Sample records for power program instrumentation

  1. Cordless Instruments

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Black & Decker's new cordless lightweight battery powered precision instruments, adapted from NASA's Apollo Lunar Landing program, have been designed to give surgeons optimum freedom and versatility in the operating room. Orthopedic instrument line includes a drill, a driver/reamer and a sagittal saw. All provide up to 20 minutes on a single charge. Power pack is the instrument's handle which is removable for recharging. Microprocessor controlled recharging unit can recharge two power packs together in 30 minutes. Instruments can be gas sterilized, steam-sterilized in an autoclave or immersed for easy cleaning.

  2. High resolution microwave spectrometer sounder (HIMSS), volume 1, book 1

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The following topics are presented with respect to the high resolution microwave spectrometer sounder (HIMSS) that is to be used as an instrument for NASA's Earth Observing System (EOS): (1) an instrument overview; (2) an instrument description; (3) the instrument's conceptual design; (4) technical risks and offsets; (5) instrument reliability; (6) commands and telemetry; (7) mass and power budgets; (8) integration and test program; (9) program implementation; and (10) phase CD schedule.

  3. Flight experience with lightweight, low-power miniaturized instrumentation systems

    NASA Technical Reports Server (NTRS)

    Hamory, Philip J.; Murray, James E.

    1992-01-01

    Engineers at the NASA Dryden Flight Research Facility (NASA-Dryden) have conducted two flight research programs with lightweight, low-power miniaturized instrumentation systems built around commercial data loggers. One program quantified the performance of a radio-controlled model airplane. The other program was a laminar boundary-layer transition experiment on a manned sailplane. The purpose of this paper is to report NASA-Dryden personnel's flight experience with the miniaturized instrumentation systems used on these two programs. The paper will describe the data loggers, the sensors, and the hardware and software developed to complete the systems. The paper also describes how the systems were used and covers the challenges encountered to make them work. Examples of raw data and derived results will be shown as well. Finally, future plans for these systems will be discussed.

  4. The Monterey Ocean Observing System Development Program

    NASA Astrophysics Data System (ADS)

    Chaffey, M.; Graybeal, J. B.; O'Reilly, T.; Ryan, J.

    2004-12-01

    The Monterey Bay Aquarium Research Institute (MBARI) has a major development program underway to design, build, test and apply technology suitable to deep ocean observatories. The Monterey Ocean Observing System (MOOS) program is designed to form a large-scale instrument network that provides generic interfaces, intelligent instrument support, data archiving and near-real-time interaction for observatory experiments. The MOOS mooring system is designed as a portable surface mooring based seafloor observatory that provides data and power connections to both seafloor and ocean surface instruments through a specialty anchor cable. The surface mooring collects solar and wind energy for powering instruments and transmits data to shore-side researchers using a satellite communications modem. The use of a high modulus anchor cable to reach seafloor instrument networks is a high-risk development effort that is critical for the overall success of the portable observatory concept. An aggressive field test program off the California coast is underway to improve anchor cable constructions as well as end-to-end test overall system design. The overall MOOS observatory systems view is presented and the results of our field tests completed to date are summarized.

  5. Library Power as a Vehicle for the Evolution of Change.

    ERIC Educational Resources Information Center

    Tastad, Shirley; Tallman, Julie

    The DeWitt Wallace-Readers Digest Library Power Initiative has been instrumental in precipitating reform efforts in school libraries. National Library Power programs have strengthened the role of the school library media specialist and the school library program. The initiative emphasizes that library media specialists integrate information…

  6. Materials Test Program, Contact Power Collection for High Speed Tracked Vehicles

    DOT National Transportation Integrated Search

    1971-01-01

    A test program is defined for determining the failure modes and wear characteristics for brushes used to collect electrical power from the wayside for high speed tracked vehicles. Simulation of running conditions and the necessary instrumentation for...

  7. Lunar mass spectrometer test program

    NASA Technical Reports Server (NTRS)

    Torney, F. L.; Dobrott, J. R.

    1972-01-01

    The procedures are described along with results obtained in a test program conducted to demonstrate the performance of a candidate lunar mass spectrometer. The instrument was designed to sample and measure gases believed to exist in the lunar atmosphere at the surface. The subject instrument consists of a cold cathode ion source, a small quadrupole mass analyzer and an off axis electron multiplier ion counting detector. The major program emphasis was placed on demonstrating instrument resolution, sensitivity and S/N ratio over the mass range 0-150 amu and over a partial pressure range from 10 to the minus 9th power to 10 to the minus 13th power torr. Ultrahigh vacuum tests were conducted and the minimum detectable partial pressure for neon, argon, krypton and xenon was successfully determined for the spectrometer using isotopes of these gases. With the exception of neon, the minimum detectable partial pressure is approximately 4 x 10 to the minus 14th power torr for the above gases.

  8. Microelectronics bioinstrumentation systems

    NASA Technical Reports Server (NTRS)

    Ko, W. H.

    1977-01-01

    Microelectronic bioinstrumentation systems to be employed in the Cardiovascular Deconditioning Program were developed. Implantable telemetry systems for long-term monitoring of animals on earth were designed to collect physiological data necessary for the understanding of the mechanisms of cardiovascular deconditioning. In-flight instrumentation systems, microelectronic instruments, and RF powering techniques for other life science experiments in the NASA program were studied.

  9. Small Cold Temperature Instrument Packages

    NASA Astrophysics Data System (ADS)

    Clark, P. E.; Millar, P. S.; Yeh, P. S.; Feng, S.; Brigham, D.; Beaman, B.

    We are developing a small cold temperature instrument package concept that integrates a cold temperature power system with ultra low temperature ultra low power electronics components and power supplies now under development into a 'cold temperature surface operational' version of a planetary surface instrument package. We are already in the process of developing a lower power lower temperature version for an instrument of mutual interest to SMD and ESMD to support the search for volatiles (the mass spectrometer VAPoR, Volatile Analysis by Pyrolysis of Regolith) both as a stand alone instrument and as part of an environmental monitoring package. We build on our previous work to develop strategies for incorporating Ultra Low Temperature/Ultra Low Power (ULT/ULP) electronics, lower voltage power supplies, as well as innovative thermal design concepts for instrument packages. Cryotesting has indicated that our small Si RHBD CMOS chips can deliver >80% of room temperature performance at 40K (nominal minimum lunar surface temperature). We leverage collaborations, past and current, with the JPL battery development program to increase power system efficiency in extreme environments. We harness advances in MOSFET technology that provide lower voltage thresholds for power switching circuits incorporated into our low voltage power supply concept. Conventional power conversion has a lower efficiency. Our low power circuit concept based on 'synchronous rectification' could produce stable voltages as low as 0.6 V with 85% efficiency. Our distributed micro-battery-based power supply concept incorporates cold temperature power supplies operating with a 4 V or 8 V battery. This work will allow us to provide guidelines for applying the low temperature, low power system approaches generically to the widest range of surface instruments.

  10. Designing A Robust Command, Communications and Data Acquisition System For Autonomous Sensor Platforms Using The Data Transport Network

    NASA Astrophysics Data System (ADS)

    Valentic, T. A.

    2012-12-01

    The Data Transport Network is designed for the delivery of data from scientific instruments located at remote field sites with limited or unreliable communications. Originally deployed at the Sondrestrom Research Facility in Greenland over a decade ago, the system supports the real-time collection and processing of data from large instruments such as incoherent scatter radars and lidars. In recent years, the Data Transport Network has been adapted to small, low-power embedded systems controlling remote instrumentation platforms deployed throughout the Arctic. These projects include multiple buoys from the O-Buoy, IceLander and IceGoat programs, renewable energy monitoring at the Imnavait Creek and Ivotuk field sites in Alaska and remote weather observation stations in Alaska and Greenland. This presentation will discuss the common communications controller developed for these projects. Although varied in their application, each of these systems share a number of common features. Multiple instruments are attached, each of which needs to be power controlled, data sampled and files transmitted offsite. In addition, the power usage of the overall system must be minimized to handle the limited energy available from sources such as solar, wind and fuel cells. The communications links are satellite based. The buoys and weather stations utilize Iridium, necessitating the need to handle the common drop outs and high-latency, low-bandwidth nature of the link. The communications controller is an off-the-shelf, low-power, single board computer running a customized version of the Linux operating system. The Data Transport Network provides a Python-based software framework for writing individual data collection programs and supplies a number of common services for configuration, scheduling, logging, data transmission and resource management. Adding a new instrument involves writing only the necessary code for interfacing to the hardware. Individual programs communicate with the system services using XML-RPC. The scheduling algorithms have access the current position and power levels, allowing for instruments such as cameras to only be run during daylight hours or when sufficient power is available. The resource manager monitors the use of common devices such as the USB bus or Ethernet ports, and can power them down when they are not being used. This management lets us drop the power consumption from an average of 1W to 250mW.

  11. Light Water Reactor Sustainability Program Advanced Instrumentation, Information, and Control Systems Technologies Technical Program Plan for FY 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hallbert, Bruce Perry; Thomas, Kenneth David

    2015-10-01

    Reliable instrumentation, information, and control (II&C) systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration.

  12. High Resolution, Non-Dispersive X-Ray Calorimeter Spectrometers on EBITs and Orbiting Observatories

    NASA Technical Reports Server (NTRS)

    Porter, Frederick S.

    2010-01-01

    X-ray spectroscopy is the primary tool for performing atomic physics with Electron beam ion trap (EBITs). X-ray instruments have generally fallen into two general categories, 1) dispersive instruments with very high spectral resolving powers but limited spectral range, limited count rates, and require an entrance slit, generally, for EBITs, defined by the electron beam itself, and 2) non-dispersive solid-state detectors with much lower spectral resolving powers but that have a broad dynamic range, high count rate ability and do not require a slit. Both of these approaches have compromises that limit the type and efficiency of measurements that can be performed. In 1984 NASA initiated a program to produce a non-dispersive instrument with high spectral resolving power for x-ray astrophysics based on the cryogenic x-ray calorimeter. This program produced the XRS non-dispersive spectrometers on the Astro-E, Astro-E2 (Suzaku) orbiting observatories, the SXS instrument on the Astro-H observatory, and the planned XMS instrument on the International X-ray Observatory. Complimenting these spaceflight programs, a permanent high-resolution x-ray calorimeter spectrometer, the XRS/EBIT, was installed on the LLNL EBIT in 2000. This unique instrument was upgraded to a spectral resolving power of 1000 at 6 keV in 2003 and replaced by a nearly autonomous production-class spectrometer, the EBIT Calorimeter Spectrometer (ECS), in 2007. The ECS spectrometer has a simultaneous bandpass from 0.07 to over 100 keV with a spectral resolving power of 1300 at 6 keV with unit quantum efficiency, and 1900 at 60 keV with a quantum efficiency of 30%. X-ray calorimeters are event based, single photon spectrometers with event time tagging to better than 10 us. We are currently developing a follow-on instrument based on a newer generation of x-ray calorimeters with a spectral resolving power of 3000 at 6 keV, and improved timing and measurement cadence. The unique capabilities of the x-ray calorimeter spectrometer, coupled with higher spectral resolution dispersive spectrometers to resolve line blends, has enabled many science investigations, to date mostly in our x-ray laboratory astrophysics program. These include measurements of absolute cross sections for Land K shell emission from Fe and Ni, charge exchange measurements in many astrophysically abundant elements, lifetime measurements, line ratios, and wavelength measurements. In addition, we have performed many additional measurements in nuclear physics, and in support of diagnostics for laser fusion, for example. In this presentation we will give a detailed overview of x-ray calorimeter instruments in general and in our EBIT laboratory astrophysics program in particular. We will also discuss the science yield of our measurements at EBIT over the last decade) prospects for future science enabled by the current generation of spectrometers and that will be expanded in the near future by the next generation of spectrometers starting in 2611.

  13. Autonomous Adaptive Low-Power Instrument Platform (AAL-PIP) for remote high latitude geospace data collection

    NASA Astrophysics Data System (ADS)

    Clauer, C. R.; Kim, H.; Deshpande, K.; Xu, Z.; Weimer, D.; Musko, S.; Crowley, G.; Fish, C.; Nealy, R.; Humphreys, T. E.; Bhatti, J. A.; Ridley, A. J.

    2014-06-01

    We present the development considerations and design for ground based instrumentation that is being deployed on the East Antarctic Plateau along a 40° magnetic meridian chain to investigate interhemispheric magnetically conjugate geomagnetic coupling and other space weather related phenomena. The stations are magnetically conjugate to geomagnetic stations along the west coast of Greenland. The autonomous adaptive low-power instrument platforms being deployed in the Antarctic are designed to operate unattended in remote locations for at least 5 years. They utilize solar power and AGM storage batteries for power, two-way Iridium satellite communication for data acquisition and program/operation modification, support fluxgate and induction magnetometers as well as dual-frequency gps receiver and an HF radio experiment. Size and weight considerations are considered to enable deployment by a small team using small aircraft. Considerable experience has been gained in the development and deployment of remote polar instrumentation that is reflected in the present generation of instrumentation discussed here. We conclude with the lessons learned from our experience in the design, deployment and operation of remote polar instrumentation.

  14. An autonomous adaptive low-power instrument platform (AAL-PIP) for remote high-latitude geospace data collection

    NASA Astrophysics Data System (ADS)

    Clauer, C. R.; Kim, H.; Deshpande, K.; Xu, Z.; Weimer, D.; Musko, S.; Crowley, G.; Fish, C.; Nealy, R.; Humphreys, T. E.; Bhatti, J. A.; Ridley, A. J.

    2014-10-01

    We present the development considerations and design for ground-based instrumentation that is being deployed on the East Antarctic Plateau along a 40° magnetic meridian chain to investigate interhemispheric magnetically conjugate geomagnetic coupling and other space-weather-related phenomena. The stations are magnetically conjugate to geomagnetic stations along the west coast of Greenland. The autonomous adaptive low-power instrument platforms being deployed in the Antarctic are designed to operate unattended in remote locations for at least 5 years. They utilize solar power and AGM storage batteries for power, two-way Iridium satellite communication for data acquisition and program/operation modification, support fluxgate and induction magnetometers as well as a dual-frequency GPS receiver and a high-frequency (HF) radio experiment. Size and weight considerations are considered to enable deployment by a small team using small aircraft. Considerable experience has been gained in the development and deployment of remote polar instrumentation that is reflected in the present generation of instrumentation discussed here. We conclude with the lessons learned from our experience in the design, deployment and operation of remote polar instrumentation.

  15. Mars Miniature Science Instruments

    NASA Technical Reports Server (NTRS)

    Kim, Soon Sam; Hayati, Samad; Lavery, David; McBrid, Karen

    2006-01-01

    For robotic Mars missions, all the science information is gathered through on-board miniature instruments that have been developed through many years of R&D. Compared to laboratory counterparts, the rover instruments require miniaturization, such as low mass (1-2 kg), low power (> 10 W) and compact (1-2 liter), yet with comparable sensitivity. Since early 1990's, NASA recognized the need for the miniature instruments and launched several instrument R&D programs, e.g., PIDDP (Planetary Instrument Definition and Development). However, until 1998, most of the instrument R&D programs supported only up to a breadboard level (TRL 3, 4) and there is a need to carry such instruments to flight qualifiable status (TU 5, 6) to respond to flight AOs (Announcement of Opportunity). Most of flight AOs have only limited time and financial resources, and can not afford such instrument development processes. To bridge the gap between instrument R&D programs and the flight instrument needs, NASA's Mars Technology Program (MTP) created advanced instrumentation program, Mars Instrument Development Project (MIDP). MIDP candidate instruments are selected through NASA Research Announcement (NRA) process [l]. For example, MIDP 161998-2000) selected and developed 10 instruments, MIDP II (2003-2005) 16 instruments, and MIDP III (2004-2006) II instruments.Working with PIs, JPL has been managing the MIDP tasks since September 1998. All the instruments being developed under MIDP have been selected through a highly competitive NRA process, and employ state-of-the-art technology. So far, four MIDP funded instruments have been selected by two Mars missions (these instruments have further been discussed in this paper).

  16. Designing communication and remote controlling of virtual instrument network system

    NASA Astrophysics Data System (ADS)

    Lei, Lin; Wang, Houjun; Zhou, Xue; Zhou, Wenjian

    2005-01-01

    In this paper, a virtual instrument network through the LAN and finally remote control of virtual instruments is realized based on virtual instrument and LabWindows/CVI software platform. The virtual instrument network system is made up of three subsystems. There are server subsystem, telnet client subsystem and local instrument control subsystem. This paper introduced virtual instrument network structure in detail based on LabWindows. Application procedure design of virtual instrument network communication, the Client/the programming mode of the server, remote PC and server communication far realizing, the control power of the workstation is transmitted, server program and so on essential technical were introduced. And virtual instruments network may connect to entire Internet on. Above-mentioned technology, through measuring the application in the electronic measurement virtual instrument network that is already built up, has verified the actual using value of the technology. Experiment and application validate that this design is resultful.

  17. Reception-Conversion Subsystem (RXCV) for microwave power transmission system

    NASA Technical Reports Server (NTRS)

    1975-01-01

    As part of a program to demonstrate the feasibility of power transmission from space, an approximately 25 sq m Reception-Conversion Subsystem was designed and tested. The device collects high power microwave energy, converts it into dc, and dissipates it in an instrumented demonstration load.

  18. Power and Communication Behavior: A Formulative Investigation.

    ERIC Educational Resources Information Center

    Cavanaugh, Mary; And Others

    As part of a research program designed to explicate the construct "power," a formulative research strategy was used to identify 37 personal orientations toward power. A preliminary instrument based on these orientations was administered to samples of corporate executives, government employees, law enforcement personnel, and sales associates. A…

  19. Software for Testing Electroactive Structural Components

    NASA Technical Reports Server (NTRS)

    Moses, Robert W.; Fox, Robert L.; Dimery, Archie D.; Bryant, Robert G.; Shams, Qamar

    2003-01-01

    A computer program generates a graphical user interface that, in combination with its other features, facilitates the acquisition and preprocessing of experimental data on the strain response, hysteresis, and power consumption of a multilayer composite-material structural component containing one or more built-in sensor(s) and/or actuator(s) based on piezoelectric materials. This program runs in conjunction with Lab-VIEW software in a computer-controlled instrumentation system. For a test, a specimen is instrumented with appliedvoltage and current sensors and with strain gauges. Once the computational connection to the test setup has been made via the LabVIEW software, this program causes the test instrumentation to step through specified configurations. If the user is satisfied with the test results as displayed by the software, the user activates an icon on a front-panel display, causing the raw current, voltage, and strain data to be digitized and saved. The data are also put into a spreadsheet and can be plotted on a graph. Graphical displays are saved in an image file for future reference. The program also computes and displays the power and the phase angle between voltage and current.

  20. Time Degradation Factors for Turbine Engine Exhaust Emissions. Volume 1. Program Description and Results

    DTIC Science & Technology

    1979-04-01

    two generators. A 7-5-kW vacu-flow air- cooled generator was installed in the trailer to power the instrumentation. The heating , air...off power. 2. A test facility which would allow the emission tests to be conducted at designated airport run-up locations. Since emission...near the airport runways. The remote location led to instrumentation. -*—*-*——- ■- ---’-• ■ - - - together with bottled gases

  1. Co-Worker Involvement Scoring Manual and Instrument.

    ERIC Educational Resources Information Center

    Rusch, Frank R.; And Others

    Because of their consistent presence in the work environment, co-workers have been identified as a potentially powerful resource available to provide support to employees with disabilities in supported employment programs. The "Co-worker Involvement Instrument" allows employment training specialists and job supervisors to estimate…

  2. Physical and performance characteristics of instruments selected for global change monitoring

    NASA Technical Reports Server (NTRS)

    Allen, Cheryl L.

    1991-01-01

    The following appendix (appendix B) lists the instruments chosen for the Global Change Monitoring program. The instruments are described according to the following categories: (1) Title; (2) Measurement; (3) Contact; (4) Instrument Type; (5) Dimensions; (6) Mass; (7) Average Operational Power; (8) Data Rate; (9) Spectral/Frequency Range; (10) Number of Channels/Frequencies; (11) Viewing Field; (12) Scanning Characteristics; (13) Resolution (Horizontal/Vertical); (14) Swath Width; (15) Satellite Application; and (16) Technology Status. A technical drawing of each instrument is also provided.

  3. [Application of virtual instrumentation technique in toxicological studies].

    PubMed

    Moczko, Jerzy A

    2005-01-01

    Research investigations require frequently direct connection of measuring equipment to the computer. Virtual instrumentation technique considerably facilitates programming of sophisticated acquisition-and-analysis procedures. In standard approach these two steps are performed subsequently with separate software tools. The acquired data are transfered with export / import procedures of particular program to the another one which executes next step of analysis. The described procedure is cumbersome, time consuming and may be potential source of the errors. In 1987 National Instruments Corporation introduced LabVIEW language based on the concept of graphical programming. Contrary to conventional textual languages it allows the researcher to concentrate on the resolved problem and omit all syntactical rules. Programs developed in LabVIEW are called as virtual instruments (VI) and are portable among different computer platforms as PCs, Macintoshes, Sun SPARCstations, Concurrent PowerMAX stations, HP PA/RISK workstations. This flexibility warrants that the programs prepared for one particular platform would be also appropriate to another one. In presented paper basic principles of connection of research equipment to computer systems were described.

  4. The Application Design of Solar Radio Spectrometer Based on FPGA

    NASA Astrophysics Data System (ADS)

    Du, Q. F.; Chen, R. J.; Zhao, Y. C.; Feng, S. W.; Chen, Y.; Song, Y.

    2017-10-01

    The Solar radio spectrometer is the key instrument to observe solar radio. By programing the computer software, we control the AD signal acquisition card which is based on FPGA to get a mass of data. The data are transferred by using PCI-E port. This program has realized the function of timing data collection, finding data in specific time and controlling acquisition meter in real time. It can also map the solar radio power intensity graph. By doing the experiment, we verify the reliability of solar radio spectrum instrument, in the meanwhile, the instrument simplifies the operation in observing the sun.

  5. Multidisciplinary Research Program in Atmospheric Science. [remote sensing

    NASA Technical Reports Server (NTRS)

    Thompson, O. E.

    1982-01-01

    A theoretical analysis of the vertical resolving power of the High resolution Infrared Radiation Sounder (HIRS) and the Advanced Meteorological Temperature Sounder (AMTS) is carried out. The infrared transmittance weighting functions and associated radiative transfer kernels are analyzed through singular value decomposition. The AMTS was found to contain several more pieces of independent information than HIRS when the transmittances were considered, but the two instruments appeared to be much more similar when the temperature sensitive radiative transfer kernels were analyzed. The HIRS and AMTS instruments were also subjected to a thorough analysis. It was found that the two instruments should have very similar vertical resolving power below 500 mb but that AMTS should have superior resolving power above 200 mb. In the layer 200 to 500 mb the AMTS showed badly degraded spread function.

  6. 300-Watt Power Source Development at the Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Valdez, Thomas I.

    2005-01-01

    This viewgraph presentation reviews the JPL program to develop a 300 Watt direct methanol fuel cell. The immediate use of the fuel cell is to power test instrumentation on armored vehicles. It reviews the challenges, the system design and the system demonstration.

  7. Instrumentation Cables Test Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muna, Alice Baca; LaFleur, Chris Bensdotter

    A fire at a nuclear power plant (NPP) has the potential to damage structures, systems, and components important to safety, if not promptly detected and suppressed. At Browns Ferry Nuclear Power Plant on March 22, 1975, a fire in the reactor building damaged electrical power and control systems. Damage to instrumentation cables impeded the function of both normal and standby reactor coolant systems, and degraded the operators’ plant monitoring capability. This event resulted in additional NRC involvement with utilities to ensure that NPPs are properly protected from fire as intended by the NRC principle design criteria (i.e., general design criteriamore » 3, Fire Protection). Current guidance and methods for both deterministic and performance based approaches typically make conservative (bounding) assumptions regarding the fire-induced failure modes of instrumentation cables and those failure modes effects on component and system response. Numerous fire testing programs have been conducted in the past to evaluate the failure modes and effects of electrical cables exposed to severe thermal conditions. However, that testing has primarily focused on control circuits with only a limited number of tests performed on instrumentation circuits. In 2001, the Nuclear Energy Institute (NEI) and the Electric Power Research Institute (EPRI) conducted a series of cable fire tests designed to address specific aspects of the cable failure and circuit fault issues of concern1. The NRC was invited to observe and participate in that program. The NRC sponsored Sandia National Laboratories to support this participation, whom among other things, added a 4-20 mA instrumentation circuit and instrumentation cabling to six of the tests. Although limited, one insight drawn from those instrumentation circuits tests was that the failure characteristics appeared to depend on the cable insulation material. The results showed that for thermoset insulated cables, the instrument reading tended to drift and fluctuate, while the thermoplastic insulated cables, the instrument reading fell off-scale rapidly. From an operational point of view, the latter failure characteristics would likely be identified as a failure from the effects of fire, while the former may result in inaccurate readings.« less

  8. NOAA: Primary GOES-R instrument cleared for installation onto spacecraft

    Science.gov Websites

    : NOAA-NASA GOES-R Program Office) In early 2014 the ABI will be shipped from its developer, Exelis, in performance of power grids. NOAA manages the GOES-R Series program through an integrated NOAA-NASA office

  9. NASA developments in solid state power amplifiers

    NASA Technical Reports Server (NTRS)

    Leonard, Regis F.

    1990-01-01

    Over the last ten years, NASA has undertaken an extensive program aimed at development of solid state power amplifiers for space applications. Historically, the program may be divided into three phases. The first efforts were carried out in support of the advanced communications technology satellite (ACTS) program, which is developing an experimental version of a Ka-band commercial communications system. These first amplifiers attempted to use hybrid technology. The second phase was still targeted at ACTS frequencies, but concentrated on monolithic implementations, while the current, third phase, is a monolithic effort that focusses on frequencies appropriate for other NASA programs and stresses amplifier efficiency. The topics covered include: (1) 20 GHz hybrid amplifiers; (2) 20 GHz monolithic MESFET power amplifiers; (3) Texas Instruments' (TI) 20 GHz variable power amplifier; (4) TI 20 GHz high power amplifier; (5) high efficiency monolithic power amplifiers; (6) GHz high efficiency variable power amplifier; (7) TI 32 GHz monolithic power amplifier performance; (8) design goals for Hughes' 32 GHz variable power amplifier; and (9) performance goals for Hughes' pseudomorphic 60 GHz power amplifier.

  10. Advanced CO2 removal process control and monitor instrumentation development

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; Dalhausen, M. J.; Klimes, R.

    1982-01-01

    A progam to evaluate, design and demonstrate major advances in control and monitor instrumentation was undertaken. A carbon dioxide removal process, one whose maturity level makes it a prime candidate for early flight demonstration was investigated. The instrumentation design incorporates features which are compatible with anticipated flight requirements. Current electronics technology and projected advances are included. In addition, the program established commonality of components for all advanced life support subsystems. It was concluded from the studies and design activities conducted under this program that the next generation of instrumentation will be greatly smaller than the prior one. Not only physical size but weight, power and heat rejection requirements were reduced in the range of 80 to 85% from the former level of research and development instrumentation. Using a microprocessor based computer, a standard computer bus structure and nonvolatile memory, improved fabrication techniques and aerospace packaging this instrumentation will greatly enhance overall reliability and total system availability.

  11. Testing the Gossamer Albatross II

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The Gossamer Albatross II is seen here during a test flight at NASA's Dryden Flight Research Center, Edwards, California. The original Gossamer Albatross is best known for completing the first completely human powered flight across the English Channel on June 12, 1979. The Albatross II was the backup craft for the Channel flight. It was fitted with a small battery-powered electric motor and flight instruments for the NASA research program in low-speed flight. NASA completed its flight testing of the Gossamer Albatross II and began analysis of the results in April, 1980. During the six week program, 17 actual data gathering flights and 10 other flights were flown here as part of the joint NASA Langley/Dryden flight research program. The lightweight craft, carrying a miniaturized instrumentation system, was flown in three configurations; using human power, with a small electric motor, and towed with the propeller removed. Results from the program contributed to data on the unusual aerodynamic, performance, stability, and control characteristics of large, lightweight aircraft that fly at slow speeds for application to future high altitude aircraft. The Albatross' design and research data contributed to numerous later high altitude projects, including the Pathfinder.

  12. Assembling the Gossamer Albatross II in hangar

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The Gossamer Albatross II is seen here being assembled in a hangar at the Dryden Flight Research Center, Edwards, California. The original Gossamer Albatross is best known for completing the first completely human powered flight across the English Channel on June 12, 1979. The Albatross II was the backup craft for the Channel flight. The aircraft was fitted with a small battery-powered electric motor and flight instruments for the NASA research program in low-speed flight. NASA completed its flight testing of the Gossamer Albatross II and began analysis of the results in April, 1980. During the six week program, 17 actual data gathering flights and 10 other flights were flown here as part of the joint NASA Langley/Dryden flight research program. The lightweight craft, carrying a miniaturized instrumentation system, was flown in three configurations; using human power, with a small electric motor, and towed with the propeller removed. Results from the program contributed to data on the unusual aerodynamic, performance, stability, and control characteristics of large, lightweight aircraft that fly at slow speeds for application to future high altitude aircraft. The Albatross' design and research data contributed to numerous later high altitude projects, including the Pathfinder.

  13. Electrical Auxiliary Power Unit (EAPU) Corona Design Guideline. Revised

    NASA Technical Reports Server (NTRS)

    Hall, David K.; Kirkici, Hulya; Schweickart, Dan L.; Dunbar, William; Hillard, Barry

    2000-01-01

    This document is the result of a collaborative effort between NASA's Johnson Space Center, Marshall Space Flight Center, Glenn Research Center, and the United States Air Force Research Laboratory at Wright Patterson AFB in support of the Space Shuttle Orbiter Upgrades Program, specifically the Electric Auxiliary Power Unit Program. This document is intended as a guideline for design applications for corona and partial discharge avoidance and is not a requirements specification instrument.

  14. School Building Design: The Building as an Instructional Tool.

    ERIC Educational Resources Information Center

    Rakestraw, William E.

    1979-01-01

    Concepts used in the design of a Dallas school make the building an integral part of the instructional program. These concepts include instrumented resource consumption, wind powered electrical generating capabilities, solar powered domestic hot water system, grey water cycling and sampling capabilities, and mechanical systems monitoring.…

  15. AMF3 ARM's Research Facility at Oliktok Point Alaska

    NASA Astrophysics Data System (ADS)

    Helsel, F.; Lucero, D. A.; Ivey, M.; Dexheimer, D.; Hardesty, J.; Roesler, E. L.

    2015-12-01

    Scientific Infrastructure To Support Atmospheric Science And Aerosol Science For The Department Of Energy's Atmospheric Radiation Measurement Programs Mobile Facility 3 Located At Oliktok Point, Alaska.The Atmospheric Radiation Measurement (ARM) Program's Mobile Facility 3 (AMF3) located at Oliktok Point, Alaska is a U.S. Department of Energy (DOE) site. The site provides a scientific infrastructure and data archives for the international Arctic research community. The infrastructure at Oliktok is designed to be mobile and it may be relocated in the future to support other ARM science missions. AMF-3 instruments include: scanning precipitation Radar-cloud radar, Raman Lidar, Eddy correlation flux systems, Ceilometer, Balloon sounding system, Atmospheric Emitted Radiance Interferometer (AERI), Micro-pulse Lidar (MPL), Millimeter cloud radar along with all the standard metrological measurements. Data from these instruments is placed in the ARM data archives and are available to the international research community. This poster will discuss what instruments are at AMF3 and the challenges of powering an Arctic site without the use of grid power.

  16. Guntersville Workshop on Solar-Terrestrial Studies

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The separation of purely solar physics from magnetospheric physics, and the effects of solar activity on geomagnetic activity are investigations which can be accomplished using the shuttle orbiter in an extended sortie mode, or an unmanned solar terrestrial observatory powered by the power module in an extended duration mode. When the power module is used with the shuttle in a sortie support mode, both the instrument capacity and the time in orbit of the orbiter can be increased several fold. In the free-flyer mode, the power module would be capable of providing power, basic attitude control, basic thermal control and housekeeping communications for unmanned, large, independent mission payloads in low earth orbit for periods of 6 months or longer. Instrument requirements for interdisciplinary joint observational programs are discussed for studies of the magnetosphere, the atmosphere, sun-weather relationships. Description summary charts of the power module are included.

  17. Instrumentation, Control, and Intelligent Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2005-09-01

    Abundant and affordable energy is required for U.S. economic stability and national security. Advanced nuclear power plants offer the best near-term potential to generate abundant, affordable, and sustainable electricity and hydrogen without appreciable generation of greenhouse gases. To that end, Idaho National Laboratory (INL) has been charged with leading the revitalization of nuclear power in the U.S. The INL vision is to become the preeminent nuclear energy laboratory with synergistic, world-class, multi-program capabilities and partnerships by 2015. The vision focuses on four essential destinations: (1) Be the preeminent internationally-recognized nuclear energy research, development, and demonstration laboratory; (2) Be a majormore » center for national security technology development and demonstration; (3) Be a multi-program national laboratory with world-class capabilities; (4) Foster academic, industry, government, and international collaborations to produce the needed investment, programs, and expertise. Crucial to that effort is the inclusion of research in advanced instrumentation, control, and intelligent systems (ICIS) for use in current and advanced power and energy security systems to enable increased performance, reliability, security, and safety. For nuclear energy plants, ICIS will extend the lifetime of power plant systems, increase performance and power output, and ensure reliable operation within the system's safety margin; for national security applications, ICIS will enable increased protection of our nation's critical infrastructure. In general, ICIS will cost-effectively increase performance for all energy security systems.« less

  18. LabVIEW: a software system for data acquisition, data analysis, and instrument control.

    PubMed

    Kalkman, C J

    1995-01-01

    Computer-based data acquisition systems play an important role in clinical monitoring and in the development of new monitoring tools. LabVIEW (National Instruments, Austin, TX) is a data acquisition and programming environment that allows flexible acquisition and processing of analog and digital data. The main feature that distinguishes LabVIEW from other data acquisition programs is its highly modular graphical programming language, "G," and a large library of mathematical and statistical functions. The advantage of graphical programming is that the code is flexible, reusable, and self-documenting. Subroutines can be saved in a library and reused without modification in other programs. This dramatically reduces development time and enables researchers to develop or modify their own programs. LabVIEW uses a large amount of processing power and computer memory, thus requiring a powerful computer. A large-screen monitor is desirable when developing larger applications. LabVIEW is excellently suited for testing new monitoring paradigms, analysis algorithms, or user interfaces. The typical LabVIEW user is the researcher who wants to develop a new monitoring technique, a set of new (derived) variables by integrating signals from several existing patient monitors, closed-loop control of a physiological variable, or a physiological simulator.

  19. Power Plant Emission Reductions Using a Generation Performance Standard

    EIA Publications

    2001-01-01

    In an earlier analysis completed in response to a request received from Representative David McIntosh, Chairman of the Subcommittee on National Economic Growth, Natural Resources, and Regulatory Affairs, the Energy Information Administration analyzed the impacts of power sector caps on nitrogen oxides, sulfur dioxide, and carbon dioxide emissions, assuming a policy instrument patterned after the sulfur dioxide allowance program created in the Clean Air Act Amendments of 1990. This paper compares the results of that work with the results of an analysis that assumes the use of a dynamic generation performance standard as an instrument for reducing carbon dioxide emissions.

  20. Monte Carlo simulations of neutron-scattering instruments using McStas

    NASA Astrophysics Data System (ADS)

    Nielsen, K.; Lefmann, K.

    2000-06-01

    Monte Carlo simulations have become an essential tool for improving the performance of neutron-scattering instruments, since the level of sophistication in the design of instruments is defeating purely analytical methods. The program McStas, being developed at Risø National Laboratory, includes an extension language that makes it easy to adapt it to the particular requirements of individual instruments, and thus provides a powerful and flexible tool for constructing such simulations. McStas has been successfully applied in such areas as neutron guide design, flux optimization, non-Gaussian resolution functions of triple-axis spectrometers, and time-focusing in time-of-flight instruments.

  1. Advanced system on a chip microelectronics for spacecraft and science instruments

    NASA Astrophysics Data System (ADS)

    Paschalidis, Nikolaos P.

    2003-01-01

    The explosive growth of the modern microelectronics field opens new horizons for the development of new lightweight, low power, and smart spacecraft and science instrumentation systems in the new millennium explorations. Although this growth is mostly driven by the commercial need for low power, portable and computationally intensive products, the applicability is obvious in the space sector. The additional difficulties needed to be overcome for applicability in space include radiation hardness for total ionizing dose and single event effects (SEE), and reliability. Additionally, this new capability introduces a whole new philosophy of design and R&D, with strong implications in organizational and inter-agency program management. One key component specifically developed towards low power, small size, highly autonomous spacecraft systems, is the smart sensor remote input/output (TRIO) chip. TRIO can interface to 32 transducers with current sources/sinks and voltage sensing. It includes front-end analog signal processing, a 10-bit ADC, memory, and standard serial and parallel I/Os. These functions are very useful for spacecraft and subsystems health and status monitoring, and control actions. The key contributions of the TRIO are feasibility of modular architectures, elimination of several miles of wire harnessing, and power savings by orders of magnitude. TRIO freely operates from a single power supply 2.5- 5.5 V with power dissipation <10 mW. This system on a chip device rapidly becomes a NASA and Commercial Space standard as it is already selected by thousands in several new millennium missions, including Europa Orbiter, Mars Surveyor Program, Solar Probe, Pluto Express, Stereo, Contour, Messenger, etc. In the Science Instrumentation field common instruments that can greatly take advantage of the new technologies are: energetic-particle/plasma and wave instruments, imagers, mass spectrometers, X-ray and UV spectrographs, magnetometers, laser rangefinding instruments, etc. Common measurements that apply to many of these instruments are precise time interval measurement and high resolution read-out of solid state detectors. A precise time interval measurement chip was specially developed that achieves ˜100 ps (×10 improvement) time resolution at a power dissipation ˜20 mW (×50 improvement), dead time ˜1.5 μs (×20 improvement), and chip die size 5 mm×5 mm versus two 20 cm×20 cm doubled sided boards. This device is selected as a key enabling technology for several NASA particle, delay line imaging, and laser range finding instruments onboard (NASA Image, Messenger, etc. missions). Another device with universal application is radiation energy read-out from solid state detectors. Multi-channel low-power and end-to-end sensor input—digital output is key for the new generation instruments. The readout channel comprises of a Charge Sensitive Preamplifier with a target sensitivity of ˜1 KeV FWHM at 20 pf detector capacitance, a Shaper Amplifier with programmable time constant/gain, and an ADC. The read-out chip together with the precise time interval chip comprises the essential elements of a common particle spectroscopy instrument. To mention some more applications fast-signal acquisition—and digitization is a very useful function for a category of instrument such as mass spectroscopy and profile laser rangefinding. The single chip approach includes a high bandwidth preamplifier, fast sampling ˜5 ns, analog memory ˜10K locations, 12-bit ADC and serial/parallel I/Os. The wealth of the applications proves the advanced microelectronics field as a key enabling technology for the new millennium space exploration.

  2. Science with Constellation-X, Choice of Instrumentation

    NASA Technical Reports Server (NTRS)

    Hornscheimeier, Ann; White, Nicholas; Tananbaum, Harvey; Garcia, Michael; Bookbinder, Jay; Petre, Robert; Cottam, Jean

    2007-01-01

    The Constellation X-ray Observatory is one of the two Beyond Einstein Great Observatories and will provide a 100-fold increase in collecting area in high spectral resolving power X-ray instruments over the Chandra and XMM-Newton gratings instruments. The mission has four main science objectives which drive the requirements for the mission. This contribution to the Garmire celebration conference describes these four science areas: Black Holes, Dark Energy, Missing Baryons, and the Neutron Star Equation of State as well as the requirements flow-down that give rise to the choice of instrumentation and implementation for Constellation-X. As we show, each of these science areas place complementary constraints on mission performance parameters such as collecting area, spectral resolving power, timing resolution, and field of view. The mission's capabilities will enable a great breadth of science, and its resources will be open to the community through its General Observer program.

  3. Instrumentation, performance visualization, and debugging tools for multiprocessors

    NASA Technical Reports Server (NTRS)

    Yan, Jerry C.; Fineman, Charles E.; Hontalas, Philip J.

    1991-01-01

    The need for computing power has forced a migration from serial computation on a single processor to parallel processing on multiprocessor architectures. However, without effective means to monitor (and visualize) program execution, debugging, and tuning parallel programs becomes intractably difficult as program complexity increases with the number of processors. Research on performance evaluation tools for multiprocessors is being carried out at ARC. Besides investigating new techniques for instrumenting, monitoring, and presenting the state of parallel program execution in a coherent and user-friendly manner, prototypes of software tools are being incorporated into the run-time environments of various hardware testbeds to evaluate their impact on user productivity. Our current tool set, the Ames Instrumentation Systems (AIMS), incorporates features from various software systems developed in academia and industry. The execution of FORTRAN programs on the Intel iPSC/860 can be automatically instrumented and monitored. Performance data collected in this manner can be displayed graphically on workstations supporting X-Windows. We have successfully compared various parallel algorithms for computational fluid dynamics (CFD) applications in collaboration with scientists from the Numerical Aerodynamic Simulation Systems Division. By performing these comparisons, we show that performance monitors and debuggers such as AIMS are practical and can illuminate the complex dynamics that occur within parallel programs.

  4. Integrated Payload Data Handling Systems Using Software Partitioning

    NASA Astrophysics Data System (ADS)

    Taylor, Alun; Hann, Mark; Wishart, Alex

    2015-09-01

    An integrated Payload Data Handling System (I-PDHS) is one in which multiple instruments share a central payload processor for their on-board data processing tasks. This offers a number of advantages over the conventional decentralised architecture. Savings in payload mass and power can be realised because the total processing resource is matched to the requirements, as opposed to the decentralised architecture here the processing resource is in effect the sum of all the applications. Overall development cost can be reduced using a common processor. At individual instrument level the potential benefits include a standardised application development environment, and the opportunity to run the instrument data handling application on a fully redundant and more powerful processing platform [1]. This paper describes a joint program by SCISYS UK Limited, Airbus Defence and Space, Imperial College London and RAL Space to implement a realistic demonstration of an I-PDHS using engineering models of flight instruments (a magnetometer and camera) and a laboratory demonstrator of a central payload processor which is functionally representative of a flight design. The objective is to raise the Technology Readiness Level of the centralised data processing technique by address the key areas of task partitioning to prevent fault propagation and the use of a common development process for the instrument applications. The project is supported by a UK Space Agency grant awarded under the National Space Technology Program SpaceCITI scheme. [1].

  5. AIRS-Light Instrument Concept and Critical Technology Development

    NASA Technical Reports Server (NTRS)

    Maschhoff, Kevin

    2001-01-01

    Understanding Earth's climate, atmospheric transport mechanisms, and the hydrologic cycle requires a precise knowledge of global atmospheric circulation, temperature profiles, and water vapor distribution. The accuracy of advanced sounders such as AIRS/AMSU/HSB on NASA's Aqua spacecraft can match radiosonde accuracy. It is essential to fold those capabilities fully into the NPOESS, enabling soundings of radiosonde accuracy, every 6 hours around the globe on an operational basis. However, the size, mass, power demands, and thermal characteristics of the Aqua sounding instrument suite cannot be accommodated on the NPOESS spacecraft. AIRS-Light is an instrument concept, developed under the Instrument Incubator Program, which provides IR sounding performance identical to the AIRS instrument, but uses advances in HgCdTe FPA technology and pulse tube cooler technology, as well as design changes to dramatically reduce the size, mass, and power demand, allowing AIRS-Light to meet all NPOESS spacecraft interface requirements. The instrument concept includes substantial re-use of AIRS component designs, including the complex AIRS FPA, to reduce development risk and cost. The AIRS-Light Instrument Incubator program fostered the development of photovoltaic-mode HgCdTe detector array technology for the 13.5-15.4 micron band covered by photoconductive-mode HgCdTe arrays in AIRS, achieved state of the art results in this band, and substantially reduced the development risk for this last new technology needed for AIRS-Light implementation, A demonstration of a prototype 14.5-15.4 micron band IRFPA in a reduced heat-load dewar together with the IMAS pulse tube cryocooler is in progress.

  6. Saturn Apollo Program

    NASA Image and Video Library

    1967-11-07

    A technician checks the systems of the Saturn V instrument unit in a test facility in Huntsville. This instrument unit was flown aboard Apollo 4 on November 7, 1967, which was the first test flight of the Saturn V. The towering 363-foot Saturn V was a multi-stage, multi-engine launch vehicle standing taller than the Statue of Liberty. Altogether, the Saturn V engines produced as much power as 85 Hoover Dams.

  7. Determination of balloon gas mass and revised estimates of drag and virtual mass coefficients

    NASA Technical Reports Server (NTRS)

    Robbins, E.; Martone, M.

    1993-01-01

    In support of the NASA Balloon Program, small-scale balloons were flown with varying lifting gas and total system mass. Instrument packages were developed to measure and record acceleration and temperature data during these tests. Top fitting and instrument payload accelerations were measured from launch to steady state ascent and through ballast drop transients. The development of the small lightweight self-powered Stowaway Special instrument packages is discussed along with mathematical models developed to determine gas mass, drag and virtual mass coefficients.

  8. Measuring the Optical Properties of Astrophysical Dust Analogues: Instrumentation and Methods

    NASA Technical Reports Server (NTRS)

    Rinehart, S. A.; Benford, D. J.; Cataldo, G.; Dwek, E.; Henry, R.; Kinzer, R. E., Jr.; Nuth, J.; Silverberg, R.; Wheeler, C.; Wollack, E.

    2011-01-01

    Dust is found throughout the universe and plays an important role for a wide range of astrophysical phenomena. In recent years, new infrared facilities have provided powerful new data for understanding these phenomena. However, interpretation of these data is often complicated by a lack of complementary information about the optical properties of astronomically relevant materials. The Optical Properties of Astronomical Silicates with Infrared Techniques (OPASI-T) program at NASA's Goddard Space Flight Center is designed to provide new high-quality laboratory data from which we can derive the optical properties of astrophysical dust analogues. This program makes use of multiple instruments, including new equipment designed and built specifically for this purpose. The suite of instruments allows us to derive optical properties over a wide wavelength range, from the near-infrared through the millimeter, also providing the capability for exploring how these properties depend upon the temperature of the sample. In this paper, we discuss the overall structure of the research program, describe the new instruments that have been developed to meet the science goals, and demonstrate the efficacy of these tools.

  9. Silicon carbide, an emerging high temperature semiconductor

    NASA Technical Reports Server (NTRS)

    Matus, Lawrence G.; Powell, J. Anthony

    1991-01-01

    In recent years, the aerospace propulsion and space power communities have expressed a growing need for electronic devices that are capable of sustained high temperature operation. Applications for high temperature electronic devices include development instrumentation within engines, engine control, and condition monitoring systems, and power conditioning and control systems for space platforms and satellites. Other earth-based applications include deep-well drilling instrumentation, nuclear reactor instrumentation and control, and automotive sensors. To meet the needs of these applications, the High Temperature Electronics Program at the Lewis Research Center is developing silicon carbide (SiC) as a high temperature semiconductor material. Research is focussed on developing the crystal growth, characterization, and device fabrication technologies necessary to produce a family of silicon carbide electronic devices and integrated sensors. The progress made in developing silicon carbide is presented, and the challenges that lie ahead are discussed.

  10. Power API Prototype

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2014-12-04

    The software serves two purposes. The first purpose of the software is to prototype the Sandia High Performance Computing Power Application Programming Interface Specification effort. The specification can be found at http://powerapi.sandia.gov . Prototypes of the specification were developed in parallel with the development of the specification. Release of the prototype will be instructive to anyone who intends to implement the specification. More specifically, our vendor collaborators will benefit from the availability of the prototype. The second is in direct support of the PowerInsight power measurement device, which was co-developed with Penguin Computing. The software provides a cluster wide measurementmore » capability enabled by the PowerInsight device. The software can be used by anyone who purchases a PowerInsight device. The software will allow the user to easily collect power and energy information of a node that is instrumented with PowerInsight. The software can also be used as an example prototype implementation of the High Performance Computing Power Application Programming Interface Specification.« less

  11. The Self-Powered Detector Simulation `MATiSSe' Toolbox applied to SPNDs for severe accident monitoring in PWRs

    NASA Astrophysics Data System (ADS)

    Barbot, Loïc; Villard, Jean-François; Fourrez, Stéphane; Pichon, Laurent; Makil, Hamid

    2018-01-01

    In the framework of the French National Research Agency program on nuclear safety and radioprotection, the `DIstributed Sensing for COrium Monitoring and Safety' project aims at developing innovative instrumentation for corium monitoring in case of severe accident in a Pressurized Water nuclear Reactor. Among others, a new under-vessel instrumentation based on Self-Powered Neutron Detectors is developed using a numerical simulation toolbox, named `MATiSSe'. The CEA Instrumentation Sensors and Dosimetry Lab developed MATiSSe since 2010 for Self-Powered Neutron Detectors material selection and geometry design, as well as for their respective partial neutron and gamma sensitivity calculations. MATiSSe is based on a comprehensive model of neutron and gamma interactions which take place in Selfpowered neutron detector components using the MCNP6 Monte Carlo code. As member of the project consortium, the THERMOCOAX SAS Company is currently manufacturing some instrumented pole prototypes to be tested in 2017. The full severe accident monitoring equipment, including the standalone low current acquisition system, will be tested during a joined CEA-THERMOCOAX experimental campaign in some realistic irradiation conditions, in the Slovenian TRIGA Mark II research reactor.

  12. Search and Recovery Efforts for the ALSEP Data Tapes

    NASA Technical Reports Server (NTRS)

    Nagihara, S.; Nakamura, Y.; Lewis, L. R.; Williams, D. R.; Taylor, P. T.; Grayzeck, E. J.; Chi, P.; Schmidt, G. K.

    2011-01-01

    On NASA's first human lunar landing on Apollo II in July 1969, the astronauts deployed a set of scientific instruments called Early Apollo Science Experiments Package (EASEP). It was powered by a solar panel and operated for -20 earth-days and transmitted data to the Earth. This paved a way for deployment of more expansive instrument packages, powered by radioisotope thermoelectric generators, on Apollo 12, 14, 15, 16, and 17 in November 1969 through December 1972. They were called Apollo Lunar Surface Experiments Packages (ALSEPs). Each ALSEP consisted of a variety of instruments such as seismometers, magnetometers, solar wind spectrometers, heat flow probes, etc. The majority of these instruments kept functioning long after their one-year design lifetime requirement, and they transmitted data to the Earth until September 1977, when the program ended. Over the three decades that followed, users of the NSSDC-archived data have learned that many of the ALSEP instrument data are not complete. The present work is a progress report on the authors' recent effort for restoring the entire raw ALSEP data that were received from the Moon,

  13. End-Use Load and Conservation Assessment Program : Co-Instrumentation Test of Two Microcomputer-Based Energy Monitoring Systems.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fishbaugher, M. J.

    1985-05-01

    The decreasing cost of microcomputers along with improvements in power metering circuitry have changed the way in which electrical energy use is monitored. Although utilities still rely on kilowatt-hour (kWh) meters for billing purposes, a microcomputer-based monitoring system is used when greater temporal and end-use resolution is desired. Because these types of monitoring systems will be used increasingly in large-scale conservation and end-use studies, it is important that their performance be analyzed to determine their accuracy. A co-instrumentation test was devised in which two such microcomputer-based monitoring systems made simultaneous measurements of electrical end-uses in two commercial buildings. The analysismore » of the co-instrumentation data aids in the evaluation of microcomputer-based monitoring systems used for end-use measurements. Separate and independent data loggers were used to measure the same loads simultaneously. In addition to these two systems, a utility billing meter measured the total energy use in each building during the co-instrumentation test. The utility's meters provided a relatively accurate standard by which the performance of both loggers could be judged. The comparison between the SCL and PNL microcomputer-based loggers has shown that power measurement techniques directly affect system performance. The co-instrumentation test has shown that there are certain standards that a monitoring system must meet if it is to perform well. First, it is essential to calibrate a microcomputer-based logger against a known standard load before the system is installed. Second, a microcomputer-based system must have some way of accounting for power factors. Recent advances in power metering circuitry have made it relatively easy to apply these power factors automatically in real time.« less

  14. Design and development of the 2m resolution camera for ROCSAT-2

    NASA Astrophysics Data System (ADS)

    Uguen, Gilbert; Luquet, Philippe; Chassat, François

    2017-11-01

    EADS-Astrium has recently completed the development of a 2m-resolution camera, so-called RSI (Remote Sensing Instrument), for the small-satellite ROCSAT-2, which is the second component of the long-term space program of the Republic of China. The National Space Program Office of Taïwan selected EADS-Astrium as the Prime Contractor for the development of the spacecraft, including the bus and the main instrument RSI. The main challenges for the RSI development were: - to introduce innovative technologies in order to meet the high performance requirements while achieving the design simplicity necessary for the mission (low mass, low power) - to have a development approach and verification compatible with the very tight development schedule This paper describes the instrument design together with the development and verification logic that were implemented to successfully meet these objectives.

  15. Computation of Southern Pine Site Index Using a TI-59 Calculator

    Treesearch

    Robert M. Farrar

    1983-01-01

    A program is described that permits computation of site index in the field using a Texas Instruments model TI-59 programmable, hand-held, battery-powered calculator. Based on a series of equations developed by R.M. Farrar, Jr., for the site index curves in USDA Miscellaneous Publication 50, the program can accommodate any index base age, tree age, and height within...

  16. Fiber lasers and amplifiers for science and exploration at NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.; Abshire, James; Allan, Graham R.; Stephen Mark

    2005-01-01

    We discuss present and near-term uses for high-power fiber lasers and amplifiers for NASA- specific applications including planetary topography and atmospheric spectroscopy. Fiber lasers and amplifiers offer numerous advantages for both near-term and future deployment of instruments on exploration and science remote sensing orbiting satellites. Ground-based and airborne systems provide an evolutionary path to space and a means for calibration and verification of space-borne systems. We present experimental progress on both the fiber transmitters and instrument prototypes for ongoing development efforts. These near-infrared instruments are laser sounders and lidars for measuring atmospheric carbon dioxide, oxygen, water vapor and methane and a pseudo-noise (PN) code laser ranging system. The associated fiber transmitters include high-power erbium, ytterbium, neodymium and Raman fiber amplifiers. In addition, we will discuss near-term fiber laser and amplifier requirements and programs for NASA free space optical communications, planetary topography and atmospheric spectroscopy.

  17. SCTE: An open-source Perl framework for testing equipment control and data acquisition

    NASA Astrophysics Data System (ADS)

    Mostaço-Guidolin, Luiz C.; Frigori, Rafael B.; Ruchko, Leonid; Galvão, Ricardo M. O.

    2012-07-01

    SCTE intends to provide a simple, yet powerful, framework for building data acquisition and equipment control systems for experimental Physics, and correlated areas. Via its SCTE::Instrument module, RS-232, USB, and LAN buses are supported, and the intricacies of hardware communication are encapsulated underneath an object oriented abstraction layer. Written in Perl, and using the SCPI protocol, enabled instruments can be easily programmed to perform a wide variety of tasks. While this work presents general aspects of the development of data acquisition systems using the SCTE framework, it is illustrated by particular applications designed for the calibration of several in-house developed devices for power measurement in the tokamak TCABR Alfvén Waves Excitement System. Catalogue identifier: AELZ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AELZ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License Version 3 No. of lines in distributed program, including test data, etc.: 13 811 No. of bytes in distributed program, including test data, etc.: 743 709 Distribution format: tar.gz Programming language: Perl version 5.10.0 or higher. Computer: PC. SCPI capable digital oscilloscope, with RS-232, USB, or LAN communication ports, null modem, USB, or Ethernet cables Operating system: GNU/Linux (2.6.28-11), should also work on any Unix-based operational system Classification: 4.14 External routines: Perl modules: Device::SerialPort, Term::ANSIColor, Math::GSL, Net::HTTP. Gnuplot 4.0 or higher Nature of problem: Automation of experiments and data acquisition often requires expensive equipment and in-house development of software applications. Nowadays personal computers and test equipment come with fast and easy-to-use communication ports. Instrument vendors often supply application programs capable of controlling such devices, but are very restricted in terms of functionalities. For instance, they are not capable of controlling more than one test equipment at a same time or to automate repetitive tasks. SCTE provides a way of using auxiliary equipment in order to automate experiment procedures at low cost using only free, and open-source operational system and libraries. Solution method: SCTE provides a Perl module that implements RS-232, USB, and LAN communication allowing the use of SCPI capable instruments [1]. Therefore providing a straightforward way of creating automation and data acquisition applications using personal computers and testing instruments [2]. SCPI Consortium, Standard Commands for Programmable Instruments, 1999, http://www.scpiconsortium.org. L.C.B. Mostaço-Guidolin, Determinação da configuração de ondas de Alfvén excitadas no tokamak TCABR, Master's thesis, Universidade de São Paulo (2007), http://www.teses.usp.br/teses/disponiveis/43/43134/tde-23042009-230419/.

  18. Wind energy education projects. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ziegler, P.; Conlon, T.R.; Arcadi, T.

    Two projects under DOE's Small-Scale Appropriate Energy Technology Grants Program have educated the public in a hands on way about wind energy systems. The first was awarded to Peter Ziegler of Berkeley, California, to design and build a walk-through exhibition structure powered by an adjoining wind-generator. This Wind Energy Pavilion was erected at Fort Funston in the Golden Gate National Recreation Area. It currently serves both as an enclosure for batteries and a variety of monitoring instruments, and as a graphic environment where the public can learn about wind energy. The second project, entitled Wind and Kid Power, involved anmore » educational program for a classroom of first through third grades in the Vallejo, Unified School District. The students studied weather, measured wind speeds and built small models of wind machines. They also built a weather station, and learned to use weather instruments. The grant funds enabled them to actually build and erect a Savonius wind machine at the Loma Vista Farm School.« less

  19. PSAW/MicroSWIS [Microminiature Surface Acoustic Wave (SAW) based Wirelesss Instrumentation System

    NASA Technical Reports Server (NTRS)

    Heermann, Doug; Krug, Eric

    2004-01-01

    This Final Report for the PSAW/MicroSWIS Program is provided in compliance with contract number NAS3-01118. This report documents the overall progress of the program and presents project objectives, work carried out, and results obtained. Program Conceptual Design Package stated the following objectives: To develop a sensor/transceiver network that can support networking operations within spacecraft with sufficient bandwidth so that (1) flight control data, (2) avionics data, (3) payload/experiment data, and (4) prognostic health monitoring sensory information can flow to appropriate locations at frequencies that contain the maximum amount of information content but require minimum interconnect and power: a very high speed, low power, programmable modulation, spread-spectrum radio sensor/transceiver.

  20. A measurement of the energy spectra of cosmic rays from 20 to 1000 GeV per AMU

    NASA Technical Reports Server (NTRS)

    Gregory, John C.; Smith, Arthur

    1994-01-01

    During the report period the BUGS-4 instrument was completed, and the maiden voyage took place on 29 September from Fort Sumner, New Mexico. The successful flight of a large spherical drift chamber is a unique first for the sub-orbital balloon program. Unfortunately the instrument was consumed by fire after striking a power line during landing. However, while at float altitude, circa 24 hours of data were telemetered. The pre-flight preparations, and flight operations are described.

  1. Performance of a Borehole XRF Spectrometer for Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Kelliher, Warren C.; Carlberg, Ingrid A.; Elam, W. T.; WIllard-Schmoe, Ella

    2007-01-01

    We have designed and constructed a borehole XRF Spectrometer (XRFS) as part of the Mars Subsurface Access program. It will be used to determine the composition of the Mars regolith at various depths by insertion into a pre-drilled borehole. The primary performance metrics for the instrument are the lower limits of detection over a wide range of the periodic table. Power consumption during data collection was also measured. The prototype instrument is complete and preliminary testing has been performed. Terrestrial soil Standard Reference Materials were used as the test samples. Detection limits were about 10 weight parts-per-million for most elements, with light elements being higher, up to 1.4 weight percent for magnesium. Power consumption (excluding ground support components) was 12 watts.

  2. Low-Temperature Power Electronics Program

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Dickman, John E.; Hammoud, Ahmad; Gerber, Scott

    1997-01-01

    Many space and some terrestrial applications would benefit from the availability of low-temperature electronics. Exploration missions to the outer planets, Earth-orbiting and deep-space probes, and communications satellites are examples of space applications which operate in low-temperature environments. Space probes deployed near Pluto must operate in temperatures as low as -229 C. Figure 1 depicts the average temperature of a space probe warmed by the sun for various locations throughout the solar system. Terrestrial applications where components and systems must operate in low-temperature environments include cryogenic instrumentation, superconducting magnetic energy storage, magnetic levitation transportation system, and arctic exploration. The development of electrical power systems capable of extremely low-temperature operation represents a key element of some advanced space power systems. The Low-Temperature Power Electronics Program at NASA Lewis Research Center focuses on the design, fabrication, and characterization of low-temperature power systems and the development of supporting technologies for low-temperature operations such as dielectric and insulating materials, power components, optoelectronic components, and packaging and integration of devices, components, and systems.

  3. Fiber-Based, Trace-Gas, Laser Transmitter Technology Development for Space

    NASA Technical Reports Server (NTRS)

    Stephen, Mark; Yu, Anthony; Chen, Jeffrey; Nicholson, Jeffrey; Engin, Doruk; Mathason, Brian; Wu, Stewart; Allan, Graham; Hasselbrack, William; Gonzalez, Brayler; hide

    2015-01-01

    NASA’s Goddard Space Flight Center (GSFC) is working on maturing the technology readiness of a laser transmitter designed for use in atmospheric CO2 remote-sensing. GSFC has been developing an airplane-based CO2 lidar instrument over several years to demonstrate the efficacy of the instrumentation and measurement technique and to link the science models to the instrument performance. The ultimate goal is to make space-based satellite measurements with global coverage. In order to accomplish this, we must demonstrate the technology readiness and performance of the components as well as demonstrate the required power-scaling to make the link with the required signal-to-noise-ratio (SNR). To date, all the instrument components have been shown to have the required performance with the exception of the laser transmitter.In this program we are working on a fiber-based master oscillator power amplifier (MOPA) laser transmitter architecture where we will develop a ruggedized package and perform the relevant environmental tests to demonstrate TRL-6. In this paper we will review our transmitter architecture and progress on the performance and packaging of the laser transmitter.

  4. Fiber-based, trace-gas, laser transmitter technology development for space

    NASA Astrophysics Data System (ADS)

    Stephen, Mark; Yu, Anthony; Chen, Jeffrey; Nicholson, Jeffrey; Engin, Doruk; Mathason, Brian; Wu, Stewart; Allan, Graham; Hasselbrack, William; Gonzales, Brayler; Han, Lawrence; Numata, Kenji; Storm, Mark; Abshire, James

    2015-09-01

    NASA's Goddard Space Flight Center (GSFC) is working on maturing the technology readiness of a laser transmitter designed for use in atmospheric CO2 remote-sensing. GSFC has been developing an airplane-based CO2 lidar instrument over several years to demonstrate the efficacy of the instrumentation and measurement technique and to link the science models to the instrument performance. The ultimate goal is to make space-based satellite measurements with global coverage. In order to accomplish this, we must demonstrate the technology readiness and performance of the components as well as demonstrate the required power-scaling to make the link with the required signal-to-noise-ratio (SNR). To date, all the instrument components have been shown to have the required performance with the exception of the laser transmitter. In this program we are working on a fiber-based master oscillator power amplifier (MOPA) laser transmitter architecture where we will develop a ruggedized package and perform the relevant environmental tests to demonstrate TRL-6. In this paper we will review our transmitter architecture and progress on the performance and packaging of the laser transmitter.

  5. Flexible Rover Architecture for Science Instrument Integration and Testing

    NASA Technical Reports Server (NTRS)

    Bualat, Maria G.; Kobayashi, Linda; Lee, Susan Y.; Park, Eric

    2006-01-01

    At NASA Ames Research Center, the Intelligent Robotics Group (IRG) fields the K9 and K10 class rovers. Both use a mobile robot hardware architecture designed for extensibility and reconfigurability that allows for rapid changes in instrumentation and provides a high degree of modularity. Over the past ssveral years, we have worked with instrument developers at NASA centers, universities, and national laboratories to integrate or partially integrate their instruments onboard the K9 and K10 rovers. Early efforts required considerable interaction to work through integration issues such as power, data protocol and mechanical mounting. These interactions informed the design of our current avionics architecture, and have simplified more recent integration projects. In this paper, we will describe the IRG extensible avionics and software architecture and the effect it has had on our recent instrument integration efforts, including integration of four Mars Instrument Development Program devices.

  6. Technology for Future NASA Missions: Civil Space Technology Initiative (CSTI) and Pathfinder

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Information is presented in viewgraph form on a number of related topics. Information is given on orbit transfer vehicles, spacecraft instruments, spaceborne experiments, university/industry programs, spacecraft propulsion, life support systems, cryogenics, spacecraft power supplies, human factors engineering, spacecraft construction materials, aeroassist, aerobraking and aerothermodynamics.

  7. 14 CFR 25.1331 - Instruments using a power supply.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Instruments using a power supply. 25.1331....1331 Instruments using a power supply. (a) For each instrument required by § 25.1303(b) that uses a power supply, the following apply: (1) Each instrument must have a visual means integral with, the...

  8. Varying ultrasound power level to distinguish surgical instruments and tissue.

    PubMed

    Ren, Hongliang; Anuraj, Banani; Dupont, Pierre E

    2018-03-01

    We investigate a new framework of surgical instrument detection based on power-varying ultrasound images with simple and efficient pixel-wise intensity processing. Without using complicated feature extraction methods, we identified the instrument with an estimated optimal power level and by comparing pixel values of varying transducer power level images. The proposed framework exploits the physics of ultrasound imaging system by varying the transducer power level to effectively distinguish metallic surgical instruments from tissue. This power-varying image-guidance is motivated from our observations that ultrasound imaging at different power levels exhibit different contrast enhancement capabilities between tissue and instruments in ultrasound-guided robotic beating-heart surgery. Using lower transducer power levels (ranging from 40 to 75% of the rated lowest ultrasound power levels of the two tested ultrasound scanners) can effectively suppress the strong imaging artifacts from metallic instruments and thus, can be utilized together with the images from normal transducer power levels to enhance the separability between instrument and tissue, improving intraoperative instrument tracking accuracy from the acquired noisy ultrasound volumetric images. We performed experiments in phantoms and ex vivo hearts in water tank environments. The proposed multi-level power-varying ultrasound imaging approach can identify robotic instruments of high acoustic impedance from low-signal-to-noise-ratio ultrasound images by power adjustments.

  9. Research and development studies for MHD/coal power flow train components. Technical progress report, 1 September 1979-31 August 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bloom, M. H.

    1980-01-01

    The aim of this program is to contribute to certain facets of the development of the MHD/coal power system, and particularly the CDIF of DOE with regard to its flow train. Consideration is given specifically to the electrical power take-off, the diagnostic and instrumentation systems, the combustor and MHD channel technology, and electrode alternatives. Within the constraints of the program, high priorities were assigned to the problems of power take-off and the related characteristics of the MHD channel, and to the establishment of a non-intrusive, laser-based diagnostic system. The next priority was given to the combustor modeling and to amore » significantly improved analysis of particle combustion. Separate abstracts were prepared for nine of the ten papers included. One paper was previously included in the data base. (WHK)« less

  10. Work on power-plant (air) plumes involving remote sensing of SO2

    NASA Technical Reports Server (NTRS)

    White, C. L., Jr.

    1978-01-01

    Acquisition of air quality and concurrent meteorological data was used for dispersion model development and plant siting needs of the Maryland power plants. One of the major instruments in these studies was the Barringer correlation spectrometer, a remote sensor, using atmospherically scattered sunlight that was used to measure the total amount of SO2 in a cross section of the plume. Correlation spectrometer and its role in this measurement program are described.

  11. Transistor step stress testing program for JANTX2N2905A

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The effect of power/temperature step stress when applied to the transistor JANTX2N2905A manufactured by Texas Instruments and Motorola is reported. A total of 48 samples from each manufacturer was submitted to the process outlined. In addition, two control sample units were maintained for verification of the electrical parametric testing. All test samples were subjected to the electrical tests outlined in Table 2 after completing the prior power/temperature step stress point.

  12. 14 CFR 29.1331 - Instruments using a power supply.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Instruments using a power supply. 29.1331....1331 Instruments using a power supply. For category A rotorcraft— (a) Each required flight instrument using a power supply must have— (1) Two independent sources of power; (2) A means of selecting either...

  13. 14 CFR 29.1331 - Instruments using a power supply.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Instruments using a power supply. 29.1331....1331 Instruments using a power supply. For category A rotorcraft— (a) Each required flight instrument using a power supply must have— (1) Two independent sources of power; (2) A means of selecting either...

  14. Using the FORTH Language to Develop an ICU Data Acquisition System

    PubMed Central

    Goldberg, Arthur; SooHoo, Spencer L.; Koerner, Spencer K.; Chang, Robert S. Y.

    1980-01-01

    This paper describes a powerful programming tool that should be considered as an alternative to the more conventional programming languages now in use for developing medical computer systems. Forth provides instantaneous response to user commands, rapid program execution and tremendous programming versatility. An operating system and a language in one carefully designed unit, Forth is well suited for developing data acquisition systems and for interfacing computers to other instruments. We present some of the general features of Forth and describe its use in implementing a data collection system for a Respiratory Intensive Care Unit (RICU).

  15. Trace-Driven Debugging of Message Passing Programs

    NASA Technical Reports Server (NTRS)

    Frumkin, Michael; Hood, Robert; Lopez, Louis; Bailey, David (Technical Monitor)

    1998-01-01

    In this paper we report on features added to a parallel debugger to simplify the debugging of parallel message passing programs. These features include replay, setting consistent breakpoints based on interprocess event causality, a parallel undo operation, and communication supervision. These features all use trace information collected during the execution of the program being debugged. We used a number of different instrumentation techniques to collect traces. We also implemented trace displays using two different trace visualization systems. The implementation was tested on an SGI Power Challenge cluster and a network of SGI workstations.

  16. Trace Gas Retrievals from the GeoTASO Aircraft Instrument During the DISCOVER-AQ Campaigns

    NASA Astrophysics Data System (ADS)

    Nowlan, C. R.; Liu, X.; Leitch, J. W.; Liu, C.; Gonzalez Abad, G.; Chance, K.; Delker, T.; Good, W. S.; Murcray, F.; Ruppert, L.; Kaptchen, P. F.; Loughner, C.; Follette-Cook, M. B.; Pickering, K. E.

    2014-12-01

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) instrument is a recently-developed passive remote sensing instrument capable of making 2-D measurements of trace gases from aircraft. GeoTASO was developed under NASA's Instrument Incubator program and is a test-bed instrument for the Geostationary Coastal and Air Pollution Events (GEO-CAPE) decadal survey and the upcoming Tropospheric Emissions: Monitoring of Pollution (TEMPO) satellite missions. The instrument collects spectra of backscattered UV-visible radiation for the detection of tropospheric trace gases such as NO2, ozone, formaldehyde and SO2. GeoTASO flew on the NASA HU-25C Falcon aircraft during the 2013 (Texas) and 2014 (Colorado) DISCOVER-AQ field campaigns, making satellite-analog measurements of trace gases at a spatial resolution of approximately 500x500 m over urban areas, power plants and other industrial sources of pollution. We present the GeoTASO retrieval algorithms, trace gas measurement results, and validation comparisons with ground-based observations and other aircraft instruments during these campaigns.

  17. Update on Common-Cause Failure Experience and Mitigation Practices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, Richard Thomas; Muhlheim, Michael David; Pullum, Laura L

    2014-04-01

    Experience in other industries has shown that digital technology can provide substantial benefits in terms of performance and reliability. However, the U.S. nuclear power industry has been slow to adopt the technology extensively in its instrumentation and control (I&C) applications because of inhibiting factors such as regulatory uncertainty, insufficient technological experience base, implementation complexity, limited availability of nuclear-qualified products and vendors, and inadequate definition of modernization cost recapture. Although there have been examples of digital technology usage in the nuclear power industry, challenges to the qualification of digital technology for high-integrity nuclear power plant (NPP) applications have severely constrained moremore » widespread progress in achieving the benefits that are possible through the transition to digital. The U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) established the Advanced Sensors and Instrumentation (ASI) technology area under the Nuclear Energy Enabling Technologies (NEET) Program to coordinate the instrumentation and controls (I&C) research across DOE NE and to identify and lead efforts to address common needs. As part of the NEET ASI research program, the Digital Technology Qualification project was established. Under this project, the Oak Ridge National Laboratory (ORNL) is leading the investigation into mitigation of digital common-cause failure (CCF) vulnerabilities for nuclear-qualified applications. This technical report documents updated and expanded findings from research activities by ORNL. Specifically, the report describes CCF experience in the nuclear and nonnuclear industries, identifies the state of the practice for CCF mitigation through key examples, and presents conclusions from the determination of knowledge gaps.« less

  18. Building America Case Study: Pilot Demonstration of Phased Energy Efficiency Retrofits: Shallow Retrofit Results, Central and South Florida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2017-02-22

    The Florida Solar Energy Center (FSEC), in collaboration with Florida Power & Light (FPL), is pursuing a phased residential energy-efficiency retrofit program in Florida. Researchers are looking to establish the impacts of technologies of two retrofit packages -- shallow and deep -- on annual energy and peak energy reductions. Sixty homes have been instrumented to record total house power and detailed energy end-use data on all appliances as well as household interior temperature and relative humidity conditions.

  19. Building America Case Study: Pilot Demonstration of Phased Energy Efficiency Retrofits: Shallow Retrofit Results, Central and South Florida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. Parker, K. Sutherland, D. Chasar, J. Montemurno, B. Amos, J. Kono

    2017-02-01

    The Florida Solar Energy Center (FSEC), in collaboration with Florida Power & Light (FPL), is pursuing a phased residential energy-efficiency retrofit program in Florida. Researchers are looking to establish the impacts of technologies of two retrofit packages -- shallow and deep -- on annual energy and peak energy reductions. Sixty homes have been instrumented to record total house power and detailed energy end-use data on all appliances as well as household interior temperature and relative humidity conditions.

  20. Nondestructive Examination for Nuclear Power Plant Cable Aging Management Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glass, Samuel W.; Fifield, Leonard S.

    2016-01-01

    Degradation of the cable jacket, electrical insulation, and other cable components of installed cables within nuclear power plants (NPPs) is known to occur as a function of age, temperature, radiation, and other environmental factors. System tests verify cable function under normal loads; however, the concern is over cable performance under exceptional loads associated with design-basis events (DBEs). The cable’s ability to perform safely over the initial 40 year planned and licensed life has generally been demonstrated and there have been very few age-related cable failures. With greater than 1000 km of power, control, instrumentation, and other cables typically found inmore » an NPP, replacing all the cables would be a severe cost burden. Justification for life extension to 60 and 80 years requires a cable aging management program (AMP) to justify cable performance under normal operation as well as accident conditions. This paper addresses various NDE technologies that constitute the essence of an acceptable aging management program.« less

  1. 14 CFR 29.1331 - Instruments using a power supply.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... from one source, or a fault in any part of the power distribution system does not interfere with the... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Instruments using a power supply. 29.1331....1331 Instruments using a power supply. For category A rotorcraft— (a) Each required flight instrument...

  2. 14 CFR 29.1331 - Instruments using a power supply.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... from one source, or a fault in any part of the power distribution system does not interfere with the... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Instruments using a power supply. 29.1331....1331 Instruments using a power supply. For category A rotorcraft— (a) Each required flight instrument...

  3. 14 CFR 29.1331 - Instruments using a power supply.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... from one source, or a fault in any part of the power distribution system does not interfere with the... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Instruments using a power supply. 29.1331....1331 Instruments using a power supply. For category A rotorcraft— (a) Each required flight instrument...

  4. CELiS (Compact Eyesafe Lidar System), a portable 1.5 μm elastic lidar system for rapid aerosol concentration measurement: Part 1, Instrument Design and Operation

    NASA Astrophysics Data System (ADS)

    Bird, A. W.; Wojcik, M.; Moore, K. D.; Lemon, R.

    2014-12-01

    CELiS (Compact Eyesafe Lidar System) is an elastic lidar system conceived for the purpose of monitoring air quality environmental compliance regarding particulate matter (PM) generated from off-road use of wheeled and tracked vehicles. CELiS is a prototype instrument development by the Space Dynamics Laboratory to demonstrate a small, low power, eye-safe lidar system capable of monitoring PM fence-line concentration of fugitive dust from off-road vehicle activity as part of the SERDP (Strategic Environmental Research and Development Program) Measurement and Modeling of Fugitive Dust Emission from Off-Road Department of Defense Activities program. CELiS is small, lightweight and easily transportable for quick setup and measurement of PM concentration and emissions. The instrument is mounted on Moog Quickset pan and tilt positioner. Ground support equipment includes portable racks with laser power and cooler, power supplies, readout electronics and computer. The complete CELiS instrument weighs less than 300 lbs., is less than 1 cubic meters in volume and uses 700 W of 120V AC power. CELiS has a working range of better than 6km and a range resolution of 1.5m-6m. CELiS operates in a biaxial configuration at the 1.5μm eyesafe wavelength. The receiver is an off-axis parabolic (OAP) telescope, aft-optics and alignment assembly and InGaAs APD detector readout. The transmitter is a 20Hz PRF - 25mJ Quantel 1.574 μm laser with a 20x beam expander. Both the receiver and transmitter are mounted on a carbon fiber optical breadboard with a custom mounting solution to minimize misalignment due to thermal operating range (0-40 C) and pointing vectors. Any lidar system used to monitor fence-line PM emissions related to off-road training activities will be subject to a strict eye-safety requirement to protect both troops and wildlife. CELiS is eyesafe at the output aperture. CELiS has participated in two Dugway Proving Ground Lidar exercises performing within expectations. Retrieval of particulate matter concentration is presented in companion poster by K. Moore.

  5. On the Information Content of Program Traces

    NASA Technical Reports Server (NTRS)

    Frumkin, Michael; Hood, Robert; Yan, Jerry; Saini, Subhash (Technical Monitor)

    1998-01-01

    Program traces are used for analysis of program performance, memory utilization, and communications as well as for program debugging. The trace contains records of execution events generated by monitoring units inserted into the program. The trace size limits the resolution of execution events and restricts the user's ability to analyze the program execution. We present a study of the information content of program traces and develop a coding scheme which reduces the trace size to the limit given by the trace entropy. We apply the coding to the traces of AIMS instrumented programs executed on the IBM SPA and the SCSI Power Challenge and compare it with other coding methods. Our technique shows size of the trace can be reduced by more than a factor of 5.

  6. Technology Roadmap Instrumentation, Control, and Human-Machine Interface to Support DOE Advanced Nuclear Energy Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donald D Dudenhoeffer; Burce P Hallbert

    Instrumentation, Controls, and Human-Machine Interface (ICHMI) technologies are essential to ensuring delivery and effective operation of optimized advanced Generation IV (Gen IV) nuclear energy systems. In 1996, the Watts Bar I nuclear power plant in Tennessee was the last U.S. nuclear power plant to go on line. It was, in fact, built based on pre-1990 technology. Since this last U.S. nuclear power plant was designed, there have been major advances in the field of ICHMI systems. Computer technology employed in other industries has advanced dramatically, and computing systems are now replaced every few years as they become functionally obsolete. Functionalmore » obsolescence occurs when newer, more functional technology replaces or supersedes an existing technology, even though an existing technology may well be in working order.Although ICHMI architectures are comprised of much of the same technology, they have not been updated nearly as often in the nuclear power industry. For example, some newer Personal Digital Assistants (PDAs) or handheld computers may, in fact, have more functionality than the 1996 computer control system at the Watts Bar I plant. This illustrates the need to transition and upgrade current nuclear power plant ICHMI technologies.« less

  7. Advanced U.S. military aircraft battery systems

    NASA Astrophysics Data System (ADS)

    Flake, Richard A.; Eskra, Michael D.

    1990-04-01

    While most USAF aircraft currently use vented Ni-Cd for dc electrical power and emergency power, as well as the powering of lights and instruments prior to engine starting, these batteries have high maintenance requirements, low reliability, and no built-in testing capability with which to check battery health prior to flight. The USAF Wright R&D Center accordingly initiated its Advanced Maintenance-Free NiCd Battery System development program in 1986, in order to develop a sealed Ni-Cd battery which would remain maintenance-free over a period of three years. Attention is being given to a high power bipolar battery design in which there are no individual cell cases or cell interconnects.

  8. High Power Laser Diode Array Qualification and Guidelines for Space Flight Environments

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.; Eegholm, Niels; Stephen, Mark; Leidecker, Henning; Plante, Jeannette; Meadows, Byron; Amzajerdian, Farzin; Jamison, Tracee; LaRocca, Frank

    2006-01-01

    High-power laser diode arrays (LDAs) are used for a variety of space-based remote sensor laser programs as an energy source for diode-pumped solid-state lasers. LDAs have been flown on NASA missions including MOLA, GLAS and MLA and have continued to be viewed as an important part of the laser-based instrument component suite. There are currently no military or NASA-grade, -specified, or - qualified LDAs available for "off-the-shelf" use by NASA programs. There has also been no prior attempt to define a standard screening and qualification test flow for LDAs for space applications. Initial reliability studies have also produced good results from an optical performance and stability standpoint. Usage experience has shown, howeve that the current designs being offered may be susceptible to catastrophic failures due to their physical construction (packaging) combined with the electro-optical operational modes and the environmental factors of space application. design combined with operational mode was at the root of the failures which have greatly reduced the functionality of the GLAS instrument. The continued need for LDAs for laser-based science instruments and past catastrophic failures of this part type demand examination of LDAs in a manner which enables NASA to select, buy, validate and apply them in a manner which poses as little risk to the success of the mission as possible.

  9. Spacecraft computer technology at Southwest Research Institute

    NASA Technical Reports Server (NTRS)

    Shirley, D. J.

    1993-01-01

    Southwest Research Institute (SwRI) has developed and delivered spacecraft computers for a number of different near-Earth-orbit spacecraft including shuttle experiments and SDIO free-flyer experiments. We describe the evolution of the basic SwRI spacecraft computer design from those weighing in at 20 to 25 lb and using 20 to 30 W to newer models weighing less than 5 lb and using only about 5 W, yet delivering twice the processing throughput. Because of their reduced size, weight, and power, these newer designs are especially applicable to planetary instrument requirements. The basis of our design evolution has been the availability of more powerful processor chip sets and the development of higher density packaging technology, coupled with more aggressive design strategies in incorporating high-density FPGA technology and use of high-density memory chips. In addition to reductions in size, weight, and power, the newer designs also address the necessity of survival in the harsh radiation environment of space. Spurred by participation in such programs as MSTI, LACE, RME, Delta 181, Delta Star, and RADARSAT, our designs have evolved in response to program demands to be small, low-powered units, radiation tolerant enough to be suitable for both Earth-orbit microsats and for planetary instruments. Present designs already include MIL-STD-1750 and Multi-Chip Module (MCM) technology with near-term plans to include RISC processors and higher-density MCM's. Long term plans include development of whole-core processors on one or two MCM's.

  10. NASA Lewis Research Center's Program on Icing Research

    NASA Technical Reports Server (NTRS)

    Reinmann, J. J.; Shaw, R. J.; Olsen, W. A., Jr.

    1982-01-01

    The helicopter and general aviation, light transport, and commercial transport aircraft share common icing requirements: highly effective, lightweight, low power consuming deicing systems, and detailed knowledge of the aeropenalties due to ice on aircraft surfaces. To meet current and future needs, NASA has a broadbased icing research program which covers both research and engineering applications, and is well coordinated with the FAA, DOD, universities, industry, and some foreign governments. Research activity in ice protection systems, icing instrumentation, experimental methods, analytical modeling, and in-flight research are described.

  11. Performance of a Borehole X-ray Fluorescence Spectrometer for Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Kelliher, Warren C.; Carlberg, Ingrid A.; Elam, W. T.; Willard-Schmoe, Ella

    2008-01-01

    We have designed and constructed a borehole X-ray Fluorescence Spectrometer (XRFS) as part of the Mars Subsurface Access program [1]. It can be used to determine the composition of the Mars regolith at various depths by insertion into a pre-drilled borehole. The primary requirements and performance metrics for the instrument are to obtain parts-per-million (ppm) lower limits of detection over a wide range of elements in the periodic table (Magnesium to Lead). Power consumption during data collection was also measured. The prototype instrument is complete and preliminary testing has been performed. Terrestrial soil Standard Reference Materials were used as the test samples. Detection limits were about 10 weight ppm for most elements, with light elements being higher, up to 1.4 weight percent for magnesium. Power consumption (excluding ground support components) was 12 watts.

  12. Learning Team Breach of a Posted Barricade to Connect an Instrument to Power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilburn, Dianne Williams

    On February 15, 2017, a DESHF-STO HPFC (health physics field coordinator) was asked by an NEN-1 employee if they could move an instrument, a radiation dosimetry system, from A166A to another lab at TA-35 Building 2. The HPFC walked the job down and discovered the instrument was connected to power. The instrument had not been connected to power previously. See photo 1. The instrument is located within an RCA (radiological control area). Entry to connect the instrument to power the instrument requires contacting RP. RP personnel had not been contacted as required as stated in the RCA posting.

  13. Cyber security evaluation of II&C technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Ken

    The Light Water Reactor Sustainability (LWRS) Program is a research and development program sponsored by the Department of Energy, which is conducted in close collaboration with industry to provide the technical foundations for licensing and managing the long-term, safe and economical operation of current nuclear power plants The LWRS Program serves to help the US nuclear industry adopt new technologies and engineering solutions that facilitate the continued safe operation of the plants and extension of the current operating licenses. Within the LWRS Program, the Advanced Instrumentation, Information, and Control (II&C) Systems Technologies Pathway conducts targeted research and development (R&D) tomore » address aging and reliability concerns with the legacy instrumentation and control and related information systems of the U.S. operating light water reactor (LWR) fleet. The II&C Pathway is conducted by Idaho National Laboratory (INL). Cyber security is a common concern among nuclear utilities and other nuclear industry stakeholders regarding the digital technologies that are being developed under this program. This concern extends to the point of calling into question whether these types of technologies could ever be deployed in nuclear plants given the possibility that the information in them can be compromised and the technologies themselves can potentially be exploited to serve as attack vectors for adversaries. To this end, a cyber security evaluation has been conducted of these technologies to determine whether they constitute a threat beyond what the nuclear plants already manage within their regulatory-required cyber security programs. Specifically, the evaluation is based on NEI 08-09, which is the industry’s template for cyber security programs and evaluations, accepted by the Nuclear Regulatory Commission (NRC) as responsive to the requirements of the nuclear power plant cyber security regulation found in 10 CFR 73.54. The evaluation was conducted by a cyber security team with expertise in nuclear utility cyber security programs and experience in conducting these evaluations. The evaluation has determined that, for the most part, cyber security will not be a limiting factor in the application of these technologies to nuclear power plant applications.« less

  14. 78 FR 59769 - Agency Information Collection (Veterans Benefits Administration (VBA) Voice of the Veteran (VOV...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-27

    ... and Employment (VR&E) Service Surveys J.D. Power will be fielding three survey instruments for the Vocational Rehabilitation and Employment (VR&E) Service line of business. Based on the numerous interviews... reasons why they chose not to continue with the benefit application process or the VR&E program. The...

  15. Fundamental Physics Program and the NASA Mission

    NASA Technical Reports Server (NTRS)

    Trinh, Eugene

    2003-01-01

    The accomplishments of Physics, the increasing power of its instruments, and its expanding reach into other sciences have generated an unprecedented set of scientific opportunities. The committee has identified six such Grand Challenges listed below in no particular order: Developing quantum technologies. Creating new materials. Understanding complex systems. Unifying the forces of Nature. Exploring the universe Applying Physics to Biology.

  16. Instrumentation for laser physics and spectroscopy using 32-bit microcontrollers with an Android tablet interface

    NASA Astrophysics Data System (ADS)

    Eyler, E. E.

    2013-10-01

    Several high-performance lab instruments suitable for manual assembly have been developed using low-pin-count 32-bit microcontrollers that communicate with an Android tablet via a USB interface. A single Android tablet app accommodates multiple interface needs by uploading parameter lists and graphical data from the microcontrollers, which are themselves programmed with easily modified C code. The hardware design of the instruments emphasizes low chip counts and is highly modular, relying on small "daughter boards" for special functions such as USB power management, waveform generation, and phase-sensitive signal detection. In one example, a daughter board provides a complete waveform generator and direct digital synthesizer that fits on a 1.5 in. × 0.8 in. circuit card.

  17. Subject to empowerment: the constitution of power in an educational program for health professionals.

    PubMed

    Juritzen, Truls I; Engebretsen, Eivind; Heggen, Kristin

    2013-08-01

    Empowerment and user participation represents an ideal of power with a strong position in the health sector. In this article we use text analysis to investigate notions of power in a program plan for health workers focusing on empowerment. Issues addressed include: How are relationships of power between users and helpers described in the program plan? Which notions of user participation are embedded in the plan? The analysis is based on Foucault's idea that power which is made subject to attempts of redistribution will re-emerge in other forms. How this happens, and with what consequences, is our analytical concern. The analysis is contrasted with 'snapshots' from everyday life in a nursing home. The program plan communicates empowerment as a democracy-building instrument that the users need. It is a tool for providing expert assistance to the user's self-help. User participation is made into a tool which is external to the user him-/herself. Furthermore, the analysis shows that the plan's image of empowerment presupposes an 'élite user' able to articulate personal needs and desires. This is not very applicable to the most vulnerable user groups, who thereby may end up in an even weaker position. By way of conclusion, we argue that an exchange of undesirable dominating paternalism for a desirable empowerment will not abolish power, but may result in more covert and subtle forms of power that are less open to criticism. The paper offers insights that will facilitate reflections on the premises for practising empowerment-oriented health care.

  18. Power calculator for instrumental variable analysis in pharmacoepidemiology

    PubMed Central

    Walker, Venexia M; Davies, Neil M; Windmeijer, Frank; Burgess, Stephen; Martin, Richard M

    2017-01-01

    Abstract Background Instrumental variable analysis, for example with physicians’ prescribing preferences as an instrument for medications issued in primary care, is an increasingly popular method in the field of pharmacoepidemiology. Existing power calculators for studies using instrumental variable analysis, such as Mendelian randomization power calculators, do not allow for the structure of research questions in this field. This is because the analysis in pharmacoepidemiology will typically have stronger instruments and detect larger causal effects than in other fields. Consequently, there is a need for dedicated power calculators for pharmacoepidemiological research. Methods and Results The formula for calculating the power of a study using instrumental variable analysis in the context of pharmacoepidemiology is derived before being validated by a simulation study. The formula is applicable for studies using a single binary instrument to analyse the causal effect of a binary exposure on a continuous outcome. An online calculator, as well as packages in both R and Stata, are provided for the implementation of the formula by others. Conclusions The statistical power of instrumental variable analysis in pharmacoepidemiological studies to detect a clinically meaningful treatment effect is an important consideration. Research questions in this field have distinct structures that must be accounted for when calculating power. The formula presented differs from existing instrumental variable power formulae due to its parametrization, which is designed specifically for ease of use by pharmacoepidemiologists. PMID:28575313

  19. Programmable Multiple-Ramped-Voltage Power Supply

    NASA Technical Reports Server (NTRS)

    Ajello, Joseph M.; Howell, S. K.

    1993-01-01

    Ramp waveforms range up to 2,000 V. Laboratory high-voltage power-supply system puts out variety of stable voltages programmed to remain fixed with respect to ground or float with respect to ramp waveform. Measures voltages it produces with high resolution; automatically calibrates, zeroes, and configures itself; and produces variety of input/output signals for use with other instruments. Developed for use with ultraviolet spectrometer. Also applicable to control of electron guns in general and to operation of such diverse equipment used in measuring scattering cross sections of subatomic particles and in industrial electron-beam welders.

  20. Scientific Research Program for Power, Energy, and Thermal Technologies. Task Order 0001: Energy, Power, and Thermal Technologies and Processes Experimental Research. Subtask: Thermal Management of Electromechanical Actuation System for Aircraft Primary Flight Control Surfaces

    DTIC Science & Technology

    2014-05-01

    utilizing buoyancy differences in vapor and liquid phases to pump the heat transfer fluid between the evaporator and condenser. In this particular...Virtual Instrumentation Engineering Workbench LHP Loop Heat Pipe LVDT Linear Voltage Displacement Transducer MACE Micro -technologies for Air...Bland 1992). This type of duty cycle lends itself to thermal energy storage, which when coupled with an effective heat transfer mechanism can

  1. 78 FR 55118 - Seismic Instrumentation for Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-09

    ... NUCLEAR REGULATORY COMMISSION [NRC-2013-0202] Seismic Instrumentation for Nuclear Power Plants... Reports for Nuclear Power Plants: LWR Edition,'' Section 3.7.4, ``Seismic Instrumentation.'' DATES: Submit... Nuclear Power Plants: LWR Edition'' (SRP, from the current Revision 2 to a new Revision 3). The proposed...

  2. A Study on Performance and Safety Tests of Electrosurgical Equipment.

    PubMed

    Tavakoli Golpaygani, A; Movahedi, M M; Reza, M

    2016-09-01

    Modern medicine employs a wide variety of instruments with different physiological effects and measurements. Periodic verifications are routinely used in legal metrology for industrial measuring instruments. The correct operation of electrosurgical generators is essential to ensure patient's safety and management of the risks associated with the use of high and low frequency electrical currents on human body. The metrological reliability of 20 electrosurgical equipment in six hospitals (3 private and 3 public) was evaluated in one of the provinces of Iran according to international and national standards. The achieved results show that HF leakage current of ground-referenced generators are more than isolated generators and the power analysis of only eight units delivered acceptable output values and the precision in the output power measurements was low. Results indicate a need for new and severe regulations on periodic performance verifications and medical equipment quality control program especially in high risk instruments. It is also necessary to provide training courses for operating staff in the field of meterology in medicine to be acquianted with critical parameters to get accuracy results with operation room equipment.

  3. Overview of space power electronic's technology under the CSTI High Capacity Power Program

    NASA Technical Reports Server (NTRS)

    Schwarze, Gene E.

    1994-01-01

    The Civilian Space Technology Initiative (CSTI) is a NASA Program targeted at the development of specific technologies in the areas of transportation, operations and science. Each of these three areas consists of major elements and one of the operation's elements is the High Capacity Power element. The goal of this element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA initiatives. The High Capacity Power element is broken down into several subelements that includes energy conversion in the areas of the free piston Stirling power converter and thermoelectrics, thermal management, power management, system diagnostics, and environmental compatibility and system's lifetime. A recent overview of the CSTI High capacity Power element and a description of each of the program's subelements is given by Winter (1989). The goals of the Power Management subelement are twofold. The first is to develop, test, and demonstrate high temperature, radiation-resistant power and control components and circuits that will be needed in the Power Conditioning, Control and Transmission (PCCT) subsystem of a space nuclear power system. The results obtained under this goal will also be applicable to the instrumentation and control subsystem of a space nuclear reactor. These components and circuits must perform reliably for lifetimes of 7-10 years. The second goal is to develop analytical models for use in computer simulations of candidate PCCT subsystems. Circuits which will be required for a specific PCCT subsystem will be designed and built to demonstrate their performance and, also, to validate the analytical models and simulations. The tasks under the Power Management subelement will now be described in terms of objectives, approach and present status of work.

  4. The orbital debris detector consortium: Suppliers of instruments for in-situ measurements of small-particles in the space environment

    NASA Technical Reports Server (NTRS)

    Simon, C. G.; Muenzenmeyer, R.; Tanner, W. G., Jr.; Uy, O. M.; Skrivanek, R. A.; Tuzzolino, A. J.; Maag, C.; Wortman, J. J.

    1995-01-01

    Industry and university participants have joined together to form the IMPA:Ct consortium (In-situ Monitors of the Particulate Ambient: Circumterrestrial) which offers a broad range of flight qualified instruments for monitoring the small particle (0.1 micron to 10 cm) environment in space. Instruments are available in 12 months or less at costs ranging from 0.5 to 1.5 million dollars (US) for the total program. Detector technologies represented by these groups are: impact-induced capacitor-discharge (MOS, metal-oxide-silicon), cratering or penetration of electroactive thin film (polyvinylidene fluoride (PVDF)), impact-plasma detection, acoustic detection, CCD tracking of optical scatter of sunlight, and photodiode detection of optical scatter of laser light. The operational characteristics, general spacecraft interface and resource requirements (mass/power/telemetry), cost and delivery schedules, and points of contact for seven different instruments are presented.

  5. Design of Instrument Control Software for Solar Vector Magnetograph at Udaipur Solar Observatory

    NASA Astrophysics Data System (ADS)

    Gosain, Sanjay; Venkatakrishnan, P.; Venugopalan, K.

    2004-04-01

    A magnetograph is an instrument which makes measurement of solar magnetic field by measuring Zeeman induced polarization in solar spectral lines. In a typical filter based magnetograph there are three main modules namely, polarimeter, narrow-band spectrometer (filter), and imager(CCD camera). For a successful operation of magnetograph it is essential that these modules work in synchronization with each other. Here, we describe the design of instrument control system implemented for the Solar Vector Magnetograph under development at Udaipur Solar Observatory. The control software is written in Visual Basic and exploits the Component Object Model (COM) components for a fast and flexible application development. The user can interact with the instrument modules through a Graphical User Interface (GUI) and can program the sequence of magnetograph operations. The integration of Interactive Data Language (IDL) ActiveX components in the interface provides a powerful tool for online visualization, analysis and processing of images.

  6. A Quantitative Evaluation of Dissolved Oxygen Instrumentation

    NASA Technical Reports Server (NTRS)

    Pijanowski, Barbara S.

    1971-01-01

    The implications of the presence of dissolved oxygen in water are discussed in terms of its deleterious or beneficial effects, depending on the functional consequences to those affected, e.g., the industrialist, the oceanographer, and the ecologist. The paper is devoted primarily to an examination of the performance of five commercially available dissolved oxygen meters. The design of each is briefly reviewed and ease or difficulty of use in the field described. Specifically, the evaluation program treated a number of parameters and user considerations including an initial check and trial calibration for each instrument and a discussion of the measurement methodology employed. Detailed test results are given relating to the effects of primary power variation, water-flow sensitivity, response time, relative accuracy of dissolved-oxygen readout, temperature accuracy (for those instruments which included this feature), error and repeatability, stability, pressure and other environmental effects, and test results obtained in the field. Overall instrument performance is summarized comparatively by chart.

  7. Exploratory studies of the cruise performance of upper surface blown configurations. Experimental program: Test facilities, model design instrumentation, and lowspeed, high-lift tests

    NASA Technical Reports Server (NTRS)

    Braden, J. A.; Hancock, J. P.; Burdges, K. P.; Hackett, J. E.

    1980-01-01

    The model hardware, test facilities and instrumentation utilized in an experimental study of upper surface blown configurations at cruise is described. The high speed (subsonic) experimental work, studying the aerodynamic effects of wing nacelle geometric variations, was conducted around semispan model configurations composed of diversified, interchangeable components. Power simulation was provided by high pressure air ducted through closed forebody nacelles. Nozzle geometry was varied across size, exit aspect ratio, exit position and boattail angle. Three dimensional force and two dimensional pressure measurements were obtained at cruise Mach numbers from 0.5 to 0.8 and at nozzle pressure ratios up to about 3.0. The experimental investigation was supported by an analytical synthesis of the system using a vortex lattice representation with first order power effects. Results are also presented from a compatibility study in which a short haul transport is designed on the basis of the aerodynamic findings in the experimental study as well as acoustical data obtained in a concurrent program. High lift test data are used to substantiate the projected performance of the selected transport design.

  8. Simulating Descent and Landing of a Spacecraft

    NASA Technical Reports Server (NTRS)

    Balaram, J.; Jain, Abhinandan; Martin, Bryan; Lim, Christopher; Henriquez, David; McMahon, Elihu; Sohl, Garrett; Banerjee, Pranab; Steele, Robert; Bentley, Timothy

    2005-01-01

    The Dynamics Simulator for Entry, Descent, and Surface landing (DSENDS) software performs high-fidelity simulation of the Entry, Descent, and Landing (EDL) of a spacecraft into the atmosphere and onto the surface of a planet or a smaller body. DSENDS is an extension of the DShell and DARTS programs, which afford capabilities for mathematical modeling of the dynamics of a spacecraft as a whole and of its instruments, actuators, and other subsystems. DSENDS enables the modeling (including real-time simulation) of flight-train elements and all spacecraft responses during various phases of EDL. DSENDS provides high-fidelity models of the aerodynamics of entry bodies and parachutes plus supporting models of atmospheres. Terrain and real-time responses of terrain-imaging radar and lidar instruments can also be modeled. The program includes modules for simulation of guidance, navigation, hypersonic steering, and powered descent. Automated state-machine-driven model switching is used to represent spacecraft separations and reconfigurations. Models for computing landing contact and impact forces are expected to be added. DSENDS can be used as a stand-alone program or incorporated into a larger program that simulates operations in real time.

  9. Dual-Shaft Electric Propulsion (DSEP) Technology Development Program

    NASA Astrophysics Data System (ADS)

    1992-08-01

    The background, progress, and current state of the DOE-sponsored Advanced Dual-Shaft Electric Propulsion Technology Development are presented. Three electric-drive vehicles were build as conversions of a commercial gasoline-powered van, using program-designed components and systems as required. The vehicles were tested primarily on dynamometer or test tract. Component and system testing represented a major portion of the development effort. Test data are summarized in this report, and an Appendix contains the final component design specifications. This major programmatic concerns were the traction battery, the battery management system, the dc-to-ac inverter, the drive motor, the transaxle and its ancillary equipment, and the vehicle controller. Additional effort was devoted to vehicle-related equipment: gear selector, power steering, power brakes, accelerator, dashboard instrumentation, and heater. Design, development, and test activities are reported for each of these items, together with an appraisal (lessons learned) and recommendations for possible further work. Other programmatic results include a Cost and Commercialization Analysis, a Reliability and Hazards Analysis Study, Technical Recommendations for Next-Generation Development, and an assessment of overall program efforts.

  10. Uninterruptible power systems and other power protection equipment for electronic health care systems.

    PubMed

    Massey, J K

    1979-01-01

    The increasing usage of electronic instruments in health care systems invariably leads to some level of dependence on them. In order to maximize the utility of these tools a high degree of reliability is essential. Many of the failures being experienced in systems where electronic instruments are being utilized may be attributed not to a failure of the instrument itself but rather to the poor quality of the commercial power to which they are attached. In order to reduce the effects of power fluctuations and outages, some type of power protection equipment must be installed between the commercial power system and the instrument. This article discusses the types of "electronic noise" present on commercial power lines and the various types of equipment used to reduce its effect on electronic instrumentation. In general, the Uninterruptible Power System (UPS) is shown to be the most effective power buffering element for a health care environment. General terminology associated with specifications of a UPS is defined in the article and attached appendix.

  11. Untying Our Hands: Reconsidering Cyber as a Separate Instrument of National Power

    DTIC Science & Technology

    2017-04-21

    to the level of an instrument of national power operating alongside the military, diplomatic, economic , and informational instruments of national...Reveron (Washington DC: Georgetown University Press, 2012), 178-182. 26 informational, military, and economic capabilities (also known by its...outcome.”41 Writing over seventy years ago, E. H. Carr provided a useful deconstruction of political power into military power, economic power, and

  12. Trace Gas Retrievals from the GeoTASO Aircraft Instrument

    NASA Astrophysics Data System (ADS)

    Nowlan, C. R.; Liu, X.; Leitch, J. W.; Liu, C.; Gonzalez Abad, G.; Chance, K.; Cole, J.; Delker, T.; Good, W. S.; Murcray, F.; Ruppert, L.; Soo, D.; Loughner, C.; Follette-Cook, M. B.; Janz, S. J.; Kowalewski, M. G.; Pickering, K. E.; Zoogman, P.; Al-Saadi, J. A.

    2015-12-01

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) instrument is a passive remote sensing instrument capable of making 2-D measurements of trace gases and aerosols from aircraft. The instrument measures backscattered UV and visible radiation, allowing the retrieval of trace gas amounts below the aircraft at horizontal resolutions on the order of 250 m x 250 m. GeoTASO was originally developed under NASA's Instrument Incubator Program as a test-bed instrument for the Geostationary Coastal and Air Pollution Events (GEO-CAPE) decadal survey mission, and is now also part of risk reduction for the upcoming Tropospheric Emissions: Monitoring of Pollution (TEMPO) and Geostationary Environment Monitoring Spectrometer (GEMS) geostationary satellite missions. We present spatially resolved observations of ozone, nitrogen dioxide, formaldehyde and sulfur dioxide over urban areas and power plants from flights during the DISCOVER-AQ field campaigns in Texas and Colorado, as well as comparisons with observations made by ground-based Pandora spectrometers, in situ monitoring instruments and other aircraft instruments deployed during these campaigns. These measurements at various times of day are providing a very useful data set for testing and improving TEMPO and GEMS retrieval algorithms, as well as demonstrating prototype validation strategies.

  13. Instrument Packages for the Cold, Dark, High Radiation Environments

    NASA Technical Reports Server (NTRS)

    Clark, P. E.; Millar, P. S.; Yeh, P. S.; Beamna, B.; Brigham, D.; Feng, S.

    2011-01-01

    We are developing a small cold temperature instrument package concept that integrates a cold temperature power system and radhard ultra low temperature ultra low power electronics components and power supplies now under development into a cold temperature surface operational version of a planetary surface instrument package. We are already in the process of developing a lower power lower tem-perature version for an instrument of mutual interest to SMD and ESMD to support the search for volatiles (the mass spectrometer VAPoR, Volatile Analysis by Pyrolysis of Regolith) both as a stand alone instrument and as part of an environmental monitoring package.

  14. A compact Dopplergraph/magnetograph suitable for space-based measurements of solar oscillations and magnetic fields

    NASA Technical Reports Server (NTRS)

    Rhodes, E. J., Jr.; Cacciani, A.; Tomczyk, S.; Ulrich, R. K.; Blamont, J.; Howard, R. F.; Dumont, P.; Smith, E. J.

    1984-01-01

    A compact Dopplergraph/magnetograph placed in a continuous solar-viewing orbit will allow us to make major advancements in our understanding of solar internal structure and dynamics. An international program is currently being conducted at JPL and Mt. Wilson to develop such an instrument. By combining a unique magneto-optical resonance filter with CID and CCD cameras we have been able to obtain full- and partial-disk Dopplergrams and magnetograms. Time series of the velocity images are converted into k-omega power spectra which show clear- the solar nonradial p-mode oscilations. Magnetograms suitable for studying the long-term evolution of solar active regions have also been obtained with this instrument. A flight instrument based on this concept is being studied for possible inclusion in the SOHO mission.

  15. Surveying the earth from 20,000 miles

    USGS Publications Warehouse

    Colvocoresses, A.P.

    1970-01-01

    Current space programs aimed at monitoring the earth's resources concentrate on the lower orbital altitudes of 100 to 500 nautical miles. An earth synchronous (geo-stationary) orbit is 19,400 n. mi. above the earth. A powerful telephoto camera at such a location can monitor and record many time-variant phenomena far more effectively than instruments at lower altitudes. The geo-stationary systems characteristics and problem areas related to optics and telemetry are outlined and detailed, and on-going programs are discussed as they relate to the geo-stationary system.

  16. Measurement of cognitive performance in computer programming concept acquisition: interactive effects of visual metaphors and the cognitive style construct.

    PubMed

    McKay, E

    2000-01-01

    An innovative research program was devised to investigate the interactive effect of instructional strategies enhanced with text-plus-textual metaphors or text-plus-graphical metaphors, and cognitive style on the acquisition of programming concepts. The Cognitive Styles Analysis (CSA) program (Riding,1991) was used to establish the participants' cognitive style. The QUEST Interactive Test Analysis System (Adams and Khoo,1996) provided the cognitive performance measuring tool, which ensured an absence of error measurement in the programming knowledge testing instruments. Therefore, reliability of the instrumentation was assured through the calibration techniques utilized by the QUEST estimate; providing predictability of the research design. A means analysis of the QUEST data, using the Cohen (1977) approach to size effect and statistical power further quantified the significance of the findings. The experimental methodology adopted for this research links the disciplines of instructional science, cognitive psychology, and objective measurement to provide reliable mechanisms for beneficial use in the evaluation of cognitive performance by the education, training and development sectors. Furthermore, the research outcomes will be of interest to educators, cognitive psychologists, communications engineers, and computer scientists specializing in computer-human interactions.

  17. Instrument Remote Control via the Astronomical Instrument Markup Language

    NASA Technical Reports Server (NTRS)

    Sall, Ken; Ames, Troy; Warsaw, Craig; Koons, Lisa; Shafer, Richard

    1998-01-01

    The Instrument Remote Control (IRC) project ongoing at NASA's Goddard Space Flight Center's (GSFC) Information Systems Center (ISC) supports NASA's mission by defining an adaptive intranet-based framework that provides robust interactive and distributed control and monitoring of remote instruments. An astronomical IRC architecture that combines the platform-independent processing capabilities of Java with the power of Extensible Markup Language (XML) to express hierarchical data in an equally platform-independent, as well as human readable manner, has been developed. This architecture is implemented using a variety of XML support tools and Application Programming Interfaces (API) written in Java. IRC will enable trusted astronomers from around the world to easily access infrared instruments (e.g., telescopes, cameras, and spectrometers) located in remote, inhospitable environments, such as the South Pole, a high Chilean mountaintop, or an airborne observatory aboard a Boeing 747. Using IRC's frameworks, an astronomer or other scientist can easily define the type of onboard instrument, control the instrument remotely, and return monitoring data all through the intranet. The Astronomical Instrument Markup Language (AIML) is the first implementation of the more general Instrument Markup Language (IML). The key aspects of our approach to instrument description and control applies to many domains, from medical instruments to machine assembly lines. The concepts behind AIML apply equally well to the description and control of instruments in general. IRC enables us to apply our techniques to several instruments, preferably from different observatories.

  18. Saturn Apollo Program

    NASA Image and Video Library

    1967-03-01

    The Saturn V configuration is shown in inches and meters as illustrated by the Boeing Company. The Saturn V vehicle consisted of three stages: the S-IC (first) stage powered by five F-1 engines, the S-II (second) stage powered by five J-2 engines, the S-IVB (third) stage powered by one J-2 engine. A top for the first three stages was designed to contain the instrument unit, the guidance system, the Apollo spacecraft, and the escape system. The Apollo spacecraft consisted of the lunar module, the service module, and the command module. The Saturn V was designed perform lunar and planetary missions and it was capable of placing 280,000 pounds into Earth orbit.

  19. The 1984 solar oscillation program of the Mt. Wilson 60-foot tower

    NASA Technical Reports Server (NTRS)

    Rhodes, Edward J., Jr.; Cacciani, Alessandro; Tomczyk, Steven; Ulrich, Roger K.

    1986-01-01

    The instrumentation, data, and preliminary results from the summer, 1984, solar oscillation observing program which was carried out using the 60-foot tower telescope of the Mt. Wilson Observatory are described. This program was carried out with a dedicated solar oscillation observing system and obtained full-disk Dopplergrams every 40 seconds for up to 11 hours per day. Between June and September, 1984, observations were obtained with a Na magneto-optical filter on 90 different days. The data analysis has progressed to the point that spherical harmonic filter functions were employed to generate a few one-dimensional power spectra from a single day's observations.

  20. The 1984 solar oscillation program of the Mount Wilson 60-foot tower

    NASA Technical Reports Server (NTRS)

    Rhodes, E. J., Jr.; Cacciani, A.; Tomczyk, S.; Ulrich, R. K.

    1985-01-01

    The instrumentation, data, and preliminary results from the summer, 1984, solar oscillation observing program which was carried out using the 60-foot tower telescope of the Mt. Wilson Observatory are described. This program was carried out with a dedicated solar oscillation observing system and obtained full-disk Dopplergrams every 40 seconds for up to 11 hours per day. Between June and September, 1984, observations were obtained with a Na magneto-optical filter on 90 different days. The data analysis has progressed to the point that spherical harmonic filter functions were employed to generate a few one-dimensional power spectra from a single day's observations.

  1. On Shaft Data Acquisition System (OSDAS)

    NASA Technical Reports Server (NTRS)

    Pedings, Marc; DeHart, Shawn; Formby, Jason; Naumann, Charles

    2012-01-01

    On Shaft Data Acquisition System (OSDAS) is a rugged, compact, multiple-channel data acquisition computer system that is designed to record data from instrumentation while operating under extreme rotational centrifugal or gravitational acceleration forces. This system, which was developed for the Heritage Fuel Air Turbine Test (HFATT) program, addresses the problem of recording multiple channels of high-sample-rate data on most any rotating test article by mounting the entire acquisition computer onboard with the turbine test article. With the limited availability of slip ring wires for power and communication, OSDAS utilizes its own resources to provide independent power and amplification for each instrument. Since OSDAS utilizes standard PC technology as well as shared code interfaces with the next-generation, real-time health monitoring system (SPARTAA Scalable Parallel Architecture for Real Time Analysis and Acquisition), this system could be expanded beyond its current capabilities, such as providing advanced health monitoring capabilities for the test article. High-conductor-count slip rings are expensive to purchase and maintain, yet only provide a limited number of conductors for routing instrumentation off the article and to a stationary data acquisition system. In addition to being limited to a small number of instruments, slip rings are prone to wear quickly, and introduce noise and other undesirable characteristics to the signal data. This led to the development of a system capable of recording high-density instrumentation, at high sample rates, on the test article itself, all while under extreme rotational stress. OSDAS is a fully functional PC-based system with 48 channels of 24-bit, high-sample-rate input channels, phase synchronized, with an onboard storage capacity of over 1/2-terabyte of solid-state storage. This recording system takes a novel approach to the problem of recording multiple channels of instrumentation, integrated with the test article itself, packaged in a compact/rugged form factor, consuming limited power, all while rotating at high turbine speeds.

  2. Intergovernmental Advanced Stationary PEM Fuel Cell System Demonstration Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rich Chartrand

    A program to complete the design, construction and demonstration of a PEMFC system fuelled by Ethanol, LPG or NG for telecom applications was initiated in October 2007. Early in the program the economics for Ethanol were shown to be unfeasible and permission was given by DOE to focus on LPG only. The design and construction of a prototype unit was completed in Jun 2009 using commercially available PEM FC stack from Ballard Power Systems. During the course of testing, the high pressure drop of the stack was shown to be problematic in terms of control and stability of the reformer.more » Also, due to the power requirements for air compression the overall efficiency of the system was shown to be lower than a similar system using internally developed low pressure drop FC stack. In Q3 2009, the decision was made to change to the Plug power stack and a second prototype was built and tested. Overall net efficiency was shown to be 31.5% at 3 kW output. Total output of the system is 6 kW. Using the new stack hardware, material cost reduction of 63% was achieved over the previous Alpha design. During a November 2009 review meeting Plug Power proposed and was granted permission, to demonstrate the new, commercial version of Plug Power's telecom system at CERL. As this product was also being tested as part of a DOE Topic 7A program, this part of the program was transferred to the Topic 7A program. In Q32008, the scope of work of this program was expanded to include a National Grid demonstration project of a micro-CHP system using hightemperature PEM technology. The Gensys Blue system was cleared for unattended operation, grid connection, and power generation in Aug 2009 at Union College in NY state. The system continues to operate providing power and heat to Beuth House. The system is being continually evaluated and improvements to hardware and controls will be implemented as more is learned about the system's operation. The program is instrumental in improving the efficiency and reducing costs of PEMFC based power systems using LPG fuel and continues to makes steps towards meeting DOE's targets. Plug Power would like to thank DOE for their support of this program.« less

  3. Military helicopter cockpit modernization

    NASA Astrophysics Data System (ADS)

    Hall, Andrew S.

    2001-09-01

    This paper describes some of the initiatives being progressed by Smiths Aerospace to enhance the operational effectiveness of military helicopters, with particular emphasis on the GWHL Lynx and EH Industries EH101 programs. The areas discussed include engine instrumentation, flight instrumentation and the mission system displays. Various Crew Stations are described which provide a suite of AMLCD displays which: -Integrate information from the aircraft engine, electrical power and hydraulic systems onto 5ATI displays -Integrate primary flight, navigation and mission system sensor information onto large area (61/4' square or 6' by 8') displays -Provide standby attitude and air data information in the event of major system failure on 3ATI displays.

  4. 14 CFR Appendix G to Part 141 - Flight Instructor Instrument (For an Airplane, Helicopter, or Powered-Lift Instrument Instructor...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight Instructor Instrument (For an...—Flight Instructor Instrument (For an Airplane, Helicopter, or Powered-Lift Instrument Instructor Rating... curriculum for a flight instructor instrument certification course required under this part, for the...

  5. 14 CFR Appendix G to Part 141 - Flight Instructor Instrument (For an Airplane, Helicopter, or Powered-Lift Instrument Instructor...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight Instructor Instrument (For an...—Flight Instructor Instrument (For an Airplane, Helicopter, or Powered-Lift Instrument Instructor Rating... curriculum for a flight instructor instrument certification course required under this part, for the...

  6. 14 CFR Appendix G to Part 141 - Flight Instructor Instrument (For an Airplane, Helicopter, or Powered-Lift Instrument Instructor...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight Instructor Instrument (For an...—Flight Instructor Instrument (For an Airplane, Helicopter, or Powered-Lift Instrument Instructor Rating... curriculum for a flight instructor instrument certification course required under this part, for the...

  7. 14 CFR Appendix G to Part 141 - Flight Instructor Instrument (For an Airplane, Helicopter, or Powered-Lift Instrument Instructor...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight Instructor Instrument (For an...—Flight Instructor Instrument (For an Airplane, Helicopter, or Powered-Lift Instrument Instructor Rating... curriculum for a flight instructor instrument certification course required under this part, for the...

  8. 14 CFR Appendix G to Part 141 - Flight Instructor Instrument (For an Airplane, Helicopter, or Powered-Lift Instrument Instructor...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight Instructor Instrument (For an...—Flight Instructor Instrument (For an Airplane, Helicopter, or Powered-Lift Instrument Instructor Rating... curriculum for a flight instructor instrument certification course required under this part, for the...

  9. EnLightenment: High resolution smartphone microscopy as an educational and public engagement platform.

    PubMed

    Wicks, Laura C; Cairns, Gemma S; Melnyk, Jacob; Bryce, Scott; Duncan, Rory R; Dalgarno, Paul A

    2017-01-01

    We developed a simple, cost-effective smartphone microscopy platform for use in educational and public engagement programs. We demonstrated its effectiveness, and potential for citizen science through a national imaging initiative, EnLightenment . The cost effectiveness of the instrument allowed for the program to deliver over 500 microscopes to more than 100 secondary schools throughout Scotland, targeting 1000's of 12-14 year olds. Through careful, quantified, selection of a high power, low-cost objective lens, our smartphone microscope has an imaging resolution of microns, with a working distance of 3 mm. It is therefore capable of imaging single cells and sub-cellular features, and retains usability for young children. The microscopes were designed in kit form and provided an interdisciplinary educational tool. By providing full lesson plans and support material, we developed a framework to explore optical design, microscope performance, engineering challenges on construction and real-world applications in life sciences, biological imaging, marine biology, art, and technology. A national online imaging competition framed EnLightenment ; with over 500 high quality images submitted of diverse content, spanning multiple disciplines. With examples of cellular and sub-cellular features clearly identifiable in some submissions, we show how young public can use these instruments for research-level imaging applications, and the potential of the instrument for citizen science programs.

  10. The Lebanese Armed Forces Engaging Nahr Al-Bared Palestinian Refugee Camp Using the Instruments of National Power

    DTIC Science & Technology

    2017-06-09

    organization. Then, the study analyses the use of the Diplomatic, Informational, Military, and Economic instruments of national power (DIME) by the LAF in...Then, the study analyses the use of the Diplomatic, Informational, Military, and Economic instruments of national power (DIME) by the LAF in...56 Economic Element of National Power

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carpenter, J.M.

    This paper reviews the early history of pulsed spallation neutron source development at Argonne and provides an overview of existing sources world wide. A number of proposals for machines more powerful than currently exist are under development, which are briefly described. The author reviews the status of the Intense Pulsed Neutron Source, its instrumentation, and its user program, and provides a few examples of applications in fundamental condensed matter physics, materials science and technology.

  12. One-man, self-contained CO2 concentrating system

    NASA Technical Reports Server (NTRS)

    Wynveen, R. A.; Schubert, F. H.; Powell, J. D.

    1972-01-01

    A program to design, fabricate, and test a 1-man, self-contained, electrochemical CO2 concentrating system is described. The system was designed with electronic controls and instrumentation to regulate performance, to analyze and display performance trends, and to detect and isolate faults. Ground support accessories were included to provide power, fluids, and a Parametric Data Display allowing real time indication of operating status in engineering units.

  13. Operating manual for the R200 downhole recorder with husky hunter retriever

    USGS Publications Warehouse

    Johnson, Roy A.; Rorabaugh, James I.

    1988-01-01

    The R200 Downhole Recorder is a battery-powered device that, when placed in a well casing, monitors water levels for a period of up to 1 year. This instrument measures a 1- to 70-foot range of water levels. These water-level data can be retrieved through use of a commercially available portable microcomputer. The R200 Downhole Recorder was developed at the U.S. Geological Survey 's Hydrologic Instrumentation Facility, Stennis Space Center, Mississippi. This operating manual describes the R200 Downhole Recorder, provides initial set-up instructions, and gives directions for on-site operation. Design specifications and routine maintenance steps are included. The R200 data-retriever program is a user-friendly, menu-driven program. The manual guides the user through the procedures required to perform specific operations. Numerous screens are reproduced in the text with a discussion of user input for desired responses. Help is provided for specific problems. (USGS)

  14. Operating manual for the R200 downhole recorder with Tandy 102 retriever

    USGS Publications Warehouse

    Johnson, Roy A.; Rorabaugh, James I.

    1988-01-01

    The R200 Downhole Recorder is a battery-powered device that, when placed in a well casing, monitors water levels for a period of up to 1 year. This instrument measures a 1- to 70-ft range of water levels. These water level data can be retrieved through use of a commercially available portable microcomputer. The R200 Downhole Recorder was developed at the U. S. Geological Survey 's Hydrologic Instrumentation Facility, Stennis Space Center, Mississippi. This operating manual describes the R200 Downhole Recorder, provides initial set-up instructions, and gives directions for on-site operation. Design specifications and routine maintenance steps are included. The R200 data-retriever program is a user-friendly, menu-driven program. The manual guides the user through the procedures required to perform specific operations. Numerous screens are reproduced in the text with a discussion of user input for desired responses. Help is provided for specific problems. (USGS)

  15. Saturn Apollo Program

    NASA Image and Video Library

    1971-01-01

    This is a good cutaway diagram of the Saturn V launch vehicle showing the three stages, the instrument unit, and the Apollo spacecraft. The chart on the right presents the basic technical data in clear metric detail. The Saturn V is the largest and most powerful launch vehicle in the United States. The towering, 111 meter, Saturn V was a multistage, multiengine launch vehicle standing taller than the Statue of Liberty. Altogether, the Saturn V engines produced as much power as 85 Hoover Dams. Development of the Saturn V was the responsibility of the Marshall Space Flight Center at Huntsville, Alabama, directed by Dr. Wernher von Braun.

  16. Design and Build of Reactor Simulator for Fission Surface Power Technology Demonstrator Unit

    NASA Technical Reports Server (NTRS)

    Godfroy, Thomas; Dickens, Ricky; Houts, Michael; Pearson, Boise; Webster, Kenny; Gibson, Marc; Qualls, Lou; Poston, Dave; Werner, Jim; Radel, Ross

    2011-01-01

    The Nuclear Systems Team at NASA Marshall Space Flight Center (MSFC) focuses on technology development for state of the art capability in non-nuclear testing of nuclear system and Space Nuclear Power for fission reactor systems for lunar and Mars surface power generation as well as radioisotope power systems for both spacecraft and surface applications. Currently being designed and developed is a reactor simulator (RxSim) for incorporation into the Technology Demonstrator Unit (TDU) for the Fission Surface Power System (FSPS) Program, which is supported by multiple national laboratories and NASA centers. The ultimate purpose of the RxSim is to provide heated NaK to a pair of Stirling engines in the TDU. The RxSim includes many different systems, components, and instrumentation that have been developed at MSFC while working with pumped NaK systems and in partnership with the national laboratories and NASA centers. The main components of the RxSim are a core, a pump, a heat exchanger (to mimic the thermal load of the Stirling engines), and a flow meter for tests at MSFC. When tested at NASA Glenn Research Center (GRC) the heat exchanger will be replaced with a Stirling power conversion engine. Additional components include storage reservoirs, expansion volumes, overflow catch tanks, safety and support hardware, instrumentation (temperature, pressure, flow) for data collection, and power supplies. This paper will discuss the design and current build status of the RxSim for delivery to GRC in early 2012.

  17. The Assessment of Expressive and Instrumental Power Value Orientations in Sport and in Everyday Life.

    ERIC Educational Resources Information Center

    Bredemeier, B. J.

    A typical assumption has been that women and men possess distinct power orientations: women have expressive characteristics, such as interdependence and cooperativeness, while men have instrumental characteristics, such as self reliance and competitiveness. An inventory assessing expressive and instrumental power orientations (PVO's) was developed…

  18. 77 FR 58419 - Guidelines for Preparing and Reviewing Licensing Applications for Instrumentation and Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-20

    ... Applications for Instrumentation and Control Upgrades for Non-Power Reactors AGENCY: Nuclear Regulatory...-Power Reactors: Format and Content,'' for instrumentation and control upgrades and NUREG-1537, Part 2, ``Guidelines for Preparing and Reviewing Applications for the Licensing of Non-Power Reactors: Standard Review...

  19. Improved Nuclear Reactor and Shield Mass Model for Space Applications

    NASA Technical Reports Server (NTRS)

    Robb, Kevin

    2004-01-01

    New technologies are being developed to explore the distant reaches of the solar system. Beyond Mars, solar energy is inadequate to power advanced scientific instruments. One technology that can meet the energy requirements is the space nuclear reactor. The nuclear reactor is used as a heat source for which a heat-to-electricity conversion system is needed. Examples of such conversion systems are the Brayton, Rankine, and Stirling cycles. Since launch cost is proportional to the amount of mass to lift, mass is always a concern in designing spacecraft. Estimations of system masses are an important part in determining the feasibility of a design. I worked under Michael Barrett in the Thermal Energy Conversion Branch of the Power & Electric Propulsion Division. An in-house Closed Cycle Engine Program (CCEP) is used for the design and performance analysis of closed-Brayton-cycle energy conversion systems for space applications. This program also calculates the system mass including the heat source. CCEP uses the subroutine RSMASS, which has been updated to RSMASS-D, to estimate the mass of the reactor. RSMASS was developed in 1986 at Sandia National Laboratories to quickly estimate the mass of multi-megawatt nuclear reactors for space applications. In response to an emphasis for lower power reactors, RSMASS-D was developed in 1997 and is based off of the SP-100 liquid metal cooled reactor. The subroutine calculates the mass of reactor components such as the safety systems, instrumentation and control, radiation shield, structure, reflector, and core. The major improvements in RSMASS-D are that it uses higher fidelity calculations, is easier to use, and automatically optimizes the systems mass. RSMASS-D is accurate within 15% of actual data while RSMASS is only accurate within 50%. My goal this summer was to learn FORTRAN 77 programming language and update the CCEP program with the RSMASS-D model.

  20. ExoMars Mission 2016, Orbiter Module Power System Architecture (Based On An Unregulated Bus & MPPT Controlled Step-Down Voltage Regulators)

    NASA Astrophysics Data System (ADS)

    Digoin, JJ.; Boutelet, E.

    2011-10-01

    The main objective of the ExoMars program is to demonstrate key flight in situ enabling technologies in support of the European ambitions for future exploration missions and to pursue fundamental scientific investigations. Two missions are foreseen within the ExoMars program for the 2016 and 2018 launch opportunities to Mars. The 2016 mission is an ESA led mission that will supply a Mars Orbiter Module (OM) carrying an Entry Descent module (EDM) and NASA/ESA scientific instruments. The 2018 mission is a NASA led mission bringing one ESA rover and one NASA rover onto the Mars surface. This paper presents the OM Electrical Power Sub- system (EPS) design achieved at the end of pre- development phase. The main aspects addressed are: - EPS major constraints due to mission and environment, a succinct description of the power units, - Trade-off analyses results leading to the selected EPS architecture, - Preliminary results of electrical and energy simulations, - EPS units development plan.

  1. NASA Planetary Science Division's Instrument Development Programs, PICASSO and MatISSE

    NASA Technical Reports Server (NTRS)

    Gaier, James R.

    2016-01-01

    The Planetary Science Division (PSD) has combined several legacy instrument development programs into just two. The Planetary Instrument Concepts Advancing Solar System Observations (PICASSO) program funds the development of low TRL instruments and components. The Maturation of Instruments for Solar System Observations (MatISSE) program funds the development of instruments in the mid-TRL range. The strategy of PSD instrument development is to develop instruments from PICASSO to MatISSE to proposing for mission development.

  2. Eddy Covariance Measurements of Methane Flux at Remote Sites with New Low-Power Lightweight Fast Gas Analyzer

    NASA Astrophysics Data System (ADS)

    Xu, Liukang; Burba, George; Schedlbauer, Jessica; Zona, Donatella; McDermitt, Dayle K.; Anderson, Tyler; Oberbauer, Steven; Oechel, Walter; Komissarov, Anatoly; Riensche, Brad

    2010-05-01

    Majority of natural methane production happens at remote unpopulated areas in ecosystems with little or no infrastructure or easily available grid power, such as arctic and boreal wetlands, tropical mangroves, etc. Present approaches for direct measurements of CH4 fluxes rely on fast closed-path analyzers, which have to work under significantly reduced pressures, and require powerful pumps and grid power. Power and labor demands may be reasons why CH4 flux is often measured at locations with good infrastructure and grid power, and not with high CH4 production. An instrument was developed to allow Eddy Covariance measurements of CH4 flux with power consumption 30-150 times below presently available technologies. This instrument, LI-7700, uses <10W of power, and can easily be run on solar panel, or with small portable generator, while present technologies require 300-1500 Watts of the grid power. The proposed extremely low-power technology would allows placing methane Eddy Covariance stations in the middle of the source (wetland, rice paddy, forest, etc.) in the absence of the grid power. This could significantly expand the Eddy Covariance CH4 flux measurements coverage, and possibly, significantly improve the budget estimates of world CH4 emissions and budget. Various prototypes of the LI-7700 were field-tested for three seasons at the remote site in middle of Everglades National Park (Florida, USA) using solar panels, at three stationary and several mobile sites during three seasons at remote Arctic wetlands near Barrow (Alaska, USA), in the tropical mangroves near La Paz (Mexico) using portable generator, and in bare agricultural field near Mead (Nebraska, USA) during 2005 through 2010. Latest data on CH4 concentration, co-spectra and fluxes, and latest details of instrumental design are examined in this presentation. Overall, hourly methane fluxes ranged from near-zero at night to about 4 mg m-2 h-1 in midday in arctic tundra. Observed fluxes were within the ranges reported in the literature for a number of wetlands in North America, including the Everglades wetlands. Diurnal patterns were similar to those measured by closed-path sensors. The LI-7700 open-path analyzer is a valuable tool for measuring long-term eddy fluxes of methane due to the good frequency response and undisturbed in-situ sampling. It enables long-term deployment of permanent, portable or mobile CH4 flux stations at remote locations with high CH4 production, because it can be powered by a solar panels or a small generator. Authors appreciate help and support provided by the LI-COR Engineering Team, Barrow Arctic Science Consortium (BASC), and numerous colleagues involved in measurements, logistics, and maintenance of the experimental field sites. This project was supported by the Small Business Innovation Research (SBIR) and Small Business Technology Transfer Program (STTR) program of the Department of Energy (DOE), Grant Number DE-FG02-05ER84283.

  3. A Study on Performance and Safety Tests of Electrosurgical Equipment

    PubMed Central

    Tavakoli Golpaygani, A.; Movahedi, M.M.; Reza, M.

    2016-01-01

    Introduction: Modern medicine employs a wide variety of instruments with different physiological effects and measurements. Periodic verifications are routinely used in legal metrology for industrial measuring instruments. The correct operation of electrosurgical generators is essential to ensure patient’s safety and management of the risks associated with the use of high and low frequency electrical currents on human body. Material and Methods: The metrological reliability of 20 electrosurgical equipment in six hospitals (3 private and 3 public) was evaluated in one of the provinces of Iran according to international and national standards. Results: The achieved results show that HF leakage current of ground-referenced generators are more than isolated generators and the power analysis of only eight units delivered acceptable output values and the precision in the output power measurements was low. Conclusion: Results indicate a need for new and severe regulations on periodic performance verifications and medical equipment quality control program especially in high risk instruments. It is also necessary to provide training courses for operating staff in the field of meterology in medicine to be acquianted with critical parameters to get accuracy results with operation room equipment. PMID:27853725

  4. Conceptual design of the X-IFU Instrument Control Unit on board the ESA Athena mission

    NASA Astrophysics Data System (ADS)

    Corcione, L.; Ligori, S.; Capobianco, V.; Bonino, D.; Valenziano, L.; Guizzo, G. P.

    2016-07-01

    Athena is one of L-class missions selected in the ESA Cosmic Vision 2015-2025 program for the science theme of the Hot and Energetic Universe. The Athena model payload includes the X-ray Integral Field Unit (X-IFU), an advanced actively shielded X-ray microcalorimeter spectrometer for high spectral resolution imaging, utilizing cooled Transition Edge Sensors. This paper describes the preliminary architecture of Instrument Control Unit (ICU), which is aimed at operating all XIFU's subsystems, as well as at implementing the main functional interfaces of the instrument with the S/C control unit. The ICU functions include the TC/TM management with S/C, science data formatting and transmission to S/C Mass Memory, housekeeping data handling, time distribution for synchronous operations and the management of the X-IFU components (i.e. CryoCoolers, Filter Wheel, Detector Readout Electronics Event Processor, Power Distribution Unit). ICU functions baseline implementation for the phase-A study foresees the usage of standard and Space-qualified components from the heritage of past and current space missions (e.g. Gaia, Euclid), which currently encompasses Leon2/Leon3 based CPU board and standard Space-qualified interfaces for the exchange commands and data between ICU and X-IFU subsystems. Alternative architecture, arranged around a powerful PowerPC-based CPU, is also briefly presented, with the aim of endowing the system with enhanced hardware resources and processing power capability, for the handling of control and science data processing tasks not defined yet at this stage of the mission study.

  5. Gas hydrate environmental monitoring program in the Ulleung Basin, East Sea of Korea

    NASA Astrophysics Data System (ADS)

    Ryu, Byong-Jae; Chun, Jong-Hwa; McLean, Scott

    2013-04-01

    As a part of the Korean National Gas Hydrate Program, the Korea Institute of Geoscience and Mineral Resources (KIGAM) has been planned and conducted the environmental monitoring program for the gas hydrate production test in the Ulleung Basin, East Sea of Korea in 2014. This program includes a baseline survey using a KIGAM Seafloor Observation System (KISOS) and R/V TAMHAE II of KIGAM, development of a KIGAM Seafloor Monitoring System (KIMOS), and seafloor monitoring on various potential hazards associated with the dissociated gas from gas hydrates during the production test. The KIGAM also plans to conduct the geophysical survey for determining the change of gas hydrate reservoirs and production-efficiency around the production well before and after the production test. During production test, release of gas dissociated from the gas hydrate to the water column, seafloor deformation, changes in chemical characteristics of bottom water, changes in seafloor turbidity, etc. will be monitored by using the various monitoring instruments. The KIMOS consists of a near-field observation array and a far-field array. The near-field array is constructed with four remote sensor platforms each, and cabled to the primary node. The far-field sensor array will consists of four autonomous instrument pods. A scientific Remotely Operated Vehicle (ROV) will be used to deploy the sensor arrays, and to connect the cables to each field instrument package and a primary node. A ROV will also be tasked to collect the water and/or gas samples, and to identify any gas (bubble) plumes from the seafloor using a high-frequency sector scanning sonar. Power to the near-field instrument packages will be supplied by battery units located on the seafloor near the primary node. Data obtained from the instruments on the near-field array will be logged and downloaded in-situ at the primary node, and transmitted real-time to the support vessel using a ROV. These data will also be transmitted real-time to the drilling vessel via satellite.

  6. Wilberforce Power Technology in Education Program

    NASA Technical Reports Server (NTRS)

    Gordon, Edward M.; Buffinger, D. R.; Hehemann, D. G.; Breen, M. L.; Raffaelle, R. P.

    1999-01-01

    The Wilberforce Power Technology in Education Program is a multipart program. Three key parts of this program will be described. They are: (1) WISE-The Wilberforce Summer Intensive Experience. This annual offering is an educational program which is designed to provide both background reinforcement and a focus on study skills to give the participants a boost in their academic performance throughout their academic careers. It is offered to entering Wilberforce students. Those students who take advantage of WISE learn to improve important skills which enable them to work at higher levels in mathematics, science and engineering courses throughout their college careers, but most notably in the first year of college study. (2) Apply technology to reaming. This is being done in several ways including creating an electronic chemistry text with hypertext links to a glossary to help the students deal with the large new vocabulary required to describe and understand chemistry. It is also being done by converting lecture materials for the Biochemistry class to PowerPoint format. Technology is also being applied to learning by exploring simulation software of scientific instrumentation. (3) Wilberforce participation in collaborative research with NASA's John H. Glenn Research Center at Lewis Field. This research has focused on two areas in the past year. The first of these is the deposition of solar cell materials. A second area involves the development of polymeric materials for incorporation into thin film batteries.

  7. The SpaceCube Family of Hybrid On-Board Science Data Processors: An Update

    NASA Astrophysics Data System (ADS)

    Flatley, T.

    2012-12-01

    SpaceCube is an FPGA based on-board hybrid science data processing system developed at the NASA Goddard Space Flight Center (GSFC). The goal of the SpaceCube program is to provide 10x to 100x improvements in on-board computing power while lowering relative power consumption and cost. The SpaceCube design strategy incorporates commercial rad-tolerant FPGA technology and couples it with an upset mitigation software architecture to provide "order of magnitude" improvements in computing power over traditional rad-hard flight systems. Many of the missions proposed in the Earth Science Decadal Survey (ESDS) will require "next generation" on-board processing capabilities to meet their specified mission goals. Advanced laser altimeter, radar, lidar and hyper-spectral instruments are proposed for at least ten of the ESDS missions, and all of these instrument systems will require advanced on-board processing capabilities to facilitate the timely conversion of Earth Science data into Earth Science information. Both an "order of magnitude" increase in processing power and the ability to "reconfigure on the fly" are required to implement algorithms that detect and react to events, to produce data products on-board for applications such as direct downlink, quick look, and "first responder" real-time awareness, to enable "sensor web" multi-platform collaboration, and to perform on-board "lossless" data reduction by migrating typical ground-based processing functions on-board, thus reducing on-board storage and downlink requirements. This presentation will highlight a number of SpaceCube technology developments to date and describe current and future efforts, including the collaboration with the U.S. Department of Defense - Space Test Program (DoD/STP) on the STP-H4 ISS experiment pallet (launch June 2013) that will demonstrate SpaceCube 2.0 technology on-orbit.; ;

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korsah, K.; Ewing, P.D.; Kercel, S.

    This paper presents results to date of an NRC-sponsored confirmatory research program initiated at three national laboratories to address environmental compatibility/qualification concerns associated with the use of microprocessor-based safety-related instrumentation and control (I and C) systems in nuclear power plants. The research approach involved evaluating existing military and industrial guidance, identifying the most significant environmental stressors and, for advanced I and C systems in a nuclear power plant, investigating the likely failure modes--both at the integrated circuit and system level--for digital technologies under varying levels of environmental stress (such as smoke exposure and electromagnetic and radio-frequency interference). The insights gainedmore » from these studies are being used to recommend appropriate methods for qualifying safety-related digital equipment in nuclear power plants.« less

  9. Characterization of particulate matter and gaseous emissions of a C-130H aircraft.

    PubMed

    Corporan, Edwin; Quick, Adam; DeWitt, Matthew J

    2008-04-01

    The gaseous and nonvolatile particulate matter (PM) emissions of two T56-A-15 turboprop engines of a C-130H aircraft stationed at the 123rd Airlift Wing in the Kentucky Air National Guard were characterized. The emissions campaign supports the Strategic Environmental Research and Development Program (SERDP) project WP-1401 to determine emissions factors from military aircraft. The purpose of the project is to develop a comprehensive emissions measurement program using both conventional and advanced techniques to determine emissions factors of pollutants, and to investigate the spatial and temporal evolutions of the exhaust plumes from fixed and rotating wing military aircraft. Standard practices for the measurement of gaseous emissions from aircraft have been well established; however, there is no certified methodology for the measurement of aircraft PM emissions. In this study, several conventional instruments were used to physically characterize and quantify the PM emissions from the two turboprop engines. Emissions samples were extracted from the engine exit plane and transported to the analytical instrumentation via heated lines. Multiple sampling probes were used to assess the spatial variation and obtain a representative average of the engine emissions. Particle concentrations, size distributions, and mass emissions were measured using commercially available aerosol instruments. Engine smoke numbers were determined using established Society of Automotive Engineers (SAE) practices, and gaseous species were quantified via a Fourier-transform infrared-based gas analyzer. The engines were tested at five power settings, from idle to take-off power, to cover a wide range of operating conditions. Average corrected particle numbers (PNs) of (6.4-14.3) x 10(7) particles per cm3 and PN emission indices (EI) from 3.5 x 10(15) to 10.0 x 10(15) particles per kg-fuel were observed. The highest PN EI were observed for the idle power conditions. The mean particle diameter varied between 50 nm at idle to 70 nm at maximum engine power. PM mass EI ranged from 1.6 to 3.5 g/kg-fuel for the conditions tested, which are in agreement with previous T56 engine measurements using other techniques. Additional PM data, smoke numbers, and gaseous emissions will be presented and discussed.

  10. The predictive power of SIMION/SDS simulation software for modeling ion mobility spectrometry instruments

    NASA Astrophysics Data System (ADS)

    Lai, Hanh; McJunkin, Timothy R.; Miller, Carla J.; Scott, Jill R.; Almirall, José R.

    2008-09-01

    The combined use of SIMION 7.0 and the statistical diffusion simulation (SDS) user program in conjunction with SolidWorks® with COSMSOSFloWorks® fluid dynamics software to model a complete, commercial ion mobility spectrometer (IMS) was demonstrated for the first time and compared to experimental results for tests using compounds of immediate interest in the security industry (e.g., 2,4,6-trinitrotoluene, 2,7-dinitrofluorene, and cocaine). The effort of this research was to evaluate the predictive power of SIMION/SDS for application to IMS instruments. The simulation was evaluated against experimental results in three studies: (1) a drift:carrier gas flow rates study assesses the ability of SIMION/SDS to correctly predict the ion drift times; (2) a drift gas composition study evaluates the accuracy in predicting the resolution; (3) a gate width study compares the simulated peak shape and peak intensity with the experimental values. SIMION/SDS successfully predicted the correct drift time, intensity, and resolution trends for the operating parameters studied. Despite the need for estimations and assumptions in the construction of the simulated instrument, SIMION/SDS was able to predict the resolution between two ion species in air within 3% accuracy. The preliminary success of IMS simulations using SIMION/SDS software holds great promise for the design of future instruments with enhanced performance.

  11. The Predictive Power of SIMION/SDS Simulation Software for Modeling Ion Mobility Spectrometry Instruments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanh Lai; Timothy R. McJunkin; Carla J. Miller

    2008-09-01

    The combined use of SIMION 7.0 and the statistical diffusion simulation (SDS) user program in conjunction with SolidWorks® with COSMSOFloWorks® fluid dynamics software to model a complete, commercial ion mobility spectrometer (IMS) was demonstrated for the first time and compared to experimental results for tests using compounds of immediate interest in the security industry (e.g., 2,4,6-trinitrotoluene and cocaine). The effort of this research was to evaluate the predictive power of SIMION/SDS for application to IMS instruments. The simulation was evaluated against experimental results in three studies: 1) a drift:carrier gas flow rates study assesses the ability of SIMION/SDS to correctlymore » predict the ion drift times; 2) a drift gas composition study evaluates the accuracy in predicting the resolution; and 3) a gate width study compares the simulated peak shape and peak intensity with the experimental values. SIMION/SDS successfully predicted the correct drift time, intensity, and resolution trends for the operating parameters studied. Despite the need for estimations and assumptions in the construction of the simulated instrument, SIMION/SDS was able to predict the resolution between two ion species in air within 3% accuracy. The preliminary success of IMS simulations using SIMION/SDS software holds great promise for the design of future instruments with enhanced performance.« less

  12. Instrumentino: An Open-Source Software for Scientific Instruments.

    PubMed

    Koenka, Israel Joel; Sáiz, Jorge; Hauser, Peter C

    2015-01-01

    Scientists often need to build dedicated computer-controlled experimental systems. For this purpose, it is becoming common to employ open-source microcontroller platforms, such as the Arduino. These boards and associated integrated software development environments provide affordable yet powerful solutions for the implementation of hardware control of transducers and acquisition of signals from detectors and sensors. It is, however, a challenge to write programs that allow interactive use of such arrangements from a personal computer. This task is particularly complex if some of the included hardware components are connected directly to the computer and not via the microcontroller. A graphical user interface framework, Instrumentino, was therefore developed to allow the creation of control programs for complex systems with minimal programming effort. By writing a single code file, a powerful custom user interface is generated, which enables the automatic running of elaborate operation sequences and observation of acquired experimental data in real time. The framework, which is written in Python, allows extension by users, and is made available as an open source project.

  13. Prowess - A Software Model for the Ooty Wide Field Array

    NASA Astrophysics Data System (ADS)

    Marthi, Visweshwar Ram

    2017-03-01

    One of the scientific objectives of the Ooty Wide Field Array (OWFA) is to observe the redshifted H i emission from z ˜ 3.35. Although predictions spell out optimistic outcomes in reasonable integration times, these studies were based purely on analytical assumptions, without accounting for limiting systematics. A software model for OWFA has been developed with a view to understanding the instrument-induced systematics, by describing a complete software model for the instrument. This model has been implemented through a suite of programs, together called Prowess, which has been conceived with the dual role of an emulator as well as observatory data analysis software. The programming philosophy followed in building Prowess enables a general user to define an own set of functions and add new functionality. This paper describes a co-ordinate system suitable for OWFA in which the baselines are defined. The foregrounds are simulated from their angular power spectra. The visibilities are then computed from the foregrounds. These visibilities are then used for further processing, such as calibration and power spectrum estimation. The package allows for rich visualization features in multiple output formats in an interactive fashion, giving the user an intuitive feel for the data. Prowess has been extensively used for numerical predictions of the foregrounds for the OWFA H i experiment.

  14. The Breakthrough Listen Initiative and the Future of the Search for Intelligent Life

    NASA Astrophysics Data System (ADS)

    Enriquez, J. Emilio; Siemion, Andrew; Croft, Steve; Hellbourg, Greg; Lebofsky, Matt; MacMahon, David; Price, Danny; DeBoer, David; Werthimer, Dan

    2017-05-01

    Unprecedented recent results in the fields of exoplanets and astrobiology have dramatically increased the interest in the potential existence of intelligent life elsewhere in the galaxy. Additionally, the capabilities of modern Searches for Extraterrestrial Intelligence (SETI) have increased tremendously. Much of this improvement is due to the ongoing development of wide bandwidth radio instruments and the Moore's Law increase in computing power over the previous decades. Together, these instrumentation improvements allow for narrow band signal searches of billions of frequency channels at once.The Breakthrough Listen Initiative (BL) was launched on July 20, 2015 at the Royal Society in London, UK with the goal to conduct the most comprehensive and sensitive search for advanced life in humanity's history. Here we detail important milestones achieved during the first year and a half of the program. We describe the key BL SETI surveys and briefly describe current facilities, including the Green Bank Telescope, the Automated Planet Finder and the Parkes Observatory. We also mention the ongoing and potential collaborations focused on complementary sciences, these include pulse searches of pulsars and FRBs, as well as astrophysically powered radio emission from stars targeted by our program.We conclude with a brief view towards future SETI searches with upcoming next-generation radio facilities such as SKA and ngVLA.

  15. Computer sciences

    NASA Technical Reports Server (NTRS)

    Smith, Paul H.

    1988-01-01

    The Computer Science Program provides advanced concepts, techniques, system architectures, algorithms, and software for both space and aeronautics information sciences and computer systems. The overall goal is to provide the technical foundation within NASA for the advancement of computing technology in aerospace applications. The research program is improving the state of knowledge of fundamental aerospace computing principles and advancing computing technology in space applications such as software engineering and information extraction from data collected by scientific instruments in space. The program includes the development of special algorithms and techniques to exploit the computing power provided by high performance parallel processors and special purpose architectures. Research is being conducted in the fundamentals of data base logic and improvement techniques for producing reliable computing systems.

  16. Marshall Space Flight Center Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    Six, N. F.; Damiani, R. (Compiler)

    2017-01-01

    The 2017 Marshall Faculty Fellowship Program involved 21 faculty in the laboratories and departments at Marshall Space Flight Center. These faculty engineers and scientists worked with NASA collaborators on NASA projects, bringing new perspectives and solutions to bear. This Technical Memorandum is a compilation of the research reports of the 2017 Marshall Faculty Fellowship program, along with the Program Announcement (Appendix A) and the Program Description (Appendix B). The research affected the following six areas: (1) Materials (2) Propulsion (3) Instrumentation (4) Spacecraft systems (5) Vehicle systems (6) Space science The materials investigations included composite structures, printing electronic circuits, degradation of materials by energetic particles, friction stir welding, Martian and Lunar regolith for in-situ construction, and polymers for additive manufacturing. Propulsion studies were completed on electric sails and low-power arcjets for use with green propellants. Instrumentation research involved heat pipes, neutrino detectors, and remote sensing. Spacecraft systems research was conducted on wireless technologies, layered pressure vessels, and two-phase flow. Vehicle systems studies were performed on life support-biofilm buildup and landing systems. In the space science area, the excitation of electromagnetic ion-cyclotron waves observed by the Magnetospheric Multiscale Mission provided insight regarding the propagation of these waves. Our goal is to continue the Marshall Faculty Fellowship Program funded by Center internal project offices. Faculty Fellows in this 2017 program represented the following minority-serving institutions: Alabama A&M University and Oglala Lakota College.

  17. Evaluating the effect placement capacitor and distributed photovoltaic generation for power system losses minimization in radial distribution system

    NASA Astrophysics Data System (ADS)

    Rahman, Yuli Asmi; Manjang, Salama; Yusran, Ilham, Amil Ahmad

    2018-03-01

    Power loss minimization have many advantagess to the distribution system radial among others reduction of power flow in feeder lines, freeing stress on feeder loading, deterrence of power procurement from the grid and also the cost of loss compensating instruments. This paper, presents capacitor and photovoltaic (PV) placement as alternative means to decrease power system losses. The paper aims to evaluate the best alternative for decreasing power system losses and improving voltage profile in the radial distribution system. To achieve the objectives of paper, they are used three cases tested by Electric Transient and Analysis Program (ETAP) simulation. Firstly, it performs simulation of placement capacitor. Secondly, simulated placement of PV. Lastly, it runs simulation of placement capacitor and PV simultaneously. The simulations were validated using the IEEE 34-bus test system. As a result, they proved that the installation of capacitor and PV integration simultaneously leading to voltage profile correction and power losses minimization significantly.

  18. A new instrument for measuring atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Jacobs, Danny C.; Edwards, Brett; Stelly, Zak; Gorgievska, Ivana; Westpfahl, David J.; Klinglesmith, Daniel A., III; Creech-Eakman, Michelle J.

    2004-10-01

    The Magdalena Ridge Observatory is a congressionally funded project to deliver a state-of-the-art observatory on the Magdalena Ridge in New Mexico to provide astronomical research, educational and outreach programs to the state. In this paper we report results from one of our undergraduate projects being run at New Mexico Tech. This project focuses on the design and characterization of a novel instrument for sensing the atmospheric flow instabilities related to seeing at the observatory site. The instrument attempts to find the power of turbulence on millisecond time scales by measuring a voltage difference between two active microphones. The principles behind the instrument are explored here and a description of the limitations of the current experimental implementation is given. Initial results from the experiment are presented and compared with simultaneous measurements from a co-located Differential Image Motion Monitor. The instrument is shown to be a valuable and robust tool for monitoring the atmospheric conditions during site testing campaigns, but further data will be needed to confirm the precise nature of the correlation between measurements made with this system and more conventional seeing metrics.

  19. 18 CFR 367.1750 - Account 175, Derivative instrument assets.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Account 175, Derivative instrument assets. 367.1750 Section 367.1750 Conservation of Power and Water Resources FEDERAL ENERGY... instrument assets. This account must include the amounts paid for derivative instruments, and the change in...

  20. 18 CFR 367.1750 - Account 175, Derivative instrument assets.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Account 175, Derivative instrument assets. 367.1750 Section 367.1750 Conservation of Power and Water Resources FEDERAL ENERGY... instrument assets. This account must include the amounts paid for derivative instruments, and the change in...

  1. 21 CFR 886.1425 - Lens measuring instrument.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Lens measuring instrument. 886.1425 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1425 Lens measuring instrument. (a) Identification. A lens measuring instrument is an AC-powered device intended to measure the power of lenses...

  2. Dustbuster: a New Generation Impact-ionization Time-of-flight Mass Spectrometer for in situ Analysis of Cosmic Dust

    NASA Astrophysics Data System (ADS)

    Austin, D. E.; Ahrens, T. J.; Beauchamp, J. L.

    2000-10-01

    We have developed and tested a small impact-ionization time-of-flight mass spectrometer for analysis of cosmic dust, suitable for use on deep space missions. This mass spectrometer, named Dustbuster, incorporates a large target area and a reflectron, simultaneously optimizing mass resolution, sensitivity, and collection efficiency. Dust particles hitting the 65-cm2 target plate are partially ionized. The resulting ions are accelerated through a modified reflectron that focuses the ions in space and time to produce high-resolution spectra. The instrument, shown below, measures 10 x 10 x 20 cm, has a mass of 500 g, and consumes little power. Laser desorption ionization of metal and mineral samples (embedded in the impact plate) simulates particle impacts for instrument performance tests. Mass resolution in these experiments is near 200, permitting resolution of isotopes. The mass spectrometer can be combined with other instrument components to determine dust particle trajectories and sizes. This project was funded by NASA's Planetary Instrument Definition and Development Program.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melin, Alexander M.; Kisner, Roger A.; Drira, Anis

    Embedded instrumentation and control systems that can operate in extreme environments are challenging due to restrictions on sensors and materials. As a part of the Department of Energy's Nuclear Energy Enabling Technology cross-cutting technology development programs Advanced Sensors and Instrumentation topic, this report details the design of a bench-scale embedded instrumentation and control testbed. The design goal of the bench-scale testbed is to build a re-configurable system that can rapidly deploy and test advanced control algorithms in a hardware in the loop setup. The bench-scale testbed will be designed as a fluid pump analog that uses active magnetic bearings tomore » support the shaft. The testbed represents an application that would improve the efficiency and performance of high temperature (700 C) pumps for liquid salt reactors that operate in an extreme environment and provide many engineering challenges that can be overcome with embedded instrumentation and control. This report will give details of the mechanical design, electromagnetic design, geometry optimization, power electronics design, and initial control system design.« less

  4. Motofit - integrating neutron reflectometry acquisition, reduction and analysis into one, easy to use, package

    NASA Astrophysics Data System (ADS)

    Nelson, Andrew

    2010-11-01

    The efficient use of complex neutron scattering instruments is often hindered by the complex nature of their operating software. This complexity exists at each experimental step: data acquisition, reduction and analysis, with each step being as important as the previous. For example, whilst command line interfaces are powerful at automated acquisition they often reduce accessibility by novice users and sometimes reduce the efficiency for advanced users. One solution to this is the development of a graphical user interface which allows the user to operate the instrument by a simple and intuitive "push button" approach. This approach was taken by the Motofit software package for analysis of multiple contrast reflectometry data. Here we describe the extension of this package to cover the data acquisition and reduction steps for the Platypus time-of-flight neutron reflectometer. Consequently, the complete operation of an instrument is integrated into a single, easy to use, program, leading to efficient instrument usage.

  5. Earth Viewing Applications Laboratory (EVAL). Instrument catalog

    NASA Technical Reports Server (NTRS)

    1976-01-01

    There were 87 instruments described that are used in earth observation, with an additional 51 instruments containing references to programs and their major functions. These instruments were selected from such sources as: (1) earth observation flight program, (2) operational satellite improvement programs, (3) advanced application flight experiment program, (4) shuttle experiment definition program, and (5) earth observation aircraft program.

  6. Phase A conceptual design study of the Atmospheric, Magnetospheric and Plasmas in Space (AMPS) payload

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The 12 month Phase A Conceptual Design Study of the Atmospheric, Magnetospheric and Plasmas in Space (AMPS) payload performed within the Program Development Directorate of the Marshall Space Flight Center is presented. The AMPS payload makes use of the Spacelab pressurized module and pallet, is launched by the space shuttle, and will have initial flight durations of 7 days. Scientific instruments including particle accelerators, high power transmitters, optical instruments, and chemical release devices are mounted externally on the Spacelab pallet and are controlled by the experimenters from within the pressurized module. The capability of real-time scientist interaction on-orbit with the experiment is a major characteristic of AMPS.

  7. The Spatial Power Motivation Scale: a semi-implicit measure of situational power motivation.

    PubMed

    Schoel, Christiane; Zimmer, Katharina; Stahlberg, Dagmar

    2015-01-01

    We introduce a new nonverbal and unobtrusive measure to assess power motive activation, the Spatial Power Motivation Scale (SPMS). The unique features of this instrument are that it is (a) very simple and economical, (b) reliable and valid, and (c) sensitive to situational changes. Study 1 demonstrates the instrument's convergent and discriminant validity with explicit measures. Study 2 demonstrates the instrument's responsiveness to situational power motive salience: anticipating and winning competition versus losing competition and watching television. Studies 3 and 4 demonstrate that thoughts of competition result in higher power motivation specifically for individuals with a high dispositional power motive.

  8. Power Calculations to Select Instruments for Clinical Trial Secondary Endpoints. A Case Study of Instrument Selection for Post-Traumatic Stress Symptoms in Subjects with Acute Respiratory Distress Syndrome.

    PubMed

    Sjoding, Michael W; Schoenfeld, David A; Brown, Samuel M; Hough, Catherine L; Yealy, Donald M; Moss, Marc; Angus, Derek C; Iwashyna, Theodore J

    2017-01-01

    After the sample size of a randomized clinical trial (RCT) is set by the power requirement of its primary endpoint, investigators select secondary endpoints while unable to further adjust sample size. How the sensitivity and specificity of an instrument used to measure these outcomes, together with their expected underlying event rates, affect an RCT's power to measure significant differences in these outcomes is poorly understood. Motivated by the design of an RCT of neuromuscular blockade in acute respiratory distress syndrome, we examined how power to detect a difference in secondary endpoints varies with the sensitivity and specificity of the instrument used to measure such outcomes. We derived a general formula and Stata code for calculating an RCT's power to detect differences in binary outcomes when such outcomes are measured with imperfect sensitivity and specificity. The formula informed the choice of instrument for measuring post-traumatic stress-like symptoms in the Reevaluation of Systemic Early Neuromuscular Blockade RCT ( www.clinicaltrials.gov identifier NCT02509078). On the basis of published sensitivities and specificities, the Impact of Events Scale-Revised was predicted to measure a 36% symptom rate, whereas the Post-Traumatic Stress Symptoms instrument was predicted to measure a 23% rate, if the true underlying rate of post-traumatic stress symptoms were 25%. Despite its lower sensitivity, the briefer Post-Traumatic Stress Symptoms instrument provided superior power to detect a difference in rates between trial arms, owing to its higher specificity. Examining instruments' power to detect differences in outcomes may guide their selection when multiple instruments exist, each with different sensitivities and specificities.

  9. Embedded Sensors and Controls to Improve Component Performance and Reliability -- Loop-scale Testbed Design Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melin, Alexander M.; Kisner, Roger A.

    2016-09-01

    Embedded instrumentation and control systems that can operate in extreme environments are challenging to design and operate. Extreme environments limit the options for sensors and actuators and degrade their performance. Because sensors and actuators are necessary for feedback control, these limitations mean that designing embedded instrumentation and control systems for the challenging environments of nuclear reactors requires advanced technical solutions that are not available commercially. This report details the development of testbed that will be used for cross-cutting embedded instrumentation and control research for nuclear power applications. This research is funded by the Department of Energy's Nuclear Energy Enabling Technologymore » program's Advanced Sensors and Instrumentation topic. The design goal of the loop-scale testbed is to build a low temperature pump that utilizes magnetic bearing that will be incorporated into a water loop to test control system performance and self-sensing techniques. Specifically, this testbed will be used to analyze control system performance in response to nonlinear and cross-coupling fluid effects between the shaft axes of motion, rotordynamics and gyroscopic effects, and impeller disturbances. This testbed will also be used to characterize the performance losses when using self-sensing position measurement techniques. Active magnetic bearings are a technology that can reduce failures and maintenance costs in nuclear power plants. They are particularly relevant to liquid salt reactors that operate at high temperatures (700 C). Pumps used in the extreme environment of liquid salt reactors provide many engineering challenges that can be overcome with magnetic bearings and their associated embedded instrumentation and control. This report will give details of the mechanical design and electromagnetic design of the loop-scale embedded instrumentation and control testbed.« less

  10. Solar cell power for field instrumentation at White Sands Missile range. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bond, J.W. Jr..; Reckart, D.H. Jr; Milway, W.B.

    1978-01-01

    The initial phase of an Instrumentation Development Project to explore and document what solar power can do for remote field instrumentation systems is described. The work scope consisted of selection, design, construction, test, and delivery of a solar cell power system for White Sands Missile Range. A Drone Formation Control System Interrogator was selected; a power supply was built and installed in the San Andres Mountain Range at WSMR in late August 1977.

  11. GLOBALIZATION AND THE DECLINE OF THE UNITED STATES ECONOMIC INSTRUMENT OF POWER

    DTIC Science & Technology

    2017-06-01

    GLOBALIZATION AND THE DECLINE OF THE UNITED STATES ECONOMIC INSTRUMENT OF POWER BY MAJOR JOSH WATKINS A THESIS PRESENTED TO THE...ABSTRACT In the post-Cold War era, the economic instrument of power has been one of the primary means the US uses to influence international actors...This study seeks to determine if globalization has had an impact on the US’s ability to leverage economic power in international relations, and whether

  12. Description and status of NASA-LeRC/DOE photovoltaic applications systems experiments

    NASA Technical Reports Server (NTRS)

    Ratajczak, A. F.

    1978-01-01

    In its role of supporting the DOE Photovoltaic Program, the NASA-Lewis Research Center has designed, fabricated and installed 16 geographically dispersed photovoltaic systems. These systems are powering a refrigerator, highway warning sign, forest lookout towers, remote weather stations, a water chiller at a visitor center, and insect survey traps. Each of these systems is described in terms of load requirements, solar array and battery size, and instrumentation and controls. Operational experience is described and present status is given for each system. The P/V power systems have proven to be highly reliable with almost no problems with modules and very few problems overall

  13. EnLightenment: High resolution smartphone microscopy as an educational and public engagement platform

    PubMed Central

    Wicks, Laura C.; Cairns, Gemma S.; Melnyk, Jacob; Bryce, Scott; Duncan, Rory R.; Dalgarno, Paul A.

    2018-01-01

    We developed a simple, cost-effective smartphone microscopy platform for use in educational and public engagement programs. We demonstrated its effectiveness, and potential for citizen science through a national imaging initiative, EnLightenment. The cost effectiveness of the instrument allowed for the program to deliver over 500 microscopes to more than 100 secondary schools throughout Scotland, targeting 1000’s of 12-14 year olds. Through careful, quantified, selection of a high power, low-cost objective lens, our smartphone microscope has an imaging resolution of microns, with a working distance of 3 mm. It is therefore capable of imaging single cells and sub-cellular features, and retains usability for young children. The microscopes were designed in kit form and provided an interdisciplinary educational tool. By providing full lesson plans and support material, we developed a framework to explore optical design, microscope performance, engineering challenges on construction and real-world applications in life sciences, biological imaging, marine biology, art, and technology. A national online imaging competition framed EnLightenment ; with over 500 high quality images submitted of diverse content, spanning multiple disciplines. With examples of cellular and sub-cellular features clearly identifiable in some submissions, we show how young public can use these instruments for research-level imaging applications, and the potential of the instrument for citizen science programs. PMID:29623296

  14. ORNL rod-bundle heat-transfer test data. Volume 2. Thermal-Hydraulic Test Facility experimental data report for test 3. 03. 6AR - transient film boiling in upflow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mullins, C. B.; Felde, D. K.; Sutton, A. G.

    1982-04-01

    Reduced instrument responses are presented for Thermal-Hydraulic Test Facility (THTF) Test 3.03.6AR. This test was conducted by members of the ORNL Pressurized-Water-Reactor (PWR) Blowdown Heat Transfer (BDHT) Separate-Effects Program on May 21, 1980. Objective was to investigate heat transfer phenomena believed to occur in PWRs during accidents, including small and large break loss-of-coolant accidents. Test 3.03.6AR was conducted to obtain transient film boiling data in rod bundle geometry under reactor accident-type conditions. The primary purpose of this report is to make the reduced instrument responses for THTF Test 3.03.6AR available. Included in the report are uncertainties in the instrument responses,more » calculated mass flows, and calculated rod powers.« less

  15. Technical accomplishments of the NASA Lewis Research Center, 1989

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Topics addressed include: high-temperature composite materials; structural mechanics; fatigue life prediction for composite materials; internal computational fluid mechanics; instrumentation and controls; electronics; stirling engines; aeropropulsion and space propulsion programs, including a study of slush hydrogen; space power for use in the space station, in the Mars rover, and other applications; thermal management; plasma and radiation; cryogenic fluid management in space; microgravity physics; combustion in reduced gravity; test facilities and resources.

  16. The cyclotron energization through auroral wave experiments (CENTAUR 2B)

    NASA Technical Reports Server (NTRS)

    Winningham, J. D.

    1992-01-01

    The CENTAUR 2B mission, a dual payload program, is in many aspects the same as the previous missions from Cape Perry and Norway in 1985. It was planned that these payloads would be launched from Andoya, Norway, Nov. 1989 from the Universal II launcher. The payloads are identical, but would have been launched at different azimuths as far north and as far west as possible. Particle experiments include the angular resolving energy analyzer (AREA), the fast ion mass spectrometer (FIMS), the spectrographic particle images (SPI), and finally, the differential ion flux probe (DIFP). SwRI was responsible for the scientific payload, which includes the power supplies, the power supply interfacing, the manipulating of the data from the instruments to format it for the telemetry system, all mechanical structure and restraint mechanisms, and the payload subskin. The status of the various components of this program is given.

  17. Exosat/Delta - Demonstrated short-term backup launcher capability through international cooperation

    NASA Technical Reports Server (NTRS)

    Ganoung, J. K.; Altmann, G.; Eaton, P.; Kraft, J. D.

    1983-01-01

    The instrumentation, performance parameters, Delta launch implementation, and development program of the Exosat, launched in February 1983 are described. The X ray satellite was integrated into the Delta vehicle over a three month period, and will survey mainly previously observed X ray objects by directing its detectors at them just before they are occulted by the moon. The 120 kg science package, powered by 260 W of power from solar panels, include low- and medium-energy imaging devices. The spacecraft was originally intended for Ariane launch, but scheduling conflicts, plus the need for a polar-type orbit, dictated the use of the Western Space and Missile Center. Maintenance of Delta compatibility throughout the development of the Exosat facilitated the transfer of launch vehicles, as did full existing documentation of the spacecraft and familiarity between the ESA and NASA managers of the development and launch programs, respectively.

  18. 18 CFR 12.41 - Monitoring instruments.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Monitoring instruments. 12.41 Section 12.41 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT SAFETY OF WATER POWER PROJECTS AND PROJECT WORKS...

  19. 18 CFR 12.41 - Monitoring instruments.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Monitoring instruments. 12.41 Section 12.41 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT SAFETY OF WATER POWER PROJECTS AND PROJECT WORKS...

  20. Nuclear Science Symposium, 4th, and Nuclear Power Systems Symposium, 9th, San Francisco, Calif., October 19-21, 1977, Proceedings

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Consideration is given to the following types of high energy physics instrumentation: drift chambers, multiwire proportional chambers, calorimeters, optical detectors, ionization and scintillation detectors, solid state detectors, and electronic and digital subsystems. Attention is also paid to reactor instrumentation, nuclear medicine instrumentation, data acquisition systems for nuclear instrumentation, microprocessor applications in nuclear science, environmental instrumentation, control and instrumentation of nuclear power generating stations, and radiation monitoring. Papers are also presented on instrumentation for the High Energy Astronomy Observatory.

  1. Flight Technology Improvement. [spaceborne optical radiometric instruments, attitude control, and electromechanical and power subsystems

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Shortcomings in spaceborne instrumentation technology are analyzed and recommendations are given for corrections and technology development. The technologies discussed are optical radiometric instruments and calibration, attitude control and determination, and electromechanical and power subsystems.

  2. East Meet West? U.S. and China: Strategies for Global Leadership

    DTIC Science & Technology

    2013-03-01

    construct to serve as a broader framework for this research project to describe instruments of national power in a constantly changing, resource...construct to serve as a broader framework for this research project to describe instruments of national power in a constantly changing, resource...for this research project to describe instruments of national power in a constantly changing, resource-constrained, geopolitical environment. This

  3. Power Calculations to Select Instruments for Clinical Trial Secondary Endpoints. A Case Study of Instrument Selection for Post-Traumatic Stress Symptoms in Subjects with Acute Respiratory Distress Syndrome

    PubMed Central

    Schoenfeld, David A.; Brown, Samuel M.; Hough, Catherine L.; Yealy, Donald M.; Moss, Marc; Angus, Derek C.; Iwashyna, Theodore J.

    2017-01-01

    Rationale: After the sample size of a randomized clinical trial (RCT) is set by the power requirement of its primary endpoint, investigators select secondary endpoints while unable to further adjust sample size. How the sensitivity and specificity of an instrument used to measure these outcomes, together with their expected underlying event rates, affect an RCT’s power to measure significant differences in these outcomes is poorly understood. Objectives: Motivated by the design of an RCT of neuromuscular blockade in acute respiratory distress syndrome, we examined how power to detect a difference in secondary endpoints varies with the sensitivity and specificity of the instrument used to measure such outcomes. Methods: We derived a general formula and Stata code for calculating an RCT’s power to detect differences in binary outcomes when such outcomes are measured with imperfect sensitivity and specificity. The formula informed the choice of instrument for measuring post-traumatic stress–like symptoms in the Reevaluation of Systemic Early Neuromuscular Blockade RCT (www.clinicaltrials.gov identifier NCT02509078). Measurements and Main Results: On the basis of published sensitivities and specificities, the Impact of Events Scale-Revised was predicted to measure a 36% symptom rate, whereas the Post-Traumatic Stress Symptoms instrument was predicted to measure a 23% rate, if the true underlying rate of post-traumatic stress symptoms were 25%. Despite its lower sensitivity, the briefer Post-Traumatic Stress Symptoms instrument provided superior power to detect a difference in rates between trial arms, owing to its higher specificity. Conclusions: Examining instruments’ power to detect differences in outcomes may guide their selection when multiple instruments exist, each with different sensitivities and specificities. PMID:27788018

  4. Analysis instrument test on mathematical power the material geometry of space flat side for grade 8

    NASA Astrophysics Data System (ADS)

    Kusmaryono, Imam; Suyitno, Hardi; Dwijanto, Karomah, Nur

    2017-08-01

    The main problem of research to determine the quality of test items on the material side of flat geometry to assess students' mathematical power. The method used is quantitative descriptive. The subjects were students of class 8 as many as 20 students. The object of research is the quality of test items in terms of the power of mathematics: validity, reliability, level of difficulty and power differentiator. Instrument mathematical power ratings are tested include: written tests and questionnaires about the disposition of mathematical power. Data were obtained from the field, in the form of test data on the material geometry of space flat side and questionnaires. The results of the test instrument to the reliability of the test item is influenced by many factors. Factors affecting the reliability of the instrument is the number of items, homogeneity test questions, the time required, the uniformity of conditions of the test taker, the homogeneity of the group, the variability problem, and motivation of the individual (person taking the test). Overall, the evaluation results of this study stated that the test instrument can be used as a tool to measure students' mathematical power.

  5. Nuclear Science Symposium, 23rd, Scintillation and Semiconductor Counter Symposium, 15th, and Nuclear Power Systems Symposium, 8th, New Orleans, La., October 20-22, 1976, Proceedings

    NASA Technical Reports Server (NTRS)

    Wagner, L. J.

    1977-01-01

    The volume includes papers on semiconductor radiation detectors of various types, components of radiation detection and dosimetric systems, digital and microprocessor equipment in nuclear industry and science, and a wide variety of applications of nuclear radiation detectors. Semiconductor detectors of X-rays, gamma radiation, heavy ions, neutrons, and other nuclear particles, plastic scintillator arrays, drift chambers, spark wire chambers, and radiation dosimeter systems are reported on. Digital and analog conversion systems, digital data and control systems, microprocessors, and their uses in scientific research and nuclear power plants are discussed. Large-area imaging and biomedical nucleonic instrumentation, nuclear power plant safeguards, reactor instrumentation, nuclear power plant instrumentation, space instrumentation, and environmental instrumentation are dealt with. Individual items are announced in this issue.

  6. The Pisgah Astronomical Research Institute

    NASA Astrophysics Data System (ADS)

    Cline, J. Donald; Castelaz, M.

    2009-01-01

    Pisgah Astronomical Research Institute is a not-for-profit foundation located at a former NASA tracking station in the Pisgah National Forest in western North Carolina. PARI is celebrating its 10th year. During its ten years, PARI has developed and implemented innovative science education programs. The science education programs are hands-on experimentally based, mixing disciplines in astronomy, computer science, earth and atmospheric science, engineering, and multimedia. The basic tools for the educational programs include a 4.6-m radio telescope accessible via the Internet, a StarLab planetarium, the Astronomical Photographic Data Archive (APDA), a distributed computing online environment to classify stars called SCOPE, and remotely accessible optical telescopes. The PARI 200 acre campus has a 4.6-m, a 12-m and two 26-m radio telescopes, optical solar telescopes, a Polaris monitoring telescope, 0.4-m and 0.35-m optical research telescopes, and earth and atmospheric science instruments. PARI is also the home of APDA, a repository for astronomical photographic plate collections which will eventually be digitized and made available online. PARI has collaborated with visiting scientists who have developed their research with PARI telescopes and lab facilities. Current experiments include: the Dedicated Interferometer for Rapid Variability (Dennison et al. 2007, Astronomical and Astrophysical Transactions, 26, 557); the Plate Boundary Observatory operated by UNAVCO; the Clemson University Fabry-Perot Interferometers (Meriwether 2008, Journal of Geophysical Research, submitted) measuring high velocity winds and temperatures in the Thermosphere, and the Western Carolina University - PARI variable star program. Current status of the education and research programs and instruments will be presented. Also, development plans will be reviewed. Development plans include the greening of PARI with the installation of solar panels to power the optical telescopes, a new distance learning center, and enhancements to the atmospheric and earth science suite of instrumentation.

  7. The New Millennium Program: Validating Advanced Technologies for Future Space Missions

    NASA Technical Reports Server (NTRS)

    Minning, Charles P.; Luers, Philip

    1999-01-01

    This presentation reviews the activities of the New Millennium Program (NMP) in validating advanced technologies for space missions. The focus of these breakthrough technologies are to enable new capabilities to fulfill the science needs, while reducing costs of future missions. There is a broad spectrum of NMP partners, including government agencies, universities and private industry. The DS-1 was launched on October 24, 1998. Amongst the technologies validated by the NMP on DS-1 are: a Low Power Electronics Experiment, the Power Activation and Switching Module, Multi-Functional Structures. The first two of these technologies are operational and the data analysis is still ongoing. The third program is also operational, and its performance parameters have been verified. The second program, DS-2, was launched January 3 1999. It is expected to impact near Mars southern polar region on 3 December 1999. The technologies used on this mission awaiting validation are an advanced microcontroller, a power microelectronics unit, an evolved water experiment and soil thermal conductivity experiment, Lithium-Thionyl Chloride batteries, the flexible cable interconnect, aeroshell/entry system, and a compact telecom system. EO-1 on schedule for launch in December 1999 carries several technologies to be validated. Amongst these are: a Carbon-Carbon Radiator, an X-band Phased Array Antenna, a pulsed plasma thruster, a wideband advanced recorder processor, an atmospheric corrector, lightweight flexible solar arrays, Advanced Land Imager and the Hyperion instrument

  8. Development of an Instrument for Measuring Clinicians’ Power Perceptions in the Workplace

    PubMed Central

    Bartos, Christa E.; Fridsma, Douglas B.; Butler, Brian S.; Penrod, Louis E.; Becich, Michael J.; Crowley, Rebecca S.

    2008-01-01

    We report on the development of an instrument to measure clinicians’ perceptions of their personal power in the workplace in relation to resistance to computerized physician order entry (CPOE). The instrument is based on French and Raven’s six bases of social power and uses a semantic differential methodology. A measurement study was conducted to determine the reliability and validity of the survey. The survey was administered online and distributed via a URL by email to 19 physicians, nurses, and health unit coordinators from a university hospital. Acceptable reliability was achieved by removing or moving some semantic differential word pairs used to represent the six power bases (alpha range from 0.76–0.89). The Semantic Differential Power Perception (SDPP) survey validity was tested against an already validated instrument and found to be acceptable (correlation range from 0.51–0.81). The SDPP survey instrument was determined to be both reliable and valid. PMID:18375189

  9. Theoretical analysis and simulation study of low-power CMOS electrochemical impedance spectroscopy biosensor in 55 nm deeply depleted channel technology for cell-state monitoring

    NASA Astrophysics Data System (ADS)

    Itakura, Keisuke; Kayano, Keisuke; Nakazato, Kazuo; Niitsu, Kiichi

    2018-01-01

    We present an impedance-detection complementary metal oxide semiconductor (CMOS) biosensor circuit for cell-state observation. The proposed biosensor can measure the expected impedance values encountered by a cell-state observation measurement system within a 0.1-200 MHz frequency range. The proposed device is capable of monitoring the intracellular conditions necessary for real-time cell-state observation, and can be fabricated using a 55 nm deeply depleted channel CMOS process. Operation of the biosensor circuit with 0.9 and 1.7 V supply voltages is verified via a simulated program with integrated circuit emphasis (SPICE) simulation. The power consumption is 300 µW. Further, the standby power consumption is 290 µW, indicating that this biosensor is a low-power instrument suitable for use in Internet of Things (IoT) devices.

  10. Global Precipitation Measurement (GPM) Spacecraft Lithium Ion Battery Micro-Cycling Investigation

    NASA Technical Reports Server (NTRS)

    Dakermanji, George; Lee, Leonine; Spitzer, Thomas

    2016-01-01

    The Global Precipitation Measurement (GPM) spacecraft was jointly developed by NASA and JAXA. It is a Low Earth Orbit (LEO) spacecraft launched on February 27, 2014. The power system is a Direct Energy Transfer (DET) system designed to support 1950 watts orbit average power. The batteries use SONY 18650HC cells and consist of three 8s by 84p batteries operated in parallel as a single battery. During instrument integration with the spacecraft, large current transients were observed in the battery. Investigation into the matter traced the cause to the Dual-Frequency Precipitation Radar (DPR) phased array radar which generates cyclical high rate current transients on the spacecraft power bus. The power system electronics interaction with these transients resulted in the current transients in the battery. An accelerated test program was developed to bound the effect, and to assess the impact to the mission.

  11. [The development of an oral biomechanical testing instrument].

    PubMed

    Zhang, X H; Sun, X D; Lin, Z

    2000-03-01

    An oral biomechanical testing instrument, which is portable, powered with batteries and controlled by single chip microcomputer, was described. The instrument was characterized by its multichannel, high accuracy, low power dissipation, wide rage of force measurement and stable performance. It can be used for acquisiting, displaying and storing data. And it may be expected to be an ideal instrument for oral biomechanical measurements.

  12. Spinoff 2009

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Topics covered include: Image-Capture Devices Extend Medicine's Reach; Medical Devices Assess, Treat Balance Disorders; NASA Bioreactors Advance Disease Treatments; Robotics Algorithms Provide Nutritional Guidelines; "Anti-Gravity" Treadmills Speed Rehabilitation; Crew Management Processes Revitalize Patient Care; Hubble Systems Optimize Hospital Schedules; Web-based Programs Assess Cognitive Fitness; Electrolyte Concentrates Treat Dehydration; Tools Lighten Designs, Maintain Structural Integrity; Insulating Foams Save Money, Increase Safety; Polyimide Resins Resist Extreme Temperatures; Sensors Locate Radio Interference; Surface Operations Systems Improve Airport Efficiency; Nontoxic Resins Advance Aerospace Manufacturing; Sensors Provide Early Warning of Biological Threats; Robot Saves Soldier's Lives Overseas (MarcBot); Apollo-Era Life Raft Saves Hundreds of Sailors; Circuits Enhance Scientific Instruments and Safety Devices; Tough Textiles Protect Payloads and Public Safety Officers; Forecasting Tools Point to Fishing Hotspots; Air Purifiers Eliminate Pathogens, Preserve Food; Fabrics Protect Sensitive Skin from UV Rays; Phase Change Fabrics Control Temperature; Tiny Devices Project Sharp, Colorful Images; Star-Mapping Tools Enable Tracking of Endangered Animals; Nanofiber Filters Eliminate Contaminants; Modeling Innovations Advance Wind Energy Industry; Thermal Insulation Strips Conserve Energy; Satellite Respondent Buoys Identify Ocean Debris; Mobile Instruments Measure Atmospheric Pollutants; Cloud Imagers Offer New Details on Earth's Health; Antennas Lower Cost of Satellite Access; Feature Detection Systems Enhance Satellite Imagery; Chlorophyll Meters Aid Plant Nutrient Management; Telemetry Boards Interpret Rocket, Airplane Engine Data; Programs Automate Complex Operations Monitoring; Software Tools Streamline Project Management; Modeling Languages Refine Vehicle Design; Radio Relays Improve Wireless Products; Advanced Sensors Boost Optical Communication, Imaging; Tensile Fabrics Enhance Architecture Around the World; Robust Light Filters Support Powerful Imaging Devices; Thermoelectric Devices Cool, Power Electronics; Innovative Tools Advance Revolutionary Weld Technique; Methods Reduce Cost, Enhance Quality of Nanotubes; Gauging Systems Monitor Cryogenic Liquids; Voltage Sensors Monitor Harmful Static; and Compact Instruments Measure Heat Potential.

  13. NASA/ASEE Summer Faculty Fellowship Program, 1990, volume 2

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard B. (Editor); Goldstein, Stanley H. (Editor)

    1990-01-01

    The 1990 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston-University Park and Johnson Space Centers (JSC). A compilation of the final reports on the research projects is presented. The following topics are covered: the Space Shuttle; the Space Station; lunar exploration; mars exploration; spacecraft power supplies; mars rover vehicle; mission planning for the Space Exploration Initiative; instrument calibration standards; a lunar oxygen production plant; optical filters for a hybrid vision system; dynamic structural analysis; lunar bases; pharmacodynamics of scopolamine; planetary spacecraft cost modeling; and others.

  14. "Smart pebble" designs for sediment transport monitoring

    NASA Astrophysics Data System (ADS)

    Valyrakis, Manousos; Alexakis, Athanasios; Pavlovskis, Edgars

    2015-04-01

    Sediment transport, due to primarily the action of water, wind and ice, is one of the most significant geomorphic processes responsible for shaping Earth's surface. It involves entrainment of sediment grains in rivers and estuaries due to the violently fluctuating hydrodynamic forces near the bed. Here an instrumented particle, namely a "smart pebble", is developed to investigate the exact flow conditions under which individual grains may be entrained from the surface of a gravel bed. This could lead in developing a better understanding of the processes involved, focusing on the response of the particle during a variety of flow entrainment events. The "smart pebble" is a particle instrumented with MEMS sensors appropriate for capturing the hydrodynamic forces a coarse particle might experience during its entrainment from the river bed. A 3-axial gyroscope and accelerometer registers data to a memory card via a microcontroller, embedded in a 3D-printed waterproof hollow spherical particle. The instrumented board is appropriately fit and centred into the shell of the pebble, so as to achieve a nearly uniform distribution of the mass which could otherwise bias its motion. The "smart pebble" is powered by an independent power to ensure autonomy and sufficiently long periods of operation appropriate for deployment in the field. Post-processing and analysis of the acquired data is currently performed offline, using scientific programming software. The performance of the instrumented particle is validated, conducting a series of calibration experiments under well-controlled laboratory conditions.

  15. Application of microprocessors in an upper atmosphere instrument package

    NASA Technical Reports Server (NTRS)

    Lim, T. S.; Ehrman, C. H.; Allison, S.

    1981-01-01

    A servo-driven magnetometer table measuring offset from magnetic north has been developed by NASA to calculate payload azimuth required to point at a celestial target. Used as an aid to the study of gamma-ray phenomena, the high-altitude balloon-borne instrument determines a geocentric reference system, and calculates a set of pointing directions with respect to the system. Principal components include the magnetometer, stepping motor, microcomputer, and gray code shaft encoder. The single-chip microcomputer is used to control the orientation of the system, and consists of a central processing unit, program memory, data memory and input/output ports. Principal advantages include a low power requirement, consuming 6 watts, as compared to 30 watts consumed by the previous system.

  16. Database of proposed payloads and instruments for SEI missions

    NASA Technical Reports Server (NTRS)

    Barlow, N. G.

    1992-01-01

    A database of all payloads and instruments proposed for lunar and Mars missions was compiled by the author for the Exploration Programs Office at NASA's Johnson Sapce Center. The database is an outgrowth of the document produced by C. J. Budney et al. at the Jet Propulsion Laboratory in 1991. The present database consists not only of payloads proposed for human exploratory missions of the Moon and Mars, but also experiments selected or proposed for robotic precursor missions such as Lunar Scout, Mars Observer, and MESUR. The database consists of two parts: a written payload description and a matrix that provides a breakdown of payload components. Each payload description consists of the following information: (1) the rationale for why the instrument or payload package is being proposed for operation on the Moon or Mars; (2) a description of how the instrument works; (3) a breakdown of the payload, providing detailed information about the mass, volume, power requirements, and data rates for the constituent pieces of the experiment; (4) estimates of the power consumption and data rate; (5) how the data will be returned to Earth and distributed to the scientific community; (6) any constraints on the location or conditions under which the instrument can or cannot operate; (7) what type of crew interaction (if any) is needed; (8) how the payload is to be delivered to the lunar or martian surface (along with alternative delivery options); (9) how long the instrument or payload package will take to set up; (10) what type of maintenance needs are anticipated for the experiment; (11) stage of development for the instrument and environmental conditions under which the instrument has been tested; (12) an interface required by the instrument with the lander, a rover, an outpost, etc.; (13) information about how often the experiment will need to be resupplied with parts or consumables, if it is to be resupplied; (14) the name and affiliation of a contact person for the experiment; and (15) references where further information about the experiment can be found.

  17. 14 CFR 61.65 - Instrument rating requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... instrument rating must: (1) Hold at least a private pilot certificate with an airplane, helicopter, or... training device that represents an airplane, helicopter, or powered-lift appropriate to the instrument... airplane, helicopter, or powered-lift appropriate to the rating sought; or (ii) A flight simulator or a...

  18. Polder in-flight results

    NASA Astrophysics Data System (ADS)

    Bermudo, F.; Lifermann, A.; Hagolle, O.; Laherrere, J.-M.; Bret-Dibat, T.

    2018-04-01

    This paper presents a global approach of POWER (Polarization and Directionalily of the Earths Reflectance) program: from instrument design . pre-flight and in-fligh1 calibrations till the first inflight results The POLDER sensor bas been developed by the Centre National d'Etudes Spatiales, the French space agency. It is part of the payload of the Advanced Earth Observation Satellite (ADEOS) developed by NASDA and launched m August 1996. POLDER had been acquiring data till the lost of ADEOS in June 1997.

  19. A New Digital Holographic Instrument for Measuring Microphysical Properties of Contrails in the SASS (Subsonic Assessment) Program

    NASA Technical Reports Server (NTRS)

    Lawson, R. Paul

    2000-01-01

    SPEC incorporated designed, built and operated a new instrument, called a pi-Nephelometer, on the NASA DC-8 for the SUCCESS field project. The pi-Nephelometer casts an image of a particle on a 400,000 pixel solid-state camera by freezing the motion of the particle using a 25 ns pulsed, high-power (60 W) laser diode. Unique optical imaging and particle detection systems precisely detect particles and define the depth-of-field so that at least one particle in the image is almost always in focus. A powerful image processing engine processes frames from the solid-state camera, identifies and records regions of interest (i.e. particle images) in real time. Images of ice crystals are displayed and recorded with 5 micron pixel resolution. In addition, a scattered light system simultaneously measures the scattering phase function of the imaged particle. The system consists of twenty-eight 1-mm optical fibers connected to microlenses bonded on the surface of avalanche photo diodes (APDs). Data collected with the pi-Nephelometer during the SUCCESS field project was reported in a special issue of Geophysical Research Letters. The pi-Nephelometer provided the basis for development of a commercial imaging probe, called the cloud particle imager (CPI), which has been installed on several research aircraft and used in More than a dozen field programs.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Broadbridge, Christine C.

    DOE grant used for partial fulfillment of necessary laboratory equipment for course enrichment and new graduate programs in nanotechnology at the four institutions of the Connecticut State University System (CSUS). Equipment in this initial phase included variable pressure scanning electron microscope with energy dispersive x-ray spectroscopy elemental analysis capability [at Southern Connecticut State University]; power x-ray diffractometer [at Central Connecticut State University]; a spectrophotometer and spectrofluorimeter [at Eastern Connecticut State University; and a Raman Spectrometer [at Western Connecticut State University]. DOE's funding was allocated for purchase and installation of this scientific equipment and instrumentation. Subsequently, DOE funding was allocated tomore » fund the curriculum, faculty development and travel necessary to continue development and implementation of the System's Graduate Certificate in Nanotechnology (GCNT) program and the ConnSCU Nanotechnology Center (ConnSCU-NC) at Southern Connecticut State University. All of the established outcomes have been successfully achieved. The courses and structure of the GCNT program have been determined and the program will be completely implemented in the fall of 2013. The instrumentation has been purchased, installed and has been utilized at each campus for the implementation of the nanotechnology courses, CSUS GCNT and the ConnSCU-NC. Additional outcomes for this grant include curriculum development for non-majors as well as faculty and student research.« less

  1. Control research in the NASA high-alpha technology program

    NASA Technical Reports Server (NTRS)

    Gilbert, William P.; Nguyen, Luat T.; Gera, Joseph

    1990-01-01

    NASA is conducting a focused technology program, known as the High-Angle-of-Attack Technology Program, to accelerate the development of flight-validated technology applicable to the design of fighters with superior stall and post-stall characteristics and agility. A carefully integrated effort is underway combining wind tunnel testing, analytical predictions, piloted simulation, and full-scale flight research. A modified F-18 aircraft has been extensively instrumented for use as the NASA High-Angle-of-Attack Research Vehicle used for flight verification of new methods and concepts. This program stresses the importance of providing improved aircraft control capabilities both by powered control (such as thrust-vectoring) and by innovative aerodynamic control concepts. The program is accomplishing extensive coordinated ground and flight testing to assess and improve available experimental and analytical methods and to develop new concepts for enhanced aerodynamics and for effective control, guidance, and cockpit displays essential for effective pilot utilization of the increased agility provided.

  2. Specifying and calibrating instrumentations for wideband electronic power measurements. [in switching circuits

    NASA Technical Reports Server (NTRS)

    Lesco, D. J.; Weikle, D. H.

    1980-01-01

    The wideband electric power measurement related topics of electronic wattmeter calibration and specification are discussed. Tested calibration techniques are described in detail. Analytical methods used to determine the bandwidth requirements of instrumentation for switching circuit waveforms are presented and illustrated with examples from electric vehicle type applications. Analog multiplier wattmeters, digital wattmeters and calculating digital oscilloscopes are compared. The instrumentation characteristics which are critical to accurate wideband power measurement are described.

  3. Application of low-power, high-rate PCM telemetry in a helicopter instrumentation system

    NASA Technical Reports Server (NTRS)

    Thomas, Mitchel E.; Diamond, John K.

    1987-01-01

    The use of low-power, high-rate pulse code modulation (PCM) in a helicopter instrumentation system is examined. A Helicopter Instrumentation and Recording System (HIARS) was developed to obtain main rotor blade measurements and fuselage performance measurements. The HIARS consists of a low-power PCM telemeter, a digital PCM system, an optical rotor position sensor, and a PCM decommutation unit; the components and functions of these subsystems are described. Flight tests were conducted to evaluate the ability of the HIARS to measure aircraft parameters. The test data reveal that the PCM telemetry is applicable to helicopter instrumentation systems.

  4. Measurement instruments for automatically monitoring the water chemistry of reactor coolant at nuclear power stations equipped with VVER reactors. Selection of measurement instruments and experience gained from their operation at Russian and foreign NPSs

    NASA Astrophysics Data System (ADS)

    Ivanov, Yu. A.

    2007-12-01

    An analytical review is given of Russian and foreign measurement instruments employed in a system for automatically monitoring the water chemistry of the reactor coolant circuit and used in the development of projects of nuclear power stations equipped with VVER-1000 reactors and the nuclear station project AES 2006. The results of experience gained from the use of such measurement instruments at nuclear power stations operating in Russia and abroad are presented.

  5. Scoping Study Investigating PWR Instrumentation during a Severe Accident Scenario

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rempe, J. L.; Knudson, D. L.; Lutz, R. J.

    The accidents at the Three Mile Island Unit 2 (TMI-2) and Fukushima Daiichi Units 1, 2, and 3 nuclear power plants demonstrate the critical importance of accurate, relevant, and timely information on the status of reactor systems during a severe accident. These events also highlight the critical importance of understanding and focusing on the key elements of system status information in an environment where operators may be overwhelmed with superfluous and sometimes conflicting data. While progress in these areas has been made since TMI-2, the events at Fukushima suggests that there may still be a potential need to ensure thatmore » critical plant information is available to plant operators. Recognizing the significant technical and economic challenges associated with plant modifications, it is important to focus on instrumentation that can address these information critical needs. As part of a program initiated by the Department of Energy, Office of Nuclear Energy (DOE-NE), a scoping effort was initiated to assess critical information needs identified for severe accident management and mitigation in commercial Light Water Reactors (LWRs), to quantify the environment instruments monitoring this data would have to survive, and to identify gaps where predicted environments exceed instrumentation qualification envelop (QE) limits. Results from the Pressurized Water Reactor (PWR) scoping evaluations are documented in this report. The PWR evaluations were limited in this scoping evaluation to quantifying the environmental conditions for an unmitigated Short-Term Station BlackOut (STSBO) sequence in one unit at the Surry nuclear power station. Results were obtained using the MELCOR models developed for the US Nuclear Regulatory Commission (NRC)-sponsored State of the Art Consequence Assessment (SOARCA) program project. Results from this scoping evaluation indicate that some instrumentation identified to provide critical information would be exposed to conditions that significantly exceeded QE limits for extended time periods for the low frequency STSBO sequence evaluated in this study. It is recognized that the core damage frequency (CDF) of the sequence evaluated in this scoping effort would be considerably lower if evaluations considered new FLEX equipment being installed by industry. Nevertheless, because of uncertainties in instrumentation response when exposed to conditions beyond QE limits and alternate challenges associated with different sequences that may impact sensor performance, it is recommended that additional evaluations of instrumentation performance be completed to provide confidence that operators have access to accurate, relevant, and timely information on the status of reactor systems for a broad range of challenges associated with risk important severe accident sequences.« less

  6. PM-1 NUCLEAR POWER PLANT PROGRAM. Quarterly Progress Report No. 2 for June 1 to August 31, 1959

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sieg, J.S.; Smith, E.H.

    1959-10-01

    The objective of the contract is the design, development, fabrication, installation, and initial testing and operation of a prepackaged air- transportable pressurized water reactor nuclear power plant, the PM-1. The specified output is 1 Mwe and 7 million Btu/hr of heat. The plant is to be operational by March 1962. The principal efforts were completion of the plant parametric study and preparation of the preliminary design. A summary of design parameters is given. Systems development work included study and selection of packages for full-scale testing, a survey of in-core instrumentation techniques, control and instrumentation development, and development of components formore » the steam generator, condenser, and turbine generator, which are not commercially available. Reactor development work included completion of the parametric zeropower experiments and preparrtions for a flexible zeropower test program, a revision of plans for irradiation testing PM-1 fuel elements, initiation of a reactor flow test program, outliring of a heat tnansfer test program, completion of the seven-tube test section (SETCH-1) tests, and evaluation of control rod actuators leading to specification of a magnetic jack-type control rod drive similar to that reported in ANL-5768. Completion of the prelimirary design led to initiation of the final design effort, which will be the principal activity during the next two project quarters. Preparations for core fabrication included procurement of core cladding material for the zero-power teat core, arrangement with a subcontractor to convent UF/sub 6/ to UO/sub 2/ and to commence delivery of the oxide during the next quarter, development of fuel element fabrication and ultrasonic testing techniques, study of control rod materials, UO/sub 2/ recovery techniques, and boron analysis methods. Preliminary work on site preparation was pursued with receipt of USAEC approval for a location on the eastern slope of Warren Peak at Sundance, Wyoming. A survey of this site is underway. A preliminary Hazards Summary Report is in preparation. (For preceding period see MND-M-1812.) (auth)« less

  7. Summary of the Flight Technology Improvement Workshop. [spaceborne optical radiometric instruments, attitude control, and electromechanical and power subsystems

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Spaceborne instrumentation technology deficiencies are summarized. Recommendations are given for technology development, improvements in existing technology, and policy changes needed to facilitate the use of improved technology. Optical radiometric instruments, attitude control, and electromechanical and power subsystems are considered.

  8. 18 CFR 367.2440 - Account 244, Derivative instrument liabilities.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Account 244, Derivative instrument liabilities. 367.2440 Section 367.2440 Conservation of Power and Water Resources FEDERAL ENERGY..., Derivative instrument liabilities. This account must include the change in the fair value of all derivative...

  9. 18 CFR 367.2440 - Account 244, Derivative instrument liabilities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Account 244, Derivative instrument liabilities. 367.2440 Section 367.2440 Conservation of Power and Water Resources FEDERAL ENERGY..., Derivative instrument liabilities. This account must include the change in the fair value of all derivative...

  10. 77 FR 41206 - Guidelines for Preparing and Reviewing Licensing Applications for Instrumentation and Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-12

    ... Applications for Instrumentation and Control Upgrades for Non-Power Reactors AGENCY: Nuclear Regulatory... (NRC or the Commission) is requesting public comment on Chapter 7, Section 7.3, Reactor Control System...-Power Reactors: Format and Content,'' for instrumentation and control (I&C) upgrades and NUREG-1537...

  11. Instrumental sensing of stationary source emissions. [sulphur dioxide remote sensing for coal-burning power plants

    NASA Technical Reports Server (NTRS)

    Herget, W. F.; Conner, W. D.

    1977-01-01

    A variety of programs have been conducted within EPA to evaluate the capability of various ground-based remote-sensing techniques for measuring the SO2 concentration, velocity, and opacity of effluents from coal-burning power plants. The results of the remote measurements were compared with the results of instack measurements made using EPA reference methods. Attention is given to infrared gas-filter correlation radiometry for SO2 concentration, Fourier-transform infrared spectroscopy for SO2 concentration, ultraviolet matched-filter correlation spectroscopy for SO2 concentration, infrared and ultraviolet television for velocity and SO2 concentration, infrared laser-Doppler velocimetry for plume velocity, and visible laser radar for plume opacity.

  12. Protective Parenting, Relationship Power Equity, and Condom Use Among Rural African American Emerging Adult Women

    PubMed Central

    Kogan, Steven M.; Simons, Leslie G.; Chen, Yifu; Burwell, Stephanie; Brody, Gene H.

    2012-01-01

    Sexually transmitted infections disproportionately affect African Americans, particularly young women. The influence of a set of interrelated protective parenting processes—instrumental and emotional support, sexual risk communication, and encouragement of goals for employment or education—on emerging adult women was examined. Parenting was hypothesized to affect consistent condom use through its association with women’s reports of power equity in their intimate relationships. Hypotheses were tested with 135 sexually active women 18 to 21 years of age living in rural southern communities. Structural equation modeling indicated that (a) parenting processes predicted women’s self-reported relationship power equity and consistent condom use, and (b) relationship power equity predicted consistent condom use. Limited support emerged for a mediational role of relationship power equity in explaining the influence of parenting on consistent condom use. Parental involvement and young women’s establishment of personal control in their intimate relationships are important goals for sexual risk reduction programs. PMID:23729949

  13. An optimization-based approach for facility energy management with uncertainties, and, Power portfolio optimization in deregulated electricity markets with risk management

    NASA Astrophysics Data System (ADS)

    Xu, Jun

    Topic 1. An Optimization-Based Approach for Facility Energy Management with Uncertainties. Effective energy management for facilities is becoming increasingly important in view of the rising energy costs, the government mandate on the reduction of energy consumption, and the human comfort requirements. This part of dissertation presents a daily energy management formulation and the corresponding solution methodology for HVAC systems. The problem is to minimize the energy and demand costs through the control of HVAC units while satisfying human comfort, system dynamics, load limit constraints, and other requirements. The problem is difficult in view of the fact that the system is nonlinear, time-varying, building-dependent, and uncertain; and that the direct control of a large number of HVAC components is difficult. In this work, HVAC setpoints are the control variables developed on top of a Direct Digital Control (DDC) system. A method that combines Lagrangian relaxation, neural networks, stochastic dynamic programming, and heuristics is developed to predict the system dynamics and uncontrollable load, and to optimize the setpoints. Numerical testing and prototype implementation results show that our method can effectively reduce total costs, manage uncertainties, and shed the load, is computationally efficient. Furthermore, it is significantly better than existing methods. Topic 2. Power Portfolio Optimization in Deregulated Electricity Markets with Risk Management. In a deregulated electric power system, multiple markets of different time scales exist with various power supply instruments. A load serving entity (LSE) has multiple choices from these instruments to meet its load obligations. In view of the large amount of power involved, the complex market structure, risks in such volatile markets, stringent constraints to be satisfied, and the long time horizon, a power portfolio optimization problem is of critical importance but difficulty for an LSE to serve the load, maximize its profit, and manage risks. In this topic, a mid-term power portfolio optimization problem with risk management is presented. Key instruments are considered, risk terms based on semi-variances of spot market transactions are introduced, and penalties on load obligation violations are added to the objective function to improve algorithm convergence and constraint satisfaction. To overcome the inseparability of the resulting problem, a surrogate optimization framework is developed enabling a decomposition and coordination approach. Numerical testing results show that our method effectively provides decisions for various instruments to maximize profit, manage risks, and is computationally efficient.

  14. Lidar Measurements of On-Shore Wind Diffusion

    NASA Technical Reports Server (NTRS)

    Brown, R. M.; Michael, P.; Raynor, G.

    1973-01-01

    The concept to place electric power generating stations on the oceans off the coast of the United States has instilled new efforts in research for improved understanding of the diffusion properties of the atmosphere in the ocean-air interface. The Atomic Energy Commission has instigated a program by the Meteorology Group at Brookhaven National Laboratory to investigate the low level, on-shore wind systems that dominate many of the coastal regions. Analytical techniques and specialized instrumentation from previous studies at Brookhaven are being used in this new program. The Brookhaven Lidar system is used to measure some of the physical properties of the oil-fog plume originating from a portable smoke generator on a boat off the coast. The oil-fog plume is used as a tracer which can be observed, photographed and measured to determine the diffusive power of the atmosphere associated with the ocean-air interface and the discontinuities found in the ocean-land boundary. This paper will describe the program rather briefly and the oil-fog scattering measurements that have been made with the Lidar system.

  15. A Diagnostic System for Studying Energy Partitioning and Assessing the Response of the Ionosphere during HAARP Modification Experiments

    NASA Technical Reports Server (NTRS)

    Djuth, Frank T.; Elder, John H.; Williams, Kenneth L.

    1996-01-01

    This research program focused on the construction of several key radio wave diagnostics in support of the HF Active Auroral Ionospheric Research Program (HAARP). Project activities led to the design, development, and fabrication of a variety of hardware units and to the development of several menu-driven software packages for data acquisition and analysis. The principal instrumentation includes an HF (28 MHz) radar system, a VHF (50 MHz) radar system, and a high-speed radar processor consisting of three separable processing units. The processor system supports the HF and VHF radars and is capable of acquiring very detailed data with large incoherent scatter radars. In addition, a tunable HF receiver system having high dynamic range was developed primarily for measurements of stimulated electromagnetic emissions (SEE). A separate processor unit was constructed for the SEE receiver. Finally, a large amount of support instrumentation was developed to accommodate complex field experiments. Overall, the HAARP diagnostics are powerful tools for studying diverse ionospheric modification phenomena. They are also flexible enough to support a host of other missions beyond the scope of HAARP. Many new research programs have been initiated by applying the HAARP diagnostics to studies of natural atmospheric processes.

  16. Catalog of lunar and Mars science payloads

    NASA Technical Reports Server (NTRS)

    Budden, Nancy Ann (Editor)

    1994-01-01

    This catalog collects and describes science payloads considered for future robotic and human exploration missions to the Moon and Mars. The science disciplines included are geosciences, meteorology, space physics, astronomy and astrophysics, life sciences, in-situ resource utilization, and robotic science. Science payload data is helpful for mission scientists and engineers developing reference architectures and detailed descriptions of mission organizations. One early step in advanced planning is formulating the science questions for each mission and identifying the instrumentation required to address these questions. The next critical element is to establish and quantify the supporting infrastructure required to deliver, emplace, operate, and maintain the science experiments with human crews or robots. This requires a comprehensive collection of up-to-date science payload information--hence the birth of this catalog. Divided into lunar and Mars sections, the catalog describes the physical characteristics of science instruments in terms of mass, volume, power and data requirements, mode of deployment and operation, maintenance needs, and technological readiness. It includes descriptions of science payloads for specific missions that have been studied in the last two years: the Scout Program, the Artemis Program, the First Lunar Outpost, and the Mars Exploration Program.

  17. Designing new guides and instruments using McStas

    NASA Astrophysics Data System (ADS)

    Farhi, E.; Hansen, T.; Wildes, A.; Ghosh, R.; Lefmann, K.

    With the increasing complexity of modern neutron-scattering instruments, the need for powerful tools to optimize their geometry and physical performances (flux, resolution, divergence, etc.) has become essential. As the usual analytical methods reach their limit of validity in the description of fine effects, the use of Monte Carlo simulations, which can handle these latter, has become widespread. The McStas program was developed at Riso National Laboratory in order to provide neutron scattering instrument scientists with an efficient and flexible tool for building Monte Carlo simulations of guides, neutron optics and instruments [1]. To date, the McStas package has been extensively used at the Institut Laue-Langevin, Grenoble, France, for various studies including cold and thermal guides with ballistic geometry, diffractometers, triple-axis, backscattering and time-of-flight spectrometers [2]. In this paper, we present some simulation results concerning different guide geometries that may be used in the future at the Institut Laue-Langevin. Gain factors ranging from two to five may be obtained for the integrated intensities, depending on the exact geometry, the guide coatings and the source.

  18. THOR Field and Wave Processor - FWP

    NASA Astrophysics Data System (ADS)

    Soucek, Jan; Rothkaehl, Hanna; Balikhin, Michael; Zaslavsky, Arnaud; Nakamura, Rumi; Khotyaintsev, Yuri; Uhlir, Ludek; Lan, Radek; Yearby, Keith; Morawski, Marek; Winkler, Marek

    2016-04-01

    If selected, Turbulence Heating ObserveR (THOR) will become the first mission ever flown in space dedicated to plasma turbulence. The Fields and Waves Processor (FWP) is an integrated electronics unit for all electromagnetic field measurements performed by THOR. FWP will interface with all fields sensors: electric field antennas of the EFI instrument, the MAG fluxgate magnetometer and search-coil magnetometer (SCM) and perform data digitization and on-board processing. FWP box will house multiple data acquisition sub-units and signal analyzers all sharing a common power supply and data processing unit and thus a single data and power interface to the spacecraft. Integrating all the electromagnetic field measurements in a single unit will improve the consistency of field measurement and accuracy of time synchronization. The feasibility of making highly sensitive electric and magnetic field measurements in space has been demonstrated by Cluster (among other spacecraft) and THOR instrumentation complemented by a thorough electromagnetic cleanliness program will further improve on this heritage. Taking advantage of the capabilities of modern electronics, FWP will provide simultaneous synchronized waveform and spectral data products at high time resolution from the numerous THOR sensors, taking advantage of the large telemetry bandwidth of THOR. FWP will also implement a plasma a resonance sounder and a digital plasma quasi-thermal noise analyzer designed to provide high cadence measurements of plasma density and temperature complementary to data from particle instruments. FWP will be interfaced with the particle instrument data processing unit (PPU) via a dedicated digital link which will enable performing on board correlation between waves and particles, quantifying the transfer of energy between waves and particles. The FWP instrument shall be designed and built by an international consortium of scientific institutes from Czech Republic, Poland, France, UK, Sweden and Austria.

  19. Enabling Arctic Research Through Science and Engineering Partnerships

    NASA Astrophysics Data System (ADS)

    Kendall, E. A.; Valentic, T. A.; Stehle, R. H.

    2014-12-01

    Under an Arctic Research Support and Logistics contract from NSF (GEO/PLR), SRI International, as part of the CH2M HILL Polar Services (CPS) program, forms partnerships with Arctic research teams to provide data transfer, remote operations, and safety/operations communications. This teamwork is integral to the success of real-time science results and often allows for unmanned operations which are both cost-effective and safer. The CPS program utilizes a variety of communications networks, services and technologies to support researchers and instruments throughout the Arctic, including Iridium, VSAT, Inmarsat BGAN, HughesNet, TeleGreenland, radios, and personal locator beacons. Program-wide IT and communications limitations are due to the broad categories of bandwidth, availability, and power. At these sites it is essential to conserve bandwidth and power through using efficient software, coding and scheduling techniques. There are interesting new products and services on the horizon that the program may be able to take advantage of in the future such as Iridium NEXT, Inmarsat Xpress, and Omnispace mobile satellite services. Additionally, there are engineering and computer software opportunities to develop more efficient products. We will present an overview of science/engineering partnerships formed by the CPS program, discuss current limitations and identify future technological possibilities that could further advance Arctic science goals.

  20. An Integrated Approach to Counter Insurgency: A Burundi Case Study

    DTIC Science & Technology

    2012-03-20

    discusses the best combination of the instruments of national power to fight the current insurgency and achieve lasting peace in Burundi. To address...by a government to defeat an insurgency.”10 This definition implies joint roles between other instruments of the national power in addition to the...Burundi policy-makers have to use all the instruments of national power to assess if the COIN effort equals or conflicts with root causes, then adopt

  1. The performance and efficiency of four motor/controller/battery systems for the simpler electric vehicles

    NASA Technical Reports Server (NTRS)

    Shipps, P. R.

    1980-01-01

    A test and analysis program performed on four complete propulsion systems for an urban electric vehicle (EV) is described and results given. A dc series motor and a permanent magnet (PM) motor were tested, each powered by an EV battery pack and controlled by (1) a series/parallel voltage-switching (V-switch) system; and (2) a system using a pulse width modulation, 400 Hz transistorized chopper. Dynamometer tests were first performed, followed by eV performance predictions and data correlating road tests. During dynamometer tests using chopper control; current, voltage, and power were measured on both the battery and motor sides of the chopper, using three types of instrumentation. Conventional dc instruments provided adequate accuracy for eV power and energy measurements, when used on the battery side of the controller. When using the chopper controller, the addition of a small choke inductor improved system efficiency in the lower duty cycle range (some 8% increase at 50% duty cycle) with both types of motors. Overall system efficiency rankings during road tests were: (1) series motor with V-switch; (2) PM motor with V-switch; (3) series motor with chopper; and (4) PM motor with chopper. Chopper control of the eV was smoother and required less driver skill than V-switch control.

  2. 14 CFR 61.65 - Instrument rating requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... for a private pilot certificate, with an airplane, helicopter, or powered-lift rating appropriate to..., helicopter, or powered-lift appropriate to the instrument rating sought; (6) Receive a logbook or training... of operation in paragraph (c) of this section in— (i) An airplane, helicopter, or powered-lift...

  3. 14 CFR 61.65 - Instrument rating requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... for a private pilot certificate, with an airplane, helicopter, or powered-lift rating appropriate to..., helicopter, or powered-lift appropriate to the instrument rating sought; (6) Receive a logbook or training... of operation in paragraph (c) of this section in— (i) An airplane, helicopter, or powered-lift...

  4. ASQ Program Observation Instrument: A Tool for Assessing School-Age Child Care Quality.

    ERIC Educational Resources Information Center

    O'Connor, Susan; And Others

    ASQ (Assessing School-Aged Child Care Quality) is a system for determining the quality of school-age child care programs. The ASQ Program Observation Instrument is a ten-step, self assessment process to guide program improvement. This instrument does not work well in full-day programs that have a single focus, but works well in programs that offer…

  5. AMTEC radioisotope power system design and analysis for Pluto Express Fly-By

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendricks, T.J.; Huang, C.; Sievers, R.K.

    1997-12-31

    The Pluto Express Fly-By program requires a Radioisotope Power System (RPS) to supply spacecraft power for various internal functions and mission instruments and experiments. AMTEC (Alkali-Metal Thermal-Electric Conversion) power conversion is the DOE-selected technology for an advanced, high-efficiency RPS to power the Pluto Express Fly-By spacecraft. An AMTEC-based RPS using the General Purpose Heat Source (GPHS) has been conceptually designed to satisfy the Pluto Express power requirements. Integrated AMTEC cell and system thermal/electrical design analyses, structural design analyses, and mass analyses were performed to define an optimum system design. Using fresh radioisotope fuel at beginning of mission, the RPS producesmore » 102 watts of power, has a mass of 8.35 kg (specific power density = 12.2 watts/kg), with a system conversion efficiency of 20.3%. Mass/power scale-up estimates have also been generated, indicating that a 150-watt version of this RPS would weigh approximately 11.3 kg. This paper presents and discusses the key features of this RPS design, the design and analysis methodology, and the numerous system and AMTEC cell tradeoff studies establishing the optimum AMTEC-based RPS.« less

  6. BaR-SPOrt: the instrument to be accommodated at Dome C

    NASA Astrophysics Data System (ADS)

    Zannoni, M.; Carretti, E.; Cortiglioni, S.; Macculi, C.; Ramponi, M.; Sbarra, C.; Ventura, G.; Monari, J.; Poloni, M.; Poppi, S.; Natale, V.; Nesti, R.; Baralis, M.; Peverini, O.; Tascone, R.; Virone, G.; Boscaleri, A.; Boella, G.; Sironi, G.; Gervasi, M.; de Bernardis, P.; Masi, S.; de Petris, M.

    The BaR-SPOrt (Balloon-Borne Radiometers for Sky Polarization Observations) experiment, a program of the Agenzia Spaziale Italiana (ASI) co-funded by PNRA (Progetto Nazionale di Ricerca in Antartide) was originally designed as a payload for long duration balloons flights. The changing scenario, both scientific and strategic, has led us to propose it for the starting winter campaign of at the Concordia Base. Here the instrument and the features making it suitable to operate at Dome-C are described. After the initial setup, BaR-SPOrt should not require any kind of routine intervention by a dedicated base staff. The experiment will just need electrical power (less than 2 kW) and a suitable accommodation on the field. It can be fully monitored and controlled, including the data acquisition, through its own telemetry/telecommand link using IRIDIUM modems. Both the receiver and the critical electronics are housed inside a temperature-controlled vacuum chamber, providing the properly stabilized environment. The cold part of the radiometer employs a closed loop mechanical cryo-cooler that provides temperatures <70 ±0.1 K with low power consumption (<200 W).

  7. Pathfinder in flight over Hawaii

    NASA Image and Video Library

    1997-08-28

    Pathfinder, NASA's solar-powered, remotely-piloted aircraft is shown while it was conducting a series of science flights to highlight the aircraft's science capabilities while collecting imagery of forest and coastal zone ecosystems on Kauai, Hawaii. The flights also tested two new scientific instruments, a high spectral resolution Digital Array Scanned Interferometer (DASI) and a high spatial resolution Airborne Real-Time Imaging System (ARTIS). The remote sensor payloads were designed by NASA's Ames Research Center, Moffett Field, California, to support NASA's Mission to Planet Earth science programs.

  8. Pathfinder over runway in Hawaii

    NASA Image and Video Library

    1997-08-28

    Pathfinder, NASA's solar-powered, remotely-piloted aircraft is shown while it was conducting a series of science flights to highlight the aircraft's science capabilities while collecting imagery of forest and coastal zone ecosystems on Kauai, Hawaii. The flights also tested two new scientific instruments, a high-spectral-resolution Digital Array Scanned Interferometer (DASI) and a high-spatial-resolution Airborne Real-Time Imaging System (ARTIS). The remote sensor payloads were designed by NASA's Ames Research Center, Moffett Field, California, to support NASA's Mission to Planet Earth science programs.

  9. A technique for correcting ERTS data for solar and atmospheric effects

    NASA Technical Reports Server (NTRS)

    Rogers, R. H.; Peacock, K.; Shah, N. J.

    1974-01-01

    A technique is described by which ERTS investigators can obtain and utilize solar and atmospheric parameters to transform spacecraft radiance measurements to absolute target reflectance signatures. A radiant power measuring instrument (RPMI) and its use in determining atmospheric paramaters needed for ground truth are discussed. The procedures used and results achieved in processing ERTS CCTs to correct for atmospheric parameters to obtain imagery are reviewed. Examples are given which demonstrate the nature and magnitude of atmospheric effects on computer classification programs.

  10. AN OPTIMIZED 64X64 POINT TWO-DIMENSIONAL FAST FOURIER TRANSFORM

    NASA Technical Reports Server (NTRS)

    Miko, J.

    1994-01-01

    Scientists at Goddard have developed an efficient and powerful program-- An Optimized 64x64 Point Two-Dimensional Fast Fourier Transform-- which combines the performance of real and complex valued one-dimensional Fast Fourier Transforms (FFT's) to execute a two-dimensional FFT and its power spectrum coefficients. These coefficients can be used in many applications, including spectrum analysis, convolution, digital filtering, image processing, and data compression. The program's efficiency results from its technique of expanding all arithmetic operations within one 64-point FFT; its high processing rate results from its operation on a high-speed digital signal processor. For non-real-time analysis, the program requires as input an ASCII data file of 64x64 (4096) real valued data points. As output, this analysis produces an ASCII data file of 64x64 power spectrum coefficients. To generate these coefficients, the program employs a row-column decomposition technique. First, it performs a radix-4 one-dimensional FFT on each row of input, producing complex valued results. Then, it performs a one-dimensional FFT on each column of these results to produce complex valued two-dimensional FFT results. Finally, the program sums the squares of the real and imaginary values to generate the power spectrum coefficients. The program requires a Banshee accelerator board with 128K bytes of memory from Atlanta Signal Processors (404/892-7265) installed on an IBM PC/AT compatible computer (DOS ver. 3.0 or higher) with at least one 16-bit expansion slot. For real-time operation, an ASPI daughter board is also needed. The real-time configuration reads 16-bit integer input data directly into the accelerator board, operating on 64x64 point frames of data. The program's memory management also allows accumulation of the coefficient results. The real-time processing rate to calculate and accumulate the 64x64 power spectrum output coefficients is less than 17.0 mSec. Documentation is included in the price of the program. Source code is written in C, 8086 Assembly, and Texas Instruments TMS320C30 Assembly Languages. This program is available on a 5.25 inch 360K MS-DOS format diskette. IBM and IBM PC are registered trademarks of International Business Machines. MS-DOS is a registered trademark of Microsoft Corporation.

  11. Institute of Electrical and Electronics Engineers, Nuclear Science Symposium, 18th, and Nuclear Power Systems Symposium, 3rd, San Francisco, Calif., November 3-5, 1971, Proceedings.

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Potential advantages of fusion power reactors are discussed together with the protection of the public from radioactivity produced in nuclear power reactors, and the significance of tritium releases to the environment. Other subjects considered are biomedical instrumentation, radiation damage problems, low level environmental radionuclide analysis systems, nuclear techniques in environmental research, nuclear instrumentation, and space and plasma instrumentation. Individual items are abstracted in this issue.

  12. Power Distribution for Cryogenic Instruments at 6-40K The James Webb Space Telescope Case

    NASA Technical Reports Server (NTRS)

    Rumler, Peter; Lundquist, Ray; Alvarez, Jose Lorenzo; Sincell, Jeff; Tuttle, Jim

    2011-01-01

    The Integrated Science Instrument Module (ISIM) of the James Webb Space Telescope (JWST) operates its instruments passively cooled at around 40 Kelvin (K), with a warm Instrument Electronic Compartment (IEC) at 300K attached to it. From the warm electronics all secondary signal and power harnesses have to bridge this 300-40K temperature difference and minimize the power dissipation and parasitic heat leak into the cold region. After an introduction of the ISIM with its instruments, the IEC with the electronics, and the harness architecture with a special radiator, this paper elaborates on the cryogenic wire selection and tests performed to establish current de-rating rules for different wire types. Finally failure modes are analyzed for critical instrument interfaces that could inject excessive currents and heat into the harness and cold side, and several solutions for the removal of such failures are presented.

  13. Power Distribution For Cryogenic Instruments At 6-40K The James Webb Space Telescope Case

    NASA Astrophysics Data System (ADS)

    Rumler, Peter; Lundquist, Ray; Alvarez, Jose Lorenzo; Sincell, Jeff; Tuttle, Jim

    2011-10-01

    The Integrated Science Instrument Module (ISIM) of the James Webb Space Telescope (JWST) operates its instruments passively cooled at around 40 Kelvin (K), with a warm Instrument Electronic Compartment (IEC) at 300K attached to it. From the warm electronics all secondary signal and power harnesses have to bridge this 300-40K temperature difference and minimize the power dissipation and parasitic heat leak into the cold region. After an introduction of the ISIM with its instruments, the IEC with the electronics, and the harness architecture with a special radiator, this paper elaborates on the cryogenic wire selection and tests performed to establish current de-rating rules for different wire types. Finally failure modes are analyzed for critical instrument interfaces that could inject excessive currents and heat into the harness and cold side, and several solutions for the removal of such failures are presented.

  14. SpaceCube 2.0: An Advanced Hybrid Onboard Data Processor

    NASA Technical Reports Server (NTRS)

    Lin, Michael; Flatley, Thomas; Godfrey, John; Geist, Alessandro; Espinosa, Daniel; Petrick, David

    2011-01-01

    The SpaceCube 2.0 is a compact, high performance, low-power onboard processing system that takes advantage of cutting-edge hybrid (CPU/FPGA/DSP) processing elements. The SpaceCube 2.0 design concept includes two commercial Virtex-5 field-programmable gate array (FPGA) parts protected by gradiation hardened by software" technology, and possesses exceptional size, weight, and power characteristics [5x5x7 in., 3.5 lb (approximately equal to 12.7 x 12.7 x 17.8 cm, 1.6 kg) 5-25 W, depending on the application fs required clock rate]. The two Virtex-5 FPGA parts are implemented in a unique back-toback configuration to maximize data transfer and computing performance. Draft computing power specifications for the SpaceCube 2.0 unit include four PowerPC 440s (1100 DMIPS each), 500+ DSP48Es (2x580 GMACS), 100+ LVDS high-speed serial I/Os (1.25 Gbps each), and 2x190 GFLOPS single-precision (65 GFLOPS double-precision) floating point performance. The SpaceCube 2.0 includes PROM memory for CPU boot, health and safety, and basic command and telemetry functionality; RAM memory for program execution; and FLASH/EEPROM memory to store algorithms and application code for the CPU, FPGA, and DSP processing elements. Program execution can be reconfigured in real time and algorithms can be updated, modified, and/or replaced at any point during the mission. Gigabit Ethernet, Spacewire, SATA and highspeed LVDS serial/parallel I/O channels are available for instrument/sensor data ingest, and mission-unique instrument interfaces can be accommodated using a compact PCI (cPCI) expansion card interface. The SpaceCube 2.0 can be utilized in NASA Earth Science, Helio/Astrophysics and Exploration missions, and Department of Defense satellites for onboard data processing. It can also be used in commercial communication and mapping satellites.

  15. Application of Microprocessor-Based Equipment in Nuclear Power Plants - Technical Basis for a Qualification Methodology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korsah, K.

    This document (1) summarizes the most significant findings of the ''Qualification of Advanced Instrumentation and Control (I&C) Systems'' program initiated by the Nuclear Regulatory Commission (NRC); (2) documents a comparative analysis of U.S. and European qualification standards; and (3) provides recommendations for enhancing regulatory guidance for environmental qualification of microprocessor-based safety-related systems. Safety-related I&C system upgrades of present-day nuclear power plants, as well as I&C systems of Advanced Light-Water Reactors (ALWRs), are expected to make increasing use of microprocessor-based technology. The Nuclear Regulatory Commission (NRC) recognized that the use of such technology may pose environmental qualification challenges different from current,more » analog-based I&C systems. Hence, it initiated the ''Qualification of Advanced Instrumentation and Control Systems'' program. The objectives of this confirmatory research project are to (1) identify any unique environmental-stress-related failure modes posed by digital technologies and their potential impact on the safety systems and (2) develop the technical basis for regulatory guidance using these findings. Previous findings from this study have been documented in several technical reports. This final report in the series documents a comparative analysis of two environmental qualification standards--Institute of Electrical and Electronics Engineers (IEEE) Std 323-1983 and International Electrotechnical Commission (IEC) 60780 (1998)--and provides recommendations for environmental qualification of microprocessor-based systems based on this analysis as well as on the findings documented in the previous reports. The two standards were chosen for this analysis because IEEE 323 is the standard used in the U.S. for the qualification of safety-related equipment in nuclear power plants, and IEC 60780 is its European counterpart. In addition, the IEC document was published in 1998, and should reflect any new qualification concerns, from the European perspective, with regard to the use of microprocessor-based safety systems in power plants.« less

  16. Nevada Renewable Energy Training Project: Geothermal Power Plant Operators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jim, Nichols

    2014-04-29

    The purpose of this project was to develop and institute a training program for certified geothermal power plant operators (GPO). An advisory board consisting of subject matter experts from the geothermal energy industry and academia identified the critical skill sets required for this profession. A 34-credit Certificate of Achievement (COA), Geothermal Power Plant Operator, was developed using eight existing courses and developing five new courses. Approval from the Nevada System of Higher Education Board of Regents was obtained. A 2,400 sq. ft. geothermal/fluid mechanics laboratory and a 3,000 sq. ft. outdoor demonstration laboratory were constructed for hands-on training. Students alsomore » participated in field trips to geothermal power plants in the region. The majority of students were able to complete the program in 2-3 semesters, depending on their level of math proficiency. Additionally the COA allowed students to continue to an Associate of Applied Science (AAS), Energy Technologies with an emphasis in Geothermal Energy (26 additional credits), if they desired. The COA and AAS are stackable degrees, which provide students with an ongoing career pathway. Articulation agreements with other NSHE institutions provide students with additional opportunities to pursue a Bachelor of Applied Science in Management or Instrumentation. Job placement for COA graduates has been excellent.« less

  17. Evaluating the Power Consumption of Wireless Sensor Network Applications Using Models

    PubMed Central

    Dâmaso, Antônio; Freitas, Davi; Rosa, Nelson; Silva, Bruno; Maciel, Paulo

    2013-01-01

    Power consumption is the main concern in developing Wireless Sensor Network (WSN) applications. Consequently, several strategies have been proposed for investigating the power consumption of this kind of application. These strategies can help to predict the WSN lifetime, provide recommendations to application developers and may optimize the energy consumed by the WSN applications. While measurement is a known and precise strategy for power consumption evaluation, it is very costly, tedious and may be unfeasible considering the (usual) large number of WSN nodes. Furthermore, due to the inherent dynamism of WSNs, the instrumentation required by measurement techniques makes difficult their use in several different scenarios. In this context, this paper presents an approach for evaluating the power consumption of WSN applications by using simulation models along with a set of tools to automate the proposed approach. Starting from a programming language code, we automatically generate consumption models used to predict the power consumption of WSN applications. In order to evaluate the proposed approach, we compare the results obtained by using the generated models against ones obtained by measurement. PMID:23486217

  18. Evaluating the power consumption of wireless sensor network applications using models.

    PubMed

    Dâmaso, Antônio; Freitas, Davi; Rosa, Nelson; Silva, Bruno; Maciel, Paulo

    2013-03-13

    Power consumption is the main concern in developing Wireless Sensor Network (WSN) applications. Consequently, several strategies have been proposed for investigating the power consumption of this kind of application. These strategies can help to predict the WSN lifetime, provide recommendations to application developers and may optimize the energy consumed by the WSN applications. While measurement is a known and precise strategy for power consumption evaluation, it is very costly, tedious and may be unfeasible considering the (usual) large number of WSN nodes. Furthermore, due to the inherent dynamism of WSNs, the instrumentation required by measurement techniques makes difficult their use in several different scenarios. In this context, this paper presents an approach for evaluating the power consumption of WSN applications by using simulation models along with a set of tools to automate the proposed approach. Starting from a programming language code, we automatically generate consumption models used to predict the power consumption of WSN applications. In order to evaluate the proposed approach, we compare the results obtained by using the generated models against ones obtained by measurement.

  19. Design and Development of the Aircraft Instrument Comprehension Program.

    ERIC Educational Resources Information Center

    Higgins, Norman C.

    The Aircraft Instrument Comprehension (AIC) Program is a self-instructional program designed to teach undergraduate student pilots to read instruments that indicate the position of the aircraft in flight, based on sequential instructional stages of information, prompted practice, and unprompted practice. The program includes a 36-item multiple…

  20. Development flight instrumentation for the redesigned solid rocket booster for the Space Shuttle program

    NASA Astrophysics Data System (ADS)

    Stevens, Walter H.

    This paper describes the upgraded development flight instrumentation (DFI) system for monitoring the performance of the redesigned solid rocket boosters. The DFI system, which was manufactured, qualification tested, and subsequently flown on STS-26 on September 29, 1988, consists of one main power distributor, two frequency division multiplexers, two wideband signal conditioners one PCM subsystem, one chamber pressure signal conditioner, one tape recorder, and one battery. The PCM subsystem, which was newly designed for this application, consists of one programmable master unit and three identical remote slave units. These units conditioned all of the information received from the sensors and multiplexed this data into one encoded PCM data stream and two independent FM composite outputs. Block diagrams of the DFI system and its subsystems are included.

  1. Data acquisition and analysis in the DOE/NASA Wind Energy Program

    NASA Technical Reports Server (NTRS)

    Neustadter, H. E.

    1980-01-01

    Four categories of data systems, each responding to a distinct information need are presented. The categories are: control, technology, engineering and performance. The focus is on the technology data system which consists of the following elements: sensors which measure critical parameters such as wind speed and direction, output power, blade loads and strains, and tower vibrations; remote multiplexing units (RMU) mounted on each wind turbine which frequency modulate, multiplex and transmit sensor outputs; the instrumentation available to record, process and display these signals; and centralized computer analysis of data. The RMU characteristics and multiplexing techniques are presented. Data processing is illustrated by following a typical signal through instruments such as the analog tape recorder, analog to digital converter, data compressor, digital tape recorder, video (CRT) display, and strip chart recorder.

  2. Spinoff from a Moon Tool

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Portable self-contained drill capable of extracting core samples as much as 10 feet below the surface was needed for the astronauts. Black & Decker used a specially developed computer program to optimize the design of the drill's motor and insure minimal power consumption. Refinement of the original technology led to the development of a cordless miniature vacuum cleaner called the Dustbuster. It has no hose, no cord, is 14 inches long, and also comes with a storage bracket that also serves as a recharger; plugs into a home outlet that charges the nickel cadmium batteries when not in use. Other home use cordless instruments include drills, shrub trimmers and grass shears. Company also manufactures a number of cordless tools used in the sheet metal automobile and construction industries, and a line of cordless orthopedic instruments.

  3. Development of a Cryogen-Free Continuous ADR for the Constellation-X Mission

    NASA Technical Reports Server (NTRS)

    Shirron, Peter; Canavan, Ed; DiPirro, Michael; Francis, John; Jackson, Michael; Tuttle, James; King, Todd; Grabowski, Matt

    2003-01-01

    Constellation-X is a multi-satellite x-ray astronomy mission presently being planned for launch in the 2010 time frame. Each of 4 identical satellites will contain a telescope and instruments for imaging and spectroscopic analysis of both hard and soft x-rays. The X- ray Microcalorimeter Spectrometer (XMS) instrument will use arrays of microcalorimeters to detect X-rays with energies from 0.2 to 6 keV. The technologies under development for this instrument include Transition-Edge Sensors (TES) with multiplexed SQUID readouts and NTD-Ge detectors with JFET readouts. Both will be operated at temperatures in the 50-60 mK range and both have a projected cooling power requirement of approximately 5 microwatts. In addition, in order to meet the lifetime requirement of 6 years (with a goal of 10 years), a mechanical cryocooler will be used to provide a heat sink for the low temperature cooler. The required performance is 20 mW at 6 K, with a goal of 4 K operation. In this paper we present the development status of an adiabatic demagnetization refigerator (ADR) that meets the cooling requirements of the X M S instrument. At present we have demonstrated a 4-stage ADR that operates continuously at 50 mK using a 4.2 K helium bath as a heat sink. The cooling power is 21 microwatts at 100 mK and 6 microwatts at 50 mK. Its efficiency when operating at 50 mK is 1 1 % of Carnot (accounting for all dissipation at 4.2 K and below, but not including power dissipation in the room temperature electronics), but this is expected to rise to 25% in the next generation system in which active gas-gap heat switches are replaced with passive devices. This will reduce the peak heat rejection rate of the ADR to less than 7 mW at 6 K. Details of the ADR s design and operation, as well as the development program leading up to a flight-qualified instrument, will be discussed.

  4. Spanish participation in the development of HARMONI, the first light integral field spectrograph for the E-ELT.

    NASA Astrophysics Data System (ADS)

    García-Lorenzo, B.; HARMONI Consortium

    2015-05-01

    HARMONI is the visible and near infrared integral field spectrograph (IFS) selected as a first-light instrument for the European Extremely Large Telescope (E-ELT). With four spatial scales and a range of spectral resolving powers, astronomers will optimally configure the instrument to overtake a wide range of scientific programs and to address many of the E-ELT science cases. The Centro de Astrobiología del CSIC/INTA (CAB-CSIC) and the Instituto de Astrofísica de Canarias (IAC) form part of the international consortium developing HARMONI, participation that will constitute an unique scientific opportunity for the Spanish astronomical community, allowing the access to the E-ELT as soon as it were operative via the guaranteed time. We describe here the instrument and its capabilities with special attention to the Spanish contribution to HARMONI. At the current stage of the project, HARMONI design is being revised due to significant modifications of the Nasmyth platform affecting the interface with HARMONI.

  5. Neural networks for simultaneous classification and parameter estimation in musical instrument control

    NASA Astrophysics Data System (ADS)

    Lee, Michael; Freed, Adrian; Wessel, David

    1992-08-01

    In this report we present our tools for prototyping adaptive user interfaces in the context of real-time musical instrument control. Characteristic of most human communication is the simultaneous use of classified events and estimated parameters. We have integrated a neural network object into the MAX language to explore adaptive user interfaces that considers these facets of human communication. By placing the neural processing in the context of a flexible real-time musical programming environment, we can rapidly prototype experiments on applications of adaptive interfaces and learning systems to musical problems. We have trained networks to recognize gestures from a Mathews radio baton, Nintendo Power GloveTM, and MIDI keyboard gestural input devices. In one experiment, a network successfully extracted classification and attribute data from gestural contours transduced by a continuous space controller, suggesting their application in the interpretation of conducting gestures and musical instrument control. We discuss network architectures, low-level features extracted for the networks to operate on, training methods, and musical applications of adaptive techniques.

  6. Possible communication scheme for closely-spaced multi-spacecraft missions

    NASA Astrophysics Data System (ADS)

    Dikareva, J.; Veselov, M.; Lesina, T.; Prokhorenko, V.; Nikolaeva, N.

    2003-04-01

    The progress in space instrumentation causes the rising number of the instrument modes, adjustments and other features. The work of the different instrument groups (field, wave, particle complexes) needs in more precise coordination. Furthermore, several spacecraft carry out the measurements simultaneously. All of that requires new approaches for the s/c control and data synchronization. The positive experience of the use of on-board program libraries correlated with different magnetospheric domains crossing prediction applied in INTERBALL project is analyzed. For the case of satellite-several subsatellites the original communication scheme is suggested. Taking into account strict weight and energy limitations it is difficult to establish a direct high bitrate subsatellite-graundstation radio-link. However such a radio-link seems possible for subsatellite-satellite due to the much shorter distance and therefore less power needed. The advantage of the use of main satellite as a communication mediator between a graundstation and subsatellites is considered. The scheme can be useful for multi-spacecraft planetary and deep space missions. The work is supported by INTAS 2000-465.

  7. Passive Plasma Contact Mechanisms for Small-Scale Spacecraft

    NASA Astrophysics Data System (ADS)

    McTernan, Jesse K.

    Small-scale spacecraft represent a paradigm shift in how entities such as academia, industry, engineering firms, and the scientific community operate in space. However, although the paradigm shift produces unique opportunities to build satellites in unique ways for novel missions, there are also significant challenges that must be addressed. This research addresses two of the challenges associated with small-scale spacecraft: 1) the miniaturization of spacecraft and associated instrumentation and 2) the need to transport charge across the spacecraft-environment boundary. As spacecraft decrease in size, constraints on the size, weight, and power of on-board instrumentation increase--potentially limiting the instrument's functionality or ability to integrate with the spacecraft. These constraints drive research into mechanisms or techniques that use little or no power and efficiently utilize existing resources. One limited resource on small-scale spacecraft is outer surface area, which is often covered with solar panels to meet tight power budgets. This same surface area could also be needed for passive neutralization of spacecraft charging. This research explores the use of a transparent, conductive layer on the solar cell coverglass that is electrically connected to spacecraft ground potential. This dual-purpose material facilitates the use of outer surfaces for both energy harvesting of solar photons as well as passive ion collection. Mission capabilities such as in-situ plasma measurements that were previously infeasible on small-scale platforms become feasible with the use of indium tin oxide-coated solar panel coverglass. We developed test facilities that simulate the space environment in low Earth orbit to test the dual-purpose material and the various application of this approach. Particularly, this research is in support of two upcoming missions: OSIRIS-3U, by Penn State's Student Space Programs Lab, and MiTEE, by the University of Michigan. The purpose of OSIRIS-3U is to investigate the effects of space weather on the ionosphere. The spacecraft will use a pulsed Langmuir probe, an instrument now enabled on small-scale spacecraft through the techniques outlined in this research.

  8. ALSAT-2A power subsystem behavior during launch, early operation, and in-orbit test

    NASA Astrophysics Data System (ADS)

    Larbi, N.; Attaba, M.; Beaufume, E.

    2012-09-01

    In 2006, Algerian Space Agency (ASAL) decided to design and built two optical Earth observation satellites. The first one, ALSAT-2A, was integrated and tested as a training and cooperation program with EADS Astrium. The second satellite ALSAT-2B will be integrated by ASAL engineers in the Satellite Development Center (CDS) at Oran in Algeria. On 12th July 2010, Algeria has launched ALSAT-2A onboard an Indian rocket PSLV-C15 from the Sriharikota launch base, Chennaï. ALSAT-2A is the first Earth observation satellite of the AstroSat-100 family; the design is based on the Myriade platform and comprising the first flight model of the New Astrosat Observation Modular Instrument (NAOMI). This Instrument offers a 2.5m ground resolution for the PAN channel and a 10m ground resolution for four multi-spectral channels which provides high imaging quality. The operations are performed from ALSAT-2 ground segment located in Ouargla (Algeria) and after the test phase ALSAT-2A provides successful images. ALSAT-2A electrical power subsystem (EPS) is composed of a Solar Array Generator (SAG ), a Li-ion battery dedicated to power storage and energy source during eclipse or high consumption phases and a Power Conditioning and Distribution Unit (PCDU). This paper focuses primarily on ALSAT-2A electrical power subsystem behavior during Launch and Early OPeration (LEOP) as well as In Orbit Test (IOT). The telemetry data related to the SAG voltage, current and temperature will be analyzed in addition to battery temperature, voltage, charge and discharge current. These parameters will be studied in function of satellite power consumption.

  9. Laboratory instrumentation modernization at the WPI Nuclear Reactor Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1995-01-01

    With partial funding from the Department of Energy (DOE) University Reactor Instrumentation Program several laboratory instruments utilized by students and researchers at the WPI Nuclear Reactor Facility have been upgraded or replaced. Designed and built by General Electric in 1959, the open pool nuclear training reactor at WPI was one of the first such facilities in the nation located on a university campus. Devoted to undergraduate use, the reactor and its related facilities have been since used to train two generations of nuclear engineers and scientists for the nuclear industry. The low power output of the reactor and an ergonomicmore » facility design make it an ideal tool for undergraduate nuclear engineering education and other training. The reactor, its control system, and the associate laboratory equipment are all located in the same room. Over the years, several important milestones have taken place at the WPI reactor. In 1969, the reactor power level was upgraded from 1 kW to 10 kW. The reactor`s Nuclear Regulatory Commission operating license was renewed for 20 years in 1983. In 1988, under DOE Grant No. DE-FG07-86ER75271, the reactor was converted to low-enriched uranium fuel. In 1992, again with partial funding from DOE (Grant No. DE-FG02-90ER12982), the original control console was replaced.« less

  10. Emerging Methods and Systems for Observing Life in the Sea

    NASA Astrophysics Data System (ADS)

    Chavez, F.; Pearlman, J.; Simmons, S. E.

    2016-12-01

    There is a growing need for observations of life in the sea at time and space scales consistent with those made for physical and chemical parameters. International programs such as the Global Ocean Observing System (GOOS) and Marine Biodiversity Observation Networks (MBON) are making the case for expanded biological observations and working diligently to prioritize essential variables. Here we review past, present and emerging systems and methods for observing life in the sea from the perspective of maintaining continuous observations over long time periods. Methods that rely on ships with instrumentation and over-the-side sample collections will need to be supplemented and eventually replaced with those based from autonomous platforms. Ship-based optical and acoustic instruments are being reduced in size and power for deployment on moorings and autonomous vehicles. In parallel a new generation of low power, improved resolution sensors are being developed. Animal bio-logging is evolving with new, smaller and more sophisticated tags being developed. New genomic methods, capable of assessing multiple trophic levels from a single water sample, are emerging. Autonomous devices for genomic sample collection are being miniaturized and adapted to autonomous vehicles. The required processing schemes and methods for these emerging data collections are being developed in parallel with the instrumentation. An evolving challenge will be the integration of information from these disparate methods given that each provides their own unique view of life in the sea.

  11. Identifying a Power Elite in a Microcosmic Adult Community.

    ERIC Educational Resources Information Center

    Roberts, William B.

    The study presents the results of testing an original obersvation instrument designed to identify a power elite in multiple sessions of two eight-member adult discussion groups. Two questions guided the development of the study: (1) Can a power elite be identified in participation training groups? (2) Can an effective observation instrument with…

  12. Removal of simulated biofilm: a preclinical ergonomic comparison of instruments and operators.

    PubMed

    Graetz, Christian; Plaumann, Anna; Rauschenbach, Sebastian; Bielfeldt, Jule; Dörfer, Christof E; Schwendicke, Falk

    2016-07-01

    Periodontal scaling might cause musculoskeletal disorders, and scaling instruments might not only have different effectiveness and efficiency but also differ in their ergonomic properties. The present study assessed ergonomic working patterns of experienced (EO) and less experienced operators (LO) when using hand and powered devices for periodontal scaling and root planning. In an experimental study using periodontally affected manikins, sonic (AIR), ultrasonic (TIG) and hand instruments (GRA) were used by 11 operators (7 EO/4 LO) during simulated supportive periodontal therapy. Using an electronic motion monitoring system, we objectively assessed the working frequency and positioning of hand, neck and head. Operators' subjective evaluation of the instruments was recorded using a questionnaire. Hand instruments were used with the lowest frequency (2.57 ± 1.08 s(-1)) but greatest wrist deviation (59.57 ± 53.94°). EO used instruments more specifically than LO, and generally worked more ergonomically, with less inclination of head and neck in both the frontal and sagittal planes, especially when using hand instruments. All groups found hand instruments more tiring and difficult to use than powered instruments. Regardless of operators' experience, powered instruments were used more ergonomically and were subjectively preferred compared to hand instruments. The use of hand instruments has potential ergonomic disadvantages. However, with increasing experience, operators are able to recognise and mitigate possible risks.

  13. The PLATO Dome A site-testing observatory: power generation and control systems.

    PubMed

    Lawrence, J S; Ashley, M C B; Hengst, S; Luong-Van, D M; Storey, J W V; Yang, H; Zhou, X; Zhu, Z

    2009-06-01

    The atmospheric conditions above Dome A, a currently unmanned location at the highest point on the Antarctic plateau, are uniquely suited to astronomy. For certain types of astronomy Dome A is likely to be the best location on the planet, and this has motivated the development of the Plateau Observatory (PLATO). PLATO was deployed to Dome A in early 2008. It houses a suite of purpose-built site-testing instruments designed to quantify the benefits of Dome A site for astronomy, and science instruments designed to take advantage of the observing conditions. The PLATO power generation and control system is designed to provide continuous power and heat, and a high-reliability command and communications platform for these instruments. PLATO has run and collected data throughout the winter 2008 season completely unattended. Here we present a detailed description of the power generation, power control, thermal management, instrument interface, and communications systems for PLATO, and an overview of the system performance for 2008.

  14. The PLATO Dome A site-testing observatory: Power generation and control systems

    NASA Astrophysics Data System (ADS)

    Lawrence, J. S.; Ashley, M. C. B.; Hengst, S.; Luong-van, D. M.; Storey, J. W. V.; Yang, H.; Zhou, X.; Zhu, Z.

    2009-06-01

    The atmospheric conditions above Dome A, a currently unmanned location at the highest point on the Antarctic plateau, are uniquely suited to astronomy. For certain types of astronomy Dome A is likely to be the best location on the planet, and this has motivated the development of the Plateau Observatory (PLATO). PLATO was deployed to Dome A in early 2008. It houses a suite of purpose-built site-testing instruments designed to quantify the benefits of Dome A site for astronomy, and science instruments designed to take advantage of the observing conditions. The PLATO power generation and control system is designed to provide continuous power and heat, and a high-reliability command and communications platform for these instruments. PLATO has run and collected data throughout the winter 2008 season completely unattended. Here we present a detailed description of the power generation, power control, thermal management, instrument interface, and communications systems for PLATO, and an overview of the system performance for 2008.

  15. Group power through the lens of the 21st century and beyond: further validation of the Sieloff-King Assessment of Group Power within Organizations.

    PubMed

    Sieloff, Christina L; Bularzik, Anne M

    2011-11-01

    The purpose was to determine the content validity of a semantic revision of items on a reliable and valid instrument, the Sieloff-King Assessment of Group Power within Organizations (SKAGPO). Research participants expressed negative perceptions regarding the use of the concept of 'power' in SKAGPO items. The SKAGPO is the only instrument measuring a nursing group's power or outcome attainment. Using a survey method, the instrument and grading scale were sent to 12 expert judges. Six participants completed the grading scale. The Content Validity Index (CVI) for seven questions was at or above 83% agreement. Overall, the CVI for the eight revised questions was 93.75%. Subsequently, the instrument was renamed the Sieloff-King Assessment of Group Outcome Attainment within Organizations (SKAGOAO). The semantic revision demonstrated content validity for the revised SKAGOAO. When used by nursing groups to assess their level of outcome attainment, the instrument should continue to be psychometrically evaluated. A nursing group of any size can use the SKAGOAO to both assess the group's level of outcome attainment or empowerment and direct plans to further improve that level. © 2011 Blackwell Publishing Ltd.

  16. 1986 Nuclear Science Symposium, 33rd, and 1986 Symposium on Nuclear Power Systems, 18th, Washington, DC, Oct. 29-31, 1986, Proceedings

    NASA Technical Reports Server (NTRS)

    Stubblefield, F. W. (Editor)

    1987-01-01

    Papers are presented on space, low-energy physics, and general nuclear science instrumentations. Topics discussed include data acquisition systems and circuits, nuclear medicine imaging and tomography, and nuclear radiation detectors. Consideration is given to high-energy physics instrumentation, reactor systems and safeguards, health physics instrumentation, and nuclear power systems.

  17. Radiant Power Measuring Instrument (RPMI)

    NASA Technical Reports Server (NTRS)

    Rogers, R. H. (Principal Investigator)

    1973-01-01

    There are no author-identified significant results in this report. The radiant power measuring instrument is a rugged, hand-carried instrument which provides an ERTS investigator with a capability of obtaining radiometric measurements needed to determine solar and atmospheric parameters that affect the ERTS radiance measurements. With these parameters, ERTS data can be transformed into absolute target reflectance signatures, making accurate unambiguous interpretations possible.

  18. A multi-channel instrumentation system for biosignal recording.

    PubMed

    Yu, Hong; Li, Pengfei; Xiao, Zhiming; Peng, Chung-Ching; Bashirullah, Rizwan

    2008-01-01

    This paper reports a highly integrated battery operated multi-channel instrumentation system intended for physiological signal recording. The mixed signal IC has been fabricated in standard 0.5microm 5V 3M-2P CMOS process and features 32 instrumentation amplifiers, four 8b SAR ADCs, a wireless power interface with Li-ion battery charger, low power bidirectional telemetry and FSM controller with power gating control for improved energy efficiency. The chip measures 3.2mm by 4.8mm and dissipates approximately 2.1mW when fully operational.

  19. Temperature-programmed deoxygenation of acetic acid on molybdenum carbide catalysts

    DOE PAGES

    Nash, Connor P.; Farberow, Carrie A.; Hensley, Jesse E.

    2017-02-07

    Temperature programmed reaction (TPRxn) is a simple yet powerful tool for screening solid catalyst performance at a variety of conditions. A TPRxn system includes a reactor, furnace, gas and vapor sources, flow control, instrumentation to quantify reaction products (e.g., gas chromatograph), and instrumentation to monitor the reaction in real time (e.g., mass spectrometer). Here, we apply the TPRxn methodology to study molybdenum carbide catalysts for the deoxygenation of acetic acid, an important reaction among many in the upgrading/stabilization of biomass pyrolysis vapors. TPRxn is used to evaluate catalyst activity and selectivity and to test hypothetical reaction pathways (e.g., decarbonylation, ketonization,more » and hydrogenation). Furthermore, the results of the TPRxn study of acetic acid deoxygenation show that molybdenum carbide is an active catalyst for this reaction at temperatures above ca. 300 °C and that the reaction favors deoxygenation (i.e., C-O bond-breaking) products at temperatures below ca. 400 °C and decarbonylation (i.e., C-C bond-breaking) products at temperatures above ca. 400 °C.« less

  20. A novel microcontroller-based digital instrument for measurement of electrical quantities under non-sinusoidal condition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anaya, O.; Moreno, G.E.L.; Madrigal, M.M.

    1999-11-01

    In the last years, several definitions of power have been proposed for more accurate measurement of electrical quantities in presence of harmonics pollution on power lines. Nevertheless, only few instruments have been constructed considering these definitions. This paper describes a new microcontroller-based digital instrument, which include definitions based on Harley Transform. The algorithms are fully processed using Fast Hartley Transform (FHT) and 16 bit-microcontroller platform. The constructed prototype was compared with commercial harmonics analyzer instrument.

  1. CBERS-03 Satellite Power Supply Subsystem

    NASA Astrophysics Data System (ADS)

    Almeida, Mario C. P.; Bo, Han

    2005-05-01

    The second China Brazil Earth Resources Satellite, CBERS-2, was successfully launched on October 21st, 2003 from the Taiyuan Satellite Launch Center, China, through a Long March 4B launcher.The cooperation between China and Brazil for the construction of CBERS satellites is a continued mission and the governments of both countries are committed to building CBERS-3 for the continued and improved services started with the launch of CBERS-1 satellite [1]. Given to its success, the CBERS program is considered as a model for other joint scientific and technological projects between those two countries. CBERS-3 will have new instruments with higher resolution and higher power consumption requirements. The Power Supply Subsystem of CBERS-3 will be a scaled-up version of the one used in the previous missions, but will also present some innovations now possible due to improvements in components, technologies and materials. The modular concept used in the previous design, and repeated in this new mission, will allow the development of the new power subsystem equipments in a straightforward manner.

  2. Performance of Nickel-Cadmium Batteries on the POES Series of Weather Satellites

    NASA Technical Reports Server (NTRS)

    Rao, Gopalakrishna M.; Chetty, P. R. K.; Boyce, Ron; Smalls, Vanessa; Spitzer, Tom

    1998-01-01

    The advanced Television Infrared Observation satellite program is a cooperative effort between the National Aeronautics and Space Administration (NASA), the National Oceanic and Atmospheric Administration (NOAA), the United Kingdom, Canada and France, for providing day and night global environmental and associated data. NASA is responsible for procurement launch, and checkout of these spacecraft before transferring them over to NOAA, who operates the spacecraft to support weather forecasting, severe storm tracking, and 'meteorological research by the National Weather Service. These spacecraft with all weather monitoring instruments imposed challenging requirements for the onboard electrical power subsystem (EPS). This paper provides first a brief overview of the overall power subsystem, followed by a description of batteries. A unique power subsystem design which provides 'tender-loving-care' to these batteries is highlighted. This is followed by the on-orbit maintenance and performance data of the batteries since launch.

  3. Security Hardened Cyber Components for Nuclear Power Plants: Phase I SBIR Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franusich, Michael D.

    SpiralGen, Inc. built a proof-of-concept toolkit for enhancing the cyber security of nuclear power plants and other critical infrastructure with high-assurance instrumentation and control code. The toolkit is based on technology from the DARPA High-Assurance Cyber Military Systems (HACMS) program, which has focused on applying the science of formal methods to the formidable set of problems involved in securing cyber physical systems. The primary challenges beyond HACMS in developing this toolkit were to make the new technology usable by control system engineers and compatible with the regulatory and commercial constraints of the nuclear power industry. The toolkit, packaged as amore » Simulink add-on, allows a system designer to assemble a high-assurance component from formally specified and proven blocks and generate provably correct control and monitor code for that subsystem.« less

  4. Projects for the implementation of science technology society approach in basic concept of natural science course as application of optical and electrical instruments’ material

    NASA Astrophysics Data System (ADS)

    Satria, E.

    2018-03-01

    Preservice teachers in primary education should be well equipped to meet the challenges of teaching primary science effectively in 21century. The purpose of this research was to describe the projects for the implementation of Science-Technology-Society (STS) approach in Basic Concept of Natural Science course as application of optical and electrical instruments’ material by the preservice teachers in Elementary Schools Teacher Education Program. One of the reasons is the lack of preservice teachers’ ability in making projects for application of STS approach and optical and electrical instruments’ material in Basic Concept of Natural Science course. This research applied descriptive method. The instrument of the research was the researcher himself. The data were gathered through observation and documentation. Based on the results of the research, it was figured out that preservice teachers, in groups, were creatively and successful to make the projects of optical and electrical instruments assigned such as projector and doorbell. It was suggested that the construction of the instruments should be better (fixed and strong structure) and more attractive for both instruments, and used strong light source, high quality images, and it could use speaker box for projector, power battery, and heat sink for electrical instruments.

  5. Advanced life support control/monitor instrumentation concepts for flight application

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; Dahlhausen, M. J.; Fell, R. B.

    1986-01-01

    Development of regenerative Environmental Control/Life Support Systems requires instrumentation characteristics which evolve with successive development phases. As the development phase moves toward flight hardware, the system availability becomes an important design aspect which requires high reliability and maintainability. This program was directed toward instrumentation designs which incorporate features compatible with anticipated flight requirements. The first task consisted of the design, fabrication and test of a Performance Diagnostic Unit. In interfacing with a subsystem's instrumentation, the Performance Diagnostic Unit is capable of determining faulty operation and components within a subsystem, perform on-line diagnostics of what maintenance is needed and accept historical status on subsystem performance as such information is retained in the memory of a subsystem's computerized controller. The second focus was development and demonstration of analog signal conditioning concepts which reduce the weight, power, volume, cost and maintenance and improve the reliability of this key assembly of advanced life support instrumentation. The approach was to develop a generic set of signal conditioning elements or cards which can be configured to fit various subsystems. Four generic sensor signal conditioning cards were identified as being required to handle more than 90 percent of the sensors encountered in life support systems. Under company funding, these were detail designed, built and successfully tested.

  6. Sustainability and power in health promotion: community-based participatory research in a reproductive health policy case study in New Mexico.

    PubMed

    Mendes, Rosilda; Plaza, Veronica; Wallerstein, Nina

    2016-03-01

    Health promotion programs are commonly viewed as value-free initiatives which seek to improve health, often through behavior change. An opposing view has begun to emerge that health promotion efforts, especially ones seeking to impact health policy and social determinants of health, are vulnerable to political contexts and may depend on who is in power at the time. This community-based participatory research study attempts to understand these interactions by applying a conceptual model focused on the power context, diverse stakeholder roles within this context, and the relationship of political levers and other change strategies to the sustainability of health promotion interventions aimed at health policy change. We present a case study of a health promotion coalition, New Mexico for Responsible Sex Education (NMRSE), as an example of power dynamics and change processes. Formed in 2005 in response to federal policies mandating abstinence-only education, NMRSE includes community activists, health promotion staff from the New Mexico Department of Health, and policy-maker allies. Applying an adapted Mayer's 'power analysis' instrument, we conducted semi-structured stakeholder interviews and triangulated political-context analyses from the perspective of the stakeholders.We identified multiple understandings of sustainability and health promotion policy change, including: the importance of diverse stakeholders working together in coalition and social networks; their distinct positions of power within their political contexts; the role of science versus advocacy in change processes; the particular challenges for public sector health promotion professionals; and other facilitators versus barriers to action. One problem that emerged consisted of the challenges for state employees to engage in health promotion advocacy due to limitations imposed on their activities by state and federal policies. This investigation's results include a refined conceptual model, a power-analysis instrument, and new understandings of the intersection of power and stakeholder strategies in the sustainability of health promotion and health in all policies. © The Author(s) 2014.

  7. Energy Harvesting Chip and the Chip Based Power Supply Development for a Wireless Sensor Network.

    PubMed

    Lee, Dasheng

    2008-12-02

    In this study, an energy harvesting chip was developed to scavenge energy from artificial light to charge a wireless sensor node. The chip core is a miniature transformer with a nano-ferrofluid magnetic core. The chip embedded transformer can convert harvested energy from its solar cell to variable voltage output for driving multiple loads. This chip system yields a simple, small, and more importantly, a battery-less power supply solution. The sensor node is equipped with multiple sensors that can be enabled by the energy harvesting power supply to collect information about the human body comfort degree. Compared with lab instruments, the nodes with temperature, humidity and photosensors driven by harvested energy had variation coefficient measurement precision of less than 6% deviation under low environmental light of 240 lux. The thermal comfort was affected by the air speed. A flow sensor equipped on the sensor node was used to detect airflow speed. Due to its high power consumption, this sensor node provided 15% less accuracy than the instruments, but it still can meet the requirement of analysis for predicted mean votes (PMV) measurement. The energy harvesting wireless sensor network (WSN) was deployed in a 24-hour convenience store to detect thermal comfort degree from the air conditioning control. During one year operation, the sensor network powered by the energy harvesting chip retained normal functions to collect the PMV index of the store. According to the one month statistics of communication status, the packet loss rate (PLR) is 2.3%, which is as good as the presented results of those WSNs powered by battery. Referring to the electric power records, almost 54% energy can be saved by the feedback control of an energy harvesting sensor network. These results illustrate that, scavenging energy not only creates a reliable power source for electronic devices, such as wireless sensor nodes, but can also be an energy source by building an energy efficient program.

  8. Energy Harvesting Chip and the Chip Based Power Supply Development for a Wireless Sensor Network

    PubMed Central

    Lee, Dasheng

    2008-01-01

    In this study, an energy harvesting chip was developed to scavenge energy from artificial light to charge a wireless sensor node. The chip core is a miniature transformer with a nano-ferrofluid magnetic core. The chip embedded transformer can convert harvested energy from its solar cell to variable voltage output for driving multiple loads. This chip system yields a simple, small, and more importantly, a battery-less power supply solution. The sensor node is equipped with multiple sensors that can be enabled by the energy harvesting power supply to collect information about the human body comfort degree. Compared with lab instruments, the nodes with temperature, humidity and photosensors driven by harvested energy had variation coefficient measurement precision of less than 6% deviation under low environmental light of 240 lux. The thermal comfort was affected by the air speed. A flow sensor equipped on the sensor node was used to detect airflow speed. Due to its high power consumption, this sensor node provided 15% less accuracy than the instruments, but it still can meet the requirement of analysis for predicted mean votes (PMV) measurement. The energy harvesting wireless sensor network (WSN) was deployed in a 24-hour convenience store to detect thermal comfort degree from the air conditioning control. During one year operation, the sensor network powered by the energy harvesting chip retained normal functions to collect the PMV index of the store. According to the one month statistics of communication status, the packet loss rate (PLR) is 2.3%, which is as good as the presented results of those WSNs powered by battery. Referring to the electric power records, almost 54% energy can be saved by the feedback control of an energy harvesting sensor network. These results illustrate that, scavenging energy not only creates a reliable power source for electronic devices, such as wireless sensor nodes, but can also be an energy source by building an energy efficient program. PMID:27873953

  9. Using XML and Java Technologies for Astronomical Instrument Control

    NASA Technical Reports Server (NTRS)

    Ames, Troy; Case, Lynne; Powers, Edward I. (Technical Monitor)

    2001-01-01

    Traditionally, instrument command and control systems have been highly specialized, consisting mostly of custom code that is difficult to develop, maintain, and extend. Such solutions are initially very costly and are inflexible to subsequent engineering change requests, increasing software maintenance costs. Instrument description is too tightly coupled with details of implementation. NASA Goddard Space Flight Center, under the Instrument Remote Control (IRC) project, is developing a general and highly extensible framework that applies to any kind of instrument that can be controlled by a computer. The software architecture combines the platform independent processing capabilities of Java with the power of the Extensible Markup Language (XML), a human readable and machine understandable way to describe structured data. A key aspect of the object-oriented architecture is that the software is driven by an instrument description, written using the Instrument Markup Language (IML), a dialect of XML. IML is used to describe the command sets and command formats of the instrument, communication mechanisms, format of the data coming from the instrument, and characteristics of the graphical user interface to control and monitor the instrument. The IRC framework allows the users to define a data analysis pipeline which converts data coming out of the instrument. The data can be used in visualizations in order for the user to assess the data in real-time, if necessary. The data analysis pipeline algorithms can be supplied by the user in a variety of forms or programming languages. Although the current integration effort is targeted for the High-resolution Airborne Wideband Camera (HAWC) and the Submillimeter and Far Infrared Experiment (SAFIRE), first-light instruments of the Stratospheric Observatory for Infrared Astronomy (SOFIA), the framework is designed to be generic and extensible so that it can be applied to any instrument. Plans are underway to test the framework with other types of instruments, such as remote sensing earth science instruments.

  10. Instrument Records And Plays Back Acceleration Signals

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J.

    1994-01-01

    Small, battery-powered, hand-held instrument feeds power to accelerometer and records time-varying component of output for 15 seconds in analog form. No power needed to maintain content of memory; memory chip removed after recording and stored indefinitely. Recorded signal plays back at any time up to several years later. Principal advantages: compactness, portability, and low cost.

  11. Vibration Monitoring of Power Distribution Poles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark Scott; Gail Heath; John Svoboda

    2006-04-01

    Some of the most visible and least monitored elements of our national security infrastructure are the poles and towers used for the distribution of our nation’s electrical power. Issues surrounding these elements within the United States include safety such as unauthorized climbing and access, vandalism such as nut/bolt removal or destructive small arms fire, and major vandalism such as the downing of power poles and towers by the cutting of the poles with a chainsaw or torches. The Idaho National Laboratory (INL) has an ongoing research program working to develop inexpensive and sensitive sensor platforms for the monitoring and characterizationmore » of damage to the power distribution infrastructure. This presentation covers the results from the instrumentation of a variety of power poles and wires with geophone assemblies and the recording of vibration data when power poles were subjected to a variety of stimuli. Initial results indicate that, for the majority of attacks against power poles, the resulting signal can be seen not only on the targeted pole but on sensors several poles away in the distribution network and a distributed sensor system can be used to monitor remote and critical structures.« less

  12. Artificial intelligence programming with LabVIEW: genetic algorithms for instrumentation control and optimization.

    PubMed

    Moore, J H

    1995-06-01

    A genetic algorithm for instrumentation control and optimization was developed using the LabVIEW graphical programming environment. The usefulness of this methodology for the optimization of a closed loop control instrument is demonstrated with minimal complexity and the programming is presented in detail to facilitate its adaptation to other LabVIEW applications. Closed loop control instruments have variety of applications in the biomedical sciences including the regulation of physiological processes such as blood pressure. The program presented here should provide a useful starting point for those wishing to incorporate genetic algorithm approaches to LabVIEW mediated optimization of closed loop control instruments.

  13. The GONG Farside Project

    NASA Astrophysics Data System (ADS)

    Leibacher, J. W.; Braun, D.; González Hernández, I.; Goodrich, J.; Kholikov, S.; Lindsey, C.; Malanushenko, A.; Scherrer, P.

    2005-05-01

    The GONG program is currently providing near-real-time helioseismic images of the farside of the Sun. The continuous stream of low resolution images, obtained from the 6 earth based GONG stations, are merged into a single data series that are the input to the farside pipeline. In order to validate the farside images, it is crucial to compare the results obtained from different instruments. We show comparisons between the farside images provided by the MDI instrument and the GONG ones. New aditions to the pipeline will allow us to create full-hemisphere farside images, examples of the latest are shown in this poster. Our efforts are now concentrated in calibrating the farside signal so it became a reliable solar activity forecasting tool. We are also testing single-skip acoustic power holography at 5-7 mHz as a prospective means of reinforcing the signatures of active regions crossing the the east and west limb and monitoring acoustic emission in the neighborhoods of Sun's the poles. This work utilizes data obtained by the Global Oscillation Network Group (GONG) Program, managed by the National Solar Observatory, which is operated by AURA, Inc. under a cooperative agreement with the National Science Foundation. The data were acquired by instruments operated by the Big Bear Solar Observatory, High Altitude Observatory, Learmonth Solar Observatory, Udaipur Solar Observatory, Instituto de Astrofisico de Canarias, and Cerro Tololo Interamerican Observatory, as well as the Michaelson Doppler Imager on SoHO, a mission of international cooperation between ESA and NASA. This work has been supported by the NASA Living with a Star - Targeted Research and Technology program.

  14. An overview of large wind turbine tests by electric utilities

    NASA Technical Reports Server (NTRS)

    Vachon, W. A.; Schiff, D.

    1982-01-01

    A summary of recent plants and experiences on current large wind turbine (WT) tests being conducted by electric utilities is provided. The test programs discussed do not include federal research and development (R&D) programs, many of which are also being conducted in conjunction with electric utilities. The information presented is being assembled in a project, funded by the Electric Power Research Institute (EPRI), the objective of which is to provide electric utilities with timely summaries of test performance on key large wind turbines. A summary of key tests, test instrumentation, and recent results and plans is given. During the past year, many of the utility test programs initiated have encountered test difficulties that required specific WT design changes. However, test results to date continue to indicate that long-term machine performance and cost-effectiveness are achievable.

  15. Adding Interferometer Restoration and Upgrade: Learning by Doing with the NINE Program

    NASA Astrophysics Data System (ADS)

    Saby, Linnea

    2017-01-01

    During the summer of 2016, participants in the National and International Non-Traditional Exchange (NINE) Program were responsible for the restoration and upgrade of N2I2, an instructional interferometer located on New Mexico Tech's Socorro campus. The NINE program is a National Radio Astronomy Observatory (NRAO) initiative geared towards providing training in project management and other STEM functional areas to underrepresented groups around the world. A description of this restoration project illustrates both the experience of a NINE program participant and, more specifically, how principles of engineering and project management were applied to achieve project objectives.N2I2 was created by a joint NRAO-New Mexico Tech (NMT) team and became operational in 2004. The original instrument comprised two ten-foot dishes which recieved signals that were added using a simple power combiner, and data was interpreted using software on computers located in a nearby control room. The theory of adding interferometry was re-discovered for the design of this unique telescope. N2I2 was built using simple hardware with the intention of allowing interested community members and students from middle school to graduate school to learn about the principles of radio astronomy.Unfortunately, between 2008 and 2016 N2I2 was not used on a regular basis and fell into disrepair. NINE program director Lory Wingate accepted the responsibility of restoring the instrument as an experiential learning opportunity for the Socorro, New Mexico NINE team.During their 9 week assignment, the NINE team created a project plan, replaced and upgraded antenna hardware, developed operation and maintenance manuals, and refurbished the control room. A project plan was created for the addition of a third antenna and that plan was successfully carried out during August and September of 2016.Ultimately, functionality was successfully restored and improved, a maintenance plan was put into place, and community interest in the instrument was reignited.

  16. 21 CFR 882.4310 - Powered simple cranial drills, burrs, trephines, and their accessories.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... drilling instruments used on a patient's skull. The instruments are used with a power source but do not have a clutch mechanism to disengage the tip after penetrating the skull. (b) Classification. Class II...

  17. High-precision cryogenic wheel mechanisms of the JWST/MIRI instrument: performance of the flight models

    NASA Astrophysics Data System (ADS)

    Krause, O.; Müller, F.; Birkmann, S.; Böhm, A.; Ebert, M.; Grözinger, U.; Henning, Th.; Hofferbert, R.; Huber, A.; Lemke, D.; Rohloff, R.-R.; Scheithauer, S.; Gross, T.; Fischer, T.; Luichtel, G.; Merkle, H.; Übele, M.; Wieland, H.-U.; Amiaux, J.; Jager, R.; Glauser, A.; Parr-Burman, P.; Sykes, J.

    2010-07-01

    The Mid Infrared Instrument (MIRI) aboard JWST is equipped with one filter wheel and two dichroic-grating wheel mechanisms to reconfigure the instrument between observing modes such as broad/narrow-band imaging, coronagraphy and low/medium resolution spectroscopy. Key requirements for the three mechanisms with up to 18 optical elements on the wheel include: (1) reliable operation at T = 7 K, (2) high positional accuracy of 4 arcsec, (3) low power dissipation, (4) high vibration capability, (5) functionality at 7 K < T < 300 K and (6) long lifetime (5-10 years). To meet these requirements a space-proven wheel concept consisting of a central MoS2-lubricated integrated ball bearing, a central torque motor for actuation, a ratchet system with monolithic CuBe flexural pivots for precise and powerless positioning and a magnetoresistive position sensor has been implemented. We report here the final performance and lessons-learnt from the successful acceptance test program of the MIRI wheel mechanism flight models. The mechanisms have been meanwhile integrated into the flight model of the MIRI instrument, ready for launch in 2014 by an Ariane 5 rocket.

  18. The Inner Magnetospheric Imager (IMI): Instrument heritage and orbit viewing analysis

    NASA Astrophysics Data System (ADS)

    Wilson, Gordon R.

    1992-12-01

    For the last two years an engineering team in the Program Development Office at MSFC has been doing design studies for the proposed Inner Magnetospheric Imager (IMI) mission. This team had a need for more information about the instruments that this mission would carry so that they could get a better handle on instrument volume, mass, power, and telemetry needs as well as information to help assess the possible cost of such instruments and what technology development they would need. To get this information, an extensive literature search was conducted as well as interviews with several members of the IMI science working group. The results of this heritage survey are summarized below. There was also a need to evaluate the orbits proposed for this mission from the stand point of their suitability for viewing the various magnetospheric features that are planned for this mission. This was accomplished by first, identifying the factors which need to be considered in selecting an orbit, second, translating these considerations into specific criteria, and third, evaluating the proposed orbits against these criteria. The specifics of these criteria and the results of the orbit analysis are contained in the last section of this report.

  19. The Inner Magnetospheric Imager (IMI): Instrument heritage and orbit viewing analysis

    NASA Technical Reports Server (NTRS)

    Wilson, Gordon R.

    1992-01-01

    For the last two years an engineering team in the Program Development Office at MSFC has been doing design studies for the proposed Inner Magnetospheric Imager (IMI) mission. This team had a need for more information about the instruments that this mission would carry so that they could get a better handle on instrument volume, mass, power, and telemetry needs as well as information to help assess the possible cost of such instruments and what technology development they would need. To get this information, an extensive literature search was conducted as well as interviews with several members of the IMI science working group. The results of this heritage survey are summarized below. There was also a need to evaluate the orbits proposed for this mission from the stand point of their suitability for viewing the various magnetospheric features that are planned for this mission. This was accomplished by first, identifying the factors which need to be considered in selecting an orbit, second, translating these considerations into specific criteria, and third, evaluating the proposed orbits against these criteria. The specifics of these criteria and the results of the orbit analysis are contained in the last section of this report.

  20. Doppler Lidar System Design via Interdisciplinary Design Concept at NASA Langley Research Center - Part III

    NASA Technical Reports Server (NTRS)

    Barnes, Bruce W.; Sessions, Alaric M.; Beyon, Jeffrey; Petway, Larry B.

    2014-01-01

    Optimized designs of the Navigation Doppler Lidar (NDL) instrument for Autonomous Landing Hazard Avoidance Technology (ALHAT) were accomplished via Interdisciplinary Design Concept (IDEC) at NASA Langley Research Center during the summer of 2013. Three branches in the Engineering Directorate and three students were involved in this joint task through the NASA Langley Aerospace Research Summer Scholars (LARSS) Program. The Laser Remote Sensing Branch (LRSB), Mechanical Systems Branch (MSB), and Structural and Thermal Systems Branch (STSB) were engaged to achieve optimal designs through iterative and interactive collaborative design processes. A preliminary design iteration was able to reduce the power consumption, mass, and footprint by removing redundant components and replacing inefficient components with more efficient ones. A second design iteration reduced volume and mass by replacing bulky components with excessive performance with smaller components custom-designed for the power system. The existing power system was analyzed to rank components in terms of inefficiency, power dissipation, footprint and mass. Design considerations and priorities are compared along with the results of each design iteration. Overall power system improvements are summarized for design implementations.

  1. Jeagle: a JAVA Runtime Verification Tool

    NASA Technical Reports Server (NTRS)

    DAmorim, Marcelo; Havelund, Klaus

    2005-01-01

    We introduce the temporal logic Jeagle and its supporting tool for runtime verification of Java programs. A monitor for an Jeagle formula checks if a finite trace of program events satisfies the formula. Jeagle is a programming oriented extension of the rule-based powerful Eagle logic that has been shown to be capable of defining and implementing a range of finite trace monitoring logics, including future and past time temporal logic, real-time and metric temporal logics, interval logics, forms of quantified temporal logics, and so on. Monitoring is achieved on a state-by-state basis avoiding any need to store the input trace. Jeagle extends Eagle with constructs for capturing parameterized program events such as method calls and method returns. Parameters can be the objects that methods are called upon, arguments to methods, and return values. Jeagle allows one to refer to these in formulas. The tool performs automated program instrumentation using AspectJ. We show the transformational semantics of Jeagle.

  2. Molecular sequence data of hepatitis B virus and genetic diversity after vaccination.

    PubMed

    van Ballegooijen, W Marijn; van Houdt, Robin; Bruisten, Sylvia M; Boot, Hein J; Coutinho, Roel A; Wallinga, Jacco

    2009-12-15

    The effect of vaccination programs on transmission of infectious disease is usually assessed by monitoring programs that rely on notifications of symptomatic illness. For monitoring of infectious diseases with a high proportion of asymptomatic cases or a low reporting rate, molecular sequence data combined with modern coalescent-based techniques offer a complementary tool to assess transmission. Here, the authors investigate the added value of using viral sequence data to monitor a vaccination program that was started in 1998 and was targeted against hepatitis B virus in men who have sex with men in Amsterdam, the Netherlands. The incidence in this target group, as estimated from the notifications of acute infections with hepatitis B virus, was low; therefore, there was insufficient power to show a significant change in incidence. In contrast, the genetic diversity, as estimated from the viral sequence collected from the target group, revealed a marked decrease after vaccination was introduced. Taken together, the findings suggest that introduction of vaccination coincided with a change in the target group toward behavior with a higher risk of infection. The authors argue that molecular sequence data provide a powerful additional monitoring instrument, next to conventional case registration, for assessing the impact of vaccination.

  3. Ground test program for a full-size solar dynamic heat receiver

    NASA Technical Reports Server (NTRS)

    Sedgwick, L. M.; Kaufmann, K. J.; Mclallin, K. L.; Kerslake, T. W.

    1991-01-01

    Test hardware, facilities, and procedures were developed to conduct ground testing of a full-size, solar dynamic heat receiver in a partially simulated, low earth orbit environment. The heat receiver was designed to supply 102 kW of thermal energy to a helium and xenon gas mixture continuously over a 94 minute orbit, including up to 36 minutes of eclipse. The purpose of the test program was to quantify the receiver thermodynamic performance, its operating temperatures, and thermal response to changes in environmental and power module interface boundary conditions. The heat receiver was tested in a vacuum chamber using liquid nitrogen cold shrouds and an aperture cold plate. Special test equipment was designed to provide the required ranges in interface boundary conditions that typify those expected or required for operation as part of the solar dynamic power module on the Space Station Freedom. The support hardware includes an infrared quartz lamp heater with 30 independently controllable zones and a closed-Brayton cycle engine simulator to circulate and condition the helium-xenon gas mixture. The test article, test support hardware, facilities, and instrumentation developed to conduct the ground test program are all described.

  4. Ground test program for a full-size solar dynamic heat receiver

    NASA Technical Reports Server (NTRS)

    Sedgwick, L. M.; Kaufmann, K. J.; Mclallin, K. L.; Kerslake, T. W.

    1991-01-01

    Test hardware, facilities, and procedures were developed to conduct ground testing of a full size, solar dynamic heat receiver in a partially simulated, low Earth orbit environment. The heat receiver was designed to supply 102 kW of thermal energy to a helium and xenon gas mixture continuously over a 94 minute orbit, including up to 36 minutes of eclipse. The purpose of the test program was to quantify the receiver thermodynamic performance, its operating temperatures, and thermal response to changes in environmental and power module interface boundary conditions. The heat receiver was tested in a vacuum chamber using liquid nitrogen cold shrouds and an aperture cold plate. Special test equipment were designed to provide the required ranges in interface boundary conditions that typify those expected or required for operation as part of the solar dynamic power module on the Space Station Freedom. The support hardware includes an infrared quartz lamp heater with 30 independently controllable zones and a closed Brayton cycle engine simulator to circulate and condition the helium xenon gas mixture. The test article, test support hardware, facilities, and instrumentation developed to conduct the ground test program are all described.

  5. Ground test program for a full-size solar dynamic heat receiver

    NASA Astrophysics Data System (ADS)

    Sedgwick, L. M.; Kaufmann, K. J.; McLallin, K. L.; Kerslake, T. W.

    Test hardware, facilities, and procedures were developed to conduct ground testing of a full-size, solar dynamic heat receiver in a partially simulated, low earth orbit environment. The heat receiver was designed to supply 102 kW of thermal energy to a helium and xenon gas mixture continuously over a 94 minute orbit, including up to 36 minutes of eclipse. The purpose of the test program was to quantify the receiver thermodynamic performance, its operating temperatures, and thermal response to changes in environmental and power module interface boundary conditions. The heat receiver was tested in a vacuum chamber using liquid nitrogen cold shrouds and an aperture cold plate. Special test equipment was designed to provide the required ranges in interface boundary conditions that typify those expected or required for operation as part of the solar dynamic power module on the Space Station Freedom. The support hardware includes an infrared quartz lamp heater with 30 independently controllable zones and a closed-Brayton cycle engine simulator to circulate and condition the helium-xenon gas mixture. The test article, test support hardware, facilities, and instrumentation developed to conduct the ground test program are all described.

  6. Mass spectrometry in the U.S. space program: past, present, and future.

    PubMed

    Palmer, P T; Limero, T F

    2001-06-01

    Recent years have witnessed significant progress on the miniaturization of mass spectrometers for a variety of field applications. This article describes the development and application of mass spectrometry (MS) instrumentation to support of goals of the U.S. space program. Its main focus is on the two most common space-related applications of MS: studying the composition of planetary atmospheres and monitoring air quality on manned space missions. Both sets of applications present special requirements in terms of analytical performance (sensitivity, selectivity, speed, etc.), logistical considerations (space, weight, and power requirements), and deployment in perhaps the harshest of all possible environments (space). The MS instruments deployed on the Pioneer Venus and Mars Viking Lander missions are reviewed for the purposes of illustrating the unique features of the sample introduction systems, mass analyzers, and vacuum systems, and for presenting their specifications which are impressive even by today's standards. The various approaches for monitoring volatile organic compounds (VOCs) in cabin atmospheres are also reviewed. In the past, ground-based GC/MS instruments have been used to identify and quantify VOCs in archival samples collected during the Mercury, Apollo, Skylab, Space Shuttle, and Mir missions. Some of the data from the more recent missions are provided to illustrate the composition data obtained and to underscore the need for instrumentation to perform such monitoring in situ. Lastly, the development of two emerging technologies, Direct Sampling Ion Trap Mass Spectrometry (DSITMS) and GC/Ion Mobility Spectrometry (GC/IMS), will be discussed to illustrate their potential utility for future missions. c 2001 American Society for Mass Spectrometry.

  7. Mass spectrometry in the U.S. space program: past, present, and future

    NASA Technical Reports Server (NTRS)

    Palmer, P. T.; Limero, T. F.

    2001-01-01

    Recent years have witnessed significant progress on the miniaturization of mass spectrometers for a variety of field applications. This article describes the development and application of mass spectrometry (MS) instrumentation to support of goals of the U.S. space program. Its main focus is on the two most common space-related applications of MS: studying the composition of planetary atmospheres and monitoring air quality on manned space missions. Both sets of applications present special requirements in terms of analytical performance (sensitivity, selectivity, speed, etc.), logistical considerations (space, weight, and power requirements), and deployment in perhaps the harshest of all possible environments (space). The MS instruments deployed on the Pioneer Venus and Mars Viking Lander missions are reviewed for the purposes of illustrating the unique features of the sample introduction systems, mass analyzers, and vacuum systems, and for presenting their specifications which are impressive even by today's standards. The various approaches for monitoring volatile organic compounds (VOCs) in cabin atmospheres are also reviewed. In the past, ground-based GC/MS instruments have been used to identify and quantify VOCs in archival samples collected during the Mercury, Apollo, Skylab, Space Shuttle, and Mir missions. Some of the data from the more recent missions are provided to illustrate the composition data obtained and to underscore the need for instrumentation to perform such monitoring in situ. Lastly, the development of two emerging technologies, Direct Sampling Ion Trap Mass Spectrometry (DSITMS) and GC/Ion Mobility Spectrometry (GC/IMS), will be discussed to illustrate their potential utility for future missions. c 2001 American Society for Mass Spectrometry.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ehlers, G.; Podlesnyak, A. A.; Kolesnikov, A. I.

    The first eight years of operation of the Cold Neutron Chopper Spectrometer (CNCS) at the Spallation Neutron Source in Oak Ridge is being reviewed. The instrument has been part of the facility user program since 2009, and more than 250 individual user experiments have been performed to date. CNCS is an extremely powerful and versatile instrument and offers leading edge performance in terms of beam intensity, energy resolution, and flexibility to trade one for another. In addition, experiments are being routinely performed with the sample at extreme conditions: T ≲ 0.05 K, p ≳ 2 GPa, and B = 8more » T can be achieved individually or in combination. In particular, CNCS is in a position to advance the state of the art with inelastic neutron scattering under pressure, and some of the recent accomplishments in this area will be presented in more detail.« less

  9. Nuclear Science Symposium, 21st, Scintillation and Semiconductor Counter Symposium, 14th, and Nuclear Power Systems Symposium, 6th, Washington, D.C., December 11-13, 1974, Proceedings

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Papers are presented dealing with latest advances in the design of scintillation counters, semiconductor radiation detectors, gas and position sensitive radiation detectors, and the application of these detectors in biomedicine, satellite instrumentation, and environmental and reactor instrumentation. Some of the topics covered include entopistic scintillators, neutron spectrometry by diamond detector for nuclear radiation, the spherical drift chamber for X-ray imaging applications, CdTe detectors in radioimmunoassay analysis, CAMAC and NIM systems in the space program, a closed loop threshold calibrator for pulse height discriminators, an oriented graphite X-ray diffraction telescope, design of a continuous digital-output environmental radon monitor, and the optimization of nanosecond fission ion chambers for reactor physics. Individual items are announced in this issue.

  10. Upgrading and testing program for narrow band high resolution planetary IR imaging spectrometer

    NASA Technical Reports Server (NTRS)

    Wattson, R. B.; Rappaport, S.

    1977-01-01

    An imaging spectrometer, intended primarily for observations of the outer planets, which utilizes an acoustically tuned optical filter (ATOF) and a charge coupled device (CCD) television camera was modified to improve spatial resolution and sensitivity. The upgraded instrument was a spatial resolving power of approximately 1 arc second, as defined by an f/7 beam at the CCD position and it has this resolution over the 50 arc second field of view. Less vignetting occurs and sensitivity is four times greater. The spectral resolution of 15 A over the wavelength interval 6500 A - 11,000 A is unchanged. Mechanical utility has been increased by the use of a honeycomb optical table, mechanically rigid yet adjustable optical component mounts, and a camera focus translation stage. The upgraded instrument was used to observe Venus and Saturn.

  11. Power control electronics for cryogenic instrumentation

    NASA Technical Reports Server (NTRS)

    Ray, Biswajit; Gerber, Scott S.; Patterson, Richard L.; Myers, Ira T.

    1995-01-01

    In order to achieve a high-efficiency high-density cryogenic instrumentation system, the power processing electronics should be placed in the cold environment along with the sensors and signal-processing electronics. The typical instrumentation system requires low voltage dc usually obtained from processing line frequency ac power. Switch-mode power conversion topologies such as forward, flyback, push-pull, and half-bridge are used for high-efficiency power processing using pulse-width modulation (PWM) or resonant control. This paper presents several PWM and multiresonant power control circuits, implemented using commercially available CMOS and BiCMOS integrated circuits, and their performance at liquid-nitrogen temperature (77 K) as compared to their room temperature (300 K) performance. The operation of integrated circuits at cryogenic temperatures results in an improved performance in terms of increased speed, reduced latch-up susceptibility, reduced leakage current, and reduced thermal noise. However, the switching noise increased at 77 K compared to 300 K. The power control circuits tested in the laboratory did successfully restart at 77 K.

  12. Calibration/validation strategy for GOES-R L1b data products

    NASA Astrophysics Data System (ADS)

    Fulbright, Jon P.; Kline, Elizabeth; Pogorzala, David; MacKenzie, Wayne; Williams, Ryan; Mozer, Kathryn; Carter, Dawn; Race, Randall; Sims, Jamese; Seybold, Matthew

    2016-10-01

    The Geostationary Operational Environmental Satellite-R series (GOES-R) will be the next generation of NOAA geostationary environmental satellites. The first satellite in the series is planned for launch in November 2016. The satellite will carry six instruments dedicated to the study of the Earth's weather, lightning mapping, solar observations, and space weather monitoring. Each of the six instruments require specialized calibration plans to achieve their product quality requirements. In this talk we will describe the overall on-orbit calibration program and data product release schedule of the GOES-R program, as well as an overview of the strategies of the individual instrument science teams. The Advanced Baseline Imager (ABI) is the primary Earth-viewing weather imaging instrument on GOES-R. Compared to the present on-orbit GOES imagers, ABI will provide three times the spectral bands, four times the spatial resolution, and operate five times faster. The increased data demands and product requirements necessitate an aggressive and innovative calibration campaign. The Geostationary Lightning Mapper (GLM) will provide continuous rapid lightning detection information covering the Americas and nearby ocean regions. The frequency of lightning activity points to the intensification of storms and may improve tornado warning lead time. The calibration of GLM will involve intercomparisons with ground-based lightning detectors, an airborne field campaign, and a ground-based laser beacon campaign. GOES-R also carries four instruments dedicated to the study of the space environment. The Solar Ultraviolet Imager (SUVI) and the Extreme Ultraviolet and X-Ray Irradiance Sensors (EXIS) will study solar activity that may affect power grids, communication, and spaceflight. The Space Environment In-Situ Suite (SEISS) and the Magnetometer (MAG) study the in-situ space weather environment. These instruments follow a calibration and validation (cal/val) program that relies on intercomparisons with other space-based sensors and utilize special spacecraft maneuvers. Given the importance of cal/val to the success of GOES-R, the mission is committed to a long-term effort. This commitment enhances our knowledge of the long-term data quality and builds user confidence. The plan is a collaborative effort amongst the National Oceanic and Atmospheric Administration (NOAA), the National Institute of Standards and Technology (NIST), and the National Aeronautics and Space Administration (NASA). It is being developed based on the experience and lessons-learned from the heritage GOES and Polar-orbiting Operational Environmental Satellite (POES) systems, as well as other programs. The methodologies described in the plan encompass both traditional approaches and the current state-of-the-art in cal/val.

  13. 14 CFR 121.307 - Engine instruments.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Engine instruments. 121.307 Section 121.307..., FLAG, AND SUPPLEMENTAL OPERATIONS Instrument and Equipment Requirements § 121.307 Engine instruments. Unless the Administrator allows or requires different instrumentation for turbine engine powered...

  14. 14 CFR 121.307 - Engine instruments.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Engine instruments. 121.307 Section 121.307..., FLAG, AND SUPPLEMENTAL OPERATIONS Instrument and Equipment Requirements § 121.307 Engine instruments. Unless the Administrator allows or requires different instrumentation for turbine engine powered...

  15. 14 CFR 121.307 - Engine instruments.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Engine instruments. 121.307 Section 121.307..., FLAG, AND SUPPLEMENTAL OPERATIONS Instrument and Equipment Requirements § 121.307 Engine instruments. Unless the Administrator allows or requires different instrumentation for turbine engine powered...

  16. 14 CFR 121.307 - Engine instruments.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Engine instruments. 121.307 Section 121.307..., FLAG, AND SUPPLEMENTAL OPERATIONS Instrument and Equipment Requirements § 121.307 Engine instruments. Unless the Administrator allows or requires different instrumentation for turbine engine powered...

  17. 14 CFR 121.307 - Engine instruments.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Engine instruments. 121.307 Section 121.307..., FLAG, AND SUPPLEMENTAL OPERATIONS Instrument and Equipment Requirements § 121.307 Engine instruments. Unless the Administrator allows or requires different instrumentation for turbine engine powered...

  18. Aircraft Power-Plant Instruments

    NASA Technical Reports Server (NTRS)

    Sontag, Harcourt; Brombacher, W G

    1934-01-01

    This report supersedes NACA-TR-129 which is now obsolete. Aircraft power-plant instruments include tachometers, engine thermometers, pressure gages, fuel-quantity gages, fuel flow meters and indicators, and manifold pressure gages. The report includes a description of the commonly used types and some others, the underlying principle utilized in the design, and some design data. The inherent errors of the instrument, the methods of making laboratory tests, descriptions of the test apparatus, and data in considerable detail in the performance of commonly used instruments are presented. Standard instruments and, in cases where it appears to be of interest, those used as secondary standards are described. A bibliography of important articles is included.

  19. Measuring Accurately Single-Phase Sinusoidal and Non-Sinusoidal Power.

    DTIC Science & Technology

    1983-01-01

    current component. Since the induction watthour meter is designed for measuring ac variations only, the creation of a dc component in an ac circuit due...available and the basic principle of measurement used in each. 3.1 Power Measuring Meters Instruments designed to measure the amount of average power...1.0 percent of full scale and + 0.5% of reading. 3.2 Encrgy Measuring Meters Instruments designed to measure the amount of power consumed in a circuit

  20. [Application of micro-power system in the surgery of tooth extraction].

    PubMed

    Kaijin, Hu; Yongfeng, Li

    2015-02-01

    Tooth extraction is a common operation in oral surgery. Traditional-extraction instruments, such as bone chisel, elevator, and bone hammer, lead to not only severe trauma but also unnecessary complications, and patients easily become nervous and apprehensive if tooth extraction is performed using these violent instruments. In recent years, with the develop- ment of minimally invasive concept and technology, various micro-power instruments have been used for tooth extraction. This innovative technology can reduce the iatrogenic trauma and complications of tooth extraction. Additionally, this technology can greatly decrease the patient's physical and mental pressure. The new equipment compensates for the deficiency of traditional tooth extraction equipment and facilitates the gradual replacement of the latter. Diverse micro-power systems have distinct strengths and weaknesses, so some auxiliary instruments are still needed during tooth extraction. This paper focuses on the various micro-power systems for tooth extraction and tries to compare the advantages and disadvantages of these systems. Selection and usage of auxiliary equipment are also introduced. Thus, this paper provides reference for the proper application of the micro-power systems in tooth extraction.

  1. Performance Analysis of Multilevel Parallel Applications on Shared Memory Architectures

    NASA Technical Reports Server (NTRS)

    Jost, Gabriele; Jin, Haoqiang; Labarta, Jesus; Gimenez, Judit; Caubet, Jordi; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    In this paper we describe how to apply powerful performance analysis techniques to understand the behavior of multilevel parallel applications. We use the Paraver/OMPItrace performance analysis system for our study. This system consists of two major components: The OMPItrace dynamic instrumentation mechanism, which allows the tracing of processes and threads and the Paraver graphical user interface for inspection and analyses of the generated traces. We describe how to use the system to conduct a detailed comparative study of a benchmark code implemented in five different programming paradigms applicable for shared memory

  2. Hyper-X Hot Structures Comparison of Thermal Analysis and Flight Data

    NASA Technical Reports Server (NTRS)

    Amundsen, Ruth M.; Leonard, Charles P.; Bruce, Walter E., III

    2004-01-01

    The Hyper-X (X-43A) program is a flight experiment to demonstrate scramjet performance and operability under controlled powered free-flight conditions at Mach 7 and 10. The Mach 7 flight was successfully completed on March 27, 2004. Thermocouple instrumentation in the hot structures (nose, horizontal tail, and vertical tail) recorded the flight thermal response of these components. Preflight thermal analysis was performed for design and risk assessment purposes. This paper will present a comparison of the preflight thermal analysis and the recorded flight data.

  3. Advanced Power and Propulsion: 2000-2004

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This custom bibliography from the NASA Scientific and Technical Information Program lists a sampling of records found in the NASA Aeronautics and Space Database. The scope of this topic includes primarily nuclear thermal and nuclear electric technologies, to enable spacecraft and instrument operation and communications, particularly in the outer solar system, where sunlight can no longer be exploited by solar panels. This area of focus is one of the enabling technologies as defined by NASA s Report of the President s Commission on Implementation of United States Space Exploration Policy, published in June 2004.

  4. Attitude sensor package

    NASA Technical Reports Server (NTRS)

    Aceti, R.; Trischberger, M.; Underwood, P. J.; Pomilia, A.; Cosi, M.; Boldrini, F.

    1993-01-01

    This paper describes the design, construction, testing, and successful flight of the Attitude Sensor Package. The payload was assembled on a standard HITCHHIKER experiment mounting plate, and made extensive use of the carrier's power and data handling capabilities. The side mounted HITCHHIKER version was chosen, since this configuration provided the best viewing conditions for the instruments. The combustion was successfully flown on board Space Shuttle Columbia (STS-52), in October 1992. The payload was one of the 14 experiments of the In-Orbit Technology Demonstration Program (Phase 1) of the European Space Agency.

  5. Counselor Competence, Performance Assessment, and Program Evaluation: Using Psychometric Instruments

    ERIC Educational Resources Information Center

    Tate, Kevin A.; Bloom, Margaret L.; Tassara, Marcel H.; Caperton, William

    2014-01-01

    Psychometric instruments have been underutilized by counselor educators in performance assessment and program evaluation efforts. As such, we conducted a review of the literature that revealed 41 instruments fit for such efforts. We described and critiqued these instruments along four dimensions--"Target Domain," "Format,"…

  6. IRIS Arrays: Observing Wavefields at Multiple Scales and Frequencies

    NASA Astrophysics Data System (ADS)

    Sumy, D. F.; Woodward, R.; Frassetto, A.

    2014-12-01

    The Incorporated Research Institutions for Seismology (IRIS) provides instruments for creating and operating seismic arrays at a wide range of scales. As an example, for over thirty years the IRIS PASSCAL program has provided instruments to individual Principal Investigators to deploy arrays of all shapes and sizes on every continent. These arrays have ranged from just a few sensors to hundreds or even thousands of sensors, covering areas with dimensions of meters to thousands of kilometers. IRIS also operates arrays directly, such as the USArray Transportable Array (TA) as part of the EarthScope program. Since 2004, the TA has rolled across North America, at any given time spanning a swath of approximately 800 km by 2,500 km, and thus far sampling 2% of the Earth's surface. This achievement includes all of the lower-48 U.S., southernmost Canada, and now parts of Alaska. IRIS has also facilitated specialized arrays in polar environments and on the seafloor. In all cases, the data from these arrays are freely available to the scientific community. As the community of scientists who use IRIS facilities and data look to the future they have identified a clear need for new array capabilities. In particular, as part of its Wavefields Initiative, IRIS is exploring new technologies that can enable large, dense array deployments to record unaliased wavefields at a wide range of frequencies. Large-scale arrays might utilize multiple sensor technologies to best achieve observing objectives and optimize equipment and logistical costs. Improvements in packaging and power systems can provide equipment with reduced size, weight, and power that will reduce logistical constraints for large experiments, and can make a critical difference for deployments in harsh environments or other situations where rapid deployment is required. We will review the range of existing IRIS array capabilities with an overview of previous and current deployments and examples of data and results. We will review existing IRIS projects that explore new array capabilities and highlight future directions for IRIS instrumentation facilities.

  7. Aquarius's Instrument Science Data System (ISDS) Automated to Acquire, Process, Trend Data and Produce Radiometric System Assessment Reports

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Aquarius Radiometer, a subsystem of the Aquarius Instrument required a data acquisition ground system to support calibration and radiometer performance assessment. To support calibration and compose performance assessments, we developed an automated system which uploaded raw data to a ftp server and saved raw and processed data to a database. This paper details the overall functionalities of the Aquarius Instrument Science Data System (ISDS) and the individual electrical ground support equipment (EGSE) which produced data files that were infused into the ISDS. Real time EGSEs include an ICDS Simulator, Calibration GSE, Labview controlled power supply, and a chamber data acquisition system. ICDS Simulator serves as a test conductor primary workstation, collecting radiometer housekeeping (HK) and science data and passing commands and HK telemetry collection request to the radiometer. Calibration GSE (Radiometer Active Test Source) provides source choice from multiple targets for the radiometer external calibration. Power Supply GSE, controlled by labview, provides real time voltage and current monitoring of the radiometer. And finally the chamber data acquisition system produces data reflecting chamber vacuum pressure, thermistor temperatures, AVG and watts. Each GSE system produce text based data files every two to six minutes and automatically copies the data files to the Central Archiver PC. The Archiver PC stores the data files, schedules automated uploads of these files to an external FTP server, and accepts request to copy all data files to the ISDS for offline data processing and analysis. Aquarius Radiometer ISDS contains PHP and MATLab programs to parse, process and save all data to a MySQL database. Analysis tools (MATLab programs) in the ISDS system are capable of displaying radiometer science, telemetry and auxiliary data in near real time as well as performing data analysis and producing automated performance assessment reports of the Aquarius Radiometer.

  8. Validation of the Efficacy of a Solar-Thermal Powered Autoclave System for Off-Grid Medical Instrument Wet Sterilization

    PubMed Central

    Kaseman, Tremayne; Boubour, Jean; Schuler, Douglas A.

    2012-01-01

    This work describes the efficacy of a solar-thermal powered autoclave used for the wet sterilization of medical instruments in off-grid settings where electrical power is not readily available. Twenty-seven trials of the solar-thermal powered system were run using an unmodified non-electric autoclave loaded with a simulated bundle of medical instruments and biological test agents. Results showed that in 100% of the trials the autoclave achieved temperatures in excess of 121°C for 30 minutes, indicator tape displayed visible reactions to steam sterilization, and biological tests showed that microbial agents had been eliminated, in compliance with the Centers for Disease Control and Prevention requirements for efficacious wet sterilization. PMID:22848098

  9. Validation of the efficacy of a solar-thermal powered autoclave system for off-grid medical instrument wet sterilization.

    PubMed

    Kaseman, Tremayne; Boubour, Jean; Schuler, Douglas A

    2012-10-01

    This work describes the efficacy of a solar-thermal powered autoclave used for the wet sterilization of medical instruments in off-grid settings where electrical power is not readily available. Twenty-seven trials of the solar-thermal powered system were run using an unmodified non-electric autoclave loaded with a simulated bundle of medical instruments and biological test agents. Results showed that in 100% of the trials the autoclave achieved temperatures in excess of 121°C for 30 minutes, indicator tape displayed visible reactions to steam sterilization, and biological tests showed that microbial agents had been eliminated, in compliance with the Centers for Disease Control and Prevention requirements for efficacious wet sterilization.

  10. The Space-Time Asymmetry Research (STAR) program

    NASA Astrophysics Data System (ADS)

    Buchman, Sasha

    Stanford University, NASA Ames, and international partners propose the Space-Time Asymme-try Research (STAR) program, a series of three Science and Technology Development Missions, which will probe the fundamental relationships between space, time and gravity. What is the nature of space-time? Is space truly isotropic? Is the speed of light truly isotropic? If not, what is its direction and location dependency? What are the answers beyond Einstein? How will gravity and the standard model ultimately be combined? The first mission, STAR-1, will measure the absolute anisotropy of the velocity of light to one part in 1017 , derive the Kennedy-Thorndike (KT) coefficient to 7x10-10 (150-fold improvement over modern ground measurements), derive the Michelson-Morley (MM) coefficient to 10-11 (confirming the ground measurements), and derive the coefficients of Lorentz violation in the Standard Model Exten-sion (SME), in the range 7x10-17 to 10-13 (an order of magnitude improvement over ground measurements). The follow-on missions will achieve a factor of 100 higher sensitivities. The core instruments are high stability optical cavities and high accuracy gas spectroscopy frequency standards using the "NICE-OHMS technique. STAR-1 is accomplished with a fully redundant instrument flown on a standard bus, spin-stabilized spacecraft with a mission lifetime of two years. Spacecraft and instrument have a total mass of less than 180 kg and consume less than 200 W of power. STAR-1 would launch in 2015 as a secondary payload in a 650 km, sun-synchronous orbit. We describe the STAR-1 mission in detail and the STAR series in general, with a focus on how each mission will build on the development and success of the previous missions, methodically enhancing both the capabilities of the STAR instrument suite and our understanding of this important field. By coupling state-of-the-art scientific instrumentation with proven and cost-effective small satellite technology in an environment designed for re-search and leadership participation by university students the STAR program will bring new answers to some of the most important physics questions of our time -questions that have faced physicists for over 100 years.

  11. Active and Passive Haptic Training Approaches in VR Laparoscopic Surgery Training.

    PubMed

    Marutani, Takafumi; Kato, Toma; Tagawa, Kazuyoshi; Tanaka, Hiromi T; Komori, Masaru; Kurumi, Yoshimasa; Morikawa, Shigehiro

    2016-01-01

    Laparoscopic surgery has become a widely performed surgery as it is one of the most common minimally invasive surgeries. Doctors perform the surgery by manipulating thin and long surgical instruments precisely with the assistance of laparoscopic video with limited field of view. The power control of the instruments' tip is especially very important, because excessive power may damage internal organs. The training of this surgical technique is mainly supervised by an expert in hands-on coaching program. However, it is difficult for the experts to spend sufficient time for coaching. Therefore, we aim to teach the expert's hand movements in laparoscopic surgery to trainees using VR-based simulator, which is equipped with a guidance force display device. To realize the system, we propose two haptic training approaches for transferring the expert's hand movements to the trainee. One is active training, and the other is passive training. The former approach shows the expert's movements only when the trainee makes large errors while the latter shows the expert's movements continuously. In this study, we validate the applicability of these approaches through tasks in VR laparoscopic surgery training simulator, and identify the differences between these approaches.

  12. Submillimeter Planetary Atmospheric Chemistry Exploration Sounder

    NASA Technical Reports Server (NTRS)

    Schlecht, Erich T.; Allen, Mark A.; Gill, John J.; Choonsup, Lee; Lin, Robert H.; Sin, Seth; Mehdi, Imran; Siegel, Peter H.; Maestrini, Alain

    2013-01-01

    Planetary Atmospheric Chemistry Exploration Sounder (SPACES), a high-sensitivity laboratory breadboard for a spectrometer targeted at orbital planetary atmospheric analysis. The frequency range is 520 to 590 GHz, with a target noise temperature sensitivity of 2,500 K for detecting water, sulfur compounds, carbon compounds, and other atmospheric constituents. SPACES is a prototype for a powerful tool for the exploration of the chemistry and dynamics of any planetary atmosphere. It is fundamentally a single-pixel receiver for spectral signals emitted by the relevant constituents, intended to be fed by a fixed or movable telescope/antenna. Its front-end sensor translates the received signal down to the 100-MHz range where it can be digitized and the data transferred to a spectrum analyzer for processing, spectrum generation, and accumulation. The individual microwave and submillimeter wave components (mixers, LO high-powered amplifiers, and multipliers) of SPACES were developed in cooperation with other programs, although with this type of instrument in mind. Compared to previous planetary and Earth science instruments, its broad bandwidth (approx. =.13%) and rapid tunability (approx. =.10 ms) are new developments only made possible recently by the advancement in submillimeter circuit design and processing at JPL.

  13. "Smart pebble" design for environmental monitoring applications

    NASA Astrophysics Data System (ADS)

    Valyrakis, Manousos; Pavlovskis, Edgars

    2014-05-01

    Sediment transport, due to primarily the action of water, wind and ice, is one of the most significant geomorphic processes responsible for shaping Earth's surface. It involves entrainment of sediment grains in rivers and estuaries due to the violently fluctuating hydrodynamic forces near the bed. Here an instrumented particle, namely a "smart pebble", is developed to investigate the exact flow conditions under which individual grains may be entrained from the surface of a gravel bed. This could lead in developing a better understanding of the processes involved, while focusing on the response of the particle during a variety of flow entrainment events. The "smart pebble" is a particle instrumented with MEMS sensors appropriate for capturing the hydrodynamic forces a coarse particle might experience during its entrainment from the river bed. A 3-axial gyroscope and accelerometer registers data to a memory card via a microcontroller, embedded in a 3D-printed waterproof hollow spherical particle. The instrumented board is appropriately fit and centred into the shell of the pebble, so as to achieve a nearly uniform distribution of the mass which could otherwise bias its motion. The "smart pebble" is powered by an independent power to ensure autonomy and sufficiently long periods of operation appropriate for deployment in the field. Post-processing and analysis of the acquired data is currently performed offline, using scientific programming software. The performance of the instrumented particle is validated, conducting a series of calibration experiments under well-controlled laboratory conditions. "Smart pebble" allows for a wider range of environmental sensors (e.g. for environmental/pollutant monitoring) to be incorporated so as to extend the range of its application, enabling accurate environmental monitoring which is required to ensure infrastructure resilience and preservation of ecological health.

  14. Extrinsic Motivators Affecting Fourth-Grade Students' Interest and Enrollment in an Instrumental Music Program

    ERIC Educational Resources Information Center

    Vasil, Martina

    2013-01-01

    The purpose of this study was to investigate fourth-grade students' extrinsic motivators for joining and continuing in a school instrumental music program. Three research questions were investigated: (a) What extrinsic motivators have influenced fourth-grade students' initial interest and continuing participation in an instrumental music program?…

  15. Fission Surface Power Systems (FSPS) Project Final Report for the Exploration Technology Development Program (ETDP): Fission Surface Power, Transition Face to Face

    NASA Technical Reports Server (NTRS)

    Palac, Donald T.

    2011-01-01

    The Fission Surface Power Systems Project became part of the ETDP on October 1, 2008. Its goal was to demonstrate fission power system technology readiness in an operationally relevant environment, while providing data on fission system characteristics pertinent to the use of a fission power system on planetary surfaces. During fiscal years 08 to 10, the FSPS project activities were dominated by hardware demonstrations of component technologies, to verify their readiness for inclusion in the fission surface power system. These Pathfinders demonstrated multi-kWe Stirling power conversion operating with heat delivered via liquid metal NaK, composite Ti/H2O heat pipe radiator panel operations at 400 K input water temperature, no-moving-part electromagnetic liquid metal pump operation with NaK at flight-like temperatures, and subscale performance of an electric resistance reactor simulator capable of reproducing characteristics of a nuclear reactor for the purpose of system-level testing, and a longer list of component technologies included in the attached report. Based on the successful conclusion of Pathfinder testing, work began in 2010 on design and development of the Technology Demonstration Unit (TDU), a full-scale 1/4 power system-level non-nuclear assembly of a reactor simulator, power conversion, heat rejection, instrumentation and controls, and power management and distribution. The TDU will be developed and fabricated during fiscal years 11 and 12, culminating in initial testing with water cooling replacing the heat rejection system in 2012, and complete testing of the full TDU by the end of 2014. Due to its importance for Mars exploration, potential applicability to missions preceding Mars missions, and readiness for an early system-level demonstration, the Enabling Technology Development and Demonstration program is currently planning to continue the project as the Fission Power Systems project, including emphasis on the TDU completion and testing.

  16. Design, Observing and Data Systems, and Final Installation of the NEPTUNE Canada Regional Cabled Ocean Observatory

    NASA Astrophysics Data System (ADS)

    Barnes, C. R.; Best, M. M.; Johnson, F. R.; Phibbs, P.; Pirenne, B.

    2009-05-01

    NEPTUNE Canada (NC; www.neptunecanada.ca) will complete most of the installation of the world's first regional cabled ocean observatory in late 2009 off Canada's west coast. It will comprise five main observatory nodes (100-2700m water depths) linked by an 800km backbone cable delivering 10kVDC power and 10Gbps communications bandwidth to hundreds of sensors, with a 25-year design life. Infrastructure (100M) and initial operational funding (20M) is secured. University of Victoria (UVic) leads a consortium of 12 Canadian universities, hosts the coastal VENUS cabled observatory, with Ocean Networks Canada (ONC) providing management oversight. Observatory architecture has a trunk and branch topology. Installed in late 2007, the backbone cable loops from/to UVic's Port Alberni shore station. The wet plant's design, manufacture and installation was contracted to Alcatel-Lucent. Each node provides six interface ports for connection of science instrument arrays or extensions. Each port provides dual optical Ethernet links and up to 9kW of electrical power at 400VDC. Junction boxes, designed and built by OceanWorks support up to 10 instruments each and can be daisy- chained. They accommodate both serial and 10/100 Ethernet instruments, and provide a variety of voltages (400V, 48V, 24V, 15V). Backbone equipment has all been qualified and installed; shore station re-equipping is complete; junction boxes are manufactured. A major marine program will deploy nodes and instruments in July-September 2009; instruments to one node will probably be deferred until 2010. Observatory instruments will be deployed in subsurface (boreholes), on seabed, and buoyed through the water column. Over 130 instruments (over 40 different types) will host several hundred sensors; mobile assets include a tethered crawler and a 400m vertical profiler. Experiments will address: earthquake dynamics and tsunami hazards; fluid fluxes in both ocean crust and sediments, including gas hydrates; ocean/climate dynamics, including acidification and nutrient fluxes; deep-sea ecosystems dynamics; and engineering and computer science research. NC's software system interfaces between users and cabled observatory and responds to a three-fold mandate: acquire data from various instruments/sensors underwater; provide lifetime storage and redistribution capabilities for all data; and allow authorized users to remotely and interactively control experiments. Data Management and Archiving System (DMAS) is being developed in-house, with adoption of Service-Oriented Architecture (SOA) and using Web Services to expose the functionality of DMAS' various components. An internal messaging bus allows various functional components to interact through the publish and subscribe paradigm, using Java programming language. DMAS is developing a modern environment for users: data access, data processing and experimentation control within a Web 2.0 environment. This will allow users, on top of data and instrumentation access, to perform data visualization and analysis on-line with either default or custom processing code, as well as simultaneously interacting with each other. These social networking aspects will be within NC's new Oceans 2.0 environment. The observatory is designed to be expandable in its footprint, nodes and instruments and provides a magnificent facility for testing prototypes of new technologies monitored and demonstrated in real-time. NC and ONC invite new scientific and industrial participation, experiments, instrumentation and data services.

  17. Title: Accelerator Test of an Angle Detecting Inclined Sensor (ADIS) Prototype with Beams of 48Ca and Fragments

    NASA Astrophysics Data System (ADS)

    Connell, J. J.; Lopate, C.; McKibben, R. B.; Enman, A.

    2006-12-01

    The measurement and identification of high energy ions (> few MeV/n) from events originating on the Sun is of direct interest to the Living With a Star Program. These ions are a major source of Single Event Effects (SEE) in space-based electronics. Measurements of these ions also help in understanding phenomena such as Solar particle events and coronal mass ejections. These disturbances can directly affect the Earth and the near-Earth space environment, and thus human technology. The resource constraints on spacecraft generally mean that instruments that measure cosmic rays and Solar energetic particles must have low mass (a few kg) and power (a few W), be robust and reliable yet highly capable. Such instruments should identify ionic species (at least by element, preferably by isotope) from protons through the iron group. The charge and mass resolution of heavy ion instrument in space depends upon determining ions' angles of incidence. The Angle Detecting Inclined Sensor (ADIS) system is a highly innovative and uniquely simple detector configuration used to determine the angle of incidence of heavy ions in space instruments. ADIS replaces complex position sensing detectors (PSDs) with a system of simple, reliable and robust Si detectors inclined at an angle to the instrument axis. In August 2004 we tested ADIS prototypes with a 48Ca beam at the National Superconducting Cyclotron Laboratory's (NSCL) Coupled Cyclotron Facility (CCF). We demonstrate that our prototype charged particle instrument design with an ADIS system has a charge resolution of better than 0.25 e. An ADIS based system is being incorporated into the Energetic Heavy Ion Sensor (EHIS), one of the instruments in the Space Environment In-Situ Suite (SEISS) on the next generation of Geostationary Operational Environmental Satellite (GOES-R) System. An ADIS based system was also selected for the High Energy Particle Sensor (HEPS), one of the instruments in the Space Environment Sensor Suite (SESS) on the National Polar-orbiting Operational Environmental Satellite System (NPOESS). SESS is presently de-scoped from NPOESS. The ADIS instrument development project was 95% funded by NASA under the Living With a Star (LWS) Targeted Research and Technology program (grant NAG5-12493).

  18. Parametric Power Spectral Density Analysis of Noise from Instrumentation in MALDI TOF Mass Spectrometry

    PubMed Central

    Shin, Hyunjin; Mutlu, Miray; Koomen, John M.; Markey, Mia K.

    2007-01-01

    Noise in mass spectrometry can interfere with identification of the biochemical substances in the sample. For example, the electric motors and circuits inside the mass spectrometer or in nearby equipment generate random noise that may distort the true shape of mass spectra. This paper presents a stochastic signal processing approach to analyzing noise from electrical noise sources (i.e., noise from instrumentation) in MALDI TOF mass spectrometry. Noise from instrumentation was hypothesized to be a mixture of thermal noise, 1/f noise, and electric or magnetic interference in the instrument. Parametric power spectral density estimation was conducted to derive the power distribution of noise from instrumentation with respect to frequencies. As expected, the experimental results show that noise from instrumentation contains 1/f noise and prominent periodic components in addition to thermal noise. These periodic components imply that the mass spectrometers used in this study may not be completely shielded from the internal or external electrical noise sources. However, according to a simulation study of human plasma mass spectra, noise from instrumentation does not seem to affect mass spectra significantly. In conclusion, analysis of noise from instrumentation using stochastic signal processing here provides an intuitive perspective on how to quantify noise in mass spectrometry through spectral modeling. PMID:19455245

  19. Present status of aircraft instruments

    NASA Technical Reports Server (NTRS)

    1932-01-01

    This report gives a brief description of the present state of development and of the performance characteristics of instruments included in the following group: speed instruments, altitude instruments, navigation instruments, power-plant instruments, oxygen instruments, instruments for aerial photography, fog-flying instruments, general problems, summary of instrument and research problems. The items considered under performance include sensitivity, scale errors, effects of temperature and pressure, effects of acceleration and vibration, time lag, damping, leaks, elastic defects, and friction.

  20. THOR Fields and Wave Processor - FWP

    NASA Astrophysics Data System (ADS)

    Soucek, Jan; Rothkaehl, Hanna; Ahlen, Lennart; Balikhin, Michael; Carr, Christopher; Dekkali, Moustapha; Khotyaintsev, Yuri; Lan, Radek; Magnes, Werner; Morawski, Marek; Nakamura, Rumi; Uhlir, Ludek; Yearby, Keith; Winkler, Marek; Zaslavsky, Arnaud

    2017-04-01

    If selected, Turbulence Heating ObserveR (THOR) will become the first spacecraft mission dedicated to the study of plasma turbulence. The Fields and Waves Processor (FWP) is an integrated electronics unit for all electromagnetic field measurements performed by THOR. FWP will interface with all THOR fields sensors: electric field antennas of the EFI instrument, the MAG fluxgate magnetometer, and search-coil magnetometer (SCM), and perform signal digitization and on-board data processing. FWP box will house multiple data acquisition sub-units and signal analyzers all sharing a common power supply and data processing unit and thus a single data and power interface to the spacecraft. Integrating all the electromagnetic field measurements in a single unit will improve the consistency of field measurement and accuracy of time synchronization. The scientific value of highly sensitive electric and magnetic field measurements in space has been demonstrated by Cluster (among other spacecraft) and THOR instrumentation will further improve on this heritage. Large dynamic range of the instruments will be complemented by a thorough electromagnetic cleanliness program, which will prevent perturbation of field measurements by interference from payload and platform subsystems. Taking advantage of the capabilities of modern electronics and the large telemetry bandwidth of THOR, FWP will provide multi-component electromagnetic field waveforms and spectral data products at a high time resolution. Fully synchronized sampling of many signals will allow to resolve wave phase information and estimate wavelength via interferometric correlations between EFI probes. FWP will also implement a plasma resonance sounder and a digital plasma quasi-thermal noise analyzer designed to provide high cadence measurements of plasma density and temperature complementary to data from particle instruments. FWP will rapidly transmit information about magnetic field vector and spacecraft potential to the particle instrument data processing unit (PPU) via a dedicated digital link. This information will help particle instruments to optimize energy and angular sweeps and calculate on-board moments. FWP will also coordinate the acquisition of high resolution waveform snapshots with very high time resolution electron data from the TEA instrument. This combined wave/particle measurement will provide the ultimate dataset for investigation of wave-particle interactions on electron scales. The FWP instrument shall be designed and built by an international consortium of scientific institutes from Czech Republic, Poland, France, UK, Sweden and Austria.

  1. Electric vehicle power train instrumentation: Some constraints and considerations

    NASA Technical Reports Server (NTRS)

    Triner, J. E.; Hansen, I. G.

    1977-01-01

    The application of pulse modulation control (choppers) to dc motors creates unique instrumentation problems. In particular, the high harmonic components contained in the current waveforms require frequency response accommodations not normally considered in dc instrumentation. In addition to current sensing, accurate power measurement requires not only adequate frequency response but must also address phase errors caused by the finite bandwidths and component characteristics involved. The implications of these problems are assessed.

  2. Workshop on advanced technologies for planetary instruments

    NASA Technical Reports Server (NTRS)

    Appleby, J. (Editor)

    1993-01-01

    NASA's robotic solar system exploration program requires a new generation of science instruments. Design concepts are now judged against stringent mass, power, and size constraints--yet future instruments must be highly capable, reliable, and, in some applications, they must operate for many years. The most important single constraint, however, is cost: new instruments must be developed in a tightly controlled design-to-cost environment. Technical innovation is the key to success and will enable the sophisticated measurements needed for future scientific exploration. As a fundamental benefit, the incorporation of breakthrough technologies in planetary flight hardware will contribute to U.S. industrial competitiveness and will strengthen the U.S. technology base. The Workshop on Advanced Technologies for Planetary Instruments was conceived to address these challenges, to provide an open forum in which the NASA and DoD space communities could become better acquainted at the working level, and to assess future collaborative efforts. Over 300 space scientists and engineers participated in the two-and-a-half-day meeting held April 28-30, 1993, in Fairfax, Virginia. It was jointly sponsored by NASA's Solar System Exploration Division (SSED), within the Office of Space Science (OSS); NASA's Office of Advanced Concepts and Technology (OACT); DoD's Strategic Defense Initiative Organization (SDIO), now called the Ballistic Missile Defense Organization (BMDO); and the Lunar and Planetary Institute (LPI). The meeting included invited oral and contributed poster presentations, working group sessions in four sub-disciplines, and a wrap-up panel discussion. On the first day, the planetary science community described instrumentation needed for missions that may go into development during the next 5 to 10 years. Most of the second day was set aside for the DoD community to inform their counterparts in planetary science about their interests and capabilities, and to describe the BMDO technology base, flight programs, and future directions. The working group sessions and the panel discussion synthesized technical and programmatic issues from all the presentations, with a specific goal of assessing the applicability of BMDO technologies to science instrumentation for planetary exploration.

  3. A new multipurpose CO2 laser therapy instrument.

    PubMed

    Peng, X

    1995-02-01

    A new multipurpose CO2 laser therapy instrument has been developed. It is a highly efficient medical instrument. By use of high laser power density to coagulate, evaporate, and cut body tissue on the nidus, the operation can be controlled and has obvious curative effects. Unlike other kinds of CO2 laser therapy instruments, this device has an advanced switching power supply (SPS) and red guiding light system. With an overcurrent protective device, an overvoltage protective device, and a high-voltage shield device, it provides efficiency, stability, reliability, and low loss. The plastic casing does not leak electricity and the film switches are designed for clinical practice convenience. Additionally, the laser power is numerically displayed and can be set prior to the procedure. The distinct visible guiding light of the laser output makes the operation more convenient and accurate. Because of this unique design and properties, it is a leading model in China. The instrument can be widely used for surgery, gynecology, dermatology, and otolaryngology. The radiation therapy of low laser power density has the effect of being antiinflamatory, analgesic, and antipruritic, and promotes cure of the epithelium. Moreover, it is effective to treat all sorts of sprains, scapulohumeral periarthritis, arthritis, sciatica, and surface ulcers.

  4. Measuring Program Quality, Part 2: Addressing Potential Cultural Bias in a Rater Reliability Exam

    ERIC Educational Resources Information Center

    Richer, Amanda; Charmaraman, Linda; Ceder, Ineke

    2018-01-01

    Like instruments used in afterschool programs to assess children's social and emotional growth or to evaluate staff members' performance, instruments used to evaluate program quality should be free from bias. Practitioners and researchers alike want to know that assessment instruments, whatever their type or intent, treat all people fairly and do…

  5. The Effects of Participation in School Instrumental Music Programs on Student Academic Achievement and School Attendance

    ERIC Educational Resources Information Center

    Davenport, Kevin O.

    2010-01-01

    This study examined whether or not students that participated in a school sponsored instrumental music program had higher academic achievement and attendance than students that did not participate in a school sponsor instrumental music program. Units of measurement included standardized test scores and attendance, without taking into consideration…

  6. Concentrated solar power in the built environment

    NASA Astrophysics Data System (ADS)

    Montenon, Alaric C.; Fylaktos, Nestor; Montagnino, Fabio; Paredes, Filippo; Papanicolas, Costas N.

    2017-06-01

    Solar concentration systems are usually deployed in large open spaces for electricity generation; they are rarely used to address the pressing energy needs of the built environment sector. Fresnel technology offers interesting and challenging CSP energy pathways suitable for the built environment, due to its relatively light weight (<30 kg.m-2) and low windage. The Cyprus Institute (CyI) and Consorzio ARCA are cooperating in such a research program; we report here the construction and integration of a 71kW Fresnel CSP system into the HVAC (Heating, Ventilation, and Air Conditioning) system of a recently constructed office & laboratory building, the Novel Technologies Laboratory (NTL). The multi-generative system will support cooling, heating and hot water production feeding the system of the NTL building, as a demonstration project, part of the STS-MED program (Small Scale Thermal Solar District Units for Mediterranean Communities) financed by the European Commission under the European Neighbourhood and Partnership Instrument (ENPI), CBCMED program.

  7. Space Tethers Programmatic Infusion Opportunities

    NASA Technical Reports Server (NTRS)

    Bonometti, J. A.; Frame, K. L.

    2005-01-01

    Programmatic opportunities abound for space Cables, Stringers and Tethers, justified by the tremendous performance advantages that these technologies offer and the rather wide gaps that must be filled by the NASA Exploration program, if the "sustainability goal" is to be met. A definition and characterization of the three categories are presented along with examples. A logical review of exploration requirements shows how each class can be infused throughout the program, from small experimental efforts to large system deployments. The economics of tethers in transportation is considered along with the impact of stringers for structural members. There is an array of synergistic methodologies that interlace their fabrication, implementation and operations. Cables, stringers and tethers can enhance a wide range of other space systems and technologies, including power storage, formation flying, instrumentation, docking mechanisms and long-life space components. The existing tether (i.e., MXER) program's accomplishments are considered consistent with NASA's new vision and can readily conform to requirements-driven technology development.

  8. Cryogenic wheel mechanisms for the Mid-Infrared Instrument (MIRI) of the James Webb Space Telescope (JWST): detailed design and test results from the qualification program

    NASA Astrophysics Data System (ADS)

    Krause, O.; Birkmann, S.; Blümchen, T.; Böhm, A.; Ebert, M.; Grözinger, U.; Henning, Th.; Hofferbert, R.; Huber, A.; Lemke, D.; Rohloff, R.-R.; Scheithauer, S.; Gross, T.; Luichtel, G.; Stein, C.; Stott, R.; Übele, M.; Amiaux, J.; Auguères, J.-L.; Glauser, A.; Zehnder, A.; Meijers, M.; Jager, R.; Parr-Burrman, P.; Wright, G.

    2008-07-01

    The Mid-Infrared Instrument (MIRI) of the James Webb Space Telescope, scheduled for launch in 2013, will provide a variety of observing modes such as broad/narrow-band imaging, coronagraphy and low/medium resolution spectroscopy. One filter wheel and two dichroic-grating wheel mechanisms allow to configure the instrument between the different observing modes and wavelength ranges. The main requirements for the three mechanisms with up to 18 positions on the wheel include: (1) reliable operation at T ~ 7 K, (2) optical precision, (3) low power dissipation, (4) high vibration capability, (5) functionality at 6 K < T < 300 K and (6) long lifetime (5-10 years). To meet these stringent requirement, a space-proven mechanism design based on the European ISO mission and consisting of a central bearing carrying the optical wheels, a central torque motor for wheel actuation, a ratchet system for precise and powerless positioning and a magnetoresistive position sensor has been selected. We present here the detailed design of the flight models and report results from the extensive component qualification.

  9. Ionizing radiation test results for an automotive microcontroller on board the Schiaparelli Mars lander

    NASA Astrophysics Data System (ADS)

    Tapani Nikkanen, Timo; Hieta, Maria; Schmidt, Walter; Genzer, Maria; Haukka, Harri; Harri, Ari-Matti

    2016-04-01

    The Finnish Meteorological Institute (FMI) has delivered a pressure and a humidity instrument for the ESA ExoMars 2016 Schiaparelli lander mission. Schiaparelli is scheduled to launch towards Mars with the Trace Gas Orbiter on 14th of March 2016. The DREAMS-P (pressure) and DREAMS-H (Humidity) instruments are operated utilizing a novel FMI instrument controller design based on a commercial automotive microcontroller (MCU). A custom qualification program was implemented to qualify the MCU for the relevant launch, cruise and surface operations environment of a Mars lander. Resilience to ionizing radiation is one of the most critical requirements for a digital component operated in space or at planetary bodies. Thus, the expected Total Ionizing Dose accumulated by the MCU was determined and a sample of these components was exposed to a Co-60 gamma radiation source. Part of the samples was powered during the radiation exposure to include the effect of electrical biasing. All of the samples were verified to withstand the expected total ionizing dose with margin. The irradiated test samples were then radiated until failure to determine their ultimate TID.

  10. Local Observations, Global Connections: An Educational Program Using Ocean Networks Canada's Community-Based Observatories

    NASA Astrophysics Data System (ADS)

    Pelz, M.; Hoeberechts, M.; Ewing, N.; Davidson, E.; Riddell, D. J.

    2014-12-01

    Schools on Canada's west coast and in the Canadian Arctic are participating in the pilot year of a novel educational program based on analyzing, understanding and sharing ocean data collected by cabled observatories. The core of the program is "local observations, global connections." First, students develop an understanding of ocean conditions at their doorstep through the analysis of community-based observatory data. Then, they connect that knowledge with the health of the global ocean by engaging with students at other schools participating in the educational program and through supplemental educational resources. Ocean Networks Canada (ONC), an initiative of the University of Victoria, operates cabled ocean observatories which supply continuous power and Internet connectivity to a broad suite of subsea instruments from the coast to the deep sea. This Internet connectivity permits researchers, students and members of the public to download freely available data on their computers anywhere around the globe, in near real-time. In addition to the large NEPTUNE and VENUS cabled observatories off the coast of Vancouver Island, British Columbia, ONC has been installing smaller, community-based cabled observatories. Currently two are installed: one in Cambridge Bay, Nunavut and one at Brentwood College School, on Mill Bay in Saanich Inlet, BC. Several more community-based observatories are scheduled for installation within the next year. The observatories support a variety of subsea instruments, such as a video camera, hydrophone and water quality monitor and shore-based equipment including a weather station and a video camera. Schools in communities hosting an observatory are invited to participate in the program, alongside schools located in other coastal and inland communities. Students and teachers access educational material and data through a web portal, and use video conferencing and social media tools to communicate their findings. A series of lesson plans introduces the teachers and students to cabled observatory technology and instrumentation, including technical aspects and their value in monitoring changing ocean conditions. This presentation will describe the program in more detail and report on our experiences in the first months of the pilot year.

  11. Traveling Wave Tube (TVT) RF Power Combining Demonstration for use in the Jupiter Icy Moons Orbiter (JIMO)

    NASA Technical Reports Server (NTRS)

    Downey, Joseph A.

    2004-01-01

    The Jupiter Icy Moons Orbiter (JIMO) is set to launch between the years 2012 and 2015. It will possibly utilize a nuclear reactor power source and ion engines as it travels to the moons of Jupiter. The nuclear reactor will produce hundreds of kilowatts of power for propulsion, communication and various scientific instruments. Hence, the RF amplification devices aboard will be able to operate at a higher power level and data rate. The initial plan for the communications system is for an output of 1000 watts of RF power, a data rate of at least 10 megabits a second, and a frequency of 32 GHz. A higher data rate would be ideal to fully utilize the instruments aboard JIMO. At NASA Glenn, one of our roles in the JIMO project is to demonstrate RF power combining using multiple traveling wave tubes (TWT). In order for the power of separate TWT s to be combined, the RF output waves from each must be in-phase and have the same amplitude. Since different tubes act differently, we had to characterize each tube using a Network Analyzer. We took frequency sweeps and power sweeps to characterize each tube to ensure that they will behave similarly under the same conditions. The 200 watt Dornier tubes had been optimized to run at a lower power level (120 watts) for their extensive use in the ACTS program, so we also had to experiment with adjusting the voltage settings on several internal components (helix, anode, collector) of the tubes to reach the full 200 watt potential. from the ACTS program. Phase shifters and power attenuators were placed in the waveguide circuit at the inputs to the tubes so that adjustments could be made individually to match them exactly. A magic tee was used to route and combine the amplified electromagnetic RF waves on the tube output side. The demonstration of 200 watts of combined power was successful with efficiencies greater than 90% over a 500 MHz bandwidth. The next step will be to demonstrate the use of three amplifiers using two magic tees by adding a 200 watt Dornier tube to the Varian and Logimetrics combined setup for a total of 400 watts. After that we will use two 200 watt Dorniers for 400 watts and eventually four 200 watt Dornier tubes to demonstrate 800 watts. After demonstrating the success of power combining, we will need to verify the integrity of a modulated signal sent through the combined tubes. The purpose will be to see what effects separating and recombining will have on the modulated signal and also what effect it will have on combining efficiency. A Bit Error Rate (BER) will be determined by a Bit Error Rate Tester (BERT) by comparing the random information it transmits to what it receives back. The process began with two 100 watt tubes, a Varian and a Logimetrics, salvaged

  12. On use of ZPR research reactors and associated instrumentation and measurement methods for reactor physics studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chauvin, J.P.; Blaise, P.; Lyoussi, A.

    2015-07-01

    The French atomic and alternative energies -CEA- is strongly involved in research and development programs concerning the use of nuclear energy as a clean and reliable source of energy and consequently is working on the present and future generation of reactors on various topics such as ageing plant management, optimization of the plutonium stockpile, waste management and innovative systems exploration. Core physics studies are an essential part of this comprehensive R and D effort. In particular, the Zero Power Reactor (ZPR) of CEA: EOLE, MINERVE and MASURCA play an important role in the validation of neutron (as well photon) physicsmore » calculation tools (codes and nuclear data). The experimental programs defined in the CEA's ZPR facilities aim at improving the calculation routes by reducing the uncertainties of the experimental databases. They also provide accurate data on innovative systems in terms of new materials (moderating and decoupling materials) and new concepts (ADS, ABWR, new MTR (e.g. JHR), GENIV) involving new fuels, absorbers and coolant materials. Conducting such interesting experimental R and D programs is based on determining and measuring main parameters of phenomena of interest to qualify calculation tools and nuclear data 'libraries'. Determining these parameters relies on the use of numerous and different experimental techniques using specific and appropriate instrumentation and detection tools. Main ZPR experimental programs at CEA, their objectives and challenges will be presented and discussed. Future development and perspectives regarding ZPR reactors and associated programs will be also presented. (authors)« less

  13. Digital combined instrument transformer for automated electric power supply control systems of mining companies

    NASA Astrophysics Data System (ADS)

    Topolsky, D. V.; Gonenko, T. V.; Khatsevskiy, V. F.

    2017-10-01

    The present paper discusses ways to solve the problem of enhancing operating efficiency of automated electric power supply control systems of mining companies. According to the authors, one of the ways to solve this problem is intellectualization of the electric power supply control system equipment. To enhance efficiency of electric power supply control and electricity metering, it is proposed to use specially designed digital combined instrument current and voltage transformers. This equipment conforms to IEC 61850 international standard and is adapted for integration into the digital substation structure. Tests were performed to check conformity of an experimental prototype of the digital combined instrument current and voltage transformer with IEC 61850 standard. The test results have shown that the considered equipment meets the requirements of the standard.

  14. INTEGRATED MONITORING HARDWARE DEVELOPMENTS AT LOS ALAMOS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. PARKER; J. HALBIG; ET AL

    1999-09-01

    The hardware of the integrated monitoring system supports a family of instruments having a common internal architecture and firmware. Instruments can be easily configured from application-specific personality boards combined with common master-processor and high- and low-voltage power supply boards, and basic operating firmware. The instruments are designed to function autonomously to survive power and communication outages and to adapt to changing conditions. The personality boards allow measurement of gross gammas and neutrons, neutron coincidence and multiplicity, and gamma spectra. In addition, the Intelligent Local Node (ILON) provides a moderate-bandwidth network to tie together instruments, sensors, and computers.

  15. Development of hermetic electrical connectors for SSC spool pieces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kountanis, B.; Kalny, L.

    1993-05-01

    The Superconducting Super Collider ring is about 54 miles (87 km circumference) and primarily includes a series of magnets. Spool piece assemblies are interspaced in the ring at predetermined intervals to provide specific functions such as cryogenic interfaces, vacuum interface, magnet power, magnet power dump, quench heater power, and special instrumentation. Electrical connectors serve as interfaces for instrumentation and quench heater circuits. These connectors have to meet stringent requirements.

  16. Advanced Camera for Surveys Instrument Handbook for Cycle 25 v. 16.0

    NASA Astrophysics Data System (ADS)

    Avila, R. J.

    2017-01-01

    The Advanced Camera for Surveys (ACS), a third-generation instrument, was installed in the Hubble Space Telescope during Servicing Mission 3B, on March 7, 2002. Its primary purpose was to increase HST imaging discovery efficiency by about a factor of 10, with a combination of detector area and quantum efficiency that surpasses previous instruments. ACS has three independent cameras that have provided wide-field, high resolution, and ultraviolet imaging capabilities respectively, using a broad assortment of filters designed to address a large range of scientific goals. In addition, coronagraphic, polarimetric, and grism capabilities have made the ACS a versatile and powerful instrument. The ACS Instrument Handbook, which is maintained by the ACS Team at STScI, descr ibes the instrument properties, performance, operations, and calibration. It is the basic technical reference manual for the instrument, and should be used with other documents (listed in Table 1.1) for writing Phase I proposals, detailed Phase II programs, and for data analysis. (See Figure 1.1). In May 2009, Servicing Mission 4 (SM4) successfully restored the ACS Wide Field Camera (WFC) to regular service after its failure in January 2007. Unfortunately, the ACS High Resolution Camera (HRC) was not restored to operation during SM4, so it cannot be proposed for new observations. Nevertheless, this handbook retains description of the HRC to support analysis of archived observations. The ACS Solar Blind Channel (SBC) was unaffected by the January 2007 failure of WFC and HRC. The SBC has remained in steady operation, and was not serviced during SM4. It remains available for new observations.

  17. TEMPEST-D MM-Wave Radiometer

    NASA Astrophysics Data System (ADS)

    Padmanabhan, S.; Gaier, T.; Reising, S. C.; Lim, B.; Stachnik, R. A.; Jarnot, R.; Berg, W. K.; Kummerow, C. D.; Chandrasekar, V.

    2016-12-01

    The TEMPEST-D radiometer is a five-frequency millimeter-wave radiometer at 89, 165, 176, 180, and 182 GHz. The direct-detection architecture of the radiometer reduces its power consumption and eliminates the need for a local oscillator, reducing complexity. The Instrument includes a blackbody calibrator and a scanning reflector, which enable precision calibration and cross-track scanning. The MMIC-based millimeter-wave radiometers take advantage of the technology developed under extensive investment by the NASA Earth Science Technology Office (ESTO). The five-frequency millimeter-wave radiometer is built by Jet Propulsion Laboratory (JPL), which has produced a number of state-of-the-art spaceborne microwave radiometers, such as the Microwave Limb Sounder (MLS), Advanced Microwave Radiometer (AMR) for Jason-2/OSTM, Jason-3, and the Juno Microwave Radiometer (MWR). The TEMPEST-D Instrument design is based on a 165 to 182 GHz radiometer design inherited from RACE and an 89 GHz receiver developed under the ESTO ACT-08 and IIP-10 programs at Colorado State University (CSU) and JPL. The TEMPEST reflector scan and calibration methodology is adapted from the Advanced Technology Microwave Sounder (ATMS) and has been validated on the Global Hawk unmanned aerial vehicle (UAV) using the High Altitude MMIC Sounding radiometer (HAMSR) instrument. This presentation will focus on the design, development and performance of the TEMPEST-D radiometer instrument. The flow-down of the TEMPEST-D mission objectives to instrument level requirements will also be discussed.

  18. Advancement of High Power Quasi-CW Laser Diode Arrays For Space-based Laser Instruments

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Meadows, Byron L.; Baker, nathaniel R.; Baggott, Renee S.; Singh, Upendra N.; Kavaya, Michael J.

    2004-01-01

    Space-based laser and lidar instruments play an important role in NASA s plans for meeting its objectives in both Earth Science and Space Exploration areas. Almost all the lidar instrument concepts being considered by NASA scientist utilize moderate to high power diode-pumped solid state lasers as their transmitter source. Perhaps the most critical component of any solid state laser system is its pump laser diode array which essentially dictates instrument efficiency, reliability and lifetime. For this reason, premature failures and rapid degradation of high power laser diode arrays that have been experienced by laser system designers are of major concern to NASA. This work addresses these reliability and lifetime issues by attempting to eliminate the causes of failures and developing methods for screening laser diode arrays and qualifying them for operation in space.

  19. An Overview of 2014 SBIR Phase 1 and Phase 2 Communications Technology and Development

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.; Morris, Jessica R.

    2015-01-01

    NASA's Small Business Innovation Research (SBIR) program focuses on technological innovation by investing in development of innovative concepts and technologies to help NASA mission directorates address critical research needs for Agency programs. This report highlights eight of the innovative SBIR 2014 Phase I and Phase II projects that emphasize one of NASA Glenn Research Center's six core competencies-Communication Technology and Development. The technologies cover a wide spectrum of applications such as X-ray navigation, microsensor instrument for unmanned aerial vehicle airborne atmospheric measurements, 16-element graphene-based phased array antenna system, interferometric star tracker, ultralow power fast-response sensor, and integrated spacecraft navigation and communication. Each featured technology describes an innovation, technical objective, and highlights NASA commercial and industrial applications. This report provides an opportunity for NASA engineers, researchers, and program managers to learn how NASA SBIR technologies could help their programs and projects, and lead to collaborations and partnerships between the small SBIR companies and NASA that would benefit both.

  20. MOD-5A wind turbine generator program design report: Volume 1: Executive Summary

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The design, development and analysis of the 7.3 MW MOD-5A wind turbine generator covering work performed between July 1980 and June 1984 is discussed. The report is divided into four volumes: Volume 1 summarizes the entire MOD-5A program, Volume 2 discusses the conceptual and preliminary design phases, Volume 3 describes the final design of the MOD-5A, and Volume 4 contains the drawings and specifications developed for the final design. Volume 1, the Executive Summary, summarizes all phases of the MOD-5A program. The performance and cost of energy generated by the MOD-5A are presented. Each subsystem - the rotor, drivetrain, nacelle, tower and foundation, power generation, and control and instrumentation subsystems - is described briefly. The early phases of the MOD-5A program, during which the design was analyzed and optimized, and new technologies and materials were developed, are discussed. Manufacturing, quality assurance, and safety plans are presented. The volume concludes with an index of volumes 2 and 3.

  1. The SE role in establishing, verifying and controlling top-level program requirements

    NASA Technical Reports Server (NTRS)

    Mathews, Charles W.

    1993-01-01

    The program objectives and requirements described in the preceding paragraphs emphasize mission demonstrations. Obtaining desired science or applications information is another type of program objective. The program requirements then state the need for specific data, usually specifying a particular instrument or instrument set; the operating conditions under which the data is to be obtained (e.g., orbit altitude, field of view, and pointing accuracy); and the data handling and use. Conversely, a new instrument may be conceived or created with the program objective to establish its use potential. The Multispectral Scanner employed in the Landsat program is an example.

  2. The in-training examination: an analysis of its predictive value on performance on the general pediatrics certification examination.

    PubMed

    Althouse, Linda A; McGuinness, Gail A

    2008-09-01

    This study investigates the predictive validity of the In-Training Examination (ITE). Although studies have confirmed the predictive validity of ITEs in other medical specialties, no study has been done for general pediatrics. Each year, residents in accredited pediatric training programs take the ITE as a self-assessment instrument. The ITE is similar to the American Board of Pediatrics General Pediatrics Certifying Examination. First-time takers of the certifying examination over a 5-year period who took at least 1 ITE examination were included in the sample. Regression models analyzed the predictive value of the ITE. The predictive power of the ITE in the first training year is minimal. However, the predictive power of the ITE increases each year, providing the greatest power in the third year of training. Even though ITE scores provide information regarding the likelihood of passing the certification examination, the data should be used with caution, particularly in the first training year. Other factors also must be considered when predicting performance on the certification examination. This study continues to support the ITE as an assessment tool for program directors, as well as a means of providing residents with feedback regarding their acquisition of pediatric knowledge.

  3. Multi-Object Spectroscopy with MUSE

    NASA Astrophysics Data System (ADS)

    Kelz, A.; Kamann, S.; Urrutia, T.; Weilbacher, P.; Bacon, R.

    2016-10-01

    Since 2014, MUSE, the Multi-Unit Spectroscopic Explorer, is in operation at the ESO-VLT. It combines a superb spatial sampling with a large wavelength coverage. By design, MUSE is an integral-field instrument, but its field-of-view and large multiplex make it a powerful tool for multi-object spectroscopy too. Every data-cube consists of 90,000 image-sliced spectra and 3700 monochromatic images. In autumn 2014, the observing programs with MUSE have commenced, with targets ranging from distant galaxies in the Hubble Deep Field to local stellar populations, star formation regions and globular clusters. This paper provides a brief summary of the key features of the MUSE instrument and its complex data reduction software. Some selected examples are given, how multi-object spectroscopy for hundreds of continuum and emission-line objects can be obtained in wide, deep and crowded fields with MUSE, without the classical need for any target pre-selection.

  4. Visualizing Gaia Data with Science Teachers at AMNH

    NASA Astrophysics Data System (ADS)

    Faherty, Jacqueline K.; Desir, Deion; Coker, Kristina; Nelson, Olivia; Vasquez, Chelsea; Smithka, Iliya

    2018-01-01

    The American Museum of Natural History is an accredited graduate school and offers an innovative Master of Arts in Teaching (MAT) degree that leverages its unique scientific resources and long history of leadership in teacher education and professional development. The MAT program consists of 15-months of intensive mentoring, classroom experience, lab work, and professional development with AMNH scientists and educators. It is then followed by a 4 year commitment by all degree awardees to teach at an in needs New York high school. During the second summer of their first 15 months of the program, students are paired with a scientific mentor to obtain an REU like experience in Astronomy, Geology or Paleontology. During the summer of 2017 five teachers worked on incorporating a subset of the Tycho Gaia Astrometric Survey into the Partiview open source software. The result is an interactive experience where we can fly live through all of TGAS and highlight nearby clusters and associations. The tool is (1) a demonstration of the power of Partiview at visualizing a vast dataset such as Gaia, and (2) an extremely powerful instrument for teaching science through visualization.

  5. Investigation of ionospheric disturbances and associated diagnostic techniques. Final report, 1 January 1992-31 December 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duncan, L.M.

    1995-12-12

    The objectives of this research and development program were to conduct simulation modeling of the generation and propagation of atmospheric acoustic signals associated with surface and subsurface ground disturbances; to construct an experimental measurement system for exploratory research studies of acoustic generated ionospheric disturbances; to model high power radio wave propagation through the ionosphere, including nonlinear wave plasma interaction effects; and to assist in the assessment of diagnostic systems for observation of ionospheric modification experiments using existing and planned high latitude high power RF transmitting facilities. A computer simulation of ionospheric response to ground launched acoustic pulses was constructed andmore » results compared to observational data associated with HF and incoherent scatter radar measurements of ionospheric effects produced by earthquakes and ground level explosions. These results were then utilized to help define the design, construct and test for an HF Doppler radar system. In addition, an assessment was conducted of ionospheric diagnostic instruments proposed for the Air Force/Navy High Frequency Active Auroral Research Program (HAARP).« less

  6. Human Security in the Asia-Pacific: In Australia’s National Interests?

    DTIC Science & Technology

    2011-12-16

    Australian doctrine does not clearly define instruments of national power, this research uses the U.S. military definition. In accordance with U.S. 9...military doctrine , the instruments of national power are diplomatic, informational, military, and economic.16 Australia has been a very secure...

  7. Cryocooler Coldfinger Heat Interceptor

    NASA Technical Reports Server (NTRS)

    Johnson, D. L.; Ross, R. G., Jr.

    1994-01-01

    Spacecraft instruments requiring cryocoolers in their design struggle to keep overall power requirements in line with feasible solar array dimensions and launch vehicle lift capacities. Intermediate temperature (150 K to 200 K) radiators to cool radiation shields or optics on spacecraft instruments provide an as yet untapped resource for reducing the cryocooler power requirments.

  8. Teaching high-speed photography and photo-instrumentation

    NASA Astrophysics Data System (ADS)

    Davidhazy, Andrew

    2005-03-01

    As the tools available to the high speed photographer have become more powerful the underlying technology has increased in complexity and often is beyond the reach of most practitioners in terms of in-the-field troubleshooting or adaptation and this specialization has also driven many systems beyond the reach of high school, community college and undergraduate, non-research funded, universities. In spite of this and with the belief that fundamental techniques, reasoning and approaches have not changed much over the years, several courses in photo-instrumentation at the Imaging and Photographic Technology program at the Rochester Institute of Technology present to a couple dozen undergraduate students a year the principles associated with a various imaging systems and techniques for visualization and data analysis of high speed or "invisible" phenomena. This paper reviews the objectives and philosophy of these courses in the context of a total imaging technology education. It describes and illustrates current topics included in the program. In brief, calibration and time measurement concepts, instantaneous and repetitive time sampling equipment, various visualization technologies, strip and streak cameras and applications using film and improvised digital recorders, basic velocimetry techniques including sensitometric velocimetry and synchro-ballistic photography plus other related techniques are introduced to undergraduate students.

  9. Nuclear Science Symposium, 27th, and Symposium on Nuclear Power Systems, 12th, Orlando, Fla., November 5-7, 1980, Proceedings

    NASA Technical Reports Server (NTRS)

    Martini, M.

    1981-01-01

    Advances in instrumentation for use in nuclear-science studies are described. Consideration is given to medical instrumentation, computerized fluoroscopy, environmental instrumentation, data acquisition techniques, semiconductor detectors, microchannel plates and photomultiplier tubes, reactor instrumentation, neutron detectors and proportional counters, and space instrumentation.

  10. Low-Dimensional Feature Representation for Instrument Identification

    NASA Astrophysics Data System (ADS)

    Ihara, Mizuki; Maeda, Shin-Ichi; Ikeda, Kazushi; Ishii, Shin

    For monophonic music instrument identification, various feature extraction and selection methods have been proposed. One of the issues toward instrument identification is that the same spectrum is not always observed even in the same instrument due to the difference of the recording condition. Therefore, it is important to find non-redundant instrument-specific features that maintain information essential for high-quality instrument identification to apply them to various instrumental music analyses. For such a dimensionality reduction method, the authors propose the utilization of linear projection methods: local Fisher discriminant analysis (LFDA) and LFDA combined with principal component analysis (PCA). After experimentally clarifying that raw power spectra are actually good for instrument classification, the authors reduced the feature dimensionality by LFDA or by PCA followed by LFDA (PCA-LFDA). The reduced features achieved reasonably high identification performance that was comparable or higher than those by the power spectra and those achieved by other existing studies. These results demonstrated that our LFDA and PCA-LFDA can successfully extract low-dimensional instrument features that maintain the characteristic information of the instruments.

  11. A Low Mass Translation Mechanism for Planetary FTIR Spectrometry using an Ultrasonic Piezo Linear Motor

    NASA Technical Reports Server (NTRS)

    Heverly, Matthew; Dougherty, Sean; Toon, Geoffrey; Soto, Alejandro; Blavier, Jean-Francois

    2004-01-01

    One of the key components of a Fourier Transform Infrared Spectrometer (FTIR) is the linear translation stage used to vary the optical path length between the two arms of the interferometer. This translation mechanism must produce extremely constant velocity motion across its entire range of travel to allow the instrument to attain high signal-to-noise ratio and spectral resolving power. A new spectrometer is being developed at the Jet Propulsion Laboratory under NASA s Planetary Instrument Definition and Development Program (PIDDP). The goal of this project is to build upon existing spaceborne FTIR spectrometer technology to produce a new instrument prototype that has drastically superior spectral resolution and substantially lower mass, making it feasible for planetary exploration. In order to achieve these goals, Alliance Spacesystems, Inc. (ASI) has developed a linear translation mechanism using a novel ultrasonic piezo linear motor in conjunction with a fully kinematic, fault tolerant linear rail system. The piezo motor provides extremely smooth motion, is inherently redundant, and is capable of producing unlimited travel. The kinematic rail uses spherical Vespel(R). rollers and bushings, which eliminates the need for wet lubrication, while providing a fault tolerant platform for smooth linear motion that will not bind under misalignment or structural deformation. This system can produce velocities from 10 - 100 mm/s with less than 1% velocity error over the entire 100-mm length of travel for a total mechanism mass of less than 850 grams. This system has performed over half a million strokes under vacuum without excessive wear or degradation in performance. This paper covers the design, development, and testing of this linear translation mechanism as part of the Planetary Atmosphere Occultation Spectrometer (PAOS) instrument prototype development program.

  12. Atmospheric Radiation Measurement Program facilities newsletter, July 2000.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sisterson, D. L.; Holdridge, D. J., ed.

    2000-08-03

    For improved safety in and around the ARM SGP CART site, the ARM Program recently purchased and installed an aircraft detection radar system at the central facility near Lamont, Oklahoma. The new system will enhance safety measures already in place at the central facility. The SGP CART site, especially the central facility, houses several instruments employing laser technology. These instruments are designed to be eye-safe and are not a hazard to personnel at the site or pilots of low-flying aircraft over the site. However, some of the specialized equipment brought to the central facility by visiting scientists during scheduled intensivemore » observation periods (IOPs) might use higher-power laser beams that point skyward to make measurements of clouds or aerosols in the atmosphere. If these beams were to strike the eye of a person in an aircraft flying above the instrument, damage to the person's eyesight could result. During IOPs, CART site personnel have obtained Federal Aviation Administration (FAA) approval to temporarily close the airspace directly over the central facility and keep aircraft from flying into the path of the instrument's laser beam. Information about the blocked airspace is easily transmitted to commercial aircraft, but that does not guarantee that the airspace remains completely plane-free. For this reason, during IOPs in which non-eye-safe lasers were in use in the past, ARM technicians watched for low-flying aircraft in and around the airspace over the central facility. If the technicians spotted such an aircraft, they would manually trigger a safety shutter to block the laser beam's path skyward until the plane had cleared the area.« less

  13. 115. VIEW OF SOUTHWEST CORNER OF LANDLINE INSTRUMENTATION ROOM (206), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    115. VIEW OF SOUTHWEST CORNER OF LANDLINE INSTRUMENTATION ROOM (206), LSB (BLDG. 751). BATTERY RACK ON LEFT FOR BACKUP BOOSTER POWER; BATTERY RACK ON RIGHT FOR BACKUP AEROSPACE GROUND EQUIPMENT (AGE) POWER. RECTIFIER SUPPLYING PRIMARY POWER ON THE RIGHT SIDE OF THE PHOTO; BATTERY CHARGER BETWEEN RECTIFIER AND BATTERY RACKS. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  14. Multilayer Optimization of Heterogeneous Networks Using Grammatical Genetic Programming.

    PubMed

    Fenton, Michael; Lynch, David; Kucera, Stepan; Claussen, Holger; O'Neill, Michael

    2017-09-01

    Heterogeneous cellular networks are composed of macro cells (MCs) and small cells (SCs) in which all cells occupy the same bandwidth. Provision has been made under the third generation partnership project-long term evolution framework for enhanced intercell interference coordination (eICIC) between cell tiers. Expanding on previous works, this paper instruments grammatical genetic programming to evolve control heuristics for heterogeneous networks. Three aspects of the eICIC framework are addressed including setting SC powers and selection biases, MC duty cycles, and scheduling of user equipments (UEs) at SCs. The evolved heuristics yield minimum downlink rates three times higher than a baseline method, and twice that of a state-of-the-art benchmark. Furthermore, a greater number of UEs receive transmissions under the proposed scheme than in either the baseline or benchmark cases.

  15. Design definition of the Laser Atmospheric Wind Sounder (LAWS), phase 2. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The LAWS phase 1 and phase 2 studies have been completed on schedule and have led to significant advances in CO2 laser development. The Phase 2 Design Definition Study has shown that a large scanning mirror/high pulse energy laser LAWS Instrument is feasible and within the existing technology. The capability to monitor wind velocities with backscatter ratios of 10(exp 11) m(exp -1) SR(exp -1) is feasible. The weight budget allocated for the baseline LAWS is adequate, and sufficient reserves exist with the potential downsized configuration. With the possible decrease in available power from the baseline of 2.2 kW guideline, power and shot management is critical for the baseline configuration (15 to 20 J). This is particularly true during the 100 day occultation period each year. With the downsized configurations (5 to 7 J), power management is still necessary during the occultation but is primarily limited to shot management over the polar regions. The breadboard effort has produced significant laser advances for a tight 18 month schedule and the minimum budgets available from NASA, Lockheed, and TDS. Using the NASA funds and Lockheed and TDS fixed assets budgets, the breadboard was designed, fabricated, and brought on-line with first laser light within 16 months after ATP. First laser beam was obtained on 21 April 1992 at a 5 J power level. Tests since then have been conducted at sustained, repetitive pulse levels of over 7 J and 20 Hz. This is an increase of over two or three times greater than any system previously developed from this type laser. Increased power levels and additional life tests will be accomplished in the next LAWS phase. The Lockheed LAWS design will operate in the gravity gradient mode on-orbit, and all possible instrument vibration and jitter modes have been considered. Adequate pointing stability and control is state-of-the-art technology for the critical time periods, frequency rates, and control responses required by LAWS. Lockheed recommends a 6-1/2 year phase C/D program for LAWS to provide adequate feedback from the engineering unit and the qualification unit to the final flight unit. Assuming a one year period for LAWS integration to the spacecraft, followed by a six-month period for launch vehicle integration, LAWS could be successfully developed and launched in eight years. Our baseline design or downsized design can be accommodated by either the Atlas 2AS or the Delta launch vehicles. Lockheed's recommendation is that, based on the successful phase 2 design study and breadboard program, a follow-on 18 month extended breadboard testing program and additional system engineering studies, primarily in interfacing with a to be defined platform, be initiated. This should be immediately followed by the phase C/D program, leading to a LAWS launch in late 2001 or early 2002.

  16. Research and realization of signal simulation on virtual instrument

    NASA Astrophysics Data System (ADS)

    Zhao, Qi; He, Wenting; Guan, Xiumei

    2010-02-01

    In the engineering project, arbitrary waveform generator controlled by software interface is needed by simulation and test. This article discussed the program using the SCPI (Standard Commands For Programmable Instruments) protocol and the VISA (Virtual Instrument System Architecture) library to control the Agilent signal generator (Agilent N5182A) by instrument communication over the LAN interface. The program can conduct several signal generations such as CW (continuous wave), AM (amplitude modulation), FM (frequency modulation), ΦM (phase modulation), Sweep. As the result, the program system has good operability and portability.

  17. Microwave power transmitting phased array antenna research project

    NASA Technical Reports Server (NTRS)

    Dickinson, R. M.

    1978-01-01

    An initial design study and the development results of an S band RF power transmitting phased array antenna experiment system are presented. The array was to be designed, constructed and instrumented to permit wireless power transmission technology evaluation measurements. The planned measurements were to provide data relative to the achievable performance in the state of the art of flexible surface, retrodirective arrays, as a step in technically evaluating the satellite power system concept for importing to earth, via microwave beams, the nearly continuous solar power available in geosynchronous orbit. Details of the microwave power transmitting phased array design, instrumentation approaches, system block diagrams, and measured component and breadboard characteristics achieved are presented.

  18. Measuring Tropospheric Winds from Space Using a Coherent Doppler Lidar Technique

    NASA Technical Reports Server (NTRS)

    Miller, Timothy L.; Kavaya, Michael J.; Emmitt, G. David

    1999-01-01

    The global measurement of tropospheric wind profiles has been cited by the operational meteorological community as the most important missing element in the present and planned observing system. The most practical and economical method for obtaining this measurement is from low earth orbit, utilizing a Doppler lidar (laser radar) technique. Specifically, this paper will describe the coherent Doppler wind lidar (CDWL) technique, the design and progress of a current space flight project to fly such a system on the Space Shuttle, and plans for future flights of similar instruments. The SPARCLE (SPAce Readiness Coherent Lidar Experiment) is a Shuttle-based instrument whose flight is targeted for March, 2001. The objectives of SPARCLE are three-fold: Confirm that the coherent Doppler lidar technique can measure line-of-sight winds to within 1-2 m/s accuracy; Collect data to permit validation and improvement of instrument performance models to enable better design of future missions; and Collect wind and backscatter data for future mission optimization and for atmospheric studies. These objectives reflect the nature of the experiment and its program sponsor, NASA's New Millennium Program. The experiment is a technology validation mission whose primary purpose is to provide a space flight validation of this particular technology. (It should be noted that the CDWL technique has successfully been implemented from ground-based and aircraft-based platforms for a number of years.) Since the conduct of the SPARCLE mission is tied to future decisions on the choice of technology for free-flying, operational missions, the collection of data is intrinsically tied to the validation and improvement of instrument performance models that predict the sensitivity and accuracy of any particular present or future instrument system. The challenges unique to space flight for an instrument such as SPARCLE and follow-ons include: Obtaining the required lidar sensitivity from the long distance of orbit height to the lower atmosphere; Maintaining optical alignments after launch to orbit, and during operations in "microgravity"; Obtaining pointing knowledge of sufficient accuracy to remove the speed of the spacecraft (and the rotating Earth) from the measurements; Providing sufficient power (not a problem on the Shuttle) and cooling to the instrument. The paper will describe the status and challenges of the SPARCLE project, the value of obtaining wind data from orbit, and will present a roadmap to future instruments for scientific research and operational meteorology.

  19. A Program to Improve Social Studies Instruction in the Ottumwa Community Schools. Surveys, Grades 3-12, Measurement Instruments, Project #1009.

    ERIC Educational Resources Information Center

    Ahrens, Willis

    As part of a social studies instruction improvement program, measurement instruments were developed to measure attitudes of and evaluate courses for teachers and students in grades 3-12. The measurement instruments presented are surveys used in the social studies program. The purposes of the improvement project are to use the multimedia approach…

  20. Using a graphical programming language to write CAMAC/GPIB instrument drivers

    NASA Technical Reports Server (NTRS)

    Zambrana, Horacio; Johanson, William

    1991-01-01

    To reduce the complexities of conventional programming, graphical software was used in the development of instrumentation drivers. The graphical software provides a standard set of tools (graphical subroutines) which are sufficient to program the most sophisticated CAMAC/GPIB drivers. These tools were used and instrumentation drivers were successfully developed for operating CAMAC/GPIB hardware from two different manufacturers: LeCroy and DSP. The use of these tools is presented for programming a LeCroy A/D Waveform Analyzer.

  1. Light Water Reactor Sustainability (LWRS) Program – Non-Destructive Evaluation (NDE) R&D Roadmap for Determining Remaining Useful Life of Aging Cables in Nuclear Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simmons, Kevin L.; Ramuhalli, Pradeep; Brenchley, David L.

    2012-09-14

    The purpose of the non-destructive evaluation (NDE) R&D Roadmap for Cables is to support the Materials Aging and Degradation (MAaD) R&D pathway. The focus of the workshop was to identify the technical gaps in detecting aging cables and predicting their remaining life expectancy. The workshop was held in Knoxville, Tennessee, on July 30, 2012, at Analysis and Measurement Services Corporation (AMS) headquarters. The workshop was attended by 30 experts in materials, electrical engineering, U.S. Nuclear Regulatory Commission (NRC), U.S. Department of Energy (DOE) National Laboratories (Oak Ridge National Laboratory, Pacific Northwest National Laboratory, Argonne National Laboratory, and Idaho National Engineeringmore » Laboratory), NDE instrumentation development, universities, commercial NDE services and cable manufacturers, and Electric Power Research Institute (EPRI). The motivation for the R&D roadmap comes from the need to address the aging management of in-containment cables at nuclear power plants (NPPs).« less

  2. The startup of the Dodewaard natural circulation boiling water reactor -- Experiences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nissen, W.H.M.; Van Der Voet, J.; Karuza, J.

    1994-07-01

    Because of its similarity to the simplified boiling water reactor (SBWR), the Dodewaard natural circulation boiling water reactor (BWR) is of special interest to further development of the SBWR design. It has become especially important to gain more insight into the Dodewaard BWR behavior during startup, paying special attention to its stability. Therefore, special instrumentation was used by means of which a series of measurements were taken during the two startups in February and June 1992. The results obtained from these measurements are used to deepen insight into the recirculation flow and the stability of the reactor during startup undermore » conditions with a normal pressure/power trajectory. They have already shown a very early recirculation flow onset during low-power operation and no indication of reactor instability. Furthermore, they will be used as a basis for the research program investigating the reactor behavior under different pressure/power conditions, which is scheduled for next year.« less

  3. Music Program of Study: Educational Program Definition.

    ERIC Educational Resources Information Center

    West Virginia State Dept. of Education, Charleston.

    The West Virginia music study program is a public school K-12 curriculum sequence. This program is divided into the four principal areas of: (1) general classroom music; (2) string instrumental music; (3) wind and percussion instrumental music; and (4) choral music. The general classroom music program is an early and middle childhood sequence of…

  4. A preliminary user-friendly, digital console for the control room parameters supervision in old-generation Nuclear Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Memmi, F.; Falconi, L.; Cappelli, M.

    2012-07-01

    Improvements in the awareness of a system status is an essential requirement to achieve safety in every kind of plant. In particular, in the case of Nuclear Power Plants (NPPs), a progress is crucial to enhance the Human Machine Interface (HMI) in order to optimize monitoring and analyzing processes of NPP operational states. Firstly, as old-fashioned plants are concerned, an upgrading of the whole console instrumentation is desirable in order to replace an analog visualization with a full-digital system. In this work, we present a novel instrument able to interface the control console of a nuclear reactor, developed by usingmore » CompactRio, a National Instruments embedded architecture and its dedicated programming language. This real-time industrial controller composed by a real-time processor and FPGA modules has been programmed to visualize the parameters coming from the reactor, and to storage and reproduce significant conditions anytime. This choice has been made on the basis of the FPGA properties: high reliability, determinism, true parallelism and re-configurability, achieved by a simple programming method, based on LabVIEW real-time environment. The system architecture exploits the FPGA capabilities of implementing custom timing and triggering, hardware-based analysis and co-processing, and highest performance control algorithms. Data stored during the supervisory phase can be reproduced by loading data from a measurement file, re-enacting worthwhile operations or conditions. The system has been thought to be used in three different modes, namely Log File Mode, Supervisory Mode and Simulation Mode. The proposed system can be considered as a first step to develop a more complete Decision Support System (DSS): indeed this work is part of a wider project that includes the elaboration of intelligent agents and meta-theory approaches. A synoptic has been created to monitor every kind of action on the plant through an intuitive sight. Furthermore, another important aim of this work is the possibility to have a front panel available on a web interface: CompactRio acts as a remote server and it is accessible on a dedicated LAN. This supervisory system has been tested and validated on the basis of the real control console for the 1-MW TRIGA reactor RC-1 at the ENEA, Casaccia Research Center. In this paper we show some results obtained by recording each variable as the reactor reaches its maximum level of power. The choice of a research reactor for testing the developed system relies on its training and didactic importance for the education of plant operators: in this context a digital instrument can offer a better user-friendly tool for learning and training. It is worthwhile to remark that such a system does not interfere with the console instrumentation, the latter continuing to preserve the total control. (authors)« less

  5. Thermal management of high heat flux electronic components in space and aircraft systems, phase 1

    NASA Astrophysics Data System (ADS)

    Iversen, Arthur H.

    1991-03-01

    The objectives of this Phase 1 program were to analyze, design, construct and demonstrate the application of curved surface cooling to power devices with the goal of demonstrating greater than 200 W/sq cm chip dissipation while maintaining junction temperatures within specification. Major components of the experiment comprised the test fixture for mounting the device under test and the cooling loop equipment and instrumentation. The work conducted in this Phase 1 study was to establish the basic parameters for the design of an entire class of efficient, compact, lightweight and cost competitive power conversion/conditioning systems for space, aircraft and general DOD requirements. This has been accomplished. Chip power dissipation of greater than 400 W/sq cm was demonstrated, and a general packaging and the thermal management design has been devised to meet the above requirements. The power limit reached was dictated by the junction temperature and not power dissipation, i.e., critical heat flux. The key to the packaging design is a basic construction concept that provides low junction to fluid thermal resistance. High heat flux dissipation without low thermal resistance is useless because excessive junction temperatures will results.

  6. Advanced Monitoring to Improve Combustion Turbine/Combined Cycle Reliability, Availability & Maintainability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leonard Angello

    2005-09-30

    Power generators are concerned with the maintenance costs associated with the advanced turbines that they are purchasing. Since these machines do not have fully established Operation and Maintenance (O&M) track records, power generators face financial risk due to uncertain future maintenance costs. This risk is of particular concern, as the electricity industry transitions to a competitive business environment in which unexpected O&M costs cannot be passed through to consumers. These concerns have accelerated the need for intelligent software-based diagnostic systems that can monitor the health of a combustion turbine in real time and provide valuable information on the machine's performancemore » to its owner/operators. EPRI, Impact Technologies, Boyce Engineering, and Progress Energy have teamed to develop a suite of intelligent software tools integrated with a diagnostic monitoring platform that, in real time, interpret data to assess the 'total health' of combustion turbines. The 'Combustion Turbine Health Management System' (CTHMS) will consist of a series of 'Dynamic Link Library' (DLL) programs residing on a diagnostic monitoring platform that accepts turbine health data from existing monitoring instrumentation. CTHMS interprets sensor and instrument outputs, correlates them to a machine's condition, provide interpretative analyses, project servicing intervals, and estimate remaining component life. In addition, the CTHMS enables real-time anomaly detection and diagnostics of performance and mechanical faults, enabling power producers to more accurately predict critical component remaining useful life and turbine degradation.« less

  7. A System for Web-based Access to the HSOS Database

    NASA Astrophysics Data System (ADS)

    Lin, G.

    Huairou Solar Observing Station's (HSOS) magnetogram and dopplergram are world-class instruments. Access to their data has opened to the world. Web-based access to the data will provide a powerful, convenient tool for data searching and solar physics. It is necessary that our data be provided to users via the Web when it is opened to the world. In this presentation, the author describes general design and programming construction of the system. The system will be generated by PHP and MySQL. The author also introduces basic feature of PHP and MySQL.

  8. Multi-channel Scaler Cards Improve Data Collection

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Scientists interested in exploring the intricacies and dynamics of Earth's climate and ecosystems continually need smaller, lighter instrumentation that can be placed onboard various sensing platforms, such as Unmanned Aerial Vehicles (UAVs). Responding to a need for improved data collection for remote atmospheric measurement systems, ASRC Aerospace Corporation, of Greenbelt, Maryland, developed a series of low-power, highly integrated, multichannel scaler (MCS) cards. The cards were designed to meet the needs of NASA's ground-based and airborne Light Detection and Ranging (LIDAR) photoncounting programs. They can rapidly collect thousands of data points during a continuous scan of the atmosphere.

  9. USAWC (US Army War College) Military Studies Program Paper. An Investigation of the Value of Taiwan To Future United States Relations with the People’s Republic of China.

    DTIC Science & Technology

    1986-02-18

    instrum-ent of power in future U.S.- PRC relations. During the 1949-1978 timeframe, U.S.-PRC relations ran the gamut from armed conflict in the Korean...PRC relations ran the gamut from armed conflict in the Korean War to diplomatic relations declared in 1978. The first thawing in relations occurred...PRC relations. US-PRC relations during the 1949-1978 timeframe ran the gamut frou armed conflict during the Korean War to diplomatic recognition. With

  10. Micro Weather Stations for Mars

    NASA Technical Reports Server (NTRS)

    Crisp, David; Kaiser, William J.; VanZandt, Thomas R.; Hoenk, Michael E.; Tillman, James E.

    1995-01-01

    A global network of weather stations will be needed to characterize the near-surface environment on Mars. Here, we review the scientific and measurement objectives of this network. We also show how these objectives can be met within the cost-constrained Mars Surveyor Program by augmenting the Mars Pathfinder-derived landers with large numbers of very small (less than 5 liter), low-mass (less than 5 kg), low-power, low-cost Mini-meteorological stations. Each station would include instruments for measuring atmospheric. pressures, temperatures, wind velocities, humidity, and airborne dust abundance. They would also include a data handling, telemetry, power, atmospheric entry, and deployment systems in a rugged package capable of direct entry and a high-impact landing. In this paper, we describe these systems and summarize the data-taking strategies and data volumes needed to achieve the surface meteorology objectives for Mars.

  11. A flexible computerized system for environmental data acquisition and transmission

    NASA Astrophysics Data System (ADS)

    Zappalà, G.

    2009-04-01

    In recent years increasing importance has been addressed to the knowledge of the marine environment, either to help detecting and understanding global climate change phenomena, or to protect and preserve those coastal areas, where multiple interests converge (linked to the tourism, recreational or productive activities…) and which suffer greater impact from anthropogenic activities; this has in turn stimulated the start of research programs devoted to the monitoring and surveillance of these particular zones, coupling the needs for knowledge, sustainable development and exploitation of natural resources. There is an increasing need to have data available in real time or near real time in order to intervene in emergency situations. Cabled or wireless data transmission can be used. The first allows the transmission of a higher amount of data only in coastal sites, while the second gives a bigger flexibility in terms of application to different environments; more, using mobile phone services (either terrestrial or satellite), it is possible to allocate the data centre in the most convenient place, without any need of proximity to the sea. Traditional oceanographic techniques, based on ship surveys, hardly fit the needs of operational oceanography, because of their high cost and fragmentary nature, both in spatial and temporal domains. To obtain a good synopticity, it is necessary to complement traditional ship observations with measurements from fixed stations (buoys moored in sites chosen to be representative of wider areas, or to constitute a sentinel against the arrival of pollutants), satellite observations, use of ships of opportunity and of newly developed instruments, like the gliders, or towed sliding devices, like the SAVE. Modern instruments rely on an electronic heart; an integrated hardware-software system developed in Messina is here presented, used in various versions to control data acquisition and transmission on buoys or on ship-based instrumentation. The data acquisition and transmission system is based on IEEE P996.1 standard boards, implementing a PC-like architecture; basically, it consists in a Pentium family CPU (the fist prototypes used a 40 MHz 386 CPU), a variable number of RS-232 ports to connect measuring instruments and communication devices, an analog to digital converter (8 inputs 12 or 16 bit), power outputs with connected circuit status feedback to drive actuators and switch on and off the measuring systems, satellite and/or cellular phone modem, GPS; the mass storage is supplied by Disk on Chip (DOC) devices. According to the needs, it can be fully or only partly implemented. The software environment is Datalight ROMDOS v. 6, an MS-DOS compatible Operating System. The software has been written in Microsoft Professional Compiled BASIC v. 7.1. and Microsoft Macro Assembler v. 5.0. It enables to fully control the system instruments both in local and remote mode using a special set of macro commands (that can be combined into sequences using a simple text editor) that include also conditional execution of branches; this feature can be very useful in case of partial operativity of the system due, for instance, to low battery level or failure of some instrument. Available commands include: • System management commands • Instrument management commands • Conditional branch commands • Data transmission commands Collected data are locally stored and can be transmitted as e-mails, so increasing their safety against loosing and making the global data path fault tolerant using the peculiarities of the e-mail system. The first version was used in a network of coastal monitoring buoys funded by the Italian SAM program; a second one to equip an automatic multiple launcher for expendable probes to be used in ships of opportunity, designed and built in the framework of an EU funded program, "MFSTEP". Every hour, a "sequence manager" starts a macro-command sequence, that can be different for each time and is remotely reprogrammable; new releases of the software and of the sequences are uploadable to the station without suspending its normal activity. The macro-commands enable to manage the data acquisition and transmission, the mission programming, the station hardware and the measuring instruments. In the "launcher" version the program also controls real time and position acquisition, comparison against set points-times, launch, data acquisition and transmission, ancillary functions. The whole system can be connected to another computer (local laptop or remote desktop) using a terminal software; however, to fully and easily use its capabilities, a remote control program has been written in Microsoft Visual Basic, running in Windows environment. This program enables to transfer files to and from the measuring system, set up all its functionalities, and, if needed, take control of all the system operations. Thanks to the PC-like hardware architecture, it is easy to upgrade the system to more powerful processors without the need to modify the software, which, in turn, can be easily programmed using standard development packages.

  12. The Goddard High Resolution Spectrograph Scientific Support Contract

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In 1988, Computer Sciences Corporation (CSC) was selected as the Goddard High Resolution Spectrograph (GHRS) Scientific Support Contractor (SSC). This was to have been a few months before the launch of NASA's first Great Observatory, the Hubble Space Telescope (HST). As one of five scientific instruments on HST, the GHRS was designed to obtain spectra in the 1050-3300 A ultraviolet wavelength region with a resolving power, lambda/Delta(lambda) , of up to 100,000 and relative photometric accuracy to 1%. It was built by Ball AeroSpace Systems Group under the guidance of the GHRS Investigation Definition Team (IDT), comprised of 16 scientists from the US and Canada. After launch, the IDT was to perform the initial instrument calibration and execute a broad scientific program during a five-year Guaranteed Time Observation (GTO) period. After a year's delay, the launch of HST occurred in April 1990, and CSC participated in the in-orbit calibration and first four years of GTO observations with the IDT. The HST primary mirror suffered from spherical aberration, which reduced the spatial and spectral resolution of Large Science Aperture (LSA) observations and decreased the throughput of the Small Science Aperture (SSA) by a factor of two. Periodic problems with the Side 1 carrousel electronics and anomalies with the low-voltage power supply finally resulted in a suspension of the use of Side 1 less than two years after launch. At the outset, the GHRS SSC task involved work in four areas: 1) to manage and operate the GHRS Data Analysis Facility (DAF); 2) to support the second Servicing Mission Observatory Verification (SMOV) program, as well as perform system engineering analysis of the GHRS as nesessary; 3) to assist the GHRS IDT with their scientific research programs, particularly the GSFC members of the team, and 4) to provide administrative and logistic support for GHRS public information and educational activities.

  13. Lessons Learned from the Hubble Space Telescope (HST) Contamination Control Program

    NASA Technical Reports Server (NTRS)

    Hansen, Patricia A.; Townsend, Jacqueline A.; Hedgeland, Randy J.

    2004-01-01

    Over the past two decades, the Hubble Space Telescope (HST) Contamination Control Program has evolved from a ground-based integration program to a space-based science-sustaining program. The contamination controls from the new-generation Scientific Instruments and Orbital Replacement Units were incorporated into the HST Contamination Control Program to maintain scientific capability over the life of the telescope. Long-term on-orbit scientific data has shown that these contamination controls implemented for the instruments, Servicing Mission activities (Orbiter, Astronauts, and mission), and on-orbit operations successfully protected the HST &om contamination and the instruments from self-contamination.

  14. Lessons Learned from the Hubble Space Telescope (HST) Contamination Control Program

    NASA Technical Reports Server (NTRS)

    Hansen, Patricia A.; Townsend, Jacqueline A.; Hedgeland, Randy J.

    2004-01-01

    Over the past two decades, the Hubble Space Telescope (HST) Contamination Control Program has evolved from a ground-based integration program to a space-based science-sustaining program. The contamination controls from the new-generation Scientific Instruments and Orbital Replacement Units were incorporated into the HST Contamination Control Program to maintain scientific capability over the life of the telescope. Long-term on-orbit scientific data has shown that these contamination controls implemented for the instruments, Servicing Mission activities (Orbiter, Astronauts, and mission), and on-orbit operations successfully protected the HST from contamination and the instruments from self-contamination.

  15. Paraffin Phase Change Material for Maintaining Temperature Stability of IceCube Type of CubeSats in LEO

    NASA Technical Reports Server (NTRS)

    Choi, Michael K.

    2015-01-01

    The MLA and IFA of the instrument on the IceCube require a 20 C temperature and a thermal stability of +/-1 C. The thermal environment of the ISS orbit for the IceCube is very unstable due to solar beta angles in the -75deg to +75deg range. Additionally the instrument is powered off in every eclipse to conserve electrical power. These two factors cause thermal instability to the MLA and IFA. This paper presents a thermal design of using mini paraffin PCM packs to meet the thermal requirements of these instrument components. With a 31 g mass plus a 30% margin of n-hexadecane, the MLA and IFA are powered on for 32.3 minutes in sunlight at a 0deg beta angle to melt the paraffin. The powered-on time increases to 38 minutes at a 75deg (+/-) beta angle. When the MLA and IFA are powered off, the paraffin freezes.

  16. Long Term Analysis of Adaptive Low-Power Instrument Platform Power and Battery Performance

    NASA Astrophysics Data System (ADS)

    Edwards, T.; Bowman, J. R.; Clauer, C. R.

    2017-12-01

    Operation of the Autonomous Adaptive Low-Power Instrument Platform (AAL-PIP) by the Magnetosphere-Ionosphere Science Team (MIST) at Virginia Tech has been ongoing for about 10 years. These instrument platforms are deployed on the East Antarctic Plateau in remote locations that are difficult to access regularly. The systems have been designed to operate unattended for at least 5 years. During the Austral summer, the systems charge batteries using solar panels and power is provided by the batteries during the winter months. If the voltage goes below a critical level, the systems go into hibernation and wait for voltage from the solar panels to initiate a restart sequence to begin operation and battery charging. Our first system was deployed on the East Antarctic Plateau in 2008 and we report here on an analysis of the power and battery performance over multiple years and provide an estimate for how long these systems can operate before major battery maintenance must be performed.

  17. Light Water Reactor Sustainability Accomplishments Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCarthy, Kathryn A.

    Welcome to the 2014 Light Water Reactor Sustainability (LWRS) Program Accomplishments Report, covering research and development highlights from 2014. The LWRS Program is a U.S. Department of Energy research and development program to inform and support the long-term operation of our nation’s commercial nuclear power plants. The research uses the unique facilities and capabilities at the Department of Energy national laboratories in collaboration with industry, academia, and international partners. Extending the operating lifetimes of current plants is essential to supporting our nation’s base load energy infrastructure, as well as reaching the Administration’s goal of reducing greenhouse gas emissions to 80%more » below 1990 levels by the year 2050. The purpose of the LWRS Program is to provide technical results for plant owners to make informed decisions on long-term operation and subsequent license renewal, reducing the uncertainty, and therefore the risk, associated with those decisions. In January 2013, 104 nuclear power plants operated in 31 states. However, since then, five plants have been shut down (several due to economic reasons), with additional shutdowns under consideration. The LWRS Program aims to minimize the number of plants that are shut down, with R&D that supports long-term operation both directly (via data that is needed for subsequent license renewal), as well indirectly (with models and technology that provide economic benefits). The LWRS Program continues to work closely with the Electric Power Research Institute (EPRI) to ensure that the body of information needed to support SLR decisions and actions is available in a timely manner. This report covers selected highlights from the three research pathways in the LWRS Program: Materials Aging and Degradation, Risk-Informed Safety Margin Characterization, and Advanced Instrumentation, Information, and Control Systems Technologies, as well as a look-ahead at planned activities for 2015. If you have any questions about the information in the report, or about the LWRS Program, please contact me, Richard A. Reister (the Federal Program Manager), or the respective research pathway leader (noted on pages 26 and 27), or visit the LWRS Program website (www.inl.gov/lwrs). The annually updated Integrated Program Plan and Pathway Technical Program Plans are also available for those seeking more detailed technical Information.« less

  18. 21 CFR 886.1360 - Visual field laser instrument.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Visual field laser instrument. 886.1360 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1360 Visual field laser instrument. (a) Identification. A visual field laser instrument is an AC-powered device intended to provide...

  19. 21 CFR 886.1360 - Visual field laser instrument.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Visual field laser instrument. 886.1360 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1360 Visual field laser instrument. (a) Identification. A visual field laser instrument is an AC-powered device intended to provide...

  20. 21 CFR 886.1360 - Visual field laser instrument.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Visual field laser instrument. 886.1360 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1360 Visual field laser instrument. (a) Identification. A visual field laser instrument is an AC-powered device intended to provide...

  1. 21 CFR 886.1360 - Visual field laser instrument.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Visual field laser instrument. 886.1360 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1360 Visual field laser instrument. (a) Identification. A visual field laser instrument is an AC-powered device intended to provide...

  2. 21 CFR 888.5960 - Cast removal instrument.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cast removal instrument. 888.5960 Section 888.5960...) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.5960 Cast removal instrument. (a) Identification. A cast removal instrument is an AC-powered, hand-held device intended to remove a cast from a...

  3. National Aeronautics and Space Administration's research program in earth remote sensing instrumentation

    NASA Technical Reports Server (NTRS)

    Plotkin, Henry H.; Sokoloski, Martin M.; Rubin, Bernard

    1991-01-01

    Terrestrial and atmospheric missions of NASA's program to develop remote sensing instrumentation are described along with several of the instruments and related mission. Systems such as lidar and radar, passive coherent sensors, passive noncoherent sensors, as well as cryogenic cooler technology are discussed.

  4. Antitheft container for instruments

    NASA Technical Reports Server (NTRS)

    Kerley, J. J., Jr.

    1979-01-01

    Antitheft container is used to prevent theft of calculators, portable computers, and other small instruments. Container design is simple and flexible enough to allow easy access to display or input systems of instruments, while not interfering with power input to device.

  5. Design of two-channel oscilloscope and basic circuit simulations in LabView

    NASA Astrophysics Data System (ADS)

    Balzhiev, Plamen; Makal, Jaroslaw

    2008-01-01

    The project is realized as a diploma thesis in Bialystok Technical University, Poland). The main aim is to develop a useful educational tool which presents the time and frequency characteristics in basic electrical circuits. It is designed as a helpful instrument for lectures and laboratory classes. The predominant audience will be students of electrical engineering from first semester of the higher education. Therefore the level of knowledge at this stage of education is not high enough and different techniques are necessary to increase the students' interest and the efficiency of teaching process. This educational instrument provides the needed knowledge concerning the basic circuits and its parameters. Graphics and animations of the general processes in the electrical circuits make the problems more interesting, comprehensive and easier to understand. For designing such an instrument the National Instruments' programming environment LabView is used. It is preferred to the other simulation software because of its simplicity flexibility and also availability (the free demo version is sufficient to make a simple virtual instrument). LabView uses graphical programming language and has powerful mathematical functions for analysis and simulations. The useful visualization tools for presenting different diagrams are worth recommending, too. It is also specialized in measurement and control and it supports a wide variety of hardware. Therefore this software is suitable for laboratory classes to present the dependencies between the simulated characteristics in basic electrical circuits and the real one measured with the hardware device. For this purpose a two-channel oscilloscope is designed as part of the described project. The main purpose of this instrument as part of the educational process is to present the desired characteristics of the electrical circuits and to become familiar with the general functions of the oscilloscope. This project combines several important features appropriate for teaching purposes: well presented information with graphics, easy to operate with and giving the necessary knowledge. This method of teaching is more interesting and attractive to the audience. Also the information is assimilated more quickly, with less effort.

  6. Nuclear Science Symposium, 31st and Symposium on Nuclear Power Systems, 16th, Orlando, FL, October 31-November 2, 1984, Proceedings

    NASA Technical Reports Server (NTRS)

    Biggerstaff, J. A. (Editor)

    1985-01-01

    Topics related to physics instrumentation are discussed, taking into account cryostat and electronic development associated with multidetector spectrometer systems, the influence of materials and counting-rate effects on He-3 neutron spectrometry, a data acquisition system for time-resolved muscle experiments, and a sensitive null detector for precise measurements of integral linearity. Other subjects explored are concerned with space instrumentation, computer applications, detectors, instrumentation for high energy physics, instrumentation for nuclear medicine, environmental monitoring and health physics instrumentation, nuclear safeguards and reactor instrumentation, and a 1984 symposium on nuclear power systems. Attention is given to the application of multiprocessors to scientific problems, a large-scale computer facility for computational aerodynamics, a single-board 32-bit computer for the Fastbus, the integration of detector arrays and readout electronics on a single chip, and three-dimensional Monte Carlo simulation of the electron avalanche in a proportional counter.

  7. Integrated Response Time Evaluation Methodology for the Nuclear Safety Instrumentation System

    NASA Astrophysics Data System (ADS)

    Lee, Chang Jae; Yun, Jae Hee

    2017-06-01

    Safety analysis for a nuclear power plant establishes not only an analytical limit (AL) in terms of a measured or calculated variable but also an analytical response time (ART) required to complete protective action after the AL is reached. If the two constraints are met, the safety limit selected to maintain the integrity of physical barriers used for preventing uncontrolled radioactivity release will not be exceeded during anticipated operational occurrences and postulated accidents. Setpoint determination methodologies have actively been developed to ensure that the protective action is initiated before the process conditions reach the AL. However, regarding the ART for a nuclear safety instrumentation system, an integrated evaluation methodology considering the whole design process has not been systematically studied. In order to assure the safety of nuclear power plants, this paper proposes a systematic and integrated response time evaluation methodology that covers safety analyses, system designs, response time analyses, and response time tests. This methodology is applied to safety instrumentation systems for the advanced power reactor 1400 and the optimized power reactor 1000 nuclear power plants in South Korea. The quantitative evaluation results are provided herein. The evaluation results using the proposed methodology demonstrate that the nuclear safety instrumentation systems fully satisfy corresponding requirements of the ART.

  8. Nuclear Science Symposium, 19th, and Nuclear Power Systems Symposium, 4th, Miami, Fla., December 6-8, 1972, Proceedings.

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Major topics covered include radiation monitoring instrumentation, nuclear circuits and systems, biomedical applications of nuclear radiation in diagnosis and therapy, plasma research for fusion power, reactor control and instrumentation, nuclear power standards, and applications of digital computers in nuclear power plants. Systems and devices for space applications are described, including the Apollo alpha spectrometer, a position sensitive detection system for UV and X-ray photons, a 4500-volt electron multiplier bias supply for satellite use, spark chamber systems, proportional counters, and other devices. Individual items are announced in this issue.

  9. Pressure distributions obtained on a 0.10-scale model of the Space Shuttle Orbiter's forebody in the Ames Unitary Plan Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Siemers, P. M., III; Henry, M. W.

    1986-01-01

    Pressure distribution test data obtained on a 0.10-scale model of the forward fuselage of the Space Shuttle Orbiter are presented without analysis. The tests were completed in the Ames Unitary Wind Tunnel (UPWT). The UPWT tests were conducted in two different test sections operating in the continuous mode, the 8 x 7 feet and 9 x 7 feet test sections. Each test section has its own Mach number range, 1.6 to 2.5 and 2.5 to 3.5 for the 9 x 7 feet and 8 x 7 feet test section, respectively. The test Reynolds number ranged from 1.6 to 2.5 x 10 to the 6th power ft and 0.6 to 2.0 x 10 to the 6th power ft, respectively. The tests were conducted in support of the development of the Shuttle Entry Air Data System (SEADS). In addition to modeling the 20 SEADS orifices, the wind-tunnel model was also instrumented with orifices to match Development Flight Instrumentation (DFI) port locations that existed on the Space Shuttle Columbia (OV-102) during the Orbiter Flight test program. This DFI simulation has provided a means for comparisons between reentry flight pressure data and wind-tunnel and computational data.

  10. Characteristics of selected elements of the air quality management system in urban areas in Poland

    NASA Astrophysics Data System (ADS)

    Sówka, Izabela; Kobus, Dominik; Chlebowska Styś, Anna; Zathey, Maciej

    2017-11-01

    Most of Europeans living in cities are exposed to concentrations of air pollutants in excess of the thresholds given in the WHO guidelines and EU legislation. Due to this fact, for the urban air quality systems, the mechanisms of proper information and warning of the inhabitants as well as legal, economic and spatial planning instruments should be improved. The analysis of Polish air quality management system and its' selected components (exemplary measures, information-spreading methods, spatial planning instruments) in four selected Polish cities (Wroclaw, Warsaw, Poznan and Cracow) indicated the need to develop effective solutions, among others, in terms of: emission requirements for combustion of fuels of power of up to 1 MW; admission of high emission fuels on the market; legal and coordination issues at the level of implementation of the area development policy and coordination of activities covering issues within the scope of the structure of planning documents including mainly: ambient air protection programs, spatial developments plans in communes and voivodeships, low emission economy plans, plans of sustainable development of public transport, plans of providing heat, electric power and gas fuels to communes, acts of regional parliaments, introducing limitations based on the Environmental Protection Act and strategies of voivodeship.

  11. Johnson Noise Thermometry for Advanced Small Modular Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Britton, C.L.,Jr.; Roberts, M.; Bull, N.D.

    Temperature is a key process variable at any nuclear power plant (NPP). The harsh reactor environment causes all sensor properties to drift over time. At the higher temperatures of advanced NPPs the drift occurs more rapidly. The allowable reactor operating temperature must be reduced by the amount of the potential measurement error to assure adequate margin to material damage. Johnson noise is a fundamental expression of temperature and as such is immune to drift in a sensor’s physical condition. In and near the core, only Johnson noise thermometry (JNT) and radiation pyrometry offer the possibility for long-term, high-accuracy temperature measurementmore » due to their fundamental natures. Small Modular Reactors (SMRs) place a higher value on long-term stability in their temperature measurements in that they produce less power per reactor core and thus cannot afford as much instrument recalibration labor as their larger brethren. The purpose of the current ORNL-led project, conducted under the Instrumentation, Controls, and Human-Machine Interface (ICHMI) research pathway of the U.S. Department of Energy (DOE) Advanced SMR Research and Development (R&D) program, is to develop and demonstrate a drift free Johnson noise-based thermometer suitable for deployment near core in advanced SMR plants.« less

  12. Identification of the Predictive Power of Five Factor Personality Traits for Individual Instrument Performance Anxiety

    ERIC Educational Resources Information Center

    Özdemir, Gökhan; Dalkiran, Esra

    2017-01-01

    This study, with the aim of identifying the predictive power of the five-factor personality traits of music teacher candidates on individual instrument performance anxiety, was designed according to the relational screening model. The study population was students attending the Music Education branch of Fine Arts Education Departments in…

  13. 117. VIEW OF CABINETS ON EAST SIDE OF LANDLINE INSTRUMENTATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    117. VIEW OF CABINETS ON EAST SIDE OF LANDLINE INSTRUMENTATION ROOM (206), LSB (BLDG. 751). FEATURES LEFT TO RIGHT: ALTERNATING CURRENT POWER DISTRIBUTION RELAY BOX, AIRBORNE BEACON ELECTRONIC TEST SYSTEM (ABETS), AUTOPILOT CHECKOUT CONTROLS, POWER DISTRIBUTION UNITS. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  14. A View of Current Evaluative Practices in Instrumental Music Teacher Education

    ERIC Educational Resources Information Center

    Peterson, Amber Dahlén

    2014-01-01

    The purpose of this study was to examine how instrumental music educator skills are being evaluated in current undergraduate programs. While accrediting organizations mandate certain elements of these programs, they provide limited guidance on what evaluative approaches should be used. Instrumental music teacher educators in the College Music…

  15. Career Assessment: Recently Developed Instruments Useful for School-to-Work Programs.

    ERIC Educational Resources Information Center

    Kapes, Jerome T.; Martinez, Linda

    This document describes 32 recently developed career assessment instruments that have been deemed useful for school-to-work programs. The following instruments are among those profiled: Ability Explorer; Adult Measure of Essential Skills; Aptitude Interest Inventory; Ashland Interest Assessment; Barriers to Employment Success Inventory; Basic…

  16. Efficient Swath Mapping Laser Altimetry Demonstration Instrument Incubator Program

    NASA Technical Reports Server (NTRS)

    Yu, Anthony W.; Krainak, Michael A,; Harding, David J.; Abshire, James B.; Sun, Xiaoli; Cavanaugh, John; Valett, Susan

    2010-01-01

    In this paper we will discuss our eighteen-month progress of a three-year Instrument Incubator Program (IIP) funded by NASA Earth Science Technology Office (ESTO) on swath mapping laser altimetry system. This paper will discuss the system approach, enabling technologies and instrument concept for the swath mapping laser altimetry.

  17. High-Voltage, Low-Power BNC Feedthrough Terminator

    NASA Technical Reports Server (NTRS)

    Bearden, Douglas

    2012-01-01

    This innovation is a high-voltage, lowpower BNC (Bayonet Neill-Concelman) feedthrough that enables the user to terminate an instrumentation cable properly while connected to a high voltage, without the use of a voltage divider. This feedthrough is low power, which will not load the source, and will properly terminate the instrumentation cable to the instrumentation, even if the cable impedance is not constant. The Space Shuttle Program had a requirement to measure voltage transients on the orbiter bus through the Ground Lightning Measurement System (GLMS). This measurement has a bandwidth requirement of 1 MHz. The GLMS voltage measurement is connected to the orbiter through a DC panel. The DC panel is connected to the bus through a nonuniform cable that is approximately 75 ft (approximately equal to 23 m) long. A 15-ft (approximately equal to 5-m), 50-ohm triaxial cable is connected between the DC panel and the digitizer. Based on calculations and simulations, cable resonances and reflections due to mismatched impedances of the cable connecting the orbiter bus and the digitizer causes the output not to reflect accurately what is on the bus. A voltage divider at the DC panel, and terminating the 50-ohm cable properly, would eliminate this issue. Due to implementation issues, an alternative design was needed to terminate the cable properly without the use of a voltage divider. Analysis shows how the cable resonances and reflections due to the mismatched impedances of the cable connecting the orbiter bus and the digitizer causes the output not to reflect accurately what is on the bus. After simulating a dampening circuit located at the digitizer, simulations were performed to show how the cable resonances were dampened and the accuracy was improved significantly. Test cables built to verify simulations were accurate. Since the dampening circuit is low power, it can be packaged in a BNC feedthrough.

  18. Design And Performance Of Micro-Spec, An Ultra Compact High-sensitivity Far-infrared Spectrometer For SPICA

    NASA Astrophysics Data System (ADS)

    Cataldo, Giuseppe; Moseley, S. H.; Hsieh, W.; Huang, W.; Stevenson, T. R.; Wollack, E. J.

    2012-05-01

    Micro-Spec (µ-Spec) is a high-performance spectrometer working in the 250-700-µm wavelength range, whose modules use low-loss superconducting microstrip transmission lines on a single 4-inch-diameter silicon wafer. Creating the required phase delays in transmission lines rather than free space allows such an instrument to have, in principle, the performance of a meter-scale grating spectrometer. Such a dramatic size reduction enables classes of instruments for space that would be impossible with conventional technologies. This technology can dramatically enhance the long-wavelength capability of the space infrared telescope for cosmology and astrophysics SPICA. µ-Spec is analogous to a grating spectrometer. The phase retardation generated by the reflection from the grating grooves is instead produced by propagation through a transmission line. The power received by a broadband antenna is progressively divided by binary microstrip power dividers, and the required phase delays are generated by different lengths of microstrip transmission lines. By arranging these outputs along a circular focal surface, the analog of a Rowland spectrometer can be created. The procedure to optimize the Micro-Spec design is based on the stigmatization and minimization of the light path function in a two-dimensional bounded region, which results in an optimized geometry arrangement with three stigmatic points. In addition, in order to optimize the overall efficiency of the instrument, the emitters are directed to the center of the focal surface. The electric field amplitude and phase as well as the power transmitted and absorbed throughout the region are analyzed. Measurements are planned in late summer to validate the designs. This material is based upon work supported by NASA through the ROSES/APRA program. This research was supported by an appointment (Cataldo) at the Goddard Space Flight Center administered by Universities Space Research Association through a contract with NASA.

  19. Automation of data collection for PWAS-based structural health monitoring

    NASA Astrophysics Data System (ADS)

    Liu, Weiping; Giurgiutiu, Victor

    2005-05-01

    Crack detection with piezoelectric wafer active sensors (PWAS) is emerging as an effective and powerful technique in structural health monitoring (SHM). Because of the piezoelectric properties of the PWAS, they act as both transmitters and receivers of guided Lamb waves for such applications. With arrays of PWAS attached to the structure, excitation signals are sent to one of the PWAS and wave signals from the structure are received at all the PWAS. The signals are analyzed to detect the position of cracks. One important issue associated with the PWAS-assisted SHM is the connectivity between the PWAS arrays and the measurement instruments. An automatic signal collection unit is necessary to send the excitation signals to PWAS and acquire the response signal from another PWAS. Such a program-controlled switching unit can quickly and precisely execute the data collection in a way which is more efficient and reliable than the manual switching operations. In this paper, we present an innovative design of a LabVIEW controlled automatic signal collection unit (ASCU) for PWAS-assisted SHM. The hardware circuit construction and the control LabVIEW program are discussed. As a conduit between the phase array of PWAS and the signal instruments (signal generators, oscilloscopes etc.), the ASCU provides a convenient way to switch excitation and echo signals automatically to the selected PWAS transducers with the help of GUI in the LabVIEW control program. The control program is easy to implement and can be integrated into an upper level program that executes the whole task of signal acquisition and analysis. Because of the concise design of the hardware, the ASCU concept of the auto signal switch has been extended to other application cases such as the electromechanical (E/M) impedance measurement for SHM.

  20. Nuclear Science Symposium, 25th, and Symposium on Nuclear Power Systems, 10th, Washington, D.C., October 18-20, 1978, Proceedings

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Detectors of various types are discussed, taking into account drift chambers, calorimetry, multiwire proportional chambers, signal processing, the use of semiconductors, and photo/optical applications. Circuits are considered along with instrumentation for space, nuclear medicine instrumentation, data acquisition and systems, environmental instrumentation, reactor instrumentation, and nuclear power systems. Attention is given to a new approach to high accuracy gaseous detectors, the current status of electron mobility and free-ion yield in high mobility liquids, a digital drift chamber digitizer system, the stability of oxides in high purity germanium, the quadrant photomultiplier, and the theory of imaging with a very limited number of projections.

  1. Automatic Weather Station (AWS) Lidar

    NASA Technical Reports Server (NTRS)

    Rall, Jonathan A. R.; Campbell, James; Abshire, James B.; Spinhirne, James D.; Smith, David E. (Technical Monitor)

    2001-01-01

    A ground based, autonomous, low power atmospheric lidar instrument is being developed at NASA Goddard Space Flight Center. We report on the design and anticipated performance of the proposed instrument and show data from two prototype lidar instruments previously deployed to Antarctica.

  2. 21 CFR 882.4305 - Powered compound cranial drills, burrs, trephines, and their accessories.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... drilling instruments used on a patient's skull. The instruments employ a clutch mechanism to disengage the tip of the instrument after penetrating the skull to prevent plunging of the tip into the brain. (b...

  3. Earth Observing System (EOS) Terra Spacecraft 120 Volt Power Subsystem: Requirements, Development and Implementation

    NASA Technical Reports Server (NTRS)

    Keys, Denney J.

    2000-01-01

    Built by the Lockheed-Martin Corporation, the Earth Observing System (EOS) TERRA spacecraft represents the first orbiting application of a 120 Vdc high voltage spacecraft electrical power system implemented by the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC). The EOS TERRA spacecraft's launch provided a major contribution to the NASA Mission to Planet Earth program while incorporating many state of the art electrical power system technologies to achieve its mission goals. The EOS TERRA spacecraft was designed around five state-of-the-art scientific instrument packages designed to monitor key parameters associated with the earth's climate. The development focus of the TERRA electrical power system (EPS) resulted from a need for high power distribution to the EOS TERRA spacecraft subsystems and instruments and minimizing mass and parasitic losses. Also important as a design goal of the EPS was maintaining tight regulation on voltage and achieving low conducted bus noise characteristics. This paper outlines the major requirements for the EPS as well as the resulting hardware implementation approach adopted to meet the demands of the EOS TERRA low earth orbit mission. The selected orbit, based on scientific needs, to achieve the EOS TERRA mission goals is a sun-synchronous circular 98.2degree inclination Low Earth Orbit (LEO) with a near circular average altitude of 705 kilometers. The nominal spacecraft orbit is approximately 99 minutes with an average eclipse period of about 34 minutes. The scientific goal of the selected orbit is to maintain a repeated 10:30 a.m. +/- 15 minute descending equatorial crossing which provides a fairly clear view of the earth's surface and relatively low cloud interference for the instrument observation measurements. The major EOS TERRA EPS design requirements are single fault tolerant, average orbit power delivery of 2, 530 watts with a defined minimum lifetime of five years (EOL). To meet these mission requirements, while minimizing mass and parasitic power losses, the EOS TERRA project relies on 36, 096 high efficiency Gallium Arsenide (GaAs) on Germanium solar cells adhered to a deployable flexible solar array designed to provide over 5,000 watts of power at EOL. To meet the eclipse power demands of the spacecraft, EOS TERRA selected an application of two 54-cell series connected Individual Pressure Vessel (IPV) Nickel-Hydrogen (NiH2) 50 Ampere-Hour batteries. All of the spacecraft observatory electrical power is controlled via the TERRA Power Distribution Unit (PDU) which is designed to provide main bus regulation of 120 Vdc +/- -4% at all load interfaces through the implementation of majority voter control of both the spacecraft's solar array sequential shunt unit (SSU) and the two battery bi-directional charge and discharge regulators. This paper will review the major electrical power system requirement drivers for the EOS TERRA mission as well as some of the challenges encountered during the development, testing, and implementation of the power system. In addition, spacecraft test and early on orbit performance results will also be covered.

  4. Development and exploratory analysis of the Neurorehabilitation Program Styles Survey.

    PubMed

    McCorkel, Beth A; Glueckauf, Robert L; Ecklund-Johnson, Eric P; Tomusk, Allison B; Trexler, Lance E; Diller, Leonard

    2003-01-01

    To develop a survey instrument that assesses implementation of key components of outpatient neurorehabilitation programs and test the capacity of this instrument to differentiate between rehabilitation approaches. The Neurorehabilitation Program Styles Survey (NPSS) was administered to 18 outpatient facilities: 10 specialized and 8 discipline-specific outpatient neurorehabilitation programs. Scores were compared between types of programs using independent samples t tests. The NPSS showed good reliability and contrasted groups validity, significantly differentiating between types of programs. The NPSS holds considerable promise as a tool for distinguishing among different types of brain injury programs, and for assessing the differential effectiveness of specialized versus discipline-specific outpatient brain rehabilitation programs. Future research on the NPSS will assess the stability of the instrument over time, its content validity, and capacity to differentiate the full continuum of neurorehabilitation programs.

  5. Marine oil pollution and beached bird surveys: the development of a sensitive monitoring instrument.

    PubMed

    Camphuysen, C J; Heubeck, M

    2001-01-01

    One of the most obvious adverse effects of (chronic) pollution of the world's oceans and seas with mineral oil is the mortality of seabirds. Systematic surveys of beachcast corpses of birds ('beached bird surveys') have been used in many parts of the world to document the effect of oil pollution, but particularly so in Western Europe and in parts of North America. In this paper, the history, current schemes, methods and possible (future) use of beached bird surveys are described and discussed, because the value of beached bird surveys has been hotly disputed. Oil pollution is known since the late 19th century, while the first beached bird surveys were conducted in the 1920s. Due to the amount of man-power needed for these surveys, most beached bird survey programs thrived only through the work of a large number of volunteers. However, most programs have resulted in substantial amounts of high quality data, often covering many consecutive years. One of the main shortcomings of many beached bird survey programs was the emphasis on stranded bird numbers rather than on relative measures, such as oil rates (percentage of corpses oiled of all corpses found). Sources of pollution, particularly so in chronically polluted regions such as the North Sea, the Baltic, the Mediterranean and the waters around Newfoundland, are insufficiently known, but could be studied through a sampling program connected to beached bird surveys. Suggestions for standardization of methods are presented, which could lead to a global and highly sensitive monitoring instrument of marine oil pollution.

  6. Potential of Future Hurricane Imaging Radiometer (HIRAD) Ocean Surface Wind Observations for Determining Tropical Storm Vortex Intensity and Structure

    NASA Technical Reports Server (NTRS)

    Atlas, Robert; Bailey, M. C.; Black, Peter; James, Mark; Johnson, James; Jones, Linwood; Miller, Timothy; Ruf, Christopher; Uhlhorn, Eric

    2008-01-01

    The Hurricane Imaging Radiometer (HIRAD) is an innovative technology development, which offers the potential of new and unique remotely sensed observations of both extreme oceanic wind events and strong precipitation from either UAS or satellite platforms. It is based on the airborne Stepped Frequency Microwave Radiometer (SFMR), which is a proven aircraft remote sensing technique for observing tropical cyclone ocean surface wind speeds and rain rates, including those of major hurricane intensity. The proposed HIRAD instrument advances beyond the current nadir viewing SFMR to an equivalent wide-swath SFMR imager using passive microwave synthetic thinned aperture radiometer technology. This sensor will operate over 4-7 GHz (C-band frequencies) where the required tropical cyclone remote sensing physics has been validated by both SFMR and WindSat radiometers. HIRAD incorporates a unique, technologically advanced array antenna and several other technologies successfully demonstrated by the NASA's Instrument Incubator Program. A brassboard version of the instrument is complete and has been successfully tested in an anechoic chamber, and development of the aircraft instrument is well underway. HIRAD will be a compact, lightweight, low-power instrument with no moving parts that will produce wide-swath imagery of ocean vector winds and rain during hurricane conditions when existing microwave sensors (radiometers or scatterometers) are hindered. Preliminary studies show that HIRAD will have a significant positive impact on analyses as either a new aircraft or satellite sensor.

  7. An Imaging System capable of monitoring en-glacial and sub-glacial processes of glaciers, streaming ice and ice margins

    NASA Astrophysics Data System (ADS)

    Frearson, N.

    2012-12-01

    Columbia University in New York is developing a geophysical instrumentation package that is capable of monitoring dynamic en-glacial and sub-glacial processes. The instruments include a Riegl Scanning Laser for precise measurements of the ice surface elevation, Stereo photogrammetry from a high sensitivity (~20mK) Infra-Red camera and a high resolution Visible Imaging camera (2456 x 2058 pixels) to document fine scale ice temperature changes and surface features, near surface ice penetrating radar and an ice depth measuring radar that can be used to study interior and basal processes of ice shelves, glaciers, ice streams and ice-sheets. All instrument data sets will be time-tagged and geo-referenced using precision GPS satellite data. Aircraft orientation will be corrected using inertial measurement technology integrated into the pod. This instrumentation will be flown across some of the planets largest outlet glaciers in Antarctica and Greenland. However, a key aspect of the design is that at the conclusion of the program, the Pod, Deployment Arm, Data Acquisition and Power and Environmental Management system will become available for use by the science community at large to install their own instruments onto. It will also be possible to mount the Icepod onto other airframes. The sensor system will become part of a research facility operated for the science community, and data will be maintained at and made available through a Polar Data Center.

  8. Design, Development, and Characterization of an Inexpensive Portable Cyclic Voltammeter

    ERIC Educational Resources Information Center

    Mott, Jenna R.; Munson, Paul J.; Kreuter, Rodney A.; Chohan, Balwant S.; Sykes, Danny G.

    2014-01-01

    The teaching of instrumental analysis for many small colleges and high schools continues to be stymied by high-cost, complicated maintenance, high power requirements, and often the sheer bulk of the instrumentation. Such issues have led us to develop inexpensive instruments as part of a SMILE initiative (small, mobile instruments for laboratory…

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galambos, John D.; Anderson, David E.; Bechtol, D.

    The Second Target Station (STS) is a proposed upgrade for SNS. It includes a doubling of the accelerator power and an additional instrument hall. The new instrument hall will receive a 467 kW 10 Hz beam. The parameters and preliminary design aspects of the STS are presented for the accelerator, target systems, instrument hall, instruments and civil construction aspects.

  10. Utilization of Space Station Freedom for technology research

    NASA Technical Reports Server (NTRS)

    Avery, Don E.

    1992-01-01

    Space Station Freedom presents a unique opportunity for technology developers to conduct research in the space environment. Research can be conducted in the pressurized volume of the Space Station's laboratories or attached to the Space Station truss in the vacuum of space. Technology developers, represented by the Office of Aeronautics and Space Technology (OAST), will have 12 percent of the available Space Station resources (volume, power, data, crew, etc.) to use for their research. Most technologies can benefit from research on Space Station Freedom and all these technologies are represented in the OAST proposed traffic model. This traffic model consists of experiments that have been proposed by technology developers but not necessarily selected for flight. Experiments to be flown in space will be selected through an Announcement of Opportunity (A.O.) process. The A.O. is expected to be released in August, 1992. Experiments will generally fall into one of the 3 following categories: (1) Individual technology experiments; (2) Instrumented Space Station; and (3) Guest investigator program. The individual technology experiments are those that do not instrument the Space Station nor directly relate to the development of technologies for evolution of Space Station or development of advanced space platforms. The Instrumented Space Station category is similar to the Orbiter Experiments Program and allows the technology developer to instrument subsystems on the Station or develop instrumentation packages that measure products or processes of the Space Station for the advancement of space platform technologies. The guest investigator program allows the user to request data from Space Station or other experiments for independent research. When developing an experiment, a developer should consider all the resources and infrastructure that Space Station Freedom can provide and take advantage of these to the maximum extent possible. Things like environment, accommodations, carriers, and integration should all be taken into account. In developing experiments at Langley Research Center, an iterative approach is proving useful. This approach uses Space Station utilization and subsystem experts to advise and critique experiment designs to take advantage of everything the Space Station has to offer. Also, solid object modeling and animation computer tools are used to fully visualize the experiment and its processes. This process is very useful for attached payloads and allows problems to be detected early in the experiment design phase.

  11. Input Power Characteristics of a Three-Phase Thyristor Converter

    DOT National Transportation Integrated Search

    1973-10-01

    A phase delay rectifier operating into a passive resistive load was instrumented in the laboratory. Techniques for accurate measurement of power, displacement reactive power, harmonic components, and distortion reactive power are presented. The chara...

  12. Direct Burial Broadband Seismic Instrumentation that are Rugged and Tilt Tolerant for Polar Environments

    NASA Astrophysics Data System (ADS)

    Parker, Tim; Winberry, Paul; Huerta, Audrey; Bainbridge, Geoff; Devanney, Peter

    2016-04-01

    The integrated broadband Meridian Posthole and Compact seismic systems have been engineered and tested for extreme polar environments. Ten percent of the Earth's surface is covered in glacial ice and the dynamics of these environments is a strategic concern for all. The development for these systems was driven by researchers needing to densify observations in ice covered regions with difficult and limited logistics. Funding from an NSF MRI award, GEOICE and investment from the vendor enabled researchers to write the specifications for a hybrid family of instruments that can operate at -55C autonomously with very little power, 1 watt for the Meridian Compact system and 1.5 watts for the Meridian 120PH. Tilt tolerance in unstable ice conditions was a concern and these instruments have a range of up to +/-5 degrees. The form factor, extreme temperature tolerance and power load of the instruments has reduced the bulk of a complete station by 1/2 and simplified installation greatly allowing more instruments to be deployed with limited support and a lighter logistical load. These systems are being tested in the Antarctic at SouthPole Station and McMurdo for the second year and the investment has encouraged other instrument and power system vendors to offer polar rated equipment including telemetry for ancillary support.

  13. Assessment of Health-Related Quality of Life after TBI: Comparison of a Disease-Specific (QOLIBRI) with a Generic (SF-36) Instrument

    PubMed Central

    von Steinbuechel, Nicole; Covic, Amra; Polinder, Suzanne; Kohlmann, Thomas; Cepulyte, Ugne; Poinstingl, Herbert; Backhaus, Joy; Bakx, Wilbert; Bullinger, Monika; Christensen, Anne-Lise; Formisano, Rita; Gibbons, Henning; Höfer, Stefan; Koskinen, Sanna; Maas, Andrew; Neugebauer, Edmund; Powell, Jane; Sarajuuri, Jaana; Sasse, Nadine; Schmidt, Silke; Mühlan, Holger; von Wild, Klaus; Zitnay, George; Truelle, Jean-Luc

    2016-01-01

    Psychosocial, emotional, and physical problems can emerge after traumatic brain injury (TBI), potentially impacting health-related quality of life (HRQoL). Until now, however, neither the discriminatory power of disease-specific (QOLIBRI) and generic (SF-36) HRQoL nor their correlates have been compared in detail. These aspects as well as some psychometric item characteristics were studied in a sample of 795 TBI survivors. The Shannon H ' index absolute informativity, as an indicator of an instrument's power to differentiate between individuals within a specific group or health state, was investigated. Psychometric performance of the two instruments was predominantly good, generally higher, and more homogenous for the QOLIBRI than for the SF-36 subscales. Notably, the SF-36 “Role Physical,” “Role Emotional,” and “Social Functioning” subscales showed less satisfactory discriminatory power than all other dimensions or the sum scores of both instruments. The absolute informativity of disease-specific as well as generic HRQoL instruments concerning the different groups defined by different correlates differed significantly. When the focus is on how a certain subscale or sum score differentiates between individuals in one specific dimension/health state, the QOLIBRI can be recommended as the preferable instrument. PMID:27022207

  14. Suborbital Science Program

    NASA Technical Reports Server (NTRS)

    Vachon, Jacques; Curry, Robert E.

    2010-01-01

    Program Objectives: 1) Satellite Calibration and Validation: Provide methods to perform the cal/val requirements for Earth Observing System satellites. 2) New Sensor Development: Provide methods to reduce risk for new sensor concepts and algorithm development prior to committing sensors to operations. 3) Process Studies: Facilitate the acquisition of high spatial/temporal resolution focused measurements that are required to understand small atmospheric and surface structures which generate powerful Earth system effects. 4) Airborne Networking: Develop disruption-tolerant networking to enable integrated multiple scale measurements of critical environmental features. Dryden Capabilities include: a) Aeronautics history of aircraft developments and milestones. b) Extensive history and experience in instrument integration. c) Extensive history and experience in aircraft modifications. d) Strong background in international deployments. e) Long history of reliable and dependable execution of projects. f) Varied aircraft types providing different capabilities, performance and duration.

  15. Nimbus-F to carry advanced weather instruments

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Meteorological research instruments launched aboard NASA's Nimbus-F spacecraft are briefly described along with the Nimbus satellite program initiated to develop an observatory system capable of meeting the research and development needs of the nation's atmospheric and earth sciences program. The following aspects of the mission are described: spacecraft design, launch operations, sequence of orbital events, and operations control and tracking. The Global Atmospheric Research program is discussed in terms of the Nimbus-F experiments and atmospheric sounding instruments.

  16. The instrumentation program for the Thirty Meter Telescope

    NASA Astrophysics Data System (ADS)

    Simard, Luc; Crampton, David; Ellerbroek, Brent; Boyer, Corinne

    2012-09-01

    An overview of the current status of the Thirty Meter Telescope (TMT) instrumentation program is presented. Science cases and operational concepts as well as their links to the instruments are continually revisited and updated through a series of workshops and conferences. Work on the three first-light instruments (WFOS IRIS, and IRMS) has made significant progress, and many groups in TMT partner communities are developing future instrument concepts. Other instrument-related subsystems are also receiving considerable attention given their importance to the scientific end-to-end performance of the Observatory. As an example, we describe aspects of the facility instrument cooling system that are crucially important to successful diffraction-limited observations on an extremely large telescope.

  17. Research instrumentation for hot section components of turbine engines

    NASA Technical Reports Server (NTRS)

    Englund, D. R.

    1986-01-01

    Programs to develop research instrumentation for use on hot section components of turbine engines are discussed. These programs can be separated into two categories: one category includes instruments which can measure the environment within the combustor and turbine components, the other includes instruments which measure the response of engine components to the imposed environment. Included in the first category are instruments to measure total heat flux and fluctuating gas temperature. High temperature strain measuring systems, thin film sensors (e.g., turbine blade thermocouples) and a system to view the interior of a combustor during engine operation are programs which comprise the second category. The paper will describe the state of development of these sensors and measuring systems and, in some cases, show examples of measurements made with this instrumentation. The discussion will cover work done at NASA Lewis and at various contractor facilities.

  18. POLIX: A Thomson X-ray polarimeter for a small satellite mission

    NASA Astrophysics Data System (ADS)

    Paul, Biswajit; Gopala Krishna, M. R.; Puthiya Veetil, Rishin

    2016-07-01

    POLIX is a Thomson X-ray polarimeter for a small satellite mission of ISRO. The instrument consists of a collimator, a scatterer and a set proportional counters to detect the scattered X-rays. We will describe the design, specifications, sensitivity, and development status of this instrument and some of the important scientific goals. This instrument will provide unprecedented opportunity to measure X-ray polarisation in the medium energy range in a large number of sources of different classes with a minimum detectable linear polarisation degree of 2-3%. The prime objects for observation with this instrument are the X-ray bright accretion powered neutron stars, accreting black holes in different spectral states, rotation powered pulsars, magnetars, and active galactic nuclei. This instrument will be a bridge between the soft X-ray polarimeters and the Compton polarimeters.

  19. Equipment upgrades for the Pu-238 program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Congdon, J.W.; Stephens, W.D.; Marra, J.E.

    1990-02-14

    Much of the equipment and instrumentation in the Pu-238 production facilities is more than 15 years old. Significant improvements have been made in the available instrumentation, in particular, due to the application of microprocessors and lasers. The Actinide Technology Section of SRL has selected and is in the process of evaluating several state-of-the-art instruments which have potential applications in the Pu-238 program. The ease of operation and the accuracy of the instruments have been improved and, in most cases, the cost of the instruments have decreased. 5 refs.

  20. An instrumented implant for vertebral body replacement that measures loads in the anterior spinal column.

    PubMed

    Rohlmann, Antonius; Gabel, Udo; Graichen, Friedmar; Bender, Alwina; Bergmann, Georg

    2007-06-01

    Realistic loads on a spinal implant are required among others for optimization of implant design and preclinical testing. In addition, such data may help to choose the optimal physiotherapy program for patients with such an implant and to evaluate the efficacy of aids like braces or crutches. Presently, no implant is available that can measure loads in the anterior spinal column during activities of daily life. Therefore, an implant instrumented for in vivo load measurement was developed for vertebral body replacement. The aim of this paper is to describe in detail a telemeterized implant that measures forces and moments acting on it. Six load sensors, a nine-channel telemetry unit and a coil for inductive power supply of the electronic circuits were integrated into a modified vertebral body replacement (Synex). The instrumented part of the implant is hermetically sealed. Patients are videotaped during measurements, and implant loads are displayed on and off line. The average accuracy of load measurement is better than 2% for force and 5% for moment components with reference to the maximum value of 3000 N and 20 Nm, respectively. The measuring implant described here will provide additional information on spinal loads.

  1. Managing aging in nuclear power plants: Insights from NRC maintenance team inspection reports

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fresco, A.; Subudhi, M.; Gunther, W.

    1993-12-01

    A plant`s maintenance program is the principal vehicle through which age-related degradation is managed. From 1988 to 1991, the NRC evaluated the maintenance program of every nuclear power plant in the United States. Forty-four out of a total of 67 of the reports issued on these in-depth team inspections were reviewed for insights into the strengths and weaknesses of the programs as related to the need to understand and manage the effects of aging on nuclear plant systems, structures, and components. Relevant information was extracted from these inspection reports and sorted into several categories, including Specific Aging Insights, Preventive Maintenance,more » Predictive Maintenance and Condition Monitoring, Post Maintenance Testing, Failure Trending, Root Cause Analysis and Usage of Probabilistic Risk Assessment in the Maintenance Process. Specific examples of inspection and monitoring techniques successfully used by utilities to detect degradation due to aging have been identified. The information also was sorted according to systems and components, including: Auxiliary Feedwater, Main Feedwater, High Pressure Injection for both BWRs and PWRs, Service Water, Instrument Air, and Emergency Diesel Generator Air Start Systems, and Emergency Diesel Generators Air Start Systems, emergency diesel generators, electrical components such as switchgear, breakers, relays, and motor control centers, motor operated valves and check valves. This information was compared to insights gained from the Nuclear Plant Aging Research (NPAR) Program. Attributes of plant maintenance programs where the NRC inspectors felt that improvement was needed to properly address the aging issue also are discussed.« less

  2. Sound Arguments and Power in Evaluation Research and Policy-Making: A Measuring Instrument and Its Application.

    ERIC Educational Resources Information Center

    Propper, Igno M. A. M.

    1993-01-01

    Proposes an instrument for assessing the extent to which either sound arguments or power are found in scientific and political discussions. Empirical research is described that investigated the relation between the quality of evaluation research and the quality of discussion in policy-making processes in which the research is used. (Contains 47…

  3. A Holistic Strategy Examining How Armed Drone Strikes Interact with Other Elements of National Power

    DTIC Science & Technology

    2017-06-01

    states in terms of diplomatic, information, military—other than drone strikes—and economic instruments of national power to achieve the objectives...United States conducted in fragile states in terms of diplomatic, information, military—other than drone strikes—and economic instruments of...29  3.  2015 National Military Strategy .................................................30  E.  ECONOMIC

  4. 95. VIEW OF SOUTHWEST CORNER OF LANDLINE INSTRUMENTATION ROOM (106), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    95. VIEW OF SOUTHWEST CORNER OF LANDLINE INSTRUMENTATION ROOM (106), LSB (BLDG. 770). BATTERY RACK FOR BACKUP BOOSTER POWER ON LEFT; BATTERY RACK FOR BACKUP AEROSPACE GROUND EQUIPMENT (AGE) POWER ON RIGHT. BATTERY CHARGER IS RIGHT OF BATTERY RACKS. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  5. Power and the objectification of social targets.

    PubMed

    Gruenfeld, Deborah H; Inesi, M Ena; Magee, Joe C; Galinsky, Adam D

    2008-07-01

    Objectification has been defined historically as a process of subjugation whereby people, like objects, are treated as means to an end. The authors hypothesized that objectification is a response to social power that involves approaching useful social targets regardless of the value of their other human qualities. Six studies found that under conditions of power, approach toward a social target was driven more by the target's usefulness, defined in terms of the perceiver's goals, than in low-power and baseline conditions. This instrumental response to power, which was linked to the presence of an active goal, was observed using multiple instantiations of power, different measures of approach, a variety of goals, and several types of instrumental and noninstrumental target attributes. Implications for research on the psychology of power, automatic goal pursuit, and self-objectification theory are discussed.

  6. A best practice fall prevention exercise program to improve balance, strength / power, and psychosocial health in older adults: study protocol for a randomized controlled trial.

    PubMed

    Gschwind, Yves J; Kressig, Reto W; Lacroix, Andre; Muehlbauer, Thomas; Pfenninger, Barbara; Granacher, Urs

    2013-10-09

    With increasing age neuromuscular deficits (e.g., sarcopenia) may result in impaired physical performance and an increased risk for falls. Prominent intrinsic fall-risk factors are age-related decreases in balance and strength / power performance as well as cognitive decline. Additional studies are needed to develop specifically tailored exercise programs for older adults that can easily be implemented into clinical practice. Thus, the objective of the present trial is to assess the effects of a fall prevention program that was developed by an interdisciplinary expert panel on measures of balance, strength / power, body composition, cognition, psychosocial well-being, and falls self-efficacy in healthy older adults. Additionally, the time-related effects of detraining are tested. Healthy old people (n = 54) between the age of 65 to 80 years will participate in this trial. The testing protocol comprises tests for the assessment of static / dynamic steady-state balance (i.e., Sharpened Romberg Test, instrumented gait analysis), proactive balance (i.e., Functional Reach Test; Timed Up and Go Test), reactive balance (i.e., perturbation test during bipedal stance; Push and Release Test), strength (i.e., hand grip strength test; Chair Stand Test), and power (i.e., Stair Climb Power Test; countermovement jump). Further, body composition will be analysed using a bioelectrical impedance analysis system. In addition, questionnaires for the assessment of psychosocial (i.e., World Health Organisation Quality of Life Assessment-Bref), cognitive (i.e., Mini Mental State Examination), and fall risk determinants (i.e., Fall Efficacy Scale - International) will be included in the study protocol. Participants will be randomized into two intervention groups or the control / waiting group. After baseline measures, participants in the intervention groups will conduct a 12-week balance and strength / power exercise intervention 3 times per week, with each training session lasting 30 min. (actual training time). One intervention group will complete an extensive supervised training program, while the other intervention group will complete a short version ('3 times 3') that is home-based and controlled by weekly phone calls. Post-tests will be conducted right after the intervention period. Additionally, detraining effects will be measured 12 weeks after program cessation. The control group / waiting group will not participate in any specific intervention during the experimental period, but will receive the extensive supervised program after the experimental period. It is expected that particularly the supervised combination of balance and strength / power training will improve performance in variables of balance, strength / power, body composition, cognitive function, psychosocial well-being, and falls self-efficacy of older adults. In addition, information regarding fall risk assessment, dose-response-relations, detraining effects, and supervision of training will be provided. Further, training-induced health-relevant changes, such as improved performance in activities of daily living, cognitive function, and quality of life, as well as a reduced risk for falls may help to lower costs in the health care system. Finally, practitioners, therapists, and instructors will be provided with a scientifically evaluated feasible, safe, and easy-to-administer exercise program for fall prevention.

  7. An Investigation of Factors Related to Self-Efficacy for Java Programming among Engineering Students

    ERIC Educational Resources Information Center

    Askar, Petek; Davenport, David

    2009-01-01

    The purpose of this study was to examine the factors related to self-efficacy for Java programming among first year engineering students. An instrument assessing Java programming self-efficacy was developed from the computer programming self-efficacy scale of Ramalingam & Wiedenbeck. The instrument was administered at the beginning of the…

  8. The development and validation of The Inquiry Science Observation Coding Sheet.

    PubMed

    Brandon, P R; Taum, A K H; Young, D B; Pottenger, F M

    2008-08-01

    Evaluation reports increasingly document the degree of program implementation, particularly the extent to which programs adhere to prescribed steps and procedures. Many reports are cursory, however, and few, if any, fully portray the long and winding path taken when developing evaluation instruments, particularly observation instruments. In this article, we describe the development of an observational method for evaluating the degree to which K-12 inquiry science programs are implemented, including the many steps and decisions that occurred during the development, and present evidence for the reliability and validity of the data that we collected with the instrument. The article introduces a method for measuring the adherence of inquiry science implementation and gives evaluators a full picture of what they might expect when developing observation instruments for assessing the degree of program implementation.

  9. The NASA modern technology rotors program

    NASA Technical Reports Server (NTRS)

    Watts, M. E.; Cross, J. L.

    1986-01-01

    Existing data bases regarding helicopters are based on work conducted on 'old-technology' rotor systems. The Modern Technology Rotors (MTR) Program is to provide extensive data bases on rotor systems using present and emerging technology. The MTR is concerned with modern, four-bladed, rotor systems presently being manufactured or under development. Aspects of MTR philosophy are considered along with instrumentation, the MTR test program, the BV 360 Rotor, and the UH-60 Black Hawk. The program phases include computer modelling, shake test, model-scale test, minimally instrumented flight test, extensively pressure-instrumented-blade flight test, and full-scale wind tunnel test.

  10. Powerful timing generator using mono-chip timers: An application to pulsed nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Saint-Jalmes, Hervé; Barjhoux, Yves

    1982-01-01

    We present a 10 line-7 MHz timing generator built on a single board around two LSI timer chips interfaced to a 16-bit microcomputer. Once programmed from the host computer, this device is able to generate elaborate logic sequences on its 10 output lines without further interventions from the CPU. Powerful architecture introduces new possibilities over conventional memory-based timing simulators and word generators. Loop control on a given sequence of events, loop nesting, and various logic combinations can easily be implemented through a software interface, using a symbolic command language. Typical applications of such a device range from development, emulation, and test of integrated circuits, circuit boards, and communication systems to pulse-controlled instrumentation (radar, ultrasonic systems). A particular application to a pulsed Nuclear Magnetic Resonance (NMR) spectrometer is presented, along with customization of the device for generating four-channel radio-frequency pulses and the necessary sequence for subsequent data acquisition.

  11. Potential applications of a high altitude powered platform in the ocean/coastal zone community

    NASA Technical Reports Server (NTRS)

    Escoe, D.; Rigterink, P.; Oberholtzer, J. D.

    1979-01-01

    The results of a survey of the ocean/coastal zone community conducted for the NASA Wallops Flight Center to identify potential applications of a high altitude powered platform (HAPP) are presented. Such a platform would stationkeep at 70,000 feet for up to a year over a given location and make frequent high resolution observations, or serve as a regional communications link. The survey results indicate user interest among scientific researchers, operational agencies and private industry. It is felt that such a platform would combine the desirable characteristics of both geostationary satellites (wide area, frequent observation) and aircraft (high resolution). As a result a concept for an operational HAPP system in the form of a 'mesoscale geostationary satellite' system evolved. Such a system could employ many of the same technologies used in current NASA and NOAA geostationary satellite programs. A set of generalized instrument requirements for HAPP borne sensors is also presented.

  12. Rapid Measurement Of Asbestos Content Of Building Materials

    NASA Technical Reports Server (NTRS)

    Weiss, James R.; Grove, Cindy I.; Hoover, Gordon L.; Stephens, James B.

    1994-01-01

    Portable instrument measures asbestos content of construction materials in place. Helps building renovators determine, quickly and accurately, whether asbestos is present. Concept readily adapted to special-purpose, battery-powered instrument. Contractor using such instrument could obtain reliable information on asbestos content in minutes.

  13. 14 CFR 25.1331 - Instruments using a power supply.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Instruments: Installation § 25... may be accomplished automatically or by manual means. (3) If an instrument presenting navigation data... gyroscopic direction indicator that includes a magnetic sensing element, a gyroscopic unit, an amplifier and...

  14. 18 CFR 367.2440 - Account 244, Derivative instrument liabilities.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Account 244, Derivative..., Derivative instrument liabilities. This account must include the change in the fair value of all derivative... the fair value of the derivative instrument. ...

  15. Cutting efficiency of Reciproc and waveOne reciprocating instruments.

    PubMed

    Plotino, Gianluca; Giansiracusa Rubini, Alessio; Grande, Nicola M; Testarelli, Luca; Gambarini, Gianluca

    2014-08-01

    The aim of the present study was to evaluate the cutting efficiency of 2 new reciprocating instruments, Reciproc and WaveOne. Twenty-four new Reciproc R25 and 24 new WaveOne Primary files were activated by using a torque-controlled motor (Silver Reciproc) and divided into 4 groups (n = 12): group 1, Reciproc activated by Reciproc ALL program; group 2, Reciproc activated by WaveOne ALL program; group 3, WaveOne activated by Reciproc ALL program; and group 4, WaveOne activated by WaveOne ALL program. The device used for the cutting test consisted of a main frame to which a mobile plastic support for the handpiece is connected and a stainless steel block containing a Plexiglas block (inPlexiglass, Rome, Italy) against which the cutting efficiency of the instruments was tested. The length of the block cut in 1 minute was measured in a computerized program with a precision of 0.1 mm. Means and standard deviations of each group were calculated, and data were statistically analyzed with 1-way analysis of variance and Bonferroni test (P < .05). Reciproc R25 displayed greater cutting efficiency than WaveOne Primary for both the movements used (P < .05); in particular, Reciproc instruments used with their proper reciprocating motion presented a statistically significant higher cutting efficiency than WaveOne instruments used with their proper reciprocating motion (P < .05). There was no statistically significant difference between the 2 movements for both instruments (P > .05). Reciproc instruments demonstrated statistically higher cutting efficiency than WaveOne instruments. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  16. The JT9D Jet Engine Diagnostics Program

    NASA Technical Reports Server (NTRS)

    Olsson, W. J.

    1982-01-01

    The various engine deterioration phenomena that affect JT9D performance retention were studied, and approaches to improve performance retention of engines were identified. The program included surveys of historical data, monitoring of in service engines, ground and flight testing of instrumented engines, analysis, and analytical modeling. Performance deterioration is made up of both short and long term modes, both of which are flight cycle related phenomena. Short term deterioration occurs primarily during airplane acceptance testing prior to delivery to the airline. This effect is caused by flight load and power induced clearance closures and engine deflections with resulting rubbing of airfoils and seals. Long term deterioration is caused by erosion of airfoils and gas path seals during ground operation and take off and by cyclic induced thermal distortion of the high pressure turbine airfoils. Studies of possible remedial approaches have shown that performance retention within 1 to 2 percent of initial revenue service performance can be achieved with a proper program of hot section and cold section maintenance.

  17. WFC3: In-Flight Performance Highlights

    NASA Astrophysics Data System (ADS)

    Kimble, Randy A.; MacKenty, J. W.; O'Connell, R. W.; Townsend, J. A.; WFC3 Team

    2010-01-01

    Wide Field Camera 3 (WFC3), a powerful new imager for the Hubble Space Telescope (HST), was successfully installed in the telescope in May 2009 during the first dramatic spacewalk of space shuttle flight STS-125, also known as HST Servicing Mission 4. This new camera offers unique observing capabilities in two channels spanning a broad wavelength range from the near ultraviolet to the near infrared (200-1000nm in the UV/Visible [UVIS] channel; 850-1700nm in the IR channel). After an initial outgassing period, WFC3 was cooled to its observing configuration in June. In the following months, a highly successful Servicing Mission Observatory Verification (SMOV4) program was executed, which has confirmed the exciting scientific potential of the instrument. Detailed performance results from the SMOV4 program are presented in a number of papers in this session. In this paper, we highlight some top-level performance assessments (throughput, limiting magnitudes, survey speeds) for WFC3, which is now actively engaged in the execution of forefront astronomical observing programs.

  18. FPGA Flash Memory High Speed Data Acquisition

    NASA Technical Reports Server (NTRS)

    Gonzalez, April

    2013-01-01

    The purpose of this research is to design and implement a VHDL ONFI Controller module for a Modular Instrumentation System. The goal of the Modular Instrumentation System will be to have a low power device that will store data and send the data at a low speed to a processor. The benefit of such a system will give an advantage over other purchased binary IP due to the capability of allowing NASA to re-use and modify the memory controller module. To accomplish the performance criteria of a low power system, an in house auxiliary board (Flash/ADC board), FPGA development kit, debug board, and modular instrumentation board will be jointly used for the data acquisition. The Flash/ADC board contains four, 1 MSPS, input channel signals and an Open NAND Flash memory module with an analog to digital converter. The ADC, data bits, and control line signals from the board are sent to an Microsemi/Actel FPGA development kit for VHDL programming of the flash memory WRITE, READ, READ STATUS, ERASE, and RESET operation waveforms using Libero software. The debug board will be used for verification of the analog input signal and be able to communicate via serial interface with the module instrumentation. The scope of the new controller module was to find and develop an ONFI controller with the debug board layout designed and completed for manufacture. Successful flash memory operation waveform test routines were completed, simulated, and tested to work on the FPGA board. Through connection of the Flash/ADC board with the FPGA, it was found that the device specifications were not being meet with Vdd reaching half of its voltage. Further testing showed that it was the manufactured Flash/ADC board that contained a misalignment with the ONFI memory module traces. The errors proved to be too great to fix in the time limit set for the project.

  19. Solar electric power for instruments at remote sites

    USGS Publications Warehouse

    McChesney, P.J.

    2000-01-01

    Small photovoltaic (PV) systems are the preferred method to power instruments operating at permanent locations away from the electric power grid. The low-power PV power system consists of a solar panel or small array of panels, lead-acid batteries, and a charge controller. Even though the small PV power system is simple, the job of supplying power at a remote site can be very demanding. The equipment is often exposed to harsh conditions. The site may be inaccessible part of the year or difficult and expensive to reach at any time. Yet the system must provide uninterrupted power with minimum maintenance at low cost. This requires good design. Successful small PV systems often require modifications by a knowledgeable fieldworker to adapt to conditions at the site. Much information is available in many places about solar panels, lead-acid batteries, and charging systems but very little of it applies directly to low power instrument sites. The discussion here aims to close some of the gap. Each of the major components is described in terms of this application with particular attention paid to batteries. Site problems are investigated. Finally, maintenance and test procedures are given. This document assumes that the reader is engaged in planning or maintaining low-power PV sites and has basic electrical and electronic knowledge. The area covered by the discussion is broad. To help the reader with the many terms and acronyms used, they are shown in bold when first used and a glossary is provided at the end of the paper.

  20. An Innovative Instrument Flight Training Program.

    ERIC Educational Resources Information Center

    Caro, Paul W.

    An innovative flight training program, its development, and initial administration are described. The program involves use of a commercially available training device in a twin-engine transition and instrument training course. Principal features of the training include redefinition of the flight instructor's role, and incentive award system,…

  1. Telescience operations with the solar array module plasma interaction experiment

    NASA Technical Reports Server (NTRS)

    Wald, Lawrence W.; Bibyk, Irene K.

    1995-01-01

    The Solar Array Module Plasma Interactions Experiment (SAMPIE) is a flight experiment that flew on the Space Shuttle Columbia (STS-62) in March 1994, as part of the OAST-2 mission. The overall objective of SAMPIE was to determine the adverse environmental interactions within the space plasma of low earth orbit (LEO) on modern solar cells and space power system materials which are artificially biased to high positive and negative direct current (DC) voltages. The two environmental interactions of interest included high voltage arcing from the samples to the space plasma and parasitic current losses. High voltage arcing can cause physical damage to power system materials and shorten expected hardware life. parasitic current losses can reduce power system efficiency because electric currents generated in a power system drain into the surrounding plasma via parasitic resistance. The flight electronics included two programmable high voltage DC power supplies to bias the experiment samples, instruments to measure the surrounding plasma environment in the STS cargo bay, and the on-board data acquisition system (DAS). The DAS provided in-flight experiment control, data storage, and communications through the Goddard Space Flight Center (GSFC) Hitchhiker flight avionics to the GSFC Payload Operations Control Center (POCC). The DAS and the SAMPIE POCC computer systems were designed for telescience operations; this paper will focus on the experiences of the SAMPIE team regarding telescience development and operations from the GSFC POCC during STS-62. The SAMPIE conceptual development, hardware design, and system verification testing were accomplished at the NASA Lewis Research Center (LeRC). SAMPIE was developed under the In-Space Technology Experiment Program (IN-STEP), which sponsors NASA, industry, and university flight experiments designed to enable and enhance space flight technology. The IN-STEP Program is sponsored by the Office of Space Access and Technology (OSAT).

  2. Polarized Power Spectra from HERA-19 Commissioning Data: Instrument Stability

    NASA Astrophysics Data System (ADS)

    Fox Fortino, Austin; Chichura, Paul; Igarashi, Amy; Kohn, Saul; Aguirre, James; HERA Collaboration

    2018-01-01

    The Epoch of Reionization (EoR) is a key period in the universe’s history, containing the formation of the first galaxies and large scale structures. Foreground emission is the limiting factor in detecting the 21 cm emission from the Epoch of Reionization (EoR). The HERA-19 low frequency radio interferometer aims to reduce the obfuscation from the foreground emission with its dish shaped antennae. We generate polarized 2D (cylindrically averaged) power spectra from seven days of observation from the HERA-19 2016 observation season in each of the four Stokes parameters I, Q, U, and V. These power spectra serve as a potent diagnostic tool that allow us to understand the instrument stability by comparison between nominally redundant baselines, and between observations of nominally the same astrophysical sky on successive days. The power spectra are expected to vary among nominally redundant measurements due to ionosphere fluctuations and thermal changes in the electronics and instrument beam patterns, as well as other factors. In this work we investigate the stability over time of these polarized power spectra, and use them to quantify the variation due to these effects.

  3. Low-sensitivity, low-bounce, high-linearity current-controlled oscillator suitable for single-supply mixed-mode instrumentation system.

    PubMed

    Hwang, Yuh-Shyan; Kung, Che-Min; Lin, Ho-Cheng; Chen, Jiann-Jong

    2009-02-01

    A low-sensitivity, low-bounce, high-linearity current-controlled oscillator (CCO) suitable for a single-supply mixed-mode instrumentation system is designed and proposed in this paper. The designed CCO can be operated at low voltage (2 V). The power bounce and ground bounce generated by this CCO is less than 7 mVpp when the power-line parasitic inductance is increased to 100 nH to demonstrate the effect of power bounce and ground bounce. The power supply noise caused by the proposed CCO is less than 0.35% in reference to the 2 V supply voltage. The average conversion ratio KCCO is equal to 123.5 GHz/A. The linearity of conversion ratio is high and its tolerance is within +/-1.2%. The sensitivity of the proposed CCO is nearly independent of the power supply voltage, which is less than a conventional current-starved oscillator. The performance of the proposed CCO has been compared with the current-starved oscillator. It is shown that the proposed CCO is suitable for single-supply mixed-mode instrumentation systems.

  4. Development and Field-Test of an Instrument to Assess the Extent to Which a Vocational Educational Program Is Either Competency-Based or Conventional. Final Report from September 1, 1984 to August 31, 1985.

    ERIC Educational Resources Information Center

    University of Central Florida, Orlando. Coll. of Education.

    This report describes the production and pilot test of an assessment instrument for vocational education programs. The instrument was designed to be used following a site visit that includes a 30- to 45-minute interview with the program instructor and a 30-minute interview with one small group of students. Reliability and validity information was…

  5. Influence of oscillating and rotary cutting instruments with electric and turbine handpieces on tooth preparation surfaces.

    PubMed

    Geminiani, Alessandro; Abdel-Azim, Tamer; Ercoli, Carlo; Feng, Changyong; Meirelles, Luiz; Massironi, Domenico

    2014-07-01

    Rotary and nonrotary cutting instruments are used to produce specific characteristics on the axial and marginal surfaces of teeth being prepared for fixed restorations. Oscillating instruments have been suggested for tooth preparation, but no comparative surface roughness data are available. To compare the surface roughness of simulated tooth preparations produced by oscillating instruments versus rotary cutting instruments with turbine and electric handpieces. Different grit rotary cutting instruments were used to prepare Macor specimens (n=36) with 2 handpieces. The surface roughness obtained with rotary cutting instruments was compared with that produced by oscillating cutting instruments. The instruments used were as follows: coarse, then fine-grit rotary cutting instruments with a turbine (group CFT) or an electric handpiece (group CFE); coarse, then medium-grit rotary cutting instruments with a turbine (group CMT) or an electric handpiece (group CME); coarse-grit rotary cutting instruments with a turbine handpiece and oscillating instruments at a low-power (group CSL) or high-power setting (group CSH). A custom testing apparatus was used to test all instruments. The average roughness was measured for each specimen with a 3-dimensional optical surface profiler and compared with 1-way ANOVA and the Tukey honestly significant difference post hoc test for multiple comparisons (α=.05). Oscillating cutting instruments produced surface roughness values similar to those produced by similar grit rotary cutting instruments with a turbine handpiece. The electric handpiece produced smoother surfaces than the turbine regardless of rotary cutting instrument grit. Rotary cutting instruments with electric handpieces produced the smoothest surface, whereas the same instruments used with a turbine and oscillating instruments achieved similar surface roughness. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  6. No Time for Dead Time: Use the Fourier Amplitude Differences to Normalize Dead-time-affected Periodograms

    NASA Astrophysics Data System (ADS)

    Bachetti, Matteo; Huppenkothen, Daniela

    2018-02-01

    Dead time affects many of the instruments used in X-ray astronomy, by producing a strong distortion in power density spectra. This can make it difficult to model the aperiodic variability of the source or look for quasi-periodic oscillations. Whereas in some instruments a simple a priori correction for dead-time-affected power spectra is possible, this is not the case for others such as NuSTAR, where the dead time is non-constant and long (∼2.5 ms). Bachetti et al. (2015) suggested the cospectrum obtained from light curves of independent detectors within the same instrument as a possible way out, but this solution has always only been a partial one: the measured rms was still affected by dead time because the width of the power distribution of the cospectrum was modulated by dead time in a frequency-dependent way. In this Letter, we suggest a new, powerful method to normalize dead-time-affected cospectra and power density spectra. Our approach uses the difference of the Fourier amplitudes from two independent detectors to characterize and filter out the effect of dead time. This method is crucially important for the accurate modeling of periodograms derived from instruments affected by dead time on board current missions like NuSTAR and Astrosat, but also future missions such as IXPE.

  7. The Lowell Observatory Predoctoral Scholar Program

    NASA Astrophysics Data System (ADS)

    Prato, Lisa; Nofi, Larissa

    2018-01-01

    Lowell Observatory is pleased to solicit applications for our Predoctoral Scholar Fellowship Program. Now beginning its tenth year, this program is designed to provide unique research opportunities to graduate students in good standing, currently enrolled at Ph.D. granting institutions. Lowell staff research spans a wide range of topics, from astronomical instrumentation, to icy bodies in our solar system, exoplanet science, stellar populations, star formation, and dwarf galaxies. Strong collaborations, the new Ph.D. program at Northern Arizona University, and cooperative links across the greater Flagstaff astronomical community create a powerful multi-institutional locus in northern Arizona. Lowell Observatory's new 4.3 meter Discovery Channel Telescope is operating at full science capacity and boasts some of the most cutting-edge and exciting capabilities available in optical/infrared astronomy. Student research is expected to lead to a thesis dissertation appropriate for graduation at the doctoral level at the student's home institution. For more information, see http://www2.lowell.edu/rsch/predoc.php and links therein. Applications for Fall 2018 are due by May 1, 2018; alternate application dates will be considered on an individual basis.

  8. Miniature, Single Channel, Memory-Based, High-G Acceleration Recorder (Millipen)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohwer, Tedd A.

    1999-06-02

    The Instrumentation and Telemetry Departments at Sandia National Laboratories have been instrumenting earth penetrators for over thirty years. Recorded acceleration data is used to quantify penetrator performance. Penetrator testing has become more difficult as desired impact velocities have increased. This results in the need for small-scale test vehicles and miniature instrumentation. A miniature recorder will allow penetrator diameters to significantly decrease, opening the window of testable parameters. Full-scale test vehicles will also benefit from miniature recorders by using a less intrusive system to instrument internal arming, fusing, and firing components. This single channel concept is the latest design in anmore » ongoing effort to miniaturize the size and reduce the power requirement of acceleration instrumentation. A micro-controller/memory based system provides the data acquisition, signal conditioning, power regulation, and data storage. This architecture allows the recorder, including both sensor and electronics, to occupy a volume of less than 1.5 cubic inches, draw less than 200mW of power, and record 15kHz data up to 40,000 gs. This paper will describe the development and operation of this miniature acceleration recorder.« less

  9. Methods of dental instrument processing, sterilization, and storage--a review.

    PubMed

    Thomas, Lisa P; Bebermeyer, Richard D; Dickinson, Sharon K

    2005-10-01

    A comprehensive instrument processing and sterilization program in the dental office is essential to ensure that the DHCP and the public are protected from disease transmission due to contaminated instruments/ devices. The Centers for Disease Control and Prevention and other organizations have made recommendations to help dental personnel with this aspect of patient care. By following the CDC's latest guidelines, the DHCP can develop an optimal program of dental instrument processing, sterilization and storage.

  10. A Comparison Study of the California Test of Basic Skills between Fourth and Fifth Grade Instrumental Music Pullout Students and Students Not Involved in the Instrumental Music Program.

    ERIC Educational Resources Information Center

    Corral, S. Joseph

    The purpose of this study was to examine the effects of an instrumental music pullout program on student achievement. Two hundred and twenty-three students were divided into 2 groups. The first group consisted of 46 instrumental music students in grades 4 and 5. The second group consisted of 177 students who did not participate in the instrumental…

  11. SAO Participation in the GOME and SCIAMACHY Satellite Instrument Programs

    NASA Technical Reports Server (NTRS)

    Hilsenrath, Ernest (Technical Monitor); Chance, Kelly; Kurosu, Thomas

    2004-01-01

    This report summarizes the progress on our three-year program of research to refine the measurement capability for satellite-based instruments that monitor ozone and other trace species in the Earth's stratosphere and troposphere, to retrieve global distributions of these and other constituents h m the GOME and SCIAMACHY satellite instruments, and to conduct scientific studies for the ILAS instruments. This continues our involvements as a U.S. participant in GOME and SCIAMACHY since their inception, and as a member of the ILAS-II Science Team. These programs have led to the launch of the first satellite instrument specifically designed to measure height-resolved ozone, including the tropospheric component (GOME), and the development of the first satellite instrument that will measure tropospheric ozone simultaneously with NO2, CO, HCHO, N2O, H2O, and CH4 (SCIAMACHY). The GOME program now includes the GOME-2 instruments, to be launched on the Eumetsat Metop satellites, providing long-term continuity in European measurements of global ozone that complement the measurements of the TOMS, SBUV, OMI, OMPS instruments. The research primarily focuses on two areas: Data analysis, including algorithm development and validation studies that will improve the quality of retrieved data products, in support for future field campaigns (to complement in situ and airborne campaigns with satellite measurements), and scientific analyses to be interfaced to atmospheric modeling studies.

  12. SAO Participation in the GOME and SCIAMACHY Satellite Instrument Programs

    NASA Technical Reports Server (NTRS)

    Chance, Kelly; Kurosu, Thomas

    2003-01-01

    This report summarizes the progress on our three-year program of research to refine the measurement capability for satellite-based instruments that monitor ozone and other trace species in the Earth's stratosphere and troposphere, to retrieve global distributions of these and other constituents from the GOME and SCIAMACHY satellite instruments, and to conduct scientific studies for the ILAS instruments. This continues our involvements as a U.S. participant in GOME and SCIAMACHY since their inception, and as a member of the ILAS-II Science Team. These programs have led to the launch of the first satellite instrument specifically designed to measure height-resolved ozone, including the tropospheric component (GOME), and the development of the first satellite instrument that will measure tropospheric ozone simultaneously with NO2, CO, HCHO, N2O, H2O, and CH4 (SCIAMACHY). The GOME program now includes the GOME-2 instruments, to be launched on the Eumetsat Metop satellites, providing long-term continuity in European measurements of global ozone that complement the measurements of the TOMS, SBW, OMI, OMPS instruments. The research primarily focuses on two areas: Data analysis, including algorithm development and validation studies that will improve the quality of retrieved data products, in support for future field campaigns (to complement in situ and airborne campaigns with satellite measurements), and scientific analyses to be interfaced to atmospheric modeling studies.

  13. SSME Key Operations Demonstration

    NASA Technical Reports Server (NTRS)

    Anderson, Brian; Bradley, Michael; Ives, Janet

    1997-01-01

    A Space Shuttle Main Engine (SSME) test program was conducted between August 1995 and May 1996 using the Technology Test Bed (TTB) Engine. SSTO vehicle studies have indicated that increases in the propulsion system operating range can save significant weight and cost at the vehicle level. This test program demonstrated the ability of the SSME to accommodate a wide variation in safe operating ranges and therefore its applicability to the SSTO mission. A total of eight tests were completed with four at Marshall Space Flight Center's Advanced Engine Test Facility and four at the Stennis Space Center (SSC) A-2 attitude test stand. Key demonstration objectives were: 1) Mainstage operation at 5.4 to 6.9 mixture ratio; 2) Nominal engine start with significantly reduced engine inlet pressures of 50 psia LOX and 38 psia fuel; and 3) Low power level operation at 17%, 22%, 27%, 40%, 45%, and 50% of Rated Power Level. Use of the highly instrumented TTB engine for this test series has afforded the opportunity to study in great detail engine system operation not possible with a standard SSME and has significantly contributed to a greater understanding of the capabilities of the SSME and liquid rocket engines in general.

  14. INSTRUMENTATION AND AUTOMATIC CONTROL, SUGGESTED TECHNIQUES FOR DETERMINING COURSES OF STUDY IN VOCATIONAL AND TECHNICAL EDUCATION PROGRAMS.

    ERIC Educational Resources Information Center

    WEINSTEIN, EMANUEL

    THE PURPOSE OF THIS GUIDE IS TO HELP THE STATES ORGANIZE AND OPERATE EDUCATIONAL PROGRAMS FOR OCCUPATIONS IN THE FIELD OF INSTRUMENTATION. CHAPTER TITLES ARE--(1) INSTRUMENTATIONS--PAST, PRESENT, AND FUTURE, (2) THE OCCUPATIONAL FIELD, (3) WORK ACTIVITIES (DESIGN, FABRICATION, MAINTENANCE, REPAIR, AND SERVICE), (4) TRAINING REQUIREMENTS, AND (5)…

  15. The Global Ozone and Aerosol Profiles and Aerosol Hygroscopic Effect and Absorption Optical Depth (GOA2HEAD) Network Initiative

    NASA Astrophysics Data System (ADS)

    Gao, R. S.; Elkins, J. W.; Frost, G. J.; McComiskey, A. C.; Murphy, D. M.; Ogren, J. A.; Petropavlovskikh, I. V.; Rosenlof, K. H.

    2014-12-01

    Inverse modeling using measurements of ozone (O3) and aerosol is a powerful tool for deriving pollutant emissions. Because they have relatively long lifetimes, O3 and aerosol are transported over large distances. Frequent and globally spaced vertical profiles rather than ground-based measurements alone are therefore highly desired. Three requirements necessary for a successful global monitoring program are: Low equipment cost, low operation cost, and reliable measurements of known uncertainty. Conventional profiling using aircraft provides excellent data, but is cost prohibitive on a large scale. Here we describe a new platform and instruments meeting all three global monitoring requirements. The platform consists of a small balloon and an auto-homing glider. The glider is released from the balloon at about 5 km altitude, returning the light instrument package to the launch location, and allowing for consistent recovery of the payload. Atmospheric profiling can be performed either during ascent or descent (or both) depending on measurement requirements. We will present the specifications for two instrument packages currently under development. The first measures O3, RH, p, T, dry aerosol particle number and size distribution, and aerosol optical depth. The second measures dry aerosol particle number and size distribution, and aerosol absorption coefficient. Other potential instrument packages and the desired spatial/temporal resolution for the GOA2HEAD monitoring initiative will also be discussed.

  16. Fifteen years of the Protein Crystallography Station: the coming of age of macromolecular neutron crystallography.

    PubMed

    Chen, Julian C-H; Unkefer, Clifford J

    2017-01-01

    The Protein Crystallography Station (PCS), located at the Los Alamos Neutron Scattering Center (LANSCE), was the first macromolecular crystallography beamline to be built at a spallation neutron source. Following testing and commissioning, the PCS user program was funded by the Biology and Environmental Research program of the Department of Energy Office of Science (DOE-OBER) for 13 years (2002-2014). The PCS remained the only dedicated macromolecular neutron crystallography station in North America until the construction and commissioning of the MaNDi and IMAGINE instruments at Oak Ridge National Laboratory, which started in 2012. The instrument produced a number of research and technical outcomes that have contributed to the field, clearly demonstrating the power of neutron crystallo-graphy in helping scientists to understand enzyme reaction mechanisms, hydrogen bonding and visualization of H-atom positions, which are critical to nearly all chemical reactions. During this period, neutron crystallography became a technique that increasingly gained traction, and became more integrated into macromolecular crystallography through software developments led by investigators at the PCS. This review highlights the contributions of the PCS to macromolecular neutron crystallography, and gives an overview of the history of neutron crystallography and the development of macromolecular neutron crystallography from the 1960s to the 1990s and onwards through the 2000s.

  17. The Assessment, Development, Assurance Pharmacist's Tool (ADAPT) for ensuring quality implementation of health promotion programs.

    PubMed

    Truong, Hoai-An; Taylor, Catherine R; DiPietro, Natalie A

    2012-02-10

    To develop and validate the Assessment, Development, Assurance Pharmacist's Tool (ADAPT), an instrument for pharmacists and student pharmacists to use in developing and implementing health promotion programs. The 36-item ADAPT instrument was developed using the framework of public health's 3 core functions (assessment, policy development, and assurance) and 10 essential services. The tool's content and usage was assessed and conducted through peer-review and initial validity testing processes. Over 20 faculty members, preceptors, and student pharmacists at 5 institutions involved in planning and implementing health promotion initiatives reviewed the instrument and conducted validity testing. The instrument took approximately 15 minutes to complete and the findings resulted in changes and improvements to elements of the programs evaluated. The ADAPT instrument fills a need to more effectively plan, develop, implement, and evaluate pharmacist-directed public health programs that are evidence-based, high-quality, and compliant with laws and regulations and facilitates documentation of pharmacists' contributions to public health.

  18. Food Sanitation and Safety Self-Assessment Instrument for School Nutrition Programs.

    ERIC Educational Resources Information Center

    California State Dept. of Education, Sacramento.

    Like food-service establishments, child nutrition programs are responsible for preserving the quality and wholesomeness of food. Proper food-handling practices prevent contamination and job-related accidents. Application of the evaluation instrument presented in this document to individual programs helps to define proper practices, assess the…

  19. Evaluation Strategies in Financial Education: Evaluation with Imperfect Instruments

    ERIC Educational Resources Information Center

    Robinson, Lauren; Dudensing, Rebekka; Granovsky, Nancy L.

    2016-01-01

    Program evaluation often suffers due to time constraints, imperfect instruments, incomplete data, and the need to report standardized metrics. This article about the evaluation process for the Wi$eUp financial education program showcases the difficulties inherent in evaluation and suggests best practices for assessing program effectiveness. We…

  20. Student Services Program Planning and Evaluation: Responsibility, Procedures, Instrument, and Guidelines.

    ERIC Educational Resources Information Center

    Repp, Charles A.; Brach, Ronald C.

    The manual provides a rationale, procedural guidelines, time-schedules, instruments, and supporting documentation for student services program evaluation at SUNY Agricultural and Technical College, Delhi. Six procedural guidelines include: (1) all programs and services should be evaluated at least once every four years, with provision for annual…

  1. An SSM/I radiometer simulator for studies of microwave emission from soil. [Special Sensor Microwave/Imager

    NASA Technical Reports Server (NTRS)

    Galantowicz, J. F.; England, A. W.

    1992-01-01

    A ground-based simulator of the defense meterological satellite program special sensor microwave/imager (DMSP SSM/I) is described, and its integration with micrometeorological instrumentation for an investigation of microwave emission from moist and frozen soils is discussed. The simulator consists of three single polarization radiometers which are capable of both Dicke radiometer and total power radiometer modes of operation. The radiometers are designed for untended operation through a local computer and a daily telephone link to a laboratory. The functional characteristics of the radiometers are described, together with their field deployment configuration and an example of performance parameters.

  2. The Aerial Regional-Scale Environmental Surveyor (ARES): New Mars Science to Reduce Human Risk and Prepare for the Human Exploration

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.; Croom, Mark A.; Wright, Henry S.; Killough, B. D.; Edwards, W. C.

    2012-01-01

    Obtaining critical measurements for eventual human Mars missions while expanding upon recent Mars scientific discoveries and deriving new scientific knowledge from a unique near surface vantage point is the focus of the Aerial Regional-scale Environmental Surveyor (ARES) exploration mission. The key element of ARES is an instrumented,rocket-powered, well-tested robotic airplane platform, that will fly between one to two kilometers above the surface while traversing hundreds of kilometers to collect and transmit previously unobtainable high spatial measurements relevant to the NASA Mars Exploration Program and the exploration of Mars by humans.

  3. A new method for aerodynamic test of high altitude propellers

    NASA Astrophysics Data System (ADS)

    Gong, Xiying; Zhang, Lin

    A ground test system is designed for aerodynamic performance tests of high altitude propellers. The system is consisted of stable power supply, servo motors, two-component balance constructed by tension-compression sensors, ultrasonic anemometer, data acquisition module. It is loaded on a truck to simulate propellers' wind-tunnel test for different wind velocities at low density circumstance. The graphical programming language LABVIEW for developing virtual instrument is used to realize the test system control and data acquisition. Aerodynamic performance test of a propeller with 6.8 m diameter was completed by using this system. The results verify the feasibility of the ground test method.

  4. Smart Optical RAM for Fast Information Management and Analysis

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang

    1998-01-01

    Statement of Problem Instruments for high speed and high capacity in-situ data identification, classification and storage capabilities are needed by NASA for the information management and analysis of extremely large volume of data sets in future space exploration, space habitation and utilization, in addition to the various missions to planet-earth programs. Parameters such as communication delays, limited resources, and inaccessibility of human manipulation require more intelligent, compact, low power, and light weight information management and data storage techniques. New and innovative algorithms and architecture using photonics will enable us to meet these challenges. The technology has applications for other government and public agencies.

  5. Teaching of laser medical topics: Latvian experience

    NASA Astrophysics Data System (ADS)

    Spigulis, Janis

    2002-10-01

    Pilot program for Master's studies on Biomedical Optics has been developed and launched at University of Latvia in 1995. The Curriculum contains several basic subjects like Fundamentals of Biomedical Optics, Medical Lightguides, Anatomy and Physiology, Lasers and Non-coherent Light Sources, Optical Instrumentation for Healthcare, Optical Methods for Patient Treatment, Basic Physics, etc. Special English Terminology and Laboratory-Clinical Praxis are also involved, and the Master Theses is the final step for the degree award. Recently a new extensive short course for medical laser users "Lasers and Bio-optics in Medicine" has been prepared in the PowerPoint format and successfully presented in Latvia, Lithuania and Sweden.

  6. Electrical Monitoring Devices Save on Time and Cost

    NASA Technical Reports Server (NTRS)

    2015-01-01

    In order to protect the Solar Dynamics Observatory's instruments from blowing their fuses and being rendered unusable, Goddard Space Flight Center worked with Micropac Industries Inc., based in Garland, Texas, to develop solid-state power controllers, which can depower and then resupply power to an instrument in the event of an electric surge. The company is now selling the technology for use in industrial plants.

  7. Music 4C, a multi-voiced synthesis program with instruments defined in C

    NASA Astrophysics Data System (ADS)

    Beauchamp, James W.

    2003-04-01

    Music 4C is a program which runs under Unix (including Linux) and provides a means for the synthesis of arbitrary signals as defined by the C code. The program is actually a loose translation of an earlier program, Music 4BF [H. S. Howe, Jr., Electronic Music Synthesis (Norton, 1975)]. A set of instrument definitions are driven by a numerical score which consists of a series of ``events.'' Each event gives an instrument name, start time and duration, and a number of parameters (e.g., pitch) which describe the event. Each instrument definition consists of event parameters, performance variables, initializations, and a synthesis algorithmic code. Thus, the synthetic signal, no matter how complex, is precisely defined. Moreover, the resulting sounds can be overlaid in any arbitrary pattern. The program serves as a mixer of algorithmically produced sounds or recorded sounds taken from sample files or synthesized from spectrum files. A score file can be entered by hand, generated from a program, translated from a MIDI file, or generated from an alpha-numeric score using an auxiliary program, Notepro. Output sample files are in wav, snd, or aiff format. The program is provided in the C source code for download.

  8. Stochastic control of smart home energy management with plug-in electric vehicle battery energy storage and photovoltaic array

    NASA Astrophysics Data System (ADS)

    Wu, Xiaohua; Hu, Xiaosong; Moura, Scott; Yin, Xiaofeng; Pickert, Volker

    2016-11-01

    Energy management strategies are instrumental in the performance and economy of smart homes integrating renewable energy and energy storage. This article focuses on stochastic energy management of a smart home with PEV (plug-in electric vehicle) energy storage and photovoltaic (PV) array. It is motivated by the challenges associated with sustainable energy supplies and the local energy storage opportunity provided by vehicle electrification. This paper seeks to minimize a consumer's energy charges under a time-of-use tariff, while satisfying home power demand and PEV charging requirements, and accommodating the variability of solar power. First, the random-variable models are developed, including Markov Chain model of PEV mobility, as well as predictive models of home power demand and PV power supply. Second, a stochastic optimal control problem is mathematically formulated for managing the power flow among energy sources in the smart home. Finally, based on time-varying electricity price, we systematically examine the performance of the proposed control strategy. As a result, the electric cost is 493.6% less for a Tesla Model S with optimal stochastic dynamic programming (SDP) control relative to the no optimal control case, and it is by 175.89% for a Nissan Leaf.

  9. The cold neutron chopper spectrometer at the Spallation Neutron Source—A review of the first 8 years of operation

    DOE PAGES

    Ehlers, G.; Podlesnyak, A. A.; Kolesnikov, A. I.

    2016-09-13

    The first eight years of operation of the Cold Neutron Chopper Spectrometer (CNCS) at the Spallation Neutron Source in Oak Ridge is being reviewed. The instrument has been part of the facility user program since 2009, and more than 250 individual user experiments have been performed to date. CNCS is an extremely powerful and versatile instrument and offers leading edge performance in terms of beam intensity, energy resolution, and flexibility to trade one for another. In addition, experiments are being routinely performed with the sample at extreme conditions: T ≲ 0.05 K, p ≳ 2 GPa, and B = 8more » T can be achieved individually or in combination. In particular, CNCS is in a position to advance the state of the art with inelastic neutron scattering under pressure, and some of the recent accomplishments in this area will be presented in more detail.« less

  10. PScan 1.0: flexible software framework for polygon based multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Li, Yongxiao; Lee, Woei Ming

    2016-12-01

    Multiphoton laser scanning microscopes exhibit highly localized nonlinear optical excitation and are powerful instruments for in-vivo deep tissue imaging. Customized multiphoton microscopy has a significantly superior performance for in-vivo imaging because of precise control over the scanning and detection system. To date, there have been several flexible software platforms catered to custom built microscopy systems i.e. ScanImage, HelioScan, MicroManager, that perform at imaging speeds of 30-100fps. In this paper, we describe a flexible software framework for high speed imaging systems capable of operating from 5 fps to 1600 fps. The software is based on the MATLAB image processing toolbox. It has the capability to communicate directly with a high performing imaging card (Matrox Solios eA/XA), thus retaining high speed acquisition. The program is also designed to communicate with LabVIEW and Fiji for instrument control and image processing. Pscan 1.0 can handle high imaging rates and contains sufficient flexibility for users to adapt to their high speed imaging systems.

  11. ARC-1988-AC88-0595

    NASA Image and Video Library

    1988-10-07

    Artist: Rick Guidice SIRTF Artwork update - cutaway Space Infrared Telescope Facility's will orbit at 900 kilometers aboard a platform-type spacecraft, providing power, pointing, and communications to Earth. The telescope and its infrared instruments, will reside within a cylindrical cryogen tank. The hollow walls of the tank will contain the superfluid helium that cools the telescope to its operating temperature, a few degrees above absolute zero. SIRTF will carry three versatile instruments to analyze the radiation it collects, the Multiband Imaging Photometer, the Infrared Array Camera, and the Infrared Spectrograph. SIRTF long lifetime - 5 years or more - will permit astronomers of all disciplines to use the facililty to carry out a wide variety of astrophysical programs. It will provide ongoing coverage of variable objects, such as quasars, as well as the capability to study rare and transient events such as comets and supernovae. SIRTF's long lifetime will also allow it to distinguish nearby objects by detecting their gradual motions relative to the more distant background stars.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nash, Connor P.; Farberow, Carrie A.; Hensley, Jesse E.

    Temperature programmed reaction (TPRxn) is a simple yet powerful tool for screening solid catalyst performance at a variety of conditions. A TPRxn system includes a reactor, furnace, gas and vapor sources, flow control, instrumentation to quantify reaction products (e.g., gas chromatograph), and instrumentation to monitor the reaction in real time (e.g., mass spectrometer). Here, we apply the TPRxn methodology to study molybdenum carbide catalysts for the deoxygenation of acetic acid, an important reaction among many in the upgrading/stabilization of biomass pyrolysis vapors. TPRxn is used to evaluate catalyst activity and selectivity and to test hypothetical reaction pathways (e.g., decarbonylation, ketonization,more » and hydrogenation). Furthermore, the results of the TPRxn study of acetic acid deoxygenation show that molybdenum carbide is an active catalyst for this reaction at temperatures above ca. 300 °C and that the reaction favors deoxygenation (i.e., C-O bond-breaking) products at temperatures below ca. 400 °C and decarbonylation (i.e., C-C bond-breaking) products at temperatures above ca. 400 °C.« less

  13. Results and Insights on the Impact of Smoke on Digital Instrumentation and Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, T. J.; Nowlen, S. P.

    2001-01-31

    Smoke can cause interruptions and upsets in active electronics. Because nuclear power plants are replacing analog with digital instrumentation and control systems, qualification guidelines for new systems are being reviewed for severe environments such as smoke and electromagnetic interference. Active digital systems, individual components, and active circuits have been exposed to smoke in a program sponsored by the U.S. Nuclear Regulatory Commission. The circuits and systems were all monitored during the smoke exposure, indicating any immediate effects of the smoke. The major effect of smoke has been to increase leakage currents (through circuit bridging across contacts and leads) and tomore » cause momentary upsets and failures in digital systems. This report summarizes two previous reports and presents new results from conformal coating, memory chip, and hard drive tests. The report describes practices for mitigation of smoke damage through digital system design, fire barriers, ventilation, fire suppressants, and post fire procedures.« less

  14. Description of a Computer Program Written for Approach and Landing Test Post Flight Data Extraction of Proximity Separation Aerodynamic Coefficients and Aerodynamic Data Base Verification

    NASA Technical Reports Server (NTRS)

    Homan, D. J.

    1977-01-01

    A computer program written to calculate the proximity aerodynamic force and moment coefficients of the Orbiter/Shuttle Carrier Aircraft (SCA) vehicles based on flight instrumentation is described. The ground reduced aerodynamic coefficients and instrumentation errors (GRACIE) program was developed as a tool to aid in flight test verification of the Orbiter/SCA separation aerodynamic data base. The program calculates the force and moment coefficients of each vehicle in proximity to the other, using the load measurement system data, flight instrumentation data and the vehicle mass properties. The uncertainty in each coefficient is determined, based on the quoted instrumentation accuracies. A subroutine manipulates the Orbiter/747 Carrier Separation Aerodynamic Data Book to calculate a comparable set of predicted coefficients for comparison to the calculated flight test data.

  15. Purging sensitive science instruments with nitrogen in the STS environment

    NASA Technical Reports Server (NTRS)

    Lumsden, J. M.; Noel, M. B.

    1983-01-01

    Potential contamination of extremely sensitive science instruments during prelaunch, launch, and earth orbit operations are a major concern to the Galileo and International Solar Polar Mission (ISPM) Programs. The Galileo Program is developing a system to purify Shuttle supplied nitrogen gas for in-flight purging of seven imaging and non-imaging science instruments. Monolayers of contamination deposited on critical surfaces can degrade some instrument sensitivities as much as fifty percent. The purging system provides a reliable supply of filtered and fried nitrogen gas during these critical phases of the mission when the contamination potential is highest. The Galileo and ISPM Programs are including the system as Airborne Support Equipment (ASE).

  16. Workshop on Advanced Technologies for Planetary Instruments, part 1

    NASA Technical Reports Server (NTRS)

    Appleby, John F. (Editor)

    1993-01-01

    This meeting was conceived in response to new challenges facing NASA's robotic solar system exploration program. This volume contains papers presented at the Workshop on Advanced Technologies for Planetary Instruments on 28-30 Apr. 1993. This meeting was conceived in response to new challenges facing NASA's robotic solar system exploration program. Over the past several years, SDIO has sponsored a significant technology development program aimed, in part, at the production of instruments with these characteristics. This workshop provided an opportunity for specialists from the planetary science and DoD communities to establish contacts, to explore common technical ground in an open forum, and more specifically, to discuss the applicability of SDIO's technology base to planetary science instruments.

  17. Evaluating the Implementation of an Olympic Education Program in Greece

    NASA Astrophysics Data System (ADS)

    Grammatikopoulos, Vasilios; Tsigilis, Nikolaos; Koustelios, Athanasios; Theodorakis, Yannis

    2005-11-01

    The aim of this study was to develop an instrument for evaluating how an education program has been implemented. Such evaluation can provide insight into the effectiveness of a program. Examined here was the Olympic Education Program used in Greek schools since 2000. In it, students learn the history of the Olympic games and the importance of exercise for health along with the principles and values of sports and volunteerism. The evaluation instrument underlying this study addressed the following six factors: `facilities', `administration', `educational material', `student-teacher relationships', `educational procedures', and `training'. Results indicate that the instrument, while adequate for assessing effectiveness, should be combined with advanced statistical methods.

  18. In-flight performance of the solar UV radiometer LYRA/PROBA-2

    NASA Astrophysics Data System (ADS)

    Stockman, Y.; BenMoussa, A.; Dammasch, I.; Defise, J.-M.; Dominique, M.; Halain, J.-P.; Hochedez, J.-F.; Koller, S.; Schmutz, W.; Schühle, U.

    2017-11-01

    LYRA is a solar radiometer, part of the PROBA-2 micro-satellite payload (Fig. 1). The PROBA-2 [1] mission has been launched on 02 November 2009 with a Rockot launcher to a Sun-synchronous orbit at an altitude of 725 km. Its nominal operation duration is two years with possible extension of 2 years. PROBA-2 is a small satellite developed under an ESA General Support Technology Program (GSTP) contract to perform an in-flight demonstration of new space technologies and support a scientific mission for a set of selected instruments [2]. PROBA-2 host 17 technological demonstrators and 4 scientific instruments. The mission is tracked by the ESA Redu Mission Operation Center. One of the four scientific instruments is LYRA that monitors the solar irradiance at a high cadence (> 20 Hz) in four soft X-Ray to VUV large passbands: the "Lyman-Alpha" channel, the "Herzberg" continuum range, the "Aluminium" and "Zirconium" filter channels. The radiometric calibration is traceable to synchrotron source standards [3]. LYRA benefits from wide bandgap detectors based on diamond. It is the first space assessment of these revolutionary UV detectors for astrophysics. Diamond sensors make the instruments radiation-hard and solar-blind (insensitive to the strong solar visible light) and, therefore, visible light blocking filters become superfluous. To correlate the data of this new detector technology, silicon detectors with well known characteristics are also embarked. Due to the strict allocated mass and power budget (5 kg, 5W), and poor priority to the payload needs on such platform, an optimization and a robustness of the instrument was necessary. The first switch-on occured on 16 November 2009. Since then the instrument performances have been monitored and analyzed during the commissioning period. This paper presents the first-light and preliminary performance analysis.

  19. Science Activity Planner for the MER Mission

    NASA Technical Reports Server (NTRS)

    Norris, Jeffrey S.; Crockett, Thomas M.; Fox, Jason M.; Joswig, Joseph C.; Powell, Mark W.; Shams, Khawaja S.; Torres, Recaredo J.; Wallick, Michael N.; Mittman, David S.

    2008-01-01

    The Maestro Science Activity Planner is a computer program that assists human users in planning operations of the Mars Explorer Rover (MER) mission and visualizing scientific data returned from the MER rovers. Relative to its predecessors, this program is more powerful and easier to use. This program is built on the Java Eclipse open-source platform around a Web-browser-based user-interface paradigm to provide an intuitive user interface to Mars rovers and landers. This program affords a combination of advanced display and simulation capabilities. For example, a map view of terrain can be generated from images acquired by the High Resolution Imaging Science Explorer instrument aboard the Mars Reconnaissance Orbiter spacecraft and overlaid with images from a navigation camera (more precisely, a stereoscopic pair of cameras) aboard a rover, and an interactive, annotated rover traverse path can be incorporated into the overlay. It is also possible to construct an overhead perspective mosaic image of terrain from navigation-camera images. This program can be adapted to similar use on other outer-space missions and is potentially adaptable to numerous terrestrial applications involving analysis of data, operations of robots, and planning of such operations for acquisition of scientific data.

  20. Technological innovations in tissue removal during rhinologic surgery.

    PubMed

    Sindwani, Raj; Manz, Ryan

    2012-01-01

    The modern rhinologist has a wide variety of technological innovations at his/her disposal for the removal of soft tissue and bone during endoscopic surgery. We identified and critically evaluated four leading tissue removal technologies that have impacted, or are poised to impact, rhinological surgery. A literature review was conducted. Technological functions, strengths and limitations of microdebriders, radio frequency ablation, endoscopic drills, and ultrasonic aspirators were explored. The primary drawback of powered instruments continues to be the higher costs associated with their use, and their main advantage is the ability to accomplish multiple functions such as tissue removal, suction, and irrigation, all with one tool. The effective and safe use of any powered instrument requires an intimate understanding of its function, capabilities, and limitations. Powered instrumentation continues to play a significant and evolving role in soft tissue and bone removal during rhinologic surgery.

  1. Miniaturized Environmental Scanning Electron Microscope for In Situ Planetary Studies

    NASA Technical Reports Server (NTRS)

    Gaskin, Jessica; Abbott, Terry; Medley, Stephanie; Gregory, Don; Thaisen, Kevin; Taylor , Lawrence; Ramsey, Brian; Jerman, Gregory; Sampson, Allen; Harvey, Ralph

    2010-01-01

    The exploration of remote planetary surfaces calls for the advancement of low power, highly-miniaturized instrumentation. Instruments of this nature that are capable of multiple types of analyses will prove to be particularly useful as we prepare for human return to the moon, and as we continue to explore increasingly remote locations in our Solar System. To this end, our group has been developing a miniaturized Environmental-Scanning Electron Microscope (mESEM) capable of remote investigations of mineralogical samples through in-situ topographical and chemical analysis on a fine scale. The functioning of an SEM is well known: an electron beam is focused to nanometer-scale onto a given sample where resulting emissions such as backscattered and secondary electrons, X-rays, and visible light are registered. Raster scanning the primary electron beam across the sample then gives a fine-scale image of the surface topography (texture), crystalline structure and orientation, with accompanying elemental composition. The flexibility in the types of measurements the mESEM is capable of, makes it ideally suited for a variety of applications. The mESEM is appropriate for use on multiple planetary surfaces, and for a variety of mission goals (from science to non-destructive analysis to ISRU). We will identify potential applications and range of potential uses related to planetary exploration. Over the past few of years we have initiated fabrication and testing of a proof-of-concept assembly, consisting of a cold-field-emission electron gun and custom high-voltage power supply, electrostatic electron-beam focusing column, and scanning-imaging electronics plus backscatter detector. Current project status will be discussed. This effort is funded through the NASA Research Opportunities in Space and Earth Sciences - Planetary Instrument Definition and Development Program.

  2. Ultra Low Temperature Ultra Low Power Instrument Packages for Planetary Surfaces

    NASA Technical Reports Server (NTRS)

    Clark, P. E.; Millar, P. S.; Beaman, B.; Yeh, P. S.; Cooper, L.; Feng, S.; Young, E.

    2010-01-01

    Achievement of solar system exploration roadmap goals will involve robotic or human deployment and longterm operation of surface science packages remote from human presence, thus requiring autonomous, self-powered operation. The major challenge such packages face will be operating during long periods of darkness in extreme cold potentially without the Pu238 based power and thermal systems available to Apollo era packages (ALSEP). Development of such science payloads will thus require considerable optimization of instrument and subsystem design, packaging and integration for a variety of planetary surface environments in order to support solar system exploration fully. Our work supports this process through the incorporation of low temperature operational components and design strategies which radically minimize power, mass, and cost while maximizing the performance under extreme surface conditions that are in many cases more demanding than those routinely experienced by spacecraft in deep space. Chief instruments/instrument package candidates include those which could provide long-term monitoring of the surface and subsurface environments for fundamental science and human crew safety. The initial attempt to design a 10 instrument environmental monitoring package with a solar/battery based power system led to a package with a unacceptably large mass (500 kg) of which over half was battery mass. In phase 1, a factor of 5 reduction in mass was achieved, first through the introduction of high performance electronics capable of operating at far lower temperature and then through the use of innovative thermal balance strategies involving the use of multi-layer thin materials and gravity-assisted heat pipes. In phase 2, reported here, involves strategies such as universal incorporation of ULT/ULP digital and analog electronics, and distributed or non-conventionally packaged power systems. These strategies will be required to meet the far more challenging thermal requirements of operating through a normal 28 day diurnal cycle. The limited temperature range of efficient battery operation remains the largest obstacle.

  3. Birth of the Program for Array Seismic Studies of the Continental Lithosphere (PASSCAL)

    NASA Astrophysics Data System (ADS)

    James, D. E.; Sacks, I. S.

    2002-05-01

    As recently as 1984 institutions doing portable seismology depended upon their own complement of instruments, almost all designed and built in-house, and all of limited recording capability and flexibility. No data standards existed. Around 1980 the National Research Council (NRC) of the National Academy of Sciences (NAS), with National Science Foundation (NSF) support, empanelled a committee to study a major new initiative in Seismic Studies of the Continental Lithosphere (SSCL). The SSCL report in 1983 recommended that substantial numbers (1000 or more) of new generation digital seismographs be acquired for 3-D high resolution imaging of the continental lithosphere. Recommendations of the SSCL committee dovetailed with other NRC/NAS and NSF reports that highlighted imaging of the continental lithosphere as an area of highest priority. For the first time in the history of portable seismology the question asked was "What do seismologists need to do the job right?" A grassroots effort was undertaken to define instrumentation and data standards for a powerful new set of modern seismic research tools to serve the national seismological community. In the spring and fall of 1983 NSF and IASPEI sponsored workshops were convened to develop specifications for the design of a new generation of portable instrumentation. PASSCAL was the outgrowth of these seminal studies and workshops. The first step toward the formal formation of PASSCAL began with an ad-hoc organizing committee, comprised largely of the members of the NAS lithospheric seismology panel, convened by the authors at Carnegie Institution in Washington in November 1983. From that meeting emerged plans and promises of NSF support for an open organizational meeting to be held in January 1984, in Madison, Wisconsin. By the end of the two-day Madison meeting PASSCAL and an official consortium of seismological institutions for portable seismology were realities. Shortly after, PASSCAL merged with the complementary Global Seismic Network (GSN) under the overall umbrella of the Incorporated Research Institutions for Seismology (IRIS) consortium. Pre-startup funding for PASSCAL was provided by NSF via a so-called "Phase Zero" grant to the Carnegie Institution in June, 1984, to initiate design of new digital instrumentation and to facilitate preparation of the PASSCAL Program Plan. A working group met at Princeton in July 1984 to draft the PASSCAL Program Plan for the IRIS 10-year proposal to NSF, submitted in December 1984. PASSCAL functions as a national facility for seismological research, acquiring and maintaining a large complement of state-of-the-art portable instrumentation for scientists in member institutions. Within a year of its formation, PASSCAL had retained an engineer/program manager and begun the specification process for the manufacture and acquisition of a national instrumentation facility of broadband and short period seismographs. Instrument centers staffed by hardware and software engineers were established to maintain and distribute equipment, and to assist in field installations. By the late 1980s substantial volumes of standardized digital data were flowing from portable experiments to the archives of the newly formed Data Management Center (DMC). Portable broadband sensors built to PASSCAL specifications came on the market in 1989 and transformed the nature of portable experiments by expanding the technical capabilities of portable stations almost to the level of permanent global stations. Today PASSCAL through the instrument center at New Mexico Tech supports dozens of experiments worldwide for high resolution imaging of the earth's interior on all scales.

  4. Wireless Instrumentation System and Power Management Scheme Therefore

    NASA Technical Reports Server (NTRS)

    Perotti, Jose (Inventor); Lucena, Angel (Inventor); Eckhoff, Anthony (Inventor); Mata, Carlos T. (Inventor); Blalock, Norman N. (Inventor); Medelius, Pedro J. (Inventor)

    2007-01-01

    A wireless instrumentation system enables a plurality of low power wireless transceivers to transmit measurement data from a plurality of remote station sensors to a central data station accurately and reliably. The system employs a relay based communications scheme where remote stations that cannot communicate directly with the central station due to interference, poor signal strength, etc., are instructed to communicate with other of the remote stations that act as relays to the central station. A unique power management scheme is also employed to minimize power usage at each remote station and thereby maximize battery life. Each of the remote stations prefembly employs a modular design to facilitate easy reconfiguration of the stations as required.

  5. A Qualitative Analysis of Participant Learning and Growth Using a New Outward Bound Outcomes Instrument

    ERIC Educational Resources Information Center

    Bobilya, Andrew J.; Lindley, Betsy R.; Faircloth, W. Brad; Holman, Tom

    2017-01-01

    Evidence-based programming and the importance of research has gained attention among outdoor and adventure-based programs in recent years (Sibthorp, 2009) regardless of the challenges that often accompany this type of investigation (Bialeschki, Henderson, Hickerson, & Browne, 2012). Programs must often develop their own evaluation instruments,…

  6. Including Exceptional Students in Your Instrumental Music Program

    ERIC Educational Resources Information Center

    Mixon, Kevin

    2005-01-01

    This article describes the method and adaptations used by the author in including students with special needs in an instrumental music program. To ensure success in the program, the author shares the method he uses to include exceptional students and enumerates some possible adaptations. There are certainly other methods and modifications that…

  7. Statistical power as a function of Cronbach alpha of instrument questionnaire items.

    PubMed

    Heo, Moonseong; Kim, Namhee; Faith, Myles S

    2015-10-14

    In countless number of clinical trials, measurements of outcomes rely on instrument questionnaire items which however often suffer measurement error problems which in turn affect statistical power of study designs. The Cronbach alpha or coefficient alpha, here denoted by C(α), can be used as a measure of internal consistency of parallel instrument items that are developed to measure a target unidimensional outcome construct. Scale score for the target construct is often represented by the sum of the item scores. However, power functions based on C(α) have been lacking for various study designs. We formulate a statistical model for parallel items to derive power functions as a function of C(α) under several study designs. To this end, we assume fixed true score variance assumption as opposed to usual fixed total variance assumption. That assumption is critical and practically relevant to show that smaller measurement errors are inversely associated with higher inter-item correlations, and thus that greater C(α) is associated with greater statistical power. We compare the derived theoretical statistical power with empirical power obtained through Monte Carlo simulations for the following comparisons: one-sample comparison of pre- and post-treatment mean differences, two-sample comparison of pre-post mean differences between groups, and two-sample comparison of mean differences between groups. It is shown that C(α) is the same as a test-retest correlation of the scale scores of parallel items, which enables testing significance of C(α). Closed-form power functions and samples size determination formulas are derived in terms of C(α), for all of the aforementioned comparisons. Power functions are shown to be an increasing function of C(α), regardless of comparison of interest. The derived power functions are well validated by simulation studies that show that the magnitudes of theoretical power are virtually identical to those of the empirical power. Regardless of research designs or settings, in order to increase statistical power, development and use of instruments with greater C(α), or equivalently with greater inter-item correlations, is crucial for trials that intend to use questionnaire items for measuring research outcomes. Further development of the power functions for binary or ordinal item scores and under more general item correlation strutures reflecting more real world situations would be a valuable future study.

  8. A call for change: clinical evaluation of student registered nurse anesthetists.

    PubMed

    Collins, Shawn; Callahan, Margaret Faut

    2014-02-01

    The ability to integrate theory with practice is integral to a student's success. A common reason for attrition from a nurse anesthesia program is clinical issues. To document clinical competence, students are evaluated using various tools. For use of a clinical evaluation tool as possible evidence for a student's dismissal, an important psychometric property to ensure is instrument validity. Clinical evaluation instruments of nurse anesthesia programs are not standardized among programs, which suggests a lack of instrument validity. The lack of established validity of the instruments used to evaluate students' clinical progress brings into question their ability to detect a student who is truly in jeopardy of attrition. Given this possibility, clinical instrument validity warrants research to be fair to students and improve attrition rates based on valid data. This ex post facto study evaluated a 17-item clinical instrument tool to demonstrate the need for validity of clinical evaluation tools. It also compared clinical scores with scores on the National Certification Examination.

  9. Utilizing global data to estimate analytical performance on the Sigma scale: A global comparative analysis of methods, instruments, and manufacturers through external quality assurance and proficiency testing programs.

    PubMed

    Westgard, Sten A

    2016-06-01

    To assess the analytical performance of instruments and methods through external quality assessment and proficiency testing data on the Sigma scale. A representative report from five different EQA/PT programs around the world (2 US, 1 Canadian, 1 UK, and 1 Australasian) was accessed. The instrument group standard deviations were used as surrogate estimates of instrument imprecision. Performance specifications from the US CLIA proficiency testing criteria were used to establish a common quality goal. Then Sigma-metrics were calculated to grade the analytical performance. Different methods have different Sigma-metrics for each analyte reviewed. Summary Sigma-metrics estimate the percentage of the chemistry analytes that are expected to perform above Five Sigma, which is where optimized QC design can be implemented. The range of performance varies from 37% to 88%, exhibiting significant differentiation between instruments and manufacturers. Median Sigmas for the different manufacturers in three analytes (albumin, glucose, sodium) showed significant differentiation. Chemistry tests are not commodities. Quality varies significantly from manufacturer to manufacturer, instrument to instrument, and method to method. The Sigma-assessments from multiple EQA/PT programs provide more insight into the performance of methods and instruments than any single program by itself. It is possible to produce a ranking of performance by manufacturer, instrument and individual method. Laboratories seeking optimal instrumentation would do well to consult this data as part of their decision-making process. To confirm that these assessments are stable and reliable, a longer term study should be conducted that examines more results over a longer time period. Copyright © 2016 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  10. Flight instrumentation specification for parameter identification: Program user's guide. [instrument errors/error analysis

    NASA Technical Reports Server (NTRS)

    Mohr, R. L.

    1975-01-01

    A set of four digital computer programs is presented which can be used to investigate the effects of instrumentation errors on the accuracy of aircraft and helicopter stability-and-control derivatives identified from flight test data. The programs assume that the differential equations of motion are linear and consist of small perturbations about a quasi-steady flight condition. It is also assumed that a Newton-Raphson optimization technique is used for identifying the estimates of the parameters. Flow charts and printouts are included.

  11. MFE/Magnolia - A joint CNES/NASA mission for the earth magnetic field investigation

    NASA Technical Reports Server (NTRS)

    Runavot, Josette; Ousley, Gilbert W.

    1988-01-01

    The joint phase B study in the CNES/NASA MFE/Magnolia mission to study the earth's magnetic field are reported. The scientific objectives are summarized and the respective responsibilities of NASA and CNES are outlined. The MFE/Magnolia structure and power systems, mass and power budgets, attitude control system, instrument platform and boom, tape recorders, rf system, propellant system, and scientific instruments are described.

  12. Measurement of duration and signal-to-noise ratio of astronomical transients using a Spectral Kurtosis spectrometer

    NASA Astrophysics Data System (ADS)

    Nita, Gelu M.; Gary, Dale E.

    2016-08-01

    Following our prior theoretical and instrumental work addressing the problem of automatic real-time radio frequency interference (RFI) detection and excision from astronomical signals, the wideband Spectral Kurtosis (SK) spectrometer design we proposed is currently being considered as an alternative to the traditional spectrometers when building the new generation of radio instruments. The unique characteristic of an SK spectrometer is that it accumulates both power and power-squared, which are then used to compute an SK statistical estimator proven to be very effective in detecting and excising certain types of RFI signals. In this paper we introduce a novel measurement technique that exploits the power and power square statistics of an SK spectrometer to determine durations and signal-to-noise ratios of transient signals, whether they are RFI or natural signals, even when they are below the time resolution of the instrument. We demonstrate this novel experimental technique by analyzing a segment of data recorded by the Expanded Owens Valley Solar Array Subsystem Testbed (EST) during a solar radio burst in which microwave spike bursts occurred with durations shorter than the 20 ms time resolution of the instrument. The duration of one well-observed spike is quantitatively shown to be within a few percent of 8 ms despite the 20 ms resolution of the data.

  13. Instrumentation and Controls Division Overview: Sensors Development for Harsh Environments at Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Zeller, Mary V.; Lei, Jih-Fen

    2002-01-01

    The Instrumentation and Controls Division is responsible for planning, conducting and directing basic and applied research on advanced instrumentation and controls technologies for aerospace propulsion and power applications. The Division's advanced research in harsh environment sensors, high temperature high power electronics, MEMS (microelectromechanical systems), nanotechnology, high data rate optical instrumentation, active and intelligent controls, and health monitoring and management will enable self-feeling, self-thinking, self-reconfiguring and self-healing Aerospace Propulsion Systems. These research areas address Agency challenges to deliver aerospace systems with reduced size and weight, and increased functionality and intelligence for future NASA missions in advanced aeronautics, economical space transportation, and pioneering space exploration. The Division also actively supports educational and technology transfer activities aimed at benefiting all humankind.

  14. Aerostat-lofted instrument and sampling method for determination of emissions from open area sources

    EPA Science Inventory

    An aerostat-borne instrument and sampling method was developed to characterize air samples from area sources, such as emissions from open burning. The 10 kg battery-powered instrument system, termed "the Flyer," is lofted with a helium-filled aerostat of 4 m nominal diameter and ...

  15. Structural power flow measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Falter, K.J.; Keltie, R.F.

    Previous investigations of structural power flow through beam-like structures resulted in some unexplained anomalies in the calculated data. In order to develop structural power flow measurement as a viable technique for machine tool design, the causes of these anomalies needed to be found. Once found, techniques for eliminating the errors could be developed. Error sources were found in the experimental apparatus itself as well as in the instrumentation. Although flexural waves are the carriers of power in the experimental apparatus, at some frequencies longitudinal waves were excited which were picked up by the accelerometers and altered power measurements. Errors weremore » found in the phase and gain response of the sensors and amplifiers used for measurement. A transfer function correction technique was employed to compensate for these instrumentation errors.« less

  16. The image of psychology programs: the value of the instrumental-symbolic framework.

    PubMed

    Van Hoye, Greet; Lievens, Filip; De Soete, Britt; Libbrecht, Nele; Schollaert, Eveline; Baligant, Dimphna

    2014-01-01

    As competition for funding and students intensifies, it becomes increasingly important for psychology programs to have an image that is attractive and makes them stand out from other programs. The current study uses the instrumental-symbolic framework from the marketing domain to determine the image of different master's programs in psychology and examines how these image dimensions relate to student attraction and competitor differentiation. The samples consist of both potential students (N = 114) and current students (N = 68) of three psychology programs at a Belgian university: industrial and organizational psychology, clinical psychology, and experimental psychology. The results demonstrate that both instrumental attributes (e.g., interpersonal activities) and symbolic trait inferences (e.g., sincerity) are key components of the image of psychology programs and predict attractiveness as well as differentiation. In addition, symbolic image dimensions seem more important for current students of psychology programs than for potential students.

  17. Prime Focus Spectrograph: A very wide-field, massively multiplexed, optical & near-infrared spectrograph for Subaru Telescope

    NASA Astrophysics Data System (ADS)

    TAMURA, NAOYUKI

    2015-08-01

    PFS (Prime Focus Spectrograph), a next generation facility instrument on Subaru, is a very wide-field, massively-multiplexed, and optical & near-infrared spectrograph. Exploiting the Subaru prime focus, 2400 reconfigurable fibers will be distributed in the 1.3 degree field. The spectrograph will have 3 arms of blue, red, and near-infrared cameras to simultaneously observe spectra from 380nm to 1260nm at one exposure. The development of this instrument has been undertaken by the international collaboration at the initiative of Kavli IPMU. The project is now going into the construction phase aiming at system integration and on-sky commissioning in 2017-2018, and science operation in 2019. In parallel, the survey design has also been developed envisioning a Subaru Strategic Program (SSP) that spans roughly speaking 300 nights over 5 years. The major science areas are three-folds: Cosmology, galaxy/AGN evolution, and Galactic archaeology (GA). The cosmology program will be to constrain the nature of dark energy via a survey of emission line galaxies over a comoving volume of ~10 Gpc^3 in the redshift range of 0.8 < z < 2.4. In the GA program, radial velocities and chemical abundances of stars in the Milky Way, dwarf spheroidal galaxies, and M31 will be used to understand the past assembly histories of those galaxies and the structures of their dark matter halos. Spectra will be taken for ~1 million stars as faint as V = 22 therefore out to large distances from the Sun. For the extragalactic program, our simulations suggest the wide wavelength coverage of PFS will be particularly powerful in probing the galaxy populations and its clustering properties over a wide redshift range. We will conduct a survey of color-selected 1 < z < 2 galaxies and AGN over 20 square degrees down to J = 23.4, yielding a fair sample of galaxies with stellar masses above ˜10^10 solar masses. Further, PFS will also provide unique spectroscopic opportunities even in the era of Euclid, LSST, WFIRST and TMT. In this presentation, an overview of the instrument, current project status and path forward will be given.

  18. Data base architecture for instrument characteristics critical to spacecraft conceptual design

    NASA Technical Reports Server (NTRS)

    Rowell, Lawrence F.; Allen, Cheryl L.

    1990-01-01

    Spacecraft designs are driven by the payloads and mission requirements that they support. Many of the payload characteristics, such as mass, power requirements, communication requirements, moving parts, and so forth directly affect the choices for the spacecraft structural configuration and its subsystem design and component selection. The conceptual design process, which translates mission requirements into early spacecraft concepts, must be tolerant of frequent changes in the payload complement and resource requirements. A computer data base was designed and implemented for the purposes of containing the payload characteristics pertinent for spacecraft conceptual design, tracking the evolution of these payloads over time, and enabling the integration of the payload data with engineering analysis programs for improving the efficiency in producing spacecraft designs. In-house tools were used for constructing the data base and for performing the actual integration with an existing program for optimizing payload mass locations on the spacecraft.

  19. Profex: a graphical user interface for the Rietveld refinement program BGMN.

    PubMed

    Doebelin, Nicola; Kleeberg, Reinhard

    2015-10-01

    Profex is a graphical user interface for the Rietveld refinement program BGMN . Its interface focuses on preserving BGMN 's powerful and flexible scripting features by giving direct access to BGMN input files. Very efficient workflows for single or batch refinements are achieved by managing refinement control files and structure files, by providing dialogues and shortcuts for many operations, by performing operations in the background, and by providing import filters for CIF and XML crystal structure files. Refinement results can be easily exported for further processing. State-of-the-art graphical export of diffraction patterns to pixel and vector graphics formats allows the creation of publication-quality graphs with minimum effort. Profex reads and converts a variety of proprietary raw data formats and is thus largely instrument independent. Profex and BGMN are available under an open-source license for Windows, Linux and OS X operating systems.

  20. Mod-5A wind turbine generator program design report. Volume 3: Final design and system description, book 2

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The design, development and analysis of the 7.3MW MOD-5A wind turbine generator is documented. The report is divided into four volumes: Volume 1 summarizes the entire MOD-5A program, Volume 2 discusses the conceptual and preliminary design phases, Volume 3 describes the final design of the MOD-5A, and Volume 4 contains the drawings and specifications developed for the final design. Volume 3, book 2 describes the performance and characteristics of the MOD-5A wind turbine generator in its final configuration. The subsystem for power generation, control, and instrumentation subsystems is described in detail. The manufacturing and construction plans, and the preparation of a potential site on Oahu, Hawaii, are documented. The quality assurance and safety plan, and analyses of failure modes and effects, and reliability, availability and maintainability are presented.

Top