Science.gov

Sample records for power plant standards

  1. European standards and approaches to EMC in nuclear power plants

    SciTech Connect

    Bardsley, D.J.; Dillingham, S.R.; McMinn, K.

    1995-04-01

    Electromagnetic Interference (EMI) arising from a wide range of sources can threaten nuclear power plant operation. The need for measures to mitigate its effects have long been recognised although there are difference in approaches worldwide. The US industry approaches the problem by comprehensive site surveys defining an envelope of emissions for the environmental whilst the UK nuclear industry defined many years ago generic levels which cover power station environments. Moves to standardisation within the European community have led to slight changes in UK approach, in particular how large systems can be tested. The tests undertaken on UK nuclear plant include tests for immunity to conducted as well as radiated interference. Similar tests are also performed elsewhere in Europe but are not, to the authors` knowledge, commonly undertaken in the USA. Currently work is proceeding on draft international standards under the auspices of the IEC.

  2. Regulatory Actions - Final Mercury and Air Toxics Standards (MATS) for Power Plants

    EPA Pesticide Factsheets

    The U.S. Environmental Protection Agency (EPA) has proposed Mercury and Air Toxics Standards (MATS) for power plants to limit mercury, acid gases and other toxic pollution from power plants. This page describes Federal regulatory actions.

  3. Regulatory Actions - Proposed Mercury and Air Toxics Standards (MATS) for Power Plants

    EPA Pesticide Factsheets

    The U.S. Environmental Protection Agency (EPA) has proposed Mercury and Air Toxics Standards (MATS) for power plants to limit mercury, acid gases and other toxic pollution from power plants. This page includes supporting documentation and

  4. Power Plants Likely Covered by the Mercury and Air Toxics Standards (MATS)

    EPA Pesticide Factsheets

    The U.S. Environmental Protection Agency (EPA) has proposed Mercury and Air Toxics Standards (MATS) for power plants to limit mercury, acid gases and other toxic pollution from power plants. Using Google Earth, this page locates power plants in your state.

  5. The role of US codes and standards: Designing power plants in Asia

    SciTech Connect

    Blaisdell, R.E.

    1999-11-01

    Design standards used for power plants in Asia are driven by different forces from those that drive standards in the United States. In the USA, the standards controlling design of power plants are driven by Federal laws (OSHA, EPA, etc.), State laws (ASME Boiler Code, etc.) and good engineering practice. The following forces drive power plant design standards in Asia: The laws of the nation; the lending institution`s requirements; the manufacturing sources in the nation; good engineering practice. These forces make the engineer adjust specifications for purchasing equipment and materials to obtain items that will work in a power plant built in Asia. In many cases, additional engineering hours are required to adjust the changing purchasing requirements. The compatibility of items produced to JIS standards with DIN standards to ANSI standards is always an issue on Asian power plant projects.

  6. CAAAC Greenhouse Gas Standards for Power Plants Webinar Meeting Minutes and Presentation

    EPA Pesticide Factsheets

    Greenhouse Gas Standards for Power Plants webinar, regarding modified and restructured standards for Section 111. This section of the Act establishes a mechanism for controlling air pollution from stationary sources.

  7. Power Plant Emission Reductions Using a Generation Performance Standard

    EIA Publications

    2001-01-01

    In an earlier analysis completed in response to a request received from Representative David McIntosh, Chairman of the Subcommittee on National Economic Growth, Natural Resources, and Regulatory Affairs, the Energy Information Administration analyzed the impacts of power sector caps on nitrogen oxides, sulfur dioxide, and carbon dioxide emissions, assuming a policy instrument patterned after the sulfur dioxide allowance program created in the Clean Air Act Amendments of 1990. This paper compares the results of that work with the results of an analysis that assumes the use of a dynamic generation performance standard as an instrument for reducing carbon dioxide emissions.

  8. Water impacts of CO2 emission performance standards for fossil fuel-fired power plants.

    PubMed

    Talati, Shuchi; Zhai, Haibo; Morgan, M Granger

    2014-10-21

    We employ an integrated systems modeling tool to assess the water impacts of the new source performance standards recently proposed by the U.S. Environmental Protection Agency for limiting CO2 emissions from coal- and gas-fired power plants. The implementation of amine-based carbon capture and storage (CCS) for 40% CO2 capture to meet the current proposal will increase plant water use by roughly 30% in supercritical pulverized coal-fired power plants. The specific amount of added water use varies with power plant and CCS designs. More stringent emission standards than the current proposal would require CO2 emission reductions for natural gas combined-cycle (NGCC) plants via CCS, which would also increase plant water use. When examined over a range of possible future emission standards from 1100 to 300 lb CO2/MWh gross, new baseload NGCC plants consume roughly 60-70% less water than coal-fired plants. A series of adaptation approaches to secure low-carbon energy production and improve the electric power industry's water management in the face of future policy constraints are discussed both quantitatively and qualitatively.

  9. 10 CFR Appendix N to Part 52 - Standardization of Nuclear Power Plant Designs: Combined Licenses To Construct and Operate...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Standardization of Nuclear Power Plant Designs: Combined Licenses To Construct and Operate Nuclear Power Reactors of Identical Design at Multiple Sites N Appendix N... FOR NUCLEAR POWER PLANTS Pt. 52, App. N Appendix N to Part 52—Standardization of Nuclear Power...

  10. 10 CFR Appendix N to Part 52 - Standardization of Nuclear Power Plant Designs: Combined Licenses To Construct and Operate...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Standardization of Nuclear Power Plant Designs: Combined Licenses To Construct and Operate Nuclear Power Reactors of Identical Design at Multiple Sites N Appendix N... FOR NUCLEAR POWER PLANTS Pt. 52, App. N Appendix N to Part 52—Standardization of Nuclear Power...

  11. 10 CFR Appendix N to Part 52 - Standardization of Nuclear Power Plant Designs: Combined Licenses To Construct and Operate...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Standardization of Nuclear Power Plant Designs: Combined Licenses To Construct and Operate Nuclear Power Reactors of Identical Design at Multiple Sites N Appendix N... FOR NUCLEAR POWER PLANTS Pt. 52, App. N Appendix N to Part 52—Standardization of Nuclear Power...

  12. 10 CFR Appendix N to Part 52 - Standardization of Nuclear Power Plant Designs: Combined Licenses To Construct and Operate...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Standardization of Nuclear Power Plant Designs: Combined Licenses To Construct and Operate Nuclear Power Reactors of Identical Design at Multiple Sites N Appendix N... FOR NUCLEAR POWER PLANTS Pt. 52, App. N Appendix N to Part 52—Standardization of Nuclear Power...

  13. 10 CFR Appendix N to Part 50 - Standardization of Nuclear Power Plant Designs: Permits To Construct and Licenses To Operate...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Standardization of Nuclear Power Plant Designs: Permits To Construct and Licenses To Operate Nuclear Power Reactors of Identical Design at Multiple Sites N Appendix N... FACILITIES Pt. 50, App. N Appendix N to Part 50—Standardization of Nuclear Power Plant Designs: Permits...

  14. 10 CFR Appendix N to Part 50 - Standardization of Nuclear Power Plant Designs: Permits To Construct and Licenses To Operate...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Standardization of Nuclear Power Plant Designs: Permits To Construct and Licenses To Operate Nuclear Power Reactors of Identical Design at Multiple Sites N Appendix N... FACILITIES Pt. 50, App. N Appendix N to Part 50—Standardization of Nuclear Power Plant Designs: Permits...

  15. 10 CFR Appendix N to Part 50 - Standardization of Nuclear Power Plant Designs: Permits To Construct and Licenses To Operate...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Standardization of Nuclear Power Plant Designs: Permits To Construct and Licenses To Operate Nuclear Power Reactors of Identical Design at Multiple Sites N Appendix N... FACILITIES Pt. 50, App. N Appendix N to Part 50—Standardization of Nuclear Power Plant Designs: Permits...

  16. 10 CFR Appendix N to Part 50 - Standardization of Nuclear Power Plant Designs: Permits To Construct and Licenses To Operate...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Standardization of Nuclear Power Plant Designs: Permits To Construct and Licenses To Operate Nuclear Power Reactors of Identical Design at Multiple Sites N Appendix N... FACILITIES Pt. 50, App.N Appendix N to Part 50—Standardization of Nuclear Power Plant Designs: Permits...

  17. US power plant carbon standards and clean air and health co-benefits

    NASA Astrophysics Data System (ADS)

    Driscoll, Charles T.; Buonocore, Jonathan J.; Levy, Jonathan I.; Lambert, Kathleen F.; Burtraw, Dallas; Reid, Stephen B.; Fakhraei, Habibollah; Schwartz, Joel

    2015-06-01

    Carbon dioxide emissions standards for US power plants will influence the fuels and technologies used to generate electricity, alter emissions of pollutants such as sulphur dioxide and nitrogen oxide, and influence ambient air quality and public health. We present an analysis of how three alternative scenarios for US power plant carbon standards could change fine particulate matter and ozone concentrations in ambient air, and the resulting public health co-benefits. The results underscore that carbon standards to curb global climate change can also provide immediate local and regional health co-benefits, but the magnitude depends on the design of the standards. A stringent but flexible policy that counts demand-side energy efficiency towards compliance yields the greatest health benefits of the three scenarios analysed.

  18. Fuel prices, emission standards, and generation costs for coal vs natural gas power plants.

    PubMed

    Pratson, Lincoln F; Haerer, Drew; Patiño-Echeverri, Dalia

    2013-05-07

    Low natural gas prices and stricter, federal emission regulations are promoting a shift away from coal power plants and toward natural gas plants as the lowest-cost means of generating electricity in the United States. By estimating the cost of electricity generation (COE) for 304 coal and 358 natural gas plants, we show that the economic viability of 9% of current coal capacity is challenged by low natural gas prices, while another 56% would be challenged by the stricter emission regulations. Under the current regulations, coal plants would again become the dominant least-cost generation option should the ratio of average natural gas to coal prices (NG2CP) rise to 1.8 (it was 1.42 in February 2012). If the more stringent emission standards are enforced, however, natural gas plants would remain cost competitive with a majority of coal plants for NG2CPs up to 4.3.

  19. International water and steam quality standards on thermal power plants at all-volatile treatment

    NASA Astrophysics Data System (ADS)

    Petrova, T. I.; Orlov, K. A.; Dooley, R. B.

    2016-12-01

    One of the methods for the improvement of reliability and efficiency of the equipment at heat power plants is the decrease in the rate of corrosion of structural materials and sedimentation in water/steam circuit. These processes can be reduced to minimum by using the water with low impurity content and coolant treatment. For many years, water and steam quality standards were developed in various countries (United States, Germany, Japan, etc.) for specific types of equipment. The International Association for the Properties of Water and Steam (IAPWS), which brings together specialists from 21 countries, developed the water and steam quality standards for various types of power equipment based on theoretical studies and long-term operating experience of power equipment. Recently, various water-chemistry conditions are applied on heatpower equipment including conventional boilers and HRSGs with combined cycle power plants (Combined Cycle Power Plants (CCPP)). In paper, the maintenance conditions of water chemistry with ammonia or volatile amine dosing are described: reducing AVT(R), oxidizing AVT(O), and oxygen OT. Each of them is provided by the water and steam quality standards and recommendations are given on their maintenance under various operation conditions. It is noted that the quality control of heat carrier must be carried out with a particular care on the HPPs with combined cycle gas turbine units, where frequent starts and halts are performed.

  20. Environmental Standard Review Plan for the review of license renewal applications for nuclear power plants

    SciTech Connect

    O'Brien, J.; Kim, T.J.; Reynolds, S.

    1991-08-01

    The Environmental Standard Review Plan for the Review of License Applications for Nuclear Power Plants (ESRP-LR) is to be used by the NRC staff when performing environmental reviews of applications for the renewal of power reactor licenses. The use of the ESRP-LR provides a framework for the staff to determine whether or not environmental issues important to license renewal have been identified and the impacts evaluated and provides acceptance standards to help the reviewers comply with the National Environmental Policy Act.

  1. Towards standardization of in-site parabolic trough collector testing in solar thermal power plants

    NASA Astrophysics Data System (ADS)

    Sallaberry, Fabienne; Valenzuela, Loreto; de Jalón, Alberto García; Leon, Javier; Bernad, Ignacio David

    2016-05-01

    This paper presents a summary of the testing procedure and a validation of the methodology of parabolic trough collector in solar thermal power plants. The applied testing methodology is the one proposed within the Spanish standardization sub-committee AEN/CTN 206/SC117 working group WG2 related to the components for solar thermal power plants. This methodology is also proposed within the international committee IEC TC 117 (Standard draft IEC 62862-3-2 Ed. 1.0). This study is done at Plataforma Solar de Almería (PSA) in Almeria within the European project STAGE-STE. This paper presents the results of the optical and thermal efficiency of a large-size parabolic trough collector. The obtained values are similar to the previous analysis on this collector by PSA. The results of the tracking system have a good accuracy compared to the acceptance angle of the concentrator.

  2. Agent-Based Modleing of Power Plants Placement to Evaluate the Clean Energy Standard Goal

    SciTech Connect

    Omitaomu, Olufemi A

    2014-01-01

    There is a political push for utilities to supply a specified share of their electricity sales from clean energy resources under the clean energy standard (CES). The goal is to achieve 80% clean energy by 2035. However, there are uncertainties about the ability of the utility industry to ramp up quickly even with the incentives that will be provided. Water availability from the streams is one of the major factors. The contiguous United States is divided into eighteen water regions, and multiple states share water from a single water region. Consequently, water usage decisions made in one state (located upstream of a water region that crosses multiple states) will greatly impact what is available downstream in another state. In this paper, an agent-based modeling approach is proposed to evaluate the clean energy standard goal for water-dependent energy resources. Specifically, using a water region rather than a state boundary as a bounding envelope for the modeling and starting at the headwaters, virtual power plants are placed based on the conditions that there is: (i) suitable land to site a particular power plant, (ii) enough water that meet regulatory guidelines within 20 miles of the suitable land, and (iii) a 20-mile buffer zone from an existing or a virtual power plant. The results obtained are discussed in the context of the proposed clean energy standard goal for states that overlap with one water region.

  3. Standards for components in concentrating solar thermal power plants - status of the Spanish working group

    NASA Astrophysics Data System (ADS)

    Sallaberry, Fabienne; Bello, Azucena; Burgaleta, Juan Ignacio; Fernandez-García, Aránzazu; Fernandez-Reche, Jesus; Gomez, Juan Antonio; Herrero, Saioa; Lüpfert, Eckhard; Morillo, Rafael; Vicente, Gema San; Sanchez, Marcelino; Santamaria, Patricia; Ubach, Josep; Terradillos, Jesus; Valenzuela, Loreto

    2016-05-01

    Today Spain is still the worldwide leader in the use of Concentrating Solar Power (CSP) technology with more than 2300 MW installed solar thermal power rated in 2015, compared to the 4600 MW installed worldwide. In order to improve the quality of current plants and require the best quality for future plants, the subcommittee SC 117 "Thermoelectric Solar Energy Systems", which is part of the committee AEN/CTN 206 for electricity production, works on different aspects of the plants since 2010. This paper gives an overview of the state of the publications in draft to qualify the performance and the durability of the main components of the solar field (receiver tubes, solar tracking systems, reflectors, heat transfer fluids, collectors and specific sensors). A summary of the main tests set for each component in the future Spanish standards is presented. The first complete standard drafts will be ready by the end of the current year 2015 and most are expected to be published within the following years.

  4. [Implementation results of emission standards of air pollutants for thermal power plants: a numerical simulation].

    PubMed

    Wang, Zhan-Shan; Pan, Li-Bo

    2014-03-01

    The emission inventory of air pollutants from the thermal power plants in the year of 2010 was set up. Based on the inventory, the air quality of the prediction scenarios by implementation of both 2003-version emission standard and the new emission standard were simulated using Models-3/CMAQ. The concentrations of NO2, SO2, and PM2.5, and the deposition of nitrogen and sulfur in the year of 2015 and 2020 were predicted to investigate the regional air quality improvement by the new emission standard. The results showed that the new emission standard could effectively improve the air quality in China. Compared with the implementation results of the 2003-version emission standard, by 2015 and 2020, the area with NO2 concentration higher than the emission standard would be reduced by 53.9% and 55.2%, the area with SO2 concentration higher than the emission standard would be reduced by 40.0%, the area with nitrogen deposition higher than 1.0 t x km(-2) would be reduced by 75.4% and 77.9%, and the area with sulfur deposition higher than 1.6 t x km(-2) would be reduced by 37.1% and 34.3%, respectively.

  5. Comparison of Standards and Technical Requirements of Grid-Connected Wind Power Plants in China and the United States

    SciTech Connect

    Gao, David Wenzhong; Muljadi, Eduard; Tian, Tian; Miller, Mackay; Wang, Weisheng

    2016-09-01

    The rapid deployment of wind power has made grid integration and operational issues focal points in industry discussions and research. Compliance with grid connection standards for wind power plants (WPPs) is crucial to ensuring the reliable and stable operation of the electric power grid. This report compares the standards for grid-connected WPPs in China to those in the United States to facilitate further improvements in wind power standards and enhance the development of wind power equipment. Detailed analyses of power quality, low-voltage ride-through capability, active power control, reactive power control, voltage control, and wind power forecasting are provided to enhance the understanding of grid codes in the two largest markets of wind power. This study compares WPP interconnection standards and technical requirements in China to those in the United States.

  6. Comparative Study of Standards for Grid-Connected Wind Power Plant in China and the U.S.

    SciTech Connect

    Gao, Wenzhong; Tian, Tian; Muljadi, Eduard; Zhang, Yincheng; Miller, Mackay; Wang, Weisheng; Wang, Jing

    2015-10-06

    The rapid deployment of wind power has made grid integration and operational issues focal points in industry discussions and research. Compliance with grid connection standards for wind power plants (WPP) is crucial to ensuring the safe and stable operation of the electric power grid. The standards for grid-connected WPPs in China and the United States are compared in this paper to facilitate further improvements to the standards and enhance the development of wind power equipment. Detailed analyses in power quality, low-voltage ride-through capability, active power control, reactive power control, voltage control, and wind power forecasting are provided to enhance the understanding of grid codes in the two largest markets of wind power.

  7. American National Standard: design basis for protection of light water nuclear power plants against effects of postulated pipe rupture

    SciTech Connect

    Not Available

    1980-12-31

    This standard addresses the design bases for light water reactor, nuclear power plant structures and components essential for the protection of public health and safety from the potential adverse effects of pipe whip, jet impingement, pressurization of compartments outside containment, environmental conditions and flooding associated with a postulated pipe rupture. The design bases for missile protection and the design bases for containment pressurization are not within this standard.

  8. Estimating potential productivity cobenefits for crops and trees from reduced ozone with U.S. coal power plant carbon standards

    NASA Astrophysics Data System (ADS)

    Capps, Shannon L.; Driscoll, Charles T.; Fakhraei, Habibollah; Templer, Pamela H.; Craig, Kenneth J.; Milford, Jana B.; Lambert, Kathleen F.

    2016-12-01

    A standard for carbon dioxide emissions from power plants in the United States, known as the Clean Power Plan, has been finalized by the Environmental Protection Agency. Decreases in carbon dioxide emissions from fossil fuel combustion have the potential cobenefit of reductions in emissions of oxides of nitrogen, which contribute to the formation of ground-level ozone. Emissions of ozone precursors may result in elevated ozone concentrations nearby or downwind. Chronic exposure of sensitive vegetation to tropospheric ozone reduces its potential productivity. To evaluate the cobenefits of the Clean Power Plan to sensitive vegetation, we estimate ozone concentrations in the continental U.S. in 2020 with a chemical transport model in accordance with reference and alternative Clean Power Plan policy scenarios, which represent a range of possible approaches to reducing carbon dioxide emissions from power plants. The reductions in biomass, or the potential productivity losses, due to the exposure of 4 crops and 11 tree species to ozone are as large as 1.9% and 32%, respectively, in the reference scenario. The least stringent policy scenario reduces these losses by less than 3% for any given species; however, the scenarios consistent with policies resulting in more rigorous nitrogen oxide reductions produce potential productivity losses lower than the reference scenario by as much as 16% and 13% for individual crops or tree species, respectively. This analysis affords the opportunity to consider public welfare cobenefits of a regulation that is designed to reduce carbon dioxide emissions from power plants.

  9. Amedee geothermal power plant

    SciTech Connect

    Hodgson, S.F.

    1988-12-01

    In September 1988, the power plant began generating electricity in Northern California, near Honey Lake. The plant generates 2 megawatts, net, of electricity in the winter, and from 20 to 30% less in the summer, depending on the temperature. Geothermal fluids from two wells are used to operate the plant, and surface discharge is used to dispose of the spent fluids. This is possible because the geothermal fluids have a very low salinity and a composition the same as area hot spring waters. The binary power plant has a Standard Offer No. 4 contract for 5 megawatts with pacific Gas and Electric Company. Sometime in the near future, they will expand the project to add another 3 megawatts of electrical generation.

  10. A standard description and costing methodology for the balance-of-plant items of a solar thermal electric power plant. Report of a multi-institutional working group

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Standard descriptions for solar thermal power plants are established and uniform costing methodologies for nondevelopmental balance of plant (BOP) items are developed. The descriptions and methodologies developed are applicable to the major systems. These systems include the central receiver, parabolic dish, parabolic trough, hemispherical bowl, and solar pond. The standard plant is defined in terms of four categories comprising (1) solar energy collection, (2) power conversion, (3) energy storage, and (4) balance of plant. Each of these categories is described in terms of the type and function of components and/or subsystems within the category. A detailed description is given for the BOP category. BOP contains a number of nondevelopmental items that are common to all solar thermal systems. A standard methodology for determining the costs of these nondevelopmental BOP items is given. The methodology is presented in the form of cost equations involving cost factors such as unit costs. A set of baseline values for the normalized cost factors is also given.

  11. Power Plant Systems Analysis

    NASA Technical Reports Server (NTRS)

    Williams, J. R.; Yang, Y. Y.

    1973-01-01

    Three basic thermodynamic cycles of advanced nuclear MHD power plant systems are studied. The effect of reactor exit temperature and space radiator temperature on the overall thermal efficiency of a regenerative turbine compressor power plant system is shown. The effect of MHD pressure ratio on plant efficiency is also described, along with the dependence of MHD power output, compressor power requirement, turbine power output, mass flow rate of H2, and overall plant efficiency on the reactor exit temperature for a specific configuration.

  12. Power Plant Cycling Costs

    SciTech Connect

    Kumar, N.; Besuner, P.; Lefton, S.; Agan, D.; Hilleman, D.

    2012-07-01

    This report provides a detailed review of the most up to date data available on power plant cycling costs. The primary objective of this report is to increase awareness of power plant cycling cost, the use of these costs in renewable integration studies and to stimulate debate between policymakers, system dispatchers, plant personnel and power utilities.

  13. Iso standardization of theoretical activity evaluation method for low and intermediate level activated waste generated at nuclear power plants

    SciTech Connect

    Makoto Kashiwagi; Garamszeghy, Mike; Lantes, Bertrand; Bonne, Sebastien; Pillette-Cousin, Lucien; Leganes, Jose Luis; Volmert, Ben; James, David W.

    2013-07-01

    Disposal of low-and intermediate-level activated waste generated at nuclear power plants is being planned or carried out in many countries. The radioactivity concentrations and/or total quantities of long-lived, difficult-to-measure nuclides (DTM nuclides), such as C-14, Ni-63, Nb-94, α emitting nuclides etc., are often restricted by the safety case for a final repository as determined by each country's safety regulations, and these concentrations or amounts are required to be known and declared. With respect to waste contaminated by contact with process water, the Scaling Factor method (SF method), which is empirically based on sampling and analysis data, has been applied as an important method for determining concentrations of DTM nuclides. This method was standardized by the International Organization for Standardization (ISO) and published in 2007 as ISO21238 'Scaling factor method to determine the radioactivity of low and intermediate-level radioactive waste packages generated at nuclear power plants' [1]. However, for activated metal waste with comparatively high concentrations of radioactivity, such as may be found in reactor control rods and internal structures, direct sampling and radiochemical analysis methods to evaluate the DTM nuclides are limited by access to the material and potentially high personnel radiation exposure. In this case, theoretical calculation methods in combination with empirical methods based on remote radiation surveys need to be used to best advantage for determining the disposal inventory of DTM nuclides while minimizing exposure to radiation workers. Pursuant to this objective a standard for the theoretical evaluation of the radioactivity concentration of DTM nuclides in activated waste, is in process through ISO TC85/SC5 (ISO Technical Committee 85: Nuclear energy, nuclear technologies, and radiological protection; Subcommittee 5: Nuclear fuel cycle). The project team for this ISO standard was formed in 2011 and is composed of

  14. New baseload power plants

    SciTech Connect

    Not Available

    1994-04-01

    This is a listing of 221 baseload power plant units currently in the planning stage. The list shows the plant owner, capacity, fuel, engineering firm, constructor, major equipment suppliers (steam generator, turbogenerator, and flue gas desulfurization system), partner, and date the plant is to be online. This data is a result of a survey by the journal of power plant owners.

  15. NUCLEAR POWER PLANT

    DOEpatents

    Carter, J.C.; Armstrong, R.H.; Janicke, M.J.

    1963-05-14

    A nuclear power plant for use in an airless environment or other environment in which cooling is difficult is described. The power plant includes a boiling mercury reactor, a mercury--vapor turbine in direct cycle therewith, and a radiator for condensing mercury vapor. (AEC)

  16. Nuclear Power Plants. Revised.

    ERIC Educational Resources Information Center

    Lyerly, Ray L.; Mitchell, Walter, III

    This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. Among the topics discussed are: Why Use Nuclear Power?; From Atoms to Electricity; Reactor Types; Typical Plant Design Features; The Cost of Nuclear Power; Plants in the United States; Developments in Foreign…

  17. New baseload power plants

    SciTech Connect

    Not Available

    1993-04-01

    This is a tabulation of the results of this magazines survey of current plans for new baseload power plants. The table lists the unit name, capacity, fuel, engineering firm, constructor, suppliers for steam generator, turbine generator and flue gas desulfurization equipment, date due on-line, and any non-utility participants. The table includes fossil-fuel plants, nuclear plants, geothermal, biomass and hydroelectric plants.

  18. Nuclear power plant maintainability.

    PubMed

    Seminara, J L; Parsons, S O

    1982-09-01

    In the mid-1970s a general awareness of human factors engineering deficiencies associated with power plant control rooms took shape and the Electric Power Research Institute (EPRI) awarded the Lockheed Corporation a contract to review the human factors aspects of five representative operational control rooms and their associated simulators. This investigation revealed a host of major and minor deficiencies that assumed unforeseen dimensions in the post- Three Mile Island accident period. In the course of examining operational problems (Seminara et al, 1976) and subsequently the methods for overcoming such problems (Seminara et al, 1979, 1980) indications surfaced that power plants were far from ideal in meeting the needs of maintenance personnel. Accordingly, EPRI sponsored an investigation of the human factors aspects of power plant maintainability (Seminara, 1981). This paper provides an overview of the maintainability problems and issues encountered in the course of reviewing five nuclear power plants.

  19. Advanced stellarator power plants

    SciTech Connect

    Miller, R.L.

    1994-07-01

    The stellarator is a class of helical/toroidal magnetic fusion devices. Recent international progress in stellarator power plant conceptual design is reviewed and comparisons in the areas of physics, engineering, and economics are made with recent tokamak design studies.

  20. Power Quality Aspects in a Wind Power Plant

    SciTech Connect

    Muljadi, E.; Butterfield, C. P.; Chacon, J.; Romanowitz, H.

    2006-01-01

    Like conventional power plants, wind power plants must provide the power quality required to ensure the stability and reliability of the power system it is connected to and to satisfy the customers connected to the same grid. When wind energy development began, wind power plants were very small, ranging in size from under one megawatt to tens megawatts with less than 100 turbines in each plant. Thus, the impact of wind power plant on the grid was very small, and any disturbance within or created by the plant was considered to be in the noise level. In the past 30 years, the size of wind turbines and the size of wind power plants have increased significantly. Notably, in Tehachapi, California, the amount of wind power generation has surpassed the infrastructure for which it was designed. At the same time, the lack of rules, standards, and regulations during early wind development has proven to be an increasing threat to the stability and power quality of the grid connected to a wind power plant. Fortunately, many new wind power plants are equipped with state of the art technology, which enables them to provide good service while producing clean power for the grid. The advances in power electronics have allowed many power system applications to become more flexible and to accomplish smoother regulation. Applications such as reactive power compensation, static transfer switches, energy storage, and variable-speed generations are commonly found in modern wind power plants. Although many operational aspects affect wind power plant operation, this paper, focuses on power quality. Because a wind power plant is connected to the grid, it is very important to understand the sources of disturbances that affect the power quality. In general, the voltage and frequency must be kept as stable as possible. The voltage and current distortions created by harmonics will also be discussed in this paper as will self-excitation, which may occur in a wind power plant due to loss of line.

  1. Power plants to go

    SciTech Connect

    Valenti, M.

    1996-05-01

    Simple-cycle portable power stations have been used to increase the electrical capacity in developing countries and in emergency situations. This article describes the first power barge using combined-cycle technology which has began operation in the Dominican Republic. The construction of a new mobile power plant in Puerto Plata, the Dominican Republic, marks the first time a power barge has been coupled with the efficiency of combined-cycle generation. The 185-megawatt plant, which became fully operational in January, provides 25% of the power required by the Dominican state-owned utility, the Corporacion Dominicana de Electricidad (CDE). The new plant is designed to end the power shortages and blackouts that have traditionally plagued the Caribbean nation. The Puerto Plata plant consists of two barges that were built in the US, transported to the Dominican Republic, installed, and backfilled into place. One barge, delivered in May 1994, contains a 76-megawatt gas turbine. The second barge, installed in April 1995, contains a 45-megawatt heat-recovery steam generator to recover heat energy from the turbine exhaust, two auxiliary boilers to produce additional steam, and a 118-megawatt steam-turbine generator.

  2. 78 FR 39533 - Power Sector Carbon Pollution Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-01

    ... country, we can continue our progress in reducing power plant pollution, thereby improving public health... reduce power plant carbon pollution, building on actions already underway in States and the power sector, I hereby direct the following: Section 1. Flexible Carbon Pollution Standards for Power Plants....

  3. Power Plant Construction

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Stone & Webster Engineering Corporation utilized TAP-A, a COSMIC program originally developed as part of a NASA investigation into the potential of nuclear power for space launch vehicles. It is useful in nuclear power plant design to qualify safety-related equipment at the temperatures it would experience should an accident occur. The program is easy to use, produces accurate results, and is inexpensive to run.

  4. Geothermal Power Generation Plant

    SciTech Connect

    Boyd, Tonya

    2013-12-01

    Oregon Institute of Technology (OIT) drilled a deep geothermal well on campus (to 5,300 feet deep) which produced 196°F resource as part of the 2008 OIT Congressionally Directed Project. OIT will construct a geothermal power plant (estimated at 1.75 MWe gross output). The plant would provide 50 to 75 percent of the electricity demand on campus. Technical support for construction and operations will be provided by OIT’s Geo-Heat Center. The power plant will be housed adjacent to the existing heat exchange building on the south east corner of campus near the existing geothermal production wells used for heating campus. Cooling water will be supplied from the nearby cold water wells to a cooling tower or air cooling may be used, depending upon the type of plant selected. Using the flow obtained from the deep well, not only can energy be generated from the power plant, but the “waste” water will also be used to supplement space heating on campus. A pipeline will be construction from the well to the heat exchanger building, and then a discharge line will be construction around the east and north side of campus for anticipated use of the “waste” water by facilities in an adjacent sustainable energy park. An injection well will need to be drilled to handle the flow, as the campus existing injection wells are limited in capacity.

  5. Nuclear Power Plant Technician

    ERIC Educational Resources Information Center

    Randall, George A.

    1975-01-01

    The author recognizes a body of basic knowledge in nuclear power plant technoogy that can be taught in school programs, and lists the various courses, aiming to fill the anticipated need for nuclear-trained manpower--persons holding an associate degree in engineering technology. (Author/BP)

  6. Beloyarsk Nuclear Power Plant

    SciTech Connect

    1997-08-01

    The Beloyarsk Nuclear Power Plant (BNPP) is located in Zarechny, approximately 60 km east of Ekaterinberg along the Trans-Siberian Highway. Zarechny, a small city of approximately 30,000 residents, was built to support BNPP operations. It is a closed city to unescorted visitors. Residents must show identification for entry. BNPP is one of the first and oldest commercial nuclear power plants in Russia and began operations in 1964. As for most nuclear power plants in the Russian Federation, BNPP is operated by Rosenergoatom, which is subordinated to the Ministry of Atomic Energy of the Russian Federation (Minatom). BNPP is the site of three nuclear reactors, Units 1, 2, and 3. Units 1 and 2, which have been shut-down and defueled, were graphite moderated reactors. The units were shut-down in 1981 and 1989. Unit 3, a BN-600 reactor, is a 600 MW(electric) sodium-cooled fast breeder reactor. Unit 3 went on-line in April 1980 and produces electric power which is fed into a distribution grid and thermal power which provides heat to Zarechny. The paper also discusses the SF NIKIET, the Sverdiovsk Branch of NIKIET, Moscow, which is the research and development branch of the parent NIKEIT and is primarily a design institute responsible for reactor design. Central to its operations is a 15 megawatt IVV research reactor. The paper discusses general security and fissile material control and accountability at these two facilities.

  7. An Analysis of Costs and Health Co-Benefits for a U.S. Power Plant Carbon Standard

    PubMed Central

    Buonocore, Jonathan J.; Lambert, Kathleen F.; Burtraw, Dallas; Sekar, Samantha; Driscoll, Charles T.

    2016-01-01

    Reducing carbon dioxide (CO2) emissions from power plants can have important “co-benefits” for public health by reducing emissions of air pollutants. Here, we examine the costs and health co-benefits, in monetary terms, for a policy that resembles the U.S. Environmental Protection Agency’s Clean Power Plan. We then examine the spatial distribution of the co-benefits and costs, and the implications of a range of cost assumptions in the implementation year of 2020. Nationwide, the total health co-benefits were $29 billion 2010 USD (95% CI: $2.3 to $68 billion), and net co-benefits under our central cost case were $12 billion (95% CI: -$15 billion to $51 billion). Net co-benefits for this case in the implementation year were positive in 10 of the 14 regions studied. The results for our central case suggest that all but one region should experience positive net benefits within 5 years after implementation. PMID:27270222

  8. NEUTRONIC REACTOR POWER PLANT

    DOEpatents

    Metcalf, H.E.

    1962-12-25

    This patent relates to a nuclear reactor power plant incorporating an air-cooled, beryllium oxide-moderated, pebble bed reactor. According to the invention means are provided for circulating a flow of air through tubes in the reactor to a turbine and for directing a sidestream of the circu1ating air through the pebble bed to remove fission products therefrom as well as assist in cooling the reactor. (AEC)

  9. Power plant emissions reduction

    DOEpatents

    Anand, Ashok Kumar; Nagarjuna Reddy, Thirumala Reddy

    2015-10-20

    A system for improved emissions performance of a power plant generally includes an exhaust gas recirculation system having an exhaust gas compressor disposed downstream from the combustor, a condensation collection system at least partially disposed upstream from the exhaust gas compressor, and a mixing chamber in fluid communication with the exhaust gas compressor and the condensation collection system, where the mixing chamber is in fluid communication with the combustor.

  10. TS Power Plant, Eureka County, Nevada

    SciTech Connect

    Peltier, R.

    2008-10-15

    Not all coal-fired power plants are constructed by investor-owned utilities or independent power producers selling to wholesale markets. When Newmont Mining Corp. recognised that local power supplies were inadequate and too expensive to meet long-term electricity needs for its major gold- and copper-mining operations in northern Nevada, it built its own generation. What is more, Newmont's privately owned 200-MW net coal-fired plant features power plant technologies that will surely become industry standards. Newmont's investment in power and technology is also golden: the capital cost will be paid back in about eight years. 4 figs.

  11. Coordination of International Standards with Implementation of the IECRE Conformity Assessment System to Provide Multiple Certification Offerings for PV Power Plants

    SciTech Connect

    Kelly, George; Haring, Adrian; Spooner, Ted; Ball, Greg; Kurtz, Sarah; Heinze, Matthias; Yamamichi, Masaaki; Eguchi, Yoshihito; Ramu, Govind

    2016-11-21

    To help address the industry's needs for assuring the value and reducing the risk of investments in PV power plants; the International Electrotechnical Commission (IEC) has established a new conformity assessment system for renewable energy (IECRE). There are presently important efforts underway to define the requirements for various types of PV system certificates, and publication of the international standards upon which these certifications will be based. This paper presents a detailed analysis of the interrelationship of these activities and the timing for initiation of IECRE PV system certifications.

  12. 10 CFR Appendix N to Part 52 - Standardization of Nuclear Power Plant Designs: Combined Licenses To Construct and Operate...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Licenses To Construct and Operate Nuclear Power Reactors of Identical Design at Multiple Sites N Appendix N... Designs: Combined Licenses To Construct and Operate Nuclear Power Reactors of Identical Design at Multiple... construct and operate nuclear power reactors of identical design (“common design”) to be located at...

  13. 10 CFR Appendix N to Part 50 - Standardization of Nuclear Power Plant Designs: Permits To Construct and Licenses To Operate...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Construct and Licenses To Operate Nuclear Power Reactors of Identical Design at Multiple Sites N Appendix N... Construct and Licenses To Operate Nuclear Power Reactors of Identical Design at Multiple Sites Section 101... nuclear power reactors of essentially the same design to be located at different sites. 1 1 If the...

  14. Methodology for Scaling Fusion Power Plant Availability

    SciTech Connect

    Lester M. Waganer

    2011-01-04

    Normally in the U.S. fusion power plant conceptual design studies, the development of the plant availability and the plant capital and operating costs makes the implicit assumption that the plant is a 10th of a kind fusion power plant. This is in keeping with the DOE guidelines published in the 1970s, the PNL report1, "Fusion Reactor Design Studies - Standard Accounts for Cost Estimates. This assumption specifically defines the level of the industry and technology maturity and eliminates the need to define the necessary research and development efforts and costs to construct a one of a kind or the first of a kind power plant. It also assumes all the "teething" problems have been solved and the plant can operate in the manner intended. The plant availability analysis assumes all maintenance actions have been refined and optimized by the operation of the prior nine or so plants. The actions are defined to be as quick and efficient as possible. This study will present a methodology to enable estimation of the availability of the one of a kind (one OAK) plant or first of a kind (1st OAK) plant. To clarify, one of the OAK facilities might be the pilot plant or the demo plant that is prototypical of the next generation power plant, but it is not a full-scale fusion power plant with all fully validated "mature" subsystems. The first OAK facility is truly the first commercial plant of a common design that represents the next generation plant design. However, its subsystems, maintenance equipment and procedures will continue to be refined to achieve the goals for the 10th OAK power plant.

  15. ATOMIC POWER PLANT

    DOEpatents

    Daniels, F.

    1957-11-01

    This patent relates to neutronic reactor power plants and discloses a design of a reactor utilizing a mixture of discrete units of a fissionable material, such as uranium carbide, a neutron moderator material, such as graphite, to carry out the chain reaction. A liquid metal, such as bismuth, is used as the coolant and is placed in the reactor chamber with the fissionable and moderator material so that it is boiled by the heat of the reaction, the boiling liquid and vapors passing up through the interstices between the discrete units. The vapor and flue gases coming off the top of the chamber are passed through heat exchangers, to produce steam, for example, and thence through condensers, the condensed coolant being returned to the chamber by gravity and the non- condensible gases being carried off through a stack at the top of the structure.

  16. Power Plant Replacement Study

    SciTech Connect

    Reed, Gary

    2010-09-30

    This report represents the final report for the Eastern Illinois University power plant replacement study. It contains all related documentation from consideration of possible solutions to the final recommended option. Included are the economic justifications associated with the chosen solution along with application for environmental permitting for the selected project for construction. This final report will summarize the results of execution of an EPC (energy performance contract) investment grade audit (IGA) which lead to an energy services agreement (ESA). The project includes scope of work to design and install energy conservation measures which are guaranteed by the contractor to be self‐funding over its twenty year contract duration. The cost recovery is derived from systems performance improvements leading to energy savings. The prime focus of this EPC effort is to provide a replacement solution for Eastern Illinois University’s aging and failing circa 1925 central steam production plant. Twenty‐three ECMs were considered viable whose net impact will provide sufficient savings to successfully support the overall project objectives.

  17. Power Plant Replacement Study

    SciTech Connect

    Reed, Gary

    2010-09-30

    This report represents the final report for the Eastern Illinois University power plant replacement study. It contains all related documentation from consideration of possible solutions to the final recommended option. Included are the economic justifications associated with the chosen solution along with application for environmental permitting for the selected project for construction. This final report will summarize the results of execution of an EPC (energy performance contract) investment grade audit (IGA) which lead to an energy services agreement (ESA). The project includes scope of work to design and install energy conservation measures which are guaranteed by the contractor to be self-funding over its twenty year contract duration. The cost recovery is derived from systems performance improvements leading to energy savings. The prime focus of this EPC effort is to provide a replacement solution for Eastern Illinois University’s aging and failing circa 1925 central steam production plant. Twenty-three ECMs were considered viable whose net impact will provide sufficient savings to successfully support the overall project objectives.

  18. Power Plant Replacement Study

    SciTech Connect

    Reed, Gary

    2010-09-30

    This report represents the final report for the Eastern Illinois University power plant replacement study. It contains all related documentation from consideration of possible solutions to the final recommended option. Included are the economic justifications associated with the chosen solution along with application for environmental permitting for the selected project for construction. This final report will summarize the results of execution of an EPC (energy performance contract) investment grade audit (IGA) which lead to an energy services agreement (ESA). The project includes scope of work to design and install energy conservation measures which are guaranteed by the contractor to be self-funding over its twenty year contract duration. The cost recovery is derived from systems performance improvements leading to energy savings. The prime focus of this EPC effort is to provide a replacement solution for Eastern Illinois University's aging and failing circa 1925 central steam production plant. Twenty-three ECMs were considered viable whose net impact will provide sufficient savings to successfully support the overall project objectives.

  19. Aircraft Power-Plant Instruments

    NASA Technical Reports Server (NTRS)

    Sontag, Harcourt; Brombacher, W G

    1934-01-01

    This report supersedes NACA-TR-129 which is now obsolete. Aircraft power-plant instruments include tachometers, engine thermometers, pressure gages, fuel-quantity gages, fuel flow meters and indicators, and manifold pressure gages. The report includes a description of the commonly used types and some others, the underlying principle utilized in the design, and some design data. The inherent errors of the instrument, the methods of making laboratory tests, descriptions of the test apparatus, and data in considerable detail in the performance of commonly used instruments are presented. Standard instruments and, in cases where it appears to be of interest, those used as secondary standards are described. A bibliography of important articles is included.

  20. Fundamentals of the Control of Gas-Turbine Power Plants for Aircraft. Part 1; Standardization of the Computations Relating to the Control of Gas-Turbine Power Plants for Aircraft by the Employment of the Laws of Similarity

    NASA Technical Reports Server (NTRS)

    Luehl, H.

    1947-01-01

    It will be shown that by the use of the concept of similarity a simple representation of the characteristic curves of a compressor operating in combination with a turbine may be obtained with correct allowance for the effect of temperature. Furthermore, it becmes possible to simplify considerably the rather tedious investigations of the behavior of gas-turbine power plants under different operating conditions. Characteristic values will be derived for the most important elements of operating behavior of the power plant, which will be independent of the absolute valu:s of pressure and temperature. At the same time, the investigations provide the basis for scale-model tests on compressors and turbines.

  1. Wave action power plant

    SciTech Connect

    Lucia, L.V.

    1982-03-16

    A wave action power plant powered by the action of water waves has a drive shaft rotated by a plurality of drive units, each having a lever pivotally mounted on and extending from said shaft and carrying a weight, in the form of a float, which floats on the waves and rocks the lever up and down on the shaft. A ratchet mechanism causes said shaft to be rotated in one direction by the weight of said float after it has been raised by wave and the wave has passed, leaving said float free to move downwardly by gravity and apply its full weight to pull down on the lever and rotate the drive shaft. There being a large number of said drive units so that there are always some of the weights pulling down on their respective levers while other weights are being lifted by waves and thereby causing continuous rotation of the drive shaft in one direction. The said levers are so mounted that they may be easily raised to bring the weights into a position wherein they are readily accessible for cleaning the bottoms thereof to remove any accumulation of barnacles, mollusks and the like. There is also provided means for preventing the weights from colliding with each other as they independently move up and down on the waves.

  2. Modification of the ECAS reference steam power generating plant to comply with the EPA 1979 new source performance standards

    NASA Astrophysics Data System (ADS)

    Fogelson, S. A.; Chait, I. L.; Bradley, W. J.; Benson, W.

    1980-08-01

    Detailed capital cost estimates for the ECAS and modified reference plants in mid-1978 dollars for both 250 and 175 F (394 and 353 K) stack gas reheat temperatures based on the cost estimates developed for the ECAS study are presented. The scope of the work included technical assessment of sulfur dioxide scrubber system design, on site calcination versus purchased lime, reheat of stack gas, effect of sulfur dioxide scrubber on particulate emission, and control of nitrogen oxides.

  3. Modification of the ECAS reference steam power generating plant to comply with the EPA 1979 new source performance standards

    NASA Technical Reports Server (NTRS)

    Fogelson, S. A.; Chait, I. L.; Bradley, W. J.; Benson, W.

    1980-01-01

    Detailed capital cost estimates for the ECAS and modified reference plants in mid-1978 dollars for both 250 and 175 F (394 and 353 K) stack gas reheat temperatures based on the cost estimates developed for the ECAS study are presented. The scope of the work included technical assessment of sulfur dioxide scrubber system design, on site calcination versus purchased lime, reheat of stack gas, effect of sulfur dioxide scrubber on particulate emission, and control of nitrogen oxides.

  4. The year 2000 power plant

    SciTech Connect

    Roman, H.T.

    1989-01-01

    Every utility seeks extended service life from its existing power plants before building new ones. It is not easy to justify a new power plant. The licensing and cost of new plants have become uncertain. In response to these conditions, electric utilities are undertaking plant life-extension studies and, in some cases, reconditioning/upgrading old power plants to significantly increase useful service life. Other technologies like robotics and artificial intelligence/expert systems are also being developed to reduce operating and maintenance (O and M) expenses, to remove workers from potentially hazardous environments, and to reduce plant downtime. Together, these steps represent an interim solution, perhaps providing some relief for the next few decades. However, there are serious physical and economic limits to retrofitting new technology into existing power plants. Some old plants will simply be beyond their useful life and require retirement. In nuclear plants, for instance, retrofit may raise important and time-consuming licensing/safety issues. Based on their robotics and artificial intelligence experience, the authors of this article speculate bout the design of the year 2000 power plant - a power plant they feel will naturally incorporate liberal amounts of robotic and artificial intelligence technologies.

  5. Steam Power Plants in Aircraft

    NASA Technical Reports Server (NTRS)

    Wilson, E E

    1926-01-01

    The employment of steam power plants in aircraft has been frequently proposed. Arguments pro and con have appeared in many journals. It is the purpose of this paper to make a brief analysis of the proposal from the broad general viewpoint of aircraft power plants. Any such analysis may be general or detailed.

  6. Simulating solar power plant variability :

    SciTech Connect

    Lave, Matthew Samuel; Ellis, Abraham; Stein, Joshua.

    2013-06-01

    It is important to be able to accurately simulate the variability of solar PV power plants for grid integration studies. We aim to inform integration studies of the ease of implementation and application-specific accuracy of current PV power plant output simulation methods. This report reviews methods for producing simulated high-resolution (sub-hour or even sub-minute) PV power plant output profiles for variability studies and describes their implementation. Two steps are involved in the simulations: estimation of average irradiance over the footprint of a PV plant and conversion of average irradiance to plant power output. Six models are described for simulating plant-average irradiance based on inputs of ground-measured irradiance, satellite-derived irradiance, or proxy plant measurements. The steps for converting plant-average irradiance to plant power output are detailed to understand the contributions to plant variability. A forthcoming report will quantify the accuracy of each method using application-specific validation metrics.

  7. Next Generation Geothermal Power Plants

    SciTech Connect

    Brugman, John; Hattar, Mai; Nichols, Kenneth; Esaki, Yuri

    1995-09-01

    A number of current and prospective power plant concepts were investigated to evaluate their potential to serve as the basis of the next generation geothermal power plant (NGGPP). The NGGPP has been envisaged as a power plant that would be more cost competitive (than current geothermal power plants) with fossil fuel power plants, would efficiently use resources and mitigate the risk of reservoir under-performance, and minimize or eliminate emission of pollutants and consumption of surface and ground water. Power plant concepts were analyzed using resource characteristics at ten different geothermal sites located in the western United States. Concepts were developed into viable power plant processes, capital costs were estimated and levelized busbar costs determined. Thus, the study results should be considered as useful indicators of the commercial viability of the various power plants concepts that were investigated. Broadly, the different power plant concepts that were analyzed in this study fall into the following categories: commercial binary and flash plants, advanced binary plants, advanced flash plants, flash/binary hybrid plants, and fossil/geothed hybrid plants. Commercial binary plants were evaluated using commercial isobutane as a working fluid; both air-cooling and water-cooling were considered. Advanced binary concepts included cycles using synchronous turbine-generators, cycles with metastable expansion, and cycles utilizing mixtures as working fluids. Dual flash steam plants were used as the model for the commercial flash cycle. The following advanced flash concepts were examined: dual flash with rotary separator turbine, dual flash with steam reheater, dual flash with hot water turbine, and subatmospheric flash. Both dual flash and binary cycles were combined with other cycles to develop a number of hybrid cycles: dual flash binary bottoming cycle, dual flash backpressure turbine binary cycle, dual flash gas turbine cycle, and binary gas turbine

  8. Owners of Nuclear Power Plants

    SciTech Connect

    Reid, R.L.

    2000-01-12

    Commercial nuclear power plants in this country can be owned by a number of separate entities, each with varying ownership proportions. Each of these owners may, in turn, have a parent/subsidiary relationship to other companies. In addition, the operator of the plant may be a different entity as well. This report provides a compilation on the owners/operators for all commercial power reactors in the United States. While the utility industry is currently experiencing changes in organizational structure which may affect nuclear plant ownership, the data in this report is current as of November 1999. The report is divided into sections representing different aspects of nuclear plant ownership.

  9. Owners of nuclear power plants

    SciTech Connect

    Hudson, C.R.; White, V.S.

    1996-11-01

    Commercial nuclear power plants in this country can be owned by a number of separate entities, each with varying ownership proportions. Each of these owners may, in turn, have a parent/subsidiary relationship to other companies. In addition, the operator of the plant may be a different entity as well. This report provides a compilation on the owners/operators for all commercial power reactors in the United States. While the utility industry is currently experiencing changes in organizational structure which may affect nuclear plant ownership, the data in this report is current as of July 1996. The report is divided into sections representing different aspects of nuclear plant ownership.

  10. Power plant profiles

    SciTech Connect

    Jakansi, J.

    1997-03-01

    The facilities described here represent the rich variety of technologies being applied at new and existing powerplants in the US. While new capacity additions are at an all-time low in this country, the plants and projects that are completed generally represent new highs in regulatory compliance, technical savvy, and management ingenuity. They range from a 4-MW landfill-gas-fired turbine to a 2,500-MW nuclear plant. Several gas-turbine projects are included, confirming the current dominance of this technology. The projects are: Fort St. Vrain, Pinon Pine, Cleburne cogeneration plant, Gilbert station, Hanes Mill Rd, El Dorado, Wolf Creek, South Texas Project, Stanton Energy Center Unit 2, Milliken station and Northampton plant.

  11. Nuclear Power Plant Simulation Game.

    ERIC Educational Resources Information Center

    Weiss, Fran

    1979-01-01

    Presents a nuclear power plant simulation game which is designed to involve a class of 30 junior or senior high school students. Scientific, ecological, and social issues covered in the game are also presented. (HM)

  12. Power Plant Water Intake Assessment.

    ERIC Educational Resources Information Center

    Zeitoun, Ibrahim H.; And Others

    1980-01-01

    In order to adequately assess the impact of power plant cooling water intake on an aquatic ecosystem, total ecosystem effects must be considered, rather than merely numbers of impinged or entrained organisms. (Author/RE)

  13. Job Grading Standard for Electric Power Controller WG-5407.

    ERIC Educational Resources Information Center

    Civil Service Commission, Washington, DC. Bureau of Policies and Standards.

    The standard is used to grade nonsupervisory jobs involved in controlling the generation or distribution of electric power. The jobs are located at power generating plants, power distribution centers, and substations. The work requires ability to anticipate load changes due to work schedules, weather, and other variables, in order to engage or cut…

  14. Parabolic Trough Organic Rankine Cycle Power Plant

    SciTech Connect

    Canada, S.; Cohen, G.; Cable, R.; Brosseau, D.; Price, H.

    2005-01-01

    Arizona Public Service (APS) is required to generate a portion of its electricity from solar resources in order to satisfy its obligation under the Arizona Environmental Portfolio Standard (EPS). In recent years, APS has installed and operates over 4.5 MWe of fixed, tracking, and concentrating photovoltaic systems to help meet the solar portion of this obligation and to develop an understanding of which solar technologies provide the best cost and performance to meet utility needs. During FY04, APS began construction of a 1-MWe parabolic trough concentrating solar power plant. This plant represents the first parabolic trough plant to begin construction since 1991. The plant will also be the first commercial deployment of the Solargenix parabolic trough collector technology developed under contract to the National Renewable Energy Laboratory (NREL). The plant will use an organic Rankine cycle (ORC) power plant, provided by Ormat. The ORC power plant is much simpler than a conventional steam Rankine cycle power plant and allows unattended operation of the facility.

  15. Operate a Nuclear Power Plant.

    ERIC Educational Resources Information Center

    Frimpter, Bonnie J.; And Others

    1983-01-01

    Describes classroom use of a computer program originally published in Creative Computing magazine. "The Nuclear Power Plant" (runs on Apple II with 48K memory) simulates the operating of a nuclear generating station, requiring students to make decisions as they assume the task of managing the plant. (JN)

  16. Power Quality Aspects in a Wind Power Plant: Preprint

    SciTech Connect

    Muljadi, E.; Butterfield, C. P.; Chacon, J.; Romanowitz, H.

    2006-01-01

    Although many operational aspects affect wind power plant operation, this paper focuses on power quality. Because a wind power plant is connected to the grid, it is very important to understand the sources of disturbances that affect the power quality.

  17. ALARA at nuclear power plants

    SciTech Connect

    Baum, J.W.

    1990-01-01

    Implementation of the As Low As Reasonably Achievable (ALARA) principle at nuclear power plants presents a continuing challenge for health physicists at utility corporate and plant levels, for plant designers, and for regulatory agencies. The relatively large collective doses at some plants are being addressed though a variety of dose reduction techniques. It is planned that this report will include material on historical aspects, management, valuation of dose reduction, quantitative and qualitative aspects of optimization, design, operational considerations, and training. The status of this work is summarized in this report. 30 refs., 1 fig., 6 tabs.

  18. Replacing baseload power plants with wind plants

    SciTech Connect

    Cavallo, A.J.

    1995-12-31

    Baseload nuclear power plants supply about 21 percent of the electricity consumed in the United States today, and as these plants are retired over the next 10 to 25 years, they will not be replicated. This will open a vast market for new generating facilities which should, if possible, be non-fossil fueled. Wind energy baseload systems are able to equal or exceed the technical performance of these nuclear plants at a delivered cost of energy of less than $0.05/kWh in wind class 4 regions. However, unless a new externality (the cost of maintaining the security of fossil fuel supply) is factored in to the extremely low market price of fossil fuels, wind and other renewable energy resources will not be able to compete with these fuels on the basis of simple economics over the next 20 to 30 years.

  19. Researching power plant water recovery

    SciTech Connect

    2008-04-01

    A range of projects supported by NETl under the Innovations for Existing Plant Program are investigating modifications to power plant cooling systems for reducing water loss, and recovering water from the flue gas and the cooling tower. This paper discusses two technologies showing particular promise condense water that is typically lost to evaporation, SPX technologies' Air2Air{sup trademark} condenses water from a cooling tower, while Lehigh University's process condenses water and acid in flue gas. 3 figs.

  20. State power plant productivity programs

    SciTech Connect

    Not Available

    1981-02-01

    The findings of a working group formed to review the status of efforts by utilities and utility regulators to increase the availability and reliability of generating units are presented. Representatives from nine state regulatory agencies, NRRI, and DOE, participated on the Working Group. The Federal government has been working cooperatively with utilities, utility organizations, and with regulators to encourage and facilitate improvements in power plant productivity. Cooperative projects undertaken with regulatory and energy commissions in California, Illinois, New York, Ohio, Texas, North Carolina and Mighigan are described. Following initiation of these cooperative projects, DOE funded a survey to determine which states were explicitly addressing power plant productivity through the regulatory process. The Working Group was formed following completion of this survey. The Working Group emphasized the need for those power plant productivity improvements which are cost effective. The cost effectiveness of proposed availability improvement projects should be determined within the context of opportunities for operating and capital improvements available to an entire utility. The Working Group also identified the need for: allowing for plant designs that have a higher construction cost, but are also more reliable; allowing for recovery and reducing recovery lags for productivity-related capital expenditures; identifying and reducing disincentives in the regulatory process; ascertaining that utilities have sufficient money available to undertake timely maintenance; and support of EPRI and NERC to develop a relevant and accurate national data base. The DOE views these as extremely important aspects of any regulatory program to improve power plant productivity.

  1. Nuclear power plant cable materials :

    SciTech Connect

    Celina, Mathias Christopher; Gillen, Kenneth T; Lindgren, Eric Richard

    2013-05-01

    original qualification testing data alone. The non-availability of conclusive predictions for the aging conditions of 40-year-old cables implies that the same levels of uncertainty will remain for any re-qualification or extended operation of these cables. The highly variable aging behavior of the range of materials employed also implies that simple, standardized aging tests are not sufficient to provide the required aging data and performance predictions for all materials. It is recommended that focused studies be conducted that would yield the material aging parameters needed to predict aging behaviors under low dose, low temperature plant equivalent conditions and that appropriately aged specimens be prepared that would mimic oxidatively-aged 40- to 60- year-old materials for confirmatory LOCA performance testing. This study concludes that it is not sufficient to expose materials to rapid, high radiation and high temperature levels with subsequent LOCA qualification testing in order to predictively quantify safety margins of existing infrastructure with regard to LOCA performance. We need to better understand how cable jacketing and insulation materials have degraded over decades of power plant operation and how this aging history relates to service life prediction and the performance of existing equipment to withstand a LOCA situation.

  2. Nuclear power plant life extension

    SciTech Connect

    Carlson, D.D.; Bustard, L.D.; Harrison, D.L.

    1986-01-01

    Nuclear plant life extension represents an opportunity to achieve additional productive years of operation from existing nuclear power facilities. This is particularly important since operating licenses for over 50 GW of nuclear capacity will expire by the year 2010. By the year 2015, 85% of the total planned nuclear electric capacity will face retirement due to license expirations. Achieving additional productive years of operation from the nation's existing light water reactors is the goal of ongoing utility, vendor, US Department of Energy, and Electric Power Research Institute programs. Identifying potential technical issues associated with extending plant life and scoping realistic solutions represent first steps toward the development of a coordinated national plant life extension strategy. This is a substantial effort that must consider the breadth of issues associated with nuclear power plant design, operation, and licensing, and the numerous potential plant life extension strategies that may be appropriate to different utilities. Such an effort must enlist the expertise of the full spectrum of organizations in the nuclear industry including utilities, vendors, consultants, national laboratories, and professional organizations. A primary focus of these efforts is to identify operational changes and improvements in record-keeping, which, if implemented now, could enhance and preserve the life extension option.

  3. Power Plant Model Validation Tool

    SciTech Connect

    2016-02-12

    The PPMV is used to validate generator model using disturbance recordings. The PPMV tool contains a collection of power plant models and model validation studies, as well as disturbance recordings from a number of historic grid events. The user can import data from a new disturbance into the database, which converts PMU and SCADA data into GE PSLF format, and then run the tool to validate (or invalidate) the model for a specific power plant against its actual performance. The PNNL PPMV tool enables the automation of the process of power plant model validation using disturbance recordings. The tool uses PMU and SCADA measurements as input information. The tool automatically adjusts all required EPCL scripts and interacts with GE PSLF in the batch mode. The main tool features includes: - The tool interacts with GE PSLF - The tool uses GE PSLF Play-In Function for generator model validation. - Database of projects (model validation studies) - Database of the historic events. - Database of the power plant - The tool has advanced visualization capabilities - The tool automatically generates reports

  4. Modular Power Standard for Space Explorations Missions

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.; Gardner, Brent G.

    2016-01-01

    Future human space exploration will most likely be composed of assemblies of multiple modular spacecraft elements with interconnected electrical power systems. An electrical system composed of a standardized set modular building blocks provides significant development, integration, and operational cost advantages. The modular approach can also provide the flexibility to configure power systems to meet the mission needs. A primary goal of the Advanced Exploration Systems (AES) Modular Power System (AMPS) project is to establish a Modular Power Standard that is needed to realize these benefits. This paper is intended to give the space exploration community a "first look" at the evolving Modular Power Standard and invite their comments and technical contributions.

  5. Proceedings of a Topical Meeting On Small Scale Geothermal Power Plants and Geothermal Power Plant Projects

    SciTech Connect

    1986-02-12

    These proceedings describe the workshop of the Topical Meeting on Small Scale Geothermal Power Plants and Geothermal Power Plant Projects. The projects covered include binary power plants, rotary separator, screw expander power plants, modular wellhead power plants, inflow turbines, and the EPRI hybrid power system. Active projects versus geothermal power projects were described. In addition, a simple approach to estimating effects of fluid deliverability on geothermal power cost is described starting on page 119. (DJE-2005)

  6. Today's central receiver power plant

    NASA Astrophysics Data System (ADS)

    Alpert, D. J.; Kolb, G. J.; Chavez, J. M.

    1991-04-01

    For 15 years, the United States Department of Energy has worked with industry, both utilities and manufacturers, to develop the technology of solar central receiver power plants. In this type of plant, sunlight is concentrated by a field of sun-tracking mirrors, called heliostats, onto a centrally located receiver. The solar energy is collected in the form of a heated fluid, which is used to generate steam to power a conventional turbine generator. For a number of reasons, molten nitrate salt is now the preferred heat transfer fluid. Commercial plants will be sized between 100 and 200 MW. The impetus for developing central receivers comes from their unique advantages: (1) they produce clean, reliable, low-cost electricity; (2) they have practical energy storage that provides a high degree of dispatchability (annually up to 60 percent) - without fossil fuels; and (3) they are environmentally benign. Development efforts around the world have brought the technology to the brink of commercialization: The technical feasibility has been proven, and cost, performance, and reliability can be confidently predicted. Plans are currently being developed for the final steps toward commercial central receiver power plants.

  7. Locating nuclear power plants underground.

    PubMed

    Scott, F M

    1975-01-01

    This paper reviews some of the questions that have been asked by experts and others as to why nuclear power plants are not located or placed underground. While the safeguards and present designs make such installations unnecessary, there are some definite advantages that warrant the additional cost involved. First of all, such an arrangement does satisfy the psychological concern of a number of people and, in so doing, might gain the acceptance of the public so that such plants could be constructed in urban areas of load centers. The results of these studies are presented and some of the requirements necessary for underground installations described, including rock conditions, depth of facilities, and economics.

  8. Improving electrofishing catch consistency by standardizing power

    USGS Publications Warehouse

    Burkhardt, Randy W.; Gutreuter, Steve

    1995-01-01

    The electrical output of electrofishing equipment is commonly standardized by using either constant voltage or constant amperage, However, simplified circuit and wave theories of electricity suggest that standardization of power (wattage) available for transfer from water to fish may be critical for effective standardization of electrofishing. Electrofishing with standardized power ensures that constant power is transferable to fish regardless of water conditions. The in situ performance of standardized power output is poorly known. We used data collected by the interagency Long Term Resource Monitoring Program (LTRMP) in the upper Mississippi River system to assess the effectiveness of standardizing power output. The data consisted of 278 electrofishing collections, comprising 9,282 fishes in eight species groups, obtained during 1990 from main channel border, backwater, and tailwater aquatic areas in four reaches of the upper Mississippi River and one reach of the Illinois River. Variation in power output explained an average of 14.9% of catch variance for night electrofishing and 12.1 % for day electrofishing. Three patterns in catch per unit effort were observed for different species: increasing catch with increasing power, decreasing catch with increasing power, and no power-related pattern. Therefore, in addition to reducing catch variation, controlling power output may provide some capability to select particular species. The LTRMP adopted standardized power output beginning in 1991; standardized power output is adjusted for variation in water conductivity and water temperature by reference to a simple chart. Our data suggest that by standardizing electrofishing power output, the LTRMP has eliminated substantial amounts of catch variation at virtually no additional cost.

  9. World electric power plants database

    SciTech Connect

    2006-06-15

    This global database provides records for 104,000 generating units in over 220 countries. These units include installed and projected facilities, central stations and distributed plants operated by utilities, independent power companies and commercial and self-generators. Each record includes information on: geographic location and operating company; technology, fuel and boiler; generator manufacturers; steam conditions; unit capacity and age; turbine/engine; architect/engineer and constructor; and pollution control equipment. The database is issued quarterly.

  10. 78 FR 55118 - Seismic Instrumentation for Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-09

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Seismic Instrumentation for Nuclear Power Plants AGENCY: Nuclear Regulatory Commission. ACTION: Standard review plan-draft section revision; request for comment. SUMMARY: The U.S. Nuclear...

  11. Safety in nuclear power plants in India

    PubMed Central

    Deolalikar, R.

    2008-01-01

    Safety in nuclear power plants (NPPs) in India is a very important topic and it is necessary to dissipate correct information to all the readers and the public at large. In this article, I have briefly described how the safety in our NPPs is maintained. Safety is accorded overriding priority in all the activities. NPPs in India are not only safe but are also well regulated, have proper radiological protection of workers and the public, regular surveillance, dosimetry, approved standard operating and maintenance procedures, a well-defined waste management methodology, proper well documented and periodically rehearsed emergency preparedness and disaster management plans. The NPPs have occupational health policies covering periodic medical examinations, dosimetry and bioassay and are backed-up by fully equipped Personnel Decontamination Centers manned by doctors qualified in Occupational and Industrial Health. All the operating plants are ISO 14001 and IS 18001 certified plants. The Nuclear Power Corporation of India Limited today has 17 operating plants and five plants under construction, and our scientists and engineers are fully geared to take up many more in order to meet the national requirements. PMID:20040970

  12. Safety in nuclear power plants in India.

    PubMed

    Deolalikar, R

    2008-12-01

    Safety in nuclear power plants (NPPs) in India is a very important topic and it is necessary to dissipate correct information to all the readers and the public at large. In this article, I have briefly described how the safety in our NPPs is maintained. Safety is accorded overriding priority in all the activities. NPPs in India are not only safe but are also well regulated, have proper radiological protection of workers and the public, regular surveillance, dosimetry, approved standard operating and maintenance procedures, a well-defined waste management methodology, proper well documented and periodically rehearsed emergency preparedness and disaster management plans. The NPPs have occupational health policies covering periodic medical examinations, dosimetry and bioassay and are backed-up by fully equipped Personnel Decontamination Centers manned by doctors qualified in Occupational and Industrial Health. All the operating plants are ISO 14001 and IS 18001 certified plants. The Nuclear Power Corporation of India Limited today has 17 operating plants and five plants under construction, and our scientists and engineers are fully geared to take up many more in order to meet the national requirements.

  13. Modelling of nuclear power plant decommissioning financing.

    PubMed

    Bemš, J; Knápek, J; Králík, T; Hejhal, M; Kubančák, J; Vašíček, J

    2015-06-01

    Costs related to the decommissioning of nuclear power plants create a significant financial burden for nuclear power plant operators. This article discusses the various methodologies employed by selected European countries for financing of the liabilities related to the nuclear power plant decommissioning. The article also presents methodology of allocation of future decommissioning costs to the running costs of nuclear power plant in the form of fee imposed on each megawatt hour generated. The application of the methodology is presented in the form of a case study on a new nuclear power plant with installed capacity 1000 MW.

  14. Capacity Value of Concentrating Solar Power Plants

    SciTech Connect

    Madaeni, S. H.; Sioshansi, R.; Denholm, P.

    2011-06-01

    This study estimates the capacity value of a concentrating solar power (CSP) plant at a variety of locations within the western United States. This is done by optimizing the operation of the CSP plant and by using the effective load carrying capability (ELCC) metric, which is a standard reliability-based capacity value estimation technique. Although the ELCC metric is the most accurate estimation technique, we show that a simpler capacity-factor-based approximation method can closely estimate the ELCC value. Without storage, the capacity value of CSP plants varies widely depending on the year and solar multiple. The average capacity value of plants evaluated ranged from 45%?90% with a solar multiple range of 1.0-1.5. When introducing thermal energy storage (TES), the capacity value of the CSP plant is more difficult to estimate since one must account for energy in storage. We apply a capacity-factor-based technique under two different market settings: an energy-only market and an energy and capacity market. Our results show that adding TES to a CSP plant can increase its capacity value significantly at all of the locations. Adding a single hour of TES significantly increases the capacity value above the no-TES case, and with four hours of storage or more, the average capacity value at all locations exceeds 90%.

  15. Sabotage at Nuclear Power Plants

    SciTech Connect

    Purvis, James W.

    1999-07-21

    Recently there has been a noted worldwide increase in violent actions including attempted sabotage at nuclear power plants. Several organizations, such as the International Atomic Energy Agency and the US Nuclear Regulatory Commission, have guidelines, recommendations, and formal threat- and risk-assessment processes for the protection of nuclear assets. Other examples are the former Defense Special Weapons Agency, which used a risk-assessment model to evaluate force-protection security requirements for terrorist incidents at DOD military bases. The US DOE uses a graded approach to protect its assets based on risk and vulnerability assessments. The Federal Aviation Administration and Federal Bureau of Investigation conduct joint threat and vulnerability assessments on high-risk US airports. Several private companies under contract to government agencies use formal risk-assessment models and methods to identify security requirements. The purpose of this paper is to survey these methods and present an overview of all potential types of sabotage at nuclear power plants. The paper discusses emerging threats and current methods of choice for sabotage--especially vehicle bombs and chemical attacks. Potential consequences of sabotage acts, including economic and political; not just those that may result in unacceptable radiological exposure to the public, are also discussed. Applicability of risk-assessment methods and mitigation techniques are also presented.

  16. Ways to Improve Russian Coal-Fired Power Plants

    SciTech Connect

    Tumanovskii, A. G. Olkhovsky, G. G.

    2015-07-15

    Coal is an important fuel for the electric power industry of Russia, especially in Ural and the eastern part of the country. It is fired in boilers of large (200 – 800 MW) condensing power units and in many cogeneration power plants with units rated at 50 – 180 MW. Many coal-fired power plants have been operated for more than 40 – 50 years. Though serviceable, their equipment is obsolete and does not comply with the current efficiency, environmental, staffing, and availability standards. It is urgent to retrofit and upgrade such power plants using advanced equipment, engineering and business ideas. Russian power-plant engineering companies have designed such advanced power units and their equipment such as boilers, turbines, auxiliaries, process and environmental control systems similar to those produced by the world’s leading manufacturers. Their performance and ways of implementation are discussed.

  17. Standardizing power monitoring and control at exascale

    DOE PAGES

    Grant, Ryan E.; Levenhagen, Michael; Olivier, Stephen L.; ...

    2016-10-20

    Power API-the result of collaboration among national laboratories, universities, and major vendors-provides a range of standardized power management functions, from application-level control and measurement to facility-level accounting, including real-time and historical statistics gathering. Here, support is already available for Intel and AMD CPUs and standalone measurement devices.

  18. Power plant of high safety for underground nuclear power station

    SciTech Connect

    Dolgov, V.N.

    1993-12-31

    An ecologically pure, reliable, and economic nuclear power station is based on the use of nuclear power plants with the liquid-metal coolant. This plant with the inherent safety is protected from external influences due to the underground accommodations in geologically stable formations such as granites, cambrian clays, and salt deposits. The design features of this underground plant are described.

  19. Potential for increased use of anthracite by electric utilities: implications of the exemption from the EPA new source performance standards for power plants

    SciTech Connect

    Not Available

    1982-02-01

    The prospect for expanded utility use of anthracite by the year 2000 appears promising. It has been generally considered that anthracite can meet the ambient SO/sub 2/ standard of 1.2 lbs. SO/sub 2/ per million Btu without the use of scrubbers. In that event, the results of the engineering economic analysis show that an anthracite-based electric generating unit can be competitive with a comparable bituminous coal-fired unit. The logical competitive utility market area for anthracite is the Northeastern United States and the Middle Atlantic States because of the proximity of these areas to the anthracite region. Transport costs would be lower for anthracite (versus western Pennsylvania bituminous coal) to destinations in the areas of states immediately north, east and southeast of the eastern Pennsylvania anthracite region - upstate New York, New Jersey and Delaware, in particular. The analyses of the impact of the New Source Performance Standards (NSPS) exemption, and of future base load plant expansions, indicates that the potential additional utility use of anthracite over the next two decades is within a range of 1.5 to 15 million tons per year. One means of enhancing the competitive posture of anthracite versus bituminous, the analysis concludes, could be a more intense examination of anthracite resources to determine the best locations of large quantities of low sulfur recoverable reserves. Similarly, a more detailed investigation of a stockpile program would be warranted to determine its feasibility as a means of providing reserve potential, primarily during initial expansion, to allay supply reliability concerns.

  20. Dirty kilowatts: America's most polluting power plants

    SciTech Connect

    2007-07-15

    In 2006, the US EPA tracked more than 1,400 fossil-fired power plants of varying sizes through its Acid Rain Program. This report ranks each of the 378 largest plants (generating at least 2 million megawatt-hours in 2006) for which both the most recent EPA emissions data and Energy Information Administration (EIA) electric generation data are available. The report ranks each plant based on emission rates, or pounds of pollutant for each megawatt-hour (or million megawatt-hours, in the case of mercury) the plant produced. It ranks the top fifty power plants polluters for sulfur dioxide, nitrogen oxides, carbon dioxide, and mercury. A complete listing of all 378 plants is included as Appendix A. Appendix B contains overheads of an NETL presentation: Tracking new coal-fired power plants - coal's resurgence in electric power generation, 24 January 2007. The 12 states with the heaviest concentrations of the dirtiest power plants, in terms of total tons of carbon dioxide emitted, are: Texas (five, including two of the top 10 dirtiest plants); Pennsylvania (four); Indiana (four, including two of the top 10 dirtiest plants); Alabama (three); Georgia (three, including two of the top three dirtiest plants); North Carolina (three); Ohio (three); West Virginia (three); Wyoming (two); Florida (two); Kentucky (two); and New Mexico (two). Carbon dioxide emissions from power plants are now at roughly 2.5 billion tons per year. Power plants are responsible for about 30%-40% of all man-made CO{sub 2} emissions in the USA. Power plants, especially those that burn coal, are by far the largest single contributor of SO{sub 2} pollution in the United States. Power plant mercury emissions remain steady as compared to previous years. A searchable database ranking 378 U.S. power plants on carbon dioxide, sulfur dioxide, nitrogen oxide and mercury pollution is available online at http://www.dirtykilowatts.org. 22 refs., 8 tabs., 2 apps.

  1. 14. Power copy of drawing, August 21, 1915. POWER PLANT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Power copy of drawing, August 21, 1915. POWER PLANT EXTENSION, GENERAL PLANS. Drawing No. 4415, Facilities Engineering, Army Materials Technology Laboratory, Watertown, Massachusetts. - Watertown Arsenal, Building No. 60, Arsenal Street, Watertown, Middlesex County, MA

  2. 15. Power copy of drawing, August 21, 1915. POWER PLANT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Power copy of drawing, August 21, 1915. POWER PLANT EXTENSION, GENERAL PLANS. Drawing No. PA-A-36692, Facilities Engineering, Army Materials Technology Laboratory, Watertown, Massachusetts. - Watertown Arsenal, Building No. 60, Arsenal Street, Watertown, Middlesex County, MA

  3. Solar powered wastewater treatment plant. Final report

    SciTech Connect

    Venhuizen, D.

    1981-11-06

    Enhancement of the ability of a hyacinth pond to provide secondary effluent was studied. Control of flow geometry was addressed, and the hyacinth pond's role as part of an overall treatment system was emphasized. The use of greenhouses over the ponds to protect the plants during the winter was evaluated. The thermal and structural performances of the greenhouses were analyzed. It was concluded that the plants could be kept alive and green with only a tarpaulin-like cover in the winter climate of Texas, but to keep the plants actively growing would require a tightly built greenhouse with good infiltration control. The third area of investigation was the potential of wind power for providing energy for wastewater aeration. Aeration methods amenable to the use of wind power as the prime mover were investigated and found to compare favorably with standard aeration methods. The wind distribution at the site was monitored to determine whether the wind could be relied upon as a source of aeration energy.

  4. DIRECT FUEL CELL/TURBINE POWER PLANT

    SciTech Connect

    Hossein Ghezel-Ayagh

    2003-05-27

    The subMW hybrid DFC/T power plant facility was upgraded with a Capstone C60 microturbine and a state-of-the-art full size fuel cell stack. The integration of the larger microturbine extended the capability of the hybrid power plant to operate at high power ratings with a single gas turbine without the need for supplementary air. The objectives of this phase of subMW hybrid power plant tests are to support the development of process and control and to provide the insight for the design of the packaged subMW hybrid demonstration units. The development of the ultra high efficiency multi-MW power plants was focused on the design of 40 MW power plants with efficiencies approaching 75% (LHV of natural gas). The design efforts included thermodynamic cycle analysis of key gas turbine parameters such as compression ratio.

  5. Nuclear Power Plant Module, NPP-1: Nuclear Power Cost Analysis.

    ERIC Educational Resources Information Center

    Whitelaw, Robert L.

    The purpose of the Nuclear Power Plant Modules, NPP-1, is to determine the total cost of electricity from a nuclear power plant in terms of all the components contributing to cost. The plan of analysis is in five parts: (1) general formulation of the cost equation; (2) capital cost and fixed charges thereon; (3) operational cost for labor,…

  6. 78 FR 26747 - Oglethorpe Power Corporation: Proposed Biomass Power Plant

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-08

    ... Rural Utilities Service Oglethorpe Power Corporation: Proposed Biomass Power Plant AGENCY: Rural... construction of a 100 megawatt (MW) biomass plant and related facilities (Proposal) in Warren County, Georgia... to provide a reliable, long-term supply of renewable and sustainable energy at a reasonable cost...

  7. 76 FR 20624 - Oglethorpe Power Corporation: Proposed Biomass Power Plant

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-13

    ... Rural Utilities Service Oglethorpe Power Corporation: Proposed Biomass Power Plant AGENCY: Rural... Corporation (Oglethorpe) for the construction of a 100 megawatt (MW) biomass plant and related facilities... of renewable and sustainable energy at a reasonable cost to meet part of the electric energy needs...

  8. 76 FR 77963 - Oglethorpe Power Corporation; Proposed Biomass Power Plant

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-15

    ...; ] DEPARTMENT OF AGRICULTURE Rural Utilities Service Oglethorpe Power Corporation; Proposed Biomass Power Plant... (Oglethorpe) for the construction of a 100 megawatt (MW) biomass plant and related facilities (Proposal) in... renewable and sustainable energy at a reasonable cost to meet part of the electric energy needs...

  9. Water treatment plants assessment at Talkha power plant.

    PubMed

    El-Sebaie, Olfat D; Abd El-Kerim, Ghazy E; Ramadan, Mohamed H; Abd El-Atey, Magda M; Taha, Sahr Ahmed

    2002-01-01

    Talkha power plant is the only power plant located in El-Mansoura. It generates electricity using two different methods by steam turbine and gas turbine. Both plants drew water from River Nile (208 m3 /h). The Nile raw water passes through different treatment processes to be suitable for drinking and operational uses. At Talkha power plant, there are two purification plants used for drinking water supply (100 m3/h) and for water demineralization supply (108 m3/h). This study aimed at studying the efficiency of the water purification plants. For drinking water purification plant, the annual River Nile water characterized by slightly alkaline pH (7.4-8), high annual mean values of turbidity (10.06 NTU), Standard Plate Count (SPC) (313.3 CFU/1 ml), total coliform (2717/100 ml), fecal coliform (0-2400/100 ml), and total algae (3 x 10(4) org/I). The dominant group of algae all over the study period was green algae. The blue green algae was abundant in Summer and Autumn seasons. The pH range, and the annual mean values of turbidity, TDS, total hardness, sulfates, chlorides, nitrates, nitrites, fluoride, and residual chlorine for purified water were in compliance with Egyptian drinking water standards. All the SPC recorded values with an annual mean value of 10.13 CFU/1 ml indicated that chlorine dose and contact time were not enough to kill the bacteria. However, they were in compliance with Egyptian decree (should not exceed 50 CFU/1 ml). Although the removal efficiency of the plant for total coliform and blue green algae was high (98.5% and 99.2%, respectively), the limits of the obtained results with an annual mean values of 40/100 ml and 15.6 org/l were not in compliance with the Egyptian decree (should be free from total coliform, fecal coliform and blue green algae). For water demineralization treatment plant, the raw water was characterized by slightly alkaline pH. The annual mean values of conductivity, turbidity, and TDS were 354.6 microS/cm, 10.84 NTU, and 214

  10. Lessons learned from existing biomass power plants

    SciTech Connect

    Wiltsee, G.

    2000-02-24

    This report includes summary information on 20 biomass power plants, which represent some of the leaders in the industry. In each category an effort is made to identify plants that illustrate particular points. The project experiences described capture some important lessons learned that lead in the direction of an improved biomass power industry.

  11. Harmonics in a Wind Power Plant: Preprint

    SciTech Connect

    Preciado, V.; Madrigal, M.; Muljadi, E.; Gevorgian, V.

    2015-04-02

    Wind power generation has been growing at a very fast pace for the past decade, and its influence and impact on the electric power grid is significant. As in a conventional power plant, a wind power plant (WPP) must ensure that the quality of the power being delivered to the grid is excellent. At the same time, the wind turbine should be able to operate immune to small disturbances coming from the grid. Harmonics are one of the more common power quality issues presented by large WPPs because of the high switching frequency of the power converters and the possible nonlinear behavior from electric machines (generator, transformer, reactors) within a power plant. This paper presents a summary of the most important issues related to harmonics in WPPs and discusses practical experiences with actual Type 1 and Type 3 wind turbines in two WPPs.

  12. 78 FR 56749 - Site Characteristics and Site Parameters for Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-13

    ... COMMISSION Site Characteristics and Site Parameters for Nuclear Power Plants AGENCY: Nuclear Regulatory... NUREG-0800, ``Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants... Review of Safety Analysis Reports for Nuclear Power Plants: LWR Edition. The proposed changes to the...

  13. Demonstration of 5MW PAFC power plant

    SciTech Connect

    Usami, Yutaka; Takae, Toshio

    1996-12-31

    Phosphoric Acid Fuel Cell Technology Research Association, established in May 1991 by Japanese 10 electric power and 4 gas companies, started a new project in 1991 FY, with the object of PAFC realization and aiming the development of 5MW- class PAFC. power plant for urban energy center and 1 MW- class power plant for onsite use. This project is carried out as 6 years plan jointly with New Energy and Industrial Technology Development Organization. The targets of the project are to evaluate and resolve the development task, such as a high reliability, compactness and cost reduction throughout the engineering, manufacturing and field testing of PAFC power plants. PAC tests and power generating test operations of 5MW plant were completed in 1994. Conducting the 2 years continuous operations and studies since 1995, the plant operational performance, system control characteristics, waste heat recovery and environmental advantage will be demonstrated.

  14. EDITORIAL: Safety aspects of fusion power plants

    NASA Astrophysics Data System (ADS)

    Kolbasov, B. N.

    2007-07-01

    This special issue of Nuclear Fusion contains 13 informative papers that were initially presented at the 8th IAEA Technical Meeting on Fusion Power Plant Safety held in Vienna, Austria, 10-13 July 2006. Following recommendation from the International Fusion Research Council, the IAEA organizes Technical Meetings on Fusion Safety with the aim to bring together experts to discuss the ongoing work, share new ideas and outline general guidance and recommendations on different issues related to safety and environmental (S&E) aspects of fusion research and power facilities. Previous meetings in this series were held in Vienna, Austria (1980), Ispra, Italy (1983), Culham, UK (1986), Jackson Hole, USA (1989), Toronto, Canada (1993), Naka, Japan (1996) and Cannes, France (2000). The recognized progress in fusion research and technology over the last quarter of a century has boosted the awareness of the potential of fusion to be a practically inexhaustible and clean source of energy. The decision to construct the International Thermonuclear Experimental Reactor (ITER) represents a landmark in the path to fusion power engineering. Ongoing activities to license ITER in France look for an adequate balance between technological and scientific deliverables and complying with safety requirements. Actually, this is the first instance of licensing a representative fusion machine, and it will very likely shape the way in which a more common basis for establishing safety standards and policies for licensing future fusion power plants will be developed. Now that ITER licensing activities are underway, it is becoming clear that the international fusion community should strengthen its efforts in the area of designing the next generations of fusion power plants—demonstrational and commercial. Therefore, the 8th IAEA Technical Meeting on Fusion Safety focused on the safety aspects of power facilities. Some ITER-related safety issues were reported and discussed owing to their potential

  15. DIRECT FUEL/CELL/TURBINE POWER PLANT

    SciTech Connect

    Hossein Ghezel-Ayagh

    2004-05-01

    This report includes the progress in development of Direct FuelCell/Turbine{reg_sign} (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. FCE successfully completed testing of the pre-alpha DFC/T hybrid power plant. This power plant was constructed by integration of a 250kW fuel cell stack and a microturbine. The tests of the cascaded fuel cell concept for achieving high fuel utilizations were completed. The tests demonstrated that the concept results in higher power plant efficiency. Also, the preliminary design of a 40 MW power plant including the key equipment layout and the site plan was completed.

  16. Wind Power Plant SCADA and Controls

    SciTech Connect

    Badrzadeh, Babak; Castillo, Nestor; Bradt, M.; Janakiraman, R.; Kennedy, R.; Klein, S.; Smith, Travis M; Vargas, L.

    2011-01-01

    Modern Wind Power Plants (WPPs) contain a variety of intelligent electronic devices (IEDs), Supervisory Control and Data Acquisition (SCADA) and communication systems. This paper discusses the issues related to a typical WPP's SCADA and Control. Presentation topics are: (1) Wind Turbine Controls; (2) Wind Plant SCADA, OEM SCADA Solutions, Third-Party SCADA Solutions; (3) Wind Plant Control; and (4) Security and Reliability Compliance.

  17. Nuclear Power Plant Concrete Structures

    SciTech Connect

    Basu, Prabir; Labbe, Pierre; Naus, Dan

    2013-01-01

    A nuclear power plant (NPP) involves complex engineering structures that are significant items of the structures, systems and components (SSC) important to the safe and reliable operation of the NPP. Concrete is the commonly used civil engineering construction material in the nuclear industry because of a number of advantageous properties. The NPP concrete structures underwent a great degree of evolution, since the commissioning of first NPP in early 1960. The increasing concern with time related to safety of the public and environment, and degradation of concrete structures due to ageing related phenomena are the driving forces for such evolution. The concrete technology underwent rapid development with the advent of chemical admixtures of plasticizer/super plasticizer category as well as viscosity modifiers and mineral admixtures like fly ash and silica fume. Application of high performance concrete (HPC) developed with chemical and mineral admixtures has been witnessed in the construction of NPP structures. Along with the beneficial effect, the use of admixtures in concrete has posed a number of challenges as well in design and construction. This along with the prospect of continuing operation beyond design life, especially after 60 years, the impact of extreme natural events ( as in the case of Fukushima NPP accident) and human induced events (e.g. commercial aircraft crash like the event of September 11th 2001) has led to further development in the area of NPP concrete structures. The present paper aims at providing an account of evolution of NPP concrete structures in last two decades by summarizing the development in the areas of concrete technology, design methodology and construction techniques, maintenance and ageing management of concrete structures.

  18. Reliability of emergency ac power systems at nuclear power plants

    SciTech Connect

    Battle, R E; Campbell, D J

    1983-07-01

    Reliability of emergency onsite ac power systems at nuclear power plants has been questioned within the Nuclear Regulatory Commission (NRC) because of the number of diesel generator failures reported by nuclear plant licensees and the reactor core damage that could result from diesel failure during an emergency. This report contains the results of a reliability analysis of the onsite ac power system, and it uses the results of a separate analysis of offsite power systems to calculate the expected frequency of station blackout. Included is a design and operating experience review. Eighteen plants representative of typical onsite ac power systems and ten generic designs were selected to be modeled by fault trees. Operating experience data were collected from the NRC files and from nuclear plant licensee responses to a questionnaire sent out for this project.

  19. Fukushima nuclear power plant accident was preventable

    NASA Astrophysics Data System (ADS)

    Kanoglu, Utku; Synolakis, Costas

    2015-04-01

    , insufficient attention was paid to evidence of large tsunamis inundating the region, i.e., AD 869 Jogan and 1677 Empo Boso-oki tsunamis, and the 1896 Sanriku tsunami maximum height in eastern Japan whose maximum runup was 38m. Two, the design safety conditions were different in Onagawa, Fukushima and Tokai NPPs. It is inconceivable to have had different earthquake scenarios for the NPPs at such close distance from each other. Three, studying the sub-standard TEPCO analysis performed only months before the accident shows that it is not the accuracy of numerical computations or the veracity of the computational model that doomed the NPP, but the lack of familiarity with the context of numerical predictions. Inundation projections, even if correct for one particular scenario, need to always be put in context of similar studies and events elsewhere. To put it in colloquial terms, following a recipe from a great cookbook and having great cookware does not always result in great food, if the cook is an amateur. The Fukushima accident was preventable. Had the plant's owner TEPCO and NISA followed international best practices and standards, they would had predicted the possibility of the plant being struck by the size of tsunami that materialized in 2011. If the EDGs had been relocated inland or higher, there would have been no loss of power. A clear chance to have reduced the impact of the tsunami at Fukushima was lost after the 2010 Chilean tsunami. Standards are not only needed for evaluating the vulnerability of NPPs against tsunami attack, but also for evaluating the competence of modelers and evaluators. Acknowledgment: This work is partially supported by the project ASTARTE (Assessment, STrategy And Risk Reduction for Tsunamis in Europe) FP7-ENV2013 6.4-3, Grant 603839 to the Technical University of Crete and the Middle East Technical University.

  20. Direct FuelCell/Turbine Power Plant

    SciTech Connect

    Hossein Ghezel-Ayagh

    2004-11-19

    This report includes the progress in development of Direct Fuel Cell/Turbine. (DFC/T.) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. FCE successfully completed testing of the pre-alpha sub-MW DFC/T power plant. This power plant was constructed by integration of a 250kW fuel cell stack and a microturbine. Following these proof-of-concept tests, a stand-alone test of the microturbine verified the turbine power output expectations at an elevated (representative of the packaged unit condition) turbine inlet temperature. Preliminary design of the packaged sub-MW alpha DFC/T unit has been completed and procurement activity has been initiated. The preliminary design of a 40 MW power plant including the key equipment layout and the site plan was completed. A preliminary cost estimate for the 40 MW DFC/T plant has also been prepared. The tests of the cascaded fuel cell concept for achieving high fuel utilizations were completed. The tests demonstrated that the concept results in higher power plant efficiency. Alternate stack flow geometries for increased power output/fuel utilization capabilities are also being evaluated.

  1. DIRECT FUEL CELL/TURBINE POWER PLANT

    SciTech Connect

    Hossein Ghezel-Ayagh

    2004-11-01

    This report includes the progress in development of Direct FuelCell/Turbine{reg_sign} (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. The operation of sub-MW hybrid Direct FuelCell/Turbine power plant test facility with a Capstone C60 microturbine was initiated in March 2003. The inclusion of the C60 microturbine extended the range of operation of the hybrid power plant to higher current densities (higher power) than achieved in previous tests using a 30kW microturbine. The design of multi-MW DFC/T hybrid systems, approaching 75% efficiency on natural gas, was initiated. A new concept was developed based on clusters of One-MW fuel cell modules as the building blocks. System analyses were performed, including systems for near-term deployment and power plants with long-term ultra high efficiency objectives. Preliminary assessment of the fuel cell cluster concept, including power plant layout for a 14MW power plant, was performed.

  2. M-C Power commercialization program for MCFC power plants

    NASA Astrophysics Data System (ADS)

    Cámara, E. H.; Schora, F. C.

    1992-01-01

    M-C Power Corporation was established by the Institute of Gas Technology (IGT) to develop, manufacture, market, sell and service commercial MCFC power plants using IGT's IMHEX® fuel cell stack concept. M-C Power has created an integrated commercialization program to develop a market-responsive, natural gas-fueled MCFC power plant. M-C Power's market entry offering will range from 500 kW to 3 MW and will be designed for on-site and distributed power applications. Future products will include a wider range of sizes for distributed power and power plants for dispersed (30-50 MW) and base load ( > 100 MW) power generation, the latter fueled by coal-derived gases. M-C Power Corporation has established the world's most advanced MCFC components and stack manufacturing facilities at its plant in Burr Ridge, IL, capable of producing 3 MW/year of stacks based on one shift per day, five days per week operation. This capacity can be increased to 12 MW/year by adding one tape casting machine and operating three shifts per day for 330 days/year. An industry group has been formed to guide, support, and stimulate the IMHEX® Commercialization Program. This group is called the Alliance to Commercialize Carbonate Technology (ACCT). ACCT members include electric, gas and combination utilities as well as pipeline companies and potential industrial users. In addition, the program enjoys wide support from government, industry and research institutions.

  3. EPA Facility Registry Service (FRS): Power Plants

    EPA Pesticide Factsheets

    This GIS dataset contains data on power plants, based on the Energy Information Administration's EIA-860 dataset and supplemented with data from EPA's Facility Registry Service (FRS) compiled from various EPA programs.

  4. GHGRP Power Plants Sector Industrial Profiles

    EPA Pesticide Factsheets

    EPA's Greenhouse Gas Reporting Program periodically produces detailed profiles of the various industries that report under the program. These profiles, available for download below, contain detailed analyses for the Power Plants industry.

  5. 35. SOUTH PLANT NORTHCENTER RAILROAD SPUR, SHOWING POWER PLANT (BUILDINGS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. SOUTH PLANT NORTH-CENTER RAILROAD SPUR, SHOWING POWER PLANT (BUILDINGS 325 AND 321) AT LEFT, FUEL TOWER AT CENTER AND CHLORINE EVAPORATOR (BUILDING 251) AT RIGHT. VIEW TO WEST - Rocky Mountain Arsenal, Bounded by Ninety-sixth Avenue & Fifty-sixth Avenue, Buckley Road, Quebec Street & Colorado Highway 2, Commerce City, Adams County, CO

  6. 34. SOUTH PLANT NORTHCENTER RAILROAD SPUR, WITH ELECTRICAL POWER PLANT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. SOUTH PLANT NORTH-CENTER RAILROAD SPUR, WITH ELECTRICAL POWER PLANT (BUILDING 325) AT LEFT AND CELL BUILDING (BUILDING 242) AT RIGHT. VIEW TO WEST - Rocky Mountain Arsenal, Bounded by Ninety-sixth Avenue & Fifty-sixth Avenue, Buckley Road, Quebec Street & Colorado Highway 2, Commerce City, Adams County, CO

  7. Efficiencies of Power Plants Using Hydrothermal Oxidation

    NASA Astrophysics Data System (ADS)

    Hirosaka, Kazuma; Yuvamitra, Korakot; Ishikawa, Akira; Hasegawa, Tatsuya

    Wet biomass is hard to handle as a fuel for power plants because it contains high moisture and its drying process needs more energy input than it produces. Hydrothermal oxidation could be one of the promising technologies to overcome this problem because this process does not need drying process at all. We focus on recovery of thermal energy produced by hydrothermal oxidation of wet biomass. Two kinds of power plant are investigated, a direct type and an indirect type. In the direct type power plant, reactant is oxidized in a reactor and directly flowed into a turbine. In the indirect type power plant, reactant is oxidized in a reactor and the reaction heat is conveyed to the main water, which is flowed into a turbine. The amount of electric power and the energy conversion efficiency are calculated by using ethanol, glucose and peat solutions as reactants. In both type of power plant, one steam turbine is employed for generating electricity with the maximum turbine inlet temperature of 650 °C. As ethanol concentration increased, the amount of electric power and the energy conversion efficiency become higher. The maximum efficiency for the direct type power plant using ethanol solution is about 26.4 % for 17.6 wt% at the reactor pressure of 10 MPa. The efficiency of the indirect type power plant is much lower than that of the direct type, but by pressurizing main water up to 4 MPa, the efficiency becomes higher up to 20.9 %. For glucose solution, the maximum efficiency for the direct type is about 25.5 % for 34.5 wt% at the reactor pressure of 5 MPa. The maximum efficiency of the indirect type at the main water pressure of 4 MPa is about 21.1 % for 40.7 wt%. For peat solution, only the indirect type is investigated. The maximum efficiency at the main water pressure of 4 MPa is about 20.8 % for 36.8 wt%.

  8. Dose reduction at nuclear power plants

    SciTech Connect

    Baum, J.W.; Dionne, B.J.

    1983-01-01

    The collective dose equivalent at nuclear power plants increased from 1250 rem in 1969 to nearly 54,000 rem in 1980. This rise is attributable primarily to an increase in nuclear generated power from 1289 MW-y to 29,155 MW-y; and secondly, to increased average plant age. However, considerable variation in exposure occurs from plant to plant depending on plant type, refueling, maintenance, etc. In order to understand the factors influencing these differences, an investigation was initiated to study dose-reduction techniques and effectiveness of as low as reasonably achievable (ALARA) planning at light water plants. Objectives are to: identify high-dose maintenance tasks and related dose-reduction techniques; investigate utilization of high-reliability, low-maintenance equipment; recommend improved radioactive waste handling equipment and procedures; examine incentives for dose reduction; and compile an ALARA handbook.

  9. Power plant siting and reuse of old sites

    SciTech Connect

    Oven, H.S.

    1995-12-31

    The State of Florida passed the Florida Electrical Power Plant Siting Act in 1973. The Act has been in effect since July 1, 1973. Power plants that were operating or had permits to construct were defined as existing power plants. This Act was designed to provide a one-stop Site of Florida. The Act also provided for coordination of long range planning by electric utilities and local and state planning agencies. The legislative intent was to consider the present and predicted growth in electric power demands and to provide for a centrally coordinated state approval system with respect to each proposed site. It was recognized that selection of sites and transmission corridors would have a significant impact on the welfare of the population, location and growth of industry and the use of the state`s natural resources. The decision to approve or deny would be based on standards and recommendations of the reviewing agencies.

  10. Low-Rank Coal Grinding Performance Versus Power Plant Performance

    SciTech Connect

    Rajive Ganguli; Sukumar Bandopadhyay

    2008-12-31

    The intent of this project was to demonstrate that Alaskan low-rank coal, which is high in volatile content, need not be ground as fine as bituminous coal (typically low in volatile content) for optimum combustion in power plants. The grind or particle size distribution (PSD), which is quantified by percentage of pulverized coal passing 74 microns (200 mesh), affects the pulverizer throughput in power plants. The finer the grind, the lower the throughput. For a power plant to maintain combustion levels, throughput needs to be high. The problem of particle size is compounded for Alaskan coal since it has a low Hardgrove grindability index (HGI); that is, it is difficult to grind. If the thesis of this project is demonstrated, then Alaskan coal need not be ground to the industry standard, thereby alleviating somewhat the low HGI issue (and, hopefully, furthering the salability of Alaskan coal). This project studied the relationship between PSD and power plant efficiency, emissions, and mill power consumption for low-rank high-volatile-content Alaskan coal. The emissions studied were CO, CO{sub 2}, NO{sub x}, SO{sub 2}, and Hg (only two tests). The tested PSD range was 42 to 81 percent passing 76 microns. Within the tested range, there was very little correlation between PSD and power plant efficiency, CO, NO{sub x}, and SO{sub 2}. Hg emissions were very low and, therefore, did not allow comparison between grind sizes. Mill power consumption was lower for coarser grinds.

  11. OUT Success Stories: Solar Trough Power Plants

    DOE R&D Accomplishments Database

    Jones, J.

    2000-08-01

    The Solar Electric Generating System (SEGS) plants use parabolic-trough solar collectors to capture the sun's energy and convert it to heat. The SEGS plants range in capacity from 13.8 to 80 MW, and they were constructed to meet Southern California Edison Company's periods of peak power demand.

  12. OUT Success Stories: Solar Trough Power Plants

    SciTech Connect

    Jones, J.

    2000-08-05

    The Solar Electric Generating System (SEGS) plants use parabolic-trough solar collectors to capture the sun's energy and convert it to heat. The SEGS plants range in capacity from 13.8 to 80 MW, and they were constructed to meet Southern California Edison Company's periods of peak power demand.

  13. INDEPENDENT POWER PLANT USING WOOD WASTE

    EPA Science Inventory

    A 1 MWe power plant using waste wood is to be installed at a U.S. Marine Corps base, which will supply all the wood for the plant from a landfill site. The core energy conversion technology is a down-draft gasifier supplying approximately 150 Btu/scf gas to both spark ignition an...

  14. Questions and Answers About Nuclear Power Plants.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC.

    This pamphlet is designed to answer many of the questions that have arisen about nuclear power plants and the environment. It is organized into a question and answer format, with the questions taken from those most often asked by the public. Topics include regulation of nuclear power sources, potential dangers to people's health, whether nuclear…

  15. Course in power plant systems interactions

    SciTech Connect

    Robinson, G.E.; Baratta, A.J.

    1987-01-01

    Like most nuclear engineering programs, the Pennsylvania State Univ. (Penn State) program includes in-depth studies of reactor theory and thermal hydraulics, heat transfer, and fluid flow. The compartmentalization of these topics results in a distinct lack of understanding of the way that typical systems in a nuclear power plant interact to produce the transients that occur in a plant. To correct the deficiency, attempts have been made to develop a comprehensive systems course, which not only educates the students about power plant systems but also teaches them the way they interact. This paper describes the various approaches used and the problems encountered with each approach.

  16. Sowing seed, planting trees, producing power

    SciTech Connect

    Moon, S.

    1997-07-01

    With three crops-to-power projects, the US DOE and US DOA have their biomass power for rural development initiative in high gear. Farmers can produce abundant supplies of fast-growing energy crops on marginal or underutilized acreage to feed power plants. This article summarizes the three projects in Minnesota, Iowa, and New York, and discusses the importance of the necessity for cooperation.

  17. DIRECT FUEL CELL/TURBINE POWER PLANT

    SciTech Connect

    Hossein Ghezel-Ayagh

    2003-05-22

    Project activities were focused on the design and construction the sub-scale hybrid Direct Fuel Cell/turbine (DFC/T{reg_sign}) power plant and modification of a Capstone Simple Cycle Model 330 microturbine. The power plant design work included preparation of system flow sheet and performing computer simulations based on conservation of mass and energy. The results of the simulation analyses were utilized to prepare data sheets and specifications for balance-of-plant equipment. Process flow diagram (PFD) and piping and instrumentation diagrams (P&ID) were also completed. The steady state simulation results were used to develop design information for modifying the control functions, and for sizing the heat exchangers required for recuperating the waste heat from the power plant. Line and valve sizes for the interconnecting pipes between the microturbine and the heat recuperators were also identified.

  18. State regulation and power plant productivity: background and recommendations

    SciTech Connect

    Not Available

    1980-09-01

    This report was prepared by representatives of several state regulatory agencies. It is a guide to some of the activities currently under way in state agencies to promote increased availability of electrical generating power plants. Standard measures of plant performance are defined and the nature of data bases that report such measures is discussed. It includes reviews of current state, federal, and industry programs to enhance power plant productivity and provides detailed outlines of programs in effect in California, Illinois, Michigan, New York, North Carolina, Ohio, and Texas. A number of actions are presented that could be adopted by state regulatory agencies, depending on local conditions. They include: develop a commission position or policy statement to encourage productivity improvements by utilities; coordinate state efforts with ongoing industry and government programs to improve the acquisition of power plant performance data and the maintenance of quality information systems; acquire the capability to perform independent analyses of power plant productivity; direct the establishment of productivity improvement programs, including explicit performance objectives for both existing and planned power plants, and a performance program; establish a program of incentives to motivate productivity improvement activities; and participate in ongoing efforts at all levels and initiate new actions to promote productivity improvements.

  19. A methodology for evaluating ``new`` technologies in nuclear power plants

    SciTech Connect

    Korsah, K.; Clark, R.L.; Holcomb, D.E.

    1994-06-01

    As obsolescence and spare parts issues drive nuclear power plants to upgrade with new technology (such as optical fiber communication systems), the ability of the new technology to withstand stressors present where it is installed needs to be determined. In particular, new standards may be required to address qualification criteria and their application to the nuclear power plants of tomorrow. This paper discusses the failure modes and age-related degradation mechanisms of fiber optic communication systems, and suggests a methodology for identifying when accelerated aging should be performed during qualification testing.

  20. Perspectives on Magnetized Target Fusion Power Plants

    NASA Astrophysics Data System (ADS)

    Miller, R. L.

    2007-06-01

    One approach to Magnetized Target Fusion (MTF) builds upon the ongoing experimental effort (FRX-L) to generate a Field Reversed Configuration (FRC) target plasma suitable for translation and cylindrical-liner (i.e., converging flux conserver) implosion. Numerical modeling is underway to elucidate key performance drivers for possible future power-plant extrapolations. The fusion gain, Q (ratio of DT fusion yield to the sum of initial liner kinetic energy plus plasma formation energy), sets the power-plant duty cycle for a nominal design electric power [ e.g. 1,000 MWe(net)]. A pulsed MTF power plant of this type derives from the historic Fast Liner Reactor (FLR) concept and shares attributes with the recent Inertial Fusion Energy (IFE) Z-pinch and laser-driven pellet HYLIFE-II conceptual designs.

  1. Monitoring Biological Activity at Geothermal Power Plants

    SciTech Connect

    Peter Pryfogle

    2005-09-01

    The economic impact of microbial growth in geothermal power plants has been estimated to be as high as $500,000 annually for a 100 MWe plant. Many methods are available to monitor biological activity at these facilities; however, very few plants have any on-line monitoring program in place. Metal coupon, selective culturing (MPN), total organic carbon (TOC), adenosine triphosphate (ATP), respirometry, phospholipid fatty acid (PLFA), and denaturing gradient gel electrophoresis (DGGE) characterizations have been conducted using water samples collected from geothermal plants located in California and Utah. In addition, the on-line performance of a commercial electrochemical monitor, the BIoGEORGE?, has been evaluated during extended deployments at geothermal facilities. This report provides a review of these techniques, presents data on their application from laboratory and field studies, and discusses their value in characterizing and monitoring biological activities at geothermal power plants.

  2. Rapporteur report: MHD electric power plants

    NASA Technical Reports Server (NTRS)

    Seikel, G. R.

    1980-01-01

    Five US papers from the Proceedings of the Seventh International Conference on MHD Electrical Power Generation at the Massachusetts Institute of Technology are summarized. Results of the initial parametric phase of the US effort on the study of potential early commercial MHD plants are reported and aspects of the smaller commercial prototype plant termed the Engineering Test Facility are discussed. The alternative of using a disk geometry generator rather than a linear generator in baseload MHD plants is examined. Closed-cycle as well as open-cycle MHD plants are considered.

  3. 77 FR 3009 - Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Advanced Boiling Water Reactors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-20

    ... COMMISSION Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Advanced Boiling Water Reactors..., ``Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Advanced Boiling Water Reactors.'' DATES... developed using this Catalog along with the Operator Licensing Examination Standards for Power...

  4. Direct FuelCell/Turbine Power Plant

    SciTech Connect

    Hossein Ghezel-Ayagh

    2008-09-30

    This report summarizes the progress made in development of Direct FuelCell/Turbine (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T system employs an indirectly heated Turbine Generator to supplement fuel cell generated power. The concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, minimal emissions, reduced carbon dioxide release to the environment, simplicity in design, direct reforming internal to the fuel cell, and potential cost competitiveness with existing combined cycle power plants. Proof-of-concept tests using a sub-MW-class DFC/T power plant at FuelCell Energy's (FCE) Danbury facility were conducted to validate the feasibility of the concept and to measure its potential for electric power production. A 400 kW-class power plant test facility was designed and retrofitted to conduct the tests. The initial series of tests involved integration of a full-size (250 kW) Direct FuelCell stack with a 30 kW Capstone microturbine. The operational aspects of the hybrid system in relation to the integration of the microturbine with the fuel cell, process flow and thermal balances, and control strategies for power cycling of the system, were investigated. A subsequent series of tests included operation of the sub-MW Direct FuelCell/Turbine power plant with a Capstone C60 microturbine. The C60 microturbine extended the range of operation of the hybrid power plant to higher current densities (higher power) than achieved in initial tests using the 30kW microturbine. The proof-of-concept test results confirmed the stability and controllability of operating a fullsize (250 kW) fuel cell stack in combination with a microturbine. Thermal management of the system was confirmed and power plant operation, using the microturbine as the only source of fresh air supply to the

  5. Nuclear power plant security assessment technical manual.

    SciTech Connect

    O'Connor, Sharon L.; Whitehead, Donnie Wayne; Potter, Claude S., III

    2007-09-01

    This report (Nuclear Power Plant Security Assessment Technical Manual) is a revision to NUREG/CR-1345 (Nuclear Power Plant Design Concepts for Sabotage Protection) that was published in January 1981. It provides conceptual and specific technical guidance for U.S. Nuclear Regulatory Commission nuclear power plant design certification and combined operating license applicants as they: (1) develop the layout of a facility (i.e., how buildings are arranged on the site property and how they are arranged internally) to enhance protection against sabotage and facilitate the use of physical security features; (2) design the physical protection system to be used at the facility; and (3) analyze the effectiveness of the PPS against the design basis threat. It should be used as a technical manual in conjunction with the 'Nuclear Power Plant Security Assessment Format and Content Guide'. The opportunity to optimize physical protection in the design of a nuclear power plant is obtained when an applicant utilizes both documents when performing a security assessment. This document provides a set of best practices that incorporates knowledge gained from more than 30 years of physical protection system design and evaluation activities at Sandia National Laboratories and insights derived from U.S. Nuclear Regulatory Commission technical staff into a manual that describes a development and analysis process of physical protection systems suitable for future nuclear power plants. In addition, selected security system technologies that may be used in a physical protection system are discussed. The scope of this document is limited to the identification of a set of best practices associated with the design and evaluation of physical security at future nuclear power plants in general. As such, it does not provide specific recommendations for the design and evaluation of physical security for any specific reactor design. These best practices should be applicable to the design and

  6. Nuclear Security for Floating Nuclear Power Plants

    SciTech Connect

    Skiba, James M.; Scherer, Carolynn P.

    2015-10-13

    Recently there has been a lot of interest in small modular reactors. A specific type of these small modular reactors (SMR,) are marine based power plants called floating nuclear power plants (FNPP). These FNPPs are typically built by countries with extensive knowledge of nuclear energy, such as Russia, France, China and the US. These FNPPs are built in one country and then sent to countries in need of power and/or seawater desalination. Fifteen countries have expressed interest in acquiring such power stations. Some designs for such power stations are briefly summarized. Several different avenues for cooperation in FNPP technology are proposed, including IAEA nuclear security (i.e. safeguards), multilateral or bilateral agreements, and working with Russian design that incorporates nuclear safeguards for IAEA inspections in non-nuclear weapons states

  7. Progress in developing tidal electric power plants reported

    NASA Astrophysics Data System (ADS)

    Blokhnin, A.

    1984-12-01

    The natural energy potential of tides on the shores of the U.S.S.R. is equal to about a third of the world's total. The Achilles heel of tidal power plants is their pulsating operation. One solution to this problem was to build a hydroelectric power plant for use in tandem with the tidal power plant. During lulls in the tidal plant, the hydraulic power plant switches on at full power. Possible sites for dual plants were discussed.

  8. Efficiency improvement of thermal coal power plants

    SciTech Connect

    Hourfar, D.

    1996-12-31

    The discussion concerning an increase of the natural greenhouse effect by anthropogenic changes in the composition of the atmosphere has increased over the past years. The greenhouse effect has become an issue of worldwide debate. Carbon dioxide is the most serious emission of the greenhouse gases. Fossil-fired power plants have in the recent past been responsible for almost 30 % of the total CO{sub 2} emissions in Germany. Against this background the paper will describe the present development of CO{sub 2} emissions from power stations and present actual and future opportunities for CO{sub 2} reduction. The significance attached to hard coal as one of today`s prime sources of energy with the largest reserves worldwide, and, consequently, its importance for use in power generation, is certain to increase in the years to come. The further development of conventional power plant technology, therefore, is vital, and must be carried out on the basis of proven operational experience. The main incentive behind the development work completed so far has been, and continues to be, the achievement of cost reductions and environmental benefits in the generation of electricity by increasing plant efficiency, and this means that, in both the short and the long term, power plants with improved conventional technology will be used for environmentally acceptable coal-fired power generation.

  9. Scanning thermal plumes. [from power plant condensers

    NASA Technical Reports Server (NTRS)

    Scarpace, F. L.; Madding, R. P.; Green, T., III

    1974-01-01

    In order to study the behavior and effects of thermal plumes associated with the condenser cooling of power plants, thermal line scans are periodically made from aircraft over all power plants along the Wisconsin shore of Lake Michigan. Simultaneous ground truth is also gathered with a radiometer. Some sequential imagery has been obtained for periods up to two hours to study short term variations in the surface temperature of the plume. The article concentrates on the techniques used to analyze thermal scanner data for a single power plant which was studied intensively. The calibration methods, temperature dependence of the thermal scanner, and calculation of the modulation transfer function for the scanner are treated. It is concluded that obtaining quantitative surface-temperature data from thermal scanning is a nontrivial task. Accuracies up to plus or minus 0.1 C are attainable.

  10. Nuclear Power Plant NDE Challenges - Past, Present, and Future

    SciTech Connect

    Doctor, S. R.

    2007-03-21

    The operating fleet of U.S. nuclear power plants was built to fossil plant standards (of workmanship, not fitness for service) and with good engineering judgment. Fortuitously, those nuclear power plants were designed using defense-in-depth concepts, with nondestructive examination (NDE) an important layer, so they can tolerate almost any component failure and still continue to operate safely. In the 30+ years of reactor operation, many material failures have occurred. Unfortunately, NDE has not provided the reliability to detect degradation prior to initial failure (breaching the pressure boundary). However, NDE programs have been improved by moving from prescriptive procedures to performance demonstrations that quantify inspection effectiveness for flaw detection probability and sizing accuracy. Other improvements include the use of risk-informed strategies to ensure that reactor components contributing the most risk receive the best and most frequent inspections. Another challenge is the recent surge of interest in building new nuclear power plants in the United States to meet increasing domestic energy demand. New construction will increase the demand for NDE but also offers the opportunity for more proactive inspections. This paper reviews the inception and evolution of NDE for nuclear power plants over the past 40 years, recounts lessons learned, and describes the needs remaining as existing plants continue operation and new construction is contemplated.

  11. DIRECT FUEL CELL/TURBINE POWER PLANT

    SciTech Connect

    Hossein Ghezel-Ayagh

    2003-05-23

    In this reporting period, a milestone was achieved by commencement of testing and operation of the sub-scale hybrid direct fuel cell/turbine (DFC/T{reg_sign}) power plant. The operation was initiated subsequent to the completion of the construction of the balance-of-plant (BOP) and implementation of process and control tests of the BOP for the subscale DFC/T hybrid system. The construction efforts consisted of finishing the power plant insulation and completion of the plant instrumentation including the wiring and tubing required for process measurement and control. The preparation work also included the development of procedures for facility shake down, conditioning and load testing of the fuel cell, integration of the microturbine, and fuel cell/gas turbine load tests. At conclusion of the construction, the process and control (PAC) tests of BOP, including the microturbine, were initiated.

  12. Carbonate fuel cell power plant systems

    NASA Astrophysics Data System (ADS)

    Reinstrom, R. M.

    1981-12-01

    Carbonate fuel cells are an attractive means of developing highly efficient power plants capable of achieving low atmospheric emissions. Because carbonate fuel cells can be used with coal derived fuel gases and their operating temperatures allow the use of turbomachinery bottoming cycles, they are well suited for large installations like central utility stations. Presently, system development activity is directed toward evaluating the readiness of gasifier and fuel processor technology, defining candidate cycle configurations, and calculating projected plant efficiencies.

  13. Report on Hawaii geothermal power plant project

    SciTech Connect

    Not Available

    1983-06-01

    The Hawaii Geothermal Generator Project is the first power plant in the State of Hawaii to be powered by geothermal energy. This plant, which is located in the Puna District on the Island of Hawaii, produces three (3) megawatts of electricity utilizing the steam phase from the geothermal well. This project represents the climax of the geophysical research efforts going on for two decades in the Hawaiian Islands which resulted in the discovery of a significant reservoir of geothermal energy which could be put to practical use. In 1978 the Department of Energy, in conjunction with the State of Hawaii, entered into negotiations to design and build a power plant. The purpose and objective of this plant was to demonstrate the feasibility of constructing and operating a geothermal power plant located in a remote volcanically active area. A contract was signed in mid 1978 between the Research Corporation of the University of Hawaii (RCUH) and the Department of Energy (DOE). To date, the DOE has provided 8.3 million dollars with the State of Hawaii and others contributing 2.1 million dollars. The cost of the project exceeded its original estimates by approximately 25%. These increases in cost were principally contributed to the higher cost for construction than was originally estimated. Second, the cost of procuring the various pieces of equipment exceed their estimates by 10 to 20 percent, and third, the engineering dollar per man hour rose 20 to 25 percent.

  14. Virtual environments for nuclear power plant design

    SciTech Connect

    Brown-VanHoozer, S.A.; Singleterry, R.C. Jr.; King, R.W.

    1996-03-01

    In the design and operation of nuclear power plants, the visualization process inherent in virtual environments (VE) allows for abstract design concepts to be made concrete and simulated without using a physical mock-up. This helps reduce the time and effort required to design and understand the system, thus providing the design team with a less complicated arrangement. Also, the outcome of human interactions with the components and system can be minimized through various testing of scenarios in real-time without the threat of injury to the user or damage to the equipment. If implemented, this will lead to a minimal total design and construction effort for nuclear power plants (NPP).

  15. Planting for power in central New York

    SciTech Connect

    Moon, S.

    1997-12-31

    The Salix consortium has joined forces with the US DOE and USDA to grow dedicated plantations of willows strategically located within a 50 mile radius (or easy hauling distance) of coal-burning power plants. At harvest time, the energy farmers could have as much as 7.5 tonnes of oven dry wood per acre per year. This article describes this project, covering the following areas: biomass power for rural development; energy farming; the Salix plan; New York State`s utilities; commercializing a new crop; the SUNY ESF team; biomass test field station; planting and harvesting; what lies ahead. 2 figs.

  16. Slim Holes for Small Power Plants

    SciTech Connect

    Finger, John T.

    1999-08-06

    Geothermal research study at Sandia National Laboratories has conducted a program in slimhole drilling research since 1992. Although our original interest focused on slim holes as an exploration method, it has also become apparent that they have substantial potential for driving small-scale, off-grid power plants. This paper summarizes Sandia's slim-hole research program, describes technology used in a ''typical'' slimhole drilling project, presents an evaluation of using slim holes for small power plants, and lists some of the research topics that deserve further investigation.

  17. 500-WATT FUEL-CELL POWER PLANT.

    DTIC Science & Technology

    hydrogen and air, fuel - cell power plant. Two independent units are to be developed - a hydrogen-generator assembly and a fuel - cell assembly. The...hydrogen-generator assembly will convert the hydrocarbon fuel to hydrogen by steam reforming, and the fuel - cell assembly will electrochemically oxidize the...The report presents the technical approach to be used to establish the feasibility of a compact 500-watt, liquid-hydrocarbon and air, fuel - cell power

  18. Small hydropower plants standardization, between myth and reality

    NASA Astrophysics Data System (ADS)

    Paraschivescu, A. V.; Ahmad-Rashid, K.; Popa, F.; Popa, B.

    2017-01-01

    Many providers for small hydropower plants equipment have tried to standardize the components and even the entire equipment. So called “compact turbines” were launched on the market, ensuring the pre-designed solution of the modular components, but usually with lower efficiency then turbines specially designed for a certain site. For civil works it is possible to standardize some components, such as the powerhouse, the surge tank or the headrace, but not the intake and the weir. Part of the hydropower plants can be standardized, but not the entire project, because there are a lot of variables that influence the design. Among these, the dimension, materials and design of the canal and the penstock are given by the hydrology, topography and the geology of the project’s area. This paper presents an attempt at standardization by using different heads and different installed flows. The case study is made on the Lukosi River from Tanzania, because there is a good hydrological database on power and energy calculation. For the powerhouse, pressure tower and intake dimensioning, the assumptions and materials considered cover all challenges that could appear in the geological and topographical structure of the project’s area (worst case, most expensive). The study has highlighted African climatologic and hydrological conditions and the adapting of current technology to these conditions.

  19. Systems Analysis Of Advanced Coal-Based Power Plants

    NASA Technical Reports Server (NTRS)

    Ferrall, Joseph F.; Jennings, Charles N.; Pappano, Alfred W.

    1988-01-01

    Report presents appraisal of integrated coal-gasification/fuel-cell power plants. Based on study comparing fuel-cell technologies with each other and with coal-based alternatives and recommends most promising ones for research and development. Evaluates capital cost, cost of electricity, fuel consumption, and conformance with environmental standards. Analyzes sensitivity of cost of electricity to changes in fuel cost, to economic assumptions, and to level of technology. Recommends further evaluation of integrated coal-gasification/fuel-cell integrated coal-gasification/combined-cycle, and pulverized-coal-fired plants. Concludes with appendixes detailing plant-performance models, subsystem-performance parameters, performance goals, cost bases, plant-cost data sheets, and plant sensitivity to fuel-cell performance.

  20. Strategies in tower solar power plant optimization

    NASA Astrophysics Data System (ADS)

    Ramos, A.; Ramos, F.

    2012-09-01

    A method for optimizing a central receiver solar thermal electric power plant is studied. We parametrize the plant design as a function of eleven design variables and reduce the problem of finding optimal designs to the numerical problem of finding the minimum of a function of several variables. This minimization problem is attacked with different algorithms both local and global in nature. We find that all algorithms find the same minimum of the objective function. The performance of each of the algorithms and the resulting designs are studied for two typical cases. We describe a method to evaluate the impact of design variables in the plant performance. This method will tell us what variables are key to the optimal plant design and which ones are less important. This information can be used to further improve the plant design and to accelerate the optimization procedure.

  1. Closed cycle osmotic power plants for electric power production

    NASA Astrophysics Data System (ADS)

    Reali, M.

    1980-04-01

    The paper deals with closed-cycle osmotic power plants (CCOPPs), which are not meant for the exploitation of natural salinity gradients but, rather, for the exploitation of those abundant heat sources having temperatures slightly higher than ambient temperature, e.g., geothermal fields, ocean temperature gradients, waste heat from power plants, and solar energy. The paper gives a general description of the CCOPP, along with some indications of its potential for energy generation. The concept of the CCOPP lies in producing electric power by means of the osmotic flows of suitable solvents and subsequently in separating them again from their solutes by means of thermal energy obtained from any available heat source. The discussion covers osmotic phenomena and the CCOPP, as well as important features of the CCOPP.

  2. 75 FR 66802 - Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-29

    ... COMMISSION Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2... Regulatory Commission (the Commission) has granted the request of Calvert Cliffs Nuclear Power Plant, LLC... Operating License Nos. DPR-53 and DPR-69 for the Calvert Cliffs Nuclear Power Plant, Unit......

  3. Establishing Competence: Qualification of Power Plant Personnel.

    ERIC Educational Resources Information Center

    Chapman, Colin R.

    1992-01-01

    Discusses the International Atomic Energy Agency's definition of competence for nuclear power plant operations personnel, how competence can be identified with intellectual, physical, and psychological attributes, how levels of competence are determined, how education, training, and experience establish competence, objectives and costs of training…

  4. Combined cycle power plant incorporating coal gasification

    DOEpatents

    Liljedahl, Gregory N.; Moffat, Bruce K.

    1981-01-01

    A combined cycle power plant incorporating a coal gasifier as the energy source. The gases leaving the coal gasifier pass through a liquid couplant heat exchanger before being used to drive a gas turbine. The exhaust gases of the gas turbine are used to generate both high pressure and low pressure steam for driving a steam turbine, before being exhausted to the atmosphere.

  5. Utilities expand baseload power plant plans

    SciTech Connect

    Smock, R.

    1993-04-01

    This article examines the plans being made by electric utilities to expand the number of baseload plants to accommodate increasing power demands. The results of a survey of utility's construction plans is presented. The topics include current construction, construction planning in the Southeast, current baseload technology, nuclear potential, and incorporation of environmental externalities impact in planning.

  6. Geothermal Cogeneration: Iceland's Nesjavellir Power Plant

    ERIC Educational Resources Information Center

    Rosen, Edward M.

    2008-01-01

    Energy use in Iceland (population 283,000) is higher per capita than in any other country in the world. Some 53.2% of the energy is geothermal, which supplies electricity as well as heated water to swimming pools, fish farms, snow melting, greenhouses, and space heating. The Nesjavellir Power Plant is a major geothermal facility, supplying both…

  7. Report on Hawaii Geothermal Power Plant Project

    SciTech Connect

    Not Available

    1983-06-01

    The report describes the design, construction, and operation of the Hawaii Geothermal Generator Project. This power plant, located in the Puna District on the island of Hawaii, produces three megawatts of electricity from the steam phase of a geothermal well. (ACR)

  8. Advanced design nuclear power plants: Competitive, economical electricity. An analysis of the cost of electricity from coal, gas and nuclear power plants

    SciTech Connect

    Not Available

    1992-06-01

    This report presents an updated analysis of the projected cost of electricity from new baseload power plants beginning operation around the year 2000. Included in the study are: (1) advanced-design, standardized nuclear power plants; (2) low emissions coal-fired power plants; (3) gasified coal-fired power plants; and (4) natural gas-fired power plants. This analysis shows that electricity from advanced-design, standardized nuclear power plants will be economically competitive with all other baseload electric generating system alternatives. This does not mean that any one source of electric power is always preferable to another. Rather, what this analysis indicates is that, as utilities and others begin planning for future baseload power plants, advanced-design nuclear plants should be considered an economically viable option to be included in their detailed studies of alternatives. Even with aggressive and successful conservation, efficiency and demand-side management programs, some new baseload electric supply will be needed during the 1990s and into the future. The baseload generating plants required in the 1990s are currently being designed and constructed. For those required shortly after 2000, the planning and alternatives assessment process must start now. It takes up to ten years to plan, design, license and construct a new coal-fired or nuclear fueled baseload electric generating plant and about six years for a natural gas-fired plant. This study indicates that for 600-megawatt blocks of capacity, advanced-design nuclear plants could supply electricity at an average of 4.5 cents per kilowatt-hour versus 4.8 cents per kilowatt-hour for an advanced pulverized-coal plant, 5.0 cents per kilowatt-hour for a gasified-coal combined cycle plant, and 4.3 cents per kilowatt-hour for a gas-fired combined cycle combustion turbine plant.

  9. Standard technical specifications, Westinghouse Plants: Specifications. Volume 1, Revision 1

    SciTech Connect

    1995-04-01

    This NUREG contains the improved Standard Technical Specifications (STS) for Westinghouse plants. Revision 1 incorporates the cumulative changes to Revision 0, which was published in September 1992. The changes reflected in Revision 1 resulted from the experience gained from license amendment applications to convert to these improved STS or to adopt partial improvements to existing technical specifications. This NUREG is the result of extensive public technical meetings and discussions between the Nuclear Regulatory Commission (NRC) staff and various nuclear power plant licensees, Nuclear Steam Supply System (NSSS) Owners Groups, specifically the Westinghouse Owners Group (WOG), NSSS vendors, and the Nuclear Energy Institute (NEI). The improved STS were developed based on the criteria in the Final Commission Policy Statement on Technical Specifications Improvements for Nuclear Power Reactors, dated July 22, 1993 (58 FR 39132). Licensees are encouraged to upgrade their technical specifications consistent with those criteria and conforming, to the extent practical and consistent with the licensing basis for the facility, to Revision 1 to the improved STS. The Commission continues to place the highest priority on requests for complete conversions to the improved STS. Licensees adopting portions of the improved STS to existing technical specifications should adopt all related requirements, as applicable, to achieve a high degree of standardization and consistency.

  10. Wind Power Plant Voltage Stability Evaluation: Preprint

    SciTech Connect

    Muljadi, E.; Zhang, Y. C.

    2014-09-01

    Voltage stability refers to the ability of a power system to maintain steady voltages at all buses in the system after being subjected to a disturbance from a given initial operating condition. Voltage stability depends on a power system's ability to maintain and/or restore equilibrium between load demand and supply. Instability that may result occurs in the form of a progressive fall or rise of voltages of some buses. Possible outcomes of voltage instability are the loss of load in an area or tripped transmission lines and other elements by their protective systems, which may lead to cascading outages. The loss of synchronism of some generators may result from these outages or from operating conditions that violate a synchronous generator's field current limit, or in the case of variable speed wind turbine generator, the current limits of power switches. This paper investigates the impact of wind power plants on power system voltage stability by using synchrophasor measurements.

  11. Mammoth geothermal power plant: operation update

    SciTech Connect

    Campbell, R.G.; Holt, B.; Asper, W.

    1987-06-01

    The Mammoth Geothermal Power Plant, the world's first modular, air-cooled binary plant, was designed to produce a year-round average of 7 megawatts of electrical power, net. Firm power was first produced in February 1985. Reservoir performance has been excellent. There is no evidence of a decline in productivity, and injection well pressures have been lower than anticipated. Downhole pumps have been in operation over one year, without servicing. Early problems due to resonant frequencies in the turbine have been solved. Heat exchanger fouling has been as expected. The isobutane pumps and the air coolers have performed in accordance with expectations. Plans are underway to expand the geothermal development at Mammoth, employing the Magmamax process and the same environmentally benign design concepts. Design specification and operation are discussed.

  12. MCFC and microturbine power plant simulation

    NASA Astrophysics Data System (ADS)

    Orecchini, F.; Bocci, E.; Di Carlo, A.

    The consistent problem of the CO 2 emissions and the necessity to find new energy sources, are motivating the scientific research to use high efficiency electric energy production's technologies that could exploit renewable energy sources too. The molten carbonate fuel cell (MCFC) due to its high efficiencies and low emissions seems a valid alternative to the traditional plant. Moreover, the high operating temperature and pressure give the possibility to use a turbine at the bottom of the cells to produce further energy, increasing therefore the plant's efficiencies. The basic idea using this two kind of technologies (MCFC and microturbine), is to recover, via the microturbine, the necessary power for the compressor, that otherwise would remove a consistent part of the MCFC power generated. The purpose of this work is to develop the necessary models to analyze different plant configurations. In particular, it was studied a plant composed of a MCFC 500 kW Ansaldo at the top of a microturbine 100 kW Turbec. To study this plant it was necessary to develop: (i) MCFC mathematical model, that starting from the geometrical and thermofluidodynamic parameter of the cell, analyze the electrochemical reaction and shift reaction that take part in it; (ii) plate reformer model, a particular compact reformer that exploit the heat obtained by a catalytic combustion of the anode and part of cathode exhausts to reform methane and steam; and (iii) microturbine-compressor model that describe the efficiency and pressure ratio of the two machines as a function of the mass flow and rotational regime. The models developed was developed in Fortran language and interfaced in Chemcad © to analyze the power plant thermodynamic behavior. The results show a possible plant configuration with high electrical and global efficiency (over 50 and 74%).

  13. Plant Content in the National Science Education Standards

    ERIC Educational Resources Information Center

    Hershey, David R.

    2005-01-01

    The National Science Education Standards (NSES) provides few resources for teaching about plants. To assure students understand and appreciate plants, the author advocates teaching about plants as a basic biological concept, avoiding animal chauvinism in biology coursework, correcting pseudoscience and anthropomorphisms about plants, and making…

  14. DIRECT FUELCELL/TURBINE POWER PLANT

    SciTech Connect

    Hossein Shezel-Ayagh

    2005-05-01

    This report summarizes the progress made in development of Direct FuelCell/Turbine{reg_sign} (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. Detailed design of the packaged sub-MW alpha DFC/T unit has been completed for mechanical and piping layouts and for structural drawings. Procurement activities continued with delivery of major equipment items. Fabrication of the packaged sub-MW alpha DFC/T unit has been initiated. Details of the process control philosophy were defined and control software programming was initiated.

  15. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect

    R. Viswanathan; K. Coleman; R.W. Swindeman; J. Sarver; J. Blough; W. Mohn; M. Borden; S. Goodstine; I. Perrin

    2003-10-20

    The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

  16. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect

    R. Viswanathan; K. Coleman; R.W. Swindeman; J. Sarver; J. Blough; W. Mohn; M. Borden; S. Goodstine; I. Perrin

    2003-08-04

    The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

  17. MIDDLE GORGE POWER PLANT, OWENS RIVER STREAM FLOWING OVER TAIL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MIDDLE GORGE POWER PLANT, OWENS RIVER STREAM FLOWING OVER TAIL RACE OF POWER PLANT AND PENSTOCK HEADGATE TO LOWER GORGE CONTROL PLANT. A MINIMAL FLOW OF RIVER WATER IS REQUIRED TO MAINTAIN FISH LIFE - Los Angeles Aqueduct, Middle Gorge Power Plant, Los Angeles, Los Angeles County, CA

  18. Power plant development at Mammoth Project

    SciTech Connect

    Holt, B.; Campbell, R.G.

    1984-04-01

    The Mammoth Geothermal Project is located within the Long Valley Known Geothermal Resources Area (KGRA) on the eastern slope of the Sierra Nevada mountain range of California some 300 miles north of Los Angeles. The plant is owned by Mammoth-Pacific (M-P), a joint venture of Pacific Energy Resources Incorporated and Mammoth Binary Power Company. The plan is to build two identical 3500 kW (net) air-cooled binary cycle geothermal power plants scheduled for completion in mid 1984. Nearly all the residential and commercial space heating in the Mammoth Lakes area is electrical. Electrical usage peaks in the wintertime, unlike the rest of the Edison system. While some power is provided by hydro plants in the area, most of the Edison supply arrives via a transmission line connecting to Edison facilities in the Mojave desert some 200 miles to the south. Peak power consumption in the area is about 40 MWe. The need to augment energy needs in the area by producing electricity from geothermal resources and using geothermal heat to replace electricity for space heating has long been recognized. The feasibility of this project is discussed.

  19. Cascade inertial-confinement-fusion power plant

    SciTech Connect

    Pitts, J.H.; Maya, I.

    1985-11-13

    The Cascade reactor is double-cone shaped with a maximum radius of 5 m. It rotates at 50 rpm. The average temperature of a three-material flowing granular blanket leaving the reactor is 1440 K. Heat from the blanket is transferred to helium gas in a shell- and ceramic-tube-type heat exchanger that has a separate region for each blanket material. Diffusion of tritium from the blanket granules through the heat exchanger is only 25 Ci/d, so no intermediate loop is needed for isolation. We selected a simple once-through, regenerative, 5-MPa helium gas-turbine (Brayton) cycle for power conversion because of its simplicity and high efficiency. Fusion power is 1500 MW; this is multiplied to 1670 MW/sub t/ in the blanket. Power conversion efficiency is 55%. Net electric power is 815 MW/sub e/, produced with a net plant efficiency of 49%.

  20. GDA steamboat power plant: a case history

    SciTech Connect

    Booth, G.M. III

    1987-08-01

    Located 10 mi south of Reno, Nevada, Steamboat Springs has long been recognized as a prime geothermal resource for electric power generation potential by the US Geological Survey and numerous energy companies. Extensive leasing and exploration by Phillips and Gulf led to the discovery of a high-temperature (over 400/sup 0/F) reservoir in 1979. Geothermal Development Associates obtained a geothermal resources lease on a 30-acre parcel and a 10-year power sales agreement for 5 MW from the local utility, Sierra Pacific Power Company, in late 1983. Drilling commenced in March 1985, modular power plant construction began in October, and initial plant startup with power to the grid was accomplished in December 1985. Owing to cooling-water access and treatment costs, air-cooled condensers replaced the planned cooling towers, and full-time scale continuous production at rated capacity did not begin until late 1986. Three production wells and two injection wells, completed in highly fractured Cretaceous granodiorite and Tertiary andesite at depths of less than 1000 ft, produce 340/sup 0/F water having a salinity of 2300 ppm. Production well line-shaft pumps deliver in excess of 3000 gpm water to seven 1.2 MW-Rankine cycle binary power plant modules. The heat extracted from the geothermal water vaporizes the low boiling point N-pentane working fluid that expands to drive the turbines. The geothermal water is injected back into the reservoir. Both the pentane and the geothermal water are in separate closed-loop systems, which provides for an environmentally clean operation in this sensitive, highly visible site on the periphery of a metropolitan area.

  1. The design of solar tower power plants

    NASA Astrophysics Data System (ADS)

    Gretz, J.

    The conversion of solar energy into electricity in solar thermal tower power plants is examined. Mirrors attached to mobile, sun-following heliostats concentrate solar rays into the opening of a receiver mounted on a tower. In the receiver, the radiant energy is absorbed by a system of pipes filled with a flowing material which is heated and drives a turbogenerator directly or via a heat exchanger. It is shown that the optics involved in this concept preclude the optimization of the pipe material, since the local distribution of rays in the heater of tower power plants varies diurnally and annually. This requires each pipe section to be designed for maximum stress, even though that stress occurs only at brief intervals during the day.

  2. Advanced Power Plant Development and Analyses Methodologies

    SciTech Connect

    G.S. Samuelsen; A.D. Rao

    2006-02-06

    Under the sponsorship of the U.S. Department of Energy/National Energy Technology Laboratory, a multi-disciplinary team led by the Advanced Power and Energy Program of the University of California at Irvine is defining the system engineering issues associated with the integration of key components and subsystems into advanced power plant systems with goals of achieving high efficiency and minimized environmental impact while using fossil fuels. These power plant concepts include ''Zero Emission'' power plants and the ''FutureGen'' H{sub 2} co-production facilities. The study is broken down into three phases. Phase 1 of this study consisted of utilizing advanced technologies that are expected to be available in the ''Vision 21'' time frame such as mega scale fuel cell based hybrids. Phase 2 includes current state-of-the-art technologies and those expected to be deployed in the nearer term such as advanced gas turbines and high temperature membranes for separating gas species and advanced gasifier concepts. Phase 3 includes identification of gas turbine based cycles and engine configurations suitable to coal-based gasification applications and the conceptualization of the balance of plant technology, heat integration, and the bottoming cycle for analysis in a future study. Also included in Phase 3 is the task of acquiring/providing turbo-machinery in order to gather turbo-charger performance data that may be used to verify simulation models as well as establishing system design constraints. The results of these various investigations will serve as a guide for the U. S. Department of Energy in identifying the research areas and technologies that warrant further support.

  3. Advanced Power Plant Development and Analysis Methodologies

    SciTech Connect

    A.D. Rao; G.S. Samuelsen; F.L. Robson; B. Washom; S.G. Berenyi

    2006-06-30

    Under the sponsorship of the U.S. Department of Energy/National Energy Technology Laboratory, a multi-disciplinary team led by the Advanced Power and Energy Program of the University of California at Irvine is defining the system engineering issues associated with the integration of key components and subsystems into advanced power plant systems with goals of achieving high efficiency and minimized environmental impact while using fossil fuels. These power plant concepts include 'Zero Emission' power plants and the 'FutureGen' H2 co-production facilities. The study is broken down into three phases. Phase 1 of this study consisted of utilizing advanced technologies that are expected to be available in the 'Vision 21' time frame such as mega scale fuel cell based hybrids. Phase 2 includes current state-of-the-art technologies and those expected to be deployed in the nearer term such as advanced gas turbines and high temperature membranes for separating gas species and advanced gasifier concepts. Phase 3 includes identification of gas turbine based cycles and engine configurations suitable to coal-based gasification applications and the conceptualization of the balance of plant technology, heat integration, and the bottoming cycle for analysis in a future study. Also included in Phase 3 is the task of acquiring/providing turbo-machinery in order to gather turbo-charger performance data that may be used to verify simulation models as well as establishing system design constraints. The results of these various investigations will serve as a guide for the U. S. Department of Energy in identifying the research areas and technologies that warrant further support.

  4. Coal gasification power plant and process

    DOEpatents

    Woodmansee, Donald E.

    1979-01-01

    In an integrated coal gasification power plant, a humidifier is provided for transferring as vapor, from the aqueous blowdown liquid into relatively dry air, both (I) at least a portion of the water contained in the aqueous liquid and (II) at least a portion of the volatile hydrocarbons therein. The resulting humidified air is advantageously employed as at least a portion of the hot air and water vapor included in the blast gas supplied via a boost compressor to the gasifier.

  5. MARS, 600 MWth NUCLEAR POWER PLANT

    SciTech Connect

    Cumo, M.; Naviglio, A.; Sorabella, L.

    2004-10-06

    MARS (Multipurpose Advanced Reactor, inherently Safe) is a 600 MWth, single loop, pressurized light water reactor (PWR), developed at the Dept. of Nuclear Engineering and Energy Conversion of the University of Rome ''La Sapienza''. The design was focused to a multipurpose reactor to be used in high population density areas also for industrial heat production and, in particular, for water desalting. Using the well-proven technology and the operation experience of PWRs, the project introduces a lot of innovative features hugely improving the safety performance while keeping the cost of KWh competitive with traditional large power plants. Extensive use of passive safety, in depth plant simplification and decommissioning oriented design were the guidelines along the design development. The latest development in the plant design, in the decommissioning aspects and in the experimental activities supporting the project are shown in this paper.

  6. Fatigue monitoring in Nuclear Power Plants

    SciTech Connect

    Ware, A.G.; Shah, V.N.

    1995-04-01

    This paper summarizes fatigue monitoring methods and surveys their application in the nuclear power industry. The paper is based on a review of the technical literature. Two main reasons for fatigue monitoring are more frequent occurrence of some transients than that assumed in the fatigue design analysis and the discovery of stressors that were not included in the fatigue design analysis but may cause significant fatigue damage at some locations. One fatigue monitoring method involves use of plant operating data and procedures to update the fatigue usage. Another method involves monitoring of plant operating parameters using existing, or if needed, supplementary plant instrumentation for online computation of fatigue usage. Use of fatigue monitoring has better defined the operational transients. Most operational transients have been found less severe and fewer in numbers than anticipated in the design fatigue analysis. Use of fatigue monitoring has assisted in quantifying newly discovered stressors and has helped in detecting the presence of thermal stratification of unsuspected locations.

  7. Power plant efficiency and combustion optimization

    SciTech Connect

    Chatterjee, A.K.; Nema, N.; Jain, A.

    1998-07-01

    Grasim, a leader producer of Rayon grade staple fiber has, with time come up with its own Captive Electric Power Generation Industry with a capacity of generating 113 MW Thermal Power for its in-house use involving state of the art technology and system. In the present paper, it is desired to share the technical development in the global environment and receive expert feedback for its own upgrade. The on site power plants have a variety of steam turbines and boilers of different capacities. At times the plants had to face power crisis due to number of reasons and has always come up with number of solutions for performance enhancement and efficiency improvement. It is desired to present the following cases: (1) Development of spiral coal caps--for atmospheric fluidized bed boilers, it is often experienced that unburned carbon is high in ash. The reason being that coal particles do not get sufficient retention time after being injected into the bed. Attempt has been made to increase the retention time and better mixing by creating a cyclone around the coal cap with help of spiral coal caps. (2) Combustion optimization--in view of the inherent design deficiency, combustion was optimized by controlling the three parameters i.e., time, temperature and turbulence. In pulverized fuel combustion boilers this was done by providing air damper regulation and in atmospheric fluidized bed combustion boilers this was done by creating a vortex and regulating fluidizing air. The details shall be given in paper. (3) Power plant efficiency improvement--by introducing online monitoring system and identifying various areas of losses for various operating reasons and the cost associated with each operating parameter and the impact of each variation.

  8. 3 CFR - Power Sector Carbon Pollution Standards

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... supplying the reliable, affordable power needed for economic growth and advancing cleaner energy technologies, such as efficient natural gas, nuclear power, renewables such as wind and solar energy, and clean... energy. The Environmental Protection Agency (EPA) has already undertaken such action with regard...

  9. Microprocessor control for standardized power control systems

    NASA Technical Reports Server (NTRS)

    Green, D. G.; Perry, E.

    1978-01-01

    The use of microcomputers in space-oriented power systems as a replacement for existing inflexible analog type controllers has been proposed. This study examines multiprocessor systems, various modularity concepts and presents a conceptualized power system incorporating a multiprocessor controller as well as preliminary results from a breadboard model of the proposed system.

  10. Central-station solar hydrogen power plant.

    SciTech Connect

    Diver, Richard B., Jr.; Siegel, Nathan Phillip; Kolb, Gregory J.

    2005-04-01

    Solar power towers can be used to make hydrogen on a large scale. Electrolyzers could be used to convert solar electricity produced by the power tower to hydrogen, but this process is relatively inefficient. Rather, efficiency can be much improved if solar heat is directly converted to hydrogen via a thermochemical process. In the research summarized here, the marriage of a high-temperature ({approx}1000 C) power tower with a sulfuric acid/hybrid thermochemical cycle was studied. The concept combines a solar power tower, a solid-particle receiver, a particle thermal energy storage system, and a hybrid-sulfuric-acid cycle. The cycle is 'hybrid' because it produces hydrogen with a combination of thermal input and an electrolyzer. This solar thermochemical plant is predicted to produce hydrogen at a much lower cost than a solar-electrolyzer plant of similar size. To date, only small lab-scale tests have been conducted to demonstrate the feasibility of a few of the subsystems and a key immediate issue is demonstration of flow stability within the solid-particle receiver. The paper describes the systems analysis that led to the favorable economic conclusions and discusses the future development path.

  11. Economic analysis of large solar power plants

    NASA Astrophysics Data System (ADS)

    Klaiss, Helmut; Nitsch, Joachim; Geyer, Michael

    1987-11-01

    The current status and future potential of solar-tower, parabolic-reflector/Stirling-engine, channel-collector, and photovoltaic solar power plants of capacity 10 MWe or more are discussed. Consideration is given to the geographic and technological limitations, initial investment and operating costs, presently operating facilities, market openings, and critical technological challenges controlling future expansion. Numerical data are presented in tables and graphs, and it is concluded that solar power production will soon become economically competitive. It is suggested that the channel collector, at present the most mature and cost-efficient technology, has the least potential for further improvement, and that parabolic/Stirling and photovoltaic systems are probably better suited to smaller applications than to large-scale commercial power production.

  12. Power plant IV - Them-Thek

    NASA Astrophysics Data System (ADS)

    Pons, M.

    A 10 MWe solar thermal hybrid central receiver-parabolic concentrator power plant is described. The THEK field of parabolic concentrators is employed to preheat and vaporize the water for heating the primary loop, while the THEM central receiver receives solar flux input from a field of heliostats to superheat fused salt, hitec, for the steam-powered generation of electricity. The preheat system also serves to maintain latent heat in the fused salt reservoir. An extra bypass with separation allows the vaporized portion of salt to return to the superheater as condensed salt descends to the reservoir to gain heat, thereby increasing the system efficiency by 8 percent to 33.8 percent. The power unit is coupled to turbines spinning at 9000 rpm. The central aperture closes during cloudy conditions to avoid heat losses in the primary loop.

  13. Impacts of TMDLs on coal-fired power plants.

    SciTech Connect

    Veil, J. A.; Environmental Science Division

    2010-04-30

    The Clean Water Act (CWA) includes as one of its goals restoration and maintenance of the chemical, physical, and biological integrity of the Nation's waters. The CWA established various programs to accomplish that goal. Among the programs is a requirement for states to establish water quality standards that will allow protection of the designated uses assigned to each water body. Once those standards are set, state agencies must sample the water bodies to determine if water quality requirements are being met. For those water bodies that are not achieving the desired water quality, the state agencies are expected to develop total maximum daily loads (TMDLs) that outline the maximum amount of each pollutant that can be discharged to the water body and still maintain acceptable water quality. The total load is then allocated to the existing point and nonpoint sources, with some allocation held in reserve as a margin of safety. Many states have already developed and implemented TMDLs for individual water bodies or regional areas. New and revised TMDLs are anticipated, however, as federal and state regulators continue their examination of water quality across the United States and the need for new or revised standards. This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements its overall research effort by evaluating water issues that could impact power plants. One of the program missions of the DOE's NETL is to develop innovative environmental control technologies that will enable full use of the Nation's vast coal reserves, while at the same time allowing the current fleet of coal-fired power plants to comply with existing and emerging environmental regulations. Some of the parameters for which TMDLs are being developed are components in discharges from coal-fired power

  14. Nuclear Power Plants | RadTown USA | US EPA

    EPA Pesticide Factsheets

    2016-05-16

    Nuclear power plants produce electricity from the heat created by splitting uranium atoms. In the event of a nuclear power plant emergency, follow instructions from emergency responders and public officials.

  15. 21. Power plant engine fuel oil piping diagrams, sheet 83 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. Power plant engine fuel oil piping diagrams, sheet 83 of 130 - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  16. 8. EXTERIOR DETAIL, BUILDING 18 (POWER PLANT RESEARCH LABORATORY) (1991). ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. EXTERIOR DETAIL, BUILDING 18 (POWER PLANT RESEARCH LABORATORY) (1991). - Wright-Patterson Air Force Base, Area B, Building 18, Power Plant Laboratory Complex, Northeast corner of C & Fifth Streets, Dayton, Montgomery County, OH

  17. 7. EXTERIOR NORTHWEST VIEW, BUILDING 18 (POWER PLANT RESEARCH LABORATORY) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. EXTERIOR NORTHWEST VIEW, BUILDING 18 (POWER PLANT RESEARCH LABORATORY) (1991). - Wright-Patterson Air Force Base, Area B, Building 18, Power Plant Laboratory Complex, Northeast corner of C & Fifth Streets, Dayton, Montgomery County, OH

  18. 2. EAST ELEVATION OF POWER PLANT TEST STAND (HORIZONTAL TEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. EAST ELEVATION OF POWER PLANT TEST STAND (HORIZONTAL TEST STAND REMNANTS OF BUILDING-BLANK WHITE WALL ONLY ORIGINAL REMAINS. - Marshall Space Flight Center, East Test Area, Power Plant Test Stand, Huntsville, Madison County, AL

  19. 7. August, 1971. GV FROM POWER PLANT TO PENSTOCKS & ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. August, 1971. GV FROM POWER PLANT TO PENSTOCKS & PRESSURE HOUSE ON MOUNTAINSIDE. - Telluride Power Company, Olmsted Hydroelectric Plant, mouth of Provo River Canyon West of U.S. Route 189, Orem, Utah County, UT

  20. 14. INTERIOR OF POWER PLANT LOOKING SOUTHEAST AT ELECTRICAL PANEL. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. INTERIOR OF POWER PLANT LOOKING SOUTHEAST AT ELECTRICAL PANEL. - Potomac Power Plant, On West Virginia Shore of Potomac River, about 1 mile upriver from confluence with Shenandoah River, Harpers Ferry, Jefferson County, WV

  1. 9. Interior view, west side of power plant, electrical panels ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Interior view, west side of power plant, electrical panels in place in center of photograph, looking northwest - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  2. Fuel cell power plant economic and operational considerations

    NASA Technical Reports Server (NTRS)

    Lance, J. R.

    1984-01-01

    Fuel cell power plants intended for electric utility and cogeneration applications are now in the design and construction stage. This paper describes economic and operational considerations being used in the development and design of plants utilizing air cooled phosphoric acid fuel cells. Fuel cell power plants have some unique characteristics relative to other types of power plants. As a result it was necessary to develop specific definitions of the fuel cell power plant characteristics in order to perform cost of electricity calculations. This paper describes these characteristics and describes the economic analyses used in the Westinghouse fuel cell power plant program.

  3. Hybrid Wet/Dry Cooling for Power Plants (Presentation)

    SciTech Connect

    Kutscher, C.; Buys, A.; Gladden, C.

    2006-02-01

    This presentation includes an overview of cooling options, an analysis of evaporative enhancement of air-cooled geothermal power plants, field measurements at a geothermal plant, a preliminary analysis of trough plant, and improvements to air-cooled condensers.

  4. Equivalencing the Collector System of a Large Wind Power Plant

    SciTech Connect

    Muljadi, E.; Butterfield, C. P.; Ellis, A.; Mechenbier, J.; Hocheimer, J.; Young, R.; Miller, N.; Delmerico, R.; Zavadil, R.; Smith, J. C.

    2006-01-01

    As the size and number of wind power plants (also called wind farms) increases, power system planners will need to study their impact on the power system in more detail. As the level of wind power penetration into the grid increases, the transmission system integration requirements will become more critical [1-2]. A very large wind power plant may contain hundreds of megawatt-size wind turbines. These turbines are interconnected by an intricate collector system. While the impact of individual turbines on the larger power system network is minimal, collectively, wind turbines can have a significant impact on the power systems during a severe disturbance such as a nearby fault. Since it is not practical to represent all individual wind turbines to conduct simulations, a simplified equivalent representation is required. This paper focuses on our effort to develop an equivalent representation of a wind power plant collector system for power system planning studies. The layout of the wind power plant, the size and type of conductors used, and the method of delivery (overhead or buried cables) all influence the performance of the collector system inside the wind power plant. Our effort to develop an equivalent representation of the collector system for wind power plants is an attempt to simplify power system modeling for future developments or planned expansions of wind power plants. Although we use a specific large wind power plant as a case study, the concept is applicable for any type of wind power plant.

  5. Analysis of nuclear power plant construction costs

    SciTech Connect

    Not Available

    1986-01-01

    The objective of this report is to present the results of a statistical analysis of nuclear power plant construction costs and lead-times (where lead-time is defined as the duration of the construction period), using a sample of units that entered construction during the 1966-1977 period. For more than a decade, analysts have been attempting to understand the reasons for the divergence between predicted and actual construction costs and lead-times. More importantly, it is rapidly being recognized that the future of the nuclear power industry rests precariously on an improvement in the cost and lead-time situation. Thus, it is important to study the historical information on completed plants, not only to understand what has occurred to also to improve the ability to evaluate the economics of future plants. This requires an examination of the factors that have affected both the realized costs and lead-times and the expectations about these factors that have been formed during the construction process. 5 figs., 22 tabs.

  6. 78 FR 73898 - Operator Licensing Examination Standards for Power Reactors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-09

    ... COMMISSION Operator Licensing Examination Standards for Power Reactors AGENCY: Nuclear Regulatory Commission... Standards for Power Reactors.'' DATES: Submit comments by February 7, 2014. Comments received after this... of New Reactors; or Timothy Kolb, Office of Nuclear Reactor Regulation, U.S. Nuclear...

  7. Osmo-power - Theory and performance of an osmo-power pilot plant

    NASA Astrophysics Data System (ADS)

    Jellinek, H. H. G.; Masuda, H.

    A theoretical and experimental study of the production of useful energy by the natural process of osmosis is presented. Using the results of the study a conceptual design of an osmotic pilot plant is performed. The power produced by a 1.6 MW/sq km plant has a competitive cost with that produced by both fossil power plants and nuclear power plants.

  8. Progress and prospects for phosphoric acid fuel cell power plants

    SciTech Connect

    Bonville, L.J.; Scheffler, G.W.; Smith, M.J.

    1996-12-31

    International Fuel Cells (IFC) has developed the fuel cell power plant as a new, on-site power generation source. IFC`s commercial fuel cell product is the 200-kW PC25{trademark} power plant. To date over 100 PC25 units have been manufactured. Fleet operating time is in excess of one million hours. Individual units of the initial power plant model, the PC25 A, have operated for more than 30,000 hours. The first model {open_quotes}C{close_quotes} power plant has over 10,000 hours of operation. The manufacturing, application and operation of this power plant fleet has established a firm base for design and technology development in terms of a clear understanding of the requirements for power plant reliability and durability. This fleet provides the benchmark against which power plant improvements must be measured.

  9. Nuclear power plant simulators: their use in operator training and requalification

    SciTech Connect

    Jones, D.W.; Baer, D.K.; Francis, C.C.

    1980-07-01

    This report presents the results of a study performed for the Nuclear Regulatory Commission to evaluate the capabilities and use of nuclear power plant simulators either built or being built by the US nuclear power industry; to determine the adequacy of existing standards for simulator design and for the training of power plant operators on simulators; and to assess the issues about simulator training programs raised by the March 28, 1979, accident at Three Mile Island Unit 2.

  10. 75 FR 77919 - Carolina Power & Light Company Shearon Harris Nuclear Power Plant, Unit 1; Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-14

    ... COMMISSION Carolina Power & Light Company Shearon Harris Nuclear Power Plant, Unit 1; Environmental... Progress Energy Carolinas, Inc., for operation of the Shearon Harris Nuclear Power Plant (HNP), Unit 1...: Regarding Shearon Harris Nuclear Power Plant, Unit 1--Final Report (NUREG-1437, Supplement 33).''...

  11. Construction poses highest power plant fire threat

    SciTech Connect

    Not Available

    1980-03-01

    Power plants are more vulnerable to fire during the construction period than at any other time. Data gathered from fires at plant construction sites show that 65% result from cutting and welding activities and that the Control of combustible materials and work processes is the key factor. Contractors need to cooperate on cleanup and to upgrade the quality of temporary buildings on the site. Among the steps which could reduce fire risks are the early installation of water for fire hydrants and automatic sprinklers, testing of tarpaulins for flame retardency, the use of metal or fire retardant scaffolding and forms, approved temporary heating equipment, flushing turbine oil systems before startup, and the use of non-flammable water pipe tubing. Seven safety rules are outlined for welding and cutting procedures. (DCK)

  12. Thermionic topping of electric power plants

    NASA Technical Reports Server (NTRS)

    Britt, E. J.; Fitzpatrick, G. O.; Rasor, N. S.

    1975-01-01

    The most likely use of thermionic conversion is in the form of a topping cycle combined with a steam-turbogenerator plant. A specific reference system is chosen in which the thermionic topping cycle occurs in thermionic heat exchangers referred to as large, modular thermionic units to which heat is transferred from a separate heat source and which reject their heat to a conventional steam turboelectric system. Results of analysis show that the performance and cost criteria for practical thermionic topping of large electric power plants are well within the reach of demonstrated and foreseeable converter capabilities. Thermionic topping has many significant advantages over unconventional cycles proposed for topping applications, including level of demonstrated and projected performance and lifetime, development time, and design simplicity.

  13. (Nuclear power plant control and instrumentation technology)

    SciTech Connect

    White, J.D.

    1990-10-10

    While on vacation, the traveler attended the European Nuclear Conference in Lyon, France. This trip was part of an outside activity approved by DOE. The traveler is a consultant to Loyola College, serving as chairman of a panel to assess the state of the art in the controls and instrumentation technology in the European nuclear community. This study is being conducted by Loyola College under subcontract to the National Science Foundation. The traveler was surprised by the level of automation claimed (by the company Siemens AG KWU) to be present in the German Konvoi nuclear power plants. The claim was that this was done to improve the safety of the plant by keeping the operator out of the loop'' for the first 30 minutes of some transients or accidents.

  14. High-power LEDs for plant cultivation

    NASA Astrophysics Data System (ADS)

    Tamulaitis, Gintautas; Duchovskis, Pavelas; Bliznikas, Zenius; Breive, Kestutis; Ulinskaite, Raimonda; Brazaityte, Ausra; Novickovas, Algirdas; Zukauskas, Arturas; Shur, Michael S.

    2004-10-01

    We report on high-power solid-state lighting facility for cultivation of greenhouse vegetables and on the results of the study of control of photosynthetic activity and growth morphology of radish and lettuce imposed by variation of the spectral composition of illumination. Experimental lighting modules (useful area of 0.22 m2) were designed based on 4 types of high-power light-emitting diodes (LEDs) with emission peaked in red at the wavelengths of 660 nm and 640 nm (predominantly absorbed by chlorophyll a and b for photosynthesis, respectively), in blue at 455 nm (phototropic function), and in far-red at 735 nm (important for photomorphology). Morphological characteristics, chlorophyll and phytohormone concentrations in radish and lettuce grown in phytotron chambers under lighting with different spectral composition of the LED-based illuminator and under illumination by high pressure sodium lamps with an equivalent photosynthetic photon flux density were compared. A well-balanced solid-state lighting was found to enhance production of green mass and to ensure healthy morphogenesis of plants compared to those grown using conventional lighting. We observed that the plant morphology and concentrations of morphologically active phytohormones is strongly affected by the spectral composition of light in the red region. Commercial application of the LED-based illumination for large-scale plant cultivation is discussed. This technology is favorable from the point of view of energy consumption, controllable growth, and food safety but is hindered by high cost of the LEDs. Large scale manufacturing of high-power red AlInGaP-based LEDs emitting at 650 nm and a further decrease of the photon price for the LEDs emitting in the vicinity of the absorption peak of chlorophylls have to be achieved to promote horticulture applications.

  15. Nuclear power plants for mobile applications

    NASA Technical Reports Server (NTRS)

    Anderson, J. L.

    1972-01-01

    Mobile nuclear powerplants for applications other than large ships and submarines will require compact, lightweight reactors with especially stringent impact-safety design. The technical and economic feasibility that the broadening role of civilian nuclear power, in general, (land-based nuclear electric generating plants and nuclear ships) can extend to lightweight, safe mobile nuclear powerplants are examined. The paper discusses technical experience, identifies potential sources of technology for advanced concepts, cites the results of economic studies of mobile nuclear powerplants, and surveys future technical capabilities needed by examining the current use and projected needs for vehicles, machines, and habitats that could effectively use mobile nuclear reactor powerplants.

  16. Modeling of advanced fossil fuel power plants

    NASA Astrophysics Data System (ADS)

    Zabihian, Farshid

    The first part of this thesis deals with greenhouse gas (GHG) emissions from fossil fuel-fired power stations. The GHG emission estimation from fossil fuel power generation industry signifies that emissions from this industry can be significantly reduced by fuel switching and adaption of advanced power generation technologies. In the second part of the thesis, steady-state models of some of the advanced fossil fuel power generation technologies are presented. The impacts of various parameters on the solid oxide fuel cell (SOFC) overpotentials and outputs are investigated. The detail analyses of operation of the hybrid SOFC-gas turbine (GT) cycle when fuelled with methane and syngas demonstrate that the efficiencies of the cycles with and without anode exhaust recirculation are close, but the specific power of the former is much higher. The parametric analysis of the performance of the hybrid SOFC-GT cycle indicates that increasing the system operating pressure and SOFC operating temperature and fuel utilization factor improves cycle efficiency, but the effects of the increasing SOFC current density and turbine inlet temperature are not favourable. The analysis of the operation of the system when fuelled with a wide range of fuel types demonstrates that the hybrid SOFC-GT cycle efficiency can be between 59% and 75%, depending on the inlet fuel type. Then, the system performance is investigated when methane as a reference fuel is replaced with various species that can be found in the fuel, i.e., H2, CO2, CO, and N 2. The results point out that influence of various species can be significant and different for each case. The experimental and numerical analyses of a biodiesel fuelled micro gas turbine indicate that fuel switching from petrodiesel to biodiesel can influence operational parameters of the system. The modeling results of gas turbine-based power plants signify that relatively simple models can predict plant performance with acceptable accuracy. The unique

  17. Modular stellarator reactor: a fusion power plant

    SciTech Connect

    Miller, R.L.; Bathke, C.G.; Krakowski, R.A.; Heck, F.M.; Green, L.; Karbowski, J.S.; Murphy, J.H.; Tupper, R.B.; DeLuca, R.A.; Moazed, A.

    1983-07-01

    A comparative analysis of the modular stellarator and the torsatron concepts is made based upon a steady-state ignited, DT-fueled, reactor embodiment of each concept for use as a central electric-power station. Parametric tradeoff calculations lead to the selection of four design points for an approx. 4-GWt plant based upon Alcator transport scaling in l = 2 systems of moderate aspect ratio. The four design points represent high-aspect ratio. The four design points represent high-(0.08) and low-(0.04) beta versions of the modular stellarator and torsatron concepts. The physics basis of each design point is described together with supporting engineering and economic analyses. The primary intent of this study is the elucidation of key physics and engineering tradeoffs, constraints, and uncertainties with respect to the ultimate power reactor embodiment.

  18. Surveillance dosimetry of operating power plants

    SciTech Connect

    McElroy, W.N.; Davis, A.I.; Gold, R.

    1981-10-16

    The main focus of the research efforts presently underway is the LWR power reactor surveillance program in which metallurgical test specimens of the reactor PV and dosimetry sensors are placed in three or more surveillance capsules at or near the reactor PV inner wall. They are then irradiated in a temperature and neutron flux-spectrum environment as similar as possible to the PV itself for periods of about 1.5 to 15 effective full-power years (EFPY), with removal of the last capsule at a fluence corresponding to the 30- to 40-year plant end-of-life (EOL) fluence. Because the neutron flux level at the surveillance position is greater than at the vessel, the test is accelerated wit respect to the vessel exposure, allowing early assessment of EOL conditions.

  19. Beyond Standardization: Powerful New Principles for Improvement

    ERIC Educational Resources Information Center

    Hargreaves, Andy; Shirley, Dennis

    2008-01-01

    Almost all of the most recent school improvement strategies have focused on standards and accountability. But test data from assessments such as the National Assessment of Educational Progress indicate that such emphasis has had little impact on student achievement. Drawing from extensive research across national settings, Andy Hargreaves and…

  20. Standardized Modular Power Interfaces for Future Space Explorations Missions

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard

    2015-01-01

    Earlier studies show that future human explorations missions are composed of multi-vehicle assemblies with interconnected electric power systems. Some vehicles are often intended to serve as flexible multi-purpose or multi-mission platforms. This drives the need for power architectures that can be reconfigured to support this level of flexibility. Power system developmental costs can be reduced, program wide, by utilizing a common set of modular building blocks. Further, there are mission operational and logistics cost benefits of using a common set of modular spares. These benefits are the goals of the Advanced Exploration Systems (AES) Modular Power System (AMPS) project. A common set of modular blocks requires a substantial level of standardization in terms of the Electrical, Data System, and Mechanical interfaces. The AMPS project is developing a set of proposed interface standards that will provide useful guidance for modular hardware developers but not needlessly constrain technology options, or limit future growth in capability. In 2015 the AMPS project focused on standardizing the interfaces between the elements of spacecraft power distribution and energy storage. The development of the modular power standard starts with establishing mission assumptions and ground rules to define design application space. The standards are defined in terms of AMPS objectives including Commonality, Reliability-Availability, Flexibility-Configurability and Supportability-Reusability. The proposed standards are aimed at assembly and sub-assembly level building blocks. AMPS plans to adopt existing standards for spacecraft command and data, software, network interfaces, and electrical power interfaces where applicable. Other standards including structural encapsulation, heat transfer, and fluid transfer, are governed by launch and spacecraft environments and bound by practical limitations of weight and volume. Developing these mechanical interface standards is more difficult but

  1. Power supply standardization and optimization study

    NASA Technical Reports Server (NTRS)

    Ware, C. L.; Ragusa, E. V.

    1972-01-01

    A comprehensive design study of a power supply for use in the space shuttle and other space flight applications is presented. The design specifications are established for a power supply capable of supplying over 90 percent of the anticipated voltage requirements for future spacecraft avionics systems. Analyses and tradeoff studies were performed on several alternative design approaches to assure that the selected design would provide near optimum performance of the planned applications. The selected design uses a dc-to-dc converter incorporating regenerative current feedback with a time-ratio controlled duty cycle to achieve high efficiency over a wide variation in input voltage and output loads. The packaging concept uses an expandable mainframe capable of accommodating up to six inverter/regulator modules with one common input filter module.

  2. Confirmation of the seismic resistance of nuclear power plant equipment after assembly

    SciTech Connect

    Kaznovsky, P. S.; Kaznovsky, A. P.; Saakov, E. S.; Ryasnyj, S. I.

    2013-05-15

    It is shown that the natural frequencies and damping decrements of nuclear power plant equipment can only be determined experimentally and directly at the power generation units (reactors) of nuclear power plants under real disassembly conditions for the equipment, piping network, thermal insulation, etc. A computational experimental method is described in which the natural frequencies and damping decrements are determined in the field and the seismic resistance is reevaluated using these values. This method is the basis of the standards document 'Methods for confirming the dynamic characteristics of systems and components of the generating units of nuclear power plants which are important for safety' prepared and introduced in 2012.

  3. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect

    R. Viswanathan; K. Coleman

    2003-01-20

    The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to

  4. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect

    R. Viswanathan

    2002-04-15

    The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), and up to 5500 psi with emphasis upon 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced

  5. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect

    R. Viswanathan; K. Coleman

    2002-07-15

    The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to

  6. Proposed Minor NSR Permit: Deseret Power Electric Cooperative - Bonanza Power Plant

    EPA Pesticide Factsheets

    Proposed minor NSR permit, technical support document, public notice bulletin, and supporting documentation for the Deseret Power Electric Cooperative Bonanza Power Plant, Uintah and Ouray Indian Reservation, Utah.

  7. Large CFB power plant design and operating experience: Texas-New Mexico Power Company 150 MWe (net) CFB power plant

    SciTech Connect

    Riley, K.; Cleve, K.; Tanca, M.

    1995-12-31

    The first unit of the TNP One CFB power plant was successfully put on line by Texas-New Mexico Power Company (TNP) in Robertson County, Texas, US in 1990. Unit 2 came on line one year later. This grassroots plant fires Texas lignite. The two identical CFB units were each designed for 150 MWe net electrical generation. The units have operated at 155 MWe net for extended periods of time without modifications. The boilers have additional capacity but are limited by the balance of plant. The TNP One plant was awarded the Power Plant of the Year Award by Power magazine in 1991 advancing CFB technology in large generating facilities. The plant was designed for maximum fuel flexibility with guaranteed full load operation on either Texas lignite, western coal or natural gas. The plant has fired the following fuels, to date: lignite (base fuel), natural gas (0--100% with lignite), delayed petroleum coke (0--100% with lignite), plant generated waste oils (small amounts), oil filter fluff (small amounts) and a waste product of pelletized reflective tape. Future testing is planned to test burn shredded tires. While firing all fuels, the plant could attain full load and meet all environmentally permitted emissions without any boiler modifications or compromises in boiler efficiency. This high flexibility of the plant can be attributed to the two large fluidized bed heat exchangers (FBHEs) for steam temperature and combustor temperature control. The facility is a mine mouth operation burning the local Texas lignite. The delayed petroleum cokes fired originated from various supply sources from the Texas/Louisiana area.

  8. UF6 breeder reactor power plants for electric power generation

    NASA Technical Reports Server (NTRS)

    Rust, J. H.; Clement, J. D.; Hohl, F.

    1976-01-01

    The reactor concept analyzed is a U-233F6 core surrounded by a molten salt (Li(7)F, BeF2, ThF4) blanket. Nuclear survey calculations were carried out for both spherical and cylindrical geometries. Thermodynamic cycle calculations were performed for a variety of Rankine cycles. A conceptual design is presented along with a system layout for a 1000 MW stationary power plant. Advantages of the gas core breeder reactor (GCBR) are as follows: (1) high efficiency; (2) simplified on-line reprocessing; (3) inherent safety considerations; (4) high breeding ratio; (5) possibility of burning all or most of the long-lived nuclear waste actinides; and (6) possibility of extrapolating the technology to higher temperatures and MHD direct conversion.

  9. Improvement of water treatment at thermal power plants

    NASA Astrophysics Data System (ADS)

    Larin, B. M.; Bushuev, E. N.; Larin, A. B.; Karpychev, E. A.; Zhadan, A. V.

    2015-04-01

    Prospective and existing technologies for water treatment at thermal power plants, including pretreatment, ion exchange, and membrane method are considered. The results obtained from laboratory investigations and industrial tests of the proposed technologies carried out at different thermal power plants are presented. The possibilities of improving the process and environmental indicators of water treatment plants are shown.

  10. Affective imagery and acceptance of replacing nuclear power plants.

    PubMed

    Keller, Carmen; Visschers, Vivianne; Siegrist, Michael

    2012-03-01

    This study examined the relationship between the content of spontaneous associations with nuclear power plants and the acceptance of using new-generation nuclear power plants to replace old ones. The study also considered gender as a variable. A representative sample of the German- and French-speaking population of Switzerland (N= 1,221) was used. Log-linear models revealed significant two-way interactions between the association content and acceptance, association content and gender, and gender and acceptance. Correspondence analysis revealed that participants who were opposed to nuclear power plants mainly associated nuclear power plants with risk, negative feelings, accidents, radioactivity, waste disposal, military use, and negative consequences for health and environment; whereas participants favoring nuclear power plants mainly associated them with energy, appearance descriptions of nuclear power plants, and necessity. Thus, individuals opposing nuclear power plants had both more concrete and more diverse associations with them than people who were in favor of nuclear power plants. In addition, participants who were undecided often mentioned similar associations to those participants who were in favor. Males more often expressed associations with energy, waste disposal, and negative health effects. Females more often made associations with appearance descriptions, negative feelings, and negative environmental effects. The results further suggest that acceptance of replacing nuclear power plants was higher in the German-speaking part of the country, where all of the Swiss nuclear power plants are physically located. Practical implications for risk communication are discussed.

  11. 75 FR 3942 - Carolina Power & Light Company Shearon Harris Nuclear Power Plant, Unit 1 Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-25

    ... COMMISSION Carolina Power & Light Company Shearon Harris Nuclear Power Plant, Unit 1 Environmental Assessment...), for operation of the Shearon Harris Nuclear Power Plant, Unit 1 (HNP), located in New Hill, North... Environmental Impact Statement for License Renewal of Nuclear Plants: Regarding Shearon Harris Nuclear......

  12. 78 FR 4477 - Review of Safety Analysis Reports for Nuclear Power Plants, Introduction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-22

    ... COMMISSION Review of Safety Analysis Reports for Nuclear Power Plants, Introduction AGENCY: Nuclear... Plants: LWR Edition.'' The new subsection is the Standard Review Plan (SRP), ``Introduction--Part 2... referenced. The SRP, subsection Introduction--Part 2 is under ADAMS Accession No. ML12142A237. NRC's PDR:...

  13. Seismic analysis of nuclear power plant structures

    NASA Technical Reports Server (NTRS)

    Go, J. C.

    1973-01-01

    Primary structures for nuclear power plants are designed to resist expected earthquakes of the site. Two intensities are referred to as Operating Basis Earthquake and Design Basis Earthquake. These structures are required to accommodate these seismic loadings without loss of their functional integrity. Thus, no plastic yield is allowed. The application of NASTRAN in analyzing some of these seismic induced structural dynamic problems is described. NASTRAN, with some modifications, can be used to analyze most structures that are subjected to seismic loads. A brief review of the formulation of seismic-induced structural dynamics is also presented. Two typical structural problems were selected to illustrate the application of the various methods of seismic structural analysis by the NASTRAN system.

  14. Small power plant reverse trade mission

    SciTech Connect

    Not Available

    1989-09-06

    This draft report was prepared as required by Task No. 2 of the US Department of Energy, Grant No. FG07-89ID12850 Reverse Trade Mission to Acquaint International Representatives with US Power Plant and Drilling Technology'' (mission). As described in the grant proposal, this report covers the reactions of attendees toward US technology, its possible use in their countries, and an evaluation of the mission by the staff leaders. Note this is the draft report of one of two missions carried out under the same contract number. Because of the diversity of the mission subjects and the different attendees at each, a separate report for each mission has been prepared. This draft report has been sent to all mission attendees, specific persons in the US Department of Energy and Los Alamos National Lab., the California Energy Commission (CEC), and various other governmental agencies.

  15. Detecting Cyber Attacks On Nuclear Power Plants

    NASA Astrophysics Data System (ADS)

    Rrushi, Julian; Campbell, Roy

    This paper proposes an unconventional anomaly detection approach that provides digital instrumentation and control (I&C) systems in a nuclear power plant (NPP) with the capability to probabilistically discern between legitimate protocol frames and attack frames. The stochastic activity network (SAN) formalism is used to model the fusion of protocol activity in each digital I&C system and the operation of physical components of an NPP. SAN models are employed to analyze links between protocol frames as streams of bytes, their semantics in terms of NPP operations, control data as stored in the memory of I&C systems, the operations of I&C systems on NPP components, and NPP processes. Reward rates and impulse rewards are defined in the SAN models based on the activity-marking reward structure to estimate NPP operation profiles. These profiles are then used to probabilistically estimate the legitimacy of the semantics and payloads of protocol frames received by I&C systems.

  16. Optical study of solar tower power plants

    NASA Astrophysics Data System (ADS)

    Eddhibi, F.; Ben Amara, M.; Balghouthi, M.; Guizani, A.

    2015-04-01

    The central receiver technology for electricity generation consists of concentrating solar radiation coming from the solar tracker field into a central receiver surface located on the top of the tower. The heliostat field is constituted of a big number of reflective mirrors; each heliostat tracks the sun individually and reflects the sunlight to a focal point. Therefore, the heliostat should be positioned with high precision in order to minimize optical losses. In the current work, a mathematical model for the analysis of the optical efficiency of solar tower field power plant is proposed. The impact of the different factors which influence the optical efficiency is analyzed. These parameters are mainly, the shading and blocking losses, the cosine effect, the atmospheric attenuation and the spillage losses. A new method for the calculation of blocking and shadowing efficiency is introduced and validated by open literature.

  17. Power plant II - Sodium-water

    NASA Astrophysics Data System (ADS)

    Roche, M.

    The implementation of a sodium based heat exchange loop is presented as a means of reducing the required size of a solar thermal power plant heat exchanger. Sodium as a heat transfer fluid allows operations near 535 C with electromagnetic pumps. It is noted that sodium must be completely sealed in and surrounded with a neutral gas such as nitrogen or argon. The higher temperatures pave the way for a more efficient thermodynamic cycle, although the Themis receiver would necessarily need a faster loop in addition to more absorbent surfaces to adequately handle the sodium liquid. The steam lines would be helically wound in a chamber through which the sodium flows linearly downward. Storage is concluded to not be feasible under current technology due to the violent reactions possible between sodium and water or hitec salts. An auxiliary heat source would be required.

  18. 9. View southeast corner of perimeter acquisition radar power plant ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. View southeast corner of perimeter acquisition radar power plant room #214, control room; showing central monitoring station console in foreground. Well and booster control panel in left background and electric power management panel on far right - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Power Plant, In Limited Access Area, Southwest of PARB at end of Service Road B, Nekoma, Cavalier County, ND

  19. 8. Perimeter acquisition radar power plant room #211, battery equipment ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Perimeter acquisition radar power plant room #211, battery equipment room; showing battery racks. The dc power of these batteries is distributed to motor-control centers, the annunciator system, and fire alarm and tripping circuits - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Power Plant, In Limited Access Area, Southwest of PARB at end of Service Road B, Nekoma, Cavalier County, ND

  20. Autonomous Control of Nuclear Power Plants

    SciTech Connect

    Basher, H.

    2003-10-20

    A nuclear reactor is a complex system that requires highly sophisticated controllers to ensure that desired performance and safety can be achieved and maintained during its operations. Higher-demanding operational requirements such as reliability, lower environmental impacts, and improved performance under adverse conditions in nuclear power plants, coupled with the complexity and uncertainty of the models, necessitate the use of an increased level of autonomy in the control methods. In the opinion of many researchers, the tasks involved during nuclear reactor design and operation (e.g., design optimization, transient diagnosis, and core reload optimization) involve important human cognition and decisions that may be more easily achieved with intelligent methods such as expert systems, fuzzy logic, neural networks, and genetic algorithms. Many experts in the field of control systems share the idea that a higher degree of autonomy in control of complex systems such as nuclear plants is more easily achievable through the integration of conventional control systems and the intelligent components. Researchers have investigated the feasibility of the integration of fuzzy logic, neural networks, genetic algorithms, and expert systems with the conventional control methods to achieve higher degrees of autonomy in different aspects of reactor operations such as reactor startup, shutdown in emergency situations, fault detection and diagnosis, nuclear reactor alarm processing and diagnosis, and reactor load-following operations, to name a few. With the advancement of new technologies and computing power, it is feasible to automate most of the nuclear reactor control and operation, which will result in increased safety and economical benefits. This study surveys current status, practices, and recent advances made towards developing autonomous control systems for nuclear reactors.

  1. Emotional consequences of nuclear power plant disasters.

    PubMed

    Bromet, Evelyn J

    2014-02-01

    The emotional consequences of nuclear power plant disasters include depression, anxiety, post-traumatic stress disorder, and medically unexplained somatic symptoms. These effects are often long term and associated with fears about developing cancer. Research on disasters involving radiation, particularly evidence from Chernobyl, indicates that mothers of young children and cleanup workers are the highest risk groups. The emotional consequences occur independently of the actual exposure received. In contrast, studies of children raised in the shadows of the Three Mile Island (TMI) and Chernobyl accidents suggest that although their self-rated health is less satisfactory than that of their peers, their emotional, academic, and psychosocial development is comparable. The importance of the psychological impact is underscored by its chronicity and by several studies showing that poor mental health is associated with physical health conditions, early mortality, disability, and overuse of medical services. Given the established increase in mental health problems following TMI and Chernobyl, it is likely that the same pattern will occur in residents and evacuees affected by the Fukushima meltdowns. Preliminary data from Fukushima indeed suggest that workers and mothers of young children are at risk of depression, anxiety, psychosomatic, and post-traumatic symptoms both as a direct result of their fears about radiation exposure and an indirect result of societal stigma. Thus, it is important that non-mental health providers learn to recognize and manage psychological symptoms and that medical programs be designed to reduce stigma and alleviate psychological suffering by integrating psychiatric and medical treatment within the walls of their clinics.Introduction of Emotional Consequences of Nuclear Power Plant Disasters (Video 2:15, http://links.lww.com/HP/A34).

  2. Seismic risk management solution for nuclear power plants

    SciTech Connect

    Coleman, Justin; Sabharwall, Piyush

    2014-12-01

    Nuclear power plants should safely operate during normal operations and maintain core-cooling capabilities during off-normal events, including external hazards (such as flooding and earthquakes). Management of external hazards to expectable levels of risk is critical to maintaining nuclear facility and nuclear power plant safety. Seismic risk is determined by convolving the seismic hazard with seismic fragilities (capacity of systems, structures, and components). Seismic isolation (SI) is one protective measure showing promise to minimize seismic risk. Current SI designs (used in commercial industry) reduce horizontal earthquake loads and protect critical infrastructure from the potentially destructive effects of large earthquakes. The benefit of SI application in the nuclear industry is being recognized and SI systems have been proposed in American Society of Civil Engineer Standard 4, ASCE-4, to be released in the winter of 2014, for light water reactors facilities using commercially available technology. The intent of ASCE-4 is to provide criteria for seismic analysis of safety related nuclear structures such that the responses to design basis seismic events, computed in accordance with this standard, will have a small likelihood of being exceeded. The U.S. nuclear industry has not implemented SI to date; a seismic isolation gap analysis meeting was convened on August 19, 2014, to determine progress on implementing SI in the U.S. nuclear industry. The meeting focused on the systems and components that could benefit from SI. As a result, this article highlights the gaps identified at this meeting.

  3. Seismic risk management solution for nuclear power plants

    DOE PAGES

    Coleman, Justin; Sabharwall, Piyush

    2014-12-01

    Nuclear power plants should safely operate during normal operations and maintain core-cooling capabilities during off-normal events, including external hazards (such as flooding and earthquakes). Management of external hazards to expectable levels of risk is critical to maintaining nuclear facility and nuclear power plant safety. Seismic risk is determined by convolving the seismic hazard with seismic fragilities (capacity of systems, structures, and components). Seismic isolation (SI) is one protective measure showing promise to minimize seismic risk. Current SI designs (used in commercial industry) reduce horizontal earthquake loads and protect critical infrastructure from the potentially destructive effects of large earthquakes. The benefitmore » of SI application in the nuclear industry is being recognized and SI systems have been proposed in American Society of Civil Engineer Standard 4, ASCE-4, to be released in the winter of 2014, for light water reactors facilities using commercially available technology. The intent of ASCE-4 is to provide criteria for seismic analysis of safety related nuclear structures such that the responses to design basis seismic events, computed in accordance with this standard, will have a small likelihood of being exceeded. The U.S. nuclear industry has not implemented SI to date; a seismic isolation gap analysis meeting was convened on August 19, 2014, to determine progress on implementing SI in the U.S. nuclear industry. The meeting focused on the systems and components that could benefit from SI. As a result, this article highlights the gaps identified at this meeting.« less

  4. B plant standards/requirements identification document (S/RID)

    SciTech Connect

    Maddox, B.S., Westinghouse Hanford

    1996-07-29

    This Standards/Requirements Identification Document (S/RID) set forth the Environmental Safety and Health (ES{ampersand}H) standards/requirements for the B Plant. This S/RID is applicable to the appropriate life cycle phases of design, construction,operation, and preparation for decommissioning. These standards/requirements are adequate to ensure the protection of the health and safety of workers, the public, and the environment.

  5. 78 FR 42556 - Maine Yankee Atomic Power Company; Maine Yankee Atomic Power Plant Issuance of Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-16

    ... COMMISSION Maine Yankee Atomic Power Company; Maine Yankee Atomic Power Plant Issuance of Environmental..., 2011, with various implementation dates for each of the rule changes. Maine Yankee Atomic Power Company (MYAPC) is holder of Facility Operating License DPR-36 for the Maine Yankee Atomic Power Plant (MY)....

  6. Potential radioactive scrap metal quantities from nuclear power plants worldwide

    SciTech Connect

    Nieves, L.A.; Tilbrook, R.W.

    1996-01-01

    Approximately 12 million tons of scrap metals are likely to be generated worldwide during the next 50 years from decommissioning and dismantling nuclear power plants. A large portion of this material will be only slightly contaminated it at all, and, it it is releasable, it would have a scrap value of billions of dollars. Disposition of the metal is complicated because criteria for release of the metal vary among countries depending on whether the metal is surface of volumetrically contaminated. At present, there is no internationally accepted standard for release of low-level contaminated materials, though both the International Atomic Energy Agency and the Commission of European Communities are in the process of developing recommendations. If the metals are not releasable, they will most likely be disposed of as low-level waste. However, currently available low-level waste repository capacity is limited and costly. Using repositories to dispose of metals that could potentially be decontaminated and recycled is probably not good resource management. This article presents estimates of metal quantities by metal type and contamination that will be come available as nuclear power plants are retired. Topics discussed are major issues related to inventory estimates, methods used to estimate metal masses; and metal masses summarized by reference plant category and total for world region by metal type and activity category. 1 fig., 4 tabs.

  7. INTERIOR OF POWER PLANT SECTION OF BUILDING, FACING NORTHEAST, TOWARDS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR OF POWER PLANT SECTION OF BUILDING, FACING NORTHEAST, TOWARDS CHIMNEY - Vancouver Barracks, Paint Shop and Central Heating Plant, East Fifth Street southeast of McLoughlin Road, Vancouver, Clark County, WA

  8. Coal-Fired Power Plant Heat Rate Reductions

    EPA Pesticide Factsheets

    View a report that identifies systems and equipment in coal-fired power plants where efficiency improvements can be realized, and provides estimates of the resulting net plant heat rate reductions and costs for implementation.

  9. DC power transmission from the Leningradskaya Nuclear Power Plant to Vyborg

    SciTech Connect

    Koshcheev, L. A.; Shul'ginov, N. G.

    2011-05-15

    DC power transmission from the Leningradskaya Nuclear Power Plant (LAES) to city of Vyborg is proposed. This will provide a comprehensive solution to several important problems in the development and control of the unified power system (EES) of Russia.

  10. A concept of the innovative nuclear technology based on standardized fast reactors SVBR-75/100 with lead-bismuth coolant for modular nuclear power plants of different capacity and purpose

    SciTech Connect

    Zrodnikov, A.V.; Toshinsky, G.I.; Komlev, O.G.; Dragunov, Yu.G.; Stepanov, V.S.; Generalov, V.N.; Krushelnitsky, V.N.

    2007-07-01

    Today's nuclear power is in the state of an intrinsic conflict between economic and safety requirements. This fact makes difficult its sustainable development. One of the ways of finding the solution to the problem can be use of modular fast reactors SVBR-75/100 cooled by lead-bismuth coolant that has been mastered in conditions of operating reactors of Russian nuclear submarines. The inherent self-protection and passive safety properties are peculiar to that reactor due to physical features of small power fast reactors ({approx} 100 MWe), chemical inertness and high boiling point of lead-bismuth coolant, integral design of the pool type primary circuit equipment. Due to small power of the reactor, it is possible to fabricate the whole reactor at the factory and to deliver it to the NPP site in practical readiness by using any kind of transport including the railway. Substantiation of the high level of reactor safety, adaptability of the SVBR-75/100 reactor relative to the fuel type and fuel cycle, issues of non-proliferation of nuclear fissile materials, opportunities of multi-purpose usage of the standard SVBR-75/100 reactors have been viewed in the paper. (authors)

  11. Communicating with stakeholders about nuclear power plant radiation.

    PubMed

    Bisconti, Ann Stouffer

    2011-01-01

    A national public opinion survey in 2008 measured public perceptions about radiation and specifically about radiation from nuclear power plants. The study also revealed effective messages for communicating with stakeholders about radiation from nuclear power plants. A comparison with a 1991 national survey on these topics shows that misperceptions about radiation persist, but fewer people now believe that those living near nuclear power plants are exposed to harmful levels of radiation.

  12. Steam-Electric Power-Plant-Cooling Handbook

    SciTech Connect

    Sonnichsen, J.C.; Carlson, H.A.; Charles, P.D.; Jacobson, L.D.; Tadlock, L.A.

    1982-02-01

    The Steam-Electric Power Plant Cooling Handbook provides summary data on steam-electric power plant capacity, generation and number of plants for each cooling means, by Electric Regions, Water Resource Regions and National Electric Reliability Council Areas. Water consumption by once-through cooling, cooling ponds and wet evaporative towers is discussed and a methodology for computation of water consumption is provided for a typical steam-electric plant which uses a wet evaporative tower or cooling pond for cooling.

  13. Next generation geothermal power plants. Draft final report

    SciTech Connect

    Brugman, John; Hattar, John; Nichols, Kenneth; Esaki, Yuri

    1994-12-01

    The goal of this project is to develop concepts for the next generation geothermal power plant(s) (NGGPP). This plant, compared to existing plants, will generate power for a lower levelized cost and will be more competitive with fossil fuel fired power plants. The NGGPP will utilize geothermal resources efficiently and will be equipped with contingencies to mitigate the risk of reservoir performance. The NGGPP design will attempt to minimize emission of pollutants and consumption of surface water and/or geothermal fluids for cooling service.

  14. Designing geothermal power plants to avoid reinventing the corrosion wheel

    SciTech Connect

    Conover, Marshall F.

    1982-10-08

    This paper addresses how designers can take into account, the necessary chemical and materials precautions that other geothermal power plants have learned. Current worldwide geothermal power plant capacity is presented as well as a comparison of steam composition from seven different geothermal resources throughout the world. The similarities of corrosion impacts to areas of the power plants are discussed and include the turbines, gas extraction system, heat rejection system, electrical/electronic systems, and structures. Materials problems and solutions in these corrosion impact areas are identified and discussed. A geothermal power plant design team organization is identified and the efficacy of a new corrosion/materials engineering position is proposed.

  15. Validation of seismic probabilistic risk assessments of nuclear power plants

    SciTech Connect

    Ellingwood, B.

    1994-01-01

    A seismic probabilistic risk assessment (PRA) of a nuclear plant requires identification and information regarding the seismic hazard at the plant site, dominant accident sequences leading to core damage, and structure and equipment fragilities. Uncertainties are associated with each of these ingredients of a PRA. Sources of uncertainty due to seismic hazard and assumptions underlying the component fragility modeling may be significant contributors to uncertainty in estimates of core damage probability. Design and construction errors also may be important in some instances. When these uncertainties are propagated through the PRA, the frequency distribution of core damage probability may span three orders of magnitude or more. This large variability brings into question the credibility of PRA methods and the usefulness of insights to be gained from a PRA. The sensitivity of accident sequence probabilities and high-confidence, low probability of failure (HCLPF) plant fragilities to seismic hazard and fragility modeling assumptions was examined for three nuclear power plants. Mean accident sequence probabilities were found to be relatively insensitive (by a factor of two or less) to: uncertainty in the coefficient of variation (logarithmic standard deviation) describing inherent randomness in component fragility; truncation of lower tail of fragility; uncertainty in random (non-seismic) equipment failures (e.g., diesel generators); correlation between component capacities; and functional form of fragility family. On the other hand, the accident sequence probabilities, expressed in the form of a frequency distribution, are affected significantly by the seismic hazard modeling, including slopes of seismic hazard curves and likelihoods assigned to those curves.

  16. Generic seismic ruggedness of power plant equipment

    SciTech Connect

    Merz, K.L. )

    1991-08-01

    This report updates the results of a program with the overall objective of demonstrating the generic seismic adequacy of as much nuclear power plant equipment as possible by means of collecting and evaluating existing seismic qualification test data. These data are then used to construct ruggedness'' spectra below which equipment in operating plants designed to earlier earthquake criteria would be generically adequate. This document is an EPRI Tier 1 Report. The report gives the methodology for the collection and evaluation of data which are used to construct a Generic Equipment Ruggedness Spectrum (GERs) for each equipment class considered. The GERS for each equipment class are included in an EPRI Tier 2 Report with the same title. Associated with each GERS are inclusion rules, cautions, and checklists for field screening of in-place equipment for GERS applicability. A GERS provides a measure of equipment seismic resistance based on available test data. As such, a GERS may also be used to judge the seismic adequacy of similar new or replacement equipment or to estimate the seismic margin of equipment re-evaluated with respect to earthquake levels greater than considered to date, resulting in fifteen finalized GERS. GERS for relays (included in the original version of this report) are now covered in a separate report (NP-7147). In addition to the presentation of GERS, the Tier 2 report addresses the applicability of GERS to equipment of older vintage, methods for estimating amplification factors for evaluating devices installed in cabinets and enclosures, and how seismic test data from related studies relate to the GERS approach. 28 refs., 5 figs., 4 tabs.

  17. Inspection of Nuclear Power Plant Containment Structures

    SciTech Connect

    Graves, H.L.; Naus, D.J.; Norris, W.E.

    1998-12-01

    Safety-related nuclear power plant (NPP) structures are designed to withstand loadings from a number of low-probability external and interval events, such as earthquakes, tornadoes, and loss-of-coolant accidents. Loadings incurred during normal plant operation therefore generally are not significant enough to cause appreciable degradation. However, these structures are susceptible to aging by various processes depending on the operating environment and service conditions. The effects of these processes may accumulate within these structures over time to cause failure under design conditions, or lead to costly repair. In the late 1980s and early 1990s several occurrences of degradation of NPP structures were discovered at various facilities (e.g., corrosion of pressure boundary components, freeze- thaw damage of concrete, and larger than anticipated loss of prestressing force). Despite these degradation occurrences and a trend for an increasing rate of occurrence, in-service inspection of the safety-related structures continued to be performed in a somewhat cursory manner. Starting in 1991, the U.S. Nuclear Regulatory Commission (USNRC) published the first of several new requirements to help ensure that adequate in-service inspection of these structures is performed. Current regulatory in-service inspection requirements are reviewed and a summary of degradation experience presented. Nondestructive examination techniques commonly used to inspect the NPP steel and concrete structures to identify and quantify the amount of damage present are reviewed. Finally, areas where nondestructive evaluation techniques require development (i.e., inaccessible portions of the containment pressure boundary, and thick heavily reinforced concrete sections are discussed.

  18. Direct Measurement of Mercury Reactions In Coal Power Plant Plumes

    SciTech Connect

    Leonard Levin

    2005-12-31

    west of Kenosha. Aircraft and ground measurements support the occurrence of a reduction in the fraction of reactive gaseous mercury (RGM) (with a corresponding increase in elemental mercury) as part of the Total Gaseous Mercury (TGM) emitted from the Pleasant Prairie stack. This occurrence is based on comparison of the RGM concentrations in the plume (at standard conditions) compared to the RGM in the stack. There was found to be a 44% drop in the fraction of RGM between the stack exit and the first sampling arc and a 66% reduction from the stack to the 5-mile sampling arc, with no additional drop between the 5- and 10-mile arcs. Smaller-scale experiments in both test chambers and pilot-scale coal combustor exhaust streams have indicated the presence of rapid and relatively complete reduction reactions converting divalent into elemental mercury within power plant plumes prior to full dispersion in the atmosphere. These measurements, however, have been unable to identify whether the reactions occur during plume rise from physical to virtual stack height (during positive thermal buoyancy). The presence, rate, completeness, ubiquity, and dependence on source characteristics of these reactions, however, must be demonstrated in plume environments associated with fully operational power plants. That requirement, to capture either the reactions or the reaction products of chemistry that may be occurring very close to stack exits in highly turbulent environments, constrains the precision and reproducibility with which such full-scale experiments can be carried out. The work described here is one of several initial steps required to test whether, and in what direction, such rapid mercury redox reactions might be occurring in such plumes.

  19. Evaluation of the ECAS open cycle MHD power plant design

    NASA Technical Reports Server (NTRS)

    Seikel, G. R.; Staiger, P. J.; Pian, C. C. P.

    1978-01-01

    The Energy Conversion Alternatives Study (ECAS) MHD/steam power plant is described. The NASA critical evaluation of the design is summarized. Performance of the MHD plant is compared to that of the other type ECAS plant designs on the basis of efficiency and the 30-year levelized cost of electricity. Techniques to improve the plant design and the potential performance of lower technology plants requiring shorter development time and lower development cost are then discussed.

  20. Diagnostics of the power oil-filled transformer equipment of thermal power plants

    NASA Astrophysics Data System (ADS)

    Eltyshev, D. K.; Khoroshev, N. I.

    2016-08-01

    Problems concerning improvement of the diagnostics efficiency of the electrical facilities and functioning of the generation and distribution systems through the examples of the power oil-filled transformers, as the responsible elements referring to the electrical part of thermal power plants (TPP), were considered. Research activity is based on the fuzzy logic system allowing working both with statistical and expert information presented in the form of knowledge accumulated during operation of the power oil-filled transformer facilities. The diagnostic algorithm for various types of transformers, with the use of the intellectual estimation model of its thermal state on the basis of the key diagnostic parameters and fuzzy inference hierarchy, was developed. Criteria for taking measures allowing preventing emergencies in the electric power systems were developed. The fuzzy hierarchical model for the state assessment of the power oil-filled transformers of 110 kV, possessing high degree of credibility and setting quite strict requirements to the limits of variables of the equipment diagnostic parameters, was developed. The most frequent defects of the transformer standard elements, related with the disturbance of the isolation properties and instrumentation operation, were revealed after model testing on the real object. Presented results may be used both for the express diagnostics of the transformers state without disconnection from the power line and for more detailed analysis of the defects causes on the basis of the advanced list of the diagnostic parameters; information on those parameters may be received only after complete or partial disconnection.

  1. Film fill for power plant cooling towers

    SciTech Connect

    Mirsky, G.R. ); Monjoie, M. )

    1991-01-01

    This paper reports on film fill, which is the use of flat or formed sheets to provide a surface upon which liquid and air come in contact with each other to affect the exchange of heat. The only other fill options available to a cooling tower designer is the use of splash fill or combinations whereby heat exchange occurs on the surface of water droplets, or both. As film fill allows the designer the opportunity to build a more compact, cost effective, energy efficient cooling tower; this type of fill material is receiving ever increasing acceptance and finding it way into more and more cooling tower applications. film fill is used to both counterflow and crossflow cooling towers, from small air conditioning applications to large natural draft towers serving 1300 to 1500 M.W. power plants around the world. It is being used in applications using unfiltered water high in suspended solids, high concentrations of dissolved salts, water carrying fibers, silt, mud, treated and untreated waste effluent, scale etc. These situations are caused by users who are: trying to reduce water make-up, using untreated or unfiltered water, or trying to save on the cost of chemical treatment.

  2. Macrofouling control in nuclear power plants

    SciTech Connect

    Ekis, E.W. Jr.; Keoplin-Gall, S.M.; McCarthy, R.E.

    1991-11-01

    Macrofouling of cooling-water systems is one of the more significant and costly problems encountered in the nuclear power industry. Both marine and freshwater macroinvertebrates can be responsible for losses in plant availability because of plugged intakes and heat transfer equipment. There is a greater diversity of macrofouling organisms in marine waters than in fresh waters. Marine macrofouling organisms include barnacles, mollusks, bryozoans, and hydroids. Barnacles are crustaceans with feathery appendages, which allow them to attach to a variety of surfaces. They are a major cause of severe macrofouling because they can remain attached even after death. The major freshwater macrofouling organisms include the Asiatic Clam (Corbicula fluminea) and the newest freshwater macrofouler, the Zebra Mussel (Dreissena polymorpha). The introduction of the Zebra Mussel into the Great Lakes has created economic and ecological problems that will not easily be solved. The threat of intercontinental dispersal of the Zebra Mussel in America is serious. Research programs have been initiated around the country to develop control methods for this macrofouling problem. The various control methodologies can be classified in the following categories: biological, chemical, physical, and mechanical. Laboratory experiments were performed to evaluate the efficacy of Actibrom against mature Zebra Mussels.

  3. 75 FR 13323 - James A. Fitzpatrick Nuclear Power Plant; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-19

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION James A. Fitzpatrick Nuclear Power Plant; Exemption 1.0 Background Entergy Nuclear Operations, Inc... the James A. FitzPatrick Nuclear Power Plant (JAFNPP). The license provides, among other things,...

  4. 75 FR 16520 - James A. Fitzpatrick Nuclear Power Plant; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-01

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION James A. Fitzpatrick Nuclear Power Plant; Exemption 1.0 Background Entergy Nuclear Operations, Inc... the James A. FitzPatrick Nuclear Power Plant (JAFNPP). The license provides, among other things,...

  5. 8. VIEW LOOKING WEST AT THE POWER PLANT TEST STAND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. VIEW LOOKING WEST AT THE POWER PLANT TEST STAND DURING AN ENGINE FIRING. DATE UNKNOWN, FRED ORDWAY COLLECTION, U.S. SPACE AND ROCKET CENTER, HUNTSVILLE, AL. - Marshall Space Flight Center, East Test Area, Power Plant Test Stand, Huntsville, Madison County, AL

  6. 10. Interior view, east side of power plant, generator bases ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Interior view, east side of power plant, generator bases in foreground, electrical panels and fuel tanks in background looking northeast - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  7. 15. INTERIOR OF POWER PLANT LOOKING SOUTHWEST. BACK SIDE OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. INTERIOR OF POWER PLANT LOOKING SOUTHWEST. BACK SIDE OF ELECTRICAL PANEL ON LEFT, AND C. 1910 GENERATOR COVER ON RIGHT. - Potomac Power Plant, On West Virginia Shore of Potomac River, about 1 mile upriver from confluence with Shenandoah River, Harpers Ferry, Jefferson County, WV

  8. Geoproducts hybrid geothermal/wood fired power plant

    SciTech Connect

    Lawford, T.

    1983-12-01

    This presentation describes the 15 MW(e) hybrid combined cycle power plant being constructed at Honey Lake, near Susanville, California. The power plant will use a wood fired system topping cycle, an organic Ranking (binary) bottoming cycle, and geothermal heating of combustion air and organic working fluid. In addition to a technical description, project economics, project merits, and project status are presented.

  9. Session 7: Geoproducts Hybrid Geothermal / Wood Fired Power Plant

    SciTech Connect

    Lawford, Tom

    1983-12-01

    This presentation describes the 15 MW(e) hybrid combined cycle power plant being constructed at Honey Lake, near Susanville, California. The power plant will use a wood fired system topping cycle, an organic Ranking (binary) bottoming cycle, and geothermal heating of combustion air and organic working fluid. In addition to a technical description, project economics, project merits, and project status are presented.

  10. 5. SOUTH ELEVATION OF POWER PLANT BUILDING. GRATE COVERED 'TRASH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. SOUTH ELEVATION OF POWER PLANT BUILDING. GRATE COVERED 'TRASH RACK' VISIBLE IN CENTER. THE STEEL FRAME STRUCTURE SUPPORTS MACHINES TO CLEAR DEBRIS CAUGHT ON THE TRASH RACK. - Potomac Power Plant, On West Virginia Shore of Potomac River, about 1 mile upriver from confluence with Shenandoah River, Harpers Ferry, Jefferson County, WV

  11. 13. INTERIOR OF POWER PLANT LOOKING EASTNORTHEAST. 1925 GE GENERATOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. INTERIOR OF POWER PLANT LOOKING EAST-NORTHEAST. 1925 GE GENERATOR IN FOREGROUND, WITH C. 1910 GENERATOR COVER IN BACKGROUND. STEEL FRAME SUPPORTS HOISTING MECHANISM USED TO MOVE, REPAIR, OR REPLACE GENERATORS. - Potomac Power Plant, On West Virginia Shore of Potomac River, about 1 mile upriver from confluence with Shenandoah River, Harpers Ferry, Jefferson County, WV

  12. JPL - Small Power Systems Applications Project. [for solar thermal power plant development and commercialization

    NASA Technical Reports Server (NTRS)

    Ferber, R. R.; Marriott, A. T.; Truscello, V.

    1978-01-01

    The Small Power Systems Applications (SPSA) Project has been established to develop and commercialize small solar thermal power plants. The technologies of interest include all distributed and central receiver technologies which are potentially economically viable in power plant sizes of one to 10 MWe. The paper presents an overview of the SPSA Project and briefly discusses electric utility involvement in the Project.

  13. Systems Modeling for Z-IFE Power Plants

    SciTech Connect

    Meier, W R

    2006-11-08

    A preliminary systems model has been developed for Z-IFE power plants. The model includes cost and performance scaling for the target physics, z-pinch driver, chamber, power conversion system and target/RTL manufacturing plant. As the base case we consider the dynamic hohlraum target and a thick liquid wall chamber with flibe as the working fluid. Driver cost and efficiency are evaluated parametrically since various options are still being considered. The model allows for power plants made up of multiple chambers and power conversion units supplied by a central target/RTL manufacturing plant. Initial results indicate that plants with few chambers operating at high yield are economically more attractive than the 10-unit plant previously proposed. Various parametric and sensitivity studies have been completed and are discussed.

  14. MCFC power plant with CO{sub 2} separation

    SciTech Connect

    Kinoshita, Noboru

    1996-12-31

    Fuel cell power plant has been developed for many years with expectation of high system efficiency. In the meantime the gas turbine combined cycle has shown its considerable progress in improving system efficiency. Fuel cell power plant will no longer be attractive unless it exceeds the gas turbine combined cycle at least in the system efficiency. It is said CO{sub 2} separation could improve the efficiency of fuel cell power plant. IHI has developed the CO{sub 2} separator for fuel cell power plant. This study describes that the CO{sub 2} separator can increase the efficiency of the molten carbonate fuel cell (MCFC) power plant by 5% and the expected efficiency reaches 63 % in HHV basis.

  15. Nuclear power plant status diagnostics using artificial neural networks

    SciTech Connect

    Bartlett, E.B. . Dept. of Mechanical Engineering); Uhrig, R.E. . Dept. of Nuclear Engineering)

    1991-01-01

    In this work, the nuclear power plant operating status recognition issue is investigated using artificial neural networks (ANNs). The objective is to train an ANN to classify nuclear power plant accident conditions and to assess the potential of future work in the area of plant diagnostics with ANNS. To this end, an ANN was trained to recognize normal operating conditions as well as potentially unsafe conditions based on nuclear power plant training simulator generated accident scenarios. These scenarios include; hot and cold leg loss of coolant, control rod ejection, loss of offsite power, main steam line break, main feedwater line break and steam generator tube leak accidents. Findings show that ANNs can be used to diagnose and classify nuclear power plant conditions with good results.

  16. Nuclear power plant status diagnostics using artificial neural networks

    SciTech Connect

    Bartlett, E.B.; Uhrig, R.E.

    1991-12-31

    In this work, the nuclear power plant operating status recognition issue is investigated using artificial neural networks (ANNs). The objective is to train an ANN to classify nuclear power plant accident conditions and to assess the potential of future work in the area of plant diagnostics with ANNS. To this end, an ANN was trained to recognize normal operating conditions as well as potentially unsafe conditions based on nuclear power plant training simulator generated accident scenarios. These scenarios include; hot and cold leg loss of coolant, control rod ejection, loss of offsite power, main steam line break, main feedwater line break and steam generator tube leak accidents. Findings show that ANNs can be used to diagnose and classify nuclear power plant conditions with good results.

  17. HIGH EFFICIENCY FOSSIL POWER PLANT (HEFPP) CONCEPTUALIZATION PROGRAM

    SciTech Connect

    J.L. Justice

    1999-03-25

    This study confirms the feasibility of a natural gas fueled, 20 MW M-C Power integrated pressurized molten carbonate fuel cell combined in a topping cycle with a gas turbine generator plant. The high efficiency fossil power plant (HEFPP) concept has a 70% efficiency on a LHV basis. The study confirms the HEFPP has a cost advantage on a cost of electricity basis over the gas turbine based combined cycle plants in the 20 MW size range. The study also identifies the areas of further development required for the fuel cell, gas turbine generator, cathode blower, inverter, and power module vessel. The HEFPP concept offers an environmentally friendly power plant with minuscule emission levels when compared with the combined cycle power plant.

  18. Maximum power for a power plant with two Carnot-like cycles

    NASA Astrophysics Data System (ADS)

    Aragón-González, G.; León-Galicia, A.

    2017-01-01

    A stationary power plant with two Carnot-like cycles is optimized. Each cycle has the following irreversibilities: finite rate heat transfer between the working fluid and the external heat sources, internal dissipation of the working fluid, and heat leak between reservoirs. The optimal allocation or effectiveness of the heat exchangers for this power plant is determined by applying, two alternating design rules: fixed internal thermal conductance or fixed areas. The optimal relations obtained are substituted in the power and the maximum power, according to the isentropic ratio of each one of the Carnot-like cycles of the power plant, is calculated. Additionally, the efficiency to maximum power is presented.

  19. Use of existing standards to measure sound power levels of powered hand tools-necessary revisions

    NASA Astrophysics Data System (ADS)

    Hayden, Charles S.; Zechmann, Edward

    2005-09-01

    At recent NOISE-CON and Acoustical Society of America meetings, noise rating labeling was discussed as a way of manufacturers providing full disclosure information for their noise emitting products. The first step is to gather sound power level data from these products. Sound power level data should be gathered in accordance with existing ANSI and/or ISO standards. Some standards, such as ANSI 12.15, may not define true operational noise emissions[r1] and thus may provide inaccurate information when that information is used to choose a hearing protection device or used to make a purchasing decision. A number of standards were systematically combined by NIOSH researchers to provide the most accurate information on sound power levels of powered hand tools used in the construction industry. This presentation will detail some of the challenges of existing ANSI 12.15 (and draft ANSI 12.41) to measure sound power levels of electric (and pneumatic) powered hand tools.

  20. Optimal load distribution between units in a power plant.

    PubMed

    Bortoni, Edson C; Bastos, Guilherme S; Souza, Luiz E

    2007-10-01

    This paper presents a strategy for load distribution between the generating units in hydro power plants. The objective is to reach the maximum energy conversion efficiency for a given dispatched power. The developed tool employs a heuristic-based combinatorial optimization technique in conjunction with a set of system variables measurement allowing real-time load sharing. The developed equipment is used to give online energy conversion efficiency from each unit of the power plant. No specific previous information about the efficiency of system components is required. Simulation results of the proposed optimization technique when applied to typical hydro power plant data are presented.

  1. Computing and cognition in future power-plant operations

    SciTech Connect

    Kisner, R.A.; Sheridan, T.B.

    1983-01-01

    The intent of this paper is to speculate on the nature of future interactions between people and computers in the operation of power plants. In particular, the authors offer a taxonomy for examining the differing functions of operators in interacting with the plant and its computers, and the differing functions of the computers in interacting with the plant and its operators.

  2. Solar pond power plant feasibility study for Davis, California

    NASA Technical Reports Server (NTRS)

    Wu, Y. C.; Singer, M. J.; Marsh, H. E.; Harris, J.; Walton, A. L.

    1982-01-01

    The feasibility of constructing a solar pond power plant at Davis, California was studied. Site visits, weather data compilation, soil and water analyses, conceptual system design and analyses, a material and equipment market survey, conceptual site layout, and a preliminary cost estimate were studied. It was concluded that a solar pond power plant is technically feasible, but economically unattractive. The relatively small scale of the proposed plant and the high cost of importing salt resulted in a disproportionately high capital investment with respect to the annual energy production capacity of the plant. Cycle optimization and increased plant size would increase the economical attractiveness of the proposed concept.

  3. Dynamic simulation of a direct carbonate fuel cell power plant

    SciTech Connect

    Ernest, J.B.; Ghezel-Ayagh, H.; Kush, A.K.

    1996-12-31

    Fuel Cell Engineering Corporation (FCE) is commercializing a 2.85 MW Direct carbonate Fuel Cell (DFC) power plant. The commercialization sequence has already progressed through construction and operation of the first commercial-scale DFC power plant on a U.S. electric utility, the 2 MW Santa Clara Demonstration Project (SCDP), and the completion of the early phases of a Commercial Plant design. A 400 kW fuel cell stack Test Facility is being built at Energy Research Corporation (ERC), FCE`s parent company, which will be capable of testing commercial-sized fuel cell stacks in an integrated plant configuration. Fluor Daniel, Inc. provided engineering, procurement, and construction services for SCDP and has jointly developed the Commercial Plant design with FCE, focusing on the balance-of-plant (BOP) equipment outside of the fuel cell modules. This paper provides a brief orientation to the dynamic simulation of a fuel cell power plant and the benefits offered.

  4. Facing technological challenges of Solar Updraft Power Plants

    NASA Astrophysics Data System (ADS)

    Lupi, F.; Borri, C.; Harte, R.; Krätzig, W. B.; Niemann, H.-J.

    2015-01-01

    The Solar Updraft Power Plant technology addresses a very challenging idea of combining two kinds of renewable energy: wind and solar. The working principle is simple: a Solar Updraft Power Plant (SUPP) consists of a collector area to heat the air due to the wide-banded ultra-violet solar radiation, the high-rise solar tower to updraft the heated air to the atmosphere, and in between the power conversion unit, where a system of coupled turbines and generators transforms the stream of heated air into electric power. A good efficiency of the power plant can only be reached with extra-large dimensions of the tower and/or the collector area. The paper presents an up-to-date review of the SUPP technology, focusing on the multi-physics modeling of the power plant, on the structural behavior of the tower and, last but not least, on the modeling of the stochastic wind loading process.

  5. A COMPUTATIONAL WORKBENCH ENVIRONMENT FOR VIRTUAL POWER PLANT SIMULATION

    SciTech Connect

    Mike Bockelie; Dave Swensen; Martin Denison; Connie Senior; Zumao Chen; Temi Linjewile; Adel Sarofim; Bene Risio

    2003-04-25

    This is the tenth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT41047. The goal of the project is to develop and demonstrate a computational workbench for simulating the performance of Vision 21 Power Plant Systems. Within the last quarter, good progress has been made on all aspects of the project. Calculations for a full Vision 21 plant configuration have been performed for two gasifier types. An improved process model for simulating entrained flow gasifiers has been implemented into the workbench. Model development has focused on: a pre-processor module to compute global gasification parameters from standard fuel properties and intrinsic rate information; a membrane based water gas shift; and reactors to oxidize fuel cell exhaust gas. The data visualization capabilities of the workbench have been extended by implementing the VTK visualization software that supports advanced visualization methods, including inexpensive Virtual Reality techniques. The ease-of-use, functionality and plug-and-play features of the workbench were highlighted through demonstrations of the workbench at a DOE sponsored coal utilization conference. A white paper has been completed that contains recommendations on the use of component architectures, model interface protocols and software frameworks for developing a Vision 21 plant simulator.

  6. EMOTIONAL CONSEQUENCES OF NUCLEAR POWER PLANT DISASTERS

    PubMed Central

    Bromet, Evelyn J.

    2014-01-01

    The emotional consequences of nuclear power plant disasters include depression, anxiety, post-traumatic stress disorder, and medically unexplained somatic symptoms. These effects are often long term and associated with fears about developing cancer. Research on disasters involving radiation, particularly evidence from Chernobyl, indicates that mothers of young children and cleanup workers are the highest risk groups. The emotional consequences occur independently of the actual exposure received. In contrast, studies of children raised in the shadows of the Three Mile Island (TMI) and Chernobyl accidents suggest that although their self-rated health is less satisfactory than that of their peers, their emotional, academic, and psychosocial development is comparable. The importance of the psychological impact is underscored by its chronicity and by several studies showing that poor mental health is associated with physical health conditions, early mortality, disability, and over-utilization of medical services. Given the established increase in mental health problems following TMI and Chernobyl, it is likely that the same pattern will occur in residents and evacuees affected by the Fukushima meltdowns. Preliminary data from Fukushima indeed suggest that workers and mothers of young children are at risk of depression, anxiety, psychosomatic, and post-traumatic symptoms both as a direct result of their fears about radiation exposure and an indirect result of societal stigma. Thus, it is important that nonmental health providers learn to recognize and manage psychological symptoms and that medical programs be designed to reduce stigma and alleviate psychological suffering by integrating psychiatric and medical treatment within the walls of their clinics. PMID:24378494

  7. Role of Design Standards in Wind Plant Optimization (Presentation)

    SciTech Connect

    Veers, P.; Churchfield, M.; Lee, S.; Moon, J.; Larsen, G.

    2013-10-01

    When a turbine is optimized, it is done within the design constraints established by the objective criteria in the international design standards used to certify a design. Since these criteria are multifaceted, it is a challenging task to conduct the optimization, but it can be done. The optimization is facilitated by the fact that a standard turbine model is subjected to standard inflow conditions that are well characterized in the standard. Examples of applying these conditions to rotor optimization are examined. In other cases, an innovation may provide substantial improvement in one area, but be challenged to impact all of the myriad design load cases. When a turbine is placed in a wind plant, the challenge is magnified. Typical design practice optimizes the turbine for stand-alone operation, and then runs a check on the actual site conditions, including wakes from all nearby turbines. Thus, each turbine in a plant has unique inflow conditions. The possibility of creating objective and consistent inflow conditions for turbines within a plant, for used in optimization of the turbine and the plant, are examined with examples taken from LES simulation.

  8. 7. Perimeter acquisition radar power plant room #202, battery equipment ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Perimeter acquisition radar power plant room #202, battery equipment room; showing battery room (in background) and multiple source power converter (in foreground). The picture offers another look at the shock-isolation system developed for each platform - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Power Plant, In Limited Access Area, Southwest of PARB at end of Service Road B, Nekoma, Cavalier County, ND

  9. Steam turbine development for advanced combined cycle power plants

    SciTech Connect

    Oeynhausen, H.; Bergmann, D.; Balling, L.; Termuehlen, H.

    1996-12-31

    For advanced combined cycle power plants, the proper selection of steam turbine models is required to achieve optimal performance. The advancements in gas turbine technology must be followed by advances in the combined cycle steam turbine design. On the other hand, building low-cost gas turbines and steam turbines is desired which, however, can only be justified if no compromise is made in regard to their performance. The standard design concept of two-casing single-flow turbines seems to be the right choice for most of the present and future applications worldwide. Only for very specific applications it might be justified to select another design concept as a more suitable option.

  10. Local biofuels power plants with fuel cell generators

    SciTech Connect

    Lindstroem, O.

    1996-12-31

    The fuel cell should be a most important option for Asian countries now building up their electricity networks. The fuel cell is ideal for the schemes for distributed generation which are more reliable and efficient than the centralized schemes so far favoured by the industrialized countries in the West. Not yet developed small combined cycle power plants with advanced radial gas turbines and compact steam turbines will be the competition. Hot combustion is favoured today but cold combustion may win in the long run thanks to its environmental advantages. Emission standards are in general determined by what is feasible with available technology. The simple conclusion is that the fuel cell has to prove that it is competitive to the turbines in cost engineering terms. A second most important requirement is that the fuel cell option has to be superior with respect to electrical efficiency.

  11. Guidelines for inservice testing at nuclear power plants

    SciTech Connect

    Campbell, P.

    1995-04-01

    The staff of the U.S. Nuclear Regulatory Commission (NRC) gives licensees guidelines and recommendations for developing and implementing programs for the inservice testing of pumps and valves at commercial nuclear power plants. The staff discusses the regulations; the components to be included in an inservice testing program; and the preparation and content of cold shutdown justifications, refueling outage justifications, and requests for relief from the American Society of Mechanical Engineers Code requirements. The staff also gives specific guidance on relief acceptable to the NRC and advises licensees in the use of this information at their facilities. The staff discusses the revised standard technical specifications for the inservice testing program requirements and gives guidance on the process a licensee may follow upon finding an instance of noncompliance with the Code.

  12. Understanding seismic design criteria for Japanese Nuclear Power Plants

    SciTech Connect

    Park, Y.J.; Hofmayer, C.H.; Costello, J.F.

    1995-04-01

    This paper summarizes the results of recent survey studies on the seismic design practice for nuclear power plants in Japan. The seismic design codes and standards for both nuclear as well as non-nuclear structures have been reviewed and summarized. Some key documents for understanding Japanese seismic design criteria are also listed with brief descriptions. The paper highlights the design criteria to determine the seismic demand and component capacity in comparison with U.S. criteria, the background studies which have led to the current Japanese design criteria, and a survey of current research activities. More detailed technical descriptions are presented on the development of Japanese shear wall equations, design requirements for containment structures, and ductility requirements.

  13. Favorite Lesson Plans: Powerful Standards-Based Activities.

    ERIC Educational Resources Information Center

    Wilen, William W., Ed.

    This collection of lesson plans helps social studies teachers and teacher educators implement the various national and state standards in their classrooms. The collection illustrates how classroom implementation can be achieved through the application of the powerful teaching and learning principles devised by National Council for the Social…

  14. Modelling of some parameters from thermoelectric power plants

    NASA Astrophysics Data System (ADS)

    Popa, G. N.; Diniş, C. M.; Deaconu, S. I.; Maksay, Şt; Popa, I.

    2016-02-01

    Paper proposing new mathematical models for the main electrical parameters (active power P, reactive power Q of power supplies) and technological (mass flow rate of steam M from boiler and dust emission E from the output of precipitator) from a thermoelectric power plants using industrial plate-type electrostatic precipitators with three sections used in electrical power plants. The mathematical models were used experimental results taken from industrial facility, from boiler and plate-type electrostatic precipitators with three sections, and has used the least squares method for their determination. The modelling has been used equations of degree 1, 2 and 3. The equations were determined between dust emission depending on active power of power supplies and mass flow rate of steam from boiler, and, also, depending on reactive power of power supplies and mass flow rate of steam from boiler. These equations can be used to control the process from electrostatic precipitators.

  15. Draft Title V Permit to Operate: Deseret Power Electric Cooperative Bonanza Power Plant

    EPA Pesticide Factsheets

    Draft operating permit, Statement of Basis, public notice, and supporting documentation for the Deseret Power Electric Cooperative Bonanza Power Plant located within the exterior boundaries of the Uintah and Ouray Indian Reservation in Uintah County, UT.

  16. Parametric study of potential early commercial MHD power plants

    NASA Technical Reports Server (NTRS)

    Hals, F. A.

    1979-01-01

    Three different reference power plant configurations were considered with parametric variations of the various design parameters for each plant. Two of the reference plant designs were based on the use of high temperature regenerative air preheaters separately fired by a low Btu gas produced from a coal gasifier which was integrated with the power plant. The third reference plant design was based on the use of oxygen enriched combustion air preheated to a more moderate temperature in a tubular type metallic recuperative heat exchanger which is part of the bottoming plant heat recovery system. Comparative information was developed on plant performance and economics. The highest net plant efficiency of about 45 percent was attained by the reference plant design with the use of a high temperature air preheater separately fired with the advanced entrained bed gasifier. The use of oxygen enrichment of the combustion air yielded the lowest cost of generating electricity at a slightly lower plant efficiency. Both of these two reference plant designs are identified as potentially attractive for early MHD power plant applications.

  17. Direct carbonate fuel cell power plant operating with logistic fuels

    SciTech Connect

    Abens, S.G.; Steinfeld, G.

    1997-12-31

    In response to the US Department of Defense need for power generators which operate with logistic fuels, Energy Research Corporation and its subcontractors, Haldor Topsoe and Fluor Daniel, have conducted design studies and subscale equipment tests toward the development of fuel cell power plants with multifuel capability. A principal objective of this work was the development of a fixed-base carbonate fuel cell power plant design which can utilize both natural gas and military logistic fuels DF-2 and JP-8. To verify ERC`s technical approach, a 32 kW brassboard logistic fuel preprocessing system was assembled and operated with a Direct Carbonate Fuel Cell (DFC) stack. The project was conducted as part of DARPA`s Fuel Cell Power Plant Initiative Program for the development of dual use fuel cell power plants. The logistic fuel preprocessor consisted of a hydrodesulfurization plant which supplied desulfurized feed to an adiabatic prereformer. The methane-rich product gas provides fuel cell performance similar to that with natural gas. A preliminary design of a 3MW multifuel power plant prepared with input from the 32kW brassboard test confirmed that the thermal efficiency of a DFC power plant is nearly as high with logistic fuel (57%) as it is with natural gas (58%).

  18. Solar Thermal Power Plants with Parabolic-Trough Collectors

    NASA Astrophysics Data System (ADS)

    Zarza, E.; Valenzuela, L.; León, J.

    2004-12-01

    Parabolic-trough collectors (PTC) are solar concentrating devices suitable to work in the 150°C- 400°C temperature range. Power plants based on this type of solar collectors are a very efficient way to produce electricity with solar energy. At present, there are eight commercial solar plants (called SEGS-II, III,.. IX) producing electricity with parabolic-trough collectors and their total output power is 340 MW. Though all SEGS plants currently in operation use thermal oil as a heat transfer fluid between the solar field and the power block, direct steam generation (DSG) in the receiver tubes is a promising option to reduce the cost of electricity produced with parabolic- trough power plants. Most of technical uncertainties associated to the DSG technology were studied and solved in the DISS project and it is expected that this new technology will be commercially available in a short term. In Spain, the Royal Decree No. 436/204 (March 12th , 2004) has defined a premium of 0,18€/kWh for the electricity produced by solar thermal power plants, thus promoting the installation of solar thermal power plants up to a limit of 200 MW. Due to the current legal and financial framework defined in Spain, several projects to install commercial solar power plants with parabolic-trough collectors are currently underway.

  19. Performance calculations for 1000 MWe MHD/steam power plants

    NASA Technical Reports Server (NTRS)

    Pian, C. C. P.

    1981-01-01

    The effects of MHD generator operating conditions and constraints on the performance of MHD/steam power plants are investigated. Power plants using high temperature combustion air preheat (2500 F) and plants using intermediate temperature preheat (1100 F) with oxygen enrichment are considered. Variations of these two types of power plants are compared on the basis of fixed total electrical output (1000 MWe). Results are presented to show the effects of generator plant length and level of oxygen enrichment on the plant thermodynamic efficiency and on the required generator mass flow rate. Factors affecting the optimum levels of oxygen enrichment are analyzed. It is shown that oxygen enrichment can reduce magnet stored energy requirement.

  20. Nuclear power plant status diagnostics using an artificial neural network

    SciTech Connect

    Bartlett, E.B.; Uhrig, R.E. )

    1992-03-01

    In this paper, nuclear power plant operating status recognition is investigated using a self-optimizing stochastic learning algorithm artificial neutral network (ANN) with dynamic node architecture learning. The objective is to train the ANN to classify selected nuclear power plant accident conditions and assess the potential for future success in this area. The network is trained on normal operating conditions as well as on potentially unsafe conditions based on nuclear power plant training simulator-generated accident scenarios. These scenarios include hot-and cold-leg loss of coolant, control rod ejection, total loss of off-site power, main streamline break, main feedwater line break, and steam generator tube leak accidents as well as the normal operating condition. Findings show that ANNs can be used to diagnose and classify nuclear power plant conditions with good results. continued research work indicated.

  1. Preconstruction of the Honey Lake Hybrid Power Plant: Final report

    SciTech Connect

    Not Available

    1988-04-30

    The work undertaken under this Contract is the prosecution of the preconstruction activities, including preliminary engineering design, well field development, completion of environmental review and prosecution of permits, and the economic and financial analysis of the facility. The proposed power plant is located in northeastern California in Lassen County, approximately 25 miles east of the town of Susanville. The power plant will use a combination of wood residue and geothermal fluids for power generation. The plant, when fully constructed, will generate a combined net output of approximately 33 megawatts which will be sold to Pacific Gas and Electric Company (PGandE) under existing long-term power sales contracts. Transfer of electricity to the PGandE grid will require construction of a 22-mile transmission line from the power plant to Susanville. 11 refs., 12 figs., 4 tabs.

  2. Preconstruction of the Honey Lake Hybrid Power Plant

    SciTech Connect

    Not Available

    1988-04-30

    The work undertaken under this Contract is the prosecution of the preconstruction activities, including preliminary engineering design, well field development, completion of environmental review and prosecution of permits, and the economic and financial analysis of the facility. The proposed power plant is located in northeastern California in Lassen County, approximately 25 miles east of the town of Susanville. The power plant will use a combination of wood residue and geothermal fluids for power generation. The plant, when fully constructed, will generate a combined net output of approximately 33 megawatts which will be sold to Pacific Gas and Electric Company (PG E) under existing long-term power sales contracts. Transfer of electricity to the PG E grid will require construction of a 22-mile transmission line from the power plant to Susanville. 11 refs., 12 figs., 7 tabs.

  3. Gaseous and particulate emissions from thermal power plants operating on different technologies.

    PubMed

    Athar, Makshoof; Ali, Mahboob; Khan, Misbahul Ain

    2010-07-01

    This paper presents the assessment of gaseous and particulate emissions from thermal power plants operating on different combustion technologies. Four thermal power plants operating on heavy furnace oil were selected for the study, among which three were based on diesel engine technology, while the fourth plant was based on oil-fired steam turbine technology. The stack emissions were monitored for critical air pollutants carbon monoxide, carbon dioxide, oxides of nitrogen, sulfur dioxide, particulate matter, lead, and mercury. The pollutant emissions were measured at optimum load conditions for a period of 6 months with an interval of 1 month. The results of stack emissions were compared with National Environmental Quality Standards of Pakistan and World Bank guidelines for thermal power plants, and few parameters were found higher than the permissible limits of emissions. It was observed that the emissions carbon monoxide, oxides of nitrogen, and particulate matters from diesel engine-based power plants were comparatively higher than the turbine-based power plants. The emissions of sulfur dioxide were high in all the plants, even the plants with different technologies, which was mainly due to high sulfur contents in fuel.

  4. Prospects for advanced coal-fuelled fuel cell power plants

    NASA Astrophysics Data System (ADS)

    Jansen, D.; Vanderlaag, P. C.; Oudhuis, A. B. J.; Ribberink, J. S.

    1994-04-01

    As part of ECN's in-house R&D programs on clean energy conversion systems with high efficiencies and low emissions, system assessment studies have been carried out on coal gasification power plants integrated with high-temperature fuel cells (IGFC). The studies also included the potential to reduce CO2 emissions, and to find possible ways for CO2 extraction and sequestration. The development of this new type of clean coal technology for large-scale power generation is still far off. A significant market share is not envisaged before the year 2015. To assess the future market potential of coal-fueled fuel cell power plants, the promise of this fuel cell technology was assessed against the performance and the development of current state-of-the-art large-scale power generation systems, namely the pulverized coal-fired power plants and the integrated coal gasification combined cycle (IGCC) power plants. With the anticipated progress in gas turbine and gas clean-up technology, coal-fueled fuel cell power plants will have to face severe competition from advanced IGCC power plants, despite their higher efficiency.

  5. Stillwater Hybrid Geo-Solar Power Plant Optimization Analyses

    SciTech Connect

    Wendt, Daniel S.; Mines, Gregory L.; Turchi, Craig S.; Zhu, Guangdong; Cohan, Sander; Angelini, Lorenzo; Bizzarri, Fabrizio; Consoli, Daniele; De Marzo, Alessio

    2015-09-02

    The Stillwater Power Plant is the first hybrid plant in the world able to bring together a medium-enthalpy geothermal unit with solar thermal and solar photovoltaic systems. Solar field and power plant models have been developed to predict the performance of the Stillwater geothermal / solar-thermal hybrid power plant. The models have been validated using operational data from the Stillwater plant. A preliminary effort to optimize performance of the Stillwater hybrid plant using optical characterization of the solar field has been completed. The Stillwater solar field optical characterization involved measurement of mirror reflectance, mirror slope error, and receiver position error. The measurements indicate that the solar field may generate 9% less energy than the design value if an appropriate tracking offset is not employed. A perfect tracking offset algorithm may be able to boost the solar field performance by about 15%. The validated Stillwater hybrid plant models were used to evaluate hybrid plant operating strategies including turbine IGV position optimization, ACC fan speed and turbine IGV position optimization, turbine inlet entropy control using optimization of multiple process variables, and mixed working fluid substitution. The hybrid plant models predict that each of these operating strategies could increase net power generation relative to the baseline Stillwater hybrid plant operations.

  6. Advanced Power Ultra-Uprates of Existing Plants (APPU) Final Scientific/Technical Report

    SciTech Connect

    Rubiolo, Pablo R.; Conway, Lawarence E.; Oriani, Luca; Lahoda, Edward J.; DeSilva, Greg; Hu, Min H.; Hartz, Josh; Bachrach, Uriel; Smith, Larry; Dudek, Daniel F.; Gary J. Toman; Feng, Dandong; Hejzlar, Pavel; Kazimi, Mujid S.

    2006-03-31

    This project assessed the feasibility of a Power Ultra-Uprate on an existing nuclear plant. The study determined the technical and design limitations of the current components, both inside and outside the containment. Based on the identified plant bottlenecks, the design changes for major pieces of equipment required to meet the Power Ultra-Uprate throughput were determined. Costs for modified pieces of equipment and for change-out and disposal of the replaced equipment were evaluated. These costs were then used to develop capital, fuel and operating and maintenance cost estimates for the Power Ultra-Uprate plant. The cost evaluation indicates that the largest cost components are the replacement of power (during the outage required for the uprate) and the new fuel loading. Based on these results, the study concluded that, for a standard 4-loop plant, the proposed Power Ultra-Uprate is technically feasible. However, the power uprate is likely to be more expensive than the cost (per Kw electric installed) of a new plant when large capacity uprates are considered (>25%). Nevertheless, the concept of the Power Ultra-Uprate may be an attractive option for specific nuclear power plants where a large margin exists in the steam and power conversion system or where medium power increases (~600 MWe) are needed. The results of the study suggest that development efforts on fuel technologies for current nuclear power plants should be oriented towards improving the fuel performance (fretting-wear, corrosion, uranium load, manufacturing, safety) required to achieve higher burnup rather focusing on potential increases in the fuel thermal output.

  7. Effective method for MHD retrofit of power plants

    SciTech Connect

    Berry, G.F.; Dennis, C.B.; Johnson, T.R.; Minkov, V.

    1981-10-01

    Retrofitting existing power plants with an open-cycle MHD system has been re-examined in light of recent developments in the heat and seed recovery technology area. A new retrofit cycle configuration has been developed which provides for a direct gas-gas coupling; also, the MHD topping cycle can be decoupled from the existing plant for either separate or joint operation. As an example, the MHD retrofit concept has been applied to Illinois Power Company's Vermilion Station No. 1, a coal-fired power plant presently in operation. Substantial increases in efficiency have been demonstrated and the economic validity of the MHD retrofit approach has been established.

  8. Technical Basis for Flood Protection at Nuclear Power Plants

    DTIC Science & Technology

    2015-07-01

    ER D C/ CH L SR -1 5- 3 Technical Basis for Flood Protection at Nuclear Power Plants Co as ta l a nd H yd ra ul ic s La bo ra to ry...2015 Technical Basis for Flood Protection at Nuclear Power Plants James R. Leech, Loren L. Wehmeyer, David A. Margo, Landris T. Lee, Aaron R. Byrd...39180-6199 ERDC/CHL SR-15-3 ii Abstract Current flood- protection regulatory guidance for nuclear power plants is contained in the Regulatory Guide

  9. Standard power regulator for the multi-mission modular spacecraft

    NASA Technical Reports Server (NTRS)

    Kichak, R. A.

    1979-01-01

    The Standard Power Regulator Unit (SPRU) which forms the central building block of the Modular Power Subsystem (MPS) for the Multi-mission Modular Spacecraft (MMS) is described. A functional description of the SPRU is presented, detailing key design features, operational characteristics, and internal redundancy as well as giving block and schematic diagrams for all major subassemblies. The description of a qualification test program consisting of ten sequences ranging from a physical examination of the unit to calculating vibration and sine sweep of power on shock tests is presented. The results showed that some significant anomalies were encountered but no catastrophic failures were indicated, although several power module failures were found due to overvoltage malfunctions of the solar array stimulator.

  10. Preliminary Identification of Accident Initiating Events for IFE Power Plants

    SciTech Connect

    Cadwallader, Lee Charles; Latkowsk, J. F.

    2001-10-01

    This paper presents initial results of a task to identify accident initiating events for inertial fusion energy (IFE) power plant designs. Initiating events (IEs) are a fundamental building block of a probabilistic risk assessment; they are the ‘accident starters’ that are analyzed to determine the risks posed to members of the public in the vicinity of the power plant. The IE results for the SOMBRERO design are presented in tabular form. The SOMBRERO design was analyzed since it is representative of dry chamber wall, laser driven designs. This work is used to characterize IFE plant risk and to identify potential design changes that would mitigate the plant risk.

  11. 76 FR 40403 - R.E. Ginna Nuclear Power Plant, LLC, R.E. Ginna Nuclear Power Plant, R.E. Ginna Independent Spent...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-08

    ... COMMISSION R.E. Ginna Nuclear Power Plant, LLC, R.E. Ginna Nuclear Power Plant, R.E. Ginna Independent Spent...) 50.80 approving the indirect transfer of Renewed Facility Operating License No. DPR-18, for the R.E. Ginna Nuclear Power Plant (Ginna), currently held by R.E. Ginna Nuclear Power Plant, LLC as owner...

  12. Living near nuclear power plants and thyroid cancer risk: A systematic review and meta-analysis.

    PubMed

    Kim, Jaeyoung; Bang, Yejin; Lee, Won Jin

    2016-02-01

    There has been public concern regarding the safety of residing near nuclear power plants, and the extent of risk for thyroid cancer among adults living near nuclear power plants has not been fully explored. In the present study, a systematic review and meta-analysis of epidemiologic studies was conducted to investigate the association between living near nuclear power plants and the risk of thyroid cancer. A comprehensive literature search was performed on studies published up to March 2015 on the association between nuclear power plants and thyroid cancer risk. The summary standardized incidence ratio (SIR), standardized mortality ratio (SMR), and 95% confidence intervals (CIs) were calculated using a random-effect model of meta-analysis. Sensitivity analyses were performed by study quality. Thirteen studies were included in the meta-analysis, covering 36 nuclear power stations in 10 countries. Overall, summary estimates showed no significant increased thyroid cancer incidence or mortality among residents living near nuclear power plants (summary SIR=0.98; 95% CI 0.87-1.11, summary SMR=0.80; 95% CI 0.62-1.04). The pooled estimates did not reveal different patterns of risk by gender, exposure definition, or reference population. However, sensitivity analysis by exposure definition showed that living less than 20 km from nuclear power plants was associated with a significant increase in the risk of thyroid cancer in well-designed studies (summary OR=1.75; 95% CI 1.17-2.64). Our study does not support an association between living near nuclear power plants and risk of thyroid cancer but does support a need for well-designed future studies.

  13. Commercial ballard PEM fuel cell natural gas power plant development

    SciTech Connect

    Watkins, D.S.; Dunnison, D.; Cohen, R.

    1996-12-31

    The electric utility industry is in a period of rapid change. Deregulation, wholesale and retail wheeling, and corporate restructuring are forcing utilities to adopt new techniques for conducting their business. The advent of a more customer oriented service business with tailored solutions addressing such needs as power quality is a certain product of the deregulation of the electric utility industry. Distributed and dispersed power are fundamental requirements for such tailored solutions. Because of their modularity, efficiency and environmental benefits, fuel cells are a favored solution to implement distributed and dispersed power concepts. Ballard Power Systems has been working to develop and commercialize Proton Exchange Membrane (PEM) fuel cell power plants for stationary power markets. PEM`s capabilities of flexible operation and multiple market platforms bodes well for success in the stationary power market. Ballard`s stationary commercialization program is now in its second phase. The construction and successful operation of a 10 kW natural gas fueled, proof-of-concept power plant marked the completion of phase one. In the second phase, we are developing a 250 kW market entry power plant. This paper discusses Ballard`s power plant development plan philosophy, the benefits from this approach, and our current status.

  14. Water recovery using waste heat from coal fired power plants.

    SciTech Connect

    Webb, Stephen W.; Morrow, Charles W.; Altman, Susan Jeanne; Dwyer, Brian P.

    2011-01-01

    The potential to treat non-traditional water sources using power plant waste heat in conjunction with membrane distillation is assessed. Researchers and power plant designers continue to search for ways to use that waste heat from Rankine cycle power plants to recover water thereby reducing water net water consumption. Unfortunately, waste heat from a power plant is of poor quality. Membrane distillation (MD) systems may be a technology that can use the low temperature waste heat (<100 F) to treat water. By their nature, they operate at low temperature and usually low pressure. This study investigates the use of MD to recover water from typical power plants. It looks at recovery from three heat producing locations (boiler blow down, steam diverted from bleed streams, and the cooling water system) within a power plant, providing process sketches, heat and material balances and equipment sizing for recovery schemes using MD for each of these locations. It also provides insight into life cycle cost tradeoffs between power production and incremental capital costs.

  15. Ocean thermal gradient hydraulic power plant.

    PubMed

    Beck, E J

    1975-07-25

    Solar energy stored in the oceans may be used to generate power by exploiting ploiting thermal gradients. A proposed open-cycle system uses low-pressure steam to elevate vate water, which is then run through a hydraulic turbine to generate power. The device is analogous to an air lift pump.

  16. 10 CFR Appendix B to Part 50 - Quality Assurance Criteria for Nuclear Power Plants and Fuel Reprocessing Plants

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Quality Assurance Criteria for Nuclear Power Plants and... Criteria for Nuclear Power Plants and Fuel Reprocessing Plants Introduction. Every applicant for a..., and components of the reactor. Nuclear power plants and fuel reprocessing plants include...

  17. 10 CFR Appendix B to Part 50 - Quality Assurance Criteria for Nuclear Power Plants and Fuel Reprocessing Plants

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Quality Assurance Criteria for Nuclear Power Plants and... Criteria for Nuclear Power Plants and Fuel Reprocessing Plants Introduction. Every applicant for a..., and components of the reactor. Nuclear power plants and fuel reprocessing plants include...

  18. 10 CFR Appendix B to Part 50 - Quality Assurance Criteria for Nuclear Power Plants and Fuel Reprocessing Plants

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Quality Assurance Criteria for Nuclear Power Plants and... Criteria for Nuclear Power Plants and Fuel Reprocessing Plants Introduction. Every applicant for a..., and components of the reactor. Nuclear power plants and fuel reprocessing plants include...

  19. Test of a Power Transfer Model for Standardized Electrofishing

    USGS Publications Warehouse

    Miranda, L.E.; Dolan, C.R.

    2003-01-01

    Standardization of electrofishing in waters with differing conductivities is critical when monitoring temporal and spatial differences in fish assemblages. We tested a model that can help improve the consistency of electrofishing by allowing control over the amount of power that is transferred to the fish. The primary objective was to verify, under controlled laboratory conditions, whether the model adequately described fish immobilization responses elicited with various electrical settings over a range of water conductivities. We found that the model accurately described empirical observations over conductivities ranging from 12 to 1,030 ??S/cm for DC and various pulsed-DC settings. Because the model requires knowledge of a fish's effective conductivity, an attribute that is likely to vary according to species, size, temperature, and other variables, a second objective was to gather available estimates of the effective conductivity of fish to examine the magnitude of variation and to assess whether in practical applications a standard effective conductivity value for fish may be assumed. We found that applying a standard fish effective conductivity of 115 ??S/cm introduced relatively little error into the estimation of the peak power density required to immobilize fish with electrofishing. However, this standard was derived from few estimates of fish effective conductivity and a limited number of species; more estimates are needed to validate our working standard.

  20. Open standards for unattended sensors (OSUS) power managed controller

    NASA Astrophysics Data System (ADS)

    Rohrer, Matt; Porter, Rich; Fish, Robert; Knobler, Ron

    2014-06-01

    The Open Standards for Unattended Sensors (OSUS) program, formerly named Terra Harvest, was launched in 2009 to develop an open, integrated battlefield unattended ground sensors (UGS) architecture that ensures interoperability among disparate UGS components and systems. McQ has developed a power managed controller, which is a rugged fielded device that runs an embedded Linux operating system using an open Java software architecture, runs for over 30 days on a small battery pack, and provides various critical functions including the required management, monitoring, and control functions. The OSUS power managed controller system overview, design, and compatibility with other systems will be discussed.

  1. Effect of thermal power plant emissions on Catharanthus roseus L

    SciTech Connect

    Khan, A.M.; Pandey, V.; Shukla, J.; Singh, N.; Yunus, M.; Singh, S.N.; Ahmad, K.J. )

    1990-06-01

    Most of the industrialized nations depend largely on the combustion of fossil fuels for their energy requirements. During the past few years in India quite a few thermal power plants have been commissioned to cater to the increasing energy requirements. As most of the power plants are coal-fired, a complex mixture of several pollutants is released in the atmosphere on the combustion of coal. Leaves by virtue of their unique position on plants and their functions, experience the maximum brunt of exposure and undergo certain changes in form, structure and function with the changes in surrounding environs, and such modifications are likely to serve as markers of environmental pollution. The present paper deals with the long term exposure effects of thermal power plant emissions on Catharanthus roseus L. - a common perennial shrub, with glossy leaves and white, mauve or pink colored flowers and of great medicinal value is grown as an ornamental plant all over the country.

  2. 76 FR 66089 - Access Authorization Program for Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-25

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Access Authorization Program for Nuclear Power Plants AGENCY: Nuclear Regulatory Commission. ACTION: Regulatory guide; issuance. SUMMARY: The U.S. Nuclear Regulatory Commission (NRC) is issuing...

  3. CONTEXT VIEW FROM POWER PLANT TOP FLOOR AT REST OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONTEXT VIEW FROM POWER PLANT TOP FLOOR AT REST OF CLEVELAND TERMINAL. LOOKING NORTHWEST. - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH

  4. Low NOx demonstration project at Gaojing Power Plant, Beijing, China

    SciTech Connect

    Verhoeff, F.; Kissing, B.J.; Bos, H.G.

    1997-12-31

    In November 1996 Stork Thermeq in the Netherlands received the order for the design, manufacture and commissioning of 12 coal/oil-fired low-NOx burners for the Gaojing Power Plant in Beijing, China. The aim of this burner retrofit is to decrease the NOx emission of this power plant and to demonstrate that, with leading-edge combustion technology, considerable reductions of NOx emissions are possible. In this paper a description of the low-NOx combustion technology is given, and field experiences with these burners installed in a new boiler and in a modified existing boiler will be highlighted. Further, insight will be given to the design and construction of the new burners for the Gaojing Power Plant and the results of reference measurements in this power plant will be presented.

  5. 52. VIEW SHOWING SITE OF ARIZONA FALL POWER PLANT, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    52. VIEW SHOWING SITE OF ARIZONA FALL POWER PLANT, LOOKING EAST. CURRENT LOCATION OF THE REAL-TIME WATER QUALITY MONITORING STATION Photographer: James Eastwood, July 1990 - Arizona Canal, North of Salt River, Phoenix, Maricopa County, AZ

  6. CONTROLLING MULTIPLE EMISSIONS FROM COAL-FIRED POWER PLANTS

    EPA Science Inventory

    The paper presents and analyzes nine existing and novel control technologies designed to achieve multipollutant emissions reductions. It provides an evaluation of multipollutant emission control technologies that are potentially available for coal-fired power plants of 25 MW capa...

  7. Analysis of UF6 breeder reactor power plants

    NASA Technical Reports Server (NTRS)

    Clement, J. D.; Rust, J. H.

    1976-01-01

    Gaseous UF6 fueled breeder reactor design and technical applications of such concepts are summarized. Special attention was given to application in nuclear power plants and to reactor efficiency and safety factors.

  8. 58. HAIWEE POWER PLANT LOOKING NORTH ALONG PATH OF AQUEDUCT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    58. HAIWEE POWER PLANT LOOKING NORTH ALONG PATH OF AQUEDUCT - Los Angeles Aqueduct, From Lee Vining Intake (Mammoth Lakes) to Van Norman Reservoir Complex (San Fernando Valley), Los Angeles, Los Angeles County, CA

  9. [Emergy evaluation of power plant eco-industrial park].

    PubMed

    Wang, Lingmei; Zhang, Jintun

    2004-06-01

    In this paper, new emergy indices for the material circulation utilization and energy cascade utilization were presented to evaluate the emergy of power plant eco-industrial park. The common contribution of the members in power plant eco-industrial park should be accounted for emergy yield ratio (PEYR) and emergy investment ratio (PEIR), namely, PEYR = sigma(i = 1)6 (Fi + Ri + Ni)/sigma(i = 1)6 Fi and PEIR = sigma(i = 1)6 Fi/sigma(i = 1)6 (Ni + Ri). Saved renewable and nonrenewable resources and purchased resources and decreased environmental load should be accounted for environmental loading ratio (PELR) and index of sustainability (PESI), namely, PELR = sigma(i = 1)6 Fi/F' and PESI = PEYR/PELR. Case analysis on the Shuozhou power plant eco-industrial park showed that new emergy indices were practical in evaluating the power plant eco-industrial park.

  10. Combined oil gun and coal guide for power plant boilers

    SciTech Connect

    Wiest, M.R.

    1990-08-28

    This paper discusses apparatus for introducing fuel into the combustion chamber of a power plant boiler. It comprises a coal guide; a coal disperser; tubular disperser support means; an oil gun; first actuator means; and second actuator means.

  11. 20. View of Mormon Flat Dam, power plant, and reservoir. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. View of Mormon Flat Dam, power plant, and reservoir. Photographer unknown, 1926. Source: Salt River Project. - Mormon Flat Dam, On Salt River, Eastern Maricopa County, east of Phoenix, Phoenix, Maricopa County, AZ

  12. 19. Downstream face of Mormon Flat Dam completed. Power plant ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. Downstream face of Mormon Flat Dam completed. Power plant is nearing completion. Photographer unknown, 1926. Source: Salt River Project. - Mormon Flat Dam, On Salt River, Eastern Maricopa County, east of Phoenix, Phoenix, Maricopa County, AZ

  13. 12. POWER PLANT PART OF BUILDING SHOWING RELATION TO ADDITION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. POWER PLANT PART OF BUILDING SHOWING RELATION TO ADDITION AND EQUIPMENT PART OF BUILDING - Boswell Bay White Alice Site, Radio Relay Building, Chugach National Forest, Cordova, Valdez-Cordova Census Area, AK

  14. Structures and construction of nuclear power plants on lunar surface

    NASA Astrophysics Data System (ADS)

    Shimizu, Katsunori; Kobatake, Masuhiko; Ogawa, Sachio; Kanamori, Hiroshi; Okada, Yasuhiko; Mano, Hideyuki; Takagi, Kenji

    1991-07-01

    The best structure and construction techniques of nuclear power plants in the severe environments on the lunar surface are studied. Facility construction types (functional conditions such as stable structure, shield thickness, maintainability, safety distances, and service life), construction conditions (such as construction methods, construction equipment, number of personnel, time required for construction, external power supply, and required transportation) and construction feasibility (construction method, reactor transportation between the moon and the earth, ground excavation for installation, loading and unloading, transportation, and installation, filling up the ground, electric power supply of plant S (300 kW class) and plant L (3000 kW class)) are outlined. Items to pay attention to in construction are (1) automation and robotization of construction; (2) cost reduction by multi functional robots; and (3) methods of supplying power to robots. A precast concrete block manufacturing plant is also outlined.

  15. Environmental Quality Standards Research on Wastewaters of Army Ammunition Plants

    DTIC Science & Technology

    1978-06-01

    Xk@ LEVEL%[A D-4. V: TECHNICAL REPORT ARCSL-TR- 7025 ENVIRONMENTA$,,qUALITY STANDARDS RESEARCH ON WASTEWATERS OF ARMY AMMUNITION PLANTS / by Joseph...complexity of the chemical characterization became evident by the fact that in TNT wastewaters alone (toward which most of (Continued on reverse side) DD...prohibited except with permission of the Director, Chemical Systems Laboratory, Attn: DRDAR-CLJ-R, Aberdeen Proving Ground, Maryland 21010; however, DDC

  16. The optimization air separation plants for combined cycle MHD-power plant applications

    NASA Technical Reports Server (NTRS)

    Juhasz, A. J.; Springmann, H.; Greenberg, R.

    1980-01-01

    Some of the design approaches being employed during a current supported study directed at developing an improved air separation process for the production of oxygen enriched air for magnetohydrodynamics (MHD) combustion are outlined. The ultimate objective is to arrive at conceptual designs of air separation plants, optimized for minimum specific power consumption and capital investment costs, for integration with MHD combined cycle power plants.

  17. Prediction of Technological Failures in Nuclear Power Plant Operation

    SciTech Connect

    Salnykov, A. A.

    2015-01-15

    A method for predicting operating technological failures in nuclear power plants which makes it possible to reduce the unloading of the generator unit during the onset and development of an anomalous engineering state of the equipment by detecting a change in state earlier and taking suitable measures. With the circulating water supply loop of a nuclear power plant as an example, scenarios and algorithms for predicting technological failures in the operation of equipment long before their actual occurrence are discussed.

  18. Hybrid solar central receiver for combined cycle power plant

    DOEpatents

    Bharathan, Desikan; Bohn, Mark S.; Williams, Thomas A.

    1995-01-01

    A hybrid combined cycle power plant including a solar central receiver for receiving solar radiation and converting it to thermal energy. The power plant includes a molten salt heat transfer medium for transferring the thermal energy to an air heater. The air heater uses the thermal energy to preheat the air from the compressor of the gas cycle. The exhaust gases from the gas cycle are directed to a steam turbine for additional energy production.

  19. Modeling of air pollution from the power plant ash dumps

    NASA Astrophysics Data System (ADS)

    Aleksic, Nenad M.; Balać, Nedeljko

    A simple model of air pollution from power plant ash dumps is presented, with emission rates calculated from the Bagnold formula and transport simulated by the ATDL type model. Moisture effects are accounted for by assumption that there is no pollution on rain days. Annual mean daily sedimentation rates, calculated for the area around the 'Nikola Tesla' power plants near Belgrade for 1987, show reasonably good agreement with observations.

  20. Hybrid solar central receiver for combined cycle power plant

    DOEpatents

    Bharathan, D.; Bohn, M.S.; Williams, T.A.

    1995-05-23

    A hybrid combined cycle power plant is described including a solar central receiver for receiving solar radiation and converting it to thermal energy. The power plant includes a molten salt heat transfer medium for transferring the thermal energy to an air heater. The air heater uses the thermal energy to preheat the air from the compressor of the gas cycle. The exhaust gases from the gas cycle are directed to a steam turbine for additional energy production. 1 figure.

  1. Inertial Fusion Power Plant Concept of Operations and Maintenance

    SciTech Connect

    Anklam, T.; Knutson, B.; Dunne, A. M.; Kasper, J.; Sheehan, T.; Lang, D.; Roberts, V.; Mau, D.

    2015-01-15

    Parsons and LLNL scientists and engineers performed design and engineering work for power plant pre-conceptual designs based on the anticipated laser fusion demonstrations at the National Ignition Facility (NIF). Work included identifying concepts of operations and maintenance (O&M) and associated requirements relevant to fusion power plant systems analysis. A laser fusion power plant would incorporate a large process and power conversion facility with a laser system and fusion engine serving as the heat source, based in part on some of the systems and technologies advanced at NIF. Process operations would be similar in scope to those used in chemical, oil refinery, and nuclear waste processing facilities, while power conversion operations would be similar to those used in commercial thermal power plants. While some aspects of the tritium fuel cycle can be based on existing technologies, many aspects of a laser fusion power plant presents several important and unique O&M requirements that demand new solutions. For example, onsite recovery of tritium; unique remote material handling systems for use in areas with high radiation, radioactive materials, or high temperatures; a five-year fusion engine target chamber replacement cycle with other annual and multi-year cycles anticipated for major maintenance of other systems, structures, and components (SSC); and unique SSC for fusion target waste recycling streams. This paper describes fusion power plant O&M concepts and requirements, how O&M requirements could be met in design, and how basic organizational and planning issues can be addressed for a safe, reliable, economic, and feasible fusion power plant.

  2. Inertial fusion power plant concept of operations and maintenance

    NASA Astrophysics Data System (ADS)

    Knutson, Brad; Dunne, Mike; Kasper, Jack; Sheehan, Timothy; Lang, Dwight; Anklam, Tom; Roberts, Valerie; Mau, Derek

    2015-02-01

    Parsons and LLNL scientists and engineers performed design and engineering work for power plant pre-conceptual designs based on the anticipated laser fusion demonstrations at the National Ignition Facility (NIF). Work included identifying concepts of operations and maintenance (O&M) and associated requirements relevant to fusion power plant systems analysis. A laser fusion power plant would incorporate a large process and power conversion facility with a laser system and fusion engine serving as the heat source, based in part on some of the systems and technologies advanced at NIF. Process operations would be similar in scope to those used in chemical, oil refinery, and nuclear waste processing facilities, while power conversion operations would be similar to those used in commercial thermal power plants. While some aspects of the tritium fuel cycle can be based on existing technologies, many aspects of a laser fusion power plant presents several important and unique O&M requirements that demand new solutions. For example, onsite recovery of tritium; unique remote material handling systems for use in areas with high radiation, radioactive materials, or high temperatures; a five-year fusion engine target chamber replacement cycle with other annual and multi-year cycles anticipated for major maintenance of other systems, structures, and components (SSC); and unique SSC for fusion target waste recycling streams. This paper describes fusion power plant O&M concepts and requirements, how O&M requirements could be met in design, and how basic organizational and planning issues can be addressed for a safe, reliable, economic, and feasible fusion power plant.

  3. Radial fryers. [Used tire power plants

    SciTech Connect

    Gawlicki, S.M.

    1993-01-01

    Experience has shown that tires have their limits as a primary power generation fuel. As a supplemental fuel, however, they may prove to be cost effective. This article discusses the use of tires as a alternate fuel source.

  4. Methodology and application of surrogate plant PRA analysis to the Rancho Seco Power Plant: Final report

    SciTech Connect

    Gore, B.F.; Huenefeld, J.C.

    1987-07-01

    This report presents the development and the first application of generic probabilistic risk assessment (PRA) information for identifying systems and components important to public risk at nuclear power plants lacking plant-specific PRAs. A methodology is presented for using the results of PRAs for similar (surrogate) plants, along with plant-specific information about the plant of interest and the surrogate plants, to infer important failure modes for systems of the plant of interest. This methodology, and the rationale on which it is based, is presented in the context of its application to the Rancho Seco plant. The Rancho Seco plant has been analyzed using PRA information from two surrogate plants. This analysis has been used to guide development of considerable plant-specific information about Rancho Seco systems and components important to minimizing public risk, which is also presented herein.

  5. Evaluation of Loss of Offsite Power Events at Nuclear Power Plants: 1980 - 1996

    SciTech Connect

    C. L. Atwood; D. A. Prawdzik; D. L. Kelly; F. M. Marshall; J. W. Stetkar

    1999-08-01

    It is recognized that the availability of AC power to commercial nuclear power plants is essential for safe operations and accident recovery. A loss of offsite power (LOSP) event, therefore, is considered an important contributor to total risk at nuclear power plants. In 1988, the U. S. Nuclear Regulatory Commission published NUREG-1032 to report on an evaluation of the risk from actual LOSP events that had occurred at nuclear power plants within the United States up through 1985. This paper summarizes a similar study, whose primary objective was to update the LOSP model parameters, frequency and recovery time, using power plant event data from 1980-1996, published as NUREG/CR-5496 in 1998. An additional objective of the study is to re-examine the engineering insights concerning LOSP events.

  6. Test Cases for Wind Power Plant Dynamic Models on Real-Time Digital Simulator: Preprint

    SciTech Connect

    Singh, M.; Muljadi, E.; Gevorgian, V.

    2012-06-01

    The objective of this paper is to present test cases for wind turbine generator and wind power plant models commonly used during commissioning of wind power plants to ensure grid integration compatibility. In this paper, different types of wind power plant models based on the Western Electricity Coordinating Council Wind Generator Modeling Group's standardization efforts are implemented on a real-time digital simulator, and different test cases are used to gauge their grid integration capability. The low-voltage ride through and reactive power support capability and limitations of wind turbine generators under different grid conditions are explored. Several types of transient events (e.g., symmetrical and unsymmetrical faults, frequency dips) are included in the test cases. The differences in responses from different types of wind turbine are discussed in detail.

  7. Nuclear Power Plant Containment Pressure Boundary Research

    SciTech Connect

    Cherry, J.L.; Chokshi, N.C.; Costello, J.F.; Ellingwood, B.R.; Naus, D.J.

    1999-09-15

    Research to address aging of the containment pressure boundary in light-water reactor plants is summarized. This research is aimed at understanding the significant factors relating occurrence of corrosion, efficacy of inspection, and structural capacity reduction of steel containment and liners of concrete containment. This understanding will lead to improvements in risk-informed regulatory decision making. Containment pressure boundary components are described and potential aging factors identified. Quantitative tools for condition assessments of aging structures to maintain an acceptable level of reliability over the service life of the plant are discussed. Finally, the impact of aging (i.e., loss of shell thickness due to corrosion) on steel containment fragility for a pressurized water reactor ice-condenser plant is presented.

  8. Model Predictive Control of Integrated Gasification Combined Cycle Power Plants

    SciTech Connect

    B. Wayne Bequette; Priyadarshi Mahapatra

    2010-08-31

    The primary project objectives were to understand how the process design of an integrated gasification combined cycle (IGCC) power plant affects the dynamic operability and controllability of the process. Steady-state and dynamic simulation models were developed to predict the process behavior during typical transients that occur in plant operation. Advanced control strategies were developed to improve the ability of the process to follow changes in the power load demand, and to improve performance during transitions between power levels. Another objective of the proposed work was to educate graduate and undergraduate students in the application of process systems and control to coal technology. Educational materials were developed for use in engineering courses to further broaden this exposure to many students. ASPENTECH software was used to perform steady-state and dynamic simulations of an IGCC power plant. Linear systems analysis techniques were used to assess the steady-state and dynamic operability of the power plant under various plant operating conditions. Model predictive control (MPC) strategies were developed to improve the dynamic operation of the power plants. MATLAB and SIMULINK software were used for systems analysis and control system design, and the SIMULINK functionality in ASPEN DYNAMICS was used to test the control strategies on the simulated process. Project funds were used to support a Ph.D. student to receive education and training in coal technology and the application of modeling and simulation techniques.

  9. Growing the Space Station's electrical power plant

    NASA Technical Reports Server (NTRS)

    Sundberg, Gale R.

    1990-01-01

    For over a decade NASA LeRC has been defining, demonstrating, and evaluating power electronic components and multi-kilowatt, multiply redundant, electrical power systems as part of OAST charter. Whether one considers aircraft (commercial transport/military), Space Station Freedom, growth station, launch vehicles, or the new Human Exploration Initiative, the conclusions remain the same: high frequency AC power distribution and control is superior to all other approaches for achieving a fast, smart, safe, versatile, and growable electrical power system that will meet a wide range of mission options. To meet the cost and operability goals of future aerospace missions that require significantly higher electrical power and longer durations, we must learn to integrate multiple technologies in ways that enhance overall system synergisms. The way NASA is doing business in space electric power is challenged and some approaches for evolving large space vehicles and platforms in well constructed steps to provide safe, ground testable, growable, smart systems that provide simple, replicative logic structures, which enable hardware and software verification, validation, and implementation are proposed. Viewgraphs are included.

  10. ENERGY PRODUCTION AND POLLUTION PREVENTION AT SEWAGE TREATMENT PLANTS USING FUEL CELL POWER PLANTS

    EPA Science Inventory

    The paper discusses energy production and pollution prevention at sewage treatment plants using fuel cell power plants. Anaerobic digester gas (ADG) is produced at waste water treatment plants during the anaerobic treatment of sewage to reduce solids. The major constituents are...

  11. Investment and operating costs of binary cycle geothermal power plants

    NASA Technical Reports Server (NTRS)

    Holt, B.; Brugman, J.

    1974-01-01

    Typical investment and operating costs for geothermal power plants employing binary cycle technology and utilizing the heat energy in liquid-dominated reservoirs are discussed. These costs are developed as a function of reservoir temperature. The factors involved in optimizing plant design are discussed. A relationship between the value of electrical energy and the value of the heat energy in the reservoir is suggested.

  12. Solar Power Plants: Dark Horse in the Energy Stable

    ERIC Educational Resources Information Center

    Caputo, Richard S.

    1977-01-01

    Twelfth in a series of reports on solar energy, this article provides information relating to the following questions: (1) economic cost of solar-thermal-electric central power plants; (2) cost comparison with nuclear or coal plants; (3) locations of this energy source; and (4) its use and social costs. (CS)

  13. A NUMERICAL study of solar chimney power plants in Tunisia

    NASA Astrophysics Data System (ADS)

    Bahar F, Attig; S, Guellouz M.; M, Sahraoui; S, Kaddeche

    2015-04-01

    A 3D CFD (Computational fluid dynamics) model of a Solar Chimney Power Plant (SCPP) was developed and validated through comparison with the experimental data of the Manzanares plant. Then, it was employed to study the SCPP performance for locations throughout Tunisia.

  14. Emissions estimation for lignite-fired power plants in Turkey

    SciTech Connect

    Nurten Vardar; Zehra Yumurtaci

    2010-01-15

    The major gaseous emissions (e.g. sulfur dioxide, nitrogen oxides, carbon dioxide, and carbon monoxide), some various organic emissions (e.g. benzene, toluene and xylenes) and some trace metals (e.g. arsenic, cobalt, chromium, manganese and nickel) generated from lignite-fired power plants in Turkey are estimated. The estimations are made separately for each one of the thirteen plants that produced electricity in 2007, because the lignite-fired thermal plants in Turkey are installed near the regions where the lignite is mined, and characteristics and composition of lignite used in each power plant are quite different from a region to another. Emission factors methodology is used for the estimations. The emission factors obtained from well-known literature are then modified depending on local moisture content of lignite. Emission rates and specific emissions (per MWh) of the pollutants from the plants without electrostatic precipitators and flue-gas desulfurization systems are found to be higher than emissions from the plants having electrostatic precipitators and flue -gas desulfurization systems. Finally a projection for the future emissions due to lignite-based power plants is given. Predicted demand for the increasing generation capacity based on the lignite-fired thermal power plant, from 2008 to 2017 is around 30%. 39 refs., 13 figs., 10 tabs.

  15. STARFIRE: a commercial tokamak fusion power plant study

    SciTech Connect

    Not Available

    1980-09-01

    This volume contains chapters on each of the following topics: (1) radioactivity, (2) heat transport and energy conversion, (3) tritium systems, (4) electrical storage and power supplies, (5) support structure, (6) cryogenics, (7) instrumentation and control, (8) maintenance and operation, (9) balance of plant design, (10) safety and environmental analysis, (11) economic analysis, and (12) plant construction.

  16. 77 FR 48433 - New Source Performance Standards Review for Nitric Acid Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-14

    ... AGENCY 40 CFR Part 60 RIN 2060-AQ10 New Source Performance Standards Review for Nitric Acid Plants AGENCY... performance standards (NSPS) for nitric acid plants. Nitric acid plants include one or more nitric acid... standards for nitric acid plants, contact Mr. Nathan Topham, Sector Policies and Program Division, Office...

  17. Standardizing electrofishing power for boat electrofishing: chapter 14

    USGS Publications Warehouse

    Miranda, L.E. (Steve); Bonar, Scott A.; Hubert, Wayne A.; Willis, David W.

    2009-01-01

    Standardizing boat electrofishing entails achieving an accepted level of collection consistency by managing various brand factors, including (1) the temporal and spatial distribution of sampling effort, (2) boat operation, (3) equipment configuration, (4) characteristics of the waveform and energized field, and (5) power transferred to fish. This chapter focuses exclusively on factor 5:L factors 1-4 have been addressed in earlier chapters. Additionally, while the concepts covered in this chapter address boat electrofishing in general, the power settings discussed were developed from tests with primarily warmwater fish communities. Others (see Chapter 9) recommend lower power settings for communities consisting of primarily coldwater fishes. For reviews of basic concepts of electricity, electrofishing theory and systems, fish behavior relative to diverse waveforms, and injury matter, the reader is referred to Novotny (1990), Reynold (1996), and Snyder (2003).

  18. Phytomonitoring of air pollution around a thermal power plant

    NASA Astrophysics Data System (ADS)

    Agrawal, M.; Agrawal, S. B.

    This study was undertaken in order to assess the impact of air pollutants on vegetation around Obra thermal power plant (1550 M W capacity) in the Mirzapur district of Uttar Pradesh. For this purpose, Mangifera indica, Citrus medico and Bouganvillaea spectabilis plants, most common at all sites, were selected as test plants. Five study sites were selected northeast (prevailing wind) of the thermal power plant. A control site was also selected at a distance of 30 km north of Obra. Responses of plants to pollutants in terms of presence of foliar injury symptoms and changes in chlorophyll, ascorbic acid and S content were measured. These changes were correlated with ambient SO 2 and suspended particulate matter (SPM) concentrations and the amount of dust settled on leaf surfaces. The SO 2 and SPM concentrations were quite high in the immediate vicinity of the power plant. There also exists a direct relationship between the concentration of SPM in air and amount of dust deposited on leaf surfaces. Maximum dust deposition was observed on M. indica plants. The levels of foliar injury, chlorophyll and ascorbic acid were found to decrease and that of S increase in plants around the power plant in comparison to those growing at a control site. The magnitude of such changes was maximum in M. indica and minimum in C. medica. A species specific direct relationship between the increase in the amount of S and decrease in chlorophyll content was observed. The study suggests that differential sensitivity of plants to SO 2 may be used in evaluating the air pollution impact around emission sources and M. indica plants can be used as an indicator plant for quantifying biological changes.

  19. Design basis for protection of light water nuclear power plants against effects of postulated pipe rupture

    SciTech Connect

    Not Available

    1981-01-01

    This standard addresses the design bases for light water reactor, nuclear power plant structures and components essential for the protection of public health and safety from the potential adverse effects of pipe whip, jet impingement, pressurization of compartments outside containment, environmental conditions and flooding associated with a postulated pipe rupture. The design bases for missile protection and the design bases for containment pressurization are not within this standard.

  20. Non-Power Reactor Operator Licensing Examiner Standards. Revision 1

    SciTech Connect

    1995-06-01

    The Non-Power Reactor Operator Licensing Examiner Standards provide policy and guidance to NRC examiners and establish the procedures and practices for examining and licensing of applicants for NRC operator licenses pursuant to Part 55 of Title 10 of the Code of Federal Regulations (10 CFR 55). They are intended to assist NRC examiners and facility licensees to understand the examination process better and to provide for equitable and consistent administration of examinations to all applicants by NRC examiners. These standards are not a substitute for the operator licensing regulations and are subject to revision or other internal operator examination licensing policy changes. As appropriate, these standards will be revised periodically to accommodate comments and reflect new information or experience.

  1. Winter study of power plant effects

    SciTech Connect

    Patrinos, A.A.N.

    1980-10-01

    As a part of DOE's Meteorological Effects of Thermal Energy Releases (METER) program a field study was undertaken at the Bowen Electric Generating Plant (Plant Bowen) in December 1979. The study was a joint endeavor of Battelle Pacific Northwest Laboratories (PNL), Pennsylvania State University (PSU), and Oak Ridge National Laboratory (ORNL) with the main objective of determining the effects of the plant's smokestack effluents on aerosol characteristics and precipitation chemistry. Other objectives included studies of cooling tower temperature and humidity (T/h) plumes and drift drop concentrations. Conducted over a period of three weeks, the study involved an instrumented aircraft, pilot balloons, a tethered balloon system, a dense network of wetfall chemistry collectors and numerous ground- and tower-based meteorological instruments. Rainfall samples collected during the precipitation event of December 13, 1979, revealed some evidence of plume washout. The tethered balloon flights rarely detected the faint presence of the T/h plumes while the airborne measurements program concentrated on the study of SO/sub 2/ to sulfate conversion. A series of plume observations confirmed the suitability of the plant's windset for plume direction determinations.

  2. Oxygen-enriched air production for MHD power plants

    NASA Astrophysics Data System (ADS)

    1980-05-01

    An analysis of several of the cryogenic air separation process cycle variations and compression schemes designed to minimize net system power requirements for supplying pressurized, oxygen-enriched air to the combustor of a 2000 MWt (coal input) baseload MHD power plant is presented.

  3. Wind Power Plant Prediction by Using Neural Networks: Preprint

    SciTech Connect

    Liu, Z.; Gao, W.; Wan, Y. H.; Muljadi, E.

    2012-08-01

    This paper introduces a method of short-term wind power prediction for a wind power plant by training neural networks based on historical data of wind speed and wind direction. The model proposed is shown to achieve a high accuracy with respect to the measured data.

  4. VIEW OF LOCATION OF CHILDS POWER PLANT (SHOWING POWERHOUSE AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF LOCATION OF CHILDS POWER PLANT (SHOWING POWERHOUSE AND TRANSFORMER FRAMEWORK AT LEFT, BELOW POWER LINES AND THE MAINTENANCE AND RESIDENTIAL COMPOUND UPSTREAM TO RIGHT) ALONG VERDE RIVER FROM FS ROAD #502. LOOKING UPSTREAM (WEST-SOUTHWEST) - Childs-Irving Hydroelectric Project, Forest Service Road 708/502, Camp Verde, Yavapai County, AZ

  5. Fire protection system HMI in power plant

    NASA Astrophysics Data System (ADS)

    Zainal, Yuda Bakti

    2015-05-01

    The central power station, a place where there are machines that generate power, equipped with substation where the voltage is produced by the generator and increased to a certain voltage with a step up voltage transformer. Effect on transformer oil is very important, transformer may malfunction if the oil that serves as a coolant and insulator gradually decreased its ability, over time their use. Power transformer on usability is vital, so it needs to be maintained so that the temperature rise must be overcome by applying a temperature control that can inform and control the control valve to open the hydrant tap transformer cooling. HMI implemented to facilitate the operators cope with excess heat in the transformer using thermocouple censor. Test results show that the control transformer and monitored using PLC and HMI. Transformer can maintain the condition of a maximum of 80 degrees Celsius heat.

  6. 75 FR 9958 - Carolina Power & Light Company, Shearon Harris Nuclear Power Plant, Unit 1; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-04

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Carolina Power & Light Company, Shearon Harris Nuclear Power Plant, Unit 1; Exemption 1.0 Background Carolina Power & Light Company (the licensee), now doing business as Progress Energy...

  7. 77 FR 13156 - Carolina Power & Light Company; Shearon Harris Nuclear Power Plant, Unit 1; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-05

    ... COMMISSION Carolina Power & Light Company; Shearon Harris Nuclear Power Plant, Unit 1; Exemption 1.0 Background Carolina Power & Light Company, the licensee, doing business as Progress Energy Carolinas Inc., is...) 50.46, ``Acceptance criteria for emergency core cooling systems for light- water nuclear...

  8. 75 FR 80547 - Carolina Power & Light Company, Shearon Harris Nuclear Power Plant, Unit No. 1; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-22

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Carolina Power & Light Company, Shearon Harris Nuclear Power Plant, Unit No. 1; Exemption 1.0 Background Carolina Power & Light Company (CP&L, the licensee) is the holder of Renewed Facility...

  9. More on duel purpose solar-electric power plants

    NASA Astrophysics Data System (ADS)

    Hall, F. F.

    Rationale for such plants is reviewed and plant elements are listed. Dual purpose solar-electric plants would generate both electricity and hydrogen gas for conversion to ammonia or methanol or direct use as a fuel of unsurpassed specific power and cleanliness. By-product oxygen would also be sold to owners of hydrogen age equipment. Evolved gasses at high pressure could be fired in compressorless gas turbines, boilerless steam-turbines or fuel-cell-inverter hydrogen-electric power drives of high thermal efficiency as well as in conventional internal combustion engines.

  10. Use of expert systems in nuclear power plants

    SciTech Connect

    Uhrig, R.E.

    1989-01-01

    The application of technologies, particularly expert systems, to the control room activities in a nuclear power plant has the potential to reduce operator error and increase plant safety, reliability, and efficiency. Furthermore, there are a large number of nonoperating activities (testing, routine maintenance, outage planning, equipment diagnostics, and fuel management) in which expert systems can increase the efficiency and effectiveness of overall plant and corporate operations. This document presents a number of potential applications of expert systems in the nuclear power field. 36 refs., 2 tabs.

  11. The regulatory framework for safe decommissioning of nuclear power plants in Korea

    SciTech Connect

    Sangmyeon Ahn; Jungjoon Lee; Chanwoo Jeong; Kyungwoo Choi

    2013-07-01

    We are having 23 units of nuclear power plants in operation and 5 units of nuclear power plants under construction in Korea as of September 2012. However, we don't have any experience on shutdown permanently and decommissioning of nuclear power plants. There are only two research reactors being decommissioned since 1997. It is realized that improvement of the regulatory framework for decommissioning of nuclear facilities has been emphasized constantly from the point of view of IAEA's safety standards. It is also known that IAEA will prepare the safety requirement on decommissioning of facilities; its title is the Safe Decommissioning of Facilities, General Safety Requirement Part 6. According to the result of IAEA's Integrated Regulatory Review Service (IRRS) mission to Korea in 2011, it was recommended that the regulatory framework should require decommissioning plans for nuclear installations to be constructed and operated and these plans should be updated periodically. In addition, after the Fukushima nuclear disaster in Japan in March of 2011, preparedness for early decommissioning caused by an unexpected severe accident became important issues and concerns. In this respect, it is acknowledged that the regulatory framework for decommissioning of nuclear facilities in Korea need to be improved. First of all, we focus on identifying the current status and relevant issues of regulatory framework for decommissioning of nuclear power plants compared to the IAEA's safety standards in order to achieve our goal. And then the plan is established for improvement of regulatory framework for decommissioning of nuclear power plants in Korea. It is expected that if the things will go forward as planned, the revised regulatory framework for decommissioning could enhance the safety regime on the decommissioning of nuclear power plants in Korea in light of international standards. (authors)

  12. 77 FR 2677 - National Emission Standards for Hazardous Air Pollutants: Primary Aluminum Reduction Plants...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-19

    ... Aluminum Reduction Plants; Extension of Comment Period AGENCY: Environmental Protection Agency (EPA... Standards for Hazardous Air Pollutants: Primary Aluminum Reduction Plants'' is being extended for 12...

  13. Model-free adaptive control of advanced power plants

    DOEpatents

    Cheng, George Shu-Xing; Mulkey, Steven L.; Wang, Qiang

    2015-08-18

    A novel 3-Input-3-Output (3.times.3) Model-Free Adaptive (MFA) controller with a set of artificial neural networks as part of the controller is introduced. A 3.times.3 MFA control system using the inventive 3.times.3 MFA controller is described to control key process variables including Power, Steam Throttle Pressure, and Steam Temperature of boiler-turbine-generator (BTG) units in conventional and advanced power plants. Those advanced power plants may comprise Once-Through Supercritical (OTSC) Boilers, Circulating Fluidized-Bed (CFB) Boilers, and Once-Through Supercritical Circulating Fluidized-Bed (OTSC CFB) Boilers.

  14. 16. Photocopy of a photograph1921 EASTSIDE POWER PLANT LOOKING NORTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. Photocopy of a photograph--1921 EASTSIDE POWER PLANT LOOKING NORTH - American Falls Water, Power & Light Company, Island Power Plant, Snake River, below American Falls Dam, American Falls, Power County, ID

  15. Small solar thermal electric power plants with early commercial potential

    NASA Technical Reports Server (NTRS)

    Jones, H. E.; Bisantz, D. J.; Clayton, R. N.; Heiges, H. H.; Ku, A. C.

    1979-01-01

    Cost-effective small solar thermal electric power plants (1- to 10-MW nominal size) offer an attractive way of helping the world meet its future energy needs. The paper describes the characteristics of a conceptual near-term plant (about 1 MW) and a potential 1990 commercial version. The basic system concept is one in which steam is generated using two-axis tracking, parabolic dish, and point-focusing collectors. The steam is transported through low-loss piping to a central steam turbine generator unit where it is converted to electricity. The plants have no energy storage and their output power level varies with the solar insolation level. This system concept, which is firmly based on state-of-the-art technology, is projected to offer one of the fastest paths for U.S. commercialization of solar thermal electric power plants through moderate technology advances and mass production.

  16. Environmental requirements at hydroelectric power plants

    SciTech Connect

    Cada, G.F.; Francfort, J.E.

    1993-12-31

    Hydroelectric power is the most mature and widely implemented of the renewable energy technologies. The energy of flowing water has been used to perform work directly since ancient times, and the use of hydropower turbines to generate electricity traces back to the 19th century. Two commonly used turbine types, the Francis and Kaplan turbines, are essentially refinements of the simple reaction turbine of Hero of Alexandria, dating from about 100 B.C. (NAS 1976). Hydroelectric power production provides over 10% of the net electrical generation in the US, more than petroleum or natural gas and far more than the other renewable energy technologies combined. On a regional basis, hydroelectric power represents 14% of the net electrical power generation in the Rocky Mountain states and nearly 63% along the Pacific Coast. Those states that have the largest percentages of their electricity generated by hydropower (e.g., Idaho, Oregon, Montana, and Washington) also tend to have the lowest average cost of electricity per kilowatt-hour.

  17. Shuttle orbter fuel cell power plant

    NASA Technical Reports Server (NTRS)

    1983-01-01

    This is one of the three fuel cells that make up the generating system which provides electrical power to the space shuttle orbiter. Each unit measures 14 inches (35 centimeters) high, 15 inches (38 centimeters) wide, 40 inches (101 centimeters) long and weighs 200 pounds.

  18. Submerged passively-safe power plant

    SciTech Connect

    Herring, J.S.

    1991-12-31

    The invention as presented consists of a submerged passively-safe power station including a pressurized water reactor capable of generating at least 600 MW of electricity, encased in a double hull vessel, and provides fresh water by using the spent thermal energy in a multistage flash desalination process.

  19. Submerged passively-safe power plant

    DOEpatents

    Herring, J. Stephen

    1993-01-01

    The invention as presented consists of a submerged passively-safe power station including a pressurized water reactor capable of generating at least 600 MW of electricity, encased in a double hull vessel, and provides fresh water by using the spent thermal energy in a multistage flash desalination process.

  20. Submerged passively-safe power plant

    DOEpatents

    Herring, J.S.

    1993-09-21

    The invention as presented consists of a submerged passively-safe power station including a pressurized water reactor capable of generating at least 600 MW of electricity, encased in a double hull vessel, and provides fresh water by using the spent thermal energy in a multistage flash desalination process. 8 figures.

  1. Evaluation of Hybrid Power Plants using Biomass, Photovoltaics and Steam Electrolysis for Hydrogen and Power Generation

    NASA Astrophysics Data System (ADS)

    Petrakopoulou, F.; Sanz, J.

    2014-12-01

    Steam electrolysis is a promising process of large-scale centralized hydrogen production, while it is also considered an excellent option for the efficient use of renewable solar and geothermal energy resources. This work studies the operation of an intermediate temperature steam electrolyzer (ITSE) and its incorporation into hybrid power plants that include biomass combustion and photovoltaic panels (PV). The plants generate both electricity and hydrogen. The reference -biomass- power plant and four variations of a hybrid biomass-PV incorporating the reference biomass plant and the ITSE are simulated and evaluated using exergetic analysis. The variations of the hybrid power plants are associated with (1) the air recirculation from the electrolyzer to the biomass power plant, (2) the elimination of the sweep gas of the electrolyzer, (3) the replacement of two electric heaters with gas/gas heat exchangers, and (4) the replacement two heat exchangers of the reference electrolyzer unit with one heat exchanger that uses steam from the biomass power plant. In all cases, 60% of the electricity required in the electrolyzer is covered by the biomass plant and 40% by the photovoltaic panels. When comparing the hybrid plants with the reference biomass power plant that has identical operation and structure as that incorporated in the hybrid plants, we observe an efficiency decrease that varies depending on the scenario. The efficiency decrease stems mainly from the low effectiveness of the photovoltaic panels (14.4%). When comparing the hybrid scenarios, we see that the elimination of the sweep gas decreases the power consumption due to the elimination of the compressor used to cover the pressure losses of the filter, the heat exchangers and the electrolyzer. Nevertheless, if the sweep gas is used to preheat the air entering the boiler of the biomass power plant, the efficiency of the plant increases. When replacing the electric heaters with gas-gas heat exchangers, the

  2. Thermal storage requirements for parabolic dish solar power plants

    NASA Technical Reports Server (NTRS)

    Wen, L.; Steele, H.

    1980-01-01

    The cost effectiveness of a high temperature thermal storage system is investigated for a representative parabolic dish solar power plant. The plant supplies electrical power in accordance with a specific, seasonally varying demand profile. The solar power received by the plant is supplemented by power from fuel combustion. The cost of electricity generated by the solar power plant is calculated, using the cost of mass-producible subsystems (specifically, parabolic dishes, receivers, and power conversion units) now being designed for this type of solar plant. The trade-off between fuel and thermal storage is derived in terms of storage effectiveness, the cost of storage devices, and the cost of fuel. Thermal storage requirements, such as storage capacity, storage effectiveness, and storage cost are established based on the cost of fuel and the overall objective of minimizing the cost of the electricity produced by the system. As the cost of fuel increases at a rate faster than general inflation, thermal storage systems in the $40 to $70/kWthr range could become cost effective in the near future.

  3. Layouts of trigeneration plants for centralized power supply

    NASA Astrophysics Data System (ADS)

    Klimenko, A. V.; Agababov, V. S.; Il'ina, I. P.; Rozhnatovskii, V. D.; Burmakina, A. V.

    2016-06-01

    One of the possible and, under certain conditions, sufficiently effective methods for reducing consumption of fuel and energy resources is the development of plants for combined generation of different kinds of energy. In the power industry of Russia, the facilities have become widespread in which the cogeneration technology, i.e., simultaneous generation of electric energy and heat, is implemented. Such facilities can use different plants, viz., gas- and steam-turbine plants and gas-reciprocating units. Cogeneration power supply can be further developed by simultaneously supplying the users not only with electricity and heat but also with cold. Such a technology is referred to as trigeneration. To produce electricity and heat, trigeneration plants can use the same facilities that are used in cogeneration, namely, gas-turbine plants, steam-turbine plants, and gas-reciprocating units. Cold can be produced in trigeneration plants using thermotransformers of various kinds, such as vaporcompression thermotransformers, air thermotransformers, and absorption thermotransformers, that operate as chilling machines. The thermotransformers can also be used in the trigeneration plants to generate heat. The main advantage of trigeneration plants based on gas-turbine plants or gas-reciprocating units over cogeneration plants is the increased thermodynamic power supply efficiency owing to utilization of the waste-gas heat not only in winter but also in summer. In the steam-turbine-based trigeneration plants equipped with absorption thermotransformers, the enhancement of the thermodynamic power supply efficiency is determined by the increase in the heat extraction load during the nonheating season. The article presents calculated results that demonstrate higher thermodynamic efficiency of a gas-turbine-based plant with an absorption thermotransformer that operates in the trigeneration mode compared with a cogeneration gas-turbine plant. The structural arrangements of trigeneration

  4. Scenarios for low carbon and low water electric power plant ...

    EPA Pesticide Factsheets

    In the water-energy nexus, water use for the electric power sector is critical. Currently, the operational phase of electric power production dominates the electric sector's life cycle withdrawal and consumption of fresh water resources. Water use associated with the fuel cycle and power plant equipment manufacturing phase is substantially lower on a life cycle basis. An outstanding question is: how do regional shifts to lower carbon electric power mixes affect the relative contribution of the upstream life cycle water use? To test this, we examine a range of scenarios comparing a baseline with scenarios of carbon reduction and water use constraints using the MARKet ALlocation (MARKAL) energy systems model with ORD's 2014 U.S. 9-region database (EPAUS9r). The results suggest that moving toward a low carbon and low water electric power mix may increase the non-operational water use. In particular, power plant manufacturing water use for concentrating solar power, and fuel cycle water use for biomass feedstock, could see sharp increases under scenarios of high deployment of these low carbon options. Our analysis addresses the following questions. First, how does moving to a lower carbon electricity generation mix affect the overall regional electric power water use from a life cycle perspective? Second, how does constraining the operational water use for power plants affect the mix, if at all? Third, how does the life cycle water use differ among regions under

  5. Terrestrial Solar Thermal Power Plants: On the Verge of Commercialization

    NASA Astrophysics Data System (ADS)

    Romero, M.; Martinez, D.; Zarza, E.

    2004-12-01

    Solar Thermal Power Plants (STPP) with optical concentration technologies are important candidates for providing the bulk solar electricity needed within the next few decades, even though they still suffer from lack of dissemination and confidence among citizens, scientists and decision makers. Concentrating solar power is represented nowadays at pilot-scale and demonstration-scale by four technologies, parabolic troughs, linear Fresnel reflector systems, power towers or central receiver systems, and dish/engine systems, which are ready to start up in early commercial/demonstration plants. Even though, at present those technologies are still three times more expensive than intermediate-load fossil thermal power plants, in ten years from now, STPP may already have reduced production costs to ranges competitive. An important portion of this reduction (up to 42%) will be obtained by R&D and technology advances in materials and components, efficient integration schemes with thermodynamic cycles, highly automated control and low-cost heat storage systems.

  6. Dynamic interaction between an OTEC power plant and a power grid. Final report

    SciTech Connect

    Not Available

    1982-08-31

    The objectives of the research reported are: to identify and resolve potential technical problems that may arise from the incorporation of an OTEC power plant in the existing generation mix of Puerto Rico and to develop the tools and to identify the technical resources needed for dynamic analysis of island power systems to which OTEC power plants provide a substantial portion of the load demand. The issues addressed are system modelling and data gathering, network simplification, selection of OTEC plant site and power system, stability analysis, and economic dispatch when OTEC power plants contribute substantially to the island's load. The slow dynamics of the OTEC plant make it a reference for the rest of the power system during a transient, but this slowness is a drawback in terms of system recovery from fault-induced transients. It is found that simple dynamic models can, in most instances, describe the transient behavior of both the OTEC plant and the island's power system, but it was not possible to reduce the non-OTEC portion of the power system to a single generation point and a single load. (LEW)

  7. Nuclear power plant status diagnostics using simulated condensation: An auto-adaptive computer learning technique

    SciTech Connect

    Bartlett, E.B.

    1990-01-01

    The application of artificial neural network concepts to engineering analysis involves training networks, and therefore computers, to perform pattern classification or function mapping tasks. This training process requires the near optimization of network inter-neural connections. A new method for the stochastic optimization of these interconnections is presented in this dissertation. The new approach, called simulated condensation, is applied to networks of generalized, fully interconnected, continuous preceptrons. Simulated condensation optimizes the nodal bias, gain, and output activation constants as well as the usual interconnection weights. In this work, the simulated condensation network paradigm is applied to nuclear power plant operating status recognition. A set of standard problems such as the exclusive-or problem and others are also analyzed as benchmarks for the new methodology. The objective of the nuclear power plant accidient condition diagnosis effort is to train a network to identify both safe and potentially unsafe power plant conditions based on real time plant data. The data is obtained from computer generated accident scenarios. A simulated condensation network is trained to recognize seven nuclear power plant accident conditions as well as the normal full power operating condition. These accidents include, hot and cold leg loss of coolant, control rod ejection and steam generator tube leak accidents. Twenty-seven plant process variables are used as input to the neural network. Results show the feasibility of using simulated condensation as a method for diagnosing nuclear power plant conditions. The method is general and can easily be applied to other types of plants and plant processes.

  8. Optimal design of a pilot OTEC power plant in Taiwan

    SciTech Connect

    Tseng, C.H.; Kao, K.Y. ); Yang, J.C. )

    1991-12-01

    In this paper, an optimal design concept has been utilized to find the best designs for a complex and large-scale ocean thermal energy conversion (OTEC) plant. THe OTEC power plant under this study is divided into three major subsystems consisting of power subsystem, seawater pipe subsystem, and containment subsystem. The design optimization model for the entire OTEC plant is integrated from these sub-systems under the considerations of their own various design criteria and constraints. The mathematical formulations of this optimization model for the entire OTEC plant are described. The design variables, objective function, and constraints for a pilot plant under the constraints of the feasible technologies at this stage in Taiwan have been carefully examined and selected.

  9. The Power Plant Mapping Student Project: Bringing Citizen Science to Schools

    NASA Astrophysics Data System (ADS)

    Tayne, K.; Oda, T.; Gurney, K. R.; O'Keeffe, D.; Petron, G.; Tans, P. P.; Frost, G. J.

    2014-12-01

    An emission inventory (EI) is a conventional tool to quantify and monitor anthropogenic emissions of greenhouse gases and air pollutants into the atmosphere. Gridded EI can visually show geographical patterns of emissions and their changes over time. These patterns, when available, are often determined using location data collected by regional governments, industries, and researchers. Datasets such as Carbon Monitoring and Action (CARMA, www.carma.org) are particularly useful for mapping emissions from large point sources and have been widely used in the EI community. The EI community is aware of potentially significant errors in the geographical locations of point sources, including power plants. The big challenge, however, is to review tens of thousands of power plant locations around the world and correct them where needed. The Power Plant Mapping Student Project (PPMSP) is a platform designed for students in 4th through 12th grade to improve the geographical location of power plants indicated in existing datasets to benefit international EI research. In PPMSP, we use VENTUS, a web-based platform (http://ventus.project.asu.edu/) that invites citizens to contribute power plant location data. Using VENTUS, students view scenes in the vicinity of reported power plant coordinates on Google Maps. Students either verify the location of a power plant or search for it within a designated radius using various indicators, an e-guide, and a power plant photo gallery for assistance. If the power plant cannot be found, students mark the plant as unverified. To assure quality for research use, the project contains multiple checkpoints and levels of review. While participating in meaningful research that directly benefits the EI research community, students are engaged in relevant science curricula designed to meet each grade level's Next Generation Science Standards. Students study energy, climate change, the atmosphere, and geographical information systems. The curricula is

  10. Investigation of valve failure problems in LWR power plants

    SciTech Connect

    1980-04-01

    An analysis of component failures from information in the computerized Nuclear Safety Information Center (NSIC) data bank shows that for both PWR and BWR plants the component category most responsible for approximately 19.3% of light water reactor (LWR) power plant shutdowns. This investigation by Burns and Roe, Inc. shows that the greatest cause of shutdowns in LWRs due to valve failures is leakage from valve stem packing. Both BWR plants and PWR plants have stem leakage problems (BWRs, 21% and PWRs, 34%).

  11. Death, Disease, and Dirty Power. Mortality and health damage due to air pollution from power plants

    SciTech Connect

    Schneider, Conrad G.

    2000-10-01

    The Clean Air Task Force, on behalf of the Clear the Air campaign, commissioned Abt Associates to quantify the health impacts of fine particle air pollution, commonly known as soot, from power plants, as well as the expected benefits (avoidable deaths, hospitalizations, etc.) of policies that would reduce fine particle pollution from power plants. The health effects analyzed include death, hospitalizations, emergency room visits, asthma attacks, and a variety of lesser respiratory symptoms. This report summarizes the findings of the Abt Associates study, reviews the contribution of power plants to fine particle pollution, and discusses policies that will reduce power plant fine particle pollution and thus save thousands of lives. Key findings include: Fine particle pollution from US power plants cuts short the lives of over 30,000 people each year. In more polluted areas, fine particle pollution can shave several years off its victims' lives. Hundreds of thousands of Americans suffer from asthma attacks, cardiac problems and upper and lower respiratory problems associated with fine particles from power plants. The elderly, children, and those with respiratory disease are most severely impacted by fine particle pollution from power plants. Metropolitan areas with large populations near coal-fired power plants feel their impacts most acutely - their attributable death rates are much higher than in areas with few or no coal-fired power plants. Power plants outstrip all other polluters as the largest source of sulfates - the major component of fine particle pollution - in the US Approximately two-thirds (over 18,000) of the deaths due to fine particle pollution from power plants could be avoided by implementing policies that cut power plant sulfur dioxide and nitrogen oxide pollution 75 percent below 1997 emission levels. Fine particle pollution is responsible for increased risk of death and shortened life spans. Abt Associates' findings are based on a body of well

  12. Electric power plant emissions and public health

    SciTech Connect

    O'Connor, A.B.; Roy, C.

    2008-02-15

    The generation of electric power is one important source of pollutants such as mercury, sulfur dioxide, nitrogen oxides, and fine particulate matter that can affect the respiratory, cardiovascular, and central nervous systems and cause pregnancy complications. But protecting people from environmental health hazards has become increasingly complex. Air pollutants are often invisible and travel many miles virtually undetected. Nurses can play a critical role in preventive strategies, as well as in the national debate on energy production and dependence on fossil fuels.

  13. Cancer incidence in the vicinity of nuclear power plants in Taiwan: a population-based study.

    PubMed

    Wang, Shiow-Ing; Yaung, Chih-Liang; Lee, Long-Teng; Chiou, Shang-Jyh

    2016-01-01

    Numerous antinuclear demonstrations reveal that the public is anxious about the potential health effects caused by nuclear power plants. The purpose of this study is to address the question "Is there a higher cancer incidence rate in the vicinity of nuclear power plants in Taiwan?" The Taiwan Cancer Registry database from 1979 to 2003 was used to compare the standardized incidence rate of the top four cancers with strong evidence for radiation risks between the "plant-vicinity" with those "non-plant-vicinity" groups. All cancer sites, five-leading cancers in Taiwan, and gender-specific cancers were also studied. We also adopted different observation time to compare the incidence rate of cancers between two groups to explore the impact of the observation period. The incidences of leukemia, thyroid, lung, and breast cancer were not significantly different between two groups, but cervix uteri cancer showed higher incidence rates in the plant-vicinity group. The incidence of cervical cancer was not consistently associated with the duration of plant operation, according to a multiyear period comparison. Although there was higher incidence in cervix cancer in the plant-vicinity group, our findings did not provide the crucial evidence that nuclear power plants were the causal factor for some cancers with strong evidence for radiation risks.

  14. Information presentation in power plant control rooms

    NASA Astrophysics Data System (ADS)

    Kautto, A.

    1984-11-01

    The organization and presentation of information in a pressurized water reactor control room is discussed. Design of the alert function so as to reduce the number of alarms during plant shutdown, e.g., during the refuelling or maintenance period and during a disturbance, is considered. Validation of the Critical Function Monitoring System on a training simulator is described. Functional decomposition of information is shown to be helpful in designing displays. Criteria for designing displays, the structure of the information presentation system, and the main interactions are presented.

  15. [Risk communication in construction of new nuclear power plant].

    PubMed

    He, Gui-Zhen; Lü, Yong-Long

    2013-03-01

    Accompanied by construction of new nuclear power plants in the coming decades in China, risk management has become increasingly politicized and contentious. Nuclear risk communication is a critical component in helping individuals prepare for, respond to, and recover from nuclear power emergencies. It was discussed that awareness of trust and public attitudes are important determinants in nuclear power risk communication and management. However, there is limited knowledge about how to best communicate with at-risk populations around nuclear power plant in China. To bridge this gap, this study presented the attitudinal data from a field survey in under-building Haiyang nuclear power plant, Shandong Province to measure public support for and opposition to the local construction of nuclear power plant. The paper discussed the structure of the communication process from a descriptive point of view, recognizing the importance of trust and understanding the information openness. The results showed that decision-making on nuclear power was dominated by a closed "iron nuclear triangle" of national governmental agencies, state-owned nuclear enterprises and scientific experts. Public participation and public access to information on nuclear constructions and assessments have been marginal and media was a key information source. As information on nuclear power and related risks is very restricted in China, Chinese citizens (51%) tend to choose the government as the most trustworthy source. More respondents took the negative attitudes toward nuclear power plant construction around home. It drew on studies about risk communication to develop some guidelines for successful risk communication. The conclusions have vast implications for how we approach risk management in the future. The findings should be of interest to state and local emergency managers, community-based organizations, public health researchers, and policy makers.

  16. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; W. Mohn; M. Borden; S. Goodstine; I. Perrin

    2004-07-30

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of April to June 30, 2004.

  17. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2005-01-31

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of July 1 to September 30, 2004.

  18. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect

    K. Coleman; R. Viswanathan; J. Shingledecker; J. Sarver; G. Stanko; W. Mohn; M. Borden; S. Goodstine; I. Perrin

    2004-01-23

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of October 1 to December 30, 2003.

  19. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; W. Mohn; M. Borden; S. Goodstine; I. Perrin

    2004-04-23

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of October 1 to December 30, 2003.

  20. Boiler Materials For Ultrasupercritical Coal Power Plants

    SciTech Connect

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2006-09-30

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of July 1 to September 30, 2006.

  1. Boiler Materials for Ultrasupercritical Coal Power Plants

    SciTech Connect

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2006-01-31

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of October 1 to December 30, 2005.

  2. Boiler Materials for Ultrasupercritical Coal Power Plants

    SciTech Connect

    R. Viswanathan; J. Sarver; M. Borden; K. Coleman; J. Blough; S. Goodstine; R.W. Swindeman; W. Mohn; I. Perrin

    2003-04-21

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of July 1 to September 30, 2004.

  3. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2005-04-27

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of July 1 to September 30, 2004.

  4. Boiler Materials for Ultrasupercritical Coal Power Plants

    SciTech Connect

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2006-07-17

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of April 1 to June 30, 2006.

  5. Unit-sizing of hydro power plant

    NASA Astrophysics Data System (ADS)

    Maruzewski, P.; Rogeaux, C.; Laurier, P.

    2012-11-01

    In developing countries with great and unexploited renewable energy potential, Governments can exploit local resources for electricity supply, substantial energy savings and sustainable socio-economic development of these own countries. The decision-making process regarding the choice of renewable energy sources for energy supply in these countries is multidimensional, made up of a number of aspects at different levels such as economic, technical, environmental, and social. Therefore, reaching clear and unambiguous solutions may be very difficult. It is from this difficulty that the need arises to develop a tool for the design of hydro energy sources for electricity. The work involved in seeking a compromise solution requires an adequate technical assessment based on multiple criteria methods. One of the criteria is the assessment of the appropriate size of the hydropower plant. This paper presents the state-of-art of preliminary sizing of hydropower plant for the given renewable energy potential. The main step consists of carefully selecting and sizing the innovative hydraulic units based upon the suitability of the flow and head range. Since the flow and head data have now been confirmed, the potential annual energy generation can be properly assessed.

  6. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2005-10-27

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of July 1 to September 30, 2005.

  7. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2004-10-30

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of April to June 30, 2004.

  8. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2005-08-01

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of April 1 to June 30, 2005.

  9. How to Avoid Severe Incidents at Pumped Storage Power Plants

    NASA Astrophysics Data System (ADS)

    Yasuda, Masashi; Watanabe, Satoshi

    2016-11-01

    Pumped storage is now increasing its importance as the most powerful and reliable tool for stabilizing the electrical network, especially under the increase of intermittent power sources like wind-power and solar-power. However, pumped storage power plants have generally more machinery troubles than the conventional hydropower plants and sometimes they encountered unexpected severe incidents having long-term outage and a considerable restoration cost. The present paper provides some study results about general tendencies of machinery troubles in pumped storage, some examples of severe incidents mainly about the electro-mechanical troubles but also about the flood and fire, and possible scenarios which may lead into a severe result. Finally, it provides lessons learned and some recommendations to avoid severe incidents based on experiences.

  10. Regulatory Guidance for Lightning Protection in Nuclear Power Plants

    SciTech Connect

    Kisner, Roger A; Wilgen, John B; Ewing, Paul D; Korsah, Kofi; Antonescu, Christina E

    2006-01-01

    Abstract - Oak Ridge National Laboratory (ORNL) was engaged by the U.S. Nuclear Regulatory Commission (NRC) Office of Nuclear Regulatory Research (RES) to develop the technical basis for regulatory guidance to address design and implementation practices for lightning protection systems in nuclear power plants (NPPs). Lightning protection is becoming increasingly important with the advent of digital and low-voltage analog systems in NPPs. These systems have the potential to be more vulnerable than older analog systems to the resulting power surges and electromagnetic interference (EMI) when lightning strikes facilities or power lines. This paper discusses the technical basis for guidance to licensees and applicants covered in Regulatory Guide (RG) 1.204, Guidelines for Lightning Protection of Nuclear Power Plants, issued August 2005. RG 1.204 describes guidance for practices that are acceptable to the NRC staff for protecting nuclear power structures and systems from direct lightning strikes and the resulting secondary effects.

  11. Structural Materials and Fuels for Space Power Plants

    NASA Technical Reports Server (NTRS)

    Bowman, Cheryl; Busby, Jeremy; Porter, Douglas

    2008-01-01

    A fission reactor combined with Stirling convertor power generation is one promising candidate in on-going Fission Surface Power (FSP) studies for future lunar and Martian bases. There are many challenges for designing and qualifying space-rated nuclear power plants. In order to have an affordable and sustainable program, NASA and DOE designers want to build upon the extensive foundation in nuclear fuels and structural materials. This talk will outline the current Fission Surface Power program and outline baseline design options for a lunar power plant with an emphasis on materials challenges. NASA first organized an Affordable Fission Surface Power System Study Team to establish a reference design that could be scrutinized for technical and fiscal feasibility. Previous papers and presentations have discussed this study process in detail. Considerations for the reference design included that no significant nuclear technology, fuels, or material development were required for near term use. The desire was to build upon terrestrial-derived reactor technology including conventional fuels and materials. Here we will present an overview of the reference design, Figure 1, and examine the materials choices. The system definition included analysis and recommendations for power level and life, plant configuration, shielding approach, reactor type, and power conversion type. It is important to note that this is just one concept undergoing refinement. The design team, however, understands that materials selection and improvement must be an integral part of the system development.

  12. ERC product improvement activities for direct fuel cell power plants

    SciTech Connect

    Bentley, C.; Carlson, G.; Doyon, J.

    1995-08-01

    This program is designed to advance the carbonate fuel cell technology from the current power plant demonstration status to the commercial design in an approximately five-year period. The specific objectives which will allow attainment of the overall program goal are: (1) Define market-responsive power plant requirements and specifications, (2) Establish the design for a multifuel, low-cost, modular, market-responsive power plant, (3) Resolve power plant manufacturing issues and define the design for the commercial manufacturing facility, (4) Define the stack and BOP equipment packaging arrangement and define module designs, (5) Acquire capability to support developmental testing of stacks and BOP equipment as required to prepare for commercial design, and (6) Resolve stack and BOP equipment technology issues and design, build, and field test a modular commercial prototype power plant to demonstrate readiness for commercial entry. A seven-task program, dedicated to attaining objective(s) in the areas noted above, was initiated in December 1994. Accomplishments of the first six months are discussed in this paper.

  13. Integrated simulation of the Escatron PFBC power plant

    SciTech Connect

    Romeo, L.M.; Cortes, C.; Martinez, D.

    1997-12-31

    The study of the phenomena in fluidized beds has a great importance for the knowledge and development of FBC technologies. But nowadays, and from an operational point of view, the interest lies not only in fluidized bed behavior, but also in the influence of fluidized bed variables in the rest of the power plant. Although there is a great variety of designs and studies on FBC power stations (AFBC, CFBC and PFBC, with different types of cycles and first and second generation fluidized beds), there is a lack of detailed studies considering the interactions between the bed variables and the performance of the cycles (steam and gas). In order to improve the knowledge from this particular standpoint, an integrated model of the Escatron PFBC 80 MWe power plant (Spain) has been developed. The model has been validated with actual plant data, being able to predict the behavior of the plant as a whole. To do this, it estimates the most important variables of the fluidized bed (i.e., bed temperature profiles, bed density, fuel feed rate, heat transfer, entrainment, gas and steam flow rates), as well as the operating parameters of the power cycles (i.e., steam and gas turbine loads, temperatures and pressures). A practical application of this model is the evaluation of operational and design changes affecting the response of the fluidized bed, the steam and gas cycles, and, in turn, the power plant efficiency and availability.

  14. ERC product improvement activities for direct fuel cell power plants

    SciTech Connect

    Maru, H.C.; Farooque, M.; Bentley, C.

    1995-12-01

    This program is designed to advance the carbonate fuel cell technology from the current power plant demonstration status to the commercial design in an approximately five-year period. The specific objectives which will allow attainment of the overall program goal are: (1) Define market-responsive power plant requirements and specifications, (2) Establish the design for a multifuel, low-cost, modular, market-responsive power plant, (3) Resolve power plant manufacturing issues and define the design for the commercial manufacturing facility, (4) Define the stack and BOP equipment packaging arrangement and define module designs, (5) Acquire capability to support developmental testing of stacks and BOP equipment as required to prepare for commercial design, and (6) Resolve stack and BOP equipment technology issues and design, build, and field test a modular commercial prototype power plant to demonstrate readiness for commercial entry. A seven-task program, dedicated to attaining objective(s) in the areas noted above, was initiated in December 1994. Accomplishments of the first six months are discussed in this paper.

  15. Insights into the Societal Risk of Nuclear Power Plant Accidents.

    PubMed

    Denning, Richard; Mubayi, Vinod

    2017-01-01

    The elements of societal risk from a nuclear power plant accident are clearly illustrated by the Fukushima accident: land contamination, long-term relocation of large numbers of people, loss of productive farm area, loss of industrial production, and significant loss of electric capacity. NUREG-1150 and other studies have provided compelling evidence that the individual health risk of nuclear power plant accidents is effectively negligible relative to other comparable risks, even for people living in close proximity to a plant. The objective of this study is to compare the societal risk of nuclear power plant accidents to that of other events to which the public is exposed. We have characterized the monetized societal risk in the United States from major societally disruptive events, such as hurricanes, in the form of a complementary cumulative distribution function. These risks are compared with nuclear power plant risks, based on NUREG-1150 analyses and new MACCS code calculations to account for differences in source terms determined in the more recent SOARCA study. A candidate quantitative societal objective is discussed for potential adoption by the NRC. The results are also interpreted with regard to the acceptability of nuclear power as a major source of future energy supply.

  16. Parametric analysis of closed cycle magnetohydrodynamic (MHD) power plants

    NASA Technical Reports Server (NTRS)

    Owens, W.; Berg, R.; Murthy, R.; Patten, J.

    1981-01-01

    A parametric analysis of closed cycle MHD power plants was performed which studied the technical feasibility, associated capital cost, and cost of electricity for the direct combustion of coal or coal derived fuel. Three reference plants, differing primarily in the method of coal conversion utilized, were defined. Reference Plant 1 used direct coal fired combustion while Reference Plants 2 and 3 employed on site integrated gasifiers. Reference Plant 2 used a pressurized gasifier while Reference Plant 3 used a ""state of the art' atmospheric gasifier. Thirty plant configurations were considered by using parametric variations from the Reference Plants. Parametric variations include the type of coal (Montana Rosebud or Illinois No. 6), clean up systems (hot or cold gas clean up), on or two stage atmospheric or pressurized direct fired coal combustors, and six different gasifier systems. Plant sizes ranged from 100 to 1000 MWe. Overall plant performance was calculated using two methodologies. In one task, the channel performance was assumed and the MHD topping cycle efficiencies were based on the assumed values. A second task involved rigorous calculations of channel performance (enthalpy extraction, isentropic efficiency and generator output) that verified the original (task one) assumptions. Closed cycle MHD capital costs were estimated for the task one plants; task two cost estimates were made for the channel and magnet only.

  17. Standard technical specifications: General Electric plants, BWR/4. Volume 1, Revision 1: Specifications

    SciTech Connect

    1995-04-01

    This report documents the results of the combined effort of the NRC and the industry to produce improved Standard Technical Specifications (STS), Revision 1 for General Electric BWR/4 Plants. The changes reflected in Revision 1 resulted from the experience gained from license amendment applications to convert to these improved STS or to adopt partial improvements to existing technical specifications. This NUREG is the result of extensive public technical meetings and discussions between the Nuclear Regulatory Commission (NRC) staff and various nuclear power plant licensees, Nuclear Steam Supply System (NSSS) Owners Groups, NSSS vendors, and the Nuclear Energy Institute (NEI). The improved STS were developed based on the criteria in the Final Commission Policy Statement on Technical Specifications Improvements for Nuclear Power Reactors, dated July 22, 1993. The improved STS will be used as the basis for individual nuclear power plant licensees to develop improved plant-specific technical specifications. This report contains three volumes. Volume 1 contains the Specifications for all chapters and sections of the improved STS. Volume 2 contains the Bases for Chapters 2.0 and 3.0, and Sections 3.1--3.3 of the improved STS. Volume 3 contains the Bases for Sections 3.4--3.10 of the improved STS.

  18. Standard technical specifications General Electric plants, BWR/6. Volume 1, Revision 1

    SciTech Connect

    1995-04-01

    This report documents the results of the combined effort of the NRC and the industry to produce improved Standard Technical Specifications (STS), Revision 1 for General Electric BWR/6 Plants. The changes reflected in Revision 1 resulted from the experience gained from license amendment applications to convert to these improved STS or to adopt partial improvements to existing technical specifications. This NUREG is the result of extensive public technical meetings and discussions between the Nuclear Regulatory Commission (NRC) staff and various nuclear power plant licensees, Nuclear Steam Supply System (NSSS) Owners Groups, NSSS vendors, and the Nuclear Energy Institute (NEI). The improved STS were developed based on the criteria in the Final Commission Policy Statement on Technical Specifications Improvements for Nuclear Power Reactors, dated July 22, 1993. The improved STS will be used as the basis for individual nuclear power plant licensees to develop improved plant-specific technical specifications. This report contains three volumes. Volume 1 contains the Specifications for all chapters and sections of the improved STS. Volume 2 contains the Bases for Chapters 2.0 and 3.0, and Sections 3.1--3.3 of the improved STS. Volume 3 contains the Bases for Sections 3.4--3.10 of the improved STS.

  19. Electricity: From Tabletop to Power Plant

    NASA Astrophysics Data System (ADS)

    Moran, Timothy

    2009-01-01

    While electricity is central to our daily lives, it remains "black box" technology to most students. They know that electricity is produced somewhere and that it costs money, but they do not have personal experience with the operation and scale of the machines that provide it. Fortunately, electricity generation can be added to the more basic circuit topics (series, parallel, current, voltage, etc.) with only a small investment in equipment. Providing students with hands-on experience with small power sources will help them make wise decisions about electricity.

  20. System Definition and Analysis: Power Plant Design and Layout

    SciTech Connect

    None, None

    1996-05-01

    This is the Topical report for Task 6.0, Phase 2 of the Advanced Turbine Systems(ATS) Program. The report describes work by Westinghouse and the subcontractor, Gilbert/Commonwealth, in the fulfillment of completing Task 6.0. A conceptual design for critical and noncritical components of the gas fired combustion turbine system was completed. The conceptual design included specifications for the flange to flange gas turbine, power plant components, and balance of plant equipment. The ATS engine used in the conceptual design is an advanced 300 MW class combustion turbine incorporating many design features and technologies required to achieve ATS Program goals. Design features of power plant equipment and balance of plant equipment are described. Performance parameters for these components are explained. A site arrangement and electrical single line diagrams were drafted for the conceptual plant. ATS advanced features include design refinements in the compressor, inlet casing and scroll, combustion system, airfoil cooling, secondary flow systems, rotor and exhaust diffuser. These improved features, integrated with prudent selection of power plant and balance of plant equipment, have provided the conceptual design of a system that meets or exceeds ATS program emissions, performance, reliability-availability-maintainability, and cost goals.

  1. Neutron activation analysis of thermal power plant ash and surrounding area soils.

    PubMed

    Al-Masri, M S; Haddad, Kh; Alsomel, N; Sarhil, A

    2015-08-01

    Elemental concentrations of As, Cd, Co, Cr, Fe, Hg, Mo, Ni, Se, and Zn have been determined in fly and bottom ash collected from Syrian power plants fired by heavy oil and natural gas using instrumental neutron activation analysis. The results showed that all elements were more concentrated in fly ash than in the fly ash; there was a clear increasing trend of the elemental concentrations in the fly ash along the flue gas pathway. The annual emission of elements was estimated. Elemental concentrations were higher inside the campus area than in surrounding areas, and the lowest values were found in natural-gas-fired power plant. In addition, the levels have decreased as the distance from power plant campus increases. However, the levels in the surrounding villages were within the Syrian standard for agriculture soil.

  2. Mathematical modeling of leachates from ash ponds of thermal power plants.

    PubMed

    Singh, Gurdeep; Gupta, S K; Kumar, Ritesh; Sunderarajan, M

    2007-07-01

    The present study describes the development of empirical models for the prediction of various trace metals i.e., Mn, Cu, Fe, Zn and Pb found in the leachates generated from the ash ponds of various thermal power plants. The dispersion phenomenon of these trace metals followed first order reaction rate kinetics. The empirical models for individual trace metals derived from the lab scale models data correlate well with the real field data with regression coefficients varying from 0.93 to 0.98. The predicted concentrations of the trace metals varied within +/-3% of the observed values in the leachates generated from the ash ponds of four thermal power plants with standard deviation varying from 0.001 to 0.032. The empirical models derived from the study can be applied for prediction of trace metals in leachates generated from similar thermal power plants.

  3. Nuclear power plant safety related pump issues

    SciTech Connect

    Colaccino, J.

    1996-12-01

    This paper summarizes of a number of pump issues raised since the Third NRC/ASME Symposium on Valve and Pump Testing in 1994. General issues discussed include revision of NRC Inspection Procedure 73756, issuance of NRC Information Notice 95-08 on ultrasonic flow meter uncertainties, relief requests for tests that are determined by the licensee to be impractical, and items in the ASME OM-1995 Code, Subsection ISTB, for pumps. The paper also discusses current pump vibration issues encountered in relief requests and plant inspections - which include smooth running pumps, absolute vibration limits, and vertical centrifugal pump vibration measurement requirements. Two pump scope issues involving boiling water reactor waterlog and reactor core isolation cooling pumps are also discussed. Where appropriate, NRC guidance is discussed.

  4. Intelligent Component Monitoring for Nuclear Power Plants

    SciTech Connect

    Lefteri Tsoukalas

    2010-07-30

    Reliability and economy are two major concerns for a nuclear power generation system. Next generation nuclear power reactors are being developed to be more reliable and economic. An effective and efficient surveillance system can generously contribute toward this goal. Recent progress in computer systems and computational tools has made it necessary and possible to upgrade current surveillance/monitoring strategy for better performance. For example, intelligent computing techniques can be applied to develop algorithm that help people better understand the information collected from sensors and thus reduce human error to a new low level. Incidents incurred from human error in nuclear industry are not rare and have been proven costly. The goal of this project is to develop and test an intelligent prognostics methodology for predicting aging effects impacting long-term performance of nuclear components and systems. The approach is particularly suitable for predicting the performance of nuclear reactor systems which have low failure probabilities (e.g., less than 10-6 year-). Such components and systems are often perceived as peripheral to the reactor and are left somewhat unattended. That is, even when inspected, if they are not perceived to be causing some immediate problem, they may not be paid due attention. Attention to such systems normally involves long term monitoring and possibly reasoning with multiple features and evidence, requirements that are not best suited for humans.

  5. Fiber optic sensors for nuclear power plant applications

    SciTech Connect

    Kasinathan, Murugesan; Sosamma, Samuel; BabuRao, Chelamchala; Murali, Nagarajan; Jayakumar, Tammana

    2012-05-17

    Studies have been carried out for application of Raman Distributed Temperature Sensor (RDTS) in Nuclear Power Plants (NPP). The high temperature monitoring in sodium circuits of Fast Breeder Reactor (FBR) is important. It is demonstrated that RDTS can be usefully employed in monitoring sodium circuits and in tracking the percolating sodium in the surrounding insulation in case of any leak. Aluminum Conductor Steel Reinforced (ACSR) cable is commonly used as overhead power transmission cable in power grid. The suitability of RDTS for detecting defects in ACSR overhead power cable, is also demonstrated.

  6. Fiber optic sensors for nuclear power plant applications

    NASA Astrophysics Data System (ADS)

    Kasinathan, Murugesan; Sosamma, Samuel; BabuRao, Chelamchala; Murali, Nagarajan; Jayakumar, Tammana

    2012-05-01

    Studies have been carried out for application of Raman Distributed Temperature Sensor (RDTS) in Nuclear Power Plants (NPP). The high temperature monitoring in sodium circuits of Fast Breeder Reactor (FBR) is important. It is demonstrated that RDTS can be usefully employed in monitoring sodium circuits and in tracking the percolating sodium in the surrounding insulation in case of any leak. Aluminum Conductor Steel Reinforced (ACSR) cable is commonly used as overhead power transmission cable in power grid. The suitability of RDTS for detecting defects in ACSR overhead power cable, is also demonstrated.

  7. Risk-informed assessment of regulatory and design requirements for future nuclear power plants. Annual report

    SciTech Connect

    2000-08-01

    OAK B188 Risk-informed assessment of regulatory and design requirements for future nuclear power plants. Annual report. The overall goal of this research project is to support innovation in new nuclear power plant designs. This project is examining the implications, for future reactors and future safety regulation, of utilizing a new risk-informed regulatory system as a replacement for the current system. This innovation will be made possible through development of a scientific, highly risk-formed approach for the design and regulation of nuclear power plants. This approach will include the development and/or confirmation of corresponding regulatory requirements and industry standards. The major impediment to long term competitiveness of new nuclear plants in the U.S. is the capital cost component--which may need to be reduced on the order of 35% to 40% for Advanced Light Water Reactors (ALWRS) such as System 80+ and Advanced Boiling Water Reactor (ABWR). The required cost reduction for an ALWR such as AP600 or AP1000 would be expected to be less. Such reductions in capital cost will require a fundamental reevaluation of the industry standards and regulatory bases under which nuclear plants are designed and licensed. Fortunately, there is now an increasing awareness that many of the existing regulatory requirements and industry standards are not significantly contributing to safety and reliability and, therefore, are unnecessarily adding to nuclear plant costs. Not only does this degrade the economic competitiveness of nuclear energy, it results in unnecessary costs to the American electricity consumer. While addressing these concerns, this research project will be coordinated with current efforts of industry and NRC to develop risk-informed, performance-based regulations that affect the operation of the existing nuclear plants; however, this project will go further by focusing on the design of new plants.

  8. Modern air protection technologies at thermal power plants (review)

    NASA Astrophysics Data System (ADS)

    Roslyakov, P. V.

    2016-07-01

    Realization of the ecologically safe technologies for fuel combustion in the steam boiler furnaces and the effective ways for treatment of flue gases at modern thermal power plants have been analyzed. The administrative and legal measures to stimulate introduction of the technologies for air protection at TPPs have been considered. It has been shown that both the primary intrafurnace measures for nitrogen oxide suppression and the secondary flue gas treatment methods are needed to meet the modern ecological standards. Examples of the environmentally safe methods for flame combustion of gas-oil and solid fuels in the boiler furnaces have been provided. The effective methods and units to treat flue gases from nitrogen and sulfur oxides and flue ash have been considered. It has been demonstrated that realization of the measures for air protection should be accompanied by introduction of the systems for continuous instrumentation control of the composition of combustion products in the gas path of boiler units and for monitoring of atmospheric emissions.

  9. Remote Measurement of Heat Flux from Power Plant Cooling Lakes

    SciTech Connect

    Garrett, Alfred J.; Kurzeja, Robert J.; Villa-Aleman, Eliel; Bollinger, James S.; Pendergast, Malcolm M.

    2013-06-01

    Laboratory experiments have demonstrated a correlation between the rate of heat loss q" from an experimental fluid to the air above and the standard deviation σ of the thermal variability in images of the fluid surface. These experimental results imply that q" can be derived directly from thermal imagery by computing σ. This paper analyses thermal imagery collected over two power plant cooling lakes to determine if the same relationship exists. Turbulent boundary layer theory predicts a linear relationship between q" and σ when both forced (wind driven) and free (buoyancy driven) convection are present. Datasets derived from ground- and helicopter-based imagery collections had correlation coefficients between σ and q" of 0.45 and 0.76, respectively. Values of q" computed from a function of σ and friction velocity u* derived from turbulent boundary layer theory had higher correlations with measured values of q" (0.84 and 0.89). Finally, this research may be applicable to the problem of calculating losses of heat from the ocean to the atmosphere during high-latitude cold-air outbreaks because it does not require the information typically needed to compute sensible, evaporative, and thermal radiation energy losses to the atmosphere.

  10. Reliability analysis of a utility-scale solar power plant

    NASA Astrophysics Data System (ADS)

    Kolb, G. J.

    1992-10-01

    This paper presents the results of a reliability analysis for a solar central receiver power plant that employs a salt-in-tube receiver. Because reliability data for a number of critical plant components have only recently been collected, this is the first time a credible analysis can be performed. This type of power plant will be built by a consortium of western US utilities led by the Southern California Edison Company. The 10 MW plant is known as Solar Two and is scheduled to be on-line in 1994. It is a prototype which should lead to the construction of 100 MW commercial-scale plants by the year 2000. The availability calculation was performed with the UNIRAM computer code. The analysis predicted a forced outage rate of 5.4 percent and an overall plant availability, including scheduled outages, of 91 percent. The code also identified the most important contributors to plant unavailability. Control system failures were identified as the most important cause of forced outages. Receiver problems were rated second with turbine outages third. The overall plant availability of 91 percent exceeds the goal identified by the US utility study. This paper discuses the availability calculation and presents evidence why the 91 percent availability is a credible estimate.

  11. Dynamic simulation models and performance of an OTEC power plant

    SciTech Connect

    Wormley, D.N.; Carmichael, D.A.; Umans, S.

    1983-08-01

    In this study, the aspects of plant performance which influence the potential for integration of an OTEC plant into a utility grid are considered. A set of simulation models have been developed for the evaluation of OTEC dynamic plant performance. A detailed nonlinear dynamic model has been forumlated which is useful for the assessment of component performance including heat exchangers, turbines, pumps and control systems. A reduced order linear model has been developed which is useful for studies of plant stability, control system development and transient performance of the plant connected to a utility grid. This model is particularly suitable for transient dynamic studies of an OTEC plant as a unit in a utility grid. A quasi-steady power availability model has also been developed which is useful to determine plant ouput power as a function of ocean thermal gradients so that the influence of daily and seasonal temperature variations may be easily computed. The study has found no fundamental technical barriers which would prohibit the interconnection of an OTEC plant into a utility grid. It has also shown that detailed consideration of turbine nozzle angle control is merited and such a control has the potential to provide superior performance in comparison to turbine bypass valve control.

  12. Gasification CFD Modeling for Advanced Power Plant Simulations

    SciTech Connect

    Zitney, S.E.; Guenther, C.P.

    2005-09-01

    In this paper we have described recent progress on developing CFD models for two commercial-scale gasifiers, including a two-stage, coal slurry-fed, oxygen-blown, pressurized, entrained-flow gasifier and a scaled-up design of the PSDF transport gasifier. Also highlighted was NETL’s Advanced Process Engineering Co-Simulator for coupling high-fidelity equipment models with process simulation for the design, analysis, and optimization of advanced power plants. Using APECS, we have coupled the entrained-flow gasifier CFD model into a coal-fired, gasification-based FutureGen power and hydrogen production plant. The results for the FutureGen co-simulation illustrate how the APECS technology can help engineers better understand and optimize gasifier fluid dynamics and related phenomena that impact overall power plant performance.

  13. Aging management of containment structures in nuclear power plants

    SciTech Connect

    Naus, D.J.; Oland, C.B.; Ellingwood, B.R.; Graves, H.L. III; Norris, W.E.

    1994-12-31

    Research is being conducted by ORNL under US Nuclear Regulatory Commission (USNRC) sponsorship to address aging management of nuclear power plant containment and other safety-related structures. Documentation is being prepared to provide the USNRC with potential structural safety issues and acceptance criteria for use in continued service evaluations of nuclear power plants. Accomplishments include development of a Structural Materials Information Center containing data and information on the time variation of 144 material properties under the influence of pertinent environmental stressors or aging factors, evaluation of models for potential concrete containment degradation factors, development of a procedure to identify critical structures and degradation factors important to aging management, evaluations of nondestructive evaluation techniques. assessments of European and North American repair practices for concrete, review of parameters affecting corrosion of metals embedded in concrete, and development of methodologies for making current condition assessments and service life predictions of new or existing reinforced concrete structures in nuclear power plants.

  14. Direct fuel cell power plants: the final steps to commercialization

    NASA Astrophysics Data System (ADS)

    Glenn, Donald R.

    rated at 500 kW, are on-site and will be installed to the BOP upon completion of the BOP pretests now in the final stages. Full operation and commencement of the formal demonstration is to begin late this year. Now five years old, the Fuel Cell Commercialization Group (FCCG) has grown to include over 30 buyers. The Group's Committees have been actively working with FCE personnel to hone the plant's performance, configuration and cost/benefit trade-offs to assure a market-responsive unit results from the collaboration. A standard contract has been developed for use with the FCCG buyers to streamline the purchase agreement negotiations for the early units. These are essential steps to support a market entry for the 2.8 MW power plant in 1999. The paper details the program's progress and provides additional information on the current demonstration and stack test efforts, with comparisons to earlier test data. Recent accomplishments and planned efforts to affect market entry of the first production units is reviewed as well.

  15. Solar power plant performance evaluation: simulation and experimental validation

    NASA Astrophysics Data System (ADS)

    Natsheh, E. M.; Albarbar, A.

    2012-05-01

    In this work the performance of solar power plant is evaluated based on a developed model comprise photovoltaic array, battery storage, controller and converters. The model is implemented using MATLAB/SIMULINK software package. Perturb and observe (P&O) algorithm is used for maximizing the generated power based on maximum power point tracker (MPPT) implementation. The outcome of the developed model are validated and supported by a case study carried out using operational 28.8kW grid-connected solar power plant located in central Manchester. Measurements were taken over 21 month's period; using hourly average irradiance and cell temperature. It was found that system degradation could be clearly monitored by determining the residual (the difference) between the output power predicted by the model and the actual measured power parameters. It was found that the residual exceeded the healthy threshold, 1.7kW, due to heavy snow in Manchester last winter. More important, the developed performance evaluation technique could be adopted to detect any other reasons that may degrade the performance of the P V panels such as shading and dirt. Repeatability and reliability of the developed system performance were validated during this period. Good agreement was achieved between the theoretical simulation and the real time measurement taken the online grid connected solar power plant.

  16. Integration of ocean thermal energy conversion power plants with existing power systems

    SciTech Connect

    Arunasalam, N.

    1986-01-01

    The problem of integrating an Ocean Thermal Energy Conversion (OTEC) power plant with existing power systems is studied. A nonlinear model of an OTEC power system is developed. The dynamics of the large local induction motor load, and the coaxial cable connection to the mainland are included in the model. The effect of the motor load and the coaxial cable on the steady-state stability of the OTEC power plant is investigated using linearized analysis. The transient stability of the OTEC system is investigated through simulation. The contribution made by the motor load and the coaxial cable to the transient stability is studied. The occurrence of self excitation phenomena is analyzed using linear methods and simulation. The effects of wave and vessel motion on the electrical power output of the OTEC plant is investigated.

  17. Power plant VI - Sodium-air

    NASA Astrophysics Data System (ADS)

    Genier, R.

    A sodium-air cycle central receiver solar electric generating plant is described. The system is designed for liquid sodium to be heated to 750 C in the central receiver heat exchangers, pumped down to the tower base to transfer heat to an air loop, then be returned to the receiver aperture. The air loop would heat to 730 C, insufficient for efficient operation of turbines, and would require a further heating by a supplementary burner to temperatures of 950 C. An efficiency of 35.4 percent is projected for a total output of 10,620 kW. The flux is furnished by a field of 743 heliostats with a total surface area of 36,425 sq m, and received by a tower 120 m tall outfitted with a receiver inclined 45 deg from the horizontal. The sodium-air heat exchange is envisioned to take place in a tank of air interpenetrated by continuous, closed, boustrophedonic loops filled with superheated sodium.

  18. Annual Energy Production (AEP) optimization for tidal power plants based on Evolutionary Algorithms - Swansea Bay Tidal Power Plant AEP optimization

    NASA Astrophysics Data System (ADS)

    Kontoleontos, E.; Weissenberger, S.

    2016-11-01

    In order to be able to predict the maximum Annual Energy Production (AEP) for tidal power plants, an advanced AEP optimization procedure is required for solving the optimization problem which consists of a high number of design variables and constraints. This efficient AEP optimization procedure requires an advanced optimization tool (EASY software) and an AEP calculation tool that can simulate all different operating modes of the units (bidirectional turbine, pump and sluicing mode). The EASY optimization software is a metamodel-assisted Evolutionary Algorithm (MAEA) that can be used in both single- and multi-objective optimization problems. The AEP calculation tool, developed by ANDRITZ HYDRO, in combination with EASY is used to maximize the tidal annual energy produced by optimizing the plant operation throughout the year. For the Swansea Bay Tidal Power Plant project, the AEP optimization along with the hydraulic design optimization and the model testing was used to evaluate all different hydraulic and operating concepts and define the optimal concept that led to a significant increase of the AEP value. This new concept of a triple regulated “bi-directional bulb pump turbine” for Swansea Bay Tidal Power Plant (16 units, nominal power above 320 MW) along with its AEP optimization scheme will be presented in detail in the paper. Furthermore, the use of an online AEP optimization during operation of the power plant, that will provide the optimal operating points to the control system, will be also presented.

  19. PSF Analysis Support System for Nuclear Power Plants

    SciTech Connect

    Satoko Sakajo; Takashi Nakagawa; Naotaka Terashita

    2002-07-01

    Research during recent years has revealed that human errors tend to reflect the quality of performance shaping factors (PSFs). Therefore, from the viewpoint of reducing human error, PSFs, which include error-likely equipment design, written procedures, and other factors, must be analyzed and improved. This paper provides methodologies to identify and qualify the potential PSFs included in tasks at a nuclear power plant (NPP). The methodologies were applied to actual plants. (authors)

  20. Energy conversion/power plant cost-cutting

    SciTech Connect

    Nichols, K.

    1996-12-31

    This presentation by Kenneth Nichols, Barber-Nichols, Inc., is about cost-cutting in the energy conversion phase and power plant phase of geothermal energy production. Mr. Nichols discusses several ways in which improvements could be made, including: use of more efficient compressors and other equipment as they become available, anticipating reservoir resource decline and planning for it, running smaller binary systems independent of human operators, and designing plants so that they are relatively maintenance-free.

  1. Lines of development of tower-type solar power plants

    NASA Astrophysics Data System (ADS)

    Henseler, H.-J.

    1981-10-01

    Problem areas in the development of tower-type solar power plants are discussed. The mode of functioning of such plants is briefly reviewed and the economic shortcomings of solar energy devices are summarized. Technical aspects and requirements of the system devices are summarized. Technical aspects and requirements of the system components are detailed, including the reflector, the receiver, the circuit, the tower, and the storage.

  2. Peer Review of NRC Standardized Plant Analysis Risk Models

    SciTech Connect

    Anthony Koonce; James Knudsen; Robert Buell

    2011-03-01

    The Nuclear Regulatory Commission (NRC) Standardized Plant Analysis Risk (SPAR) Models underwent a Peer Review using ASME PRA standard (Addendum C) as endorsed by NRC in Regulatory Guide (RG) 1.200. The review was performed by a mix of industry probabilistic risk analysis (PRA) experts and NRC PRA experts. Representative SPAR models, one PWR and one BWR, were reviewed against Capability Category I of the ASME PRA standard. Capability Category I was selected as the basis for review due to the specific uses/applications of the SPAR models. The BWR SPAR model was reviewed against 331 ASME PRA Standard Supporting Requirements; however, based on the Capability Category I level of review and the absence of internal flooding and containment performance (LERF) logic only 216 requirements were determined to be applicable. Based on the review, the BWR SPAR model met 139 of the 216 supporting requirements. The review also generated 200 findings or suggestions. Of these 200 findings and suggestions 142 were findings and 58 were suggestions. The PWR SPAR model was also evaluated against the same 331 ASME PRA Standard Supporting Requirements. Of these requirements only 215 were deemed appropriate for the review (for the same reason as noted for the BWR). The PWR review determined that 125 of the 215 supporting requirements met Capability Category I or greater. The review identified 101 findings or suggestions (76 findings and 25 suggestions). These findings or suggestions were developed to identify areas where SPAR models could be enhanced. A process to prioritize and incorporate the findings/suggestions supporting requirements into the SPAR models is being developed. The prioritization process focuses on those findings that will enhance the accuracy, completeness and usability of the SPAR models.

  3. Flexibility of CCS Power Plants and Transport Systems

    NASA Astrophysics Data System (ADS)

    Nimtz, Michael; Krautz, Hans-Joachim

    2013-04-01

    Growing shares of renewable energy in the German power grid urge fossil fuelled power plants to reduce load or to shut down completely with increasing frequency and amplitude. Shut down, load changes and the following restart or ramp-up often have to be carried out as fast as possible. To realize such fast transitions is already complicated and expensive for conventional power plants - if further measures for CO2 reduction are applied, the task is even harder. Capture equipment and transport systems will add further process steps as well as additional masses of fluids and construction material. This will result in a change of time constants and a generally slower system reaction on changes in parameters like load, temperature and pressure in the power plant components and capture units. On the other hand there is only limited time to earn money by selling electricity - if there is a chance to sell more electricity in a short term, efficiencies should be as high as possible. Any capture unit that would reduce the efficiency causes economic conflicts. Therefore measures are analysed to offset the power generation from the capture process in time or to reduce the capture load temporarily. The poster will present a case study for different CCS power plant configurations and load scenarios representing typical grid load from renewable energies. Approaches to balance the load and/or the CO2 output of these power plants will be presented. These approaches comprise: bypassing of flue gas, intermediate storage of heat and/or fluids. Amounts of additional steam, electrical energy and other process fluids (e.g. scrubbing fluids like MEA) and size of auxiliary equipment will be shown .Finally, effects on the transport system (e.g. cooling down of CO2 in the pipeline and changes in mass and volume flow) will be presented and discussed.

  4. Thermal energy storage units for solar electric power plants

    NASA Astrophysics Data System (ADS)

    Gudkov, V. I.; Chakalev, K. N.

    Several types of heat storage units for solar power plants with thermodynamic cycles of energy conversion are examined, including specific-heat units (particularly water-vapor devices), thermochemical units, and phase-change units. The dependence of specific capital costs for heat storage units upon time of operation is discussed, and particular consideration is give to types of connections of specific-heat units into the thermal circuit of a power plant, and to a phase-change unit that uses a heat pipe for internal heat transport.

  5. Nuclear power plant alarm systems: Problems and issues

    SciTech Connect

    O'Hara, J.M.; Brown, W.S.

    1991-01-01

    Despite the incorporation of advanced technology into nuclear power plant alarm systems, human factors problems remain. This paper identifies to be addressed in order to allow advanced technology to be used effectively in the design of nuclear power plant alarm systems. The operator's use and processing of alarm system information will be considered. Based upon a review of alarm system research, issues related to general system design, alarm processing, display and control are discussed. It is concluded that the design of effective alarm systems depends on an understanding of the information processing capabilities and limitations of the operator. 39 refs.

  6. Nuclear power plant fire protection: philosophy and analysis. [PWR; BWR

    SciTech Connect

    Berry, D. L.

    1980-05-01

    This report combines a fire severity analysis technique with a fault tree methodology for assessing the importance to nuclear power plant safety of certain combinations of components and systems. Characteristics unique to fire, such as propagation induced by the failure of barriers, have been incorporated into the methodology. By applying the resulting fire analysis technique to actual conditions found in a representative nuclear power plant, it is found that some safety and nonsafety areas are both highly vulnerable to fire spread and impotant to overall safety, while other areas prove to be of marginal importance. Suggestions are made for further experimental and analytical work to supplement the fire analysis method.

  7. Neural networks and their application to nuclear power plant diagnosis

    SciTech Connect

    Reifman, J.

    1997-10-01

    The authors present a survey of artificial neural network-based computer systems that have been proposed over the last decade for the detection and identification of component faults in thermal-hydraulic systems of nuclear power plants. The capabilities and advantages of applying neural networks as decision support systems for nuclear power plant operators and their inherent characteristics are discussed along with their limitations and drawbacks. The types of neural network structures used and their applications are described and the issues of process diagnosis and neural network-based diagnostic systems are identified. A total of thirty-four publications are reviewed.

  8. Fire models for assessment of nuclear power plant fires

    SciTech Connect

    Nicolette, V.F.; Nowlen, S.P.

    1989-01-01

    This paper reviews the state-of-the-art in available fire models for the assessment of nuclear power plants fires. The advantages and disadvantages of three basic types of fire models (zone, field, and control volume) and Sandia's experience with these models will be discussed. It is shown that the type of fire model selected to solve a particular problem should be based on the information that is required. Areas of concern which relate to all nuclear power plant fire models are identified. 17 refs., 6 figs.

  9. Green lasers are beyond power limits mandated by safety standards.

    PubMed

    Lee, M H; Fox, K; Goldwasser, S; Lau, D W M; Aliahmad, B; Sarossy, M

    2016-08-01

    There has been an increasing number of reports of people losing vision from laser exposure from pocket laser pointers despite the safety limit of 1 milliwatt (1mW) imposed by the Australian government. We hypothesize that this is because commercially available red and green laser pointers are exceeding their labeled power outputs. We tested the power outputs of 4 red and 4 green lasers which were purchased for less than AUD$30 each. The average of 10 measurements was recorded for each laser. We found that 3 out of 4 red lasers conformed to the 1mW safety standard; in contrast, all of the green lasers exceeded this limit, with one of the lasers recording an output of 127.9 mW. This contrast in compliance is explained by the construction of these lasers - green lasers are typically Diode Pumped Solid State (DPSS) lasers that can emit excessive infrared (IR) radiation with poor workmanship or inconsistent adherence to practices of safe design and quality control; red lasers are diode lasers which have limited power outputs due to `Catastrophic Optical Damage' (COD). Relevant professional bodies ought to advocate more strongly for stringent testing, quality control and licensing of DPSS lasers with a view towards government intervention to banning green laser pointer use.

  10. 75 FR 57535 - Connecticut Yankee Atomic Power Company; Haddam Neck Plant; Notice of Issuance of Amendment To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-21

    ... COMMISSION Connecticut Yankee Atomic Power Company; Haddam Neck Plant; Notice of Issuance of Amendment To... application dated April 2, 2009, as supplemented March 30, 2010, Connecticut Yankee Atomic Power Company... No. 203 complies with the standards and requirements of the Atomic Energy Act of 1954, as...

  11. Dealing with uncertainties in fusion power plant conceptual development

    NASA Astrophysics Data System (ADS)

    Kemp, R.; Lux, H.; Kovari, M.; Morris, J.; Wenninger, R.; Zohm, H.; Biel, W.; Federici, G.

    2017-04-01

    Although the ultimate goal of most current fusion research is to build an economically attractive power plant, the present status of physics and technology does not provide the performance necessary to achieve this goal. Therefore, in order to model how such plants may operate and what their output might be, extrapolations must be made from existing experimental data and technology. However, the expected performance of a plant built to the operating point specifications can only ever be a ‘best guess’. Extrapolations far beyond the current operating regimes are necessarily uncertain, and some important interactions, for example the coupling of conducted power from the scape-off layer to the divertor surface, lack reliable predictive models. This means both that the demands on plant systems at the target operating point can vary significantly from the nominal value, and that the overall plant performance may potentially fall short of design targets. In this contribution we discuss tools and techniques that have been developed to assess the robustness of the operating points for the EU-DEMO tokamak-based demonstration power plant, and the consequences for its design. The aim is to make explicit the design choices and areas where improved modelling and DEMO-relevant experiments will have the greatest impact on confidence in a successful DEMO design.

  12. Occupational exposures and practices in nuclear power plants

    SciTech Connect

    Baum, J.W.

    1989-01-01

    As the first generation of commercial nuclear power comes to a close, it is timely to consider the status of occupational exposure in the power generation industry, that is, the collective occupational radiation doses received by workers in nuclear power plants. The picture is surprising. One might have thought that as newer, larger, and more modern plants came on line, there would be a significant decrease in exposure per unit of electricity generated. There is some indication that this is now happening. One might also have thought that the United States, being a leader in the development of nuclear power, and in the knowledge, experience and technology of nuclear radiation protection, would have the greatest success in controlling exposure. This expectation has not been fulfilled. 32 refs., 4 figs., 5 tabs.

  13. Safeguard Requirements for Fusion Power Plants

    SciTech Connect

    Robert J. Goldston and Alexander Glaser

    2012-08-10

    Nuclear proliferation risks from magnetic fusion energy associated with access to fissile materials can be divided into three main categories: 1) clandestine production of fissile material in an undeclared facility, 2) covert production and diversion of such material in a declared and safeguarded facility, and 3) use of a declared facility in a breakout scenario, in which a state openly produces fissile material in violation of international agreements. The degree of risk in each of these categories is assessed, taking into account both state and non-state actors, and it is found that safeguards are required for fusion energy to be highly attractive from a non-proliferation standpoint. Specific safeguard requirements and R&D needs are outlined for each category of risk, and the technical capability of the ITER experiment, under construction, to contribute to this R&D is noted. A preliminary analysis indicates a potential legal pathway for fusion power systems to be brought under the Treaty for the Non-Proliferation of Nuclear Weapons. "Vertical" proliferation risks associated with tritium and with the knowledge that can be gained from inertial fusion energy R&D are outlined.

  14. Analysis of nuclear power plant component failures

    SciTech Connect

    Not Available

    1984-01-01

    Items are shown that have caused 90% of the nuclear unit outages and/or deratings between 1971 and 1980 and the magnitude of the problem indicated by an estimate of power replacement cost when the units are out of service or derated. The funding EPRI has provided on these specific items for R and D and technology transfer in the past and the funding planned in the future (1982 to 1986) are shown. EPRI's R and D may help the utilities on only a small part of their nuclear unit outage problems. For example, refueling is the major cause for nuclear unit outages or deratings and the steam turbine is the second major cause for nuclear unit outages; however, these two items have been ranked fairly low on the EPRI priority list for R and D funding. Other items such as nuclear safety (NRC requirements), reactor general, reactor and safety valves and piping, and reactor fuel appear to be receiving more priority than is necessary as determined by analysis of nuclear unit outage causes.

  15. Heterogonous Nanofluids for Nuclear Power Plants

    NASA Astrophysics Data System (ADS)

    Alammar, Khalid

    2014-09-01

    Nuclear reactions can be associated with high heat energy release. Extracting such energy efficiently requires the use of high-rate heat exchangers. Conventional heat transfer fluids, such as water and oils are limited in their thermal conductivity, and hence nanofluids have been introduced lately to overcome such limitation. By suspending metal nanoparticles with high thermal conductivity in conventional heat transfer fluids, thermal conductivity of the resulting homogeneous nanofluid is increased. Heterogeneous nanofluids offer yet more potential for heat transfer enhancement. By stratifying nanoparticles within the boundary layer, thermal conductivity is increased where temperature gradients are highest, thereby increasing overall heat transfer of a flowing fluid. In order to test the merit of this novel technique, a numerical study of a laminar pipe flow of a heterogeneous nanofluid was conducted. Effect of Iron-Oxide distribution on flow and heat transfer characteristics was investigated. With Iron-Oxide volume concentration of 0.009 in water, up to 50% local heat transfer enhancement was predicted for the heterogeneous compared to homogeneous nanofluids. Increasing the Reynolds number is shown to increase enhancement while having negligible effect on pressure drop. Using permanent magnets attached externally to the pipe, an experimental investigation conducted at MIT nuclear reactor laboratory for similar flow characteristics of a heterogeneous nanofluid have shown upto 160% enhancement in heat transfer. Such results show that heterogeneous nanofluids are promising for augmenting heat transfer rates in nuclear power heat exchanger systems.

  16. Satellite observations of large power plants and megacities from GOSAT

    NASA Astrophysics Data System (ADS)

    Oda, Tom; Maksyutov, Shamil; Boesch, Hartmut; Butz, Andre; Ganshin, Alexander; Guerlet, Sandrine; Parker, Robert; O'Dell, Chris; Oshchepkov, Sergey; Yoshida, Yukio; Zhuravlev, Ruslan; Yokota, Tatsuya

    2013-04-01

    Fossil fuel CO2 emissions are a major source of CO2 to the global carbon cycle over decadal time scales and international efforts to curb those missions are required for mitigating climate change. Although emissions from nations are estimated and reported to help monitor their compliance of emission reductions, we still lack an objective method to monitor emissions directly. Future carbon-observing space missions are thus expected to provide an independent tool for directly measuring emissions. We proposed and have implemented satellite observations specifically over intense large point sources (LPS), including large fossil-fueled power plants and megacities, worldwide (N > 300) using the Japanese Greenhouse Gases Observing SATelllite (GOSAT). Our target LPS sites have been occasionally included in the observation schedule of GOSAT and the measurements are made using the target observation mode. This proposal was officially accepted by the GOSAT project office and we have attempted to use these data to detect signatures of man-made greenhouse gas emissions. We have submitted our locations of interest on a monthly basis two month prior to observation. We calculated the X_CO2 concentration enhancement due to the LPS emissions. We analyzed GOSAT X_CO2 retrievals from four research groups (five products total): the National Institute for Environmental Studies (NIES) (both the NIES standard Level 2 and NIES-PPDF products), the NASA Atmospheric CO2 from Space (ACOS) team (ACOS Level 2 product), the Netherlands Institute for Space Research (SRON)/Karlsruhe Institute of Technology, Germany (RemoTeC), and the University of Leicester, UK (Full-Physics CO2 retrieval dataset). Although we obtained fewer retrieved soundings relative to what we requested (probably due to geophysical difficulties in the retrievals), we did obtain statistically significant enhancements at some LPS sites where weather condition were ideal for viewing. We also implemented simulations of enhanced X

  17. Standard technical specifications combustion engineering plants: Bases (Sections 2.0--3.3). Volume 2, Revision 1

    SciTech Connect

    1995-04-01

    This report documents the results of the combined effort of the NRC and the industry to produce improved Standard Technical Specifications (STS), Revision 1 for General Electric BWR/6 Plants. The changes reflected in Revision 1 resulted from the experience gained from license amendment applications to convert to these improved STS or to adopt partial improvements to existing technical specifications. This NUREG is the result of extensive public technical meetings and discussions between the Nuclear Regulatory Commission (NRC) staff and various nuclear power plant licensees, Nuclear Steam Supply System (NSSS) Owners Groups, NSSS vendors, and the Nuclear Energy Institute (NEI). The improved STS were developed based on the criteria in the Final Commission Policy Statement on Technical Specifications Improvements for Nuclear Power Reactors, dated July 22, 1993. The improved STS will be used as the basis for individual nuclear power plant licensees to develop improved plant-specific technical specifications. This report contains three volumes.

  18. Central Heating and Power Plant Alternatives Review, Fort Wainwright, Alaska

    DTIC Science & Technology

    2003-05-01

    purchased from Usibelli Coal Mine, Inc. FWA maintains a coal pile for inven- tory. The typical inventory is a 90-day supply. Current Upgrade Strategy...ancillary businesses. 4. This assessment assumes that GVEA will purchase power from the nearby coal facilities (Healy and Aurora power plants) first , before...resource, which would add substantially to the costs. Typical installed costs of photo- voltaic systems are on the order $10,000/kW, or about $1 Million for

  19. Calculation of the characteristics of solar power plants

    NASA Astrophysics Data System (ADS)

    Azimov, S. A.; Akbarov, R. Iu.; Pirmatov, I. I.

    A general scheme is developed for calculating the shading of heliostats in solar power plants, with reference both to solar furnaces and to tower systems. Results are presented on the relationship between the filling of the middle of a concentrator and the time of year and time of day under clear-sky conditions, and to the relationship between the light energy power incident on circles in focal planes 30 and 40 cm in diameter and the turn angle of the heliostat.

  20. Aging management guideline for commercial nuclear power plants - heat exchangers

    SciTech Connect

    Booker, S.; Lehnert, D.; Daavettila, N.; Palop, E.

    1994-06-01

    This Aging Management Guideline (AMG) describes recommended methods for effective detection and mitigation of age-related degradation mechanisms in commercial nuclear power plant heat exchangers important to license renewal. The intent of this AMG is to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR 54. This AMG is presented in a manner that allows personnel responsible for performance analysis and maintenance to compare their plant-specific aging mechanisms (expected or already experienced) and aging management program activities to the more generic results and recommendations presented herein.

  1. Greenhouse Gas emissions from California Geothermal Power Plants

    DOE Data Explorer

    Sullivan, John

    2014-03-14

    The information given in this file represents GHG emissions and corresponding emission rates for California flash and dry steam geothermal power plants. This stage of the life cycle is the fuel use component of the fuel cycle and arises during plant operation. Despite that no fossil fuels are being consumed during operation of these plants, GHG emissions nevertheless arise from GHGs present in the geofluids and dry steam that get released to the atmosphere upon passing through the system. Data for the years of 2008 to 2012 are analyzed.

  2. The Regulatory Challenges of Decommissioning Nuclear Power Plants in Korea - 13101

    SciTech Connect

    Lee, Jungjoon; Ahn, Sangmyeon; Choi, Kyungwoo; Kim, Juyoul; Kim, Juyub

    2013-07-01

    As of 2012, 23 units of nuclear power plants are in operation, but there is no experience of permanent shutdown and decommissioning of nuclear power plant in Korea. It is realized that, since late 1990's, improvement of the regulatory framework for decommissioning has been emphasized constantly from the point of view of International Atomic Energy Agency (IAEA)'s safety standards. And it is known that now IAEA prepare the safety requirement on decommissioning of facilities, its title is the Safe Decommissioning of Facilities, General Safety Requirement Part 6. According to the result of IAEA's Integrated Regulatory Review Service (IRRS) mission to Korea in 2011, it was recommended that the regulatory framework for decommissioning should require decommissioning plans for nuclear installations to be constructed and operated and these plans should be updated periodically. In addition, after the Fukushima nuclear disaster in Japan in March of 2011, preparedness for early decommissioning caused by an unexpected severe accident became also important issues and concerns. In this respect, it is acknowledged that the regulatory framework for decommissioning of nuclear facilities in Korea need to be improved. First of all, we identify the current status and relevant issues of regulatory framework for decommissioning of nuclear power plants compared to the IAEA's safety standards in order to achieve our goal. And then the plan is to be established for improvement of regulatory framework for decommissioning of nuclear power plants in Korea. After dealing with it, it is expected that the revised regulatory framework for decommissioning could enhance the safety regime on the decommissioning of nuclear power plants in Korea in light of international standards. (authors)

  3. Water vulnerabilities for existing coal-fired power plants.

    SciTech Connect

    Elcock, D.; Kuiper, J.; Environmental Science Division

    2010-08-19

    This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements the Existing Plants Research Program's overall research effort by evaluating water issues that could impact power plants. Water consumption by all users in the United States over the 2005-2030 time period is projected to increase by about 7% (from about 108 billion gallons per day [bgd] to about 115 bgd) (Elcock 2010). By contrast, water consumption by coal-fired power plants over this period is projected to increase by about 21% (from about 2.4 to about 2.9 bgd) (NETL 2009b). The high projected demand for water by power plants, which is expected to increase even further as carbon-capture equipment is installed, combined with decreasing freshwater supplies in many areas, suggests that certain coal-fired plants may be particularly vulnerable to potential water demand-supply conflicts. If not addressed, these conflicts could limit power generation and lead to power disruptions or increased consumer costs. The identification of existing coal-fired plants that are vulnerable to water demand and supply concerns, along with an analysis of information about their cooling systems and related characteristics, provides information to help focus future research and development (R&D) efforts to help ensure that coal-fired generation demands are met in a cost-effective manner that supports sustainable water use. This study identified coal-fired power plants that are considered vulnerable to water demand and supply issues by using a geographical information system (GIS) that facilitated the analysis of plant-specific data for more than 500 plants in the NETL's Coal Power Plant Database (CPPDB) (NETL 2007a) simultaneously with 18 indicators of water demand and supply. Two types of demand indicators were evaluated. The first type

  4. Advanced coal gasifier-fuel cell power plant systems design

    NASA Technical Reports Server (NTRS)

    Heller, M. E.

    1983-01-01

    Two advanced, high efficiency coal-fired power plants were designed, one utilizing a phosphoric acid fuel cell and one utilizing a molten carbonate fuel cell. Both incorporate a TRW Catalytic Hydrogen Process gasifier and regenerator. Both plants operate without an oxygen plant and without requiring water feed; they, instead, require makeup dolomite. Neither plant requires a shift converter; neither plant has heat exchangers operating above 1250 F. Both plants have attractive efficiencies and costs. While the molten carbonate version has a higher (52%) efficiency than the phosphoric acid version (48%), it also has a higher ($0.078/kWh versus $0.072/kWh) ten-year levelized cost of electricity. The phosphoric acid fuel cell power plant is probably feasible to build in the near term: questions about the TRW process need to be answered experimentally, such as weather it can operate on caking coals, and how effective the catalyzed carbon-dioxide acceptor will be at pilot scale, both in removing carbon dioxide and in removing sulfur from the gasifier.

  5. Performance of small-scale tidal power plants

    NASA Astrophysics Data System (ADS)

    Fay, J. A.; Smachlo, M. A.

    1983-12-01

    Small-scale tidal power plants - having electric power between 1 and 100 MW, approximately - possess several attractive economic and environmental benefits. The dynamical behavior of such systems is calculated in terms of dimensionless variables and parameters, so that the size of the system is inconsequential (except for one parameter related to the slope of the walls of the tidal basin). Two measures of system performance are defined: capacity factor (ratio of average to rated power) and effectiveness (ratio of average to ideal tidal power). It was found that improving both parameters is mutually incompatible so that an economic analysis will determine the optimum values of the system design and performance parameters. The effects of variation of tidal range and basin shape were determined. Using typical variable flow properties of low-head hydroturbines, a favorable design head could be determined from the analysis. It was found that the change in the area of the intertidal zone relative to the surface area of the tidal pond is greater for small, as compared to large, systems, possibly leading to proportionately greater environmental effects. A comparison of the performance of several tidal power plant designs with the methodology of this paper showed generally good agreement with the dimensionless performance parameters and only a modest difference among them over several orders of magnitude in size of power plant.

  6. Mass customization of WARP{trademark} wind power plant design and construction

    SciTech Connect

    Weisbrich, A.L.; Rainey, D.L.

    1997-09-01

    Steady development of wind power technology and the accumulation of extensive operating experience with large clusters of electric utility connected turbines and have resulted in the emergence of wind power as a viable and attractive source of electricity for utilities, particularly in developing nations. A highly effective modular wind power technology, the Wind Amplified rotor Platforms (WARP{trademark}) System, which utilizes many identical vertically integrated Toroidal Accelerator Rotor Platform (TARP{trademark}) Windframe{trademark} building block modules with standard micro-turbines, forms the basis for mass customization (capacity and configuration) in power plant design and construction. WARP wind power brings the fundamentals of mass production as well as economies of scale to power plant design and construction. It can blend well with progressive engineering and construction (E and C) firm approaches which are predicated on a family of standardized designs to reduce cost, improve schedule and quality of units deployed. Since electricity has become the new world commodity with an imperative of low-cost, high-quality and environmentally responsible energy, WARP Systems designs have been proposed to meet these objectives through its inherent efficiency, mass customization and mass production features. WARP system`s ability to integrally operate with photovoltaics, gas turbines or gas diesels, provides also the opportunity to generate baseload power in an environmentally responsible manner.

  7. Decentralised optimisation of cogeneration in virtual power plants

    SciTech Connect

    Wille-Haussmann, Bernhard; Erge, Thomas; Wittwer, Christof

    2010-04-15

    Within several projects we investigated grid structures and management strategies for active grids with high penetration of renewable energy resources and distributed generation (RES and DG). Those ''smart grids'' should be designed and managed by model based methods, which are elaborated within these projects. Cogeneration plants (CHP) can reduce the greenhouse gas emissions by locally producing heat and electricity. The integration of thermal storage devices is suitable to get more flexibility for the cogeneration operation. If several power plants are bound to centrally managed clusters, it is called ''virtual power plant''. To operate smart grids optimally, new optimisation and model reduction techniques are necessary to get rid with the complexity. There is a great potential for the optimised management of CHPs, which is not yet used. Due to the fact that electrical and thermal demands do not occur simultaneously, a thermally driven CHP cannot supply electrical peak loads when needed. With the usage of thermal storage systems it is possible to decouple electric and thermal production. We developed an optimisation method based on mixed integer linear programming (MILP) for the management of local heat supply systems with CHPs, heating boilers and thermal storages. The algorithm allows the production of thermal and electric energy with a maximal benefit. In addition to fuel and maintenance costs it is assumed that the produced electricity of the CHP is sold at dynamic prices. This developed optimisation algorithm was used for an existing local heat system with 5 CHP units of the same type. An analysis of the potential showed that about 10% increase in benefit is possible compared to a typical thermally driven CHP system under current German boundary conditions. The quality of the optimisation result depends on an accurate prognosis of the thermal load which is realised with an empiric formula fitted with measured data by a multiple regression method. The key

  8. Peach Bottom and Vermont Yankee Nuclear Power Plants

    SciTech Connect

    1992-12-31

    A dramatic and extraordinary instance of state and local government control of nuclear power, the purchase by New York of the Shoreham plant is nonetheless indicative of the political demands that some states confront for additional involvement in the regulation of the radiological hazards associated with commercial nuclear power plants. Although the Supreme Court has appeared to expand, in the eight years since PG&E and Silkwood, the acceptable extent of state regulation, some states, in addition to New York, have acquired, with the acquiescence of the NRC, a degree of involvement that exceeds the role for state and local governments provided by the Court. For example, the Commonwealth of Pennsylvania concluded with the Philadelphia Electric Company (PECO) in June 1989 an agreement that commits PECO to various initiatives, not otherwise required under NRC regulations, for the safe operation of the Peach Bottom nuclear power plant in Pennsylvania. In July 1991 the State of Vermont and Vermont Yankee Nuclear Power Corporation (Vermont Yankee) concluded an agreement similar to that concluded between Pennsylvania and PECO. The agreement also commits Vermont Yankee to certain initiatives, not otherwise required under NRC regulations, related to its operation of the Vermont Yankee nuclear power plant in Vermont. The agreement was precipitated by a challenge to an application, submitted to the NRC by Vermont Yankee in April 1989, to amend the Vermont Yankee plant license to extend its expiration date from December 11, 2007 to March 21, 2012. The amendment would allow the Vermont Yankee plant to operate for forty full years.

  9. Legionnaires' disease bacteria in power plant cooling systems: Phase 2

    SciTech Connect

    Tyndall, R.L.; Christensen, S.W.; Solomon, J.A.

    1985-04-01

    Legionnaires' Disease Bacteria (Legionella) are a normal component of the aquatic community. The study investigated various environmental factors that affect Legionella profiles in power plant cooling waters. The results indicate that each of the four factors investigated (incubation temperature, water quality, the presence and type of associated biota, and the nature of the indigenous Legionella population) is important in determining the Legionella profile of these waters. Simple predictive relationships were not found. At incubation temperatures of 32/sup 0/ and 37/sup 0/C, waters from a power plant where infectious Legionella were not observed stimulated the growth of stock Legionella cultures more than did waters from plants where infectious Legionella were prevalent. This observation is consistent with Phase I results, which showed that densities of Legionella were frequently reduced in closed-cycle cooling systems despite the often higher infectivity of Legionella in closed-cycle waters. In contrast, water from power plants where infectious Legionella were prevalent supported the growth of indigenous Legionella pneumophila at 42/sup 0/C, while water from a power plant where infectious Legionella were absent did not support growth of indigenous Legionella. Some Legionella are able to withstand a water temperature of 85/sup 0/C for several hours, thus proving more tolerant than was previously realized. Finally, the observation that water from two power plants where infectious Legionella were prevalent usually supported the growth of Group A Legionella at 45/sup 0/C indicates the presence, of soluble Legionella growth promoters in these waters. This test system could allow for future identification and control of these growth promoters and, hence, of Legionella. 25 refs., 23 figs., 10 tabs.

  10. MOLTEN CARBONATE FUEL CELL POWER PLANT LOCATED AT TERMINAL ISLAND WASTEWATER TREATMENT PLANT

    SciTech Connect

    William W. Glauz

    2004-09-01

    The Los Angeles Department of Water and Power (LADWP) has developed one of the most recognized fuel cell demonstration programs in the United States. In addition to their high efficiencies and superior environmental performance, fuel cells and other generating technologies that can be located at or near the load, offers several electric utility benefits. Fuel cells can help further reduce costs by reducing peak electricity demand, thereby deferring or avoiding expenses for additional electric utility infrastructure. By locating generators near the load, higher reliability of service is possible and the losses that occur during delivery of electricity from remote generators are avoided. The potential to use renewable and locally available fuels, such as landfill or sewage treatment waste gases, provides another attractive outlook. In Los Angeles, there are also many oil producing areas where the gas by-product can be utilized. In June 2000, the LADWP contracted with FCE to install and commission the precommercial 250kW MCFC power plant. The plant was delivered, installed, and began power production at the JFB in August 2001. The plant underwent manufacturer's field trials up for 18 months and was replace with a commercial plant in January 2003. In January 2001, the LADWP contracted with FCE to provide two additional 250kW MCFC power plants. These commercial plants began operations during mid-2003. The locations of these plants are at the Terminal Island Sewage Treatment Plant at the Los Angeles Harbor (for eventual operation on digester gas) and at the LADWP Main Street Service Center east of downtown Los Angeles. All three carbonate fuel cell plants received partial funding through the Department of Defense's Climate Change Fuel Cell Buydown Program. This report covers the technical evaluation and benefit-cost evaluation of the Terminal Island 250kW MCFC power plant during its first year of operation from June 2003 to July 2004.

  11. Comparison and evaluation of power plant options for geosynchronous power stations. Part 1: Synchronous solar power

    NASA Technical Reports Server (NTRS)

    Williams, J. R.

    1973-01-01

    The present state-of-the-art is described for the development of solar power generators in far out synchronous orbit for power generation. Concepts of geosynchronous solar power satellites are discussed including photovoltaic arrays for power satellites, solar-thermal power satellites, and power transmission to earth.

  12. Adaptation of a commercially available 200 kW natural gas fuel cell power plant for operation on a hydrogen rich gas stream

    SciTech Connect

    Maston, V.A.

    1997-12-01

    International Fuel Cells (IFC) has designed a hydrogen fueled fuel cell power plant based on a modification of its standard natural gas fueled PC25{trademark} C fuel cell power plant. The natural gas fueled PC25 C is a 200 kW, fuel cell power plant that is commercially available. The program to accomplish the fuel change involved deleting the natural gas processing elements, designing a new fuel pretreatment subsystem, modifying the water and thermal management subsystem, developing a hydrogen burner to combust unconsumed hydrogen, and modifying the control system. Additionally, the required modifications to the manufacturing and assembly procedures necessary to allow the hydrogen fueled power plant to be manufactured in conjunction with the on-going production of the standard PC25 C power plants were identified. This work establishes the design and manufacturing plan for the 200 kW hydrogen fueled PC25 power plant.

  13. CAIS standard manual. System number 32. Central cooling plants

    SciTech Connect

    1995-04-28

    At this installation the list of facilities to be surveyed will be addressed on the basis of 32 unique systems that form the CAIS Engineering Deficiency Standards and Inspection Methods document. Each system deals with a specific technical aspect of the facility to be surveyed. Within each system a further breakdown is made to subsystems, each having a specific list of components. Specific observations of the listed defects are provided so as to allow the entry of observed quantification data. A DOD CAIS manual is provided for each of the 32 systems with an internal organization. The System Tree is a graphical representation of the Work Breakdown Structure, showing system, subsystem and component relationships for the Central Cooling Plants.

  14. CAIS standard manual. System number 28. Central heating plants

    SciTech Connect

    1995-04-28

    At this installation the list of facilities to be surveyed will be addressed on the basis of 32 unique systems that form the CAIS Engineering Deficiency Standards and Inspection Methods document. Each system deals with a specific technical aspect of the facility to be surveyed. Within each system a further breakdown is made to subsystems, each having a specific list of components. Specific observations of the listed defects are provided so as to allow the entry of observed quantification data. A DOD CAIS manual is provided for each of the 32 systems with an internal organization. The System Tree is a graphical representation of the Work Breakdown Structure, showing system, subsystem and component relationships for the Central Heating Plants.

  15. A solar thermal electric power plant for small communities

    NASA Technical Reports Server (NTRS)

    Holl, R. J.

    1979-01-01

    A solar power plant has been designed with a rating of 1000-kW electric and a 0.4 annual capacity factor. It was configured as a prototype for plants in the 1000 to 10,000-kWe size range for application to small communities or industrial users either grid-connected or isolated from a utility grid. A small central receiver was selected for solar energy collection after being compared with alternative distributed collectors. Further trade studies resulted in the selection of Hitec (heat transfer salt composed of 53 percent KNO3, 40 percent NaNO2, 7 percent NaNO3) as both the receiver coolant and the sensible heat thermal stroage medium and the steam Rankine cycle for power conversion. The plant is configured with road-transportable units to accommodate remote sites and minimize site assembly requirements. Results of the analyses indicate that busbar energy costs are competitive with diesel-electric plants in certain situations, e.g., off-grid, remote regions with high insolation. Sensitivity of energy costs to plant power rating and system capacity factor are given.

  16. US nuclear power plant operating cost and experience summaries

    SciTech Connect

    Kohn, W.E.; Reid, R.L.; White, V.S.

    1998-02-01

    NUREG/CR-6577, U.S. Nuclear Power Plant Operating Cost and Experience Summaries, has been prepared to provide historical operating cost and experience information on U.S. commercial nuclear power plants. Cost incurred after initial construction are characterized as annual production costs, representing fuel and plant operating and maintenance expenses, and capital expenditures related to facility additions/modifications which are included in the plant capital asset base. As discussed in the report, annual data for these two cost categories were obtained from publicly available reports and must be accepted as having different degrees of accuracy and completeness. Treatment of inconclusive and incomplete data is discussed. As an aid to understanding the fluctuations in the cost histories, operating summaries for each nuclear unit are provided. The intent of these summaries is to identify important operating events; refueling, major maintenance, and other significant outages; operating milestones; and significant licensing or enforcement actions. Information used in the summaries is condensed from annual operating reports submitted by the licensees, plant histories contained in Nuclear Power Experience, trade press articles, and the Nuclear Regulatory Commission (NRC) web site (www.nrc.gov).

  17. Radon measurements in the Catalagzi Thermal Power Plant, Turkey.

    PubMed

    Aytekin, H; Bayata, S; Baldik, R; Celebi, N

    2008-01-01

    The Catalağzi Thermal Power Plant (CTPP) (41(0)30'48.4('')N and 0.31(0)53'41.5('')E) is located at nearly 13 km North-east of Zonguldak city, which is located at the West Black Sea coast in Turkey. The middling products with high ash content of bituminous coals are used in this plant. Seasonal radon concentration measurements have been carried out by using CR-39 plastic track detectors in and around the CTPP. The annual average radon concentration has been found to vary from a minimum of 39.8 +/- 28.9 Bq m(-3) in the ash area to a maximum of approximately 75.0 +/- 15.7 Bq m(-3) in the service building of the power plant. The annual average radon concentration in the dwellings of the thermal power plant colony of the plant is 71.0 +/- 33.4 Bq m(-3). The effective dose has been found to vary from 0.38 to 0.71 mSv y(-1) with a mean value of 0.56 mSv y(-1), which is lower than the effective dose values 3-10 mSv given as the range of action levels recommended by International Commission on Radiological Protection: Protection against radon-222 at home and at work, ICRP Publication 65 (1993).

  18. 76 FR 75771 - Emergency Planning Guidance for Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-05

    ... / Monday, December 5, 2011 / Rules and Regulations#0;#0; ] NUCLEAR REGULATORY COMMISSION 10 CFR Part 50 and Part 52 RIN 3150-AI10 Emergency Planning Guidance for Nuclear Power Plants AGENCY: Nuclear Regulatory Commission. ACTION: Issuance of NUREG documents and interim staff guidance. SUMMARY: The U.S....

  19. Power Plants, Steam and Gas Turbines WebQuest

    ERIC Educational Resources Information Center

    Ulloa, Carlos; Rey, Guillermo D.; Sánchez, Ángel; Cancela, Ángeles

    2012-01-01

    A WebQuest is an Internet-based and inquiry-oriented learning activity. The aim of this work is to outline the creation of a WebQuest entitled "Power Generation Plants: Steam and Gas Turbines." This is one of the topics covered in the course "Thermodynamics and Heat Transfer," which is offered in the second year of Mechanical…

  20. Is natural background or radiation from nuclear power plants leukemogenic

    SciTech Connect

    Cronkite, E.P.

    1989-01-01

    The objective in this review is to provide some facts about normal hemopoietic cell proliferation relevant to leukemogenesis, physical, chemical, and biological facts about radiation effects with the hope that each person will be able to decide for themselves whether background radiation or emissions from nuclear power plants and facilities significantly add to the spontaneous leukemia incidence. 23 refs., 1 tab.

  1. Understanding Inertial and Frequency Response of Wind Power Plants: Preprint

    SciTech Connect

    Muljadi, E.; Gevorgian, V.; Singh, M.; Santoso, S.

    2012-07-01

    The objective of this paper is to analyze and quantify the inertia and frequency responses of wind power plants with different wind turbine technologies (particularly those of fixed speed, variable slip with rotor-resistance controls, and variable speed with vector controls).

  2. 48. MAP OF SANTA ANA RIVER POWER PLANT NO. 2 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    48. MAP OF SANTA ANA RIVER POWER PLANT NO. 2 OF THE EDISON ELECTRIC CO. THROUGH UNSURVEYED LAND IN THE SAN BERNARDINO FOREST RESERVE, APPROVED MAY 26, 1904, F. C. FINKLE, CHIEF HYDRAULIC ENGINEER. SCE drawing no. 53988. - Santa Ana River Hydroelectric System, Redlands, San Bernardino County, CA

  3. Radiation protection performance indicators at the Nuclear Power Plant Krsko.

    PubMed

    Janzekovic, Helena

    2006-06-01

    Nuclear power plant safety performance indicators are developed "by nuclear operating organisations to monitor their own performance and progress, to set their own challenging goals for improvement, and to gain additional perspective on performance relative to that of other plants". In addition, performance indicators are widely used by regulatory authorities although the use is not harmonised. Two basic performance indicators related to good radiation protection practice are collective radiation exposure and volume of low-level radioactive waste. In 2000, Nuclear Power Plant Krsko, a Westinghouse pressurised water reactor with electrical output 700 MW, finished an extensive modernisation including the replacement of both steam generators. While the annual volume of low-level radioactive waste does not show a specific trend related to modernisation, the annual collective dose reached maximum, i.e. 2.60 man Sv, and dropped to 1.13 man Sv in 2001. During the replacement of the steam generators in 2000, the dose associated with this activity was 1.48 man Sv. The annual doses in 2002 and 2003 were 0.53 and 0.80 man Sv, respectively, nearing thus the goal set by the US Institute of Nuclear Power Operators, which is 0.65 man Sv. Therefore, inasmuch as collective dose as the radiation protection performance indicator are concerned, the modernisation of the Krsko nuclear power plant was a success.

  4. Microgrids, virtual power plants and our distributed energy future

    SciTech Connect

    Asmus, Peter

    2010-12-15

    Opportunities for VPPs and microgrids will only increase dramatically with time, as the traditional system of building larger and larger centralized and polluting power plants by utilities charging a regulated rate of return fades. The key questions are: how soon will these new business models thrive - and who will be in the driver's seat? (author)

  5. Choosing Actuators for Automatic Control Systems of Thermal Power Plants

    SciTech Connect

    Gorbunov, A. I.; Serdyukov, O. V.

    2015-03-15

    Two types of actuators for automatic control systems of thermal power plants are analyzed: (i) pulse-controlled actuator and (ii) analog-controlled actuator with positioning function. The actuators are compared in terms of control circuit, control accuracy, reliability, and cost.

  6. Within compound, looking northwest, Power Plant (Building 5761) and Guard ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Within compound, looking northwest, Power Plant (Building 5761) and Guard Tower (Building 5762) to left, Electrical Substation to right - Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA

  7. Innovative Technology Reduces Power Plant Emissions-Commercialization Success

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde; Chung, Landy

    2004-01-01

    Overview of emission control system development: (1) Development of new oxidizer scrubber system to eliminate NOx waste and produce fertilizer (2) Technology licensed and a 1 to 3 MWatt-scale prototype installed on power plant (3) Development of method to oxidize NO to NO2 (4) Experience gained from licensing NASA technology.

  8. Innovative Technology Reduces Power Plant Emissions - Commercialization Success

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde

    2004-01-01

    Emission control system development includes: (1) Development of new oxidizer scrubber system to eliminate NOx waste and produce fertilizer (2) Technology licensed and a 1 to 3 MWatt-scale prototype installed on. power plant (3) Development of method to oxidize NO. to N02 (4) Experience gained from licensing NASA technology

  9. Method of optimizing performance of Rankine cycle power plants

    DOEpatents

    Pope, William L.; Pines, Howard S.; Doyle, Padraic A.; Silvester, Lenard F.

    1982-01-01

    A method for efficiently operating a Rankine cycle power plant (10) to maximize fuel utilization efficiency or energy conversion efficiency or minimize costs by selecting a turbine (22) fluid inlet state which is substantially in the area adjacent and including the transposed critical temperature line (46).

  10. View of Arizona rim towers from top of power plant. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Arizona rim towers from top of power plant. Left tower supports Circuit 3, second tower from left supports Circuit 12, middle tower supports Circuit 10, second tower from right supports Circuit 9, and right tower supports Circuit 8, view southeast - Hoover Dam, Circuits 1-15, U.S. Highway 93, Boulder City, Clark County, NV

  11. View of Nevada rim towers from top of power plant. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Nevada rim towers from top of power plant. Left tower supports Circuits 7 and 14, middle tower supports Circuit 6, and right tower supports Circuit 5, view west - Hoover Dam, Circuits 1-15, U.S. Highway 93, Boulder City, Clark County, NV

  12. Radioactive Effluents from Nuclear Power Plants Annual Report 2007

    SciTech Connect

    U.S. Nuclear Regulatory Commission, Office of Nuclear Reactor Regulation

    2010-12-10

    This report describes radioactive effluents from commercial nuclear power plants (NPPs) in the United States. This information was reported by the licensees for radioactive discharges that occurred in 2007. The report provides information relevant to the potential impact of NPPs on the environment and on public health.

  13. Radioactive Effluents from Nuclear Power Plants Annual Report 2008

    SciTech Connect

    U.S. Nuclear Regulatory Commission, Office of Nuclear Reactor Regulation

    2010-12-10

    This report describes radioactive effluents from commercial nuclear power plants (NPPs) in the United States. This information was reported by the licensees for radioactive discharges that occurred in 2008. The report provides information relevant to the potential impact of NPPs on the environment and on public health.

  14. 17. Mormon Flat power plant under construction. Notice location of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. Mormon Flat power plant under construction. Notice location of spillway gates. Needle valves at lower left are for bypass. Photographer unknown, March 1926. Source: Salt River Project. - Mormon Flat Dam, On Salt River, Eastern Maricopa County, east of Phoenix, Phoenix, Maricopa County, AZ

  15. Within compound, looking southeast Power Plant (Building 5761) to left, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Within compound, looking southeast Power Plant (Building 5761) to left, Satellite Communications Terminal (Building 5771), center - Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA

  16. Within compound, from Gate House, looking northwest, Power Plant (Building ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Within compound, from Gate House, looking northwest, Power Plant (Building 5761) to left, Electrical Substation (Building 5770) and Supply Warehouse (Building 5768) center, Satellite Communications Terminal (Building 5771) to far left - Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA

  17. Within compound, from Guard Tower, looking southeast, Power Plant (Building ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Within compound, from Guard Tower, looking southeast, Power Plant (Building 5761) to left, Satellite Communications Terminal (Building 5771) center, Supply Warehouse (Building 5768) to left - Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA

  18. Exposure to airborne asbestos in thermal power plants in Mongolia

    PubMed Central

    Damiran, Naransukh; Silbergeld, Ellen K; Frank, Arthur L; Lkhasuren, Oyuntogos; Ochir, Chimedsuren; Breysse, Patrick N

    2015-01-01

    Background: Coal-fired thermal power plants (TPPs) in Mongolia use various types of asbestos-containing materials (ACMs) in thermal insulation of piping systems, furnaces, and other products. Objective: To investigate the occupational exposure of insulation workers to airborne asbestos in Mongolian power plants. Methods: Forty-seven air samples were collected from four power plants in Mongolia during the progress of insulation work. The samples were analyzed by phase contrast microscopy (PCM) and transmission electron microscopy (TEM). Results: The average phase contrast microscopy equivalent (PCME) asbestos fiber concentration was 0.93 f/cm3. Sixteen of the 41 personal and one of the area samples exceeded the United States Occupational Safety and Health Administration (US OSHA) short-term exposure limit of 1.0 f/cm3. If it is assumed that the short-term samples collected are representative of full-shift exposure, then the exposures are approximately 10 times higher than the US OSHA 8-hour permissible exposure limit of 0.1 f/cm3. Conclusion: Power plant insulation workers are exposed to airborne asbestos at concentrations that exceed the US OSHA Permissible Exposure Limit. Action to mitigate the risks should be taken in Mongolia. PMID:25730489

  19. Evaluation of Foreign Investment in Power Plants using Real Options

    NASA Astrophysics Data System (ADS)

    Kato, Moritoshi; Zhou, Yicheng

    This paper proposes new methods for evaluating foreign investment in power plants under market uncertainty using a real options approach. We suppose a thermal power plant project in a deregulated electricity market. One of our proposed methods is that we calculate the cash flow generated by the project in a reference year using actual market data to incorporate periodic characteristics of energy prices into a yearly cash flow model. We make the stochastic yearly cash flow model with the initial value which is the cash flow in the reference year, and certain trend and volatility. Then we calculate the real options value (ROV) of the project which has abandonment options using the yearly cash flow model. Another our proposed method is that we evaluate foreign currency/domestic currency exchange rate risk by representing ROV in foreign currency as yearly pay off and exchanging it to ROV in domestic currency using a stochastic exchange rate model. We analyze the effect of the heat rate and operation and maintenance costs of the power plant on ROV, and evaluate exchange rate risk through numerical examples. Our proposed method will be useful for the risk management of foreign investment in power plants.

  20. Assessment of control rooms of nuclear power plants

    NASA Astrophysics Data System (ADS)

    Norros, L.; Ranta, J.; Wahlstroem, B.

    1983-05-01

    The NUREG 0700 recommendations were assessed for implementation in the control rooms of Finnish nuclear power plants. Direct conclusions drawn from the American situation are misleading, because of differences in, for example, procurement of instruments or personnel training. If the review is limited to control room details, the NRC program (checklist) is successful. It can also be used during planning to observe small discrepancies.