator modules that are tightly integrated with a 1.1W Radioisotope Heater Unit. Such a system could deliver up to 50mW of electrical power in a small lightweight package of approximately 50 to 60g and 30cm3. An even higher degree of miniaturization and high specific power values (mW/mm3) can be obtained when considering the potential use of radioisotope materials for an alpha-voltaic or a hybrid thermoelectric/alpha-voltaic power source. Some of the technical challenges associated with these concepts are discussed in this paper. .
ERIC Educational Resources Information Center
Chief of Naval Education and Training Support, Pensacola, FL.
This set of individualized learning modules on power supplies is one in a series of modules for a course in basic electricity and electronics. The course is one of a number of military-developed curriculum packages selected for adaptation to vocational instructional and curriculum development in a civilian setting. Two modules are included in the…
A preliminary assessment of small steam Rankine and Brayton point-focusing solar modules
NASA Technical Reports Server (NTRS)
Roschke, E. J.; Wen, L.; Steele, H.; Elgabalawi, N.; Wang, J.
1979-01-01
A preliminary assessment of three conceptual point-focusing distributed solar modules is presented. The basic power conversion units consist of small Brayton or Rankine engines individually coupled to two-axis, tracking, point-focusing solar collectors. An array of such modules can be linked together, via electric transport, to form a small power station. Each module also can be utilized on a stand-alone basis, as an individual power source.
NASA Technical Reports Server (NTRS)
1979-01-01
Topics covered include growth options evaluation, mass properties, attitude control and structural dynamics, contamination evaluation, berthing concepts, orbit reboost options and growth kit concepts. Systems support elements and space support equipment are reviewed with emphasis on power module operations and technology planning.
Modular compact solid-state modulators for particle accelerators
NASA Astrophysics Data System (ADS)
Zavadtsev, A. A.; Zavadtsev, D. A.; Churanov, D. V.
2017-12-01
The building of the radio frequency (RF) particle accelerator needs high-voltage pulsed modulator as a power supply for klystron or magnetron to feed the RF accelerating system. The development of a number of solid-state modulators for use in linear accelerators has allowed to develop a series of modular IGBT based compact solid-state modulators with different parameters. This series covers a wide range of needs in accelerator technology to feed a wide range of loads from the low power magnetrons to powerful klystrons. Each modulator of the series is built on base of a number of unified solid-state modules connected to the pulse transformer, and covers a wide range of modulators: voltage up to 250 kV, a peak current up to 250 A, average power up to 100 kW and the pulse duration up to 20 μsec. The parameters of the block with an overall dimensions 880×540×250 mm are: voltage 12 kV, peak current 1600 A, pulse duration 20 μsec, average power 10 kW with air-cooling and 40 kW with liquidcooling. These parameters do not represent a physical limit, and modulators to parameters outside these ranges can be created on request.
A Design of a Modular GPHS-Stirling Power System for a Lunar Habitation Module
NASA Technical Reports Server (NTRS)
Schmitz, Paul C.; Penswick, L. Barry; Shaltens, Richard K.
2005-01-01
Lunar habitation modules need electricity and potentially heat to operate. Because of the low amounts of radiation emitted by General Purpose Heat Source (GPHS) modules, power plants incorporating these as heat sources could be placed in close proximity to habitation modules. A design concept is discussed for a high efficiency power plant based on a GPHS assembly integrated with a Stirling convertor. This system could provide both electrical power and heat, if required, for a lunar habitation module. The conceptual GPHS/Stirling system is modular in nature and made up of a basic 5.5 KWe Stirling convertor/GPHS module assembly, convertor controller/PMAD electronics, waste heat radiators, and associated thermal insulation. For the specific lunar application under investigation eight modules are employed to deliver 40 KWe to the habitation module. This design looks at three levels of Stirling convertor technology and addresses the issues of integrating the Stirling convertors with the GPHS heat sources assembly using proven technology whenever possible. In addition, issues related to the high-temperature heat transport system, power management, convertor control, vibration isolation, and potential system packaging configurations to ensure safe operation during all phases of deployment will be discussed.
Real power regulation for the utility power grid via responsive loads
McIntyre, Timothy J [Knoxville, TN; Kirby, Brendan J [Knoxville, TN; Kisner, Roger A
2009-05-19
A system for dynamically managing an electrical power system that determines measures of performance and control criteria for the electric power system, collects at least one automatic generation control (AGC) input parameter to at least one AGC module and at least one automatic load control (ALC) input parameter to at least one ALC module, calculates AGC control signals and loads as resources (LAR) control signals in response to said measures of performance and control criteria, propagates AGC control signals to power generating units in response to control logic in AGC modules, and propagates LAR control signals to at least one LAR in response to control logic in ALC modules.
Extending the wavelength range in the Oclaro high-brightness broad area modules
NASA Astrophysics Data System (ADS)
Pawlik, Susanne; Guarino, Andrea; Sverdlov, Boris; Müller, Jürgen; Button, Christopher; Arlt, Sebastian; Jaeggi, Dominik; Lichtenstein, Norbert
2010-02-01
The demand for high power laser diode modules in the wavelength range between 793 nm and 1060 nm has been growing continuously over the last several years. Progress in eye-safe fiber lasers requires reliable pump power at 793 nm, modules at 808 nm are used for small size DPSSL applications and fiber-coupled laser sources at 830 nm are used in printing industry. However, power levels achieved in this wavelength range have remained lower than for the 9xx nm range. Here we report on approaches to increasing the reliable power in our latest generations of high power pump modules in the wavelength range between 793 nm and 1060 nm.
NASA Astrophysics Data System (ADS)
Shadmand, Mohammad Bagher
Renewable energy sources continue to gain popularity. However, two major limitations exist that prevent widespread adoption: availability and variability of the electricity generated and the cost of the equipment. The focus of this dissertation is Model Predictive Control (MPC) for optimal sized photovoltaic (PV), DC Microgrid, and multi-sourced hybrid energy systems. The main considered applications are: maximum power point tracking (MPPT) by MPC, droop predictive control of DC microgrid, MPC of grid-interaction inverter, MPC of a capacitor-less VAR compensator based on matrix converter (MC). This dissertation firstly investigates a multi-objective optimization technique for a hybrid distribution system. The variability of a high-penetration PV scenario is also studied when incorporated into the microgrid concept. Emerging (PV) technologies have enabled the creation of contoured and conformal PV surfaces; the effect of using non-planar PV modules on variability is also analyzed. The proposed predictive control to achieve maximum power point for isolated and grid-tied PV systems speeds up the control loop since it predicts error before the switching signal is applied to the converter. The low conversion efficiency of PV cells means we want to ensure always operating at maximum possible power point to make the system economical. Thus the proposed MPPT technique can capture more energy compared to the conventional MPPT techniques from same amount of installed solar panel. Because of the MPPT requirement, the output voltage of the converter may vary. Therefore a droop control is needed to feed multiple arrays of photovoltaic systems to a DC bus in microgrid community. Development of a droop control technique by means of predictive control is another application of this dissertation. Reactive power, denoted as Volt Ampere Reactive (VAR), has several undesirable consequences on AC power system network such as reduction in power transfer capability and increase in transmission loss if not controlled appropriately. Inductive loads which operate with lagging power factor consume VARs, thus load compensation techniques by capacitor bank employment locally supply VARs needed by the load. Capacitors are highly unreliable components due to their failure modes and aging inherent. Approximately 60% of power electronic devices failure such as voltage-source inverter based static synchronous compensator (STATCOM) is due to the use of aluminum electrolytic DC capacitors. Therefore, a capacitor-less VAR compensation is desired. This dissertation also investigates a STATCOM capacitor-less reactive power compensation that uses only inductors combined with predictive controlled matrix converter.
Proceedings of the Antenna Applications Symposium (1988) Volume 1
1989-06-01
FIELD GROUP SUB-GROUP Antennas)p Microstrip, ,.Multibeam Antennas 6 Satellite Antennas. Reflector Array Antennas, ____________I____ Broadband Antennas...C. Sullivan and G. E. Evans 8. " Broadband MMIC T/R Module/Subarray Performance," D. Brubaker, 157 D. Scott, S. Ludvik, M. Lynch, H. II. Chung, W...34 S. Sanzgiri, 277 B. Powers, Jr., and J. Hart ib. " broadbanding Techniques for Microstrip Patch Antennas - A ’.93 kReview," K. C. Gupta * NUT INCLUDED
Integrated packaging of multiple double sided cooling planar bond power modules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, Zhenxian
An integrated double sided cooled power module has one or multiple phase legs configuration including one or more planar power packages, each planar power package having an upper power switch unit and a lower power switch unit directly bonded and interconnected between two insulated power substrates, and further sandwiched between two heat exchangers via direct bonds. A segmented coolant manifold is interposed with the one or more planar power packages and creates a sealed enclosure that defines a coolant inlet, a coolant outlet and a coolant flow path between the inlet and the outlet. A coolant circulates along the flowmore » path to remove heat and increase the power density of the power module.« less
47 CFR 95.607 - CB transmitter modification.
Code of Federal Regulations, 2010 CFR
2010-10-01
... transmitting frequencies, increased modulation level, a different form of modulation, or increased TP (RF... modulating frequency, typically 0.1 seconds at maximum power) or peak envelope power (TP averaged during 1 RF cycle at the highest crest of the modulation envelope), as measured at the transmitter output antenna...
Update on Development of SiC Multi-Chip Power Modules
NASA Technical Reports Server (NTRS)
Lostetter, Alexander; Cilio, Edgar; Mitchell, Gavin; Schupbach, Roberto
2008-01-01
Progress has been made in a continuing effort to develop multi-chip power modules (SiC MCPMs). This effort at an earlier stage was reported in 'SiC Multi-Chip Power Modules as Power-System Building Blocks' (LEW-18008-1), NASA Tech Briefs, Vol. 31, No. 2 (February 2007), page 28. The following recapitulation of information from the cited prior article is prerequisite to a meaningful summary of the progress made since then: 1) SiC MCPMs are, more specifically, electronic power-supply modules containing multiple silicon carbide power integrated-circuit chips and silicon-on-insulator (SOI) control integrated-circuit chips. SiC MCPMs are being developed as building blocks of advanced expandable, reconfigurable, fault-tolerant power-supply systems. Exploiting the ability of SiC semiconductor devices to operate at temperatures, breakdown voltages, and current densities significantly greater than those of conventional Si devices, the designs of SiC MCPMs and of systems comprising multiple SiC MCPMs are expected to afford a greater degree of miniaturization through stacking of modules with reduced requirements for heat sinking; 2) The stacked SiC MCPMs in a given system can be electrically connected in series, parallel, or a series/parallel combination to increase the overall power-handling capability of the system. In addition to power connections, the modules have communication connections. The SOI controllers in the modules communicate with each other as nodes of a decentralized control network, in which no single controller exerts overall command of the system. Control functions effected via the network include synchronization of switching of power devices and rapid reconfiguration of power connections to enable the power system to continue to supply power to a load in the event of failure of one of the modules; and, 3) In addition to serving as building blocks of reliable power-supply systems, SiC MCPMs could be augmented with external control circuitry to make them perform additional power-handling functions as needed for specific applications. Because identical SiC MCPM building blocks could be utilized in such a variety of ways, the cost and difficulty of designing new, highly reliable power systems would be reduced considerably. This concludes the information from the cited prior article. The main activity since the previously reported stage of development was the design, fabrication, and testing a 120- VDC-to-28-VDC modular power-converter system composed of eight SiC MCPMs in a 4 (parallel)-by-2 (series) matrix configuration, with normally-off controllable power switches. The SiC MCPM power modules include closed-loop control subsystems and are capable of operating at high power density or high temperature. The system was tested under various configurations, load conditions, load-transient conditions, and failure-recovery conditions. Planned future work includes refinement of the demonstrated modular system concept and development of a new converter hardware topology that would enable sharing of currents without the need for communication among modules. Toward these ends, it is also planned to develop a new converter control algorithm that would provide for improved sharing of current and power under all conditions, and to implement advanced packaging concepts that would enable operation at higher power density.
Aternating current photovoltaic building block
Bower, Ward Issac; Thomas, Michael G.; Ruby, Douglas S.
2004-06-15
A modular apparatus for and method of alternating current photovoltaic power generation comprising via a photovoltaic module, generating power in the form of direct current; and converting direct current to alternating current and exporting power via one or more power conversion and transfer units attached to the module, each unit comprising a unitary housing extending a length or width of the module, which housing comprises: contact means for receiving direct current from the module; one or more direct current-to-alternating current inverters; an alternating current bus; and contact means for receiving alternating current from the one or more inverters.
Chaotic CDMA watermarking algorithm for digital image in FRFT domain
NASA Astrophysics Data System (ADS)
Liu, Weizhong; Yang, Wentao; Feng, Zhuoming; Zou, Xuecheng
2007-11-01
A digital image-watermarking algorithm based on fractional Fourier transform (FRFT) domain is presented by utilizing chaotic CDMA technique in this paper. As a popular and typical transmission technique, CDMA has many advantages such as privacy, anti-jamming and low power spectral density, which can provide robustness against image distortions and malicious attempts to remove or tamper with the watermark. A super-hybrid chaotic map, with good auto-correlation and cross-correlation characteristics, is adopted to produce many quasi-orthogonal codes (QOC) that can replace the periodic PN-code used in traditional CDAM system. The watermarking data is divided into a lot of segments that correspond to different chaotic QOC respectively and are modulated into the CDMA watermarking data embedded into low-frequency amplitude coefficients of FRFT domain of the cover image. During watermark detection, each chaotic QOC extracts its corresponding watermarking segment by calculating correlation coefficients between chaotic QOC and watermarked data of the detected image. The CDMA technique not only can enhance the robustness of watermark but also can compress the data of the modulated watermark. Experimental results show that the watermarking algorithm has good performances in three aspects: better imperceptibility, anti-attack robustness and security.
NASA Astrophysics Data System (ADS)
Vorndran, Shelby; Russo, Juan; Zhang, Deming; Gordon, Michael; Kostuk, Raymond
2012-10-01
In this work, a concentrating photovoltaic (CPV) design methodology is proposed which aims to maximize system efficiency for a given irradiance condition. In this technique, the acceptance angle of the system is radiometrically matched to the angular spread of the site's average irradiance conditions using a simple geometric ratio. The optical efficiency of CPV systems from flat-plate to high-concentration is plotted at all irradiance conditions. Concentrator systems are measured outdoors in various irradiance conditions to test the methodology. This modeling technique is valuable at the design stage to determine the ideal level of concentration for a CPV module. It requires only two inputs: the acceptance angle profile of the system and the site's average direct and diffuse irradiance fractions. Acceptance angle can be determined by raytracing or testing a fabricated prototype in the lab with a solar simulator. The average irradiance conditions can be found in the Typical Metrological Year (TMY3) database. Additionally, the information gained from this technique can be used to determine tracking tolerance, quantify power loss during an isolated weather event, and do more sophisticated analysis such as I-V curve simulation.
Campbell, Jeremy B [Torrance, CA; Newson, Steve [Redondo Beach, CA
2011-11-15
A power module assembly of the type suitable for deployment in a vehicular power inverter, wherein the power inverter has a grounded chassis, is provided. The power module assembly comprises a conductive base layer electrically coupled to the chassis, an insulating layer disposed on the conductive base layer, a first conductive node disposed on the insulating layer, a second conductive node disposed on the insulating layer, wherein the first and second conductive nodes are electrically isolated from each other. The power module assembly also comprises a first capacitor having a first electrode electrically connected to the conductive base layer, and a second electrode electrically connected to the first conductive node, and further comprises a second capacitor having a first electrode electrically connected to the conductive base layer, and a second electrode electrically connected to the second conductive node.
Modulation characteristics of a high-power semiconductor Master Oscillator Power Amplifier (MOPA)
NASA Technical Reports Server (NTRS)
Cornwell, Donald Mitchell, Jr.
1992-01-01
A semiconductor master oscillator-power amplifier was demonstrated using an anti-reflection (AR) coated broad area laser as the amplifier. Under CW operation, diffraction-limited single-longitudinal-mode powers up to 340 mW were demonstrated. The characteristics of the far-field pattern were measured and compared to a two-dimensional reflective Fabry-Perot amplifier model of the device. The MOPA configuration was modulated by the master oscillator. Prior to injection into the amplifier, the amplitude and frequency modulation properties of the master oscillator were characterized. The frequency response of the MOPA configuration was characterized for an AM/FM modulated injection beam, and was found to be a function of the frequency detuning between the master oscillator and the resonant amplifier. A shift in the phase was also observed as a function of frequency detuning; this phase shift is attributed to the optical phase shift imparted to a wave reflected from a Fabry-Perot cavity. Square-wave optical pulses were generated at 10 MHz and 250 MHz with diffraction-limited peak powers of 200 mW and 250 mW. The peak power for a given modulation frequency is found to be limited by the injected power and the FM modulation at that frequency. The modulation results make the MOPA attractive for use as a transmitter source in applications such as free-space communications and ranging/altimetry.
Highly Automated Module Production Incorporating Advanced Light Management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perelli-Minetti, Michael; Roof, Kyle
2015-08-11
The objective was to enable a high volume, cost effective solution for increasing the amount of light captured by PV modules through utilization of an advanced Light Re-directing Film and to follow a phased approach to develop and implement this new technology in order to achieve an expected power gain of up to 12 watts per module. Full size PV modules were manufactured using a new Light Redirecting Film (LRF) material applied to two different areas of PV modules in order to increase the amount of light captured by the modules. One configuration involved applying thin strips of LRF filmmore » over the tabbing ribbon on the cells in order to redirect the light that is normally absorbed by the tabbing ribbon to the active areas of the cells. A second configuration involved applying thin strips of LRF film over the white spaces between cells within a module in order to capture some of the light that is normally reflected from the white areas back through the front glass of the modules. Significant power increases of 1.4% (3.9 watts) and 1.0% (3.2 watts), respectively, compared to standard PV modules were measured under standard test conditions. The performance of PV modules with LRF applied to the tabbing ribbon was modeled. The results showed that the power increase provided by LRF depended greatly on the angle of incident light with the optimum performance only occurring when the light was within a narrow range of being perpendicular to the solar module. The modeling showed that most of the performance gain would be lost when the angle of incident light was greater than 28 degrees off axis. This effect made the orientation of modules with LRF applied to tabbing ribbons very important as modules mounted in “portrait” mode were predicted to provide little to no power gain from LRF under real world conditions. Based on these results, modules with LRF on tabbing ribbons would have to be mounted in “landscape” mode to realize a performance advantage. In addition, modeling showed that under diffuse lighting conditions such as when the sky is overcast, there would be no significant performance advantage for modules with LRF. Modules were sent to an outside contractor to measure the power performance under different angles of incident light in order to validate the modeling results. The measured data agreed very well with the modeling predictions and showed that the power gain for modules with LRF applied to tabbing ribbons was completely lost at an angle of 25 degrees off of perpendicular. At even larger angles, the power was lower than standard modules. From 35 degrees to 55 degrees off axis, the power loss was about 1.4% or equal to the power gain at the optimum condition of perfectly on-axis light.« less
Recent Progress in Silicon-Based MEMS Field Emission Thrusters
NASA Astrophysics Data System (ADS)
Lenard, Roger X.; Kravitz, Stanley H.; Tajmar, Martin
2005-02-01
The Indium Field Emission Thruster (In-FET) is a highly characterized and space-proven device based on space-qualified liquid metal ion sources. There is also extensive experience with liquid metal ion sources for high-brightness semiconductor fabrications and inspection Like gridded ion engines, In-FETs efficiently accelerate ions through a series of high voltage electrodes. Instead of a plasma discharge to generate ions, which generates a mixture of singly and doubly charged ions as well as neutrals, indium metal is melted (157°C) and fed to the tip of a capillary tube where very high local electric fields perform more-efficient field emission ionization, providing nearly 100% singly charged species. In-FETs do not have the associated losses or lifetime concerns of a magnetically confined discharge and hollow cathode in ion thrusters. For In-FETs, propellant efficiencies ˜100% stipulate single-emitter currents ⩽10μA, perhaps as low as 5μA of current. This low emitter current results in ⩽0.5 W/emitter. Consequently, if the In-FET is to be used for future Human and Robotic missions under President Bush's Exploration plan, a mechanism to generate very high power levels is necessary. Efficient high-power operation requires many emitter/extractor pairs. Conventional fabrication techniques allow 1-10 emitters in a single module, with pain-staking precision required. Properly designed and fabricated In-FETs possess electric-to-jet efficiency >90% and a specific mass <0.25 kg/kWe. MEMS techniques allow reliable batch processing with ˜160,000 emitters in a 10×10-cm array. Developing a 1.5kW 10×10-cm module is a necessary stepping-stone for >500 kWe systems where groups of 9 or 16 modules, with a single PPU/feed system, form the building blocks for even higher-power exploration systems. In 2003, SNL and ARCS produced a MEMS-based In-FET 5×5 emitter module with individually addressable emitter/extractor pairs on a 15×15mm wafer. The first MEMS thruster prototype has already been tested to demonstrate the proof-of-concept in laboratory-scale testing. In this paper we discuss progress that has been achieved in the past year on fabricating silicon-based MEMS In-FETs.
Medium power amplifiers covering 90 - 130 GHz for telescope local oscillators
NASA Technical Reports Server (NTRS)
Samoska, Lorene A.; Bryerton, Eric; Pukala, David; Peralta, Alejandro; Hu, Ming; Schmitz, Adele
2005-01-01
This paper describes a set of power amplifier (PA) modules containing InP High Electron Mobility Transistor (HEMT) Monolithic Millimeter-wave Integrated Circuit (MMIC) chips. The chips were designed and optimized for local oscillator sources in the 90-130 GHz band for the Atacama Large Millimeter Array telescope. The modules feature 20-45 mW of output power, to date the highest power from solid state HEMT MMIC modules above 110 GHz.
Novel approach for simultaneous wireless transmission and evaluation of optical sensors
NASA Astrophysics Data System (ADS)
Neumann, Niels; Schuster, Tobias; Plettemeier, Dirk
2014-11-01
Optical sensors can be used to measure various quantities such as pressure, strain, temperature, refractive index, pH value and biochemical reactions. The interrogation of the sensor can be performed spectrally or using a simple power measurement. However, the evaluation of the sensor signal and the subsequent radio transmission of the results is complicated and costly. A sophisticated system setup comprising a huge number of electrooptical components as well as a complete radio module is required. This is not only expensive and unreliable but also impractical within harsh environment, in limited space and in inaccessible areas. Radio-over-Fiber (RoF) technology implies signals modulated on an electrical carrier being transmitted over fiber by using optical carriers. Combining RoF techniques and optical sensors, a new class of measurement devices readable by a radio interfaces is introduced in this paper. These sensors use a modulated input signal generated by a RoF transmitter that { after being influenced by the optical sensor-is directly converted into a radio signal and transmitted. This approach enables remote read-outs of the sensor by means of wireless evaluation. Thus, costly, voluminous, power hungry and sensitive equipment in the vicinity of the measurement location is avoided. The equipment can be concentrated in a central location supporting existing radio transmission schemes (e.g. WiFi).
Quantum cascade transmitters for ultrasensitive chemical agent and explosives detection
NASA Astrophysics Data System (ADS)
Schultz, John F.; Taubman, Matthew S.; Harper, Warren W.; Williams, Richard M.; Myers, Tanya L.; Cannon, Bret D.; Sheen, David M.; Anheier, Norman C., Jr.; Allen, Paul J.; Sundaram, S. K.; Johnson, Bradley R.; Aker, Pamela M.; Wu, Ming C.; Lau, Erwin K.
2003-07-01
The small size, high power, promise of access to any wavelength between 3.5 and 16 microns, substantial tuning range about a chosen center wavelength, and general robustness of quantum cascade (QC) lasers provide opportunities for new approaches to ultra-sensitive chemical detection and other applications in the mid-wave infrared. PNNL is developing novel remote and sampling chemical sensing systems based on QC lasers, using QC lasers loaned by Lucent Technologies. In recent months laboratory cavity-enhanced sensing experiments have achieved absorption sensitivities of 8.5 x 10-11 cm-1 Hz-1/2, and the PNNL team has begun monostatic and bi-static frequency modulated, differential absorption lidar (FM DIAL) experiments at ranges of up to 2.5 kilometers. In related work, PNNL and UCLA are developing miniature QC laser transmitters with the multiplexed tunable wavelengths, frequency and amplitude stability, modulation characteristics, and power levels needed for chemical sensing and other applications. Current miniaturization concepts envision coupling QC oscillators, QC amplifiers, frequency references, and detectors with miniature waveguides and waveguide-based modulators, isolators, and other devices formed from chalcogenide or other types of glass. Significant progress has been made on QC laser stabilization and amplification, and on development and characterization of high-purity chalcogenide glasses, waveguide writing techniques, and waveguide metrology.
Salit, K; Salit, M; Krishnamurthy, Subramanian; Wang, Y; Kumar, P; Shahriar, M S
2011-11-07
We demonstrate an ultra-low light level optical modulator using a tapered nano fiber embedded in a hot rubidium vapor. The control and signal beams are co-propagating but orthogonally polarized, leading to a degenerate V-system involving coherent superpositions of Zeeman sublevels. The modulation is due primarily to the quantum Zeno effect for the signal beam induced by the control beam. For a control power of 40 nW and a signal power of 100 pW, we observe near 100% modulation. The ultra-low power level needed for the modulation is due to a combination of the Zeno effect and the extreme field localization in the evanescent field around the taper.
Detrecting and Locating Partial Discharges in Transformers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shourbaji, A.; Richards, R.; Kisner, R. A.
A collaborative research between the Oak Ridge National Laboratory (ORNL), the American Electric Power (AEP), the Tennessee Valley Authority (TVA), and the State of Ohio Energy Office (OEO) has been formed to conduct a feasibility study to detect and locate partial discharges (PDs) inside large transformers. The success of early detection of the PDs is necessary to avoid costly catastrophic failures that can occur if the process of PD is ignored. The detection method under this research is based on an innovative technology developed by ORNL researchers using optical methods to sense the acoustical energy produced by the PDs. ORNLmore » researchers conducted experimental studies to detect PD using an optical fiber as an acoustic sensor capable of detecting acoustical disturbances at any point along its length. This technical approach also has the potential to locate the point at which the PD was sensed within the transformer. Several optical approaches were experimentally investigated, including interferometric detection of acoustical disturbances along the sensing fiber, light detection and ranging (LIDAR) techniques using frequency modulation continuous wave (FMCW), frequency modulated (FM) laser with a multimode fiber, FM laser with a single mode fiber, and amplitude modulated (AM) laser with a multimode fiber. The implementation of the optical fiber-based acoustic measurement technique would include installing a fiber inside a transformer allowing real-time detection of PDs and determining their locations. The fibers are nonconductive and very small (core plus cladding are diameters of 125 μm for single-mode fibers and 230 μm for multimode fibers). The research identified the capabilities and limitations of using optical technology to detect and locate sources of acoustical disturbances such as in PDs in large transformers. Amplitude modulation techniques showed the most promising results and deserve further research to better quantify the technique’s sensitivity and its ability to characterize a PD event. Other sensing techniques have been also identified, such as the wavelength shifting fiber optics and custom fabricated fibers with special coatings.« less
Fiber fault location utilizing traffic signal in optical network.
Zhao, Tong; Wang, Anbang; Wang, Yuncai; Zhang, Mingjiang; Chang, Xiaoming; Xiong, Lijuan; Hao, Yi
2013-10-07
We propose and experimentally demonstrate a method for fault location in optical communication network. This method utilizes the traffic signal transmitted across the network as probe signal, and then locates the fault by correlation technique. Compared with conventional techniques, our method has a simple structure and low operation expenditure, because no additional device is used, such as light source, modulator and signal generator. The correlation detection in this method overcomes the tradeoff between spatial resolution and measurement range in pulse ranging technique. Moreover, signal extraction process can improve the location result considerably. Experimental results show that we achieve a spatial resolution of 8 cm and detection range of over 23 km with -8-dBm mean launched power in optical network based on synchronous digital hierarchy protocols.
Efficient heart beat detection using embedded system electronics
NASA Astrophysics Data System (ADS)
Ramasamy, Mouli; Oh, Sechang; Varadan, Vijay K.
2014-04-01
The present day bio-technical field concentrates on developing various types of innovative ambulatory and wearable devices to monitor several bio-physical, physio-pathological, bio-electrical and bio-potential factors to assess a human body's health condition without intruding quotidian activities. One of the most important aspects of this evolving technology is monitoring heart beat rate and electrocardiogram (ECG) from which many other subsidiary results can be derived. Conventionally, the devices and systems consumes a lot of power since the acquired signals are always processed on the receiver end. Because of this back end processing, the unprocessed raw data is transmitted resulting in usage of more power, memory and processing time. This paper proposes an innovative technique where the acquired signals are processed by a microcontroller in the front end of the module and just the processed signal is then transmitted wirelessly to the display unit. Therefore, power consumption is considerably reduced and clearer data analysis is performed within the module. This also avoids the need for the user to be educated about usage of the device and signal/system analysis, since only the number of heart beats will displayed at the user end. Additionally, the proposed concept also eradicates the other disadvantages like obtrusiveness, high power consumption and size. To demonstrate the above said factors, a commercial controller board was used to extend the monitoring method by using the saved ECG data from a computer.
Recent developments in CO2 lasers
NASA Astrophysics Data System (ADS)
Du, Keming
1993-05-01
CO2 lasers have been used in industry mainly for such things as cutting, welding, and surface processing. To conduct a broad spectrum of high-speed and high-quality applications, most of the developments in industrial CO2 lasers at the ILT are aimed at increasing the output power, optimizing the beam quality, and reducing the production costs. Most of the commercial CO2 lasers above 5 kW are transverse-flow systems using dc excitation. The applications of these lasers are limited due to the lower beam quality, the poor point stability, and the lower modulation frequency. To overcome the problems we developed a fast axial- flow CO2 laser using rf excitation with an output of 13 kW. In section 2 some of the results are discussed concerning the gas flow, the discharge, the resonator design, optical effects of active medium, the aerodynamic window, and the modulation of the output power. The first CO2 lasers ever built are diffusion-cooled systems with conventional dc excited cylindrical discharge tubes surrounded by cooling jackets. The output power per unit length is limited to 50 W/m by those lasers with cylindrical tubes. In the past few years considerable increases in the output power were achieved, using new mechanical geometries, excitation- techniques, and resonator designs. This progress in diffusion-cooled CO2 lasers is presented in section 3.
Evolution of the radial electric field in high-Te ECH heated plasmas on LHD
NASA Astrophysics Data System (ADS)
Pablant, Novimir; Bitter, Manfred; Delgado Aparicio, Luis F.; Dinklage, Andreas; Gates, David; Goto, Motoshi; Ido, Takeshi; Hill, Kenneth H.; Kubo, Shin; Morita, Shigeru; Nagaoka, Kenichi; Oishi, Tetsutarou; Satake, Shinsuke; Takahashi, Hiromi; Yokoyama, Masayuki; LHD Experiment Group Team
2014-10-01
A detailed study is presented on the evolution of the radial electric field (Er) under a range of densities and injected ECH powers on the Large Helical Device (LHD). These plasmas focused on high-electron temperature ECH heated plasmas which exhibit a transition of Er from the ion-root to the electron-root when either the density is reduced or the ECH power is increased. Measurements of poloidal rotation were achieved using the X-Ray Imaging Crystal Spectrometer (XICS) and are compared with neo-classical predictions of the radial electric field using the GSRAKE and FORTEC-3D codes. This study is based on a series of experiments on LHD which used fast modulation of the gyrotrons on LHD to produce a detailed power scan with a constant power deposition profile. This is a novel application of this technique to LHD, and has provided the most detailed study to date on dependence of the radial electric field on the injected power. Detailed scans of the density at constant injected power were also made, allowing a separation of the power and density dependence.
Advanced Grid Simulator for Multi-Megawatt Power Converter Testing and Certification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koralewicz, Przemyslaw; Gevorgian, Vahan; Wallen, Robb
2017-02-16
Grid integration testing of inverter-coupled renewable energy technologies is an essential step in the qualification of renewable energy and energy storage systems to ensure the stability of the power system. New types of devices must be thoroughly tested and validated for compliance with relevant grid codes and interconnection requirements. For this purpose, highly specialized custom-made testing equipment is needed to emulate various types of realistic grid conditions that are required by certification bodies or for research purposes. For testing multi-megawatt converters, a high power grid simulator capable of creating controlled grid conditions and meeting both power quality and dynamic characteristicsmore » is needed. This paper describes the new grid simulator concept based on ABB's medium voltage ACS6000 drive technology that utilizes advanced modulation and control techniques to create an unique testing platform for various multi-megawatt power converter systems. Its performance is demonstrated utilizing the test results obtained during commissioning activities at the National Renewable Energy Laboratory in Colorado, USA.« less
2009-06-23
Environmental Portrait, Electrical Power Systems Employee, hardware for the High Power 300-Volt Power Processing Unit (PPU). The Printed Circuit Boards (PCBs) are the Discharge Module Inverter and the Pulse Width Modulation (PWM) Controller
ePave: A Self-Powered Wireless Sensor for Smart and Autonomous Pavement.
Xiao, Jian; Zou, Xiang; Xu, Wenyao
2017-09-26
"Smart Pavement" is an emerging infrastructure for various on-road applications in transportation and road engineering. However, existing road monitoring solutions demand a certain periodic maintenance effort due to battery life limits in the sensor systems. To this end, we present an end-to-end self-powered wireless sensor-ePave-to facilitate smart and autonomous pavements. The ePave system includes a self-power module, an ultra-low-power sensor system, a wireless transmission module and a built-in power management module. First, we performed an empirical study to characterize the piezoelectric module in order to optimize energy-harvesting efficiency. Second, we developed an integrated sensor system with the optimized energy harvester. An adaptive power knob is designated to adjust the power consumption according to energy budgeting. Finally, we intensively evaluated the ePave system in real-world applications to examine the system's performance and explore the trade-off.
ePave: A Self-Powered Wireless Sensor for Smart and Autonomous Pavement
Xiao, Jian; Zou, Xiang
2017-01-01
“Smart Pavement” is an emerging infrastructure for various on-road applications in transportation and road engineering. However, existing road monitoring solutions demand a certain periodic maintenance effort due to battery life limits in the sensor systems. To this end, we present an end-to-end self-powered wireless sensor—ePave—to facilitate smart and autonomous pavements. The ePave system includes a self-power module, an ultra-low-power sensor system, a wireless transmission module and a built-in power management module. First, we performed an empirical study to characterize the piezoelectric module in order to optimize energy-harvesting efficiency. Second, we developed an integrated sensor system with the optimized energy harvester. An adaptive power knob is designated to adjust the power consumption according to energy budgeting. Finally, we intensively evaluated the ePave system in real-world applications to examine the system’s performance and explore the trade-off. PMID:28954430
Effect of different methods of pulse width modulation on power losses in an induction motor
NASA Astrophysics Data System (ADS)
Gulyaev, Alexander; Fokin, Dmitrii; Shuharev, Sergey; Ten, Evgenii
2017-10-01
We consider the calculation of modulation power losses in a system “induction motor-inverter” for various pulse width modulation (PWM) methods of the supply voltage. Presented values of modulation power losses are the result of modeling a system “DC link - two-level three-phase voltage inverter - induction motor - load”. In this study the power losses in a system “induction motor - inverter” are computed, as well as losses caused by higher harmonics of PWM supply voltage, followed by definition of active power consumed by the DC link for a specified value mechanical power on the induction motor shaft. Mechanical power was determined by the rotation speed and the torque on the motor shaft in various quasi-sinusoidal supply voltage PWM modes. These calculations reveal the best coefficient of performance (COP) in a system of a variable frequency drive (VFD) with independent voltage inverter controlled by induction motor PWM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Module-level power electronics, such as DC power optimizers, microinverters, and those found in AC modules, are increasing in popularity in smaller-scale photovoltaic (PV) systems as their prices continue to decline. Therefore, it is important to provide PV modelers with guidelines about how to model these distributed power electronics appropriately in PV modeling software. This paper extends the work completed at NREL that provided recommendations to model the performance of distributed power electronics in NREL’s popular PVWatts calculator [1], to provide similar guidelines for modeling these technologies in NREL's more complex System Advisor Model (SAM). Module-level power electronics - such asmore » DC power optimizers, microinverters, and those found in AC modules-- are increasing in popularity in smaller-scale photovoltaic (PV) systems as their prices continue to decline. Therefore, it is important to provide PV modelers with guidelines about how to model these distributed power electronics appropriately in PV modeling software.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pursley, Jennifer, E-mail: jpursley@mgh.harvard.edu; Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA; Damato, Antonio L.
The purpose of this study was to investigate class solutions using RapidArc volumetric-modulated arc therapy (VMAT) planning for ipsilateral and bilateral head and neck (H&N) irradiation, and to compare dosimetric results with intensity-modulated radiotherapy (IMRT) plans. A total of 14 patients who received ipsilateral and 10 patients who received bilateral head and neck irradiation were retrospectively replanned with several volumetric-modulated arc therapy techniques. For ipsilateral neck irradiation, the volumetric-modulated arc therapy techniques included two 360° arcs, two 360° arcs with avoidance sectors around the contralateral parotid, two 260° or 270° arcs, and two 210° arcs. For bilateral neck irradiation, themore » volumetric-modulated arc therapy techniques included two 360° arcs, two 360° arcs with avoidance sectors around the shoulders, and 3 arcs. All patients had a sliding-window-delivery intensity-modulated radiotherapy plan that was used as the benchmark for dosimetric comparison. For ipsilateral neck irradiation, a volumetric-modulated arc therapy technique using two 360° arcs with avoidance sectors around the contralateral parotid was dosimetrically comparable to intensity-modulated radiotherapy, with improved conformity (conformity index = 1.22 vs 1.36, p < 0.04) and lower contralateral parotid mean dose (5.6 vs 6.8 Gy, p < 0.03). For bilateral neck irradiation, 3-arc volumetric-modulated arc therapy techniques were dosimetrically comparable to intensity-modulated radiotherapy while also avoiding irradiation through the shoulders. All volumetric-modulated arc therapy techniques required fewer monitor units than sliding-window intensity-modulated radiotherapy to deliver treatment, with an average reduction of 35% for ipsilateral plans and 67% for bilateral plans. Thus, for ipsilateral head and neck irradiation a volumetric-modulated arc therapy technique using two 360° arcs with avoidance sectors around the contralateral parotid is recommended. For bilateral neck irradiation, 2- or 3-arc techniques are dosimetrically comparable to intensity-modulated radiotherapy, but more work is needed to determine the optimal approaches by disease site.« less
Pursley, Jennifer; Damato, Antonio L; Czerminska, Maria A; Margalit, Danielle N; Sher, David J; Tishler, Roy B
2017-01-01
The purpose of this study was to investigate class solutions using RapidArc volumetric-modulated arc therapy (VMAT) planning for ipsilateral and bilateral head and neck (H&N) irradiation, and to compare dosimetric results with intensity-modulated radiotherapy (IMRT) plans. A total of 14 patients who received ipsilateral and 10 patients who received bilateral head and neck irradiation were retrospectively replanned with several volumetric-modulated arc therapy techniques. For ipsilateral neck irradiation, the volumetric-modulated arc therapy techniques included two 360° arcs, two 360° arcs with avoidance sectors around the contralateral parotid, two 260° or 270° arcs, and two 210° arcs. For bilateral neck irradiation, the volumetric-modulated arc therapy techniques included two 360° arcs, two 360° arcs with avoidance sectors around the shoulders, and 3 arcs. All patients had a sliding-window-delivery intensity-modulated radiotherapy plan that was used as the benchmark for dosimetric comparison. For ipsilateral neck irradiation, a volumetric-modulated arc therapy technique using two 360° arcs with avoidance sectors around the contralateral parotid was dosimetrically comparable to intensity-modulated radiotherapy, with improved conformity (conformity index = 1.22 vs 1.36, p < 0.04) and lower contralateral parotid mean dose (5.6 vs 6.8Gy, p < 0.03). For bilateral neck irradiation, 3-arc volumetric-modulated arc therapy techniques were dosimetrically comparable to intensity-modulated radiotherapy while also avoiding irradiation through the shoulders. All volumetric-modulated arc therapy techniques required fewer monitor units than sliding-window intensity-modulated radiotherapy to deliver treatment, with an average reduction of 35% for ipsilateral plans and 67% for bilateral plans. Thus, for ipsilateral head and neck irradiation a volumetric-modulated arc therapy technique using two 360° arcs with avoidance sectors around the contralateral parotid is recommended. For bilateral neck irradiation, 2- or 3-arc techniques are dosimetrically comparable to intensity-modulated radiotherapy, but more work is needed to determine the optimal approaches by disease site. Copyright © 2017 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
1988-08-10
addrsesed to it, the wall-receptacle module energizes a relay. Modules can be built to use a triac instead and have the capacity to increase or decrease... modulated by other constraints for a safe, functional ana effective power distribution system. 2.2.3 BackuR Equipment Alternate power sources are...environments have limited sensor capability and no remote control capability. However, future enhancements to current equipment, such as frequency- modulated
Demonstration of low power penalty of silicon Mach-Zehnder modulator in long-haul transmission.
Yi, Huaxiang; Long, Qifeng; Tan, Wei; Li, Li; Wang, Xingjun; Zhou, Zhiping
2012-12-03
We demonstrate error-free 80km transmission by a silicon carrier-depletion Mach-Zehnder modulator at 10Gbps and the power penalty is as low as 1.15dB. The devices were evaluated through the bit-error-rate characterizations under the system-level analysis. The silicon Mach-Zehnder modulator was also analyzed comparatively with a lithium niobate Mach-Zehnder modulator in back-to-back transmission and long-haul transmission, respectively, and verified the negative chirp parameter of the silicon modulator through the experiment. The result of low power penalty indicates a practical application for the silicon modulator in the middle- or long-distance transmission systems.
Application of the thermoelectric MEMS microwave power sensor in a power radiation monitoring system
NASA Astrophysics Data System (ADS)
Bo, Gao; Jing, Yang; Si, Jiang; Debo, Wang
2016-08-01
A power radiation monitoring system based on thermoelectric MEMS microwave power sensors is studied. This monitoring system consists of three modules: a data acquisition module, a data processing and display module, and a data sharing module. It can detect the power radiation in the environment and the date information can be processed and shared. The measured results show that the thermoelectric MEMS microwave power sensor and the power radiation monitoring system both have a relatively good linearity. The sensitivity of the thermoelectric MEMS microwave power sensor is about 0.101 mV/mW, and the sensitivity of the monitoring system is about 0.038 V/mW. The voltage gain of the monitoring system is about 380 times, which is relatively consistent with the theoretical value. In addition, the low-frequency and low-power module in the monitoring system is adopted in order to reduce the electromagnetic pollution and the power consumption, and this work will extend the application of the thermoelectric MEMS microwave power sensor in more areas. Project supported by the National Natural Science Foundation of China (No. 11304158), the Province Natural Science Foundation of Jiangsu (No. BK20140890), the Open Research Fund of the Key Laboratory of MEMS of Ministry of Education, Southeast University (No. 3206005302), and the Scientific Research Foundation of Nanjing University of Posts and Telecommunications (Nos. NY213024, NY215139).
Application of Distributed DC/DC Electronics in Photovoltaic Systems
NASA Astrophysics Data System (ADS)
Kabala, Michael
In a typical residential, commercial or utility grade photovoltaic (PV) system, PV modules are connected in series and in parallel to form an array that is connected to a standard DC/AC inverter, which is then connected directly to the grid. This type of standard installation; however, does very little to maximize the energy output of the solar array if certain conditions exist. These conditions could include age, temperature, irradiance and other factors that can cause mismatch between PV modules in an array that severely cripple the output power of the system. Since PV modules are typically connected in series to form a string, the output of the entire string is limited by the efficiency of the weakest module. With PV module efficiencies already relatively low, it is critical to extract the maximum power out of each module in order to make solar energy an economically viable competitor to oil and gas. Module level DC/DC electronics with maximum power point (MPP) tracking solves this issue by decoupling each module from the string in order for the module to operate independently of the geometry and complexity of the surrounding system. This allows each PV module to work at its maximum power point by transferring the maximum power the module is able to deliver directly to the load by either boosting (stepping up) the voltage or bucking (stepping down) the voltage. The goal of this thesis is to discuss the development of a per-module DC/DC converter in order to maximize the energy output of a PV module and reduce the overall cost of the system by increasing the energy harvest.
Modelling the EDLC-based Power Supply Module for a Maneuvering System of a Nanosatellite
NASA Astrophysics Data System (ADS)
Kumarin, A. A.; Kudryavtsev, I. A.
2018-01-01
The development of the model of the power supply module of a maneuvering system of a nanosatellite is described. The module is based on an EDLC battery as an energy buffer. The EDLC choice is described. Experiments are conducted to provide data for model. Simulation of the power supply module is made for charging and discharging of the battery processes. The difference between simulation and experiment does not exceed 0.5% for charging and 10% for discharging. The developed model can be used in early design and to adjust charger and load parameters. The model can be expanded to represent the entire power system.
Unified Technical Concepts. Module 6: Power.
ERIC Educational Resources Information Center
Technical Education Research Center, Waco, TX.
This concept module on power is one of thirteen modules that provide a flexible, laboratory-based physics instructional package designed to meet the specialized needs of students in two-year, postsecondary technical schools. Each of the thirteen concept modules discusses a single physics concept and how it is applied to each energy system. In this…
Chang, Ho; Yu, Zhi-Rong
2012-08-01
This study self-develops a novel type of photothermoelectric power generation modules. Dye-sensitized solar cells (DSSCs) serve as the photoelectric conversion system and a copper (Cu) heat-transfer nanofilm coating on both sides of the thermoelectric generator (TEG) acts as a thermoelectric conversion system. Thus module assembly absorbs light and generates electricity by DSSCs, and also recycles waste heat and generates power by the TEG. In addition, a set of pulsating heat pipes (PHP) filled with Cu nanofluid is placed on the cooling side to increase cooling effects and enhance the power generation efficiency. Results show that when the heat source of thermoelectric modules reaches 90 degrees C, TEG power output is increased by 85.7%. Besides, after thermoelectric modules are heated by additional heat source at 80 degrees C, the electrical energy generated by them can let a NiMH cell (1.25 V) be sufficiently charged in about 30 minutes. When photothermoelectric modules is illumined by simulated light, the temperature difference of two sides of TEG can reach 7 degrees C and the thermoelectric conversion efficiency is 2.17%. Furthermore, the power output of the thermoelectric modules is 11.48 mW/cm2, enhancing 1.4 % compared to merely using DSSCs module.
Polyimide based amorphous silicon solar modules
NASA Technical Reports Server (NTRS)
Jeffrey, Frank R.; Grimmer, Derrick P.; Martens, Steven A.; Abudagga, Khaled; Thomas, Michael L.; Noak, Max
1993-01-01
Requirements for space power are increasingly emphasizing lower costs and higher specific powers. This results from new fiscal constraints, higher power requirements for larger applications, and the evolution toward longer distance missions such as a Lunar or Mars base. The polyimide based a-Si modules described are being developed to meet these needs. The modules consist of tandem a-Si solar cell material deposited directly on a roll of polyimide. A laser scribing/printing process subdivides the deposition into discrete cell strips which are series connected to produce the required voltage without cutting the polymer backing. The result is a large, monolithic, blanket type module approximately 30 cm wide and variable in length depending on demand. Current production modules have a specific power slightly over 500 W/Kg with room for significant improvement. Costs for the full blanket modules range from $30/Watt to $150/Watt depending on quantity and engineering requirements. Work to date focused on the modules themselves and adjusting them for the AMO spectrum. Work is needed yet to insure that the modules are suitable for the space environment.
NASA Astrophysics Data System (ADS)
Peng, Kaung-Jay; Wu, Chun-Lung; Lin, Yung-Hsiang; Wang, Hwai-Yung; Cheng, Chih-Hsien; Chi, Yu-Chieh; Lin, Gong-Ru
2018-01-01
Using the evanescent-wave saturation effect of hydrogen-free low-temperature synthesized few-layer graphene covered on the cladding region of a side-polished single-mode fiber, a blue pump/infrared probe-based all-optical switch is demonstrated with specific wavelength-dependent probe modulation efficiency. Under the illumination of a blue laser diode at 405 nm, the few-layer graphene exhibits cross-gain modulation at different wavelengths covering the C- and L-bands. At a probe power of 0.5 mW, the L-band switching throughput power variant of 16 μW results in a probe modulation depth of 3.2%. Blue shifting the probe wavelength from 1580 to 1520 nm further enlarges the switching throughput power variant to 24 mW and enhances the probe modulation depth to 5%. Enlarging the probe power from 0.5 to 1 mW further enlarges the switching throughput power variant from 25 to 58 μW to promote its probe modulation depth of up to 5.8% at 1520 nm. In contrast, the probe modulation depth degrades from 5.1% to 1.2% as the pumping power reduces from 85 to 24 mW, which is attributed to the saturable absorption of the few-layer graphene-based evanescent-wave absorber. The modulation depth at wavelength of 1550 nm under a probe power of 1 mW increases from 1.2% to 5.1%, as more carriers can be excited when increasing the blue laser power from 24 to 85 mW, whereas it decreases from 5.1% to 3.3% by increasing the input probe power from 1 to 2 mW to show an easier saturated condition at longer wavelength.
Systems analysis of a low-acceleration research facility
NASA Technical Reports Server (NTRS)
Martin, Gary L.; Ferebee, Melvin J., Jr.; Wright, Robert L.
1988-01-01
The Low-Acceleration Research Facility (LARF), an unmanned free-flier that is boosted from low-earth orbit to a desired altitude using an orbital transfer vehicle is discussed. Design techniques used to minimize acceleration-causing disturbances and to create an ultra-quiet workshop are discussed, focusing on residual acceleration induced by the environment, the spacecraft and experiments. The selection and integration of critical subsystems, such as electrical power and thermal control, that enable the LARf to accomodate sub-microgravity levels for extended periods of time are presented, including a discussion of the Low-Acceleration Module, which will supply the payload with 25.0 kW of power, and up to 11.8 kW in the low-power mode. Also, the data management, communications, guidance, navigation and control, and structural features of supporting subsystems are examined.
Robust free-space optical communication for indoor information environment
NASA Astrophysics Data System (ADS)
Nakada, Toyohisa; Itoh, Hideo; Kunifuji, Susumu; Nakashima, Hideyuki
2003-10-01
The purpose of our study is to establish a robust communication, while keeping security and privacy, between a handheld communicator and the surrounding information environment. From the viewpoint of low power consumption, we have been developing a reflectivity modulating communication module composed of a liquid crystal light modulator and a corner-reflecting mirror sheet. We installed a corner-reflecting sheet instead of light scattering sheet in a handheld videogame machine with a display screen with a reflection-type liquid crystal. Infrared (IR) LED illuminator attached next to the IR camera of a base station illuminates all the room, and the terminal send their data to the base station by switching ON and OFF of the reflected IR beam. Intensity of reflected light differs with the position and the direction of the terminal, and sometimes the intensity of OFF signal at a certain condition is brighter than that of ON signal at another condition. To improve the communication quality, use of machine learning technique is a possibility of the solution. In this paper, we compare various machine learning techniques for the purpose of free space optical communication, and propose a new algorithm that improves the robustness of the data link. Evaluation using an actual free-space communication system is also described.
A 2.4-GHz Energy-Efficient Transmitter for Wireless Medical Applications.
Qi Zhang; Peng Feng; Zhiqing Geng; Xiaozhou Yan; Nanjian Wu
2011-02-01
A 2.4-GHz energy-efficient transmitter (TX) for wireless medical applications is presented in this paper. It consists of four blocks: a phase-locked loop (PLL) synthesizer with a direct frequency presetting technique, a class-B power amplifier, a digital processor, and nonvolatile memory (NVM). The frequency presetting technique can accurately preset the carrier frequency of the voltage-controlled oscillator and reduce the lock-in time of the PLL synthesizer, further increasing the data rate of communication with low power consumption. The digital processor automatically compensates preset frequency variation with process, voltage, and temperature. The NVM stores the presetting signals and calibration data so that the TX can avoid the repetitive calibration process and save the energy in practical applications. The design is implemented in 0.18- μm radio-frequency complementary metal-oxide semiconductor process and the active area is 1.3 mm (2). The TX achieves 0-dBm output power with a maximum data rate of 4 Mb/s/2 Mb/s and dissipates 2.7-mA/5.4-mA current from a 1.8-V power supply for on-off keying/frequency-shift keying modulation, respectively. The corresponding energy efficiency is 1.2 nJ/b·mW and 4.8 nJ/b· mW when normalized to the transmitting power.
Identification and Analysis of Partial Shading Breakdown Sites in CuIn xGa (1-x)Se 2 Modules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmiotti, Elizabeth; Johnston, Steven; Gerber, Andreas
In this paper, CuIn xGa (1-x) (CIGS) mini-modules are stressed under reverse bias, resembling partial shading conditions, to predict and characterize where failures occur. Partial shading can cause permanent damage in the form of 'wormlike' defects on thin-film modules due to thermal runaway. This results in module-scale power losses. We have used dark lock-in thermography (DLIT) to spatially observe localized heating when reverse-bias breakdown occurs on various CIGS mini-modules. For better understanding of how and where these defects originated and propagated, we have developed techniques where the current is limited during reverse-bias stressing. This allows for DLIT-based detection and detailedmore » studying of the region where breakdown is initiated before thermal runaway leads to permanent damage. Statistics of breakdown sites using current-limited conditions has allowed for reasonable identification of the as-grown defects where permanent breakdown will likely originate. Scanning electron microscope results and wormlike defect analysis show that breakdown originates in defects such as small pits, craters, or cracks in the CIGS layer, and the wormlike defects propagate near the top CIGS interface.« less
The 30-GHz monolithic receive module
NASA Technical Reports Server (NTRS)
Sokolov, V.; Geddes, J.; Bauhahn, P.
1983-01-01
Key requirements for a 30 GHz GaAs monolithic receive module for spaceborne communication antenna feed array applications include an overall receive module noise figure of 5 dB, a 30 dB RF to IF gain with six levels of intermediate gain control, a five-bit phase shifter, and a maximum power consumption of 250 mW. The RF designs for each of the four submodules (low noise amplifier, some gain control, phase shifter, and RF to IF sub-module) are presented. Except for the phase shifter, high frequency, low noise FETs with sub-half micron gate lengths are employed in the submodules. For the gain control, a two stage dual gate FET amplifier is used. The phase shifter is of the passive switched line type and consists of 5-bits. It uses relatively large gate width FETs (with zero drain to source bias) as the switching elements. A 20 GHz local oscillator buffer amplifier, a FET compatible balanced mixer, and a 5-8 GHz IF amplifier constitute the RF/IF sub-module. Phase shifter fabrication using ion implantation and a self-aligned gate technique is described. Preliminary RF results obtained on such phase shifters are included.
Kindness, S J; Jessop, D S; Wei, B; Wallis, R; Kamboj, V S; Xiao, L; Ren, Y; Braeuninger-Weimer, P; Aria, A I; Hofmann, S; Beere, H E; Ritchie, D A; Degl'Innocenti, R
2017-08-09
Active control of the amplitude and frequency of terahertz sources is an essential prerequisite for exploiting a myriad of terahertz applications in imaging, spectroscopy, and communications. Here we present a optoelectronic, external modulation technique applied to a terahertz quantum cascade laser which holds the promise of addressing a number of important challenges in this research area. A hybrid metamaterial/graphene device is implemented into an external cavity set-up allowing for optoelectronic tuning of feedback into a quantum cascade laser. We demonstrate powerful, all-electronic, control over the amplitude and frequency of the laser output. Full laser switching is performed by electrostatic gating of the metamaterial/graphene device, demonstrating a modulation depth of 100%. External control of the emission spectrum is also achieved, highlighting the flexibility of this feedback method. By taking advantage of the frequency dispersive reflectivity of the metamaterial array, different modes of the QCL output are selectively suppressed using lithographic tuning and single mode operation of the multi-mode laser is enforced. Side mode suppression is electrically modulated from ~6 dB to ~21 dB, demonstrating active, optoelectronic modulation of the laser frequency content between multi-mode and single mode operation.
Identification and Analysis of Partial Shading Breakdown Sites in CuIn xGa (1-x)Se 2 Modules
Palmiotti, Elizabeth; Johnston, Steven; Gerber, Andreas; ...
2017-12-20
In this paper, CuIn xGa (1-x) (CIGS) mini-modules are stressed under reverse bias, resembling partial shading conditions, to predict and characterize where failures occur. Partial shading can cause permanent damage in the form of 'wormlike' defects on thin-film modules due to thermal runaway. This results in module-scale power losses. We have used dark lock-in thermography (DLIT) to spatially observe localized heating when reverse-bias breakdown occurs on various CIGS mini-modules. For better understanding of how and where these defects originated and propagated, we have developed techniques where the current is limited during reverse-bias stressing. This allows for DLIT-based detection and detailedmore » studying of the region where breakdown is initiated before thermal runaway leads to permanent damage. Statistics of breakdown sites using current-limited conditions has allowed for reasonable identification of the as-grown defects where permanent breakdown will likely originate. Scanning electron microscope results and wormlike defect analysis show that breakdown originates in defects such as small pits, craters, or cracks in the CIGS layer, and the wormlike defects propagate near the top CIGS interface.« less
Fiber optic and laser sensors IV; Proceedings of the Meeting, Cambridge, MA, Sept. 22-24, 1986
NASA Technical Reports Server (NTRS)
De Paula, Ramon P. (Editor); Udd, Eric (Editor)
1987-01-01
The conference presents papers on industrial uses of fiber optic sensors, point and distributed polarimetric optical fiber sensors, fiber optic electric field sensor technology, micromachined resonant structures, single-mode fibers for sensing applications, and measurement techniques for magnetic field gradient detection. Consideration is also given to electric field meter and temperature measurement techniques for the power industry, the calibration of high-temperature fiber-optic microbend pressure transducers, and interferometric sensors for dc measurands. Other topics include the recognition of colors and collision avoidance in robotics using optical fiber sensors, the loss compensation of intensity-modulating fiber-optic sensors, and an embedded optical fiber strain tensor for composite structure applications.
system aspects of optical LEO-to-ground links
NASA Astrophysics Data System (ADS)
Giggenbach, D.; Shrestha, A.; Fuchs, C.; Schmidt, C.; Moll, F.
2017-09-01
Optical Direct-to-Ground data links for earth-observation satellites will offer channel rates of several Gbps, together with low transmit powers and small terminal mass and also rather small ground receiver antennas. The avoidance of any signal spectrum limitation issues might be the most important advantage versus classical RF-technology. The effects of optical atmospheric signal attenuation, and the fast signal fluctuations induced by atmospheric index-of-refraction turbulence and sporadic miss-pointing-fading, require the use of adaptive signal formats together with fading mitigation techniques. We describe the typical downlink scenario, introduce the four different modes of data rate variation, and evaluate different methods of rate-adaptive modulation formats and repetition coding techniques.
Kittell, Aaron W.; Hyde, James S.
2015-01-01
Non-adiabatic rapid passage (NARS) electron paramagnetic resonance (EPR) spectroscopy was introduced by Kittell, A.W., Camenisch, T.G., Ratke, J.J. Sidabras, J.W., Hyde, J.S., 2011 as a general purpose technique to collect the pure absorption response. The technique has been used to improve sensitivity relative to sinusoidal magnetic field modulation, increase the range of inter-spin distances that can be measured under near physiological conditions, and enhance spectral resolution in copper (II) spectra. In the present work, the method is extended to CW microwave power saturation of spin-labeled T4 Lysozyme (T4L). As in the cited papers, rapid triangular sweep of the polarizing magnetic field was superimposed on slow sweep across the spectrum. Adiabatic rapid passage (ARP) effects were encountered in samples undergoing very slow rotational diffusion as the triangular magnetic field sweep rate was increased. The paper reports results of variation of experimental parameters at the interface of adiabatic and non-adiabatic rapid sweep conditions. Comparison of the forward (up) and reverse (down) triangular sweeps is shown to be a good indicator of the presence of rapid passage effects. Spectral turning points can be distinguished from spectral regions between turning points in two ways: differential microwave power saturation and differential passage effects. Oxygen accessibility data are shown under NARS conditions that appear similar to conventional field modulation data. However, the sensitivity is much higher, permitting, in principle, experiments at substantially lower protein concentrations. Spectral displays were obtained that appear sensitive to rotational diffusion in the range of rotational correlation times of 10−3 to 10−7 s in a manner that is analogous to saturation transfer spectroscopy. PMID:25917132
A compact frequency stabilized telecom laser diode for space applications
NASA Astrophysics Data System (ADS)
Philippe, C.; Holleville, D.; Le Targat, R.; Wolf, P.; Leveque, T.; Le Goff, R.; Martaud, E.; Acef, O.
2017-09-01
We report on a Telecom laser diode (LD) frequency stabilization to a narrow iodine hyperfine line in the green range, after frequency tripling process using fibered nonlinear waveguide PPLN crystals. We have generated up to 300 mW optical power in the green range ( 514 nm) from 800 mW of infrared power ( 1542 nm), corresponding to a nonlinear conversion efficiency h = P3?/P? 36%. Less than 10 mW of the generated green power are used for Doppler-free spectroscopy of 127I2 molecular iodine, and -therefore- for the frequency stabilization purpose. The frequency tripling optical setup is very compact (< 5 l), fully fibered, and could operate over the full C-band of the Telecom range (1530 nm - 1565 nm). Several thousands of hyperfine iodine lines may thus be interrogated in the 510 nm - 521 nm range. We build up an optical bench used at first in free space configuration, using the well-known modulation transfer spectroscopy technique (MTS), in order to test the potential of this new frequency standard based on the couple "1.5 ?m laser / iodine molecule". We have already demonstrated a preliminary frequency stability of 4.8 x 10-14 ? -1/2 with a minimum value of 6 x 10-15 reached after 50 s of integration time, conferred to a laser diode operating at 1542.1 nm. We focus now our efforts to expand the frequency stability to a longer integration time in order to meet requirements of many space experiments, such earth gravity missions, inters satellites links or space to ground communications. Furthermore, we investigate the potential of a new approach based on frequency modulation technique (FM), associated to a 3rd harmonic detection of iodine lines to increase the compactness of the optical setup.
NASA Astrophysics Data System (ADS)
Ashenafi, Emeshaw
Integrated circuits (ICs) are moving towards system-on-a-chip (SOC) designs. SOC allows various small and large electronic systems to be implemented in a single chip. This approach enables the miniaturization of design blocks that leads to high density transistor integration, faster response time, and lower fabrication costs. To reap the benefits of SOC and uphold the miniaturization of transistors, innovative power delivery and power dissipation management schemes are paramount. This dissertation focuses on on-chip integration of power delivery systems and managing power dissipation to increase the lifetime of energy storage elements. We explore this problem from two different angels: On-chip voltage regulators and power gating techniques. On-chip voltage regulators reduce parasitic effects, and allow faster and efficient power delivery for microprocessors. Power gating techniques, on the other hand, reduce the power loss incurred by circuit blocks during standby mode. Power dissipation (Ptotal = Pstatic and Pdynamic) in a complementary metal-oxide semiconductor (CMOS) circuit comes from two sources: static and dynamic. A quadratic dependency on the dynamic switching power and a more than linear dependency on static power as a form of gate leakage (subthreshold current) exist. To reduce dynamic power loss, the supply power should be reduced. A significant reduction in power dissipation occurs when portions of a microprocessor operate at a lower voltage level. This reduction in supply voltage is achieved via voltage regulators or converters. Voltage regulators are used to provide a stable power supply to the microprocessor. The conventional off-chip switching voltage regulator contains a passive floating inductor, which is difficult to be implemented inside the chip due to excessive power dissipation and parasitic effects. Additionally, the inductor takes a very large chip area while hampering the scaling process. These limitations make passive inductor based on-chip regulator design very unattractive for SOC integration and multi-/many-core environments. To circumvent the challenges, three alternative techniques based on active circuit elements to replace the passive LC filter of the buck convertor are developed. The first inductorless on-chip switching voltage regulator architecture is based on a cascaded 2nd order multiple feedback (MFB) low-pass filter (LPF). This design has the ability to modulate to multiple voltage settings via pulse-with modulation (PWM). The second approach is a supplementary design utilizing a hybrid low drop-out scheme to lower the output ripple of the switching regulator over a wider frequency range. The third design approach allows the integration of an entire power management system within a single chipset by combining a highly efficient switching regulator with an intermittently efficient linear regulator (area efficient), for robust and highly efficient on-chip regulation. The static power (Pstatic) or subthreshold leakage power (Pleak) increases with technology scaling. To mitigate static power dissipation, power gating techniques are implemented. Power gating is one of the popular methods to manage leakage power during standby periods in low-power high-speed IC design. It works by using transistor based switches to shut down part of the circuit block and put them in the idle mode. The efficiency of a power gating scheme involves minimum Ioff and high Ion for the sleep transistor. A conventional sleep transistor circuit design requires an additional header, footer, or both switches to turn off the logic block. This additional transistor causes signal delay and increases the chip area. We propose two innovative designs for next generation sleep transistor designs. For an above threshold operation, we present a sleep transistor design based on fully depleted silicon-on-insulator (FDSOI) device. For a subthreshold circuit operation, we implement a sleep transistor utilizing the newly developed silicon-on-ferroelectric-insulator field effect transistor (SOFFET). In both of the designs, the ability to control the threshold voltage via bias voltage at the back gate makes both devices more flexible for sleep transistors design than a bulk MOSFET. The proposed approaches simplify the design complexity, reduce the chip area, eliminate the voltage drop by sleep transistor, and improve power dissipation. In addition, the design provides a dynamically controlled Vt for times when the circuit needs to be in a sleep or switching mode.
Jensen, Kenneth J; Zettl, Alexander K; Weldon, Jeffrey A
2014-05-06
A fully-functional radio receiver fabricated from a single nanotube is being disclosed. Simultaneously, a single nanotube can perform the functions of all major components of a radio: antenna, tunable band-pass filter, amplifier, and demodulator. A DC voltage source, as supplied by a battery, can power the radio. Using carrier waves in the commercially relevant 40-400 MHz range and both frequency and amplitude modulation techniques, successful music and voice reception has been demonstrated. Also disclosed are a radio transmitter and a mass sensor using a nanotube resonator device.
Wireless ultrasound-powered biotelemetry for implants.
Towe, Bruce C; Larson, Patrick J; Gulick, Daniel W
2009-01-01
A miniature piezoelectric receiver coupled to a diode is evaluated as a simple device for wireless transmission of bioelectric events to the body surface. The device converts the energy of a surface-applied ultrasound beam to a high frequency carrier current in solution. Bioelectrical currents near the implant modulate the carrier amplitude, and this signal is remotely detected and demodulated to recover the biopotential waveform. This technique achieves millivolt sensitivity in saline tank tests, and further attention to system design is expected to improve sensitivity.
Multi-Kilowatt Power Module for High-Power Hall Thrusters
NASA Technical Reports Server (NTRS)
Pinero, Luis R.; Bowers, Glen E.
2005-01-01
Future NASA missions will require high-performance electric propulsion systems. Hall thrusters are being developed at NASA Glenn for high-power, high-specific impulse operation. These thrusters operate at power levels up to 50 kW of power and discharge voltages in excess of 600 V. A parallel effort is being conducted to develop power electronics for these thrusters that push the technology beyond the 5kW state-of-the-art power level. A 10 kW power module was designed to produce an output of 500 V and 20 A from a nominal 100 V input. Resistive load tests revealed efficiencies in excess of 96 percent. Load current share and phase synchronization circuits were designed and tested that will allow connecting multiple modules in parallel to process higher power.
Nonlinear Optics Technology. Volume 1. Solid State Laser Technology. Phase 3
1991-01-12
84 Figure 5.6 Modulator diffraction efficiency as a function of peak power for several 86 RF frequencies Figure 5.7 Thermal effects in the modulator. a...far-field profile of a beam making a 87 double pass through the modulator operating with a peak power of 80 W and average power of 1.6 W. b) same...AU three shown incorporate phase conjugation to provide good beam quality. Figure 1.1a is a standard phase conjugated master oscillator power
Localization and cooperative communication methods for cognitive radio
NASA Astrophysics Data System (ADS)
Duval, Olivier
We study localization of nearby nodes and cooperative communication for cognitive radios. Cognitive radios sensing their environment to estimate the channel gain between nodes can cooperate and adapt their transmission power to maximize the capacity of the communication between two nodes. We study the end-to-end capacity of a cooperative relaying scheme using orthogonal frequency-division modulation (OFDM) modulation, under power constraints for both the base station and the relay station. The relay uses amplify-and-forward and decode-and-forward cooperative relaying techniques to retransmit messages on a subset of the available subcarriers. The power used in the base station and the relay station transmitters is allocated to maximize the overall system capacity. The subcarrier selection and power allocation are obtained based on convex optimization formulations and an iterative algorithm. Additionally, decode-and-forward relaying schemes are allowed to pair source and relayed subcarriers to increase further the capacity of the system. The proposed techniques outperforms non-selective relaying schemes over a range of relay power budgets. Cognitive radios can be used for opportunistic access of the radio spectrum by detecting spectrum holes left unused by licensed primary users. We introduce a spectrum holes detection approach, which combines blind modulation classification, angle of arrival estimation and number of sources detection. We perform eigenspace analysis to determine the number of sources, and estimate their angles of arrival (AOA). In addition, we classify detected sources as primary or secondary users with their distinct second-orde one-conjugate cyclostationarity features. Extensive simulations carried out indicate that the proposed system identifies and locates individual sources correctly, even at -4 dB signal-to-noise ratios (SNR). In environments with a high density of scatterers, several wireless channels experience nonline-of-sight (NLOS) condition, increasing the localization error, even when the AOA estimate is accurate. We present a real-time localization solver (RTLS) for time-of-arrival (TOA) estimates using ray-tracing methods on the map of the geometry of walls and compare its performance with classical TOA trilateration localization methods. Extensive simulations and field trials for indoor environments show that our method increases the coverage area from 1.9% of the floor to 82.3 % and the accuracy by a 10-fold factor when compared with trilateration. We implemented our ray tracing model in C++ using the CGAL computational geometry algorithm library. We illustrate the real-time property of our RTLS that performs most ray tracing tasks in a preprocessing phase with time and space complexity analyses and profiling of our software.
Venezia, Jonathan H.; Hickok, Gregory; Richards, Virginia M.
2016-01-01
Speech intelligibility depends on the integrity of spectrotemporal patterns in the signal. The current study is concerned with the speech modulation power spectrum (MPS), which is a two-dimensional representation of energy at different combinations of temporal and spectral (i.e., spectrotemporal) modulation rates. A psychophysical procedure was developed to identify the regions of the MPS that contribute to successful reception of auditory sentences. The procedure, based on the two-dimensional image classification technique known as “bubbles” (Gosselin and Schyns (2001). Vision Res. 41, 2261–2271), involves filtering (i.e., degrading) the speech signal by removing parts of the MPS at random, and relating filter patterns to observer performance (keywords identified) over a number of trials. The result is a classification image (CImg) or “perceptual map” that emphasizes regions of the MPS essential for speech intelligibility. This procedure was tested using normal-rate and 2×-time-compressed sentences. The results indicated: (a) CImgs could be reliably estimated in individual listeners in relatively few trials, (b) CImgs tracked changes in spectrotemporal modulation energy induced by time compression, though not completely, indicating that “perceptual maps” deviated from physical stimulus energy, and (c) the bubbles method captured variance in intelligibility not reflected in a common modulation-based intelligibility metric (spectrotemporal modulation index or STMI). PMID:27586738
NASA Astrophysics Data System (ADS)
Kenmochi, Naoki; Nishiura, Masaki; Yoshida, Zensho; Sugata, Tetsuya; Nakamura, Kaori; Katsura, Shotaro
2017-10-01
The Ring Trap 1 (RT-1) device creates a laboratory magnetosphere that is realized by a levitated superconducting ring magnet in vacuum. The RT-1 experiment has demonstrated the self-organization of a plasma clump with a steep density gradient; a peaked density distribution is spontaneously created through `inward diffusion'. In order to evaluate particle transport characteristics in the RT-1 magnetospheric plasmas which cause these inward diffusion, density modulation experiments were performed in the RT-1. Density modulation is a powerful method for estimating a diffusion coefficient D and a convection velocity V by puffing a periodic neutral gas. The gas puff modulation causes the change in the electron density measured by two chords of microwave interferometer (the radial positions r = 60 and 70 cm, vertical chord). In the case of 2 Hz gas puff modulation, the phase delay and the modulation-amplitude decay at the chord r = 60 cm are obtained with 15 degree and 0.8, respectively, with respect to the phase and the amplitude at r = 70 cm. The particle balance equations are solved on the assumption of profile shapes for D to evaluate D, V and particle source rate. The result suggests the inward convection in high beta magnetospheric plasmas.
NASA Technical Reports Server (NTRS)
Burris, John
2011-01-01
We report the use of a return-to- zero (RZPN) pseudo noise modulation technique for making range resolved measurements of CO2 within the planetary boundary layer (PBL) using commercial, off-the-shelf, components. Conventional, range resolved, DIAL measurements require laser pulse widths that are significantly shorter than the desired spatial resolution and necessitate using pulses whose temporal spacing is such that scattered returns from only a single pulse are observed by the receiver at any one time (for the PBL pulse separations must be greater than approximately 20 microseconds). This imposes significant operational limitations when using currently available fiber lasers because of the resulting low duty cycle (less than approximately 0.0005) and consequent low average laser output power. The RZPN modulation technique enables a fiber laser to operate at much higher duty cycles (approaching 0.04) thereby more effectively utilizing the amplifier's output. This increases the counts received by approximately two orders of magnitude. Our approach involves employing two distributed feedback lasers (DFB), each modulated by a different RPZN code, whose outputs are then amplified by a CW fiber amplifier. One laser is tuned to a CO2 absorption line; the other operates offline thereby permitting the simultaneous acquisition of both on and offline signals using independent RZPN codes. This minimizes the impact of atmospheric turbulence on the measurement. The on and offline signals are retrieved by deconvolving the return signal using the appropriate kernels.
High-Temperature High-Power Packaging Techniques for HEV Traction Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elshabini, Aicha; Barlow, Fred D.
A key issue associated with the wider adoption of hybrid-electric vehicles (HEV) and plug in hybrid-electric vehicles (PHEV) is the implementation of the power electronic systems that are required in these products. One of the primary industry goals is the reduction in the price of these vehicles relative to the cost of traditional gasoline powered vehicles. Today these systems, such as the Prius, utilize one coolant loop for the engine at approximately 100 C coolant temperatures, and a second coolant loop for the inverter at 65 C. One way in which significant cost reduction of these systems could be achievedmore » is through the use of a single coolant loop for both the power electronics as well as the internal combustion engine (ICE). This change in coolant temperature significantly increases the junction temperatures of the devices and creates a number of challenges for both device fabrication and the assembly of these devices into inverters and converters for HEV and PHEV applications. Traditional power modules and the state-of-the-art inverters in the current HEV products, are based on chip and wire assembly and direct bond copper (DBC) on ceramic substrates. While a shift to silicon carbide (SiC) devices from silicon (Si) devices would allow the higher operating temperatures required for a single coolant loop, it also creates a number of challenges for the assembly of these devices into power inverters. While this traditional packaging technology can be extended to higher temperatures, the key issues are the substrate material and conductor stability, die bonding material, wire bonds, and bond metallurgy reliability as well as encapsulation materials that are stable at high operating temperatures. The larger temperature differential during power cycling, which would be created by higher coolant temperatures, places tremendous stress on traditional aluminum wire bonds that are used to interconnect power devices. Selection of the bond metallurgy and wire bond geometry can play a key role in mitigating this stress. An alternative solution would be to eliminate the wire bonds completely through a fundamentally different method of forming a reliable top side interconnect. Similarly, the solders used in most power modules exhibit too low of a liquidus to be viable solutions for maximum junction temperatures of 200 C. Commonly used encapsulation materials, such as silicone gels, also suffer from an inability to operate at 200 C for extended periods of time. Possible solutions to these problems exist in most cases but require changes to the traditional manufacturing process used in these modules. In addition, a number of emerging technologies such as Si nitride, flip-chip assembly methods, and the elimination of base-plates would allow reliable module development for operation of HEV and PHEV inverters at elevated junction temperatures.« less
Automated Power-Distribution System
NASA Technical Reports Server (NTRS)
Thomason, Cindy; Anderson, Paul M.; Martin, James A.
1990-01-01
Automated power-distribution system monitors and controls electrical power to modules in network. Handles both 208-V, 20-kHz single-phase alternating current and 120- to 150-V direct current. Power distributed to load modules from power-distribution control units (PDCU's) via subsystem distributors. Ring busses carry power to PDCU's from power source. Needs minimal attention. Detects faults and also protects against them. Potential applications include autonomous land vehicles and automated industrial process systems.
NASA Astrophysics Data System (ADS)
Padhee, Varsha
Common Mode Voltage (CMV) in any power converter has been the major contributor to premature motor failures, bearing deterioration, shaft voltage build up and electromagnetic interference. Intelligent control methods like Space Vector Pulse Width Modulation (SVPWM) techniques provide immense potential and flexibility to reduce CMV, thereby targeting all the afore mentioned problems. Other solutions like passive filters, shielded cables and EMI filters add to the volume and cost metrics of the entire system. Smart SVPWM techniques therefore, come with a very important advantage of being an economical solution. This thesis discusses a modified space vector technique applied to an Indirect Matrix Converter (IMC) which results in the reduction of common mode voltages and other advanced features. The conventional indirect space vector pulse-width modulation (SVPWM) method of controlling matrix converters involves the usage of two adjacent active vectors and one zero vector for both rectifying and inverting stages of the converter. By suitable selection of space vectors, the rectifying stage of the matrix converter can generate different levels of virtual DC-link voltage. This capability can be exploited for operation of the converter in different ranges of modulation indices for varying machine speeds. This results in lower common mode voltage and improves the harmonic spectrum of the output voltage, without increasing the number of switching transitions as compared to conventional modulation. To summarize it can be said that the responsibility of formulating output voltages with a particular magnitude and frequency has been transferred solely to the rectifying stage of the IMC. Estimation of degree of distortion in the three phase output voltage is another facet discussed in this thesis. An understanding of the SVPWM technique and the switching sequence of the space vectors in detail gives the potential to estimate the RMS value of the switched output voltage of any converter. This conceivably aids the sizing and design of output passive filters. An analytical estimation method has been presented to achieve this purpose for am IMC. Knowledge of the fundamental component in output voltage can be utilized to calculate its Total Harmonic Distortion (THD). The effectiveness of the proposed SVPWM algorithms and the analytical estimation technique is substantiated by simulations in MATLAB / Simulink and experiments on a laboratory prototype of the IMC. Proper comparison plots have been provided to contrast the performance of the proposed methods with the conventional SVPWM method. The behavior of output voltage distortion and CMV with variation in operating parameters like modulation index and output frequency has also been analyzed.
Base drive for paralleled inverter systems
NASA Technical Reports Server (NTRS)
Nagano, S. (Inventor)
1980-01-01
In a paralleled inverter system, a positive feedback current derived from the total current from all of the modules of the inverter system is applied to the base drive of each of the power transistors of all modules, thereby to provide all modules protection against open or short circuit faults occurring in any of the modules, and force equal current sharing among the modules during turn on of the power transistors.
Solar Cell Modules with Parallel Oriented Interconnections
NASA Technical Reports Server (NTRS)
1979-01-01
Twenty-four solar modules, half of which were 48 cells in an all-series electrical configuration and half of a six parallel cells by eight series cells were provided. Upon delivery of environmentally tested modules, low power outputs were discovered. These low power modules were determined to have cracked cells which were thought to cause the low output power. The cracks tended to be linear or circular which were caused by different stressing mechanisms. These stressing mechanisms were fully explored. Efforts were undertaken to determine the causes of cell fracture. This resulted in module design and process modifications. The design and process changes were subsequently implemented in production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borgohain, Nitu, E-mail: nituborgohain.ism@gmail.com; Konar, S.
The paper presents a theoretical study of the modulation instability of a continuous or quasi-continuous optical probe in a three level quantum well system under electromagnetically induced transparency. The modulation instability is affected by the control field detuning, as well as even-order dispersion and by the strength of Kerr (third-order) and quintic (fifth-order) nonlinearities. The fourth-order dispersion reduces the bandwidth over which modulation instability occurs, whereas the quintic nonlinearity saturates the growth of the modulation instability. Detuning the control field from resonance can significantly reduce the growth of the modulation instability at both low and high power levels. At lowmore » powers, the system becomes stable against modulation instability for small detuning of the control field and at high powers modulation instability disappears for larger detuning.« less
Design of resolution/power controllable Asynchronous Sigma-Delta Modulator
NASA Astrophysics Data System (ADS)
Deshmukh, Anita Arvind; Deshmukh, Raghvendra B.
2016-12-01
This paper presents the design of a Programmable Asynchronous Modulator (PAM) with field control of resolution and power. A novel variable hysteresis Schmitt Trigger (ST) is used for external programmability. Asynchronous Sigma-Delta Modulator (ASDM) implementation with external control voltages is proposed to supervise the resolution and power. This architecture with reduced circuit complexity considerably improves the earlier realizations by eliminating multiple current sources as well switched capacitor circuits and results in power saving up to 87 %. Proposed PAM design demonstrates an improved SNDR of 115 dB, DR of 96 dB, and power consumption below 280 μW. It illustrates Effective Number of Bits (ENOB) to 18.81 and Figure of Merit (FoM) to 0.15 fJ/conversion step. Modulator is implemented in Cadence UMC Hspice 0.18 μm CMOS analog technology. Off-chip PAM control for resolution/power performance has potential applications in battery operated ultra low power applications like IoT; where ADC is one of the major power consuming components. It offers the promise for an efficient performance with power saving.
NASA Astrophysics Data System (ADS)
Jaaz, Ahed Hameed; Sopian, Kamaruzzaman; Gaaz, Tayser Sumer
2018-06-01
The importance of utilizing the solar energy as a very suitable source among multi-source approaches to replace the conventional energy is on the rise in the last four decades. The invention of the photovoltaic module (PV) could be the corner stone in this process. However, the limited amount of energy obtained from PV was and still the main challenge of full utilization of the solar energy. In this paper, the use of the compound parabolic concentrator (CPC) along with the thermal photovoltaic module (PVT) where the cooling process of the CPC is conducted using a novel technique of water jet impingement has applied experimentally and physically tested. The test includes the effect of water jet impingement on the total power, electrical efficiency, thermal efficiency, and total efficiency on CPC-PVT system. The cooling process at the maximum irradiation by water jet impingement resulted in improving the electrical efficiency by 7%, total output power by 31% and the thermal efficiency by 81%. These results outperform the recent highest results recorded by the most recent work.
Daytime adaptive optics for deep space optical communications
NASA Technical Reports Server (NTRS)
Wilson, Keith; Troy, M.; Srinivasan, M.; Platt, B.; Vilnrotter, V.; Wright, M.; Garkanian, V.; Hemmati, H.
2003-01-01
The deep space optical communications subsystem offers a higher bandwidth communications link in smaller size, lower mass, and lower power consumption subsystem than does RF. To demonstrate the benefit of this technology to deep space communications NASA plans to launch an optical telecommunications package on the 2009 Mars Telecommunications orbiter spacecraft. Current performance goals are 30-Mbps from opposition, and 1-Mbps near conjunction (-3 degrees Sun-Earth-Probe angle). Yet, near conjunction the background noise from the day sky will degrade the performance of the optical link. Spectral and spatial filtering and higher modulation formats can mitigate the effects of background sky. Narrowband spectral filters can result in loss of link margin, and higher modulation formats require higher transmitted peak powers. In contrast, spatial filtering at the receiver has the potential of being lossless while providing the required sky background rejection. Adaptive optics techniques can correct wave front aberrations caused by atmospheric turbulence and enable near-diffraction-limited performance of the receiving telescope. Such performance facilitates spatial filtering, and allows the receiver field-of-view and hence the noise from the sky background to be reduced.
NASA Astrophysics Data System (ADS)
Alvarez-Chavez, J. A.; Sanchez-Lara, R.; Martinez-Piñon, F.; Mendez-Martinez, F.; de la Cruz-May, L.; Perez-Sanchez, G. G.
2015-04-01
Dense wavelength division multiplexing (DWDM) systems are normally limited by stimulated Brillouin scattering (SBS), stimulated Raman scattering (SRS), self-phase modulation (SPM), cross-phase modulation (XPM) and four-wave mixing (FWM) besides amplified spontaneous emission (ASE) noise from erbium-doped fiber amplifiers (EDFAs). In this paper, theoretical calculation of FWM-based limits and noise from EDFAs in the 1535-1565 nm region, are reported. Results show that FWM power per channel extended from -55 to -20 dBm for dispersion values of 0.0, 0.5, 1.0 and 1.5 ps (nmṡkm)-1. In a similar manner, for negative dispersion coefficient (D) values ranging from 0.0 to -1.5 ps (nmṡkm)-1, the FWM power per channel extended from -60 to -30 dBm. As for the maximum span length, the calculations demonstrated a rigorous limitation due to noise, suggesting error compensation techniques. A full set of results for the design of multi-span links is included.
Design of a low parasitic inductance SiC power module with double-sided cooling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Fei; Liang, Zhenxian; Wang, Fei
In this paper, a low-parasitic inductance SiC power module with double-sided cooling is designed and compared with a baseline double-sided cooled module. With the unique 3D layout utilizing vertical interconnection, the power loop inductance is effectively reduced without sacrificing the thermal performance. Both simulations and experiments are carried out to validate the design. Q3D simulation results show a power loop inductance of 1.63 nH, verified by the experiment, indicating more than 60% reduction of power loop inductance compared with the baseline module. With 0Ω external gate resistance turn-off at 600V, the voltage overshoot is less than 9% of the busmore » voltage at a load of 44.6A.« less
Powers and Roots. Fundamentals of Occupational Mathematics. Module 11.
ERIC Educational Resources Information Center
Engelbrecht, Nancy; And Others
This module is the 11th in a series of 12 learning modules designed to teach occupational mathematics. Blocks of informative material and rules are followed by examples and practice problems. The solutions to the practice problems are found at the end of the module. Specific topics covered include multiplication, powers, calculator use, and roots.…
Diode amplifier of modulated optical beam power
DOE Office of Scientific and Technical Information (OSTI.GOV)
D'yachkov, N V; Bogatov, A P; Gushchik, T I
2014-11-30
Analytical relations are obtained between characteristics of modulated light at the output and input of an optical diode power amplifier operating in the highly saturated gain regime. It is shown that a diode amplifier may act as an amplitude-to-phase modulation converter with a rather large bandwidth (∼10 GHz). The low sensitivity of the output power of the amplifier to the input beam power and its high energy efficiency allow it to be used as a building block of a high-power multielement laser system with coherent summation of a large number of optical beams. (lasers)
Power module Data Management System (DMS) study
NASA Technical Reports Server (NTRS)
1978-01-01
Computer trades and analyses of selected Power Module Data Management Subsystem issues to support concurrent inhouse MSFC Power Study are provided. The charts which summarize and describe the results are presented. Software requirements and definitions are included.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agazzone, U.; Ausiello, F.P.
1981-06-23
A power-generating installation comprises a plurality of modular power plants each comprised of an internal combustion engine connected to an electric machine. The electric machine is used to start the engine and thereafter operates as a generator supplying power to an electrical network common to all the modular plants. The installation has a control and protection system comprising a plurality of control modules each associated with a respective plant, and a central unit passing control signals to the modules to control starting and stopping of the individual power plants. Upon the detection of abnormal operation or failure of its associatedmore » power plant, each control module transmits an alarm signal back to the central unit which thereupon stops, or prevents the starting, of the corresponding power plant. Parameters monitored by each control module include generated current and inter-winding leakage current of the electric machine.« less
Guntersville Workshop on Solar-Terrestrial Studies
NASA Technical Reports Server (NTRS)
1977-01-01
The separation of purely solar physics from magnetospheric physics, and the effects of solar activity on geomagnetic activity are investigations which can be accomplished using the shuttle orbiter in an extended sortie mode, or an unmanned solar terrestrial observatory powered by the power module in an extended duration mode. When the power module is used with the shuttle in a sortie support mode, both the instrument capacity and the time in orbit of the orbiter can be increased several fold. In the free-flyer mode, the power module would be capable of providing power, basic attitude control, basic thermal control and housekeeping communications for unmanned, large, independent mission payloads in low earth orbit for periods of 6 months or longer. Instrument requirements for interdisciplinary joint observational programs are discussed for studies of the magnetosphere, the atmosphere, sun-weather relationships. Description summary charts of the power module are included.
Design of a nuclear isotope heat source assembly for a spaceborne mini-Brayton power module.
NASA Technical Reports Server (NTRS)
Wein, D.; Gorland, S. H.
1973-01-01
Results of a study to develop a feasible design definition of a heat source assembly (HSA) for use in nominal 500-, 1200-, or 2000-W(e) mini-Brayton spacecraft power systems. The HSA is a modular design which is used either as a single unit to provide thermal energy to the 500-W(e) mini-Brayton power module or in parallel with one or two additional HSAs for the 1200- or 2000-W(e) power module systems. Principal components consist of a multihundred watt RTG isotope heat source, a heat source heat exchanger which transfers the thermal energy from the heat source to the mini-Brayton power conversion system, an auxiliary cooling system which provides requisite cooling during nonoperation of the power conversion module and an emergency cooling system which precludes accidental release of isotope fuel in the event of system failure.