Sample records for power plant stations

  1. The AP1000{sup R} nuclear power plant innovative features for extended station blackout mitigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vereb, F.; Winters, J.; Schulz, T.

    2012-07-01

    Station Blackout (SBO) is defined as 'a condition wherein a nuclear power plant sustains a loss of all offsite electric power system concurrent with turbine trip and unavailability of all onsite emergency alternating current (AC) power system. Station blackout does not include the loss of available AC power to buses fed by station batteries through inverters or by alternate AC sources as defined in this section, nor does it assume a concurrent single failure or design basis accident...' in accordance with Reference 1. In this paper, the innovative features of the AP1000 plant design are described with their operation inmore » the scenario of an extended station blackout event. General operation of the passive safety systems are described as well as the unique features which allow the AP1000 plant to cope for at least 7 days during station blackout. Points of emphasis will include: - Passive safety system operation during SBO - 'Fail-safe' nature of key passive safety system valves; automatically places the valve in a conservatively safe alignment even in case of multiple failures in all power supply systems, including normal AC and battery backup - Passive Spent Fuel Pool cooling and makeup water supply during SBO - Robustness of AP1000 plant due to the location of key systems, structures and components required for Safe Shutdown - Diverse means of supplying makeup water to the Passive Containment Cooling System (PCS) and the Spent Fuel Pool (SFP) through use of an engineered, safety-related piping interface and portable equipment, as well as with permanently installed onsite ancillary equipment. (authors)« less

  2. 35. SITE BUILDING 004 ELECTRIC POWER STATION CONTROL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. SITE BUILDING 004 - ELECTRIC POWER STATION - CONTROL ROOM OF ELECTRIC POWER STATION WITH DIESEL ENGINE POWERED ELECTRIC GENERATION EQUIPMENT IN BACKGROUND. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  3. 36. SITE BUILDING 004 ELECTRIC POWER STATION CLOSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. SITE BUILDING 004 - ELECTRIC POWER STATION - CLOSE UP VIEW OF 1200 HORSEPOWER STANDBY POWER DIESEL ENGINE/GENERATOR SETS. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  4. 37. SITE BUILDING 004 ELECTRIC POWER STATION ELEVATED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. SITE BUILDING 004 - ELECTRIC POWER STATION - ELEVATED VIEW OF FIVE (5) 1200 HORSEPOWER STANDBY - POWER DIESEL ENGINE/GENERATOR SETS. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  5. 15. SITE BUILDING 004 ELECTRIC POWER STATION VIEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. SITE BUILDING 004 - ELECTRIC POWER STATION - VIEW IS LOOKING SOUTH 55° EAST AT FIVE DIESEL ENGINE/ GENERATOR SILENCER SYSTEM EXHAUST STACKS. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  6. Enhancement of NRC station blackout requirements for nuclear power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McConnell, M. W.

    2012-07-01

    The U.S. Nuclear Regulatory Commission (NRC) established a Near-Term Task Force (NTTF) in response to Commission direction to conduct a systematic and methodical review of NRC processes and regulations to determine whether the agency should make additional improvements to its regulatory system and to make recommendations to the Commission for its policy direction, in light of the accident at the Fukushima Dai-ichi Nuclear Power Plant. The NTTF's review resulted in a set of recommendations that took a balanced approach to defense-in-depth as applied to low-likelihood, high-consequence events such as prolonged station blackout (SBO) resulting from severe natural phenomena. Part 50,more » Section 63, of Title 10 of the Code of Federal Regulations (CFR), 'Loss of All Alternating Current Power,' currently requires that each nuclear power plant must be able to cool the reactor core and maintain containment integrity for a specified duration of an SBO. The SBO duration and mitigation strategy for each nuclear power plant is site specific and is based on the robustness of the local transmission system and the transmission system operator's capability to restore offsite power to the nuclear power plant. With regard to SBO, the NTTF recommended that the NRC strengthen SBO mitigation capability at all operating and new reactors for design-basis and beyond-design-basis external events. The NTTF also recommended strengthening emergency preparedness for prolonged SBO and multi-unit events. These recommendations, taken together, are intended to clarify and strengthen US nuclear reactor safety regarding protection against and mitigation of the consequences of natural disasters and emergency preparedness during SBO. The focus of this paper is on the existing SBO requirements and NRC initiatives to strengthen SBO capability at all operating and new reactors to address prolonged SBO stemming from design-basis and beyond-design-basis external events. The NRC initiatives are intended

  7. 38. SITE BUILDING 004 ELECTRIC POWER STATION AT INTERIOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    38. SITE BUILDING 004 - ELECTRIC POWER STATION AT INTERIOR - OBLIQUE VIEW AT FLOOR LEVEL SHOWING DIESEL ENGINE/GENERATOR SET NUMBER 5. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  8. 76 FR 58844 - Virginia Electric and Power Company, Surry Power Station, Units 1 and 2; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-22

    ... hours. After the high wind conditions pass, wind damage to the plant and surrounding area might preclude... Power Company, Surry Power Station, Units 1 and 2; Exemption 1.0 Background Virginia Electric and Power... authorize operation of the Surry Power Station, Units 1 and 2 (Surry 1 and 2) respectively. The license...

  9. Central station applications planning activities and supporting studies. [application of photovoltaic technology to power generation plants

    NASA Technical Reports Server (NTRS)

    Leonard, S. L.; Siegel, B.

    1980-01-01

    The application of photovoltaic technology in central station (utility) power generation plants is considered. A program of data collection and analysis designed to provide additional information about the subset of the utility market that was identified as the initial target for photovoltaic penetration, the oil-dependent utilities (especially muncipals) of the U.S. Sunbelt, is described along with a series of interviews designed to ascertain utility industry opinions about the National Photovoltaic Program as it relates to central station applications.

  10. Characterization of PAHs within PM 10 fraction for ashes from coke production, iron smelt, heating station and power plant stacks in Liaoning Province, China

    NASA Astrophysics Data System (ADS)

    Kong, Shaofei; Shi, Jianwu; Lu, Bing; Qiu, Weiguang; Zhang, Baosheng; Peng, Yue; Zhang, Bowen; Bai, Zhipeng

    2011-07-01

    Polycyclic aromatic hydrocarbons within PM 10 fraction of ashes from two coke production plants, one iron smelt plant, one heating station and one power plant were analyzed with GC-MS technique in 2009. The sum of 17 selected PAHs varied from 290.20 to 7055.72 μg/g and the amounts of carcinogenic PAHs were between 140.33 and 3345.46 μg/g. The most toxic ash was from the coke production plants and then from the iron smelt plant, coal-fired power plant and heating station according to BaP-based toxic equivalent factor (BaPeq) and BaP-based equivalent carcinogenic power (BaPE). PAHs profile of the iron smelt ash was significantly different from others with coefficient of divergence value higher than 0.40. Indicatory PAHs for coke production plants, heating station and coal-fired power plant were mainly 3-ring species such as Acy, Fl and Ace. While for iron smelt plant, they were Chr and BbF. Diagnostic ratios including Ant/(Ant + Phe), Flu/(Flu + Pyr), BaA/Chr, BbF/BkF, Ind/BghiP, IND/(IND + BghiP), BaP/BghiP, BaP/COR, Pyr/BaP, BaA/(BaA + Chr), BaA/BaP and BaP/(BaP + Chr) were calculated which were mostly different from other stacks for the iron smelt plant.

  11. Tampa Electric Company Polk Power Station IGCC project: Project status

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDaniel, J.E.; Carlson, M.R.; Hurd, R.

    1997-12-31

    The Tampa Electric Company Polk Power Station is a nominal 250 MW (net) Integrated Gasification Combined Cycle (IGCC) power plant located to the southeast of Tampa, Florida in Polk County, Florida. This project is being partially funded under the Department of Energy`s Clean Coal Technology Program pursuant to a Round II award. The Polk Power Station uses oxygen-blown, entrained-flow IGCC technology licensed from Texaco Development Corporation to demonstrate significant reductions of SO{sub 2} and NO{sub x} emissions when compared to existing and future conventional coal-fired power plants. In addition, this project demonstrates the technical feasibility of commercial scale IGCC andmore » Hot Gas Clean Up (HGCU) technology. The Polk Power Station achieved ``first fire`` of the gasification system on schedule in mid-July, 1996. Since that time, significant advances have occurred in the operation of the entire IGCC train. This paper addresses the operating experiences which occurred in the start-up and shakedown phase of the plant. Also, with the plant being declared in commercial operation as of September 30, 1996, the paper discusses the challenges encountered in the early phases of commercial operation. Finally, the future plans for improving the reliability and efficiency of the Unit in the first quarter of 1997 and beyond, as well as plans for future alternate fuel test burns, are detailed. The presentation features an up-to-the-minute update on actual performance parameters achieved by the Polk Power Station. These parameters include overall Unit capacity, heat rate, and availability. In addition, the current status of the start-up activities for the HGCU portion of the plant is discussed.« less

  12. [Cytogenetic characteristics of seed offspring of leafy tree plants from one-kilometer zone of Novovoronezh nuclear power station].

    PubMed

    Artiukhov, V G; Kalaev, V N; Sen'kevich, E V; Vakhtel', V M; Savko, A D

    2004-01-01

    Cytogenetic characteristics (mitotic activity, level and spectrum of pathological mitoses, nucleoly characteristics) of seed offspring of Quercus robur L. and Betula pendula Roth from Novovoronezh nuclear power station's 1-kilometer zone have been studied. It has been shown the change of time of passing though mitotic stages by cells, the increasing of bridges frequency occur in spectrum of mitotic aberrations (that shows activation of reparation systems), the change in nucleoly characteristics (the part of polynucleolaris cells increase in case of oak and decrease in case of birch, the rase of surface square of single nucleolies). The phenomena, mean above, probably, induced by synergic effects of Novovoronezh nuclear power station and environment pollutants. The most contaminated territories of 1-kilometer zone of Novovoronezh nuclear power station have been discovered by means of methods of cluster analysis of total cytogenetic characteristics of tree plants seed offspring.

  13. Emission and profile characteristic of volatile organic compounds emitted from coke production, iron smelt, heating station and power plant in Liaoning Province, China.

    PubMed

    Shi, Jianwu; Deng, Hao; Bai, Zhipeng; Kong, Shaofei; Wang, Xiuyan; Hao, Jiming; Han, Xinyu; Ning, Ping

    2015-05-15

    107 kinds of C₂-C₁₂ volatile organic compound (VOC) mass concentrations and profiles for four types of coal-fired stationary sources in Liaoning Province were studied by a dilution sampling system and GC-MS analysis method, which are of significant importance with regard to VOC emissions in northeast of China. The results showed that there were some differences among these VOC source profiles. The total mass concentrations of analyzed 107 VOC species varied from 10,917 to 19,652 μg m(-3). Halogenated hydrocarbons exhibited higher mass percentages for the VOC source profiles of iron smelt (48.8%) and coke production plant (37.7%). Aromatic hydrocarbons were the most abundant in heating station plant (69.1%). Ketones, alcohols and acetates held 45.0% of total VOCs in thermal power plant. For non-methane hydrocarbons (NMHCs), which are demanded for photochemical assessment in the USA, toluene and n-hexane were the most abundant species in the iron smelt, coke production and thermal power plant, with the mass percentages of 64.8%, 52.7% and 38.6%, respectively. Trimethylbenzene, n-propylbenzene and o,m-ethyltoluene approximately accounted for 70.0% in heating station plant. NMHCs emitted from coke production, iron smelt, heating station and power plant listed above presented different chemical reactivities. The average OH loss rate of NMHCs from heating station, was 4 to 5.6 times higher than that of NMHCs from iron smelt, coke production and power plant, which implies that VOCs emitted from heating station in northeast of China should be controlled firstly to avoid photochemical ozone pollution and protect human health. There are significant variations in the ratios of benzene/toluene and m, p-xylene/ethylbenzene of these coal-fired source profiles. The representativeness of the coal-fired sources studied and the VOC samples collected should be more closely examined. The accuracy of VOC source profiles related to coal-fired processes is highly dependent on

  14. Do emissions from thermal power plants affect crop productivity? A study from the vicinity of Bellary Thermal Power Station, Karnataka, India.

    PubMed

    Kiran, K R; Ravi, M V; Dhanya, B; Janagoudar, B S; Umesh, M R; Narayanarao, K

    2016-09-01

    In the present study, ambient air quality was monitored during July to November 2013 in the vicinity of Bellary Thermal Power Station (BTPS), Karnataka to assess the impact of pollutants emitted from power plant on the productivity of maize (Zea mays L.). Atmospheric pollutant load were measured in five different villages at varying distances and directions from thermal power plant, with the village farthest away from BTPS (Yelubenchi) as control. Maize yield was also estimated in these locations and correlated to the pollutant concentrations. It was found that, both particulate matter and SO2 which are indicators of emissions from coal-fueled power plants were highest in Thimmalapur village located in the predominant down wind direction. A significant reduction in maize yield was noticed (8197 to 6509 kg ha-1 for seed and 14041 to 9933 kg ha-1 for stover) across the gradient in distance and direction from BTPS which might be influenced by the pollutants emitted. The implications of these observations are further discussed in the paper.

  15. 78 FR 784 - Entergy Nuclear Operations, Inc.; Pilgrim Nuclear Power Station; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-04

    ....; Pilgrim Nuclear Power Station; Exemption 1.0 Background Entergy Nuclear Operations, Inc. (the licensee) is... Nuclear Power Station (PNPS). The license provides, among other things, that the facility is subject to... participated in two FEMA-evaluated exercises in conjunction with the Vermont Yankee Nuclear Power Plant and...

  16. Complex Mobile Independent Power Station for Urban Areas

    NASA Astrophysics Data System (ADS)

    Tunik, A. A.; Tolstoy, M. Y.

    2017-11-01

    A new type of a complex mobile independent power station developed in the Department of Engineering Communications and Life-Support Systems of Irkutsk National Research Technical University, is presented in this article. This station contains only solar panel, wind turbine, accumulator, diesel generator and microbial fuel cell for to produce electric energy, heat pump and solar collector to generate heat energy and also wastewater treatment plant and new complex control system. The complex mobile independent power station is intended for full power supply of a different kind of consumers located even in remote areas thus reducing their dependence from centralized energy supply systems, decrease the fossil fuel consumption, improve the environment of urban areas and solve the problems of the purification of industrial and municipal wastewater.

  17. 75 FR 11205 - Entergy Nuclear Operations, Inc; Pilgrim Nuclear Power Station Environmental Assessment and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-10

    ...; Pilgrim Nuclear Power Station Environmental Assessment and Finding of No Significant Impact The U.S... licensee), for operation of Pilgrim Nuclear Power Station (Pilgrim), located in Plymouth County, MA. In... License Renewal of Nuclear Plants: Regarding Pilgrim Nuclear Power Station,'' NUREG-1437, Supplement 29...

  18. 78 FR 66965 - In the Matter of Exelon Generation Company, LLC; Dresden Nuclear Power Station Confirmatory Order...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-07

    ...; NRC-2013-0245] In the Matter of Exelon Generation Company, LLC; Dresden Nuclear Power Station... licenses authorize the operation of the Dresden Nuclear Power Station (Dresden Station) in accordance with... actions described below will be taken at Dresden Nuclear Power Station and other nuclear plants in Exelon...

  19. On the possibility of generation of cold and additional electric energy at thermal power stations

    NASA Astrophysics Data System (ADS)

    Klimenko, A. V.; Agababov, V. S.; Borisova, P. N.

    2017-06-01

    A layout of a cogeneration plant for centralized supply of the users with electricity and cold (ECCG plant) is presented. The basic components of the plant are an expander-generator unit (EGU) and a vapor-compression thermotransformer (VCTT). At the natural-gas-pressure-reducing stations, viz., gas-distribution stations and gas-control units, the plant is connected in parallel to a throttler and replaces the latter completely or partially. The plant operates using only the energy of the natural gas flow without burning the gas; therefore, it can be classified as a fuelless installation. The authors compare the thermodynamic efficiencies of a centralized cold supply system based on the proposed plant integrated into the thermal power station scheme and a decentralized cold supply system in which the cold is generated by electrically driven vapor-compression thermotransformers installed on the user's premises. To perform comparative analysis, the exergy efficiency was taken as the criterion since in one of the systems under investigation the electricity and the cold are generated, which are energies of different kinds. It is shown that the thermodynamic efficiency of the power supply using the proposed plant proves to be higher within the entire range of the parameters under consideration. The article presents the results of investigating the impact of the gas heating temperature upstream from the expander on the electric power of the plant, its total cooling capacity, and the cooling capacities of the heat exchangers installed downstream from the EGU and the evaporator of the VCTT. The results of calculations are discussed that show that the cold generated at the gas-control unit of a powerful thermal power station can be used for the centralized supply of the cold to the ventilation and conditioning systems of both the buildings of the power station and the neighboring dwelling houses, schools, and public facilities during the summer season.

  20. The Satellite Nuclear Power Station - An option for future power generation.

    NASA Technical Reports Server (NTRS)

    Williams, J. R.; Clement, J. D.

    1973-01-01

    A new concept in nuclear power generation is being explored which essentially eliminates major objections to nuclear power. The Satellite Nuclear Power Station, remotely operated in synchronous orbit, would transmit power safely to the ground by a microwave beam. Fuel reprocessing would take place in space and no radioactive materials would ever be returned to earth. Even the worst possible accident to such a plant should have negligible effect on the earth. An exploratory study of a satellite nuclear power station to provide 10,000 MWe to the earth has shown that the system could weigh about 20 million pounds and cost less than $1000/KWe. An advanced breeder reactor operating with an MHD power cycle could achieve an efficiency of about 50% with a 1100 K radiator temperature. If a hydrogen moderated gas core reactor is used, its breeding ratio of 1.10 would result in a fuel doubling time of a few years. A rotating fluidized bed or NERVA type reactor might also be used. The efficiency of power transmission from synchronous orbit would range from 70% to 80%.

  1. Operate a Nuclear Power Plant.

    ERIC Educational Resources Information Center

    Frimpter, Bonnie J.; And Others

    1983-01-01

    Describes classroom use of a computer program originally published in Creative Computing magazine. "The Nuclear Power Plant" (runs on Apple II with 48K memory) simulates the operating of a nuclear generating station, requiring students to make decisions as they assume the task of managing the plant. (JN)

  2. CHANGES IN TERRESTRIAL ECOLOGY RELATED TO A COAL-FIRED POWER PLANT: WISCONSIN POWER PLANT IMPACT STUDY

    EPA Science Inventory

    This report summarizes the effects of a coal-fired power plant on terrestrial plants and animals. Research was conducted from 1971 through 1977 at the Columbia Generating Station in the eastern flood-plain of the Wisconsin River in south-central Wisconsin. Initial studies were la...

  3. Nuclear Security for Floating Nuclear Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skiba, James M.; Scherer, Carolynn P.

    2015-10-13

    Recently there has been a lot of interest in small modular reactors. A specific type of these small modular reactors (SMR,) are marine based power plants called floating nuclear power plants (FNPP). These FNPPs are typically built by countries with extensive knowledge of nuclear energy, such as Russia, France, China and the US. These FNPPs are built in one country and then sent to countries in need of power and/or seawater desalination. Fifteen countries have expressed interest in acquiring such power stations. Some designs for such power stations are briefly summarized. Several different avenues for cooperation in FNPP technology aremore » proposed, including IAEA nuclear security (i.e. safeguards), multilateral or bilateral agreements, and working with Russian design that incorporates nuclear safeguards for IAEA inspections in non-nuclear weapons states« less

  4. Solar power station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wenzel, J.

    1982-11-30

    Solar power station with semiconductor solar cells for generating electric power is described, wherein the semiconductor solar cells are provided on a member such as a balloon or a kite which carries the solar cells into the air. The function of the balloon or kite can also be fulfilled by a glider or airship. The solar power station can be operated by allowing the system to ascend at sunrise and descend at sunset or when the wind is going to be too strong in order to avoid any demage.

  5. 4. View of south elevation of power plant, looking north ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. View of south elevation of power plant, looking north - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  6. 8. View of power plant and radar tower, looking southwest ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. View of power plant and radar tower, looking southwest - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  7. 2. View of north elevation of power plant, looking south ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. View of north elevation of power plant, looking south - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  8. 18. Power plant engine piping floor plan, sheet 71 of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Power plant engine piping floor plan, sheet 71 of 130 - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  9. 15. Power plant elevations and cross sections, sheet 64 of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Power plant elevations and cross sections, sheet 64 of 130 - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  10. 78 FR 50458 - Entergy Nuclear Operations, Inc., James A. Fitzpatrick Nuclear Power Plant, Vermont Yankee...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-19

    ... Nuclear Operations, Inc., James A. Fitzpatrick Nuclear Power Plant, Vermont Yankee Nuclear Power Station, Pilgrim Nuclear Power Station, Request for Action AGENCY: Nuclear Regulatory Commission. ACTION: Request... that the NRC take action with regard to James A. Fitzpatrick Nuclear Power Plant, Vermont Yankee...

  11. 21. Power plant engine fuel oil piping diagrams, sheet 83 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. Power plant engine fuel oil piping diagrams, sheet 83 of 130 - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  12. 19. Power plant engine pipinglower level plan, sheet 80 of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. Power plant engine piping-lower level plan, sheet 80 of 130 - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  13. 20. Power plant engine piping details and schedules, sheet 82 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. Power plant engine piping details and schedules, sheet 82 of 130 - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  14. 16. Power plant roof plan and wall sections, sheet 65 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. Power plant roof plan and wall sections, sheet 65 of 130 - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  15. 1. View of east elevation of power plant, radar tower ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. View of east elevation of power plant, radar tower in background, looking west - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  16. 11. Interior view, east side of power plant, close of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Interior view, east side of power plant, close of up fuel tanks, looking northeast - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  17. 22. Power plant engine pipingcompressed air piping diagram and sections, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. Power plant engine piping-compressed air piping diagram and sections, sheet 81 of 130 - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  18. 76 FR 59745 - Virginia Electric and Power Company; North Anna Power Station, Unit Nos. 1 and 2; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-27

    ... hours. After the high wind conditions pass, wind damage to the plant and surrounding area might preclude... NUCLEAR REGULATORY COMMISSION [Docket Nos. 50-338 and 50-339] Virginia Electric and Power Company; North Anna Power Station, Unit Nos. 1 and 2; Exemption 1.0 Background Virginia Electric Power Company...

  19. 9. Interior view, west side of power plant, electrical panels ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Interior view, west side of power plant, electrical panels in place in center of photograph, looking northwest - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  20. 10. Interior view, east side of power plant, generator bases ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Interior view, east side of power plant, generator bases in foreground, electrical panels and fuel tanks in background looking northeast - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  1. Electrical Power Station Theory. A Course of Technical Information for Electrical Power Station Wireman Apprentices. Revised Edition.

    ERIC Educational Resources Information Center

    Lane Community Coll., Eugene, OR.

    This third-year course for electrical power station wirer apprentices is a foundation for the study of all aspects of installation and maintenance of power station equipment. It also provides a good technical background as well as the general knowledge essential to power station operator trainees. The course is intended to be equivalent to a…

  2. System for a displaying at a remote station data generated at a central station and for powering the remote station from the central station

    NASA Technical Reports Server (NTRS)

    Perry, J. C. (Inventor)

    1980-01-01

    A system for displaying at a remote station data generated at a central station and for powering the remote station from the central station is presented. A power signal is generated at the central station and time multiplexed with the data and then transmitted to the remote station. An energy storage device at the remote station is responsive to the transmitted power signal to provide energizing power for the circuits at the remote station during the time interval data is being transmitted to the remote station. Energizing power for the circuits at the remote station is provided by the power signal itself during the time this signal is transmitted. Preferably the energy storage device is a capacitor which is charged by the power signal during the time the power is transmitted and is slightly discharged during the time the data is transmitted to energize the circuits at the remote station.

  3. A new Space Station power system

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    1988-01-01

    A new concept for a Space Station power system is proposed which reduces the drag effect of the solar panels and eliminates eclipsing by the Earth. The solar generator is physically separated from the Space Station, and power transmitted to the station by a microwave beam. The power station can thus be placed high enough that drag is not a significant factor. For a resonant orbit where the ratio of periods s:p is a ratio of odd integers, and the orbital planes nearly perpendicular, an orbit can be chosen such that the line of sight is never blocked if the lower orbit has an altitude greater than calculatable mininum. For the 1:3 resonance, this minimum altitude is 0.5 r(e). Finally, by placing the power station into a sun-synchronous orbit, it can be made to avoid shadowing by the Earth, thus providing continuous power.

  4. 77 FR 12885 - Millstone Power Station, Units 1, 2 and 3, Dominion Nuclear Connecticut, Inc.; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-02

    ... high wind conditions pass, wind damage to the plant and surrounding area might preclude a sufficient... Power Station, Units 1, 2 and 3, Dominion Nuclear Connecticut, Inc.; Exemption 1.0 Background Dominion..., DPR-65 and NPF-49, which authorize operation of the Millstone Power Station, Unit Nos. 1, 2 and 3...

  5. Space Station power system issues

    NASA Technical Reports Server (NTRS)

    Giudici, R. J.

    1985-01-01

    Issues governing the selection of power systems for long-term manned Space Stations intended solely for earth orbital missions are covered briefly, drawing on trade study results from both in-house and contracted studies that have been conducted over nearly two decades. An involvement, from the Program Development Office at MSFC, with current Space Station concepts began in late 1982 with the NASA-wide Systems Definition Working Group and continued throughout 1984 in support of various planning activities. The premise for this discussion is that, within the confines of the current Space Station concept, there is good reason to consider photovoltaic power systems to be a venerable technology option for both the initial 75 kW and 300 kW (or much greater) growth stations. The issue of large physical size required by photovoltaic power systems is presented considering mass, atmospheric drag, launch packaging and power transmission voltage as being possible practicality limitations. The validity of searching for a cross-over point necessitating the introduction of solar thermal or nuclear power system options as enabling technologies is considered with reference to programs ranging from the 4.8 kW Skylab to the 9.5 gW Space Power Satellite.

  6. The space station power system

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The requirements for electrical power by the proposed Space Station Freedom are discussed. The options currently under consideration are examined. The three power options are photovoltaic, solar dynamic, and a hybrid system. Advantages and disadvantages of each system are tabulated. Drawings and artist concepts of the Space Station configuration are provided.

  7. Station blackout transient at the Browns Ferry Unit 1 Plant: a severe accident sequence analysis (SASA) program study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schultz, R.R.

    1982-01-01

    Operating plant transients are of great interest for many reasons, not the least of which is the potential for a mild transient to degenerate to a severe transient yielding core damage. Using the Browns Ferry (BF) Unit-1 plant as a basis of study, the station blackout sequence was investigated by the Severe Accident Sequence Analysis (SASA) Program in support of the Nuclear Regulatory Commission's Unresolved Safety Issue A-44: Station Blackout. A station blackout transient occurs when the plant's AC power from a comemrcial power grid is lost and cannot be restored by the diesel generators. Under normal operating conditions, fmore » a loss of offsite power (LOSP) occurs (i.e., a complete severance of the BF plants from the Tennessee Valley Authority (TVA) power grid), the eight diesel generators at the three BF units would quickly start and power the emergency AC buses. Of the eight diesel generators, only six are needed to safely shut down all three units. Examination of BF-specific data show that LOSP frequency is low at Unit 1. The station blackout frequency is even lower (5.7 x 10/sup -4/ events per year) and hinges on whether the diesel generators start. The frequency of diesel generator failure is dictated in large measure by the emergency equipment cooling water (EECW) system that cools the diesel generators.« less

  8. Insulation co-ordination aspects for power stations with generator circuit-breakers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanders, M.; Koeppl, G.; Kreuzer, J.

    1995-07-01

    The generator circuit-breaker (gen. c.b.) located between the generator and the step-up transformer, is now being applied world-wide. It has become a recognized electrical component of power stations which is largely due to economical advantages and increased power station availability. Technical protection considerations for power stations have always been the reason for discussion and the object of improvement. With the use of a gen. c.b., some points of view need to be considered anew. Not only the protection system in case of fault conditions will be influenced, but also the insulation co-ordination philosophy. Below the results of some calculations concerningmore » expected overvoltages are presented. These calculations are based on a transformer rated 264/15.5kV, 220 MVA. But the results are transferable to other power plants. Some measurements carried out on a transformer of the same rating complement the calculations. The findings may contribute to an improvement in insulation co-ordination and protection of the electrical system generator--step-up transformer.« less

  9. 9. View southeast corner of perimeter acquisition radar power plant ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. View southeast corner of perimeter acquisition radar power plant room #214, control room; showing central monitoring station console in foreground. Well and booster control panel in left background and electric power management panel on far right - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Power Plant, In Limited Access Area, Southwest of PARB at end of Service Road B, Nekoma, Cavalier County, ND

  10. Coal-water slurries containing petrochemicals to solve problems of air pollution by coal thermal power stations and boiler plants: An introductory review.

    PubMed

    Dmitrienko, Margarita A; Strizhak, Pavel A

    2018-02-01

    This introductory study presents the analysis of the environmental, economic and energy performance indicators of burning high-potential coal water slurries containing petrochemicals (CWSP) instead of coal, fuel oil, and natural gas at typical thermal power stations (TPS) and a boiler plant. We focus on the most hazardous anthropogenic emissions of coal power industry: sulfur and nitrogen oxides. The research findings show that these emissions may be several times lower if coal and oil processing wastes are mixed with water as compared to the combustion of traditional pulverized coal, even of high grades. The study focuses on wastes, such as filter cakes, oil sludge, waste industrial oils, heavy coal-tar products, resins, etc., that are produced and stored in abundance. Their deep conversion is very rare due to low economic benefit. Effective ways are necessary to recover such industrial wastes. We present the cost assessment of the changes to the heat and power generation technologies that are required from typical power plants for switching from coal, fuel oil and natural gas to CWSPs based on coal and oil processing wastes. The corresponding technological changes pay off after a short time, ranging from several months to several years. The most promising components for CWSP production have been identified, which provide payback within a year. Among these are filter cakes (coal processing wastes), which are produced as a ready-made coal-water slurry fuel (a mixture of flocculants, water, and fine coal dust). These fuels have the least impact on the environment in terms of the emissions of sulfur and nitrogen oxides as well as fly ash. An important conclusion of the study is that using CWSPs based on filter cakes is worthwhile both as the main fuel for thermal power stations and boiler plants and as starting fuel. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. 75 FR 75706 - Dresden Nuclear Power Station, Units 2 and 3 and Quad Cities Nuclear Power Station, Unit Nos. 1...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-06

    ...- 2010-0373] Dresden Nuclear Power Station, Units 2 and 3 and Quad Cities Nuclear Power Station, Unit Nos... and DPR-25 for Dresden Nuclear Power Station, Units 2 and 3, respectively, located in Grundy County, Illinois, and to Renewed Facility Operating License Nos. DPR-29 and DPR-30 for Quad Cities Nuclear Power...

  12. Definitional-mission report: Combined-cycle power plant, Sultan Iskandar Power Station Phase 2-B, Tenaga Nasional BHD, Malaysia. Export trade information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kadagathur, G.

    1990-12-10

    Tenaga Nasional BHD (TEN) formerly known as National Electricity Board of Malaysia is proposing to construct a Combined Cycle Power Plant at Pasir Gudang. The project is known as Sultan Iskandar Power Station Phase 2 (SIPS-2). U.S. engineering companies and U.S. equipment manufacturers are having difficulty in procuring contracts from the Malaysian Power Industry. To date, the industry is dominated by consortia with British and Swiss participation. Several U.S. engineering companies have approached the US Trade and Development Program (TDP) to assist them in breaking into the Malaysian utility market by supporting their effort on their current proposals for SIPS-2more » project. It is recommended that TDP should approve a grant to TEN that would provide funds for engineering upto the preparation of equipment specifications and associated technology transfer. The grant along with the weak dollar should be attractive enough for TEN to strongly consider consortia with U.S. companies very favorably. The project also offers a potential for the export of U.S. manufactured equipment in the range of $170 million.« less

  13. Peak exposures to main components of ash and gaseous diesel exhausts in closed and open ash loading stations at biomass-fuelled power plants.

    PubMed

    Laitinen, Juha; Koponen, Hanna; Sippula, Olli; Korpijärvi, Kirsi; Jumpponen, Mika; Laitinen, Sirpa; Aatamila, Marjaleena; Tissari, Jarkko; Karhunen, Tommi; Ojanen, Kari; Jokiniemi, Jorma; Korpinen, Leena

    2017-10-01

    Fly and bottom ashes are collected at power plants to reduce the environmental effects of energy production. However, handling the ashes causes health problems for operators, maintenance workers and truck drivers at the power plants. Hence, we evaluated ash loaders' peak inhalation exposures to the chemical components of ash and diesel exhausts in open and closed ash loading stations at biomass-fuelled combined heat and power plants. We also carried out chemical and morphological analyses of the ashes to evaluate their health hazard potential in order to find practical technical measures to reduce workers' exposure. On the basis of X-ray diffraction analyses, the main respirable crystalline ash compounds were SiO 2 , CaSO 4 , CaO, Ca 2 Al 2 SiO 7 , NaCl and Ca 3 Al 2 O 6 in the fly ashes and SiO 2 , KAlSi 3 O 8 , NaAlSi 3 O 8 and Ca 2 Al 2 SiO 7 in the bottom ashes. The short-term exposure levels of respirable crystalline silica, inhalable inorganic dust, Cr, Mn, Ni and nitric oxide exceeded their Finnish eight hours occupational exposure limit values in the closed ash loading station. According to our observations, more attention should be paid to the ash-moistening process, the use of tank trucks instead of open cassette flatbed trucks, and the sealing of the loading line from the silo to the truck which would prevent spreading the ash into the air. The idling time of diesel trucks should also be limited, and ash loading stations should be equipped with exhaust gas ventilators. If working conditions make it impossible to keep to the OEL values, workers must use respirators and protect their eyes and skin. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. The Environment Friendly Power Source for Power Supply of Mobile Communication Base Stations

    NASA Astrophysics Data System (ADS)

    Rudenko, N. V.; Ershov, V. V.; Evstafiev, V. V.

    2017-05-01

    The article describes the technical proposals to improve environmental and resource characteristics of the autonomous power supply systems of mobile communication base stations based on renewable energy sources, while ensuring the required reliability and security of power supply. These include: the replacement of diesel-generator with clean energy source - an electrochemical generator based on hydrogen fuel cells; the use of wind turbines with a vertical axis; use of specialized batteries. Based on the analysis of the know technical solutions, the structural circuit diagram of the hybrid solar-wind-hydrogen power plant and the basic principles of the algorithm of its work were proposed. The implementation of these proposals will improve the environmental and resource characteristics.

  15. SOXAL{trademark} pilot plant demonstration at Niagara Mohawk`s Dunkirk Station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strangway, P.K.

    This paper describes a six-month, nominal three megawatt (3 MW) pilot plant demonstration of the SOXAL{trademark} regenerative flue gas desulfurization (FGD) process at Niagara Mohawk Power Corporation`s Dunkirk, NY coal-fired power station. Using a slip-stream of flue gas from an actual coal-fired boiler, the pilot plant successfully demonstrated the absorption of sulfur dioxide and the simultaneous regeneration of sodium-based scrubbing liquor via bipolar membrane electrodialysis. Sulfur dioxide removal efficiency of greater than 98% was routinely achieved. The absorption and regeneration stages were both proven reliable and controllable. The pilot plant was successfully operated in both continuous and decoupled modes ofmore » operation, thus demonstrating the flexibility of this process.« less

  16. Power components for the space station 20-kHz power distribution system

    NASA Technical Reports Server (NTRS)

    Renz, David D.

    1988-01-01

    Since 1984, NASA Lewis Research Center was developing high power, high frequency space power components as part of The Space Station Advanced Development program. The purpose of The Advanced Development program was to accelerate existing component programs to ensure their availability for use on the Space Station. These components include a rotary power transfer device, remote power controllers, remote bus isolators, high power semiconductor, a high power semiconductor package, high frequency-high power cable, high frequency-high power connectors, and high frequency-high power transformers. All the components were developed to the prototype level and will be installed in the Lewis Research Center Space Station power system test bed.

  17. Power components for the Space Station 20-kHz power distribution system

    NASA Technical Reports Server (NTRS)

    Renz, David D.

    1988-01-01

    Since 1984, NASA Lewis Research Center was developing high power, high frequency space power components as part of The Space Station Advanced Development program. The purpose of the Advanced Development program was to accelerate existing component programs to ensure their availability for use on the Space Station. These components include a rotary power transfer device, remote power controllers, remote bus isolators, high power semiconductor, a high power semiconductor package, high frequency-high power cable, high frequency-high power connectors, and high frequency-high power transformers. All the components were developed to the prototype level and will be installed in the Lewis Research Center Space Station power system test bed.

  18. Baseline Testing of the Ultracapacitor Enhanced Photovoltaic Power Station

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.; Kolacz, John S.; Tavernelli, Paul F.

    2001-01-01

    The NASA John H. Glenn Research Center is developing an advanced ultracapacitor enhanced photovoltaic power station. Goals of this effort include maximizing photovoltaic power generation efficiency and extending the life of photovoltaic energy storage systems. Unique aspects of the power station include the use of a solar tracker, and ultracapacitors for energy storage. The photovoltaic power station is seen as a way to provide electric power in remote locations that would otherwise not have electric power, provide independence form utility systems, reduce pollution, reduce fossil fuel consumption, and reduce operating costs. The work was done under the Hybrid Power Management (HPM) Program, which includes the Hybrid Electric Transit Bus (HETB), and the E-Bike. The power station complements the E-Bike extremely well in that it permits the charging of the vehicle batteries in remote locations. Other applications include scientific research and medical power sources in isolated regions. The power station is an inexpensive approach to advance the state of the art in power technology in a practical application. The project transfers space technology to terrestrial use via nontraditional partners, and provides power system data valuable for future space applications. A description of the ultracapacitor enhanced power station, the results of performance testing and future power station development plans is the subject of this report. The report concludes that the ultracapacitor enhanced power station provides excellent performance, and that the implementation of ultracapacitors in the power system can provide significant performance improvements.

  19. ESBWR response to an extended station blackout/loss of all AC power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrett, A. J.; Marquino, W.

    2012-07-01

    U.S. federal regulations require light water cooled nuclear power plants to cope with Station Blackouts for a predetermined amount of time based on design factors for the plant. U.S. regulations define Station Blackout (SBO) as a loss of the offsite electric power system concurrent with turbine trip and unavailability of the onsite emergency AC power system. According to U.S. regulations, typically the coping period for an SBO is 4 hours and can be as long as 16 hours for currently operating BWR plants. Being able to cope with an SBO and loss of all AC power is required by internationalmore » regulators as well. The U.S. licensing basis for the ESBWR is a coping period of 72 hours for an SBO based on U.S. NRC requirements for passive safety plants. In the event of an extended SBO (viz., greater than 72 hours), the ESBWR response shows that the design is able to cope with the event for at least 7 days without AC electrical power or operator action. ESBWR is a Generation III+ reactor design with an array of passive safety systems. The ESBWR primary success path for mitigation of an SBO event is the Isolation Condenser System (ICS). The ICS is a passive, closed loop, safety system that initiates automatically on a loss of power. Upon Station Blackout or loss of all AC power, the ICS begins removing decay heat from the Reactor Pressure Vessel (RPV) by (i) condensing the steam into water in heat exchangers located in pools of water above the containment, and (ii) transferring the decay heat to the atmosphere. The condensed water is then returned by gravity to cool the reactor again. The ICS alone is capable of maintaining the ESBWR in a safe shutdown condition after an SBO for an extended period. The fuel remains covered throughout the SBO event. The ICS is able to remove decay heat from the RPV for at least 7 days and maintains the reactor in a safe shutdown condition. The water level in the RPV remains well above the top of active fuel for the duration of the SBO

  20. Application of flywheel battery in mobile power station

    NASA Astrophysics Data System (ADS)

    Wang, Xinggui; Zhang, Bing; Li, Xiaoying; Sun, Xiaojing

    2013-03-01

    The flywheel battery is used to the mobile station for continuous power supply, once the commercial power or other independent power supply is outage or failure, the flywheel battery will provide uninterrupted power supply during the switch to the commercial power and the diesel generator sets, ensuring the power supply system is continuous and maintaining the performance and parameters of the power supply which will not influence or discontinuous change because of commercial power failure. Simulation results show that the flywheel battery used to the mobile station can effectively improve the performance of the mobile power station system.

  1. 47 CFR 74.793 - Digital low power TV and TV translator station protection of broadcast stations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Digital low power TV and TV translator station... DISTRIBUTIONAL SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.793 Digital low power TV and TV translator station protection of broadcast stations. (a) An application to construct a new digital low power...

  2. Space Station Freedom power - A reliability, availability, and maintainability assessment of the proposed Space Station Freedom electric power system

    NASA Technical Reports Server (NTRS)

    Turnquist, S. R.; Twombly, M.; Hoffman, D.

    1989-01-01

    A preliminary reliability, availability, and maintainability (RAM) analysis of the proposed Space Station Freedom electric power system (EPS) was performed using the unit reliability, availability, and maintainability (UNIRAM) analysis methodology. Orbital replacement units (ORUs) having the most significant impact on EPS availability measures were identified. Also, the sensitivity of the EPS to variations in ORU RAM data was evaluated for each ORU. Estimates were made of average EPS power output levels and availability of power to the core area of the space station. The results of assessments of the availability of EPS power and power to load distribution points in the space stations are given. Some highlights of continuing studies being performed to understand EPS availability considerations are presented.

  3. Utility interconnection experience with an operating central station MW-sized photovoltaic plant

    NASA Astrophysics Data System (ADS)

    Patapoff, N. W., Jr.; Mattijetz, D. R.

    1985-08-01

    Utility experience to date with photovoltaic systems has been with small dispersed systems designed primarily as demonstration projects. The 1 MW photovoltaic plant at Lugo Substation in Hesperia, California, has been designed and is operated as a central station power plant. The performance of the system has been monitored since first coming on line in November 1982. The potential impact of this and similar systems upon the operation of the utility is discussed.

  4. 75 FR 13600 - Virginia Electric and Power Company, North Anna Power Station, Unit Nos. 1 and 2, Surry Power...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-22

    ...- 2010-0116] Virginia Electric and Power Company, North Anna Power Station, Unit Nos. 1 and 2, Surry Power Station, Unit Nos. 1 and 2; Environmental Assessment and Finding of No Significant Impact The U.S... Anna Power Station, Unit Nos. 1 and 2 (NAPS), and Surry Power Station, Unit Nos. 1 and 2 (SPS), located...

  5. Concentrating Solar Power Projects - Jemalong Solar Thermal Station |

    Science.gov Websites

    Concentrating Solar Power | NREL Jemalong Solar Thermal Station This page provides information on Jemalong Solar Thermal Station, a concentrating solar power (CSP) project, with data organized by Project Name: Jemalong Solar Thermal Station Country: Australia Location: Jemalong (New South Wales) Owner

  6. Space solar power stations. Problems of energy generation and using its on the earth surface and nearest cosmos

    NASA Astrophysics Data System (ADS)

    Sinkevich, OA; Gerasimov, DN; Glazkov, VV

    2017-11-01

    Three important physical and technical problems for solar power stations (SPS) are considered: collection of solar energy and effective conversion of this energy to electricity in space power stations, energy transportation by the microwave beam to the Earth surface and direct utilization of the microwave beam energy for global environmental problems. Effectiveness of solar energy conversion into electricity in space power stations using gas and steam turbines plants, and magneto-hydrodynamic generator (MHDG) are analyzed. The closed cycle MHDG working on non-equilibrium magnetized plasmas of inert gases seeded with the alkaline metal vapors are considered. The special emphases are placed on MHDG and gas-turbine installations that are operating without compressor. Also opportunities for using the produced by space power stations energy for ecological needs on Earth and in Space are discussed.

  7. Space Station power system autonomy demonstration

    NASA Technical Reports Server (NTRS)

    Kish, James A.; Dolce, James L.; Weeks, David J.

    1988-01-01

    The Systems Autonomy Demonstration Program (SADP) represents NASA's major effort to demonstrate, through a series of complex ground experiments, the application and benefits of applying advanced automation technologies to the Space Station project. Lewis Research Center (LeRC) and Marshall Space Flight Center (MSFC) will first jointly develop an autonomous power system using existing Space Station testbed facilities at each center. The subsequent 1990 power-thermal demonstration will then involve the cooperative operation of the LeRC/MSFC power system with the Johnson Space Center (JSC's) thermal control and DMS/OMS testbed facilities. The testbeds and expert systems at each of the NASA centers will be interconnected via communication links. The appropriate knowledge-based technology will be developed for each testbed and applied to problems requiring intersystem cooperation. Primary emphasis will be focused on failure detection and classification, system reconfiguration, planning and scheduling of electrical power resources, and integration of knowledge-based and conventional control system software into the design and operation of Space Station testbeds.

  8. Evolutionary growth for Space Station Freedom electrical power system

    NASA Technical Reports Server (NTRS)

    Marshall, Matthew Fisk; Mclallin, Kerry; Zernic, Mike

    1989-01-01

    Over an operational lifetime of at least 30 yr, Space Station Freedom will encounter increased Space Station user requirements and advancing technologies. The Space Station electrical power system is designed with the flexibility to accommodate these emerging technologies and expert systems and is being designed with the necessary software hooks and hardware scars to accommodate increased growth demand. The electrical power system is planned to grow from the initial 75 kW up to 300 kW. The Phase 1 station will utilize photovoltaic arrays to produce the electrical power; however, for growth to 300 kW, solar dynamic power modules will be utilized. Pairs of 25 kW solar dynamic power modules will be added to the station to reach the power growth level. The addition of solar dynamic power in the growth phase places constraints in the initial Space Station systems such as guidance, navigation, and control, external thermal, truss structural stiffness, computational capabilities and storage, which must be planned-in, in order to facilitate the addition of the solar dynamic modules.

  9. The US space station and its electric power system

    NASA Technical Reports Server (NTRS)

    Thomas, Ronald L.

    1988-01-01

    The United States has embarked on a major development program to have a space station operating in low earth orbit by the mid-1990s. This endeavor draws on the talents of NASA and most of the aerospace firms in the U.S. Plans are being pursued to include the participation of Canada, Japan, and the European Space Agency in the space station. From the start of the program these was a focus on the utilization of the space station for science, technology, and commercial endeavors. These requirements were utilized in the design of the station and manifest themselves in: pressurized volume; crew time; power availability and level of power; external payload accommodations; microgravity levels; servicing facilities; and the ability to grow and evolve the space station to meet future needs. President Reagan directed NASA to develop a permanently manned space station in his 1984 State of the Union message. Since then the definition phase was completed and the development phase initiated. A major subsystem of the space station is its 75 kW electric power system. The electric power system has characteristics similar to those of terrestrial power systems. Routine maintenance and replacement of failed equipment must be accomplished safely and easily and in a minimum time while providing reliable power to users. Because of the very high value placed on crew time it is essential that the power system operate in an autonomous mode to minimize crew time required. The power system design must also easily accommodate growth as the power demands by users are expected to grow. An overview of the U.S. space station is provided with special emphasis on its electrical power system.

  10. Saguaro power plant solar repowering project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-03-01

    The subsystem characteristics, design requirements, and system environmental requirements for the Saguaro Power Plant Solar Repowering Project are defined. The plant conceptual design, performance, and economic data to be provided for the solar additions are identified as well as certain design data for the existing plant. All of the 115 MWe net No. 1 steam-Rankine unit of the Saguaro station is to be repowered. The receiver heat transport fluid is draw salt (60% sodium nitrate and 40% potassium nitrate) that is also used to provide 4 hours of sensible heat storage. The receiver is quad-cavity type, and there is amore » field of 10,500 second generation heliostats. (LEW)« less

  11. 8. General layout of power plant, piping and fuel tanks, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. General layout of power plant, piping and fuel tanks, sheet 93 of 130 - Naval Air Station Fallon, Fuel Tanks, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  12. 77 FR 63342 - Virginia Electric and Power Company, Surry Power Station Units 1 and 2 and North Anna Power...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-16

    ...] Virginia Electric and Power Company, Surry Power Station Units 1 and 2 and North Anna Power Station Units 1... Operating License Nos. DPR-32 and DPR-37, NPF-4 and NPF-7 for Surry Power Station, Units 1 and 2, Surry County, [[Page 63343

  13. 52. VIEW SHOWING SITE OF ARIZONA FALL POWER PLANT, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    52. VIEW SHOWING SITE OF ARIZONA FALL POWER PLANT, LOOKING EAST. CURRENT LOCATION OF THE REAL-TIME WATER QUALITY MONITORING STATION Photographer: James Eastwood, July 1990 - Arizona Canal, North of Salt River, Phoenix, Maricopa County, AZ

  14. Lunar base thermoelectric power station study

    NASA Technical Reports Server (NTRS)

    Determan, William; Frye, Patrick; Mondt, Jack; Fleurial, Jean-Pierre; Johnson, Ken; Stapfer, G.; Brooks, Michael D.; Heshmatpour, Ben

    2006-01-01

    Under NASA's Project Prometheus, the Nuclear Systems Program, the Jet Propulsion Laboratory, Pratt & Whitney Rocketdyne, and Teledyne Energy Systems have teamed with a number of universities, under the Segmented Thermoelectric Multicouple Converter (STMC) program, to develop the next generation of advanced thermoelectric converters for space reactor power systems. Work on the STMC converter assembly has progressed to the point where the lower temperature stage of the segmented multicouple converter assembly is ready for laboratory testing and the upper stage materials have been identified and their properties are being characterized. One aspect of the program involves mission application studies to help define the potential benefits from the use of these STMC technologies for designated NASA missions such as the lunar base power station where kilowatts of power are required to maintain a permanent manned presence on the surface of the moon. A modular 50 kWe thermoelectric power station concept was developed to address a specific set of requirements developed for this mission. Previous lunar lander concepts had proposed the use of lunar regolith as in-situ radiation shielding material for a reactor power station with a one kilometer exclusion zone radius to minimize astronaut radiation dose rate levels. In the present concept, we will examine the benefits and requirements for a hermetically-sealed reactor thermoelectric power station module suspended within a man-made lunar surface cavity. The concept appears to maximize the shielding capabilities of the lunar regolith while minimizing its handling requirements. Both thermal and nuclear radiation levels from operation of the station, at its 100-m exclusion zone radius, were evaluated and found to be acceptable. Site preparation activities are reviewed and well as transport issues for this concept. The goal of the study was to review the entire life cycle of the unit to assess its technical problems and technology

  15. [Water-soluble anions of atmosphere on Tianwan nuclear power station].

    PubMed

    Zhao, Heng-Qiang; He, Ying; Zheng, Xiao-Ling; Chen, Fa-Rong; Pang, Shi-Ping; Wang, Cai-Xia; Wang, Xiao-Ru

    2010-11-01

    Three major water-soluble anions (Cl-, SO4(2-) and NO3-) in the atmosphere of the Tianwan nuclear power station in Lianyungang were determined by ion chromatography from June 2005 to May 2006. The results showed that the annual average concentration of Cl-, SO4(2-) and NO3- in the atmosphere of Tianwan nuclear power station was (33.12 +/- 53.63) microg x m(-3), (53.34 +/- 30.34) microg x m(-3) and (8.34 +/- 4.47) microg x m(-3), respectively. The concentrations of the three water-soluble anions showed evident trend of seasonal variation. The concentrations of Cl-, SO4(2-) reached the highest level in summer and the lowest level in winter, while the concentration of NO3- in autumn and winter was higher than those in summer and spring. Meteorological parameters such as wind direction, wind speed, temperature and relative humidity were studied and showed definite influence to the anions concentration of the atmosphere. This is the first simultaneous monitoring of corrosive anions in the atmosphere of Chinese coastal nuclear power plant, and it will provide basis for the prevention of marine atmospheric corrosion, which will ensure the safely operating of our nuclear power industry.

  16. 78 FR 24666 - Updates to the List of Plant Inspection Stations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-26

    ... plant material imported for plant breeding and research programs. The Plant Germplasm Inspection Station... DEPARTMENT OF AGRICULTURE Animal and Plant Health Inspection Service 7 CFR Part 319 [Docket No. APHIS-2012-0099] Updates to the List of Plant Inspection Stations AGENCY: Animal and Plant Health...

  17. Photovoltaic power for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Baraona, Cosmo R.

    1990-01-01

    Space Station Freedom is described with special attention given to its electric power system. The photovoltaic arrays, the battery energy storage system, and the power management, and distribution system are also discussed. The current design of Freedom's power system and the system requirements, trade studies, and competing factors which lead to system selections are referenced. This will be the largest power system ever flown in space. This system represents the culmination of many developments that have improved system performance, reduced cost, and improved reliability. Key developments and their evolution into the current space station solar array design are briefly described. The features of the solar cell and the array including the development, design, test, and flight hardware production status are given.

  18. Photovoltaic power for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Baraona, Cosmo R.

    1990-01-01

    Space Station Freedom is described with special attention to its electric power system. The photovoltaic arrays, the battery energy storage system, and the power management and distribution system are also discussed. The current design of Freedom's power system and the system requirements, trade studies, and competing factors which lead to system selections are referenced. This will be the largest power system ever flown in space. This system represents the culmination of many developments that have improved system performance, reduced cost, and improved reliability. Key developments and their evolution into the current space station solar array design are briefly described. The features of the solar cell and the array including the development, design, test, and flight hardware production status are given.

  19. Fuel cell energy storage for Space Station enhancement

    NASA Technical Reports Server (NTRS)

    Stedman, J. K.

    1990-01-01

    Viewgraphs on fuel cell energy storage for space station enhancement are presented. Topics covered include: power profile; solar dynamic power system; photovoltaic battery; space station energy demands; orbiter fuel cell power plant; space station energy storage; fuel cell system modularity; energy storage system development; and survival power supply.

  20. From the first nuclear power plant to fourth-generation nuclear power installations [on the 60th anniversary of the World's First nuclear power plant

    NASA Astrophysics Data System (ADS)

    Rachkov, V. I.; Kalyakin, S. G.; Kukharchuk, O. F.; Orlov, Yu. I.; Sorokin, A. P.

    2014-05-01

    Successful commissioning in the 1954 of the World's First nuclear power plant constructed at the Institute for Physics and Power Engineering (IPPE) in Obninsk signaled a turn from military programs to peaceful utilization of atomic energy. Up to the decommissioning of this plant, the AM reactor served as one of the main reactor bases on which neutron-physical investigations and investigations in solid state physics were carried out, fuel rods and electricity generating channels were tested, and isotope products were bred. The plant served as a center for training Soviet and foreign specialists on nuclear power plants, the personnel of the Lenin nuclear-powered icebreaker, and others. The IPPE development history is linked with the names of I.V. Kurchatov, A.I. Leipunskii, D.I. Blokhintsev, A.P. Aleksandrov, and E.P. Slavskii. More than 120 projects of various nuclear power installations were developed under the scientific leadership of the IPPE for submarine, terrestrial, and space applications, including two water-cooled power units at the Beloyarsk NPP in Ural, the Bilibino nuclear cogeneration station in Chukotka, crawler-mounted transportable TES-3 power station, the BN-350 reactor in Kazakhstan, and the BN-600 power unit at the Beloyarsk NPP. Owing to efforts taken on implementing the program for developing fast-neutron reactors, Russia occupied leading positions around the world in this field. All this time, IPPE specialists worked on elaborating the principles of energy supertechnologies of the 21st century. New large experimental installations have been put in operation, including the nuclear-laser setup B, the EGP-15 accelerator, the large physical setup BFS, the high-pressure setup SVD-2; scientific, engineering, and technological schools have been established in the field of high- and intermediate-energy nuclear physics, electrostatic accelerators of multicharge ions, plasma processes in thermionic converters and nuclear-pumped lasers, physics of compact

  1. 75 FR 53984 - Virginia Electric and Power Company North Anna Power Station, Unit Nos. 1 and 2 Surry Power...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-02

    ...- 2010-0283] Virginia Electric and Power Company North Anna Power Station, Unit Nos. 1 and 2 Surry Power Station, Unit Nos. 1 and 2 Environmental Assessment and Finding of No Significant Impact The U.S. Nuclear... applications for North Anna Power Station, Unit Nos. 1 and 2 (NAPS), for Renewed Facility Operating License Nos...

  2. Recording emergency situations occurring in thermal power plant transformer station automatic control systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Senyagin, Yu.V.; Sop'yanik, V.Kh.; Oreshkin, Yu.A.

    1982-11-01

    Increasing the operational reliability of power generating equipment is linked to the storage and systematization of objective information pertaining to the causes and progress of emergencies occurring in the equipment. Current methods for receiving such information at thermal power plants are discussed.

  3. Tethered nuclear power for the Space Station

    NASA Technical Reports Server (NTRS)

    Bents, D. J.

    1985-01-01

    A nuclear space power system the SP-100 is being developed for future missions where large amounts of electrical power will be required. Although it is primarily intended for unmanned spacecraft, it can be adapted to a manned space platform by tethering it above the station through an electrical transmission line which isolates the reactor far away from the inhabited platform and conveys its power back to where it is needed. The transmission line, used in conjunction with an instrument rate shield, attenuates reactor radiation in the vicinity of the space station to less than one-one hundredth of the natural background which is already there. This combination of shielding and distance attenuation is less than one-tenth the mass of boom-mounted or onboard man-rated shields that are required when the reactor is mounted nearby. This paper describes how connection is made to the platform (configuration, operational requirements) and introduces a new element the coaxial transmission tube which enables efficient transmission of electrical power through long tethers in space. Design methodology for transmission tubes and tube arrays is discussed. An example conceptual design is presented that shows SP-100 at three power levels 100 kWe, 300 kWe, and 1000 kWe connected to space station via a 2 km HVDC transmission line/tether. Power system performance, mass, and radiation hazard are estimated with impacts on space station architecture and operation.

  4. Tethered nuclear power for the space station

    NASA Technical Reports Server (NTRS)

    Bents, D. J.

    1985-01-01

    A nuclear space power system the SP-100 is being developed for future missions where large amounts of electrical power will be required. Although it is primarily intended for unmanned spacecraft, it can be adapted to a manned space platform by tethering it above the station through an electrical transmission line which isolates the reactor far away from the inhabited platform and conveys its power back to where it is needed. The transmission line, used in conjunction with an instrument rate shield, attenuates reactor radiation in the vicinity of the space station to less than one-one hundredth of the natural background which is already there. This combination of shielding and distance attenuation is less than one-tenth the mass of boom-mounted or onboard man-rated shields that are required when the reactor is mounted nearby. This paper describes how connection is made to the platform (configuration, operational requirements) and introduces a new element the coaxial transmission tube which enables efficient transmission of electrical power through long tethers in space. Design methodology for transmission tubes and tube arrays is discussed. An example conceptual design is presented that shows SP-100 at three power levels 100 kWe, 300 kWe, and 1000 kWe connected to space station via a 2 km HVDC transmission line/tether. Power system performance, mass, and radiation hazard are estimated with impacts on space station architecture and operation.

  5. System impacts of solar dynamic and growth power systems on space station

    NASA Technical Reports Server (NTRS)

    Farmer, J. T.; Cuddihy, W. F.; Lovelace, U. M.; Badi, D. M.

    1986-01-01

    Concepts for the 1990's space station envision an initial operational capability with electrical power output requirements of approximately 75 kW and growth power requirements in the range of 300 kW over a period of a few years. Photovoltaic and solar dynamic power generation techniques are contenders for supplying this power to the space station. A study was performed to identify growth power subsystem impacts on other space station subsystems. Subsystem interactions that might suggest early design changes for the space station were emphasized. Quantitative analyses of the effects of power subsystem mass and projected area on space station controllability and reboost requirements were conducted for a range of growth station configurations. Impacts on space station structural dynamics as a function of power subsystem growth were also considered.

  6. 77 FR 76541 - Entergy Nuclear Operations, Inc.; Pilgrim Nuclear Power Station

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-28

    ....; Pilgrim Nuclear Power Station AGENCY: Nuclear Regulatory Commission. ACTION: Environmental assessment and... licensee), for operation of the Pilgrim Nuclear Power Station (Pilgrim), located in Plymouth, Massachusetts... Regarding Pilgrim Nuclear Power Station, Final Report- Appendices,'' published in July 2007 (ADAMS Accession...

  7. Electromembrane recycling of highly mineralized alkaline blowdown water from evaporative water treatment plants at thermal power stations

    NASA Astrophysics Data System (ADS)

    Chichirova, N. D.; Chichirov, A. A.; Lyapin, A. I.; Minibaev, A. I.; Silov, I. Yu.; Tolmachev, L. I.

    2016-12-01

    Thermal power stations (TPS) are the main source of highly mineralized effluents affecting the environment. An analysis of their water systems demonstrates that alkaline effluents prevail at TPSs. Extraction of an alkali from highly mineralized effluents can make the recycling of effluents economically feasible. A method is proposed of electromembrane recycling of liquid alkaline highly mineralized wastes from TPSs. The process includes electromembrane apparatuses of two types, namely, a diffusion dialysis extractor (DDE) intended for extraction of the alkali from a highly mineralized solution having a complex composition and an electrodialysis concentrator for increasing the concentration of the extracted solution to a value suitable for use in water treatment plants at TPSs. For implementation of the first process (i.e. the extraction of alkali from alkaline-salt solution) various membranes from various manufacturers were studied: CM-PAD and AM-PAD (Ralex, Czechia), MK-40, MA-40, MA-41, MA-414, and MB-2 (OOO OKhK "Shchekinoazot", Russia), AR103-QDF and CR61-CMP (Ionies Inc., USA). The experiments demonstrate that the acceptable degree of separation of the alkali and the salt is achieved in a pair of cation-exchange membranes with the efficiency of separation being higher without an electric field. The highest efficiency was attained with Russian-made membranes (MK-40, OOO OKhK "Shchekinoazot"). A full scale experiment on recycling of highly-mineralized blowdown water from the evaporating water treatment system at the Kazan cogeneration power station No. 3 (TETs-3) was performed in a pilot unit consisting of two electromembrane apparatuses made by UAB "Membraninės Technologijos LT". In the experiments every ton of blowdown water yielded 0.1 t of concentrated alkaline solution with an alkali content of up to 4 wt % and 0.9 t of the softened salt solution suitable for the reuse in the TPS cycle. The power rate is 6 kWh / ton of blowdown water.

  8. Effects of design on cost of flat-plate solar photovoltaic arrays for terrestrial central station power applications

    NASA Technical Reports Server (NTRS)

    Tsou, P.; Stolte, W.

    1978-01-01

    The paper examines the impact of module and array designs on the balance-of-plant costs for flat-plate terrestrial central station power applications. Consideration is given to the following types of arrays: horizontal, tandem, augmented, tilt adjusted, and E-W tracking. The life-cycle cost of a 20-year plant life serves as the costing criteria for making design and cost tradeoffs. A tailored code of accounts is developed for determining consistent photovoltaic power plant costs and providing credible photovoltaic system cost baselines for flat-plate module and array designs by costing several varying array design approaches.

  9. Strategies for emission reduction from thermal power plants.

    PubMed

    Prisyazhniuk, Vitaly A

    2006-07-01

    Major polluters of man's environment are thermal power stations (TPS) and power plants, which discharge into the atmosphere the basic product of carbon fuel combustion, CO2, which results in a build-up of the greenhouse effect and global warm-up of our planet's climate. This paper is intended to show that the way to attain environmental safety of the TPS and to abide by the decisions of the Kyoto Protocol lies in raising the efficiency of the heat power stations and reducing their fuel consumption by using nonconventional thermal cycles. Certain equations have been derived to define the quantitative interrelationship between the growth of efficiency of the TPS, decrease in fuel consumption and reduction of discharge of dust, fuel combustion gases, and heat into the environment. New ideas and new technological approaches that result in raising the efficiency of the TPS are briefly covered: magneto-hydrodynamic resonance, the Kalina cycle, and utilizing the ambient heat by using, as the working medium, low-boiling substances.

  10. Operations research investigations of satellite power stations

    NASA Technical Reports Server (NTRS)

    Cole, J. W.; Ballard, J. L.

    1976-01-01

    A systems model reflecting the design concepts of Satellite Power Stations (SPS) was developed. The model is of sufficient scope to include the interrelationships of the following major design parameters: the transportation to and between orbits; assembly of the SPS; and maintenance of the SPS. The systems model is composed of a set of equations that are nonlinear with respect to the system parameters and decision variables. The model determines a figure of merit from which alternative concepts concerning transportation, assembly, and maintenance of satellite power stations are studied. A hybrid optimization model was developed to optimize the system's decision variables. The optimization model consists of a random search procedure and the optimal-steepest descent method. A FORTRAN computer program was developed to enable the user to optimize nonlinear functions using the model. Specifically, the computer program was used to optimize Satellite Power Station system components.

  11. Cucurbit germplasm collections at the North Central Regional Plant Introduction Station

    USDA-ARS?s Scientific Manuscript database

    The North Central Regional Plant Introduction Station (NCRPIS) in Ames, Iowa, USA is one of four primary Plant Introduction Stations in the National Plant Germplasm System (NPGS), and has responsibility for maintenance, regeneration, characterization, and distribution of the NPGS Cucumis and Cucurbi...

  12. 47 CFR 74.707 - Low power TV and TV translator station protection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.707 Low power TV and TV translator... low power TV or TV translator stations, or TV booster stations within the following predicted contours... construct a new low power TV, TV translator, or TV booster station or change the facilities of an existing...

  13. 47 CFR 74.707 - Low power TV and TV translator station protection.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.707 Low power TV and TV translator... low power TV or TV translator stations, or TV booster stations within the following predicted contours... construct a new low power TV, TV translator, or TV booster station or change the facilities of an existing...

  14. 47 CFR 74.707 - Low power TV and TV translator station protection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.707 Low power TV and TV translator... low power TV or TV translator stations, or TV booster stations within the following predicted contours... construct a new low power TV, TV translator, or TV booster station or change the facilities of an existing...

  15. 47 CFR 74.707 - Low power TV and TV translator station protection.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.707 Low power TV and TV translator... low power TV or TV translator stations, or TV booster stations within the following predicted contours... construct a new low power TV, TV translator, or TV booster station or change the facilities of an existing...

  16. 76 FR 82201 - General Site Suitability Criteria for Nuclear Power Stations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-30

    ..., and 52 [NRC-2011-0297] General Site Suitability Criteria for Nuclear Power Stations AGENCY: Nuclear... Suitability Criteria for Nuclear Power Stations.'' This guide describes a method that the NRC staff considers acceptable to implement the site suitability requirements for nuclear power stations. DATES: Submit comments...

  17. Analysis of the costs of fuel supply for wood-fired electric power plants in rural Liberia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perlack, R.D.; Barron, W.F.; Samuels, G.

    1985-06-01

    In recent years the quality of rural electric services in Liberia has been declining and the future economic viability of these power stations is a growing concern. Each of the ten operating and each of the planned rural public power stations is designed to operate exclusively on gas oil (diesel fuel). Fuel expenditures by the Liberian Electricity Corporation (LEC) for the rural public stations represent a major and growing burden on the financially hardpressed utility. Liberia has two potentially significant alternatives to oil-fired electric power for its up-country towns: small (1 to 5 MW) hydroelectric facilities, and wood-fired steam ormore » gasifier plants (0.2 to 2 MW). Although small hydroelectric facilities appear viable for several locations, they cannot serve all locations and will require thermal back-up. The economics of supplying wood to a rural electric power plant or rural grid were evaluated under several scenarios involving: (1) different sources of the feedstock, and (2) differences in wood supply requirements for plants based on the use of steam or gasifier technology, and variation in the utilization level for such plants. With a few minor exceptions, wood energy supplies are plentiful throughout Liberia. Liberia has four different potential sources of wood fuel supply: the commercial cutting of retired rubber trees; the harvesting of secondary growth forest just prior to the land returning to temporary cultivation as part of a system of shifting agriculture; adding to the system of shifting agriculture the planting of fast-growing wood species and harvesting these trees when the land again is brought back under cultivation (generally after about five to seven years); and the establishment of commercial short-rotation wood energy plantations. Results indicate that the use of wood to fuel rural power stations is a viable economic option.« less

  18. 7. Photocopied August 1971 from Photo 13729, Granite Station Special ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Photocopied August 1971 from Photo 13729, Granite Station Special Folder, Engineering Department, Utah Power and Light Co., Salt Lake City, Utah. GRANITE HYDRO-ELECTRIC PLANT (1500KW) STATION. PENSTOCK AND SPILWAY, NOVEMBER 1914. - Utah Power Company, Granite Hydroelectric Plant, Holladay, Salt Lake County, UT

  19. 8. Photocopied August 1971 from Photo 11479, Granite Station Special ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Photocopied August 1971 from Photo 11479, Granite Station Special Folder, Engineering Department, Utah Power and Light Co., Salt Lake City, Utah. GRANITE HYDRO-ELECTRIC PLANT (1500 KW) STATION. PENSTOCK AND SPILWAY, NOVEMBER 1914. - Utah Power Company, Granite Hydroelectric Plant, Holladay, Salt Lake County, UT

  20. Equipment of the binary-cycle geothermal power unit at the Pauzhet geothermal power station

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Nikol'skii, A. I.; Semenov, V. N.; Shipkov, A. A.

    2014-06-01

    The equipment of and technological processes in the pilot industrial model of the domestically produced binary-cycle geothermal power unit operating on the discharge separate at the Pauzhet geothermal power station are considered. The development principles, the design and operational features, and the data on selecting the metal in manufacturing the main equipment of the 2.5-MW binary power unit of the geothermal power station are described.

  1. Identification and evaluation of air-pollution-tolerant plants around lignite-based thermal power station for greenbelt development.

    PubMed

    Govindaraju, M; Ganeshkumar, R S; Muthukumaran, V R; Visvanathan, P

    2012-05-01

    Thermal power plants emit various gaseous and particulate pollutants into the atmosphere. It is well known that trees help to reduce air pollution. Development of a greenbelt with suitable plant species around the source of emission will mitigate the air pollution. Selection of suitable plant species for a greenbelt is very important. Present study evaluates different plant species around Neyveli thermal power plant by calculating the Air Pollution Tolerance Index (APTI) which is based on their significant biochemical parameters. Also Anticipated Performance Index (API) was calculated for these plant species by combining APTI values with other socio-economic and biological parameters. Based on these indices, the most appropriate plant species were identified for the development of a greenbelt around the thermal power plant to mitigate air pollution. Among the 30 different plant species evaluated, Mangifere indica L. was identified as keystone species which is coming under the excellent category. Ambient air quality parameters were correlated with the biochemical characteristics of plant leaves and significant changes were observed in the plants biochemical characteristics due to the air pollution stress.

  2. 47 CFR 74.6 - Licensing of broadcast auxiliary and low power auxiliary stations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Licensing of broadcast auxiliary and low power... low power auxiliary stations. Applicants for and licensees of remote pickup broadcast stations, aural broadcast auxiliary stations, television broadcast auxiliary stations, and low power auxiliary stations...

  3. VIEW NORTHEAST, Interior of Power Station, upper level showing windows ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW NORTHEAST, Interior of Power Station, upper level showing windows on east and north elevations - Bay City Traction & Electric Company, Power Station, 301 Washington Street, Bay City, Bay County, MI

  4. VIEW SOUTHEAST, Interior of Power Station, upper level showing windows ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW SOUTHEAST, Interior of Power Station, upper level showing windows on east and south elevations - Bay City Traction & Electric Company, Power Station, 301 Washington Street, Bay City, Bay County, MI

  5. NASA Growth Space Station missions and candidate nuclear/solar power systems

    NASA Technical Reports Server (NTRS)

    Heller, Jack A.; Nainiger, Joseph J.

    1987-01-01

    A brief summary is presented of a NASA study contract and in-house investigation on Growth Space Station missions and appropriate nuclear and solar space electric power systems. By the year 2000 some 300 kWe will be needed for missions and housekeeping power for a 12 to 18 person Station crew. Several Space Station configurations employing nuclear reactor power systems are discussed, including shielding requirements and power transmission schemes. Advantages of reactor power include a greatly simplified Station orientation procedure, greatly reduced occultation of views of the earth and deep space, near elimination of energy storage requirements, and significantly reduced station-keeping propellant mass due to very low drag of the reactor power system. The in-house studies of viable alternative Growth Space Station power systems showed that at 300 kWe a rigid silicon solar cell array with NiCd batteries had the highest specific mass at 275 kg/kWe, with solar Stirling the lowest at 40 kg/kWe. However, when 10 year propellant mass requirements are factored in, the 300 kWe nuclear Stirling exhibits the lowest total mass.

  6. Space station power semiconductor package

    NASA Technical Reports Server (NTRS)

    Balodis, Vilnis; Berman, Albert; Devance, Darrell; Ludlow, Gerry; Wagner, Lee

    1987-01-01

    A package of high-power switching semiconductors for the space station have been designed and fabricated. The package includes a high-voltage (600 volts) high current (50 amps) NPN Fast Switching Power Transistor and a high-voltage (1200 volts), high-current (50 amps) Fast Recovery Diode. The package features an isolated collector for the transistors and an isolated anode for the diode. Beryllia is used as the isolation material resulting in a thermal resistance for both devices of .2 degrees per watt. Additional features include a hermetical seal for long life -- greater than 10 years in a space environment. Also, the package design resulted in a low electrical energy loss with the reduction of eddy currents, stray inductances, circuit inductance, and capacitance. The required package design and device parameters have been achieved. Test results for the transistor and diode utilizing the space station package is given.

  7. Morphological Abnormalities in True Bugs (Heteroptera) near Swiss Nuclear Power Stations.

    PubMed

    Körblein, Alfred; Hesse-Honegger, Cornelia

    2018-05-24

    After the nuclear accidents of Chernobyl and Fukushima, several studies reported adverse health effects on wildlife animals. Epidemiological studies in humans found significant increases of leukaemia rates in young children residing within 5 km from nuclear power plants. This study investigates morphological abnormalities in true bugs (Heteroptera), collected in the environs of three Swiss nuclear power stations (NPS). The objective of the study is to test whether there is an increased frequency of abnormalities in the vicinity of NPS. We found a frequency of abnormalities of 14.1% at distances r<5km and a frequency of 6.8% for distances r>5km, a rate ratio of 2.1 (P<0.0001). The corresponding odds ratio was 2.26 (95% CI: 1.59, 3.18). We also conducted logistic regression of abnormality rates on reciprocal distance for each NPS site. The trend was significant for NPS Beznau (regression coefficient β=1.5 ± 0.3, P<0.0001) but not significant for NPS Gösgen und NPS Leibstadt with little samples within 5 km. To our knowledge, this study is the first to find adverse health effects on insects near operating nuclear power plants. Due to its ecological design, however, it cannot answer the question whether the effect is caused by radiation from nuclear power plants. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  8. RADIOACTIVITY IN THE ATMOSPHERIC EFFLUENTS OF POWER PLANTS THAT USE FOSSIL FUELS.

    PubMed

    EISENBUD, M; PETROW, H G

    1964-04-17

    Analysis of the fly ash produced by combustion of pulverized Appalachian coal has shown that a 1000-megawatt coal-burning power plant will discharge into the atmosphere from about 28 millicuries to nearly 1 curie per year of radium-226 and radium-228. An oil-burning plant of similar size will discharge about 0.5 millicurie of radium per year. Comparison of these data with data on the release of fission products from nuclear-powered generating stations shows that when the physical and biological properties of the various radionuclides are taken into consideration, the conventional fossil-fueled plants discharge relatively greater quantities of radioactive materials into the atmosphere than nuclearpowered plants of comparable size.

  9. A modular Space Station/Base electrical power system - Requirements and design study.

    NASA Technical Reports Server (NTRS)

    Eliason, J. T.; Adkisson, W. B.

    1972-01-01

    The requirements and procedures necessary for definition and specification of an electrical power system (EPS) for the future space station are discussed herein. The considered space station EPS consists of a replaceable main power module with self-contained auxiliary power, guidance, control, and communication subsystems. This independent power source may 'plug into' a space station module which has its own electrical distribution, control, power conditioning, and auxiliary power subsystems. Integration problems are discussed, and a transmission system selected with local floor-by-floor power conditioning and distribution in the station module. This technique eliminates the need for an immediate long range decision on the ultimate space base power sources by providing capability for almost any currently considered option.

  10. Space Station laboratory module power loading analysis

    NASA Astrophysics Data System (ADS)

    Fu, S. J.

    1994-07-01

    The electrical power system of Space Station Freedom is an isolated electrical power generation and distribution network designed to meet the demands of a large number of electrical loads. An algorithm is developed to determine the power bus loading status under normal operating conditions to ensure the supply meets demand. The probabilities of power availability for payload operations (experiments) are also derived.

  11. 78 FR 71675 - License Amendment Application for Vermont Yankee Nuclear Power Station

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-29

    ... Vermont Yankee Nuclear Power Station AGENCY: Nuclear Regulatory Commission. ACTION: License amendment... Vermont Yankee Nuclear Power Station, located in Windham County, VT. The proposed amendment would have... Vermont Yankee Nuclear Power Station, located in Windham County, VT. The proposed amendment would have...

  12. 47 CFR 74.707 - Low power TV and TV translator station protection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Low power TV and TV translator station... SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.707 Low power TV and TV translator station protection. (a)(1) A low power TV or TV translator will be protected from interference from other...

  13. 75 FR 47856 - Nebraska Public Power District: Cooper Nuclear Station; Notice of Availability of the Final...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-09

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-298; NRC-2008-0617] Nebraska Public Power District: Cooper Nuclear Station; Notice of Availability of the Final Supplement 41 to the Generic Environmental Impact Statement for License Renewal of Nuclear Plants Notice is hereby given that the U.S. Nuclear Regulatory Commission (NRC, Commission) has...

  14. Bioremediation for coal-fired power stations using macroalgae.

    PubMed

    Roberts, David A; Paul, Nicholas A; Bird, Michael I; de Nys, Rocky

    2015-04-15

    Macroalgae are a productive resource that can be cultured in metal-contaminated waste water for bioremediation but there have been no demonstrations of this biotechnology integrated with industry. Coal-fired power production is a water-limited industry that requires novel approaches to waste water treatment and recycling. In this study, a freshwater macroalga (genus Oedogonium) was cultivated in contaminated ash water amended with flue gas (containing 20% CO₂) at an Australian coal-fired power station. The continuous process of macroalgal growth and intracellular metal sequestration reduced the concentrations of all metals in the treated ash water. Predictive modelling shows that the power station could feasibly achieve zero discharge of most regulated metals (Al, As, Cd, Cr, Cu, Ni, and Zn) in waste water by using the ash water dam for bioremediation with algal cultivation ponds rather than storage of ash water. Slow pyrolysis of the cultivated algae immobilised the accumulated metals in a recalcitrant C-rich biochar. While the algal biochar had higher total metal concentrations than the algae feedstock, the biochar had very low concentrations of leachable metals and therefore has potential for use as an ameliorant for low-fertility soils. This study demonstrates a bioremediation technology at a large scale for a water-limited industry that could be implemented at new or existing power stations, or during the decommissioning of older power stations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Space station electrical power system availability study

    NASA Technical Reports Server (NTRS)

    Turnquist, Scott R.; Twombly, Mark A.

    1988-01-01

    ARINC Research Corporation performed a preliminary reliability, and maintainability (RAM) anlaysis of the NASA space station Electric Power Station (EPS). The analysis was performed using the ARINC Research developed UNIRAM RAM assessment methodology and software program. The analysis was performed in two phases: EPS modeling and EPS RAM assessment. The EPS was modeled in four parts: the insolar power generation system, the eclipse power generation system, the power management and distribution system (both ring and radial power distribution control unit (PDCU) architectures), and the power distribution to the inner keel PDCUs. The EPS RAM assessment was conducted in five steps: the use of UNIRAM to perform baseline EPS model analyses and to determine the orbital replacement unit (ORU) criticalities; the determination of EPS sensitivity to on-orbit spared of ORUs and the provision of an indication of which ORUs may need to be spared on-orbit; the determination of EPS sensitivity to changes in ORU reliability; the determination of the expected annual number of ORU failures; and the integration of the power generator system model results with the distribution system model results to assess the full EPS. Conclusions were drawn and recommendations were made.

  16. 1. RUINS OF THE ELECTRIC POWER STATION (NOTE PART OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. RUINS OF THE ELECTRIC POWER STATION (NOTE PART OF THE CONTROL PANEL VISIBLE THROUGH THE DOORWAY), VIEW TO THE NORTHWEST). - Foster Gulch Mine, Electric Power Station Ruins, Bear Creek 1 mile Southwest of Town of Bear Creek, Red Lodge, Carbon County, MT

  17. "Life without nuclear power": A nuclear plant retirement formulation model and guide based on economics. San Onofre Nuclear Generating Station case: Economic impacts and reliability considerations leading to plant retirement

    NASA Astrophysics Data System (ADS)

    Wasko, Frank

    Traditionally, electric utilities have been slow to change and very bureaucratic in nature. This culture, in and of itself, has now contributed to a high percentage of United States electric utilities operating uneconomical nuclear plants (Crooks, 2014). The economic picture behind owning and operating United States nuclear plants is less than favorable for many reasons including rising fuel, capital and operating costs (EUCG, 2012). This doctoral dissertation is specifically focused on life without nuclear power. The purpose of this dissertation is to create a model and guide that will provide electric utilities who currently operate or will operate uneconomical nuclear plants the opportunity to economically assess whether or not their nuclear plant should be retired. This economic assessment and stakeholder analysis will provide local government, academia and communities the opportunity to understand how Southern California Edison (SCE) embraced system upgrade import and "voltage support" opportunities to replace "base load" generation from San Onofre Nuclear Generating Station (SONGS) versus building new replacement generation facilities. This model and guide will help eliminate the need to build large replacement generation units as demonstrated in the SONGS case analysis. The application of The Nuclear Power Retirement Model and Guide will provide electric utilities with economic assessment parameters and an evaluation assessment progression needed to better evaluate when an uneconomical nuclear plant should be retired. It will provide electric utilities the opportunity to utilize sound policy, planning and development skill sets when making this difficult decision. There are currently 62 nuclear power plants (with 100 nuclear reactors) operating in the United States (EIA, 2014). From this group, 38 are at risk of early retirement based on the work of Cooper (2013). As demonstrated in my model, 35 of the 38 nuclear power plants qualify to move to the economic

  18. The impact of a hydroelectric power plant on the sediment load in downstream water bodies, Svartisen, northern Norway.

    PubMed

    Bogen, J; Bønsnes, T E

    2001-02-05

    When the Svartisen hydroelectric power plant was put into operation, extensive sediment pollution was observed in the downstream fjord area. This paper discusses the impact of the power plant and the contribution from various sources of sediment. Computation of the sediment load was based on samples collected one to four times per day. Grain size distribution analyses of suspended sediments were carried out and used as input in a routing model to study the movement of sediments through the system. Suspended sediment delivered to the fjord before the power station was constructed was measured as 8360 metric tons as an annual mean for a 12-year period. During the years 1995-1996 when the power plant was operating, the total suspended load through the power station was measured as 32609 and 30254 metric tons, respectively. Grain size distribution analyses indicate a major change in the composition of the sediments from 9% clay before the power plant was operative to 50-60% clay afterwards. This change, together with the increase in sediment load, is believed to be one of the main causes of the drastic reduction in secchi depths in the fjord. The effect of the suspended sediment load on the fjord water turbidity was evaluated by co-plotting secchi depth and power station water discharge. Measurements during 1995 and 1996 showed that at the innermost of these locations the water failed to attain the minimum requirement of 2 m secchi depth. In later years secchi depths were above the specified level. In 1997 and 1998 the conditions improved. At the more distal locality, the conditions were acceptable with only a few exceptions. A routing model was applied to data acquired at a location 2 km from the power station in order to calculate the contributions from various sediment sources. This model indicated that the contribution from reservoir bed erosion dominated in 1994 but decreased significantly in 1995. Future operation of the power station will mostly take place with

  19. 7. Photocopied August 1971 from Photo 11480, Stairs Station Special ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Photocopied August 1971 from Photo 11480, Stairs Station Special Folder, Engineering Department, Utah Power and Light Co., Salt Lake City, Utah. STAIRS HYDRO-ELECTRIC PLANT (1600 KW) STATION AND PENSTOCK, NOVEMBER 1914. - Utah Power & Light Company, Stairs Hydroelectric Station, Holladay, Salt Lake County, UT

  20. Automated power distribution system hardware. [for space station power supplies

    NASA Technical Reports Server (NTRS)

    Anderson, Paul M.; Martin, James A.; Thomason, Cindy

    1989-01-01

    An automated power distribution system testbed for the space station common modules has been developed. It incorporates automated control and monitoring of a utility-type power system. Automated power system switchgear, control and sensor hardware requirements, hardware design, test results, and potential applications are discussed. The system is designed so that the automated control and monitoring of the power system is compatible with both a 208-V, 20-kHz single-phase AC system and a high-voltage (120 to 150 V) DC system.

  1. Measurements and modelling of base station power consumption under real traffic loads.

    PubMed

    Lorincz, Josip; Garma, Tonko; Petrovic, Goran

    2012-01-01

    Base stations represent the main contributor to the energy consumption of a mobile cellular network. Since traffic load in mobile networks significantly varies during a working or weekend day, it is important to quantify the influence of these variations on the base station power consumption. Therefore, this paper investigates changes in the instantaneous power consumption of GSM (Global System for Mobile Communications) and UMTS (Universal Mobile Telecommunications System) base stations according to their respective traffic load. The real data in terms of the power consumption and traffic load have been obtained from continuous measurements performed on a fully operated base station site. Measurements show the existence of a direct relationship between base station traffic load and power consumption. According to this relationship, we develop a linear power consumption model for base stations of both technologies. This paper also gives an overview of the most important concepts which are being proposed to make cellular networks more energy-efficient.

  2. Space Station power distribution and control

    NASA Technical Reports Server (NTRS)

    Willis, A. H.

    1986-01-01

    A general description of the Space Station is given with the basic requirements of the power distribution and controls system presented. The dual bus and branch circuit concepts are discussed and a computer control method presented.

  3. Soviet steam generator technology: fossil fuel and nuclear power plants. [Glossary included

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosengaus, J.

    1987-01-01

    In the Soviet Union, particular operational requirements, coupled with a centralized planning system adopted in the 1920s, have led to a current technology which differs in significant ways from its counterparts elsewhere in the would and particularly in the United States. However, the monograph has a broader value in that it traces the development of steam generators in response to the industrial requirements of a major nation dealing with the global energy situation. Specifically, it shows how Soviet steam generator technology evolved as a result of changing industrial requirements, fuel availability, and national fuel utilization policy. The monograph begins withmore » a brief technical introduction focusing on steam-turbine power plants, and includes a discussion of the Soviet Union's regional power supply (GRES) networks and heat and power plant (TETs) systems. TETs may be described as large central co-generating stations which, in addition to electricity, provide heat in the form of steam and hot water. Plants of this type are a common feature of the USSR today. The adoption of these cogeneration units as a matter of national policy has had a central influence on Soviet steam generator technology which can be traced throughout the monograph. The six chapters contain: a short history of steam generators in the USSR; steam generator design and manufacture in the USSR; boiler and furnace assemblies for fossil fuel-fired power stations; auxiliary components; steam generators in nuclear power plants; and the current status of the Soviet steam generator industry. Chapters have been abstracted separately. A glossary is included containing abbreviations and acronyms of USSR organizations. 26 references.« less

  4. 78 FR 45984 - Yankee Atomic Electric Company, Yankee Nuclear Power Station

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-30

    ... Electric Company, Yankee Nuclear Power Station AGENCY: Nuclear Regulatory Commission. ACTION: Environmental... (YAEC) is the holder of Possession-Only License DPR-3 for the Yankee Nuclear Power Station (YNPS... on the site of any nuclear power reactor. In its Statement of Considerations (SOC) for the Final Rule...

  5. Automated electric power management and control for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Dolce, James L.; Mellor, Pamela A.; Kish, James A.

    1990-01-01

    A comprehensive automation design is being developed for Space Station Freedom's electric power system. It strives to increase station productivity by applying expert systems and conventional algorithms to automate power system operation. An integrated approach to the power system command and control problem is defined and used to direct technology development in: diagnosis, security monitoring and analysis, battery management, and cooperative problem-solving for resource allocation. The prototype automated power system is developed using simulations and test-beds.

  6. Life cycle assessment of sewage sludge co-incineration in a coal-based power station.

    PubMed

    Hong, Jingmin; Xu, Changqing; Hong, Jinglan; Tan, Xianfeng; Chen, Wei

    2013-09-01

    A life cycle assessment was conducted to evaluate the environmental and economic effects of sewage sludge co-incineration in a coal-fired power plant. The general approach employed by a coal-fired power plant was also assessed as control. Sewage sludge co-incineration technology causes greater environmental burden than does coal-based energy production technology because of the additional electricity consumption and wastewater treatment required for the pretreatment of sewage sludge, direct emissions from sludge incineration, and incinerated ash disposal processes. However, sewage sludge co-incineration presents higher economic benefits because of electricity subsidies and the income generating potential of sludge. Environmental assessment results indicate that sewage sludge co-incineration is unsuitable for mitigating the increasing pressure brought on by sewage sludge pollution. Reducing the overall environmental effect of sludge co-incineration power stations necessitates increasing net coal consumption efficiency, incinerated ash reuse rate, dedust system efficiency, and sludge water content rate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Research on simulation of supercritical steam turbine system in large thermal power station

    NASA Astrophysics Data System (ADS)

    Zhou, Qiongyang

    2018-04-01

    In order to improve the stability and safety of supercritical steam turbine system operation in large thermal power station, the body of the steam turbine is modeled in this paper. And in accordance with the hierarchical modeling idea, the steam turbine body model, condensing system model, deaeration system model and regenerative system model are combined to build a simulation model of steam turbine system according to the connection relationship of each subsystem of steam turbine. Finally, the correctness of the model is verified by design and operation data of the 600MW supercritical unit. The results show that the maximum simulation error of the model is 2.15%, which meets the requirements of the engineering. This research provides a platform for the research on the variable operating conditions of the turbine system, and lays a foundation for the construction of the whole plant model of the thermal power plant.

  8. 47 CFR 74.710 - Digital low power TV and TV translator station protection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Digital low power TV and TV translator station... SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.710 Digital low power TV and TV translator station protection. (a) An application to construct a new low power TV, TV translator, or TV...

  9. Simulation of existing gas-fuelled conventional steam power plant using Cycle Tempo

    NASA Astrophysics Data System (ADS)

    Jamel, M. S.; Abd Rahman, A.; Shamsuddin, A. H.

    2013-06-01

    Simulation of a 200 MW gas-fuelled conventional steam power plant located in Basra, Iraq was carried out. The thermodynamic performance of the considered power plant is estimated by a system simulation. A flow-sheet computer program, "Cycle-Tempo" is used for the study. The plant components and piping systems were considered and described in detail. The simulation results were verified against data gathered from the log sheet obtained from the station during its operation hours and good results were obtained. Operational factors like the stack exhaust temperature and excess air percentage were studied and discussed, as were environmental factors, such as ambient air temperature and water inlet temperature. In addition, detailed exergy losses were illustrated and describe the temperature profiles for the main plant components. The results prompted many suggestions for improvement of the plant performance.

  10. Improvement of nuclear power plants within the perspective of applications of lean manufacturing practices

    NASA Astrophysics Data System (ADS)

    Malek, A. K.; Muhammad, H. I.; Rosmaini, A.; Alaa, A. S.; Falah, A. M.

    2017-09-01

    Development and improvement process are essential to the companies and factories of various kinds and this necessity is related aspects of cost, time and risk that can be avoided, these aspects are available at the nuclear power stations essential demands cannot be ignored. The lean management technique is one of the recent trends in the management system. Where the lean management is stated as the system increases the customer value and reduces the wastage process in an industry or in a power plants. Therefore, there is an urgent necessity to ensure the development and improvement in nuclear power plants in the pre-established in process of being established and stage of the management and production. All of these stages according to the study are closely related to the necessity operationalize and apply lean manufacturing practices that these applications are ineffective and clear contribution to reduce costs and control of production processes and the process of reducing future risks that could be exposed to the station.

  11. A defense in depth approach for nuclear power plant accident management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chih-Yao Hsieh; Hwai-Pwu Chou

    2015-07-01

    An initiating event may lead to a severe accident if the plant safety functions have been challenged or operators do not follow the appropriate accident management procedures. Beyond design basis accidents are those corresponding to events of very low occurrence probability but such an accident may lead to significant consequences. The defense in depth approach is important to assure nuclear safety even in a severe accident. Plant Damage States (PDS) can be defined by the combination of the possible values for each of the PDS parameters which are showed on the nuclear power plant simulator. PDS is used to identifymore » what the initiating event is, and can also give the information of safety system's status whether they are bypassed, inoperable or not. Initiating event and safety system's status are used in the construction of Containment Event Tree (CET) to determine containment failure modes by using probabilistic risk assessment (PRA) technique. Different initiating events will correspond to different CETs. With these CETs, the core melt frequency of an initiating event can be found. The use of Plant Damage States (PDS) is a symptom-oriented approach. On the other hand, the use of Containment Event Tree (CET) is an event-oriented approach. In this study, the Taiwan's fourth nuclear power plants, the Lungmen nuclear power station (LNPS), which is an advanced boiling water reactor (ABWR) with fully digitized instrumentation and control (I and C) system is chosen as the target plant. The LNPS full scope engineering simulator is used to generate the testing data for method development. The following common initiating events are considered in this study: loss of coolant accidents (LOCA), total loss of feedwater (TLOFW), loss of offsite power (LOOP), station blackout (SBO). Studies have indicated that the combination of the symptom-oriented approach and the event-oriented approach can be helpful to find mitigation strategies and is useful for the accident

  12. A Design Tool for Matching UAV Propeller and Power Plant Performance

    NASA Astrophysics Data System (ADS)

    Mangio, Arion L.

    A large body of knowledge is available for matching propellers to engines for large propeller driven aircraft. Small UAV's and model airplanes operate at much lower Reynolds numbers and use fixed pitch propellers so the information for large aircraft is not directly applicable. A design tool is needed that takes into account Reynolds number effects, allows for gear reduction, and the selection of a propeller optimized for the airframe. The tool developed in this thesis does this using propeller performance data generated from vortex theory or wind tunnel experiments and combines that data with an engine power curve. The thrust, steady state power, RPM, and tip Mach number vs. velocity curves are generated. The Reynolds number vs. non dimensional radial station at an operating point is also found. The tool is then used to design a geared power plant for the SAE Aero Design competition. To measure the power plant performance, a purpose built engine test stand was built. The characteristics of the engine test stand are also presented. The engine test stand was then used to characterize the geared power plant. The power plant uses a 26x16 propeller, 100/13 gear ratio, and an LRP 0.30 cubic inch engine turning at 28,000 RPM and producing 2.2 HP. Lastly, the measured power plant performance is presented. An important result is that 17 lbf of static thrust is produced.

  13. Control-structure interaction study for the Space Station solar dynamic power module

    NASA Technical Reports Server (NTRS)

    Cheng, J.; Ianculescu, G.; Ly, J.; Kim, M.

    1991-01-01

    The authors investigate the feasibility of using a conventional PID (proportional plus integral plus derivative) controller design to perform the pointing and tracking functions for the Space Station Freedom solar dynamic power module. Using this simple controller design, the control/structure interaction effects were also studied without assuming frequency bandwidth separation. From the results, the feasibility of a simple solar dynamic control solution with a reduced-order model, which satisfies the basic system pointing and stability requirements, is suggested. However, the conventional control design approach is shown to be very much influenced by the order of reduction of the plant model, i.e., the number of the retained elastic modes from the full-order model. This suggests that, for complex large space structures, such as the Space Station Freedom solar dynamic, the conventional control system design methods may not be adequate.

  14. Milliwatt radioisotope power supply for the PASCAL Mars surface stations

    NASA Astrophysics Data System (ADS)

    Allen, Daniel T.; Murbach, Marcus S.

    2001-02-01

    A milliwatt power supply is being developed based on the 1 watt Light-Weight Radioisotope Heater Unit (RHU), which has already been used to provide heating alone on numerous spacecraft. In the past year the power supply has been integrated into the design of the proposed PASCAL Mars Network Mission, which is intended to place 24 surface climate monitoring stations on Mars. The PASCAL Mars mission calls for the individual surface stations to be transported together in one spacecraft on a trajectory direct from launch to orbit around Mars. From orbit around Mars each surface station will be deployed on a SCRAMP (slotted compression ramp) probe and, after aerodynamic and parachute deceleration, land at a preselected location on the planet. During descent sounding data and still images will be accumulated, and, once on the surface, the station will take measurements of pressure, temperature and overhead atmospheric optical depth for a period of 10 Mars years (18.8 Earth years). Power for periodic data acquisition and transmission to orbital then to Earth relay will come from a bank of ultracapacitors which will be continuously recharged by the radioisotope power supply. This electronic system has been designed and a breadboard built. In the ultimate design the electronics will be arrayed on the exterior surface of the radioisotope power supply in order to take advantage of the reject heat. This assembly in turn is packaged within the SCRAMP, and that assembly comprises the surface station. An electrically heated but otherwise prototypical power supply was operated in combination with the surface station breadboard system, which included the ultracapacitors. Other issues addressed in this work have been the capability of the generator to withstand the mechanical shock of the landing on Mars and the effectiveness of the generator's multi-foil vacuum thermal insulation. .

  15. The impact of three recent coal-fired power plant closings on Pittsburgh air quality: A natural experiment.

    PubMed

    Russell, Marie C; Belle, Jessica H; Liu, Yang

    2017-01-01

    Relative to the rest of the United States, the region of southwestern Pennsylvania, including metropolitan Pittsburgh, experiences high ambient concentrations of fine particulate matter (PM 2.5 ), which is known to be associated with adverse respiratory and cardiovascular health impacts. This study evaluates whether the closing of three coal-fired power plants within the southwestern Pennsylvania region resulted in a significant decrease in PM 2.5 concentration. Both PM 2.5 data obtained from EPA ground stations in the study region and aerosol optical depth (AOD) data retrieved from the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments onboard the Terra and Aqua satellites were used to investigate regional air quality from January 2011 through December 2014. The impact of the plant closings on PM 2.5 concentration and AOD was evaluated using a series of generalized additive models. The model results show that monthly fuel consumption of the Elrama plant, which closed in October of 2012, and monthly fuel consumption of both the Mitchell and Hatfield's Ferry plants, which closed in October of 2013, were significant predictors of both PM 2.5 concentration and AOD at EPA ground stations in the study region, after controlling for multiple meteorological factors and long-term, region-wide air quality improvements. The model's power to predict PM 2.5 concentration increased from an adjusted R 2 of 0.61 to 0.68 after excluding data from ground stations with higher uncertainty due to recent increases in unconventional natural gas extraction activities. After preliminary analyses of mean PM 2.5 concentration and AOD showed a downward trend following each power plant shutdown, results from a series of generalized additive models confirmed that the activity of the three plants that closed, measured by monthly fuel consumption, was highly significant in predicting both AOD and PM 2.5 at 12 EPA ground stations; further research on PM 2.5 emissions from

  16. Photovoltaic Power Station with Ultracapacitors for Storage

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.; Kolacz, John S.; Soltis, Richard F.; Tavernelli, Paul F.

    2003-01-01

    A solar photovoltaic power station in which ultracapacitors, rather than batteries, are used to store energy is discussed. Developments in the semiconductor industry have reduced the cost and increased the attainable efficiency of commercially available photovoltaic panels; as a result, photovoltaic generation of power for diverse applications has become practical. Photovoltaic generation can provide electric power in remote locations where electric power would otherwise not be available. Photovoltaic generation can also afford independence from utility systems. Applications include supplying power to scientific instruments and medical equipment in isolated geographical regions.

  17. System performance predictions for Space Station Freedom's electric power system

    NASA Technical Reports Server (NTRS)

    Kerslake, Thomas W.; Hojnicki, Jeffrey S.; Green, Robert D.; Follo, Jeffrey C.

    1993-01-01

    Space Station Freedom Electric Power System (EPS) capability to effectively deliver power to housekeeping and user loads continues to strongly influence Freedom's design and planned approaches for assembly and operations. The EPS design consists of silicon photovoltaic (PV) arrays, nickel-hydrogen batteries, and direct current power management and distribution hardware and cabling. To properly characterize the inherent EPS design capability, detailed system performance analyses must be performed for early stages as well as for the fully assembled station up to 15 years after beginning of life. Such analyses were repeatedly performed using the FORTRAN code SPACE (Station Power Analysis for Capability Evaluation) developed at the NASA Lewis Research Center over a 10-year period. SPACE combines orbital mechanics routines, station orientation/pointing routines, PV array and battery performance models, and a distribution system load-flow analysis to predict EPS performance. Time-dependent, performance degradation, low earth orbit environmental interactions, and EPS architecture build-up are incorporated in SPACE. Results from two typical SPACE analytical cases are presented: (1) an electric load driven case and (2) a maximum EPS capability case.

  18. Techno-Economic Analysis of Integration of Low-Temperature Geothermal Resources for Coal-Fired Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bearden, Mark D.; Davidson, Casie L.; Horner, Jacob A.

    Presented here are the results of a techno-economic (TEA) study of the potential for coupling low-grade geothermal resources to boost the electrical output from coal-fired power plants. This study includes identification of candidate 500 MW subcritical coal-fired power plants in the continental United States, followed by down-selection and characterization of the North Valmy generating station, a Nevada coal-fired plant. Based on site and plant characteristics, ASPEN Plus models were designed to evaluate options to integrate geothermal resources directly into existing processes at North Valmy. Energy outputs and capital costing are presented for numerous hybrid strategies, including integration with Organic Rankinemore » Cycles (ORCs), which currently represent the primary technology for baseload geothermal power generation.« less

  19. Microbiological Contamination at Workplaces in a Combined Heat and Power (CHP) Station Processing Plant Biomass

    PubMed Central

    Szulc, Justyna; Otlewska, Anna; Okrasa, Małgorzata; Majchrzycka, Katarzyna; Sulyok, Michael; Gutarowska, Beata

    2017-01-01

    The aim of the study was to evaluate the microbial contamination at a plant biomass processing thermal power station (CHP). We found 2.42 × 103 CFU/m3 of bacteria and 1.37 × 104 CFU/m3 of fungi in the air; 2.30 × 107 CFU/g of bacteria and 4.46 × 105 CFU/g of fungi in the biomass; and 1.61 × 102 CFU/cm2 bacteria and 2.39 × 101 CFU/cm2 fungi in filtering facepiece respirators (FFRs). Using culture methods, we found 8 genera of mesophilic bacteria and 7 of fungi in the air; 10 genera each of bacteria and fungi in the biomass; and 2 and 5, respectively, on the FFRs. Metagenomic analysis (Illumina MiSeq) revealed the presence of 46 bacterial and 5 fungal genera on the FFRs, including potential pathogens Candida tropicalis, Escherichia coli, Prevotella sp., Aspergillus sp., Penicillium sp.). The ability of microorganisms to create a biofilm on the FFRs was confirmed using scanning electron microscopy (SEM). We also identified secondary metabolites in the biomass and FFRs, including fumigaclavines, quinocitrinines, sterigmatocistin, and 3-nitropropionic acid, which may be toxic to humans. Due to the presence of potential pathogens and mycotoxins, the level of microbiological contamination at workplaces in CHPs should be monitored. PMID:28117709

  20. An ecophysiological study of plants growing on the fly ash deposits from the "Nikola Tesla-A" thermal power station in Serbia.

    PubMed

    Pavlović, Pavle; Mitrović, Miroslava; Djurdjević, Lola

    2004-05-01

    This ecophysiological research on the ash deposits from the "Nikola Tesla-A" thermal power station in Serbia covered 10 plant species (Tamarix gallica, Populus alba, Spiraea van-hauttei, Ambrosia artemisifolia, Amorpha fruticosa, Eupatorium cannabinum, Crepis setosa, Epilobium collinum, Verbascum phlomoides, and Cirsium arvense). This paper presents the results of a water regime analysis, photosynthetic efficiency and trace elements (B, Cu, Mn, Zn, Pb, and Cd) content in vegetative plant parts. Water regime parameters indicate an overall stability in plant-water relations. During the period of summer drought, photosynthetic efficiency (Fv/Fm) was low, ranging from 0.429 to 0.620 for all the species that were analyzed. An analysis of the tissue trace elements content showed a lower trace metal concentration in the plants than in the ash, indicating that heavy metals undergo major concentration during the combustion process and some are not readily taken up by plants. The Zn and Pb concentrations in all of the examined species were normal whereas Cu and Mn concentrations were in the deficiency range. Boron concentrations in plant tissues were high, with some species even showing levels of more than 100 microg/g (Populus sp., Ambrosia sp., Amorpha sp., and Cirsium sp.). The presence of Cd was not detected. In general, it can be concluded from the results of this research that biological recultivation should take into account the existing ecological, vegetation, and floristic potential of an immediate environment that is abundant in life forms and ecological types of plant species that can overgrow the ash deposit relatively quickly. Selected species should be adapted to toxic B concentrations with moderate demands in terms of mineral elements (Cu and Mn).

  1. Automatic data processing and analysis system for monitoring region around a planned nuclear power plant

    NASA Astrophysics Data System (ADS)

    Kortström, Jari; Tiira, Timo; Kaisko, Outi

    2016-03-01

    The Institute of Seismology of University of Helsinki is building a new local seismic network, called OBF network, around planned nuclear power plant in Northern Ostrobothnia, Finland. The network will consist of nine new stations and one existing station. The network should be dense enough to provide azimuthal coverage better than 180° and automatic detection capability down to ML -0.1 within a radius of 25 km from the site.The network construction work began in 2012 and the first four stations started operation at the end of May 2013. We applied an automatic seismic signal detection and event location system to a network of 13 stations consisting of the four new stations and the nearest stations of Finnish and Swedish national seismic networks. Between the end of May and December 2013 the network detected 214 events inside the predefined area of 50 km radius surrounding the planned nuclear power plant site. Of those detections, 120 were identified as spurious events. A total of 74 events were associated with known quarries and mining areas. The average location error, calculated as a difference between the announced location from environment authorities and companies and the automatic location, was 2.9 km. During the same time period eight earthquakes between magnitude range 0.1-1.0 occurred within the area. Of these seven could be automatically detected. The results from the phase 1 stations of the OBF network indicates that the planned network can achieve its goals.

  2. 21. Photocopied from blueprint, Olmstead Station Miscellaneous Drawings Folder, Engineering ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. Photocopied from blueprint, Olmstead Station Miscellaneous Drawings Folder, Engineering Department, Utah Power & Light Co., Salt Lake City, Utah. 'STATION GROUNDS, TELLURIDE POWER CO., PROVO, UTAH.' MAP,1903. - Telluride Power Company, Olmsted Hydroelectric Plant, mouth of Provo River Canyon West of U.S. Route 189, Orem, Utah County, UT

  3. Concentrating Solar Power Projects - Saguaro Power Plant | Concentrating

    Science.gov Websites

    Solar Power | NREL Saguaro Power Plant This page provides information on Saguaro, a concentrating solar power (CSP) project, with data organized by background, participants, and power plant configuration. Status Date: April 14, 2017 Project Overview Project Name: Saguaro Power Plant Country: United

  4. 47 CFR 73.6019 - Digital Class A TV station protection of low power TV, TV translator, digital low power TV and...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... power TV, TV translator, digital low power TV and digital TV translator stations. 73.6019 Section 73... low power TV, TV translator, digital low power TV and digital TV translator stations. An application... A TV station will not be accepted if it fails to protect authorized low power TV, TV translator...

  5. Advantage of incorporating geothermal energy into power-station cycles

    NASA Astrophysics Data System (ADS)

    White, A. A. L.

    1980-06-01

    The generation of electricity from low-temperature geothermal sources has been hampered by the low conversion efficiencies of Rankine cycle operating below 150 C. It is shown how the electrical output derived from a geothermal borehole may be substantially improved on that expected from these cycles by incorporating the geothermal heat into a conventional steam-cycle power station to provide feedwater heating. This technique can yield thermal conversion efficiencies of 11% which, for a well-head temperature of 100 C, is 50% greater than the output expected from a Rankine cycle. Coupled with the smaller capital costs involved, feedwater heating is thus a more attractive technique of converting heat into electricity. Although power stations above suitable geothermal resources would ideally have the geothermal heat incorporated from the design stage, experiments at Marchwood Power Station have shown that small existing sets can be modified to accept geothermal feedwater heating.

  6. 47 CFR 74.710 - Digital low power TV and TV translator station protection.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.710 Digital low power TV and TV... booster station or change the facilities of an existing station will not be accepted if it fails to... filed prior to the date the low power TV, TV translator, or TV booster application is filed. (b...

  7. 47 CFR 74.710 - Digital low power TV and TV translator station protection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.710 Digital low power TV and TV... booster station or change the facilities of an existing station will not be accepted if it fails to... filed prior to the date the low power TV, TV translator, or TV booster application is filed. (b...

  8. 47 CFR 74.710 - Digital low power TV and TV translator station protection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.710 Digital low power TV and TV... booster station or change the facilities of an existing station will not be accepted if it fails to... filed prior to the date the low power TV, TV translator, or TV booster application is filed. (b...

  9. 47 CFR 74.710 - Digital low power TV and TV translator station protection.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.710 Digital low power TV and TV... booster station or change the facilities of an existing station will not be accepted if it fails to... filed prior to the date the low power TV, TV translator, or TV booster application is filed. (b...

  10. Growth Chambers on the International Space Station for Large Plants

    NASA Technical Reports Server (NTRS)

    Massa, G. D.; Wheeler, R. M.; Morrow, R. C.; Levine, H. G.

    2016-01-01

    The International Space Station (ISS) now has platforms for conducting research on horticultural plant species under LED lighting, and those capabilities continue to expand. The 'Veggie' vegetable production system was deployed to the ISS as an applied research platform for food production in space. Veggie is capable of growing a wide array of horticultural crops. It was designed for low power usage, low launch mass and stowage volume, and minimal crew time requirements. The Veggie flight hardware consists of a light cap containing red (630 nm), blue, (455 nm) and green (530 nm) LEDs. Interfacing with the light cap is an extendable bellows/baseplate for enclosing the plant canopy. A second large plant growth chamber, the Advanced Plant Habitat (APH), is will fly to the ISS in 2017. APH will be a fully controllable environment for high-quality plant physiological research. APH will control light (quality, level, and timing), temperature, CO2, relative humidity, and irrigation, while scrubbing any cabin or plant-derived ethylene and other volatile organic compounds. Additional capabilities include sensing of leaf temperature and root zone moisture, root zone temperature, and oxygen concentration. The light cap will have red (630 nm), blue (450 nm), green (525 nm), far red (730 nm) and broad spectrum white LEDs (4100K). There will be several internal cameras (visible and IR) to monitor and record plant growth and operations. Veggie and APH are available for research proposals.

  11. Growth Chambers on the International Space Station for Large Plants

    NASA Technical Reports Server (NTRS)

    Massa, Gioia D.; Wheeler, Raymond M.; Morrow, Robert C.; Levine, Howard G.

    2016-01-01

    The International Space Station (ISS) now has platforms for conducting research on horticultural plant species under LED (Light Emitting Diodes) lighting, and those capabilities continue to expand. The Veggie vegetable production system was deployed to the ISS as an applied research platform for food production in space. Veggie is capable of growing a wide array of horticultural crops. It was designed for low power usage, low launch mass and stowage volume, and minimal crew time requirements. The Veggie flight hardware consists of a light cap containing red (630 nanometers), blue, (455 nanometers) and green (530 nanometers) LEDs. Interfacing with the light cap is an extendable bellowsbaseplate for enclosing the plant canopy. A second large plant growth chamber, the Advanced Plant Habitat (APH), is will fly to the ISS in 2017. APH will be a fully controllable environment for high-quality plant physiological research. APH will control light (quality, level, and timing), temperature, CO2, relative humidity, and irrigation, while scrubbing any cabin or plant-derived ethylene and other volatile organic compounds. Additional capabilities include sensing of leaf temperature and root zone moisture, root zone temperature, and oxygen concentration. The light cap will have red (630 nm), blue (450 nm), green (525 nm), far red (730 nm) and broad spectrum white LEDs (4100K). There will be several internal cameras (visible and IR) to monitor and record plant growth and operations. Veggie and APH are available for research proposals.

  12. Measurements and Modelling of Base Station Power Consumption under Real Traffic Loads †

    PubMed Central

    Lorincz, Josip; Garma, Tonko; Petrovic, Goran

    2012-01-01

    Base stations represent the main contributor to the energy consumption of a mobile cellular network. Since traffic load in mobile networks significantly varies during a working or weekend day, it is important to quantify the influence of these variations on the base station power consumption. Therefore, this paper investigates changes in the instantaneous power consumption of GSM (Global System for Mobile Communications) and UMTS (Universal Mobile Telecommunications System) base stations according to their respective traffic load. The real data in terms of the power consumption and traffic load have been obtained from continuous measurements performed on a fully operated base station site. Measurements show the existence of a direct relationship between base station traffic load and power consumption. According to this relationship, we develop a linear power consumption model for base stations of both technologies. This paper also gives an overview of the most important concepts which are being proposed to make cellular networks more energy-efficient. PMID:22666026

  13. Mission Analysis for LEO Microwave Power-Beaming Station in Orbital Launch of Microwave Lightcraft

    NASA Technical Reports Server (NTRS)

    Myrabo, L. N.; Dickenson, T.

    2005-01-01

    A detailed mission analysis study has been performed for a 1 km diameter, rechargeable satellite solar power station (SPS) designed to boost 20m diameter, 2400 kg Micr,oWave Lightcraft (MWLC) into low earth orbit (LEO) Positioned in a 476 km daily-repeating oi.bit, the 35 GHz microwave power station is configured like a spinning, thin-film bicycle wheel covered by 30% efficient sola cells on one side and billions of solid state microwave transmitter elements on the other, At the rim of this wheel are two superconducting magnets that can stor,e 2000 G.J of energy from the 320 MW, solar array over a period of several orbits. In preparation for launch, the entire station rotates to coarsely point at the Lightcraft, and then phases up using fine-pointing information sent from a beacon on-board the Lightcraft. Upon demand, the station transmits a 10 gigawatt microwave beam to lift the MWLC from the earth surface into LEO in a flight of several minutes duration. The mission analysis study was comprised of two parts: a) Power station assessment; and b) Analysis of MWLC dynamics during the ascent to orbit including the power-beaming relationships. The power station portion addressed eight critical issues: 1) Drag force vs. station orbital altitude; 2) Solar pressure force on the station; 3) Station orbital lifetime; 4) Feasibility of geo-magnetic re-boost; 5) Beta angle (i..e., sola1 alignment) and power station effective area relationship; 6) Power station percent time in sun vs, mission elapsed time; 7) Station beta angle vs.. charge time; 8) Stresses in station structures.. The launch dynamics portion examined four issues: 1) Ascent mission/trajecto1y profile; 2) MWLC/power-station mission geometry; 3) MWLC thrust angle vs. time; 4) Power station pitch rate during power beaming. Results indicate that approximately 0 58 N of drag force acts upon the station when rotated edge-on to project the minimum frontal area of 5000 sq m. An ion engine or perhaps an electrodynamic

  14. The 10 MWe Solar Thermal Central Receiver Pilot Plant: Solar facilities design integration. Pilot-plant station manual (RADL Item 2-1). Volume 1: System description

    NASA Astrophysics Data System (ADS)

    1982-09-01

    The complete Barstow Solar Pilot Plant is described. The plant requirements and general description are presented, the mechanical, electric power, and control and instrumentation systems as well as civil engineering and structural aspects and the station buildings are described. Included in the mechanical systems are the heliostats, receiver, thermal storage system, beam characterization system, steam, water, nitrogen, and compressed air systems, chemical feed system, fire protection system, drains, sumps and the waste disposal systems, and heating, ventilating, and air conditioning systems.

  15. Childhood cancers near German nuclear power stations: the ongoing debate.

    PubMed

    Fairlie, Ian

    2009-01-01

    In late 2007, the significant KiKK study (Kinderkrebs in der Umgebung von KernKraftwerken = Childhood Cancer in the Vicinity of Nuclear Power Plants) in Germany reported a 1.6-fold increase in all cancers and a 2.2-fold increase in leukaemias, among children living within 5 km of all German nuclear power stations. The KiKK study by Kaatsch et al. was extensively described in a recent edition of Medicine Conflict and Survival. It has triggered much discussion as to the cause(s) of these increased cancers. This article reports on recent developments on the KiKK study, including responses by German radiation agencies, and recent epidemiological studies near United Kingdom and French nuclear installations. It reflects the current debate and concludes with advice to policy-makers on radiation risks on the relative merits of the KiKK study. An accompanying article outlines a possible explanation for the increased cancers and makes recommendations for future research.

  16. Research on comprehensive decision-making of PV power station connecting system

    NASA Astrophysics Data System (ADS)

    Zhou, Erxiong; Xin, Chaoshan; Ma, Botao; Cheng, Kai

    2018-04-01

    In allusion to the incomplete indexes system and not making decision on the subjectivity and objectivity of PV power station connecting system, based on the combination of improved Analytic Hierarchy Process (AHP), Criteria Importance Through Intercriteria Correlation (CRITIC) as well as grey correlation degree analysis (GCDA) is comprehensively proposed to select the appropriate system connecting scheme of PV power station. Firstly, indexes of PV power station connecting system are divided the recursion order hierarchy and calculated subjective weight by the improved AHP. Then, CRITIC is adopted to determine the objective weight of each index through the comparison intensity and conflict between indexes. The last the improved GCDA is applied to screen the optimal scheme, so as to, from the subjective and objective angle, select the connecting system. Comprehensive decision of Xinjiang PV power station is conducted and reasonable analysis results are attained. The research results might provide scientific basis for investment decision.

  17. 47 CFR 74.792 - Digital low power TV and TV translator station protected contour.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Digital low power TV and TV translator station... SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.792 Digital low power TV and TV translator station protected contour. (a) A digital low power TV or TV translator will be protected from...

  18. Modelling of the Installed Capacity of Landfill Power Stations

    NASA Astrophysics Data System (ADS)

    Blumberga, D.; Kuplais, Ģ.; Veidenbergs, I.; Dāce, E.; Gušča, J.

    2009-01-01

    More and more landfills are being developed, in which biogas is produced and accumulated, which can be used for electricity production. Currently, due to technological reasons, electricity generation from biogas has a very low level of efficiency. In order to develop this type of energy production, it is important to find answers to various engineering, economic and ecological issues. The paper outlines the results obtained by creating a model for the calculations of electricity production in landfill power stations and by testing it in the municipal solid waste landfill "Daibe". The algorithm of the mathematical model for the operation of a biogas power station consists of four main modules: • initial data module, • engineering calculation module, • tariff calculation module, and • climate calculation module. As a result, the optimum capacity of the power station in the landfill "Daibe" is determined, as well as the analysis of the landfill's economic data and cost-effectiveness is conducted.

  19. Thermal discharges and their role in pending power plant regulatory decisions

    NASA Technical Reports Server (NTRS)

    Miller, M. H.

    1978-01-01

    Federal and state laws require the imminent retrofit of offstream condenser cooling to the newer steam electric stations. Waiver can be granted based on sound experimental data, demonstrating that existing once-through cooling will not adversely affect aquatic ecosystems. Conventional methods for monitoring thermal plumes, and some remote sensing alternatives, are reviewed, using on going work at one Maryland power plant for illustration.

  20. Organic Rankine Cycle for Residual Heat to Power Conversion in Natural Gas Compressor Station. Part II: Plant Simulation and Optimisation Study

    NASA Astrophysics Data System (ADS)

    Chaczykowski, Maciej

    2016-06-01

    After having described the models for the organic Rankine cycle (ORC) equipment in the first part of this paper, this second part provides an example that demonstrates the performance of different ORC systems in the energy recovery application in a gas compressor station. The application shows certain specific characteristics, i.e. relatively large scale of the system, high exhaust gas temperature, low ambient temperature operation, and incorporation of an air-cooled condenser, as an effect of the localization in a compressor station plant. Screening of 17 organic fluids, mostly alkanes, was carried out and resulted in a selection of best performing fluids for each cycle configuration, among which benzene, acetone and heptane showed highest energy recovery potential in supercritical cycles, while benzene, toluene and cyclohexane in subcritical cycles. Calculation results indicate that a maximum of 10.4 MW of shaft power can be obtained from the exhaust gases of a 25 MW compressor driver by the use of benzene as a working fluid in the supercritical cycle with heat recuperation. In relation to the particular transmission system analysed in the study, it appears that the regenerative subcritical cycle with toluene as a working fluid presents the best thermodynamic characteristics, however, require some attention insofar as operational conditions are concerned.

  1. 47 CFR 74.780 - Broadcast regulations applicable to translators, low power, and booster stations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., low power, and booster stations. 74.780 Section 74.780 Telecommunication FEDERAL COMMUNICATIONS... PROGRAM DISTRIBUTIONAL SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.780 Broadcast regulations applicable to translators, low power, and booster stations. The following rules are applicable to...

  2. 47 CFR 74.780 - Broadcast regulations applicable to translators, low power, and booster stations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., low power, and booster stations. 74.780 Section 74.780 Telecommunication FEDERAL COMMUNICATIONS... PROGRAM DISTRIBUTIONAL SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.780 Broadcast regulations applicable to translators, low power, and booster stations. The following rules are applicable to...

  3. 47 CFR 74.780 - Broadcast regulations applicable to translators, low power, and booster stations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., low power, and booster stations. 74.780 Section 74.780 Telecommunication FEDERAL COMMUNICATIONS... PROGRAM DISTRIBUTIONAL SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.780 Broadcast regulations applicable to translators, low power, and booster stations. The following rules are applicable to...

  4. Environmental review of Potomac Electric Power Company's proposed Station H Element I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-04-01

    The report has been conducted to evaluate the potential impacts to environmental and cultural resources from the proposed construction and operation of Element I (the combustion turbine portion) of the Station H power plant facility at Potomac Electric Power Company's Dickerson site. This review also presents an evaluation of air quality impacts of Elements I and II (combustion turbine and combined cycle components of the facility) and an assessment of compliance with state and Federal air quality regulations (primarily the ambient air quality standards and the air quality impact requirements of PSD regulations). Results of the Environmental Review analysis aremore » used as the basis for establishing preliminary recommended licensing conditions for operating the proposed facility. These recommendations are also included in the report.« less

  5. Station Blackout Analysis of HTGR-Type Experimental Power Reactor

    NASA Astrophysics Data System (ADS)

    Syarip; Zuhdi, Aliq; Falah, Sabilul

    2018-01-01

    The National Nuclear Energy Agency of Indonesia has decided to build an experimental power reactor of high-temperature gas-cooled reactor (HTGR) type located at Puspiptek Complex. The purpose of this project is to demonstrate a small modular nuclear power plant that can be operated safely. One of the reactor safety characteristics is the reliability of the reactor to the station blackout (SBO) event. The event was observed due to relatively high disturbance frequency of electricity network in Indonesia. The PCTRAN-HTR functional simulator code was used to observe fuel and coolant temperature, and coolant pressure during the SBO event. The reactor simulated at 10 MW for 7200 s then the SBO occurred for 1-3 minutes. The analysis result shows that the reactor power decreases automatically as the temperature increase during SBO accident without operator’s active action. The fuel temperature increased by 36.57 °C every minute during SBO and the power decreased by 0.069 MW every °C fuel temperature rise at the condition of anticipated transient without reactor scram. Whilst, the maximum coolant (helium) temperature and pressure are 1004 °C and 9.2 MPa respectively. The maximum fuel temperature is 1282 °C, this value still far below the fuel temperature limiting condition i.e. 1600 °C, its mean that the HTGR has a very good inherent safety system.

  6. 75 FR 12311 - Entergy Nuclear Operations, Inc; Vermont Yankee Nuclear Power Station Environmental Assessment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-15

    ...; Vermont Yankee Nuclear Power Station Environmental Assessment and Finding of No Significant Impact The U.S... licensee), for operation of Vermont Yankee Nuclear Power Station (Vermont Yankee), located in Windham... Statement for Vermont Yankee Nuclear Power Station, Docket No. 50-271, dated July 1972, as supplemented...

  7. 77 FR 36302 - Yankee Atomic Electric Company, Yankee Nuclear Power Station, Confirmatory Order Modifying...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-18

    ... Atomic Electric Company, Yankee Nuclear Power Station, Confirmatory Order Modifying License (Effective... of 10 CFR part 72, Subpart K at the Yankee Nuclear Power Station. The facility is located at the... Facility Operating License for Yankee Nuclear Power Station must be modified to include provisions with...

  8. The Electric Power System of the International Space Station: A Platform for Power Technology Development

    NASA Technical Reports Server (NTRS)

    Gietl, Eric B.; Gholdston, Edward W.; Manners, Bruce A.; Delventhal, Rex A.

    2000-01-01

    The electrical power system developed for the International Space Station represents the largest space-based power system ever designed and, consequently, has driven some key technology aspects and operational challenges. The full U.S.-built system consists of a 160-Volt dc primary network, and a more tightly regulated 120-Volt dc secondary network. Additionally, the U.S. system interfaces with the 28-Volt system in the Russian segment. The international nature of the Station has resulted in modular converters, switchgear, outlet panels, and other components being built by different countries, with the associated interface challenges. This paper provides details of the architecture and unique hardware developed for the Space Station, and examines the opportunities it provides for further long-term space power technology development, such as concentrating solar arrays and flywheel energy storage systems.

  9. Energy comparison between solar thermal power plant and photovoltaic power plant

    NASA Astrophysics Data System (ADS)

    Novosel, Urška; Avsec, Jurij

    2017-07-01

    The combined use of renewable energy and alternative energy systems and better efficiency of energy devices is a promising approach to reduce effects due to global warming in the world. On the basis of first and second law of thermodynamics we could optimize the processes in the energy sector. The presented paper shows the comparison between solar thermal power plant and photovoltaic power plant in terms of energy, exergy and life cycle analysis. Solar thermal power plant produces electricity with basic Rankine cycle, using solar tower and solar mirrors to produce high fluid temperature. Heat from the solar system is transferred by using a heat exchanger to Rankine cycle. Both power plants produce hydrogen via electrolysis. The paper shows the global efficiency of the system, regarding production of the energy system.

  10. Space Power Facility Readiness for Space Station Power System Testing

    NASA Technical Reports Server (NTRS)

    Smith, Roger L.

    1995-01-01

    This document provides information which shows that the NASA Lewis Research Center's Space Power Facility (SPF) will be ready to execute the Space Station electric power system thermal vacuum chamber testing. The SPF is located at LeRC West (formerly the Plum Brook Station), Sandusky, Ohio. The SPF is the largest space environmental chamber in the world, having an inside horizontal diameter of 100 ft. and an inside height at the top of the hemisphere of 122 ft. The vacuum system can achieve a pressure lower than 1 x 10(exp -5) Torr. The cryoshroud, cooled by gaseous nitrogen, can reach a temperature of -250 F, and is 80 ft. long x 40 ft. wide x 22 ft. high. There is access to the chamber through two 50 ft. x 50 ft. doors. Each door opens into an assembly area about 150 ft. long x 70 ft. wide x 80 ft. high. Other available facilities are offices, shop area, data acquisition system with 930 pairs of hard lines, 7 megawatts of power to chamber, 245K gal. liquid nitrogen storage, cooling tower, natural gas, service air, and cranes up to 25 tons.

  11. Space Station Freedom primary power wiring requirements

    NASA Technical Reports Server (NTRS)

    Hill, Thomas J.

    1994-01-01

    The Space Station Freedom (SSF) Program requirements are a 30 year reliable service life in low Earth orbit in hard vacuum or pressurized module service without detrimental degradation. Specific requirements are outlined in this presentation for SSF primary power and cable insulation. The primary power cable status and the WP-4 planned cable test program are also reviewed along with Rocketdyne-WP04 prime insulation candidates.

  12. DC-DC power converter research for Orbiter/Station power exchange

    NASA Technical Reports Server (NTRS)

    Ehsani, M.

    1993-01-01

    This project was to produce innovative DC-DC power converter concepts which are appropriate for the power exchange between the Orbiter and the Space Station Freedom (SSF). The new converters must interface three regulated power buses on SSF, which are at different voltages, with three fuel cell power buses on the Orbiter which can be at different voltages and should be tracked independently. Power exchange is to be bi-directional between the SSF and the Orbiter. The new converters must satisfy the above operational requirements with better weight, volume, efficiency, and reliability than is available from the present conventional technology. Two families of zero current DC-DC converters were developed and successfully adapted to this application. Most of the converters developed are new and are presented.

  13. Space Station Freedom power supply commonality via modular design

    NASA Technical Reports Server (NTRS)

    Krauthamer, S.; Gangal, M. D.; Das, R.

    1990-01-01

    At mature operations, Space Station Freedom will need more than 2000 power supplies to feed housekeeping and user loads. Advanced technology power supplies from 20 to 250 W have been hybridized for terrestrial, aerospace, and industry applications in compact, efficient, reliable, lightweight packages compatible with electromagnetic interference requirements. The use of these hybridized packages as modules, either singly or in parallel, to satisfy the wide range of user power supply needs for all elements of the station is proposed. Proposed characteristics for the power supplies include common mechanical packaging, digital control, self-protection, high efficiency at full and partial loads, synchronization capability to reduce electromagnetic interference, redundancy, and soft-start capability. The inherent reliability is improved compared with conventional discrete component power supplies because the hybrid circuits use high-reliability components such as ceramic capacitors. Reliability is further improved over conventional supplies because the hybrid packages, which may be treated as a single part, reduce the parts count in the power supply.

  14. 11. Photocopied from Photo #1, Nunns Station Folder, Engineering Department, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Photocopied from Photo #1, Nunns Station Folder, Engineering Department, Utah Power & Light Co., Salt Lake City, Utah. 'INTERIOR NUNNS STATION.' c. 1898. - Telluride Power Company, Nunn Hydroelectric Plant, Southeast side of Provo River, 300 feet West of US Route 189, Orem, Utah County, UT

  15. Use of digital photography for power plant retrofits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamba, J.J.

    1995-09-01

    One of the latest advancements in electronic tools for reducing engineering and drafting effort is the use of digital photography (DP) for retrofit and betterment projects at fossil and nuclear power plants. Sargent and Lundy (S and L) has effectively used digital photography for condition assessments, minor backfit repairs, thermo-lag fire wrap assessments and repairs, and other applications. Digital photography offers several benefits on these types of projects including eliminating the need for official repair drawings and providing station maintenance with a true 3-D visualization of the repair.

  16. Design and operation experience of 230 MWe CFB boilers at Turow power plant in Poland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nowak, W.; Bis, Z.; Laskawiec, J.

    The Power Station Turow is located in Bogatynia, Poland, and has operated 10 pulverized coal units each of 200 MW. The plant provided 2000 MW at the lowest cost per kWh in Poland. The Turow units have approached and in some cases already gone beyond their 25--30 year's design life. To meet Poland's new environmental standards, which are now compatible with the EU, Turow decided to replace and upgrade six units (No. 1 to 6) from 200 MW to 230 MW units and remove one unit No. 7. Units No. 8, 9 and 10 were equipped with dry sorbent desulfurizationmore » technology. Units No. 1 and 2 have been replaced with new clean coal circulating fluidized bed technology. The Power Station Turow with six CFB units is to be the largest in the world power station based on fluidized bed technology.« less

  17. Solar dynamic power for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Labus, Thomas L.; Secunde, Richard R.; Lovely, Ronald G.

    1989-01-01

    The Space Station Freedom Program is presently planned to consist of two phases. At the completion of Phase 1, Freedom's manned base will consist of a transverse boom with attached manned modules and 75 kW of available electric power supplied by photovoltaic (PV) power sources. In Phase 2, electric power available to the manned base will be increased to 125 kW by the addition of two solar dynamic (SD) power modules, one at each end of the transverse boom. Power for manned base growth beyond Phase 2 will be supplied by additional SD modules. Studies show that SD power for the growth eras will result in life cycle cost savings of $3 to $4 billion when compared to PV-supplied power. In the SD power modules for Space Station Freedom, an offset parabolic concentrator collects and focuses solar energy into a heat receiver. To allow full power operation over the entire orbit, the receiver includes integral thermal energy storage by means of the heat of fusion of a salt mixture. Thermal energy is removed from the receiver and converted to electrical energy by a power conversion unit (PCU) which includes a closed brayton cycle (CBC) heat engine and an alternator. The receiver/PCU/radiator combination will be completely assembled and charged with gas and cooling fluid on earth before launch to orbit. The concentrator subassemblies will be pre-aligned and stowed in the orbiter bay before launch. On orbit, the receiver/PCU/radiator assembly will be installed as a unit. The pre-aligned concentrator panels will then be latched together and the total concentrator attached to the receiver/PCU/radiator by the astronauts. After final electric connections are made and checkout is complete, the SD power module will be ready for operation.

  18. Solar dynamic power for space station freedom

    NASA Technical Reports Server (NTRS)

    Labus, Thomas L.; Secunde, Richard R.; Lovely, Ronald G.

    1989-01-01

    The Space Station Freedom Program is presently planned to consist of two phases. At the completion of Phase 1, Freedom's manned base will consist of a transverse boom with attached manned modules and 75 kW of available electric power supplied by photovoltaic (PV) power sources. In Phase 2, electric power available to the manned base will be increased to 125 kW by the addition of two solar dynamic (SD) power modules, one at each end of the transverse boom. Power for manned base growth beyond Phase 2 will be supplied by additional SD modules. Studies show that SD power for the growth eras will result in life cycle cost savings of $3 to $4 billion when compared to PV-supplied power. In the SD power modules for Space Station Freedom, an offset parabolic concentrator collects and focuses solar energy into a heat receiver. To allow full power operation over the entire orbit, the receiver includes integral thermal energy storage by means of the heat of fusion of a salt mixture. Thermal energy is removed from the receiver and converted to electrical energy by a power conversion unit (PCU) which includes a closed brayton cycle (CBC) heat engine and an alternator. The receiver/PCU/radiator combination will be completely assembled and charged with gas and cooling fluid on Earth before launch to orbit. The concentrator subassemblies will be pre-aligned and stowed in the orbiter bay before launch. On orbit, the receiver/PCU/radiator assembly will be installed as a unit. The pre-aligned concentrator panels will then be latched together and the total concentrator attached to the receiver/PCU/radiator by the astronauts. After final electric connections are made and checkout is complete, the SD power module will be ready for operation.

  19. The Plant Research Unit: An International Space Station Habitat

    NASA Technical Reports Server (NTRS)

    Morrow, Robert; Reiss-Bubenheim, Debra; Schaefer, Ronald L.

    2003-01-01

    The Plant Research Unit (PRU) is one of six life science habitats being developed as part of the Space Station Biological Research Program. The PRU is designed for experiments in microgravity and will utilize the ISS Centrifuge Facility to provide gravity levels between microgravity and 29. The PRU will provide and control all aspects of a plant s needs in a nearly closed system. In other words, the shoot and root environments will not be open to the astronaut s environment except for experiment maintenance such as planting, harvesting and plant sampling. This also means that all lighting, temperature and humidity control, "watering," and air filtering and cleaning .must be done within strict limitations of volume, weight, power, and crew time while at the same time providing a very high level of reliability and a service life in excess of 10 years. The PRU will contain two plant chambers 31.5 cm tall, each with independent control of temperature, humidity, light level and photoperiod, CO2 level, nutrient and water delivery, and video and data acquisition. The PRU is currently in the preliminary design phase and a number of subsystem components have been prototyped for testing, including the temperature and humidity control systems, the plant chambers, the LED lighting system, the atmospheric control system and a variety of nutrient delivery systems. The LED prototype provides independent feedback control of 5 separate spectral bands and variable output between 0 and 1000 micro-mol sq m/sec. The water and nutrient delivery system (WNDS) prototypes have been used to test particulate based, thin film, and gel-based WNDS configurations.

  20. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant. Design Requirements Document (DRD)

    NASA Technical Reports Server (NTRS)

    Rigo, H. S.; Bercaw, R. W.; Burkhart, J. A.; Mroz, T. S.; Bents, D. J.; Hatch, A. M.

    1981-01-01

    A description and the design requirements for the 200 MWe (nominal) net output MHD Engineering Test Facility (ETF) Conceptual Design, are presented. Performance requirements for the plant are identified and process conditions are indicated at interface stations between the major systems comprising the plant. Also included are the description, functions, interfaces and requirements for each of these major systems. The lastest information (1980-1981) from the MHD technology program are integrated with elements of a conventional steam electric power generating plant.

  1. Observations of Earth space by self-powered stations in Antarctica.

    PubMed

    Mende, S B; Rachelson, W; Sterling, R; Frey, H U; Harris, S E; McBride, S; Rosenberg, T J; Detrick, D; Doolittle, J L; Engebretson, M; Inan, U; Labelle, J W; Lanzerotti, L J; Weatherwax, A T

    2009-12-01

    Coupling of the solar wind to the Earth magnetosphere/ionosphere is primarily through the high latitude regions, and there are distinct advantages in making remote sensing observations of these regions with a network of ground-based observatories over other techniques. The Antarctic continent is ideally situated for such a network, especially for optical studies, because the larger offset between geographic and geomagnetic poles in the south enables optical observations at a larger range of magnetic latitudes during the winter darkness. The greatest challenge for such ground-based observations is the generation of power and heat for a sizable ground station that can accommodate an optical imaging instrument. Under the sponsorship of the National Science Foundation, we have developed suitable automatic observing platforms, the Automatic Geophysical Observatories (AGOs) for a network of six autonomous stations on the Antarctic plateau. Each station housed a suite of science instruments including a dual wavelength intensified all-sky camera that records the auroral activity, an imaging riometer, fluxgate and search-coil magnetometers, and ELF/VLF and LM/MF/HF receivers. Originally these stations were powered by propane fuelled thermoelectric generators with the fuel delivered to the site each Antarctic summer. A by-product of this power generation was a large amount of useful heat, which was applied to maintain the operating temperature of the electronics in the stations. Although a reasonable degree of reliability was achieved with these stations, the high cost of the fuel air lift and some remaining technical issues necessitated the development of a different type of power unit. In the second phase of the project we have developed a power generation system using renewable energy that can operate automatically in the Antarctic winter. The most reliable power system consists of a type of wind turbine using a simple permanent magnet rotor and a new type of power

  2. Observations of Earth space by self-powered stations in Antarctica

    NASA Astrophysics Data System (ADS)

    Mende, S. B.; Rachelson, W.; Sterling, R.; Frey, H. U.; Harris, S. E.; McBride, S.; Rosenberg, T. J.; Detrick, D.; Doolittle, J. L.; Engebretson, M.; Inan, U.; Labelle, J. W.; Lanzerotti, L. J.; Weatherwax, A. T.

    2009-12-01

    Coupling of the solar wind to the Earth magnetosphere/ionosphere is primarily through the high latitude regions, and there are distinct advantages in making remote sensing observations of these regions with a network of ground-based observatories over other techniques. The Antarctic continent is ideally situated for such a network, especially for optical studies, because the larger offset between geographic and geomagnetic poles in the south enables optical observations at a larger range of magnetic latitudes during the winter darkness. The greatest challenge for such ground-based observations is the generation of power and heat for a sizable ground station that can accommodate an optical imaging instrument. Under the sponsorship of the National Science Foundation, we have developed suitable automatic observing platforms, the Automatic Geophysical Observatories (AGOs) for a network of six autonomous stations on the Antarctic plateau. Each station housed a suite of science instruments including a dual wavelength intensified all-sky camera that records the auroral activity, an imaging riometer, fluxgate and search-coil magnetometers, and ELF/VLF and LM/MF/HF receivers. Originally these stations were powered by propane fuelled thermoelectric generators with the fuel delivered to the site each Antarctic summer. A by-product of this power generation was a large amount of useful heat, which was applied to maintain the operating temperature of the electronics in the stations. Although a reasonable degree of reliability was achieved with these stations, the high cost of the fuel air lift and some remaining technical issues necessitated the development of a different type of power unit. In the second phase of the project we have developed a power generation system using renewable energy that can operate automatically in the Antarctic winter. The most reliable power system consists of a type of wind turbine using a simple permanent magnet rotor and a new type of power

  3. Managing nuclear power plant induced disasters.

    PubMed

    Kyne, Dean

    2015-01-01

    To understand the management process of nuclear power plant (NPP) induced disasters. The study shields light on phases and issues associated with the NPP induced disaster management. This study uses Palo Verde Nuclear Generation Station as study subject and Arizona State as study area. This study uses the Radiological Assessment System for Consequence Analysis (RASCAL) Source Term to Dose (STDose) of the Nuclear Regulatory Commission, a computer software to project and assess the source term dose and release pathway. This study also uses ArcGIS, a geographic information system to analyze geospatial data. A detailed case study of Palo Verde Nuclear Power Generation (PVNPG) Plant was conducted. The findings reveal that the NPP induced disaster management process is conducted by various stakeholders. To save lives and to minimize the impacts, it is vital to relate planning and process of the disaster management. Number of people who expose to the radioactive plume pathway and level of radioactivity could vary depending on the speed and direction of wind on the day the event takes place. This study findings show that there is a need to address the burning issue of different racial and ethnic groups' unequal exposure and unequal protection to potential risks associated with the NPPs.

  4. Utilization of artificial intelligence techniques for the Space Station power system

    NASA Technical Reports Server (NTRS)

    Evatt, Thomas C.; Gholdston, Edward W.

    1988-01-01

    Due to the complexity of the Space Station Electrical Power System (EPS) as currently envisioned, artificial intelligence/expert system techniques are being investigated to automate operations, maintenance, and diagnostic functions. A study was conducted to investigate this technology as it applies to failure detection, isolation, and reconfiguration (FDIR) and health monitoring of power system components and of the total system. Control system utilization of expert systems for load scheduling and shedding operations was also researched. A discussion of the utilization of artificial intelligence/expert systems for Initial Operating Capability (IOC) for the Space Station effort is presented along with future plans at Rocketdyne for the utilization of this technology for enhanced Space Station power capability.

  5. NUCLEAR POWER PLANT

    DOEpatents

    Carter, J.C.; Armstrong, R.H.; Janicke, M.J.

    1963-05-14

    A nuclear power plant for use in an airless environment or other environment in which cooling is difficult is described. The power plant includes a boiling mercury reactor, a mercury--vapor turbine in direct cycle therewith, and a radiator for condensing mercury vapor. (AEC)

  6. 75 FR 76498 - Firstenergy Nuclear Operating Company, Davis-Besse Nuclear Power Station; Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-08

    ... Company, Davis-Besse Nuclear Power Station; Environmental Assessment And Finding of No Significant Impact... operation of the Davis-Besse Nuclear Power Station, Unit 1 (DBNPS), located in Ottawa County, Ohio. In... the reactor coolant pressure boundary of light-water nuclear power reactors provide adequate margins...

  7. 47 CFR 74.792 - Digital low power TV and TV translator station protected contour.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.792 Digital low power TV and TV... interference from other low power TV, TV translator, Class A TV or TV booster stations or digital low power TV...

  8. 47 CFR 74.792 - Digital low power TV and TV translator station protected contour.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.792 Digital low power TV and TV... interference from other low power TV, TV translator, Class A TV or TV booster stations or digital low power TV...

  9. 47 CFR 74.792 - Digital low power TV and TV translator station protected contour.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.792 Digital low power TV and TV... interference from other low power TV, TV translator, Class A TV or TV booster stations or digital low power TV...

  10. 47 CFR 74.792 - Digital low power TV and TV translator station protected contour.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.792 Digital low power TV and TV... interference from other low power TV, TV translator, Class A TV or TV booster stations or digital low power TV...

  11. CHARACTERISTIC QUALITIES OF SOME ATOMIC POWER STATIONS (in Hungarian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ligeti, G.

    1962-04-01

    Mostly as the result of economic factors, the current rate of construction of public atomic power stations has slowed down. The use of atomic energy is considered economical only in a few special cases, such as ship propulsion or supplying power to remote regions. For this reason, many reactors were designed especially for the construction of such midget'' power stations, operating at power levels ranging from 10 to 70 Mw. Technical details are given of such already-built or proposed systems, including the following: pressurized- water reactors such as the Babcock and Wilcox 60-Mw reactor, using 2.4% U/sup 235/ fuel; themore » Humphrey-Glasow Company's 20 Mw reactor; the gascooled system of the de Havilland Company; the organicmoderated reactor of the English Electric Company; the organic-moderated system of the Hawker-Siddeley Nuclear Power Company; the boiling-water reactor of the Mitchell Engineering Company and the steam-cooled, heavy-water reactor of the Rolls-Royce & Vickers Company. (TTT)« less

  12. 76 FR 50274 - Terrestrial Environmental Studies for Nuclear Power Stations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-12

    ... NUCLEAR REGULATORY COMMISSION [NRC-2011-0182] Terrestrial Environmental Studies for Nuclear Power... draft regulatory guide (DG), DG-4016, ``Terrestrial Environmental Studies for Nuclear Power Stations... environmental studies and analyses supporting licensing decisions for nuclear power reactors. DATES: Submit...

  13. 47 CFR 74.780 - Broadcast regulations applicable to translators, low power, and booster stations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... TV translator, low power TV, and TV booster stations: Section 73.653—Operation of TV aural and visual... stations locally originating programming as defined by § 74.701(h)). Section 73.1201—Station identification (for low power TV stations locally originating programming as defined by § 74.701(h)). Section 73.1206...

  14. 78 FR 61400 - Entergy Nuclear Operations, Inc., Pilgrim Nuclear Power Station, Issuance of Director's Decision

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-03

    ... Nuclear Operations, Inc., Pilgrim Nuclear Power Station, Issuance of Director's Decision Notice is hereby... ML102210411, respectively), concerns the operation of Pilgrim Nuclear Power Station (Pilgrim), owned by...) inaccessible cables at Pilgrim Nuclear Power Station (Pilgrim) are capable of performing their required...

  15. 7. Photocopied from Dwg. 69, Nunns Station Folder, Engineering Department, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Photocopied from Dwg. 69, Nunns Station Folder, Engineering Department, Utah Power & Light Co., Salt Lake City, Utah. FLOOR PLANT. (POWER HOUSE IN PROVO CANYON, PROVO, UTAH?) c. 1900. - Telluride Power Company, Nunn Hydroelectric Plant, Southeast side of Provo River, 300 feet West of US Route 189, Orem, Utah County, UT

  16. Optimization of the operating conditions of gas-turbine power stations considering the effect of equipment deterioration

    NASA Astrophysics Data System (ADS)

    Aminov, R. Z.; Kozhevnikov, A. I.

    2017-10-01

    In recent years in most power systems all over the world, a trend towards the growing nonuniformity of energy consumption and generation schedules has been observed. The increase in the portion of renewable energy sources is one of the important challenges for many countries. The ill-predictable character of such energy sources necessitates a search for practical solutions. Presently, the most efficient method for compensating for nonuniform generation of the electric power by the renewable energy sources—predominantly by the wind and solar energy—is generation of power at conventional fossil-fuel-fired power stations. In Russia, this problem is caused by the increasing portion in the generating capacity structure of the nuclear power stations, which are most efficient when operating under basic conditions. Introduction of hydropower and pumped storage hydroelectric power plants and other energy-storage technologies does not cover the demand for load-following power capacities. Owing to a simple design, low construction costs, and a sufficiently high economic efficiency, gas turbine plants (GTPs) prove to be the most suitable for covering the nonuniform electric-demand schedules. However, when the gas turbines are operated under varying duty conditions, the lifetime of the primary thermostressed components is considerably reduced and, consequently, the repair costs increase. A method is proposed for determination of the total operating costs considering the deterioration of the gas turbine equipment under varying duty and start-stop conditions. A methodology for optimization of the loading modes for the gas turbine equipment is developed. The consideration of the lifetime component allows varying the optimal operating conditions and, in some cases, rejecting short-time stops of the gas turbine plants. The calculations performed in a wide range of varying fuel prices and capital investments per gas turbine equipment unit show that the economic effectiveness can

  17. Space station automation of common module power management and distribution

    NASA Technical Reports Server (NTRS)

    Miller, W.; Jones, E.; Ashworth, B.; Riedesel, J.; Myers, C.; Freeman, K.; Steele, D.; Palmer, R.; Walsh, R.; Gohring, J.

    1989-01-01

    The purpose is to automate a breadboard level Power Management and Distribution (PMAD) system which possesses many functional characteristics of a specified Space Station power system. The automation system was built upon 20 kHz ac source with redundancy of the power buses. There are two power distribution control units which furnish power to six load centers which in turn enable load circuits based upon a system generated schedule. The progress in building this specified autonomous system is described. Automation of Space Station Module PMAD was accomplished by segmenting the complete task in the following four independent tasks: (1) develop a detailed approach for PMAD automation; (2) define the software and hardware elements of automation; (3) develop the automation system for the PMAD breadboard; and (4) select an appropriate host processing environment.

  18. Space station electric power system requirements and design

    NASA Technical Reports Server (NTRS)

    Teren, Fred

    1987-01-01

    An overview of the conceptual definition and design of the space station Electric Power System (EPS) is given. Responsibilities for the design and development of the EPS are defined. The EPS requirements are listed and discussed, including average and peak power requirements, contingency requirements, and fault tolerance. The most significant Phase B trade study results are summarized, and the design selections and rationale are given. Finally, the power management and distribution system architecture is presented.

  19. Gas-turbine expander power generating systems for internal needs of compressor stations of gas-main pipelines

    NASA Astrophysics Data System (ADS)

    Shimanov, A. A.; Biryuk, V. V.; Sheludko, L. P.; Shabanov, K. Yu.

    2017-08-01

    In the framework of this paper, there have been analyzed power station building methods to construct a power station for utilities for gas-main pipelines compressor stations. The application efficiency of turbo expanders in them to expand the power gas of compressor stations' gas compressor units has been shown. New schemes for gas-turbine expander power generating systems have been proposed.

  20. 47 CFR 73.6019 - Digital Class A TV station protection of low power TV, TV translator, digital low power TV and...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Digital Class A TV station protection of low power TV, TV translator, digital low power TV and digital TV translator stations. 73.6019 Section 73... BROADCAST SERVICES Class A Television Broadcast Stations § 73.6019 Digital Class A TV station protection of...

  1. 28. CONTEXT VIEW OF BUILDING 229 (ELECTRIC POWER STATION) IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. CONTEXT VIEW OF BUILDING 229 (ELECTRIC POWER STATION) IN ASSEMBLY AREA WITH BUILDING 227 (FIRE STATION) IMMEDIATELY TO THE LEFT. - Loring Air Force Base, Weapons Storage Area, Northeastern corner of base at northern end of Maine Road, Limestone, Aroostook County, ME

  2. Amistad Power Plant.

    DTIC Science & Technology

    1983-10-01

    Worh District AMISTAD POWEI PLANT DEL RIO, TEXAS DTICS LECTE DEC 2 11983 OCTOBER 1063 88 11 281 DISTRIBUTION STATEMENT A Approved fca public relea...A I I I 1 1 ... CORPS OF ENGINEERS FORT WORTH DISTRICT, TEXAS FINAL FOUNDATION REPORT AMISTAD POWER PLANT NTIS G- xi DTI’. T" Jus! if - Distr ’. Avai...Wayne E. McIntosh. Colonel Donald Palladino and Colonel Theodore Stroup served as District Engineers during construction of the Amistad Power Plant

  3. The counter effects of the accident at Fukushima Dai-ichi nuclear power station

    NASA Astrophysics Data System (ADS)

    Murakami, Kenta

    2017-01-01

    The counter effects of the accident at the Fukushima Dai-ichi Nuclear Power Station are discussed in this paper. Though decommission and remediation have been conducted in the facility and surrounding area, ninety thousand residences near the facility are still under the evacuation order. Four nuclear power units have already restarted under the new regulatory framework, but two of them in Fukui prefecture stop the operation due to the provisional disposition declared by Ohtsu district court in Shiga prefecture. Reinforcement of the latter layer of the defense in depth has been improved in many ways. The improvement of decision-making process is very important in latter layers of the defense in depth, in contrast the plant behaviors are automatically decided based on their design in the prior layers.

  4. Toluene stability Space Station Rankine power system

    NASA Technical Reports Server (NTRS)

    Havens, V. N.; Ragaller, D. R.; Sibert, L.; Miller, D.

    1987-01-01

    A dynamic test loop is designed to evaluate the thermal stability of an organic Rankine cycle working fluid, toluene, for potential application to the Space Station power conversion unit. Samples of the noncondensible gases and the liquid toluene were taken periodically during the 3410 hour test at 750 F peak temperature. The results obtained from the toluene stability loop verify that toluene degradation will not lead to a loss of performance over the 30-year Space Station mission life requirement. The identity of the degradation products and the low rates of formation were as expected from toluene capsule test data.

  5. Moisture separator reheater upgrade at Surry nuclear power station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bankley, A.

    1985-01-01

    Surry station moisture separator reheaters (MSRs) have experienced numerous problems typical of those found in MSRs of large nuclear power plants. The reliability of MSRs has been of concern to users for several years, primarily in regard to their structural integrity, operational characteristics and performance. Gross MSR internal problems such as reheater tube failures, inadequate moisture separation, buckling, and distortion of internal components occasionally necessitate forced outages or nonscheduled repairs or removal of a particular MSR from operation until repairs can be performed during a scheduled outage. It was obvious that the financial consequences of forced outages or reduced performancemore » were grave and their elimination was an important betterment goal. The objective of this paper is to present past failures of MSRs and modifications that were made to the vessel internals, and to compare their performance prior to and after the improved design was implemented.« less

  6. GIS management system of power plant staff based on wireless fidelity indoor location technology

    NASA Astrophysics Data System (ADS)

    Zhang, Ting

    2017-05-01

    The labor conditions and environment of electric power production are quite complicated. It is very difficult to realize the real-time supervision of the employees' working conditions and safety. Using the existing base stations in the power plant, the wireless fidelity network is established to realize the wireless coverage of the work site. We can use mobile phone to communicate and achieve positioning. The main content of this project is based on the special environment of the power plant, designed a suitable for ordinary Android mobile phone indoor wireless fidelity positioning system, real-time positioning and record the scene of each employee's movement trajectory, has achieved real-time staff check Gang, Staff in place, and for the safety of employees to provide a guarantee.

  7. 75 FR 8895 - Basin Electric Power Cooperative: Deer Creek Station

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-26

    .... The purpose of the proposed Project is to help serve increased load demand for electric power in the... Basin Electric Power Cooperative: Deer Creek Station AGENCY: Rural Utilities Service, USDA. ACTION...) and the Western Area Power Administration (Western) have issued a Draft Environmental Impact Statement...

  8. 77 FR 18271 - Terrestrial Environmental Studies for Nuclear Power Stations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-27

    ... NUCLEAR REGULATORY COMMISSION [NRC-2011-0182] Terrestrial Environmental Studies for Nuclear Power... Environmental Studies for Nuclear Power Stations.'' This guide provides technical guidance that the NRC staff... nuclear power reactors. ADDRESSES: Please refer to Docket ID NRC-2011-0182 when contacting the NRC about...

  9. Commentary: childhood cancer near nuclear power stations

    PubMed Central

    2009-01-01

    In 2008, the KiKK study in Germany reported a 1.6-fold increase in solid cancers and a 2.2-fold increase in leukemias among children living within 5 km of all German nuclear power stations. The study has triggered debates as to the cause(s) of these increased cancers. This article reports on the findings of the KiKK study; discusses past and more recent epidemiological studies of leukemias near nuclear installations around the world, and outlines a possible biological mechanism to explain the increased cancers. This suggests that the observed high rates of infant leukemias may be a teratogenic effect from incorporated radionuclides. Doses from environmental emissions from nuclear reactors to embryos and fetuses in pregnant women near nuclear power stations may be larger than suspected. Hematopoietic tissues appear to be considerably more radiosensitive in embryos/fetuses than in newborn babies. Recommendations for advice to local residents and for further research are made. PMID:19775438

  10. Twenty-five years of environmental radionuclide concentrations near a nuclear power plant.

    PubMed

    Harris, Charles; Kreeger, Danielle; Patrick, Ruth; Palms, John

    2015-05-01

    The areas in and along a 262-km length of the Susquehanna River in Pennsylvania were monitored for the presence of radioactive materials. This study began two months after the 1979 Three Mile Island (TMI) partial reactor meltdown; it spanned the next 25 y. Monitoring points included stations at the PPL Susquehanna and TMI nuclear power plants. Monthly gamma measurements document concentrations of radionuclides from natural and anthropogenic sources. During this study, various series of gamma-emitting radionuclide concentration measurements were made in many general categories of animals, plants, and other inorganic matter. Sampling began in 1979 before the first start-up of the PPL Susquehanna power plant. Although all species were not continuously monitored for the entire period, an extensive database was compiled. In 1986, the ongoing measurements detected fallout from the Chernobyl nuclear accident. These data may be used in support of dose or environmental transport calculations.

  11. White syndrome on massive corals: A case study in Paiton power plant, East Java

    NASA Astrophysics Data System (ADS)

    Muzaki, Farid Kamal; Saptarini, Dian; Riznawati, Aida Efrini

    2017-06-01

    As a stenothermal organism, coral easily affected by high-temperature cooling water discharged by a power plant into surrounding waters; which may lead to a rapid spread and transmission of coral disease, including White Syndrome. This study aimed to measure the prevalence of WS on massive corals in Paiton Power Plant waters. Research was conductedduring May 2015 at three observation stations; west and east side of water discharge canal (DB and DT) and water intake canal (WI). Observed parameters including ambient environmental variables (sea surface and bottom temperature, salinity, dissolved oxygen/DO, pH, and visibility); the cover of life corals (percent and genera composition) and prevalence of coral disease at 5 m depth. One-way ANOVA (analysis of variance, p=0.05) was performed to test the difference of coral disease prevalence from different observation stations. As the results, Coral coverage percentage in WI (85.75%), DB (60.75%), and DT (40.8%). Prevalence of WS in DB was highest (40.49±2.12% in DB, 13.53±11.5% in DT and 6.44±3.6 %, respectively). It can be assumed that prevalence of White Syndrome in those locations may be correlated to temperature which highest average temperature occurred in DB stations.

  12. High current/high power beam experiments from the space station

    NASA Technical Reports Server (NTRS)

    Cohen, Herbert A.

    1986-01-01

    In this overview, on the possible uses of high power beams aboard the space station, the advantages of the space station as compared to previous space vehicles are considered along with the kind of intense beams that could be generated, the possible scientific uses of these beams and associated problems. This order was delibrately chosen to emphasize that the means, that is, the high power particle ejection devices, will lead towards the possible ends, scientific measurements in the Earth's upper atmosphere using large fluxes of energetic particles.

  13. Satellite nuclear power station: An engineering analysis

    NASA Technical Reports Server (NTRS)

    Williams, J. R.; Clement, J. D.; Rosa, R. J.; Kirby, K. D.; Yang, Y. Y.

    1973-01-01

    A nuclear-MHD power plant system which uses a compact non-breeder reactor to produce power in the multimegawatt range is analyzed. It is shown that, operated in synchronous orbit, the plant would transmit power safely to the ground by a microwave beam. Fuel reprocessing would take place in space, and no radioactive material would be returned to earth. Even the effect of a disastrous accident would have negligible effect on earth. A hydrogen moderated gas core reactor, or a colloid-core, or NERVA type reactor could also be used. The system is shown to approach closely the ideal of economical power without pollution.

  14. INTERIOR VIEW OF MIANUS RIVER PUMP STATION LOOKING SOUTHEAST. THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW OF MIANUS RIVER PUMP STATION LOOKING SOUTHEAST. THE CYLINDRICAL TANKS ON THE RIGHT SIDE OF THE PHOTOGRAPH ARE SAND-GRAVEL FILTERS. THE DIESEL POWERED PUMPS LOCATED IN THE CENTER LEFT FOREGOUND SUPPLIED FRESH WATER THROUGH A 16" LINE TO THE POWER PLANT BOILERS LOCATED ONE MILE SOUTH OF THE PUMP STATION - New York, New Haven & Hartford Railroad, Mianus River Pumping Station, River Road & Boston Post Road, Greenwich, Fairfield County, CT

  15. Automation in the Space Station module power management and distribution Breadboard

    NASA Technical Reports Server (NTRS)

    Walls, Bryan; Lollar, Louis F.

    1990-01-01

    The Space Station Module Power Management and Distribution (SSM/PMAD) Breadboard, located at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama, models the power distribution within a Space Station Freedom Habitation or Laboratory module. Originally designed for 20 kHz ac power, the system is now being converted to high voltage dc power with power levels on a par with those expected for a space station module. In addition to the power distribution hardware, the system includes computer control through a hierarchy of processes. The lowest level process consists of fast, simple (from a computing standpoint) switchgear, capable of quickly safing the system. The next level consists of local load center processors called Lowest Level Processors (LLP's). These LLP's execute load scheduling, perform redundant switching, and shed loads which use more than scheduled power. The level above the LLP's contains a Communication and Algorithmic Controller (CAC) which coordinates communications with the highest level. Finally, at this highest level, three cooperating Artificial Intelligence (AI) systems manage load prioritization, load scheduling, load shedding, and fault recovery and management. The system provides an excellent venue for developing and examining advanced automation techniques. The current system and the plans for its future are examined.

  16. A Renewably Powered Hydrogen Generation and Fueling Station Community Project

    NASA Technical Reports Server (NTRS)

    Lyons, Valerie J.; Sekura, Linda S.; Prokopius, Paul; Theirl, Susan

    2009-01-01

    The proposed project goal is to encourage the use of renewable energy and clean fuel technologies for transportation and other applications while generating economic development. This can be done by creating an incubator for collaborators, and creating a manufacturing hub for the energy economy of the future by training both white- and blue-collar workers for the new energy economy. Hydrogen electrolyzer fueling stations could be mass-produced, shipped and installed in collaboration with renewable energy power stations, or installed connected to the grid with renewable power added later.

  17. Coping with coal quality impacts on power plant operation and maintenance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatt, R.

    1998-12-31

    The electric power industry is rapidly changing due to deregulation. The author was present one hot day in June of this year, when a southeastern utility company was selling electricity for $5,000.00 per megawatt with $85.00 cost. Typical power cost range from the mid teens at night to about $30.00 on a normal day. The free market place will challenge the power industry in many ways. Fuel is the major cost in electric power. In a regulated industry the cost of fuel was passed on to the customers. Fuels were chosen to minimize problems such as handling, combustion, ash depositsmore » and other operational and maintenance concerns. Tight specifications were used to eliminate or minimize coals that caused problems. These tight specifications raised the price of fuel by minimizing competition. As the power stations become individual profit centers, plant management must take a more proactive role in fuel selection. Understanding how coal quality impacts plant performance and cost, allows better fuel selection decisions. How well plants take advantage of their knowledge may determine whether they will be able to compete in a free market place. The coal industry itself can provide many insights on how to survive in this type of market. Coal mines today must remain competitive or be shut down. The consolidation of the coal industry indicates the trends that can occur in a competitive market. These trends have already started, and will continue in the utility industry. This paper will discuss several common situations concerning coal quality and potential solutions for the plant to consider. All these examples have mill maintenance and performance issues in common. This is indicative of how important pulverizers are to the successful operation of a power plant.« less

  18. Space Station Freedom secondary power wiring requirements

    NASA Technical Reports Server (NTRS)

    Sawyer, C. R.

    1994-01-01

    Secondary power is produced by DDCU's (direct current to direct current converter units) and routed to and through secondary power distribution assemblies (SPDA's) to loads or tertiary distribution assemblies. This presentation outlines requirements of Space Station Freedom (SSF) EEE (electrical, electronic, and electromechanical) parts wire and the approved electrical wire and cable. The SSF PDRD (Program Definition and Requirements Document) language problems and resolution are reviewed. The cable routing to and from the SPDA's is presented as diagrams and the wire recommendations and characteristics are given.

  19. Application of a hazard and operability study method to hazard evaluation of a chemical unit of the power station.

    PubMed

    Habibi, E; Zare, M; Barkhordari, A; Mirmohammadi, Sj; Halvani, Ghh

    2008-12-28

    The aim of this study was to identify the hazards, evaluate their risk factors and determine the measure for promotion of the process and reduction of accidents in the chemical unit of the power station. In this case and qualitative study, HAZOP technique was used to recognize the hazards and problems of operations on the chemical section at power station. Totally, 126 deviations were documented with various causes and consequences. Ranking and evaluation of identified risks indicate that the majority of deviations were categorized as "acceptable" and less than half of that were "unacceptable". The highest calculated risk level (1B) related to both the interruption of acid entry to the discharge pumps and an increased density of the acid. About 27% of the deviations had the lowest risk level (4B). The identification of hazards by HAZOP indicates that it could, systemically, assess and criticize the process of consumption or production of acid and alkali in the chemical unit of power plant.

  20. 43. CAPE COD AIR STATION PAVE PAWS FACILITY WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    43. CAPE COD AIR STATION PAVE PAWS FACILITY - WITH BUILDING METAL SIDING BEING APPLIED ON "C" FACE (RIGHT) AND "B" FACE BEING PREPARED FOR INSTALLATION. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  1. Water turbine technology for small power stations

    NASA Astrophysics Data System (ADS)

    Salovaara, T.

    1980-02-01

    The paper examines hydro-power stations and the efficiency and costs of using water turbines to run them. Attention is given to different turbine types emphasizing the use of Kaplan-turbines and runners. Hydraulic characteristics and mechanical properties of low head turbines and small turbines, constructed of fully fabricated steel plate structures, are presented.

  2. Small space station electrical power system design concepts

    NASA Technical Reports Server (NTRS)

    Jones, G. M.; Mercer, L. N.

    1976-01-01

    A small manned facility, i.e., a small space station, placed in earth orbit by the Shuttle transportation system would be a viable, cost effective addition to the basic Shuttle system to provide many opportunities for R&D programs, particularly in the area of earth applications. The small space station would have many similarities with Skylab. This paper presents design concepts for an electrical power system (EPS) for the small space station based on Skylab experience, in-house work at Marshall Space Flight Center, SEPS (Solar Electric Propulsion Stage) solar array development studies, and other studies sponsored by MSFC. The proposed EPS would be a solar array/secondary battery system. Design concepts expressed are based on maximizing system efficiency and five year operational reliability. Cost, weight, volume, and complexity considerations are inherent in the concepts presented. A small space station EPS based on these concepts would be highly efficient, reliable, and relatively inexpensive.

  3. NCERA-101 STATION REPORT - KENNEDY SPACE CENTER: Large Plant Growth Hardware for the International Space Station

    NASA Technical Reports Server (NTRS)

    Massa, Gioia D.

    2013-01-01

    This is the station report for the national controlled environments meeting. Topics to be discussed will include the Veggie and Advanced Plant Habitat ISS hardware. The goal is to introduce this hardware to a potential user community.

  4. Automation of Space Station module power management and distribution system

    NASA Technical Reports Server (NTRS)

    Bechtel, Robert; Weeks, Dave; Walls, Bryan

    1990-01-01

    Viewgraphs on automation of space station module (SSM) power management and distribution (PMAD) system are presented. Topics covered include: reasons for power system automation; SSM/PMAD approach to automation; SSM/PMAD test bed; SSM/PMAD topology; functional partitioning; SSM/PMAD control; rack level autonomy; FRAMES AI system; and future technology needs for power system automation.

  5. GHG PSD Permit: Cheyenne Light, Fuel & Power / Black Hills Power, Inc. – Cheyenne Prairie Generating Station

    EPA Pesticide Factsheets

    This page contains the final PSD permit for the Cheyenne Light, Fuel & Power / Black Hills Power, Inc. Cheyenne Prairie Generating Station, located in Laramie, Wyoming, and operated by Black Hills Service Company.

  6. 42. CAPE COD AIR STATION PAVE PAWS FACILITY SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    42. CAPE COD AIR STATION PAVE PAWS FACILITY - SHOWING BUILDING "RED IRON" STEEL STRUCTURE AT 46T DAY OF STEEL CONSTRUCTION. "BUILDING TOPPED OFF, 7 JULY, 1974. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  7. 47 CFR 73.6012 - Protection of Class A TV, low power TV and TV translator stations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... translator stations. 73.6012 Section 73.6012 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED... of Class A TV, low power TV and TV translator stations. An application to change the facilities of an... power TV and TV translator stations and applications for changes in such stations filed prior to the...

  8. Exercise of the SSM/PMAD Breadboard. [Space Station Module/Power Management And Distribution

    NASA Technical Reports Server (NTRS)

    Walls, Bryan

    1989-01-01

    The Space Station Module Power Management and Distribution (SSM/PMAD) Breadboard is a test facility designed for advanced development of space power automation. Originally designed for 20-kHz power, the system is being converted to work with direct current (dc). Power levels are on a par with those expected for a Space Station module. Some of the strengths and weaknesses of the SSM/PMAD system in design and function are examined, and the future directions foreseen for the system are outlined.

  9. 76 FR 1469 - Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-10

    ... Impact Statement for License Renewal of Nuclear Plants, Calvert Cliffs Nuclear Power Plant (NUREG-1437... Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2 Environmental Assessment... Plant, LLC, the licensee, for operation of the Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2...

  10. Photovoltaic power system for satellite Earth stations in remote areas: Project status and design description

    NASA Technical Reports Server (NTRS)

    Delombard, R.

    1984-01-01

    A photovoltaic power system which will be installed at a remote location in Indonesia to provide power for a satellite Earth station and a classroom for video and audio teleconferences are described. The Earth station may also provide telephone service to a nearby village. The use of satellite communications for development assistance applications and the suitability of a hybrid photovoltaic engine generator power system for remote satellite Earth stations are demonstrated. The Indonesian rural satellite project is discussed and the photovoltaic power system is described.

  11. Automation of the space station core module power management and distribution system

    NASA Technical Reports Server (NTRS)

    Weeks, David J.

    1988-01-01

    Under the Advanced Development Program for Space Station, Marshall Space Flight Center has been developing advanced automation applications for the Power Management and Distribution (PMAD) system inside the Space Station modules for the past three years. The Space Station Module Power Management and Distribution System (SSM/PMAD) test bed features three artificial intelligence (AI) systems coupled with conventional automation software functioning in an autonomous or closed-loop fashion. The AI systems in the test bed include a baseline scheduler/dynamic rescheduler (LES), a load shedding management system (LPLMS), and a fault recovery and management expert system (FRAMES). This test bed will be part of the NASA Systems Autonomy Demonstration for 1990 featuring cooperating expert systems in various Space Station subsystem test beds. It is concluded that advanced automation technology involving AI approaches is sufficiently mature to begin applying the technology to current and planned spacecraft applications including the Space Station.

  12. Power transmission cable development for the Space Station Freedom electrical power system

    NASA Technical Reports Server (NTRS)

    Schmitz, Gregory V.; Biess, John J.

    1989-01-01

    Power transmission cable is presently being evaluated under a NASA Lewis Research Center advanced development contract for application in the Space Station Freedom (SSF) electrical power system (EPS). Evaluation testing has been performed by TRW and NASA Lewis Research Center. The results of this development contract are presented. The primary cable design goals are to provide (1) a low characteristic inductance to minimize line voltage drop at 20 kHz, (2) electromagnetic compatibility control of the 20-kHz ac power current, (3) a physical configuration that minimizes ac resistance and (4) release of trapped air for corona-free operation.

  13. Living near nuclear power plants and thyroid cancer risk: A systematic review and meta-analysis.

    PubMed

    Kim, Jaeyoung; Bang, Yejin; Lee, Won Jin

    2016-02-01

    There has been public concern regarding the safety of residing near nuclear power plants, and the extent of risk for thyroid cancer among adults living near nuclear power plants has not been fully explored. In the present study, a systematic review and meta-analysis of epidemiologic studies was conducted to investigate the association between living near nuclear power plants and the risk of thyroid cancer. A comprehensive literature search was performed on studies published up to March 2015 on the association between nuclear power plants and thyroid cancer risk. The summary standardized incidence ratio (SIR), standardized mortality ratio (SMR), and 95% confidence intervals (CIs) were calculated using a random-effect model of meta-analysis. Sensitivity analyses were performed by study quality. Thirteen studies were included in the meta-analysis, covering 36 nuclear power stations in 10 countries. Overall, summary estimates showed no significant increased thyroid cancer incidence or mortality among residents living near nuclear power plants (summary SIR=0.98; 95% CI 0.87-1.11, summary SMR=0.80; 95% CI 0.62-1.04). The pooled estimates did not reveal different patterns of risk by gender, exposure definition, or reference population. However, sensitivity analysis by exposure definition showed that living less than 20 km from nuclear power plants was associated with a significant increase in the risk of thyroid cancer in well-designed studies (summary OR=1.75; 95% CI 1.17-2.64). Our study does not support an association between living near nuclear power plants and risk of thyroid cancer but does support a need for well-designed future studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Practical design considerations for photovoltaic power station

    NASA Astrophysics Data System (ADS)

    Swanson, T. D.

    Aspects of photovoltaic (PV) technology are discussed along with generic PV design considerations, taking into account the resource sunlight, PV modules and their reliability, questions of PV system design, the support structure subsystem, and a power conditioning unit subsystem. A description is presented of two recent projects which demonstrate the translation of an idea into actual working PV systems. A privately financed project in Denton, Maryland, went on line in early December, 1982, and began providing power to the local utility grid. It represents the first intermediate size, grid-connected, privately financed power station in the U.S. Based on firm quotes, the actual cost of this system is about $13/W peak. The other project, called the PV Breeder, is an energy independent facility which utilizes solar power to make new solar cells. It is also the first large industrial structure completely powered by the sun.

  15. Shippingport station decommissioning project ALARA Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crimi, F.P.

    1995-03-01

    Properly planned and implemented ALARA programs help to maintain nuclear worker radiation exposures {open_quotes}As Low As Reasonably Achievable.{close_quotes}. This paper describes the ALARA program developed and implemented for the decontamination and decommissioning (D&D) of the Shippingport Atomic Power Station. The elements required for a successful ALARA program are discussed along with examples of good ALARA practices. The Shippingport Atomic Power Station (SAPS) was the first commercial nuclear power plant to be built in the United States. It was located 35 miles northwest of Pittsburgh, PA on the south bank of the Ohio river. The reactor plant achieved initial criticality inmore » December 1959. During its 25-year life, it produced 7.5 billion kilowatts of electricity. The SAPS was shut down in October 1982 and was the first large-scale U.S. nuclear power plant to be totally decommissioned and the site released for unrestricted use. The Decommission Project was estimated to take 1,007 man-rem of radiation exposure and $.98.3 million to complete. Physical decommissioning commenced in September 1985 and was completed in September 1989. The actual man-rem of exposure was 155. The project was completed 6 months ahead of schedule at a cost of $91.3 million.« less

  16. Space station WP-04 power system. Volume 2: Study results

    NASA Technical Reports Server (NTRS)

    Hallinan, G. J.

    1987-01-01

    Results of the phase B study contract for the definition of the space station Electric Power System (EPS) are presented in detail along with backup information and supporting data. Systems analysis and trades, preliminary design, advanced development, customer accommodations, operations planning, product assurance, and design and development phase planning are addressed. The station design is a hybrid approach which provides user power of 25 kWe from the photovoltaic subsystem and 50 kWe from the solar dynamic subsystem. The electric power is distributed to users as a utility service; single phase at a frequency of 20 kHz and voltage of 440VAC. The solar array NiH2 batteries of the photovoltaic subsystem are based on commonality to those used on the co-orbiting and solar platforms.

  17. 76 FR 11680 - Digital Low Power Television, Television Translator, and Television Booster Stations and Digital...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-03

    ...] Digital Low Power Television, Television Translator, and Television Booster Stations and Digital Class A... Commission's Rules to Establish Rules for Digital Low Power, Television Translator, and Television Booster... Digital Low Power Television Translator, Television Booster Stations, and to Amend Rules for Digital Class...

  18. 77 FR 36298 - In the Matter of Maine Yankee Atomic Power Company; Maine Yankee Atomic Power Station...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-18

    ... the Matter of Maine Yankee Atomic Power Company; Maine Yankee Atomic Power Station; Confirmatory Order... Regulatory Commission (NRC or the Commission) issued a Confirmatory Order to Maine Yankee Atomic Power...: (301) 492-3342; Email: [email protected] . I Maine Yankee Atomic Power Company (Maine Yankee or the...

  19. UMTS Network Stations

    NASA Astrophysics Data System (ADS)

    Hernandez, C.

    2010-09-01

    The weakness of small island electrical grids implies a handicap for the electrical generation with renewable energy sources. With the intention of maximizing the installation of photovoltaic generators in the Canary Islands, arises the need to develop a solar forecasting system that allows knowing in advance the amount of PV generated electricity that will be going into the grid, from the installed PV power plants installed in the island. The forecasting tools need to get feedback from real weather data in "real time" from remote weather stations. Nevertheless, the transference of this data to the calculation computer servers is very complicated with the old point to point telecommunication systems that, neither allow the transfer of data from several remote weather stations simultaneously nor high frequency of sampling of weather parameters due to slowness of the connection. This one project has developed a telecommunications infrastructure that allows sensorizadas remote stations, to send data of its sensors, once every minute and simultaneously, to the calculation server running the solar forecasting numerical models. For it, the Canary Islands Institute of Technology has added a sophisticated communications network to its 30 weather stations measuring irradiation at strategic sites, areas with high penetration of photovoltaic generation or that have potential to host in the future photovoltaic power plants connected to the grid. In each one of the stations, irradiance and temperature measurement instruments have been installed, over inclined silicon cell, global radiation on horizontal surface and room temperature. Mobile telephone devices have been installed and programmed in each one of the weather stations, which allow the transfer of their data taking advantage of the UMTS service offered by the local telephone operator. Every minute the computer server running the numerical weather forecasting models receives data inputs from 120 instruments distributed

  20. Nevada Power: Clark Station; Las Vegas, Nevada (Data)

    DOE Data Explorer

    Stoffel, T.; Andreas, A.

    2006-03-27

    A partnership with the University of Nevada and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.

  1. Design of the Space Station Freedom power system

    NASA Technical Reports Server (NTRS)

    Thomas, Ronald L.; Hallinan, George J.

    1989-01-01

    The design of Space Station Freedom's electric power system (EPS) is reviewed, highlighting the key design goals of performance, low cost, reliability and safety. Tradeoff study results that illustrate the competing factors responsible for many of the more important design decisions are discussed. When Freedom's EPS is compared with previous space power designs, two major differences stand out. The first is the size of the EPS, which is larger than any prior system. The second major difference between the EPS and other space power designs is the indefinite expected life of Freedom; 30 years has been used for life-cycle-cost calculations.

  2. Solar photovoltaic power system for a radio station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nichols, B. E.

    1980-12-01

    Under sponsorship of the US Department of Energy, Massachusetts Institute of Technology Lincoln Laboratory has developed a concept for a small photovoltaic power system. Of simple construction, the system uses low-cost, prefabricated, transportable units for easy, fast installation and requires minimal site preparation. The first application of this experimental system began operation in August 1979 at daytime AM radio station WNBO in Bryan, Ohio. The project was jointly undertaken by the Laboratory and the radio station. The photovoltaic system described holds promise for a wide range of applications and economic feasibility by the mid- to late-1980s.

  3. Metal phytoremediation potential of naturally growing plants on fly ash dumpsite of Patratu thermal power station, Jharkhand, India.

    PubMed

    Pandey, Shikha Kumari; Bhattacharya, Tanushree; Chakraborty, Sukalyan

    2016-01-01

    Three naturally growing plants Ipomoea carnea, Lantana camara, and Solanum surattense were found in fly ash dumpsite of Patratu thermal power station, Jharkhand, India. They were assessed for their metal uptake potential. The fly ash was slightly alkaline with very less nitrogen and organic carbon but enriched with phosphorus and heavy metals. Lantana camara and Ipomoea carnea showed good translocation from root to shoot for most of the metals except Mn and Pb. The order of metal accumulation in stem of both the plants were Fe(205mg/kg)>Mn(65mg/kg)>Cu(22.35mg/kg)>Pb(6.6mg/kg)>Cr(3.05mg/kg)>Ni(1 mg/kg)>Cd(0.5 mg/kg) and Fe(741 mg/kg)>Mn(154.05 mg/kg)>Cu(20.75 mg/kg)>Pb(6.75 mg/kg)>Ni(4.0 mg/kg)>Cr(3.3mg/kg)>Cd(0.05mg/kg), respectively. But Solanum surattense accumulated most of the metals in roots. The order was in the following order, Mn (382.2mg/kg) >Fe (264.1mg/kg) > Cu (25.35mg/kg) >Pb (5.95 mg/kg) > Ni (1.9 mg/kg) > Cr (1.8mg/kg) > Cd (0.55 mg/kg). The order of Bioconcentration factor (BCF) in root and shoot followed almost the same order as, Mn>Fe>Ni>Pb>Cu>Cr≈ Cd in all the three species. ANOVA showed significant variation in metal accumulation by root and stem between the species. Finally, it can be concluded that Solanum surattense can be used as phytostabilizer and other two species as phytoextractor of metal for fly ash dumpsite reclamation.

  4. Space Station Freedom power management and distribution system design

    NASA Technical Reports Server (NTRS)

    Teren, Fred

    1989-01-01

    The design is described of the Space Station Freedom Power Management and Distribution (PMAD) System. In addition, the significant trade studies which were conducted are described, which led to the current PMAD system configuration.

  5. Silicon solar photovoltaic power stations

    NASA Technical Reports Server (NTRS)

    Chowaniec, C. R.; Ferber, R. R.; Pittman, P. F.; Marshall, B. W.

    1977-01-01

    Modular design of components and arrays, cost estimates for modules and support structures, and cost/performance analysis of a central solar photovoltaic power plant are discussed. Costs of collector/reflector arrays are judged the dominant element in the total capital investment. High-concentration solar tracking arrays are recommended as the most economic means for producing solar photovoltaic energy when solar cells costs are high ($500 per kW generated). Capital costs for power conditioning subsystem components are itemized and system busbar energy costs are discussed at length.

  6. Technical evaluation of RETS-required reports for Browns Ferry Nuclear Power Station, Units 1, 2, and 3, for 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, T.E.; Magleby, E.H.

    1985-09-06

    A review was performed of reports required by federal regulations and the plant-specific radiological effluent technical specifications (RETS) for operations conducted at Tennessee Valley Authority's Browns Ferry Nuclear Station, Units 1, 2, and 3, during 1983. The two periodic reports reviewed were (a) the Effluents and Waste Disposal Semiannual Report, First Half 1983 and (b) the Effluents and Waste Disposal Semiannual Report, Second Half 1983. The principal review guidelines were the plant's specific RETs and NRC guidance given in NUREG-0133, ''Preparation of Radiological Effluent Technical Specifications for Nuclear Power Plants.'' The Licensee's submitted reports were found to be reasonably completemore » and consistent with the review guidelines.« less

  7. Science and payload options for animal and plant research accommodations aboard the early Space Station

    NASA Technical Reports Server (NTRS)

    Hilchey, John D.; Arno, Roger D.; Gustan, Edith; Rudiger, C. E.

    1986-01-01

    The resources to be allocated for the development of the Initial Operational Capability (IOC) Space Station Animal and Plant Research Facility and the Growth Station Animal and Plant Vivarium and Laboratory may be limited; also, IOC accommodations for animal and plant research may be limited. An approach is presented for the development of Initial Research Capability Minilabs for animal and plant studies, which in appropriate combination and sequence can meet requirements for an evolving program of research within available accommodations and anticipated budget constraints.

  8. 76 FR 72849 - Digital Low Power Television, Television Translator, and Television Booster Stations and To Amend...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-28

    ...] Digital Low Power Television, Television Translator, and Television Booster Stations and To Amend Rules... for Digital Low Power Television, Television Translator, and Television Booster Stations and to Amend... television, TV translator, and Class A television station DTV licensees''). The Commission has also revised...

  9. 75 FR 38147 - FirstEnergy Nuclear Operating Company; Davis-Besse Nuclear Power Station; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-01

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-346; NRC-2010-0240] FirstEnergy Nuclear Operating Company; Davis-Besse Nuclear Power Station; Exemption 1.0 Background FirstEnergy Nuclear Operating Company... of the Davis-Besse Nuclear Power Station, Unit 1 (DBNPS). The license provides, among other things...

  10. 75 FR 80549 - FirstEnergy Nuclear Operating Company, Davis-Besse Nuclear Power Station; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-22

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-346; NRC-2010-0378] FirstEnergy Nuclear Operating Company, Davis-Besse Nuclear Power Station; Exemption 1.0 Background FirstEnergy Nuclear Operating Company... of the Davis-Besse Nuclear Power Station, Unit 1 (DBNPS). The license provides, among other things...

  11. 75 FR 2164 - Entergy Nuclear Operations, Inc.; Pilgrim Nuclear Power Station; Environmental Assessment and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-14

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-293; NRC-2010-0010] Entergy Nuclear Operations, Inc.; Pilgrim Nuclear Power Station; Environmental Assessment and Finding of No Significant Impact The U.S... Entergy Nuclear Operations, Inc. (Entergy or the licensee), for operation of Pilgrim Nuclear Power Station...

  12. Nuclear Power Plants. Revised.

    ERIC Educational Resources Information Center

    Lyerly, Ray L.; Mitchell, Walter, III

    This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. Among the topics discussed are: Why Use Nuclear Power?; From Atoms to Electricity; Reactor Types; Typical Plant Design Features; The Cost of Nuclear Power; Plants in the United States; Developments in Foreign…

  13. Thermodynamic power stations at low temperatures

    NASA Astrophysics Data System (ADS)

    Malherbe, J.; Ployart, R.; Alleau, T.; Bandelier, P.; Lauro, F.

    The development of low-temperature thermodynamic power stations using solar energy is considered, with special attention given to the choice of the thermodynamic cycle (Rankine), working fluids (frigorific halogen compounds), and heat exchangers. Thermomechanical conversion machines, such as ac motors and rotating volumetric motors are discussed. A system is recommended for the use of solar energy for irrigation and pumping in remote areas. Other applications include the production of cold of fresh water from brackish waters, and energy recovery from hot springs.

  14. 76 FR 29277 - Exelon Generation Company, LLC; Peach Bottom Atomic Power Station Unit Nos. 2 and 3...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-20

    ... Company, LLC; Peach Bottom Atomic Power Station Unit Nos. 2 and 3; Environmental Assessment and Finding of..., LLC (Exelon, the licensee) for operation of the Peach Bottom Atomic Power Station, Units 2 and 3...) in the Peach Bottom Atomic Power Station (PBAPS) LLRW Storage Facility. Considering the nature of the...

  15. 45. CAPE COD AIR STATION PAVE PAWS FACILITY BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    45. CAPE COD AIR STATION PAVE PAWS FACILITY - BUILDING ELEVATION VIEW WITH BUILDING METAL SIDING BEING APPLIED ON "A" FACE (LEFT) AND "B" FACE (RIGHT). NOTE THAT NORTH IS GENERALLY TO RIGHT OF VIEW. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  16. 47 CFR 74.780 - Broadcast regulations applicable to translators, low power, and booster stations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Broadcast regulations applicable to translators... PROGRAM DISTRIBUTIONAL SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.780 Broadcast regulations applicable to translators, low power, and booster stations. The following rules are applicable to...

  17. 2. VIEW OF POWER PLANT LOOKING SOUTHEAST. Potomac Power ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW OF POWER PLANT LOOKING SOUTHEAST. - Potomac Power Plant, On West Virginia Shore of Potomac River, about 1 mile upriver from confluence with Shenandoah River, Harpers Ferry, Jefferson County, WV

  18. Status of 20 kHz space station power distribution technology

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.

    1988-01-01

    Power Distribution on the NASA Space Station will be accomplished by a 20 kHz sinusoidal, 440 VRMS, single phase system. In order to minimize both system complexity and the total power coversion steps required, high frequency power will be distributed end-to-end in the system. To support the final design of flight power system hardware, advanced development and demonstrations have been made on key system technologies and components. The current status of this program is discussed.

  19. Space Station Freedom photovoltaic power module design status

    NASA Technical Reports Server (NTRS)

    Jimenez, Amador P.; Hoberecht, Mark A.

    1989-01-01

    Electric power generation for the Space Station Freedom will be provided by four photovoltaic (PV) power modules using silicon solar cells during phase I operation. Each PV power module requires two solar arrays with 32,800 solar cells generating 18.75 kW of dc power for a total of 75 kW. A portion of this power will be stored in nickel-hydrogen batteries for use during eclipse, and the balance will be processed and converted to 20 kHz ac power for distribution to end users through the power management and distribution system. The design incorporates an optimized thermal control system, pointing and tracking provision with the application of gimbals, and the use of orbital replacement units to achieve modularization. The design status of the PV power module, as derived from major trade studies, is discussed at hardware levels ranging from component to system. Details of the design are presented where appropriate.

  20. Space Station Freedom photovoltaic power module design status

    NASA Technical Reports Server (NTRS)

    Jimenez, Amador P.; Hoberecht, Mark A.

    1989-01-01

    Electric power generation for Space Station Freedom will be provided by four photovoltaic (PV) power modules using silicon solar cells during Phase 1 operation. Each PV power module requires two solar arrays with 32,800 solar cells generating 18.75 kW of dc power for a total of 75 kW. A portion of this power will be stored in nickel-hydrogen batteries for use during eclipse, and the balance will be processed and converted to 20 kHz ac power for distribution to end users through the power management and distribution system. The design incorporates an optimized thermal control system, pointing and tracking provision with the application of gimbals, and the use of orbital replacement units (ORU's) to achieve modularization. Design status of the PV power module, as derived from major trade studies, is discussed at hardware levels ranging from component to system. Details of the design are presented where appropriate.

  1. A fault diagnosis system for PV power station based on global partitioned gradually approximation method

    NASA Astrophysics Data System (ADS)

    Wang, S.; Zhang, X. N.; Gao, D. D.; Liu, H. X.; Ye, J.; Li, L. R.

    2016-08-01

    As the solar photovoltaic (PV) power is applied extensively, more attentions are paid to the maintenance and fault diagnosis of PV power plants. Based on analysis of the structure of PV power station, the global partitioned gradually approximation method is proposed as a fault diagnosis algorithm to determine and locate the fault of PV panels. The PV array is divided into 16x16 blocks and numbered. On the basis of modularly processing of the PV array, the current values of each block are analyzed. The mean current value of each block is used for calculating the fault weigh factor. The fault threshold is defined to determine the fault, and the shade is considered to reduce the probability of misjudgments. A fault diagnosis system is designed and implemented with LabVIEW. And it has some functions including the data realtime display, online check, statistics, real-time prediction and fault diagnosis. Through the data from PV plants, the algorithm is verified. The results show that the fault diagnosis results are accurate, and the system works well. The validity and the possibility of the system are verified by the results as well. The developed system will be benefit for the maintenance and management of large scale PV array.

  2. 76 FR 39908 - Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-07

    ... Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2; Calvert Cliffs.... DPR-53 and DPR-69, for the Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2 (CCNPP), respectively... (ISFSI), currently held by Calvert Cliffs Nuclear Power Plant, LLC as owner and licensed operator...

  3. Space Station Freedom power management and distribution design status

    NASA Technical Reports Server (NTRS)

    Javidi, S.; Gholdston, E.; Stroh, P.

    1989-01-01

    The design status of the power management and distribution electric power system for the Space Station Freedom is presented. The current design is a star architecture, which has been found to be the best approach for meeting the requirement to deliver 120 V dc to the user interface. The architecture minimizes mass and power losses while improving element-to-element isolation and system flexibility. The design is partitioned into three elements: energy collection, storage and conversion, system protection and distribution, and management and control.

  4. The Space Station Module Power Management and Distribution automation test bed

    NASA Technical Reports Server (NTRS)

    Lollar, Louis F.

    1991-01-01

    The Space Station Module Power Management And Distribution (SSM/PMAD) automation test bed project was begun at NASA/Marshall Space Flight Center (MSFC) in the mid-1980s to develop an autonomous, user-supportive power management and distribution test bed simulating the Space Station Freedom Hab/Lab modules. As the test bed has matured, many new technologies and projects have been added. The author focuses on three primary areas. The first area is the overall accomplishments of the test bed itself. These include a much-improved user interface, a more efficient expert system scheduler, improved communication among the three expert systems, and initial work on adding intermediate levels of autonomy. The second area is the addition of a more realistic power source to the SSM/PMAD test bed; this project is called the Large Autonomous Spacecraft Electrical Power System (LASEPS). The third area is the completion of a virtual link between the SSM/PMAD test bed at MSFC and the Autonomous Power Expert at Lewis Research Center.

  5. Safety system augmentation at Russian nuclear power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scerbo, J.A.; Satpute, S.N.; Donkin, J.Y.

    1996-12-31

    This paper describes the design and procurement of a Class IE DC power supply system to upgrade plant safety at the Kola Nuclear Power Plant (NPP). Kola NPP is located above the Arctic circle at Polyarnie Zorie, Murmansk, Russia. Kola NPP consists of four units. Units 1 and 2 have VVER-440/230 type reactors: Units 3 and 4 have VVER-440/213 type reactors. The VVER-440 reactor design is similar to the pressurized water reactor design used in the US. This project provided redundant, Class 1E DC station batteries and DC switchboards for Kola NPP, Units 1 and 2. The new DC powermore » supply system was designed and procured in compliance with current nuclear design practices and requirements. Technical issues that needed to be addressed included reconciling the requirements in both US and Russian codes and satisfying the requirements of the Russian nuclear regulatory authority. Close interface with ATOMENERGOPROEKT (AEP), the Russian design organization, KOLA NPP plant personnel, and GOSATOMNADZOR (GAN), the Russian version of US Nuclear Regulatory Commission, was necessary to develop a design that would assure compliance with current Russian design requirements. Hence, this project was expected to serve as an example for plant upgrades at other similar VVER-440 nuclear plants. In addition to technical issues, the project needed to address language barriers and the logistics of shipping equipment to a remote section of the Former Soviet Union (FSU). This project was executed by Burns and Roe under the sponsorship of the US DOE as part of the International Safety Program (INSP). The INSP is a comprehensive effort, in cooperation with partners in other countries, to improve nuclear safety worldwide. A major element within the INSP is the improvement of the safety of Soviet-designed nuclear reactors.« less

  6. 47. CAPE COD AIR STATION PAVE PAWS FACILITY AERIAL VIEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    47. CAPE COD AIR STATION PAVE PAWS FACILITY AERIAL VIEW OF "A" FACE (LEFT) WITH CLEANING SYSTEM INSTALLED (NOW REMOVED) AND "B" FACE (RIGHT) WITH CONSTRUCTION CRANE IN USE. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  7. 47 CFR 74.789 - Broadcast regulations applicable to digital low power television and television translator stations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... power television and television translator stations. 74.789 Section 74.789 Telecommunication FEDERAL... AND OTHER PROGRAM DISTRIBUTIONAL SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.789 Broadcast regulations applicable to digital low power television and television translator...

  8. Concentrating Solar Power Projects - Redstone Solar Thermal Power Plant |

    Science.gov Websites

    Concentrating Solar Power | NREL Redstone Solar Thermal Power Plant Status Date: September 8 , 2016 Project Overview Project Name: Redstone Solar Thermal Power Plant Country: South Africa Location ): 100.0 MW Turbine Capacity (Net): 100.0 MW Cooling Method: Dry cooling Thermal Storage Storage Type: 2

  9. 76 FR 4391 - Calvert Cliffs Nuclear Power Plant, LLC, Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-25

    ... Nuclear Power Plant, LLC, Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2; Exemption 1.0 Background Calvert Cliffs Nuclear Power Plant, LLC, the licensee, is the holder of Facility Operating License Nos. DPR-53 and DPR-69 which authorizes operation of the Calvert Cliffs Nuclear Power Plant, Unit Nos. 1...

  10. 75 FR 66802 - Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-29

    ... Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2; Notice of Withdrawal of...) has granted the request of Calvert Cliffs Nuclear Power Plant, LLC, the licensee, to withdraw its... for the Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2, located in Calvert County, MD. The...

  11. Space station experiment definition: Advanced power system test bed

    NASA Technical Reports Server (NTRS)

    Pollard, H. E.; Neff, R. E.

    1986-01-01

    A conceptual design for an advanced photovoltaic power system test bed was provided and the requirements for advanced photovoltaic power system experiments better defined. Results of this study will be used in the design efforts conducted in phase B and phase C/D of the space station program so that the test bed capabilities will be responsive to user needs. Critical PV and energy storage technologies were identified and inputs were received from the idustry (government and commercial, U.S. and international) which identified experimental requirements. These inputs were used to develop a number of different conceptual designs. Pros and cons of each were discussed and a strawman candidate identified. A preliminary evolutionary plan, which included necessary precursor activities, was established and cost estimates presented which would allow for a successful implementation to the space station in the 1994 time frame.

  12. Lewis Research Center space station electric power system test facilities

    NASA Technical Reports Server (NTRS)

    Birchenough, Arthur G.; Martin, Donald F.

    1988-01-01

    NASA Lewis Research Center facilities were developed to support testing of the Space Station Electric Power System. The capabilities and plans for these facilities are described. The three facilities which are required in the Phase C/D testing, the Power Systems Facility, the Space Power Facility, and the EPS Simulation Lab, are described in detail. The responsibilities of NASA Lewis and outside groups in conducting tests are also discussed.

  13. Simulation of hybrid solar power plants

    NASA Astrophysics Data System (ADS)

    Dieckmann, Simon; Dersch, Jürgen

    2017-06-01

    Hybrid solar power plants have the potential to combine advantages of two different technologies at the cost of increased complexity. The present paper shows the potential of the software greenius for the techno-economic evaluation of hybrid solar power plants and discusses two exemplary scenarios. Depreciated Concentrated Solar Power (CSP) plants based on trough technology can be retrofitted with solar towers in order to reach higher steam cycle temperatures and hence efficiencies. Compared to a newly built tower plant the hybridization of a depreciated trough plant causes about 30% lower LCOE reaching 104 /MWh. The second hybrid scenario combines cost-efficient photovoltaics with dispatchable CSP technology. This hybrid plant offers very high capacity factors up to 69% based on 100% load from 8am to 11pm. The LCOE of the hybrid plant are only slightly lower (174 vs. 186 /MWh) compared to the pure CSP plant because the capital expenditure for thermal storage and power block remains the same while the electricity output is much lower.

  14. The Plant Research Unit: Long-Term Plant Growth Support for Space Station

    NASA Technical Reports Server (NTRS)

    Heathcote, D. G.; Brown, C. S.; Goins, G. D.; Kliss, M.; Levine, H.; Lomax, P. A.; Porter, R. L.; Wheeler, R.

    1996-01-01

    The specifications of the plant research unit (PRU) plant habitat, designed for space station operations, are presented. A prototype brassboard model of the PRU is described, and the results of the subsystems tests are outlined. The effects of the long term red light emitting diode (LED) illumination as the sole source for plant development were compared with red LEDs supplemented with blue wavelengths, and white fluorescent sources. It was found that wheat and Arabidopsis were able to complete a life cycle under red LEDs alone, but with differences in physiology and morphology. The differences noted were greatest for the Arabidopsis, where the time to flowering was increased under red illumination. The addition of 10 percent of blue light was effective in eliminating the observed differences. The results of the comparative testing of three nutrient delivery systems for the PRU are discussed.

  15. Low Earth orbit environmental effects on the space station photovoltaic power generation systems

    NASA Technical Reports Server (NTRS)

    Nahra, Henry K.

    1987-01-01

    A summary of the Low Earth Orbital Environment, its impact on the Photovoltaic Power systems of the space station and the solutions implemented to resolve the environmental concerns or issues are described. Low Earth Orbital Environment (LEO) presents several concerns to the Photovoltaic power systems of the space station. These concerns include atomic oxygen interaction with the polymeric substrate of the solar arrays, ionized environment effects on the array operating voltage, the effects of the meteoroids and debris impacts and penetration through the different layers of the solar cells and their circuits, and the high energy particle and radiation effects on the overall solar array performance. Potential solutions to some of the degrading environmental interactions that will provide the photovoltaic power system of the space station with the desired life are also summarized.

  16. Time Averaged Transmitter Power and Exposure to Electromagnetic Fields from Mobile Phone Base Stations

    PubMed Central

    Bürgi, Alfred; Scanferla, Damiano; Lehmann, Hugo

    2014-01-01

    Models for exposure assessment of high frequency electromagnetic fields from mobile phone base stations need the technical data of the base stations as input. One of these parameters, the Equivalent Radiated Power (ERP), is a time-varying quantity, depending on communication traffic. In order to determine temporal averages of the exposure, corresponding averages of the ERP have to be available. These can be determined as duty factors, the ratios of the time-averaged power to the maximum output power according to the transmitter setting. We determine duty factors for UMTS from the data of 37 base stations in the Swisscom network. The UMTS base stations sample contains sites from different regions of Switzerland and also different site types (rural/suburban/urban/hotspot). Averaged over all regions and site types, a UMTS duty factor F ≈ 0.32 ± 0.08 for the 24 h-average is obtained, i.e., the average output power corresponds to about a third of the maximum power. We also give duty factors for GSM based on simple approximations and a lower limit for LTE estimated from the base load on the signalling channels. PMID:25105551

  17. Noise test system of rotating machinery in nuclear power station based on microphone array

    NASA Astrophysics Data System (ADS)

    Chang, Xincai; Guan, Jishi; Qi, Liangcai

    2017-12-01

    Rotating machinery plays an important role in all walks of life. Once the equipment fails, equipment maintenance and shutdown will cause great social harm and economic losses. Equipment safety operations at nuclear power stations have always been of top priority. It is prone to noise when the equipment is out of order or aging. Failure to find or develop equipment at the initial stage of equipment failure or ageing will pose a serious threat to the safety of the plant’s equipment. In this paper, sound imaging diagnosis technology is applied as a supplementary method to the condition monitoring and diagnosis system of rotating machinery in nuclear power stations. It provides a powerful guarantee for the condition monitoring and fault diagnosis of rotating machinery in nuclear power stations.

  18. Solar dynamic power system development for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The development of a solar dynamic electric power generation system as part of the Space Station Freedom Program is documented. The solar dynamic power system includes a solar concentrator, which collects sunlight; a receiver, which accepts and stores the concentrated solar energy and transfers this energy to a gas; a Brayton turbine, alternator, and compressor unit, which generates electric power; and a radiator, which rejects waste heat. Solar dynamic systems have greater efficiency and lower maintenance costs than photovoltaic systems and are being considered for future growth of Space Station Freedom. Solar dynamic development managed by the NASA Lewis Research Center from 1986 to Feb. 1991 is covered. It summarizes technology and hardware development, describes 'lessons learned', and, through an extensive bibliography, serves as a source list of documents that provide details of the design and analytic results achieved. It was prepared by the staff of the Solar Dynamic Power System Branch at the NASA Lewis Research Center in Cleveland, Ohio. The report includes results from the prime contractor as well as from in-house efforts, university grants, and other contracts. Also included are the writers' opinions on the best way to proceed technically and programmatically with solar dynamic efforts in the future, on the basis of their experiences in this program.

  19. Effect of nuclear power on CO₂ emission from power plant sector in Iran.

    PubMed

    Kargari, Nargess; Mastouri, Reza

    2011-01-01

    It is predicted that demand for electricity in Islamic Republic of Iran will continue to increase dramatically in the future due to the rapid pace of economic development leading to construction of new power plants. At the present time, most of electricity is generated by burning fossil fuels which result in emission of great deal of pollutants and greenhouse gases (GHG) such as SO₂, NOx, and CO₂. The power industry is the largest contributor to these emissions. Due to minimal emission of GHG by renewable and nuclear power plants, they are most suitable replacements for the fossil-fueled power plants. However, the nuclear power plants are more suitable than renewable power plants in providing baseload electricity. The Bushehr Nuclear Power Plant, the only nuclear power plant of Iran, is expected to start operation in 2010. This paper attempts to interpret the role of Bushehr nuclear power plant (BNPP) in CO₂ emission trend of power plant sector in Iran. In order to calculate CO₂ emissions from power plants, National CO₂ coefficients have been used. The National CO₂ emission coefficients are according to different fuels (natural gas, fuels gas, fuel oil). By operating Bushehr Nuclear Power Plant in 2010, nominal capacity of electricity generation in Iran will increase by about 1,000 MW, which increases the electricity generation by almost 7,000 MWh/year (it is calculated according to availability factor and nominal capacity of BNPP). Bushehr Nuclear Power Plant will decrease the CO₂ emission in Iran power sector, by about 3% in 2010.

  20. Advancements in Risk-Informed Performance-Based Asset Management for Commercial Nuclear Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liming, James K.; Ravindra, Mayasandra K.

    2006-07-01

    Over the past several years, ABSG Consulting Inc. (ABS Consulting) and the South Texas Project Nuclear Operating Company (STPNOC) have developed a decision support process and associated software for risk-informed, performance-based asset management (RIPBAM) of nuclear power plant facilities. RIPBAM applies probabilistic risk assessment (PRA) tools and techniques in the realm of plant physical and financial asset management. The RIPBAM process applies a tiered set of models and supporting performance measures (or metrics) that can ultimately be applied to support decisions affecting the allocation and management of plant resources (e.g., funding, staffing, scheduling, etc.). In general, the ultimate goal ofmore » the RIPBAM process is to continually support decision-making to maximize a facility's net present value (NPV) and long-term profitability for its owners. While the initial applications of RIPBAM have been for nuclear power stations, the methodology can easily be adapted to other types of power station or complex facility decision-making support. RIPBAM can also be designed to focus on performance metrics other than NPV and profitability (e.g., mission reliability, operational availability, probability of mission success per dollar invested, etc.). Recent advancements in the RIPBAM process focus on expanding the scope of previous RIPBAM applications to include not only operations, maintenance, and safety issues, but also broader risk perception components affecting plant owner (stockholder), operator, and regulator biases. Conceptually, RIPBAM is a comprehensive risk-informed cash flow model for decision support. It originated as a tool to help manage plant refueling outage scheduling, and was later expanded to include the full spectrum of operations and maintenance decision support. However, it differs from conventional business modeling tools in that it employs a systems engineering approach with broadly based probabilistic analysis of organizational

  1. Concentrating Solar Power Projects - Linear Fresnel Reflector Projects |

    Science.gov Websites

    Kimberlina solar thermal power plant, a linear Fresnel reflector system located near Bakersfield, California Solar Thermal Project eLLO Solar Thermal Project (Llo) IRESEN 1 MWe CSP-ORC pilot project Kimberlina Solar Thermal Power Plant (Kimberlina) Liddell Power Station Puerto Errado 1 Thermosolar Power Plant

  2. Power considerations for an early manned Mars mission utilizing the space station

    NASA Technical Reports Server (NTRS)

    Valgora, Martin E.

    1987-01-01

    Power requirements and candidate electrical power sources were examined for the supporting space infrastructure for an early (2004) manned Mars mission. This two-year mission (60-day stay time) assumed a single six crew piloted vehicle with a Mars lander for four of the crew. The transportation vehicle was assumed to be a hydrogen/oxygen propulsion design with or without large aerobrakes and assembled and checked out on the LEO Space Station. The long transit time necessitated artificial gravity of the crew by rotating the crew compartments. This rotation complicates power source selection. Candidate power sources were examined for the Lander, Mars Orbiter, supporting Space Station, co-orbiting Propellant Storage Depot, and alternatively, a co-orbiting Propellant Generation (water electrolysis) Depot. Candidates considered were photovoltaics with regenerative fuel cells or batteries, solar dynamics, isotope dynamics, and nuclear power.

  3. NASA chooses hybrid power system for Space Station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holt, D.J.

    1986-06-01

    The hybrid solar power system being developed for the Space Station is characterized. Major components of the 75-kW system required for the initial operational phase of the Station are 25-kW photovoltaic arrays (with Ni-H storage batteries for eclipse-phase power and some means of conversion to ac for distribution) and a 50-kW solar dynamic system comprising a reflecting concentrator, a thermal-energy storage unit, and a heat engine based either on an organic Rankine cycle (described by Holt, 1985) or on a closed Brayton cycle. The design and operating principle of a Brayton-cycle engine using an He-Xe mixture as the working fluid,more » gas-foil journal bearings, an LiF/MgF2 thermal-storage unit, and a 95-percent-effectiveness plate-fin-type recuperator are described and illustrated with drawings. This engine is designed to operate at 25,000-50,000 rpm with overall day/night cycle efficiency 27.6 percent for 95-min orbits, and to be restartable under zero-g conditions.« less

  4. Space station electrical power distribution analysis using a load flow approach

    NASA Technical Reports Server (NTRS)

    Emanuel, Ervin M.

    1987-01-01

    The space station's electrical power system will evolve and grow in a manner much similar to the present terrestrial electrical power system utilities. The initial baseline reference configuration will contain more than 50 nodes or busses, inverters, transformers, overcurrent protection devices, distribution lines, solar arrays, and/or solar dynamic power generating sources. The system is designed to manage and distribute 75 KW of power single phase or three phase at 20 KHz, and grow to a level of 300 KW steady state, and must be capable of operating at a peak of 450 KW for 5 to 10 min. In order to plan far into the future and keep pace with load growth, a load flow power system analysis approach must be developed and utilized. This method is a well known energy assessment and management tool that is widely used throughout the Electrical Power Utility Industry. The results of a comprehensive evaluation and assessment of an Electrical Distribution System Analysis Program (EDSA) is discussed. Its potential use as an analysis and design tool for the 20 KHz space station electrical power system is addressed.

  5. Solar-assisted MED treatment of Eskom power station waste water

    NASA Astrophysics Data System (ADS)

    Roos, Thomas H.; Rogers, David E. C.; Gericke, Gerhard

    2017-06-01

    The comparative benefits of multi-effect distillation (MED) used in conjunction with Nano Filtration (NF), Reverse Osmosis (RO) and Eutectic Freeze Crystallization (EFC) are determined for waste water minimization for inland coal fired power stations for Zero Liquid Effluent Discharge (ZLED). A sequence of technologies is proposed to achieve maximal water recovery and brine concentration: NF - physico-chemical treatment - MED - EFC. The possibility of extending the concentration of RO reject arising from minewater treatment at the Lethabo power station with MED alone is evaluated with mineral formation modelling using the thermochemical modelling software Phreeq-C. It is shown that pretreatment is essential to extend the amount of water that can be recovered, and this can be beneficially supported by NF.

  6. Solar dynamic power systems for space station

    NASA Technical Reports Server (NTRS)

    Irvine, Thomas B.; Nall, Marsha M.; Seidel, Robert C.

    1986-01-01

    The Parabolic Offset Linearly Actuated Reflector (POLAR) solar dynamic module was selected as the baseline design for a solar dynamic power system aboard the space station. The POLAR concept was chosen over other candidate designs after extensive trade studies. The primary advantages of the POLAR concept are the low mass moment of inertia of the module about the transverse boom and the compactness of the stowed module which enables packaging of two complete modules in the Shuttle orbiter payload bay. The fine pointing control system required for the solar dynamic module has been studied and initial results indicate that if disturbances from the station are allowed to back drive the rotary alpha joint, pointing errors caused by transient loads on the space station can be minimized. This would allow pointing controls to operate in bandwidths near system structural frequencies. The incorporation of the fine pointing control system into the solar dynamic module is fairly straightforward for the three strut concentrator support structure. However, results of structural analyses indicate that this three strut support is not optimum. Incorporation of a vernier pointing system into the proposed six strut support structure is being studied.

  7. 5. Photocopied from drawing 70, Nunns Station Folder, Engineering Department, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Photocopied from drawing 70, Nunns Station Folder, Engineering Department, Utah Power & Light Co., Salt Lake City, Utah. 'TILE TELLURIDE POWER TRANSMISSION CO. POWER HOUSE IN PROVO CANYON, PROVO, UTAH' SECTION, c. 1900. - Telluride Power Company, Nunn Hydroelectric Plant, Southeast side of Provo River, 300 feet West of US Route 189, Orem, Utah County, UT

  8. 76 FR 44821 - Digital Low Power Television, Television Translator, and Television Booster Stations and To Amend...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-27

    ...] Digital Low Power Television, Television Translator, and Television Booster Stations and To Amend Rules... this proceeding in order to allow a timely and successful completion of the low power television digital transition. Although Congress established a hard deadline of June 12, 2009 for full power stations...

  9. 76 FR 30204 - Exelon Nuclear, Dresden Nuclear Power Station, Unit 1; Exemption From Certain Security Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-24

    ... Power Station, Unit 1; Exemption From Certain Security Requirements 1.0 Background Exelon Nuclear is the licensee and holder of Facility Operating License No. DPR-2 issued for Dresden Nuclear Power Station (DNPS... protection of licensed activities in nuclear power reactors against radiological sabotage,'' paragraph (b)(1...

  10. 76 FR 44376 - Vermont Yankee Nuclear Power Station; Notice of Withdrawal of Application for Amendment to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-25

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-271, NRC-2011-0168] Vermont Yankee Nuclear Power... Regulatory Commission (NRC or the Commission) has granted the request of Vermont Yankee Nuclear Power Station... Operating License No. DPR-28 for the Vermont Yankee Nuclear Power Station, located in Vernon, Vermont. The...

  11. Automating security monitoring and analysis for Space Station Freedom's electric power system

    NASA Technical Reports Server (NTRS)

    Dolce, James L.; Sobajic, Dejan J.; Pao, Yoh-Han

    1990-01-01

    Operating a large, space power system requires classifying the system's status and analyzing its security. Conventional algorithms are used by terrestrial electric utilities to provide such information to their dispatchers, but their application aboard Space Station Freedom will consume too much processing time. A new approach for monitoring and analysis using adaptive pattern techniques is presented. This approach yields an on-line security monitoring and analysis algorithm that is accurate and fast; and thus, it can free the Space Station Freedom's power control computers for other tasks.

  12. Automating security monitoring and analysis for Space Station Freedom's electric power system

    NASA Technical Reports Server (NTRS)

    Dolce, James L.; Sobajic, Dejan J.; Pao, Yoh-Han

    1990-01-01

    Operating a large, space power system requires classifying the system's status and analyzing its security. Conventional algorithms are used by terrestrial electric utilities to provide such information to their dispatchers, but their application aboard Space Station Freedom will consume too much processing time. A novel approach for monitoring and analysis using adaptive pattern techniques is presented. This approach yields an on-line security monitoring and analysis algorithm that is accurate and fast; and thus, it can free the Space Station Freedom's power control computers for other tasks.

  13. Comparison and evaluation of power plant options for geosynchronous power stations. Part 1: Synchronous solar power

    NASA Technical Reports Server (NTRS)

    Williams, J. R.

    1973-01-01

    The present state-of-the-art is described for the development of solar power generators in far out synchronous orbit for power generation. Concepts of geosynchronous solar power satellites are discussed including photovoltaic arrays for power satellites, solar-thermal power satellites, and power transmission to earth.

  14. 46. CAPE COD AIR STATION PAVE PAWS FACILITY BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    46. CAPE COD AIR STATION PAVE PAWS FACILITY - BUILDING ELEVATION VIEW WITH ALL METAL SIDING INSTALLED AND WITH EMITTER/ANTENNA ARRAY SYSTEM NEARING OCMPLETION ON "B" FACE (RIGHT). VIEW ALSO SHOWS TRAVELING "CLEANING" SYSTEM ON "B" FACE - NOW REMOVED. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  15. 76 FR 39134 - ZIONSOLUTIONS, LLC; Zion Nuclear Power Station, Units 1 and 2 Exemption From Recordkeeping...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-05

    ...; Zion Nuclear Power Station, Units 1 and 2 Exemption From Recordkeeping Requirements 1.0 Background Zion Nuclear Power Station (ZNPS or Zion), Unit 1, is a Westinghouse 3250 MWt Pressurized Water Reactor which... previously applicable to the nuclear power units and associated systems, structures, and components (SSC) are...

  16. State-of-the art of dc components for secondary power distribution of Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Krauthamer, Stanley; Gangal, Mukund; Das, Radhe S. L.

    1991-01-01

    120-V dc secondary power distribution has been selected for Space Station Freedom. State-of-the art components and subsystems are examined in terms of performance, size, and topology. One of the objectives of this work is to inform Space Station users what is available in power supplies and power control devices. The other objective is to stimulate interest in the component industry so that more focused product development can be started. Based on results of this study, it is estimated that, with some redesign, modifications, and space qualification, may of these components may be applied to Space Station needs.

  17. A Seed-Based Plant Propagation Algorithm: The Feeding Station Model

    PubMed Central

    Salhi, Abdellah

    2015-01-01

    The seasonal production of fruit and seeds is akin to opening a feeding station, such as a restaurant. Agents coming to feed on the fruit are like customers attending the restaurant; they arrive at a certain rate and get served at a certain rate following some appropriate processes. The same applies to birds and animals visiting and feeding on ripe fruit produced by plants such as the strawberry plant. This phenomenon underpins the seed dispersion of the plants. Modelling it as a queuing process results in a seed-based search/optimisation algorithm. This variant of the Plant Propagation Algorithm is described, analysed, tested on nontrivial problems, and compared with well established algorithms. The results are included. PMID:25821858

  18. Shoreham Nuclear Power Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1992-12-31

    The United States Supreme Court, with PG&E and Silkwood, and in the eight years since, has expanded the acceptable extent of state regulation of commercial nuclear power plants. In PG&E, the Court established the acceptability of state regulation that purports to be concerned with the non-radiological aspects of nuclear plant operations but that, as a practical matter, is concerned with their radiological hazards. In Silkwood, the Court established the acceptability of state regulation of radiological hazards when its impact on federal regulation of radiological hazards is indirect and incidental. Finally, in Goodyear and English, the Court confirmed and elaborated onmore » such state regulation. Subject to political demands either for additional involvement in commercial nuclear power plant regulation or from political interests opposed altogether to nuclear power, some states, in the 1980s, sought to expand even further the involvement of state and local governments in nuclear plant regulation. Indeed, some states sought and in some instances acquired, through innovative and extraordinary means, a degree of involvement in the regulation of radiological hazards that seriously erodes and undermines the role of the federal government in such regulation. In particular, the State of New York concluded with the Long Island Lighting Company (LILCO), in February 1989, an agreement for the purchase of New York of the Shoreham nuclear power plant on Long Island. A response to failed efforts by New York to prevent the issuance by the NRC of a license to LILCO to operate the plant, the agreement was concluded to allow New York to close the plant either altogether or to convert it to a fossil fuel facility. The opposition to the sale of Shoreham is discussed.« less

  19. Alternate space station freedom configuration considerations to accommodate solar dynamic power

    NASA Technical Reports Server (NTRS)

    Deryder, L. J.; Cruz, J. N.; Heck, M. L.; Robertson, B. P.; Troutman, P. A.

    1989-01-01

    The results of a technical audit of the Space Station Freedom Program conducted by the Program Director was announced in early 1989 and included a proposal to use solar dynamic power generation systems to provide primary electrical energy for orbital flight operations rather than photovoltaic solar array systems. To generate the current program baseline power of 75 kW, two or more solar concentrators approximately 50 feet in diameter would be required to replace four pairs of solar arrays whose rectangular blanket size is approximately 200 feet by 30 feet. The photovoltaic power system concept uses solar arrays to generate electricity that is stored in nickel-hydrogen batteries. The proposed concept uses the solar concentrator dishes to reflect and focus the Sun's energy to heat helium-xenon gas to drive electricity generating turbines. The purpose here is to consider the station configuration issues for incorporation of solar dynamic power system components. Key flight dynamic configuration geometry issues are addressed and an assembly sequence scenario is developed.

  20. 10. Photocopied from Photo 1162, Nunns Station Folder, Engineering Department, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Photocopied from Photo 1162, Nunns Station Folder, Engineering Department, Utah Power & Light Co., Salt Lake City, Utah. PENSTOCKS, c. 1920? - Telluride Power Company, Nunn Hydroelectric Plant, Southeast side of Provo River, 300 feet West of US Route 189, Orem, Utah County, UT

  1. ESP IMPROVEMENTS AT POWER PLANTS

    EPA Science Inventory

    An on-going ORD and OIA collaborative project in the Newly Independent States (NIS) is designed to upgrade ESPs used in NIS power plants and has laid the foundation for implementing cost-effective ESP modernization efforts at power plants. Thus far, state-of-the-art ESP performan...

  2. 30. EAST CORNER OF BUILDING 229 (ELECTRIC POWER STATION) IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. EAST CORNER OF BUILDING 229 (ELECTRIC POWER STATION) IN ASSEMBLY AREA. - Loring Air Force Base, Weapons Storage Area, Northeastern corner of base at northern end of Maine Road, Limestone, Aroostook County, ME

  3. 76 FR 77963 - Oglethorpe Power Corporation; Proposed Biomass Power Plant

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-15

    ... Service Oglethorpe Power Corporation; Proposed Biomass Power Plant AGENCY: Rural Utilities Service, USDA... construction of a 100 megawatt (MW) biomass plant and related facilities (Proposal) in Warren County, Georgia...

  4. 47 CFR 74.789 - Broadcast regulations applicable to digital low power television and television translator stations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... AND OTHER PROGRAM DISTRIBUTIONAL SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74... applicable to translators, low power, and booster stations (except § 73.653—Operation of TV aural and visual...

  5. 47 CFR 74.789 - Broadcast regulations applicable to digital low power television and television translator stations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... AND OTHER PROGRAM DISTRIBUTIONAL SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74... applicable to translators, low power, and booster stations (except § 73.653—Operation of TV aural and visual...

  6. 47 CFR 74.789 - Broadcast regulations applicable to digital low power television and television translator stations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... AND OTHER PROGRAM DISTRIBUTIONAL SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74... applicable to translators, low power, and booster stations (except § 73.653—Operation of TV aural and visual...

  7. 47 CFR 74.789 - Broadcast regulations applicable to digital low power television and television translator stations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... AND OTHER PROGRAM DISTRIBUTIONAL SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74... applicable to translators, low power, and booster stations (except § 73.653—Operation of TV aural and visual...

  8. Dispatchable Solar Power Plant Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, Henry

    As penetration of intermittent renewable power increases, grid operators must manage greater variability in the supply and demand on the grid. One result is that utilities are planning to build many new natural gas peaking power plants that provide added flexibility needed for grid management. This report discusses the development of a dispatchable solar power (DSP) plant that can be used in place of natural gas peakers. Specifically, a new molten-salt tower (MST) plant has been developed that is designed to allow much more flexible operation than typically considered in concentrating solar power plants. As a result, this plant canmore » provide most of the capacity and ancillary benefits of a conventional natural gas peaker plant but without the carbon emissions. The DSP system presented was designed to meet the specific needs of the Arizona Public Service (APS) utility 2017 peaking capacity request for proposals (RFP). The goal of the effort was to design a MST peaker plant that had the operational capabilities required to meet the peaking requirements of the utility and be cost competitive with the natural gas alternative. The effort also addresses many perceived barriers facing the commercial deployment of MST technology in the US today. These include MST project development issues such as permitting, avian impacts, visual impacts of tower CSP projects, project schedule, and water consumption. The DSP plant design is based on considerable analyses using sophisticated solar system design tools and in-depth preliminary engineering design. The resulting DSP plant design uses a 250 MW steam power cycle, with solar field designed to fit on a square mile plot of land that has a design point thermal rating of 400 MWt. The DSP plant has an annual capacity factor of about 16% tailored to deliver greater than 90% capacity during the critical Arizona summer afternoon peak. The table below compares the All-In energy cost and capacity payment of conventional combustion

  9. 29. SOUTHEAST FRONT ELEVATION OF BUILDING 229 (ELECTRIC POWER STATION) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. SOUTHEAST FRONT ELEVATION OF BUILDING 229 (ELECTRIC POWER STATION) IN ASSEMBLY AREA. - Loring Air Force Base, Weapons Storage Area, Northeastern corner of base at northern end of Maine Road, Limestone, Aroostook County, ME

  10. TROUBLE 3: A fault diagnostic expert system for Space Station Freedom's power system

    NASA Technical Reports Server (NTRS)

    Manner, David B.

    1990-01-01

    Designing Space Station Freedom has given NASA many opportunities to develop expert systems that automate onboard operations of space based systems. One such development, TROUBLE 3, an expert system that was designed to automate the fault diagnostics of Space Station Freedom's electric power system is described. TROUBLE 3's design is complicated by the fact that Space Station Freedom's power system is evolving and changing. TROUBLE 3 has to be made flexible enough to handle changes with minimal changes to the program. Three types of expert systems were studied: rule-based, set-covering, and model-based. A set-covering approach was selected for TROUBLE 3 because if offered the needed flexibility that was missing from the other approaches. With this flexibility, TROUBLE 3 is not limited to Space Station Freedom applications, it can easily be adapted to handle any diagnostic system.

  11. Modelling of nuclear power plant decommissioning financing.

    PubMed

    Bemš, J; Knápek, J; Králík, T; Hejhal, M; Kubančák, J; Vašíček, J

    2015-06-01

    Costs related to the decommissioning of nuclear power plants create a significant financial burden for nuclear power plant operators. This article discusses the various methodologies employed by selected European countries for financing of the liabilities related to the nuclear power plant decommissioning. The article also presents methodology of allocation of future decommissioning costs to the running costs of nuclear power plant in the form of fee imposed on each megawatt hour generated. The application of the methodology is presented in the form of a case study on a new nuclear power plant with installed capacity 1000 MW. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. International water and steam quality standards for thermal power station drum-type and waste heat recovery boilers with the treatment of boiler water with phosphates and NaOH

    NASA Astrophysics Data System (ADS)

    Petrova, T. I.; Orlov, K. A.; Dooley, R. B.

    2017-01-01

    One of the ways for improving the operational reliability and economy of thermal power station equipment, including combined-cycle equipment, is to decrease the rates of the corrosion of constructional materials and the formation of scales in the water-steam circuit. These processes can be reduced to a minimum via the use of water with a minimum content of admixtures and the correction treatment of a heat-transfer fluid. The International Association for the Properties of Water and Steam (IAPWS), which unites specialists from every country of the world, has developed water and steam quality standards for power station equipment of different types on the basis of theoretical studies and long-term experience in the operation of power plants in 21 countries. Different water chemistry regimes are currently used at conventional and combined-cycle thermal power stations. This paper describes the conditions for the implementation of water chemistry regimes with the use of sodium salts of phosphoric acid and NaOH for the quality correction of boiler water. Water and steam quality standards and some recommendations for their maintenance under different operational conditions are given for each of the considered water chemistry regimes. The standards are designed for the water-steam circuit of conventional and combined-cycle thermal power stations. It is pointed out that the quality control of a heat-transfer fluid must be especially careful at combined-cycle thermal power stations with frequent startups and shutdowns.

  13. Cooperating Expert Systems For Space Station Power Distribution Management

    NASA Astrophysics Data System (ADS)

    Nguyen, T. A.; Chiou, W. C.

    1987-02-01

    In a complex system such as the manned Space Station, it is deem necessary that many expert systems must perform tasks in a concurrent and cooperative manner. An important question arise is: what cooperative-task-performing models are appropriate for multiple expert systems to jointly perform tasks. The solution to this question will provide a crucial automation design criteria for the Space Station complex systems architecture. Based on a client/server model for performing tasks, we have developed a system that acts as a front-end to support loosely-coupled communications between expert systems running on multiple Symbolics machines. As an example, we use two ART*-based expert systems to demonstrate the concept of parallel symbolic manipulation for power distribution management and dynamic load planner/scheduler in the simulated Space Station environment. This on-going work will also explore other cooperative-task-performing models as alternatives which can evaluate inter and intra expert system communication mechanisms. It will be served as a testbed and a bench-marking tool for other Space Station expert subsystem communication and information exchange.

  14. Preliminary site evaluation report on Potomac Electric Power Company's proposed station H. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-06-01

    This report provides a preliminary environmental assessment of two 375-MW Coal Gasification-Combined Cycle (GCC) units which the Potomac Electric Power Company proposes to construct on their existing Dickerson Generating Station site in western Montgomery County, Maryland. A mass-burn municipal solid-waste incinerator is also proposed at the site by Montgomery County. Research on the GCC technology and data for the air, land, and water environs in and around the site indicates that the proposed GCC technology offers substantial engineering, environmental, and economic benefits. Overall environmental impacts should be less than those anticipated for a comparably sized pulverized-coal power plant. Projected air,more » land, and water impacts appear to be within any applicable regulatory standards or limitations. However, four areas of concern were identified which could be of significant consequence to the suitability of the site. Recommendations are provided for detailed site evaluations including monitoring recommendations to fill data or information gaps.« less

  15. 8. Photocopied from unnumbered photo, Nunns Station Folder, Engineering Department, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Photocopied from unnumbered photo, Nunns Station Folder, Engineering Department, Utah Power & Light Co., Salt Lake City, Utah. EXTERIOR VIEW. C. 1898. - Telluride Power Company, Nunn Hydroelectric Plant, Southeast side of Provo River, 300 feet West of US Route 189, Orem, Utah County, UT

  16. Entropy production and optimization of geothermal power plants

    NASA Astrophysics Data System (ADS)

    Michaelides, Efstathios E.

    2012-09-01

    Geothermal power plants are currently producing reliable and low-cost, base load electricity. Three basic types of geothermal power plants are currently in operation: single-flashing, dual-flashing, and binary power plants. Typically, the single-flashing and dual-flashing geothermal power plants utilize geothermal water (brine) at temperatures in the range of 550-430 K. Binary units utilize geothermal resources at lower temperatures, typically 450-380 K. The entropy production in the various components of the three types of geothermal power plants determines the efficiency of the plants. It is axiomatic that a lower entropy production would improve significantly the energy utilization factor of the corresponding power plant. For this reason, the entropy production in the major components of the three types of geothermal power plants has been calculated. It was observed that binary power plants generate the lowest amount of entropy and, thus, convert the highest rate of geothermal energy into mechanical energy. The single-flashing units generate the highest amount of entropy, primarily because they re-inject fluid at relatively high temperature. The calculations for entropy production provide information on the equipment where the highest irreversibilities occur, and may be used to optimize the design of geothermal processes in future geothermal power plants and thermal cycles used for the harnessing of geothermal energy.

  17. Concentrating Solar Power Projects - Gemasolar Thermosolar Plant |

    Science.gov Websites

    Concentrating Solar Power | NREL Gemasolar Thermosolar Plant This page provides information on Gemasolar Thermosolar Plant, a concentrating solar power (CSP) project, with data organized by background , participants, and power plant configuration. Gemasolar is the first high-temperature solar receiver with molten

  18. Simulation of logistics to supply Corn Stover to the Ontario Power Generation (OPG) Plant in Lambton, Ontario

    DOE PAGES

    Khaleghi Hamedani, Hamid; Lau, Anthony K.; DeBruyn, Jake; ...

    2016-05-10

    The overall goal of this research is to investigate the logistics of agricultural biomass in Ontario, Canada using the Integrated Biomass Supply Analysis and Logistics Model (IBSAL). The supply of corn stover to the Ontario Power Generation (OPG) power plant in Lambton is simulated. This coal-fired power plant is currently not operating and there are no active plans by OPG to fuel it with biomass. Rather, this scenario is considered only to demonstrate the application of the IBSAL Model to this type of scenario. Here, five scenarios of delivering corn stover to the Lambton Generating Station (GS) power plant inmore » Lambton Ontario are modeled: (1) truck transport from field edge to OPG (base scenario); (2) farm to central storage located on the highway, then truck transport bales to OPG; (3) direct truck transport from farm (no-stacking) to OPG; (4) farm to a loading port on Lake Huron and from there on a barge to OPG; and (5) farm to a railhead and then to OPG by rail.« less

  19. Simulation of logistics to supply Corn Stover to the Ontario Power Generation (OPG) Plant in Lambton, Ontario

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khaleghi Hamedani, Hamid; Lau, Anthony K.; DeBruyn, Jake

    The overall goal of this research is to investigate the logistics of agricultural biomass in Ontario, Canada using the Integrated Biomass Supply Analysis and Logistics Model (IBSAL). The supply of corn stover to the Ontario Power Generation (OPG) power plant in Lambton is simulated. This coal-fired power plant is currently not operating and there are no active plans by OPG to fuel it with biomass. Rather, this scenario is considered only to demonstrate the application of the IBSAL Model to this type of scenario. Here, five scenarios of delivering corn stover to the Lambton Generating Station (GS) power plant inmore » Lambton Ontario are modeled: (1) truck transport from field edge to OPG (base scenario); (2) farm to central storage located on the highway, then truck transport bales to OPG; (3) direct truck transport from farm (no-stacking) to OPG; (4) farm to a loading port on Lake Huron and from there on a barge to OPG; and (5) farm to a railhead and then to OPG by rail.« less

  20. UF/RO applications at the Browns Ferry Nuclear Power Station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palino, G.F.; Sailor, W.C.; Sawochka, S.G.

    1981-04-01

    In June 1979, NWT was contracted by TVA to review the applicability of reverse osmosis (RO) and ultrafiltration (UF) membrane treatment technology at the Browns Ferry Nuclear Power Station. Specific program tasks are described and results presented.

  1. An experimental aluminum-fueled power plant

    NASA Astrophysics Data System (ADS)

    Vlaskin, M. S.; Shkolnikov, E. I.; Bersh, A. V.; Zhuk, A. Z.; Lisicyn, A. V.; Sorokovikov, A. I.; Pankina, Yu. V.

    2011-10-01

    An experimental co-generation power plant (CGPP-10) using aluminum micron powder (with average particle size up to 70 μm) as primary fuel and water as primary oxidant was developed and tested. Power plant can work in autonomous (unconnected from industrial network) nonstop regime producing hydrogen, electrical energy and heat. One of the key components of experimental plant is aluminum-water high-pressure reactor projected for hydrogen production rate of ∼10 nm3 h-1. Hydrogen from the reactor goes through condenser and dehumidifier and with -25 °C dew-point temperature enters into the air-hydrogen fuel cell 16 kW-battery. From 1 kg of aluminum the experimental plant produces 1 kWh of electrical energy and 5-7 kWh of heat. Power consumer gets about 10 kW of electrical power. Plant electrical and total efficiencies are 12% and 72%, respectively.

  2. Fuel cell power plant economic and operational considerations

    NASA Technical Reports Server (NTRS)

    Lance, J. R.

    1984-01-01

    Fuel cell power plants intended for electric utility and cogeneration applications are now in the design and construction stage. This paper describes economic and operational considerations being used in the development and design of plants utilizing air cooled phosphoric acid fuel cells. Fuel cell power plants have some unique characteristics relative to other types of power plants. As a result it was necessary to develop specific definitions of the fuel cell power plant characteristics in order to perform cost of electricity calculations. This paper describes these characteristics and describes the economic analyses used in the Westinghouse fuel cell power plant program.

  3. Power Plant Model Validation Tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    The PPMV is used to validate generator model using disturbance recordings. The PPMV tool contains a collection of power plant models and model validation studies, as well as disturbance recordings from a number of historic grid events. The user can import data from a new disturbance into the database, which converts PMU and SCADA data into GE PSLF format, and then run the tool to validate (or invalidate) the model for a specific power plant against its actual performance. The PNNL PPMV tool enables the automation of the process of power plant model validation using disturbance recordings. The tool usesmore » PMU and SCADA measurements as input information. The tool automatically adjusts all required EPCL scripts and interacts with GE PSLF in the batch mode. The main tool features includes: The tool interacts with GE PSLF; The tool uses GE PSLF Play-In Function for generator model validation; Database of projects (model validation studies); Database of the historic events; Database of the power plant; The tool has advanced visualization capabilities; and The tool automatically generates reports« less

  4. 9. Photocopied from Photo 1161, Nunns Station Folder, Engineering Department, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Photocopied from Photo 1161, Nunns Station Folder, Engineering Department, Utah Power & Light Co., Salt Lake City, Utah. VIEW OF SITE SHOWING PENSTOCKS. c. 1920.? - Telluride Power Company, Nunn Hydroelectric Plant, Southeast side of Provo River, 300 feet West of US Route 189, Orem, Utah County, UT

  5. 2. Photocopied from Photo 11456, Wheelon Station Special Folder, Engineering ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Photocopied from Photo 11456, Wheelon Station Special Folder, Engineering Dept., Utah Power & Light Co., Salt Lake City, Utah. 'WHEELON HYDRO-ELECTRIC PLANT (7125 KW). INTERIOR OF MAIN BUILDING SHOWING FOUR 1000 KW UNITS. NOV 1914.' - Utah Sugar Company, Wheelon Hydoelectric Plant, Bear River, Fielding, Box Elder County, UT

  6. Applicability of 100kWe-class of space reactor power systems to NASA manned space station missions

    NASA Technical Reports Server (NTRS)

    Silverman, S. W.; Willenberg, H. J.; Robertson, C.

    1985-01-01

    An assessment is made of a manned space station operating with sufficiently high power demands to require a multihundred kilowatt range electrical power system. The nuclear reactor is a competitor for supplying this power level. Load levels were selected at 150kWe and 300kWe. Interactions among the reactor electrical power system, the manned space station, the space transportation system, and the mission were evaluated. The reactor shield and the conversion equipment were assumed to be in different positions with respect to the station; on board, tethered, and on a free flyer platform. Mission analyses showed that the free flyer concept resulted in unacceptable costs and technical problems. The tethered reactor providing power to an electrolyzer for regenerative fuel cells on the space station, results in a minimum weight shield and can be designed to release the reactor power section so that it moves to a high altitude orbit where the decay period is at least 300 years. Placing the reactor on the station, on a structural boom is an attractive design, but heavier than the long tethered reactor design because of the shield weight for manned activity near the reactor.

  7. Grumman evaluates Space Station thermal control and power systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kandebo, S.W.

    1985-09-01

    Attention is given to the definition of requirements for the NASA Space Station's electrical power and thermal control systems, which must be highly dependable to minimize the need for external support and will embody a highly flexible modular design concept. Module maintenance will be performed by in-orbit replacement of failed modules, and energy storage system growth will be accomplished by the incorporation of additional modules. Both photovoltaic and solar heat-driven electrical generator concepts are under consideration as the basis of the power system.

  8. WEAPONS STORAGE AREA, LOOKING TOWARD ELECTRIC POWER STATION BUILDING (BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    WEAPONS STORAGE AREA, LOOKING TOWARD ELECTRIC POWER STATION BUILDING (BUILDING 3583), STORAGE BUILDING (BUILDING 3584)NIGHT AND SECURITY POLICE ENTRY CONTROL (BUILDING 3582)LEFT. VIEW TO NORTHEAST - Plattsburgh Air Force Base, U.S. Route 9, Plattsburgh, Clinton County, NY

  9. Augmentation of the space station module power management and distribution breadboard

    NASA Technical Reports Server (NTRS)

    Walls, Bryan; Hall, David K.; Lollar, Louis F.

    1991-01-01

    The space station module power management and distribution (SSM/PMAD) breadboard models power distribution and management, including scheduling, load prioritization, and a fault detection, identification, and recovery (FDIR) system within a Space Station Freedom habitation or laboratory module. This 120 VDC system is capable of distributing up to 30 kW of power among more than 25 loads. In addition to the power distribution hardware, the system includes computer control through a hierarchy of processes. The lowest level consists of fast, simple (from a computing standpoint) switchgear that is capable of quickly safing the system. At the next level are local load center processors, (LLP's) which execute load scheduling, perform redundant switching, and shed loads which use more than scheduled power. Above the LLP's are three cooperating artificial intelligence (AI) systems which manage load prioritizations, load scheduling, load shedding, and fault recovery and management. Recent upgrades to hardware and modifications to software at both the LLP and AI system levels promise a drastic increase in speed, a significant increase in functionality and reliability, and potential for further examination of advanced automation techniques. The background, SSM/PMAD, interface to the Lewis Research Center test bed, the large autonomous spacecraft electrical power system, and future plans are discussed.

  10. Optimizing the Utility Power of a Geothermal Power Plant using Variable Frequency Drive (VFD) (Case Study: Sibayak Geothermal Power Plant)

    NASA Astrophysics Data System (ADS)

    Sinaga, R. H. M.; Manik, Y.

    2018-03-01

    Sibayak Geothermal Power Plant (SGPP) is one of the plants being developed by Pertamina Geothermal Energy (PGE) at the upstream phase. At the downstream phase, State - owned Electricity Company (PLN) through PT. Dizamatra Powerindo is the developer. The gross capacity of the power plant is 13.3 MW, consisting 1 unit of Monoblock (2 MW) developed by PGE and 2 units (2×5.65 MW) operated through Energy Sales Contract by PLN. During the development phase of a geothermal power plant, there is a chance to reduce the utility power in order to increase the overall plant efficiency. Reducing the utility power can be attempted by utilizing the wet bulb temperature fluctuation. In this study, a modeling process is developed by using Engineering Equation Solver (EES) software version 9.430. The possibility of energy saving is indicated by condenser pressure changes as a result of wet bulb temperature fluctuation. The result of this study indicates that the change of condenser pressure is about 50.8% on the constant liquid/gas (L/G) condition of the wet bulb temperature of 15°C to 25°C. Further result indicates that in this power plant, Cooling Tower Fan (CTF) is the facility that has the greatest utility load, followed by Hot Well Pump (HWP). The saving of the greatest utility load is applied trough Variable Frequency Drive (VFD) instrumentation. The result of this modeling has been validated by actual operations data (log sheet). The developed model has also been reviewed trough Specific Steam Consumption (SSC), resulting that constant L/G condition allows the optimum condition on of the wet bulb temperature of 15°C to 25°C.

  11. 77 FR 47680 - Entergy Nuclear Operations, Inc.; Pilgrim Nuclear Power Station Receipt of Request for Action

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-09

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-293; License No. DPR-35; NRC-2012-0186] Entergy Nuclear Operations, Inc.; Pilgrim Nuclear Power Station Receipt of Request for Action Notice is hereby... the Commission) take action with regard to the Pilgrim Nuclear Power Station (Pilgrim). The Petitioner...

  12. 76 FR 20624 - Oglethorpe Power Corporation: Proposed Biomass Power Plant

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-13

    ... DEPARTMENT OF AGRICULTURE Rural Utilities Service Oglethorpe Power Corporation: Proposed Biomass Power Plant AGENCY: Rural Utilities Service, USDA. ACTION: Notice of Availability of a Draft...) biomass plant and related facilities (Proposal) in Warren County, Georgia. The purpose of the Proposal is...

  13. Space station WP-04 power system. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Hallinan, G. J.

    1987-01-01

    Major study activities and results of the phase B study contract for the preliminary design of the space station Electrical Power System (EPS) are summarized. The areas addressed include the general system design, man-tended option, automation and robotics, evolutionary growth, software development environment, advanced development, customer accommodations, operations planning, product assurance, and design and development phase planning. The EPS consists of a combination photovoltaic and solar dynamic power generation subsystem and a power management and distribution (PMAD) subsystem. System trade studies and costing activities are also summarized.

  14. Simulation test beds for the space station electrical power system

    NASA Technical Reports Server (NTRS)

    Sadler, Gerald G.

    1988-01-01

    NASA Lewis Research Center and its prime contractor are responsible for developing the electrical power system on the space station. The power system will be controlled by a network of distributed processors. Control software will be verified, validated, and tested in hardware and software test beds. Current plans for the software test bed involve using real time and nonreal time simulations of the power system. This paper will discuss the general simulation objectives and configurations, control architecture, interfaces between simulator and controls, types of tests, and facility configurations.

  15. Thermal control system for Space Station Freedom photovoltaic power module

    NASA Technical Reports Server (NTRS)

    Hacha, Thomas H.; Howard, Laura

    1994-01-01

    The electric power for Space Station Freedom (SSF) is generated by the solar arrays of the photovoltaic power modules (PVM's) and conditioned, controlled, and distributed by a power management and distribution system. The PVM's are located outboard of the alpha gimbals of SSF. A single-phase thermal control system is being developed to provide thermal control of PVM electrical equipment and energy storage batteries. This system uses ammonia as the coolant and a direct-flow deployable radiator. The description and development status of the PVM thermal control system is presented.

  16. Thermal control system for Space Station Freedom photovoltaic power module

    NASA Technical Reports Server (NTRS)

    Hacha, Thomas H.; Howard, Laura S.

    1992-01-01

    The electric power for Space Station Freedom (SSF) is generated by the solar arrays of the photovoltaic power modules (PVM's) and conditioned, controlled, and distributed by a power management and distribution system. The PVM's are located outboard of the alpha gimbals of SSF. A single-phase thermal control system is being developed to provide thermal control of PVM electrical equipment and energy storage batteries. This system uses ammonia as the coolant and a direct-flow deployable radiator. This paper presents the description and development status of the PVM thermal control system.

  17. Pleistocene plant fossils in and near La Selva Biological Station, Costa Rica

    Treesearch

    Sally P. Horn; Robert L. Sanford; David Dilcher; Terry A. Lott; Paul R. Renne; Michael C. Wiemann; Duane Cozadd; Orlando Vargas

    2003-01-01

    Radiocarbon dating and 40 Ar/39Ar analysis of overlying tephra indicate that plant fossil assemblages exposed by stream erosion and well construction in and near La Selva Biological Station in eastern lowland Costa Rica are Pleistocene in age. We identified plant taxa based on wood, leaves, fruits, seeds, pollen, and spores examined from three sites at ca 30 m...

  18. 76 FR 28983 - Media Bureau Seeks Comment on the Economic Impact of Low-Power FM Stations on Full-Service...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-19

    ... the Economic Impact of Low-Power FM Stations on Full-Service Commercial FM Stations AGENCY: Federal... comments on the economic impact of low-power FM stations on full-service commercial FM stations in connection with the Commission's preparation of an economic study and report due to Congress, as required by...

  19. Space Power Facility at NASA’s Plum Brook Station

    NASA Image and Video Library

    1969-02-21

    Exterior view of the Space Power Facility at the National Aeronautics and Space Administration’s (NASA) Plum Brook Station in Sandusky, Ohio. The $28.4-million facility, which began operations in 1969, is the largest high vacuum chamber ever built. The chamber is 100 feet in diameter and 120 feet high. It produces a vacuum deep enough to simulate the conditions at 300 miles altitude. The facility can sustain a high vacuum; simulate solar radiation via a 4-megawatt quartz heat lamp array, solar spectrum by a 400-kilowatt arc lamp, and cold environments. The Space Power Facility was originally designed to test nuclear power sources for spacecraft during long durations in a space atmosphere, but it was never used for that purpose. The facility’s first test in 1970 involved a 15 to 20-kilowatt Brayton Cycle Power System for space applications. Three different methods of simulating solar heat were employed during the Brayton tests. The facility was also used for jettison tests of the Centaur Standard Shroud. The shroud was designed for the new Titan-Centaur rocket that was scheduled to launch the Viking spacecraft to Mars. The new shroud was tested under conditions that simulated the time from launch to the separation of the stages. Test programs at the facility include high-energy experiments, shroud separation tests, Mars Lander system tests, deployable Solar Sail tests and International Space Station hardware tests.

  20. In situ monitoring of animal micronuclei before the operation of Daya Bay Nuclear Power Station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Y.N. Cai; H.Y. He; L.M. Qian

    1994-12-31

    Daya Bay Nuclear Power Station, a newly-built nuclear power station in southern mainland China, started its operation in 1993. We examined micro-nucleated cells of Invertibrate (Bivalves) and Vertibrate (Fish and Amphibia) in different spots within the 50km surroundings of the Power Station during 1986-1993. This paper reports the results of the investigation carried out in Dong Shan, a place 4.7km to the Power Station:Bivalves; Pteria martensil 5.1(1986),4.8(1988),4.8(1991),5,0(1993),Mytilus smardinus 4.7(1987),4.6(1988); Chamys nobilis 4.9(1987);4.9(1991),4.5(1992),4.5(1993). Fish; Therapon jarbua 0.48(1991),0.67(1992),0.47(1993). Amphibia; Bufo melanostictus 0.29 (1987), 0.34(1988),0.39(1992),0.39(1993). These results showed that the environmental situation, estimated by using the frequencies of micronucleated cells, was stable-there wasmore » no obvious chromosome damage in the animals studied. It was found that the incidence of micronucleated cells of Bivalves was higher than that of Fish and Amphibia, suggesting the epithelial cells to be more sensitive than peripheral erythrocytes to environmental genotoxic effects. The results of our studies for other spots will be reported afterward. These data can be used as the original background information to monitor the environment when the Nuclear Power Station is in operation.« less

  1. Mobile Nuclear Power Plants 1960-1970

    DTIC Science & Technology

    1960-11-01

    power for electricity for the Army in the Field cannot be realized until a satisfactory electri- cal power distribution system is developed or low...power plants in the 1960-70 period should be to provide electri- cal power to meet concentrated demands such as those im- posed by Army and Corps...Capital Letter - Order of initiation of field plants whoa« deslg- nationa do not Include thia final letter are prototype or pilot planta

  2. SCE&G Cope Station simulator training program development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stottlemire, J.L.; Fabry, R.

    1996-11-01

    South Carolina Electric and Gas Company made a significant investment into meeting the needs of their customers in designing and building the new fossil Generating Station near Cope, South Carolina. Cope Station is a state-of-the-art, 385 MW plant, with equipment and design features that will provide the plant with the capabilities of achieving optimum availability and capability. SCE&G has also implemented a team concept approach to plant organization at Cope Station. The modern plant design, operating philosophy, and introduction of a large percentage of new operations personnel presented a tremendous challenge in preparing for plant commissioning and commercial operation. SCE&G`smore » answer to this challenge was to hire an experienced operations trainer, and implement a comprehensive training program. An important part of the training investment was the procurement of a plant specific control room simulator. SCE&G, through tailored collaboration with the Electric Power Research Institute (EPRI), developed a specification for a simulator with the features necessary for training the initial plant staff as well as advanced operator training. The high-fidelity CRT based training simulator is a stimulated system that completely and accurately simulates the various plant systems, process startups, shutdowns, normal operating scenarios, and malfunctions. The process model stimulates a Foxboro Distributed Control System consisting of twelve control processors, five WP51 work stations, and one AW51 file server. The workstations, file server and support hardware and software necessary to interface with ESSCOR`s FSIM4 software was provided by Foxoboro.« less

  3. Prognostic Modeling of Valve Degradation within Power Stations

    DTIC Science & Technology

    2014-10-02

    from the University of Strathclyde in 2013. His PhD focuses on condition monitoring and prognostics for tidal turbines , in collaboration with Andritz...Hydro Hammerfest, a leading tidal turbine manufacturer. Victoria M. Catterson is a Lecturer within the Institute for Energy and Environment at the...based method. Case study data is generated through simulation of valves within a 400MW Combined Cycle Gas Turbine power station. High fidelity

  4. Space Station Freedom electric power system availability study

    NASA Technical Reports Server (NTRS)

    Turnquist, Scott R.

    1990-01-01

    The results are detailed of follow-on availability analyses performed on the Space Station Freedom electric power system (EPS). The scope includes analyses of several EPS design variations, these are: the 4-photovoltaic (PV) module baseline EPS design, a 6-PV module EPS design, and a 3-solar dynamic module EPS design which included a 10 kW PV module. The analyses performed included: determining the discrete power levels that the EPS will operate at upon various component failures and the availability of each of these operating states; ranking EPS components by the relative contribution each component type gives to the power availability of the EPS; determining the availability impacts of including structural and long-life EPS components in the availability models used in the analyses; determining optimum sparing strategies, for storing space EPS components on-orbit, to maintain high average-power-capability with low lift-mass requirements; and analyses to determine the sensitivity of EPS-availability to uncertainties in the component reliability and maintainability data used.

  5. Research centrifuge accommodations on Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Arno, Roger D.; Horkachuk, Michael J.

    1990-01-01

    Life sciences research using plants and animals on the Space Station Freedom requires the ability to maintain live subjects in a safe and low stress environment for long durations at microgravity and at one g. The need for a centrifuge to achieve these accelerations is evident. Programmatic, technical, and cost considerations currently favor a 2.5 meter diameter centrifuge located either in the end cone of a Space Station Freedom node or in a separate module. A centrifuge facility could support a mix of rodent, plant, and small primate habitats. An automated cage extractor could be used to remove modular habitats in pairs without stopping the main rotor, minimizing the disruption to experiment protocols. The accommodation of such a centrifuge facility on the Space Station represents a significant demand on the crew time, power, data, volume, and logistics capability. It will contribute to a better understanding of the effects of space flight on humans, an understanding of plant growth in space for the eventual production of food, and an understanding of the role of gravity in biological processes.

  6. Power Plant Construction

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Stone & Webster Engineering Corporation utilized TAP-A, a COSMIC program originally developed as part of a NASA investigation into the potential of nuclear power for space launch vehicles. It is useful in nuclear power plant design to qualify safety-related equipment at the temperatures it would experience should an accident occur. The program is easy to use, produces accurate results, and is inexpensive to run.

  7. Submerged passively-safe power plant

    DOEpatents

    Herring, J. Stephen

    1993-01-01

    The invention as presented consists of a submerged passively-safe power station including a pressurized water reactor capable of generating at least 600 MW of electricity, encased in a double hull vessel, and provides fresh water by using the spent thermal energy in a multistage flash desalination process.

  8. The 125 MW Upper Mahiao geothermal power plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forte, N.

    1996-12-31

    The 125 MW Upper Mahiao power plant, the first geothermal power project to be financed under a Build-Own-Operate-and-Transfer (BOOT) arrangement in the Philippines, expected to complete its start-up testing in August of this year. This plant uses Ormat`s environmentally benign technology and is both the largest geothermal steam/binary combined cycle plant as well as the largest geothermal power plant utilizing air cooled condensers. The Ormat designed and constructed plant was developed under a fast track program, with some two years from the April 1994 contract signing through design, engineering, construction and startup. The plant is owned and operated by amore » subsidiary of CalEnergy Co., Inc. and supplies power to PNOC-Energy Development Corporation for the National Power Corporation (Napocor) national power grid in the Philippines.« less

  9. Geothermal Power Generation Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyd, Tonya

    2013-12-01

    Oregon Institute of Technology (OIT) drilled a deep geothermal well on campus (to 5,300 feet deep) which produced 196°F resource as part of the 2008 OIT Congressionally Directed Project. OIT will construct a geothermal power plant (estimated at 1.75 MWe gross output). The plant would provide 50 to 75 percent of the electricity demand on campus. Technical support for construction and operations will be provided by OIT’s Geo-Heat Center. The power plant will be housed adjacent to the existing heat exchange building on the south east corner of campus near the existing geothermal production wells used for heating campus. Coolingmore » water will be supplied from the nearby cold water wells to a cooling tower or air cooling may be used, depending upon the type of plant selected. Using the flow obtained from the deep well, not only can energy be generated from the power plant, but the “waste” water will also be used to supplement space heating on campus. A pipeline will be construction from the well to the heat exchanger building, and then a discharge line will be construction around the east and north side of campus for anticipated use of the “waste” water by facilities in an adjacent sustainable energy park. An injection well will need to be drilled to handle the flow, as the campus existing injection wells are limited in capacity.« less

  10. NPDES Permit for Potomac Electric Power Company (PEPCO) Benning Generating Station

    EPA Pesticide Factsheets

    Under National Pollutant Discharge Elimination System permit number DC0000094, the Potomac Electric Power Company (PEPCO) Benning Generating Station is authorized to discharge from from a facility to receiving waters named Anacostia River.

  11. Oxygen-enriched air for MHD power plants

    NASA Technical Reports Server (NTRS)

    Ebeling, R. W., Jr.; Cutting, J. C.; Burkhart, J. A.

    1979-01-01

    Cryogenic air-separation process cycle variations and compression schemes are examined. They are designed to minimize net system power required to supply pressurized, oxygen-enriched air to the combustor of an MHD power plant with a coal input of 2000 MWt. Power requirements and capital costs for oxygen production and enriched air compression for enrichment levels from 13 to 50% are determined. The results are presented as curves from which total compression power requirements can be estimated for any desired enrichment level at any delivery pressure. It is found that oxygen enrichment and recuperative heating of MHD combustor air to 1400 F yields near-term power plant efficiencies in excess of 45%. A minimum power compression system requires 167 MW to supply 330 lb of oxygen per second and costs roughly 100 million dollars. Preliminary studies show MHD/steam power plants to be competitive with plants using high-temperature air preheaters burning gas.

  12. Submerged passively-safe power plant

    DOEpatents

    Herring, J.S.

    1993-09-21

    The invention as presented consists of a submerged passively-safe power station including a pressurized water reactor capable of generating at least 600 MW of electricity, encased in a double hull vessel, and provides fresh water by using the spent thermal energy in a multistage flash desalination process. 8 figures.

  13. Environmental interactions of the Space Station Freedom electric power system

    NASA Technical Reports Server (NTRS)

    Nahra, Henry K.; Lu, Cheng-Yi

    1991-01-01

    The Space Station Freedom operates in a low earth orbit (LEO) environment. Such operation results in different potential interactions with the Space Station systems including the Electric Power System (EPS). These potential interactions result in environmental effects which include neutral species effects such as atomic oxygen erosion, effects of micrometeoroid and orbital debris impacts, plasma effects, ionizing radiation, and induced contamination degradation effects. The EPS design and its interactions with the LEO environment are briefly described and the results of analyses and testing programs planned and performed thus far to resolve environmental concerns related to the EPS and its function in LEO environment.

  14. 76 FR 72007 - ZionSolutions, LLC; Zion Nuclear Power Station, Units 1 and 2; Exemption From Certain Security...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-21

    ...; Zion Nuclear Power Station, Units 1 and 2; Exemption From Certain Security Requirements 1.0 Background Zion Nuclear Power Station (ZNPS or Zion), Unit 1, is a Westinghouse 3250 MWt Pressurized Water Reactor... activities in nuclear power reactors against radiological sabotage,'' paragraph (b)(1) states, ``The licensee...

  15. 47 CFR 15.216 - Disclosure requirements for wireless microphones and other low power auxiliary stations capable...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... microphones and other low power auxiliary stations capable of operating in the core TV bands. 15.216 Section... wireless microphones and other low power auxiliary stations capable of operating in the core TV bands. (a... capable of operating in the core TV bands (channels 2-51, excluding channel 37) is subject to the...

  16. FUEL CELL OPERATION ON LANDFILL GAS AT PENROSE POWER STATION

    EPA Science Inventory

    This demonstration test successfully demonstrated operation of a commercial phosphoric acid fuel cell (FC) on landfill gas (LG) at the Penrose Power Station in Sun Valley, CA. Demonstration output included operation up to 137 kW; 37.1% efficiency at 120 kW; exceptionally low sec...

  17. Improving geothermal power plants with a binary cycle

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Shipkov, A. A.; Sorokina, E. V.

    2015-12-01

    The recent development of binary geothermal technology is analyzed. General trends in the introduction of low-temperature geothermal sources are summarized. The use of single-phase low-temperature geothermal fluids in binary power plants proves possible and expedient. The benefits of power plants with a binary cycle in comparison with traditional systems are shown. The selection of the working fluid is considered, and the influence of the fluid's physicochemical properties on the design of the binary power plant is discussed. The design of binary power plants is based on the chemical composition and energy potential of the geothermal fluids and on the landscape and climatic conditions at the intended location. Experience in developing a prototype 2.5 MW Russian binary power unit at Pauzhetka geothermal power plant (Kamchatka) is outlined. Most binary systems are designed individually for a specific location. Means of improving the technology and equipment at binary geothermal power plants are identified. One option is the development of modular systems based on several binary systems that employ the heat from the working fluid at different temperatures.

  18. [Pathologic skin changes in workers at electric and thermoelectric power plants].

    PubMed

    Kieć-Swierczyńska, M; Woźniak, H

    1988-01-01

    Dermatological examination was performed and epidermal tests using a routine set of allergens and metals (Cr, Co, Ni, Al, Cu, Ag, Zn, Hg, Fe) on 112 workers of power plants and thermal-electric power stations working at the stands characterized by a heavy dustiness (electro-filters operation, ash removal, deslagging, carburizing) and at the stands where dustiness was not so heavy but instead exposure to machine oils and greases (retors' operators, electromechanics, assemblers and welders) was remarkable. It was found that occupational exposure to chemicals resulted in skin inflammation in 7.1% of the examined persons. Machine oils and greases induced skin inflammation in 2.7% and occupational acne in 5.3% of workers. It was also observed that chromium compounds were the primary allergen in workers exposed to dusts (13.4% of sensitized persons) and in workers exposed to industrial greases and oils (8.0% of sensitized persons). Allergy to cobalt compounds prevailed among persons exposed to smears and oils. Single positive results of epidermal tests with the use of copper and silver were obtained. Moreover, data concerning the microelements content in fly-ashes are presented. Information on the frequency of the incidence of occupational skin diseases, sickness absenteeism due to dermatoses and on personal safety equipment which should be used by the workers of power industry plants are provided.

  19. 75 FR 10833 - In the Matter of Entergy Nuclear Operations; Vermont Yankee Nuclear Power Station; Demand for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-09

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 05000271; License No. DPR-28; EA-10-034; NRC-2010-0089] In the Matter of Entergy Nuclear Operations; Vermont Yankee Nuclear Power Station; Demand for.... The license authorizes the operation of the Vermont Yankee Nuclear Power Station (Vermont Yankee) in...

  20. A methodology for probabilistic assessment of solar thermal power plants yield

    NASA Astrophysics Data System (ADS)

    Fernández-Peruchena, Carlos M.; Lara-Faneho, Vicente; Ramírez, Lourdes; Zarzalejo, Luis F.; Silva, Manuel; Bermejo, Diego; Gastón, Martín; Moreno, Sara; Pulgar, Jesús; Pavon, Manuel; Macías, Sergio; Valenzuela, Rita X.

    2017-06-01

    A detailed knowledge of the solar resource is a critical point to perform an economic feasibility analysis of Concentrating Solar Power (CSP) plants. This knowledge must include its magnitude (how much solar energy is available at an area of interest over a long time period), and its variability over time. In particular, DNI inter-annual variations may be large, increasing the return of investment risk in CSP plant projects. This risk is typically evaluated by means of the simulation of the energy delivered by the CSP plant during years with low solar irradiation, which are typically characterized by annual solar radiation datasets with high probability of exceedance of their annual DNI values. In this context, this paper proposes the use meteorological years representative of a given probability of exceedance of annual DNI in order to realistically assess the inter-annual variability of energy yields. The performance of this approach is evaluated in the location of Burns station (University of Oregon Solar Radiation Monitoring Laboratory), where a 34-year (from 1980 to 2013) measured data set of solar irradiance and temperature is available.

  1. Station Blackout: A case study in the interaction of mechanistic and probabilistic safety analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curtis Smith; Diego Mandelli; Cristian Rabiti

    2013-11-01

    The ability to better characterize and quantify safety margins is important to improved decision making about nuclear power plant design, operation, and plant life extension. As research and development (R&D) in the light-water reactor (LWR) Sustainability (LWRS) Program and other collaborative efforts yield new data, sensors, and improved scientific understanding of physical processes that govern the aging and degradation of plant SSCs needs and opportunities to better optimize plant safety and performance will become known. The purpose of the Risk Informed Safety Margin Characterization (RISMC) Pathway R&D is to support plant decisions for risk-informed margin management with the aim tomore » improve economics, reliability, and sustain safety of current NPPs. In this paper, we describe the RISMC analysis process illustrating how mechanistic and probabilistic approaches are combined in order to estimate a safety margin. We use the scenario of a “station blackout” wherein offsite power and onsite power is lost, thereby causing a challenge to plant safety systems. We describe the RISMC approach, illustrate the station blackout modeling, and contrast this with traditional risk analysis modeling for this type of accident scenario.« less

  2. Modelling a reliable wind/PV/storage power system for remote radio base station sites without utility power

    NASA Astrophysics Data System (ADS)

    Bitterlin, Ian F.

    The development of photovoltaic (PV) cells has made steady progress from the early days, when only the USA space program could afford to deploy them, to now, seeing them applied to roadside applications even in our Northern European climes. The manufacturing cost per watt has fallen and the daylight-to-power conversion efficiency increased. At the same time, the perception that the sun has to be directly shining on it for a PV array to work has faded. On some of those roadside applications, particularly for remote emergency telephones or for temporary roadwork signage where a utility electrical power connection is not practical, the keen observer will spot, usually in addition to a PV array, a small wind-turbine and an electrical cabinet quite obviously (by virtue of its volume) containing a storage battery. In the UK, we have the lions share (>40%) of Europe's entire wind power resource although, despite press coverage of the "anti-wind" lobby to the contrary, we have hardly started to harvest this clean and free energy source. Taking this (established and proven) roadside solution one step further, we will consider higher power applications. A cellular phone system is one where a multitude of remote radio base stations (RBS) are required to provide geographical coverage. With networks developing into the so called "3G" technologies the need for base stations has tripled, as each 3G cell covers only 1/3 the geographical area of its "2G" counterpart. To cover >90% of the UK's topology (>97% population coverage) with 3G cellular technology will requires in excess of 12,000 radio base stations per operator network. In 2001, there were around 25,000 established sites and, with an anticipated degree of collocation by necessity, that figure is forecast to rise to >47,000. Of course, the vast majority of these sites have a convenient grid connection. However, it is easy to see that the combination of wind and PV power generation and an energy storage system may be an

  3. Electric motorcycle charging station powered by solar energy

    NASA Astrophysics Data System (ADS)

    Siriwattanapong, Akarawat; Chantharasenawong, Chawin

    2018-01-01

    This research proposes a design and verification of an off-grid photovoltaic system (PVS) for electric motorcycle charging station to be located in King’s Mongkut’s University of Technology Thonburi, Bangkok, Thailand. The system is designed to work independently (off-grid) and it must be able to fully charge the batteries of a typical passenger electric motorcycle every evening. A 1,000W Toyotron electric motorcycle is chosen for this study. It carries five units of 12.8V 20Ah batteries in series; hence its maximum energy requirement per day is 1,200Wh. An assessment of solar irradiation data and the Generation Factor in Bangkok, Thailand suggests that the charging system consists of one 500W PV panel, an MPPT charge controller, 48V 150Ah battery, a 1,000W DC to AC inverter and other safety devices such as fuses and breakers. An experiment is conducted to verify the viability of the off-grid PVS charging station by collecting the total daily energy generation data in the raining season and winter. The data suggests that the designed off-grid solar power charging station for electric motorcycle is able to supply sufficient energy for daily charging requirements.

  4. Plant maintenance and plant life extension issue, 2009

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agnihotri, Newal

    The focus of the March-April issue is on plant maintenance and plant life extension. Major articles include the following: Application of modeling and simulation to nuclear power plants, by Berry Gibson, IBM, and Rolf Gibbels, Dassault Systems; Steam generators with tight manufacturing procedures, by Ei Kadokami, Mitsubishi Heavy Industries; SG design based on operational experience and R and D, by Jun Tang, Babcock and Wilcox Canada; Confident to deliver reliable performance, by Bruce Bevilacqua, Westinghouse Nuclear; An evolutionary plant design, by Martin Parece, AREVA NP, Inc.; and, Designed for optimum production, by Danny Roderick, GE Hitachi Nuclear Energy. Industry Innovationmore » articles include: Controlling alloy 600 degradation, by John Wilson, Exelon Nuclear Corporation; Condensate polishing innovation, by Lewis Crone, Dominion Millstone Power Station; Reducing deposits in steam generators, by the Electric Power Research Institute; and, Minimizing Radiological effluent releases, by the Electric Power Research Institute. The plant profile article is titled 2008 - a year of 'firsts' for AmerenUE's Callaway plant, by Rick Eastman, AmerenUE.« less

  5. 75 FR 58445 - Exelon Generation Company, LLC; Peach Bottom Atomic Power Station Unit Nos. 2 and 3...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-24

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. 50-277 AND 50-278; NRC-2010-0303] Exelon Generation Company, LLC; Peach Bottom Atomic Power Station Unit Nos. 2 and 3; Environmental Assessment and Finding of... Bottom Atomic Power Station (PBAPS), Unit Nos. 2 and 3, located in York and Lancaster Counties...

  6. Reactor engineering support of operations at the Davis-Besse nuclear power station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelley, D.B.

    1995-12-31

    Reactor engineering functions differ greatly from unit to unit; however, direct support of the reactor operators during reactor startups and operational transients is common to all units. This paper summarizes the support the reactor engineers provide the reactor operators during reactor startups and power changes through the use of automated computer programs at the Davis-Besse nuclear power station.

  7. 75 FR 3639 - Revisions to Rules Authorizing the Operation of Low Power Auxiliary Stations in the 698-806 MHz...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-22

    ... 698-806 MHz Band; Public Interest Spectrum Coalition, Petition for Rulemaking Regarding Low Power... Power Auxiliary Stations in the 698-806 MHz Band; Public Interest Spectrum Coalition, Petition for... Operation of Low Power Auxiliary Stations in the 698-806 MHz Band; Public Interest Spectrum Coalition...

  8. Technology for Space Station Evolution. Volume 4: Power Systems/Propulsion/Robotics

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA's Office of Aeronautics and Space Technology (OAST) conducted a workshop on technology for space station evolution on 16-19 Jan. 1990. The purpose of this workshop was to collect and clarify Space Station Freedom technology requirements for evolution and to describe technologies that can potentially fill those requirements. These proceedings are organized into an Executive Summary and Overview and five volumes containing the Technology Discipline Presentations. Volume 4 consists of the technology discipline sections for Power, Propulsion, and Robotics. For each technology discipline, there is a Level 3 subsystem description, along with the papers.

  9. Methane Emissions from Permafrost Regions using Low-Power Eddy Covariance Stations

    NASA Astrophysics Data System (ADS)

    Burba, G.; Sturtevant, C.; Schreiber, P.; Peltola, O.; Zulueta, R.; Mammarella, I.; Haapanala, S.; Rinne, J.; Vesala, T.; McDermitt, D.; Oechel, W.

    2012-04-01

    result, spatial coverage of eddy covariance methane flux measurements remains limited. Remote permafrost wetlands of Arctic tundra, northern boreal peatlands of Canada and Siberia, and other highly methanogenic ecosystems have few eddy covariance methane measurement stations. Those existing are often located near grid power sources and roads rather than in the middle of the methane-producing ecosystem, while those that are placed appropriately may require extraordinary efforts to build and maintain them, with large investments into man-power and infrastructure. Alternatively, open-path approach allows methane flux measurements at ambient pressure without the need for a pump. As a result, the measurements can be done with very low-power (e.g. 5-10 Watts), light (5 .2 kg) instruments permitting solar- and wind- powered remote deployments in hard-to-reach sites from permanent, portable or mobile stations, and cost-effective additions of a methane measurement to the present array of CO2 and H2O measurements. The low-power operation and light weight of open-path eddy covariance stations is important for a number of ecosystems (rice fields, landfills, wetlands, cattle yards), but it is especially important for permafrost regions where grid power and access roads are generally not available, and the logistics of running the experiments are particularly expensive. Emerging research on methane flux measurements using low-power stations equipped with LI-7700 open-path methane analyzer (LI-COR Biosciences) are presented from several permafrost ecosystems with contrasting setups, and weather conditions. Principles of operation, station characteristics and requirements are also discussed.

  10. 76 FR 40403 - R.E. Ginna Nuclear Power Plant, LLC, R.E. Ginna Nuclear Power Plant, R.E. Ginna Independent Spent...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-08

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-244; Docket No. 72-67] R.E. Ginna Nuclear Power Plant, LLC, R.E. Ginna Nuclear Power Plant, R.E. Ginna Independent Spent Fuel Storage Installation; Notice of... Facility Operating License No. DPR-18, for the R.E. Ginna Nuclear Power Plant (Ginna), currently held by R...

  11. Development Status: Automation Advanced Development Space Station Freedom Electric Power System

    NASA Technical Reports Server (NTRS)

    Dolce, James L.; Kish, James A.; Mellor, Pamela A.

    1990-01-01

    Electric power system automation for Space Station Freedom is intended to operate in a loop. Data from the power system is used for diagnosis and security analysis to generate Operations Management System (OMS) requests, which are sent to an arbiter, which sends a plan to a commander generator connected to the electric power system. This viewgraph presentation profiles automation software for diagnosis, scheduling, and constraint interfaces, and simulation to support automation development. The automation development process is diagrammed, and the process of creating Ada and ART versions of the automation software is described.

  12. 3. DISTANT VIEW (TO THE NORTHEAST) OF THE POWER STATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. DISTANT VIEW (TO THE NORTHEAST) OF THE POWER STATION (FAR LEFT, WOOD SHED, AND CHANGE HOUSE (CENTER). THE SMALLER ATTACHED SECTION ON THE CHANGE HOUSE SERVED AS THE MINE OFFICE AND RECORDS STORAGE ROOM. - Foster Gulch Mine, Bear Creek 1 mile Southwest of Town of Bear Creek, Red Lodge, Carbon County, MT

  13. Competitiveness of biomass-fueled electrical power plants.

    Treesearch

    Bruce A. McCarl; Darius M. Adams; Ralph J. Alig; John T. Chmelik

    2000-01-01

    One way countries like the United States can comply with suggested rollbacks in greenhouse gas emissions is by employing power plants fueled with biomass. We examine the competitiveness of biomass-based fuel for electrical power as opposed to coal using a mathematical programming structure. We consider fueling power plants from milling residues, whole trees, logging...

  14. Nuclear Power Plant Module, NPP-1: Nuclear Power Cost Analysis.

    ERIC Educational Resources Information Center

    Whitelaw, Robert L.

    The purpose of the Nuclear Power Plant Modules, NPP-1, is to determine the total cost of electricity from a nuclear power plant in terms of all the components contributing to cost. The plan of analysis is in five parts: (1) general formulation of the cost equation; (2) capital cost and fixed charges thereon; (3) operational cost for labor,…

  15. Estimation of soil-to-plant transfer factors of radiocesium in 99 wild plant species grown in arable lands 1 year after the Fukushima 1 Nuclear Power Plant accident.

    PubMed

    Yamashita, Jun; Enomoto, Takashi; Yamada, Masao; Ono, Toshiro; Hanafusa, Tadashi; Nagamatsu, Tomohiro; Sonoda, Shoji; Yamamoto, Yoko

    2014-01-01

    One year after the deposition of radionuclides from the Fukushima 1 Nuclear Power Plant (A formal name is Fukushima Daiichi Nuclear Power Station) in March 2011, radiocesium (¹³⁴Cs, ¹³⁷Cs) concentrations ([Cs]) were comprehensively investigated in the wild plants of 99 species most of which were annual or summer green perennial herbs and started to grow from April 2012 at the heavily contaminated fields of paddy (three study sites) and upland (one study site) in Fukushima Prefecture. The survey was conducted three times (April, July and October) in the year. In each site, soils (soil cores of 5-cm depth) and plants (aerial shoots) were collected for determination of [Cs] on a dry weight basis, and then the transfer factor (TF) of radiocesium from soil to plant ([Cs]plant/[Cs]soil) was estimated in each species. The [Cs] values of both soils and plants largely varied. However, some species exhibited relatively high TF values (more than 0.4) (e.g., Athyrium yokoscense, Dryopteris tokyoensis, and Cyperus brevifolius), while others exhibited almost negligible values (less than 0.01) (e.g., Salix miyabeana, Humulus scandens, and Elymus tsukushiensis). In addition, judging from the 11 species grown in both paddy and upland fields, TF values were generally higher in the paddy fields. The estimation of phytoextraction efficiency of soil radiocesium by weed communities in the paddy fields suggests that the weed community is not a practical candidate for phytoremediation technique.

  16. An atmosphere protection subsystem in the thermal power station automated process control system

    NASA Astrophysics Data System (ADS)

    Parchevskii, V. M.; Kislov, E. A.

    2014-03-01

    Matters concerned with development of methodical and mathematical support for an atmosphere protection subsystem in the thermal power station automated process control system are considered taking as an example the problem of controlling nitrogen oxide emissions at a gas-and-oil-fired thermal power station. The combined environmental-and-economic characteristics of boilers, which correlate the costs for suppressing emissions with the boiler steam load and mass discharge of nitrogen oxides in analytic form, are used as the main tool for optimal control. A procedure for constructing and applying environmental-and-economic characteristics on the basis of technical facilities available in modern instrumentation and control systems is presented.

  17. Looking east at canal and R. Paul Smith Power Station. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking east at canal and R. Paul Smith Power Station. The dark trestle at right center carried the spur track to coal unloading facilities located in the space now occupied by the coal pile. - Potomac Edison Company, Chesapeake & Ohio Canal Bridge, Spanning C & O Canal South of U.S. 11, Williamsport, Washington County, MD

  18. Ways to Improve Russian Coal-Fired Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tumanovskii, A. G., E-mail: vti@vti.ru; Olkhovsky, G. G.

    Coal is an important fuel for the electric power industry of Russia, especially in Ural and the eastern part of the country. It is fired in boilers of large (200 – 800 MW) condensing power units and in many cogeneration power plants with units rated at 50 – 180 MW. Many coal-fired power plants have been operated for more than 40 – 50 years. Though serviceable, their equipment is obsolete and does not comply with the current efficiency, environmental, staffing, and availability standards. It is urgent to retrofit and upgrade such power plants using advanced equipment, engineering and business ideas.more » Russian power-plant engineering companies have designed such advanced power units and their equipment such as boilers, turbines, auxiliaries, process and environmental control systems similar to those produced by the world’s leading manufacturers. Their performance and ways of implementation are discussed.« less

  19. Satellite Power System (SPS). State and local regulations as applied to satellite power system microwave receiving antenna facilities

    NASA Technical Reports Server (NTRS)

    Kotin, A. D.

    1978-01-01

    State and local regulation of power plant construction and operation of solar power satellite (SPS) receiving stations is presented. Each receiving antenna station occupies a land area 100-200 km square, receives microwave transmissions from the solar power satellite, and converts them into electricity for transmission to the power grid. The long lead time associated with the SPS and the changing status of state and local regulation dictated emphasis on: generic classification of the types of regulation, and identification of regulatory vectors which affect rectenna facilities.

  20. 75 FR 9958 - Carolina Power & Light Company, Shearon Harris Nuclear Power Plant, Unit 1; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-04

    ..., Shearon Harris Nuclear Power Plant, Unit 1; Exemption 1.0 Background Carolina Power & Light Company (the... Operating License No. NPF-63, which authorizes operation of the Shearon Harris Nuclear Power Plant, Unit 1... rule's compliance date for all operating nuclear power plants, but noted that the Commission's...

  1. Effective ways to modernize outdated coal heat power plants

    NASA Astrophysics Data System (ADS)

    Suchkov, S. I.; Kotler, V. R.; Batorshin, V. A.

    2016-12-01

    An analysis of the state of equipment of 72 outdated coal HPP (heat power plants) of a total capacity 14.3 GW with steam parameters before the turbines p before ≤ 9 MPa, t before = 420-540°C was performed. The equipment is characterized by a considerably low efficiency factor, even if it were converted to burning the natural gas, and by increased release of harmful substances. However, on the most part of the considered HPP, the steam turbines, unlike the boilers, have thus far retained the operation applicability and satisfactory reliability of performance. The analysis has shown that it makes sense to effectively modernize the outdated coal HPP by transformation of their equipment into combined-cycle plant (CCP) with coal gasification, which has high economic and ecological indicators due to thermodynamic advantage of the combined cycle and simpler purification of the generator gas in the process under pressure. As the most rational way of this transformation, the one was recognized wherein—instead of the existing boiler (boilers) or parallel to it—a gasification and gas turbine system is installed with a boiler-utilizer (BU), from which steam is fed to the HPP main steam pipe. In doing this, the basic part of the power station equipment persists. In the world, this kind of reconstruction of steam power equipment is applied widely and successfully, but it is by use of natural gas for the most part. It is reasonable to use the technology developed at Heat Engineering Research Institute (HERI) of hearth-steam gasification of coal and high-temperature purification of the generator gas. The basic scheme and measures on implementation of this method for modernization of outdated coal HPP is creation of CCP with blast-furnace of coal on the basis of accessible and preserved HPP equipment. CCP power is 120 MW, input-output ratio (roughly) 44%, emissions of hazardous substances are 5 mg/MJ dust, 20-60 mg/MJ SO2, and 50-100 mg/MJ NO x . A considerable decrease of

  2. 75 FR 3942 - Carolina Power & Light Company Shearon Harris Nuclear Power Plant, Unit 1 Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-25

    ... Shearon Harris Nuclear Power Plant, Unit 1 Environmental Assessment and Finding of No Significant Impact... Nuclear Power Plant, Unit 1 (HNP), located in New Hill, North Carolina. In accordance with 10 CFR 51.21... of Nuclear Plants: Regarding Shearon Harris Nuclear Power Plant, Unit 1--Final Report (NUREG-1437...

  3. USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edward Levy; Nenad Sarunac; Harun Bilirgen

    2005-04-01

    This is the ninth Quarterly Report for this project. The background and technical justification for the project are described, including potential benefits of reducing fuel moisture using power plant waste heat, prior to firing the coal in a pulverized coal boiler. During this last Quarter, comparative analyses were performed for lignite and PRB coals to determine how unit performance varies with coal product moisture. Results are given showing how the coal product moisture level and coal rank affect parameters such as boiler efficiency, station service power needed for fans and pulverizers and net unit heat rate. Results are also givenmore » for the effects of coal drying on cooling tower makeup water and comparisons are made between makeup water savings for various times of the year.« less

  4. Topping cycle for coal-fueled electric power plants using the ceramic helical expander

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myers, B.; Landingham, R.; Mohr, P.

    Ceramic helical expanders are advocated as the work output element in a 2500/sup 0/F direct coal-fired Brayton topping cycle for central power station application. When combined with a standard steam electric power plant cycle, such a cycle could result in an overall thermal conversion efficiency in excess of 50 percent. The performance, coal tolerance, and system-development-time advantages of the ceramic helical expander approach are enumerated. A perspective on the choice of design and materials is provided. A preliminary consideration of physical properties, economic questions, and service experience has led us to a preference for the silicon nitride and silicon carbidemore » family of materials. A program to confirm the performance and coal tolerance aspects of a ceramic helical expander system is planned.« less

  5. BOILING NUCLEAR SUPERHEATER (BONUS) POWER STATION. Final Summary Design Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1962-05-01

    The design and construction of the Boiling Nuclear Superheater (BONUS) Power Station at Punta Higuera on the seacoast at the westernmost tip of Puerto Rico are described. The reactor has an output of 17.5 Mw(e). This report will serve as a source of information for personnel engaged in management, evaluation, and training. (N.W.R.)

  6. Reduction technique of drop voltage and power losses to improve power quality using ETAP Power Station simulation model

    NASA Astrophysics Data System (ADS)

    Satrio, Reza Indra; Subiyanto

    2018-03-01

    The effect of electric loads growth emerged direct impact in power systems distribution. Drop voltage and power losses one of the important things in power systems distribution. This paper presents modelling approach used to restructrure electrical network configuration, reduce drop voltage, reduce power losses and add new distribution transformer to enhance reliability of power systems distribution. Restructrure electrical network was aimed to analyse and investigate electric loads of a distribution transformer. Measurement of real voltage and real current were finished two times for each consumer, that were morning period and night period or when peak load. Design and simulation were conduct by using ETAP Power Station Software. Based on result of simulation and real measurement precentage of drop voltage and total power losses were mismatch with SPLN (Standard PLN) 72:1987. After added a new distribution transformer and restructrured electricity network configuration, the result of simulation could reduce drop voltage from 1.3 % - 31.3 % to 8.1 % - 9.6 % and power losses from 646.7 watt to 233.29 watt. Result showed, restructrure electricity network configuration and added new distribution transformer can be applied as an effective method to reduce drop voltage and reduce power losses.

  7. Magnetic fusion commercial power plants

    NASA Astrophysics Data System (ADS)

    Sheffield, J.

    Toroidal magnetic systems present the best opportunity to make a commercial fusion power plant. They offer potential solutions to the main requirements that confront a power plant designer. An ideal system may be postulated in which the coils are a very small part of the cost, and the cost stems primarily from the inescapable components: minimal plasma heating (and sustaining system), tritium breeding blanket, shield, particle input, removal and treatment system, heat transfer system, generators, buildings, and balance of plant. No present system meets the ideal standards; however, toroidal systems contain among them the elements required. Consequently, a logical program may be based upon an evolutionary development, building on the contributions of the tokamak, which has been the mainline of research for a number of years.

  8. A parametric simulation of solar chimney power plant

    NASA Astrophysics Data System (ADS)

    Beng Hooi, Lim; Kannan Thangavelu, Saravana

    2018-01-01

    The strong solar radiation, continuous supplies of sunlight and environmental friendly factors have made the solar chimney power plant becoming highly feasible to build in Malaysia. Solar chimney power plant produces upward buoyancy force through the greenhouse effect. Numerical simulation was performed on the model of a solar chimney power plant using the ANSYS Fluent software by applying standard k-epsilon turbulence model and discrete ordinates (DO) radiation model to solve the relevant equations. A parametric study was carried out to evaluate the performance of solar chimney power plant, which focused on the temperature rise in the collector, air velocity at the chimney base, and pressure drop inside the chimney were based on the results of temperature, velocity, and static pressure distributions. The results demonstrate reliability by comparing a model with the experimental data of Manzanares Spanish prototype. Based on the numerical results, power capacity and efficiency were analysed theoretically. Results indicate that a stronger solar radiation and larger prototype will improve the performance of solar chimney power plant.

  9. Power-plant modernization program in Latvia. Desk Study Report No. 1. Export trade information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-08-01

    The Government of Latvia has requested the U.S. Trade and Development Program's (TDP's) assistance in financing the cost of a feasibility study to develop a modernization program for its thermal power stations aimed at improving their performance and efficiency. The consultant will work with engineers and managers of Latvenergo, Latvia's power utility, to review the performance of the country's two thermal power stations and carry out a detailed study for the rehabilitation and modernization of the TEC-2 thermal power station in Riga. The overall goal of the program will be to maximize the output capacity of the country's two powermore » stations through the implementation of economically efficient rehabilitation projects.« less

  10. Autonomous power expert fault diagnostic system for Space Station Freedom electrical power system testbed

    NASA Technical Reports Server (NTRS)

    Truong, Long V.; Walters, Jerry L.; Roth, Mary Ellen; Quinn, Todd M.; Krawczonek, Walter M.

    1990-01-01

    The goal of the Autonomous Power System (APS) program is to develop and apply intelligent problem solving and control to the Space Station Freedom Electrical Power System (SSF/EPS) testbed being developed and demonstrated at NASA Lewis Research Center. The objectives of the program are to establish artificial intelligence technology paths, to craft knowledge-based tools with advanced human-operator interfaces for power systems, and to interface and integrate knowledge-based systems with conventional controllers. The Autonomous Power EXpert (APEX) portion of the APS program will integrate a knowledge-based fault diagnostic system and a power resource planner-scheduler. Then APEX will interface on-line with the SSF/EPS testbed and its Power Management Controller (PMC). The key tasks include establishing knowledge bases for system diagnostics, fault detection and isolation analysis, on-line information accessing through PMC, enhanced data management, and multiple-level, object-oriented operator displays. The first prototype of the diagnostic expert system for fault detection and isolation has been developed. The knowledge bases and the rule-based model that were developed for the Power Distribution Control Unit subsystem of the SSF/EPS testbed are described. A corresponding troubleshooting technique is also described.

  11. Space Station Freedom electrical power system hardware commonality with the United States Polar Platform

    NASA Technical Reports Server (NTRS)

    Rieker, Lorra L.; Haraburda, Francis M.

    1989-01-01

    Information is presented on how the concept of commonality is being implemented with respect to electric power system hardware for the Space Station Freedom and the U.S. Polar Platform. Included is a historical account of the candidate common items which have the potential to serve the same power system functions on both Freedom and the Polar Platform. The Space Station program and objectives are described, focusing on the test and development responsibilities. The program definition and preliminary design phase and the design and development phase are discussed. The goal of this work is to reduce the program cost.

  12. 78 FR 55118 - Seismic Instrumentation for Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-09

    ... NUCLEAR REGULATORY COMMISSION [NRC-2013-0202] Seismic Instrumentation for Nuclear Power Plants... Reports for Nuclear Power Plants: LWR Edition,'' Section 3.7.4, ``Seismic Instrumentation.'' DATES: Submit... Nuclear Power Plants: LWR Edition'' (SRP, from the current Revision 2 to a new Revision 3). The proposed...

  13. Fluidized bed combustor 50 MW thermal power plant, Krabi, Thailand. Feasibility study. Export trade information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The report presents the results of a study prepared by Burns and Roe for the Electricity Generating Authority of Thailand to examine the technical feasibility and economic attractiveness for building a 50 MW Atmospheric Fluidized Bed Combustion lignite fired power plant at Krabi, southern Thailand. The study is divided into seven main sections, plus an executive summary and appendices: (1) Introduction; (2) Atmospheric Fluidized Bed Combustion Technology Overview; (3) Fuel and Limestone Tests; (4) Site Evaluation; (5) Station Design and Arrangements; (6) Environmental Considerations; (7) Economic Analysis.

  14. Preliminary assessment of alternative PFBC power plant systems. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wysocki, J.; Rogali, R.

    1980-07-01

    This report presents the design and and economic comparisons of the following nominal 1000 MWe PFBC power plants for both eastern and western coal: Curtiss-Wright PFBC power plants with an air-cooled design; General Electric RFBC power plants with a steam-cooled design; and AEP/Stal-Laval PFBC power plants with a steam-cooled design. In addition, reference pulverized coal-fired (PCF) power plants are included for comparison purposes. The results of the analysis indicate: (1) The steam-cooled PFBC designs show potential savings of 10% and 11% over PCF plants for eastern and western coal, respectively, in terms of busbar power cost; (2) the air-cooled PFBCmore » designs show potential savings of 1% and 2% over PCF plants for eastern and western coal, respectively, in terms of busbar power cost.« less

  15. Stillwater Hybrid Geo-Solar Power Plant Optimization Analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wendt, Daniel S.; Mines, Gregory L.; Turchi, Craig S.

    2015-09-02

    The Stillwater Power Plant is the first hybrid plant in the world able to bring together a medium-enthalpy geothermal unit with solar thermal and solar photovoltaic systems. Solar field and power plant models have been developed to predict the performance of the Stillwater geothermal / solar-thermal hybrid power plant. The models have been validated using operational data from the Stillwater plant. A preliminary effort to optimize performance of the Stillwater hybrid plant using optical characterization of the solar field has been completed. The Stillwater solar field optical characterization involved measurement of mirror reflectance, mirror slope error, and receiver position error.more » The measurements indicate that the solar field may generate 9% less energy than the design value if an appropriate tracking offset is not employed. A perfect tracking offset algorithm may be able to boost the solar field performance by about 15%. The validated Stillwater hybrid plant models were used to evaluate hybrid plant operating strategies including turbine IGV position optimization, ACC fan speed and turbine IGV position optimization, turbine inlet entropy control using optimization of multiple process variables, and mixed working fluid substitution. The hybrid plant models predict that each of these operating strategies could increase net power generation relative to the baseline Stillwater hybrid plant operations.« less

  16. Verification of Space Station Secondary Power System Stability Using Design of Experiment

    NASA Technical Reports Server (NTRS)

    Karimi, Kamiar J.; Booker, Andrew J.; Mong, Alvin C.; Manners, Bruce

    1998-01-01

    This paper describes analytical methods used in verification of large DC power systems with applications to the International Space Station (ISS). Large DC power systems contain many switching power converters with negative resistor characteristics. The ISS power system presents numerous challenges with respect to system stability such as complex sources and undefined loads. The Space Station program has developed impedance specifications for sources and loads. The overall approach to system stability consists of specific hardware requirements coupled with extensive system analysis and testing. Testing of large complex distributed power systems is not practical due to size and complexity of the system. Computer modeling has been extensively used to develop hardware specifications as well as to identify system configurations for lab testing. The statistical method of Design of Experiments (DoE) is used as an analysis tool for verification of these large systems. DOE reduces the number of computer runs which are necessary to analyze the performance of a complex power system consisting of hundreds of DC/DC converters. DoE also provides valuable information about the effect of changes in system parameters on the performance of the system. DoE provides information about various operating scenarios and identification of the ones with potential for instability. In this paper we will describe how we have used computer modeling to analyze a large DC power system. A brief description of DoE is given. Examples using applications of DoE to analysis and verification of the ISS power system are provided.

  17. Impairment of soil health due to fly ash-fugitive dust deposition from coal-fired thermal power plants.

    PubMed

    Raja, R; Nayak, A K; Shukla, A K; Rao, K S; Gautam, Priyanka; Lal, B; Tripathi, R; Shahid, M; Panda, B B; Kumar, A; Bhattacharyya, P; Bardhan, G; Gupta, S; Patra, D K

    2015-11-01

    Thermal power stations apart from being source of energy supply are causing soil pollution leading to its degradation in fertility and contamination. Fine particle and trace element emissions from energy production in coal-fired thermal power plants are associated with significant adverse effects on human, animal, and soil health. Contamination of soil with cadmium, nickel, copper, lead, arsenic, chromium, and zinc can be a primary route of human exposure to these potentially toxic elements. The environmental evaluation of surrounding soil of thermal power plants in Odisha may serve a model study to get the insight into hazards they are causing. The study investigates the impact of fly ash-fugitive dust (FAFD) deposition from coal-fired thermal power plant emissions on soil properties including trace element concentration, pH, and soil enzymatic activities. Higher FAFD deposition was found in the close proximity of power plants, which led to high pH and greater accumulation of heavy metals. Among the three power plants, in the vicinity of NALCO, higher concentrations of soil organic carbon and nitrogen was observed whereas, higher phosphorus content was recorded in the proximity of NTPC. Multivariate statistical analysis of different variables and their association indicated that FAFD deposition and soil properties were influenced by the source of emissions and distance from source of emission. Pollution in soil profiles and high risk areas were detected and visualized using surface maps based on Kriging interpolation. The concentrations of chromium and arsenic were higher in the soil where FAFD deposition was more. Observance of relatively high concentration of heavy metals like cadmium, lead, nickel, and arsenic and a low concentration of enzymatic activity in proximity to the emission source indicated a possible link with anthropogenic emissions.

  18. Energy storage and thermal control system design status. [for space station power supplies

    NASA Technical Reports Server (NTRS)

    Simons, Stephen N.; Willhoite, Bryan C.; Van Ommering, Gert

    1989-01-01

    The Space Station Freedom electric power system (EPS) will initially rely on photovoltaics for power generation and Ni/H2 batteries for electrical energy storage. The current design for the development status of two major subsystems in the PV Power Module is discussed. The energy storage subsystem comprised of high capacity Ni/H2 batteries and the single-phase thermal control system that rejects the excess heat generated by the batteries and other components associated with power generation andstorage is described.

  19. Investigation of Containment Flooding Strategy for Mark-III Nuclear Power Plant with MAAP4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su Weinian; Wang, S.-J.; Chiang, S.-C

    2005-06-15

    Containment flooding is an important strategy for severe accident management of a conventional boiling water reactor (BWR) system. The purpose of this work is to investigate the containment flooding strategy of the Mark-III system after a reactor pressure vessel (RPV) breach. The Kuosheng Power Plant is a typical BWR-6 nuclear power plant (NPP) with Mark-III containment. The Severe Accident Management Guideline (SAMG) of the Kuosheng NPP has been developed based on the BWR Owners Group (BWROG) Emergency Procedure and Severe Accident Guidelines, Rev. 2. Therefore, the Kuosheng NPP is selected as the plant for study, and the MAAP4 code ismore » chosen as the tool for analysis. A postulated specific station blackout sequence for the Kuosheng NPP is cited as a reference case for this analysis. Because of the design features of Mark-III containment, the debris in the reactor cavity may not be submerged after an RPV breach when one follows the containment flooding strategy as suggested in the BWROG generic guideline, and the containment integrity could be challenged eventually. A more specific containment flooding strategy with drywell venting after an RPV breach is investigated, and a more stable plant condition is achieved with this strategy. Accordingly, the containment flooding strategy after an RPV breach will be modified for the Kuosheng SAMG, and these results are applicable to typical Mark-III plants with drywell vent path.« less

  20. 76 FR 25378 - Exelon Generation Company, LLC; PSEG Nuclear, LLC; Peach Bottom Atomic Power Station, Units 2 and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-04

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. 50-277 and 50-278; NRC-2011-0101] Exelon Generation Company, LLC; PSEG Nuclear, LLC; Peach Bottom Atomic Power Station, Units 2 and 3; Notice of Withdrawal of... for the Peach Bottom Atomic Power Station (PBAPS), Units 2 and 3, located in York and Lancaster...

  1. Facing technological challenges of Solar Updraft Power Plants

    NASA Astrophysics Data System (ADS)

    Lupi, F.; Borri, C.; Harte, R.; Krätzig, W. B.; Niemann, H.-J.

    2015-01-01

    The Solar Updraft Power Plant technology addresses a very challenging idea of combining two kinds of renewable energy: wind and solar. The working principle is simple: a Solar Updraft Power Plant (SUPP) consists of a collector area to heat the air due to the wide-banded ultra-violet solar radiation, the high-rise solar tower to updraft the heated air to the atmosphere, and in between the power conversion unit, where a system of coupled turbines and generators transforms the stream of heated air into electric power. A good efficiency of the power plant can only be reached with extra-large dimensions of the tower and/or the collector area. The paper presents an up-to-date review of the SUPP technology, focusing on the multi-physics modeling of the power plant, on the structural behavior of the tower and, last but not least, on the modeling of the stochastic wind loading process.

  2. Terrestrial flora and fauna in the vicinity of the Delmarva Power and Light station and proposed expansion site. Special report 77

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Deusen, M.; Otto, R.G.

    1979-12-01

    The results of field surveys of the terrestrial vegetation, birds and mammals in the vicinity of the Delmarva Power and Light Company Vienna Steam Electric Station and proposed expansion area in Dorchester County, Maryland are presented. Four major habitats were identified: forest, oldfield, marsh and cultivated land. Qualitative surveys of flora and fauna were conducted to determine species present. Commercially important waterfowl, upland game birds and mammals and furbearers are discussed. The status of endangered or threatened plants (seaside alder), birds (bald eagle) and mammals (Delmarva fox squirrel) on the site is evaluated.

  3. Combined compressed air storage-low BTU coal gasification power plant

    DOEpatents

    Kartsounes, George T.; Sather, Norman F.

    1979-01-01

    An electrical generating power plant includes a Compressed Air Energy Storage System (CAES) fueled with low BTU coal gas generated in a continuously operating high pressure coal gasifier system. This system is used in coordination with a continuously operating main power generating plant to store excess power generated during off-peak hours from the power generating plant, and to return the stored energy as peak power to the power generating plant when needed. The excess coal gas which is produced by the coal gasifier during off-peak hours is stored in a coal gas reservoir. During peak hours the stored coal gas is combined with the output of the coal gasifier to fuel the gas turbines and ultimately supply electrical power to the base power plant.

  4. Nuclear Power Plants | RadTown USA | US EPA

    EPA Pesticide Factsheets

    2018-06-22

    Nuclear power plants produce electricity from the heat created by splitting uranium atoms. In the event of a nuclear power plant emergency, follow instructions from emergency responders and public officials.

  5. Power plant fault detection using artificial neural network

    NASA Astrophysics Data System (ADS)

    Thanakodi, Suresh; Nazar, Nazatul Shiema Moh; Joini, Nur Fazriana; Hidzir, Hidzrin Dayana Mohd; Awira, Mohammad Zulfikar Khairul

    2018-02-01

    The fault that commonly occurs in power plants is due to various factors that affect the system outage. There are many types of faults in power plants such as single line to ground fault, double line to ground fault, and line to line fault. The primary aim of this paper is to diagnose the fault in 14 buses power plants by using an Artificial Neural Network (ANN). The Multilayered Perceptron Network (MLP) that detection trained utilized the offline training methods such as Gradient Descent Backpropagation (GDBP), Levenberg-Marquardt (LM), and Bayesian Regularization (BR). The best method is used to build the Graphical User Interface (GUI). The modelling of 14 buses power plant, network training, and GUI used the MATLAB software.

  6. 12. Interior view, fuel tanks on east side of power ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Interior view, fuel tanks on east side of power plant, electrical panels on the left and fuel tanks in the center looking north - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  7. 75 FR 6071 - Exelon Generation Company, LLC; PSEG Nuclear, LLC; Peach Bottom Atomic Power Station Units 2 and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-05

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. 50-277 and 50-278; NRC-2010-0042] Exelon Generation Company, LLC; PSEG Nuclear, LLC; Peach Bottom Atomic Power Station Units 2 and 3; Notice of Withdrawal of... and DPR-56 for the Peach Bottom Atomic Power Station (PBAPS), Units 2 and 3, located in York and...

  8. Nuclear techniques for the on-line bulk analysis of carbon in coal-fired power stations.

    PubMed

    Sowerby, B D

    2009-09-01

    Carbon trading schemes usually require large emitters of CO(2), such as coal-fired power stations, to monitor, report and be audited on their CO(2) emissions. The emission price provides a significant additional incentive for power stations to improve efficiency. In the present paper, previous work on the bulk determination of carbon in coal is reviewed and assessed. The most favourable method is that based on neutron inelastic scattering. The potential role of on-line carbon analysers in improving boiler efficiency and in carbon accounting is discussed.

  9. Energy saving and consumption reducing evaluation of thermal power plant

    NASA Astrophysics Data System (ADS)

    Tan, Xiu; Han, Miaomiao

    2018-03-01

    At present, energy saving and consumption reduction require energy saving and consumption reduction measures for thermal power plant, establishing an evaluation system for energy conservation and consumption reduction is instructive for the whole energy saving work of thermal power plant. By analysing the existing evaluation system of energy conservation and consumption reduction, this paper points out that in addition to the technical indicators of power plant, market activities should also be introduced in the evaluation of energy saving and consumption reduction in power plant. Ttherefore, a new evaluation index of energy saving and consumption reduction is set up and the example power plant is calculated in this paper. Rresults show that after introducing the new evaluation index of energy saving and consumption reduction, the energy saving effect of the power plant can be judged more comprehensively, so as to better guide the work of energy saving and consumption reduction in power plant.

  10. MIDDLE GORGE POWER PLANT, OWENS RIVER STREAM FLOWING OVER TAIL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MIDDLE GORGE POWER PLANT, OWENS RIVER STREAM FLOWING OVER TAIL RACE OF POWER PLANT AND PENSTOCK HEADGATE TO LOWER GORGE CONTROL PLANT. A MINIMAL FLOW OF RIVER WATER IS REQUIRED TO MAINTAIN FISH LIFE - Los Angeles Aqueduct, Middle Gorge Power Plant, Los Angeles, Los Angeles County, CA

  11. IMPACT OF AIR POLLUTION ON VEGETATION NEAR THE COLUMBIA GENERATING STATION - WISCONSIN POWER PLANT IMPACT STUDY

    EPA Science Inventory

    The impact of air pollution from the coal-fired Columbia Generating Station upon vegetation was investigated. Air monitoring of 03 and 02 documented levels that occurred before and with operation of the generating station. Field sampling of alfalfa, lichens, and white pines was u...

  12. Space Station Freedom electrical power system hardware commonality with the United States Polar Platform

    NASA Technical Reports Server (NTRS)

    Rieker, Lorra L.; Haraburda, Francis M.

    1989-01-01

    The National Aeronautics and Space Administration has adopted the policy to achieve the maximum practical level of commonality for the Space Station Freedom program in order to significantly reduce life cycle costs. Commonality means using identical or similar hardware/software for meeting common sets of functionally similar requirements. Information on how the concept of commonality is being implemented with respect to electric power system hardware for the Space Station Freedom and the U.S. Polar Platform is presented. Included is a historical account of the candidate common items which have the potential to serve the same power system functions on both Freedom and the Polar Platform.

  13. Layouts of trigeneration plants for centralized power supply

    NASA Astrophysics Data System (ADS)

    Klimenko, A. V.; Agababov, V. S.; Il'ina, I. P.; Rozhnatovskii, V. D.; Burmakina, A. V.

    2016-06-01

    One of the possible and, under certain conditions, sufficiently effective methods for reducing consumption of fuel and energy resources is the development of plants for combined generation of different kinds of energy. In the power industry of Russia, the facilities have become widespread in which the cogeneration technology, i.e., simultaneous generation of electric energy and heat, is implemented. Such facilities can use different plants, viz., gas- and steam-turbine plants and gas-reciprocating units. Cogeneration power supply can be further developed by simultaneously supplying the users not only with electricity and heat but also with cold. Such a technology is referred to as trigeneration. To produce electricity and heat, trigeneration plants can use the same facilities that are used in cogeneration, namely, gas-turbine plants, steam-turbine plants, and gas-reciprocating units. Cold can be produced in trigeneration plants using thermotransformers of various kinds, such as vaporcompression thermotransformers, air thermotransformers, and absorption thermotransformers, that operate as chilling machines. The thermotransformers can also be used in the trigeneration plants to generate heat. The main advantage of trigeneration plants based on gas-turbine plants or gas-reciprocating units over cogeneration plants is the increased thermodynamic power supply efficiency owing to utilization of the waste-gas heat not only in winter but also in summer. In the steam-turbine-based trigeneration plants equipped with absorption thermotransformers, the enhancement of the thermodynamic power supply efficiency is determined by the increase in the heat extraction load during the nonheating season. The article presents calculated results that demonstrate higher thermodynamic efficiency of a gas-turbine-based plant with an absorption thermotransformer that operates in the trigeneration mode compared with a cogeneration gas-turbine plant. The structural arrangements of trigeneration

  14. 75 FR 80547 - Carolina Power & Light Company, Shearon Harris Nuclear Power Plant, Unit No. 1; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-22

    ..., Shearon Harris Nuclear Power Plant, Unit No. 1; Exemption 1.0 Background Carolina Power & Light Company... operation of the Shearon Harris Nuclear Power Plant (HNP), Unit 1. The license provides, among other things... request to generically extend the rule's compliance date for all operating nuclear power plants, but noted...

  15. Water management requirements for animal and plant maintenance on the Space Station

    NASA Technical Reports Server (NTRS)

    Johnson, C. C.; Rasmussen, D.; Curran, G.

    1987-01-01

    Long-duration Space Station experiments that use animals and plants as test specimens will require increased automation and advanced technologies for water management in order to free scientist-astronauts from routine but time-consuming housekeeping tasks. The three areas that have been identified as requiring water management and that are discusseed are: (1) drinking water and humidity condensate of the animals, (2) nutrient solution and transpired water of the plants, and (3) habitat cleaning methods. Automation potential, technology assessment, crew time savings, and resupply penalties are also discussed.

  16. Safety Regulation of Nuclear Power Plant License Renewal

    NASA Astrophysics Data System (ADS)

    Zhang, Qiaoe; Liu, Ting; Qi, Yuan; Yang, LiLi

    2018-01-01

    China’s regulations stipulate that a nuclear power plant license is valid for a design life period (generally 30 or 40 years). Whether the nuclear power plant’s license is renewed after the expiration of the license is to be determined based on the safety and economy of the nuclear power plant..

  17. Boiler plant training

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peffley, R.E.

    Developing an operator training program depends on each individual power plant's operating characteristics. This paper deals with the development of the existing, workable program used at the Eckert and Erickson Stations - Board of Water and Light, Lansing, Michigan. The Eckert Station is a coal fired complex consisting of 3 to 45 MW, 3 to 80 MW, and 4 process steam boilers. This training program encompasses seven (7) operating classifications administered by a Head Operator. A similar program is employed at a single unit 160 MW Erickson Station, covering three (3) operating classifications.

  18. 14. Power copy of drawing, August 21, 1915. POWER PLANT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Power copy of drawing, August 21, 1915. POWER PLANT EXTENSION, GENERAL PLANS. Drawing No. 4415, Facilities Engineering, Army Materials Technology Laboratory, Watertown, Massachusetts. - Watertown Arsenal, Building No. 60, Arsenal Street, Watertown, Middlesex County, MA

  19. 75 FR 13318 - Virginia Electric and Power Company; Surry Power Station, Unit Nos. 1 and 2 (Surry 1 and 2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-19

    ... notice. SUMMARY: This document corrects a notice appearing in the Federal Register on March 3, 2010 (75... Power Company; Surry Power Station, Unit Nos. 1 and 2 (Surry 1 and 2); Correction to Environmental... Surry 1 and 2, respectively.'' This action is necessary to add an implementation date for Surry Unit 2...

  20. Analysis and design of a 10 to 30 kW grid-connected solar power system for the JPL fire station and first aid station

    NASA Technical Reports Server (NTRS)

    Josephs, R. H.

    1982-01-01

    The design and performance of a modestly sized utility-connected power conditioning system and its supporting photovoltaic collector are described and estimated. Utility preparations and guidelines to conform with the output of a small generating station with that of a large power network are examined.

  1. Applications of the RELAP5 code to the station blackout transients at the Browns Ferry Unit One Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schultz, R.R.; Wagoner, S.R.

    1983-01-01

    As a part of the charter of the Severe Accident Sequence Analysis (SASA) Program, station blackout transients have been analyzed using a RELAP5 model of the Browns Ferry Unit 1 Plant. The task was conducted as a partial fulfillment of the needs of the US Nuclear Regulatory Commission in examining the Unresolved Safety Issue A-44: Station Blackout (1) the station blackout transients were examined (a) to define the equipment needed to maintain a well cooled core, (b) to determine when core uncovery would occur given equipment failure, and (c) to characterize the behavior of the vessel thermal-hydraulics during the stationmore » blackout transients (in part as the plant operator would see it). These items are discussed in the paper. Conclusions and observations specific to the station blackout are presented.« less

  2. Inertial Fusion Power Plant Concept of Operations and Maintenance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anklam, T.; Knutson, B.; Dunne, A. M.

    2015-01-15

    Parsons and LLNL scientists and engineers performed design and engineering work for power plant pre-conceptual designs based on the anticipated laser fusion demonstrations at the National Ignition Facility (NIF). Work included identifying concepts of operations and maintenance (O&M) and associated requirements relevant to fusion power plant systems analysis. A laser fusion power plant would incorporate a large process and power conversion facility with a laser system and fusion engine serving as the heat source, based in part on some of the systems and technologies advanced at NIF. Process operations would be similar in scope to those used in chemical, oilmore » refinery, and nuclear waste processing facilities, while power conversion operations would be similar to those used in commercial thermal power plants. While some aspects of the tritium fuel cycle can be based on existing technologies, many aspects of a laser fusion power plant presents several important and unique O&M requirements that demand new solutions. For example, onsite recovery of tritium; unique remote material handling systems for use in areas with high radiation, radioactive materials, or high temperatures; a five-year fusion engine target chamber replacement cycle with other annual and multi-year cycles anticipated for major maintenance of other systems, structures, and components (SSC); and unique SSC for fusion target waste recycling streams. This paper describes fusion power plant O&M concepts and requirements, how O&M requirements could be met in design, and how basic organizational and planning issues can be addressed for a safe, reliable, economic, and feasible fusion power plant.« less

  3. Inertial fusion power plant concept of operations and maintenance

    NASA Astrophysics Data System (ADS)

    Knutson, Brad; Dunne, Mike; Kasper, Jack; Sheehan, Timothy; Lang, Dwight; Anklam, Tom; Roberts, Valerie; Mau, Derek

    2015-02-01

    Parsons and LLNL scientists and engineers performed design and engineering work for power plant pre-conceptual designs based on the anticipated laser fusion demonstrations at the National Ignition Facility (NIF). Work included identifying concepts of operations and maintenance (O&M) and associated requirements relevant to fusion power plant systems analysis. A laser fusion power plant would incorporate a large process and power conversion facility with a laser system and fusion engine serving as the heat source, based in part on some of the systems and technologies advanced at NIF. Process operations would be similar in scope to those used in chemical, oil refinery, and nuclear waste processing facilities, while power conversion operations would be similar to those used in commercial thermal power plants. While some aspects of the tritium fuel cycle can be based on existing technologies, many aspects of a laser fusion power plant presents several important and unique O&M requirements that demand new solutions. For example, onsite recovery of tritium; unique remote material handling systems for use in areas with high radiation, radioactive materials, or high temperatures; a five-year fusion engine target chamber replacement cycle with other annual and multi-year cycles anticipated for major maintenance of other systems, structures, and components (SSC); and unique SSC for fusion target waste recycling streams. This paper describes fusion power plant O&M concepts and requirements, how O&M requirements could be met in design, and how basic organizational and planning issues can be addressed for a safe, reliable, economic, and feasible fusion power plant.

  4. Martin Drake power plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schimmoller, B.K.

    2005-08-01

    The relatively old Martin Drake coal-fired plant at Colorado Springs is facing challenges to meet environmental requirements whilst satisfying power demands and remaining competition. The article describes measures taken and planned to tackle these challenges. 2 photos.

  5. [Hygienic characteristics of work conditions at large Hydroelectric Power Plants with mechanization and automatization].

    PubMed

    Iakimova, L D

    1997-01-01

    The article touches upon hygienic problems associated with mechanization and automation of major hydroelectric power stations. The authors present criteria to evaluate work conditions of the main occupations participating in the technologic process of hydroelectric power stations.

  6. 15. Power copy of drawing, August 21, 1915. POWER PLANT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Power copy of drawing, August 21, 1915. POWER PLANT EXTENSION, GENERAL PLANS. Drawing No. PA-A-36692, Facilities Engineering, Army Materials Technology Laboratory, Watertown, Massachusetts. - Watertown Arsenal, Building No. 60, Arsenal Street, Watertown, Middlesex County, MA

  7. Steady-State Plant Model to Predict Hydroden Levels in Power Plant Components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glatzmaier, Greg C.; Cable, Robert; Newmarker, Marc

    The National Renewable Energy Laboratory (NREL) and Acciona Energy North America developed a full-plant steady-state computational model that estimates levels of hydrogen in parabolic trough power plant components. The model estimated dissolved hydrogen concentrations in the circulating heat transfer fluid (HTF), and corresponding partial pressures within each component. Additionally for collector field receivers, the model estimated hydrogen pressure in the receiver annuli. The model was developed to estimate long-term equilibrium hydrogen levels in power plant components, and to predict the benefit of hydrogen mitigation strategies for commercial power plants. Specifically, the model predicted reductions in hydrogen levels within the circulatingmore » HTF that result from purging hydrogen from the power plant expansion tanks at a specified target rate. Our model predicted hydrogen partial pressures from 8.3 mbar to 9.6 mbar in the power plant components when no mitigation treatment was employed at the expansion tanks. Hydrogen pressures in the receiver annuli were 8.3 to 8.4 mbar. When hydrogen partial pressure was reduced to 0.001 mbar in the expansion tanks, hydrogen pressures in the receiver annuli fell to a range of 0.001 mbar to 0.02 mbar. When hydrogen partial pressure was reduced to 0.3 mbar in the expansion tanks, hydrogen pressures in the receiver annuli fell to a range of 0.25 mbar to 0.28 mbar. Our results show that controlling hydrogen partial pressure in the expansion tanks allows us to reduce and maintain hydrogen pressures in the receiver annuli to any practical level.« less

  8. Static analysis of rectifier cabinet for nuclear power generating stations based on finite element method

    NASA Astrophysics Data System (ADS)

    Yin, Qiang; Chen, Tian-jin; Li, Wei-yang; Xiong, Ze-cheng; Ma, Rui

    2017-09-01

    In order to obtain the deformation map and equivalent stress distribution of rectifier cabinet for nuclear power generating stations, the quality distribution of structure and electrical are described, the tensile bond strengths of the rings are checked, and the finite element model of cabinet is set up by ANSYS. The transport conditions of the hoisting state and fork loading state are analyzed. The deformation map and equivalent stress distribution are obtained. The attentive problems are put forward. It is a reference for analysis method and the obtained results for the transport of rectifier cabinet for nuclear power generating stations.

  9. ALARA at nuclear power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baum, J.W.

    1990-01-01

    Implementation of the As Low As Reasonably Achievable (ALARA) principle at nuclear power plants presents a continuing challenge for health physicists at utility corporate and plant levels, for plant designers, and for regulatory agencies. The relatively large collective doses at some plants are being addressed though a variety of dose reduction techniques. It is planned that this report will include material on historical aspects, management, valuation of dose reduction, quantitative and qualitative aspects of optimization, design, operational considerations, and training. The status of this work is summarized in this report. 30 refs., 1 fig., 6 tabs.

  10. AP1000{sup R} nuclear power plant safety overview for spent fuel cooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorgemans, J.; Mulhollem, L.; Glavin, J.

    2012-07-01

    The AP1000{sup R} plant is an 1100-MWe class pressurized water reactor with passive safety features and extensive plant simplifications that enhance construction, operation, maintenance, safety and costs. The AP1000 design uses passive features to mitigate design basis accidents. The passive safety systems are designed to function without safety-grade support systems such as AC power, component cooling water, service water or HVAC. Furthermore, these passive features 'fail safe' during a non-LOCA event such that DC power and instrumentation are not required. The AP1000 also has simple, active, defense-in-depth systems to support normal plant operations. These active systems provide the first levelmore » of defense against more probable events and they provide investment protection, reduce the demands on the passive features and support the probabilistic risk assessment. The AP1000 passive safety approach allows the plant to achieve and maintain safe shutdown in case of an accident for 72 hours without operator action, meeting the expectations provided in the U.S. Utility Requirement Document and the European Utility Requirements for passive plants. Limited operator actions are required to maintain safe conditions in the spent fuel pool via passive means. In line with the AP1000 approach to safety described above, the AP1000 plant design features multiple, diverse lines of defense to ensure spent fuel cooling can be maintained for design-basis events and beyond design-basis accidents. During normal and abnormal conditions, defense-in-depth and other systems provide highly reliable spent fuel pool cooling. They rely on off-site AC power or the on-site standby diesel generators. For unlikely design basis events with an extended loss of AC power (i.e., station blackout) or loss of heat sink or both, spent fuel cooling can still be provided indefinitely: - Passive systems, requiring minimal or no operator actions, are sufficient for at least 72 hours under all

  11. Rawhide Energy Station, Fort Collins, Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peltier, R.

    2008-10-15

    The staff of Platte River Power Authority's Rawhide Energy Station have been racking up operating stats and an environmental performance record that is the envy of other plant managers. In the past decade Rawhide has enjoyed an equivalent availability factor in the mid to high 90s and an average capacity factor approaching 90%. Still not content with this performance, Rawhide invested in new technology and equipment upgrades to further optimise performance, reduce emissions, and keep cost competitive. The Energy Station includes four GE France 7EA natural gas-fired turbines totalling 260 MW and a 274 MW coal-fired unit located in northeasternmore » Colorado. 7 figs.« less

  12. Structural considerations for underground nuclear power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarne, Y.

    The advantages and disadvantages of underground nuclear power plants are briefly reviewed. The impact of underground contruction on plant layout and structural design are discussed. Schedules and costs for construction are compared with those for conventional plants.

  13. 76 FR 75771 - Emergency Planning Guidance for Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-05

    ... Guidance for Nuclear Power Plants AGENCY: Nuclear Regulatory Commission. ACTION: Issuance of NUREG... Support of Nuclear Power Plants;'' NSIR/DPR-ISG-01, ``Interim Staff Guidance Emergency Planning for Nuclear Power Plants;'' and NUREG/CR-7002, ``Criteria for Development of Evacuation Time Estimate Studies...

  14. Accident at the Fukushima Dai-ichi nuclear power stations of TEPCO--outline & lessons learned.

    PubMed

    Tanaka, Shun-ichi

    2012-01-01

    The severe accident that broke out at Fukushima Dai-ichi nuclear power stations on March 11, 2011, caused seemingly infinite damage to the daily life of residents. Serious and wide-spread contamination of the environment occurred due to radioactive materials discharged from nuclear power stations (NPSs). At the same time, many issues were highlighted concerning countermeasures to severe nuclear accidents. The accident is outlined, and lessons learned are extracted with respect to the safety of NPSs, as well as radiation protection of residents under the emergency involving the accident. The materials of the current paper are those released by governmental agencies, academic societies, interim reports of committees under the government, and others.

  15. Evaluation of Hybrid Power Plants using Biomass, Photovoltaics and Steam Electrolysis for Hydrogen and Power Generation

    NASA Astrophysics Data System (ADS)

    Petrakopoulou, F.; Sanz, J.

    2014-12-01

    Steam electrolysis is a promising process of large-scale centralized hydrogen production, while it is also considered an excellent option for the efficient use of renewable solar and geothermal energy resources. This work studies the operation of an intermediate temperature steam electrolyzer (ITSE) and its incorporation into hybrid power plants that include biomass combustion and photovoltaic panels (PV). The plants generate both electricity and hydrogen. The reference -biomass- power plant and four variations of a hybrid biomass-PV incorporating the reference biomass plant and the ITSE are simulated and evaluated using exergetic analysis. The variations of the hybrid power plants are associated with (1) the air recirculation from the electrolyzer to the biomass power plant, (2) the elimination of the sweep gas of the electrolyzer, (3) the replacement of two electric heaters with gas/gas heat exchangers, and (4) the replacement two heat exchangers of the reference electrolyzer unit with one heat exchanger that uses steam from the biomass power plant. In all cases, 60% of the electricity required in the electrolyzer is covered by the biomass plant and 40% by the photovoltaic panels. When comparing the hybrid plants with the reference biomass power plant that has identical operation and structure as that incorporated in the hybrid plants, we observe an efficiency decrease that varies depending on the scenario. The efficiency decrease stems mainly from the low effectiveness of the photovoltaic panels (14.4%). When comparing the hybrid scenarios, we see that the elimination of the sweep gas decreases the power consumption due to the elimination of the compressor used to cover the pressure losses of the filter, the heat exchangers and the electrolyzer. Nevertheless, if the sweep gas is used to preheat the air entering the boiler of the biomass power plant, the efficiency of the plant increases. When replacing the electric heaters with gas-gas heat exchangers, the

  16. Adaptive Neural Network Algorithm for Power Control in Nuclear Power Plants

    NASA Astrophysics Data System (ADS)

    Masri Husam Fayiz, Al

    2017-01-01

    The aim of this paper is to design, test and evaluate a prototype of an adaptive neural network algorithm for the power controlling system of a nuclear power plant. The task of power control in nuclear reactors is one of the fundamental tasks in this field. Therefore, researches are constantly conducted to ameliorate the power reactor control process. Currently, in the Department of Automation in the National Research Nuclear University (NRNU) MEPhI, numerous studies are utilizing various methodologies of artificial intelligence (expert systems, neural networks, fuzzy systems and genetic algorithms) to enhance the performance, safety, efficiency and reliability of nuclear power plants. In particular, a study of an adaptive artificial intelligent power regulator in the control systems of nuclear power reactors is being undertaken to enhance performance and to minimize the output error of the Automatic Power Controller (APC) on the grounds of a multifunctional computer analyzer (simulator) of the Water-Water Energetic Reactor known as Vodo-Vodyanoi Energetichesky Reaktor (VVER) in Russian. In this paper, a block diagram of an adaptive reactor power controller was built on the basis of an intelligent control algorithm. When implementing intelligent neural network principles, it is possible to improve the quality and dynamic of any control system in accordance with the principles of adaptive control. It is common knowledge that an adaptive control system permits adjusting the controller’s parameters according to the transitions in the characteristics of the control object or external disturbances. In this project, it is demonstrated that the propitious options for an automatic power controller in nuclear power plants is a control system constructed on intelligent neural network algorithms.

  17. Proposed Minor NSR Permit: Deseret Power Electric Cooperative - Bonanza Power Plant

    EPA Pesticide Factsheets

    Proposed minor NSR permit, technical support document, public notice bulletin, and supporting documentation for the Deseret Power Electric Cooperative Bonanza Power Plant, Uintah and Ouray Indian Reservation, Utah.

  18. PM-1 NUCLEAR POWER PROGRAM. VOLUME II. PLANT PERFORMANCE STUDIES. Final Periodic Report, September 1, 1962 to December 31, 1962

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1963-04-01

    Data obtained during the performance testing of the PM-1 plant were compiled and evaluated. The plant powers an Air Defense Command radar station located at Sundance, Wyoming, and is required to supply extremely high-quality electrical power (minimum of frequency and voltage fluctuations) even during severe load transients. The data obtained were compiled into the following format: (1) operating requirements; (2) startup requirements; (3) plant as an energy source; (4) plant radiation levels and health physics; (5) plant instrumentation and control; (6) reactor characteristics; (7) primary system characteristics; (8) secondary system characteristics; and (9) malfunction reports. It was concluded from themore » data that the plant performance in general meets or exceeds specification. Transient and steady-state electrical fluctuations are well within specified limitations. Heat balance data for both the primary and secondary system agree reasonably well with design predictions. Radiation levels are below those anticipated. Coolant activity in the primary system is approximately at anticipated levels; secondary system coolant activity is negligible. The core life was re-estimated based on asbuilt core characteristics. A lifetime of 16.6 Mw-yr is predicted. (auth)« less

  19. Energy analysis of coal, fission, and fusion power plants

    NASA Astrophysics Data System (ADS)

    Tsoulfanidis, N.

    1981-04-01

    The method of net energy analysis has been applied to coal, fission, and fusion power plants. Energy consumption over the lifetime of the plants has been calculated for construction, operation and maintenance, fuel, public welfare, and land use and restoration. Thermal and electric energy requirements were obtained separately for each energy consuming sector. The results of the study are presented in three ways: total energy requirements, energy gain ratio, and payback periods. All three types of power plants are net producers of energy. The coal and fusion power plants are superior to fission plants from the energy efficiency point of view. Fission plants will improve considerably if the centrifuge replaces the gaseous diffusion as a method of enrichment.

  20. Influence of geographic setting on thermal discharge from coastal power plants.

    PubMed

    Jia, Hou-Lei; Zheng, Shu; Xie, Jian; Ying, Xiao-Ming; Zhang, Cui-Ping

    2016-10-15

    Characteristics of thermal discharge from three coastal power plants were studied in China. The three plants, Zhuhai Power Plant, Chaozhou Power Plant and Huilai Power Plant, are located in estuary, bay and open sea, respectively. The water temperatures and ocean currents surrounding the outlet of the three power plants were monitored. The results show that the temperature rise became smaller as the spread of thermal discharge moved toward the open sea, which confirms the results of previous studies. The results also indicated that the influence range of thermal discharge from a coastal power plant is determined by geographic setting. The temperature rise range of the Chaozhou Plant, which is located in a bay, was the largest, followed by that of the Zhuhai Plant located in an estuary, and the temperature rise range of the Huilai Plant located in an open sea was the smallest. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Influence of the Amazon Hydrological Regime on Eutrophication Indicators of a Hydroelectric Power Plant Reservoir.

    PubMed

    Freire, Jean Carlos A; Hauser-Davis, Rachel Ann; da Costa Lobato, Tarcísio; de Morais, Jefferson M; de Oliveira, Terezinha F; F Saraiva, Augusto Cesar

    2017-05-01

    Dam constructions in the Amazon have increased exponentially in the last decades, causing several environmental impacts and serious anthropogenic impacts in certain hydroelectric power plant reservoirs in the region have been identified. The assessment of the trophic status of these reservoirs is of interest to indicate man-made changes in the environment, but must take into account the hydrological cycle of the area. This can be relevant for environmental management actions, aiding in the identification of the ecological status of water bodies. In this context, physico-chemical parameters and eutrophication indicators were determined in a hydroelectric power plant reservoir in the Brazilian Amazon to assess trophic variations during the regional hydrological regime phases on the reservoir, namely dry, filling, full and emptying stages. The local hydrological regimes were shown to significantly influence TSS and turbidity, as well as NH 4 , NO 3 , PO 4 , with higher values consistently observed during the filling stage of the reservoir. In addition, differences among the sampling stations regarding land use, population and anthropogenic activities were reflected in the PO 4 3- values during the different hydrological phases.

  2. Space Station Power Upgrade on This Week @NASA – January 6, 2017

    NASA Image and Video Library

    2017-01-06

    On Jan. 6, Expedition 50 Commander Shane Kimbrough and Flight Engineer Peggy Whitson of NASA conducted the first of two planned spacewalks outside the International Space Station to upgrade the station’s power system. Kimbrough and Whitson began installation of adapter plates and completing electrical connections for six new lithium-ion batteries, which arrived in December. Kimbrough will venture outside the station again on Jan. 13 with Flight Engineer Thomas Pesquet of ESA (European Space Agency) to continue and complete the upgrade. Also, New Discovery Missions, NASA Astrophysics Mission Discussed at AAS, and Tracing the 2017 Solar Eclipse!

  3. SOARCA Peach Bottom Atomic Power Station Long-Term Station Blackout Uncertainty Analysis: Knowledge Advancement.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gauntt, Randall O.; Mattie, Patrick D.; Bixler, Nathan E.

    2014-02-01

    This paper describes the knowledge advancements from the uncertainty analysis for the State-of- the-Art Reactor Consequence Analyses (SOARCA) unmitigated long-term station blackout accident scenario at the Peach Bottom Atomic Power Station. This work assessed key MELCOR and MELCOR Accident Consequence Code System, Version 2 (MACCS2) modeling uncertainties in an integrated fashion to quantify the relative importance of each uncertain input on potential accident progression, radiological releases, and off-site consequences. This quantitative uncertainty analysis provides measures of the effects on consequences, of each of the selected uncertain parameters both individually and in interaction with other parameters. The results measure the modelmore » response (e.g., variance in the output) to uncertainty in the selected input. Investigation into the important uncertain parameters in turn yields insights into important phenomena for accident progression and off-site consequences. This uncertainty analysis confirmed the known importance of some parameters, such as failure rate of the Safety Relief Valve in accident progression modeling and the dry deposition velocity in off-site consequence modeling. The analysis also revealed some new insights, such as dependent effect of cesium chemical form for different accident progressions. (auth)« less

  4. Rocket Power Plants Based on Nitric Acid and their Specific Propulsive Weights

    NASA Technical Reports Server (NTRS)

    Zborowski, Helmut

    1947-01-01

    Two fields are reserved for the application of rocket power plants. The first field is determined by the fact that the rocket power plant is the only type of power plant that can produce thrust without dependence upon environment. For this field,the rocket is therefore the only possible power plant and the limit of what may be done is determined by the status of the technical development of these power plants at the given moment. The second field is that in which the rocket power plant proves itself the most suitable as a high-power drive in free competition with other types of power plants. The exposition will be devoted to the demarcation of this field and its division among the various types of rocket power plants.

  5. Thermal storage requirements for parabolic dish solar power plants

    NASA Technical Reports Server (NTRS)

    Wen, L.; Steele, H.

    1980-01-01

    The cost effectiveness of a high temperature thermal storage system is investigated for a representative parabolic dish solar power plant. The plant supplies electrical power in accordance with a specific, seasonally varying demand profile. The solar power received by the plant is supplemented by power from fuel combustion. The cost of electricity generated by the solar power plant is calculated, using the cost of mass-producible subsystems (specifically, parabolic dishes, receivers, and power conversion units) now being designed for this type of solar plant. The trade-off between fuel and thermal storage is derived in terms of storage effectiveness, the cost of storage devices, and the cost of fuel. Thermal storage requirements, such as storage capacity, storage effectiveness, and storage cost are established based on the cost of fuel and the overall objective of minimizing the cost of the electricity produced by the system. As the cost of fuel increases at a rate faster than general inflation, thermal storage systems in the $40 to $70/kWthr range could become cost effective in the near future.

  6. High-frequency ac power distribution in Space Station

    NASA Technical Reports Server (NTRS)

    Tsai, Fu-Sheng; Lee, Fred C. Y.

    1990-01-01

    A utility-type 20-kHz ac power distribution system for the Space Station, employing resonant power-conversion techniques, is presented. The system converts raw dc voltage from photovoltaic cells or three-phase LF ac voltage from a solar dynamic generator into a regulated 20-kHz ac voltage for distribution among various loads. The results of EASY5 computer simulations of the local and global performance show that the system has fast response and good transient behavior. The ac bus voltage is effectively regulated using the phase-control scheme, which is demonstrated with both line and load variations. The feasibility of paralleling the driver-module outputs is illustrated with the driver modules synchronized and sharing a common feedback loop. An HF sinusoidal ac voltage is generated in the three-phase ac input case, when the driver modules are phased 120 deg away from one another and their outputs are connected in series.

  7. Space Station module Power Management And Distribution (PMAD) system

    NASA Technical Reports Server (NTRS)

    Walls, Bryan

    1990-01-01

    This project consists of several tasks which are unified toward experimentally demonstrating the operation of a highly autonomous, user-supportive power management and distribution system for Space Station Freedom (SSF) habitation/laboratory modules. This goal will be extended to a demonstration of autonomous, cooperative power system operation for the whole SSF power system through a joint effort with NASA's Lewis Research Center, using their Autonomous Power System. Short term goals for the space station module power management and distribution include having an operational breadboard reflecting current plans for SSF, improving performance of the system communications, and improving the organization and mutability of the artificial intelligence (AI) systems. In the middle term, intermediate levels of autonomy will be added, user interfaces will be modified, and enhanced modeling capabilities will be integrated in the system. Long term goals involve conversion of all software into Ada, vigorous verification and validation efforts and, finally, seeing an impact of this research on the operation of SSF. Conversion of the system to a DC Star configuration is now in progress, and should be completed by the end of October, 1989. This configuration reflects the latest SSF module architecture. Hardware is now being procured which will improve system communications significantly. The Knowledge-Based Management System (KBMS) is initially developed and the rules from FRAMES have been implemented in the KBMS. Rules in the other two AI systems are also being grouped modularly, making them more tractable, and easier to eventually move into the KBMS. Adding an intermediate level of autonomy will require development of a planning utility, which will also be built using the KBMS. These changes will require having the user interface for the whole system available from one interface. An Enhanced Model will be developed, which will allow exercise of the system through the interface

  8. Wind Power Plant SCADA and Controls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Badrzadeh, Babak; Castillo, Nestor; Bradt, M.

    2011-01-01

    Modern Wind Power Plants (WPPs) contain a variety of intelligent electronic devices (IEDs), Supervisory Control and Data Acquisition (SCADA) and communication systems. This paper discusses the issues related to a typical WPP's SCADA and Control. Presentation topics are: (1) Wind Turbine Controls; (2) Wind Plant SCADA, OEM SCADA Solutions, Third-Party SCADA Solutions; (3) Wind Plant Control; and (4) Security and Reliability Compliance.

  9. Multicriteria relocation analysis of an off-site radioactive monitoring network for a nuclear power plant.

    PubMed

    Chang, Ni-Bin; Ning, Shu-Kuang; Chen, Jen-Chang

    2006-08-01

    Due to increasing environmental consciousness in most countries, every utility that owns a commercial nuclear power plant has been required to have both an on-site and off-site emergency response plan since the 1980s. A radiation monitoring network, viewed as part of the emergency response plan, can provide information regarding the radiation dosage emitted from a nuclear power plant in a regular operational period and/or abnormal measurements in an emergency event. Such monitoring information might help field operators and decision-makers to provide accurate responses or make decisions to protect the public health and safety. This study aims to conduct an integrated simulation and optimization analysis looking for the relocation strategy of a long-term regular off-site monitoring network at a nuclear power plant. The planning goal is to downsize the current monitoring network but maintain its monitoring capacity as much as possible. The monitoring sensors considered in this study include the thermoluminescence dosimetry (TLD) and air sampling system (AP) simultaneously. It is designed for detecting the radionuclide accumulative concentration, the frequency of violation, and the possible population affected by a long-term impact in the surrounding area regularly while it can also be used in an accidental release event. With the aid of the calibrated Industrial Source Complex-Plume Rise Model Enhancements (ISC-PRIME) simulation model to track down the possible radionuclide diffusion, dispersion, transport, and transformation process in the atmospheric environment, a multiobjective evaluation process can be applied to achieve the screening of monitoring stations for the nuclear power plant located at Hengchun Peninsula, South Taiwan. To account for multiple objectives, this study calculated preference weights to linearly combine objective functions leading to decision-making with exposure assessment in an optimization context. Final suggestions should be useful for

  10. In-orbit assembly mission for the Space Solar Power Station

    NASA Astrophysics Data System (ADS)

    Cheng, ZhengAi; Hou, Xinbin; Zhang, Xinghua; Zhou, Lu; Guo, Jifeng; Song, Chunlin

    2016-12-01

    The Space Solar Power Station (SSPS) is a large spacecraft that utilizes solar power in space to supply power to an electric grid on Earth. A large symmetrical integrated concept has been proposed by the China Academy of Space Technology (CAST). Considering its large scale, the SSPS requires a modular design and unitized general interfaces that would be assembled in orbit. Facilities system supporting assembly procedures, which include a Reusable Heavy Lift Launch Vehicle, orbital transfer and space robots, is introduced. An integrated assembly scheme utilizing space robots to realize this platform SSPS concept is presented. This paper tried to give a preliminary discussion about the minimized time and energy cost of the assembly mission under best sequence and route This optimized assembly mission planning allows the SSPS to be built in orbit rapidly, effectively and reliably.

  11. Power Systems Operations and Controls | Grid Modernization | NREL

    Science.gov Websites

    controlled electric grid-with one-way delivery of power from central-station power plants-into one that Manager, Energy Systems Optimization and Control Group murali.baggu@nrel.gov | 303-275-4337

  12. Parametric study of potential early commercial MHD power plants

    NASA Technical Reports Server (NTRS)

    Hals, F. A.

    1979-01-01

    Three different reference power plant configurations were considered with parametric variations of the various design parameters for each plant. Two of the reference plant designs were based on the use of high temperature regenerative air preheaters separately fired by a low Btu gas produced from a coal gasifier which was integrated with the power plant. The third reference plant design was based on the use of oxygen enriched combustion air preheated to a more moderate temperature in a tubular type metallic recuperative heat exchanger which is part of the bottoming plant heat recovery system. Comparative information was developed on plant performance and economics. The highest net plant efficiency of about 45 percent was attained by the reference plant design with the use of a high temperature air preheater separately fired with the advanced entrained bed gasifier. The use of oxygen enrichment of the combustion air yielded the lowest cost of generating electricity at a slightly lower plant efficiency. Both of these two reference plant designs are identified as potentially attractive for early MHD power plant applications.

  13. Saguaro Power Plant Solar Repowering Project. Volume II. System requirements specification. Final technical report, September 1979-July 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, E.R.

    1980-07-01

    This specification defines the system and subsystem characteristics, design requirements, and system environmental requirements for the Saguaro Power Plant Solar Repowering Project. This project involves the solar repowering of all (120.2 MWe gross) of the 115 MWe net power No. One steam-Rankine unit of the Arizona Public Service Company's Saguaro station. The receiver heat transport fluid is draw salt (60% sodium nitrate and 40% potassium nitrate) that is also used to provide 3.8 hours of sensible heat thermal energy storage. The quad-cavity type receiver is mounted on a tower within a single surrounding collector field of 10,500 second generation heliostats.

  14. Westinghouse ICF power plant study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sucov, E. W.

    1980-10-01

    In this study, two different electric power plants for the production of about 1000 MWe which were based on a CO/sub 2/ laser driver and on a heavy ion driver have been developed and analyzed. The purposes of this study were: (1) to examine in a self consistent way the technological and institutional problems that need to be confronted and solved in order to produce commercially competitive electricity in the 2020 time frame from an inertial fusion reactor, and (2) to compare, on a common basis, the consequences of using two different drivers to initiate the DT fuel pellet explosions.more » Analytic descriptions of size/performance/cost relationships for each of the subsystems comprising the power plant have been combined into an overall computer code which models the entire plant. This overall model has been used to conduct trade studies which examine the consequences of varying critical design values around the reference point.« less

  15. Compressed Natural Gas Technology for Alternative Fuel Power Plants

    NASA Astrophysics Data System (ADS)

    Pujotomo, Isworo

    2018-02-01

    Gas has great potential to be converted into electrical energy. Indonesia has natural gas reserves up to 50 years in the future, but the optimization of the gas to be converted into electricity is low and unable to compete with coal. Gas is converted into electricity has low electrical efficiency (25%), and the raw materials are more expensive than coal. Steam from a lot of wasted gas turbine, thus the need for utilizing exhaust gas results from gas turbine units. Combined cycle technology (Gas and Steam Power Plant) be a solution to improve the efficiency of electricity. Among other Thermal Units, Steam Power Plant (Combined Cycle Power Plant) has a high electrical efficiency (45%). Weakness of the current Gas and Steam Power Plant peak burden still using fuel oil. Compressed Natural Gas (CNG) Technology may be used to accommodate the gas with little land use. CNG gas stored in the circumstances of great pressure up to 250 bar, in contrast to gas directly converted into electricity in a power plant only 27 bar pressure. Stored in CNG gas used as a fuel to replace load bearing peak. Lawyer System on CNG conversion as well as the power plant is generally only used compressed gas with greater pressure and a bit of land.

  16. 75 FR 14635 - FirstEnergy Nuclear Operating Company, Davis-Besse Nuclear Power Station; Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-26

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-346; NRC-2010-0125] FirstEnergy Nuclear Operating Company, Davis-Besse Nuclear Power Station; Environmental Assessment and Finding of No Significant Impact... 14636

  17. Analysis of electromagnetic interference from power system processing and transmission components for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Barber, Peter W.; Demerdash, Nabeel A. O.; Wang, R.; Hurysz, B.; Luo, Z.

    1991-01-01

    The goal is to analyze the potential effects of electromagnetic interference (EMI) originating from power system processing and transmission components for Space Station Freedom.The approach consists of four steps: (1) develop analytical tools (models and computer programs); (2) conduct parameterization studies; (3) predict the global space station EMI environment; and (4) provide a basis for modification of EMI standards.

  18. Space Station 20-kHz power management and distribution system

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.; Sundberg, Gale R.

    1986-01-01

    During the conceptual design phase a 20-kHz power distribution system was selected as the reference for the Space Station. The system is single-phase 400 VRMS, with a sinusoidal wave form. The initial user power level will be 75 kW with growth to 300 kW. The high-frequency system selection was based upon considerations of efficiency, weight, safety, ease of control, interface with computers, and ease of paralleling for growth. Each of these aspects will be discussed as well as the associated trade-offs involved. An advanced development program has been instituted to accelerate the maturation of the high-frequency system. Some technical aspects of the advanced development will be discussed.

  19. Space station 20-kHz power management and distribution system

    NASA Technical Reports Server (NTRS)

    Hansen, I. G.; Sundberg, G. R.

    1986-01-01

    During the conceptual design phase a 20-kHz power distribution system was selected as the reference for the space station. The system is single-phase 400 VRMS, with a sinusoidal wave form. The initial user power level will be 75 kW with growth to 300 kW. The high-frequency system selection was based upon considerations of efficiency, weight, safety, ease of control, interface with computers, and ease of paralleling for growth. Each of these aspects will be discussed as well as the associated trade-offs involved. An advanced development program has been instituted to accelerate the maturation of the high-frequency system. Some technical aspects of the advanced development will be discussed.

  20. International Space Station Electric Power System Performance Code-SPACE

    NASA Technical Reports Server (NTRS)

    Hojnicki, Jeffrey; McKissock, David; Fincannon, James; Green, Robert; Kerslake, Thomas; Delleur, Ann; Follo, Jeffrey; Trudell, Jeffrey; Hoffman, David J.; Jannette, Anthony; hide

    2005-01-01

    The System Power Analysis for Capability Evaluation (SPACE) software analyzes and predicts the minute-by-minute state of the International Space Station (ISS) electrical power system (EPS) for upcoming missions as well as EPS power generation capacity as a function of ISS configuration and orbital conditions. In order to complete the Certification of Flight Readiness (CoFR) process in which the mission is certified for flight each ISS System must thoroughly assess every proposed mission to verify that the system will support the planned mission operations; SPACE is the sole tool used to conduct these assessments for the power system capability. SPACE is an integrated power system model that incorporates a variety of modules tied together with integration routines and graphical output. The modules include orbit mechanics, solar array pointing/shadowing/thermal and electrical, battery performance, and power management and distribution performance. These modules are tightly integrated within a flexible architecture featuring data-file-driven configurations, source- or load-driven operation, and event scripting. SPACE also predicts the amount of power available for a given system configuration, spacecraft orientation, solar-array-pointing conditions, orbit, and the like. In the source-driven mode, the model must assure that energy balance is achieved, meaning that energy removed from the batteries must be restored (or balanced) each and every orbit. This entails an optimization scheme to ensure that energy balance is maintained without violating any other constraints.

  1. Nuclear Power Plant Technician

    ERIC Educational Resources Information Center

    Randall, George A.

    1975-01-01

    The author recognizes a body of basic knowledge in nuclear power plant technoogy that can be taught in school programs, and lists the various courses, aiming to fill the anticipated need for nuclear-trained manpower--persons holding an associate degree in engineering technology. (Author/BP)

  2. CFD research on runaway transient of pumped storage power station caused by pumping power failure

    NASA Astrophysics Data System (ADS)

    Zhang, L. G.; Zhou, D. Q.

    2013-12-01

    To study runaway transient of pumped storage power station caused by pumping power failure, three dimensional unsteady numerical simulations were executed on geometrical model of the whole flow system. Through numerical calculation, the changeable flow configuration and variation law of some parameters such as unit rotate speed,flow rate and static pressure of measurement points were obtained and compared with experimental data. Numerical results show that runaway speed agrees well with experimental date and its error was 3.7%. The unit undergoes pump condition, brake condition, turbine condition and runaway condition with flow characteristic changing violently. In runaway condition, static pressure in passage pulses very strongly which frequency is related to runaway speed.

  3. [Occupational hygiene at solar-energy electric power plants].

    PubMed

    Lipkina, L I; Kolesnikova, A V; Tsirkova, N L

    1991-01-01

    The labour conditions of the personnel engaged in servicing an experimental solar electric power station in warm seasons of the year were characterized by the unfavourable environmental factors peculiar of working out-doors (heliostat sites) and in the station's shops (solar radiation, heating microclimate, noise). Combinations and activity of those factors were professionally determined. Established was the role of the labour conditions and respective occupational peculiarities in the individual response formation to work overload. A set of health-related preventive measures was also proposed.

  4. Performance calculations for 200-1000 MWe MHD/steam power plants

    NASA Technical Reports Server (NTRS)

    Staiger, P. J.

    1981-01-01

    The effects of MHD generator length, level of oxygen enrichment, and oxygen production power on the performance of MHD/steam power plants ranging from 200 to 1000 MW in electrical output are investigated. The plants considered use oxygen enriched combustion air preheated to 1100 F. Both plants in which the MHD generator is cooled with low temperature and pressure boiler feedwater and plants in which the generator is cooled with high temperature and pressure boiler feedwater are considered. For plants using low temperature boiler feedwater for generator cooling the maximum thermodynamic efficiency is obtained with shorter generators and a lower level of oxygen enrichment compared to plants using high temperature boiler feedwater for generator cooling. The generator length at which the maximum plant efficiency occurs increases with power plant size for plants with a generator cooled by low temperature feedwater. Also shown is the relationship of the magnet stored energy requirement of the generator length and the power plant performance. Possible cost/performance tradeoffs between magnet cost and plant performance are indicated.

  5. Time series dataset of fish assemblages near thermal discharges at nuclear power plants in northern Taiwan.

    PubMed

    Chen, Hungyen; Chen, Ching-Yi; Shao, Kwang-Tsao

    2018-05-08

    Long-term time series datasets with consistent sampling methods are rather rare, especially the ones of non-target coastal fishes. Here we described a long-term time series dataset of fish collected by trammel net fish sampling and observed by an underwater diving visual census near the thermal discharges at two nuclear power plants on the northern coast of Taiwan. Both experimental and control stations of these two investigations were monitored four times per year in the surrounding seas at both plants from 2000 to 2017. The underwater visual census mainly monitored reef fish assemblages and trammel net samples monitored pelagic or demersal fishes above the muddy/sandy bottom. In total, 508 samples containing 203,863 individuals from 347 taxa were recorded in both investigations at both plants. These data can be used by ecologists and fishery biologists interested in the elucidation of the temporal patterns of species abundance and composition.

  6. Analysis on energy consumption index system of thermal power plant

    NASA Astrophysics Data System (ADS)

    Qian, J. B.; Zhang, N.; Li, H. F.

    2017-05-01

    Currently, the increasingly tense situation in the context of resources, energy conservation is a realistic choice to ease the energy constraint contradictions, reduce energy consumption thermal power plants has become an inevitable development direction. And combined with computer network technology to build thermal power “small index” to monitor and optimize the management system, the power plant is the application of information technology and to meet the power requirements of the product market competition. This paper, first described the research status of thermal power saving theory, then attempted to establish the small index system and build “small index” monitoring and optimization management system in thermal power plant. Finally elaborated key issues in the field of small thermal power plant technical and economic indicators to be further studied and resolved.

  7. Wind-powered electrical systems : highway rest areas, weigh stations, and team section buildings.

    DOT National Transportation Integrated Search

    2009-02-01

    This project considered the use of wind for providing electrical power at Illinois Department of Transportation : (IDOT) highway rest areas, weigh stations, and team section buildings. The goal of the project was to determine : the extent to which wi...

  8. Geothermal Risk Reduction via Geothermal/Solar Hybrid Power Plants. Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wendt, Daniel; Mines, Greg; Turchi, Craig

    There are numerous technical merits associated with a renewable geothermal-solar hybrid plant concept. The performance of air-cooled binary plants is lowest when ambient temperatures are high due to the decrease in air-cooled binary plant performance that occurs when the working fluid condensing temperature, and consequently the turbine exhaust pressure, increases. Electrical power demand is generally at peak levels during periods of elevated ambient temperature and it is therefore especially important to utilities to be able to provide electrical power during these periods. The time periods in which air-cooled binary geothermal power plant performance is lowest generally correspond to periods ofmore » high solar insolation. Use of solar heat to increase air-cooled geothermal power plant performance during these periods can improve the correlation between power plant output and utility load curves. While solar energy is a renewable energy source with long term performance that can be accurately characterized, on shorter time scales of hours or days it can be highly intermittent. Concentrating solar power (CSP), aka solar-thermal, plants often incorporate thermal energy storage to ensure continued operation during cloud events or after sunset. Hybridization with a geothermal power plant can eliminate the need for thermal storage due to the constant availability of geothermal heat. In addition to the elimination of the requirement for solar thermal storage, the ability of a geothermal/solar-thermal hybrid plant to share a common power block can reduce capital costs relative to separate, stand-alone geothermal and solar-thermal power plant installations. The common occurrence of long-term geothermal resource productivity decline provides additional motivation to consider the use of hybrid power plants in geothermal power production. Geothermal resource productivity decline is a source of significant risk in geothermal power generation. Many, if not all, geothermal

  9. Single-Station Sigma for the Iranian Strong Motion Stations

    NASA Astrophysics Data System (ADS)

    Zafarani, H.; Soghrat, M. R.

    2017-11-01

    In development of ground motion prediction equations (GMPEs), the residuals are assumed to have a log-normal distribution with a zero mean and a standard deviation, designated as sigma. Sigma has significant effect on evaluation of seismic hazard for designing important infrastructures such as nuclear power plants and dams. Both aleatory and epistemic uncertainties are involved in the sigma parameter. However, ground-motion observations over long time periods are not available at specific sites and the GMPEs have been derived using observed data from multiple sites for a small number of well-recorded earthquakes. Therefore, sigma is dominantly related to the statistics of the spatial variability of ground motion instead of temporal variability at a single point (ergodic assumption). The main purpose of this study is to reduce the variability of the residuals so as to handle it as epistemic uncertainty. In this regard, it is tried to partially apply the non-ergodic assumption by removing repeatable site effects from total variability of six GMPEs driven from the local, Europe-Middle East and worldwide data. For this purpose, we used 1837 acceleration time histories from 374 shallow earthquakes with moment magnitudes ranging from M w 4.0 to 7.3 recorded at 370 stations with at least two recordings per station. According to estimated single-station sigma for the Iranian strong motion stations, the ratio of event-corrected single-station standard deviation ( Φ ss) to within-event standard deviation ( Φ) is about 0.75. In other words, removing the ergodic assumption on site response resulted in 25% reduction of the within-event standard deviation that reduced the total standard deviation by about 15%.

  10. Typical calculation and analysis of carbon emissions in thermal power plants

    NASA Astrophysics Data System (ADS)

    Gai, Zhi-jie; Zhao, Jian-gang; Zhang, Gang

    2018-03-01

    On December 19, 2017, the national development and reform commission issued the national carbon emissions trading market construction plan (power generation industry), which officially launched the construction process of the carbon emissions trading market. The plan promotes a phased advance in carbon market construction, taking the power industry with a large carbon footprint as a breakthrough, so it is extremely urgent for power generation plants to master their carbon emissions. Taking a coal power plant as an example, the paper introduces the calculation process of carbon emissions, and comes to the fuel activity level, fuel emissions factor and carbon emissions data of the power plant. Power plants can master their carbon emissions according to this paper, increase knowledge in the field of carbon reserves, and make the plant be familiar with calculation method based on the power industry carbon emissions data, which can help power plants positioning accurately in the upcoming carbon emissions trading market.

  11. The optimization air separation plants for combined cycle MHD-power plant applications

    NASA Technical Reports Server (NTRS)

    Juhasz, A. J.; Springmann, H.; Greenberg, R.

    1980-01-01

    Some of the design approaches being employed during a current supported study directed at developing an improved air separation process for the production of oxygen enriched air for magnetohydrodynamics (MHD) combustion are outlined. The ultimate objective is to arrive at conceptual designs of air separation plants, optimized for minimum specific power consumption and capital investment costs, for integration with MHD combined cycle power plants.

  12. American power conference: Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-01-01

    The first volume of this conference contains papers on the following topics: (1) Controls, monitoring, and expert systems (Harnessing microprocessor revolution for a more competitive power industry; Plant control--Upgrades; Neural network applications); (2) Diversification and globalization (Electric utility diversification/globalization--Panel; Private power in developing countries); (3) Environment and clean air (Clean Air compliance costs; Site selection for power stations and related facilities; Electric utility trace substance emissions; Solid waste disposal and commercial use; Precipitators/fabric filters; and Effect of flow modifications on fisheries and water quality); (4) Generation--Fuel options equipment (Alternate fuels; Advances in fuel cells for electric power applications; Secondary containmentmore » and seismic requirements for petrochemical facilities; Clean coal technology demonstration; Advanced energy systems; Hydropower); (5) Nuclear operations options (Radioactive waste management and disposal; Off normal conditions; Advanced light water reactors--15 years after TMI; Structural dynamic analyses for nuclear power plants); (6) Retrofit, betterment, repowering maintenance (Project management; Improving competitiveness through process re-engineering; Central stations; Water and wastewater treatment); (7) System planning, operation demand maintenance (Transmission system access; Stability; Systems planning); (8) Transmission and distribution (Transformers; Relaying for system protection; Managing EMF effects); and (9) Education (Power engineering). 155 papers have been processed separately for inclusion on the data base.« less

  13. Mid and long-term optimize scheduling of cascade hydro-power stations based on modified GA-POA method

    NASA Astrophysics Data System (ADS)

    Li, Jiqing; Yang, Xiong

    2018-06-01

    In this paper, to explore the efficiency and rationality of the cascade combined generation, a cascade combined optimal model with the maximum generating capacity is established, and solving the model by the modified GA-POA method. It provides a useful reference for the joint development of cascade hydro-power stations in large river basins. The typical annual runoff data are selected to calculate the difference between the calculated results under different representative years. The results show that the cascade operation of cascaded hydro-power stations can significantly increase the overall power generation of cascade and ease the flood risk caused by concentration of flood season.

  14. Risk in nuclear power plants due to natural hazard phenomena

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, S.C.

    1995-12-01

    For the safety of nuclear power plants, it is important to identify potential areas of vulnerabilities to internal as well as external events to which nuclear power plants are exposed. This paper summarizes the risk in nuclear power plants due to natural hazard phenomena such as earthquakes, winds and tornadoes, floods, etc. The reported results are based on a limited number of probabilistic risk assessments (PRAS) performed for a few of the operating nuclear power plants within the United States. The summary includes an importance ranking of various natural hazard phenomena based on their contribution to the plant risk alongmore » with insights observed from the PRA studies.« less

  15. Analysis of electromagnetic interference from power system processing and transmission components for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Barber, Peter W.; Demerdash, Nabeel A. O.; Hurysz, B.; Luo, Z.; Denny, Hugh W.; Millard, David P.; Herkert, R.; Wang, R.

    1992-01-01

    The goal of this research project was to analyze the potential effects of electromagnetic interference (EMI) originating from power system processing and transmission components for Space Station Freedom. The approach consists of four steps: (1) developing analytical tools (models and computer programs); (2) conducting parameterization (what if?) studies; (3) predicting the global space station EMI environment; and (4) providing a basis for modification of EMI standards.

  16. Hydrothermal Geothermal Subprogram, Hawaii Geothermal Research Station, Hawaii County, Hawaii: Environmental assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-06-01

    This environmental impact assessment addresses the design, construction, and operation of an electric generating plant (3 to 4 MWe) and research station (Hawaii Geothermal Research Station (HGRS)) in the Puna district on the Island of Hawaii. The facility will include control and support buildings, parking lots, cooling towers, settling and seepage ponds, the generating plant, and a visitors center. Research activities at the facility will evaluate the ability of a successfully flow-tested well (42-day flow test) to provide steam for power generation over an extended period of time (two years). In future expansion, research activities may include direct heat applicationsmore » such as aquaculture and the effects of geothermal fluids on various plant components and specially designed equipment on test modules. 54 refs., 7 figs., 22 tabs.« less

  17. Assessment of a satellite power system and six alternative technologies

    NASA Technical Reports Server (NTRS)

    Wolsko, T.; Whitfield, R.; Samsa, M.; Habegger, L. S.; Levine, E.; Tanzman, E.

    1981-01-01

    The satellite power system is assessed in comparison to six alternative technologies. The alternatives are: central-station terrestrial photovoltaic systems, conventional coal-fired power plants, coal-gasification/combined-cycle power plants, light water reactor power plants, liquid-metal fast-breeder reactors, and fusion. The comparison is made regarding issues of cost and performance, health and safety, environmental effects, resources, socio-economic factors, and institutional issues. The criteria for selecting the issues and the alternative technologies are given, and the methodology of the comparison is discussed. Brief descriptions of each of the technologies considered are included.

  18. NUCLEAR POWER PLANT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Preece, G.E.; Bell, F.R.

    1963-06-26

    A protective arrangement is designed for shielding the environment and for preventing the leakage of radioactive gases from a ship nuclear power plant. In this arrangement, the core has inner and outer pressure vessels and a biological shielding around the outer pressure vessel. The shielding comprises a series of steel cylindrical shells immersed in water, and its inner wall may comprise part of the outer pressure vessel. (D.L.C.)

  19. 4. NORTH ELEVATION OF POWER PLANT LOOKING SOUTH SOUTHWEST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. NORTH ELEVATION OF POWER PLANT LOOKING SOUTH SOUTHWEST. - Potomac Power Plant, On West Virginia Shore of Potomac River, about 1 mile upriver from confluence with Shenandoah River, Harpers Ferry, Jefferson County, WV

  20. 11. EAST WALL OF POWER PLANT BUILDING LOOKING WEST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. EAST WALL OF POWER PLANT BUILDING LOOKING WEST. - Potomac Power Plant, On West Virginia Shore of Potomac River, about 1 mile upriver from confluence with Shenandoah River, Harpers Ferry, Jefferson County, WV

  1. JPL - Small Power Systems Applications Project. [for solar thermal power plant development and commercialization

    NASA Technical Reports Server (NTRS)

    Ferber, R. R.; Marriott, A. T.; Truscello, V.

    1978-01-01

    The Small Power Systems Applications (SPSA) Project has been established to develop and commercialize small solar thermal power plants. The technologies of interest include all distributed and central receiver technologies which are potentially economically viable in power plant sizes of one to 10 MWe. The paper presents an overview of the SPSA Project and briefly discusses electric utility involvement in the Project.

  2. Scanning thermal plumes. [from power plant condensers

    NASA Technical Reports Server (NTRS)

    Scarpace, F. L.; Madding, R. P.; Green, T., III

    1974-01-01

    In order to study the behavior and effects of thermal plumes associated with the condenser cooling of power plants, thermal line scans are periodically made from aircraft over all power plants along the Wisconsin shore of Lake Michigan. Simultaneous ground truth is also gathered with a radiometer. Some sequential imagery has been obtained for periods up to two hours to study short term variations in the surface temperature of the plume. The article concentrates on the techniques used to analyze thermal scanner data for a single power plant which was studied intensively. The calibration methods, temperature dependence of the thermal scanner, and calculation of the modulation transfer function for the scanner are treated. It is concluded that obtaining quantitative surface-temperature data from thermal scanning is a nontrivial task. Accuracies up to plus or minus 0.1 C are attainable.

  3. Power system monitoring and source control of the Space Station Freedom DC power system testbed

    NASA Technical Reports Server (NTRS)

    Kimnach, Greg L.; Baez, Anastacio N.

    1992-01-01

    Unlike a terrestrial electric utility which can purchase power from a neighboring utility, the Space Station Freedom (SSF) has strictly limited energy resources; as a result, source control, system monitoring, system protection, and load management are essential to the safe and efficient operation of the SSF Electric Power System (EPS). These functions are being evaluated in the DC Power Management and Distribution (PMAD) Testbed which NASA LeRC has developed at the Power System Facility (PSF) located in Cleveland, Ohio. The testbed is an ideal platform to develop, integrate, and verify power system monitoring and control algorithms. State Estimation (SE) is a monitoring tool used extensively in terrestrial electric utilities to ensure safe power system operation. It uses redundant system information to calculate the actual state of the EPS, to isolate faulty sensors, to determine source operating points, to verify faults detected by subsidiary controllers, and to identify high impedance faults. Source control and monitoring safeguard the power generation and storage subsystems and ensure that the power system operates within safe limits while satisfying user demands with minimal interruptions. System monitoring functions, in coordination with hardware implemented schemes, provide for a complete fault protection system. The objective of this paper is to overview the development and integration of the state estimator and the source control algorithms.

  4. Power system monitoring and source control of the Space Station Freedom dc-power system testbed

    NASA Technical Reports Server (NTRS)

    Kimnach, Greg L.; Baez, Anastacio N.

    1992-01-01

    Unlike a terrestrial electric utility which can purchase power from a neighboring utility, the Space Station Freedom (SSF) has strictly limited energy resources; as a result, source control, system monitoring, system protection, and load management are essential to the safe and efficient operation of the SSF Electric Power System (EPS). These functions are being evaluated in the dc Power Management and Distribution (PMAD) Testbed which NASA LeRC has developed at the Power System Facility (PSF) located in Cleveland, Ohio. The testbed is an ideal platform to develop, integrate, and verify power system monitoring and control algorithms. State Estimation (SE) is a monitoring tool used extensively in terrestrial electric utilities to ensure safe power system operation. It uses redundant system information to calculate the actual state of the EPS, to isolate faulty sensors, to determine source operating points, to verify faults detected by subsidiary controllers, and to identify high impedance faults. Source control and monitoring safeguard the power generation and storage subsystems and ensure that the power system operates within safe limits while satisfying user demands with minimal interruptions. System monitoring functions, in coordination with hardware implemented schemes, provide for a complete fault protection system. The objective of this paper is to overview the development and integration of the state estimator and the source control algorithms.

  5. 35. SOUTH PLANT NORTHCENTER RAILROAD SPUR, SHOWING POWER PLANT (BUILDINGS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. SOUTH PLANT NORTH-CENTER RAILROAD SPUR, SHOWING POWER PLANT (BUILDINGS 325 AND 321) AT LEFT, FUEL TOWER AT CENTER AND CHLORINE EVAPORATOR (BUILDING 251) AT RIGHT. VIEW TO WEST - Rocky Mountain Arsenal, Bounded by Ninety-sixth Avenue & Fifty-sixth Avenue, Buckley Road, Quebec Street & Colorado Highway 2, Commerce City, Adams County, CO

  6. Pilot solar power plant

    NASA Astrophysics Data System (ADS)

    Wolf, D.

    A fully functionally efficient solar-thermal power plant (10 kW electric) was built. The operating principle of thermomechanical conversion of solar energy into mechanical or electrical energy is presented. The equipment is completely automatic. Flat plate collectors absorb solar energy and convert it into heat which is transmitted by water to a heat exchanger. A closed cycle machine uses the heat to boil a working fluid (C2C12F4). A screw, powered by gas expansion in the working fluid, converts mechanical energy into electrical energy.

  7. Performance Assessment of Flashed Steam Geothermal Power Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alt, Theodore E.

    1980-12-01

    Five years of operating experience at the Comision Federal de Electricidad (CFE) Cerro Prieto flashed steam geothermal power plant are evaluated from the perspective of U. S. utility operations. We focus on the design and maintenance of the power plant that led to the achievement of high plant capacity factors for Units No. 1 and 2 since commercial operation began in 1973. For this study, plant capacity factor is the ratio of the average load on the machines or equipment for the period of time considered to the capacity rating of the machines or equipment. The plant capacity factor ismore » the annual gross output in GWh compared to 657 GWh (2 x 37.5 MW x 8760 h). The CFE operates Cerro Prieto at base load consistent with the system connected electrical demand of the Baja California Division. The plant output was curtailed during the winter months of 1973-1975 when the system electric demand was less than the combined output capability of Cerro Prieto and the fossil fuel plant near Tijuana. Each year the system electric demand has increased and the Cerro Prieto units now operate at full load all the time. The CFE added Units 3 and 4 to Cerro Prieto in 1979 which increased the plant name plate capacity to 150 MW. Part of this additional capacity will supply power to San Diego Gas and Electric Company through an interconnection across the border. The achievement of a high capacity factor over an extensive operating period was influenced by operation, design, and maintenance of the geothermal flash steam power plant.« less

  8. Space station WP-04 power system preliminary analysis and design document, volume 3

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Rocketdyne plans to generate a system level specification for the Space Station Electric Power System (EPS) in order to facilitate the usage, accountability, and tracking of overall system level requirements. The origins and status of the verification planning effort are traced and an overview of the Space Station program interactions are provided. The work package level interfaces between the EPS and the other Space Station work packages are outlined. A trade study was performed to determine the peaking split between PV and SD, and specifically to compare the inherent total peaking capability with proportionally shared peaking. In order to determine EPS cost drivers for the previous submittal of DRO2, the life cycle cost (LCC) model was run to identify the more significant costs and the factors contributing to them.

  9. Development of low head Kaplan turbine for power station rehabilitation project

    NASA Astrophysics Data System (ADS)

    Lim, S. M.; Ohtake, N.; Kurosawa, S.; Suzuki, T.; Yamasaki, T.; Nishi, H.

    2012-11-01

    This paper presents the latest Kaplan turbine rehabilitation project for Funagira Power Station in Japan completed by J-POWER Group in collaboration with Toshiba Corporation. Area of rehabilitation was restricted to guide vane and runner. The main goal of the rehabilitation project was to expand the operating range of the existing turbine in terms of discharge and power with high operational stability, low noise as well as high cavitation performance. Computational Fluids Dynamics and model test were used to optimize the shape of guide vane and runner in development stage. Finally, field tests and runner inspection were carried out to confirm the performance of the new turbine. It was found that the new turbine has excellent performance in efficiency, power output, operational stability compared with existing turbine. Moreover, no sign of cavitation on the runner blade surface was observed after 5078 hours of operation near 100% load.

  10. Peach Bottom and Vermont Yankee Nuclear Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1992-12-31

    A dramatic and extraordinary instance of state and local government control of nuclear power, the purchase by New York of the Shoreham plant is nonetheless indicative of the political demands that some states confront for additional involvement in the regulation of the radiological hazards associated with commercial nuclear power plants. Although the Supreme Court has appeared to expand, in the eight years since PG&E and Silkwood, the acceptable extent of state regulation, some states, in addition to New York, have acquired, with the acquiescence of the NRC, a degree of involvement that exceeds the role for state and local governmentsmore » provided by the Court. For example, the Commonwealth of Pennsylvania concluded with the Philadelphia Electric Company (PECO) in June 1989 an agreement that commits PECO to various initiatives, not otherwise required under NRC regulations, for the safe operation of the Peach Bottom nuclear power plant in Pennsylvania. In July 1991 the State of Vermont and Vermont Yankee Nuclear Power Corporation (Vermont Yankee) concluded an agreement similar to that concluded between Pennsylvania and PECO. The agreement also commits Vermont Yankee to certain initiatives, not otherwise required under NRC regulations, related to its operation of the Vermont Yankee nuclear power plant in Vermont. The agreement was precipitated by a challenge to an application, submitted to the NRC by Vermont Yankee in April 1989, to amend the Vermont Yankee plant license to extend its expiration date from December 11, 2007 to March 21, 2012. The amendment would allow the Vermont Yankee plant to operate for forty full years.« less

  11. Monitoring Biological Activity at Geothermal Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peter Pryfogle

    2005-09-01

    The economic impact of microbial growth in geothermal power plants has been estimated to be as high as $500,000 annually for a 100 MWe plant. Many methods are available to monitor biological activity at these facilities; however, very few plants have any on-line monitoring program in place. Metal coupon, selective culturing (MPN), total organic carbon (TOC), adenosine triphosphate (ATP), respirometry, phospholipid fatty acid (PLFA), and denaturing gradient gel electrophoresis (DGGE) characterizations have been conducted using water samples collected from geothermal plants located in California and Utah. In addition, the on-line performance of a commercial electrochemical monitor, the BIoGEORGE?, has beenmore » evaluated during extended deployments at geothermal facilities. This report provides a review of these techniques, presents data on their application from laboratory and field studies, and discusses their value in characterizing and monitoring biological activities at geothermal power plants.« less

  12. Knowledge Sources and Opinions of Prospective Social Studies Teachers about Possible Risk and Benefit Analysis: Nuclear Energy and Power Stations

    ERIC Educational Resources Information Center

    Yazici, Hakki; Bulut, Ramazan; Yazici, Sibel

    2016-01-01

    In this study, it was aimed to determine the trust status of prospective social studies teachers regarding various knowledge sources related to nuclear energy and power stations regarded as a controversial socio-scientific issue and their perceptions on the possible risks and benefits of nuclear energy and power stations. Target population of the…

  13. Output power distributions of mobile radio base stations based on network measurements

    NASA Astrophysics Data System (ADS)

    Colombi, D.; Thors, B.; Persson, T.; Wirén, N.; Larsson, L.-E.; Törnevik, C.

    2013-04-01

    In this work output power distributions of mobile radio base stations have been analyzed for 2G and 3G telecommunication systems. The approach is based on measurements in selected networks using performance surveillance tools part of the network Operational Support System (OSS). For the 3G network considered, direct measurements of output power levels were possible, while for the 2G networks, output power levels were estimated from measurements of traffic volumes. Both voice and data services were included in the investigation. Measurements were conducted for large geographical areas, to ensure good overall statistics, as well as for smaller areas to investigate the impact of different environments. For high traffic hours, the 90th percentile of the averaged output power was found to be below 65% and 45% of the available output power for the 2G and 3G systems, respectively.

  14. Experience in connecting the power generating units of thermal power plants to automatic secondary frequency regulation within the united power system of Russia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhukov, A. V.; Komarov, A. N.; Safronov, A. N.

    The principles of central control of the power generating units of thermal power plants by automatic secondary frequency and active power overcurrent regulation systems, and the algorithms for interactions between automatic power control systems for the power production units in thermal power plants and centralized systems for automatic frequency and power regulation, are discussed. The order of switching the power generating units of thermal power plants over to control by a centralized system for automatic frequency and power regulation and by the Central Coordinating System for automatic frequency and power regulation is presented. The results of full-scale system tests ofmore » the control of power generating units of the Kirishskaya, Stavropol, and Perm GRES (State Regional Electric Power Plants) by the Central Coordinating System for automatic frequency and power regulation at the United Power System of Russia on September 23-25, 2008, are reported.« less

  15. Accident at the Fukushima Dai-ichi Nuclear Power Stations of TEPCO —Outline & lessons learned—

    PubMed Central

    TANAKA, Shun-ichi

    2012-01-01

    The severe accident that broke out at Fukushima Dai-ichi nuclear power stations on March 11, 2011, caused seemingly infinite damage to the daily life of residents. Serious and wide-spread contamination of the environment occurred due to radioactive materials discharged from nuclear power stations (NPSs). At the same time, many issues were highlighted concerning countermeasures to severe nuclear accidents. The accident is outlined, and lessons learned are extracted with respect to the safety of NPSs, as well as radiation protection of residents under the emergency involving the accident. The materials of the current paper are those released by governmental agencies, academic societies, interim reports of committees under the government, and others. PMID:23138450

  16. Coal-Fired Power Plant Heat Rate Reductions

    EPA Pesticide Factsheets

    View a report that identifies systems and equipment in coal-fired power plants where efficiency improvements can be realized, and provides estimates of the resulting net plant heat rate reductions and costs for implementation.

  17. Rapporteur report: MHD electric power plants

    NASA Technical Reports Server (NTRS)

    Seikel, G. R.

    1980-01-01

    Five US papers from the Proceedings of the Seventh International Conference on MHD Electrical Power Generation at the Massachusetts Institute of Technology are summarized. Results of the initial parametric phase of the US effort on the study of potential early commercial MHD plants are reported and aspects of the smaller commercial prototype plant termed the Engineering Test Facility are discussed. The alternative of using a disk geometry generator rather than a linear generator in baseload MHD plants is examined. Closed-cycle as well as open-cycle MHD plants are considered.

  18. Power Plant Water Intake Assessment.

    ERIC Educational Resources Information Center

    Zeitoun, Ibrahim H.; And Others

    1980-01-01

    In order to adequately assess the impact of power plant cooling water intake on an aquatic ecosystem, total ecosystem effects must be considered, rather than merely numbers of impinged or entrained organisms. (Author/RE)

  19. NUCLEAR POWER PLANTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell, F.R.

    1962-12-01

    A power plant is described that comprises a nuclear reactor and a heat exchanger which is included in primary and secondary circuits. Fluid in the primary circuit extracts heat from the reactor and transfers it in the heat exchanger to the fluid in the secondary circuit which transmits energy to one or more utilization points. Means are provided for detecting, isolating, and removing radioactive fluid from the secondary circuit. (R.J.S.)

  20. Implications of Climate Change on the Heat Budget of Lentic Systems Used for Power Station Cooling: Case Study Clinton Lake, Illinois.

    PubMed

    Quijano, Juan C; Jackson, P Ryan; Santacruz, Santiago; Morales, Viviana M; García, Marcelo H

    2016-01-05

    We use a numerical model to analyze the impact of climate change-in particular higher air temperatures-on a nuclear power station that recirculates the water from a reservoir for cooling. The model solves the hydrodynamics, the transfer of heat in the reservoir, and the energy balance at the surface. We use the numerical model to (i) quantify the heat budget in the reservoir and determine how this budget is affected by the combined effect of the power station and climate change and (ii) quantify the impact of climate change on both the downstream thermal pollution and the power station capacity. We consider four different scenarios of climate change. Results of simulations show that climate change will reduce the ability to dissipate heat to the atmosphere and therefore the cooling capacity of the reservoir. We observed an increase of 25% in the thermal load downstream of the reservoir, and a reduction in the capacity of the power station of 18% during the summer months for the worst-case climate change scenario tested. These results suggest that climate change is an important threat for both the downstream thermal pollution and the generation of electricity by power stations that use lentic systems for cooling.