Clarks Hill Lake Water Quality Study.
1982-06-01
multipurpose project designed to reduce flooding on the Savannah River, generate electric power and increase the depth of the Savannah River for... power plant at the dam has seven generators, each with a capacity of 40,000 kilowatts. The average annual energy output of Clarks Hill Power Plant is 700...feet) from the top of power pool elevation of 100.6 meters (330 feet msl) to a minimum pool elevation of 95.1 meters (312 feet msl). Because of below
1980-10-01
infra- red (IR) fiber waveguides for use in sensor and communication systems and for applications requiring power delivery, such as in CO2 laser...shown in Figure 11, is conventional except for the addition of a ZnSe beam splitter used to monitor the incident power , I . The beam splitter is essential...higher-quality fiber than KRS-5 from BDH. In fact, we found that not only was the initial 28 / 9508-8 POWER METER 10 POWER METER fl 2.5 cm ZnSe LENS
Comparison of 5 reflectance meters for capillary blood glucose determination.
Kolopp, M; Louis, J; Pointel, J P; Kohler, F; Drouin, P; Debry, G
1983-03-01
Manufacturing quality, accuracy and users opinion (i.e. medical and nurses staff and patients) were compared among five Destrostix reading reflectance-meters for home-blood-glucose-monitoring. Two machines (dextrometer and glucometer) equipped with microprocessors, integrated circuits and good quality wiring are best made. Reflectance-meter capillary blood glucose measurements were found to be accurate enough for home-blood-glucose-monitoring, compared to a reference method. However, two machines from the same brand were different in blood glucose accuracy. Glucocheck had poorest results. Users prefer small sized, battery powered machines. Glucometer appears to be best suited to home-blood-glucose-monitoring.
Control of Disturbing Loads in Residential and Commercial Buildings via Geometric Algebra
2013-01-01
Many definitions have been formulated to represent nonactive power for distorted voltages and currents in electronic and electrical systems. Unfortunately, no single universally suitable representation has been accepted as a prototype for this power component. This paper defines a nonactive power multivector from the most advanced multivectorial power theory based on the geometric algebra (GA). The new concept can have more importance on harmonic loads compensation, identification, and metering, between other applications. Likewise, this paper is concerned with a pioneering method for the compensation of disturbing loads. In this way, we propose a multivectorial relative quality index δ~ associated with the power multivector. It can be assumed as a new index for power quality evaluation, harmonic sources detection, and power factor improvement in residential and commercial buildings. The proposed method consists of a single-point strategy based of a comparison among different relative quality index multivectors, which may be measured at the different loads on the same metering point. The comparison can give pieces of information with magnitude, direction, and sense on the presence of disturbing loads. A numerical example is used to illustrate the clear capabilities of the suggested approach. PMID:24260017
Control of disturbing loads in residential and commercial buildings via geometric algebra.
Castilla, Manuel-V
2013-01-01
Many definitions have been formulated to represent nonactive power for distorted voltages and currents in electronic and electrical systems. Unfortunately, no single universally suitable representation has been accepted as a prototype for this power component. This paper defines a nonactive power multivector from the most advanced multivectorial power theory based on the geometric algebra (GA). The new concept can have more importance on harmonic loads compensation, identification, and metering, between other applications. Likewise, this paper is concerned with a pioneering method for the compensation of disturbing loads. In this way, we propose a multivectorial relative quality index δ(~) associated with the power multivector. It can be assumed as a new index for power quality evaluation, harmonic sources detection, and power factor improvement in residential and commercial buildings. The proposed method consists of a single-point strategy based of a comparison among different relative quality index multivectors, which may be measured at the different loads on the same metering point. The comparison can give pieces of information with magnitude, direction, and sense on the presence of disturbing loads. A numerical example is used to illustrate the clear capabilities of the suggested approach.
Intellectual Production Supervision Perform based on RFID Smart Electricity Meter
NASA Astrophysics Data System (ADS)
Chen, Xiangqun; Huang, Rui; Shen, Liman; chen, Hao; Xiong, Dezhi; Xiao, Xiangqi; Liu, Mouhai; Xu, Renheng
2018-03-01
This topic develops the RFID intelligent electricity meter production supervision project management system. The system is designed for energy meter production supervision in the management of the project schedule, quality and cost information management requirements in RFID intelligent power, and provide quantitative information more comprehensive, timely and accurate for supervision engineer and project manager management decisions, and to provide technical information for the product manufacturing stage file. From the angle of scheme analysis, design, implementation and test, the system development of production supervision project management system for RFID smart meter project is discussed. Focus on the development of the system, combined with the main business application and management mode at this stage, focuses on the energy meter to monitor progress information, quality information and cost based information on RFID intelligent power management function. The paper introduces the design scheme of the system, the overall client / server architecture, client oriented graphical user interface universal, complete the supervision of project management and interactive transaction information display, the server system of realizing the main program. The system is programmed with C# language and.NET operating environment, and the client and server platforms use Windows operating system, and the database server software uses Oracle. The overall platform supports mainstream information and standards and has good scalability.
RECENT DEVELOPMENTS IN HYDROLOGIC INSTRUMENTATION.
Latkovich, Vito J.
1985-01-01
The availability of space-age materials and implementation of state-of-the-art electronics is making possible the recent developments of hydrologic instrumentation. Material developments include: Synthetic-fiber sounding and tag lines; fiberglass wading rod; polymer (plastic) sheaves, pulleys and sampler components; and polymer (plastic) bucket wheels for current meters. These materials are very cost effective and efficient. Electromechanical and electronic developments and applications include: adaptable data acquisition system; downhole sampler for hazardous substances; current-meter digitizer; hydraulic power/drive system for discharge measurements and water-quality sampling; non-contact water-level sensors; minimum data recorder; acoustic velocity meters, and automated current meter discharge-measurement system.
A quality assurance program for clinical PDT
NASA Astrophysics Data System (ADS)
Dimofte, Andreea; Finlay, Jarod; Ong, Yi Hong; Zhu, Timothy C.
2018-02-01
Successful outcome of Photodynamic therapy (PDT) depends on accurate delivery of prescribed light dose. A quality assurance program is necessary to ensure that light dosimetry is correctly measured. We have instituted a QA program that include examination of long term calibration uncertainty of isotropic detectors for light fluence rate, power meter head intercomparison for laser power, stability of the light-emitting diode (LED) light source integrating sphere as a light fluence standard, laser output and calibration of in-vivo reflective fluorescence and absorption spectrometers. We examined the long term calibration uncertainty of isotropic detector sensitivity, defined as fluence rate per voltage. We calibrate the detector using the known calibrated light fluence rate of the LED light source built into an internally baffled 4" integrating sphere. LED light sources were examined using a 1mm diameter isotropic detector calibrated in a collimated beam. Wavelengths varying from 632nm to 690nm were used. The internal LED method gives an overall calibration accuracy of +/- 4%. Intercomparison among power meters was performed to determine the consistency of laser power and light fluence rate measured among different power meters. Power and fluence readings were measured and compared among detectors. A comparison of power and fluence reading among several power heads shows long term consistency for power and light fluence rate calibration to within 3% regardless of wavelength. The standard LED light source is used to calibrate the transmission difference between different channels for the diffuse reflective absorption and fluorescence contact probe as well as isotropic detectors used in PDT dose dosimeter.
A Power Planning Algorithm Based on RPL for AMI Wireless Sensor Networks.
Miguel, Marcio L F; Jamhour, Edgard; Pellenz, Marcelo E; Penna, Manoel C
2017-03-25
The advanced metering infrastructure (AMI) is an architecture for two-way communication between electric, gas and water meters and city utilities. The AMI network is a wireless sensor network that provides communication for metering devices in the neighborhood area of the smart grid. Recently, the applicability of a routing protocol for low-power and lossy networks (RPL) has been considered in AMI networks. Some studies in the literature have pointed out problems with RPL, including sub-optimal path selection and instability. In this paper, we defend the viewpoint that careful planning of the transmission power in wireless RPL networks can significantly reduce the pointed problems. This paper presents a method for planning the transmission power in order to assure that, after convergence, the size of the parent set of the RPL nodes is as close as possible to a predefined size. Another important feature is that all nodes in the parent set offer connectivity through links of similar quality.
A Power Planning Algorithm Based on RPL for AMI Wireless Sensor Networks
Miguel, Marcio L. F.; Jamhour, Edgard; Pellenz, Marcelo E.; Penna, Manoel C.
2017-01-01
The advanced metering infrastructure (AMI) is an architecture for two-way communication between electric, gas and water meters and city utilities. The AMI network is a wireless sensor network that provides communication for metering devices in the neighborhood area of the smart grid. Recently, the applicability of a routing protocol for low-power and lossy networks (RPL) has been considered in AMI networks. Some studies in the literature have pointed out problems with RPL, including sub-optimal path selection and instability. In this paper, we defend the viewpoint that careful planning of the transmission power in wireless RPL networks can significantly reduce the pointed problems. This paper presents a method for planning the transmission power in order to assure that, after convergence, the size of the parent set of the RPL nodes is as close as possible to a predefined size. Another important feature is that all nodes in the parent set offer connectivity through links of similar quality. PMID:28346339
Water turbidity optical meter using optical fiber array for topographical distribution analysis
NASA Astrophysics Data System (ADS)
Mutter, Kussay Nugamesh; Mat Jafri, Mohd Zubir; Yeoh, Stephenie
2017-06-01
This work is presenting an analysis study for using optical fiber array as turbidity meter and topographical distribution. Although many studies have been figure out of utilizing optical fibers as sensors for turbidity measurements, still the topographical map of suspended particles in water as rare as expected among all of works in literatures in this scope. The effect of suspended particles are highly affect the water quality which varies according to the source of these particles. A two dimensional array of optical fibers in a 1 litter rectangular plastic container with 2 cm cladding off sensing portion prepared to point out 632.8 nm laser power at each fiber location at the container center. The overall output map of the optical power were found in an inhomogeneous distribution such that the top to down layers of a present water sample show different magnitudes. Each sample prepared by mixing a distilled water with large grains sand, small grains sand, glucose and salt. All with different amount of concentration which measured by refractometer and turbidity meter. The measurements were done in different times i.e. from 10 min to 60 min. This is to let the heavy particles to move down and accumulate at the bottom of the container. The results were as expected which had a gradually topographical map from low power at top layers into high power at bottom layers. There are many applications can be implemented of this study such as transport vehicles fuel meter, to measure the purity of tanks, and monitoring the fluids quality in pipes.
NASA Astrophysics Data System (ADS)
Chen, Xiangqun; Huang, Rui; Shen, Liman; chen, Hao; Xiong, Dezhi; Xiao, Xiangqi; Liu, Mouhai; Xu, Renheng
2018-03-01
In this paper, the semi-active RFID watt-hour meter is applied to automatic test lines and intelligent warehouse management, from the transmission system, test system and auxiliary system, monitoring system, realize the scheduling of watt-hour meter, binding, control and data exchange, and other functions, make its more accurate positioning, high efficiency of management, update the data quickly, all the information at a glance. Effectively improve the quality, efficiency and automation of verification, and realize more efficient data management and warehouse management.
Rapid algorithm prototyping and implementation for power quality measurement
NASA Astrophysics Data System (ADS)
Kołek, Krzysztof; Piątek, Krzysztof
2015-12-01
This article presents a Model-Based Design (MBD) approach to rapidly implement power quality (PQ) metering algorithms. Power supply quality is a very important aspect of modern power systems and will become even more important in future smart grids. In this case, maintaining the PQ parameters at the desired level will require efficient implementation methods of the metering algorithms. Currently, the development of new, advanced PQ metering algorithms requires new hardware with adequate computational capability and time intensive, cost-ineffective manual implementations. An alternative, considered here, is an MBD approach. The MBD approach focuses on the modelling and validation of the model by simulation, which is well-supported by a Computer-Aided Engineering (CAE) packages. This paper presents two algorithms utilized in modern PQ meters: a phase-locked loop based on an Enhanced Phase Locked Loop (EPLL), and the flicker measurement according to the IEC 61000-4-15 standard. The algorithms were chosen because of their complexity and non-trivial development. They were first modelled in the MATLAB/Simulink package, then tested and validated in a simulation environment. The models, in the form of Simulink diagrams, were next used to automatically generate C code. The code was compiled and executed in real-time on the Zynq Xilinx platform that combines a reconfigurable Field Programmable Gate Array (FPGA) with a dual-core processor. The MBD development of PQ algorithms, automatic code generation, and compilation form a rapid algorithm prototyping and implementation path for PQ measurements. The main advantage of this approach is the ability to focus on the design, validation, and testing stages while skipping over implementation issues. The code generation process renders production-ready code that can be easily used on the target hardware. This is especially important when standards for PQ measurement are in constant development, and the PQ issues in emerging smart grids will require tools for rapid development and implementation of such algorithms.
Capacity and reliability analyses with applications to power quality
NASA Astrophysics Data System (ADS)
Azam, Mohammad; Tu, Fang; Shlapak, Yuri; Kirubarajan, Thiagalingam; Pattipati, Krishna R.; Karanam, Rajaiah
2001-07-01
The deregulation of energy markets, the ongoing advances in communication networks, the proliferation of intelligent metering and protective power devices, and the standardization of software/hardware interfaces are creating a dramatic shift in the way facilities acquire and utilize information about their power usage. The currently available power management systems gather a vast amount of information in the form of power usage, voltages, currents, and their time-dependent waveforms from a variety of devices (for example, circuit breakers, transformers, energy and power quality meters, protective relays, programmable logic controllers, motor control centers). What is lacking is an information processing and decision support infrastructure to harness this voluminous information into usable operational and management knowledge to handle the health of their equipment and power quality, minimize downtime and outages, and to optimize operations to improve productivity. This paper considers the problem of evaluating the capacity and reliability analyses of power systems with very high availability requirements (e.g., systems providing energy to data centers and communication networks with desired availability of up to 0.9999999). The real-time capacity and margin analysis helps operators to plan for additional loads and to schedule repair/replacement activities. The reliability analysis, based on computationally efficient sum of disjoint products, enables analysts to decide the optimum levels of redundancy, aids operators in prioritizing the maintenance options for a given budget and monitoring the system for capacity margin. The resulting analytical and software tool is demonstrated on a sample data center.
Guide to Flow Measurement for Electric Propulsion Systems
NASA Technical Reports Server (NTRS)
Frieman, Jason D.; Walker, Mitchell L. R.; Snyder, Steve
2013-01-01
In electric propulsion (EP) systems, accurate measurement of the propellant mass flow rate of gas or liquid to the thruster and external cathode is a key input in the calculation of thruster efficiency and specific impulse. Although such measurements are often achieved with commercial mass flow controllers and meters integrated into propellant feed systems, the variability in potential propellant options and flow requirements amongst the spectrum of EP power regimes and devices complicates meter selection, integration, and operation. At the direction of the Committee on Standards for Electric Propulsion Testing, a guide was jointly developed by members of the electric propulsion community to establish a unified document that contains the working principles, methods of implementation and analysis, and calibration techniques and recommendations on the use of mass flow meters in laboratory and spacecraft electric propulsion systems. The guide is applicable to EP devices of all types and power levels ranging from microthrusters to high-power ion engines and Hall effect thrusters. The establishment of a community standard on mass flow metering will help ensure the selection of the proper meter for each application. It will also improve the quality of system performance estimates by providing comprehensive information on the physical phenomena and systematic errors that must be accounted for during the analysis of flow measurement data. This paper will outline the standard methods and recommended practices described in the guide titled "Flow Measurement for Electric Propulsion Systems."
Spinning Reserve From Hotel Load Response: Initial Progress
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kueck, John D; Kirby, Brendan J
2008-11-01
This project was motivated by the fundamental match between hotel space conditioning load response capability and power system contingency response needs. As power system costs rise and capacity is strained demand response can provide a significant system reliability benefit at a potentially attractive cost. At ORNL s suggestion, Digital Solutions Inc. adapted its hotel air conditioning control technology to supply power system spinning reserve. This energy saving technology is primarily designed to provide the hotel operator with the ability to control individual room temperature set-points based upon occupancy (25% to 50% energy savings based on an earlier study [Kirby andmore » Ally, 2002]). DSI added instantaneous local load shedding capability in response to power system frequency and centrally dispatched load shedding capability in response to power system operator command. The 162 room Music Road Hotel in Pigeon Forge Tennessee agreed to host the spinning reserve test. The Tennessee Valley Authority supplied real-time metering equipment in the form of an internet connected Dranetz-BMI power quality meter and monitoring expertise to record total hotel load during both normal operations and test results. The Sevier County Electric System installed the metering. Preliminary testing showed that hotel load can be curtailed by 22% to 37% depending on the outdoor temperature and the time of day. These results are prior to implementing control over the common area air conditioning loads. Testing was also not at times of highest system or hotel loading. Full response occurred in 12 to 60 seconds from when the system operator s command to shed load was issued. The load drop was very rapid, essentially as fast as the 2 second metering could detect, with all units responding essentially simultaneously. Load restoration was ramped back in over several minutes. The restoration ramp can be adjusted to the power system needs. Frequency response testing was not completed. Initial testing showed that the units respond very quickly. Problems with local power quality generated false low frequency signals which required testing to be stopped. This should not be a problem in actual operation since the frequency trip points will be staggered to generate a droop curve which mimics generator governor response. The actual trip frequencies will also be low enough to avoid power quality problems. The actual trip frequencies are too low to generate test events with sufficient regularity to complete testing in a reasonable amount of time. Frequency response testing will resume once the local power quality problem is fully understood and reasonable test frequency settings can be determined. Overall the preliminary testing was extremely successful. The hotel response capability matches the power system reliability need, being faster than generation response and inherently available when the power system is under the most stress (times of high system and hotel load). Periodic testing is scheduled throughout the winter and spring to characterize hotel response capability under a full range of conditions. More extensive testing will resume when summer outdoor temperatures are again high enough to fully test hotel response.« less
Application of a scattered-light radiometric power meter.
Caron, James N; DiComo, Gregory P; Ting, Antonio C; Fischer, Richard P
2011-04-01
The power measurement of high-power continuous-wave laser beams typically calls for the use of water-cooled thermopile power meters. Large thermopile meters have slow response times that can prove insufficient to conduct certain tests, such as determining the influence of atmospheric turbulence on transmitted beam power. To achieve faster response times, we calibrated a digital camera to measure the power level as the optical beam is projected onto a white surface. This scattered-light radiometric power meter saves the expense of purchasing a large area power meter and the required water cooling. In addition, the system can report the power distribution, changes in the position, and the spot size of the beam. This paper presents the theory of the scattered-light radiometric power meter and demonstrates its use during a field test at a 2.2 km optical range. © 2011 American Institute of Physics
Adaptive Energy Forecasting and Information Diffusion for Smart Power Grids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simmhan, Yogesh; Agarwal, Vaibhav; Aman, Saim
2012-05-16
Smart Power Grids exemplify an emerging class of Cyber Physical Applications that exhibit dynamic, distributed and data intensive (D3) characteristics along with an always-on paradigm to support operational needs. Smart Grids are an outcome of instrumentation, such as Phasor Measurement Units and Smart Power Meters, that is being deployed across the transmission and distribution network of electric grids. These sensors provide utilities with improved situation awareness on near-realtime electricity usage by individual consumers, and the power quality and stability of the transmission network.
Accuracy of Cycling Power Meters against a Mathematical Model of Treadmill Cycling.
Maier, Thomas; Schmid, Lucas; Müller, Beat; Steiner, Thomas; Wehrlin, Jon Peter
2017-06-01
The aim of this study was to compare the accuracy among a high number of current mobile cycling power meters used by elite and recreational cyclists against a first principle-based mathematical model of treadmill cycling. 54 power meters from 9 manufacturers used by 32 cyclists were calibrated. While the cyclist coasted downhill on a motorised treadmill, a back-pulling system was adjusted to counter the downhill force. The system was then loaded 3 times with 4 different masses while the cyclist pedalled to keep his position. The mean deviation (trueness) to the model and coefficient of variation (precision) were analysed. The mean deviations of the power meters were -0.9±3.2% (mean±SD) with 6 power meters deviating by more than±5%. The coefficients of variation of the power meters were 1.2±0.9% (mean±SD), with Stages varying more than SRM (p<0.001) and PowerTap (p<0.001). In conclusion, current power meters used by elite and recreational cyclists vary considerably in their trueness; precision is generally high but differs between manufacturers. Calibrating and adjusting the trueness of every power meter against a first principle-based reference is advised for accurate measurements. © Georg Thieme Verlag KG Stuttgart · New York.
Relationship between sprint times and the strength/power outputs of a machine squat jump.
Harris, Nigel K; Cronin, John B; Hopkins, Will G; Hansen, Keir T
2008-05-01
Strength testing is often used with team-sport athletes, but some measures of strength may have limited prognostic/diagnostic value in terms of the physical demands of the sport. The purpose of this study was to investigate relationships between sprint ability and the kinetic and kinematic outputs of a machine squat jump. Thirty elite level rugby union and league athletes with an extensive resistance-training background performed bilateral concentric-only machine squat jumps across loads of 20% to 90% 1 repetition maximum (1RM), and sprints over 10 meters and 30 or 40 meters. The magnitudes of the relationships were interpreted using Pearson correlation coefficients, which had uncertainty (90% confidence limits) of approximately +/-0.3. Correlations of 10-meter sprint time with kinetic and kinematic variables (force, velocity, power, and impulse) were generally positive and of moderate to strong magnitude (r = 0.32-0.53). The only negative correlations observed were for work, although the magnitude was small (r = -0.18 to -0.26). The correlations for 30- or 40-meter sprint times were similar to those for 10-meter times, although the correlation with work was positive and moderate (r = 0.35-0.40). Correlations of 10-meter time with kinetic variables expressed relative to body mass were generally positive and of trivial to small magnitude (r = 0.01-0.29), with the exceptions of work (r = -0.31 to -0.34), and impulse (r = -0.34 to -0.39). Similar correlations were observed for 30- and 40-meter times with kinetic measures expressed relative to body mass. Although correlations do not imply cause and effect, the preoccupation with maximizing power output in this particular resistance exercise to improve sprint ability appears problematic. Work and impulse are potentially important strength qualities to develop in the pursuit of improved sprinting performance.
Agreement of Power Measures between Garmin Vector and SRM Cycle Power Meters
ERIC Educational Resources Information Center
Novak, Andrew R.; Dascombe, Benjamin J.
2016-01-01
This study aimed to determine if the Garmin Vector (Schaffhausen, Switzerland) power meter produced acceptable measures when compared with the Schoberer Rad Messetechnik (SRM; Julich, Germany) power meter across a range of high-intensity efforts. Twenty-one well-trained cyclists completed power profiles (seven maximal mean efforts between 5 and…
Modification and testing of an engine and fuel control system for a hydrogen fuelled gas turbine
NASA Astrophysics Data System (ADS)
Funke, H. H.-W.; Börner, S.; Hendrick, P.; Recker, E.
2011-10-01
The control of pollutant emissions has become more and more important by the development of new gas turbines. The use of hydrogen produced by renewable energy sources could be an alternative. Besides the reduction of NOx emissions emerged during the combustion process, another major question is how a hydrogen fuelled gas turbine including the metering unit can be controlled and operated. This paper presents a first insight in modifications on an Auxiliary Power Unit (APU) GTCP 36300 for using gaseous hydrogen as a gas turbine fuel. For safe operation with hydrogen, the metering of hydrogen has to be fast, precise, and secure. So, the quality of the metering unit's control loop has an important influence on this topic. The paper documents the empiric determination of the proportional integral derivative (PID) control parameters for the metering unit.
NASA Technical Reports Server (NTRS)
He, Hao; Loughner, Christopher P.; Stehr, Jeffrey W.; Arkinson, Heather L.; Brent, Lacey C.; Follette-Cook, Melanie B.; Tzortziou, Maria A.; Pickering, Kenneth E.; Thompson, Anne M.; Martins, Douglas K.;
2013-01-01
During a classic heat wave with record high temperatures and poor air quality from July 18 to 23, 2011, an elevated reservoir of air pollutants was observed over and downwind of Baltimore, MD, with relatively clean conditions near the surface. Aircraft and ozonesonde measurements detected approximately 120 parts per billion by volume ozone at 800 meters altitude, but approximately 80 parts per billion by volume ozone near the surface. High concentrations of other pollutants were also observed around the ozone peak: approximately 300 parts per billion by volume CO at 1200 meters, approximately 2 parts per billion by volume NO2 at 800 meters, approximately 5 parts per billion by volume SO2 at 600 meters, and strong aerosol optical scattering (2 x 10 (sup 4) per meter) at 600 meters. These results suggest that the elevated reservoir is a mixture of automobile exhaust (high concentrations of O3, CO, and NO2) and power plant emissions (high SO2 and aerosols). Back trajectory calculations show a local stagnation event before the formation of this elevated reservoir. Forward trajectories suggest an influence on downwind air quality, supported by surface ozone observations on the next day over the downwind PA, NJ and NY area. Meteorological observations from aircraft and ozonesondes show a dramatic veering of wind direction from south to north within the lowest 5000 meters, implying that the development of the elevated reservoir was caused in part by the Chesapeake Bay breeze. Based on in situ observations, Community Air Quality Multi-scale Model (CMAQ) forecast simulations with 12 kilometers resolution overestimated surface ozone concentrations and failed to predict this elevated reservoir; however, CMAQ research simulations with 4 kilometers and 1.33 kilometers resolution more successfully reproduced this event. These results show that high resolution is essential for resolving coastal effects and predicting air quality for cities near major bodies of water such as Baltimore on the Chesapeake Bay and downwind areas in the Northeast.
Laser power meters as an X-ray power diagnostic for LCLS-II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heimann, Philip; Moeller, Stefan; Carbajo, Sergio
For the LCLS-II X-ray instruments, laser power meters are being developed as compact X-ray power diagnostics to operate at soft and tender X-ray photon energies. These diagnostics can be installed at various locations along an X-ray free-electron laser (FEL) beamline in order to monitor the transmission of X-ray optics along the beam path. In addition, the power meters will be used to determine the absolute X-ray power at the endstations. Here, thermopile power meters, which measure average power, and have been chosen primarily for their compatibility with the high repetition rates at LCLS-II, are evaluated. Here, a number of characteristicsmore » in the soft X-ray range are presented including linearity, calibrations conducted with a photodiode and a gas monitor detector as well as ultra-high-vacuum compatibility tests using residual gas analysis. The application of these power meters for LCLS-II and other X-ray FEL sources is discussed.« less
Laser power meters as an X-ray power diagnostic for LCLS-II.
Heimann, Philip; Moeller, Stefan; Carbajo, Sergio; Song, Sanghoon; Dakovski, Georgi; Nordlund, Dennis; Fritz, David
2018-01-01
For the LCLS-II X-ray instruments, laser power meters are being developed as compact X-ray power diagnostics to operate at soft and tender X-ray photon energies. These diagnostics can be installed at various locations along an X-ray free-electron laser (FEL) beamline in order to monitor the transmission of X-ray optics along the beam path. In addition, the power meters will be used to determine the absolute X-ray power at the endstations. Here, thermopile power meters, which measure average power, and have been chosen primarily for their compatibility with the high repetition rates at LCLS-II, are evaluated. A number of characteristics in the soft X-ray range are presented including linearity, calibrations conducted with a photodiode and a gas monitor detector as well as ultra-high-vacuum compatibility tests using residual gas analysis. The application of these power meters for LCLS-II and other X-ray FEL sources is discussed.
Laser power meters as an X-ray power diagnostic for LCLS-II
Heimann, Philip; Moeller, Stefan; Carbajo, Sergio; ...
2018-01-01
For the LCLS-II X-ray instruments, laser power meters are being developed as compact X-ray power diagnostics to operate at soft and tender X-ray photon energies. These diagnostics can be installed at various locations along an X-ray free-electron laser (FEL) beamline in order to monitor the transmission of X-ray optics along the beam path. In addition, the power meters will be used to determine the absolute X-ray power at the endstations. Here, thermopile power meters, which measure average power, and have been chosen primarily for their compatibility with the high repetition rates at LCLS-II, are evaluated. Here, a number of characteristicsmore » in the soft X-ray range are presented including linearity, calibrations conducted with a photodiode and a gas monitor detector as well as ultra-high-vacuum compatibility tests using residual gas analysis. The application of these power meters for LCLS-II and other X-ray FEL sources is discussed.« less
Frequency analysis of DC tolerant current transformers
NASA Astrophysics Data System (ADS)
Mlejnek, P.; Kaspar, P.
2013-09-01
This article deals with wide frequency range behaviour of DC tolerant current transformers that are usually used in modern static energy meters. In this application current transformers must comply with European and International Standards in their accuracy and DC tolerance. Therefore, the linear DC tolerant current transformers and double core current transformers are used in this field. More details about the problems of these particular types of transformers can be found in our previous works. Although these transformers are designed mainly for power distribution network frequency (50/60 Hz), it can be interesting to understand their behaviour in wider frequency range. Based on this knowledge the new generations of energy meters with measuring quality of electric energy will be produced. This solution brings better measurement of consumption of nonlinear loads or measurement of non-sinusoidal voltage and current sources such as solar cells or fuel cells. The determination of actual power consumption in such energy meters is done using particular harmonics component of current and voltage. We measured the phase and ratio errors that are the most important parameters of current transformers, to characterize several samples of current transformers of both types.
NASA Astrophysics Data System (ADS)
Chesoh, S.; Lim, A.; Luangthuvapranit, C.
2018-04-01
This study aimed to cluster and to quantify the wild-caught fingerlings nearby thermal power plant. Samples were monthly collected by bongo nets from four upstream sites of the Na Thap tidal river in Thailand from 2008 to 2013. Each caught species was identified, counted and calculated density in term of individuals per 1,000 cubic meters. A total of 45 aquatic animal fingerlings was commonly trapped in the average density of 2,652 individuals per 1,000 cubic meters of water volume (1,235–4,570). The results of factor analysis revealed that factor 1 was represented by the largest group of freshwater fish species, factors 2 represented a medium-sized group of mesohaline species, factor 3 represented several brackish species and factor 4 was a few euryhaline species. All four factor reached maximum levels during May to October. Total average numbers of fish fingerling caught at the outflow showed greater than those of other sampling sites. The impact of heated pollution from power plant effluents did not clearly detected. Overall water quality according the Thailand Surface Water Quality Standards Coastal tidal periodic and seasonal runoff phenomena exhibit influentially factors. Continuous ecological monitoring is strongly recommended.
NASA Astrophysics Data System (ADS)
Navaratne, Uditha Sudheera
The smart grid is the future of the power grid. Smart meters and the associated network play a major role in the distributed system of the smart grid. Advance Metering Infrastructure (AMI) can enhance the reliability of the grid, generate efficient energy management opportunities and many innovations around the future smart grid. These innovations involve intense research not only on the AMI network itself but as also on the influence an AMI network can have upon the rest of the power grid. This research describes a smart meter testbed with hardware in loop that can facilitate future research in an AMI network. The smart meters in the testbed were developed such that their functionality can be customized to simulate any given scenario such as integrating new hardware components into a smart meter or developing new encryption algorithms in firmware. These smart meters were integrated into the power system simulator to simulate the power flow variation in the power grid on different AMI activities. Each smart meter in the network also provides a communication interface to the home area network. This research delivers a testbed for emulating the AMI activities and monitoring their effect on the smart grid.
47 CFR 101.1333 - Interference protection criteria.
Code of Federal Regulations, 2010 CFR
2010-10-01
... is in watts, D is in meters, and the power is relative to an isotropic radiator. The technical... for master stations operating at a maximum power shall not exceed 150 meters. Above 150 meters, the... Reduction Table Antenna height above average terrain (meters) EIRP Watts dBW ERP Watts dBW Above 305 200 23...
Bushberg, Jerrold T; Foster, Kenneth R; Hatfield, James B; Thansandote, Arthur; Tell, Richard A
2015-03-01
This Technical Information Statement describes Smart Meter technology as used with modern electric power metering systems and focuses on the radio frequency (RF) emissions associated with their operation relative to human RF exposure limits. Smart Meters typically employ low power (-1 W or less) transmitters that wirelessly send electric energy usage data to the utility company several times per day in the form of brief, pulsed emissions in the unlicensed frequency bands of 902-928 MHz and 2.4-2.48 GHz or on other nearby frequencies. Most Smart Meters operate as wireless mesh networks where each Smart Meter can communicate with other neighboring meters to relay data to a data collection point in the region. This communication process includes RF emissions from Smart Meters representing energy usage as well as the relaying of data from other meters and emissions associated with maintaining the meter's hierarchy within the wireless network. As a consequence, most Smart Meters emit RF pulses throughout the day, more at certain times and less at others. However, the duty cycle associated with all of these emissions is very small, typically less than 1%, and most of the time far less than 1%, meaning that most Smart Meters actually transmit RF fields for only a few minutes per day at most. The low peak power of Smart Meters and the very low duty cycles lead to the fact that accessible RF fields near Smart Meters are far below both U.S. and international RF safety limits whether judged on the basis of instantaneous peak power densities or time-averaged exposures. This conclusion holds for Smart Meters alone or installed in large banks of meters.
Research on data collection key technology of smart electric energy meters
NASA Astrophysics Data System (ADS)
Chen, Xiangqun; Huang, Rui; Shen, Liman; Chen, Hao; Xiong, Dezhi; Xiao, Xiangqi; Mouhailiu; Renheng, Xu
2018-02-01
In recent years, smart electric energy meters are demand at 70 million to 90 million with the strong smart grid construction every year in China. However, there are some issues in smart electric energy meters data collection such as the interference of environment, low collection efficiency and inability to work when the power is off. In order to solve these issues above, it uses the RFID communication technology to collect the numbers and electric energy information of smart electric energy meters on the basis of the existing smart electric energy meters, and the related data collection communication experiments were made. The experimental result shows that the electric information and other data batch collection of RFID smart electric energy meters are realized in power and power off. It improves the efficiency and the overall success rate is 99.2% within 2 meters. It provides a new method for smart electric energy meters data collection.
The Early Diffusion of Smart Meters in the US Electric Power Industry
NASA Astrophysics Data System (ADS)
Strong, Derek Ryan
The impact of new technologies within and across industries is only felt through their widespread diffusion, yet studies of technology diffusion are scarce compared to other aspects of the innovation process. The electric power industry is one industry that is currently undergoing substantial change as a result of both technological and institutional innovations. In this dissertation I examine the economic rationale for the adoption of smart meters by electric power utilities and the relationship between smart meters and the evolving electric power industry. I contribute to empirical research on technology diffusion by studying the early diffusion of smart meters in the US electric power industry. Using a panel dataset and econometric models, I analyze the determinants of both the interfirm and intrafirm diffusion of smart meters in the United States. The empirical findings suggest multiple drivers of smart meter diffusion. Policy and regulatory support have had a significant, positive impact on adoption but have not been the only relevant determinants. The findings also suggest that utility characteristics and some combination of learning, cost reductions, and technology standards have been important determinants affecting smart meter diffusion. I also explore the policy implications resulting from this analysis for enhancing the diffusion of smart meters. The costs and benefits of adopting smart meters have been more uncertain than initially thought, suggesting that some policy support for adoption was premature. The coordination of policies is also necessary to achieve the full benefits of using smart meters.
NASA Astrophysics Data System (ADS)
Daminov, Ildar; Tarasova, Ekaterina; Andreeva, Tatyana; Avazov, Artur
2016-02-01
This paper presents the comparison of smart meter deployment business models to determine the most suitable option providing smart meters deployment. Authors consider 3 main business model of companies: distribution grid company, energy supplier (energosbyt) and metering company. The goal of the article is to compare the business models of power companies from massive smart metering roll out in power system of Russian Federation.
Evaluation of the ride quality of a light twin engine airplane using a ride quality meter
NASA Technical Reports Server (NTRS)
Stewart, Eric C.
1989-01-01
A ride quality meter was used to establish the baseline ride quality of a light twin-engine airplane planned for use as a test bed for an experimental gust alleviation system. The ride quality meter provides estimates of passenger ride discomfort as a function of cabin noise and vibration (acceleration) in five axes (yaw axis omitted). According to the ride quality meter, in smooth air the cabin noise was the dominant source of passenger discomfort, but the total discomfort was approximately the same as that for the smooth-air condition. The researcher's subjective opinion, however, is that the total ride discomfort was much worse in the moderate turbulence than it was in the smooth air. The discrepancy is explained by the lack of measurement of the low-frequency accelerations by the ride quality meter.
The sensory power of cameras and noise meters for protest surveillance in South Korea.
Kim, Eun-Sung
2016-06-01
This article analyzes sensory aspects of material politics in social movements, focusing on two police tools: evidence-collecting cameras and noise meters for protest surveillance. Through interviews with Korean political activists, this article examines the relationship between power and the senses in the material culture of Korean protests and asks why cameras and noise meters appeared in order to control contemporary peaceful protests in the 2000s. The use of cameras and noise meters in contemporary peaceful protests evidences the exercise of what Michel Foucault calls 'micro-power'. Building on material culture studies, this article also compares the visual power of cameras with the sonic power of noise meters, in terms of a wide variety of issues: the control of things versus words, impacts on protest size, differential effects on organizers and participants, and differences in timing regarding surveillance and punishment.
Measuring Accurately Single-Phase Sinusoidal and Non-Sinusoidal Power.
1983-01-01
current component. Since the induction watthour meter is designed for measuring ac variations only, the creation of a dc component in an ac circuit due...available and the basic principle of measurement used in each. 3.1 Power Measuring Meters Instruments designed to measure the amount of average power...1.0 percent of full scale and + 0.5% of reading. 3.2 Encrgy Measuring Meters Instruments designed to measure the amount of power consumed in a circuit
Electro-optical equivalent calibration technology for high-energy laser energy meters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Ji Feng, E-mail: wjfcom2000@163.com; Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900; Graduate School of China Academy of Engineering Physics, Beijing 100088
Electro-optical equivalent calibration with high calibration power and high equivalence is particularly well-suited to the calibration of high-energy laser energy meters. A large amount of energy is reserved during this process, however, which continues to radiate after power-off. This study measured the radiation efficiency of a halogen tungsten lamp during power-on and after power-off in order to calculate the total energy irradiated by a lamp until the high-energy laser energy meter reaches thermal equilibrium. A calibration system was designed based on the measurement results, and the calibration equivalence of the system was analyzed in detail. Results show that measurement precisionmore » is significantly affected by the absorption factor of the absorption chamber and by heat loss in the energy meter. Calibration precision is successfully improved by enhancing the equivalent power and reducing power-on time. The electro-optical equivalent calibration system, measurement uncertainty of which was evaluated as 2.4% (k = 2), was used to calibrate a graphite-cone-absorption-cavity absolute energy meter, yielding a calibration coefficient of 1.009 and measurement uncertainty of 3.5% (k = 2). A water-absorption-type high-energy laser energy meter with measurement uncertainty of 4.8% (k = 2) was considered the reference standard, and compared to the energy meter calibrated in this study, yielded a correction factor of 0.995 (standard deviation of 1.4%).« less
Smart Grid Integrity Attacks: Characterizations and Countermeasures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Annarita Giani; Eilyan Bitar; Miles McQueen
2011-10-01
Real power injections at loads and generators, and real power flows on selected lines in a transmission network are monitored, transmitted over a SCADA network to the system operator, and used in state estimation algorithms to make dispatch, re-balance and other energy management system [EMS] decisions. Coordinated cyber attacks of power meter readings can be arranged to be undetectable by any bad data detection algorithm. These unobservable attacks present a serious threat to grid operations. Of particular interest are sparse attacks that involve the compromise of a modest number of meter readings. An efficient algorithm to find all unobservable attacksmore » [under standard DC load flow approximations] involving the compromise of exactly two power injection meters and an arbitrary number of power meters on lines is presented. This requires O(n2m) flops for a power system with n buses and m line meters. If all lines are metered, there exist canonical forms that characterize all 3, 4, and 5-sparse unobservable attacks. These can be quickly detected in power systems using standard graph algorithms. Known secure phase measurement units [PMUs] can be used as countermeasures against an arbitrary collection of cyber attacks. Finding the minimum number of necessary PMUs is NP-hard. It is shown that p + 1 PMUs at carefully chosen buses are sufficient to neutralize a collection of p cyber attacks.« less
18 CFR 367.9020 - Account 902, Meter reading expenses.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Account 902, Meter reading expenses. 367.9020 Section 367.9020 Conservation of Power and Water Resources FEDERAL ENERGY... GAS ACT Operation and Maintenance Expense Chart of Accounts § 367.9020 Account 902, Meter reading...
Energy Autonomous Wireless Water Meter with Integrated Turbine Driven Energy Harvester
NASA Astrophysics Data System (ADS)
Becker, P.; Folkmer, B.; Goepfert, R.; Hoffmann, D.; Willmann, A.; Manoli, Y.
2013-12-01
Accurate meter reading is the fundamental task of the home water system for the handling of payments. Meters need to be read correctly, to avoid an effect of adding events that increase unnecessary cost and create customer dissatisfaction. This paper presents a fully integrated wireless, energy autonomous water metering system based on the European Standard EN 13757 "Communication systems for meters and remote reading of meters". The system can be used in multiple water metering scenarios. No maintenance will be required and the system will provide precise and secure data transmission as well as timely and accurate recording of the consumption of water. The identification of any leakages will be improved through the analysis of the actual quantity supplied and recorded by the meters. The system is powered by an energy harvester, based on a water driven turbine wheel that is directly coupled to an electromagnetic energy transducer. The power delivered by the generator is dependent of the amount of flowing water and the pressure in the water pipes. Therefor the power is commonly non-continuous, fluctuant and unstable in the voltage amplitude. To be able to report the meter readings at all times, the system needs to be powered not only in times when the energy harvester delivers energy. Therefor an energy buffer, that stores the harvested energy, is installed to compensate the energy requirement between the actual generator output and the energy consumption of the application. Besides a complete system overview, the presentation will focus on the power management and energy aware battery charging circuitry. The design, fabrication, measuring results and the preparations for field tests in rural and urban environment will be presented and discussed.
Dryout occurrence in a helically coiled steam generator for nuclear power application
NASA Astrophysics Data System (ADS)
Santini, L.; Cioncolini, A.; Lombardi, C.; Ricotti, M.
2014-03-01
Dryout phenomena have been experimentally investigated in a helically coiled steam generator tube. The experiences carried out in the present work are part of a wide experimental program devoted to the study of a GEN III+ innovative nuclear power plant [1].The experimental facility consists in an electrically heated AISI 316L stainless steel coiled tube. The tube is 32 meters long, 12.53 mm of inner diameter, with a coil diameter of 1m and a pitch of 0.79 m, resulting in a total height of the steam generator of 8 meters. The thermo-hydraulics conditions for dryout investigations covered a spectrum of mass fluxes between 199 and 810 kg/m2s, the pressures ranges from 10.7 to 60.7 bar, heat fluxes between 43.6 to 209.3 kW/m2.Very high first qualities dryout, between 0.72 and 0.92, were found in the range of explored conditions, comparison of our results with literature available correlations shows the difficulty in predicting high qualities dryout in helical coils., immediately following the heading. The text should be set to 1.15 line spacing. The abstract should be centred across the page, indented 15 mm from the left and right page margins and justified. It should not normally exceed 200 words.
Data-Aware Retrodiction for Asynchronous Harmonic Measurement in a Cyber-Physical Energy System.
Liu, Youda; Wang, Xue; Liu, Yanchi; Cui, Sujin
2016-08-18
Cyber-physical energy systems provide a networked solution for safety, reliability and efficiency problems in smart grids. On the demand side, the secure and trustworthy energy supply requires real-time supervising and online power quality assessing. Harmonics measurement is necessary in power quality evaluation. However, under the large-scale distributed metering architecture, harmonic measurement faces the out-of-sequence measurement (OOSM) problem, which is the result of latencies in sensing or the communication process and brings deviations in data fusion. This paper depicts a distributed measurement network for large-scale asynchronous harmonic analysis and exploits a nonlinear autoregressive model with exogenous inputs (NARX) network to reorder the out-of-sequence measuring data. The NARX network gets the characteristics of the electrical harmonics from practical data rather than the kinematic equations. Thus, the data-aware network approximates the behavior of the practical electrical parameter with real-time data and improves the retrodiction accuracy. Theoretical analysis demonstrates that the data-aware method maintains a reasonable consumption of computing resources. Experiments on a practical testbed of a cyber-physical system are implemented, and harmonic measurement and analysis accuracy are adopted to evaluate the measuring mechanism under a distributed metering network. Results demonstrate an improvement of the harmonics analysis precision and validate the asynchronous measuring method in cyber-physical energy systems.
Demand response, behind-the-meter generation and air quality.
Zhang, Xiyue; Zhang, K Max
2015-02-03
We investigated the implications of behind-the-meter (BTM) generation participating in demand response (DR) programs. Specifically, we evaluated the impacts of NOx emissions from BTM generators enrolled in the New York Independent System Operator (NYISO)'s reliability-based DR programs. Through analyzing the DR program enrollment data, DR event records, ozone air quality monitoring data, and emission characteristics of the generators, we found that the emissions from BTM generators very likely contribute to exceedingly high ozone concentrations in the Northeast Corridor region, and very likely account for a substantial fraction of total NOx emissions from electricity generation. In addition, a companion study showed that the emissions from BTM generators could also form near-source particulate matter (PM) hotspots. The important policy implications are that the absence of up-to-date regulations on BTM generators may offset the current efforts to reduce the emissions from peaking power plants, and that there is a need to quantify the environmental impacts of DR programs in designing sound policies related to demand-side resources. Furthermore, we proposed the concept of "Green" DR resources, referring to those that not only provide power systems reliability services, but also have verifiable environmental benefits or minimal negative environmental impacts. We argue that Green DR resources that are able to maintain resource adequacy and reduce emissions at the same time are key to achieving the cobenefits of power system reliability and protecting public health during periods with peak electricity demand.
Utility interface issues for grid-connected photovoltaic systems
NASA Astrophysics Data System (ADS)
Chu, D.; Key, T.; Fitzer, J.
Photovoltaic (PV) balance-of-system research and development has focused on interconnection with the utility grid as the most promising future application for photovoltaic energy production. These sysems must be compatible with the existing utility grid to be accepted. Compatibility encompasses many technical, economic and institutional issues, from lineman safety to revenue metering and power quality. This paper reviews DOE/PV sponsored research for two of the technical interconnection issues: harmonic injection, and power factor control. Explanations and rationale behind these two issues will be reviewed, and the status of current research and plans for required future work will be presented.
33 CFR 84.03 - Vertical positioning and spacing of lights.
Code of Federal Regulations, 2010 CFR
2010-07-01
... distance of 1000 meters from the stem when viewed from water level. (c) The masthead light of a power... Vertical positioning and spacing of lights. (a) On a power-driven vessel of 20 meters or more in length the... is carried, then that light, at a height above the hull of not less than 5 meters, and, if the...
Ojeda, Álvaro Huerta; Ríos, Luis Chirosa; Barrilao, Rafael Guisado; Serrano, Pablo Cáceres
2016-01-01
[Purpose] The aim of this study was to determine the acute effect temporal of a complex training protocol on 30 meter sprint times. A secondary objective was to evaluate the fatigue indexes of military athletes. [Subjects and Methods] Seven military athletes were the subjects of this study. The variables measured were times in 30-meter sprint, and average power and peak power of squats. The intervention session with complex training consisted of 4 sets of 5 repetitions at 30% 1RM + 4 repetitions at 60% 1RM + 3 repetitions of 30 meters with 120-second rests. For the statistical analysis repeated measures of ANOVA was used, and for the post hoc analysis, student’s t-test was used. [Results] Times in 30 meter sprints showed a significant reduction between the control set and the four experimental sets, but the average power and peak power of squats did not show significant changes. [Conclusion] The results of the study show the acute positive effect of complex training, over time, in 30-meter sprint by military athletes. This effect is due to the post activation potentiation of the lower limbs’ muscles in the 30 meters sprint. PMID:27134353
Ojeda, Álvaro Huerta; Ríos, Luis Chirosa; Barrilao, Rafael Guisado; Serrano, Pablo Cáceres
2016-03-01
[Purpose] The aim of this study was to determine the acute effect temporal of a complex training protocol on 30 meter sprint times. A secondary objective was to evaluate the fatigue indexes of military athletes. [Subjects and Methods] Seven military athletes were the subjects of this study. The variables measured were times in 30-meter sprint, and average power and peak power of squats. The intervention session with complex training consisted of 4 sets of 5 repetitions at 30% 1RM + 4 repetitions at 60% 1RM + 3 repetitions of 30 meters with 120-second rests. For the statistical analysis repeated measures of ANOVA was used, and for the post hoc analysis, student's t-test was used. [Results] Times in 30 meter sprints showed a significant reduction between the control set and the four experimental sets, but the average power and peak power of squats did not show significant changes. [Conclusion] The results of the study show the acute positive effect of complex training, over time, in 30-meter sprint by military athletes. This effect is due to the post activation potentiation of the lower limbs' muscles in the 30 meters sprint.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garlapati, Shravan K; Kuruganti, Phani Teja; Buehrer, Richard M
The deployment of advanced metering infrastructure by the electric utilities poses unique communication challenges, particularly as the number of meters per aggregator increases. During a power outage, a smart meter tries to report it instantaneously to the electric utility. In a densely populated residential/industrial locality, it is possible that a large number of smart meters simultaneously try to get access to the communication network to report the power outage. If the number of smart meters is very high of the order of tens of thousands (metropolitan areas), the power outage data flooding can lead to Random Access CHannel (RACH) congestion.more » Several utilities are considering the use of cellular network for smart meter communications. In 3G/4G cellular networks, RACH congestion not only leads to collisions, retransmissions and increased RACH delays, but also has the potential to disrupt the dedicated traffic flow by increasing the interference levels (3G CDMA). In order to overcome this problem, in this paper we propose a Time Hierarchical Scheme (THS) that reduces the intensity of power outage data flooding and power outage reporting delay by 6/7th, and 17/18th when compared to their respective values without THS. Also, we propose an Optimum Transmission Rate Adaptive (OTRA) MAC to optimize the latency in power outage data collection. The analysis and simulation results presented in this paper show that both the OTRA and THS features of the proposed MAC results in a Power Outage Data Collection Latency (PODCL) that is 1/10th of the 4G LTE PODCL.« less
Design and implementation of Remote Digital Energy Meter (RDEM) based on GSM technology
NASA Astrophysics Data System (ADS)
Khan, Muhammad Waseem; Wang, Jie; Irfan, Muhammad; Shiraz, M.; Khan, Ali Hassan
2017-11-01
Electric power is one of the basic requirement for socio economic and social prosperity of any country, which is mainly employs for domestic, industrial and agricultural sectors. The primary purpose of this research is to design and implement an energy meter which can remotely control and monitor through global system for mobile (GSM) communication technology. For this purpose, a single phase or three phase digital energy meters are used to add on different advanced modules. The energy meter can be activated and display power consumption information at the consumer premises on liquid crystal display and through a short message service (SMS) by using GSM technology. At the power sending end, an energy meter can be remotely control and monitor through GSM technology without any system disturbances. This study will lead to make the system easier, economical, reliable and efficient for the electrical department.
ELECTRICAL LOAD ANTICIPATOR AND RECORDER
Werme, J.E.
1961-09-01
A system is described in which an indication of the prevailing energy consumption in an electrical power metering system and a projected power demand for one demand in terval is provided at selected increments of time within the demand interval. Each watt-hour meter in the system is provided with an impulse generator that generates two impulses for each revolution of the meter disc. In each demand interval, for example, one half-hour, of the metering system, the total impulses received from all of the meters are continuously totaled for each 5-minute interval and multiplied by a number from 6 to 1 depending upon which 5- minute interval the impulses were received. This value is added to the total pulses received in the intervals preceding the current 5-minute interval within the half-hour demand interval tc thereby provide an indication of the projected power demand every 5 minutes in the demand interval.
Design and Study of a Low-Cost Laboratory Model Digital Wind Power Meter
ERIC Educational Resources Information Center
Radhakrishnan, Rugmini; Karthika, S.
2010-01-01
A vane-type low-cost laboratory model anemometer cum power meter is designed and constructed for measuring low wind energy created from accelerating fluids. The constructed anemometer is a device which records the electrical power obtained by the conversion of wind power using a wind sensor coupled to a DC motor. It is designed for its…
Code of Federal Regulations, 2010 CFR
2010-10-01
... PASSENGERS ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 120.312 Power sources on vessels... generator sets; (b) An electrical power system that complies with the requirements of §§ 111.10-4, 111.10-5... 46 Shipping 4 2010-10-01 2010-10-01 false Power sources on vessels of more than 19.8 meters (65...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Power sources on vessels of more than 19.8 meters (65... PASSENGERS ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 120.312 Power sources on vessels... generator sets; (b) An electrical power system that complies with the requirements of §§ 111.10-4, 111.10-5...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Power sources on vessels of more than 19.8 meters (65... PASSENGERS ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 120.312 Power sources on vessels... generator sets; (b) An electrical power system that complies with the requirements of §§ 111.10-4, 111.10-5...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Power sources on vessels of more than 19.8 meters (65... PASSENGERS ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 120.312 Power sources on vessels... generator sets; (b) An electrical power system that complies with the requirements of §§ 111.10-4, 111.10-5...
Jeong, Seung Hee; Hjort, Klas; Wu, Zhigang
2015-02-12
Stretchable electronics offers unsurpassed mechanical compliance on complex or soft surfaces like the human skin and organs. To fully exploit this great advantage, an autonomous system with a self-powered energy source has been sought for. Here, we present a new technology to pattern liquid alloys on soft substrates, targeting at fabrication of a hybrid-integrated power source in microfluidic stretchable electronics. By atomized spraying of a liquid alloy onto a soft surface with a tape transferred adhesive mask, a universal fabrication process is provided for high quality patterns of liquid conductors in a meter scale. With the developed multilayer fabrication technique, a microfluidic stretchable wireless power transfer device with an integrated LED was demonstrated, which could survive cycling between 0% and 25% strain over 1,000 times.
Jeong, Seung Hee; Hjort, Klas; Wu, Zhigang
2015-01-01
Stretchable electronics offers unsurpassed mechanical compliance on complex or soft surfaces like the human skin and organs. To fully exploit this great advantage, an autonomous system with a self-powered energy source has been sought for. Here, we present a new technology to pattern liquid alloys on soft substrates, targeting at fabrication of a hybrid-integrated power source in microfluidic stretchable electronics. By atomized spraying of a liquid alloy onto a soft surface with a tape transferred adhesive mask, a universal fabrication process is provided for high quality patterns of liquid conductors in a meter scale. With the developed multilayer fabrication technique, a microfluidic stretchable wireless power transfer device with an integrated LED was demonstrated, which could survive cycling between 0% and 25% strain over 1,000 times. PMID:25673261
Educational Electrical Appliance Power Meter and Logger
ERIC Educational Resources Information Center
Nunn, John
2013-01-01
The principles behind two different designs of inductive power meter are presented. They both make use of the microphone input of a computer which, together with a custom-written program, can record the instantaneous power of a domestic electrical appliance. The device can be built quickly and can be calibrated with reference to a known power…
47 CFR 90.542 - Broadband transmitting power limits.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Antenna height (AAT) in meters(feet) Effective radiated power (ERP)(watts) Above 1372 (4500) 65 Above 1220... Bandwidth of 1 MHz or Less Antenna height (AAT) in meters(feet) Effective radiated power (ERP)(watts) Above... (3000) To 1067 (3500) 200 Above 763 (2500) To 915 (3000) 280 Above 610 (2000) To 763 (2500) 400 Above...
75 FR 43088 - Personal Communications Services and Miscellaneous Wireless Communications Services
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-23
... Sec. 27.50, paragraph (d) is revised to read as follows: Sec. 24.232 Power and antenna height limits... isotropically radiated power (EIRP) with an antenna height up to 300 meters HAAT, except as described in... watts/MHz equivalent isotropically radiated power (EIRP) with an antenna height up to 300 meters HAAT...
Automatic Rotational Sky Quality Meter (R-SQM) Design and Software for Astronomical Observatories
NASA Astrophysics Data System (ADS)
Dogan, E.; Ozbaldan, E. E.; Shameoni, Niaei M.; Yesilyaprak, C.
2016-12-01
We have presented the new design of Sky Quality Meter (SQM) device that is an automatic rotational model of sky quality meter (R-SQM) carried out by DAG (Eastern Anatolia Observatory) Technical Team. R-SQM is required for determining the long-term changes of sky quality of an astronomical observatory and consists of four SQM devices mounted on a rotating shaft with different angles for scanning all sky. This system is controlled by a Raspberry Pi control card and a step motor with its driver and a special software.
Modeling and analysis of sub-surface leakage current in nano-MOSFET under cutoff regime
NASA Astrophysics Data System (ADS)
Swami, Yashu; Rai, Sanjeev
2017-02-01
The high leakage current in nano-meter regimes is becoming a significant portion of power dissipation in nano-MOSFET circuits as threshold voltage, channel length, and gate oxide thickness are scaled down to nano-meter range. Precise leakage current valuation and meticulous modeling of the same at nano-meter technology scale is an increasingly a critical work in designing the low power nano-MOSFET circuits. We present a specific compact model for sub-threshold regime leakage current in bulk driven nano-MOSFETs. The proposed logical model is instigated and executed into the latest updated PTM bulk nano-MOSFET model and is found to be in decent accord with technology-CAD simulation data. This paper also reviews various transistor intrinsic leakage mechanisms for nano-MOSFET exclusively in weak inversion, like drain-induced barricade lowering (DIBL), gate-induced drain leakage (GIDL), gate oxide tunneling (GOT) leakage etc. The root cause of the sub-surface leakage current is mainly due to the nano-scale short channel length causing source-drain coupling even in sub-threshold domain. Consequences leading to carriers triumphing the barricade between the source and drain. The enhanced model effectively considers the following parameter dependence in the account for better-quality value-added results like drain-to-source bias (VDS), gate-to-source bias (VGS), channel length (LG), source/drain junction depth (Xj), bulk doping concentration (NBULK), and operating temperature (Top).
Data-Aware Retrodiction for Asynchronous Harmonic Measurement in a Cyber-Physical Energy System
Liu, Youda; Wang, Xue; Liu, Yanchi; Cui, Sujin
2016-01-01
Cyber-physical energy systems provide a networked solution for safety, reliability and efficiency problems in smart grids. On the demand side, the secure and trustworthy energy supply requires real-time supervising and online power quality assessing. Harmonics measurement is necessary in power quality evaluation. However, under the large-scale distributed metering architecture, harmonic measurement faces the out-of-sequence measurement (OOSM) problem, which is the result of latencies in sensing or the communication process and brings deviations in data fusion. This paper depicts a distributed measurement network for large-scale asynchronous harmonic analysis and exploits a nonlinear autoregressive model with exogenous inputs (NARX) network to reorder the out-of-sequence measuring data. The NARX network gets the characteristics of the electrical harmonics from practical data rather than the kinematic equations. Thus, the data-aware network approximates the behavior of the practical electrical parameter with real-time data and improves the retrodiction accuracy. Theoretical analysis demonstrates that the data-aware method maintains a reasonable consumption of computing resources. Experiments on a practical testbed of a cyber-physical system are implemented, and harmonic measurement and analysis accuracy are adopted to evaluate the measuring mechanism under a distributed metering network. Results demonstrate an improvement of the harmonics analysis precision and validate the asynchronous measuring method in cyber-physical energy systems. PMID:27548171
Developments in United Kingdom Waveguide Power Standards,
1980-04-01
would manifest itself when a calibrated bolometer was compared with a non-bolometric standard (including a thermistor standard where the current...Geneva mechanism and this ensures extremely smooth mechanical operation. d) temperature control of the thermistor power meters at DI and D2 to better... thermistor heads. During calibration in terms of a power standard, and a subsequent measurement, the noise and drift in the standard power meter and device
Integrating an embedded system in a microwave moisture meter
USDA-ARS?s Scientific Manuscript database
The conversion of a PC- or laptop-controlled microwave moisture meter to a stand-alone meter hosting its own embedded system is discussed. The moisture meter measures the attenuation and phase shift of low power microwaves traversing the sample, from which the dielectric properties are calculated. T...
Integrating an Embedded System within a Microwave Moisture Meter
USDA-ARS?s Scientific Manuscript database
In this paper, the conversion of a PC or laptop-controlled microwave moisture meter to a stand-alone meter hosting its own embedded system is discussed. The moisture meter uses low-power microwaves to measure the attenuation and phase shift of the sample, from which the dielectric properties are cal...
47 CFR 73.664 - Determining operating power.
Code of Federal Regulations, 2010 CFR
2010-10-01
....664 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO... indications of a calibrated transmission line meter (responsive to peak power) located at the RF output terminals of the transmitter. The indications of the calibrated meter are used to observe and maintain the...
Solar energy/utility interface - The technical issues
NASA Astrophysics Data System (ADS)
Tabors, R. D.; White, D. C.
1982-01-01
The technical and economic factors affecting an interface between solar/wind power sources and utilities are examined. Photovoltaic, solar thermal, and wind powered systems are subject to stochastic local climatic variations and as such may require full back-up services from utilities, which are then in a position of having reserve generating power and power lines and equipment which are used only part time. The low reliability which has degraded some economies of scale formerly associated with large, centralized power plants, and the lowered rate of the increase in electricity usage is taken to commend the inclusion of power sources with a modular nature such as is available from solar derived electrical generation. Technical issues for maintaining the quality of grid power and also effectively metering purchased and supplied back-up power as part of a homeostatic system of energy control are discussed. It is concluded that economic considerations, rather than technical issues, bear the most difficulty in integrating solar technologies into the utility network.
Thermodynamic Analysis of a Rankine Cycle Powered Vapor Compression Ice Maker Using Solar Energy
Hu, Bing; Bu, Xianbiao; Ma, Weibin
2014-01-01
To develop the organic Rankine-vapor compression ice maker driven by solar energy, a thermodynamic model was developed and the effects of generation temperature, condensation temperature, and working fluid types on the system performance were analyzed. The results show that the cooling power per square meter collector and ice production per square meter collector per day depend largely on generation temperature and condensation temperature and they increase firstly and then decrease with increasing generation temperature. For every working fluid there is an optimal generation temperature at which organic Rankine efficiency achieves the maximum value. The cooling power per square meter collector and ice production per square meter collector per day are, respectively, 126.44 W m−2 and 7.61 kg m−2 day−1 at the generation temperature of 140°C for working fluid of R245fa, which demonstrates the feasibility of organic Rankine cycle powered vapor compression ice maker. PMID:25202735
Utilities bullish on meter-reading technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garner, W.L.
1995-01-15
By the end of 1996, the 400,000 customers of Kansas City Power & Light Company (KCPL) will have their electric meters read by a real-time wireless network that will relay electrical consumption readings back to computers at the utility`s customer service office. KCPL`s executives believe the new radio and cellular network will greatly improve the company`s ability to control its power distribution, manage its load requirements, monitor outages, and in the near future, allow time-of-use and offpeak pricing. The KCPL system represents the first systemwide, commercial application of wireless automated meter reading (AMR) by a U.S. utility. The article alsomore » describes other AMR systems for reading water and gas meters, along with saying that $18 billion in future power plant investments can be avoided by using time-of-use pricing for residential customers.« less
Estimating pumping time and ground-water withdrawals using energy- consumption data
Hurr, R.T.; Litke, D.W.
1989-01-01
Evaluation of the hydrology of an aquifer requires knowledge about the volume of groundwater in storage and also about the volume of groundwater withdrawals. Totalizer flow meters may be installed at pumping plants to measure withdrawals; however, it generally is impractical to equip all pumping plants in an area with meters. A viable alternative is the use of rate-time methods. Rate-time methods may be used at individual pumping plants to decrease the data collection necessary for determining withdrawals. At sites where pumping-time measurement devices are not installed, pumping time may be determined on the basis of energy consumption and power demand. At pumping plants where energy consumption is metered, data acquired by reading of meters is used to estimate pumping time. Care needs to be taken to read these meters correctly. At pumping plants powered by electricity, the calculations need to be modified if transformers are present. At pumping plants powered by natural gas, the effects of the pressure-correction factor need to be included in the calculations. At pumping plants powered by gasoline, diesel oil, or liquid petroleum gas, the geometry of storage tanks needs to be analyzed as part of the calculations. The relation between power demand and pumping rate at a pumping plant can be described through the use of the power-consumption coefficient. Where equipment and hydrologic conditions are stable, this coefficient can be applied to total energy consumption at a site to estimate total groundwater withdrawals. Random sampling of power consumption coefficients can be used to estimate area-wide groundwater withdrawal. (USGS)
Large scale particle image velocimetry with helium filled soap bubbles
NASA Astrophysics Data System (ADS)
Bosbach, Johannes; Kühn, Matthias; Wagner, Claus
2009-03-01
The application of Particle Image Velocimetry (PIV) to measurement of flows on large scales is a challenging necessity especially for the investigation of convective air flows. Combining helium filled soap bubbles as tracer particles with high power quality switched solid state lasers as light sources allows conducting PIV on scales of the order of several square meters. The technique was applied to mixed convection in a full scale double aisle aircraft cabin mock-up for validation of Computational Fluid Dynamics simulations.
Wunderle, Kevin A; Rakowski, Joseph T; Dong, Frank F
2016-05-08
The first goal of this study was to investigate the accuracy of the displayed reference plane air kerma (Ka,r) or air kerma-area product (Pk,a) over a broad spectrum of X-ray beam qualities on clinically used interventional fluoroscopes incorporating air kerma-area product meters (KAP meters) to measure X-ray output. The second goal was to investigate the accuracy of a correction coefficient (CC) determined at a single beam quality and applied to the measured Ka,r over a broad spectrum of beam qualities. Eleven state-of-the-art interventional fluoroscopes were evaluated, consisting of eight Siemens Artis zee and Artis Q systems and three Philips Allura FD systems. A separate calibrated 60 cc ionization chamber (external chamber) was used to determine the accuracy of the KAP meter over a broad range of clinically used beam qualities. For typical adult beam qualities, applying a single CC deter-mined at 100 kVp with copper (Cu) in the beam resulted in a deviation of < 5% due to beam quality variation. This result indicates that applying a CC determined using The American Association of Physicists in Medicine Task Group 190 protocol or a similar protocol provides very good accuracy as compared to the allowed ± 35% deviation of the KAP meter in this limited beam quality range. For interventional fluoroscopes dedicated to or routinely used to perform pediatric interventions, using a CC established with a low kVp (~ 55-60 kVp) and large amount of Cu filtration (~ 0.6-0.9 mm) may result in greater accuracy as compared to using the 100 kVp values. KAP meter responses indicate that fluoroscope vendors are likely normalizing or otherwise influencing the KAP meter output data. Although this may provide improved accuracy in some instances, there is the potential for large discrete errors to occur, and these errors may be difficult to identify.
18 CFR 430.19 - Ground water withdrawal metering, recording, and reporting.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Ground water withdrawal metering, recording, and reporting. 430.19 Section 430.19 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION SPECIAL REGULATIONS GROUND WATER PROTECTION AREA: PENNSYLVANIA § 430.19...
Code of Federal Regulations, 2010 CFR
2010-04-01
... AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER INDIAN ELECTRIC POWER UTILITIES Billing, Payments, and... determined from the register on the utility's meter at the customer's point of delivery. A reasonable estimate of the amount of energy and/or power demand may be made by the utility in the event a meter is...
18 CFR 367.9020 - Account 902, Meter reading expenses.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Account 902, Meter reading expenses. 367.9020 Section 367.9020 Conservation of Power and Water Resources FEDERAL ENERGY... expenses. (a) This account must include the cost of labor, materials used and expenses incurred in reading...
18 CFR 367.9020 - Account 902, Meter reading expenses.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Account 902, Meter reading expenses. 367.9020 Section 367.9020 Conservation of Power and Water Resources FEDERAL ENERGY... expenses. (a) This account must include the cost of labor, materials used and expenses incurred in reading...
18 CFR 367.9020 - Account 902, Meter reading expenses.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Account 902, Meter reading expenses. 367.9020 Section 367.9020 Conservation of Power and Water Resources FEDERAL ENERGY... expenses. (a) This account must include the cost of labor, materials used and expenses incurred in reading...
18 CFR 367.9020 - Account 902, Meter reading expenses.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Account 902, Meter reading expenses. 367.9020 Section 367.9020 Conservation of Power and Water Resources FEDERAL ENERGY... expenses. (a) This account must include the cost of labor, materials used and expenses incurred in reading...
Solar Power Satellite (SPS) fiber optic link assessment
NASA Technical Reports Server (NTRS)
1980-01-01
A feasibility demonstration of a 980 MHz fiber optic link for the Solar Power Satellite (SPS) phase reference distribution system was accomplished. A dual fiber-optic link suitable for a phase distribution frequency of 980 MHz was built and tested. The major link components include single mode injection laser diodes, avalanche photodiodes, and multimode high bandwidth fibers. Signal throughput was demonstrated to be stable and of high quality in all cases. For a typical SPS link length of 200 meters, the transmitted phase at 980 MHz varies approximately 2.5 degrees for every deg C of fiber temperature change. This rate is acceptable because of the link length compensation feature of the phase control design.
Development of an ultra-portable ride quality meter.
DOT National Transportation Integrated Search
2012-12-01
FRAs Office of Research and Development has funded the development of an ultra-portable ride quality meter (UPRQM) under the Small Business and Innovative Research (SBIR) program. Track inspectors can use the UPRQM to locate segments of track that...
From Smart Metering to Smart Grid
NASA Astrophysics Data System (ADS)
Kukuča, Peter; Chrapčiak, Igor
2016-06-01
The paper deals with evaluation of measurements in electrical distribution systems aimed at better use of data provided by Smart Metering systems. The influence of individual components of apparent power on the power loss is calculated and results of measurements under real conditions are presented. The significance of difference between the traditional and the complex evaluation of the electricity consumption efficiency by means of different definitions of the power factor is illustrated.
Advanced Metering Infrastructure based on Smart Meters
NASA Astrophysics Data System (ADS)
Suzuki, Hiroshi
By specifically designating penetrations rates of advanced meters and communication technologies, devices and systems, this paper introduces that the penetration of advanced metering is important for the future development of electric power system infrastructure. It examines the state of the technology and the economical benefits of advanced metering. One result of the survey is that advanced metering currently has a penetration of about six percent of total installed electric meters in the United States. Applications to the infrastructure differ by type of organization. Being integrated with emerging communication technologies, smart meters enable several kinds of features such as, not only automatic meter reading but also distribution management control, outage management, remote switching, etc.
Balsalobre-Fernández, Carlos; Tejero-González, Carlos Mª; del Campo-Vecino, Juan; Alonso-Curiel, Dionisio
2013-01-01
The aim of this study was to determine the effects of a power training cycle on maximum strength, maximum power, vertical jump height and acceleration in seven high-level 400-meter hurdlers subjected to a specific training program twice a week for 10 weeks. Each training session consisted of five sets of eight jump-squats with the load at which each athlete produced his maximum power. The repetition maximum in the half squat position (RM), maximum power in the jump-squat (W), a squat jump (SJ), countermovement jump (CSJ), and a 30-meter sprint from a standing position were measured before and after the training program using an accelerometer, an infra-red platform and photo-cells. The results indicated the following statistically significant improvements: a 7.9% increase in RM (Z=−2.03, p=0.021, δc=0.39), a 2.3% improvement in SJ (Z=−1.69, p=0.045, δc=0.29), a 1.43% decrease in the 30-meter sprint (Z=−1.70, p=0.044, δc=0.12), and, where maximum power was produced, a change in the RM percentage from 56 to 62% (Z=−1.75, p=0.039, δc=0.54). As such, it can be concluded that strength training with a maximum power load is an effective means of increasing strength and acceleration in high-level hurdlers. PMID:23717361
Balsalobre-Fernández, Carlos; Tejero-González, Carlos M; Del Campo-Vecino, Juan; Alonso-Curiel, Dionisio
2013-03-01
The aim of this study was to determine the effects of a power training cycle on maximum strength, maximum power, vertical jump height and acceleration in seven high-level 400-meter hurdlers subjected to a specific training program twice a week for 10 weeks. Each training session consisted of five sets of eight jump-squats with the load at which each athlete produced his maximum power. The repetition maximum in the half squat position (RM), maximum power in the jump-squat (W), a squat jump (SJ), countermovement jump (CSJ), and a 30-meter sprint from a standing position were measured before and after the training program using an accelerometer, an infra-red platform and photo-cells. The results indicated the following statistically significant improvements: a 7.9% increase in RM (Z=-2.03, p=0.021, δc=0.39), a 2.3% improvement in SJ (Z=-1.69, p=0.045, δc=0.29), a 1.43% decrease in the 30-meter sprint (Z=-1.70, p=0.044, δc=0.12), and, where maximum power was produced, a change in the RM percentage from 56 to 62% (Z=-1.75, p=0.039, δc=0.54). As such, it can be concluded that strength training with a maximum power load is an effective means of increasing strength and acceleration in high-level hurdlers.
Accuracy of the Velotron ergometer and SRM power meter.
Abbiss, C R; Quod, M J; Levin, G; Martin, D T; Laursen, P B
2009-02-01
The purpose of this study was to determine the accuracy of the Velotron cycle ergometer and the SRM power meter using a dynamic calibration rig over a range of exercise protocols commonly applied in laboratory settings. These trials included two sustained constant power trials (250 W and 414 W), two incremental power trials and three high-intensity interval power trials. To further compare the two systems, 15 subjects performed three dynamic 30 km performance time trials. The Velotron and SRM displayed accurate measurements of power during both constant power trials (<1% error). However, during high-intensity interval trials the Velotron and SRM were found to be less accurate (3.0%, CI=1.6-4.5% and -2.6%, CI=-3.2--2.0% error, respectively). During the dynamic 30 km time trials, power measured by the Velotron was 3.7+/-1.9% (CI=2.9-4.8%) greater than that measured by the SRM. In conclusion, the accuracy of the Velotron cycle ergometer and the SRM power meter appears to be dependent on the type of test being performed. Furthermore, as each power monitoring system measures power at various positions (i.e. bottom bracket vs. rear wheel), caution should be taken when comparing power across the two systems, particularly when power is variable.
NASA Astrophysics Data System (ADS)
Olson, C. L.; Cuneo, M. E.; Desjarlais, M. P.; Filuk, A. B.; Greenly, J. B.; Hanson, D. L.; Hinshelwood, D. D.; Hubbard, R. F.; Lampe, M.; Lockner, T. R.
Present Light Ion Fusion (LIF) target experiments on PBFA 2 use a barrel diode in which the total transport length from the anode to the target is less than or equal to 15 cm. Future LIF development includes high yield applications (LMF) and energy production (ETF and LIBRA power plants) that require standoff - the generation of extracted ion beams and transport of these beams over distances of several meters. Standoff research includes the development of high efficiency extraction diodes (single stage and two-stage), improvements in beam quality (divergence, purity, uniformity, etc.), and the efficient transport and focusing of these beams over distances of several meters to a fusion target. Progress in all of these areas is discussed, as well as a strategy to reduce the divergence from the present 17 mrad for 5 MeV protons on SABRE to the required mrad for 35 MeV Li ions for LMF. The status of experiments is summarized, and future directions are indicated.
47 CFR 22.1013 - Effective radiated power limitations.
Code of Federal Regulations, 2010 CFR
2010-10-01
.... Table I-1—Maximum ERP (Watts) Distance 30 meters (100 feet) 45 meters (150 feet) 61 meters (200 feet...) 590 520 450 306 km (190 mi) 450 400 330 298 km (185 mi) 320 280 240 290 km (180 mi) 250 210 175 282 km...
25 CFR 175.24 - Utility responsibilities.
Code of Federal Regulations, 2010 CFR
2010-04-01
... BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER INDIAN ELECTRIC POWER UTILITIES...; (e) Read meters or authorize the customer(s) to read meters at intervals prescribed in the operations manual, service agreement, or special contract, except in those situations where the meter cannot be read...
Pfützner, Andreas
2013-01-01
The article by Brzag and coauthors in this issue of Journal of Diabetes Science and Technology reports a competitive accuracy performance study for a branded meter in comparison with six low-cost meters currently available in the United States. It highlights several important topics: (1) the need for more stringent post-marketing requirements for blood glucose meters after launch and (2) low-cost meters use older technologies and their manufacturers do not usually seriously invest in new technology or constant quality assurance efforts. This may explain the study results, which show superior performance of the branded meter. Finally, the article pinpoints to the "quality versus price" dilemma faced by the prescribing physician and their patients in daily routine, which may be additionally aggravated by budget constraints and prescription rules in reimbursed markets. © 2013 Diabetes Technology Society.
Telecommunications in cometary environments
NASA Technical Reports Server (NTRS)
Flock, W. L.
1981-01-01
Propagation effects on telecommunications in a cometary environment include those due to dust, the inhomogeneous plasma of the coma and tail, and ionization generated by impact of neutral molecules and dust on the spacecraft. Attenuation caused by dust particles is estimated to be on the order of 10 to the minus 5th power dB for the Halley Intercept Mission. Ionization generated by impact on the spacecraft is estimated to result in an electron content of 10 to the 12th power to 10 to the 13th power el/sq meters (3 eV electrons) along the telecommunications path. An estimate of the electron content due to Comet Halley itself is 10 to the 16th power to 10 to the 17th power el/sq meters, compared to a content of 10 to the 16th power to 10 to the 18th power el/sq meters for the Earth's ionosphere and 10 to the 17th power to 10 to the 18th power el/sq meters for the interplanetary medium. The electron content of the plasma near Comet Halley will cause excess range delay, and a Doppler shift of the signal from the spacecraft will occur in propagation to the rate of change of the path electron content. It is recommended that S and X down-link frequencies by employed to monitor the path electron content and amplitude scintillation and spectral broadening of the received signals. These measurements will provide a quantitative base of knowledge that will be valuable for radio science and telecommunications system design purposes.
Observations of Sea Surface Mean Square Slope During the Southern Ocean Waves Experiment
NASA Technical Reports Server (NTRS)
Walsh, E. J.; Vandemark, D. C.; Wright, C. W.; Banner, M. L.; Chen, W.; Swift, R. N.; Scott, J. F.; Hines, D. E.; Jensen, J.; Lee, S.;
2001-01-01
For the Southern Ocean Waves Experiment (SOWEX), conducted in June 1992 out of Hobart, Tasmania, the NASA Scanning Radar Altimeter (SRA) was shipped to Australia and installed on a CSIRO Fokker F-27 research aircraft instrumented to make comprehensive surface layer measurements of air-sea interaction fluxes. The SRA sweeps a radar beam of P (two-way) half-power width across the aircraft ground track over a swath equal to 0.8 of the aircraft height, simultaneously measuring the backscattered power at its 36 GHz (8.3 mm) operating frequency and the range to the sea surface at 64 cross-track positions. In realtime, the slant ranges are multiplied by the cosine of the off-nadir incidence angles (including the effect of aircraft roll attitude) to determine the vertical distances from the aircraft to the sea surface. These distances are subtracted from the aircraft height to produce a sea-surface elevation map, which is displayed on a monitor in the aircraft to enable real-time assessments of data quality and wave properties. The sea surface mean square slope (mss), which is predominantly caused by the short waves, was determined from the backscattered power falloff with incidence angle measured by the SRA in the plane normal to the aircraft heading. On each flight, data were acquired at 240 m altitude while the aircraft was in a 7 degree roll attitude, interrogating off-nadir incidence angles from -15 degrees through nadir to +29 degrees. The aircraft turned azimuthally through 810 degrees in this attitude, mapping the azimuthal dependence of the backscattered power falloff with incidence angle. Two sets of turning data were acquired on each day, before and after the aircraft measured wind stress at low altitude (12 meters to 65 meters). Wave topography and backscattered power for mss were also acquired during those level flight segments whenever the aircraft altitude was above the SRA minimum range of 35 m. Data were collected over a wide range of wind and sea conditions, from quiescent to gale force winds with 9 meter wave height.
ELECTRICAL LOAD ANTICIPATOR AND RECORDER
Russell, J.B.; Thomas, R.J.
1961-07-25
A system is descrbied in which an indication of the prevailing energy consumption in an electrical power metering system and a projected Power demand for one demand interval is provided at selected increments of time withm the demand interval. Each watthour meter in the system is provided with an impulse generator that generates two impulses for each revolution of the meter disc. The total pulses received frorn all the meters are continuously totaled and are fed to a plurality of parallel connected gated counters. Each counter has its gate opened at different sub-time intervals during the demand interval. A multiplier is connected to each of the gated counters except the last one and each multiplier is provided with a different multiplier constant so as to provide an estimate of the power to be drawn over the entire demand interval at the end of each of the different sub-time intervals. Means are provided for recording the ontputs from the different circuits in synchronism with the actuation oi each gate circuit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
UC Berkeley, Berkeley, CA USA; Brown, Richard; Lanzisera, Steven
2011-05-24
Miscellaneous and electronic devices consume about one-third of the primary energy used in U.S. buildings, and their energy use is increasing faster than other end-uses. Despite the success of policies, such as Energy Star, that promote more efficient miscellaneous and electronic products, much remains to be done to address the energy use of these devices if we are to achieve our energy and carbon reduction goals. Developing efficiency strategies for these products depends on better data about their actual usage, but very few studies have collected field data on the long-term energy used by a large sample of devices duemore » to the difficulty and expense of collecting device-level energy data. This paper describes the development of an improved method for collecting device-level energy and power data using small, relatively inexpensive wireless power meters. These meters form a mesh network based on Internet standard protocols and can form networks of hundreds of metering points in a single building. Because the meters are relatively inexpensive and do not require manual data downloading, they can be left in the field for months or years to collect long time-series energy use data. In addition to the metering technology, we also describe a field protocol used to collect comprehensive, robust data on the miscellaneous and electronic devices in a building. The paper presents sample results from several case study buildings, in which all the plug-in devices for several homes were metered, and a representative sample of several hundred plug-in devices in a commercial office building were metered for several months.« less
Variable frequency microwave heating apparatus
Bible, Don W.; Lauf, Robert J.; Johnson, Arvid C.; Thigpen, Larry T.
1999-01-01
A variable frequency microwave heating apparatus (10) designed to allow modulation of the frequency of the microwaves introduced into a multi-mode microwave cavity (34) for testing or other selected applications. The variable frequency microwave heating apparatus (10) includes a microwave signal generator (12) and a high-power microwave amplifier (20) or a high-power microwave oscillator (14). A power supply (22) is provided for operation of the high-power microwave oscillator (14) or microwave amplifier (20). A directional coupler (24) is provided for detecting the direction and amplitude of signals incident upon and reflected from the microwave cavity (34). A first power meter (30) is provided for measuring the power delivered to the microwave furnace (32). A second power meter (26) detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load (28).
Design and construction of portable survey meter
NASA Astrophysics Data System (ADS)
Singseeta, W.; Thong-aram, D.; Pencharee, S.
2017-09-01
This work was aimed to design and construction of portable survey meter for radiation dose measuring. The designed system consists of 4 main parts consisting of low voltage power supply, radiation detection, radiation measurement and data display part on android phone. The test results show that the ripple voltage of low voltage power supply is less than 1%, the maximum integral counts are found to be 104 counts per second and the maximum distance of wireless commination between the server and the client is about 10 meter. It was found that the developed system had small size and light weight for portable instrument.
Metering error quantification under voltage and current waveform distortion
NASA Astrophysics Data System (ADS)
Wang, Tao; Wang, Jia; Xie, Zhi; Zhang, Ran
2017-09-01
With integration of more and more renewable energies and distortion loads into power grid, the voltage and current waveform distortion results in metering error in the smart meters. Because of the negative effects on the metering accuracy and fairness, it is an important subject to study energy metering combined error. In this paper, after the comparing between metering theoretical value and real recorded value under different meter modes for linear and nonlinear loads, a quantification method of metering mode error is proposed under waveform distortion. Based on the metering and time-division multiplier principles, a quantification method of metering accuracy error is proposed also. Analyzing the mode error and accuracy error, a comprehensive error analysis method is presented which is suitable for new energy and nonlinear loads. The proposed method has been proved by simulation.
46 CFR 133.150 - Survival craft launching and recovery arrangements: General.
Code of Federal Regulations, 2010 CFR
2010-10-01
... craft that can be boarded from a position on deck less than 4.5 meters (14.75 feet) above the waterline...); (2) Those survival craft that can be boarded from a position on deck less than 4.5 meters (14.75 feet... gravity or stored mechanical power, independent of the OSV's power supplies, to launch the survival craft...
46 CFR 133.150 - Survival craft launching and recovery arrangements: General.
Code of Federal Regulations, 2011 CFR
2011-10-01
... craft that can be boarded from a position on deck less than 4.5 meters (14.75 feet) above the waterline...); (2) Those survival craft that can be boarded from a position on deck less than 4.5 meters (14.75 feet... gravity or stored mechanical power, independent of the OSV's power supplies, to launch the survival craft...
Hey you! Shut the refrigerator door!
NASA Astrophysics Data System (ADS)
Fay, Sarah; Portenga, Angela
1998-09-01
The note discusses electrical power and energy and includes possible labs to be used in a physics classroom. It is based on our experimentation with a new device called the Watt-Watt/Hour Meter, which displays instantaneous power and cumulative energy readings of household electrical devices. Our experiments utilized this meter in conjunction with various appliances and focused primarily on its use with a refrigerator.
Optical Fiber Power Meter Comparison Between NIST and NIM.
Vayshenker, I; Livigni, D J; Li, X; Lehman, J H; Li, J; Xiong, L M; Zhang, Z X
2010-01-01
We describe the results of a comparison of reference standards between the National Institute of Standards and Technology (NIST-USA) and National Institute of Metrology (NIM-China). We report optical fiber-based power measurements at nominal wavelengths of 1310 nm and 1550 nm. We compare the laboratories' reference standards by means of a commercial optical power meter. Measurement results showed the largest difference of less than 2.6 parts in 10(3), which is within the combined standard (k = 1) uncertainty for the laboratories' reference standards.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-22
...'s existing Payson Gate Meter Station for the downstream Lake Side 2 Power Plant. No incremental... County: A second compressor package at its existing Thistle Creek Compressor Station; Replacement of... pressure; and Metering and ancillary facility upgrades at Questar's existing Payson Gate Meter Station. In...
Automated meter reading. (Latest citations from the INSPEC database). Published Search
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-12-01
The bibliography contains citations concerning the automatic collection of data from utility meters. Citations focus on line carrier communications, radio communications, and telecommunication methods of data transmission. Applications for water, gas, and electric power meters are discussed. (Contains a minimum of 56 citations and includes a subject term index and title list.)
Development of on-line laser power monitoring system
NASA Astrophysics Data System (ADS)
Ding, Chien-Fang; Lee, Meng-Shiou; Li, Kuan-Ming
2016-03-01
Since the laser was invented, laser has been applied in many fields such as material processing, communication, measurement, biomedical engineering, defense industries and etc. Laser power is an important parameter in laser material processing, i.e. laser cutting, and laser drilling. However, the laser power is easily affected by the environment temperature, we tend to monitor the laser power status, ensuring there is an effective material processing. Besides, the response time of current laser power meters is too long, they cannot measure laser power accurately in a short time. To be more precisely, we can know the status of laser power and help us to achieve an effective material processing at the same time. To monitor the laser power, this study utilize a CMOS (Complementary metal-oxide-semiconductor) camera to develop an on-line laser power monitoring system. The CMOS camera captures images of incident laser beam after it is split and attenuated by beam splitter and neutral density filter. By comparing the average brightness of the beam spots and measurement results from laser power meter, laser power can be estimated. Under continuous measuring mode, the average measuring error is about 3%, and the response time is at least 3.6 second shorter than thermopile power meters; under trigger measuring mode which enables the CMOS camera to synchronize with intermittent laser output, the average measuring error is less than 3%, and the shortest response time is 20 millisecond.
Using an Instrumented Drone to Sample Dust Devils
NASA Astrophysics Data System (ADS)
Jackson, Brian; Lorenz, Ralph; Davis, Karan; Lipple, Brock
2017-10-01
Dust devils are low-pressure, small (many to tens of meters) convective vortices powered by surface heating and rendered visible by lofted dust. Dust devils occur in arid climates on Earth, where they degrade air quality and pose a hazard to small aircraft. They also occur ubiquitously on Mars, where they may dominate the supply of atmospheric dust. Since dust contributes significantly to Mars’ atmospheric heat budget, dust devils probably play an important role in its climate. The dust-lifting capacity of a devil likely depends sensitively on its structure, particularly the wind and pressure profiles, but the exact dependencies are poorly constrained. Thus, the exact contribution to Mars’ atmosphere remains unresolved. Moreover, most previous studies of martian dust devils have relied on passive sampling of the profiles via meteorology packages on landed spacecraft, resulting in random encounter geometries which non-trivially skew the retrieved profiles. Analog studies of terrestrial devils have employed more active sampling (instrumented vehicles or manned aircraft) but have been limited to near-surface (few meters) or relatively high altitude (hundreds of meters) sampling. Unmanned aerial vehicles (UAVs) or drones, combined with miniature, digital instrumentation, promise a novel and uniquely powerful platform from which to sample dust devils via (relatively) controlled geometries at a wide variety of altitudes. In this presentation, we will describe a pilot study using an instrumented quadcopter on an active field site in southeastern Oregon, which (to our knowledge) has not previously been surveyed for dust devils. We will present preliminary results from the resulting encounters, including stereo image analysis and encounter footage collected onboard the drone.
Diagnostic equipment outside the laboratory.
Burrin, J M; Fyffe, J A
1988-01-01
A questionnaire was circulated to clinical biochemistry laboratories in the North West Thames region of the United Kingdom requesting information on extralaboratory equipment. Data on the types and numbers of instruments in use, their relationship with the laboratory, and quality assurance procedures were obtained. Laboratories were prepared to maintain equipment over which they had no responsibility for purchase, training of users, or use. The quality assurance of these instruments gave even greater cause for concern. Although internal quality control procedures were performed on many of the instruments, laboratories were involved in only a minority of these procedures. Quality control procedures and training of users were undertaken on site in less than 50% of blood gas analysers and bilirubin meters and in less than 25% of glucose meters. External quality assessment procedures were non-existent for all of the instruments in use with the exception of glucose stick meters in two laboratories. PMID:3192750
Duc, Sebastien; Villerius, Vincent; Bertucci, William; Grappe, Frederic
2007-09-01
The ErgomoPro (EP) is a power meter that measures power output (PO) during outdoor and indoor cycling via 2 optoelectronic sensors located in the bottom bracket axis. The aim of this study was to determine the validity and the reproducibility of the EP compared with the SRM crank set and Powertap hub (PT). The validity of the EP was tested in the laboratory during 8 submaximal incremental tests (PO: 100 to 400 W), eight 30-min submaximal constant-power tests (PO = 180 W), and 8 sprint tests (PO > 750 W) and in the field during 8 training sessions (time: 181 +/- 73 min; PO: approximately 140 to 160 W). The reproducibility was assessed by calculating the coefficient of PO variation (CV) during the submaximal incremental and constant tests. The EP provided a significantly higher PO than the SRM and PT during the submaximal incremental test: The mean PO differences were +6.3% +/- 2.5% and +11.1% +/- 2.1% respectively. The difference was greater during field training sessions (+12.0% +/- 5.7% and +16.5% +/- 5.9%) but lower during sprint tests (+1.6% +/- 2.5% and +3.2% +/- 2.7%). The reproducibility of the EP is lower than those of the SRM and PT (CV = 4.1% +/- 1.8%, 1.9% +/- 0.4%, and 2.1% +/- 0.8%, respectively). The EP power meter appears less valid and reliable than the SRM and PT systems.
46 CFR 163.002-21 - Approval tests.
Code of Federal Regulations, 2010 CFR
2010-10-01
... raised and lowered under power operation until a total distance of at least 150 meters (500 feet) has... least 5 meters (16 feet). The average speed of raising the ladder or lift platform and the average lowering speed during this test must both be between 15 and 21 meters per minute (50 and 70 feet per minute...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-24
... facilities would include: (1) Three 35-kilowatt (kW), 5-meter-diameter axial flow Kinetic System turbine...; (2) nine additional 5-meter-diameter axial flow Kinetic System turbine generator units mounted on...-meter-diameter axial flow Kinetic System turbine generator units mounted on six triframe mounts, with a...
47 CFR 22.659 - Effective radiated power limits.
Code of Federal Regulations, 2010 CFR
2010-10-01
... in meters (feet) 15 (50) 30 (100) 46 (150) 61 (200) 76 (250) 91 (300) 107 (350) 122 (400) 137 (450... Transmitters (HAAT 152 Meters or Less) Distance to protected TV station in kilometers (miles) Antenna height above average terrain in meters (feet) 15 (50) 30 (100) 46 (150) 61 (200) 76 (250) 91 (300) 107 (350...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fishbaugher, M. J.
1985-05-01
The decreasing cost of microcomputers along with improvements in power metering circuitry have changed the way in which electrical energy use is monitored. Although utilities still rely on kilowatt-hour (kWh) meters for billing purposes, a microcomputer-based monitoring system is used when greater temporal and end-use resolution is desired. Because these types of monitoring systems will be used increasingly in large-scale conservation and end-use studies, it is important that their performance be analyzed to determine their accuracy. A co-instrumentation test was devised in which two such microcomputer-based monitoring systems made simultaneous measurements of electrical end-uses in two commercial buildings. The analysismore » of the co-instrumentation data aids in the evaluation of microcomputer-based monitoring systems used for end-use measurements. Separate and independent data loggers were used to measure the same loads simultaneously. In addition to these two systems, a utility billing meter measured the total energy use in each building during the co-instrumentation test. The utility's meters provided a relatively accurate standard by which the performance of both loggers could be judged. The comparison between the SCL and PNL microcomputer-based loggers has shown that power measurement techniques directly affect system performance. The co-instrumentation test has shown that there are certain standards that a monitoring system must meet if it is to perform well. First, it is essential to calibrate a microcomputer-based logger against a known standard load before the system is installed. Second, a microcomputer-based system must have some way of accounting for power factors. Recent advances in power metering circuitry have made it relatively easy to apply these power factors automatically in real time.« less
20-meter underwater wireless optical communication link with 1.5 Gbps data rate.
Shen, Chao; Guo, Yujian; Oubei, Hassan M; Ng, Tien Khee; Liu, Guangyu; Park, Ki-Hong; Ho, Kang-Ting; Alouini, Mohamed-Slim; Ooi, Boon S
2016-10-31
The video streaming, data transmission, and remote control in underwater call for high speed (Gbps) communication link with a long channel length (~10 meters). We present a compact and low power consumption underwater wireless optical communication (UWOC) system utilizing a 450-nm laser diode (LD) and a Si avalanche photodetector. With the LD operating at a driving current of 80 mA with an optical power of 51.3 mW, we demonstrated a high-speed UWOC link offering a data rate up to 2 Gbps over a 12-meter-long, and 1.5 Gbps over a record 20-meter-long underwater channel. The measured bit-error rate (BER) are 2.8 × 10-5, and 3.0 × 10-3, respectively, which pass well the forward error correction (FEC) criterion.
In vitro and in vivo evaluation of diamond-coated strips.
Lione, Roberta; Gazzani, Francesca; Pavoni, Chiara; Guarino, Stefano; Tagliaferri, Vincenzo; Cozza, Paola
2017-05-01
To test in vitro and in vivo the wear performance of diamond-coated strips by means of tribological testing and scanning electronic microscope (SEM). To evaluate the in vitro wear performance, a tribological test was performed by a standard tribometer. The abrasive strips slid against stationary, freshly extracted premolars fixed in resin blocks, at a 2-newton load. At the end of the tribological test, the residual surface of the strip was observed by means of SEM analysis, which was performed every 50 meters until reaching 300 meters. For the in vivo analysis, the strip was used for 300 seconds, corresponding to 250 meters. The strips presented a fenestrated structure characterized by diamond granules alternating with voids. After the first 50 meters, it was possible to observe tooth material deposited on the surface of the strips and a certain number of abrasive grains detached. The surface of the strip after 250 meters appeared smoother and therefore less effective in its abrasive power. After 300 seconds of in vivo utilization of the strip, it was possible to observe the detachment of diamond abrasive grains, the near absence of the grains and, therefore, loss of abrasive power. Under ideal conditions, after 5 minutes (30 meters) of use, the strip loses its abrasive capacity by about 60%. In vivo, a more rapid loss of abrasive power was observed due to the greater load applied by the clinician in forcing the strip into the contact point.
Assessment of distributed solar power systems: Issues and impacts
NASA Astrophysics Data System (ADS)
Moyle, R. A.; Chernoff, H.; Schweizer, T. C.; Patton, J. B.
1982-11-01
The installation of distributed solar-power systems presents electric utilities with a host of questions. Some of the technical and economic impacts of these systems are discussed. Among the technical interconnect issues are isolated operation, power quality, line safety, and metering options. Economic issues include user purchase criteria, structures and installation costs, marketing and product distribution costs, and interconnect costs. An interactive computer program that allows easy calculation of allowable system prices and allowable generation-equipment prices was developed as part of this project. It is concluded that the technical problems raised by distributed solar systems are surmountable, but their resolution may be costly. The stringent purchase criteria likely to be imposed by many potential system users and the economies of large-scale systems make small systems (less than 10 to 20 kW) less attractive than larger systems. Utilities that consider life-cycle costs in making investment decisions and third-party investors who have tax and financial advantages are likely to place the highest value on solar-power systems.
Flowing-water optical power meter for primary-standard, multi-kilowatt laser power measurements
NASA Astrophysics Data System (ADS)
Williams, P. A.; Hadler, J. A.; Cromer, C.; West, J.; Li, X.; Lehman, J. H.
2018-06-01
A primary-standard flowing-water optical power meter for measuring multi-kilowatt laser emission has been built and operated. The design and operational details of this primary standard are described, and a full uncertainty analysis is provided covering the measurement range from 1–10 kW with an expanded uncertainty of 1.2%. Validating measurements at 5 kW and 10 kW show agreement with other measurement techniques to within the measurement uncertainty. This work of the U.S. Government is not subject to U.S. copyright.
2017-01-01
The annual report presents data tables describing the electricity industry in each State. Data include: summary statistics; the 10 largest plants by generating capacity; the top five entities ranked by sector; electric power industry generating capacity by primary energy source; electric power industry generation by primary energy source; utility delivered fuel prices for coal, petroleum, and natural gas; electric power industry emissions estimates; retail sales, revenue, and average retail price by sector; retail electricity sales statistics; and supply and disposition of electricity; net metering counts and capacity by technology and customer type; and advanced metering counts by customer type.
Energy Harvesting from Fluid Flow in Water Pipelines for Smart Metering Applications
NASA Astrophysics Data System (ADS)
Hoffmann, D.; Willmann, A.; Göpfert, R.; Becker, P.; Folkmer, B.; Manoli, Y.
2013-12-01
In this paper a rotational, radial-flux energy harvester incorporating a three-phase generation principle is presented for converting energy from water flow in domestic water pipelines. The energy harvester together with a power management circuit and energy storage is used to power a smart metering system installed underground making it independent from external power supplies or depleting batteries. The design of the radial-flux energy harvester is adapted to the housing of a conventional mechanical water flow meter enabling the use of standard components such as housing and impeller. The energy harvester is able to generate up to 720 mW when using a flow rate of 20 l/min (fully opened water tab). A minimum flow rate of 3 l/min is required to get the harvester started. In this case a power output of 2 mW is achievable. By further design optimization of the mechanical structure including the impeller and magnetic circuit the threshold flow rate can be further reduced.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knutson, Chad; Dastgheib, Seyed A.; Yang, Yaning
2012-07-01
Power generation in the Illinois Basin is expected to increase by as much as 30% by the year 2030, and this would increase the cooling water consumption in the region by approximately 40%. This project investigated the potential use of produced water from CO 2 enhanced oil recovery (CO 2-EOR) operations; coal-bed methane (CBM) recovery; and active and abandoned underground coal mines for power plant cooling in the Illinois Basin. Specific objectives of this project were: (1) to characterize the quantity, quality, and geographic distribution of produced water in the Illinois Basin; (2) to evaluate treatment options so that producedmore » water may be used beneficially at power plants; and (3) to perform a techno-economic analysis of the treatment and transportation of produced water to thermoelectric power plants in the Illinois Basin. Current produced water availability within the basin is not large, but potential flow rates up to 257 million liters per day (68 million gallons per day (MGD)) are possible if CO 2-enhanced oil recovery and coal bed methane recovery are implemented on a large scale. Produced water samples taken during the project tend to have dissolved solids concentrations between 10 and 100 g/L, and water from coal beds tends to have lower TDS values than water from oil fields. Current pretreatment and desalination technologies including filtration, adsorption, reverse osmosis (RO), and distillation can be used to treat produced water to a high quality level, with estimated costs ranging from $2.6 to $10.5 per cubic meter ($10 to $40 per 1000 gallons). Because of the distances between produced water sources and power plants, transportation costs tend to be greater than treatment costs. An optimization algorithm was developed to determine the lowest cost pipe network connecting sources and sinks. Total water costs increased with flow rate up to 26 million liters per day (7 MGD), and the range was from $4 to $16 per cubic meter ($15 to $60 per 1000 gallons), with treatment costs accounting for 13-23% of the overall cost. Results from this project suggest that produced water is a potential large source of cooling water, but treatment and transportation costs for this water are large.« less
47 CFR 22.627 - Effective radiated power limits.
Code of Federal Regulations, 2010 CFR
2010-10-01
... in meters (feet) 15 (50) 30 (100) 46 (150) 61 (200) 76 (250) 91 (300) 107 (350) 122 (400) 137 (450... terrain in meters (feet) 30 (100) 46 (150) 61 (200) 76 (250) 91 (300) 107 (350) 122 (400) 137 (450) 152... in the Los Angeles urban area that utilize an antenna height of 457 or more meters (1500 or more feet...
Retail wheeling - users, utilities and power producers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kubacki, J. Jr.
1996-12-31
Information is outlined on the retail wheeling of electric power. Topics discussed include: SEL mission; average cost per kWh; retail pilot programs; retail wheeling activity; key tasks for industrials; power marketer quote; retail wheeling strategic planning; metered customer load profile; proposed ISO regions; conjunctive billing; interconnection areas; FERC order 888; open access same time information systems; transmission inferconnections; suppliers of energy and capacity; self-generation; FERC Form 714; rebundling unbundled services; key variables: load factor; energy and capacity; metering today; competitive industry configuration; power cost reduction: strategic planning; real-time pricing; prime sources of leverage; likeliness of switching utilities; and Strategic Energymore » Ltd.« less
The Anti-RFI Design of Intelligent Electric Energy Meters with UHF RFID
NASA Astrophysics Data System (ADS)
Chen, Xiangqun; Huang, Rui; Shen, Liman; chen, Hao; Xiong, Dezhi; Xiao, Xiangqi; Liu, Mouhai; Xu, Renheng
2018-03-01
In order to solve the existing artificial meter reading watt-hour meter industry is still slow and inventory of common problems, using the uhf radio frequency identification (RFID) technology and intelligent watt-hour meter depth fusion, which has a one-time read multiple tags, identification distance, high transmission rate, high reliability, etc, while retaining the original asset management functions, in order to ensure the uhf RFID and minimum impact on the operation of the intelligent watt-hour meter, proposed to improve the stability of the electric meter system while working at the same time, this paper designs the uhf RFID intelligent watt-hour meter radio frequency interference resistance, put forward to improve intelligent watt-hour meter electromagnetic compatibility design train of thought, and introduced its power and the hardware circuit design of printed circuit board, etc.
DEVELOPMENT OF A LOW-COST INFERENTIAL NATURAL GAS ENERGY FLOW RATE PROTOTYPE RETROFIT MODULE
DOE Office of Scientific and Technical Information (OSTI.GOV)
E. Kelner; T.E. Owen; D.L. George
2004-03-01
In 1998, Southwest Research Institute{reg_sign} began a multi-year project co-funded by the Gas Research Institute (GRI) and the U.S. Department of Energy. The project goal is to develop a working prototype instrument module for natural gas energy measurement. The module will be used to retrofit a natural gas custody transfer flow meter for energy measurement, at a cost an order of magnitude lower than a gas chromatograph. Development and evaluation of the prototype retrofit natural gas energy flow meter in 2000-2001 included: (1) evaluation of the inferential gas energy analysis algorithm using supplemental gas databases and anticipated worst-case gas mixtures;more » (2) identification and feasibility review of potential sensing technologies for nitrogen diluent content; (3) experimental performance evaluation of infrared absorption sensors for carbon dioxide diluent content; and (4) procurement of a custom ultrasonic transducer and redesign of the ultrasonic pulse reflection correlation sensor for precision speed-of-sound measurements. A prototype energy meter module containing improved carbon dioxide and speed-of-sound sensors was constructed and tested in the GRI Metering Research Facility at SwRI. Performance of this module using transmission-quality natural gas and gas containing supplemental carbon dioxide up to 9 mol% resulted in gas energy determinations well within the inferential algorithm worst-case tolerance of {+-}2.4 Btu/scf (nitrogen diluent gas measured by gas chromatograph). A two-week field test was performed at a gas-fired power plant to evaluate the inferential algorithm and the data acquisition requirements needed to adapt the prototype energy meter module to practical field site conditions.« less
The Ames Power Monitoring System
NASA Technical Reports Server (NTRS)
Osetinsky, Leonid; Wang, David
2003-01-01
The Ames Power Monitoring System (APMS) is a centralized system of power meters, computer hardware, and specialpurpose software that collects and stores electrical power data by various facilities at Ames Research Center (ARC). This system is needed because of the large and varying nature of the overall ARC power demand, which has been observed to range from 20 to 200 MW. Large portions of peak demand can be attributed to only three wind tunnels (60, 180, and 100 MW, respectively). The APMS helps ARC avoid or minimize costly demand charges by enabling wind-tunnel operators, test engineers, and the power manager to monitor total demand for center in real time. These persons receive the information they need to manage and schedule energy-intensive research in advance and to adjust loads in real time to ensure that the overall maximum allowable demand is not exceeded. The APMS (see figure) includes a server computer running the Windows NT operating system and can, in principle, include an unlimited number of power meters and client computers. As configured at the time of reporting the information for this article, the APMS includes more than 40 power meters monitoring all the major research facilities, plus 15 Windows-based client personal computers that display real-time and historical data to users via graphical user interfaces (GUIs). The power meters and client computers communicate with the server using Transmission Control Protocol/Internet Protocol (TCP/IP) on Ethernet networks, variously, through dedicated fiber-optic cables or through the pre-existing ARC local-area network (ARCLAN). The APMS has enabled ARC to achieve significant savings ($1.2 million in 2001) in the cost of power and electric energy by helping personnel to maintain total demand below monthly allowable levels, to manage the overall power factor to avoid low power factor penalties, and to use historical system data to identify opportunities for additional energy savings. The APMS also provides power engineers and electricians with the information they need to plan modifications in advance and perform day-to-day maintenance of the ARC electric-power distribution system.
Idaho | Midmarket Solar Policies in the United States | Solar Research |
to develop a 500 kW community solar project. State Incentive Programs Program Administrator Incentive and incentive programs. Net metering and interconnection Idaho Power: Net Metering and Interconnection
Design Study of 8 Meter Monolithic Mirror UV/Optical Space Telescope
NASA Technical Reports Server (NTRS)
Stahl, H. Philip
2008-01-01
The planned Ares V launch vehicle with its 10 meter fairing shroud and 55,000 kg capacity to the Sun Earth L2 point enables entirely new classes of space telescopes. NASA MSFC has conducted a preliminary study that demonstrates the feasibility of launching a 6 to 8 meter class monolithic primary mirror telescope to Sun-Earth L2 using an Ares V. Specific technical areas studied included optical design; structural design/analysis including primary mirror support structure, sun shade and secondary mirror support structure; thermal analysis; launch vehicle performance and trajectory; spacecraft including structure, propulsion, GN&C, avionics, power systems and reaction wheels; operations and servicing; mass and power budgets; and system cost.
Analysis of Electric Vehicle DC High Current Conversion Technology
NASA Astrophysics Data System (ADS)
Yang, Jing; Bai, Jing-fen; Lin, Fan-tao; Lu, Da
2017-05-01
Based on the background of electric vehicles, it is elaborated the necessity about electric energy accurate metering of electric vehicle power batteries, and it is analyzed about the charging and discharging characteristics of power batteries. It is needed a DC large current converter to realize accurate calibration of power batteries electric energy metering. Several kinds of measuring methods are analyzed based on shunts and magnetic induction principle in detail. It is put forward power batteries charge and discharge calibration system principle, and it is simulated and analyzed ripple waves containing rate and harmonic waves containing rate of power batteries AC side and DC side. It is put forward suitable DC large current measurement methods of power batteries by comparing different measurement principles and it is looked forward the DC large current measurement techniques.
Rusch, Gordon K.
1976-01-06
An improved log N amplifier type nuclear reactor period meter with reduced probability for noise-induced scrams is provided. With the reactor at low power levels a sampling circuit is provided to determine the reactor period by measuring the finite change in the amplitude of the log N amplifier output signal for a predetermined time period, while at high power levels, differentiation of the log N amplifier output signal provides an additional measure of the reactor period.
From SPOT 5 to Pleiades HR: evolution of the instrumental specifications
NASA Astrophysics Data System (ADS)
Rosak, A.; Latry, C.; Pascal, V.; Laubier, D.
2017-11-01
Image quality specifications should aimed to fulfil high resolution mission requirements of remote sensing satellites with a minimum cost. The most important trade-off to be taken into account is between Modulation Transfer Function, radiometric noise and sampling scheme. This compromise is the main driver during design optimisation and requirement definition in order to achieve good performances and to minimise the mission cost. For the SPOT 5 satellite, a new compromise had been chosen. The supermode principle of imagery (sampling at 2.5 meter with a pixel size of 5 meter) imp roves the resolution by a factor of four compared with the SPOT 4 satellite (10 meter resolution). This paper presents the image quality specifications of the HRG-SPOT 5 instrument. We introduce all the efforts made on the instrument to achieve good image quality and low radiometric noise, then we compare the results with the SPOT 4 instrument's performances to highlight the improvements achieved. Then, the in-orbit performance will be described. Finally, we will present the new goals of image quality specifications for the new Pleiades-HR satellite for earth observation (0.7 meter resolution) and the instrument concept.
47 CFR 15.712 - Interference protection requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
...-Less than 30 meters 11.1 1.2 30-Less than 50 meters 14.3 1.8 50-Less than 75 meters 18.0 2.0 75-Less... translator, Low Power TV (including Class A) and Multi-channel Video Programming Distributor (MVPD) receive... 04 N 121 28 24 W Arecibo Observatory 18 20 37 N 066 45 11 W Green Bank Telescope (GBT) 38 25 59 N 079...
47 CFR 15.712 - Interference protection requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
...-Less than 30 meters 11.1 1.2 30-Less than 50 meters 14.3 1.8 50-Less than 75 meters 18.0 2.0 75-Less... translator, Low Power TV (including Class A) and Multi-channel Video Programming Distributor (MVPD) receive... 04 N 121 28 24 W Arecibo Observatory 18 20 37 N 066 45 11 W Green Bank Telescope (GBT) 38 25 59 N 079...
47 CFR 15.712 - Interference protection requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
...-Less than 30 meters 11.1 1.2 30-Less than 50 meters 14.3 1.8 50-Less than 75 meters 18.0 2.0 75-Less... translator, Low Power TV (including Class A) and Multi-channel Video Programming Distributor (MVPD) receive... 04 N 121 28 24 W Arecibo Observatory 18 20 37 N 066 45 11 W Green Bank Telescope (GBT) 38 25 59 N 079...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nusrat, H; Pang, G; Sarfehnia, A
Purpose: This work seeks to develop a beam quality meter using multiple differently doped plastic scintillators that are thus intrinsically beam-quality dependent. Plastic scintillators spontaneously emit visible light upon irradiation; the amount of light produced is dependent on stopping power (closely related to LET) according to Birks’ law. Doping plastic scintillators can be used to tune their sensitivity to specific LET ranges. Methods: GEANT4.10.1 Monte Carlo (MC) was used to evaluate the response of various scintillator dopant combinations. MC radiation transport and scintillator light response were validated against previously published literature. Current work involves evaluating detector response experimentally; to thatmore » end, a detector prototype with interchangeable scintillator housing was constructed. Measurement set-up guides light emitted by the scintillator to a photomultiplier tube via a glass taper junction coupled to an optical fiber. The resulting signal is measured by an electrometer, and normalized to dose readout from a diode. Measurements have been done using clinical electron and orthovoltage beams. MC response (simulated scintillator light normalized to dose scored inside the scintillating volume) was evaluated for four different LET radiations for an undoped and 1%Pb doped scintillator (σ=0.85%). Simulated incident electrons included: 0.05, 0.1, 0.2, 6, 12, and 18 MeV; these energies correspond to a range of stopping power (related to LET) values ranging from 1.824 to 11.09 MeVcm{sup 2}g{sup −1} (SCOL from NIST-ESTAR). Results: Initial MC results show a distinct divergence in scintillator response as LET increases. The response for undoped plastic scintillator indicated a 35.0% increase in signal when going from 18 MeV (low LET) to 0.05 MeV (high LET) while 1%-Pb doped scintillator indicated a 100.9% increase. Conclusion: After validating MC against measurement, simulations will be used to test various concentrations (2%, 4%, 6%) of different high-Z material dopants (W, Mo) to optimize the scintillator types for the beam quality meter. NSERC Discovery Grant RGPIN-435608.« less
High-power picosecond pulse delivery through hollow core photonic band gap fibers
NASA Astrophysics Data System (ADS)
Michieletto, Mattia; Johansen, Mette M.; Lyngsø, Jens K.; Lægsgaard, Jesper; Bang, Ole; Alkeskjold, Thomas T.
2016-03-01
We demonstrated robust and bend insensitive fiber delivery of high power laser with diffraction limited beam quality for two different kinds of hollow core band gap fibers. The light source for this experiment consists of ytterbium-doped double clad fiber aeroGAIN-ROD-PM85 in a high power amplifier setup. It provided 22ps pulses with a maximum average power of 95W, 40MHz repetition rate at 1032nm (~2.4μJ pulse energy), with M2 <1.3. We determined the facet damage threshold for a 7-cells hollow core photonic bandgap fiber and showed up to 59W average power output for a 5 meters fiber. The damage threshold for a 19-cell hollow core photonic bandgap fiber exceeded the maximum power provided by the light source and up to 76W average output power was demonstrated for a 1m fiber. In both cases, no special attention was needed to mitigate bend sensitivity. The fibers were coiled on 8 centimeters radius spools and even lower bending radii were present. In addition, stimulated rotational Raman scattering arising from nitrogen molecules was measured through a 42m long 19 cell hollow core fiber.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-23
... satisfactory quality] to the City for the purchase of ORION [supreg] Water Meter Monitor with Leak Detection... Leak Detection Indicator in-home water meter monitors manufactured in Malaysia by Escatech, Inc., under... conservation through the early detection and remediation of leaks. The City has used residential water meters...
Assessing the Future of Distributed Wind: Opportunities for Behind-the-Meter Projects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lantz, Eric; Sigrin, Benjamin; Gleason, Michael
2016-11-01
Wind power is one of the fastest growing sources of new electricity generation in the United States. Cumulative installed capacity was more than 74,000 megawatts (MW) at year-end 2015 and wind power supplied 4.7% of total 2015 U.S. electricity generation. Despite the growth of the wind power industry, the distributed wind market has remained limited. Cumulative installations of distributed wind through 2015 totaled 934 MW. This first-of-a-kind exploratory analysis characterizes the future opportunity for behind-the-meter distributed wind, serving primarily rural or suburban homes, farms, and manufacturing facilities. This work focuses only on the grid-connected, behind-the-meter subset of the broader distributedmore » wind market. We estimate this segment to be approximately half of the 934 MW of total installed distributed wind capacity at year-end 2015. Potential from other distributed wind market segments including systems installed in front of the meter (e.g., community wind) and in remote, off-grid locations is not assessed in this analysis and therefore, would be additive to results presented here. These other distributed wind market segments are not considered in this initial effort because of their relatively unique economic and market attributes.« less
Hydro-Piezoelectricity: A Renewable Energy Source for Autonomous Underwater Vehicles
1999-09-30
having capacities of a few watts to hundreds of kW. Based on a unique Wave Energy Converter ( WEC ) buoy and intelligent power take-off algorithms, the... environmental monitoring. In addition, there will be significant dual use in the commercial sector for power generation in remote locations where the...2.5 meter by 6.5 meter long WEC at the LEO 15 site of Rutgers University. b. Multiple sensor outputs and performance data were reliably
Undersea Laser Communications Field Test at the Naval Undersea Warfare Center (NUWC)
2016-08-30
and blue wavelength scenario suggests links in excess of 400 meters are achievable with small, low-power, narrow-beam lasercom terminals. The field...of 7.6 meters , which corresponded to between 8–12 beam extinction lengths. The PMT demonstration included real-time electronics to perform...communications link was demonstrated over 4.8 meters (5 beam extinction lengths) with an APD receiver. Communications and characterization data were
Code of Federal Regulations, 2011 CFR
2011-10-01
... feet) in length carrying more than 600 passengers or with overnight accommodations for more than 49... of more than 19.8 meters (65 feet) in length carrying more than 600 passengers or with overnight accommodations for more than 49 passengers. A vessel of more than 19.8 meters (65 feet) in length carrying more...
Kenneth J. Grayson; Robert F. Wittwer; Michael G. Shelton
2002-01-01
Cone characteristics and seed quality for 16 released (stand density 14 square meters per hectare) and 16 unreleased (stand density 28 square meters per hectare) shortleaf pine (Pinus echinata Mill.) trees were described by d.b.h. class (28, 33, 38, 43 centimeters) and crown position (upper south, upper north, lower south, and lower north). The 38-...
Heinemann, Lutz
2010-11-01
A good understanding of the relevance of interfering factors having an impact on blood glucose (BG) measurement is needed to obtain the required quality. This depends on the application in which meters designed for self-monitoring of BG (SMBG) are used. By means of a literature search all publications (from January 1, 1980 to August 10, 2009) were identified that report about the influence of potentially interfering substances/factors on the measurement quality of BG meters. Certain substances (e.g., maltose) can have a profound and misleading impact on the BG measurement result when the enzymatic reaction embedded on the given test strips cross-reacts. Also, a number of other drugs (e.g., acetaminophen) and factors (like temperature and altitude) affect the reliability of BG measurement massively. However, the susceptibility of the BG meter (depending on the enzyme technology of the test strips) differs significantly. In daily practice the factors that have a relevant impact on the reliability of BG measurements with modern BG meters are rarely met. Clearly this also depends on the intended use (SMBG in patient hands vs. point-of-care testing in hospitals). To avoid misleading measurement results requires adequate training of all people involved.
Development and Application of a ZigBee-Based Building Energy Monitoring and Control System
Peng, Changhai
2014-01-01
Increasing in energy consumption, particularly with the ever-increasing growth and development of urban systems, has become a major concern in most countries. In this paper, the authors propose a cost-effective ZigBee-based building energy monitoring and control system (ZBEMCS), which is composed of a gateway, a base station, and sensors. Specifically, a new hardware platform for power sensor nodes is developed to perform both local/remote power parameter measurement and power on/off switching for electric appliances. The experimental results show that the ZBEMCS can easily monitor energy usage with a high level of accuracy. Two typical applications of ZBEMCS such as subentry metering and household metering of building energy are presented. The former includes lighting socket electricity, HVAC electricity, power electricity and special electricity. The latter includes household metering according to the campus's main function zone and each college or department. Therefore, this system can be used for energy consumption monitoring, long-term energy conservation planning, and the development of automated energy conservation for building applications. PMID:25254249
Development and application of a ZigBee-based building energy monitoring and control system.
Peng, Changhai; Qian, Kun
2014-01-01
Increasing in energy consumption, particularly with the ever-increasing growth and development of urban systems, has become a major concern in most countries. In this paper, the authors propose a cost-effective ZigBee-based building energy monitoring and control system (ZBEMCS), which is composed of a gateway, a base station, and sensors. Specifically, a new hardware platform for power sensor nodes is developed to perform both local/remote power parameter measurement and power on/off switching for electric appliances. The experimental results show that the ZBEMCS can easily monitor energy usage with a high level of accuracy. Two typical applications of ZBEMCS such as subentry metering and household metering of building energy are presented. The former includes lighting socket electricity, HVAC electricity, power electricity and special electricity. The latter includes household metering according to the campus's main function zone and each college or department. Therefore, this system can be used for energy consumption monitoring, long-term energy conservation planning, and the development of automated energy conservation for building applications.
NASA Astrophysics Data System (ADS)
Haller, Julian; Wilkens, Volker
2012-11-01
For power levels up to 200 W and sonication times up to 60 s, the electrical power, the voltage and the electrical impedance (more exactly: the ratio of RMS voltage and RMS current) have been measured for a piezocomposite high intensity therapeutic ultrasound (HITU) transducer with integrated matching network, two piezoceramic HITU transducers with external matching networks and for a passive dummy 50 Ω load. The electrical power and the voltage were measured during high power application with an inline power meter and an RMS voltage meter, respectively, and the complex electrical impedance was indirectly measured with a current probe, a 100:1 voltage probe and a digital scope. The results clearly show that the input RMS voltage and the input RMS power change unequally during the application. Hence, the indication of only the electrical input power or only the voltage as the input parameter may not be sufficient for reliable characterizations of ultrasound transducers for high power applications in some cases.
Experimental Investigation of Shrouding on Meshed Spur Gear Windage Power Loss
NASA Technical Reports Server (NTRS)
Delgado, Irebert R.; Hurrell, Michael J.
2017-01-01
Windage power loss in high-speed gearboxes results in efficiency losses and increased heating due to drag on the gear teeth. Test results for meshed spur gear windage power loss are presented at ambient oil inlet temperatures, both with and without shrouding. The rate of windage power loss is observed to increase above a gear surface speed of 10,000 feet per minute (51 meters per second), similar to results presented in the literature. Shrouding is observed to become more effective above 15,000 feet per minute (76 meters per second), decreasing power loss by 10 percent at 25,000 feet per minute (127 meters per second). The need for gearbox oil drain slots limits the effectiveness of shrouding in reducing windage power loss. Windage power loss is observed to decrease with increasing gearbox temperatures and to increase with oil flow. Windage power losses for unshrouded meshed spur gears are 7 times greater than losses determined from unshrouded single spur gear tests. A 6- to 12-times increase in windage power loss is observed in the shrouded meshed spur gear data compared with shrouded single spur gear data. Based on this preliminary study, additional research is suggested to determine the effect of oil drain slot configurations, axial and radial shroud clearances, and higher gear surface speeds on windage power loss. Additional work is also suggested to determine the sensitivity of windage power loss to oil temperature and oil flow. Windage power loss for meshed spur gears tested in both the shrouded and unshrouded configurations is shown to be more than double versus windage power loss for the same spur gears run individually in the same shroud configurations. Further study of the physical processes behind these results is needed to optimize gearbox shrouds for minimum windage power loss.
NASA Technical Reports Server (NTRS)
Walthall, Harry G.; Reay, William G.
1993-01-01
Instrument measures seepage of groundwater into inland or coastal body of water. Positioned at depth as great as 40 meters, and measures flow at low rate and low pressure differential. Auxiliary pressure meter provides data for correlation of flow of groundwater with tides and sea states. Seepage meter operates independently for several weeks. Its sampling rate adjusted to suit hydrologic conditions; to measure more frequently when conditions changing rapidly. Used in water-quality management and for biological and geological research. Potential industrial uses include measurement of seepage of caustic and corrosive liquids.
Sohrabi, Mohammad-Reza; Tarjoman, Termeh; Abadi, Alireza; Yavari, Parvin
2010-01-01
This study aimed to investigate association of living near high voltage power lines with occurrence of childhood acute lymphoblastic leukemia (ALL). Through a case-control study 300 children aged 1-18 years with confirmed ALL were selected from all referral teaching centers for cancer. They interviewed for history of living near overhead high voltage power lines during at least past two years and compared with 300 controls which were individually matched for sex and approximate age. Logistic regression, chi square and paired t-tests were used for analysis when appropriate. The case group were living significantly closer to power lines (P<0.001). More than half of the cases were exposed to two or three types of power lines (P<0.02). Using logistic regression, odds ratio of 2.61 (95%CI: 1.73 to 3.94) calculated for less than 600 meters far from the nearest lines against more than 600 meters. This ratio estimated as 9.93 (95%CI: 3.47 to 28.5) for 123 KV, 10.78 (95%CI: 3.75 to 31) for 230 KV and 2.98 (95%CI: 0.93 to 9.54) for 400 KV lines. Odds of ALL decreased 0.61 for every 600 meters from the nearest power line. This study emphasizes that living close to high voltage power lines is a risk for ALL.
Capillary glucose meter accuracy and sources of error in the ambulatory setting.
Lunt, Helen; Florkowski, Christopher; Bignall, Michael; Budgen, Christopher
2010-03-05
Hand-held glucose meters are used throughout the health system by both patients with diabetes and also by health care practitioners. Glucose meter technology is constantly evolving. The current generation of meters and strips are quick to use and require a very small volume of blood. This review aims to describe meters currently available in New Zealand, for use in the ambulatory setting. It also aims to discuss the limits of meter performance and provide technical information that is relevant to the clinician, using locally available data. Commoner causes and consequences of end-user (patient and health professional) error are illustrated using clinical case examples. No meter offers definite advantages over other meters in all clinical situations, rather meters should be chosen because they fit the needs of individual patients and because the provider is able to offer appropriate educational and quality assurance backup to the meter user. A broad understanding of the advantages and disadvantages of the subsidised meter systems available in New Zealand will help the health practitioner decide when it is in the best interests of their patients to change or update meter technology.
Apparatus and method for microwave processing of materials
Johnson, A.C.; Lauf, R.J.; Bible, D.W.; Markunas, R.J.
1996-05-28
Disclosed is a variable frequency microwave heating apparatus designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity for testing or other selected applications. The variable frequency heating apparatus is used in the method of the present invention to monitor the resonant processing frequency within the furnace cavity depending upon the material, including the state thereof, from which the workpiece is fabricated. The variable frequency microwave heating apparatus includes a microwave signal generator and a high-power microwave amplifier or a microwave voltage-controlled oscillator. A power supply is provided for operation of the high-power microwave oscillator or microwave amplifier. A directional coupler is provided for detecting the direction and amplitude of signals incident upon and reflected from the microwave cavity. A first power meter is provided for measuring the power delivered to the microwave furnace. A second power meter detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load. 10 figs.
NASA Technical Reports Server (NTRS)
Leatherwood, J. D.; Dempsey, T. K.; Clevenson, S. A.; Stephens, D. G. (Inventor)
1983-01-01
A ride quality meter is disclosed that automatically transforms vibration and noise measurements into a single number index of passenger discomfort. The noise measurements are converted into a noise discomfort value. The vibrations are converted into single axis discomfort values which are then converted into a combined axis discomfort value. The combined axis discomfort value is corrected for time duration and then summed with the noise discomfort value to obtain a total discomfort value.
Closeup view of a general electric company demand meter which ...
Close-up view of a general electric company demand meter which formerly monitored railroad power usage obtained from Philadelphia Electric Company sources. - Thirtieth Street Station, Load Dispatch Center, Thirtieth & Market Streets, Railroad Station, Amtrak (formerly Pennsylvania Railroad Station), Philadelphia, Philadelphia County, PA
Method for curing polymers using variable-frequency microwave heating
Lauf, R.J.; Bible, D.W.; Paulauskas, F.L.
1998-02-24
A method for curing polymers incorporating a variable frequency microwave furnace system designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity is disclosed. By varying the frequency of the microwave signal, non-uniformities within the cavity are minimized, thereby achieving a more uniform cure throughout the workpiece. A directional coupler is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter is provided for measuring the power delivered to the microwave furnace. A second power meter detects the magnitude of reflected power. The furnace cavity may be adapted to be used to cure materials defining a continuous sheet or which require compressive forces during curing. 15 figs.
Branch-Based Centralized Data Collection for Smart Grids Using Wireless Sensor Networks
Kim, Kwangsoo; Jin, Seong-il
2015-01-01
A smart grid is one of the most important applications in smart cities. In a smart grid, a smart meter acts as a sensor node in a sensor network, and a central device collects power usage from every smart meter. This paper focuses on a centralized data collection problem of how to collect every power usage from every meter without collisions in an environment in which the time synchronization among smart meters is not guaranteed. To solve the problem, we divide a tree that a sensor network constructs into several branches. A conflict-free query schedule is generated based on the branches. Each power usage is collected according to the schedule. The proposed method has important features: shortening query processing time and avoiding collisions between a query and query responses. We evaluate this method using the ns-2 simulator. The experimental results show that this method can achieve both collision avoidance and fast query processing at the same time. The success rate of data collection at a sink node executing this method is 100%. Its running time is about 35 percent faster than that of the round-robin method, and its memory size is reduced to about 10% of that of the depth-first search method. PMID:26007734
Branch-based centralized data collection for smart grids using wireless sensor networks.
Kim, Kwangsoo; Jin, Seong-il
2015-05-21
A smart grid is one of the most important applications in smart cities. In a smart grid, a smart meter acts as a sensor node in a sensor network, and a central device collects power usage from every smart meter. This paper focuses on a centralized data collection problem of how to collect every power usage from every meter without collisions in an environment in which the time synchronization among smart meters is not guaranteed. To solve the problem, we divide a tree that a sensor network constructs into several branches. A conflict-free query schedule is generated based on the branches. Each power usage is collected according to the schedule. The proposed method has important features: shortening query processing time and avoiding collisions between a query and query responses. We evaluate this method using the ns-2 simulator. The experimental results show that this method can achieve both collision avoidance and fast query processing at the same time. The success rate of data collection at a sink node executing this method is 100%. Its running time is about 35 percent faster than that of the round-robin method, and its memory size is reduced to about 10% of that of the depth-first search method.
Water use data to enhance scientific and policy insight
NASA Astrophysics Data System (ADS)
Konar, M.
2017-12-01
We live in an era of big data. However, water use data remains sparse. There is an urgent need to enhance both the quality and resolution of water data. Metered water use information - as opposed to estimated water use, typically based on climate - would enhance the quality of existing water databases. Metered water use data would enable the research community to evaluate the "who, where, and when" of water use. Importantly, this information would enable the scientific community to better understand decision making related to water use (i.e. the "why"), providing the insight necessary to guide policies that promote water conservation. Metered water use data is needed at a sufficient resolution (i.e. spatial, temporal, and water user) to fully resolve how water is used throughout the economy and society. Improving the quality and resolution of water use data will enable scientific understanding that can inform policy.
Measuring Power Flow in Electric Vehicles
NASA Technical Reports Server (NTRS)
Griffin, Daniel C., Jr; Wiker, G. A.
1983-01-01
Instrument accommodates fast rise and fall times of waveforms characteristic of modern, efficient power controllers. Power meter multiplies analog signals proportional to voltage and current, and converts resulting signal to frequency. Two mechanical counters provided: one for charging, one for discharging.
VIEW OF HISTORIC SLATE SWITCHBOARD IN THE CONTROL ROOM OF ...
VIEW OF HISTORIC SLATE SWITCHBOARD IN THE CONTROL ROOM OF THE ELWHA POWERHOUSE, INCLUDING: METERS, PROTECTIVE RELAYS, AND SWITCHES. NOTE ADDITION OF PERSONAL COMPUTERS FOR POWER METERING AND OPERATIONS. PHOTO BY JET LOWE, HAER, 1995. - Elwha River Hydroelectric System, Elwha Hydroelectric Dam & Plant, Port Angeles, Clallam County, WA
18 CFR 430.19 - Ground water withdrawal metering, recording, and reporting.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Ground water withdrawal... DELAWARE RIVER BASIN COMMISSION SPECIAL REGULATIONS GROUND WATER PROTECTION AREA: PENNSYLVANIA § 430.19 Ground water withdrawal metering, recording, and reporting. (a) Each person, firm, corporation, or other...
NASA Technical Reports Server (NTRS)
Ozoroski, Thomas A.; Nickol, Craig L.; Guynn, Mark D.
2015-01-01
There have been ongoing efforts in the Aeronautics Systems Analysis Branch at NASA Langley Research Center to develop a suite of integrated physics-based computational utilities suitable for modeling and analyzing extended-duration missions carried out using solar powered aircraft. From these efforts, SolFlyte has emerged as a state-of-the-art vehicle analysis and mission simulation tool capable of modeling both heavier-than-air (HTA) and lighter-than-air (LTA) vehicle concepts. This study compares solar powered airplane and airship station-keeping capability during a variety of high altitude missions, using SolFlyte as the primary analysis component. Three Unmanned Aerial Vehicle (UAV) concepts were designed for this study: an airplane (Operating Empty Weight (OEW) = 3285 kilograms, span = 127 meters, array area = 450 square meters), a small airship (OEW = 3790 kilograms, length = 115 meters, array area = 570 square meters), and a large airship (OEW = 6250 kilograms, length = 135 meters, array area = 1080 square meters). All the vehicles were sized for payload weight and power requirements of 454 kilograms and 5 kilowatts, respectively. Seven mission sites distributed throughout the United States were selected to provide a basis for assessing the vehicle energy budgets and site-persistent operational availability. Seasonal, 30-day duration missions were simulated at each of the sites during March, June, September, and December; one-year duration missions were simulated at three of the sites. Atmospheric conditions during the simulated missions were correlated to National Climatic Data Center (NCDC) historical data measurements at each mission site, at four flight levels. Unique features of the SolFlyte model are described, including methods for calculating recoverable and energy-optimal flight trajectories and the effects of shadows on solar energy collection. Results of this study indicate that: 1) the airplane concept attained longer periods of on-site capability than either airship concept, and 2) the airship concepts can attain higher levels of energy collection and storage than the airplane concept; however, attaining these energy benefits requires adverse design trades of reduced performance (small airship) or excessive solar array area (large airship).
47 CFR 73.811 - LPFM power and antenna height requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 4 2011-10-01 2011-10-01 false LPFM power and antenna height requirements. 73... SERVICES RADIO BROADCAST SERVICES Low Power FM Broadcast Stations (LPFM) § 73.811 LPFM power and antenna... operate with maximum facilities of 100 watts effective radiated power (ERP) at 30 meters antenna height...
47 CFR 73.811 - LPFM power and antenna height requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 4 2012-10-01 2012-10-01 false LPFM power and antenna height requirements. 73... SERVICES RADIO BROADCAST SERVICES Low Power FM Broadcast Stations (LPFM) § 73.811 LPFM power and antenna... operate with maximum facilities of 100 watts effective radiated power (ERP) at 30 meters antenna height...
47 CFR 73.811 - LPFM power and antenna height requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 4 2010-10-01 2010-10-01 false LPFM power and antenna height requirements. 73... SERVICES RADIO BROADCAST SERVICES Low Power FM Broadcast Stations (LPFM) § 73.811 LPFM power and antenna... operate with maximum facilities of 100 watts effective radiated power (ERP) at 30 meters antenna height...
Taylor, R. Lynn
1995-01-01
Depths and velocities, measured at sample points after benthic macroinvertebrate sampling, ranged from 0.03 to 0.30 meter and from 0.06 to 1.2 meters per second, respectively. Measurable stream discharge ranged from 0.01 to 0.27 cubic meter per second. During two of the sampling periods, no flow was at site 1.
Method for curing polymers using variable-frequency microwave heating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lauf, R.J.; Bible, D.W.; Paulauskas, F.L.
1998-02-24
A method for curing polymers incorporating a variable frequency microwave furnace system designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity is disclosed. By varying the frequency of the microwave signal, non-uniformities within the cavity are minimized, thereby achieving a more uniform cure throughout the workpiece. A directional coupler is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter is provided for measuring the power delivered to the microwave furnace. A second power meter detects the magnitude of reflected power. Themore » furnace cavity may be adapted to be used to cure materials defining a continuous sheet or which require compressive forces during curing. 15 figs.« less
Method for curing polymers using variable-frequency microwave heating
Lauf, Robert J.; Bible, Don W.; Paulauskas, Felix L.
1998-01-01
A method for curing polymers (11) incorporating a variable frequency microwave furnace system (10) designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity (34). By varying the frequency of the microwave signal, non-uniformities within the cavity (34) are minimized, thereby achieving a more uniform cure throughout the workpiece (36). A directional coupler (24) is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter (30) is provided for measuring the power delivered to the microwave furnace (32). A second power meter (26) detects the magnitude of reflected power. The furnace cavity (34) may be adapted to be used to cure materials defining a continuous sheet or which require compressive forces during curing.
NASA Astrophysics Data System (ADS)
Gupta, Amit; Nagpal, Shaina
2017-05-01
Inter-satellite optical wireless communication (IsOWC) systems can be chosen over existing microwave satellite systems for deploying in space in the future due to their high bandwidth, small size, light weight, low power and low cost. However, the IsOWC system suffers from various attenuations due to weather conditions, turbulence or scintillations which limit its performance and decreases its availability. So, in order to improve the performance, IsOWC system using directly modulated laser source is proposed in this work. The system is designed and evaluated to be suitable for high data rate transmissions up to 10 Gbps. The performance of the system is investigated in order to reduce the cost and complexity of link and improving the quality of information signal. Further the proposed IsOWC system is analysed using BER analyser, power meter and oscilloscope Visualizer.
14. CONTROL PANELS, EAST SIDE, MAIN FLOOR: TO LEFT (ORIGINAL ...
14. CONTROL PANELS, EAST SIDE, MAIN FLOOR: TO LEFT (ORIGINAL EQUIPMENT): UPPER FOUR GLASS BOXES ARE OVERCURRENT PROTECTIVE RELAYS; MIDDLE FOUR GLASS BOXES CONTAIN TESTING SWITCHES; LOWER TWO BOXES ARE DG1 METERING CHART RECORDERS TO RIGHT (MODERN EQUIPMENT): UPPER FOUR BLACK BOXES ARE PROTECTIVE SERVICE RELAYS; MIDDLE FOUR BOXES CONTAIN TESTING SWITCHES; LARGE BOX BELOW HOUSES REMOTE METERING SYSTEM METAL CABINETS (LABELED L-2 & L-4) BELOW CONTAIN ORIGINAL POWER CIRCUIT BREAKERS - Bonneville Power Administration South Bank Substation, I-84, South of Bonneville Dam Powerhouse, Bonneville, Multnomah County, OR
NASA Technical Reports Server (NTRS)
Gorman, D.; Grant, C.; Kyrias, G.; Lord, C.; Rombach, J. P.; Salis, M.; Skidmore, R.; Thomas, R.
1975-01-01
A sound, practical approach for the assembly and maintenance of very large structures in space is presented. The methods and approaches for assembling two large structures are examined. The maintenance objectives include the investigation of methods to maintain five geosynchronous satellites. The two assembly examples are a 200-meter-diameter radio astronomy telescope and a 1,000-meter-diameter microwave power transmission system. The radio astronomy telescope operates at an 8,000-mile altitude and receives RF signals from space. The microwave power transmission system is part of a solar power satellite that will be used to transmit converted solar energy to microwave ground receivers. Illustrations are included.
Design and fabrication of a low-cost Darrieus vertical-axis wind-turbine system, volume 2
NASA Astrophysics Data System (ADS)
1983-03-01
The fabrication, installation, and checkout of 100-kW 17 meter vertical axis wind turbines is described. Turbines are Darrieus-type VAWIs with rotors 17 meters and 25.15 meters in height. They can produce 100 kW of electric power at a cost of energy as low as 3 cents per kWh, in an 18-mph wind regime using 12% annualized costs. Four turbines were produced; three are installed and are operable. Contract results are documented.
Wei, Ji Feng; Hu, Xiao Yang; Sun, Li Qun; Zhang, Kai; Chang, Yan
2015-03-20
The calibration method using a high-power halogen tungsten lamp as a calibration source has many advantages such as strong equivalence and high power, so it is very fit for the calibration of high-energy laser energy meters. However, high-power halogen tungsten lamps after power-off still reserve much residual energy and continually radiate energy, which is difficult to be measured. Two measuring systems were found to solve the problems. One system is composed of an integrating sphere and two optical spectrometers, which can accurately characterize the radiative spectra and power-time variation of the halogen tungsten lamp. This measuring system was then calibrated using a normal halogen tungsten lamp made of the same material as the high-power halogen tungsten lamp. In this way, the radiation efficiency of the halogen tungsten lamp after power-off can be quantitatively measured. In the other measuring system, a wide-spectrum power meter was installed far away from the halogen tungsten lamp; thus, the lamp can be regarded as a point light source. The radiation efficiency of residual energy from the halogen tungsten lamp was computed on the basis of geometrical relations. The results show that the halogen tungsten lamp's radiation efficiency was improved with power-on time but did not change under constant power-on time/energy. All the tested halogen tungsten lamps reached 89.3% of radiation efficiency at 50 s after power-on. After power-off, the residual energy in the halogen tungsten lamp gradually dropped to less than 10% of the initial radiation power, and the radiation efficiency changed with time. The final total radiation energy was decided by the halogen tungsten lamp's radiation efficiency, the radiation efficiency of residual energy, and the total power consumption. The measuring uncertainty of total radiation energy was 2.4% (here, the confidence factor is two).
Development and application of a microarray meter tool to optimize microarray experiments
Rouse, Richard JD; Field, Katrine; Lapira, Jennifer; Lee, Allen; Wick, Ivan; Eckhardt, Colleen; Bhasker, C Ramana; Soverchia, Laura; Hardiman, Gary
2008-01-01
Background Successful microarray experimentation requires a complex interplay between the slide chemistry, the printing pins, the nucleic acid probes and targets, and the hybridization milieu. Optimization of these parameters and a careful evaluation of emerging slide chemistries are a prerequisite to any large scale array fabrication effort. We have developed a 'microarray meter' tool which assesses the inherent variations associated with microarray measurement prior to embarking on large scale projects. Findings The microarray meter consists of nucleic acid targets (reference and dynamic range control) and probe components. Different plate designs containing identical probe material were formulated to accommodate different robotic and pin designs. We examined the variability in probe quality and quantity (as judged by the amount of DNA printed and remaining post-hybridization) using three robots equipped with capillary printing pins. Discussion The generation of microarray data with minimal variation requires consistent quality control of the (DNA microarray) manufacturing and experimental processes. Spot reproducibility is a measure primarily of the variations associated with printing. The microarray meter assesses array quality by measuring the DNA content for every feature. It provides a post-hybridization analysis of array quality by scoring probe performance using three metrics, a) a measure of variability in the signal intensities, b) a measure of the signal dynamic range and c) a measure of variability of the spot morphologies. PMID:18710498
Evaluation of a new portable glucose meter designed for the use in cats.
Zini, E; Moretti, S; Tschuor, F; Reusch, C E
2009-09-01
Portable blood glucose meters (PBGMs) are useful in the management of diabetes mellitus in cats. In the present study we compared the performance of two PBGMs: the AlphaTRAK (Abbott Animal Health, Maidenhead, England) specifically developed for dogs and cats, and the Ascensia ELITE (Bayer HealthCare, Zurich, Switzerland) developed for humans. Quality parameters, including precision and accuracy, were better for the AlphaTRAK meter compared to Ascensia ELITE. While the AlphaTRAK meter results did not differ from the reference method, results from the Ascensia ELITE were significantly (P<0.001) lower. The superior performance of the AlphaTRAK meter supports its use to monitor blood glucose levels in cats.
A nuclear powered air cushion freighter for the 1980's.
NASA Technical Reports Server (NTRS)
Anderson, J. L.
1971-01-01
A design for a transoceanic, dry cargo-carrying freighter is suggested; its use and operation in port are discussed. With a gross weight of 4500 metric tons (5000 tons), more than 50 percent of which is cargo, it will cruise at 50 meters per second (100 knots) in waves 2.4 meters (8 ft) high. Its peripheral jet-flexible skirt air cushion concept and air thrustors will let the freighter go over waves 8 meters high at reduced velocity. Power comes from a 1280 megawatt, helium-cooled thermal reactor. It could dock at any major port in the world, but because it needs no surface contact, it could also travel inland to land-locked ports. A modular terminal design and methods of cargo transfer are suggested. The concept of cargo containerization influences both the freighter and terminal design.
Sheath effects observed on a 10 meter high voltage panel in simulated low earth orbit plasma
NASA Technical Reports Server (NTRS)
Mccox, J. E.; Konradi, A.
1979-01-01
A large (1m x 10m) flat surface of conductive material was biased to high voltage (+ or - 3000 V) to simulate the behavior of a large solar array in low earth orbit. The model array was operated in a plasma environment of 1,000 to 1,000,000/cu cm, with sufficient free space around it for the resulting plasma sheaths to develop unimpeded for 5-10 meters into the surrounding plasma. Measurements of the resulting sheath thickness were obtained. The observed thickness varied approximately as V to the 3/4 power and N to the 1/2 power. This effect appears to limit total current leakage from the test array until sheath dimensions exceed about 1 meter. Total leakage current was also measured with the array.
Apparatus and method for microwave processing of materials
Johnson, Arvid C.; Lauf, Robert J.; Bible, Don W.; Markunas, Robert J.
1996-01-01
A variable frequency microwave heating apparatus (10) designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity (34) for testing or other selected applications. The variable frequency heating apparatus (10) is used in the method of the present invention to monitor the resonant processing frequency within the furnace cavity (34) depending upon the material, including the state thereof, from which the workpiece (36) is fabricated. The variable frequency microwave heating apparatus (10) includes a microwave signal generator (12) and a high-power microwave amplifier (20) or a microwave voltage-controlled oscillator (14). A power supply (22) is provided for operation of the high-power microwave oscillator (14) or microwave amplifier (20). A directional coupler (24) is provided for detecting the direction and amplitude of signals incident upon and reflected from the microwave cavity (34). A first power meter (30) is provided for measuring the power delivered to the microwave furnace (32). A second power meter (26) detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load (28).
Gijzen, Karlijn; Moolenaar, David L J; Weusten, Jos J A M; Pluim, Hendrik J; Demir, Ayse Y
2012-11-01
Implementation of tight glycemic control (TGC) and avoidance of hypoglycemia in intensive care unit (ICU) patients require frequent analysis of blood glucose. This can be achieved by accurate point-of-care (POC) hospital-use glucose meters. In this study one home-use and four different hospital-use POC glucose meters were evaluated in critically ill ICU patients. All patients (n = 80) requiring TGC were included in this study. For each patient three to six glucose measurements (n = 390) were performed. Blood glucose was determined by four hospital-use POC glucose meters, Roche Accu-Check Inform II System, HemoCue Glu201DM, Nova StatStrip, Abbott Precision Xceed Pro, and one home-use POC glucose meter, Menarini GlucoCard Memory PC. The criteria described in ISO 15197, Dutch TNO quality guideline and in NACB/ADA-2011 were applied in the comparisons. According to the ISO 15197, the percentages of the measured values that fulfilled the criterion were 99.5% by Roche, 95.1% by HemoCue, 91.0% by Nova, 96.6% by Abbott, and 63.3% by Menarini. According to the TNO quality guideline these percentages were 96.1% , 91.0% , 81.8% , 94.2% , and 47.7% , respectively. Application of the NACB/ADA guideline resulted in percentages of 95.6%, 89.2%, 77.9%, 93.4%, and 45.4%, respectively. When ISO 15197 was applied, Roche, HemoCue and Abbott fulfilled the criterion in this patient population, whereas Nova and Menarini did not. However, when TNO quality guideline and NACB/ADA 2011 guideline were applied only Roche fulfilled the criteria.
NASA Technical Reports Server (NTRS)
Praver, Gerald A.; Theisinger, Peter C.; Genofsky, John
1987-01-01
Functions of circuit breakers, meters, and switches combined. Circuit that includes power field-effect transistors (PFET's) provides on/off switching, soft starting, current monitoring, current tripping, and protection against overcurrent for 30-Vdc power supply at normal load currents up to 2 A. Has no moving parts.
Sánchez-Margalet, Víctor; Rodriguez-Oliva, Manuel; Sánchez-Pozo, Cristina; Fernández-Gallardo, María Francisca; Goberna, Raimundo
2005-01-01
Portable meters for blood glucose concentrations are used at the patients bedside, as well as by patients for self-monitoring of blood glucose. Even though most devices have important technological advances that decrease operator error, the analytical goals proposed for the performance of glucose meters have been recently changed by the American Diabetes Association (ADA) to reach <5% analytical error and <7.9% total error. We studied 80 meters throughout the Virgen Macarena Hospital and we found most devices with performance error higher than 10%. The aim of the present study was to establish a new system to control portable glucose meters together with an educational program for nurses in a 1200-bed University Hospital to achieve recommended analytical goals, so that we could improve the quality of diabetes care. We used portable glucose meters connected on-line to the laboratory after an educational program for nurses with responsibilities in point-of-care testing. We evaluated the system by assessing total error of the glucometers using high- and low-level glucose control solutions. In a period of 6 months, we collected data from 5642 control samples obtained by 14 devices (Precision PCx) directly from the control program (QC manager). The average total error for the low-level glucose control (2.77 mmol/l) was 6.3% (range 5.5-7.6%), and even lower for the high-level glucose control (16.66 mmol/l), at 4.8% (range 4.1-6.5%). In conclusion, the performance of glucose meters used in our University Hospital with more than 1000 beds not only improved after the intervention, but the meters achieved the analytical goals of the suggested ADA/National Academy of Clinical Biochemistry criteria for total error (<7.9% in the range 2.77-16.66 mmol/l glucose) and optimal total error for high glucose concentrations of <5%, which will improve the quality of care of our patients.
A Novel Sensor Platform Matching the Improved Version of IPMVP Option C for Measuring Energy Savings
Tseng, Yen-Chieh; Lee, Da-Sheng; Lin, Cheng-Fang; Chang, Ching-Yuan
2013-01-01
It is easy to measure energy consumption with a power meter. However, energy savings cannot be directly computed by the powers measured using existing power meter technologies, since the power consumption only reflects parts of the real energy flows. The International Performance Measurement and Verification Protocol (IPMVP) was proposed by the Efficiency Valuation Organization (EVO) to quantify energy savings using four different methodologies of A, B, C and D. Although energy savings can be estimated following the IPMVP, there are limitations on its practical implementation. Moreover, the data processing methods of the four IPMVP alternatives use multiple sensors (thermometer, hygrometer, Occupant information) and power meter readings to simulate all facilities, in order to determine an energy usage benchmark and the energy savings. This study proposes a simple sensor platform to measure energy savings. Using usually the Electronic Product Code (EPC) global standard, an architecture framework for an information system is constructed that integrates sensors data, power meter readings and occupancy conditions. The proposed sensor platform is used to monitor a building with a newly built vertical garden system (VGS). A VGS shields solar radiation and saves on energy that would be expended on air-conditioning. With this platform, the amount of energy saved in the whole facility is measured and reported in real-time. The data are compared with those obtained from detailed measurement and verification (M&V) processes. The discrepancy is less than 1.565%. Using measurements from the proposed sensor platform, the energy savings for the entire facility are quantified, with a resolution of ±1.2%. The VGS gives an 8.483% daily electricity saving for the building. Thus, the results show that the simple sensor platform proposed by this study is more widely applicable than the four complicated IPMVP alternatives and the VGS is an effective tool in reducing the carbon footprint of a building. PMID:23698273
Development and Simulation of Increased Generation on a Secondary Circuit of a Microgrid
NASA Astrophysics Data System (ADS)
Reyes, Karina
As fossil fuels are depleted and their environmental impacts remain, other sources of energy must be considered to generate power. Renewable sources, for example, are emerging to play a major role in this regard. In parallel, electric vehicle (EV) charging is evolving as a major load demand. To meet reliability and resiliency goals demanded by the electricity market, interest in microgrids are growing as a distributed energy resource (DER). In this thesis, the effects of intermittent renewable power generation and random EV charging on secondary microgrid circuits are analyzed in the presence of a controllable battery in order to characterize and better understand the dynamics associated with intermittent power production and random load demands in the context of the microgrid paradigm. For two reasons, a secondary circuit on the University of California, Irvine (UCI) Microgrid serves as the case study. First, the secondary circuit (UC-9) is heavily loaded and an integral component of a highly characterized and metered microgrid. Second, a unique "next-generation" distributed energy resource has been deployed at the end of the circuit that integrates photovoltaic power generation, battery storage, and EV charging. In order to analyze this system and evaluate the impact of the DER on the secondary circuit, a model was developed to provide a real-time load flow analysis. The research develops a power management system applicable to similarly integrated systems. The model is verified by metered data obtained from a network of high resolution electric meters and estimated load data for the buildings that have unknown demand. An increase in voltage is observed when the amount of photovoltaic power generation is increased. To mitigate this effect, a constant power factor is set. Should the real power change dramatically, the reactive power is changed to mitigate voltage fluctuations.
Methods of measuring pumpage through closed-conduit irrigation systems
Kjelstrom, L.C.
1991-01-01
Methods of measuring volumes of water withdrawn from the Snake River and its tributaries and pumped through closed-conduit irrigation systems were needed for equitable management of and resolution of conflicts over water use. On the basis of evaluations and field tests by researchers from the University of Idaho, Water Resources Research Institute, Moscow, Idaho, an impeller meter was selected to monitor pumpage through closed-conduit systems. In 1988, impeller meters were installed at 20 pumping stations along the Snake River between the Upper Salmon Falls and C.J. Strike Dams. Impeller-derived pumpage data were adjusted if they differed substantially from ultrasonic flow-meter- or current-meter-derived values. Comparisons of pumpage data obtained by ultrasonic flow-meter and current-meter measurements indicated that the ultrasonic flow meter was a reliable means to check operation of impeller meters. The equipment generally performed satisfactorily, and reliable pumpage data could be obtained using impeller meters in closed-conduit irrigation systems. Many pumping stations that divert water from the Snake River for irrigation remain unmeasured; however, regression analyses indicate that total pumpage can be reasonably estimated on the basis of electrical power consumption data, an approximation of total head at a pumping station, and a derived coefficient.
NASA Technical Reports Server (NTRS)
Colwell, R. N. (Principal Investigator)
1984-01-01
The geometric quality of TM film and digital products is evaluated by making selective photomeasurements and by measuring the coordinates of known features on both the TM products and map products. These paired observations are related using a standard linear least squares regression approach. Using regression equations and coefficients developed from 225 (TM film product) and 20 (TM digital product) control points, map coordinates of test points are predicted. The residual error vectors and analysis of variance (ANOVA) were performed on the east and north residual using nine image segments (blocks) as treatments. Based on the root mean square error of the 223 (TM film product) and 22 (TM digital product) test points, users of TM data expect the planimetric accuracy of mapped points to be within 91 meters and within 117 meters for the film products, and to be within 12 meters and within 14 meters for the digital products.
Radiation Resources Outside of EPA
EPA does not license nuclear power plants or regulate the non-ionizing radiation from cell phones, smart meters or power lines. This page provides links to the state and federal agencies that regulate these matters.
47 CFR 24.232 - Power and antenna height limits.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 2 2012-10-01 2012-10-01 false Power and antenna height limits. 24.232 Section... PERSONAL COMMUNICATIONS SERVICES Broadband PCS § 24.232 Power and antenna height limits. (a)(1) Base... radiated power (EIRP) with an antenna height up to 300 meters HAAT, except as described in paragraph (b...
47 CFR 24.232 - Power and antenna height limits.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 2 2010-10-01 2010-10-01 false Power and antenna height limits. 24.232 Section... PERSONAL COMMUNICATIONS SERVICES Broadband PCS § 24.232 Power and antenna height limits. (a)(1) Base... radiated power (EIRP) with an antenna height up to 300 meters HAAT, except as described in paragraph (b...
47 CFR 24.232 - Power and antenna height limits.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 2 2011-10-01 2011-10-01 false Power and antenna height limits. 24.232 Section... PERSONAL COMMUNICATIONS SERVICES Broadband PCS § 24.232 Power and antenna height limits. (a)(1) Base... radiated power (EIRP) with an antenna height up to 300 meters HAAT, except as described in paragraph (b...
47 CFR 24.232 - Power and antenna height limits.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 2 2014-10-01 2014-10-01 false Power and antenna height limits. 24.232 Section... PERSONAL COMMUNICATIONS SERVICES Broadband PCS § 24.232 Power and antenna height limits. (a)(1) Base... radiated power (EIRP) with an antenna height up to 300 meters HAAT, except as described in paragraph (b...
47 CFR 24.232 - Power and antenna height limits.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 2 2013-10-01 2013-10-01 false Power and antenna height limits. 24.232 Section... PERSONAL COMMUNICATIONS SERVICES Broadband PCS § 24.232 Power and antenna height limits. (a)(1) Base... radiated power (EIRP) with an antenna height up to 300 meters HAAT, except as described in paragraph (b...
Variable frequency microwave furnace system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bible, D.W.; Lauf, R.J.
1994-06-14
A variable frequency microwave furnace system designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity for testing or other selected applications. The variable frequency microwave furnace system includes a microwave signal generator or microwave voltage-controlled oscillator for generating a low-power microwave signal for input to the microwave furnace. A first amplifier may be provided to amplify the magnitude of the signal output from the microwave signal generator or the microwave voltage-controlled oscillator. A second amplifier is provided for processing the signal output by the first amplifier. The second amplifier outputs the microwave signal inputmore » to the furnace cavity. In the preferred embodiment, the second amplifier is a traveling-wave tube (TWT). A power supply is provided for operation of the second amplifier. A directional coupler is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter is provided for measuring the power delivered to the microwave furnace. A second power meter detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load. 5 figs.« less
Variable frequency microwave furnace system
Bible, D.W.; Lauf, R.J.
1994-06-14
A variable frequency microwave furnace system designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity for testing or other selected applications. The variable frequency microwave furnace system includes a microwave signal generator or microwave voltage-controlled oscillator for generating a low-power microwave signal for input to the microwave furnace. A first amplifier may be provided to amplify the magnitude of the signal output from the microwave signal generator or the microwave voltage-controlled oscillator. A second amplifier is provided for processing the signal output by the first amplifier. The second amplifier outputs the microwave signal input to the furnace cavity. In the preferred embodiment, the second amplifier is a traveling-wave tube (TWT). A power supply is provided for operation of the second amplifier. A directional coupler is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter is provided for measuring the power delivered to the microwave furnace. A second power meter detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load. 5 figs.
Evidence for Endothermy in Pterosaurs Based on Flight Capability Analyses
NASA Astrophysics Data System (ADS)
Jenkins, H. S.; Pratson, L. F.
2005-12-01
Previous attempts to constrain flight capability in pterosaurs have relied heavily on the fossil record, using bone articulation and apparent muscle allocation to evaluate flight potential (Frey et al., 1997; Padian, 1983; Bramwell, 1974). However, broad definitions of the physical parameters necessary for flight in pterosaurs remain loosely defined and few systematic approaches to constraining flight capability have been synthesized (Templin, 2000; Padian, 1983). Here we present a new method to assess flight capability in pterosaurs as a function of humerus length and flight velocity. By creating an energy-balance model to evaluate the power required for flight against the power available to the animal, we derive a `U'-shaped power curve and infer optimal flight speeds and maximal wingspan lengths for pterosaurs Quetzalcoatlus northropi and Pteranodon ingens. Our model corroborates empirically derived power curves for the modern black-billed magpie ( Pica Pica) and accurately reproduces the mechanical power curve for modern cockatiels ( Nymphicus hollandicus) (Tobalske et al., 2003). When we adjust our model to include an endothermic metabolic rate for pterosaurs, we find a maximal wingspan length of 18 meters for Q. northropi. Model runs using an exothermic metabolism derive maximal wingspans of 6-8 meters. As estimates based on fossil evidence show total wingspan lengths reaching up to 15 meters for Q. northropi, we conclude that large pterosaurs may have been endothermic and therefore more metabolically similar to birds than to reptiles.
Gingerich, Daniel B; Sun, Xiaodi; Behrer, A Patrick; Azevedo, Inês L; Mauter, Meagan S
2017-02-21
Coal-fired power plants (CFPPs) generate air, water, and solids emissions that impose substantial human health, environmental, and climate change (HEC) damages. This work demonstrates the importance of accounting for cross-media emissions tradeoffs, plant and regional emissions factors, and spatially variation in the marginal damages of air emissions when performing regulatory impact analyses for electric power generation. As a case study, we assess the benefits and costs of treating wet flue gas desulfurization (FGD) wastewater at US CFPPs using the two best available treatment technology options specified in the 2015 Effluent Limitation Guidelines (ELGs). We perform a life-cycle inventory of electricity and chemical inputs to FGD wastewater treatment processes and quantify the marginal HEC damages of associated air emissions. We combine these spatially resolved damage estimates with Environmental Protection Agency estimates of water quality benefits, fuel-switching benefits, and regulatory compliance costs. We estimate that the ELGs will impose average net costs of $3.01 per cubic meter for chemical precipitation and biological wastewater treatment and $11.26 per cubic meter for zero-liquid discharge wastewater treatment (expected cost-benefit ratios of 1.8 and 1.7, respectively), with damages concentrated in regions containing a high fraction of coal generation or a large chemical manufacturing industry. Findings of net cost for FGD wastewater treatment are robust to uncertainty in auxiliary power source, location of chemical manufacturing, and binding air emissions limits in noncompliant regions, among other variables. Future regulatory design will minimize compliance costs and HEC tradeoffs by regulating air, water, and solids emissions simultaneously and performing regulatory assessments that account for spatial variation in emissions impacts.
Gingerich, Daniel B.; Behrer, A. Patrick; Azevedo, Inês L.
2017-01-01
Coal-fired power plants (CFPPs) generate air, water, and solids emissions that impose substantial human health, environmental, and climate change (HEC) damages. This work demonstrates the importance of accounting for cross-media emissions tradeoffs, plant and regional emissions factors, and spatially variation in the marginal damages of air emissions when performing regulatory impact analyses for electric power generation. As a case study, we assess the benefits and costs of treating wet flue gas desulfurization (FGD) wastewater at US CFPPs using the two best available treatment technology options specified in the 2015 Effluent Limitation Guidelines (ELGs). We perform a life-cycle inventory of electricity and chemical inputs to FGD wastewater treatment processes and quantify the marginal HEC damages of associated air emissions. We combine these spatially resolved damage estimates with Environmental Protection Agency estimates of water quality benefits, fuel-switching benefits, and regulatory compliance costs. We estimate that the ELGs will impose average net costs of $3.01 per cubic meter for chemical precipitation and biological wastewater treatment and $11.26 per cubic meter for zero-liquid discharge wastewater treatment (expected cost-benefit ratios of 1.8 and 1.7, respectively), with damages concentrated in regions containing a high fraction of coal generation or a large chemical manufacturing industry. Findings of net cost for FGD wastewater treatment are robust to uncertainty in auxiliary power source, location of chemical manufacturing, and binding air emissions limits in noncompliant regions, among other variables. Future regulatory design will minimize compliance costs and HEC tradeoffs by regulating air, water, and solids emissions simultaneously and performing regulatory assessments that account for spatial variation in emissions impacts. PMID:28167772
Accuracy of indirect estimation of power output from uphill performance in cycling.
Millet, Grégoire P; Tronche, Cyrille; Grappe, Frédéric
2014-09-01
To use measurement by cycling power meters (Pmes) to evaluate the accuracy of commonly used models for estimating uphill cycling power (Pest). Experiments were designed to explore the influence of wind speed and steepness of climb on accuracy of Pest. The authors hypothesized that the random error in Pest would be largely influenced by the windy conditions, the bias would be diminished in steeper climbs, and windy conditions would induce larger bias in Pest. Sixteen well-trained cyclists performed 15 uphill-cycling trials (range: length 1.3-6.3 km, slope 4.4-10.7%) in a random order. Trials included different riding position in a group (lead or follow) and different wind speeds. Pmes was quantified using a power meter, and Pest was calculated with a methodology used by journalists reporting on the Tour de France. Overall, the difference between Pmes and Pest was -0.95% (95%CI: -10.4%, +8.5%) for all trials and 0.24% (-6.1%, +6.6%) in conditions without wind (<2 m/s). The relationship between percent slope and the error between Pest and Pmes were considered trivial. Aerodynamic drag (affected by wind velocity and orientation, frontal area, drafting, and speed) is the most confounding factor. The mean estimated values are close to the power-output values measured by power meters, but the random error is between ±6% and ±10%. Moreover, at the power outputs (>400 W) produced by professional riders, this error is likely to be higher. This observation calls into question the validity of releasing individual values without reporting the range of random errors.
Improving the accuracy of electronic moisture meters for runner-type peanuts
USDA-ARS?s Scientific Manuscript database
Runner-type peanut kernel moisture content (MC) is measured periodically during curing and post harvest processing with electronic moisture meters for marketing and quality control. MC is predicted for 250 g samples of kernels with a mathematical function from measurements of various physical prope...
46 CFR 133.150 - Survival craft launching and recovery arrangements: General.
Code of Federal Regulations, 2012 CFR
2012-10-01
... a position on deck less than 4.5 meters (14.75 feet) above the waterline in the lightest seagoing... can be boarded from a position on deck less than 4.5 meters (14.75 feet) above the waterline in the... launching appliance must not depend on any means other than gravity or stored mechanical power, independent...
46 CFR 133.150 - Survival craft launching and recovery arrangements: General.
Code of Federal Regulations, 2014 CFR
2014-10-01
... a position on deck less than 4.5 meters (14.75 feet) above the waterline in the lightest seagoing... can be boarded from a position on deck less than 4.5 meters (14.75 feet) above the waterline in the... launching appliance must not depend on any means other than gravity or stored mechanical power, independent...
47 CFR 22.911 - Cellular geographic service area.
Code of Federal Regulations, 2011 CFR
2011-10-01
... the SAB is calculated as a function of effective radiated power (ERP) and antenna center of radiation...: d is the radial distance in kilometers h is the radial antenna HAAT in meters p is the radial ERP in... the radial distance in kilometers h is the radial antenna HAAT in meters p is the radial ERP in Watts...
33 CFR 84.03 - Vertical positioning and spacing of lights.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Vertical positioning and spacing... Vertical positioning and spacing of lights. (a) On a power-driven vessel of 20 meters or more in length the... is carried, then that light, at a height above the hull of not less than 5 meters, and, if the...
33 CFR 84.03 - Vertical positioning and spacing of lights.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Vertical positioning and spacing... Vertical positioning and spacing of lights. (a) On a power-driven vessel of 20 meters or more in length the... is carried, then that light, at a height above the hull of not less than 5 meters, and, if the...
33 CFR 84.03 - Vertical positioning and spacing of lights.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Vertical positioning and spacing... Vertical positioning and spacing of lights. (a) On a power-driven vessel of 20 meters or more in length the... is carried, then that light, at a height above the hull of not less than 5 meters, and, if the...
33 CFR 84.03 - Vertical positioning and spacing of lights.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Vertical positioning and spacing... Vertical positioning and spacing of lights. (a) On a power-driven vessel of 20 meters or more in length the... is carried, then that light, at a height above the hull of not less than 5 meters, and, if the...
RF pulse compression for future linear colliders
NASA Astrophysics Data System (ADS)
Wilson, Perry B.
1995-07-01
Future (nonsuperconducting) linear colliders will require very high values of peak rf power per meter of accelerating structure. The role of rf pulse compression in producing this power is examined within the context of overall rf system design for three future colliders at energies of 1.0-1.5 TeV, 5 TeV, and 25 TeV. In order to keep the average AC input power and the length of the accelerator within reasonable limits, a collider in the 1.0-1.5 TeV energy range will probably be built at an x-band rf frequency, and will require a peak power on the order of 150-200 MW per meter of accelerating structure. A 5 TeV collider at 34 GHz with a reasonable length (35 km) and AC input power (225 MW) would require about 550 MW per meter of structure. Two-beam accelerators can achieve peak powers of this order by applying dc pulse compression techniques (induction linac modules) to produce the drive beam. Klystron-driven colliders achieve high peak power by a combination of dc pulse compression (modulators) and rf pulse compression, with about the same overall rf system efficiency (30-40%) as a two-beam collider. A high gain (6.8) three-stage binary pulse compression system with high efficiency (80%) is described, which (compared to a SLED-II system) can be used to reduce the klystron peak power by about a factor of two, or alternatively, to cut the number of klystrons in half for a 1.0-1.5 TeV x-band collider. For a 5 TeV klystron-driven collider, a high gain, high efficiency rf pulse compression system is essential.
Research on the full life cycle management system of smart electric energy meter
NASA Astrophysics Data System (ADS)
Chen, Xiangqun; Huang, Rui; Shen, Liman; Guo, Dingying; Xiong, Dezhi; Xiao, Xiangqi; Liu, Mouhai; Renheng, Xu
2018-02-01
At present, China’s smart electric energy meter life management is started from the procurement and acceptance. The related monitoring and management of the manufacturing sector has not yet been carried out. This article applies RFID technology and network cloud platform to full life cycle management system of smart electric energy meters, builds this full life cycle management system including design and manufacturing, process control, measurement and calibration testing, storage management, user acceptance, site operation, maintenance scrap and other aspects. Exploring smart electric energy meters on-line and off-line communication by the application of active RFID communication functions, and the actual functional application such as local data exchange and instrument calibration. This system provides technical supports on power demand side management and the improvement of smart electric energy meter reliability evaluation system.
NASA Astrophysics Data System (ADS)
Himawanto, Dwi Aries; Tjahjana, D. D. D. P.; Hantarum
2017-01-01
Pump as turbine or PAT is an application that promises to produce small-scale electric power supply. Compared to conventional turbines, pumps have low prices and available in the market with various sizes. Therefore, PAT is suitable for hydroelectric power generation for rural areas in Indonesian. The study emphasizes experiments aimed to find the best operating point of the pump as the turbine by modifying the curvature of the pump blade. A pump with a capacity of 563.22 liters / min and a total head of 20 meters was tested in the laboratory with a radius of curvature of the blade is modified Radius 11 (backward), 13 (backward), 15 (backward), Radial, 11 (forward), 13 (forward), 15 (forward) centimeter with head from 2, 3, 4 meters and connected to a generator. The results showed that the best is 31.39% efficiency at 4.2 liters / sec and the rotation of the turbine shaft 870 rpm at the head of 4 meters. Maximum power output is 90 watts which are enough to generate electricity for a small house. The experimental results showed good results theoretically. Suggested for further modifications by using the same pump, expected better results to achieve the best efficiency point of PAT.
Recording Students to Bring Poetry Alive
ERIC Educational Resources Information Center
Thibeault, Matthew D.
2011-01-01
Poems are filled with musicality. Poetry and music are often described using similar terms: meter, cadence, phrase, form, and more. Poetry also has physical qualities recognized ever since the Greeks classified poetic meter in feet. In this article, the author presents a project that works well across the age spectrum: recording expressive poetry…
An intelligent maximum permissible exposure meter for safety assessments of laser radiation
NASA Astrophysics Data System (ADS)
Corder, D. A.; Evans, D. R.; Tyrer, J. R.
1996-09-01
There is frequently a need to make laser power or energy density measurements when determining whether radiation from a laser system exceeds the Maximum Permissible Exposure (MPE) as defined in BS EN 60825. This can be achieved using standard commercially available laser power or energy measurement equipment, but some of these have shortcomings when used in this application. Calculations must be performed by the user to compare the measured value to the MPE. The measurement and calculation procedure appears complex to the nonexpert who may be performing the assessment. A novel approach is described which uses purpose designed hardware and software to simplify the process. The hardware is optimized for measuring the relatively low powers associated with MPEs. The software runs on a Psion Series 3a palmtop computer. This reduces the cost and size of the system yet allows graphical and numerical presentation of data. Data output to other software running on PCs is also possible, enabling the instrument to be used as part of a quality system. Throughout the measurement process the opportunity for user error has been minimized by the hardware and software design.
Ground-water quality near a sewage-sludge recycling site and a landfill near Denver, Colorado
Robson, Stanley G.
1977-01-01
The Metropolitan Denver Sewage Disposal District and the City and County of Denver operate a sewage-sludge recycling site and a landfill in an area about 15 miles (24 kilometers) east of Denver. The assessment of the effects of these facilities on the ground-water system included determining the direction of ground-water movement in the area, evaluating the impact of the wastedisposal activities on the chemical quality of local ground water, and evaluating the need for continued water-quality monitoring.Surficial geology of the area consists of two principal units: (1) Alluvium with a maximum thickness of about 25 feet (7.6 meters) deposited along stream channels, and (2) bedrock consisting of undifferentiated Denver and Dawson Formations. Ground water in formations less than 350 feet (110 meters) deep moves to the north, as does surface flow, while ground water in formations between 570 and 1,500 feet (170 and 460 meters) deep moves to the west. Estimates of ground-water velocity were made using assumed values for hydraulic conductivity and porosity, and the observed hydraulic gradient from the study area. Lateral velocities are estimated to be 380 feet (120 meters) per year in alluvium and 27 feet (8.2 meters) per year in the upper part of the bedrock formations. Vertical velocity is estimated to be 0.58 foot (0.18 meter) per year in the upper part of the bedrock formations.Potentiometric head decreases with depth in the bedrock formations indicating a potential for downward movement of ground water. However, waterquality analysis and the rate and direction of ground-water movement suggest that ground-water movement in the area is primarily in the lateral rather than the vertical direction. Five wells perforated in alluvium were found to have markedly degraded water quality. One well was located in the landfill and water that was analyzed was obtained from near the base of the buried refuse, two others were located downgradient and near sewage-sludge burial areas, and the remaining two are located near stagnant surface ponds. Concentrations of nitrate in wells downgradient from fields where sludge is plowed into the soil were higher than background concentrations due to the effects of the sludge disposal. No evidence of water-quality degradation was detected in deeper wells perforated in the bedrock formations. Continued water-quality monitoring is needed because of the continuing disposal of wastes. A suggested monitoring program would consist of monitoring wells near the landfill twice a year and monitoring wells near the sludge-disposal areas on an annual basis.
Commissioning the Robert Stobie Spectrograph on the 11-meter Southern African Large Telescope (SALT)
NASA Astrophysics Data System (ADS)
Hooper, Eric Jon; Nordsieck, K.; Williams, T.; Buckley, D.; SALT Operations Group; UW-Madison RSS Commissioning Group
2012-01-01
The Southern African Large Telescope (SALT) is an 11-meter optical and near-infrared telescope located in South Africa. It is operated by an international consortium led by South Africa and consisting of partners in the U.S., Europe, India, and New Zealand. After some initial telescope image quality problems were fixed, one of the main workhorse instruments called the Robert Stobie Spectrograph began checkout and commissioning in April, 2011. All of the instrument modes have been shown to be operational, and some of them are now in routine use. Shared-risk science observations began in September, 2011, alongside ongoing commissioning of the more unusual modes of this very versatile and complex instrument. The RSS provides numerous capabilities in a compact prime-focus design with an 8 arcminute field of view: • Long-slit spectroscopy. Six gratings provide resolving powers ranging from 800 to 11,000 and wavelength coverage from the blue atmospheric cutoff (320 nm) to around 1000 nm. • Multi-object spectroscopy using laser-cut slit masks. • High speed spectroscopy. By restricting the field of view in a slot mode, spectra can be read out as rapidly as 10 Hz. • Fixed band imaging. In addition to providing help with target acquisition, the RSS imaging mode is a powerful narrow-band imaging system, with a suite of narrow-band filters nearly continuously covering the wavelength range 430 - 900 nm. • Fabry-Perot imaging. The system can operate with either one or two etalons, providing a range in spectral resolving power from 250 to 10,000 over 430- 900 nm. • Polarimetry. All of the modes listed above also support polarimetric modes (linear and circular). Two next-generation instruments are under construction: a high-resolution fiber-fed spectrograph with resolving power reaching 65,000; and a near-infrared sibling of RSS, which will extend the spectral coverage to 1.7 microns.
High Voltage Solar Concentrator Experiment with Implications for Future Space Missions
NASA Technical Reports Server (NTRS)
Mehdi, Ishaque S.; George, Patrick J.; O'Neill, Mark; Matson, Robert; Brockschmidt, Arthur
2004-01-01
This paper describes the design, development, fabrication, and test of a high performance, high voltage solar concentrator array. This assembly is believed to be the first ever terrestrial triple-junction-cell solar array rated at over 1 kW. The concentrator provides over 200 W/square meter power output at a nominal 600 Vdc while operating under terrestrial sunlight. Space-quality materials and fabrication techniques were used for the array, and the 3005 meter elevation installation below the Tropic of Cancer allowed testing as close as possible to space deployment without an actual launch. The array includes two concentrator modules, each with a 3 square meter aperture area. Each concentrator module uses a linear Fresnel lens to focus sunlight onto a photovoltaic receiver that uses 240 series-connected triple-junction solar cells. Operation of the two receivers in series can provide 1200 Vdc which would be adequate for the 'direct drive' of some ion engines or microwave transmitters in space. Lens aperture width is 84 cm and the cell active width is 3.2 cm, corresponding to a geometric concentration ratio of 26X. The evaluation includes the concentrator modules, the solar cells, and the materials and techniques used to attach the solar cells to the receiver heat sink. For terrestrial applications, a finned aluminum extrusion was used for the heat sink for the solar cells, maintaining a low cell temperature so that solar cell efficiency remains high.
Research on the calibration of ultraviolet energy meters
NASA Astrophysics Data System (ADS)
Lin, Fangsheng; Yin, Dejin; Li, Tiecheng; Lai, Lei; Xia, Ming
2016-10-01
Ultraviolet (UV) radiation is a kind of non-lighting radiation with the wavelength range from 100nm to 400nm. Ultraviolet irradiance meters are now widely used in many areas. However, as the development of science and technology, especially in the field of light-curing industry, there are more and more UV energy meters or UV-integrators need to be measured. Because the structure, wavelength band and measured power intensity of UV energy meters are different from traditional UV irradiance meters, it is important for us to take research on the calibration. With reference to JJG879-2002, we SIMT have independently developed the UV energy calibration device and the standard of operation and experimental methods for UV energy calibration in detail. In the calibration process of UV energy meter, many influencing factors will affect the final results, including different UVA-band UV light sources, different spectral response for different brands of UV energy meters, instability and no uniformity of UV light source and temperature. Therefore we need to take all of these factors into consideration to improve accuracy in UV energy calibration.
NASA Technical Reports Server (NTRS)
Gazda, Daniel B.; Schultz, John R.; Clarke, Mark S.
2007-01-01
Phase separation is one of the most significant obstacles encountered during the development of analytical methods for water quality monitoring in spacecraft environments. Removing air bubbles from water samples prior to analysis is a routine task on earth; however, in the absence of gravity, this routine task becomes extremely difficult. This paper details the development and initial ground testing of liquid metering centrifuge sticks (LMCS), devices designed to collect and meter a known volume of bubble-free water in microgravity. The LMCS uses centrifugal force to eliminate entrapped air and reproducibly meter liquid sample volumes for analysis with Colorimetric Solid Phase Extraction (C-SPE). C-SPE is a sorption-spectrophotometric platform that is being developed as a potential spacecraft water quality monitoring system. C-SPE utilizes solid phase extraction membranes impregnated with analyte-specific colorimetric reagents to concentrate and complex target analytes in spacecraft water samples. The mass of analyte extracted from the water sample is determined using diffuse reflectance (DR) data collected from the membrane surface and an analyte-specific calibration curve. The analyte concentration can then be calculated from the mass of extracted analyte and the volume of the sample analyzed. Previous flight experiments conducted in microgravity conditions aboard the NASA KC-135 aircraft demonstrated that the inability to collect and meter a known volume of water using a syringe was a limiting factor in the accuracy of C-SPE measurements. Herein, results obtained from ground based C-SPE experiments using ionic silver as a test analyte and either the LMCS or syringes for sample metering are compared to evaluate the performance of the LMCS. These results indicate very good agreement between the two sample metering methods and clearly illustrate the potential of utilizing centrifugal forces to achieve phase separation and metering of water samples in microgravity.
Whole-Home Dehumidifiers: Field-Monitoring Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burke, Tom; Willem, Henry; Ni, Chun Chun
2014-09-23
Lawrence Berkeley National Laboratory (LBNL) initiated a WHD field-metering study to expand current knowledge of and obtain data on WHD operation and energy consumption in real-world applications. The field study collected real-time data on WHD energy consumption, along with information regarding housing characteristics, consumer behavior, and various outdoor conditions expected to affect WHD performance and efficiency. Although the metering study collected similar data regarding air conditioner operation, this report discusses only WHDs. The primary objectives of the LBNL field-metering study are to (1) expand knowledge of the configurations, energy consumption profiles, consumer patterns of use (e.g., relative humidity [RH] settings),more » and environmental parameters of whole-home dehumidification systems; and (2) develop distributions of hours of dehumidifier operation in four operating modes: off, standby, fan-only, and compressor (also called dehumidification mode). Profiling energy consumption entails documenting the power consumption, duration of power consumption in different modes, condensate generation, and properties of output air of an installed system under field conditions of varying inlet air temperature and RH, as well as system configuration. This profiling provides a more detailed and deeper understanding of WHD operation and its complexities. This report describes LBNL’s whole-home dehumidification field-metering study conducted at four homes in Wisconsin and Florida. The initial phase of the WHD field-metering study was conducted on one home in Madison, Wisconsin, from June to December of 2013. During a second phase, three Florida homes were metered from June to October of 2014. This report presents and examines data from the Wisconsin site and from the three Florida sites.« less
NASA Astrophysics Data System (ADS)
Villani, Clemente; Balsamo, Domenico; Brunelli, Davide; Benini, Luca
2015-05-01
Monitoring current and voltage waveforms is fundamental to assess the power consumption of a system and to improve its energy efficiency. In this paper we present a smart meter for power consumption which does not need any electrical contact with the load or its conductors, and which can measure both current and voltage. Power metering becomes easier and safer and it is also self-sustainable because an energy harvesting module based on inductive coupling powers the entire device from the output of the current sensor. A low cost 32-bit wireless CPU architecture is used for data filtering and processing, while a wireless transceiver sends data via the IEEE 802.15.4 standard. We describe in detail the innovative contact-less voltage measurement system, which is based on capacitive coupling and on an algorithm that exploits two pre-processing channels. The system self-calibrates to perform precise measurements regardless the cable type. Experimental results demonstrate accuracy in comparison with commercial high-cost instruments, showing negligible deviations.
ERIC Educational Resources Information Center
Dade County Public Schools, Miami, FL.
This document presents an outline for a 135-hour course designed to help the trainee gain the skills and knowledge necessary to become an aviation powerplant mechanic. The course outlines the theory of operation of various fuel systems, fuel metering, induction, and exhaust system components with an emphasis on troubleshooting, maintenance, and…
47 CFR 15.255 - Operation within the band 57-64 GHz.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 18 μW/cm2, as measured 3 meters from the radiating structure. (2) For fixed field disturbance sensors... emission shall not exceed 18 μW/cm2, as measured 3 meters from the radiating structure. In addition, the... radiating structure, and the peak power density of any emission shall not exceed 18 nW/cm2, as measured...
47 CFR 15.255 - Operation within the band 57-64 GHz.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 18 μW/cm2, as measured 3 meters from the radiating structure. (2) For fixed field disturbance sensors... emission shall not exceed 18 μW/cm2, as measured 3 meters from the radiating structure. In addition, the... radiating structure, and the peak power density of any emission shall not exceed 18 nW/cm2, as measured...
47 CFR 15.255 - Operation within the band 57-64 GHz.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 18 μW/cm2, as measured 3 meters from the radiating structure. (2) For fixed field disturbance sensors... emission shall not exceed 18 μW/cm2, as measured 3 meters from the radiating structure. In addition, the... radiating structure, and the peak power density of any emission shall not exceed 18 nW/cm2, as measured...
47 CFR 15.255 - Operation within the band 57-64 GHz.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 18 μW/cm2, as measured 3 meters from the radiating structure. (2) For fixed field disturbance sensors... emission shall not exceed 18 μW/cm2, as measured 3 meters from the radiating structure. In addition, the... radiating structure, and the peak power density of any emission shall not exceed 18 nW/cm2, as measured...
Magnetic and electric field meters developed for the US Department of Energy
NASA Technical Reports Server (NTRS)
Kirkham, H.; Johnson, A.
1988-01-01
This report describes work done at the Jet Propulsion Laboratory for the Office of Energy Storage and Distribution of DOE on the measurement of power line fields. A magnetic field meter is discussed that uses fiber optics to couple a small measuring probe to a remote readout device. The use of fiber optics minimizes electric field perturbation due to the presence of the probe and provides electric isolation for the probe, so that it could be used in a high field or high voltage environment. Power to operate the sensor electronics is transferred via an optical fiber, and converted to electrical form by a small photodiode array. The fundamental, the second and third harmonics of the field are filtered and separately measured, as well as the broadband rms level of the field. The design of the meter is described in detail and data from laboratory tests are presented. The report also describes work done to improve the performance of a DC bushing in a Swedish factory, using the improved meter. The DC electric fields are measured with synchronous detection to provide field magnitude data in two component directions.
Investigation of test methods, material properties, and processes for solar cell encapsulants
NASA Technical Reports Server (NTRS)
1984-01-01
Photovoltaic (PV) modules consist of a string of electrically interconnected silicon solar cells capable of producing practical quantities of electrical power when exposed to sunlight. To insure high reliability and long term performance, the functional components of the solar cell module must be adequately protected from the environment by some encapsulation technique. The encapsulation system must provide mechanical support for the cells and corrosion protection for the electrical components. The goal of the program is to identify and develop encapsulation systems consistent with the PV module operating requirements of 30 year life and a target cost of $0.70 per peak watt ($70 per square meter) (1980 dollars). Assuming a module efficiency of ten percent, which is equivalent to a power output of 100 watts per square meter in midday sunlight, the capital cost of the modules may be calculated to be $70.00 per square meter. Out of this cost goal, only 20 percent is available for encapsulation due to the high cost of the cells, interconnects, and other related components. The encapsulation cost allocation may then be stated as $14.00 per square meter, included all coatings, pottant and mechanical supports for the cells.
View southeast of main supervisory board showing panels 3 through ...
View southeast of main supervisory board showing panels 3 through 11; panel 3 at far left contains meters for monitoring power in the system; panel 4 contains controls for controlling heaters to keep track twitches free of ice and snow; panels 5, 6, and 7 date to the 1935 installation and control the catenary in the area of the station yard. These work on 120 volts direct current; panel 8 contains circuit breakers (rupture switches) which control power to individual tracks in the station area; panels 9 and 10 house controls for the West Philadelphia sub-station; panel 11 controls sub-station 13 in South Wilmington Delaware and miscellaneous meters - Thirtieth Street Station, Power Director Center, Thirtieth & Market Streets in Amtrak Railroad Station, Philadelphia, Philadelphia County, PA
The ac and dc electric field meters developed for the US Department of Energy
NASA Technical Reports Server (NTRS)
Kirkham, H.; Johnston, A.; Jackson, S.; Sheu, K.
1987-01-01
Two space-potential electric field meters developed at the Jet Propulsion Laboratory under the auspices of the U.S. Department of Energy are described. One of the meters was designed to measure dc fields, the other ac fields. Both meters use fiber optics to couple a small measuring probe to a remote readout device, so as to minimize field perturbation due to the presence of the probe. By using coherent detection, it has been possible to produce instruments whose operating range extends from about 10 V/m up to about 2.5 kV/cm, without the need for range switching on the probe. The electrical and mechanical design of both meters are described in detail. Data from laboratory tests are presented, as well as the results of the tests at the National Bureau of Standards and the Electric Power Research Institute's High Voltage Transmission Research Facility.
10 CFR 36.37 - Power failures.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false Power failures. 36.37 Section 36.37 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR IRRADIATORS Design and Performance... only when using an operable and calibrated radiation survey meter. ...
10 CFR 36.37 - Power failures.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Power failures. 36.37 Section 36.37 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR IRRADIATORS Design and Performance... only when using an operable and calibrated radiation survey meter. ...
10 CFR 36.37 - Power failures.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Power failures. 36.37 Section 36.37 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR IRRADIATORS Design and Performance... only when using an operable and calibrated radiation survey meter. ...
10 CFR 36.37 - Power failures.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 1 2014-01-01 2014-01-01 false Power failures. 36.37 Section 36.37 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR IRRADIATORS Design and Performance... only when using an operable and calibrated radiation survey meter. ...
10 CFR 36.37 - Power failures.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Power failures. 36.37 Section 36.37 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR IRRADIATORS Design and Performance... only when using an operable and calibrated radiation survey meter. ...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-09
... single meter reading platform and in-home monitoring devices. Residential water meters have been supplied... Central Iowa Water Association AGENCY: Environmental Protection Agency (EPA). ACTION: Notice. SUMMARY: EPA... reasonably available quantities and of a satisfactory quality] to the Central Iowa Water Association (CIWA...
NASA Astrophysics Data System (ADS)
Pandey, Nisha; Sarswat, Prashant
2016-03-01
Energy plays a vital role in the socio -economic development, mainly due to the dependency of indispensable amenities on electricity. However, a matter of concern is developing country domestic power needs and inadequate supply. One of the cases is Indian subcontinent, where more than 50,000 villages still not have access to uninterrupted electric power. `Power theft' is a major challenge due to the lack of adequate energy supply and the financial constraints. Long distances, inaccurate and inflated electricity bills are the other issues lead to default on payments. Gram Power, a social enterprise, is providing a smart metering and affordable solution in areas where the extension of existing grid supply is economically not viable. India's first solar powered micro-grid (centralized array of solar panels) in Rajasthan was established by this initiative. The core innovation is a smart distribution technology that consists of smart meters with recharging facility and grid monitoring, to provide on-demand, theft-proof power through centralized servers with a pay-as-you-use schedule. The details of the changes, socio-economic transformation, and operational sustainability of such a community engagement model will be discussed in this study.
Variable frequency microwave furnace system
Bible, Don W.; Lauf, Robert J.
1994-01-01
A variable frequency microwave furnace system (10) designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity (34) for testing or other selected applications. The variable frequency microwave furnace system (10) includes a microwave signal generator (12) or microwave voltage-controlled oscillator (14) for generating a low-power microwave signal for input to the microwave furnace. A first amplifier (18) may be provided to amplify the magnitude of the signal output from the microwave signal generator (12) or the microwave voltage-controlled oscillator (14). A second amplifier (20) is provided for processing the signal output by the first amplifier (18). The second amplifier (20) outputs the microwave signal input to the furnace cavity (34). In the preferred embodiment, the second amplifier (20) is a traveling-wave tube (TWT). A power supply (22) is provided for operation of the second amplifier (20). A directional coupler (24) is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter (30) is provided for measuring the power delivered to the microwave furnace (32). A second power meter (26) detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load (28).
Velocity model of the shallow lunar crust
NASA Technical Reports Server (NTRS)
Gangi, A. F.
1980-01-01
The travel times of the seismic waves obtained for the Apollo-14 and -16 active seismic experiments and the Apollo-16 grenade launches are shown to be consistent with a powder-layer model of the shallow lunar crust. The velocity variation with depth determined from these data is: V(z) = approximately 110 z to the 1/6 power m/sec for z less than 10 meters and V(z) is nearly = to 250 m/sec for z greater than 10 meters. The velocity values found for the 10 meter depth are similar to those found by Kovach, et al. (1972). The z to the 1/6 power depth dependence for the velocity of the topmost layer is that predicted on the basis of a powder layer (Gangi, 1972). The Amplitude variation of the direct waves as a function of source-to-receiver separation, x, is A(x) = A(o)x to the -n power exp(-ax) where 1.5 n 2.2 and a is nearly = to 0.047 neper/m. Velocity-spectra analyses of the direct, surface-reflected, bottom-reflected and refracted waves give results that are consistent with the velocity model inferred from the traveltime data.
8-Meter UV/Optical Space Telescope
NASA Technical Reports Server (NTRS)
Stahl, H. Philip
2008-01-01
This slide presentation proposes using the unprecedented capability of the planned Ares V launch vehicle, to place a 8 meter monolithic space telescope at the Earth-Sun L2 point. This new capability enables a new design pardigm -- simplicity. The six to eight meter class telescope with a massive high Technical Readiness Level ground observatory class monolithic primary mirror has been determined feasible. The proposed design, structural analysis, spacecraft design and shroud integration, thermal analysis, propulsion system, guidance navigation and pointing control assumptions about the avionics, and power systems, operational lifetime, and the idea of in-space servicing are reviewed.
NASA Astrophysics Data System (ADS)
1983-03-01
The design, fabrication, and site drawings associated with fabrication, installation, and check out of 100 kW 17 meter Vertical Axis Wind Turbines (VAWTs) were reported. The turbines are Darrieus type VAWTs with rotors 17 meters in diameter and 25.15 meters in height. They can produce 100 kW of electric power at a cost of energy as low as 3 cents per kWh, in an 18 mph wind regime using 12% annualized costs. Four turbines are produced, three are installed and operable.
47 CFR 73.664 - Determining operating power.
Code of Federal Regulations, 2011 CFR
2011-10-01
... power to within an accuracy of ±5% of the power indicated by the full scale reading of the electrical... frequency amplifier stage and the transmission line meter are to be read and compared with similar readings taken with the dummy load replaced by the antenna. These readings must be in substantial agreement. (3...
47 CFR 73.664 - Determining operating power.
Code of Federal Regulations, 2012 CFR
2012-10-01
... power to within an accuracy of ±5% of the power indicated by the full scale reading of the electrical... frequency amplifier stage and the transmission line meter are to be read and compared with similar readings taken with the dummy load replaced by the antenna. These readings must be in substantial agreement. (3...
47 CFR 73.664 - Determining operating power.
Code of Federal Regulations, 2013 CFR
2013-10-01
... power to within an accuracy of ±5% of the power indicated by the full scale reading of the electrical... frequency amplifier stage and the transmission line meter are to be read and compared with similar readings taken with the dummy load replaced by the antenna. These readings must be in substantial agreement. (3...
47 CFR 73.664 - Determining operating power.
Code of Federal Regulations, 2014 CFR
2014-10-01
... power to within an accuracy of ±5% of the power indicated by the full scale reading of the electrical... frequency amplifier stage and the transmission line meter are to be read and compared with similar readings taken with the dummy load replaced by the antenna. These readings must be in substantial agreement. (3...
NASA Astrophysics Data System (ADS)
Baumbach, S.; Pricking, S.; Overbuschmann, J.; Nutsch, S.; Kleinbauer, J.; Gebs, R.; Tan, C.; Scelle, R.; Kahmann, M.; Budnicki, A.; Sutter, D. H.; Killi, A.
2017-02-01
Multi-megawatt ultrafast laser systems at micrometer wavelength are commonly used for material processing applications, including ablation, cutting and drilling of various materials or cleaving of display glass with excellent quality. There is a need for flexible and efficient beam guidance, avoiding free space propagation of light between the laser head and the processing unit. Solid core step index fibers are only feasible for delivering laser pulses with peak powers in the kW-regime due to the optical damage threshold in bulk silica. In contrast, hollow core fibers are capable of guiding ultra-short laser pulses with orders of magnitude higher peak powers. This is possible since a micro-structured cladding confines the light within the hollow core and therefore minimizes the spatial overlap between silica and the electro-magnetic field. We report on recent results of single-mode ultra-short pulse delivery over several meters in a lowloss hollow core fiber packaged with industrial connectors. TRUMPF's ultrafast TruMicro laser platforms equipped with advanced temperature control and precisely engineered opto-mechanical components provide excellent position and pointing stability. They are thus perfectly suited for passive coupling of ultra-short laser pulses into hollow core fibers. Neither active beam launching components nor beam trackers are necessary for a reliable beam delivery in a space and cost saving packaging. Long term tests with weeks of stable operation, excellent beam quality and an overall transmission efficiency of above 85 percent even at high average power confirm the reliability for industrial applications.
Operation and beam profiling of an up to 200 kHz pulse-burst laser for Thomson scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, W. C., E-mail: wcyoung2@wisc.edu; Den Hartog, D. J.; Center for Magnetic Self-Organization in Laboratory and Astrophysical Plasmas, University of Wisconsin-Madison, Madison, Wisconsin 53706
2014-11-15
A new, high-repetition rate laser is in development for use on the Thomson scattering diagnostic on the Madison Symmetric Torus. The laser has been tested at a rate of 200 kHz in a pulse-burst operation, producing bursts of 5 pulses above 1.5 J each, while capable of bursts of 17 pulses at 100 kHz. A master oscillator-power amplifier architecture is used with a Nd:YVO{sub 4} oscillator, four Nd:YAG amplifiers, and a Nd:glass amplifier. A radial profile over the pulse sequence is measured by using a set of graphite apertures and an energy meter, showing a change in beam quality overmore » a pulsing sequence.« less
A Smart Power Electronic Multiconverter for the Residential Sector.
Guerrero-Martinez, Miguel Angel; Milanes-Montero, Maria Isabel; Barrero-Gonzalez, Fermin; Miñambres-Marcos, Victor Manuel; Romero-Cadaval, Enrique; Gonzalez-Romera, Eva
2017-05-26
The future of the grid includes distributed generation and smart grid technologies. Demand Side Management (DSM) systems will also be essential to achieve a high level of reliability and robustness in power systems. To do that, expanding the Advanced Metering Infrastructure (AMI) and Energy Management Systems (EMS) are necessary. The trend direction is towards the creation of energy resource hubs, such as the smart community concept. This paper presents a smart multiconverter system for residential/housing sector with a Hybrid Energy Storage System (HESS) consisting of supercapacitor and battery, and with local photovoltaic (PV) energy source integration. The device works as a distributed energy unit located in each house of the community, receiving active power set-points provided by a smart community EMS. This central EMS is responsible for managing the active energy flows between the electricity grid, renewable energy sources, storage equipment and loads existing in the community. The proposed multiconverter is responsible for complying with the reference active power set-points with proper power quality; guaranteeing that the local PV modules operate with a Maximum Power Point Tracking (MPPT) algorithm; and extending the lifetime of the battery thanks to a cooperative operation of the HESS. A simulation model has been developed in order to show the detailed operation of the system. Finally, a prototype of the multiconverter platform has been implemented and some experimental tests have been carried out to validate it.
A Smart Power Electronic Multiconverter for the Residential Sector
Guerrero-Martinez, Miguel Angel; Milanes-Montero, Maria Isabel; Barrero-Gonzalez, Fermin; Miñambres-Marcos, Victor Manuel; Romero-Cadaval, Enrique; Gonzalez-Romera, Eva
2017-01-01
The future of the grid includes distributed generation and smart grid technologies. Demand Side Management (DSM) systems will also be essential to achieve a high level of reliability and robustness in power systems. To do that, expanding the Advanced Metering Infrastructure (AMI) and Energy Management Systems (EMS) are necessary. The trend direction is towards the creation of energy resource hubs, such as the smart community concept. This paper presents a smart multiconverter system for residential/housing sector with a Hybrid Energy Storage System (HESS) consisting of supercapacitor and battery, and with local photovoltaic (PV) energy source integration. The device works as a distributed energy unit located in each house of the community, receiving active power set-points provided by a smart community EMS. This central EMS is responsible for managing the active energy flows between the electricity grid, renewable energy sources, storage equipment and loads existing in the community. The proposed multiconverter is responsible for complying with the reference active power set-points with proper power quality; guaranteeing that the local PV modules operate with a Maximum Power Point Tracking (MPPT) algorithm; and extending the lifetime of the battery thanks to a cooperative operation of the HESS. A simulation model has been developed in order to show the detailed operation of the system. Finally, a prototype of the multiconverter platform has been implemented and some experimental tests have been carried out to validate it. PMID:28587131
47 CFR 18.305 - Field strength limits.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) Field strength limit (uV/m) Distance (meters) Any type unless otherwise specified (miscellaneous) Any...Any 2515 300300 Ultrasonic Below 490 kHz Below 500500 or more 2,400/F(kHz)2,400/F(kHz)× SQRT(power/500... kHzOn or above 90 kHz AnyAny 1,500300 430 430 1 Field strength may not exceed 10 μV/m at 1600 meters...
12. CONTROL PANELS, WEST SIDE (LEFT & RIGHT), MAIN FLOOR: ...
12. CONTROL PANELS, WEST SIDE (LEFT & RIGHT), MAIN FLOOR: CENTER OF CLUSTERS, TOP BOX: MEGAWATT METER CENTER OF CLUSTERS, LOWER THREE BOXES: AMPERE METERS LEFT SIDE OF CLUSTERS: VOLTAGE CHART RECORDER RIGHT SIDE OF CLUSTERS: RECLOSE RELAY CENTER UNDER CLUSTERS: TESTING SWITCHES BELOW TESTING SWITCHES: BREAKER SWITCHES - Bonneville Power Administration South Bank Substation, I-84, South of Bonneville Dam Powerhouse, Bonneville, Multnomah County, OR
Broad Area Wireless Networking Via High Altitude Platforms
2013-06-01
35 Figure 12. Sprint WiMAX handset. From [24...altitude of 21K meters , a payload capacity of 100 kg, and 1000 watts of onboard power for payload requirements. They also developed a series of...providing 24-hour coverage. The balloons are launched with a recoverable payload and operated at an altitude of 24K–30K meters to provide a coverage area
Real Time Phase Noise Meter Based on a Digital Signal Processor
NASA Technical Reports Server (NTRS)
Angrisani, Leopoldo; D'Arco, Mauro; Greenhall, Charles A.; Schiano Lo Morille, Rosario
2006-01-01
A digital signal-processing meter for phase noise measurement on sinusoidal signals is dealt with. It enlists a special hardware architecture, made up of a core digital signal processor connected to a data acquisition board, and takes advantage of a quadrature demodulation-based measurement scheme, already proposed by the authors. Thanks to an efficient measurement process and an optimized implementation of its fundamental stages, the proposed meter succeeds in exploiting all hardware resources in such an effective way as to gain high performance and real-time operation. For input frequencies up to some hundreds of kilohertz, the meter is capable both of updating phase noise power spectrum while seamlessly capturing the analyzed signal into its memory, and granting as good frequency resolution as few units of hertz.
Meter Designs Reduce Operation Costs for Industry
NASA Technical Reports Server (NTRS)
2013-01-01
Marshall Space Flight Center collaborated with Quality Monitoring and Control (QMC) of Humble, Texas, through a Space Act Agreement to design a balanced flow meter for the Space Shuttle Program. QMC founded APlus-QMC LLC to commercialize the technology, which has contributed to 100 new jobs, approximately $250,000 in yearly sales, and saved customers an estimated $10 million.
Comparison of Clustering Techniques for Residential Energy Behavior using Smart Meter Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Ling; Lee, Doris; Sim, Alex
Current practice in whole time series clustering of residential meter data focuses on aggregated or subsampled load data at the customer level, which ignores day-to-day differences within customers. This information is critical to determine each customer’s suitability to various demand side management strategies that support intelligent power grids and smart energy management. Clustering daily load shapes provides fine-grained information on customer attributes and sources of variation for subsequent models and customer segmentation. In this paper, we apply 11 clustering methods to daily residential meter data. We evaluate their parameter settings and suitability based on 6 generic performance metrics and post-checkingmore » of resulting clusters. Finally, we recommend suitable techniques and parameters based on the goal of discovering diverse daily load patterns among residential customers. To the authors’ knowledge, this paper is the first robust comparative review of clustering techniques applied to daily residential load shape time series in the power systems’ literature.« less
Bluetooth technology for prevention of dental caries.
Kolahi, Jafar; Fazilati, Mohamad
2009-12-01
Caries is caused when the pH at the tooth surface drops below 5.5. A miniaturized and autonomous pH monitoring nodes can be attached to the tooth surface, like a tooth jewel. This intelligent sensor includes three components: (a) digital micro pH meter, (b) power supply, (c) wireless communicating device. The micro pH meter facilitates long term tooth surface pH monitoring and providing real time feedback to the patients and dental experts. Power supply of this system will be microfabricated biocatalytic fuel cell (enzymatic micro-battery) using organic compounds (e.g. formate or glucose) as the fuel to generate electricity. When micro pH meter detects the pH lower than 5.5, wireless Bluetooth device sends a caution (e.g. "you are at risk of dental caries") to external monitoring equipment such as mobile phone or a hands-free heads. After reception of the caution, subjects should use routine brushing and flossing procedure or use a medicated chewing gum (e.g. chlorhexidine containing chewing gum) or rinse with a mouthwash.
In situ performance curves measurements of large pumps
NASA Astrophysics Data System (ADS)
Anton, A.
2010-08-01
The complex energetic system on the river Lotru in Romania comprises of a series of lakes and pumping stations and a major hydroelectric power plant: Lotru-Ciunget. All the efforts have been oriented towards the maintenance of the Pelton turbines and very little attention has been directed to the pumps. In the system, there are three large pumping stations and only in the last 5 years, the pump performances have become a concern. The performances where determined using portable ultrasonic flow meters, a Yates meter, precision manometers and appropriate electrical equipment for power measurement (Power Analiser - NORMA D4000 LEM). The measurements are not supposed to interfere with the normal operation so only a limited number of tests could be performed. Based on those tests, portions of the test curves have been measured and represented in specific diagrams.
Research on Harmonic Characteristic of Electronic Current Transformer Based on the Rogowski Coil
NASA Astrophysics Data System (ADS)
Shen, Diqiu; Hu, Bei; Wang, Xufeng; Zhu, Mingdong; Wang, Liang; Lu, Wenxing
2017-05-01
The nonlinear load present in the power system will cause the distortion of AC sine wave and generate the harmonic, which havea severe impact on the accuracy of energy metering and reliability of relay protection. Tosatisfy the requirements of energy metering and relay protection for the new generation of intelligent substation, based on the working principle of Rogowski coil current transformer, mathematical model and transfer characteristics of Rogowski coil sensors were studied in this paper, and frequency response characteristics of Rogowski coil current transformer system were analysed. Finally, the frequency response characteristics of the Rogowski coil current transformer at 2 to 13 harmonics was simulated and experimented. Simulation and experiments show that Rogowski coil current transformer couldmeet 0.2 accuracy requirements of harmonic power measurement of power system, and measure the harmonic components of the grid reliably.
Measurement system for determination of current-voltage characteristics of PV modules
NASA Astrophysics Data System (ADS)
Idzkowski, Adam; Walendziuk, Wojciech; Borawski, Mateusz; Sawicki, Aleksander
2015-09-01
The realization of a laboratory stand for testing photovoltaic panels is presented here. The project of the laboratory stand was designed in SolidWorks software. The aim of the project was to control the electrical parameters of a PV panel. For this purpose a meter that measures electrical parameters i.e. voltage, current and power, was realized. The meter was created with the use of LabJack DAQ device and LabVIEW software. The presented results of measurements were obtained in different conditions (variable distance from the source of light, variable tilt angle of the panel). Current voltage characteristics of photovoltaic panel were created and all parameters could be detected in different conditions. The standard uncertainties of sample voltage, current, power measurements were calculated. The paper also gives basic information about power characteristics and efficiency of a solar cell.
NASA Astrophysics Data System (ADS)
Swenson, J.; Byerley, L. G.; Bogoev, I.; Hinckley, A.; Beasley, W. H.
2003-12-01
The atmospheric electric field is a unique indicator of locally disturbed weather, local thunderstorms and local atmospheric electrical hazards. Yet, surprisingly, routine observations of ambient electric field have never been included in the canonical suite of measured meteorological variables. This notable omission may be a result of the historically high costs to acquire, install, and maintain conventional electric-field mills. To reduce costs and overcome limitations of traditional field meters, Campbell Scientific, Inc. has developed an electric-field meter (patent pending) with a reciprocating shutter that eliminates the problem of making electrical contact with a rotating shaft. The reciprocating action is under microprocessor control, so the sample rate can be varied in response to measured conditions. Between samples of electric field, the shutter can even be left open indefinitely, allowing the instrument to function as a field-change antenna. Since the shutter is closed before and after each measurement in field-meter mode, it is relatively easy to account for drift and offsets automatically, so that measurements can be made even if the electrode insulator becomes degraded by conductive deposits of the types likely to be encountered in severe outdoor environments. Because the motor is energized for only a small fraction of each measurement cycle, average power consumption is exceptionally low, making the new field meter especially suitable for solar-powered applications such as automated remote meteorological stations. Some preliminary observations demonstrate the capabilities of the instrument.
Deployed Base Solar Power (BRIEFING SLIDES)
2009-09-01
various time intervals. Data Acquisitions and Components: FieldPoint Current, Voltage, and Power Transducers POA Pyranometers Solar...Tracking Pyranometer Weather Station kWh Meter Parameters being monitored: Solar Module Temperatures Ambient Temperature Wind Speed Wind
2010-09-01
cubic meter(s) mi mile(s) mi2 square mile(s) mm millimeter(s) m micrometer(s) yd3 cubic yard(s) ENVIRONMENTAL ASSESSMENT FOR...km2 (3,530 mi2 ) area that includes the NBAFS, less than two tornadoes occur per year. The localized area effected by a tornado averages only 0.29...km2 (0.11 mi2 ; Ramsdell and Andrews 1986) (ANL 2000). 3.2.2 Air Quality The State of New Hampshire Ambient Air Quality Standards (SAAQS) are
NASA Technical Reports Server (NTRS)
Young, Roy M.; Adams, Charles L.
2010-01-01
The NASA In-Space Propulsion Technology (ISPT) Projects Office sponsored two separate, independent solar sail system design and development demonstration activities during 2002-2005. ATK Space Systems of Goleta, CA was the prime contractor for one development team and L' Garde, Inc. of Tustin, CA was the prime contractor for the other development team. The goal of these activities was to advance the technology readiness level (TRL) of solar sail propulsion from 3 towards 6 by the year 2006. Component and subsystem fabrication and testing were completed successfully, including the ground deployment of 10-meter and 20-meter demonstration hardware systems under vacuum conditions. The deployment and structural testing of the 20-meter solar sail systems was conducted in the 30 meter diameter Space Power Facility thermal-vacuum chamber at NASA Glenn Plum Brook in April though August, 2005. This paper will present the results of the TRL assessment following the solar sail technology development activities associated with the design, development, analysis and testing of the 20-meter system ground demonstrators.
47 CFR 90.279 - Power limitations applicable to the 421-430 MHz band.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Bands § 90.279 Power limitations applicable to the 421-430 MHz band. (a) Base station authorizations in... Heights (EAH) of Base Stations in the 421-430 MHz Band Effective antenna height (EAH) in meters (feet... maximum transmitter power output that will be authorized for control stations is 20 watts. [52 FR 6157...
47 CFR 73.310 - FM technical definitions.
Code of Federal Regulations, 2014 CFR
2014-10-01
... transmits the horizontal component of radiation. Antenna power gain. The square of the ratio of the root... millivolts per meter for 1 kW antenna input power to 221.4 mV/m. This ratio is expressed in decibels (dB). If specified for a particular direction, antenna power gain is based on that field strength in the direction...
47 CFR 73.310 - FM technical definitions.
Code of Federal Regulations, 2013 CFR
2013-10-01
... transmits the horizontal component of radiation. Antenna power gain. The square of the ratio of the root... millivolts per meter for 1 kW antenna input power to 221.4 mV/m. This ratio is expressed in decibels (dB). If specified for a particular direction, antenna power gain is based on that field strength in the direction...
47 CFR 73.310 - FM technical definitions.
Code of Federal Regulations, 2012 CFR
2012-10-01
... transmits the horizontal component of radiation. Antenna power gain. The square of the ratio of the root... millivolts per meter for 1 kW antenna input power to 221.4 mV/m. This ratio is expressed in decibels (dB). If specified for a particular direction, antenna power gain is based on that field strength in the direction...
47 CFR 73.310 - FM technical definitions.
Code of Federal Regulations, 2011 CFR
2011-10-01
... transmits the horizontal component of radiation. Antenna power gain. The square of the ratio of the root... millivolts per meter for 1 kW antenna input power to 221.4 mV/m. This ratio is expressed in decibels (dB). If specified for a particular direction, antenna power gain is based on that field strength in the direction...
40 CFR 50.16 - National primary and secondary ambient air quality standards for lead.
Code of Federal Regulations, 2011 CFR
2011-07-01
... air quality standards for lead. 50.16 Section 50.16 Protection of Environment ENVIRONMENTAL PROTECTION... National primary and secondary ambient air quality standards for lead. (a) The national primary and secondary ambient air quality standards for lead (Pb) and its compounds are 0.15 micrograms per cubic meter...
Measuring changes in aerodynamic/rolling resistances by cycle-mounted power meters.
Lim, Allen C; Homestead, Eric P; Edwards, Andrew G; Carver, Todd C; Kram, Rodger; Byrnes, William C
2011-05-01
To develop a protocol for isolating changes in aerodynamic and rolling resistances from field-based measures of power and velocity during level bicycling. We assessed the effect of body position (hands on brake hoods vs drops) and tire pressure changes (414 vs 828 kPa) on aerodynamic and rolling resistances by measuring the power (Pext)-versus-speed (V) relationship using commercially available bicycle-mounted power meters. Measurements were obtained using standard road bicycles in calm wind (<1.0 m·s) conditions at constant velocities (acceleration <0.5 m·s) on a flat 200-m section of a smooth asphalt road. For each experimental condition, experienced road cyclists rode in 50-W increments from 100 to 300 W for women (n=2) or 100 to 400 W for men (n=6). Aerodynamic resistance per velocity squared (k) was calculated as the slope of a linear plot of tractive resistance (RT=power/velocity) versus velocity squared. Rolling resistance (Rr) was calculated as the intercept of this relationship. Aerodynamic resistance per velocity squared (k) was significantly greater (P<0.05) while riding on the brake hoods compared with the drops (mean ± SD: 0.175 ± 0.025 vs 0.155 ± 0.03 N·V). Rolling resistance was significantly greater at 60 psi compared with 120 psi (5.575 ± 0.695 vs 4.215 ± 0.815 N). These results demonstrate that commercially available power meters are sensitive enough to independently detect the changes in aerodynamic and rolling resistances associated with modest changes in body position and substantial changes in tire pressure. © 2011 by the American College of Sports Medicine
How to select electrical end-use meters for proper measurement of DSM impact estimates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowman, M.
1994-12-31
Does metering actually provide higher accuracy impact estimates? The answer is sometimes yes, sometimes no. It depends on how the metered data will be used. DSM impact estimates can be achieved in a variety of ways, including engineering algorithms, modeling and statistical methods. Yet for all of these methods, impacts can be calculated as the difference in pre- and post-installation annual load shapes. Increasingly, end-use metering is being used to either adjust and calibrate a particular estimate method, or measure load shapes directly. It is therefore not surprising that metering has become synonymous with higher accuracy impact estimates. If meteredmore » data is used as a component in an estimating methodology, its relative contribution to accuracy can be analyzed through propagation of error or {open_quotes}POE{close_quotes} analysis. POE analysis is a framework which can be used to evaluate different metering options and their relative effects on cost and accuracy. If metered data is used to directly measure pre- and post-installation load shapes to calculate energy and demand impacts, then the accuracy of the whole metering process directly affects the accuracy of the impact estimate. This paper is devoted to the latter case, where the decision has been made to collect high-accuracy metered data of electrical energy and demand. The underlying assumption is that all meters can yield good results if applied within the scope of their limitations. The objective is to know the application, understand what meters are actually doing to measure and record power, and decide with confidence when a sophisticated meter is required, and when a less expensive type will suffice.« less
Rodrigues-Filho, J L; Degani, R M; Soares, F S; Periotto, N A; Blanco, F P; Abe, D S; Matsumura-Tundisi, T; Tundisi, J E; Tundisi, J G
2015-01-01
The amendments to the Forest Law proposed by the Brazilian government that allow partial substitution of forested areas by agricultural activities raised deep concern about the integrity of aquatic ecosystems. To assess the impacts of this alteration in land uses on the watershed, diffuse loads of total nitrogen (Nt) and total phosphorus (Pt) were estimated in Lobo Stream watershed, southeastern Brazil, based on export coefficients of the Model of Correlation between Land Use and Water Quality (MQUAL). Three scenarios were generated: scenario 1 (present scenario), with 30-meter-wide permanent preservation areas along the shore of water bodies and 50-meter-radius in springs; scenario 2, conservative, with 100-meter-wide permanent preservation areas along water bodies; and scenario 3, with the substitution of 20% of natural forest by agricultural activities. Results indicate that a suppression of 20% of forest cover would cause an increase in nutrient loads as well as in the trophic state of aquatic ecosystems of the watershed. This could result in losses of ecosystem services and compromise the quality of water and its supply for the basin. This study underlines the importance of forest cover for the maintenance of water quality in Lobo Stream watershed.
Sullivan, Annett B.; Rounds, Stewart A.
2006-01-01
To meet water quality targets and the municipal and industrial water needs of a growing population in the Tualatin River Basin in northwestern Oregon, an expansion of Henry Hagg Lake is under consideration. Hagg Lake is the basin's primary storage reservoir and provides water during western Oregon's typically dry summers. Potential modifications include raising the dam height by 6.1 meters (20 feet), 7.6 meters (25 feet), or 12.2 meters (40 feet); installing additional outlets (possibly including a selective withdrawal tower); and adding additional inflows to provide greater reliability of filling the enlarged reservoir. One method of providing additional inflows is to route water from the upper Tualatin River through a tunnel and into Sain Creek, a tributary to the lake. Another option is to pump water from the Tualatin River (downstream of the lake) uphill and into the reservoir during the winter--the 'pump-back' option. A calibrated CE-QUAL-W2 model of Henry Hagg Lake's hydrodynamics, temperature, and water quality was used to examine the effect of these proposed changes on water quality in the lake and downstream. Most model scenarios were run with the calibrated model for 2002, a typical water year; a few scenarios were run for 2001, a drought year. More...
[Evaluation of Optium Xceed (Abbott) and One Touch Ultra (Lifescan) glucose meters].
Coyne, S; Lacour, B; Hennequin-Le Meur, C
2008-01-01
In order to build a continuous quality improvement approach for control of glucose meters in clinical divisions at Necker-Enfants Malades hospital, the analytical performances (precision and accuracy) of 2 glucose meters have been evaluated in our laboratory according to SFBC recommendations. Fifty-six heparinized whole blood specimens from patients and thirty-nine from healthy volunteers were analyzed on each of the two meters and compared to plasma glucose measurement on the Roche Hitachi 917 system. The correlation coefficient was 0.938 for Optium Xceed and 0.911 for One Touch Ultra. However, 14.7% and 18.9% of the results (n = 95) for respectively Optium Xceed and One Touch Ultra were discordant, i.e. higher than a 20% difference compared to reference blood glucose concentrations. Inaccuracy was more important for low glucose concentrations (< 5 mmol/L; 12/14 discrepant samples for Optium Xceed and 16/19 for One Touch Ultra). This data suggests a lack of accuracy, particularly for low glucose concentrations. Capillary blood glucose concentrations must therefore be interpreted with caution concerning the diagnosis of hypoglycemia and treatment of unstable patients. Moreover, quality control of glucose meters (blood glucose determinations concurrently at bedside and in the laboratory) is difficult to perform. It also raises questions about the responsibility of "point-of-care testing", an area still subject to discussion.
Toward Large-Area Sub-Arcsecond X-Ray Telescopes
NASA Technical Reports Server (NTRS)
ODell, Stephen L.; Aldcroft, Thomas L.; Allured, Ryan; Atkins, Carolyn; Burrows, David N.; Cao, Jian; Chalifoux, Brandon D.; Chan, Kai-Wing; Cotroneo, Vincenzo; Elsner, Ronald F.;
2014-01-01
The future of x-ray astronomy depends upon development of x-ray telescopes with larger aperture areas (approx. = 3 square meters) and fine angular resolution (approx. = 1 inch). Combined with the special requirements of nested grazing-incidence optics, the mass and envelope constraints of space-borne telescopes render such advances technologically and programmatically challenging. Achieving this goal will require precision fabrication, alignment, mounting, and assembly of large areas (approx. = 600 square meters) of lightweight (approx. = 1 kilogram/square meter areal density) high-quality mirrors at an acceptable cost (approx. = 1 million dollars/square meter of mirror surface area). This paper reviews relevant technological and programmatic issues, as well as possible approaches for addressing these issues-including active (in-space adjustable) alignment and figure correction.
Detention basin alternative outlet design study.
DOT National Transportation Integrated Search
2016-10-01
This study examines the outlets structures CDOT has historically employed to drain water quality treatment detention basins and flood control basins, presents two new methods of metering the water quality capture volume (WQCV), namely 1) the Elliptic...
Introduction to Voigt's wind power plant. [energy conversion efficiency
NASA Technical Reports Server (NTRS)
Tompkin, J.
1973-01-01
The design and operation of a 100 kilowatt wind driven generator are reported. Its high speed three-bladed turbine operates at a height of 50 meters. Blades are rigidly connected to the hub and turbine revolutions change linearly with wind velocity, maintaining a constant speed ratio of blade tip velocity to wind velocity over the full predetermined wind range. Three generators installed in the gondola generate either dc or ac current. Based on local wind conditions, the device has a maximum output of 720 kilowatts at a wind velocity of 16 meters per second. Total electrical capacity is 750 kilowatts, and power output per year is 2,135,000 kilowatt/hours.
A Sound Pressure-level Meter Without Amplification
NASA Technical Reports Server (NTRS)
Stowell, E Z
1937-01-01
The N.A.C.A. has developed a simple pressure-level meter for the measurement of sound-pressure levels above 70 db. The instrument employs a carbon microphone but has no amplification. The source of power is five flashlight batteries. Measurements may be made up to the threshold of feeling with an accuracy of plus or minus 2 db; band analysis of complex spectra may be made if desired.
JPRS Report, Nuclear Developments
1991-04-23
East countries. Bush once expressed Taishan. the hope of reducing arms sales to the Middle East but has never taken effective measures to weaken the flow...structure containing sand armament will bring enormous effects in strategic envi- 350 meters to 500 meters below the surface and then ronment in Northeast...underestimation of its consequences may have some Kozloduy Nuclear Power Plant which results in radioac- tragic effects on Bulgaria’s population which
Comparison of Measures of Vibration Affecting Occupants of Military Vehicles
1986-12-01
8217 ,, l I WES equipment 27. The WES equipment consisted of a battery operated absorbed power ( ABS -PW) meter with signal conditioning...West Germany. These will be referred to as the ISO ride meter and the ABS -PWR ridemeter, respectively. The first implemented the vibration measure...the ABS -PWR algorithms were used with each acceleration signal source (analog and digital) to provide a comprehensive basis for comparing the vibration
NASA Technical Reports Server (NTRS)
Liu, Tianjia; Marlier, Miriam E.; DeFries, Ruth S.; Westervelt, Daniel M.; Xia, Karen R.; Fiore, Arlene M.; Mickley, Loretta J.; Cusworth, Daniel H.; Milly, George
2017-01-01
Air pollution in many of India's cities exceeds national and international standards, and effective pollution control strategies require knowledge of the sources that contribute to air pollution and their spatiotemporal variability. In this study, we examine the influence of a single pollution source, outdoor biomass burning, on particulate matter (PM) concentrations, surface visibility, and aerosol optical depth (AOD) from 2007 to 2013 in three of the most populous Indian cities. We define the upwind regions, or "airsheds," for the cities by using atmospheric back trajectories from the HYSPLIT model. Using satellite fire radiative power (FRP) observations as a measure of fire activity, we target pre-monsoon and post-monsoon fires upwind of the Delhi National Capital Region and pre-monsoon fires surrounding Bengaluru and Pune. We find varying contributions of outdoor fires to different air quality metrics. For the post-monsoon burning season, we find that a subset of local meteorological variables (air temperature, humidity, sea level pressure, wind speed and direction) and FRP as the only pollution source explained 39% of variance in Delhi station PM(sub 10) anomalies, 77% in visibility, and 30% in satellite AOD; additionally, per unit increase in FRP within the daily airshed (1000 MW), PM(sub 10) increases by 16.34 micrograms per cubic meter, visibility decreases by 0.097 km, and satellite AOD increases by 0.07. In contrast, for the pre-monsoon burning season, we find less significant contributions from FRP to air quality in all three cities. Further, we attribute 99% of FRP from post-monsoon outdoor fires within Delhi's average airshed to agricultural burning. Our work suggests that although outdoor fires are not the dominant air pollution source in India throughout the year, post-monsoon fires contribute substantially to regional air pollution and high levels of population exposure around Delhi. During 3-day blocks of extreme PM(sub 2.5) in the 2013 post-monsoon burning season, which coincided with statistically significant high fire activity, concentrations in Delhi averaged 304 micrograms per cubic meter, or more than 1000% above the 24-h PM(sub 2.5) guideline (25 micrograms per cubic meter) of the World Health Organization. These results suggest that providing viable alternatives to agricultural residue burning could help improve post-monsoon air quality for a growing population of 63 million (39% in urban areas) within Delhi's airshed.
Adjustable Nyquist-rate System for Single-Bit Sigma-Delta ADC with Alternative FIR Architecture
NASA Astrophysics Data System (ADS)
Frick, Vincent; Dadouche, Foudil; Berviller, Hervé
2016-09-01
This paper presents a new smart and compact system dedicated to control the output sampling frequency of an analogue-to-digital converters (ADC) based on single-bit sigma-delta (ΣΔ) modulator. This system dramatically improves the spectral analysis capabilities of power network analysers (power meters) by adjusting the ADC's sampling frequency to the input signal's fundamental frequency with a few parts per million accuracy. The trade-off between straightforwardness and performance that motivated the choice of the ADC's architecture are preliminary discussed. It particularly comes along with design considerations of an ultra-steep direct-form FIR that is optimised in terms of size and operating speed. Thanks to compact standard VHDL language description, the architecture of the proposed system is particularly suitable for application-specific integrated circuit (ASIC) implementation-oriented low-power and low-cost power meter applications. Field programmable gate array (FPGA) prototyping and experimental results validate the adjustable sampling frequency concept. They also show that the system can perform better in terms of implementation and power capabilities compared to dedicated IP resources.
Study of a heat rejection system for the Nuclear Electric Propulsion (NEP) spacecraft
NASA Technical Reports Server (NTRS)
Ernest, D. M.
1982-01-01
Two different heat pipe radiator elements, one intended for use with the power conversion subsystem of the NASA funded nuclear electric propulsion (NEP) spacecraft, and one intended for use with the DOE funded space power advanced reactor (SPAR) system were tested and evaluated. The NEP stainless steel/sodium heat pipe was 4.42 meters long and had a 1 cm diameter. Thermal performance testing at 920 K showed a non-limited power level of 3560 watts, well in excess of the design power of 2600 watts. This test verified the applicability of screen arteries for use in long radiator heat pipes. The SPAR titanium/potassium heat pipe was 5.5 meters long and had a semicircular crossection with a 4 cm diameter. Thermal performance testing at 775 K showed a maximum power level of 1.86 kW, somewhat short of the desired 2.6 kW beginning of life design requirement. The reduced performance was shown to be the result of the inability of the evaporator wall wick (shot blasted evaporator wall) to handle the required liquid flow.
NASA Technical Reports Server (NTRS)
Colwell, R. N. (Principal Investigator)
1984-01-01
The spatial, geometric, and radiometric qualities of LANDSAT 4 thematic mapper (TM) and multispectral scanner (MSS) data were evaluated by interpreting, through visual and computer means, film and digital products for selected agricultural and forest cover types in California. Multispectral analyses employing Bayesian maximum likelihood, discrete relaxation, and unsupervised clustering algorithms were used to compare the usefulness of TM and MSS data for discriminating individual cover types. Some of the significant results are as follows: (1) for maximizing the interpretability of agricultural and forest resources, TM color composites should contain spectral bands in the visible, near-reflectance infrared, and middle-reflectance infrared regions, namely TM 4 and TM % and must contain TM 4 in all cases even at the expense of excluding TM 5; (2) using enlarged TM film products, planimetric accuracy of mapped poins was within 91 meters (RMSE east) and 117 meters (RMSE north); (3) using TM digital products, planimetric accuracy of mapped points was within 12.0 meters (RMSE east) and 13.7 meters (RMSE north); and (4) applying a contextual classification algorithm to TM data provided classification accuracies competitive with Bayesian maximum likelihood.
Standardization of Broadband UV Measurements for 365 nm LED Sources
Eppeldauer, George P.
2012-01-01
Broadband UV measurements are evaluated when UV-A irradiance meters measure optical radiation from 365 nm UV sources. The CIE standardized rectangular-shape UV-A function can be realized only with large spectral mismatch errors. The spectral power-distribution of the 365 nm excitation source is not standardized. Accordingly, the readings made with different types of UV meters, even if they measure the same UV source, can be very different. Available UV detectors and UV meters were measured and evaluated for spectral responsivity. The spectral product of the source-distribution and the meter’s spectral-responsivity were calculated for different combinations to estimate broad-band signal-measurement errors. Standardization of both the UV source-distribution and the meter spectral-responsivity is recommended here to perform uniform broad-band measurements with low uncertainty. It is shown what spectral responsivity function(s) is needed for new and existing UV irradiance meters to perform low-uncertainty broadband 365 nm measurements. PMID:26900516
NREL`s variable speed test bed: Preliminary results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlin, P.W.; Fingersh, L.J.; Fuchs, E.F.
1996-10-01
Under an NREL subcontract, the Electrical and Computer Engineering Department of the University of Colorado (CU) designed a 20-kilowatt, 12-pole, permanent-magnet, electric generator and associated custom power electronics modules. This system can supply power over a generator speed range from 60 to 120 RPM. The generator was fabricated and assembled by the Denver electric-motor manufacturer, Unique Mobility, and the power electronics modules were designed and fabricated at the University. The generator was installed on a 56-foot tower in the modified nacelle of a Grumman Windstream 33 wind turbine in early October 1995. For checkout it was immediately loaded directly intomore » a three-phase resistive load in which it produced 3.5 kilowatts of power. Abstract only included. The ten-meter Grumman host wind machine is equipped with untwisted, untapered, NREL series S809 blades. The machine was instrumented to record both mechanical hub power and electrical power delivered to the utility. Initial tests are focusing on validating the calculated power surface. This mathematical surface shows the wind machine power as a function of both wind speed and turbine rotor speed. Upon the completion of this task, maximum effort will be directed toward filling a test matrix in which variable-speed operation will be contrasted with constant-speed mode by switching the variable speed control algorithm with the baseline constant speed control algorithm at 10 minutes time intervals. Other quantities in the test matrix will be analyzed to detect variable speed-effects on structural loads and power quality.« less
DEB Type I Reconstitution Package Deployment Manual (RPDM).
1981-05-01
Waveguide Assembly (d) 1177H02 TWT Power Amplifier (e) TCM-6RK-I Transmit and Receive Remote Kits 20 C" I--I- CL* Figure 8. Terminal 21 17 February...Twist Six Waveguide to Coax Adapters 1.2.1.1.1(d) TWT Power Amplifier. The power amplifier utilizes a periodic permanent magnetic focused travelling...possible to adjust input power while observing TWT output with a power meter and directional coupler. The capability of controlling the TWT drive
Concentrating Solar Power Projects - Planta Solar 20 | Concentrating Solar
(CSP) project, with data organized by background, participants, and power plant configuration. Abengoa Solar's Planta Solar 20 (PS20) is a 20-megawatt power tower plant being constructed next to the PS10 tower percent. The 160-meter tower was designed to reduce the visual impact of its height. The plant has the
18 CFR 367.9010 - Account 901, Supervision.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Account 901, Supervision. 367.9010 Section 367.9010 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... account 902, Meter reading expenses (§ 367.9020), or account 903, Customer records and collection expenses...
DOE Office of Scientific and Technical Information (OSTI.GOV)
May, E. K.; Forristall, R.
2005-11-01
Industrial Solar Technology has assembled a team of experts to develop a large-aperture parabolic trough for the electric power market that moves beyond cost and operating limitations of 1980's designs based on sagged glass reflectors. IST's structurally efficient space frame design will require nearly 50% less material per square meter than a Solel LS-2 concentrator and the new trough will rotate around the focal point. This feature eliminates flexhoses that increase pump power, installation and maintenance costs. IST aims to deliver a concentrator module costing less than $100 per square meter that can produce temperatures up to 400 C. Themore » IST concentrator is ideally suited for application of front surface film reflectors and ensures that US corporations will manufacture major components, except for the high temperature receivers.« less
NASA Astrophysics Data System (ADS)
Clifford, Eoghan; Mulligan, Sean; Comer, Joanne; Hannon, Louise
2018-01-01
Real-time monitoring of water consumption activities can be an effective mechanism to achieve efficient water network management. This approach, largely enabled by the advent of smart metering technologies, is gradually being practiced in domestic and industrial contexts. In particular, identifying water consumption habits from flow-signatures, i.e., the specific end-usage patterns, is being investigated as a means for conservation in both the residential and nonresidential context. However, the quality of meter data is bivariate (dependent on number of meters and data temporal resolution) and as a result, planning a smart metering scheme is relatively difficult with no generic design approach available. In this study, a comprehensive medium-resolution to high-resolution smart metering program was implemented at two nonresidential trial sites to evaluate the effect of spatial and temporal data aggregation. It was found that medium-resolution water meter data were capable of exposing regular, continuous, peak use, and diurnal patterns which reflect group wide end-usage characteristics. The high-resolution meter data permitted flow-signature at a personal end-use level. Through this unique opportunity to observe water usage characteristics via flow-signature patterns, newly defined hydraulic-based design coefficients determined from Poisson rectangular pulse were developed to intuitively aid in the process of pattern discovery with implications for automated activity recognition applications. A smart meter classification and siting index was introduced which categorizes meter resolution in terms of their suitable application.
Three Dimensional Imaging of Helicon Wave Fields Via Magnetic Induction Probes
2009-07-13
Elastomer Flange 50 The chamber is pumped by a Varian TV-300 HT turbomolecular vacuum pump with a pumping speed of 250 l/s backed by a dry scroll ... vacuum diffusion chamber with pump locations .................................................. 49 Figure 3.2. RF power delivery system...steel, 0.5 meter diameter by 1.0 meter long vacuum chamber. It has 24 access ports / flanges of varying diameter for diagnostic feed-throughs, pumping
NASA Astrophysics Data System (ADS)
Gao, J. L.
2002-04-01
In this article, we present a system-level characterization of the energy consumption for sensor network application scenarios. We compute a power efficiency metric -- average watt-per-meter -- for each radio transmission and extend this local metric to find the global energy consumption. This analysis shows how overall energy consumption varies with transceiver characteristics, node density, data traffic distribution, and base-station location.
Laser-boosted lightcraft technology demonstrator
NASA Technical Reports Server (NTRS)
Richard, J. C.; Morales, C.; Smith, W. L.; Myrabo, L. N.
1990-01-01
The detailed description and performance analysis of a 1.4 meter diameter Lightcraft Technology Demonstator (LTD) is presented. The launch system employs a 100 MW-class ground-based laser to transmit power directly to an advanced combined-cycle engine that propels the 120 kg LTD to orbit - with a mass ratio of two. The single-stage-to-orbit (SSTO) LTD machine then becomes an autonomous sensor satellite that can deliver precise, high quality information typical of today's large orbital platforms. The dominant motivation behind this study is to provide an example of how laser propulsion and its low launch costs can induce a comparable order-of-magnitude reduction in sensor satellite packaging costs. The issue is simply one of production technology for future, survivable SSTO aerospace vehicles that intimately share both laser propulsion engine and satellite functional hardware.
76 FR 46790 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-03
.... Applicants: Orange Grove Energy, L.P. Description: J-Power North America Holdings Co. Ltd Supplemental Filing of Notification of Non-Material Change in Status Orange Grove Energy, L.P. Filed Date: 07/14/2011...: Upper Peninsula Power Company submits tariff filing per 35.12: Metering Agent Agreement between WPPI, L...
18 CFR 367.56 - Structures and improvements.
Code of Federal Regulations, 2010 CFR
2010-04-01
...) Water meters and supply system for a building or for general company purposes. (61) Water supply piping... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Structures and improvements. 367.56 Section 367.56 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY...
Charging Rate Incentive - Georgia Power Georgia Power offers a Plug-in Electric Vehicle (PEV) time -of-use electricity rate for residential customers who own an electric or plug-in hybrid electric vehicle. The PEV rate is optional and does not require a separate meter. For more information, see the
Mobile Atmospheric Pollutant Mapping System (MAPMS)
1989-12-01
SHOULD DIRECT REQUESTS FOR COPIES OF THIS REPORT TO: DEFENSE TECHNICAL INFORMATION CENTER CAMERON STATION ALEXANDRIA, VIRGINIA 22314 UNCLASSIFIED...22 7. Flip-Flop Array ..... ............ .. 22 8. RF Switches and RF Power Splitter . 22 9. RFI Shielding ......... ............. 2? 10. Transient...Boxcar Averager ...... ............ .. 24 5. Spectrum Analyzer .... ........... .. 26 6. Laser Power Meters .... ........... ... 26 M. COMPUTER
Translations on Environmental Quality, Number 128
1977-01-17
filters. The mechanical filter has a 5 cubic meter filtering material operational volume and is charged with activized BAU charcoal . The cationite...cubic meter activized BAU charcoal . The cationite and anionite filters are charged with strong acid cationite and strong alkali anionite in their N and...Extensive Reprocessing of Slags. In ferrous metallurgy , pig and steel pro- duction is inescapably connected with the production of large amounts of
Field data collection of miscellaneous electrical loads in Northern California: Initial results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greenblatt, Jeffery B.; Pratt, Stacy; Willem, Henry
This report describes efforts to measure energy use of miscellaneous electrical loads (MELs) in 880 San Francisco Bay Area homes during the summer of 2012. Ten regions were selected for metering: Antioch, Berkeley, Fremont, Livermore, Marin County (San Rafael, Novato, Fairfax, and Mill Valley), Oakland/Emeryville, Pleasanton, Richmond, San Leandro, and Union City. The project focused on three major categories of devices: entertainment (game consoles, set-top boxes, televisions and video players), home office (computers, monitors and network equipment), and kitchen plug-loads (coffee/espresso makers, microwave ovens/toaster ovens/toasters, rice/slow cookers and wine chillers). These categories were important to meter because they either dominatedmore » the estimated overall energy use of MELs, are rapidly changing, or there are very little energy consumption data published. A total of 1,176 energy meters and 143 other sensors were deployed, and 90% of these meters and sensors were retrieved. After data cleaning, we obtained 711 valid device energy use measurements, which were used to estimate, for a number of device subcategories, the average time spent in high power, low power and “off” modes, the average energy use in each mode, and the average overall energy use. Consistent with observations made in previous studies, we find on average that information technology (IT) devices (home entertainment and home office equipment) consume more energy (15.0 and 13.0 W, respectively) than non-IT devices (kitchen plug-loads; 4.9 W). Opportunities for energy savings were identified in almost every device category, based on the time spent in various modes and/or the power levels consumed in those modes. Future reports will analyze the collected data in detail by device category and compare results to those obtained from prior studies.« less
Measurements for assessing the exposure from 3G femtocells.
Boursianis, Achilles; Vanias, Pantelis; Samaras, Theodoros
2012-06-01
Femtocells are low-power access points, which combine mobile and broadband technologies. The main operation of a femtocell is to function as a miniature base station unit in an indoor environment and to connect to the operator's network through a broadband phone line or a coaxial cable line. This study provides the first experimental measurements and results in Greece for the assessment of exposure to a femtocell access point (FAP) indoors. Using a mobile handset with the appropriate software, power level measurements of the transmitted (Tx) and the received by the mobile handset signal were performed in two different and typical (home and office) environments. Moreover, radiofrequency electric field strength and frequency selective measurements with a radiation meter (SRM-3000) were carried out in the proximity of the FAP installation point. The cumulative distribution functions of the Tx power at most cases (except one) show that in 90% of all points the power of the mobile phone was lower by at least 7 dB during FAP operation. At a distance of ∼1 m from the FAP (in its main beam), power flux density measurements show that there is very little difference between the two situations (FAP ON and OFF). As a conclusion, the use of femtocells indoors improves reception quality, reduces the Tx power of the user's mobile terminal and results in an indiscernible increase of the electromagnetic field in front of the unit, at values that are extremely low compared with reference levels of exposure guidelines.
NASA Astrophysics Data System (ADS)
Jiang, Shyh-Biau; Yeh, Tse-Liang; Chen, Li-Wu; Liu, Jann-Yenq; Yu, Ming-Hsuan; Huang, Yu-Qin; Chiang, Chen-Kiang; Chou, Chung-Jen
2018-05-01
In this study, we construct a photomultiplier calibration system. This calibration system can help scientists measuring and establishing the characteristic curve of the photon count versus light intensity. The system uses an innovative 10-fold optical attenuator to enable an optical power meter to calibrate photomultiplier tubes which have the resolution being much greater than that of the optical power meter. A simulation is firstly conducted to validate the feasibility of the system, and then the system construction, including optical design, circuit design, and software algorithm, is realized. The simulation generally agrees with measurement data of the constructed system, which are further used to establish the characteristic curve of the photon count versus light intensity.
LOAD-ENHANCED MOVEMENT QUALITY SCREENING AND TACTICAL ATHLETICISM: AN EXTENSION OF EVIDENCE
Schmitz, Randy J.; Rhea, Christopher K.; Ross, Scott E.
2017-01-01
Background Military organizations use movement quality screening for prediction of injury risk and performance potential. Currently, evidence of an association between movement quality and performance is limited. Recent work has demonstrated that external loading strengthens the relationship between movement screens and performance outcomes. Such loading may therefore steer us toward robust implementations of movement quality screens while maintaining their appeal as cost effective, field-expedient tools. Purpose The purpose of the current study was to quantify the effect of external load-bearing on the relationship between clinically rated movement quality and tactical performance outcomes while addressing the noted limitations. Study Design Crossover Trial. Methods Fifty young adults (25 male, 25 female, 22.98 ± 3.09 years, 171.95 ± 11.46 cm, 71.77 ± 14.03 kg) completed the Functional Movement Screen™ with (FMS™W) and without (FMS™C) a weight vest in randomized order. Following FMS™ testing, criterion measures of tactical performance were administered, including agility T-Tests, sprints, a 400-meter run, the Mobility for Battle (MOB) course, and a simulated casualty rescue. For each performance outcome, regression models were selected via group lasso with smoothed FMS™ item scores as candidate predictor variables. Results For all outcomes, proportion of variance accounted for was greater in FMS™W (R2 = ;0.22 [T-Test], 0.29 [Sprint], 0.17 [400 meter], 0.29 [MOB], and 0.11 [casualty rescue]) than in FMS™C (R2 = ;0.00 [T-Test], 0.11 [Sprint], 0.00 [400 meter], 0.19 [MOB], and 0.00 [casualty rescue]). From the FMS™W condition, beneficial performance effects (p<0.05) were observed for Deep Squat (sprint, casualty rescue), Hurdle Step (T-Agility, 400 meter run), Inline Lunge (sprint, MOB), and Trunk Stability Push Up (all models). Similar effects for FMS™C item scores were limited to Trunk Stability Push Up (p<0.05, all models). Conclusions The present study extends evidence supporting the validity of load-enhanced movement quality screening as a predictor of tactical performance ability. Future designs should seek to identify mechanisms explaining this effect. Level of Evidence 3 PMID:28593095
LOAD-ENHANCED MOVEMENT QUALITY SCREENING AND TACTICAL ATHLETICISM: AN EXTENSION OF EVIDENCE.
Glass, Stephen M; Schmitz, Randy J; Rhea, Christopher K; Ross, Scott E
2017-06-01
Military organizations use movement quality screening for prediction of injury risk and performance potential. Currently, evidence of an association between movement quality and performance is limited. Recent work has demonstrated that external loading strengthens the relationship between movement screens and performance outcomes. Such loading may therefore steer us toward robust implementations of movement quality screens while maintaining their appeal as cost effective, field-expedient tools. The purpose of the current study was to quantify the effect of external load-bearing on the relationship between clinically rated movement quality and tactical performance outcomes while addressing the noted limitations. Crossover Trial. Fifty young adults (25 male, 25 female, 22.98 ± 3.09 years, 171.95 ± 11.46 cm, 71.77 ± 14.03 kg) completed the Functional Movement Screen™ with (FMS™W) and without (FMS™C) a weight vest in randomized order. Following FMS™ testing, criterion measures of tactical performance were administered, including agility T-Tests, sprints, a 400-meter run, the Mobility for Battle (MOB) course, and a simulated casualty rescue. For each performance outcome, regression models were selected via group lasso with smoothed FMS™ item scores as candidate predictor variables. For all outcomes, proportion of variance accounted for was greater in FMS™W (R 2 = ;0.22 [T-Test], 0.29 [Sprint], 0.17 [400 meter], 0.29 [MOB], and 0.11 [casualty rescue]) than in FMS™C (R 2 = ;0.00 [T-Test], 0.11 [Sprint], 0.00 [400 meter], 0.19 [MOB], and 0.00 [casualty rescue]). From the FMS™W condition, beneficial performance effects (p<0.05) were observed for Deep Squat (sprint, casualty rescue), Hurdle Step (T-Agility, 400 meter run), Inline Lunge (sprint, MOB), and Trunk Stability Push Up (all models). Similar effects for FMS™C item scores were limited to Trunk Stability Push Up (p<0.05, all models). The present study extends evidence supporting the validity of load-enhanced movement quality screening as a predictor of tactical performance ability. Future designs should seek to identify mechanisms explaining this effect. 3.
ISFET-based sensor signal processor chip design for environment monitoring applications
NASA Astrophysics Data System (ADS)
Chung, Wen-Yaw; Yang, Chung-Huang; Wang, Ming-Ga
2004-12-01
In recent years Ion-Sensitive Field Effect Transistor (ISFET) based transducers create valuable applications in physiological data acquisition and environment monitoring. This paper presents a mixed-mode ASIC design for potentiometric ISFET-based bio-chemical sensor applications including H+ sensing and hand-held pH meter. For battery power consideration, the proposed system consists of low voltage (3V) analog front-end readout circuits and digital processor has been developed and fabricated in a 0.5mm double-poly double-metal CMOS technology. To assure that the correct pH value can be measured, the two-point calibration circuitry based on the response of standard pH4 and pH7 buffer solution has been implemented by using algorithmic state machine hardware algorithms. The measurement accuracy of the chip is 10 bits and the measured range between pH 2 to pH 12 compared to ideal values is within the accuracy of 0.1pH. For homeland environmental applications, the system provide rapid, easy to use, and cost-effective on-site testing on the quality of water, such as drinking water, ground water and river water. The processor has a potential usage in battery-operated and portable devices in environmental monitoring applications compared to commercial hand-held pH meter.
ANALYSIS OF AIR QUALITY DATA NEAR ROADWAYS USING A DISPERSION MODEL
A dispersion model was used to analyze measurements made during a field study conducted by the U.S. EPA in July and August 2006, to estimate the impact of highway emissions on air quality at distances of tens of meters from an eight-lane highway. The air quality measurements con...
BLOND, a building-level office environment dataset of typical electrical appliances.
Kriechbaumer, Thomas; Jacobsen, Hans-Arno
2018-03-27
Energy metering has gained popularity as conventional meters are replaced by electronic smart meters that promise energy savings and higher comfort levels for occupants. Achieving these goals requires a deeper understanding of consumption patterns to reduce the energy footprint: load profile forecasting, power disaggregation, appliance identification, startup event detection, etc. Publicly available datasets are used to test, verify, and benchmark possible solutions to these problems. For this purpose, we present the BLOND dataset: continuous energy measurements of a typical office environment at high sampling rates with common appliances and load profiles. We provide voltage and current readings for aggregated circuits and matching fully-labeled ground truth data (individual appliance measurements). The dataset contains 53 appliances (16 classes) in a 3-phase power grid. BLOND-50 contains 213 days of measurements sampled at 50kSps (aggregate) and 6.4kSps (individual appliances). BLOND-250 consists of the same setup: 50 days, 250kSps (aggregate), 50kSps (individual appliances). These are the longest continuous measurements at such high sampling rates and fully-labeled ground truth we are aware of.
BLOND, a building-level office environment dataset of typical electrical appliances
NASA Astrophysics Data System (ADS)
Kriechbaumer, Thomas; Jacobsen, Hans-Arno
2018-03-01
Energy metering has gained popularity as conventional meters are replaced by electronic smart meters that promise energy savings and higher comfort levels for occupants. Achieving these goals requires a deeper understanding of consumption patterns to reduce the energy footprint: load profile forecasting, power disaggregation, appliance identification, startup event detection, etc. Publicly available datasets are used to test, verify, and benchmark possible solutions to these problems. For this purpose, we present the BLOND dataset: continuous energy measurements of a typical office environment at high sampling rates with common appliances and load profiles. We provide voltage and current readings for aggregated circuits and matching fully-labeled ground truth data (individual appliance measurements). The dataset contains 53 appliances (16 classes) in a 3-phase power grid. BLOND-50 contains 213 days of measurements sampled at 50kSps (aggregate) and 6.4kSps (individual appliances). BLOND-250 consists of the same setup: 50 days, 250kSps (aggregate), 50kSps (individual appliances). These are the longest continuous measurements at such high sampling rates and fully-labeled ground truth we are aware of.
BLOND, a building-level office environment dataset of typical electrical appliances
Kriechbaumer, Thomas; Jacobsen, Hans-Arno
2018-01-01
Energy metering has gained popularity as conventional meters are replaced by electronic smart meters that promise energy savings and higher comfort levels for occupants. Achieving these goals requires a deeper understanding of consumption patterns to reduce the energy footprint: load profile forecasting, power disaggregation, appliance identification, startup event detection, etc. Publicly available datasets are used to test, verify, and benchmark possible solutions to these problems. For this purpose, we present the BLOND dataset: continuous energy measurements of a typical office environment at high sampling rates with common appliances and load profiles. We provide voltage and current readings for aggregated circuits and matching fully-labeled ground truth data (individual appliance measurements). The dataset contains 53 appliances (16 classes) in a 3-phase power grid. BLOND-50 contains 213 days of measurements sampled at 50kSps (aggregate) and 6.4kSps (individual appliances). BLOND-250 consists of the same setup: 50 days, 250kSps (aggregate), 50kSps (individual appliances). These are the longest continuous measurements at such high sampling rates and fully-labeled ground truth we are aware of. PMID:29583141
2017-04-01
spectrum ( EMS ) to disrupt, degrade, damage, or destroy targets. They can theoretically be used against all Groups of UAS. C-UAS weapons utilizing HPM...18 This pulse creates an electromagnetic ( EM ) field surrounding the target, typically measured in volts per meter, kilovolts per meter, or watts...through a normally utilized input device, such as an antenna. This type of coupling typically only occurs within the narrow band of the EMS that
Qureshi, Muhammad R A; Alfadhl, Yasir; Chen, Xiaodong; Peyman, Azadeh; Maslanyj, Myron; Mann, Simon
2018-04-01
Human body exposure to radiofrequency electromagnetic waves emitted from smart meters was assessed using various exposure configurations. Specific energy absorption rate distributions were determined using three anatomically realistic human models. Each model was assigned with age- and frequency-dependent dielectric properties representing a collection of age groups. Generalized exposure conditions involving standing and sleeping postures were assessed for a home area network operating at 868 and 2,450 MHz. The smart meter antenna was fed with 1 W power input which is an overestimation of what real devices typically emit (15 mW max limit). The highest observed whole body specific energy absorption rate value was 1.87 mW kg -1 , within the child model at a distance of 15 cm from a 2,450 MHz device. The higher values were attributed to differences in dimension and dielectric properties within the model. Specific absorption rate (SAR) values were also estimated based on power density levels derived from electric field strength measurements made at various distances from smart meter devices. All the calculated SAR values were found to be very small in comparison to International Commission on Non-Ionizing Radiation Protection limits for public exposure. Bioelectromagnetics. 39:200-216, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Thielens, Arno; Agneessens, Sam; Van Torre, Patrick; Van den Bossche, Matthias; Eeftens, Marloes; Huss, Anke; Vermeulen, Roel; de Seze, René; Mazet, Paul; Cardis, Elisabeth; Röösli, Martin; Martens, Luc; Joseph, Wout
2018-01-01
A multi-band Body-Worn Distributed exposure Meter (BWDM) calibrated for simultaneous measurement of the incident power density in 11 telecommunication frequency bands, is proposed. The BDWM consists of 22 textile antennas integrated in a garment and is calibrated on six human subjects in an anechoic chamber to assess its measurement uncertainty in terms of 68% confidence interval of the on-body antenna aperture. It is shown that by using multiple antennas in each frequency band, the uncertainty of the BWDM is 22 dB improved with respect to single nodes on the front and back of the torso and variations are decreased to maximum 8.8 dB. Moreover, deploying single antennas for different body morphologies results in a variation up to 9.3 dB, which is reduced to 3.6 dB using multiple antennas for six subjects with various body mass index values. The designed BWDM, has an improved uncertainty of up to 9.6 dB in comparison to commercially available personal exposure meters calibrated on body. As an application, an average incident power density in the range of 26.7–90.8 μW·m−2 is measured in Ghent, Belgium. The measurements show that commercial personal exposure meters underestimate the actual exposure by a factor of up to 20.6. PMID:29346280
NASA Astrophysics Data System (ADS)
Ding, Ruqi; Xu, Bing; Zhang, Junhui; Cheng, Min
2017-08-01
Independent metering control systems are promising fluid power technologies compared with traditional valve controlled systems. By breaking the mechanical coupling between the inlet and outlet, the meter-out valve can open as large as possible to reduce energy consumptions. However, the lack of damping in outlet causes stronger vibrations. To address the problem, the paper designs a hybrid control method combining dynamic pressure-feedback and active damping control. The innovation resides in the optimization of damping by introducing pressure feedback to make trade-offs between high stability and fast response. To achieve this goal, the dynamic response pertaining to the control parameters consisting of feedback gain and cut-off frequency, are analyzed via pole-zero locations. Accordingly, these parameters are tuned online in terms of guaranteed dominant pole placement such that the optimal damping can be accurately captured under a considerable variation of operating conditions. The experiment is deployed in a mini-excavator. The results pertaining to different control parameters confirm the theoretical expectations via pole-zero locations. By using proposed self-tuning controller, the vibrations are almost eliminated after only one overshoot for different operation conditions. The overshoots are also reduced with less decrease of the response time. In addition, the energy-saving capability of independent metering system is still not affected by the improvement of controllability.
Evaluation of a metering, mixing, and dispensing system for mixing polysulfide adhesive
NASA Technical Reports Server (NTRS)
Evans, Kurt B.
1989-01-01
Tests were performed to evaluate whether a metered mixing system can mix PR-1221 polysulfide adhesive as well as or better than batch-mixed adhesive; also, to evaluate the quality of meter-mixed PR-1860 and PS-875 polysulfide adhesives. These adhesives are candidate replacements for PR-1221 which will not be manufactured in the future. The following material properties were evaluated: peel strength, specific gravity and adhesive components of mixed adhesives, Shore A hardness, tensile adhesion strength, and flow rate. Finally, a visual test called the butterfly test was performed to observe for bubbles and unmixed adhesive. The results of these tests are reported and discussed.
NASA Astrophysics Data System (ADS)
Khandelwal, A.; Karpatne, A.; Kumar, V.
2017-12-01
In this paper, we present novel methods for producing surface water maps at 30 meter spatial resolution at a daily temporal resolution. These new methods will make use of the MODIS spectral data from Terra (available daily since 2000) to produce daily maps at 250 meter and 500 meter resolution, and then refine them using the relative elevation ordering of pixels at 30 meter resolution. The key component of these methods is the use of elevation structure (relative elevation ordering) of a water body. Elevation structure is not explicitly available at desired resolution for most water bodies in the world and hence it will be estimated using our previous work that uses the history of imperfect labels. In this paper, we will present a new technique that uses elevation structure (unlike existing pixel based methods) to enforce temporal consistency in surface water extents (lake area on nearby dates is likely to be very similar). This will greatly improve the quality of the MODIS scale land/water labels since daily MODIS data can have a large amount of missing (or poor quality) data due to clouds and other factors. The quality of these maps will be further improved using elevation based resolution refinement approach that will make use of elevation structure estimated at Landsat scale. With the assumption that elevation structure does not change over time, it provides a very effective way to transfer information between datasets even when they are not observed concurrently. In this work, we will derive elevation structure at Landsat scale from monthly water extent maps spanning 1984-2015, publicly available through a joint effort of Google Earth Engine and the European Commission's Joint Research Centre (JRC). This elevation structure will then be used to refine spatial resolution of Modis scale maps from 2000 onwards. We will present the analysis of these methods on a large and diverse set of water bodies across the world.
NASA Technical Reports Server (NTRS)
Marcin, Martin; Abramovici, Alexander
2008-01-01
The software of a commercially available digital radio receiver has been modified to make the receiver function as a two-channel low-noise phase meter. This phase meter is a prototype in the continuing development of a phase meter for a system in which radiofrequency (RF) signals in the two channels would be outputs of a spaceborne heterodyne laser interferometer for detecting gravitational waves. The frequencies of the signals could include a common Doppler-shift component of as much as 15 MHz. The phase meter is required to measure the relative phases of the signals in the two channels at a sampling rate of 10 Hz at a root power spectral density <5 microcycle/(Hz)1/2 and to be capable of determining the power spectral density of the phase difference over the frequency range from 1 mHz to 1 Hz. Such a phase meter could also be used on Earth to perform similar measurements in laser metrology of moving bodies. To illustrate part of the principle of operation of the phase meter, the figure includes a simplified block diagram of a basic singlechannel digital receiver. The input RF signal is first fed to the input terminal of an analog-to-digital converter (ADC). To prevent aliasing errors in the ADC, the sampling rate must be at least twice the input signal frequency. The sampling rate of the ADC is governed by a sampling clock, which also drives a digital local oscillator (DLO), which is a direct digital frequency synthesizer. The DLO produces samples of sine and cosine signals at a programmed tuning frequency. The sine and cosine samples are mixed with (that is, multiplied by) the samples from the ADC, then low-pass filtered to obtain in-phase (I) and quadrature (Q) signal components. A digital signal processor (DSP) computes the ratio between the Q and I components, computes the phase of the RF signal (relative to that of the DLO signal) as the arctangent of this ratio, and then averages successive such phase values over a time interval specified by the user.
Investigation of coaxial jet noise and inlet choking using an F-111A airplane
NASA Technical Reports Server (NTRS)
Putnam, T. W.
1973-01-01
Measurements of engine noise generated by an F-111A airplane positioned on a thrustmeasuring platform were made at angles of 0 deg to 160 deg from the aircraft heading. Sound power levels, power spectra, and directivity patterns are presented for jet exit velocities between 260 feet per second and 2400 feet per second. The test results indicate that the total acoustic power was proportional to the eighth power of the core jet velocity for core exhaust velocities greater than 300 meters per second (985 feet per second) and that little or no mixing of the core and fan streams occurred. The maximum sideline noise was most accurately predicted by using the average jet velocity for velocities above 300 meters per second (985 feet per second). The acoustic power spectrum was essentially the same for the single jet flow of afterburner operation and the coaxial flow of the nonafterburning condition. By varying the inlet geometry and cowl position, reductions in the sound pressure level of the blade passing frequency on the order of 15 decibels to 25 decibels were observed for inlet Mach numbers of 0.8 to 0.9.
Optical power-based interrogation of plasmonic tilted fiber Bragg grating biosensors
NASA Astrophysics Data System (ADS)
González-Vila, Á.; Lopez-Aldaba, A.; Kinet, D.; Mégret, P.; Lopez-Amo, M.; Caucheteur, C.
2017-04-01
Two interrogation techniques for plasmonic tilted fiber Bragg grating sensors are reported and experimentally tested. Typical interrogation methods are usually based on tracking the wavelength shift of the most sensitive cladding mode, but for biosensing applications, spectrometer-based methods can be replaced by more efficient solutions. The proposed techniques thus rely on the measurement of the induced changes in optical power. The first one consists of a properly polarized tunable laser source set to emit at the wavelength of the sensor most sensitive mode and an optical power meter to measure the transmitted response. For the second method, a uniform fiber Bragg grating is photo-inscribed beyond the sensor in such a way that its central wavelength matches the sensor most sensitive mode, acting as an optical filter. Using a LED source, light reflected backwards by this grating is partially attenuated when passing through the sensor due to plasmon wave excitation and the power changes are quantified once again with an optical power meter. A performance analysis of the techniques is carried out and they both result competitive interrogation solutions. The work thus focuses on the development of cost-effective alternatives for monitoring this kind of biosensors in practical situations.
Detection of Frauds and Other Non-technical Losses in Power Utilities using Smart Meters: A Review
NASA Astrophysics Data System (ADS)
Ahmad, Tanveer; Ul Hasan, Qadeer
2016-06-01
Analysis of losses in power distribution system and techniques to mitigate these are two active areas of research especially in energy scarce countries like Pakistan to increase the availability of power without installing new generation. Since total energy losses account for both technical losses (TL) as well as non-technical losses (NTLs). Utility companies in developing countries are incurring of major financial losses due to non-technical losses. NTLs lead to a series of additional losses, such as damage to the network (infrastructure and the reduction of network reliability) etc. The purpose of this paper is to perform an introductory investigation of non-technical losses in power distribution systems. Additionally, analysis of NTLs using consumer energy consumption data with the help of Linear Regression Analysis has been carried out. This data focuses on the Low Voltage (LV) distribution network, which includes: residential, commercial, agricultural and industrial consumers by using the monthly kWh interval data acquired over a period (one month) of time using smart meters. In this research different prevention techniques are also discussed to prevent illegal use of electricity in the distribution of electrical power system.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-04
... meters in rotor diameter. In addition to the wind turbines, the proposed Project will involve... of Renewable Energy From CPV Ashley Wind Power Project in North Dakota AGENCY: Tennessee Valley... this renewable energy, CPV is proposing to construct and operate a wind-powered generating facility in...
18 CFR 284.14 - Posting requirements of major non-interstate pipelines.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Posting requirements of major non-interstate pipelines. 284.14 Section 284.14 Conservation of Power and Water Resources FEDERAL... to or greater than 15,000 MMBtu (million British thermal units)/day; or (ii) If a physically metered...
18 CFR 284.14 - Posting requirements of major non-interstate pipelines.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Posting requirements of major non-interstate pipelines. 284.14 Section 284.14 Conservation of Power and Water Resources FEDERAL... to or greater than 15,000 MMBtu (million British thermal units)/day; or (ii) If a physically metered...
18 CFR 284.14 - Posting requirements of major non-interstate pipelines.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Posting requirements of major non-interstate pipelines. 284.14 Section 284.14 Conservation of Power and Water Resources FEDERAL... to or greater than 15,000 MMBtu (million British thermal units)/day; or (ii) If a physically metered...
18 CFR 284.14 - Posting requirements of major non-interstate pipelines.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Posting requirements of major non-interstate pipelines. 284.14 Section 284.14 Conservation of Power and Water Resources FEDERAL... to or greater than 15,000 MMBtu (million British thermal units)/day; or (ii) If a physically metered...
18 CFR 284.14 - Posting requirements of major non-interstate pipelines.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Posting requirements of major non-interstate pipelines. 284.14 Section 284.14 Conservation of Power and Water Resources FEDERAL... to or greater than 15,000 MMBtu (million British thermal units)/day; or (ii) If a physically metered...
18 CFR 367.9030 - Account 903, Customer records and collection expenses.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Account 903, Customer records and collection expenses. 367.9030 Section 367.9030 Conservation of Power and Water Resources..., transfers or meter tests initiated by the customer, excluding the cost of carrying out the orders, that is...
Low dose creatine supplementation enhances sprint phase of 400 meters swimming performance.
Anomasiri, Wilai; Sanguanrungsirikul, Sompol; Saichandee, Pisut
2004-09-01
This study demonstrated the effect of low dose creatine supplement (10 g. per day) on the sprinting time in the last 50 meters of 400 meters swimming competition, as well as the effect on exertion. Nineteen swimmers in the experimental group received creatine monohydrate 5 g with orange solution 15 g, twice per day for 7 days and nineteen swimmers in the control group received the same quantity of orange solution. The results showed that the swimmers who received creatine supplement lessened the sprinting time in the last 50 meters of 400 meters swimming competition than the control group. (p<0.05). The results of Wingate test (anaerobic power, anaerobic capacity and fatigue index) compared between pre and post supplementation. There was significant difference at p<0.05 in the control group from training effect whereas there was significant difference at p<0.000 from training effect and creatine supplement in the experiment group. Therefore, the creatine supplement in amateur swimmers in the present study enhanced the physical performance up to the maximum capacity.
Test facility for the evaluation of microwave transmission components
NASA Astrophysics Data System (ADS)
Fong, C. G.; Poole, B. R.
1985-10-01
A Low Power Test Facility (LPTF) was developed to evaluate the performance of Electron Cyclotron Resonance Heating (ECRH) microwave transmission components for the Mirror Fusion Test Facility (MFTF-B). The facility generates 26 to 60 GHz in modes of TE01, TE02, or TE03 launched at power levels of 1/2 milliwatt. The propagation of the RF as it radiates from either transmitting or secondary reflecting microwave transmission components is recorded by a discriminating crystal detector mechanically manipulated at constant radius in spherical coordinates. The facility is used to test, calibrate, and verify the design of overmoded, circular waveguide components, quasi-optical reflecting elements before high power use. The test facility consists of microwave sources and metering components, such as VSWR, power and frequency meters, a rectangular TE10 to circular TE01 mode transducer, mode filter, circular TE01 to 2.5 in. diameter overmoded waveguide with mode converters for combination of TE01 to TE03 modes. This assembly then connects to a circular waveguide launcher or the waveguide component under test.
NASA Astrophysics Data System (ADS)
Tyapkov, V. F.
2014-07-01
The secondary coolant circuit water chemistry with metering amines began to be put in use in Russia in 2005, and all nuclear power plant units equipped with VVER-1000 reactors have been shifted to operate with this water chemistry for the past seven years. Owing to the use of water chemistry with metering amines, the amount of products from corrosion of structural materials entering into the volume of steam generators has been reduced, and the flow-accelerated corrosion rate of pipelines and equipment has been slowed down. The article presents data on conducting water chemistry in nuclear power plant units with VVER-1000 reactors for the secondary coolant system equipment made without using copper-containing alloys. Statistical data are presented on conducting ammonia-morpholine and ammonia-ethanolamine water chemistries in new-generation operating power units with VVER-1000 reactors with an increased level of pH. The values of cooling water leaks in turbine condensers the tube system of which is made of stainless steel or titanium alloy are given.
NASA Astrophysics Data System (ADS)
Yin, Bo; Liu, Li; Wang, Jiahan; Li, Xiran; Liu, Zhenbo; Li, Dewei; Wang, Jun; Liu, Lu; Wu, Jun; Xu, Tingting; Cui, He
2017-10-01
Electric energy measurement as a basic work, an accurate measurements play a vital role for the economic interests of both parties of power supply, the standardized management of the measurement laboratory at all levels is a direct factor that directly affects the fairness of measurement. Currently, the management of metering laboratories generally uses one-dimensional bar code as the recognition object, advances the testing process by manual management, most of the test data requires human input to generate reports. There are many problems and potential risks in this process: Data cannot be saved completely, cannot trace the status of inspection, the inspection process isn't completely controllable and so on. For the provincial metrology center's actual requirements of the whole process management for the performance test of the power measuring appliances, using of large-capacity RF tags as a process management information media, we developed a set of general measurement experiment management system, formulated a standardized full performance test process, improved the raw data recording mode of experimental process, developed a storehouse automatic inventory device, established a strict test sample transfer and storage system, ensured that all the raw data of the inspection can be traced back, achieved full life-cycle control of the sample, significantly improved the quality control level and the effectiveness of inspection work.
Soler-López, Luis R.; Santos, Carlos R.
2010-01-01
Laguna Grande is a 50-hectare lagoon in the municipio of Fajardo, located in the northeasternmost part of Puerto Rico. Hydrologic, water-quality, and biological data were collected in the lagoon between March 2007 and February 2009 to establish baseline conditions and determine the health of Laguna Grande on the basis of preestablished standards. In addition, a core of bottom material was obtained at one site within the lagoon to establish sediment depositional rates. Water-quality properties measured onsite (temperature, pH, dissolved oxygen, specific conductance, and water transparency) varied temporally rather than areally. All physical properties were in compliance with current regulatory standards established for Puerto Rico. Nutrient concentrations were very low and in compliance with current regulatory standards (less than 5.0 and 1.0 milligrams per liter for total nitrogen and total phosphorus, respectively). The average total nitrogen concentration was 0.28 milligram per liter, and the average total phosphorus concentration was 0.02 milligram per liter. Chlorophyll a was the predominant form of photosynthetic pigment in the water. The average chlorophyll-a concentration was 6.2 micrograms per liter. Bottom sediment accumulation rates were determined in sediment cores by modeling the downcore activities of lead-210 and cesium-137. Results indicated a sediment depositional rate of about 0.44 centimeter per year. At this rate of sediment accretion, the lagoon may become a marshland in about 700 to 900 years. About 86 percent of the community primary productivity in Laguna Grande was generated by periphyton, primarily algal mats and seagrasses, and the remaining 14 percent was generated by phytoplankton in the water column. Based on the diel studies the total average net community productivity equaled 5.7 grams of oxygen per cubic meter per day (2.1 grams of carbon per cubic meter per day). Most of this productivity was ascribed to periphyton and macrophytes, which produced 4.9 grams of oxygen per cubic meter per day (1.8 grams of carbon per cubic meter per day). Phytoplankton, the plant and algal component of plankton, produced about 0.8 gram of oxygen per cubic meter per day (0.3 gram of carbon per cubic meter per day). The total diel community respiration rate was 23.4 grams of oxygen per cubic meter per day. The respiration rate ascribed to plankton, which consists of all free floating and swimming organisms in the water column, composed 10 percent of this rate (2.9 grams of oxygen per cubic meter per day); respiration by all other organisms composed the remaining 90 percent (20.5 grams of oxygen per cubic meter per day). Plankton gross productivity was 3.7 grams of oxygen per cubic meter per day, equivalent to about 13 percent of the average gross productivity for the entire community (29.1 grams of oxygen per cubic meter per day). The average phytoplankton biomass values in Laguna Grande ranged from 6.0 to 13.6 milligrams per liter. During the study, Laguna Grande contained a phytoplankton standing crop of approximately 5.8 metric tons. Phytoplankton community had a turnover (renewal) rate of about 153 times per year, or roughly about once every 2.5 days. Fecal indicator bacteria concentrations ranged from 160 to 60,000 colonies per 100 milliliters. Concentrations generally were greatest in areas near residential and commercial establishments, and frequently exceeded current regulatory standards established for Puerto Rico.
Sedimentation Survey of Lago Patillas, Puerto Rico, March 2007
Soler-López, Luis R.
2010-01-01
Lago Patillas is a reservoir located on the confluence of Rio Grande de Patillas and Rio Marin, in the municipality of Patillas in southern Puerto Rico, about 3 kilometers north of the town of Patillas and about 8 kilometers northeast of the town of Arroyo (fig. 1). The dam is owned and operated by the Puerto Rico Electric Power Authority (PREPA) and was constructed in 1914 for the irrigation of croplands in the southern coastal plains of Puerto Rico along the towns of Arroyo, Guayama, Patillas, and Salinas. Irrigation releases are made through the outlet works into the Patillas Irrigation Canal that extends 32.2 kilometers from the Patillas dam to Rio Salinas. The dam is a semi-hydraulic earthfill with a structural height of 44.80 meters, a top width of 4.57 meters, a base width of 190.49 meters, and a crest length of 325.21 meters. The spillway structure is physically separated from the earthfill dam, has an elevation of 58.21 meters above mean sea level, and has three radial arm gates (Puerto Rico Electric Power Authority, 1979). The reservoir impounds the waters of the Rio Grande de Patillas and Rio Marin. The reservoir has a drainage area of 66.3 square kilometers. Additional information and operational procedures are listed in Soler-Lopez and others (1999). During March 14-15, 2007, the U.S. Geological Survey (USGS), Caribbean Water Science Center (CWSC), in cooperation with the PREPA conducted a bathymetric survey of Lago Patillas to update the reservoir storage capacity and update the reservoir sedimentation rate by comparing the 2007 bathymetric survey data with previous 1997 data. The purpose of this report is to update the reservoir storage capacity, sedimentation rates, and areas of substantial sediment accumulation since April 1997.
Storage capacity and sedimentation trends of Lago Garzas, Puerto Rico, 1996-2007
Soler-Lopez, L.R.
2012-01-01
Lago Garzas is located in west-central Puerto Rico, about 3.5 kilometers southwest of the town of Adjuntas, in the confluence of the Río Vacas and three other unnamed tributaries (fig. 1). The dam is owned and operated by the Puerto Rico Electric Power Authority (PREPA), and was constructed in 1943 for hydroelectric power generation and municipal water use along the southern coast. The dam is a semi-hydraulic earthfill embankment lined with boulders, and has a height of 61.57 meters, a top width of 9.14 meters, a base width of 365.76 meters, and a crest length of 227.37 meters; State Road PR-518 crosses the top of the dam. A morning-glory-type spillway is located near the west abutment of the dam at an elevation of 736.12 meters above mean sea level (Puerto Rico Water Resources Authority, 1969). Figure 2 shows an aerial photograph of the Lago Garzas earthfill dam and the morning-glory spillway section. Additional information and operational procedures are provided in Soler-López and others (1999). During July 17-18, 2007, the U.S. Geological Survey (USGS) Caribbean Water Science Center, in cooperation with the Puerto Rico Aqueduct and Sewer Authority, conducted a bathymetric survey of Lago Garzas to update the reservoir storage capacity and update the reservoir sedimentation rate by comparing the 2007 data with the previous 1996 bathymetric survey results. The purpose of this report is to describe and document the USGS sedimentation survey conducted at Lago Garzas during July 2007, including the methods used to update the reservoir storage capacity, sedimentation rates, and areas of substantial sediment accumulation since 1996.
Sedimentation Survey of Lago Icacos, Puerto Rico, March 2004
Soler-López, Luis R.
2007-01-01
The Lago Icacos, a small reservoir built in 1930 and owned by the Puerto Rico Electric Power Authority, is part of the Rio Blanco Hydroelectric Power System. The reservoir is located in Naguabo, within the Caribbean National Forest in eastern Puerto Rico. The original storage capacity of the reservoir was 19,119 cubic meters in 1930. The bathymetric survey conducted by the U.S. Geological Survey in March 2004 indicates a storage capacity of 7,435 cubic meters or 39 percent of the original storage capacity, and a maximum depth of 5.3 meters. The reservoir has been dredged several times to restore lost storage capacity caused by high sediment loads and the frequent landslides that occur upstream from the dam, which have partially or completely filled the Lago Icacos. Because sediment removal activities have not been documented, sedimentation rates could not be determined using storage volume comparisons. A reservoir sedimentation rate was calculated using the daily sediment load data gathered at the U.S. Geological Survey Rio Icacos streamflow station upstream of the reservoir, the estimated Lago Icacos sediment trapping efficiency, and the estimated sediment yield of the Lago Icacos basin extrapolated from the Rio Icacos sediment load data. Using these properties, the Lago Icacos sedimentation rate was estimated as 71 cubic meters per year, equivalent to about 1 percent of the original storage capacity per year. The Lago Icacos 7.47-square-kilometer drainage area sediment yield was estimated as 7,126 tonnes per year or about 954 tonnes per square kilometer per year. Based on the current estimated sedimentation rate of 71 cubic meters per year, Lago Icacos has a useful life of about 105 years or to year 2109.
Rhea, Matthew R; Kenn, Joseph G; Dermody, Bryan M
2009-12-01
The purpose of this study was to assess the effect of heavy/slow movements and variable resistance training on peak power and strength development. Forty-eight National Collegiate Athletic Association (NCAA) Division I athletes (age: 21.4 +/- 2.1 years, all men) were recruited for this 12-week training intervention study. Maximum strength and jumping power were assessed before and after the training program. Athletes were randomly assigned to 1 of 3 training groups: heavy resistance/slow movement (Slow), lighter resistance and fast movement (Fast), or fast movements with accommodated resistance (FACC). All training groups performed similar training programs comprising free weight resistance training with lower-body compound exercises. The only difference among the training interventions was the speed at which subjects performed the squat exercise and the use of bands (Slow group: 0.2-0.4 meters/second; Fast group: 0.6-0.8 meters/second; FACC group trained 0.6-0.8 meters/second with the addition of accommodated resistance in the form of large elastic bands). Post-test data revealed a significant difference between power improvements between the Slow and FACC groups (p = 0.02). Percent increases and effect sizes (ES) demonstrated a much greater treatment effect in the FACC group (17.8%, ES = 1.06) with the Fast group (11.0%, ES = 0.80) adapting more than the Slow group (4.8%, ES = 0.28). The FACC and Slow groups improved strength comparatively (FACC: 9.44%, ES = 1.10; Slow: 9.59%, ES = 1.08). The Fast group improved strength considerably less, 3.20% with an effect size of only 0.38. Variable resistance training with elastic bands appears to provide greater performance benefits with regard to peak force and peak power than heavy, slow resistance exercise. Sports conditioning professionals can utilize bands, and high-speed contractions, to increase power development.
Determining the Cost Effectiveness of Nano-Satellites
2014-09-01
program. She helped me talk through a number of issues throughout the entire process. She also went out of her way to give me the time needed to complete...imagery satellites WorldView-2 and GeoEye-2 are both 1.1 meters in diameter( Franklin 2012) and cannot fit into a 0.3 meter 3U CubeSat. Another major...modulated retro-reflectors can enable one- way high speed transfer at a very low power cost to the nano-satellite (Wayne, Lovern and Obukhov 2014). 5
NASA Astrophysics Data System (ADS)
Murphy, Thomas W.
2011-11-01
This article explores a variety of ways to measure, adjust, and augment home energy usage. Particular examples of using electricity and gas utility meters, power/energy meters for individual devices, whole-home energy monitoring, infrared cameras, and thermal measurements are discussed—leading to a factor-of-four reduction in home energy use in the case discussed. The net efficiency performance of a stand-alone photovoltaic system is also presented. Ideas for reducing one's energy/carbon footprint both within the home and in the larger community are quantitatively evaluated.
ERIC Educational Resources Information Center
Poitras, Adrian W., Ed.
1976-01-01
Listed are a number of materials including a spectrophotometer, power meter, vacuum pump, fume hood, cart system, and others. The source of the product and a brief description are given for each. (RH)
Bailey, Norman G.; Grow, John A.
1980-01-01
During late October 1977, water discharge from Minidoka Dam into the Milner reach of the Snake River was less than 22 cubic meters per second, compared to normal flows for that time of year of about 42 cubic meters per second or more. To determine if impaired water-quality conditions existed, samples were collected at several sites above and below major point-source waste discharges near Burley, Idaho. Data collected for this study indicate some water-quality impairment within the study reach. At site 15 near Milner Dam, dissolved oxygen was below the 90 percent saturation standard prescribed by the Idaho water-quality standards. The total coliform and fecal coliform standards were exceeded at about one-third of the sites sampled on the main stem of the Snake River. Un-ionized ammonia concentration exceeded U.S. Environmental Protection Agency water-quality criteria at one site near Burley. Concentrations of trace metals, insecticides, and herbicides were all low; none exceeded existing criteria. (USGS)
Energy monitoring and managing for electromobility purposes
NASA Astrophysics Data System (ADS)
Slanina, Zdenek; Docekal, Tomas
2016-09-01
This paper describes smart energy meter design and implementation focused on using in charging stations (stands) for electric vehicle (follows as EV) charging support and possible embedding into current smart building technology. In this article there are included results of research of commercial devices available in Czech republic for energy measuring for buildings as well as analysis of energy meter for given purposes. For example in described module there was required measurement of voltage, electric current and frequency of power network. Finally there was designed a communication module with common interface to energy meter for standard communication support between charging station and electric car. After integration into smart buildings (home automation, parking houses) there are pros and cons of such solution mentioned1,2.
Methods for assessing forward and backward light scatter in patients with cataract.
Crnej, Alja; Hirnschall, Nino; Petsoglou, Con; Findl, Oliver
2017-08-01
To compare objective methods for assessing backward and forward light scatter and psychophysical tests in patients with cataracts. Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom. Prospective case series. This study included patients scheduled for cataract surgery. Lens opacities were grouped into predominantly nuclear sclerotic, cortical, posterior subcapsular, and mixed cataracts. Backward light scatter was assessed using a rotating Scheimpflug imaging technique (Pentacam HR), forward light scatter using a straylight meter (C-Quant), and straylight using the double-pass method (Optical Quality Analysis System, point-spread function [PSF] meter). The results were correlated with visual acuity under photopic conditions as well as photopic and mesopic contrast sensitivity. The study comprised 56 eyes of 56 patients. The mean age of the 23 men and 33 women was 71 years (range 48 to 84 years). Two patients were excluded. Of the remaining, 15 patients had predominantly nuclear sclerotic cataracts, 13 had cortical cataracts, 11 had posterior subcapsular cataracts, and 15 had mixed cataracts. Correlations between devices were low. The highest correlation was between PSF meter measurements and Scheimpflug measurements (r = 0.32). The best correlation between corrected distance visual acuity was with the PSF meter (r = 0.45). Forward and backward light-scatter measurements cannot be used interchangeably. Scatter as an aspect of quality of vision was independent of acuity. Measuring forward light scatter with the straylight meter can be a useful additional tool in preoperative decision-making. Copyright © 2017 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
Generalized weighted ratio method for accurate turbidity measurement over a wide range.
Liu, Hongbo; Yang, Ping; Song, Hong; Guo, Yilu; Zhan, Shuyue; Huang, Hui; Wang, Hangzhou; Tao, Bangyi; Mu, Quanquan; Xu, Jing; Li, Dejun; Chen, Ying
2015-12-14
Turbidity measurement is important for water quality assessment, food safety, medicine, ocean monitoring, etc. In this paper, a method that accurately estimates the turbidity over a wide range is proposed, where the turbidity of the sample is represented as a weighted ratio of the scattered light intensities at a series of angles. An improvement in the accuracy is achieved by expanding the structure of the ratio function, thus adding more flexibility to the turbidity-intensity fitting. Experiments have been carried out with an 850 nm laser and a power meter fixed on a turntable to measure the light intensity at different angles. The results show that the relative estimation error of the proposed method is 0.58% on average for a four-angle intensity combination for all test samples with a turbidity ranging from 160 NTU to 4000 NTU.
Long distance cell communication using spherical tether balloons
NASA Astrophysics Data System (ADS)
Manchanda, R. K.; Rajagopalan, Vasudevan; Vasudevan, Rajagopalan; Mehrotra, R. K.; Sreenivasan, S.; Pawaskar, M.; Subba Rao Jonnalagadda, Venkata; Buduru, Suneelkumar; Kulkarni, P. M.
A proof-of-concept experiment was conducted for long-range cell communication for rural tele-phony and internet. We designed and fabricated a spherical tether balloon to carry the con-ventional micro base transceiver station (BTS) along with three slotted antenna to cover 2-pi radius. AC power and optical fiber were anchored along with the tether line. A special fre-quency license was obtained from Wireless Planning Commission (WPC) wing of Department of Telecommunication (DoT), India for the period of experiment so as not to affect the opera-tional networks. The experiments were carried out for different BTS heights up to 500 meter. Signal measurement both in data mode and voice quality were done in different quadrant using mobile vans. This paper describes the methodology (under patenting) and utility of technique for operational application.
Electricity forecasting on the individual household level enhanced based on activity patterns
Gajowniczek, Krzysztof; Ząbkowski, Tomasz
2017-01-01
Leveraging smart metering solutions to support energy efficiency on the individual household level poses novel research challenges in monitoring usage and providing accurate load forecasting. Forecasting electricity usage is an especially important component that can provide intelligence to smart meters. In this paper, we propose an enhanced approach for load forecasting at the household level. The impacts of residents’ daily activities and appliance usages on the power consumption of the entire household are incorporated to improve the accuracy of the forecasting model. The contributions of this paper are threefold: (1) we addressed short-term electricity load forecasting for 24 hours ahead, not on the aggregate but on the individual household level, which fits into the Residential Power Load Forecasting (RPLF) methods; (2) for the forecasting, we utilized a household specific dataset of behaviors that influence power consumption, which was derived using segmentation and sequence mining algorithms; and (3) an extensive load forecasting study using different forecasting algorithms enhanced by the household activity patterns was undertaken. PMID:28423039
Testing of YUH-61A helicopter transmission in NASA Lewis 2240-kW (3000-hp facility
NASA Technical Reports Server (NTRS)
Mitchell, A. M.; Oswald, F. B.; Schuller, F. T.
1986-01-01
A helicopter transmission that was being considered for the Army's Utility Tactical Transport Attack System (UTTAS) was tested in the NASA Lewis 2240-kW (3000-hp) test facility to obtain the transmission's operational data. The results will form a vibration and efficiency data base for evaluation similar-class helicopter transmissions. The transmission's mechanical efficiency was determined to be 98.7 percent at its rated power level of 2080 kW (2792 hp). At power levels up to 113 percent of rated the transmission displayed 56 percent higher vibration acceleration levels on the right input than on the left input. Both vibration signature analysis and final visual inspection indicated that the right input spiral-bevel gear had poor contact patterns. The highest vibration meter level was 52 g's rms at the accessory gear, which had free-wheeling gearsets. At 113 percent power and 100 percent rated speed the vibration meter levels generally ranged from 3 to 25 g's rms.
Electricity forecasting on the individual household level enhanced based on activity patterns.
Gajowniczek, Krzysztof; Ząbkowski, Tomasz
2017-01-01
Leveraging smart metering solutions to support energy efficiency on the individual household level poses novel research challenges in monitoring usage and providing accurate load forecasting. Forecasting electricity usage is an especially important component that can provide intelligence to smart meters. In this paper, we propose an enhanced approach for load forecasting at the household level. The impacts of residents' daily activities and appliance usages on the power consumption of the entire household are incorporated to improve the accuracy of the forecasting model. The contributions of this paper are threefold: (1) we addressed short-term electricity load forecasting for 24 hours ahead, not on the aggregate but on the individual household level, which fits into the Residential Power Load Forecasting (RPLF) methods; (2) for the forecasting, we utilized a household specific dataset of behaviors that influence power consumption, which was derived using segmentation and sequence mining algorithms; and (3) an extensive load forecasting study using different forecasting algorithms enhanced by the household activity patterns was undertaken.
Estimates of Refrigerator Loads in Public Housing Based on Metered Consumption Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, JD; Pratt, RG
1998-09-11
The New York Power Authority (NYPA), the New York City Housing Authority (NYCHA), and the U.S. Departments of Housing and Urban Development (HUD) and Energy (DOE) have joined in a project to replace refrigerators in New York City public housing with new, highly energy-efficient models. This project laid the ground work for the Consortium for Energy Efficiency (CEE) and DOE to enable housing authorities throughout the United States to bulk-purchase energy-efficient appliances. DOE helped develop and plan the program through the ENERGY STAR@ Partnerships program conducted by its Pacific Nofiwest National Laboratory (PNNL). PNNL was subsequently asked to conduct themore » savings evahations for 1996 and 1997. PNNL designed the metering protocol and occupant survey, supplied and calibrated the metering equipment, and managed and analyzed the data. The 1996 metering study of refrigerator energy usage in New York City public housing (Pratt and Miller 1997) established the need and justification for a regression-model-based approach to an energy savings estimate. The need originated in logistical difficulties associated with sampling the population and pen?orming a stratified analysis. Commonly, refrigerators[a) with high representation in the population were missed in the sampling schedule, leaving significant holes in the sample and difficulties for the stratified anrdysis. The just{jfcation was found in the fact that strata (distinct groups of identical refrigerators) were not statistically distinct in terms of their label ratio (ratio of metered consumption to label rating). This finding suggested a general regression model could be used to represent the consumption of all refrigerators in the population. In 1996 a simple two-coefficient regression model, a function of only the refrigerator label rating, was developed and used to represent the existing population of refrigerators. A key concept used in the 1997 study grew from findings in a small number of apartments metered in 1996 with a detailed protocol. Fifteen-minute time-series data of ambient and compartment temperatures and refrigerator power were analyzed and demonstrated the potential for reducing power records into three components. This motivated the development of an analysis process to divide the metered consumption into baseline load, occupant-associated load, and defrosting load. The baseline load is the consumption that would occur if the refrigerator were on but had no occupant usage load (no door-opening events) and the defrosting mechanism was disabled. The motivation behind this component reduction process was the hope that components could be more effectively modeled than the total. We reasoned that the components would lead to abetter (more general and more significant) understanding of the relationships between consumption, the characteristics of the refrigerator, and its operating environment.« less
78 FR 24439 - Compliance With Information Request, Flooding Hazard Reevaluation
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-25
... to have exceeded 14 meters (45 feet) in height that inundated the Fukushima Dai-ichi nuclear power... earthquake occurred, Fukushima Dai-ichi Units 1, 2, and 3, were in operation and Units 4, 5, and 6, were shut... at the Fukushima Dai-ichi nuclear power plant, the NRC established a senior-level agency task force...
1968-01-01
which forms a conducting medium between the electrodes of a dry cell , storage cell , or electrolytic capacitor. ELECTROMAGNETIC FIELD - A mlagnetic...Dry cel batteries. (2) Vehicular batteries. (3) Hand generators. (4) Gas engine generators. (5) Wet cell batteries. 2-5. NETTING TWO RADIO SETS: To net...1600 meters Power output .. .. .. ..... ..... ..... 5watt Power source. .. .. .. ..... ...... ... dry cell battery flA-270/U Battery lift
75 FR 33748 - Amateur Radio Use of the Allocation at 5 MHz
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-15
... envelope power (PEP). 3. The existing amateur radio use of the 60 meter band represents a balancing of... Comment Filing System (ECFS), (2) the Federal Government's eRulemaking Portal, or (3) by filing paper... transmitter output power in modern amateur radio transceivers is 100 W PEP, and that the present 50 W PEP...
Near-road air quality is an issue of emerging concern, with field studies consistently showing elevated air pollutant concentrations adjacent to major roads, usually decreasing to background levels within several hundred meters. Roadside barriers, both vegetative and structural, ...
ERIC Educational Resources Information Center
Jung, Hun Bok; Zamora, Felix; Duzgoren-Aydin, Nurdan S.
2017-01-01
Water quality is an important interdisciplinary environmental topic for project-based learning. An undergraduate summer research internship program at a public minority serving institution engaged environmental science majors in community-based research experiences. The research focused on the field monitoring of water quality for surface water…
Sedimentation Survey of Lago Guerrero, Aguadilla, Puerto Rico, March 2006
Soler-López, Luis R.
2009-01-01
Lago Guerrero is located in Aguadilla, northwestern Puerto Rico (fig. 1). The reservoir has a surface area of about 32,000 square meters and is excavated in Aymamon Limestone of Miocene age. This bedrock consists of chalk interbed-ded with solution-riddled hard limestone (Monroe, 1969). The reservoir was constructed in the 1930s as part of the Isabela Hydroelectric System to regulate flows to two hydroelectric plants-Central Isabel No. 2, at an elevation of about 110 meters above mean sea level, and Central Isabel No. 3, at about 55 meters above mean sea level. Hydroelectric power generation was discontinued during the early 1960s, although the exact date is unknown (Puerto Rico Electric Power Authority, written commun., 2007). The principal use of the reservoir since then has been to regulate flow to two public-supply water filtration plants and supply irrigation water for the Aguadilla area. Flow into the reservoir is derived from Lago Guajataca through a 26-kilometer-long Canal Principal de Diversion concrete canal (Puerto Rico Electric Power Authority, written commun., 2001). Additional inflow occurs on an incidental basis only during intensive rainfall from the immediate drainage area. The present Lago Guerrero drainage area is undetermined, due to the irregular and complex topography of the limestone terrain and anthropogenic modifications to the stormwater drainage system. Stormwater runoff, however, is presumed to be negligible compared to the almost constant inflow to the reservoir of about 59,300 cubic meters per day from Lago Guajataca (CSA Group, 2000). On March 9, 2006, the U.S. Geological Survey (USGS), Caribbean Water Science Center, in cooperation with the Puerto Rico Electric Power Authority (PREPA), conducted a bathymetric survey of Lago Guerrero to determine the storage capacity of the reservoir and sedimentation amount since a previous survey conducted on May 30, 2001. The March 2006 survey was made to develop a bathymetric map of the reservoir, establish baseline data for future reservoir capacity comparisons, and to estimate the average sedimentation rate over the preceding 5 years.
Video game console usage and US national energy consumption: Results from a field-metering study
Desroches, Louis-Benoit; Greenblatt, Jeffery B.; Pratt, Stacy; ...
2014-10-23
There has been an increased in attention placed on the energy consumption of miscellaneous electronic loads in buildings by energy analysts and policymakers in recent years. The share of electricity consumed by consumer electronics in US households has increased in the last decade. Many devices, however, lack robust energy use data, making energy consumption estimates difficult and uncertain. Video game consoles are high-performance machines present in approximately half of all households and can consume a considerable amount of power. The precise usage of game consoles has significant uncertainty, however, leading to a wide range of recent national energy consumption estimates.more » We present here an analysis based on field-metered usage data, collected as part of a larger field metering study in the USA. This larger study collected data from 880 households in 2012 on a variety of devices, including 113 game consoles (the majority of which are Generation 7 consoles). From our metering, we find that although some consoles are left on nearly 24 h/day, the overall average usage is lower than many other studies have assumed, leading to a US national energy consumption estimate of 7.1 TWh in 2012. Nevertheless, there is an opportunity to reduce energy use with proper game console power management, as a substantial amount of game console usage occurs with the television turned off. The emergence of Generation 8 consoles may increase national energy consumption.« less
Video game console usage and US national energy consumption: Results from a field-metering study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Desroches, Louis-Benoit; Greenblatt, Jeffery B.; Pratt, Stacy
There has been an increased in attention placed on the energy consumption of miscellaneous electronic loads in buildings by energy analysts and policymakers in recent years. The share of electricity consumed by consumer electronics in US households has increased in the last decade. Many devices, however, lack robust energy use data, making energy consumption estimates difficult and uncertain. Video game consoles are high-performance machines present in approximately half of all households and can consume a considerable amount of power. The precise usage of game consoles has significant uncertainty, however, leading to a wide range of recent national energy consumption estimates.more » We present here an analysis based on field-metered usage data, collected as part of a larger field metering study in the USA. This larger study collected data from 880 households in 2012 on a variety of devices, including 113 game consoles (the majority of which are Generation 7 consoles). From our metering, we find that although some consoles are left on nearly 24 h/day, the overall average usage is lower than many other studies have assumed, leading to a US national energy consumption estimate of 7.1 TWh in 2012. Nevertheless, there is an opportunity to reduce energy use with proper game console power management, as a substantial amount of game console usage occurs with the television turned off. The emergence of Generation 8 consoles may increase national energy consumption.« less
Sedimentation survey of Lago de Matrullas, Puerto Rico, December 2001
Soler-López, Luis R.
2003-01-01
Lago de Matrullas reservoir, constructed in 1934, is located at an altitude of approximately 730 meters above mean sea level in the municipality of Orocovis in central Puerto Rico, and has a drainage area of 11.45 square kilometers. The reservoir is part of the Puerto Rico Electric Power Authority Toro Negro Hydroelectric Project, which also includes the Lago El Guineo reservoir and a hydroelectric plant to the south of the insular hydrographic divide. Historically, the drainage area had been protected from soil erosion by dense vegetation and the lack of basin development. However, transportation, potable water, and electric power infrastructure construction has facilitated development in rural areas resulting in the clearing of land. This trend in land-use changes is impacting the useful life of Lago de Matrullas. The reservoir storage capacity has been reduced from 3.71 million cubic meters in 1934 to 3.08 million cubic meters in 2001. This represents a total storage-capacity loss of 0.63 million cubic meters by 2001 (17 percent), or a long-term annual storage loss of 0.25 percent per year. The sediment trapping efficiency of Lago de Matrullas has been estimated at approximately 90 percent. If the current long-term sedimentation rate continues, Lago de Matrullas would fill by the year 2328. However, this life expectancy could be reduced at a faster than predicted rate as a result of rural development in the Lago de Matrullas basin and the high sediment trapping efficiency of the reservoir.
Large scale Wyoming transportation data: a resource planning tool
O'Donnell, Michael S.; Fancher, Tammy S.; Freeman, Aaron T.; Ziegler, Abra E.; Bowen, Zachary H.; Aldridge, Cameron L.
2014-01-01
The U.S. Geological Survey Fort Collins Science Center created statewide roads data for the Bureau of Land Management Wyoming State Office using 2009 aerial photography from the National Agriculture Imagery Program. The updated roads data resolves known concerns of omission, commission, and inconsistent representation of map scale, attribution, and ground reference dates which were present in the original source data. To ensure a systematic and repeatable approach of capturing roads on the landscape using on-screen digitizing from true color National Agriculture Imagery Program imagery, we developed a photogrammetry key and quality assurance/quality control protocols. Therefore, the updated statewide roads data will support the Bureau of Land Management’s resource management requirements with a standardized map product representing 2009 ground conditions. The updated Geographic Information System roads data set product, represented at 1:4,000 and +/- 10 meters spatial accuracy, contains 425,275 kilometers within eight attribute classes. The quality control of these products indicated a 97.7 percent accuracy of aspatial information and 98.0 percent accuracy of spatial locations. Approximately 48 percent of the updated roads data was corrected for spatial errors of greater than 1 meter relative to the pre-existing road data. Twenty-six percent of the updated roads involved correcting spatial errors of greater than 5 meters and 17 percent of the updated roads involved correcting spatial errors of greater than 9 meters. The Bureau of Land Management, other land managers, and researchers can use these new statewide roads data set products to support important studies and management decisions regarding land use changes, transportation and planning needs, transportation safety, wildlife applications, and other studies.
NASA Astrophysics Data System (ADS)
Singer, Robin; Butler, Douglas M.
1990-07-01
A High Speed Buffer Board (HSBB) was developed for the Vector Measuring Current Meter (VMCM) to implement the transmission of data at 9600 baud over an EIA-485 link. The HSBB significantly extends the VMCM communication functionality, which was previously limited to 300 baud transmission via 20mA current loop or FSK telemetry. The increased speed allows rapid sampling of a large number of current meters on a common cable and the EIA-485 circuitry, which was designed for low power operation, provides a useful multipoint communication method for data transmission over long cable lengths. SAIL protocol (IEEE 997) was utilized to coordinate data transfer by the instruments on a common link. An MC68HC11 microcontroller resides in the VMCM, buffering data it receives at 300 baud from the VMCM UART. In response to a jumper selectable SAIL address, the MC68HC11 offloads the data 9600 baud via EIA-485 to the SAIL controller. Synchronous data collection from many instruments is ensured by the SAIL synoptic set command and an embedded resynchronization/reset command. The low power consumption allows deployments of six months or more with a standard VMCM battery stack.
Lunar Pole Illumination and Communications Maps Computed from GSSR Elevation Data
NASA Technical Reports Server (NTRS)
Bryant, Scott
2009-01-01
A Digital Elevation Model of the lunar south pole was produced using Goldstone Solar System RADAR (GSSR) data obtained in 2006.12 This model has 40-meter horizontal resolution and about 5-meter relative vertical accuracy. This Digital Elevation Model was used to compute average solar illumination and Earth visibility with 100 kilometers of the lunar south pole. The elevation data were converted into local terrain horizon masks, then converted into lunar-centric latitude and longitude coordinates. The horizon masks were compared to latitude, longitude regions bounding the maximum Sun and Earth motions relative to the moon. Estimates of Earth visibility were computed by integrating the area of the region bounding the Earth's motion that was below the horizon mask. Solar illumination and other metrics were computed similarly. Proposed lunar south pole base sites were examined in detail, with the best site showing yearly solar power availability of 92 percent and Direct-To-Earth (DTE) communication availability of about 50 percent. Similar analysis of the lunar south pole used an older GSSR Digital Elevation Model with 600-meter horizontal resolution. The paper also explores using a heliostat to reduce the photovoltaic power system mass and complexity.
NASA Astrophysics Data System (ADS)
Farkas, Z. D.
2002-03-01
The SLAC beam energy can be increased from the current 50 GeV to 100 GeV, if we change the operating frequency from the present 2856 MHz to 11424 MHz, using technology developed for the NLC. We replace the power distribution system with a proposed NLC distribution system as shown in Fig. 1. The four 3 meter s-band 820 nS .ll time accelerator sections are replaced by six 2 meter x-band 120 nS .ll time sections. Thus the accelerator length per klystron retains the same length, 12 meters. The 4050 65MW- 3.5microS klystrons are replaced by 75MW-1.5microS permanent magnet klystrons developed here and in Japan. The present input to the klystrons would be multiplied by a factor of 4 and possibly ampli.ed. The SLED cavities have to be replaced. The increase in beam voltage is due to the higher elastance to group velocity ratio, higher compression ratio and higher unloaded to external Q ratio of the new SLED cavities. The average power input is reduced because of the narrower klystron pulse width and because the klystron electro-magnets are replaced by permanent magnets.
Distributed gas sensing with optical fibre photothermal interferometry.
Lin, Yuechuan; Liu, Fei; He, Xiangge; Jin, Wei; Zhang, Min; Yang, Fan; Ho, Hoi Lut; Tan, Yanzhen; Gu, Lijuan
2017-12-11
We report the first distributed optical fibre trace-gas detection system based on photothermal interferometry (PTI) in a hollow-core photonic bandgap fibre (HC-PBF). Absorption of a modulated pump propagating in the gas-filled HC-PBF generates distributed phase modulation along the fibre, which is detected by a dual-pulse heterodyne phase-sensitive optical time-domain reflectometry (OTDR) system. Quasi-distributed sensing experiment with two 28-meter-long HC-PBF sensing sections connected by single-mode transmission fibres demonstrated a limit of detection (LOD) of ∼10 ppb acetylene with a pump power level of 55 mW and an effective noise bandwidth (ENBW) of 0.01 Hz, corresponding to a normalized detection limit of 5.5ppb⋅W/Hz. Distributed sensing experiment over a 200-meter-long sensing cable made of serially connected HC-PBFs demonstrated a LOD of ∼ 5 ppm with 62.5 mW peak pump power and 11.8 Hz ENBW, or a normalized detection limit of 312ppb⋅W/Hz. The spatial resolution of the current distributed detection system is limited to ∼ 30 m, but it is possible to reduce down to 1 meter or smaller by optimizing the phase detection system.
Economic Analysis and Optimal Sizing for behind-the-meter Battery Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Di; Kintner-Meyer, Michael CW; Yang, Tao
This paper proposes methods to estimate the potential benefits and determine the optimal energy and power capacity for behind-the-meter BSS. In the proposed method, a linear programming is first formulated only using typical load profiles, energy/demand charge rates, and a set of battery parameters to determine the maximum saving in electric energy cost. The optimization formulation is then adapted to include battery cost as a function of its power and energy capacity in order to capture the trade-off between benefits and cost, and therefore to determine the most economic battery size. Using the proposed methods, economic analysis and optimal sizingmore » have been performed for a few commercial buildings and utility rate structures that are representative of those found in the various regions of the Continental United States. The key factors that affect the economic benefits and optimal size have been identified. The proposed methods and case study results cannot only help commercial and industrial customers or battery vendors to evaluate and size the storage system for behind-the-meter application, but can also assist utilities and policy makers to design electricity rate or subsidies to promote the development of energy storage.« less
. Improving our understanding of how retail electricity tariffs may evolve, as the bulk power system changes Mike Gleason. 2017. The Impacts of Changes to Nevada's Net Metering Policy on the Financial Performance
NASA Astrophysics Data System (ADS)
2010-10-01
From breathless early excitement at an energy source that could be "too cheap to meter" to the fear and suspicion following the accidents at Three Mile Island and Chernobyl, nuclear power has always aroused strong feelings.
NaK Plugging Meter Design for the Feasibility Test Loops
NASA Technical Reports Server (NTRS)
Pearson, J. Boise; Godfroy, Thomas J.; Reid, Robert S.; Polzin, Kurt A.
2008-01-01
The design and predicted performance of a plugging meter for use in the measurement of NaK impurity levels are presented. The plugging meter is incorporated into a Feasibility Test Loop (FTL), which is a small pumped-NaK loop designed to enable the rapid, small-scale evaluation of techniques such as in situ purification methods and to permit the measurement of bulk material transport effects (not mechanisms) under flow conditions that are representative of a fission surface power reactor. The FTL operates at temperatures similar to those found in a reactor, with a maximum hot side temperature of 900 K and a corresponding cold side temperature of 860 K. In the plugging meter a low flow rate bypass loop is cooled until various impurities (primarily oxides) precipitate out of solution. The temperatures at which these impurities precipitate are indicative of the level of impurities in the NaK. The precipitates incrementally plug a small orifice in the bypass loop, which is detected by monitoring changes in the liquid metal flow rate.
Novel In-Space Manufacturing Concepts for the Development of Large Space Telescopes
NASA Technical Reports Server (NTRS)
Mooney, James T.; Reardon, Patrick; Gregory Don; Manning, Andrew; Blackmon, Jim; Howsman, Tom; Williams, Philip; Brantley, Whitt; Rakoczy, John; Herren, Kenneth
2006-01-01
There is a continuous demand for larger, lighter, and higher quality telescopes. Over the past several decades, we have seen the evolution from launchable 2 meter-class telescopes (such as Hubble), to today s demand for deployable 6 meter-class telescopes (such as JWST), to tomorrow s need for up to 150 meter-class telescopes. As the apertures continue to grow, it will become much more difficult and expensive to launch assembled telescope structures. To address this issue, we are seeing the emergence of new novel structural concepts, such as inflatable structures and membrane optics. While these structural concepts do show promise, it is very difficult to achieve and maintain high surface figure quality. Another potential solution to develop large space telescopes is to move the fabrication facility into space and launch the raw materials. In this paper we present initial in-space manufacturing concepts to enable the development of large telescopes. This includes novel approaches for the fabrication of both the optical elements and the telescope support structure. We will also discuss potential optical designs for large space telescopes and describe their relation to the fabrication methods. These concepts are being developed to meet the demanding requirements of DARPA s LASSO (Large Aperture Space Surveillance Optic) program which currently requires a 150 meter optical aperture with a 17 degree field of view.
Johnson, Michaela R.; Clark, Jimmy M.; Dickinson, Ross G.; Sanocki, Chris A.; Tranmer, Andrew W.
2009-01-01
This data set was developed as part of the National Water-Quality Assessment (NAWQA) Program, Nutrient Enrichment Effects Topical (NEET) study. This report is concerned with three of the eight NEET study units distributed across the United States: Ozark Plateaus, Upper Mississippi River Basin, and Upper Snake River Basin, collectively known as Group II of the NEET study. Ninety stream reaches were investigated during 2006-08 in these three study units. Stream segments, with lengths equal to the base-10 logarithm of the basin area, were delineated upstream from the stream reaches through the use of digital orthophoto quarter-quadrangle (DOQQ) imagery. The analysis area for each stream segment was defined by a streamside buffer extending laterally to 250 meters from the stream segment. Delineation of landuse and land-cover (LULC) map units within stream-segment buffers was completed using on-screen digitizing of riparian LULC classes interpreted from the DOQQ. LULC units were classified using a strategy consisting of nine classes. National Wetlands Inventory (NWI) data were used to aid in wetland classification. Longitudinal riparian transects (lines offset from the stream segments) were generated digitally, used to sample the LULC maps, and partitioned in accord with the intersected LULC map-unit types. These longitudinal samples yielded the relative linear extent and sequence of each LULC type within the riparian zone at the segment scale. The resulting areal and linear estimates of LULC extent filled in the spatial-scale gap between the 30-meter resolution of the 1990s National Land Cover Dataset and the reach-level habitat assessment data collected onsite routinely for NAWQA ecological sampling. The resulting data consisted of 12 geospatial data sets: LULC within 25 meters of the stream reach (polygon); LULC within 50 meters of the stream reach (polygon); LULC within 50 meters of the stream segment (polygon); LULC within 100 meters of the stream segment (polygon); LULC within 150 meters of the stream segment (polygon); LULC within 250 meters of the stream segment (polygon); frequency of gaps in woody vegetation at the reach scale (arc); stream reaches (arc); longitudinal LULC transect sample at the reach scale (arc); frequency of gaps in woody vegetation at the segment scale (arc); stream segments (arc); and longitudinal LULC transect sample at the segment scale (arc).
Ronaldson, Sarah J; Dyson, Lisa; Clark, Laura; Hewitt, Catherine E; Torgerson, David J; Cooper, Brendan G; Kearney, Matt; Laughey, William; Raghunath, Raghu; Steele, Lisa; Rhodes, Rebecca; Adamson, Joy
2018-06-01
Early identification of chronic obstructive pulmonary disease (COPD) results in patients receiving appropriate management for their condition at an earlier stage in their disease. The determining the optimal approach to identifying individuals with chronic obstructive pulmonary disease (DOC) study was a case-finding study to enhance early identification of COPD in primary care, which evaluated the diagnostic accuracy of a series of simple lung function tests and symptom-based case-finding questionnaires. Current smokers aged 35 or more were invited to undertake a series of case-finding tools, which comprised lung function tests (specifically, spirometry, microspirometry, peak flow meter, and WheezoMeter) and several case-finding questionnaires. The effectiveness of these tests, individually or in combination, to identify small airways obstruction was evaluated against the gold standard of spirometry, with the quality of spirometry tests assessed by independent overreaders. The study was conducted with general practices in the Yorkshire and Humberside area, in the UK. Six hundred eighty-one individuals met the inclusion criteria, with 444 participants completing their study appointments. A total of 216 (49%) with good-quality spirometry readings were included in the analysis. The most effective case-finding tools were found to be the peak flow meter alone, the peak flow meter plus WheezoMeter, and microspirometry alone. In addition to the main analysis, where the severity of airflow obstruction was based on fixed ratios and percent of predicted values, sensitivity analyses were conducted by using lower limit of normal values. This research informs the choice of test for COPD identification; case-finding by use of the peak flow meter or microspirometer could be used routinely in primary care for suspected COPD patients. Only those testing positive to these tests would move on to full spirometry, thereby reducing unnecessary spirometric testing. © 2018 John Wiley & Sons, Ltd.
Damages in American Samoa due to the 29 September 2009 Samoa Islands Region Earthquake Tsunami
NASA Astrophysics Data System (ADS)
Okumura, Y.; Takahashi, T.; Suzuki, S.
2009-12-01
A large earthquake of Mw 8.0 occurred in Samoa Islands Region in the early morning on 29 September 2009 (local time). A Large Tsunami generated by the earthquake hit Samoa, American Samoa, Tonga. Total 192 people were died or missing in these three countries (22 October 2009). The authors surveyed in Tutuila Island, American Samoa from 6 to 8 in October 2009 with the aim to find out damages in the disaster. In American Samoa, death and missing toll was 35. The main findings are as follows; first, human damages were little for tsunami run-up height of about 4 to 6 meters and tsunami arrival time of about 20 minutes. We can suppose that residents evacuated quickly after feeling shaking or something. Secondly, houses were severely damaged in some low elevation coastal villages such as Amanave, Leone, Pago Pago, Tula and so on. Third, a power plant and an airport, which are important infrastructures in relief and recovery phase, were also severely damaged. Inundation depth at the power plant was 2.31 meters. A blackout in the daytime lasted when we surveyed. On the other hand, the airport could use already at that time. But it was closed on the first day in the disaster because of a lot of disaster debris on the runway carried by tsunami. Inundation depth at the airport fence was measured in 0.7 to 0.8 meters. Other countries in the south-western Pacific region may have power plants or airports with similar risk, so it should be assessed against future tsunami disasters. Inundated thermal power plant in Pago Pago Debris on runway in Tafuna Airport (Provided by Mr. Chris Soti, DPA)
Physical Determinants of Interval Sprint Times in Youth Soccer Players
Amonette, William E.; Brown, Denham; Dupler, Terry L.; Xu, Junhai; Tufano, James J.; De Witt, John K.
2014-01-01
Relationships between sprinting speed, body mass, and vertical jump kinetics were assessed in 243 male soccer athletes ranging from 10–19 years. Participants ran a maximal 36.6 meter sprint; times at 9.1 (10 y) and 36.6 m (40 y) were determined using an electronic timing system. Body mass was measured by means of an electronic scale and body composition using a 3-site skinfold measurement completed by a skilled technician. Countermovement vertical jumps were performed on a force platform - from this test peak force was measured and peak power and vertical jump height were calculated. It was determined that age (r=−0.59; p<0.01), body mass (r=−0.52; p<0.01), lean mass (r=−0.61; p<0.01), vertical jump height (r=−0.67; p<0.01), peak power (r=−0.64; p<0.01), and peak force (r=−0.56; p<0.01) were correlated with time at 9.1 meters. Time-to-complete a 36.6 meter sprint was correlated with age (r=−0.71; p<0.01), body mass (r=−0.67; p<0.01), lean mass (r=−0.76; p<0.01), vertical jump height (r=−0.75; p<0.01), peak power (r=−0.78; p<0.01), and peak force (r=−0.69; p<0.01). These data indicate that soccer coaches desiring to improve speed in their athletes should devote substantive time to fitness programs that increase lean body mass and vertical force as well as power generating capabilities of their athletes. Additionally, vertical jump testing, with or without a force platform, may be a useful tool to screen soccer athletes for speed potential. PMID:25031679
Feasibility of a 30-meter space based laser transmitter
NASA Technical Reports Server (NTRS)
Berggren, R. R.; Lenertz, G. E.
1975-01-01
A study was made of the application of large expandable mirror structures in future space missions to establish the feasibility and define the potential of high power laser systems for such applications as propulsion and power transmission. Application of these concepts requires a 30-meter diameter, diffraction limited mirror for transmission of the laser energy. Three concepts for the transmitter are presented. These concepts include consideration of continuous as well as segmented mirror surfaces and the major stow-deployment categories of inflatable, variable geometry and assembled-in-space structures. The mirror surface for each concept would be actively monitored and controlled to maintain diffraction limited performance at 10.6 microns during operation. The proposed mirror configurations are based on existing aerospace state-of-the-art technology. The assembled-in-space concept appears to be the most feasible, at this time.
A new radio propagation model at 2.4 GHz for wireless medical body sensors in outdoor environment.
Yang, Daniel S
2013-01-01
This study investigates the effect of antenna height, receive antenna placement on human body, and distance between transmitter and receiver on the loss of wireless signal power in order to develop a wireless propagation model for wireless body sensors. Although many studies looked at the effect of distance, few studies were found that investigated methodically the effect of antenna height and antenna placement on the human body. Transmit antenna heights of 1, 2, and 3 meters, receive antenna heights of 1 and 1.65 meters, "on-body" and "off-body" placements of receive antenna, and a total of 11 distances ranging from 1 to 45 meters are tested in relation to received power in dBm. Multiple regression is used to analyze the data. Significance of a variable is tested by comparing its p-value with alpha, and model fit is assessed using adjusted R(2) and s of residuals. It is found that an increase in antenna height would increase power--but only for transmit antenna. The receive antenna height has a surprising, opposite effect in the on-body case and an insignificant effect in the off-body case. To formalize the propagation model, coefficient values from multiple regression are incorporated in an extension of the log-distance model to produce a new empirical model for on-body and off-body cases, and the new empirical model could conceivably be utilized to design more reliable wireless links for medical body sensors.
Sedimentation survey of Lago Dos Bocas, Utuado, Puerto Rico, January 2010
Soler-López, Luis R.
2014-01-01
Lago Dos Bocas reservoir was completed in 1942 to provide water for hydroelectric power generation along the northern coast of Puerto Rico. The reservoir had an original storage capacity of 37.50 million cubic meters (Mm3). The dam is located about 9 kilometers (km) northeast of the town of Utuado, immediately downstream of the original confluence of the Río Grande de Arecibo and the Río Caonillas (fig. 1). The Puerto Rico Electric Power Authority (PREPA) owns and operates the Lago Dos Bocas reservoir, and since 1996, the reservoir has become an essential part of the Puerto Rico Aqueduct and Sewer Authority (PRASA) North Coast Superaqueduct Project. The Superaqueduct is supplied by controlled releases for hydroelectric power generation that replenish the public-supply raw-water intake pool located about 10 km downstream from the Lago Dos Bocas Dam (fig. 1). As of 2005, the Superaqueduct supplies about 4.03 cubic meters per second (m3/s) (348,192 cubic meters per day [m3/d]) of potable water to communities along the northern coast, from Arecibo to the San Juan metropolitan area. Because of the importance of the reservoir to the North Coast Superaqueduct, the U.S. Geological Survey (USGS), in cooperation with PRASA, conducted a sedimentation survey of Lago Dos Bocas in January 2009. The results of this survey were used to estimate the useful life and the firm yield of the reservoir, and evaluate the need to dredge the reservoir.
Rasmussen, A; Frimodt-Møller, N; Espersen, F; Roed, M; Frimodt-Møller, C
1996-08-01
To compare three different urine metering systems for their ability to prevent retrograde contamination in an in vitro model of a closed urinary drainage system and for qualities important to their practical handling in a clinical setting. Using three urine-meters (the Braun Ureofix 511, the Kendall Curity 4000 and the Unoplast Unometer 500) the in vitro model was constantly flushed with a solution of Mueller-Hinton broth diluted with saline. On the first day, the urine collecting bag was inoculated with 10(8) cells of Pseudomonas aeruginosa. The system was operated for 12 days with daily sampling of the model bladder to detect any contamination. After 12 days the experiment was stopped and sampling performed at various locations, including the urine-meter and the tubing. Nine of each type of urine-meter were tested, i.e. three in three different experiments. In the clinical study, 45 patients were randomized to each of the three urine-meters and the nurses attending them were asked to complete a questionnaire on the practical handling of the urine-meters. When the urine-meters was omitted from the model system, the 'bladder' became contaminated with the test bacteria within 3 days. None of the nine Unometer 500 systems became contaminated, compared with four of each of the other two systems (P < 0.05). In clinical use, the Unometer 500 and Ureofix 511 were easier to suspend and empty than was the Curity 4000. The Unometer 500 was significantly easier to handle when the collecting bag was emptied. Urine-meters can prevent retrograde contamination in a closed bladder-drainage model, but the degree of prevention depends upon the type of urine-meter. In daily practice, there were differences in the ease of suspension of the systems and in the emptying of the urine-meter and collecting bag.
High Efficiency Variable Speed Versatile Power Air Conditioning System for Military Vehicles
2013-08-01
MOBILITY (P&M) MINI-SYMPOSIUM AUGUST 21-22, 2013 - TROY , MICHIGAN High efficiency variable speed versatile power air conditioning system for...power draw was measured using a calibrated Watt meter. The schematic of the setup is shown in Figure 5 and the setup is shown in Figure 6. Figure...Rocky Research environmental chamber. Cooling Capacity was directly measured in Btu/hr or Watts via measuring the Air flow velocity and the air
Power consumption and lumber yields for reduced-kerf circular saws cutting hardwoods
Donald G. Cuppett
1982-01-01
Two 50-inch diameter headsaws were used for sawing (a) hardwood cants into boards, and (b) hardwood bolts into pallet parts. One saw had a 9x10 gage plate with 114-inch kerf teeth, and the other had a 7x8 gage plate with 9/32-inch kerf teeth. Power consumption for the two saws was determined with a watt-hour meter, measuring power used for paired cuts in 6-inch thick...
NASA Astrophysics Data System (ADS)
Schurer, Kees
1994-03-01
We ran some tests on the effect of dimming of metal halide (MH) lamps upon the stability and the spectral quality of the light output. Lamps used were a new Philips lamp HPI-T 250W, a similar Philips lamp with a few thousand burning hours and a new Osram lamp HQI-T 250W/D. The ballast was a BBC type DJ 250/2KS, the starter a BAS TORGI type MZN 250 SE and the dimmer an Elstrom Control System type ERHQ-T 250. Power was derived from a Philips stabilizer, type PE 1602. Lamp output was monitored with a PAR meter. Spectra were taken at 100% and at 50% output as measured with the PAR meter. Lamps were allowed to stabilize at any setting for 30 minutes before measurements were made. Lamp manufacturers advise against dimming for fear of poor stability and intolerable changes of the spectrum. However, none of the lamps showed a decrease in stability, no flicker or wandering of the discharge, and the changes of the spectrum were not negligible, but certainly not dramatic. Lamps of either manufacture retain their white color, relative peak heights of spectral lines did shift, but no gaps in the spectrum occurred. Spectra taken at 50% with 30 minutes intervals coincided. Differences between the new and the older Philips lamp were noticeable, but not really significant.
NASA Technical Reports Server (NTRS)
Schurer, Kees
1994-01-01
We ran some tests on the effect of dimming of metal halide (MH) lamps upon the stability and the spectral quality of the light output. Lamps used were a new Philips lamp HPI-T 250W, a similar Philips lamp with a few thousand burning hours and a new Osram lamp HQI-T 250W/D. The ballast was a BBC type DJ 250/2KS, the starter a BAS TORGI type MZN 250 SE and the dimmer an Elstrom Control System type ERHQ-T 250. Power was derived from a Philips stabilizer, type PE 1602. Lamp output was monitored with a PAR meter. Spectra were taken at 100% and at 50% output as measured with the PAR meter. Lamps were allowed to stabilize at any setting for 30 minutes before measurements were made. Lamp manufacturers advise against dimming for fear of poor stability and intolerable changes of the spectrum. However, none of the lamps showed a decrease in stability, no flicker or wandering of the discharge, and the changes of the spectrum were not negligible, but certainly not dramatic. Lamps of either manufacture retain their white color, relative peak heights of spectral lines did shift, but no gaps in the spectrum occurred. Spectra taken at 50% with 30 minutes intervals coincided. Differences between the new and the older Philips lamp were noticeable, but not really significant.
Q&A with Y.C. Zhang - Bringing Talent and Passion to Power Systems | News
Yingchen Zhang Yingchen Zhang (Y.C.) is the group manager of the sensing and predictive analytics group in appointed manager of the Sensing and Predictive Analytics Group in NREL's Power Systems Engineering Center , my past research involved synchrophasors, which are one type of metering system. Nowadays, many more
Coolidge solar powered irrigation pumping project
NASA Technical Reports Server (NTRS)
Larson, D. L.
1980-01-01
A 150 kW solar thermal electric power plant which includes over 2100 square meters of parabolic trough type collectors and an organic Rankine cycle turbine engine was constructed on an irrigated farm. The plant is interconnected with the electrical utility grid. Operation is providing an evaluation of equipment performance and operating and maintenance requirements as well as the desirability of an on farm location.
Mobility Outcomes Following Five Training Sessions with a Powered Exoskeleton
Hartigan, Clare; Kandilakis, Casey; Dalley, Skyler; Clausen, Mike; Wilson, Edgar; Morrison, Scott; Etheridge, Steven
2015-01-01
Background: Loss of legged mobility due to spinal cord injury (SCI) is associated with multiple physiological and psychological impacts. Powered exoskeletons offer the possibility of regained mobility and reversal or prevention of the secondary effects associated with immobility. Objective: This study was conducted to evaluate mobility outcomes for individuals with SCI after 5 gait-training sessions with a powered exoskeleton, with a primary goal of characterizing the ease of learning and usability of the system. Methods: Sixteen subjects with SCI were enrolled in a pilot clinical trial at Shepherd Center, Atlanta, Georgia, with injury levels ranging from C5 complete to L1 incomplete. An investigational Indego exoskeleton research kit was evaluated for ease of use and efficacy in providing legged mobility. Outcome measures of the study included the 10-meter walk test (10MWT) and the 6-minute walk test (6MWT) as well as measures of independence including donning and doffing times and the ability to walk on various surfaces. Results: At the end of 5 sessions (1.5 hours per session), average walking speed was 0.22 m/s for persons with C5-6 motor complete tetraplegia, 0.26 m/s for T1-8 motor complete paraplegia, and 0.45 m/s for T9-L1 paraplegia. Distances covered in 6 minutes averaged 64 meters for those with C5-6, 74 meters for T1-8, and 121 meters for T9-L1. Additionally, all participants were able to walk on both indoor and outdoor surfaces. Conclusions: Results after only 5 sessions suggest that persons with tetraplegia and paraplegia learn to use the Indego exoskeleton quickly and can manage a variety of surfaces. Walking speeds and distances achieved also indicate that some individuals with paraplegia can quickly become limited community ambulators using this system. PMID:26364278
Advanced solar concentrator mass production, operation, and maintenance cost assessment
NASA Technical Reports Server (NTRS)
Niemeyer, W. A.; Bedard, R. J.; Bell, D. M.
1981-01-01
The object of this assessment was to estimate the costs of the preliminary design at: production rates of 100 to 1,000,000 concentrators per year; concentrators per aperture diameters of 5, 10, 11, and 15 meters; and various receiver/power conversion package weights. The design of the cellular glass substrate Advanced Solar Concentrator is presented. The concentrator is an 11 meter diameter, two axis tracking, parabolic dish solar concentrator. The reflective surface of this design consists of inner and outer groups of mirror glass/cellular glass gores.
Archaeological Test and Data Recovery Program at Telegraph Canyon, Chula Vista, California,
1978-09-01
Several areas in the immediate vicinity were known to contain subsurface cables used to control SDG &E’s power network, and required avoidance. Addi...3 oEST FACE A TRENCH 4 Corps of Engineers Telegraph Canyon Creek WESTEC Servjces. Inr . compass bearing 20 7 ;7777,77 .77 7 1 METERS 170 c{ METERS...666 1.00 ~ 0 1.33 E -2.*00 -2.33 2.66 3.00 FUREf TRENCH 4 Corps of EngineersgTelegraph Canyon Creek; compass bearing 20 28 ’Lb..--._ .. *.* o •- -. o
ATLAST-8 Mission Concept Study for 8-Meter Monolithic UV/Optical Space Telescope
NASA Technical Reports Server (NTRS)
Stahl, H. Philip; Postman, Marc; Arnold, William R., Sr.; Hopkins, Randall C.; Hornsby, Linda; Mosier, Gary E.; Pasquale, Bert A.
2010-01-01
ATLAST-8m is an 8-meter monolithic UV/optical/NIR space observatory which could be placed in orbit at Sun-Earth L2 by a heavily lift launch vehicle. Two development study cycles have resulted in a detailed concept including a dual foci optical design; several primary mirror launch support and secondary mirror support structural designs; spacecraft propulsion, power and pointing control design; and thermal design. ATLAST-8m is designed to yield never before achieved performance to obtain fundamental astronomical breakthroughs
NASA Technical Reports Server (NTRS)
Hastings, E. C., Jr.; Shanks, R. E.; Mueller, A. W.
1975-01-01
The results of baseline noise flight tests are presented. Data are given for a point 1.85 kilometers (1.0 nautical mile) from the runway threshold, and experimental results of level flyover noise at altitudes of 122 meters (400 feet) and 610 meters (2,000 feet) are also shown for several different power levels. The experimental data are compared with data from other sources and reasonable agreement is noted. A description of the test technique, instrumentation, and data analysis methods is included.
NASA Astrophysics Data System (ADS)
Cui, Yang; Luo, Wang; Fan, Qiang; Peng, Qiwei; Cai, Yiting; Yao, Yiyang; Xu, Changfu
2018-01-01
This paper adopts a low power consumption ARM Hisilicon mobile processing platform and OV4689 camera, combined with a new skeleton extraction based on distance transform algorithm and the improved Hough algorithm for multi meters real-time reading. The design and implementation of the device were completed. Experimental results shows that The average error of measurement was 0.005MPa, and the average reading time was 5s. The device had good stability and high accuracy which meets the needs of practical application.
A Conceptual Design For A Spaceborne 3D Imaging Lidar
NASA Technical Reports Server (NTRS)
Degnan, John J.; Smith, David E. (Technical Monitor)
2002-01-01
First generation spaceborne altimetric approaches are not well-suited to generating the few meter level horizontal resolution and decimeter accuracy vertical (range) resolution on the global scale desired by many in the Earth and planetary science communities. The present paper discusses the major technological impediments to achieving few meter transverse resolutions globally using conventional approaches and offers a feasible conceptual design which utilizes modest power kHz rate lasers, array detectors, photon-counting multi-channel timing receivers, and dual wedge optical scanners with transmitter point-ahead correction.
Development of high power UV irradiance meter calibration device
NASA Astrophysics Data System (ADS)
Xia, Ming; Gao, Jianqiang; Yin, Dejin; Li, Tiecheng
2016-09-01
With the rapid development of China's economy, many industries have more requirements for UV light applications, such as machinery manufacturing, aircraft manufacturing using high power UV light for detection, IT industry using high power UV light for curing component assembly, building materials, ink, paint and other industries using high power UV light for material aging test etc. In these industries, there are many measuring instruments for high power UV irradiance which are need to traceability. But these instruments are mostly imported instruments, these imported UV radiation meter are large range, wide wavelength range and high accuracy. They have exceeded our existing calibration capability. Expand the measuring range and improve the measurement accuracy of UV irradiance calibration device is a pressing matter of the moment. The newly developed high power UV irradiance calibration device is mainly composed of high power UV light, UV filter, condenser, UV light guide, optical alignment system, standard cavity absolute radiometer. The calibration device is using optical alignment system to form uniform light radiation field. The standard is standard cavity absolute radiometer, which can through the electrical substitution method, by means of adjusting and measuring the applied DC electric power at the receiver on a heating wire, which is equivalent to the thermo-electromotive force generated by the light radiation power, to achieve absolute optical radiation measurement. This method is the commonly used effective method for accurate measurement of light irradiation. The measuring range of calibration device is (0.2 200) mW/cm2, and the uncertainty of measurement results can reached 2.5% (k=2).
Calibration methodology application of kerma area product meters in situ: Preliminary results
NASA Astrophysics Data System (ADS)
Costa, N. A.; Potiens, M. P. A.
2014-11-01
The kerma-area product (KAP) is a useful quantity to establish the reference levels of conventional X-ray examinations. It can be obtained by measurements carried out with a KAP meter on a plane parallel transmission ionization chamber mounted on the X-ray system. A KAP meter can be calibrated in laboratory or in situ, where it is used. It is important to use one reference KAP meter in order to obtain reliable quantity of doses on the patient. The Patient Dose Calibrator (PDC) is a new equipment from Radcal that measures KAP. It was manufactured following the IEC 60580 recommendations, an international standard for KAP meters. This study had the aim to calibrate KAP meters using the PDC in situ. Previous studies and the quality control program of the PDC have shown that it has good function in characterization tests of dosimeters with ionization chamber and it also has low energy dependence. Three types of KAP meters were calibrated in four different diagnostic X-ray equipments. The voltages used in the two first calibrations were 50 kV, 70 kV, 100 kV and 120 kV. The other two used 50 kV, 70 kV and 90 kV. This was related to the equipments limitations. The field sizes used for the calibration were 10 cm, 20 cm and 30 cm. The calibrations were done in three different cities with the purpose to analyze the reproducibility of the PDC. The results gave the calibration coefficient for each KAP meter and showed that the PDC can be used as a reference instrument to calibrate clinical KAP meters.
Waters, Benjamin H; Smith, Joshua R; Bonde, Pramod
2014-01-01
Technological innovation of a smaller, single moving part has an advantage over earlier large pulsatile ventricular assist devices (VADs) prone to mechanical failure. Drivelines limit the potential for extended patient survival durations with newer pumps and act as source for infection, increased morbidity, rehospitalizations, and reduced quality of life. The Free-range Resonant Electrical Energy Delivery (FREE-D) wireless power system uses magnetically coupled resonators to efficiently transfer power. We demonstrate the efficiency over distance of this system. The experimental setup consists of an radiofrequency amplifier and control board which drives the transmit resonator coil, and a receiver unit consisting of a resonant coil attached to a radiofrequency rectifier and power management module. The power management module supplies power to the axial pump, which was set at 9,600 rpm. To achieve a seamless wireless delivery in any room size, we introduced a third relay coil. This relay coil can be installed throughout a room, whereas a single relay coil could be built into a jacket worn by the patient, which would always be within range of the receive coil implanted in the patient's body. The power was delivered over a meter distance without interruptions or fluctuations with coil, rectifier, and regulator efficiency more than 80% and overall system efficiency of 61%. The axial pump worked well throughout the 8 hours of continuous operation. Having same setup on the opposite side can double the distance. A tether-free operation of a VAD can be achieved by FREE-D system in room-size distances. It has the potential to make the VAD therapy more acceptable from the patient perspective.
Soler-López, Luis R.; Gómez-Gómez, Fernando; Rodríguez-Martínez, Jesús
2005-01-01
The Laguna de Las Salinas is a shallow, 35-hectare, hypersaline lagoon (depth less than 1 meter) in the municipio of Ponce, located on the southern coastal plain of Puerto Rico. Hydrologic, water-quality, and biological data in the lagoon were collected between January 2003 and September 2004 to establish baseline conditions. During the study period, rainfall was about 1,130 millimeters, with much of the rain recorded during three distinct intense events. The lagoon is connected to the sea by a shallow, narrow channel. Subtle tidal changes, combined with low rainfall and high evaporation rates, kept the lagoon at salinities above that of the sea throughout most of the study. Water-quality properties measured on-site (temperature, pH, dissolved oxygen, specific conductance, and Secchi disk transparency) exhibited temporal rather than spatial variations and distribution. Although all physical parameters were in compliance with current regulatory standards for Puerto Rico, hyperthermic and hypoxic conditions were recorded during isolated occasions. Nutrient concentrations were relatively low and in compliance with current regulatory standards (less than 5.0 and 1.0 milligrams per liter for total nitrogen and total phosphorus, respectively). The average total nitrogen concentration was 1.9 milligrams per liter and the average total phosphorus concentration was 0.4 milligram per liter. Total organic carbon concentrations ranged from 12.0 to 19.0 milligrams per liter. Chlorophyll a was the predominant form of photosynthetic pigment in the water. The average chlorophyll a concentration was 13.4 micrograms per liter. Chlorophyll b was detected (detection limits 0.10 microgram per liter) only twice during the study. About 90 percent of the primary productivity in the Laguna de Las Salinas was generated by periphyton such as algal mats and macrophytes such as seagrasses. Of the average net productivity of 13.6 grams of oxygen per cubic meter per day derived from the diel study, the periphyton and macrophyes produced 12.3 grams per cubic meter per day; about 1.3 grams (about 10 percent) were produced by the phytoplankton (plant and algae component of plankton). The total respiration rate was 59.2 grams of oxygen per cubic meter per day. The respiration rate ascribed to the plankton (all organisms floating through the water column) averaged about 6.2 grams of oxygen per cubic meter per day (about 10 percent), whereas the respiration rate by all other organisms averaged 53.0 grams of oxygen per cubic meter per day (about 90 percent). Plankton gross productivity was 7.5 grams per cubic meter per day; the gross productivity of the entire community averaged 72.8 grams per cubic meter per day. Fecal coliform bacteria counts were generally less than 200 colonies per 100 milliliters; the highest concentration was 600 colonies per 100 milliliters.
2011 Tohoku Earthquake and Japan's Nuclear Disaster - Implications for Indian Ocean Rim countries
NASA Astrophysics Data System (ADS)
Chadha, R. K.
2011-12-01
The Nuclear disaster in Japan after the M9.0 Tohoku earthquake on March 11, 2011 has elicited global response to have a relook at the safety aspects of the nuclear power plants from all angles including natural hazards like earthquakes and tsunami. Several countries have gone into safety audits of their nuclear programs in view of the experience in Japan. Tectonically speaking, countries located close to subduction zones or in direct line of impact of the subduction zones are the most vulnerable to earthquake or tsunami hazard, as these regions are the locale of great tsunamigenic earthquakes. The Japan disaster has also cautioned to the possibility of great impact to the critical structures along the coasts due to other ocean processes caused by ocean-atmosphere interactions and also due to global warming and sea level rise phenomena in future. This is particular true for island countries. The 2011 Tohoku earthquake in Japan will be remembered more because of its nuclear tragedy and tsunami rather than the earthquake itself. The disaster happened as a direct impact of a tsunami generated by the earthquake 130 km off the coast of Sendai in the Honshu region of Japan. The depth of the earthquake was about 25 km below the ocean floor and it occurred on a thrust fault causing a displacement of more than 20 meters. At few places, water is reported to have inundated areas up to 8-10 km inland. The height of the tsunami varied between 10 and 3 meters along the coast. Generally, during an earthquake damage to buildings or other structures occur due to strong shaking which is expressed in the form of ground accelerations 'g'. Although, Peak Ground Accelerations (PGA) consistently exceeded 2g at several places from Sendai down south, structures at the Fukushima Daiichi Nuclear Power Plant did not collapse due to the earthquake. In the Indian Ocean Rim countries, Indian, Pakistan and South Africa are the three countries where Nuclear power plants are operational, few of them along the coasts. There are a few countries where nuclear installations are planned and hence, a critical analysis is required to know the realistic hazard due to earthquakes and tsunami in these countries. The December 2004 Indian Ocean tsunami generated due to Sumatra earthquake of M9.3 claimed more than 250,000 lives but did not caused a situation like in Japan. We studied the tsunami run-up heights and inundation along the east coast of India. The maximum run-up height of 5.2 meters was observed at Nagapattinam with lateral inundation up to 800 meters and the minimum was at Devanaampatnam with a lateral inundation up to 340 meters. At Kalpakkam Nuclear Power Plant, the tsunami run-up height was 4.1 meters and water entered up to 360 meters inside the campus. Using the observed data we modeled several scenarios for Indian coast line for different earthquakes along the subduction zone of Andaman-Sumatra in the east and Makran in south Pakistan in the western side using N2 Tsunami Model. The results obtained for few critical structures will be presented with an overview of scenarios for other countries.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-18
... Promulgation of Air Quality Implementation Plans; Virginia; Adoption of the Revised Lead Standards and Related... SIP revisions add the primary and secondary lead standards of 0.15 micrograms per cubic meter ([mu]g... CFR Part 52 Environmental protection, Air pollution control, Incorporation by reference, Ozone...
(AMD) ANALYSIS OF AIR QUALITY DATA NEAR ROADWAYS USING A DISPERSION MODEL
We used a dispersion model to analyze measurements made during a field study conducted by the U.S. EPA in July-August 2006, to estimate the impact of traffic emissions on air quality at distances of tens of meters from an 8 lane highway located in Raleigh, North Carolina. The air...
Aquatic assessment of the Ely Copper Mine Superfund site, Vershire, Vermont
Seal, Robert R.; Kiah, Richard G.; Piatak, Nadine M.; Besser, John M.; Coles, James F.; Hammarstrom, Jane M.; Argue, Denise M.; Levitan, Denise M.; Deacon, Jeffrey R.; Ingersoll, Christopher G.
2010-01-01
The information was used to develop an overall assessment of the impact on the aquatic system that appears to be a result of the acid rock drainage at the Ely Mine. More than 700 meters of Ely Brook, including two of the six ponds, were found to be severely impacted, on the basis of water-quality data and biological assessments. The reference location was of good quality based on the water quality and biological assessment. More than 3,125 meters of Schoolhouse Brook are also severely impacted, on the basis of water-quality data and biological assessments. The biological community begins to recover near the confluence with the Ompompanoosuc River. The evidence is less conclusive regarding the Ompompanoosuc River. The sediment data suggest that the sediments could be a source of toxicity in Ely Brook and Schoolhouse Brook. The surface-water assessment is consistent with the outcome of a surface-water toxicity testing program performed by the U.S. Environmental Protection Agency for Ely Brook and Schoolhouse Brook and a surface-water toxicity testing program and in situ amphibian testing program for the ponds.
Development of sensor augmented robotic weld systems for aerospace propulsion system fabrication
NASA Technical Reports Server (NTRS)
Jones, C. S.; Gangl, K. J.
1986-01-01
In order to meet stringent performance goals for power and reuseability, the Space Shuttle Main Engine was designed with many complex, difficult welded joints that provide maximum strength and minimum weight. To this end, the SSME requires 370 meters of welded joints. Automation of some welds has improved welding productivity significantly over manual welding. Application has previously been limited by accessibility constraints, requirements for complex process control, low production volumes, high part variability, and stringent quality requirements. Development of robots for welding in this application requires that a unique set of constraints be addressed. This paper shows how robotic welding can enhance production of aerospace components by addressing their specific requirements. A development program at the Marshall Space Flight Center combining industrial robots with state-of-the-art sensor systems and computer simulation is providing technology for the automation of welds in Space Shuttle Main Engine production.
NASA Astrophysics Data System (ADS)
Graças, D. A.; Ramos, R. T.; Sá, P. G.; Baraúna, R. A.; Schneider, M. C.; Silva, A.
2013-05-01
The Amazon region has enormous hydro potential which is used for power generation. In fact, there are several hydroelectric power stations (HPS) already installed and many under construction or designed. It's in the Amazon which the HPS of Tucuruí, fifth largest in the world, is located. The construction of this hydroelectric dam flooded an area of 2,400 km2 of forest that decomposing, releasing greenhouse gases such as methane (CH4). Methane is the most abundant organic gas in the atmosphere and the second most important greenhouse gas. In this study, we use semicondutor sequencing to assess the bacterial diversity along a water column of 70 meters deep in the Tucuruí reservoir. One liter of water was collected every 10 meters along the water column for total DNA extraction. A fragment of approximately 150 base pairs of the 16S rRNA gene was amplified by polymerase chain reaction using universal primers. These fragments were then paralleled sequenced in Ion Torrent® platform using barcodes on the 316 chip. After the quality filters, about 237 thousands reads were obtained, representing more than 300 Mbp. For bacterial diversity analysis, we used only reads longer than 100 base pairs. The taxonomic diversity was obtained from the Ribosomal Database Project Classifier and alpha diversity analysis (diversity indices and rarefaction) was performed using the RDP pyrosequencing pipeline. Although it is recommended for data pyrosequencing, that pipeline is able to process data obtained from semiconductor sequencing once all of them are fasta files. Over 75% of the sequences were not classified in any phylum, which leads us to believe that there is a huge diversity in the bacterial environment whose function is still unclear. Among the sequences that could be classified, there is a predominance of proteobacteria in all layers, but in higher concentrations at the lower layers. Cyanobacteria accounted for about 3% in the layers of 0m and 10m, leading us to conclude that oxygen production is considerable in this layer. The oxygen produced by Cyanobacteria coupled to atmospheric oxygen provides the ideal environment for the methanotrophic bacteria oxidize methane. Indeed, methanotrophic bacteria represented approximately 10% in the upper layers. Another bacterial phylum well represented in the upper layers was Bacteroidetes, which accounted for about 3% in the layers of 0-30m. Rarefaction analyses, using a cutoff of 3%, tell us the existence of 3212, 6657, 10171, 4209, 10533, 74, 24345 and 64683 OTUs for the layers of 0, 10, 20, 30, 40, 50, 60 and 70 meters, respectively. Bacterial diversity seems to increase with depth, probably due to the large amount of organic matter deposited in the pellet. The 50 meter depth layer showed the lowest diversity due to low quality sequencing of this barcode, which hampered the analysis. The abundance of methanotrophic bacteria shows that the microbial profile of the reservoir is able to consume much of the methane produced by methanogenic archaea in the sediment and that there is a huge diversity whose function is still unknown. The use of semiconductor sequencing proved to be a robust tool to analysis of the microbial community, as an alternative to pyrosequencing.
Optimization of the water chemistry of the primary coolant at nuclear power plants with VVER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barmin, L. F.; Kruglova, T. K.; Sinitsyn, V. P.
2005-01-15
Results of the use of automatic hydrogen-content meter for controlling the parameter of 'hydrogen' in the primary coolant circuit of the Kola nuclear power plant are presented. It is shown that the correlation between the 'hydrogen' parameter in the coolant and the 'hydrazine' parameter in the makeup water can be used for controlling the water chemistry of the primary coolant system, which should make it possible to optimize the water chemistry at different power levels.
2014-01-01
Background New high-voltage power transmission lines will be introduced due to increasing demand for reliable and renewable energy supplies. Some residents associate non-specific health complaints with exposure to electromagnetic fields from nearby power lines. This study protocol describes the design and rationale of a prospective study investigating whether the introduction of a new power line triggers health responses in residents living nearby. Methods/Design The study is designed as a quasi-experimental field study with two pretests during the construction of a new power line route, and two posttests after it has been put into operation. Key outcomes are self-reported non-specific somatic and cognitive health complaints, and attribution of these health complaints to a power line. The main determinant is proximity to the new power line route. One member of every household (n = 2379) residing in close proximity (0-500 meters) to the overhead parts of a new power line route in the Netherlands is invited to participate, as well as a sample of household members (n = 2382) residing farther away (500-2000 meters). Multilevel analysis will be employed to test whether an increase in key outcome measures is related to proximity to the line. Longitudinal structural equation models will be applied to test to what extent health responses are mediated by psychosocial health mechanisms and moderated by negative oriented personality traits. Discussion This is the first study to investigate health responses to a new power line route in a prospective manner. The results will provide theoretical insight into psychosocial mechanisms operating during the introduction of an environmental health risk, and may offer suggestions to policymakers and other stakeholders for minimizing adverse health responses when introducing new high-voltage power lines. PMID:24606914
Porsius, Jarry T; Claassen, Liesbeth; Smid, Tjabe; Woudenberg, Fred; Timmermans, Danielle R M
2014-03-07
New high-voltage power transmission lines will be introduced due to increasing demand for reliable and renewable energy supplies. Some residents associate non-specific health complaints with exposure to electromagnetic fields from nearby power lines. This study protocol describes the design and rationale of a prospective study investigating whether the introduction of a new power line triggers health responses in residents living nearby. The study is designed as a quasi-experimental field study with two pretests during the construction of a new power line route, and two posttests after it has been put into operation. Key outcomes are self-reported non-specific somatic and cognitive health complaints, and attribution of these health complaints to a power line. The main determinant is proximity to the new power line route. One member of every household (n=2379) residing in close proximity (0-500 meters) to the overhead parts of a new power line route in the Netherlands is invited to participate, as well as a sample of household members (n=2382) residing farther away (500-2000 meters). Multilevel analysis will be employed to test whether an increase in key outcome measures is related to proximity to the line. Longitudinal structural equation models will be applied to test to what extent health responses are mediated by psychosocial health mechanisms and moderated by negative oriented personality traits. This is the first study to investigate health responses to a new power line route in a prospective manner. The results will provide theoretical insight into psychosocial mechanisms operating during the introduction of an environmental health risk, and may offer suggestions to policymakers and other stakeholders for minimizing adverse health responses when introducing new high-voltage power lines.
Mechanical Design Engineering Enabler Project wheel and wheel drives
NASA Technical Reports Server (NTRS)
Nutt, Richard E.; Couch, Britt K.; Holley, John L., Jr.; Garris, Eric S.; Staut, Paul V.
1992-01-01
Our group was assigned the responsibility of designing the wheel and wheel drive system for a proof-of-concept model of the lunar-based ENABLER. ENABLER is a multi-purpose, six wheeled vehicle designed to lift and transport heavy objects associated with the construction of a lunar base. The resulting design was based on the performance criteria of the ENABLER. The drive system was designed to enable the vehicle to achieve a speed of 7 mph on a level surface, climb a 30 percent grade, and surpass a one meter high object and one meter wide crevice. The wheel assemblies were designed to support the entire weight of the vehicle on two wheels. The wheels were designed to serve as the main component of the vehicle's suspension and will provide suitable traction for lunar-type surfaces. The expected performance of the drive system for the ENABLER was influenced by many mechanical factors. The expected top speed on a level sandy surface is 4 mph instead of the desired 7 mph. This is due to a lack of necessary power at the wheels. The lack of power resulted from dimension considerations that allowed only an eight horsepower engine and also from mechanical inefficiencies of the hydraulic system. However, the vehicle will be able to climb a 30 percent grade, surpass a one meter high object and one meter wide crevice. The wheel assemblies will be able to support the entire weight of the vehicle on two wheels. The wheels will also provide adequate suspension for the vehicle and sufficient traction for lunar-type surfaces.
Multi-User Low Intrusive Occupancy Detection
Widyawan, Widyawan; Lazovik, Alexander
2018-01-01
Smart spaces are those that are aware of their state and can act accordingly. Among the central elements of such a state is the presence of humans and their number. For a smart office building, such information can be used for saving energy and safety purposes. While acquiring presence information is crucial, using sensing techniques that are highly intrusive, such as cameras, is often not acceptable for the building occupants. In this paper, we illustrate a proposal for occupancy detection which is low intrusive; it is based on equipment typically available in modern offices such as room-level power-metering and an app running on workers’ mobile phones. For power metering, we collect the aggregated power consumption and disaggregate the load of each device. For the mobile phone, we use the Received Signal Strength (RSS) of BLE (Bluetooth Low Energy) nodes deployed around workspaces to localize the phone in a room. We test the system in our offices. The experiments show that sensor fusion of the two sensing modalities gives 87–90% accuracy, demonstrating the effectiveness of the proposed approach. PMID:29509693
Mobile recommender application for promoting electricity saving among Iraqis
NASA Astrophysics Data System (ADS)
Sabri, Manhal Isam; Hussain, Azham
2017-10-01
Mobile utilization has rapidly expanded due to its feasibility in executing different applications that can be used in solving everyday problems. Common issues in daily life include electricity saving. In Iraq, the Ministry of Power seriously faces such issue. This is because most households have lack access to information regarding to sufficient power consumption, as well as applications that educate about such saving. Therefore, this study aims at developing a mobile application for Iraqi to help them understand the basis for reducing electricity consumption based on the meter data supplied by the users for square meter along with the active devices and period of usage. The proposed mobile application was evaluated by 50 households from the perspective of ease of use, usefulness, ease of learning, and satisfaction. The obtained result showed that majority of the participants found the application to be ease to use, useful, easy to learn, and were satisfied with its functionalities. The study findings provide some insights about the importance of using mobile application for promoting households in Iraq to manage their power consumption behavior.
14 CFR Appendix B to Part 36 - Noise Levels for Transport Category and Jet Airplanes Under § 36.103
Code of Federal Regulations, 2011 CFR
2011-01-01
... for an airplane powered by more than three jet engines, the distance from the runway centerline must... feet (+100 to −50 meters) of the target altitude. For airplanes powered by other than jet engines, the... airplanes that do not have jet engines with a bypass ratio of 2 or more, the following apply: (A): For...
14 CFR Appendix B to Part 36 - Noise Levels for Transport Category and Jet Airplanes Under § 36.103
Code of Federal Regulations, 2010 CFR
2010-01-01
... for an airplane powered by more than three jet engines, the distance from the runway centerline must... feet (+100 to −50 meters) of the target altitude. For airplanes powered by other than jet engines, the... airplanes that do not have jet engines with a bypass ratio of 2 or more, the following apply: (A): For...
An 8 Meter Monolithic UV/Optical Space Telescope
NASA Technical Reports Server (NTRS)
Stahl, H. Philip; Postman, Marc
2008-01-01
The planned Ares V launch vehicle with its 10 meter fairing and at least 55,600 kg capacity to Earth Sun L2 enables entirely new classes of space telescopes. A consortium from NASA, Space Telescope Science Institute, and aerospace industry are studying an 8-meter monolithic primary mirror UV/optical/NIR space telescope to enable new astrophysical research that is not feasible with existing or near-term missions, either space or ground. This paper briefly reviews the science case for such a mission and presents the results of an on-going technical feasibility study, including: optical design; structural design/analysis including primary mirror support structure, sun shade and secondary mirror support structure; thermal analysis; launch vehicle performance and trajectory; spacecraft including structure, propulsion, GN&C, avionics, power systems and reaction wheels; operations & servicing; mass budget and cost.
Lunar robotic maintenance module
NASA Technical Reports Server (NTRS)
Ayres, Michael L.
1988-01-01
A design for a robotic maintenance module that will assist a mobile 100-meter lunar drill is introduced. The design considers the following areas of interest: the atmospheric conditions, actuator systems, power supply, material selection, weight, cooling system and operation.
NASA Technical Reports Server (NTRS)
Sanchez, Braulio V.; Nishihama, Masahiro
1997-01-01
Half-daily global wind speeds in the east-west (u) and north-south (v) directions at the 10-meter height level were obtained from the European Centre for Medium Range Weather Forecasts (ECMWF) data set of global analyses. The data set covered the period 1985 January to 1995 January. A spherical harmonic expansion to degree and order 50 was used to perform harmonic analysis of the east-west (u) and north-south (v) velocity field components. The resulting wind field is displayed, as well as the residual of the fit, at a particular time. The contribution of particular coefficients is shown. The time variability of the coefficients up to degree and order 3 is presented. Corresponding power spectrum plots are given. Time series analyses were applied also to the power associated with degrees 0-10; the results are included.
Relative planetary radar sensitivities: Arecibo and Goldstone
NASA Technical Reports Server (NTRS)
Renzetti, N. A.; Thompson, T. W.; Slade, M. A.
1988-01-01
The increase of the Deep Space Network antennas from 64 meter to 70 meter diameter represents the first of several improvements that will be made over the next decade to enhance earth based radar sensitivity to solar system targets. The aperture increase at the Goldstone DSS-14 site, coupled with a proposed increase in transmitter power to 1000 kW, will improve the 3.5 cm radar by about one order of magnitude. Similarly, proposed Arecibo Observatory upgrades of a Gregorian feed structure and an increase of transmitter power to 1000 kW will increase the sensitivity of this radar about 20 fold. In addition, a Goldstone to Very Large Array bistatic observation with horizon to horizon tracking will have 3.5 times more sensitivity than will a Goldstone horizon to horizon monostatic observation. All of these improvements, which should be in place within the next decade, will enrich an already fertile field of planetary exploration.
EEG monitoring of a free-swimming diver at a working depth of 15 meters.
NASA Technical Reports Server (NTRS)
Zweizig, J. R.; Adey, W. R.; Hanley, J.; Hahn, P. M.; Pilmanis, A. A.; Given, R. R.; Cockett, A. T. K.
1972-01-01
Feasibility has been shown for underwater transmission of physiological signals, using frequency modulation of carriers transmitted by return-current-density methods, as part of a personal biotelemetry system. In the prototype system, a standard IRIG subcarrier frequency (2300 Hz) was used. Power requirements, antenna design, and signal attenuation are compatible with free-ranging diving activity at distances up to 15 meters from the receiver. Extrapolation from this study and further developments are expected to substantially increase the range. Advantages of this system include subcarrier compatibility with standard IRIG demodulators using channels 1 through 10, the absence of highly specialized antenna requirements, and reasonable attenuation characteristics for transmission through the turbidity of typical seawater. Moreover, the system would not appear to be depth limited, and to be compatible with use of high-powered transponders of the same type for long-distance transmission, with or without further encoding.
2 MeV linear accelerator for industrial applications
NASA Astrophysics Data System (ADS)
Smith, Richard R.; Farrell, Sherman R.
1997-02-01
RPC Industries has developed a high average power scanned electron beam linac system for medium energy industrial processing, such as in-line sterilization. The parameters are: electron energy 2 MeV; average beam current 5.0 mA; and scanned width 0.5 meters. The control system features data logging and a Man-Machine Interface system. The accelerator is vertically mounted, the system height above the floor is 3.4 m, and the footprint is 0.9×1.2 meter2. The typical processing cell inside dimensions are 3.0 m by 3.5 m by 4.2 m high with concrete side walls 0.5 m thick above ground level. The equal exit depth dose is 0.73 gm cm-2. Additional topics that will be reported are: throughput, measurements of dose vs depth, dose uniformity across the web, and beam power by calorimeter and magnetic deflection of the beam.
1986-08-01
In response to President Reagan's directive to NASA to develop a permanent marned Space Station within a decade, part of the State of the Union message to Congress on January 25, 1984, NASA and the Administration adopted a phased approach to Station development. This approach provided an initial capability at reduced costs, to be followed by an enhanced Space Station capability in the future. This illustration depicts a configuration with enhanced capabilities. It builds on the horizontal boom and module pattern of the revised baseline. This configuration would feature dual keels, two vertical spines 105-meters long joined by upper and lower booms. The structure carrying the modules would become a transverse boom of a basically rectangular structure. The two new booms, 45-meters in length, would provide extensive accommodations for attached payloads, and would offer a wide field of view. Power would be increased significantly, with the addition if a 50-kW solar dynamic power system.
Application of acoustic doppler velocimeters for streamflow measurements
Rehmel, M.
2007-01-01
The U.S. Geological Survey (USGS) principally has used Price AA and Price pygmy mechanical current meters for measurement of discharge. New technologies have resulted in the introduction of alternatives to the Price meters. One alternative, the FlowTracker acoustic Doppler velocimeter, was designed by SonTek/YSI to make streamflow measurements in wadeable conditions. The device measures a point velocity and can be used with standard midsection method algorithms to compute streamflow. The USGS collected 55 quality-assurance measurements with the FlowTracker at 43 different USGS streamflow-gaging stations across the United States, with mean depths from 0.05to0.67m, mean velocities from 13 to 60 cm/s, and discharges from 0.02 to 12.4m3/s. These measurements were compared with Price mechanical current meter measurements. Analysis of the comparisons shows that the FlowTracker discharges were not statistically different from the Price meter discharges at a 95% confidence level. ?? 2007 ASCE.
Complete energetic description of hydrokinetic turbine impact on flow channel dynamics
NASA Astrophysics Data System (ADS)
Brasseale, E.; Kawase, M.
2016-02-01
Energy budget analysis on tidal channels quantifies and demarcates the impacts of marine renewables on environmental fluid dynamics. Energy budget analysis assumes the change in total kinetic energy within a volume of fluid can be described by the work done by each force acting on the flow. In a numerically simulated channel, the balance between energy change and work done has been validated up to 5% error.The forces doing work on the flow include pressure, turbulent dissipation, and stress from the estuary floor. If hydrokinetic turbines are installed in an estuarine channel to convert tidal energy into usable power, the dynamics of the channel change. Turbines provide additional pressure work against the flow of the channel which will slow the current and lessen turbulent dissipation and bottom stress. These losses may negatively impact estuarine circulation, seafloor scour, and stratification.The environmental effects of turbine deployment have been quantified using a three dimensional, Reynolds-averaged, Navier-Stokes model of an idealized flow channel situated between the ocean and a large estuarine basin. The channel is five kilometers wide, twenty kilometers long and fifty meters deep, and resolved to a grid size of 10 meters by 10 meters by 1 meter. Tidal currents are simulated by an initial difference in sea surface height across the channel of 160 centimeters from the channel entrance to the channel exit. This creates a pressure gradient which drives flow through the channel. Tidal power turbines are represented as disks that force the channel in proportion to the strength of the current. Three tidal turbines twenty meters in diameters have been included in the model to simulate the impacts of a pilot scale test deployment.This study is the first to appreciate the energetic impact of marine renewables in a three dimensional model through the energy equation's constituent terms. This study provides groundwork for understanding and predicting the environmental impacts of marine renewables.
Morning twilight measured at Bandung and Jombang
NASA Astrophysics Data System (ADS)
Arumaningtyas, Eka Puspita; Raharto, Moedji; Herdiwijaya, Dhani
2012-06-01
Twilight divided into three categories namely, astronomical twilight, nautical twilight, and civil twilight. The three types of twilight can occur either in the evening or early morning. According to the U.S. Naval Observatory the three types distinguished by the depression (altitude of the sun below the horizon) for the evening or the morning twilight, -180, -120, and -60. Sky brightness measurements usually intended to determine the quality of the sky at some observation site or to determine the quality of the atmosphere by light pollution. Sky brightness data could be use for practical purposes such as to determine prayer times (Morning Prayer). This study describes the measurement of sky brightness using a light meter Sky Quality Meter. The measurements indicate the presence of different values and patterns in the twilight sky brightness. This variability highly determined by the weather conditions. Sky brightness shows a constant value shortly after the evening astronomical twilight and before morning astronomical twilight. Before the evening astronomical twilight and after morning astronomical twilight sky brightness showing continue changing.
Grid-Tied Photovoltaic Power System
NASA Technical Reports Server (NTRS)
Eichenberg, Dennis J.
2011-01-01
A grid-tied photovoltaic (PV) power system is connected directly to the utility distribution grid. Facility power can be obtained from the utility system as normal. The PV system is synchronized with the utility system to provide power for the facility, and excess power is provided to the utility. Operating costs of a PV power system are low compared to conventional power technologies. This method can displace the highest-cost electricity during times of peak demand in most climatic regions, and thus reduce grid loading. Net metering is often used, in which independent power producers such as PV power systems are connected to the utility grid via the customers main service panels and meters. When the PV power system is generating more power than required at that location, the excess power is provided to the utility grid. The customer pays the net of the power purchased when the on-site power demand is greater than the onsite power production, and the excess power is returned to the utility grid. Power generated by the PV system reduces utility demand, and the surplus power aids the community. Modern PV panels are readily available, reliable, efficient, and economical, with a life expectancy of at least 25 years. Modern electronics have been the enabling technology behind grid-tied power systems, making them safe, reliable, efficient, and economical with a life expectancy equal to the modern PV panels. The grid-tied PV power system was successfully designed and developed, and this served to validate the basic principles developed, and the theoretical work that was performed. Grid-tied PV power systems are reliable, maintenance- free, long-life power systems, and are of significant value to NASA and the community. Of particular value are the analytical tools and capabilities that have been successfully developed. Performance predictions can be made confidently for grid-tied PV systems of various scales. The work was done under the NASA Hybrid Power Management (HPM) Program, which is the integration of diverse power devices in an optimal configuration for space and terrestrial applications.
Development and Short-Range Testing of a 100 kW Side-Illuminated Millimeter-Wave Thermal Rocket
NASA Technical Reports Server (NTRS)
Bruccoleri, Alexander; Eilers, James A.; Lambot, Thomas; Parkin, Kevin
2015-01-01
The objective of the phase described here of the Millimeter-Wave Thermal Launch System (MTLS) Project was to launch a small thermal rocket into the air using millimeter waves. The preliminary results of the first MTLS flight vehicle launches are presented in this work. The design and construction of a small thermal rocket with a planar ceramic heat exchanger mounted along the axis of the rocket is described. The heat exchanger was illuminated from the side by a millimeter-wave beam and fed propellant from above via a small tank containing high pressure argon or nitrogen. Short-range tests where the rocket was launched, tracked, and heated with the beam are described. The rockets were approximately 1.5 meters in length and 65 millimeters in diameter, with a liftoff mass of 1.8 kilograms. The rocket airframes were coated in aluminum and had a parachute recovery system activated via a timer and Pyrodex. At the rocket heat exchanger, the beam distance was 40 meters with a peak power intensity of 77 watts per square centimeter. and a total power of 32 kilowatts in a 30 centimeter diameter circle. An altitude of approximately 10 meters was achieved. Recommendations for improvements are discussed.
Vulnerability of water supply systems to cyber-physical attacks
NASA Astrophysics Data System (ADS)
Galelli, Stefano; Taormina, Riccardo; Tippenhauer, Nils; Salomons, Elad; Ostfeld, Avi
2016-04-01
The adoption of smart meters, distributed sensor networks and industrial control systems has largely improved the level of service provided by modern water supply systems. Yet, the progressive computerization exposes these critical infrastructures to cyber-physical attacks, which are generally aimed at stealing critical information (cyber-espionage) or causing service disruption (denial-of-service). Recent statistics show that water and power utilities are undergoing frequent attacks - such as the December power outage in Ukraine - , attracting the interest of operators and security agencies. Taking the security of Water Distribution Networks (WDNs) as domain of study, our work seeks to characterize the vulnerability of WDNs to cyber-physical attacks, so as to conceive adequate defense mechanisms. We extend the functionality of EPANET, which models hydraulic and water quality processes in pressurized pipe networks, to include a cyber layer vulnerable to repeated attacks. Simulation results on a medium-scale network show that several hydraulic actuators (valves and pumps, for example) can be easily attacked, causing both service disruption - i.e., water spillage and loss of pressure - and structural damages - e.g., pipes burst. Our work highlights the need for adequate countermeasures, such as attacks detection and reactive control systems.
Sedimentation survey of Lago Loco, Puerto Rico, March 2000
Soler-López, Luis R.
2002-01-01
Lago Loco, a small reservoir property of the Puerto Rico Electric Power Authority and part of the Southwestern Puerto Rico Project, has lost 64 percent of its original storage capacity. In 1951, the original storage capacity was about 2.40 million cubic meters, decreasing to 1.43 million cubic meters in 1986 and to 0.87 million cubic meters in March 2000. The storage loss or longterm sedimentation rate increased from 27,714 cubic meters per year from the period of 1951 to 1986 to 31,224 cubic meters per year for the period of 1951 to 2000. This represents a capacity loss of about 1.1 percent per year for the period of 1951 to 1986 and 1.3 percent per year for 1951 to 2000. The trapping efficiency of the reservoir was about 92 percent in 1951, decreasing to about 87 percent in 1986, and to about 80 percent in March 2000. The sediment yield of the net sediment- contributing drainage area increased from 1,504 megagrams per square kilometer per year between 1951 and 1986 to 1,774 megagrams per square kilometer per year between 1951 and 2000, or about 18 percent. At the current sedimentation rate of the reservoir, the life expectancy of Lago Loco is about 28 more years or until the year 2028.
2015-12-09
On the left is a radar image of asteroid 1998 WT24 taken in December 2001 by scientists using NASA's the 230-foot (70-meter) DSS-14 antenna at Goldstone, California. On the right is a radar image of the same asteroid acquired on Dec. 11, 2015, during the asteroid's most recent Earth flyby. The radar images from 2001 (on the left), have a resolution of about 60 feet (19 meters) per pixel. The radar image from 2015 (on the right) achieved a spatial resolution as fine as 25 feet (7.5 meters) per pixel. The 2015 radar image was obtained using the same DSS-14 antenna at Goldstone to transmit high-power microwaves toward the asteroid. However, this time, the radar echoes bounced off the asteroid were received by the National Radio Astronomy Observatory's 100-meter (330-foot) Green Bank Telescope in West Virginia. The next visit of asteroid 1998 WT24 to Earth's neighborhood will be on Nov. 11, 2018, when it will make a distant pass at about 12.5-million miles (52 lunar distances). http://photojournal.jpl.nasa.gov/catalog/PIA20216
Fizeau interferometric imaging of Io volcanism with LBTI/LMIRcam
NASA Astrophysics Data System (ADS)
Leisenring, J. M.; Hinz, P. M.; Skrutskie, M.; Skemer, A.; Woodward, C. E.; Veillet, C.; Arcidiacono, C.; Bailey, V.; Bertero, M.; Boccacci, P.; Conrad, A.; de Kleer, K.; de Pater, I.; Defrère, D.; Hill, J.; Hofmann, K.-H.; Kaltenegger, L.; La Camera, A.; Nelson, M. J.; Schertl, D.; Spencer, J.; Weigelt, G.; Wilson, J. C.
2014-07-01
The Large Binocular Telescope (LBT) houses two 8.4-meter mirrors separated by 14.4 meters on a common mount. Coherent combination of these two AO-corrected apertures via the LBT Interferometer (LBTI) produces Fizeau interferometric images with a spatial resolution equivalent to that of a 22.8-meter telescope and the light- gathering power of single 11.8-meter mirror. Capitalizing on these unique capabilities, we used LBTI/LMIRcam to image thermal radiation from volcanic activity on the surface of Io at M-Band (4.8 μm) over a range of parallactic angles. At the distance of Io, the M-Band resolution of the interferometric baseline corresponds to a physical distance of ~135 km, enabling high-resolution monitoring of Io volcanism such as ares and outbursts inaccessible from other ground-based telescopes operating in this wavelength regime. Two deconvolution routines are used to recover the full spatial resolution of the combined images, resolving at least sixteen known volcanic hot spots. Coupling these observations with advanced image reconstruction algorithms demonstrates the versatility of Fizeau interferometry and realizes the LBT as the first in a series of extremely large telescopes.
76 FR 42161 - Notice of Final Federal Agency Actions on Proposed Highway in California
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-18
... Gilman Drive; installation of new ramp meters; and, construction of a bicycle path along I-5. The project... at http://www.dot.ca.gov/dist11/envir.htm . Pending Federal actions include: 1. Section 401 Water Quality Certification from the San Diego Regional Water Quality Control Board (RWQCB), under Section 401...
Johnson, Michaela R.; Buell, Gary R.; Kim, Moon H.; Nardi, Mark R.
2007-01-01
This dataset was developed as part of the National Water-Quality Assessment (NAWQA) Program, Nutrient Enrichment Effects Topical (NEET) study for five study units distributed across the United States: Apalachicola-Chattahoochee-Flint River Basin, Central Columbia Plateau-Yakima River Basin, Central Nebraska Basins, Potomac River Basin and Delmarva Peninsula, and White, Great and Little Miami River Basins. One hundred forty-three stream reaches were examined as part of the NEET study conducted 2003-04. Stream segments, with lengths equal to the logarithm of the basin area, were delineated upstream from the downstream ends of the stream reaches with the use of digital orthophoto quarter quadrangles (DOQQ) or selected from the high-resolution National Hydrography Dataset (NHD). Use of the NHD was necessary when the stream was not distinguishable in the DOQQ because of dense tree canopy. The analysis area for each stream segment was defined by a buffer beginning at the segment extending to 250 meters lateral to the stream segment. Delineation of land use/land cover (LULC) map units within stream segment buffers was conducted using on-screen digitizing of riparian LULC classes interpreted from the DOQQ. LULC units were mapped using a classification strategy consisting of nine classes. National Wetlands Inventory (NWI) data were used to aid in wetland classification. Longitudinal transect sampling lines offset from the stream segments were generated and partitioned into the underlying LULC types. These longitudinal samples yielded the relative linear extent and sequence of each LULC type within the riparian zone at the segment scale. The resulting areal and linear LULC data filled in the spatial-scale gap between the 30-meter resolution of the National Land Cover Dataset and the reach-level habitat assessment data collected onsite routinely for NAWQA ecological sampling. The final data consisted of 12 geospatial datasets: LULC within 25 meters of the stream reach (polygon); LULC within 50 meters of the stream reach (polygon); LULC within 50 meters of the stream segment (polygon); LULC within 100 meters of the stream segment (polygon); LULC within 150 meters of the stream segment (polygon); LULC within 250 meters of the stream segment (polygon); frequency of gaps in woody vegetation LULC at the reach scale (arc); stream reaches (arc); longitudinal LULC at the reach scale (arc); frequency of gaps in woody vegetation LULC at the segment scale (arc); stream segments (arc); and longitudinal LULC at the segment scale (arc).
Using Public Participation to Improve MELs Energy Data Collection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kloss, Margarita; Cheung, Iris; Brown, Richard
Miscellaneous and electronic loads (MELs) comprise an increasing share of building energy consumption. Large-scale data collection is needed to inform meaningful energy reduction strategies because of the diversity of MELs and our lack of understanding about how people use them. Traditional methods of data collection, however, usually incur high labor and metering equipment expenses. As an alternative, this paper investigates the feasibility of crowdsourcing data collection to satisfy at least part of the data collection needs with acceptable accuracy. We assessed the reliability and accuracy of crowd-sourced data by recruiting 18 volunteers and testing our crowdsourcing protocol. The protocol askedmore » volunteers to perform measurement tasks for three MELs devices of increasing complexity 1) record power meter and MELs product characteristics, 2) identify and measure all power modes available, and 3) report the measured power. Volunteers performed reasonably well for devices with functionalities with which they were familiar, but many could not correctly identify all available power modes in complex devices. Accuracy may improve when participants measure the power used by familiar devices in their home, or by providing more specific instructions, e.g. videos. Furthermore, crowdsourcing data collection from individual homeowners has the potential to generate valuable information about MELs energy use in homes when integrated with existing programs such as Home Energy Saver and Building America.« less
Sheets, R.A.; Dumouchelle, D.H.
2009-01-01
Three geophysical profiling methods were tested to help characterize subsurface materials at selected transects along the Great Miami River, in southwestern Ohio. The profiling methods used were continuous seismic profiling (CSP), continuous resistivity profiling (CRP), and continuous electromagnetic profiling (CEP). Data were collected with global positioning systems to spatially locate the data along the river. The depth and flow conditions of the Great Miami River limited the amount and quality of data that could be collected with the CSP and CRP methods. Data from the CSP were generally poor because shallow reflections (less than 5 meters) were mostly obscured by strong multiple reflections and deep reflections (greater than 5 meters) were sparse. However, modeling of CRP data indicated broad changes in subbottom geology, primarily below about 3 to 5 meters. Details for shallow electrical conductivity (resistivity) (less than 3 meters) were limited because of the 5-meter electrode spacing used for the surveys. For future studies of this type, a cable with 3-meter electrode spacing (or perhaps even 1-meter spacing) might best be used in similar environments to determine shallow electrical properties of the stream-bottom materials. CEP data were collected along the entire reach of the Great Miami River. The CRP and CEP data did not correlate well, but the CRP electrode spacing probably limited the correlation. Middle-frequency (3,510 hertz) and high-frequency (15,030 hertz) CEP data were correlated to water depth. Low-frequency (750 hertz) CEP data indicate shallow (less than 5-meter) changes in electrical conductivity. Given the variability in depth and flow conditions on a river such as the Great Miami, the CEP method worked better than either the CSP or CRP methods.
Field power measurements of imaging equipment
DOE Office of Scientific and Technical Information (OSTI.GOV)
McWhinney, Marla; Homan, Gregory; Brown, Richard
2004-05-14
According to the U.S. Department of Energy, electricity use by non-PC commercial office equipment is growing at an annual rate of nearly 5 percent (AEO 2003). To help address this growth in consumption, U.S. EPA periodically updates its ENERGY STAR specifications as products and markets change. This report presents background research conducted to help EPA update the ENERGY STAR specification for imaging equipment, which covers printers, fax machines, copiers, scanners, and multifunction devices (MFDs). We first estimated the market impact of the current ENERGY STAR imaging specification, finding over 90 percent of the current market complies with the specification. Wemore » then analyzed a sample of typical new imaging products, including 11 faxes, 57 printers and 19 copiers/MFD. For these devices we metered power levels in the most common modes: active/ready/sleep/off, and recorded features that would most likely affect energy consumption. Our metering indicates that for many products and speed bins, current models consume substantially less power than the current specification. We also found that for all product categories, power consumption varied most considerably across technology (i.e. inkjet vs. laser). Although inkjet printers consumed less energy than laser printers in active, ready and sleep-mode, they consumed more power on average while off, mostly due to the use of external power supplies. Based on these findings, we developed strategies for the ENERGY STAR program to achieve additional energy reductions. Finally, we present an assessment of manufacturer's ENERGY STAR labeling practices.« less
Thermal analysis of underground power cable system
NASA Astrophysics Data System (ADS)
Rerak, Monika; Ocłoń, Paweł
2017-10-01
The paper presents the application of Finite Element Method in thermal analysis of underground power cable system. The computations were performed for power cables buried in-line in the ground at a depth of 2 meters. The developed mathematical model allows determining the two-dimensional temperature distribution in the soil, thermal backfill and power cables. The simulations studied the effect of soil and cable backfill thermal conductivity on the maximum temperature of the cable conductor. Also, the effect of cable diameter on the temperature of cable core was studied. Numerical analyses were performed based on a program written in MATLAB.
ERIC Educational Resources Information Center
School Science Review, 1981
1981-01-01
Reviews apparatus design and instructional uses for Fume Cupboard Monitor, Plant Tissue Culture Kit, various equipment for electronic systems course, Welwyn Microprocessor-Tutor, Sweep Function Generator SFG 606, and Harris manufacturers materials--Regulated Power Supply Units, Electronic Current and Voltage Meters, Gas Preparation Kit, and…
PORTABLE METHANE FLUX METER - PHASE I
This Phase I project will investigate achieving a low power, portable system for measuring methane concentrations and fluxes. The system will combine diode laser-based trace gas concentration measurements with rapid wind speed measurements to determine fluxes using eddy cor...
46 CFR 199.150 - Survival craft launching and recovery arrangements; general.
Code of Federal Regulations, 2012 CFR
2012-10-01
... be boarded from a position on deck less than 4.5 meters (14.75 feet) above the waterline with the...) A launching appliance must not depend on any means other than gravity or stored mechanical power...
46 CFR 199.150 - Survival craft launching and recovery arrangements; general.
Code of Federal Regulations, 2014 CFR
2014-10-01
... be boarded from a position on deck less than 4.5 meters (14.75 feet) above the waterline with the...) A launching appliance must not depend on any means other than gravity or stored mechanical power...
HiMeter: Telling You the Height Rather than the Altitude.
Ye, Haibo; Dong, Kai; Gu, Tao
2018-05-25
The altitude of a moving user is important context information for mobile technologies and applications. However, with the increasing pervasiveness of smartphones and abundant mobile applications, developers and users have gradually discovered that the height is more useful than altitude in many situations. The height is often a relative value, which is the vertical distance to the ground rather than the vertical distance to sea level, and we believe that it is useful in many applications, such as localization/navigation, sport/health and tourism/travel. In this paper, we first carried out a nation-wide online survey to confirm the desirability for the height information in mobile applications, and the result is positive. Then, we proposed HiMeter, an effective and accurate approach to calculating the height of the smartphone. HiMeter makes use of a low-power barometer on the smartphone and does not require GPS or back-server support. We concentrate on the vertical moving pattern of the user and designed several novel techniques, resulting in HiMeter not needing any reference points, and the complex process of calculating the absolute altitude can be avoided. The field studies show that HiMeter can achieve an accuracy of within 5 m in 90% of cases indoors and an accuracy of 10 m in 83% of cases outdoors. Compared to the existing works, HiMeter is more accurate and practical and is more suitable for usage in many mobile applications.
Sedimentation History of Lago Dos Bocas, Puerto Rico, 1942-2005
Soler-López, Luis R.
2007-01-01
The Lago Dos Bocas Dam, located in the municipality of Utuado in north central Puerto Rico, was constructed in 1942 for hydroelectric power generation. The reservoir had an original storage capacity of 37.50 million cubic meters and a drainage area of 440 square kilometers. In 1948, the construction of the Lago Caonillas Dam on the Rio Caonillas branch of Lago Dos Bocas reduced the natural sediment-contributing drainage area to 310 square kilometers; therefore, the Lago Caonillas Dam is considered an effective sediment trap. Sedimentation in Lago Dos Bocas reservoir has reduced the storage capacity from 37.50 million cubic meters in 1942 to 17.26 million cubic meters in 2005, which represents a storage loss of about 54 percent. The long-term annual water-storage capacity loss rate remained nearly constant at about 320,000 cubic meters per year to about 1997. The inter-survey sedimentation rate between 1997 and 1999, however, is higher than the long-term rate at about 1.09 million cubic meters per year. Between 1999 and 2005 the rate is lower than the long-term rate at about 0.13 million cubic meters per year. The Lago Dos Bocas effective sediment-contributing drainage area had an average sediment yield of about 1,400 cubic meters per square kilometer per year between 1942 and 1997. This rate increased substantially by 1999 to about 4,600 cubic meters per square kilometer per year, probably resulting from the historical magnitude floods caused by Hurricane Georges in 1998. Recent data indicate that the Lago Dos Bocas drainage area sediment yield decreased substantially to about 570 cubic meters per square kilometer per year, which is much lower than the 1942-1997 area normalized sedimentation rate of 1,235 cubic meters per square kilometer per year. The impact of Hurricane Georges on the basin sediment yield could have been the cause of this change, since the magnitude of the floods could have nearly depleted the Lago Dos Bocas drainage area of easily erodible and transportable bed sediment. This report summarizes the historical change in water-storage capacity of Lago Dos Bocas between 1942 and 2005.
NASA Astrophysics Data System (ADS)
Dekemper, E.; Fussen, D.; Vanhellemont, F.; Vanhamel, J.; Pieroux, D.; Berkenbosch, S.
2017-12-01
In an urban environment, nitrogen dioxide is emitted by a multitude of static and moving point sources (cars, industry, power plants, heating systems,…). Air quality models generally rely on a limited number of monitoring stations which do not capture the whole pattern, neither allow for full validation. So far, there has been a lack of instrument capable of measuring NO2 fields with the necessary spatio-temporal resolution above major point sources (power plants), or more extended ones (cities). We have developed a new type of passive remote sensing instrument aiming at the measurement of 2-D distributions of NO2 slant column densities (SCDs) with a high spatial (meters) and temporal (minutes) resolution. The measurement principle has some similarities with the popular filter-based SO2 camera (used in volcanic and industrial sulfur emissions monitoring) as it relies on spectral images taken at wavelengths where the molecule absorption cross section is different. But contrary to the SO2 camera, the spectral selection is performed by an acousto-optical tunable filter (AOTF) capable of resolving the target molecule's spectral features. A first prototype was successfully tested with the plume of a coal-firing power plant in Romania, revealing the dynamics of the formation of NO2 in the early plume. A lighter version of the NO2 camera is now being tested on other targets, such as oil refineries and urban air masses.
Rectenna System Design. [energy conversion solar power satellites
NASA Technical Reports Server (NTRS)
Woodcock, G. R.; Andryczyk, R. W.
1980-01-01
The fundamental processes involved in the operation of the rectenna system designed for the solar power satellite system are described. The basic design choices are presented based on the desired microwave rf field concentration prior to rectification and based on the ground clearance requirements for the rectenna structure. A nonconcentrating inclined planar panel with a 2 meter minimum clearance configuration is selected as a representative of the typical rectenna.
Automated Continuous Commissioning of Commercial Buildings
2011-09-01
matched pair of supply and return chilled water temperature sensors, a pyranometer , and aspirated wet and dry bulb temperature sensors for the weather...temp X Aspirated weather station is required. Outside air wet bulb X Pyranometer X Wind speed & direction X Main power meter X Lighting load power X...Aspirated weather station is required. Outside air wet bulb X Pyranometer X Provides measurements on global horizontal solar radiation, beam radiation and
USAFSAM Review and Analysis of Radiofrequency Radiation Bioeffects Literature. Fifth Report.
1985-03-01
exteriorized between the scapulae. The tip of the catheter was positioned at the juncture between the superior and inferior venae cavae . With this preparation...other than in connection with a definitely Government-related procure- ment, the United States Government incurs no responsibility or any obligation...Between experimental sessions, Frey and Seifert measured the power density with a quarter-wave dipole connected to a commercial thermistor and power meter
Carbon loaded Teflon (CLT): a power density meter for biological experiments using millimeter waves.
Allen, Stewart J; Ross, James A
2007-01-01
The standard technique for measurement of millimeter wave fields utilizes an open-ended waveguide attached to a HP power meter. The alignment of the waveguide with the propagation (K) vector is critical to making accurate measurements. Using this technique, it is difficult and time consuming to make a detailed map of average incident power density over areas of biological interest and the spatial resolution of this instrument does not allow accurate measurements in non-uniform fields. For biological experiments, it is important to know the center field average incident power density and the distribution over the exposed area. Two 4 ft x 4 ft x 1/32 inch sheets of carbon loaded Teflon (CLT) (one 15% carbon and one 25% carbon) were procured and a series of tests to determine the usefulness of CLT in defining fields in the millimeter wavelength range was initiated. Since the CLT was to be used both in the laboratory, where the environment was well controlled, and in the field, where the environment could not be controlled, tests were made to determine effects of change in environmental conditions on ability to use CLT as a millimeter wave dosimeter. The empirical results of this study indicate CLT to be an effective dosimeter for biological experiments both in the laboratory and in the field.
NASA Technical Reports Server (NTRS)
Baxter, W. J., Jr.; Frant, M. S.; West, S. J.
1978-01-01
Solid-state sensing unit developed for use with NASA's Water-Quality Monitoring System can detect small velocity changes in slow moving fluid. Nonprotruding sensor is applicable to numerous other uses requiring sensitive measurement of slow flows.
Snyder, Alexander G.; Lacy, Jessica R.; Stevens, Andrew W.; Carlson, Emily M.
2016-06-10
The U.S. Geological Survey conducted a bathymetric survey in Little Holland Tract, a flooded agricultural tract, in the northern Sacramento-San Joaquin Delta (the “Delta”) during the summer of 2015. The new bathymetric data were combined with existing data to generate a digital elevation model (DEM) at 1-meter resolution. Little Holland Tract (LHT) was historically diked off for agricultural uses and has been tidally inundated since an accidental levee breach in 1983. Shallow tidal regions such as LHT have the potential to improve habitat quality in the Delta. The DEM of LHT was developed to support ongoing studies of habitat quality in the area and to provide a baseline for evaluating future geomorphic change. The new data comprise 138,407 linear meters of real-time-kinematic (RTK) Global Positioning System (GPS) elevation data, including both bathymetric data collected from personal watercraft and topographic elevations collected on foot at low tide. A benchmark (LHT15_b1) was established for geodetic control of the survey. Data quality was evaluated both by comparing results among surveying platforms, which showed systematic offsets of 1.6 centimeters (cm) or less, and by error propagation, which yielded a mean vertical uncertainty of 6.7 cm. Based on the DEM and time-series measurements of water depth, the mean tidal prism of LHT was determined to be 2,826,000 cubic meters. The bathymetric data and DEM are available at http://dx.doi.org/10.5066/F7RX9954.
Moyer, Robert D.
1985-01-01
A peak power ratio generator is described for measuring, in combination with a conventional power meter, the peak power level of extremely narrow pulses in the gigahertz radio frequency bands. The present invention in a preferred embodiment utilizes a tunnel diode and a back diode combination in a detector circuit as the only high speed elements. The high speed tunnel diode provides a bistable signal and serves as a memory device of the input pulses for the remaining, slower components. A hybrid digital and analog loop maintains the peak power level of a reference channel at a known amount. Thus, by measuring the average power levels of the reference signal and the source signal, the peak power level of the source signal can be determined.
Moyer, R.D.
A peak power ratio generator is described for measuring, in combination with a conventional power meter, the peak power level of extremely narrow pulses in the gigahertz radio frequency bands. The present invention in a preferred embodiment utilizes a tunnel diode and a back diode combination in a detector circuit as the only high speed elements. The high speed tunnel diode provides a bistable signal and serves as a memory device of the input pulses for the remaining, slower components. A hybrid digital and analog loop maintains the peak power level of a reference channel at a known amount. Thus, by measuring the average power levels of the reference signal and the source signal, the peak power level of the source signal can be determined.
SkySat-1: very high-resolution imagery from a small satellite
NASA Astrophysics Data System (ADS)
Murthy, Kiran; Shearn, Michael; Smiley, Byron D.; Chau, Alexandra H.; Levine, Josh; Robinson, M. Dirk
2014-10-01
This paper presents details of the SkySat-1 mission, which is the first microsatellite-class commercial earth- observation system to generate sub-meter resolution panchromatic imagery, in addition to sub-meter resolution 4-band pan-sharpened imagery. SkySat-1 was built and launched for an order of magnitude lower cost than similarly performing missions. The low-cost design enables the deployment of a large imaging constellation that can provide imagery with both high temporal resolution and high spatial resolution. One key enabler of the SkySat-1 mission was simplifying the spacecraft design and instead relying on ground- based image processing to achieve high-performance at the system level. The imaging instrument consists of a custom-designed high-quality optical telescope and commercially-available high frame rate CMOS image sen- sors. While each individually captured raw image frame shows moderate quality, ground-based image processing algorithms improve the raw data by combining data from multiple frames to boost image signal-to-noise ratio (SNR) and decrease the ground sample distance (GSD) in a process Skybox calls "digital TDI". Careful qual-ity assessment and tuning of the spacecraft, payload, and algorithms was necessary to generate high-quality panchromatic, multispectral, and pan-sharpened imagery. Furthermore, the framing sensor configuration en- abled the first commercial High-Definition full-frame rate panchromatic video to be captured from space, with approximately 1 meter ground sample distance. Details of the SkySat-1 imaging instrument and ground-based image processing system are presented, as well as an overview of the work involved with calibrating and validating the system. Examples of raw and processed imagery are shown, and the raw imagery is compared to pre-launch simulated imagery used to tune the image processing algorithms.
A dynamic water-quality modeling framework for the Neuse River estuary, North Carolina
Bales, Jerad D.; Robbins, Jeanne C.
1999-01-01
As a result of fish kills in the Neuse River estuary in 1995, nutrient reduction strategies were developed for point and nonpoint sources in the basin. However, because of the interannual variability in the natural system and the resulting complex hydrologic-nutrient inter- actions, it is difficult to detect through a short-term observational program the effects of management activities on Neuse River estuary water quality and aquatic health. A properly constructed water-quality model can be used to evaluate some of the potential effects of manage- ment actions on estuarine water quality. Such a model can be used to predict estuarine response to present and proposed nutrient strategies under the same set of meteorological and hydrologic conditions, thus removing the vagaries of weather and streamflow from the analysis. A two-dimensional, laterally averaged hydrodynamic and water-quality modeling framework was developed for the Neuse River estuary by using previously collected data. Development of the modeling framework consisted of (1) computational grid development, (2) assembly of data for model boundary conditions and model testing, (3) selection of initial values of model parameters, and (4) limited model testing. The model domain extends from Streets Ferry to Oriental, N.C., includes seven lateral embayments that have continual exchange with the main- stem of the estuary, three point-source discharges, and three tributary streams. Thirty-five computational segments represent the mainstem of the estuary, and the entire framework contains a total of 60 computa- tional segments. Each computational cell is 0.5 meter thick; segment lengths range from 500 meters to 7,125 meters. Data that were used to develop the modeling framework were collected during March through October 1991 and represent the most comprehensive data set available prior to 1997. Most of the data were collected by the North Carolina Division of Water Quality, the University of North Carolina Institute of Marine Sciences, and the U.S. Geological Survey. Limitations in the modeling framework were clearly identified. These limitations formed the basis for a set of suggestions to refine the Neuse River estuary water-quality model.
In-Vacuum Photogrammetry of a 10-Meter Solar Sail
NASA Technical Reports Server (NTRS)
Meyer, Chris G.; Jones, Thomas W.; Lunsford, Charles B.; Pappa, Richard S.
2005-01-01
In July 2004, a 10-meter solar sail structure developed by L Garde, Inc. was tested in vacuum at the NASA Glenn 30-meter Plum Brook Space Power Facility in Sandusky, Ohio. The three main objections of the test were to demonstrate unattended deployment from a stowed configuration, to measure the deployed shape of the sail at both ambient and cryogenic room temperatures, and to measure the deployed structural dynamic characteristics (vibration modes). This paper summarizes the work conducted to fulfill the second test objective. The deployed shape was measured photogrammetrically in vacuum conditions with four 2-megapixel digital video cameras contained in custom made pressurized canisters. The canisters included high-intensity LED ring lights to illuminate a grid of retroreflective targets distributed on the solar sail. The test results closely matched pre-test photogrammetry numerical simulations and compare well with ABAQUS finite-element model predictions.
NASA Astrophysics Data System (ADS)
1983-03-01
Described is the successful fabrication, installation, and checkout of 100 kW 17 meter Vertical Axis Wind Turbines (VAWTs). The turbines are Darrieus-type VAWTs with rotors 17 meters (55 feet) in diameter and 25.15 meters (83 feet) in height. They can produce 100 kW of electric power at a cost of energy as low as 3 cents per kWh, in an 18 mph wind regime using 12% annualized costs. Four turbines were produced; three are installed and are operable at: (1) Wind Systems Test Center, Rocky Flats, Colorado; (2) the US Department of Agriculture Conservation and Production Research Center at Bushland, Texas; and (3) Tisbury Water Authority, Vineyard Haven, Massachusetts, on the island of Martha's Vineyard. The fourth turbine is stored at Bushland, Texas awaiting selection of an erection site.
Design features and operational characteristics of the Langley 0.3-meter transonic cryogenic tunnel
NASA Technical Reports Server (NTRS)
Kilgore, R. A.
1976-01-01
Experience with the Langley 0.3 meter transonic cryogenic tunnel, which is fan driven, indicated that such a tunnel presents no unusual design difficulties and is simple to operate. Purging, cooldown, and warmup times were acceptable and were predicted with good accuracy. Cooling with liquid nitrogen was practical over a wide range of operating conditions at power levels required for transonic testing, and good temperature distributions were obtained by using a simple liquid nitrogen injection system. To take full advantage of the unique Reynolds number capabilities of the 0.3 meter transonic tunnel, it was designed to accommodate test sections other than the original, octagonal, three dimensional test section. A 20- by 60-cm two dimensional test section was recently installed and is being calibrated. A two dimensional test section with self-streamlining walls and a test section incorporating a magnetic suspension and balance system are being considered.
47 CFR 15.257 - Operation within the band 92-95 GHz.
Code of Federal Regulations, 2011 CFR
2011-10-01
... meters from the radiating structure, and the peak power density of any emission shall not exceed 18 uW/sq... an RF detector that has a detection bandwidth that encompasses the band being used and has a video...
47 CFR 15.257 - Operation within the band 92-95 GHz.
Code of Federal Regulations, 2010 CFR
2010-10-01
... meters from the radiating structure, and the peak power density of any emission shall not exceed 18 uW/sq... an RF detector that has a detection bandwidth that encompasses the band being used and has a video...
47 CFR 15.257 - Operation within the band 92-95 GHz.
Code of Federal Regulations, 2013 CFR
2013-10-01
... meters from the radiating structure, and the peak power density of any emission shall not exceed 18 uW/sq... an RF detector that has a detection bandwidth that encompasses the band being used and has a video...
47 CFR 15.257 - Operation within the band 92-95 GHz.
Code of Federal Regulations, 2014 CFR
2014-10-01
... meters from the radiating structure, and the peak power density of any emission shall not exceed 18 uW/sq... an RF detector that has a detection bandwidth that encompasses the band being used and has a video...
47 CFR 15.257 - Operation within the band 92-95 GHz.
Code of Federal Regulations, 2012 CFR
2012-10-01
... meters from the radiating structure, and the peak power density of any emission shall not exceed 18 uW/sq... an RF detector that has a detection bandwidth that encompasses the band being used and has a video...
First Solar Power Sail Demonstration by IKAROS
NASA Astrophysics Data System (ADS)
Mori, Osamu; Sawada, Hirotaka; Funase, Ryu; Morimoto, Mutsuko; Endo, Tatsuya; Yamamoto, Takayuki; Tsuda, Yuichi; Kawakatsu, Yasuhiro; Kawaguchi, Jun'ichiro; Miyazaki, Yasuyuki; Shirasawa, Yoji; Demonstration Team; Solar Sail Working Group, Ikaros
The Japan Aerospace Exploration Agency (JAXA) will make the world's first solar power sail craft demonstration of photon propulsion and thin film solar power generation during its interplanetary cruise by IKAROS (Interplanetary Kite-craft Accelerated by Radiation Of the Sun). The spacecraft deploys and spans a membrane of 20 meters in diameter taking the advantage of the spin centrifugal force. The spacecraft weighs approximately 310kg, launched together with the agency's Venus Climate Orbiter, AKATSUKI in May 2010. This will be the first actual solar sail flying an interplanetary voyage.
Spacecraft configuration study for second generation mobile satellite system
NASA Technical Reports Server (NTRS)
Louie, M.; Vonstentzsch, W.; Zanella, F.; Hayes, R.; Mcgovern, F.; Tyner, R.
1985-01-01
A high power, high performance communicatons satellite bus being developed is designed to satisfy a broad range of multimission payload requirements in a cost effective manner and is compatible with both STS and expendable launchers. Results are presented of tradeoff studies conducted to optimize the second generation mobile satellite system for its mass, power, and physical size. Investigations of the 20-meter antenna configuration, transponder linearization techniques, needed spacecraft modifications, and spacecraft power, dissipation, mass, and physical size indicate that the advanced spacecraft bus is capable of supporting the required payload for the satellite.
Thermal storage for electric utilities
NASA Technical Reports Server (NTRS)
Swet, C. J.; Masica, W. J.
1977-01-01
Applications of the thermal energy storage (TES) principle (storage of sensible heat or latent heat, or heat storage in reversible chemical reactions) in power systems are evaluated. Load leveling behind the meter, load following at conventional thermal power plants, solar thermal power generation, and waste heat utilization are the principal TES applications considered. Specific TES examples discussed include: storage heaters for electric-resistance space heating, air conditioning TES in the form of chilled water or eutectic salt baths, hot water TES, and trans-seasonal storage in heated water in confined aquifers.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-28
... meter ([micro]g/m\\3\\) with no more than one expected exceedance per year. The annual primary PM-10... contains three consecutive years of complete, quality-assured and certified PM-10 data for the 1999-2001... consecutive years of complete, quality-assured and certified PM-10 data for the 2007-2009 period, the most...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-14
... quality modeling) to result in an ambient pollutant increase of at least 1 microgram per meter cubed ([mu... 40 CFR 51.166(m) and 40 CFR 52.21(m). In accordance with EPA's Guideline for Air Quality Modeling (40... background concentrations in modeling conducted to demonstrate that the proposed source or modification will...
Cowger, Jennifer A; Naka, Yoshifumi; Aaronson, Keith D; Horstmanshof, Douglas; Gulati, Sanjeev; Rinde-Hoffman, Debbie; Pinney, Sean; Adatya, Sirtaz; Farrar, David J; Jorde, Ulrich P
2018-01-01
The Multicenter Study of MAGLEV Technology in Patients Undergoing Mechanical Circulatory Support Therapy with HeartMate 3 (MOMENTUM 3) clinical trial demonstrated improved 6-month event-free survival, but a detailed analysis of health-related quality of life (HR-QOL) and functional capacity (FC) was not presented. Further, the effect of early serious adverse events (SAEs) on these metrics and on the general ability to live well while supported with a left ventricular assist system (LVAS) warrants evaluation. FC (New York Heart Association [NYHA] and 6-minute walk test [6MWT]) and HR-QOL (European Quality of Life [EQ-5D-5L] and the Kansas City Cardiomyopathy [KCCQ]) assessments were obtained at baseline and 6 months after HeartMate 3 (HM3, n = 151; Abbott, Abbott Park, IL) or HeartMate II (HMII, n = 138; Abbott) implant as part of the MOMENTUM 3 clinical trial. Metrics were compared between devices and in those with and without events. The proportion of patients "living well on an LVAS" at 6 months, defined as alive with satisfactory FC (NYHA I/II or 6MWT > 300 meters) and HR-QOL (overall KCCQ > 50), was evaluated. Although the median (25th-75th percentile) patient KCCQ (change for HM3: +28 [10-46]; HMII: +29 [9-48]) and EQ-5D-5L (change for HM3: -1 [-5 to 0]; HMII: -2 [-6 to 0]) scores improved from baseline to 6 months (p < 0.05), there were no differences between devices (p > 0.05). Likewise, there was an equivalent improvement in 6MWT distance at 6 months in HM3 (+94 [1-274] meters] and HMII (+188[43-340 meters]) from baseline. In patients with SAEs (n = 188), 6MWTs increased from baseline (p < 0.001), but gains for both devices were less than those without SAE (HM3: +74 [-9 to 183] meters with SAE vs +140 [35-329] meters without SAE; HMII: +177 [47-356] meters with SAE vs +192 [23-337] meters without SAE, both p < 0.003). SAEs did not affect the 6-month HR-QOL scores. The "living well" end point was achieved in 145 HM3 (63%) and 120 HMII (68%) patients (p = 0.44). Gains in HR-QOL and FC were similar early after HM3 and HMII implant. 6MWT improvements were attenuated in patients experiencing SAEs, but HR-QOL metrics did not change. The development of left ventricular assist device-specific HR-QOL tools is needed to better characterize the effect of SAEs on a patient's well-being. MOMENTUM 3 clinical trial #NCT02224755. Copyright © 2018 International Society for the Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.
Densmore, Brenda K.; Burton, Bethany L.; Dietsch, Benjamin J.; Cannia, James C.; Huizinga, Richard J.
2014-01-01
During the 2011 Mississippi River Basin flood, the U.S. Geological Survey evaluated aspects of critical river infrastructure at the request of and in support of local, State, and Federal Agencies. Geotechnical and hydrographic data collected by the U.S. Geological Survey at numerous locations were able to provide needed information about 2011 flood effects to those managing the critical infrastructure. These data were collected and processed in a short time frame to provide managers the ability to make a timely evaluation of the safety of the infrastructure and, when needed, to take action to secure and protect critical infrastructure. Critical infrastructure surveyed by the U.S. Geological Survey included levees, bridges, pipeline crossings, power plant intakes and outlets, and an electrical transmission tower. Capacitively coupled resistivity data collected along the flood-protection levees surrounding the Omaha Public Power District Nebraska City power plant (Missouri River Levee Unit R573), mapped the near-subsurface electrical properties of the levee and the materials immediately below it. The near-subsurface maps provided a better understanding of the levee construction and the nature of the lithology beneath the levee. Comparison of the capacitively coupled resistivity surveys and soil borings indicated that low-resistivity value material composing the levee generally is associated with lean clay and silt to about 2 to 4 meters below the surface, overlying a more resistive layer associated with sand deposits. In general, the resistivity structure becomes more resistive to the south and the southern survey sections correlate well with the borehole data that indicate thinner clay and silt at the surface and thicker sand sequences at depth in these sections. With the resistivity data Omaha Public Power District could focus monitoring efforts on areas with higher resistivity values (coarser-grained deposits or more loosely compacted section), which typically are more prone to erosion or scour. Data collected from multibeam echosounder hydrographic surveys at selected bridges aided State agencies in evaluating the structural integrity of the bridges during the flood, by assessing the amount of scour present around piers and abutments. Hydrographic surveys of the riverbed detected scour depths ranging from zero (no scour) to approximately 5.8 meters in some areas adjacent to North Dakota bridge piers, zero to approximately 6 meters near bridge piers in Nebraska, and zero to approximately 10.4 meters near bridge piers in Missouri. Substructural support elements of some bridge piers in North Dakota, Nebraska, and Missouri that usually are buried were exposed to moving water and sediment. At five Missouri bridge piers the depth of scour left less than 1.8 meters of bed material between the bottom of the scour hole and bedrock. State agencies used this information along with bridge design and construction information to determine if reported scour depths would have a substantial effect on the stability of the structure. Multibeam echosounder hydrographic surveys of the riverbed near pipeline crossings did not detect exposed pipelines. However, analysis of the USGS survey data by pipeline companies aided in their evaluation of pipeline safety and led one company to further investigate the safety of their line and assisted another company in getting one offline pipeline back into operation. Multibeam echosounder hydrographic surveys of the banks, riverbed, and underwater infrastructure at Omaha Public Power District power plants documented the bed and scour conditions. These datasets were used by Omaha Public Power District to evaluate the effects that the flood had on operation, specifically to evaluate if scour during the peak of the flood or sediment deposition during the flood recession would affect the water intake structures. Hydrographic surveys at an Omaha Public Power District electrical transmission tower documented scour so that they could evaluate the structural integrity of the tower as well as have the information needed to make proper repairs after flood waters receded.
Evaluation of resistivity meters for concrete quality assurance : [research summary].
DOT National Transportation Integrated Search
2015-07-01
This research evaluated a series of MoDOT : concrete mixtures to verify existing : relationships between surface resistivity (SR), : rapid chloride permeability (RCP), chloride ion : diffusion, and the AASHTO penetrability : classes. The research als...
Evaluation of resistivity meters for concrete quality assurance.
DOT National Transportation Integrated Search
2015-06-01
This research evaluated a series of MoDOT concrete mixtures to verify existing relationships between surface resistivity (SR), rapid : chloride permeability (RCP), chloride ion diffusion, and the AASHTO penetrability classes. The research also perfor...
Leidinger, F; Jörgens, V; Chantelau, E; Berchtold, P; Berger, M
1980-07-26
Home blood glucose monitoring by diabetic patients has recently been advocated as an effective means to improve metabolic control. The Glucocheck apparatus, a pocket-size battery-driven reflectance-meter (in Germany commercially available under the name Glucose-meter), has been evaluated for accuracy and practicability. In 450 blood glucose measurements, the variance between the values obtained using the Glucocheck apparatus and routine clinical laboratory procedures was +/- 11.7%. Especially in the low range of blood glucose concentrations, the Glucocheck method was very reliable. The quantitative precision of the Glucocheck method depends, however, quite considerably on the ability of the patient to use the apparatus correctly. In order to profit from Glucocheck in clinical practice, particular efforts to educate the patients in its use are necessary.
Fluid Flow Technology that Measures Up
NASA Technical Reports Server (NTRS)
2004-01-01
From 1994 to 1996, NASA s Marshall Space Flight Center conducted a Center Director's Discretionary Fund research effort to apply artificial intelligence technologies to the health management of plant equipment and space propulsion systems. Through this effort, NASA established a business relationship with Quality Monitoring and Control (QMC), of Kingwood, Texas, to provide hardware modeling and artificial intelligence tools. Very detailed and accurate Space Shuttle Main Engine (SSME) analysis and algorithms were jointly created, which identified several missing, critical instrumentation needs for adequately evaluating the engine health status. One of the missing instruments was a liquid oxygen (LOX) flow measurement. This instrument was missing since the original SSME included a LOX turbine flow meter that failed during a ground test, resulting in considerable damage for NASA. New balanced flow meter technology addresses this need with robust, safe, and accurate flow metering hardware.
Dictionary of Basic Military Terms
1965-04-01
having nuclear charges. 101 ATOMNAYA SILOVAYA (ENERGEHCHESKAYA) KORA- BEL’NAYA (SUDOVAYA) USTANOVKA (atomic power plant for ship propulsion )- A special...atomic power plant for ship propulsion consists of an atomic "boiler," or reactor, a turbine (steam or gas), and electro- mechanical machinery. The...type, is mounted on a heay artillery tractor chassis. A high - speed trench-digging machine can dig trenches to a depth of 1.5 meters. The machine’s
Field calibration of orifice meters for natural gas flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ting, V.C.; Shen, J.J.S.
1989-03-01
This paper presents the orifice calibration results for nominal 15.24, 10.16, and 5.08-cm (6,4,2-in.) orifice meters conducted at the Chevron's Sand Hills natural gas flow measurement facility in Crane, Texas. Over 200 test runs were collected in a field environment to study the accuracy of the orifice meters. Data were obtained at beta ratios ranging from 0.12 to 0.74 at the nominal conditions of 4576 kPa and 27{sup 0}C (650 psig and 80{sup 0}F) with a 0.57 specific gravity processed, pipeline quality natural gas. A bank of critical flow nozzles was used as the flow rate proving device to calibratemore » the orifice meters. Orifice discharge coefficients were computed with ANSI/API 2530-1985 (AGA3) and ISO 5167/ASME MFC-3M-1984 equations for every set of data points. With the orifice bore Reynolds numbers ranging from 1 to 9 million, the Sand Hills calibration data bridge the gap between the Ohio State water data at low Reynolds numbers and Chevron's high Reynolds number test data taken at a large test facility in Venice, Louisiana. The test results also successfully demonstrate that orifice meters can be accurately proved with critical flow nozzles under realistic field conditions.« less
Electrical Resistivity Technique for Groundwater Exploration in Quaternary Deposit
NASA Astrophysics Data System (ADS)
Aziman, M.; Hazreek, Z. A. M.; Azhar, A. T. S.; Fahmy, K. A.; Faizal, T. B. M.; Sabariah, M.; Ambak, K.; Ismail, M. A. M.
2018-04-01
The water security for University Tun Hussein Onn (UTHM) campus was initiated to find alternative sources of water supply. This research began with finding the soil profiles using the geophysical electrical resistivity method across UTHM campus. The resistivity results were calibrated with previous borehole data as well as via groundwater drilling. The drilling work was discovered the groundwater aquifer characterized by the fractured fresh igneous rock at a depth between 43 meter and 55 meter. Further drilling was continued until 100 meter in depth. However, due to not encounter a new rock fractured zone causes the groundwater quantity did not improve even was drilled up to 100 meter depth. In the perspective of water resources, it showed a good potential for water resources for local usages at 104 m3 per day. In addition, the groundwater quality showed the water treatment was required to fulfil the criterion of the national drinking water standards. This study concluded that the first layer of fractured bedrock at UTHM was able to produce significant amounts of groundwater for local consumption usage.
Laser rangefinders for autonomous intelligent cruise control systems
NASA Astrophysics Data System (ADS)
Journet, Bernard A.; Bazin, Gaelle
1998-01-01
THe purpose of this paper is to show to what kind of application laser range-finders can be used inside Autonomous Intelligent Cruise Control systems. Even if laser systems present good performances the safety and technical considerations are very restrictive. As the system is used in the outside, the emitted average output power must respect the rather low level of 1A class. Obstacle detection or collision avoidance require a 200 meters range. Moreover bad weather conditions, like rain or fog, ar disastrous. We have conducted measurements on laser rangefinder using different targets and at different distances. We can infer that except for cooperative targets low power laser rangefinder are not powerful enough for long distance measurement. Radars, like 77 GHz systems, are better adapted to such cases. But in case of short distances measurement, range around 10 meters, with a minimum distance around twenty centimeters, laser rangefinders are really useful with good resolution and rather low cost. Applications can have the following of white lines on the road, the target being easily cooperative, detection of vehicles in the vicinity, that means car convoy traffic control or parking assistance, the target surface being indifferent at short distances.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuruganti, Phani Teja
The smart grid is a combined process of revitalizing the traditional power grid applications and introducing new applications to improve the efficiency of power generation, transmission and distribution. This can be achieved by leveraging advanced communication and networking technologies. Therefore the selection of the appropriate communication technology for different smart grid applications has been debated a lot in the recent past. After comparing different possible technologies, a recent research study has arrived at a conclusion that the 3G cellular technology is the right choice for distribution side smart grid applications like smart metering, advanced distribution automation and demand response managementmore » system. In this paper, we argue that the current 3G/4G cellular technologies are not an appropriate choice for smart grid distribution applications and propose a Hybrid Spread Spectrum (HSS) based Advanced Metering Infrastructure (AMI) as one of the alternatives to 3G/4G technologies. We present a preliminary PHY and MAC layer design of a HSS based AMI network and evaluate their performance using matlab and NS2 simulations. Also, we propose a time hierarchical scheme that can significantly reduce the volume of random access traffic generated during blackouts and the delay in power outage reporting.« less
Lunar Pole Illumination and Communications Statistics Computed from GSSR Elevation Data
NASA Technical Reports Server (NTRS)
Bryant, Scott
2010-01-01
The Goldstone Solar System RADAR (GSSR) group at JPL produced a Digital Elevation Model (DEM) of the lunar south pole using data obtained in 2006. This model has 40-meter horizontal resolution and about 5-meter relative vertical accuracy. This paper uses that Digital Elevation Model to compute average solar illumination and Earth visibility near the lunar south pole. This data quantifies solar power and Earth communications resources at proposed lunar base locations. The elevation data were converted into local terrain horizon masks, then converted into selenographic latitude and longitude coordinates. The horizon masks were compared to latitude, longitude regions bounding the maximum Sun and Earth motions relative to the moon. Proposed lunar south pole base sites were examined in detail, with the best site showing multi-year averages of solar power availability of 92% and Direct-To-Earth (DTE) communication availability of about 50%. Results are compared with a theoretical model, and with actual sun and Earth visibility averaged over the years 2009 to 2028. Results for the lunar North pole were computed using the GSSR DEM of the lunar North pole produced in 1997. The paper also explores using a heliostat to reduce the photovoltaic power system mass and complexity.
Advanced and innovative wind energy concept development: Dynamic inducer system
NASA Astrophysics Data System (ADS)
Lissaman, P. B. S.; Zalay, A. D.; Hibbs, B. H.
1981-05-01
The performance benefits of the dynamic inducer tip vane system was demonstrated Tow-tests conducted on a three-bladed, 3.6-meter diameter rotor show that a dynamic inducer can achieve a power coefficient (based pon power blade swept area) of 0.5, which exceeds that of a plain rotor by about 35%. Wind tunnel tests conducted on a one-third scale model of the dynamic inducer achieved a power coefficient of 0.62 which exceeded that of a plain rotor by about 70%. The dynamic inducer substantially improves the performance of conventional rotors and indications are that higher power coefficients can be achieved through additional aerodynamic optimization.
Shield Design for Lunar Surface Applications
NASA Astrophysics Data System (ADS)
Johnson, Gregory A.
2006-01-01
A shielding concept for lunar surface applications of nuclear power is presented herein. The reactor, primary shield, reactor equipment and power generation module are placed in a cavity in the lunar surface. Support structure and heat rejection radiator panels are on the surface, outside the cavity. The reactor power of 1,320 kWt was sized to deliver 50 kWe from a thermoelectric power conversion subsystem. The dose rate on the surface is less than 0.6 mRem/hr at 100 meters from the reactor. Unoptimized shield mass is 1,020 kg which is much lighter than a comparable 4π shield weighing in at 17,000 kg.
Espeland, Mark A; Gill, Thomas M; Guralnik, Jack; Miller, Michael E; Fielding, Roger; Newman, Anne B; Pahor, Marco
2007-11-01
Clinical trials to assess interventions for mobility disability are critically needed; however, data for efficiently designing such trials are lacking. Results are described from a pilot clinical trial in which 424 volunteers aged 70-89 years were randomly assigned to one of two interventions-physical activity or a healthy aging education program-and followed for a planned minimum of 12 months. We evaluated the longitudinal distributions of four standardized outcomes to contrast how they may serve as primary outcomes of future clinical trials: ability to walk 400 meters, ability to walk 4 meters in < or =10 seconds, a physical performance battery, and a questionnaire focused on physical function. Changes in all four outcomes were interrelated over time. The ability to walk 400 meters as a dichotomous outcome provided the smallest sample size projections (i.e., appeared to be the most efficient outcome). It loaded most heavily on the underlying latent variable in structural equation modeling with a weight of 80%. A 4-year trial based on the outcome of the 400-meter walk is projected to require N = 962-2234 to detect an intervention effect of 30%-20% with 90% power. Future clinical trials of interventions designed to influence mobility disability may have greater efficiency if they adopt the ability to complete a 400-meter walk as their primary outcome.
NASA Astrophysics Data System (ADS)
Wang, H. F.; Lord, N. E.; Zeng, X.; Fratta, D.; Feigl, K. L.; Team, P.
2016-12-01
The Porotomo research team deployed 8700-meters of Distributed Acoustic Sensing (DAS) cable in a shallow trench on the surface and 400 meters down a borehole at Brady Hot Springs, Nevada in March 2016. The goal of the experiment was to detect changes in geophysical properties associated with hydrologic changes. The DAS cable occupied a natural laboratory of 1500-by-500-by-400-meters overlying a commercial, geothermal field operated by Ormat Technologies. The DAS cable was laid out in three parallel zig-zag lines with line segments approximately 120-meters in length. A large Vibroseis truck (T-Rex) provided the seismic source with a sweep frequency between 5 and 80 Hz over 20 seconds. Over the 15 days of the experiment, the Vibroseis truck re-occupied approximately 250 locations outside and within the array days while changes were made in water reinjection from the power plant into wells in the field. At each source location, one vertical and two orthogonal horizontal modes were excited. Dispersion curves were constructed using MASW and a Vibroseis source location approximately in line with each DAS cable segment or from ambient noise correlation functions. Representative fence diagrams of S-wave profiles were constructed by inverting the dispersion curves obtained for several different line segments.
Efficient Management of Certificate Revocation Lists in Smart Grid Advanced Metering Infrastructure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cebe, Mumin; Akkaya, Kemal
Advanced Metering Infrastructure (AMI) forms a communication network for the collection of power data from smart meters in Smart Grid. As the communication within an AMI needs to be secure, key management becomes an issue due to overhead and limited resources. While using public-keys eliminate some of the overhead of key management, there is still challenges regarding certificates that store and certify the publickeys. In particular, distribution and storage of certificate revocation list (CRL) is major a challenge due to cost of distribution and storage in AMI networks which typically consist of wireless multi-hop networks. Motivated by the need ofmore » keeping the CRL distribution and storage cost effective and scalable, in this paper, we present a distributed CRL management model utilizing the idea of distributed hash trees (DHTs) from peer-to-peer (P2P) networks. The basic idea is to share the burden of storage of CRLs among all the smart meters by exploiting the meshing capability of the smart meters among each other. Thus, using DHTs not only reduces the space requirements for CRLs but also makes the CRL updates more convenient. We implemented this structure on ns-3 using IEEE 802.11s mesh standard as a model for AMI and demonstrated its superior performance with respect to traditional methods of CRL management through extensive simulations.« less
Bacterial Community Analysis of Drinking Water Biofilms in Southern Sweden
Lührig, Katharina; Canbäck, Björn; Paul, Catherine J.; Johansson, Tomas; Persson, Kenneth M.; Rådström, Peter
2015-01-01
Next-generation sequencing of the V1–V2 and V3 variable regions of the 16S rRNA gene generated a total of 674,116 reads that described six distinct bacterial biofilm communities from both water meters and pipes. A high degree of reproducibility was demonstrated for the experimental and analytical work-flow by analyzing the communities present in parallel water meters, the rare occurrence of biological replicates within a working drinking water distribution system. The communities observed in water meters from households that did not complain about their drinking water were defined by sequences representing Proteobacteria (82–87%), with 22–40% of all sequences being classified as Sphingomonadaceae. However, a water meter biofilm community from a household with consumer reports of red water and flowing water containing elevated levels of iron and manganese had fewer sequences representing Proteobacteria (44%); only 0.6% of all sequences were classified as Sphingomonadaceae; and, in contrast to the other water meter communities, markedly more sequences represented Nitrospira and Pedomicrobium. The biofilm communities in pipes were distinct from those in water meters, and contained sequences that were identified as Mycobacterium, Nocardia, Desulfovibrio, and Sulfuricurvum. The approach employed in the present study resolved the bacterial diversity present in these biofilm communities as well as the differences that occurred in biofilms within a single distribution system, and suggests that next-generation sequencing of 16S rRNA amplicons can show changes in bacterial biofilm communities associated with different water qualities. PMID:25739379
Bacterial community analysis of drinking water biofilms in southern Sweden.
Lührig, Katharina; Canbäck, Björn; Paul, Catherine J; Johansson, Tomas; Persson, Kenneth M; Rådström, Peter
2015-01-01
Next-generation sequencing of the V1-V2 and V3 variable regions of the 16S rRNA gene generated a total of 674,116 reads that described six distinct bacterial biofilm communities from both water meters and pipes. A high degree of reproducibility was demonstrated for the experimental and analytical work-flow by analyzing the communities present in parallel water meters, the rare occurrence of biological replicates within a working drinking water distribution system. The communities observed in water meters from households that did not complain about their drinking water were defined by sequences representing Proteobacteria (82-87%), with 22-40% of all sequences being classified as Sphingomonadaceae. However, a water meter biofilm community from a household with consumer reports of red water and flowing water containing elevated levels of iron and manganese had fewer sequences representing Proteobacteria (44%); only 0.6% of all sequences were classified as Sphingomonadaceae; and, in contrast to the other water meter communities, markedly more sequences represented Nitrospira and Pedomicrobium. The biofilm communities in pipes were distinct from those in water meters, and contained sequences that were identified as Mycobacterium, Nocardia, Desulfovibrio, and Sulfuricurvum. The approach employed in the present study resolved the bacterial diversity present in these biofilm communities as well as the differences that occurred in biofilms within a single distribution system, and suggests that next-generation sequencing of 16S rRNA amplicons can show changes in bacterial biofilm communities associated with different water qualities.
Petkewich, Matthew D.; Parkhurst, David L.; Conlon, Kevin J.; Campbell, Bruce G.; Mirecki, June E.
2004-01-01
The hydrologic and geochemical effects of aquifer storage recovery were evaluated to determine the potential for supplying the city of Charleston, South Carolina, with large quantities of potable water during emergencies, such as earthquakes, hurricanes, or hard freezes. An aquifer storage recovery system, including a production well and three observation wells, was installed at a site located on the Charleston peninsula. The focus of this study was the 23.2-meter thick Tertiary-age carbonate and sand aquifer of the Santee Limestone and the Black Mingo Group, the northernmost equivalent of the Floridan aquifer system. Four cycles of injection, storage, and recovery were conducted between October 1999 and February 2002. Each cycle consisted of injecting between 6.90 and 7.19 million liters of water for storage periods of 1, 3, or 6 months. The volume of recovered water that did not exceed the U.S. Environmental Protection Agency secondary standard for chloride (250 milligrams per liter) varied from 1.48 to 2.46 million liters, which is equivalent to 21 and 34 percent of the total volume injected for the individual tests. Aquifer storage recovery testing occurred within two productive zones of the brackish Santee Limestone/Black Mingo aquifer. The individual productive zones were determined to be approximately 2 to 4 meters thick, based on borehole geophysical logs, electromagnetic flow-meter testing, and specific-conductance profiles collected within the observation wells. A transmissivity and storage coefficient of 37 meters squared per day and 3 x 10-5, respectively, were determined for the Santee Limestone/Black Mingo aquifer. Water-quality and sediment samples collected during this investigation documented baseline aquifer and injected water quality, aquifer matrix composition, and changes in injected/aquifer water quality during injection, storage, and recovery. A total of 193 water-quality samples were collected and analyzed for physical properties, major and minor ions, and nutrients. The aquifer and treated surface water were sodiumchloride and calcium/sodium-bicarbonate water types, respectively. Forty-five samples were collected and analyzed for total trihalomethane. Total trihalomethane data collected during aquifer storage recovery cycle 4 indicated that this constituent would not restrict the use of recovered water for drinking-water purposes. Analysis of six sediment samples collected from a cored well located near the aquifer storage recovery site showed that quartz and calcite were the dominant minerals in the Santee Limestone/Black Mingo aquifer. Estimated cation exchange capacity ranged from 12 to 36 milliequivalents per 100 grams in the lower section of the aquifer. A reactive transport model was developed that included two 2-meter thick layers to describe each of the production zones. The four layers composing the production zones were assigned porosities ranging from 0.1 to 0.3 and hydraulic conductivities ranging from 1 to 8.4 meters per day. Specific storage of the aquifer and confining units was estimated to be 1.5 x 10-5 meter-1. Longitudinal dispersivity of all layers was specified to be 0.5 meter. Leakage through the confining unit was estimated to be minimal and, therefore, not used in the reactive transport modeling. Inverse geochemical modeling indicates that mixing, cation exchange, and calcite dissolution are the dominant reactions that occur during aquifer storage recovery testing in the Santee Limestone/Black Mingo aquifer. Potable water injected into the Santee Limestone/Black Mingo aquifer evolved chemically by mixing with brackish background water and reaction with calcite and cation exchangers in the sediment. Reactive-transport model simulations indicated that the calcite and exchange reactions could be treated as equilibrium processes. Simulations with the calibrated reactive transport model indicated that approximately one-fourth of the total volume of water injected into
Spinning Reserve from Responsive Load
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kueck, John D; Kirby, Brendan J; Laughner, T
2009-01-01
As power system costs rise and capacity is strained demand response can provide a significant system reliability benefit at a potentially attractive cost. The 162 room Music Road Hotel in Pigeon Forge Tennessee agreed to host a spinning reserve test. The Tennessee Valley Authority (TVA) supplied real-time metering and monitoring expertise to record total hotel load during both normal operations and testing. Preliminary testing showed that hotel load can be curtailed by 22% to 37% depending on the outdoor temperature and the time of day. The load drop was very rapid, essentially as fast as the 2 second metering couldmore » detect.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dreifuerst, G R; Chew, D B; Mangonon, H L
The degradation and failure of cast-coil epoxy windings within 13.8kV control power transformers and metering potential transformers has been shown to be dangerous to both equipment and personnel, even though best industrial design practices were followed. Accident scenes will be examined for two events at a U.S. Department of Energy laboratory. Failure modes will be explained and current design practices discussed with changes suggested to prevent a recurrence and to minimize future risk. New maintenance philosophies utilizing partial discharge testing of the transformers as a prediction of end-of-life will be examined.
NASA Technical Reports Server (NTRS)
Hopkins, Randall C.; Capizzo, Peter; Fincher, Sharon; Hornsby, Linda S.; Jones, David
2010-01-01
The Advanced Concepts Office at Marshall Space Flight Center completed a brief spacecraft design study for the 8-meter monolithic Advanced Technology Large Aperture Space Telescope (ATLAST-8m). This spacecraft concept provides all power, communication, telemetry, avionics, guidance and control, and thermal control for the observatory, and inserts the observatory into a halo orbit about the second Sun-Earth Lagrange point. The multidisciplinary design team created a simple spacecraft design that enables component and science instrument servicing, employs articulating solar panels for help with momentum management, and provides precise pointing control while at the same time fast slewing for the observatory.
Laser velocimetry technique applied to the Langley 0.3 meter transonic cryogenic tunnel
NASA Technical Reports Server (NTRS)
Gartrell, L. R.; Gooderum, P. B.; Hunter, W. W., Jr.; Meyers, J. F.
1981-01-01
A low power laser velocimeter operating in the forward scatter mode was used to measure free stream mean velocities in the Langley 0.3 Meter Transonic Cryogenic Tunnel. Velocity ranging from 51 to 235 m/s was measured. Measurements were obtained for a variety of nominal tunnel conditions: Mach numbers from 0.20 to 0.77, total temperatures from 100 to 250 K, and pressures from 101 to 152 kPa. Particles were not injected to augment the existing Mie scattering materials. Liquid nitrogen droplets were the existing liqht scattering material. Tunnel vibrations and thermal effects had no detrimental effects on the optical system.
Veliz, Rafael R; Suarez-Arrones, Luis; Requena, Bernardo; Haff, G Gregory; Feito, Javier; Sáez de Villarreal, Eduardo
2015-02-01
We examined the effect of 16 weeks of lower-body resistance and power-oriented training on key performance measures of elite female water polo players. Twenty-one players were randomly assigned to 2 groups: control group (C) who did in-water training only and a lower body strength (LBS) group, who performed resistance (full squat and split squat) and jump and power-oriented lower-body training (countermovement jump [CMJ] loaded and CMJ) sessions (twice per week) in addition to the same in-water training. In-water training was conducted 5 days per week for a total of 16 weeks. Twenty-meter maximal sprint swim (MSS), lower-body strength during 1 repetition maximum (1RM) full squat (FS), in-water boost and CMJ, and Throwing speed (ThS) were measured before and after the training. Pretraining results showed no statistically significant differences between the groups in any of the variables tested. After 16 weeks, no statistically significant improvement was found in any of the variables measured in the C group, however, significant improvement was found in the LBS group: in-water boost (4.6 cm, 12.02%, effect size [ES] = 1.02), CMJ (2.4 cm, 8.66%, ES = 0.85), FS (12.7 kg, 20.99%, ES = 2.41), and ThS (3.4 km·h, 6.86%, ES = 3.44). Lower-body resistance and power-oriented training in female water polo players for 16 weeks produced significant improvements in performance qualities highly specific to water polo performance. Therefore, we propose modifications to current training methodology for female water polo players to include resistance and power-oriented training during the competitive season in this sport.
Grid tied PV/battery system architecture and power management for fast electric vehicle charging
NASA Astrophysics Data System (ADS)
Badawy, Mohamed O.
The prospective spread of Electric vehicles (EV) and plug-in hybrid electric vehicles (PHEV) arises the need for fast charging rates. Higher charging rates requirements lead to high power demands, which cant be always supported by the grid. Thus, the use of on-site sources alongside the electrical grid for EVs charging is a rising area of interest. In this dissertation, a photovoltaic (PV) source is used to support the high power EVs charging. However, the PV output power has an intermittent nature that is dependable on the weather conditions. Thus, battery storage are combined with the PV in a grid tied system, providing a steady source for on-site EVs use in a renewable energy based fast charging station. Verily, renewable energy based fast charging stations should be cost effective, efficient, and reliable to increase the penetration of EVs in the automotive market. Thus, this Dissertation proposes a novel power flow management topology that aims on decreasing the running cost along with innovative hardware solutions and control structures for the developed architecture. The developed power flow management topology operates the hybrid system at the minimum operating cost while extending the battery lifetime. An optimization problem is formulated and two stages of optimization, i.e online and offline stages, are adopted to optimize the batteries state of charge (SOC) scheduling and continuously compensate for the forecasting errors. The proposed power flow management topology is validated and tested with two metering systems, i.e unified and dual metering systems. The results suggested that minimal power flow is anticipated from the battery storage to the grid in the dual metering system. Thus, the power electronic interfacing system is designed accordingly. Interconnecting bi-directional DC/DC converters are analyzed, and a cascaded buck boost (CBB) converter is chosen and tested under 80 kW power flow rates. The need to perform power factor correction (PFC) on the grid power while supplying the battery storage and the DC loads inspired a novel dual switch control structure for the CBB AC/DC converter used in this dissertation. Thus, The CBB operates at a discontinuous capacitor voltage mode (DCVM) and the control structure enables for a non-distorted input current at overlapping output voltage levels. The PFC concept is validated and tested for a single phase rectifier and a 3 phase extension of the proposed concept is presented. Lastly, the PV source used in this study is required to supply power to both, the grid system, and to the DC loads, i.e the battery storage and the EVs. Thus, the PV panels used are connected in series to reach a desirable high voltage on the DC bus output of the PV system. Consequently, a novel differential power processing architecture is proposed in this dissertation. The proposed architecture enables each PV element to operate at its local maximum power point (MPP) while processing only a small portion of its total generated power through the distributed integrated converters. This leads to higher energy capture at an increased conversion efficiency while overcoming the difficulties associated with unmatched MPPs of the PV elements.
McGee Mountain Shallow (2m) Temperature Survey, Humboldt County, Nevada 2009
Richard Zehner
2009-01-01
This shapefile contains location and attribute data for a shallow (2 meter) temperature survey conducted by Geothermal Technical Partners, Inc. during late 2008 and early 2009. Temperatures at 2m depth were measured at 192 separate points as outlined by Coolbaugh et al., 2007. The purpose of the survey was to try and detect a shallow thermal anomaly associated with the McGee Mountain geothermal area as discovered by Phillips Petroleum and Earth Power Resources in the late 1970’s. Drilling identified ~120oC temperatures at ~100m depth. This 2-meter survey delineated what was interpreted as a steam-heated fault zone centered along a range front fault in the vicinity of the drilled holes and fumaroles. Coolbaugh, M.F., Sladek, C., Faulds, J.E., Zehner, R.E., and Oppliger, G.L., 2007, Use of rapid temperature measurements at a 2-meter depth to augment deeper temperature gradient drilling: Proceedings, 32nd Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, CA, Jan. 22-24, 2007, p. 109-116. Zehner, R., Tullar, K., and Rutledge, E., 2012, Effectiveness of 2-Meter and geoprobe shallow temperature surveys in early stage geothermal exploration: Geothermal Resources Council Transactions, v. 36, in press.
2015-11-03
The 230-foot 70-meter DSS-14 antenna at Goldstone, Ca. obtained these radar images of asteroid 2015 TB145 on Oct. 31, 2015. Asteroid 2015 TB145 is depicted in eight individual radar images collected on Oct. 31, 2015 between 5:55 a.m. PDT (8:55 a.m. EDT) and 6:08 a.m. PDT (9:08 a.m. EDT). At the time the radar images were taken, the asteroid was between 440,000 miles (710,000 kilometers) and about 430,000 miles (690,000 kilometers) distant. Asteroid 2015 TB145 safely flew past Earth on Oct. 31, at 10:00 a.m. PDT (1 p.m. EDT) at about 1.3 lunar distances (300,000 miles, 480,000 kilometers). To obtain the radar images, the scientists used the 230-foot (70-meter) DSS-14 antenna at Goldstone, California, to transmit high power microwaves toward the asteroid. The signal bounced of the asteroid, and their radar echoes were received by the National Radio Astronomy Observatory's 100-meter (330-foot) Green Bank Telescope in West Virginia. The images achieve a spatial resolution of about 13 feet (4 meters) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA20043
Multi-Stage Metering Mechanism for Transplanting of Vegetable Seedlings in Paper Pots
NASA Astrophysics Data System (ADS)
Nandede, B. M.; Raheman, H.
2015-12-01
A multi-stage rotating cup type metering mechanism was developed for transplanting of vegetable seedlings of tomato, brinjal and chili raised in paper pots. The developed setup consisted of a seedling feeding wheel, metering wheel, fixed slotted plate, seedling delivery tube, furrow opener, furrow closer and a power transmission system. Its evaluation was carried out with pot seedlings of tomato, brinjal and chili of 8-11 cm height at five forward speeds (0.6, 0.9, 1.2, 2.2 and 3.2 km/h) and two plant spacings (45 and 60 cm) in controlled soil bin condition. The mean values of feeding efficiency, conveying efficiency, planting efficiency and overall efficiency of the multistage metering unit were observed to be higher than 90 % for forward speeds of 0.6 to 2.2 km/h. With further increase in speed to 3.2 km/h, the feeding and conveying efficiency were observed to be higher than 90 %, whereas, the planting efficiency drastically reduced to around 50 % due to the problem in getting the pot seedlings vertically in the furrow. Also the seedlings were falling into the furrow at an angle greater than 70° to the vertical, hence not suitable for transplanting.
Radar systems for the water resources mission. Volume 4: Appendices E-I
NASA Technical Reports Server (NTRS)
Moore, R. K.; Claassen, J. P.; Erickson, R. L.; Fong, R. K. T.; Hanson, B. C.; Komen, M. J.; Mcmillan, S. B.; Parashar, S. K.
1976-01-01
The use of a scanning antenna beam for a synthetic aperture system was examined. When the resolution required was modest, the radar did not use all the time the beam was passing a given point on the ground to build a synthetic aperture, so time was available to scan the beam to other positions and build several images at different ranges. The scanning synthetic-aperture radar (SCANSAR) could achieve swathwidths of well over 100 km with modest antenna size. Design considerations for a SCANSAR for hydrologic parameter observation are presented. Because of the high sensitivity to soil moisture at angles of incidence near vertical, a 7 to 22 deg swath was considered for that application. For snow and ice monitoring, a 22 to 37 deg scan was used. Frequencies from X-band to L-band were used in the design studies, but the proposed system operated in C-band at 4.75 GHz. It achieved an azimuth resolution of about 50 meters at all angles, with a range resolution varying from 150 meters at 7 deg to 31 meters at 37 deg. The antenna required an aperture of 3 x 4.16 meters, and the average transmitter power was under 2 watts.
Sacramento Municipal Utility District PV and Smart Grid Pilot at Anatolia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rawson, Mark; Sanchez, Eddie Paul
2013-12-30
Under DE-FOA-0000085 High Penetration Solar Deployment, the U. S. Department of Energy funded agreements with SMUD and Navigant Consulting, SunPower, GridPoint, the National Renewable Energy Laboratory, and the California Energy Commission for this pilot demonstration project. Funding was $5,962,409.00. Cost share of $500,000 was also provided by the California Energy Commission. The project has strategic implications for SMUD, other utilities and the PV and energy-storage industries in business and resource planning, technology deployment and asset management. These implications include: -At this point, no dominant business models have emerged and the industry is open for new ideas. -Demonstrated two business modelsmore » for using distributed PV and energy storage, and brainstormed several dozen more, each with different pros and cons for SMUD, its customers and the industry. -Energy storage can be used to manage high penetrations of PV and mitigate potential issues such as reverse power flow, voltage control violations, power quality issues, increased wear and tear on utility equipment, and system wide power supply issues. - Smart meters are another tool utilities can use to manage high penetrations of PV. The necessary equipment and protocols exist, and the next step is to determine how to integrate the functionality with utility programs and what level of utility control is required. - Time-of-use rates for the residential customers who hosted energy storage systems did not cause a significant change in energy usage patterns. However, the rates we used were not optimized for PV and energy storage. Opportunities exist for utilities to develop new structures.« less
Design and simulation of sensor networks for tracking Wifi users in outdoor urban environments
NASA Astrophysics Data System (ADS)
Thron, Christopher; Tran, Khoi; Smith, Douglas; Benincasa, Daniel
2017-05-01
We present a proof-of-concept investigation into the use of sensor networks for tracking of WiFi users in outdoor urban environments. Sensors are fixed, and are capable of measuring signal power from users' WiFi devices. We derive a maximum likelihood estimate for user location based on instantaneous sensor power measurements. The algorithm takes into account the effects of power control, and is self-calibrating in that the signal power model used by the location algorithm is adjusted and improved as part of the operation of the network. Simulation results to verify the system's performance are presented. The simulation scenario is based on a 1.5 km2 area of lower Manhattan, The self-calibration mechanism was verified for initial rms (root mean square) errors of up to 12 dB in the channel power estimates: rms errors were reduced by over 60% in 300 track-hours, in systems with limited power control. Under typical operating conditions with (without) power control, location rms errors are about 8.5 (5) meters with 90% accuracy within 9 (13) meters, for both pedestrian and vehicular users. The distance error distributions for smaller distances (<30 m) are well-approximated by an exponential distribution, while the distributions for large distance errors have fat tails. The issue of optimal sensor placement in the sensor network is also addressed. We specify a linear programming algorithm for determining sensor placement for networks with reduced number of sensors. In our test case, the algorithm produces a network with 18.5% fewer sensors with comparable accuracy estimation performance. Finally, we discuss future research directions for improving the accuracy and capabilities of sensor network systems in urban environments.
Overview of a Hybrid Underwater Camera System
2014-07-01
meters), in increments of 200ps. The camera is also equipped with 6:1 motorized zoom lens. A precision miniature attitude, heading reference system ( AHRS ...LUCIE Control & Power Distribution System AHRS Pulsed LASER Gated Camera -^ Sonar Transducer (b) LUCIE sub-systems Proc. ofSPIEVol. 9111
Meter circuit for tuning RF amplifiers
NASA Technical Reports Server (NTRS)
Longthorne, J. E.
1973-01-01
Circuit computes and indicates efficiency of RF amplifier as inputs and other parameters are varied. Voltage drop across internal resistance of ammeter is amplified by operational amplifier and applied to one multiplier input. Other input is obtained through two resistors from positive terminal of power supply.
47 CFR 80.217 - Suppression of interference aboard ships.
Code of Federal Regulations, 2011 CFR
2011-10-01
... to any receiver required by statute or treaty. (b) The electromagnetic field from receivers required... mile from the receiver: Frequency of interfering emissions Field intensity in microvolts per meter... following amounts of power, to an artificial antenna having electrical characteristics equivalent to those...
1992-06-01
methods of selecting sites, monitoring flow, and sampling 4 409 runoff. Also, there are some observations on storm water quality findings and some...turning off the flow meters until a rain event is imminent. Make sure you pack plenty of flashlights for night rains. 6. STORM WATER QUALITY SUMMARY
The color bar phase meter: A simple and economical method for calibrating crystal oscillators
NASA Technical Reports Server (NTRS)
Davis, D. D.
1973-01-01
Comparison of crystal oscillators to the rubidium stabilized color burst is made easy and inexpensive by use of the color bar phase meter. Required equipment consists of an unmodified color TV receiver, a color bar synthesizer and a stop watch (a wrist watch or clock with sweep second hand may be used with reduced precision). Measurement precision of 1 x 10 to the minus 10th power can be realized in measurement times of less than two minutes. If the color bar synthesizer were commercially available, user cost should be less than $200.00, exclusive of the TV receiver. Parts cost for the color bar synthesizer which translates the crystal oscillator frequency to 3.579MHz and modulates the received RF signal before it is fed to the receiver antenna terminals is about $25.00. A more sophisticated automated version, with precision of 1 x 10 to the minus 11th power would cost about twice as much.
A MEMS Electrochemical Bellows Actuator for Fluid Metering Applications
Sheybani, Roya; Gensler, Heidi; Meng, Ellis
2013-01-01
We present a high efficiency wireless MEMS electrochemical bellows actuator capable of rapid and repeatable delivery of boluses for fluid metering and drug delivery applications. Nafion®-coated Pt electrodes were combined with Parylene bellows filled with DI water to form the electrolysis-based actuator. The performance of actuators with several bellows configurations was compared for a range of applied currents (1-10 mA). Up to 75 boluses were delivered with an average pumping flow rate of 114.40 ± 1.63 μL/min. Recombination of gases into water, an important factor in repeatable and reliable actuation, was studied for uncoated and Nafion®-coated actuators. Real-time pressure measurements were conducted and the effects of temperature, physiological back pressure, and drug viscosity on delivery performance were investigated. Lastly, we present wireless powering of the actuator using a class D inductive powering system that allowed for repeatable delivery with less than 2% variation in flow rate values. PMID:22833156
NASA Technical Reports Server (NTRS)
Dress, D. A.; Mcguire, P. D.; Stanewsky, E.; Ray, E. J.
1983-01-01
A wind tunnel investigation of an advanced technology airfoil, the CAST 10-2/DOA 2, was conducted in the Langley 0.3 meter Transonic Cryogenic Tunnel (0.3 m TCT). This was the first of a series of tests conducted in a cooperative National Aeronautics and Space Administration (NASA) and the Deutsche Forschungs- und Versuchsanstalt fur Luft- und Raumfahrt e. V. (DFVLR) airfoil research program. Test temperature was varied from 280 K to 100 K to pressures from slightly above 1 to 5.8 atmospheres. Mach number was varied from 0.60 to 0.80, and the Reynolds number (based on airfoil chord) was varied from 4 x 10 to the 8th power to 45 x 10 to the 6th power. This report presents the experimental aerodynamic data obtained for the airfoil and includes descriptions of the airfoil model, the 0.3 m TCT, the test instrumentation, and the testing procedures.
Aperture efficiency of integrated-circuit horn antennas
NASA Technical Reports Server (NTRS)
Guo, Yong; Lee, Karen; Stimson, Philip; Potter, Kent; Rutledge, David
1991-01-01
The aperture efficiency of silicon integrated-circuit horn antennas has been improved by optimizing the length of the dipole probes and by coating the entire horn walls with gold. To make these measurements, a new thin-film power-density meter was developed for measuring power density with accuracies better than 5 percent. The measured aperture efficiency improved from 44 percent to 72 percent at 93 GHz. This is sufficient for use in many applications which now use machined waveguide horns.
Kimbrow, Dustin R.; Lee, Kathryn G.
2013-01-01
Alabama Power operates a series of dams on the Coosa River in east central Alabama. These dams form six reservoirs that provide power generation, flood control, recreation, economic opportunity, and fish and wildlife habitats to the region. The Logan Martin Reservoir is located approximately 45 kilometers east of Birmingham and borders Saint Clair and Talladega Counties. Discharges below the reservoir are controlled by power generation at Logan Martin Dam, and there has been an ongoing concern about the stability of the streambanks downstream of the dam. The U.S. Geological Survey, in cooperation with Alabama Power conducted a scientific investigation of the geomorphic conditions of a 115-meter length of streambank along the Coosa River by using tripod-mounted terrestrial light detection and ranging technology. Two surveys were conducted before and after the winter flood season of 2010 to determine the extent and magnitude of geomorphic change. A comparison of the terrestrial light detection and ranging datasets indicated that approximately 40 cubic meters of material had been eroded from the upstream section of the study area. The terrestrial light detection and ranging data included in this report consist of electronic point cloud files containing several million georeferenced data points, as well as a surface model measuring changes between scans.
Lunar drill footplate and casing
NASA Technical Reports Server (NTRS)
Maassen, Erik C.; Hendrix, Thomas H.; Morrison, Eddie W.; Phillips, Rodrick B.; Le, Vu Quang; Works, Bruce A.
1989-01-01
To prevent hole collapse during lunar drilling operations, a casing has been devised of a graphite reinforced polyimide composite which will be able to withstand the lunar environment. Additionally, this casing will be inserted into the ground in segments two meters long which will penetrate the regolith simultaneously with the auger. The vertical action of the mobile platform will provide a downward force to the casing string through a special adaptor, giving the casing the needed impetus to sink the anticipated depth of ten meters. Casing segments will be connected with a simple snap arrangement. Excess casing will be cut off by a cylindrical cutting tool which will also transport the excess casing away from the hole. A footplate will be incorporated to grasp the auger rod string during rod segment additions or removals. The footplate grasping mechanism will consist of a set of vice-like arms, one end of each bearing threaded to a common power screw. The power screw will be threaded such that one end's thread pitch opposes that of the other end. The weight of the auger and rod string will be transmitted through the arms to the power screw and absorbed by a set of three ball bearing assemblies. The power screw will be driven by a one-half horsepower brushless motor actuated by radio control. The footplate will rest on four short legs and be anchored with pins that are an integral part of each leg.
Noise reduction in a Mach 5 wind tunnel with a rectangular rod-wall sound shield
NASA Technical Reports Server (NTRS)
Creel, T. R., Jr.; Keyes, J. W.; Beckwith, I. E.
1980-01-01
A rod wall sound shield was tested over a range of Reynolds numbers of 0.5 x 10 to the 7th power to 8.0 x 10 to the 7th power per meter. The model consisted of a rectangular array of longitudinal rods with boundary-layer suction through gaps between the rods. Suitable measurement techniques were used to determine properties of the flow and acoustic disturbance in the shield and transition in the rod boundary layers. Measurements indicated that for a Reynolds number of 1.5 x 10 to the 9th power the noise in the shielded region was significantly reduced, but only when the flow is mostly laminar on the rods. Actual nozzle input noise measured on the nozzle centerline before reflection at the shield walls was attenuated only slightly even when the rod boundary layer were laminar. At a lower Reynolds number, nozzle input noise at noise levels in the shield were still too high for application to a quiet tunnel. At Reynolds numbers above 2.0 x 10 the the 7th power per meter, measured noise levels were generally higher than nozzle input levels, probably due to transition in the rod boundary layers. The small attenuation of nozzle input noise at intermediate Reynolds numbers for laminar rod layers at the acoustic origins is apparently due to high frequencies of noise.
UHF and VHF radar observations of thunderstorms
NASA Technical Reports Server (NTRS)
Holden, D. N.; Ulbrich, C. W.; Larsen, M. F.; Rottger, J.; Ierkic, H. M.; Swartz, W.
1986-01-01
A study of thunderstorms was made in the Summer of 1985 with the 430-MHz and 50-MHz radars at the Arecibo Observatory in Puerto Rico. Both radars use the 300-meter dish, which gives a beam width of less than 2 degrees even at these long wavelengths. Though the radars are steerable, only vertical beams were used in this experiment. The height resolution was 300 and 150 meters for the UHF and VHF, respectively. Lightning echoes, as well as returns from precipitation and clear-air turbulence were detected with both wavelengths. Large increases in the returned power were found to be coincident with increasing downward vertical velocities at UHF, whereas at VHF the total power returned was relatively constant during the life of a storm. This was attributed to the fact that the VHF is more sensitive to scattering from the turbulence-induced inhomogeneities in the refractive index and less sensitive to scatter from precipitation particles. On occasion, the shape of the Doppler spectra was observed to change with the occurrence of a lightning discharge in the pulse volume. Though the total power and mean reflectivity weighted Doppler velocity changed little during these events, the power is Doppler frequency bins near that corresponding to the updraft did increase substantially within a fraction of a second after a discharge was detected in the beam. This suggests some interaction between precipitation and lightning.
Leveraging AMI data for distribution system model calibration and situational awareness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peppanen, Jouni; Reno, Matthew J.; Thakkar, Mohini
The many new distributed energy resources being installed at the distribution system level require increased visibility into system operations that will be enabled by distribution system state estimation (DSSE) and situational awareness applications. Reliable and accurate DSSE requires both robust methods for managing the big data provided by smart meters and quality distribution system models. This paper presents intelligent methods for detecting and dealing with missing or inaccurate smart meter data, as well as the ways to process the data for different applications. It also presents an efficient and flexible parameter estimation method based on the voltage drop equation andmore » regression analysis to enhance distribution system model accuracy. Finally, it presents a 3-D graphical user interface for advanced visualization of the system state and events. Moreover, we demonstrate this paper for a university distribution network with the state-of-the-art real-time and historical smart meter data infrastructure.« less
Leveraging AMI data for distribution system model calibration and situational awareness
Peppanen, Jouni; Reno, Matthew J.; Thakkar, Mohini; ...
2015-01-15
The many new distributed energy resources being installed at the distribution system level require increased visibility into system operations that will be enabled by distribution system state estimation (DSSE) and situational awareness applications. Reliable and accurate DSSE requires both robust methods for managing the big data provided by smart meters and quality distribution system models. This paper presents intelligent methods for detecting and dealing with missing or inaccurate smart meter data, as well as the ways to process the data for different applications. It also presents an efficient and flexible parameter estimation method based on the voltage drop equation andmore » regression analysis to enhance distribution system model accuracy. Finally, it presents a 3-D graphical user interface for advanced visualization of the system state and events. Moreover, we demonstrate this paper for a university distribution network with the state-of-the-art real-time and historical smart meter data infrastructure.« less
Saltus, R.W.; Milicevic, B.
2004-01-01
A preliminary data grid and maps are presented for an aeromagnetic survey of the Taylor Mountains and a portion of the Bethel quadrangles, Alaska. The aeromagnetic survey was flown by McPhar Geosurveys Ltd. for the U.S. Geological Survey (USGS). A flight-line spacing of 1,600 meters (1 mile) and nominal flight height of 305 meters (1,000 feet) above topography (draped) was used for the survey. The preliminary data grid has a grid cell size of 350 meters (1150 feet). Final data processing and quality control have not been applied to these data. The purpose of this preliminary data release is to allow prompt public access to these data, which are of interest for active mineral exploration in the region. A more complete data release and description will be published later once the final data processing is complete.
NASA Astrophysics Data System (ADS)
Kirmani, Sheeraz; Kumar, Brijesh
2018-01-01
“Electric Power Quality (EPQ) is a term that refers to maintaining the near sinusoidal waveform of power distribution bus voltages and currents at rated magnitude and frequency”. Today customers are more aware of the seriousness that the power quality possesses, this prompt the utilities to assure good quality of power to their customer. The power quality is basically customer centric. Increased focus of utilities toward maintaining reliable power supply by employing power quality improvement tools has reduced the power outages and black out considerably. Good power quality is the characteristic of reliable power supply. Low power factor, harmonic pollution, load imbalance, fast voltage variations are some common parameters which are used to define the power quality. If the power quality issues are not checked i.e. the parameters that define power quality doesn't fall within the predefined standards than it will lead into high electricity bill, high running cost in industries, malfunctioning of equipments, challenges in connecting renewable. Capacitor banks, FACTS devices, harmonic filters, SVC’s (static voltage compensators), STATCOM (Static-Compensator) are the solutions to achieve the power quality. The performance of Wind turbine generators is affected by poor quality power, at the same time these wind power generating plant affects the power quality negatively. This paper presents the STATCOM-BESS (battery energy storage system) system and studies its impact on the power quality in a system which consists of wind turbine generator, non linear load, hysteresis controller for controlling the operation of STATCOM and grid. The model is simulated in the MATLAB/Simulink. This scheme mitigates the power quality issues, improves voltage profile and also reduces harmonic distortion of the waveforms. BESS level out the imbalances caused in real power due to intermittent nature of wind power available due to varying wind speeds.
Two-Band Pyrometers Detect Hydrogen Fires
NASA Technical Reports Server (NTRS)
Collins, J. David; Youngquist, Robert C.; Simmons, Stephen M.
1993-01-01
Two-band infrared pyrometers detect small hydrogen fires at greater distances in full daylight being developed. Detectors utilize part of infrared spectrum in which signals from hydrogen flames 10 to the 3rd power to 10 to the 4th power times as intense as ultraviolet region of current detectors. Utilize low-loss infrared lenses for focusing and for limiting fields of view to screen out spurious signals from nearby sources. Working distances of as much as 100 meters possible. Portable, battery-powered unit gives audible alarm, in form of increase in frequency of tone, when aimed at hydrogen fire.
Human Factors Evaluation of Advanced Electric Power Grid Visualization Tools
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greitzer, Frank L.; Dauenhauer, Peter M.; Wierks, Tamara G.
This report describes initial human factors evaluation of four visualization tools (Graphical Contingency Analysis, Force Directed Graphs, Phasor State Estimator and Mode Meter/ Mode Shapes) developed by PNNL, and proposed test plans that may be implemented to evaluate their utility in scenario-based experiments.