Science.gov

Sample records for power reactor fuels

  1. Gaseous fuel reactors for power systems

    NASA Technical Reports Server (NTRS)

    Kendall, J. S.; Rodgers, R. J.

    1977-01-01

    Gaseous-fuel nuclear reactors have significant advantages as energy sources for closed-cycle power systems. The advantages arise from the removal of temperature limits associated with conventional reactor fuel elements, the wide variety of methods of extracting energy from fissioning gases, and inherent low fissile and fission product in-core inventory due to continuous fuel reprocessing. Example power cycles and their general performance characteristics are discussed. Efficiencies of gaseous fuel reactor systems are shown to be high with resulting minimal environmental effects. A technical overview of the NASA-funded research program in gaseous fuel reactors is described and results of recent tests of uranium hexafluoride (UF6)-fueled critical assemblies are presented.

  2. Fuel element concept for long life high power nuclear reactors

    NASA Technical Reports Server (NTRS)

    Mcdonald, G. E.; Rom, F. E.

    1969-01-01

    Nuclear reactor fuel elements have burnups that are an order of magnitude higher than can currently be achieved by conventional design practice. Elements have greater time integrated power producing capacity per unit volume. Element design concept capitalizes on known design principles and observed behavior of nuclear fuel.

  3. Inertial fusion energy power reactor fuel recovery system

    SciTech Connect

    Gentile, C. A.; Kozub, T.; Langish, S. W.; Ciebiera, L. P.; Nobile, A.; Wermer, J.; Sessions, K.

    2008-07-15

    A conceptual design is proposed to support the recovery of un-expended fuel, ash, and associated post-detonation products resident in plasma exhaust from a {approx}2 GWIFE direct drive power reactor. The design includes systems for the safe and efficient collection, processing, and purification of plasma exhaust fuel components. The system has been conceptually designed and sized such that tritium bred within blankets, lining the reactor target chamber, can also be collected, processed, and introduced into the fuel cycle. The system will nominally be sized to process {approx}2 kg of tritium per day and is designed to link directly to the target chamber vacuum pumping system. An effort to model the fuel recovery system (FRS) using the Aspen Plus engineering code has commenced. The system design supports processing effluent gases from the reactor directly from the exhaust of the vacuum pumping system or in batch mode, via a buffer vessel in the Receiving and Analysis System. Emphasis is on nuclear safety, reliability, and redundancy as to maximize availability. The primary goal of the fuel recovery system design is to economically recycle components of direct drive IFE fuel. The FRS design is presented as a facility sub-system in the context of supporting the larger goal of producing safe and economical IFE power. (authors)

  4. Method of locating a leaking fuel element in a fast breeder power reactor

    DOEpatents

    Honekamp, John R.; Fryer, Richard M.

    1978-01-01

    Leaking fuel elements in a fast reactor are identified by measuring the ratio of .sup.134 Xe to .sup.133 Xe in the reactor cover gas following detection of a fuel element leak, this ratio being indicative of the power and burnup of the failed fuel element. This procedure can be used to identify leaking fuel elements in a power breeder reactor while continuing operation of the reactor since the ratio measured is that of the gases stored in the plenum of the failed fuel element. Thus, use of a cleanup system for the cover gas makes it possible to identify sequentially a multiplicity of leaking fuel elements without shutting the reactor down.

  5. Proposed power upgrade of the Hot Fuel Examination Facility's neutron radiography reactor. [NRAD reactor

    SciTech Connect

    Pruett, D.P.; Richards, W.J.; Heidel, C.C.

    1984-01-01

    The Hot Fuel Examination Facility, HFEF, is one of several facilities located at the Argonne Site. HFEF comprises a large hot cell where both non-destructive and destructive examination of highly-irradiated reactor fuels are conducted in support of the LMFBR program. One of the non-destructive examination techniques utilized at HFEF is neutron radiography. Neutron radiography is provided by the NRAD reactor facility, which is located beneath the HFEF hot cell. The NRAD reactor is a TRIGA reactor and is operated at a steady state power level of 250 kW solely for neutron radiography and the development of radiography techniques. When the NRAD facility was designed and constructed, an operating power level of 250 kW was considered to be adequate for obtaining radiographs of the type of specimens envisaged at that time. A typical radiograph required approximately a twenty-minute exposure time. Specimens were typically single fuel rods placed in an aluminum tray. Since that time, however, several things have occurred that have tended to increase radiography exposure times to as much as 90 minutes each. In order to decrease exposure times, the reactor power level is to be increased from 250 kw to 1 MW. This increase in power will necessitate several engineering and design changes. These changes are described.

  6. Development of a Robust Tri-Carbide Fueled Reactor for Multimegawatt Space Power and Propulsion Applications

    SciTech Connect

    Samim Anghaie; Travis W. Knight; Johann Plancher; Reza Gouw

    2004-08-11

    An innovative reactor core design based on advanced, mixed carbide fuels was analyzed for nuclear space power applications. Solid solution, mixed carbide fuels such as (U,Zr,Nb)c and (U,Zr, Ta)C offer great promise as an advanced high temperature fuel for space power reactors.

  7. Compact, high-power nuclear reactor systems based on small diameter particulate fuel

    NASA Astrophysics Data System (ADS)

    Powell, J. R.; Botts, T. E.

    Two compact, high-power nuclear reactor concepts are discussed. Both are gas-cooled cavity-type reactors which utilize particulate fuel of the type now used in HTGR reactors. Unshielded reactor volumes are on the order of one cubic meter. The Fixed Bed Reactor operating temperature is limited to 2500 K and the output power to 250 MW(e). In the Rotating Bed Reactor fuel is held within a rotating porous metal drum as a rotating fluidized bed. Rotating Bed Reactor outlet temperatures up to 3000 K and output power levels up to 1000 MW(e) are achievable. Both reactors can be brought up from stand by to full power in times on the order of a few seconds, due primarily to the short thermal time constant for the fuel particles. Turbine and MHD Brayton are the power conversion cycles of choice. Open cycle operation is generally favored for applications operating at less than 1000 sec of equivalent integrated full power. At power levels above 1 MW(e), the liquid droplet radiator is the favored means of heat rejection. Power system specific power levels of 10 kW(e)/kg (not including shield) appears to be quite feasible.

  8. Development of fast breeder reactor fuel reprocessing technology at the Power Reactor and Nuclear Fuel Development Corporation

    SciTech Connect

    Kawata, T.; Takeda, H.; Togashi, A.; Hayashi, S. . Tokai Works); Stradley, J.G. )

    1991-01-01

    For the past two decades, a broad range of research development (R D) programs to establish fast breeder reactor (FBR) system and its associated fuel cycle technology have been pursued by the Power Reactor and Nuclear Fuel Development Corporation (PNC). Developmental activities for FBR fuel reprocessing technology have been primarily conducted at PNC Tokai Works where many important R D facilities for nuclear fuel cycle are located. These include cold and uranium tests for process equipment development in the Engineering Demonstration Facilities (EDF)-I and II, and laboratory-scale hot tests in the Chemical Processing Facility (CPF) where fuel dissolution and solvent extraction characteristics are being investigated with irradiated FBR fuel pins whose burn-up ranges up to 100,000 MWd/t. An extensive effort has also been made at EDF-III to develop advanced remote technology which enables to increase plant availability and to decrease radiation exposures to the workers in future reprocessing plants. The PNC and the United States Department of Energy (USDOE) entered into the joint collaboration in which the US shares the R Ds to support FBR fuel reprocessing program at the PNC. Several important R Ds on advanced process equipment such as a rotary dissolver and a centrifugal contactor system are in progress in a joint effort with the Oak Ridge National Laboratory (ORNL) Consolidated Fuel Reprocessing Program (CFRP). In order to facilitate hot testing on advanced processes and equipment, the design of a new engineering-scale hot test facility is now in progress aiming at the start of hot operation in late 90's. 31 refs., 2 tabs.

  9. POWER REACTOR

    DOEpatents

    Zinn, W.H.

    1958-07-01

    A fast nuclear reactor system ls described for producing power and radioactive isotopes. The reactor core is of the heterogeneous, fluid sealed type comprised of vertically arranged elongated tubular fuel elements having vertical coolant passages. The active portion is surrounded by a neutron reflector and a shield. The system includes pumps and heat exchangers for the primary and secondary coolant circuits. The core, primary coolant pump and primary heat exchanger are disposed within an irapenforate tank which is filled with the primary coolant, in this case a liquid metal such as Na or NaK, to completely submerge these elements. The tank is completely surrounded by a thick walled concrete shield. This reactor system utilizes enriched uranium or plutonium as the fissionable material, uranium or thorium as a diluent and thorium or uranium containing less than 0 7% of the U/sup 235/ isotope as a fertile material.

  10. Nuclear reactors using fine-particulate fuel for primary power in space

    SciTech Connect

    Botts, T.E.; Powell, J.R.; Usher, J.L.; Horn, F.L.

    1982-01-01

    Large future power requirements in space, include power beaming to earth, airplanes, and solar-powered satellites in eclipse; industrial processing; and space colonies. The Rotating Bed Nuclear Reactor (RBR) and Fixed Bed Reactor (FBR) are multi-megawatt power systems which are light, compact and suited to operation in space. Both are cavity reactors, with an annular fuel region (e.g., a bed of 500 ..mu.. HTGR fuel particulates made of UC with ceramic coating) surrounded by a reflector that moderates fast neutrons from the /sup 235/U fuel. A porous metal drum holds the fuel. In the RBR, rotation of the drum allows the particulate fuel bed to fluidize as cooling gas passes through. In the FBR, an inner porous carbon drum holds the packed fuel bed, which is not fluidized. The RBR and FBR have many important features for space nuclear power: very high power density (up to thousands of MW(th)/m/sup 3/ of fuel); very small size and weight, excellent thermal shock and fatigue resistance; short start/stop times (sec); high gas outlet temperatures (to 3000/sup 0/K), good neutron economy, low critical mass; and simple/reliable construction.

  11. Fuel supply of nuclear power industry with the introduction of fast reactors

    NASA Astrophysics Data System (ADS)

    Muraviev, E. V.

    2014-12-01

    The results of studies conducted for the validation of the updated development strategy for nuclear power industry in Russia in the 21st century are presented. Scenarios with different options for the reprocessing of spent fuel of thermal reactors and large-scale growth of nuclear power industry based on fast reactors of inherent safety with a breeding ratio of ˜1 in a closed nuclear fuel cycle are considered. The possibility of enhanced fuel breeding in fast reactors is also taken into account in the analysis. The potential to establish a large-scale nuclear power industry that covers 100% of the increase in electric power requirements in Russia is demonstrated. This power industry may be built by the end of the century through the introduction of fast reactors (replacing thermal ones) with a gross uranium consumption of up to ˜1 million t and the termination of uranium mining even if the reprocessing of spent fuel of thermal reactors is stopped or suffers a long-term delay.

  12. Detailed axial power profiles in a MOX fuel experiment in the Advanced Test Reactor

    SciTech Connect

    Chang, G.; Ryskamp, J.M.

    1998-12-31

    The US Department of Energy (DOE) has chosen two options to dispose of surplus weapons-grade (WG) plutonium (WGPu). One option is to burn the WGPu in mixed-oxide (MOX) fuel in light water reactors. An average power test (<10 kW/ft) of WG-MOX fuel was inserted in the Advanced Test Reactor (ATR) in February 1998. A high power test (<15 kW/ft) of WG-MOX fuel in ATR will follow the average-power test. The ability to accurately predict fuel power is essential in the high-power WG-MOX fuel capsule design for the test in ATR. Detailed fission power and temperature profiles may influence gallium migration in WG-MOX fuel pins. Most of the fission heat generated in the MOX fuel capsules will transfer radially to the water coolant. However, because of the short length (15.24 cm) of the MOX fuel pellet stacks, some of the fission heat will transfer through the end pellets axially. Compounded with peak fission power local-to-average ratios (LTAR) at the ends of MOX fuel stacks, the hot spot created may exceed the design limit. Therefore, the prediction of the axial fission power profiles over the MOX fuel stacks at the beginning of life (BOL) and end of life (EOL) are important for MOX fuel performance analysis and capsule design for testing in ATR. Continuous-energy MCNP linked with ORIGEN2 can generate the burnup-dependent cross sections and fission power distribution for fuel burnup analysis while accurately including the effects of self-shielding. This approach is very important for the prediction of plutonium content and LTAR in MOX fuel pellet stacks with HfO{sub 2} ends. MCWO can accurately determine fuel pin power distributions in the ATR experiment when the MOX fuel and HfO{sub 2} are depleted simultaneously. This is significant because the authors quickly provided the customer with the required detailed power distributions within the MOX pins using the new approach. The MOX fuel pin with HfO{sub 2} can flatten the axial power profiles from BOL to EOL and meet the MOX

  13. Gaseous-fuel nuclear reactor research for multimegawatt power in space

    NASA Technical Reports Server (NTRS)

    Thom, K.; Schneider, R. T.; Helmick, H. H.

    1977-01-01

    In the gaseous-fuel reactor concept, the fissile material is contained in a moderator-reflector cavity and exists in the form of a flowing gas or plasma separated from the cavity walls by means of fluid mechanical forces. Temperatures in excess of structural limitations are possible for low-specific-mass power and high-specific-impulse propulsion in space. Experiments have been conducted with a canister filled with enriched UF6 inserted into a beryllium-reflected cavity. A theoretically predicted critical mass of 6 kg was measured. The UF6 was also circulated through this cavity, demonstrating stable reactor operation with the fuel in motion. Because the flowing gaseous fuel can be continuously processed, the radioactive waste in this type of reactor can be kept small. Another potential of fissioning gases is the possibility of converting the kinetic energy of fission fragments directly into coherent electromagnetic radiation, the nuclear pumping of lasers. Numerous nuclear laser experiments indicate the possibility of transmitting power in space directly from fission energy. The estimated specific mass of a multimegawatt gaseous-fuel reactor power system is from 1 to 5 kg/kW while the companion laser-power receiver station would be much lower in specific mass.

  14. HOMOGENEOUS NUCLEAR POWER REACTOR

    DOEpatents

    King, L.D.P.

    1959-09-01

    A homogeneous nuclear power reactor utilizing forced circulation of the liquid fuel is described. The reactor does not require fuel handling outside of the reactor vessel during any normal operation including complete shutdown to room temperature, the reactor being selfregulating under extreme operating conditions and controlled by the thermal expansion of the liquid fuel. The liquid fuel utilized is a uranium, phosphoric acid, and water solution which requires no gus exhaust system or independent gas recombining system, thereby eliminating the handling of radioiytic gas.

  15. Assessment of the use of extended burnup fuel in light water power reactors

    SciTech Connect

    Baker, D.A.; Bailey, W.J.; Beyer, C.E.; Bold, F.C.; Tawil, J.J.

    1988-02-01

    This study has been conducted by Pacific Northwest Laboratory for the US Nuclear Regulatory Commission to review the environmental and economic impacts associated with the use of extended burnup nuclear fuel in light water power reactors. It has been proposed that current batch average burnup levels of 33 GWd/t uranium be increased to above 50 GWd/t. The environmental effects of extending fuel burnup during normal operations and during accident events and the economic effects of cost changes on the fuel cycle are discussed in this report. The physical effects of extended burnup on the fuel and the fuel assembly are also presented as a basis for the environmental and economic assessments. Environmentally, this burnup increase would have no significant impact over that of normal burnup. Economically, the increased burnup would have favorable effects, consisting primarily of a reduction: (1) total fuel requirements; (2) reactor downtime for fuel replacement; (3) the number of fuel shipments to and from reactor sites; and (4) repository storage requirements. 61 refs., 4 figs., 27 tabs.

  16. Vibration behavior of fuel-element vibration suppressors for the advanced power reactor

    NASA Technical Reports Server (NTRS)

    Adams, D. W.; Fiero, I. B.

    1973-01-01

    Preliminary shock and vibration tests were performed on vibration suppressors for the advanced power reactor for space application. These suppressors position the fuel pellets in a pin type fuel element. The test determined the effect of varying axial clearance on the behavior of the suppressors when subjected to shock and vibratory loading. The full-size suppressor was tested in a mockup model of fuel and clad which required scaling of test conditions. The test data were correlated with theoretical predictions for suppressor failure. Good agreement was obtained. The maximum difference with damping neglected was about 30 percent. Neglecting damping would result in a conservative design.

  17. Cermet fuel reactors

    SciTech Connect

    Cowan, C.L.; Palmer, R.S.; Van Hoomissen, J.E.; Bhattacharyya, S.K.; Barner, J.O.

    1987-09-01

    Cermet fueled nuclear reactors are attractive candidates for high performance space power systems. The cermet fuel consists of tungsten-urania hexagonal fuel blocks characterized by high strength at elevated temperatures, a high thermal conductivity and resultant high thermal shock resistance. Key features of the cermet fueled reactor design are (1) the ability to achieve very high coolant exit temperatures, and (2) thermal shock resistance during rapid power changes, and (3) two barriers to fission product release - the cermet matrix and the fuel element cladding. Additionally, thre is a potential for achieving a long operating life because of (1) the neutronic insensitivity of the fast-spectrum core to the buildup of fission products and (2) the utilization of a high strength refractory metal matrix and structural materials. These materials also provide resistance against compression forces that potentially might compact and/or reconfigure the core. In addition, the neutronic properties of the refractory materials assure that the reactor remains substantially subcritical under conditions of water immersion. It is concluded that cermet fueled reactors can be utilized to meet the power requirements for a broad range of advanced space applications. 4 refs., 4 figs., 3 tabs.

  18. Hybrid reactors. [Fuel cycle

    SciTech Connect

    Moir, R.W.

    1980-09-09

    The rationale for hybrid fusion-fission reactors is the production of fissile fuel for fission reactors. A new class of reactor, the fission-suppressed hybrid promises unusually good safety features as well as the ability to support 25 light-water reactors of the same nuclear power rating, or even more high-conversion-ratio reactors such as the heavy-water type. One 4000-MW nuclear hybrid can produce 7200 kg of /sup 233/U per year. To obtain good economics, injector efficiency times plasma gain (eta/sub i/Q) should be greater than 2, the wall load should be greater than 1 MW.m/sup -2/, and the hybrid should cost less than 6 times the cost of a light-water reactor. Introduction rates for the fission-suppressed hybrid are usually rapid.

  19. A physical description of fission product behavior fuels for advanced power reactors.

    SciTech Connect

    Kaganas, G.; Rest, J.; Nuclear Engineering Division; Florida International Univ.

    2007-10-18

    The Global Nuclear Energy Partnership (GNEP) is considering a list of reactors and nuclear fuels as part of its chartered initiative. Because many of the candidate materials have not been explored experimentally under the conditions of interest, and in order to economize on program costs, analytical support in the form of combined first principle and mechanistic modeling is highly desirable. The present work is a compilation of mechanistic models developed in order to describe the fission product behavior of irradiated nuclear fuel. The mechanistic nature of the model development allows for the possibility of describing a range of nuclear fuels under varying operating conditions. Key sources include the FASTGRASS code with an application to UO{sub 2} power reactor fuel and the Dispersion Analysis Research Tool (DART ) with an application to uranium-silicide and uranium-molybdenum research reactor fuel. Described behavior mechanisms are divided into subdivisions treating fundamental materials processes under normal operation as well as the effect of transient heating conditions on these processes. Model topics discussed include intra- and intergranular gas-atom and bubble diffusion, bubble nucleation and growth, gas-atom re-solution, fuel swelling and ?scion gas release. In addition, the effect of an evolving microstructure on these processes (e.g., irradiation-induced recrystallization) is considered. The uranium-alloy fuel, U-xPu-Zr, is investigated and behavior mechanisms are proposed for swelling in the {alpha}-, intermediate- and {gamma}-uranium zones of this fuel. The work reviews the FASTGRASS kinetic/mechanistic description of volatile ?scion products and, separately, the basis for the DART calculation of bubble behavior in amorphous fuels. Development areas and applications for physical nuclear fuel models are identified.

  20. Radiotoxicity and decay heat power of spent nuclear fuel of VVER type reactors at long-term storage.

    PubMed

    Bergelson, B R; Gerasimov, A S; Tikhomirov, G V

    2005-01-01

    Radiotoxicity and decay heat power of the spent nuclear fuel of VVER-1000 type reactors are calculated during storage time up to 300,000 y. Decay heat power of radioactive waste (radwaste) determines parameters of the heat removal system for the safe storage of spent nuclear fuel. Radiotoxicity determines the radiological hazard of radwaste after its leakage and penetration into the environment.

  1. Process Model of A Fusion Fuel Recovery System for a Direct Drive IFE Power Reactor

    NASA Astrophysics Data System (ADS)

    Natta, Saswathi; Aristova, Maria; Gentile, Charles

    2008-11-01

    A task has been initiated to develop a detailed representative model for the fuel recovery system (FRS) in the prospective direct drive inertial fusion energy (IFE) reactor. As part of the conceptual design phase of the project, a chemical process model is developed in order to observe the interaction of system components. This process model is developed using FEMLAB Multiphysics software with the corresponding chemical engineering module (CEM). Initially, the reactants, system structure, and processes are defined using known chemical species of the target chamber exhaust. Each step within the Fuel recovery system is modeled compartmentally and then merged to form the closed loop fuel recovery system. The output, which includes physical properties and chemical content of the products, is analyzed after each step of the system to determine the most efficient and productive system parameters. This will serve to attenuate possible bottlenecks in the system. This modeling evaluation is instrumental in optimizing and closing the fusion fuel cycle in a direct drive IFE power reactor. The results of the modeling are presented in this paper.

  2. The U.S.-Russian joint studies on using power reactors to disposition surplus weapon plutonium as spent fuel

    SciTech Connect

    Chebeskov, A.; Kalashnikov, A.; Bevard, B.; Moses, D.; Pavlovichev, A.

    1997-09-01

    In 1996, the US and the Russian Federation completed an initial joint study of the candidate options for the disposition of surplus weapons plutonium in both countries. The options included long term storage, immobilization of the plutonium in glass or ceramic for geologic disposal, and the conversion of weapons plutonium to spent fuel in power reactors. For the latter option, the US is only considering the use of existing light water reactors (LWRs) with no new reactor construction for plutonium disposition, or the use of Canadian deuterium uranium (CANDU) heavy water reactors. While Russia advocates building new reactors, the cost is high, and the continuing joint study of the Russian options is considering only the use of existing VVER-1000 LWRs in Russia and possibly Ukraine, the existing BN-60O fast neutron reactor at the Beloyarsk Nuclear Power Plant in Russia, or the use of the Canadian CANDU reactors. Six of the seven existing VVER-1000 reactors in Russia and the eleven VVER-1000 reactors in Ukraine are all of recent vintage and can be converted to use partial MOX cores. These existing VVER-1000 reactors are capable of converting almost 300 kg of surplus weapons plutonium to spent fuel each year with minimum nuclear power plant modifications. Higher core loads may be achievable in future years.

  3. Off-design temperature effects on nuclear fuel pins for an advanced space-power-reactor concept

    NASA Technical Reports Server (NTRS)

    Bowles, K. J.

    1974-01-01

    An exploratory out-of-reactor investigation was made of the effects of short-time temperature excursions above the nominal operating temperature of 990 C on the compatibility of advanced nuclear space-power reactor fuel pin materials. This information is required for formulating a reliable reactor safety analysis and designing an emergency core cooling system. Simulated uranium mononitride (UN) fuel pins, clad with tungsten-lined T-111 (Ta-8W-2Hf) showed no compatibility problems after heating for 8 hours at 2400 C. At 2520 C and above, reactions occurred in 1 hour or less. Under these conditions free uranium formed, redistributed, and attacked the cladding.

  4. Radiotoxicity and decay heat power of spent nuclear fuel of VVER type reactors at long-term storage.

    PubMed

    Bergelson, B R; Gerasimov, A S; Tikhomirov, G V

    2005-01-01

    Radiotoxicity and decay heat power of the spent nuclear fuel of VVER-1000 type reactors are calculated during storage time up to 300,000 y. Decay heat power of radioactive waste (radwaste) determines parameters of the heat removal system for the safe storage of spent nuclear fuel. Radiotoxicity determines the radiological hazard of radwaste after its leakage and penetration into the environment. PMID:16381764

  5. Compact power reactor

    DOEpatents

    Wetch, Joseph R.; Dieckamp, Herman M.; Wilson, Lewis A.

    1978-01-01

    There is disclosed a small compact nuclear reactor operating in the epithermal neutron energy range for supplying power at remote locations, as for a satellite. The core contains fuel moderator elements of Zr hydride with 7 w/o of 93% enriched uranium alloy. The core has a radial beryllium reflector and is cooled by liquid metal coolant such as NaK. The reactor is controlled and shut down by moving portions of the reflector.

  6. REACTOR FUEL SCAVENGING MEANS

    DOEpatents

    Coffinberry, A.S.

    1962-04-10

    A process for removing fission products from reactor liquid fuel without interfering with the reactor's normal operation or causing a significant change in its fuel composition is described. The process consists of mixing a liquid scavenger alloy composed of about 44 at.% plutoniunm, 33 at.% lanthanum, and 23 at.% nickel or cobalt with a plutonium alloy reactor fuel containing about 3 at.% lanthanum; removing a portion of the fuel and scavenger alloy from the reactor core and replacing it with an equal amount of the fresh scavenger alloy; transferring the portion to a quiescent zone where the scavenger and the plutonium fuel form two distinct liquid layers with the fission products being dissolved in the lanthanum-rich scavenger layer; and the clean plutonium-rich fuel layer being returned to the reactor core. (AEC)

  7. NUCLEAR REACTOR FUEL SYSTEMS

    DOEpatents

    Thamer, B.J.; Bidwell, R.M.; Hammond, R.P.

    1959-09-15

    Homogeneous reactor fuel solutions are reported which provide automatic recombination of radiolytic gases and exhibit large thermal expansion characteristics, thereby providing stability at high temperatures and enabling reactor operation without the necessity of apparatus to recombine gases formed by the radiolytic dissociation of water in the fuel and without the necessity of liquid fuel handling outside the reactor vessel except for recovery processes. The fuels consist of phosphoric acid and water solutions of enriched uranium, wherein the uranium is in either the hexavalent or tetravalent state.

  8. FUEL ELEMENT FOR NUCLEAR REACTORS

    DOEpatents

    Bassett, C.H.

    1961-05-16

    A fuel element particularly adapted for use in nuclear reactors of high power density is offered. It has fissionable fuel pellet segments mounted in a tubular housing and defining a central passage in the fuel element. A burnable poison element extends through the central passage, which is designed to contain more poison material at the median portion than at the end portions thereby providing a more uniform hurnup and longer reactivity life.

  9. Improving the AGR Fuel Testing Power Density Profile Versus Irradiation-Time in the Advanced Test Reactor

    SciTech Connect

    Gray S. Chang; David A. Petti; John T. Maki; Misti A. Lillo

    2009-05-01

    The Very High Temperature gas-cooled Reactor (VHTR), which is currently being developed, achieves simplification of safety through reliance on ceramic-coated fuel particles. Each TRISO-coated fuel particle has its own containment which serves as the principal barrier against radionuclide release under normal operating and accident conditions. These fuel particles, in the form of graphite fuel compacts, are currently undergoing a series of irradiation tests in the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL) to support the Advanced Gas-Cooled Reactor (AGR) fuel qualification program. A representive coated fuel particle with an 235U enrichment of 19.8 wt% was used in this analysis. The fuel burnup analysis tool used to perform the neutronics study reported herein, couples the Monte Carlo transport code MCNP, with the radioactive decay and burnup code ORIGEN2. The fuel burnup methodology known as Monte-Carlo with ORIGEN2 (MCWO) was used to evaluate the AGR experiment assembly and demonstrate compliance with ATR safety requirements. For the AGR graphite fuel compacts, the MCWO-calculated fission power density (FPD) due to neutron fission in 235U is an important design parameter. One of the more important AGR fuel testing requirements is to maintain the peak fuel compact temperature close to 1250°C throughout the proposed irradiation campaign of 550 effective full power days (EFPDs). Based on the MCWO-calculated FPD, a fixed gas gap size was designed to allow regulation of the fuel compact temperatures throughout the entire fuel irradiation campaign by filling the gap with a mixture of helium and neon gases. The chosen fixed gas gap can only regulate the peak fuel compact temperature in the desired range during the irradiation test if the ratio of the peak power density to the time-dependent low power density (P/T) at 550 EFPDs is less than 2.5. However, given the near constant neutron flux within the ATR driver core and the depletion of 235U in

  10. Design of a proteus lattice representative of a burnt and fresh fuel interface at power conditions in light water reactors

    SciTech Connect

    Hursin, M.; Perret, G.

    2012-07-01

    The research program LIFE (Large-scale Irradiated Fuel Experiment) between PSI and Swissnuclear has been started in 2006 to study the interaction between large sets of burnt and fresh fuel pins in conditions representative of power light water reactors. Reactor physics parameters such as flux ratios and reaction rate distributions ({sup 235}U and {sup 238}U fissions and {sup 238}U capture) are calculated to estimate an appropriate arrangement of burnt and fresh fuel pins within the central element of the test zone of the zero-power research reactor PROTEUS. The arrangement should minimize the number of burnt fuel pins to ease fuel handling and reduce costs, whilst guaranteeing that the neutron spectrum in both burnt and fresh fuel regions and at their interface is representative of a large uniform array of burnt and fresh pins in the same moderation conditions. First results are encouraging, showing that the burnt/fresh fuel interface is well represented with a 6 x 6 bundle of burnt pins. The second part of the project involves the use of TSUNAMI, CASMO-4E and DAKOTA to perform parametric and optimization studies on the PROTEUS lattice by varying its pitch (P) and fraction of D{sub 2}O in moderator (F{sub D2O}) to be as representative as possible of a power light water reactor core at hot full power conditions at beginning of cycle (BOC). The parameters P and F{sub D2O} that best represent a PWR at BOC are 1.36 cm and 5% respectively. (authors)

  11. Self-powered denitration of landfill leachate through ammonia/nitrate coupled redox fuel cell reactor.

    PubMed

    Zhang, Huimin; Xu, Wei; Feng, Daolun; Liu, Zhanmeng; Wu, Zucheng

    2016-03-01

    In order to explore the feasibility of energy-free denitrifying N-rich wastewater, a self-powered device was uniquely assembled, in which ammonia/nitrate coupled redox fuel cell (CRFC) reactor was served as removing nitrogen and harvesting electric energy simultaneously. Ammonia is oxidized at anodic compartment and nitrate is reduced at cathodic compartment spontaneously by electrocatalysis. In 7.14 mM ammonia+0.2M KOH anolyte and 4.29 mM KNO3+0.1M H2SO4 catholyte, the nitrate removal efficiency was 46.9% after 18 h. Meanwhile, a maximum power density of 170 mW m(-2) was achieved when applying Pd/C cathode. When NH4Cl/nitrate and ammonia/nitrite CRFCs were tested, 26.2% N-NH4Cl and 91.4% N-NO2(-) were removed respectively. Nitrogen removal efficiency for real leachate at the same initial NH3-N concentration is 22.9% and nitrification of ammonia in leachate can be used as nitrate source. This work demonstrated a new way for N-rich wastewater remediation with electricity generation. PMID:26720140

  12. Self-powered denitration of landfill leachate through ammonia/nitrate coupled redox fuel cell reactor.

    PubMed

    Zhang, Huimin; Xu, Wei; Feng, Daolun; Liu, Zhanmeng; Wu, Zucheng

    2016-03-01

    In order to explore the feasibility of energy-free denitrifying N-rich wastewater, a self-powered device was uniquely assembled, in which ammonia/nitrate coupled redox fuel cell (CRFC) reactor was served as removing nitrogen and harvesting electric energy simultaneously. Ammonia is oxidized at anodic compartment and nitrate is reduced at cathodic compartment spontaneously by electrocatalysis. In 7.14 mM ammonia+0.2M KOH anolyte and 4.29 mM KNO3+0.1M H2SO4 catholyte, the nitrate removal efficiency was 46.9% after 18 h. Meanwhile, a maximum power density of 170 mW m(-2) was achieved when applying Pd/C cathode. When NH4Cl/nitrate and ammonia/nitrite CRFCs were tested, 26.2% N-NH4Cl and 91.4% N-NO2(-) were removed respectively. Nitrogen removal efficiency for real leachate at the same initial NH3-N concentration is 22.9% and nitrification of ammonia in leachate can be used as nitrate source. This work demonstrated a new way for N-rich wastewater remediation with electricity generation.

  13. NEUTRONIC REACTOR FUEL COMPOSITION

    DOEpatents

    Thurber, W.C.

    1961-01-10

    Uranium-aluminum alloys in which boron is homogeneously dispersed by adding it as a nickel boride are described. These compositions have particular utility as fuels for neutronic reactors, boron being present as a burnable poison.

  14. FUEL ELEMENT FOR NUCLEAR REACTORS

    DOEpatents

    Bassett, C.H.

    1961-11-21

    A fuel element is designed which is particularly adapted for reactors of high power density used to generate steam for the production of electricity. The fuel element consists of inner and outer concentric tubes forming an annular chamber within which is contained fissionable fuel pellet segments, wedge members interposed between the fuel segments, and a spring which, acting with wedge members, urges said fuel pellets radially into contact against the inner surface of the outer tube. The wedge members may be a fertile material convertible into fissionable fuel material by absorbing neutrons emitted from the fissionable fuel pellet segments. The costly grinding of cylindrical fuel pellets to close tolerances for snug engagement is reduced because the need to finish the exact size is eliminated. (AEC)

  15. NEUTRONIC REACTOR FUEL ELEMENT

    DOEpatents

    Picklesimer, M.L.; Thurber, W.C.

    1961-01-01

    A chemically nonreactive fuel composition for incorporation in aluminum- clad, plate type fuel elements for neutronic reactors is described. The composition comprises a mixture of aluminum and uranium carbide particles, the uranium carbide particles containing at least 80 wt.% UC/sub 2/.

  16. NUCLEAR REACTOR FUEL ELEMENT

    DOEpatents

    Currier, E.L. Jr.; Nicklas, J.H.

    1963-06-11

    A fuel plate is designed for incorporation into control rods of the type utilized in high-flux test reactors. The fuel plate is designed so that the portion nearest the poison section of the control rod contains about one-half as much fissionable material as in the rest of the plate, thereby eliminating dangerous flux peaking in that portion. (AEC)

  17. NEUTRONIC REACTOR FUEL ELEMENT

    DOEpatents

    Horning, W.A.; Lanning, D.D.; Donahue, D.J.

    1959-10-01

    A fuel slug for a reactor which acts as a safety device is described. The fuel slug is an aluminum tube with a foil lining the inside surface of the tube, the foil being fabricated of uranium in a lead matrix.

  18. Flow tests of a single fuel element coolant channel for a compact fast reactor for space power

    NASA Technical Reports Server (NTRS)

    Springborn, R. H.

    1971-01-01

    Water flow tests were conducted on a single-fuel-element cooling channel for a nuclear concept to be used for space power. The tests established a method for measuring coolant flow rate which is applicable to water flow testing of a complete mockup of the reference reactor. The inlet plenum-to-outlet plenum pressure drop, which approximates the overall core pressure drop, was measured and correlated with flow rate. This information can be used for reactor coolant flow and heat transfer calculations. An analytical study of the flow characteristics was also conducted.

  19. NUCLEAR REACTOR FUEL ELEMENT

    DOEpatents

    Wheelock, C.W.; Baumeister, E.B.

    1961-09-01

    A reactor fuel element utilizing fissionable fuel materials in plate form is described. This fuel element consists of bundles of fuel-bearing plates. The bundles are stacked inside of a tube which forms the shell of the fuel element. The plates each have longitudinal fins running parallel to the direction of coolant flow, and interspersed among and parallel to the fins are ribs which position the plates relative to each other and to the fuel element shell. The plate bundles are held together by thin bands or wires. The ex tended surface increases the heat transfer capabilities of a fuel element by a factor of 3 or more over those of a simple flat plate.

  20. FUEL ASSAY REACTOR

    DOEpatents

    Spinrad, B.I.; Sandmeier, H.A.; Martens, F.H.

    1962-12-25

    A reactor having maximum sensitivity to perturbations is described comprising a core consisting of a horizontally disposed, rectangular, annular fuel zone containing enriched uranium dioxide dispersed in graphite, the concentration of uranium dioxide increasing from the outside to the inside of the fuel zone, an internal reflector of graphite containing an axial test opening disposed within the fuel zone, an external graphite reflector, means for changing the neutron spectrum in the test opening, and means for measuring perturbations in the neutron flux caused by the introduction of different fuel elements into the test opening. (AEC)

  1. Multigroup calculation of criticality and power distribution in a two-pass fast spectrum cermet-fueled reactor

    SciTech Connect

    Anghaie, S.; Feller, G.J. ); Peery, S.D.; Parsley, R.C. )

    1992-01-01

    The advanced propulsion group at Pratt Whitney has developed a nuclear thermal rocket concept, the XNR2000, for use on lunear, Mars, and deep-space planetary missions. The XNR2000 engine is powered by a fast spectrum cermet-fueled nuclear reactor that heats up hydrogen propellant to a maximum of 2850 K. An expander cycle is used to deliver 12 kg/s hydrogen to the core, producing 25,000 lb[sub f] thrust at 944 s of specific impulse. The reactor comprises a beryllium-reflected outer annulus core and an inner core with the hydrogen propellant entering from the bottom of the outer core and exiting from the bottom part of the inner core to the thrust chamber. Both the outer and inner cores are loaded with prismatic cermet fuel elements. The baseline XNR2000 reactor core consists of 90 fuel elements in the outer core and 61 in the inner core, arranged in the pattern. This paper focuses on the neutronic analysis of the baseline XNR2000 reactor.

  2. NEUTRONIC REACTOR FUEL PUMP

    DOEpatents

    Cobb, W.G.

    1959-06-01

    A reactor fuel pump is described which offers long life, low susceptibility to radiation damage, and gaseous fission product removal. An inert-gas lubricated bearing supports a journal on one end of the drive shsft. The other end has an impeller and expansion chamber which effect pumping and gas- liquid separation. (T.R.H.)

  3. NEUTRONIC REACTOR FUEL ELEMENT

    DOEpatents

    Stacy, J.T.

    1958-12-01

    A reactor fuel element having a core of molybdenum-uranium alloy jacketed in stainless steel is described. A barrier layer of tungsten, tantalum, molybdenum, columbium, or silver is interposed between the core and jacket to prevent formation of a low melting eutectic between uranium and the varlous alloy constituents of the stainless steel.

  4. JACKETED REACTOR FUEL ELEMENT

    DOEpatents

    Smith, K.F.; Van Thyne, R.J.

    1958-12-01

    A fuel element is described for fast reactors comprised of a core of uranium metal containing material and a jacket around the core, the jacket consisting of from 2.5 to 15 percent of titanium, from 1 to 5 percent of niobium, and from 80 to 96.5 percent of vanadium.

  5. Shock and vibration tests of uranium mononitride fuel pellets for a space power nuclear reactor

    NASA Technical Reports Server (NTRS)

    Adams, D. W.

    1972-01-01

    Shock and vibration tests were conducted on cylindrically shaped, depleted, uranium mononitride (UN) fuel pellets. The structural capabilities of the pellets were determined under exposure to shock and vibration loading which a nuclear reactor may encounter during launching into space. Various combinations of diametral and axial clearances between the pellets and their enclosing structures were tested. The results of these tests indicate that for present fabrication of UN pellets, a diametral clearance of 0.254 millimeter and an axial clearance of 0.025 millimeter are tolerable when subjected to launch-induced loads.

  6. COMPARTMENTED REACTOR FUEL ELEMENT

    DOEpatents

    Cain, F.M. Jr.

    1962-09-11

    A method of making a nuclear reactor fuel element of the elongated red type is given wherein the fissionable fuel material is enclosed within a tubular metal cladding. The method comprises coating the metal cladding tube on its inside wall with a brazing alloy, inserting groups of cylindrical pellets of fissionable fuel material into the tube with spacing members between adjacent groups of pellets, sealing the ends of the tubes to leave a void space therewithin, heating the tube and its contents to an elevated temperature to melt the brazing alloy and to expand the pellets to their maximum dimensions under predetermined operating conditions thereby automatically positioning the spacing members along the tube, and finally cooling the tube to room temperature whereby the spacing disks become permanently fixed at their edges in the brazing alloy and define a hermetically sealed compartment for each fl group of fuel pellets. Upon cooling, the pellets contract thus leaving a space to accommodate thermal expansion of the pellets when in use in a reactor. The spacing members also provide lateral support for the tubular cladding to prevent collapse thereof when subjected to a reactor environment. (AEC)

  7. Modeling of Coolant Flow in the Fuel Assembly of the Reactor of a Floating Nuclear Power Plant Using the Logos CFD Program

    NASA Astrophysics Data System (ADS)

    Dmitriev, S. M.; Dobrov, A. A.; Legchanov, M. A.; Khrobostov, A. E.

    2015-09-01

    Results of computer modeling of coolant flow in the fuel assembly of the reactor of a floating nuclear power plant using the LOGOS CFD programs have been given. The possibility of using the obtained results to improve models built into the engineering programs of thermohydraulic calculation of nuclear-reactor cores has been considered.

  8. AECL/US INERI - Development of Inert Matrix Fuels for Plutonium and Minor Actinide Management in Power Reactors -- Fuel Requirements and Down-Select Report

    SciTech Connect

    William Carmack; Randy D. Lee; Pavel Medvedev; Mitch Meyer; Michael Todosow; Holly B. Hamilton; Juan Nino; Simon Philpot; James Tulenko

    2005-06-01

    The U.S. Advanced Fuel Cycle Program and the Atomic Energy Canada Ltd (AECL) seek to develop and demonstrate the technologies needed to minimize the overall Pu and minor actinides present in the light water reactor (LWR) nuclear fuel cycles. It is proposed to reuse the Pu from LWR spent fuel both for the energy it contains and to decrease the hazard and proliferation impact resulting from storage of the Pu and minor actinides. The use of fuel compositions with a combination of U and Pu oxide (MOX) has been proposed as a way to recycle Pu and/or minor actinides in LWRs. It has also been proposed to replace the fertile U{sup 238} matrix of MOX with a fertile-free matrix (IMF) to reduce the production of Pu{sup 239} in the fuel system. It is important to demonstrate the performance of these fuels with the appropriate mixture of isotopes and determine what impact there might be from trace elements or contaminants. Previous work has already been done to look at weapons-grade (WG) Pu in the MOX configuration [1][2] and the reactor-grade (RG) Pu in a MOX configuration including small (4000 ppm additions of Neptunium). This program will add to the existing database by developing a wide variety of MOX fuel compositions along with new fuel compositions called inert-matrix fuel (IMF). The goal of this program is to determine the general fabrication and irradiation behavior of the proposed IMF fuel compositions. Successful performance of these compositions will lead to further selection and development of IMF for use in LWRs. This experiment will also test various inert matrix material compositions with and without quantities of the minor actinides Americium and Neptunium to determine feasibility of incorporation into the fuel matrices for destruction. There is interest in the U.S. and world-wide in the investigation of IMF (inert matrix fuels) for scenarios involving stabilization or burn down of plutonium in the fleet of existing commercial power reactors. IMF offer the

  9. Nuclear reactor fuel element

    DOEpatents

    Johnson, Carl E.; Crouthamel, Carl E.

    1980-01-01

    A nuclear reactor fuel element is described which has an outer cladding, a central core of fissionable or mixed fissionable and fertile fuel material and a layer of oxygen gettering material on the inner surface of the cladding. The gettering material reacts with oxygen released by the fissionable material during irradiation of the core thereby preventing the oxygen from reacting with and corroding the cladding. Also described is an improved method for coating the inner surface of the cladding with a layer of gettering material.

  10. Proliferation Resistant Nuclear Reactor Fuel

    SciTech Connect

    Gray, L W; Moody, K J; Bradley, K S; Lorenzana, H E

    2011-02-18

    Global appetite for fission power is projected to grow dramatically this century, and for good reason. Despite considerable research to identify new sources of energy, fission remains the most plentiful and practical alternative to fossil fuels. The environmental challenges of fossil fuel have made the fission power option increasingly attractive, particularly as we are forced to rely on reserves in ecologically fragile or politically unstable corners of the globe. Caught between a globally eroding fossil fuel reserve as well as the uncertainty and considerable costs in the development of fusion power, most of the world will most likely come to rely on fission power for at least the remainder of the 21st century. Despite inevitable growth, fission power faces enduring challenges in sustainability and security. One of fission power's greatest hurdles to universal acceptance is the risk of potential misuse for nefarious purposes of fissionable byproducts in spent fuel, such as plutonium. With this issue in mind, we have discussed intrinsic concepts in this report that are motivated by the premise that the utility, desirability, and applicability of nuclear materials can be reduced. In a general sense, the intrinsic solutions aim to reduce or eliminate the quantity of existing weapons usable material; avoid production of new weapons-usable material through enrichment, breeding, extraction; or employ engineering solutions to make the fuel cycle less useful or more difficult for producing weapons-usable material. By their nature, these schemes require modifications to existing fuel cycles. As such, the concomitants of these modifications require engagement from the nuclear reactor and fuel-design community to fully assess their effects. Unfortunately, active pursuit of any scheme that could further complicate the spread of domestic nuclear power will probably be understandably unpopular. Nevertheless, the nonproliferation and counterterrorism issues are paramount, and

  11. Verification Calculation Results to Validate the Procedures and Codes for Pin-by-Pin Power Computation in VVER Type Reactors with MOX Fuel Loading

    SciTech Connect

    Chizhikova, Z.N.; Kalashnikov, A.G.; Kapranova, E.N.; Korobitsyn, V.E.; Manturov, G.N.; Tsiboulia, A.A.

    1998-12-01

    One of the important problems for ensuring the VVER type reactor safety when the reactor is partially loaded with MOX fuel is the choice of appropriate physical zoning to achieve the maximum flattening of pin-by-pin power distribution. When uranium fuel is replaced by MOX one provided that the reactivity due to fuel assemblies is kept constant, the fuel enrichment slightly decreases. However, the average neutron spectrum fission microscopic cross-section for {sup 239}Pu is approximately twice that for {sup 235}U. Therefore power peaks occur in the peripheral fuel assemblies containing MOX fuel which are aggravated by the interassembly water. Physical zoning has to be applied to flatten the power peaks in fuel assemblies containing MOX fuel. Moreover, physical zoning cannot be confined to one row of fuel elements as is the case with a uniform lattice of uranium fuel assemblies. Both the water gap and the jump in neutron absorption macroscopic cross-sections which occurs at the interface of fuel assemblies with different fuels make the problem of calculating space-energy neutron flux distribution more complicated since it increases nondiffusibility effects. To solve this problem it is necessary to update the current codes, to develop new codes and to verify all the codes including nuclear-physical constants libraries employed. In so doing it is important to develop and validate codes of different levels--from design codes to benchmark ones. This paper presents the results of the burnup calculation for a multiassembly structure, consisting of MOX fuel assemblies surrounded by uranium dioxide fuel assemblies. The structure concerned can be assumed to model a fuel assembly lattice symmetry element of the VVER-1000 type reactor in which 1/4 of all fuel assemblies contains MOX fuel.

  12. Fossil fuel furnace reactor

    DOEpatents

    Parkinson, William J.

    1987-01-01

    A fossil fuel furnace reactor is provided for simulating a continuous processing plant with a batch reactor. An internal reaction vessel contains a batch of shale oil, with the vessel having a relatively thin wall thickness for a heat transfer rate effective to simulate a process temperature history in the selected continuous processing plant. A heater jacket is disposed about the reactor vessel and defines a number of independent controllable temperature zones axially spaced along the reaction vessel. Each temperature zone can be energized to simulate a time-temperature history of process material through the continuous plant. A pressure vessel contains both the heater jacket and the reaction vessel at an operating pressure functionally selected to simulate the continuous processing plant. The process yield from the oil shale may be used as feedback information to software simulating operation of the continuous plant to provide operating parameters, i.e., temperature profiles, ambient atmosphere, operating pressure, material feed rates, etc., for simulation in the batch reactor.

  13. NEUTRONIC REACTOR POWER PLANT

    DOEpatents

    Metcalf, H.E.

    1962-12-25

    This patent relates to a nuclear reactor power plant incorporating an air-cooled, beryllium oxide-moderated, pebble bed reactor. According to the invention means are provided for circulating a flow of air through tubes in the reactor to a turbine and for directing a sidestream of the circu1ating air through the pebble bed to remove fission products therefrom as well as assist in cooling the reactor. (AEC)

  14. Using single-chamber microbial fuel cells as renewable power sources of electro-Fenton reactors for organic pollutant treatment.

    PubMed

    Zhu, Xiuping; Logan, Bruce E

    2013-05-15

    Electro-Fenton reactions can be very effective for organic pollutant degradation, but they typically require non-sustainable electrical power to produce hydrogen peroxide. Two-chamber microbial fuel cells (MFCs) have been proposed for pollutant treatment using Fenton-based reactions, but these types of MFCs have low power densities and require expensive membranes. Here, more efficient dual reactor systems were developed using a single-chamber MFC as a low-voltage power source to simultaneously accomplish H2O2 generation and Fe(2+) release for the Fenton reaction. In tests using phenol, 75 ± 2% of the total organic carbon (TOC) was removed in the electro-Fenton reactor in one cycle (22 h), and phenol was completely degraded to simple and readily biodegradable organic acids. Compared to previously developed systems based on two-chamber MFCs, the degradation efficiency of organic pollutants was substantially improved. These results demonstrate that this system is an energy-efficient and cost-effective approach for industrial wastewater treatment of certain pollutants.

  15. Operating US power reactors

    SciTech Connect

    Silver, E.G.

    1982-07-01

    The operation of US power reactors during March and April 1982 is summarized. Events of special note are discussed in the text, and the operational performance of all licensed power reactors is presented. These data are taken from the monthly Operating Units Status Report prepared by the Nuclear Regulatory Commission (NRC).

  16. POWER BREEDER REACTOR

    DOEpatents

    Monson, H.O.

    1960-11-22

    An arrangement is offered for preventing or minimizing the contraction due to temperature rise, of a reactor core comprising vertical fuel rods in sodium. Temperature rise of the fuel rods would normally make them move closer together by inward bowing, with a resultant undesired increase in reactivity. According to the present invention, assemblies of the fuel rods are laterally restrained at the lower ends of their lower blanket sections and just above the middle of the fuel sections proper of the rods, and thus the fuel sections move apart, rather than together, with increase in temperature.

  17. EXPERIMENTAL LIQUID METAL FUEL REACTOR

    DOEpatents

    Happell, J.J.; Thomas, G.R.; Denise, R.P.; Bunts, J.L. Jr.

    1962-01-23

    A liquid metal fuel nuclear fission reactor is designed in which the fissionable material is dissolved or suspended in a liquid metal moderator and coolant. The liquid suspension flows into a chamber in which a critical amount of fissionable material is obtained. The fluid leaves the chamber and the heat of fission is extracted for power or other utilization. The improvement is in the support arrangement for a segrnented graphite core to permit dif ferential thermal expansion, effective sealing between main and blanket liquid metal flows, and avoidance of excessive stress development in the graphite segments. (AEC)

  18. NUCLEAR REACTOR FUEL-BREEDER FUEL ELEMENT

    DOEpatents

    Currier, E.L. Jr.; Nicklas, J.H.

    1962-08-14

    A fuel-breeder fuel element was developed for a nuclear reactor wherein discrete particles of fissionable material are dispersed in a matrix of fertile breeder material. The fuel element combines the advantages of a dispersion type and a breeder-type. (AEC)

  19. Post irradiation examination of thermal reactor fuels

    NASA Astrophysics Data System (ADS)

    Sah, D. N.; Viswanathan, U. K.; Ramadasan, E.; Unnikrishnan, K.; Anantharaman, S.

    2008-12-01

    The post irradiation examination (PIE) facility at the Bhabha Atomic Research Centre (BARC) has been in operation for more than three decades. Over these years this facility has been utilized for examination of experimental fuel pins and fuels from commercial power reactors operating in India. In a program to assess the performance of (U,Pu)O 2 MOX fuel prior to its introduction in commercial reactors, three experimental MOX fuel clusters irradiated in the pressurized water loop (PWL) of CIRUS up to burnup of 16 000 MWd/tU were examined. Fission gas release from these pins was measured by puncture test. Some of these fuel pins in the cluster contained controlled porosity pellets, low temperature sintered (LTS) pellets, large grain size pellets and annular pellets. PIE has also been carried out on natural UO 2 fuel bundles from Indian PHWRs, which included two high burnup (˜15 000 MWd/tU) bundles. Salient investigations carried out consisted of visual examination, leak testing, axial gamma scanning, fission gas analysis, microstructural examination of fuel and cladding, β, γ autoradiography of the fuel cross-section and fuel central temperature estimation from restructuring. A ThO 2 fuel bundle irradiated in Kakrapar Atomic Power Station (KAPS) up to a nominal fuel burnup of ˜11 000 MWd/tTh was also examined to evaluate its in-pile performance. The performance of the BWR fuel pins of Tarapur Atomic Power Stations (TAPS) was earlier assessed by carrying out PIE on 18 fuel elements selected from eight fuel assemblies irradiated in the two reactors. The burnup of these fuel elements varied from 5000 to 29 000 MWd/tU. This paper provides a brief review of some of the fuels examined and the results obtained on the performance of natural UO 2, enriched UO 2, MOX, and ThO 2 fuels.

  20. REACTOR FUEL ELEMENTS TESTING CONTAINER

    DOEpatents

    Whitham, G.K.; Smith, R.R.

    1963-01-15

    This patent shows a method for detecting leaks in jacketed fuel elements. The element is placed in a sealed tank within a nuclear reactor, and, while the reactor operates, the element is sparged with gas. The gas is then led outside the reactor and monitored for radioactive Xe or Kr. (AEC)

  1. Preparation of LWBR (Light Water Breeder Reactor) spent fuel for shipment to ICPP (Idaho Chemical Processing Plant) for long term storage (LWBR Development Program). [Shippingport Atomic Power Station

    SciTech Connect

    Hodges, B.W.

    1987-10-01

    After successfully operating for 29,047 effective full power hours, the Light Water Breeder Reactor (LWBR) core was defueled prior to total decommissioning of the Shippingport facility. All nuclear fuel and much of the reactor internal hardware was removed from the reactor vessel. Non-fuel components were prepared for shipment to disposal sites, and the fuel assemblies were partially disassembled and shipped to the Expended Core Facility (ECF) in Idaho. At ECF, the fuel modules underwent further disassembly to provide fuel rods for nondestructive testing to establish the core's breeding efficiency and to provide core components for examinations to assess their performance characteristics. This report presents a basic description of the processes and equipment used to prepare and to ship all LWBR nuclear fuel to the Idaho Chemical Processing Plant (ICPP) for long-term storage. Preparation processes included the underwater loading of LWBR fuel into storage liners, the sealing, dewatering and drying of the storage liners, and the final pressurization of the storage liners with inert neon gas. Shipping operations included the underwater installation of the fuel loaded storage liner into the Peach Bottom shipping cask, cask removal from the waterpit, cask preparations for shipping, and cask shipment by tractor trailer to the ICPP facility for long-term storage. The ICPP facility preparations for LWBR fuel storage and the ICPP process for discharge of the fuel into underground silos are presented. 10 refs., 42 figs.

  2. AECL/U.S. INERI - Development of Inert Matrix Fuels for Plutonium and Minor Actinide Management in Power Reactors Fuel Requirements and Down-Select Report

    SciTech Connect

    William Carmack; Randy Fielding; Pavel Medvedev; Mitch Meyer

    2005-08-01

    This report documents the first milestone of the International Nuclear Energy Research Initiative (INERI) U.S./Euratom Joint Proposal 1.8 entitled “Development of Inert Matrix Fuels for Plutonium and Minor Actinide Management in Light-Water Reactors.” The milestone represents the assessment and preliminary study of a variety of fuels that hold promise as transmutation and minor actinide burning fuel compositions for light-water reactors. The most promising fuels of interest to the participants on this INERI program have been selected for further study. These fuel compositions are discussed in this report.

  3. PUSH-PULL POWER REACTOR

    DOEpatents

    Froman, D.K.

    1959-02-24

    Power generating nuclear reactors of the homogeneous liquid fuel type are discussed. The apparatus utilizes two identical reactors interconnected by conduits through heat exchanging apparatus. Each reactor contains a critical geometry region and a vapor region separated from the critical region by a baffle. When the liquid in the first critical region becomes critical, the vapor pressure above the fuel is increased due to the rise in the temperature until it forces the liquid fuel out of the first critical region through the heat exchanger and into the second critical region, which is at a lower temperature and consequently a lower vapor pressure. The above reaction is repeated in the second critical region and the liquid fuel is forced back into the first critical region. In this manner criticality is achieved alternately in each critical region and power is extracted by the heat exchanger from the liquid fuel passing therethrough. The vapor region and the heat exchanger have a non-critical geometry and reactivity control is effected by conventional control rods in the critical regions.

  4. Monolithic fuel cell based power source for burst power generation

    SciTech Connect

    Fee, D.C.; Blackburn, P.E.; Busch, D.E.; Dees, D.W.; Dusek, J.; Easler, T.E.; Ellingson, W.A.; Flandermeyer, B.K.; Fousek, R.J.; Heiberger, J.J.; Majumdar, S.; McPheeters, C.C.; Mrazek, F.C.; Picciolo, J.J.; Singh, J.P.; Poeppel, R.B.

    1988-01-01

    A unique fuel cell coupled with a low power nuclear reactor presents an attractive approach for SDI burst power requirements. The requisite high power, long-duration bursts appear achievable with appropriate development of the concept. A monolithic fuel cell/nuclear reactor system clearly possesses several advantages. Fabrication methods, performance advantages, and applications are discussed in this report.

  5. Gaseous fuel reactor systems for aerospace applications

    NASA Technical Reports Server (NTRS)

    Thom, K.; Schwenk, F. C.

    1977-01-01

    Research on the gaseous fuel nuclear rocket concept continues under the programs of the U.S. National Aeronautics and Space Administration (NASA) Office for Aeronautics and Space Technology and now includes work related to power applications in space and on earth. In a cavity reactor test series, initial experiments confirmed the low critical mass determined from reactor physics calculations. Recent work with flowing UF6 fuel indicates stable operation at increased power levels. Preliminary design and experimental verification of test hardware for high-temperature experiments have been accomplished. Research on energy extraction from fissioning gases has resulted in lasers energized by fission fragments. Combined experimental results and studies indicate that gaseous-fuel reactor systems have significant potential for providing nuclear fission power in space and on earth.

  6. Transmutation of actinides in power reactors.

    PubMed

    Bergelson, B R; Gerasimov, A S; Tikhomirov, G V

    2005-01-01

    Power reactors can be used for partial short-term transmutation of radwaste. This transmutation is beneficial in terms of subsequent storage conditions for spent fuel in long-term storage facilities. CANDU-type reactors can transmute the main minor actinides from two or three reactors of the VVER-1000 type. A VVER-1000-type reactor can operate in a self-service mode with transmutation of its own actinides.

  7. Transmutation of actinides in power reactors.

    PubMed

    Bergelson, B R; Gerasimov, A S; Tikhomirov, G V

    2005-01-01

    Power reactors can be used for partial short-term transmutation of radwaste. This transmutation is beneficial in terms of subsequent storage conditions for spent fuel in long-term storage facilities. CANDU-type reactors can transmute the main minor actinides from two or three reactors of the VVER-1000 type. A VVER-1000-type reactor can operate in a self-service mode with transmutation of its own actinides. PMID:16604724

  8. Coprocessing of thermal reactor fuels

    SciTech Connect

    Ballard, W.W. Jr.

    1985-01-01

    The Nuclear Power Development Division (NPD) under the Assistant Secretary for Energy Technology in the Department of Energy (DOE) is responsible for examining alternative nuclear reactor fuel recycle systems which have potential for reducing the risk of proliferation of nuclear weapons. NPD is administering a base technology program of research and development and design studies which will provide a sound technical foundation for evaluating the nonproliferation potential and commercial feasibility of these alternatives. The Savannah River Laboratory (SRL) has been assigned as the technical lead for those activities associated with the processing of thermal reactor fuel. In order to systematically identify technical requirements and design solutions, SRL periodically updates a Design Integration Study (DIS). The reference process being incorporated into the current DIS is coprocessing uranium and plutonium in a manner whereby pure plutonium is never available in a separate stream. As with other processes, coprocessing doesn't offer a technical fix for preventing proliferators. A flowsheet for this reference process is described with particular emphasis on technical issues and proliferation resistance advantages of coprocessing over conventional Purex processing.

  9. FUEL ELEMENTS FOR NEUTRONIC REACTORS

    DOEpatents

    Foote, F.G.; Jette, E.R.

    1963-05-01

    A fuel element for a nuclear reactor is described that consists of a jacket containing a unitary core of fissionable material and a filling of a metal of the group consisting of sodium and sodium-potassium alloys. (AEC)

  10. MOLTEN FLUORIDE NUCLEAR REACTOR FUEL

    DOEpatents

    Barton, C.J.; Grimes, W.R.

    1960-01-01

    Molten-salt reactor fuel compositions consisting of mixtures of fluoride salts are reported. In its broadest form, the composition contains an alkali fluoride such as sodium fluoride, zirconium tetrafluoride, and a uranium fluoride, the latter being the tetrafluoride or trifluoride or a mixture of the two. An outstanding property of these fuel compositions is a high coeffieient of thermal expansion which provides a negative temperature coefficient of reactivity in reactors in which they are used.

  11. FUSED REACTOR FUELS

    DOEpatents

    Mayer, S.W.

    1962-11-13

    This invention relates to a nuciear reactor fuel composition comprising (1) from about 0.01 to about 50 wt.% based on the total weight of said composition of at least one element selected from the class consisting of uranium, thorium, and plutonium, wherein said eiement is present in the form of at least one component selected from the class consisting of oxides, halides, and salts of oxygenated anions, with components comprising (2) at least one member selected from the class consisting of (a) sulfur, wherein the sulfur is in the form of at least one entity selected irom the class consisting of oxides of sulfur, metal sulfates, metal sulfites, metal halosulfonates, and acids of sulfur, (b) halogen, wherein said halogen is in the form of at least one compound selected from the class of metal halides, metal halosulfonates, and metal halophosphates, (c) phosphorus, wherein said phosphorus is in the form of at least one constituent selected from the class consisting of oxides of phosphorus, metal phosphates, metal phosphites, and metal halophosphates, (d) at least one oxide of a member selected from the class consisting of a metal and a metalloid wherein said oxide is free from an oxide of said element in (1); wherein the amount of at least one member selected from the class consisting of halogen and sulfur is at least about one at.% based on the amount of the sum of said sulfur, halogen, and phosphorus atom in said composition; and wherein the amount of said 2(a), 2(b) and 2(c) components in said composition which are free from said elements of uranium, thorium, arid plutonium, is at least about 60 wt.% based on the combined weight of the components of said composition which are free from said elements of uranium, thorium, and plutonium. (AEC)

  12. Experimental detailed power distribution in a fast spectrum thermionic reactor fuel element at the core/BeO reflector interface region

    NASA Technical Reports Server (NTRS)

    Klann, P. G.; Lantz, E.

    1973-01-01

    A zero-power critical assembly was designed, constructed, and operated for the prupose of conducting a series of benchmark experiments dealing with the physics characteristics of a UN-fueled, Li-7-cooled, Mo-reflected, drum-controlled compact fast reactor for use with a space-power conversion system. The critical assembly was modified to simulate a fast spectrum advanced thermionics reactor by: (1) using BeO as a reflector in place of some of the existing molybdenum, (2) substituting Nb-1Zr tubing for some of the existing Ta tubing, and (3) inserting four full-scale mockups of thermionic type fuel elements near the core and BeO reflector boundary. These mockups were surrounded with a buffer zone having the equivalent thermionic core composition. In addition to measuring the critical mass of this thermionic configuration, a detailed power distribution in one of the thermionic element stages in the mixed spectrum region was measured. A power peak to average ratio of two was observed for this fuel stage at the midplane of the core and adjacent to the reflector. Also, the power on the outer surface adjacent to the BeO was slightly more than a factor of two larger than the power on the inside surface of a 5.08 cm (2.0 in.) high annular fuel segment with a 2.52 cm (0.993 in. ) o.d. and a 1.86 cm (0.731 in.) i.d.

  13. Gaseous fuel nuclear reactor research

    NASA Technical Reports Server (NTRS)

    Schwenk, F. C.; Thom, K.

    1975-01-01

    Gaseous-fuel nuclear reactors are described; their distinguishing feature is the use of fissile fuels in a gaseous or plasma state, thereby breaking the barrier of temperature imposed by solid-fuel elements. This property creates a reactor heat source that may be able to heat the propellant of a rocket engine to 10,000 or 20,000 K. At this temperature level, gas-core reactors would provide the breakthrough in propulsion needed to open the entire solar system to manned and unmanned spacecraft. The possibility of fuel recycling makes possible efficiencies of up to 65% and nuclear safety at reduced cost, as well as high-thrust propulsion capabilities with specific impulse up to 5000 sec.

  14. Heat pipe reactors for space power applications

    NASA Technical Reports Server (NTRS)

    Koenig, D. R.; Ranken, W. A.; Salmi, E. W.

    1977-01-01

    A family of heat pipe reactors design concepts has been developed to provide heat to a variety of electrical conversion systems. Three power plants are described that span the power range 1-500 kWe and operate in the temperature range 1200-1700 K. The reactors are fast, compact, heat-pipe cooled, high-temperature nuclear reactors fueled with fully enriched refractory fuels, UC-ZrC or UO2. Each fuel element is cooled by an axially located molybdenum heat pipe containing either sodium or lithium vapor. Virtues of the reactor designs are the avoidance of single-point failure mechanisms, the relatively high operating temperature, and the expected long lifetimes of the fuel element components.

  15. (UA1 reactor fuels safety and performance)

    SciTech Connect

    Taleyarkhan, R.P.

    1990-07-13

    The traveler visited several reactor and hot cell experimental facilities connected with JAERI at the Oarai and Tokai establishments. Uranium silicide fission product release experimental data and related acquisition systems were discussed. A presentation was made by the traveler on analysis and modeling of fission product release from UAl reactor fuels. Data obtained by JAERI thus far were offered to the traveler for Oak Ridge National Laboratory (ORNL) review and analysis. This data confirmed key aspects of ORNL theoretical model predictions and will be useful for Advanced Neutron Source (ANS) design. The Oarai establishment expressed their interest and willingness to pursue ORNL/JAERI cooperative efforts in understanding volatile fission product release behavior from silicide fuels. The traveler also presented a perspective overview on ORNL severe accident analysis technology and identified areas for cooperation in JAERI's forthcoming transient testing program. JAERI staff presented plans for evaluating silicide fuel performance under transient reactivity insertion accident conditions in the Nuclear Safety Research Reactor (NSRR) facility. A surprise announcement was made concerning JAERI's most recent initiative relating to the construction of a safety demonstration reactor (SDR) at the Tokai site. The purpose of this reactor facility would be to demonstrate operational safety of both Pressurized Water Reactors (PWRs) and Boiling Water Reactors (BWRs) in support of Japan's nuclear power industry.

  16. Experiment Safety Assurance Package for Mixed Oxide Fuel Irradiation in an Average Power Position (I-24) in the Advanced Test Reactor

    SciTech Connect

    J. M . Ryskamp; R. C. Howard; R. C. Pedersen; S. T. Khericha

    1998-10-01

    The Fissile Material Disposition Program Light Water Reactor Mixed Oxide Fuel Irradiation Test Project Plan details a series of test irradiations designed to investigate the use of weapons-grade plutonium in MOX fuel for light water reactors (LWR) (Cowell 1996a, Cowell 1997a, Thoms 1997a). Commercial MOX fuel has been successfully used in overseas reactors for many years; however, weapons-derived test fuel contains small amounts of gallium (about 2 parts per million). A concern exists that the gallium may migrate out of the fuel and into the clad, inducing embrittlement. For preliminary out-of-pile experiments, Wilson (1997) states that intermetallic compound formation is the principal interaction mechanism between zircaloy cladding and gallium. This interaction is very limited by the low mass of gallium, so problems are not expected with the zircaloy cladding, but an in-pile experiment is needed to confirm the out-of-pile experiments. Ryskamp (1998) provides an overview of this experiment and its documentation. The purpose of this Experiment Safety Assurance Package (ESAP) is to demonstrate the safe irradiation and handling of the mixed uranium and plutonium oxide (MOX) Fuel Average Power Test (APT) experiment as required by Advanced Test Reactor (ATR) Technical Safety Requirement (TSR) 3.9.1 (LMITCO 1998). This ESAP addresses the specific operation of the MOX Fuel APT experiment with respect to the operating envelope for irradiation established by the Upgraded Final Safety Analysis Report (UFSAR) Lockheed Martin Idaho Technologies Company (LMITCO 1997a). Experiment handling activities are discussed herein.

  17. A small, 1400 K, reactor for Brayton space power systems.

    NASA Technical Reports Server (NTRS)

    Lantz, E.; Mayo, W.

    1972-01-01

    An investigation was conducted to determine minimum dimensions and minimum weight obtainable in a design for a reactor using uranium-233 nitride or plutonium-239 nitride as fuel. Such a reactor had been considered by Krasner et al. (1971). Present space power status is discussed, together with questions of reactor design and power distribution in the reactor. The characteristics of various reactor types are compared, giving attention also to a zirconium hydride reactor.

  18. FUEL ELEMENT FOR NUCLEAR REACTORS

    DOEpatents

    Bassett, C.H.

    1961-05-01

    A nuclear reactor fuel element comprising high density ceramic fissionable material enclosed in a tubular cladding of corrosion-resistant material is described. The fissionable material is in the form of segments of a tube which have cooperating tapered interfaces which produce outward radial displacement when the segments are urged axially together. A resilient means is provided within the tubular housing to constantly urge the fuel segments axially. This design maintains the fuel material in tight contacting engagement against the inner surface of the outer cladding tube to eliminate any gap therebetween which may be caused by differential thermal expansion between the fuel material and the material of the tube.

  19. FUEL ELEMENTS FOR NUCLEAR REACTORS

    DOEpatents

    Blainey, A.; Lloyd, H.

    1961-07-11

    A method of sheathing a tubular fuel element for a nuclear reactor is described. A low melting metal core member is centered in a die, a layer of a powdered sheathing substance is placed on the bottom of the die, the tubular fuel element is inserted in the die, the space between the tubular fuel element and the die walls and core member is filled with the same powdered sheathing substance, a layer of the same substance is placed over the fissile material, and the charge within the die is subjected to pressure in the direction of the axis of the fuel element at the sintering temperature of the protective substance.

  20. NEUTRONIC REACTOR FUEL ELEMENT

    DOEpatents

    Shackleford, M.H.

    1958-12-16

    A fuel element possessing good stability and heat conducting properties is described. The fuel element comprises an outer tube formed of material selected from the group consisting of stainhess steel, V, Ti. Mo. or Zr, a fuel tube concentrically fitting within the outer tube and containing an oxide of an isotope selected from the group consisting of U/sup 235/, U/sup 233/, and Pu/sup 239/, and a hollow, porous core concentrically fitting within the fuel tube and formed of an oxide of an element selected from the group consisting of Mg, Be, and Zr.

  1. NEUTRONIC REACTOR FUEL ELEMENT

    DOEpatents

    Gurinsky, D.H.; Powell, R.W.; Fox, M.

    1959-11-24

    A nuclear fuel element comprising a plurality of nuclear fuel bearing strips is presented. The strips are folded along their longitudinal axes to an angle of about 60 deg and are secured at each end by ferrule to form an elongated assembly suitable for occupying a cylindrical coolant channel.

  2. Criticality of spent reactor fuel

    SciTech Connect

    Harris, D.R.

    1987-01-01

    The storage capacity of spent reactor fuel pools can be greatly increased by consolidation. In this process, the fuel rods are removed from reactor fuel assemblies and are stored in close-packed arrays in a canister or skeleton. An earlier study examined criticality consideration for consolidation of Westinghouse fuel, assumed to be fresh, in canisters at the Millstone-2 spent-fuel pool and in the General Electric IF-300 shipping cask. The conclusions were that the fuel rods in the canister are so deficient in water that they are adequately subcritical, both in normal and in off-normal conditions. One potential accident, the water spill event, remained unresolved in the earlier study. A methodology is developed here for spent-fuel criticality and is applied to the water spill event. The methodology utilizes LEOPARD to compute few-group cross sections for the diffusion code PDQ7, which then is used to compute reactivity. These codes give results for fresh fuel that are in good agreement with KENO IV-NITAWL Monte Carlo results, which themselves are in good agreement with continuous energy Monte Carlo calculations. These methodologies are in reasonable agreement with critical measurements for undepleted fuel.

  3. Thermionic reactors for space nuclear power

    NASA Technical Reports Server (NTRS)

    Homeyer, W. G.; Merrill, M. H.; Holland, J. W.; Fisher, C. R.; Allen, D. T.

    1985-01-01

    Thermionic reactor designs for a variety of space power applications spanning the range from 5 kWe to 3 MWe are described. In all of these reactors, nuclear heat is converted directly to electrical energy in thermionic fuel elements (TFEs). A circulating reactor coolant carries heat from the core of TFEs directly to a heat rejection radiator system. The recent design of a thermionic reactor to meet the SP-100 requirements is emphasized. Design studies of reactors at other power levels show that the same TFE can be used over a broad range in power, and that design modifications can extend the range to many megawatts. The design of the SP-100 TFE is similar to that of TFEs operated successfully in test reactors, but with design improvements to extend the operating lifetime to seven years.

  4. Analysis of UF6 breeder reactor power plants

    NASA Technical Reports Server (NTRS)

    Clement, J. D.; Rust, J. H.

    1976-01-01

    Gaseous UF6 fueled breeder reactor design and technical applications of such concepts are summarized. Special attention was given to application in nuclear power plants and to reactor efficiency and safety factors.

  5. Low power reactor for remote applications

    NASA Astrophysics Data System (ADS)

    Meier, K. L.; Palmer, R. G.; Kirchner, W. L.

    1985-05-01

    A compact, low power reactor is being designed to provide electric power for remote, unattended applications. Because of the high fuel and maintenance costs for conventional power sources such as diesel generators, a reactor power supply appears especially attractive for remote and inaccessible locations. Operating at a thermal power level of 135 kWt, the power supply achieves a gross electrical output of 25 kWe from an organic Rankine cycle (ORC) engine. By intentional selection of design features stressing inherent safety, operation in an unattended mode is possible with minimal risk to the environment. Reliability is achieved through the use of components representing existing, proven technology. Low enrichment uranium particle fuel, in graphite core blocks, cooled by heat pipes coupled to an ORC converter insures long term, virtually maintenance free, operation of this reactor for remote applications.

  6. Low power reactor for remote applications

    SciTech Connect

    Meier, K.L.; Palmer, R.G.; Kirchner, W.L.

    1985-01-01

    A compact, low power reactor is being designed to provide electric power for remote, unattended applications. Because of the high fuel and maintenance costs for conventional power sources such as diesel generators, a reactor power supply appears especially attractive for remote and inaccessible locations. Operating at a thermal power level of 135 kWt, the power supply achieves a gross electrical output of 25 kWe from an organic Rankine cycle (ORC) engine. By intentional selection of design features stressing inherent safety, operation in an unattended mode is possible with minimal risk to the environment. Reliability is achieved through the use of components representing existing, proven technology. Low enrichment uranium particle fuel, in graphite core blocks, cooled by heat pipes coupled to an ORC converter insures long-term, virtually maintenance free, operation of this reactor for remote applications. 10 refs., 7 figs., 3 tabs.

  7. FUEL ELEMENT FOR NUCLEAR REACTORS

    DOEpatents

    Dickson, J.J.

    1963-09-24

    A method is described whereby fuel tubes or pins are cut, loaded with fuel pellets and a heat transfer medium, sealed at each end with slotted fittings, and assembled into a rectangular tube bundle to form a fuel element. The tubes comprising the fuel element are laterally connected between their ends by clips and tabs to form a linear group of spaced parallel tubes, which receive their vertical support by resting on a grid. The advantages of this method are that it permits elimination of structural material (e.g., fuel-element cans) within the reactor core, and removal of at least one fuel pin from an element and replacement thereof so that a burnable poison may be utilized during the core lifetime. (AEC)

  8. Two-Dimensional Mapping of the Calculated Fission Power for the Full-Size Fuel Plate Experiment Irradiated in the Advanced Test Reactor

    NASA Astrophysics Data System (ADS)

    Chang, G. S.; Lillo, M. A.

    2009-08-01

    The National Nuclear Security Administrations (NNSA) Reduced Enrichment for Research and Test Reactors (RERTR) program assigned to the Idaho National Laboratory (INL) the responsibility of developing and demonstrating high uranium density research reactor fuel forms to enable the use of low enriched uranium (LEU) in research and test reactors around the world. A series of full-size fuel plate experiments have been proposed for irradiation testing in the center flux trap (CFT) position of the Advanced Test Reactor (ATR). These full-size fuel plate tests are designated as the AFIP tests. The AFIP nominal fuel zone is rectangular in shape having a designed length of 21.5-in (54.61-cm), width of 1.6-in (4.064-cm), and uniform thickness of 0.014-in (0.03556-cm). This gives a nominal fuel zone volume of 0.482 in3 (7.89 cm3) per fuel plate. The AFIP test assembly has two test positions. Each test position is designed to hold 2 full-size plates, for a total of 4 full-size plates per test assembly. The AFIP test plates will be irradiated at a peak surface heat flux of about 350 W/cm2 and discharged at a peak U-235 burn-up of about 70 at.%. Based on limited irradiation testing of the monolithic (U-10Mo) fuel form, it is desirable to keep the peak fuel temperature below 250°C to achieve this, it will be necessary to keep plate heat fluxes below 500 W/cm2. Due to the heavy U-235 loading and a plate width of 1.6-in (4.064-cm), the neutron self-shielding will increase the local-to-average-ratio (L2AR) fission power near the sides of the fuel plates. To demonstrate that the AFIP experiment will meet the ATR safety requirements, a very detailed 2-dimensional (2D) Y-Z fission power profile was evaluated in order to best predict the fuel plate temperature distribution. The ability to accurately predict fuel plate power and burnup are essential to both the design of the AFIP tests as well as evaluation of the irradiated fuel performance. To support this need, a detailed MCNP Y

  9. High Flux Isotope Reactor power upgrade status

    SciTech Connect

    Rothrock, R.B.; Hale, R.E.; Cheverton, R.D.

    1997-03-01

    A return to 100-MW operation is being planned for the High Flux Isotope Reactor (HFIR). Recent improvements in fuel element manufacturing procedures and inspection equipment will be exploited to reduce hot spot and hot streak factors sufficiently to permit the power upgrade without an increase in primary coolant pressure. Fresh fuel elements already fabricated for future use are being evaluated individually for power upgrade potential based on their measured coolant channel dimensions.

  10. Characteristics and Dose Levels for Spent Reactor Fuels

    SciTech Connect

    Coates, Cameron W

    2007-01-01

    Current guidance considers highly radioactive special nuclear materials to be those materials that, unshielded, emit a radiation dose [rate] measured at 1 m which exceeds 100 rem/h. Smaller, less massive fuel assemblies from research reactors can present a challenge from the point of view of self protection because of their size (lower dose, easier to handle) and the desirability of higher enrichments; however, a follow-on study to cross-compare dose trends of research reactors and power reactors was deemed useful to confirm/verify these trends. This paper summarizes the characteristics and dose levels of spent reactor fuels for both research reactors and power reactors and extends previous studies aimed at quantifying expected dose rates from research reactor fuels worldwide.

  11. Nuclear reactor composite fuel assembly

    DOEpatents

    Burgess, Donn M.; Marr, Duane R.; Cappiello, Michael W.; Omberg, Ronald P.

    1980-01-01

    A core and composite fuel assembly for a liquid-cooled breeder nuclear reactor including a plurality of elongated coextending driver and breeder fuel elements arranged to form a generally polygonal bundle within a thin-walled duct. The breeder elements are larger in cross section than the driver elements, and each breeder element is laterally bounded by a number of the driver elements. Each driver element further includes structure for spacing the driver elements from adjacent fuel elements and, where adjacent, the thin-walled duct. A core made up of the fuel elements can advantageously include fissile fuel of only one enrichment, while varying the effective enrichment of any given assembly or core region, merely by varying the relative number and size of the driver and breeder elements.

  12. Studying the vibration and random hydrodynamic loads on the fuel rods bundles in the fuel assemblies of the reactor installations used at nuclear power stations equipped with VVER reactors

    NASA Astrophysics Data System (ADS)

    Solonin, V. I.; Perevezentsev, V. V.

    2012-05-01

    Random hydrodynamic loads causing vibration of fuel rod bundles in a turbulent flow of coolant are obtained from the results of pressure pulsation measurements carried out over the perimeter of the external row of fuel rods in the bundle of a full-scale mockup of a fuel assembly used in a second-generation VVER-440 reactor. It is shown that the turbulent flow structure is a factor determining the parameters of random hydrodynamic loads and the vibration of fuel rod bundles excited by these loads. The results from a calculation of random hydrodynamic loads are used for estimating the vibration levels of fuel rod bundles used in prospective designs of fuel assemblies for VVER reactors.

  13. High Performance Fuel Desing for Next Generation Pressurized Water Reactors

    SciTech Connect

    Mujid S. Kazimi; Pavel Hejzlar

    2006-01-31

    The use of internally and externally cooled annular fule rods for high power density Pressurized Water Reactors is assessed. The assessment included steady state and transient thermal conditions, neutronic and fuel management requirements, mechanical vibration issues, fuel performance issues, fuel fabrication methods and econmic assessment. The investigation was donducted by a team from MIT, Westinghouse, Gamma Engineering, Framatome ANP, and AECL. The analyses led to the conclusion that raising the power density by 50% may be possible with this advanced fuel. Even at the 150% power level, the fuel temperature would be a few hundred degrees lower than the current fuel temperatre. Significant economic and safety advantages can be obtained by using this fuel in new reactors. Switching to this type of fuel for existing reactors would yield safety advantages, but the economic return is dependent on the duration of plant shutdown to accommodate higher power production. The main feasiblity issue for the high power performance appears to be the potential for uneven splitting of heat flux between the inner and outer fuel surfaces due to premature closure of the outer fuel-cladding gap. This could be overcome by using a very narrow gap for the inner fuel surface and/or the spraying of a crushable zirconium oxide film at the fuel pellet outer surface. An alternative fuel manufacturing approach using vobropacking was also investigated but appears to yield lower than desirable fuel density.

  14. Thermionic reactors for space nuclear power

    NASA Astrophysics Data System (ADS)

    Griaznov, Georgii M.; Zhabotinskii, Evgenii E.; Serbin, Victor I.; Zrodnikov, Anatolii V.; Pupko, Victor Ia.; Ponomarev-Stepnoi, Nikolai N.; Usov, V. A.; Nikolaev, Iu. V.

    Compact thermionic nuclear reactor systems with satisfactory mass performance are competitive with space nuclear power systems based on the organic Rankine and closed Brayton cycles. The mass characteristics of the thermionic space nuclear power system are better than that of the solar power system for power levels beyond about 10 kWe. Longlife thermionic fuel element requirements, including their optimal dimensions, and common requirements for the in-core thermionic reactor design are formulated. Thermal and fast in-core thermionic reactors are considered and the ranges of their sensible use are discussed. Some design features of the fast in-core thermionic reactors cores (power range to 1 MWe) including a choice of coolants are discussed. Mass and dimensional performance for thermionic nuclear power reactor system are assessed. It is concluded that thermionic space nuclear power systems are promising power supplies for spacecrafts and that a single basic type of thermionic fuel element may be used for power requirements ranging to several hundred kWe.

  15. Fuel cell power supply with oxidant and fuel gas switching

    DOEpatents

    McElroy, James F.; Chludzinski, Paul J.; Dantowitz, Philip

    1987-01-01

    This invention relates to a fuel cell vehicular power plant. Fuel for the fuel stack is supplied by a hydrocarbon (methanol) catalytic cracking reactor and CO shift reactor. A water electrolysis subsystem is associated with the stack. During low power operation part of the fuel cell power is used to electrolyze water with hydrogen and oxygen electrolysis products being stored in pressure vessels. During peak power intervals, viz, during acceleration or start-up, pure oxygen and pure hydrogen from the pressure vessel are supplied as the reaction gases to the cathodes and anodes in place of air and methanol reformate. This allows the fuel cell stack to be sized for normal low power/air operation but with a peak power capacity several times greater than that for normal operation.

  16. Fuel cell power supply with oxidant and fuel gas switching

    DOEpatents

    McElroy, J.F.; Chludzinski, P.J.; Dantowitz, P.

    1987-04-14

    This invention relates to a fuel cell vehicular power plant. Fuel for the fuel stack is supplied by a hydrocarbon (methanol) catalytic cracking reactor and CO shift reactor. A water electrolysis subsystem is associated with the stack. During low power operation part of the fuel cell power is used to electrolyze water with hydrogen and oxygen electrolysis products being stored in pressure vessels. During peak power intervals, viz, during acceleration or start-up, pure oxygen and pure hydrogen from the pressure vessel are supplied as the reaction gases to the cathodes and anodes in place of air and methanol reformate. This allows the fuel cell stack to be sized for normal low power/air operation but with a peak power capacity several times greater than that for normal operation. 2 figs.

  17. 4. VIEW LOOKING NORTHWEST OF FUEL HANDLING BUILDING (CENTER), REACTOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW LOOKING NORTHWEST OF FUEL HANDLING BUILDING (CENTER), REACTOR SERVICE BUILDING (RIGHT), MACHINE SHOP (LEFT) - Shippingport Atomic Power Station, On Ohio River, 25 miles Northwest of Pittsburgh, Shippingport, Beaver County, PA

  18. NUCLEAR REACTOR FUEL ELEMENT ASSEMBLY

    DOEpatents

    Stengel, F.G.

    1963-12-24

    A method of fabricating nuclear reactor fuel element assemblies having a plurality of longitudinally extending flat fuel elements in spaced parallel relation to each other to form channels is presented. One side of a flat side plate is held contiguous to the ends of the elements and a welding means is passed along the other side of the platertransverse to the direction of the longitudinal extension of the elements. The setting and speed of travel of the welding means is set to cause penetration of the side plate with welds at bridge the gap in each channel between adjacent fuel elements with a weld-through bubble of predetermined size. The fabrication of a high strength, dependable fuel element is provided, and the reduction of distortion and high production costs are facilitated by this method. (AEC)

  19. Liquid Metal Cooled Reactor for Space Power

    NASA Astrophysics Data System (ADS)

    Weitzberg, Abraham

    2003-01-01

    The conceptual design is for a liquid metal (LM) cooled nuclear reactor that would provide heat to a closed Brayton cycle (CBC) power conversion subsystem to provide electricity for electric propulsion thrusters and spacecraft power. The baseline power level is 100 kWe to the user. For long term power generation, UN pin fuel with Nb1Zr alloy cladding was selected. As part of the SP-100 Program this fuel demonstrated lifetime with greater than six atom percent burnup, at temperatures in the range of 1400-1500 K. The CBC subsystem was selected because of the performance and lifetime database from commercial and aircraft applications and from prior NASA and DOE space programs. The high efficiency of the CBC also allows the reactor to operate at relatively low power levels over its 15-year life, minimizing the long-term power density and temperature of the fuel. The scope of this paper is limited to only the nuclear components that provide heated helium-xenon gas to the CBC subsystem. The principal challenge for the LM reactor concept was to design the reactor core, shield and primary heat transport subsystems to meet mission requirements in a low mass configuration. The LM concept design approach was to assemble components from prior programs and, with minimum change, determine if the system met the objective of the study. All of the components are based on technologies having substantial data bases. Nuclear, thermalhydraulic, stress, and shielding analyses were performed using available computer codes. Neutronics issues included maintaining adequate operating and shutdown reactivities, even under accident conditions. Thermalhydraulic and stress analyses calculated fuel and material temperatures, coolant flows and temperatures, and thermal stresses in the fuel pins, components and structures. Using conservative design assumptions and practices, consistent with the detailed design work performed during the SP-100 Program, the mass of the reactor, shield, primary heat

  20. Neutronics and fuel behavior of AIROX-processed fuel recycled into light water reactors

    SciTech Connect

    Allison, C.M.; Jahshan, S.N.; Wade, N.L.

    1993-08-01

    An evaluation of the Atomics International Reduction Oxidation (AIROX) process has begun to determine if the process could be used to recycle spent fuel to minimize high-level waste from commercial power reactors. This paper includes an evaluation of core neutronics to establish enrichment levels and expected in-reactor performance: a review of existing fuel behavior research to determine its applicability to AIROX-recycled fuels; and an evaluation of potential licensing issues unique to these fuels.

  1. Fuel handling apparatus for a nuclear reactor

    DOEpatents

    Hawke, Basil C.

    1987-01-01

    Fuel handling apparatus for transporting fuel elements into and out of a nuclear reactor and transporting them within the reactor vessel extends through a penetration in the side of the reactor vessel. A lateral transport device carries the fuel elements laterally within the vessel and through the opening in the side of the vessel, and a reversible lifting device raises and lowers the fuel elements. In the preferred embodiment, the lifting device is supported by a pair of pivot arms.

  2. Compact reactor/ORC power source

    SciTech Connect

    Meier, K.L.; Kirchner, W.L.; Willcutt, G.J.

    1986-01-01

    A compact power source that combines an organic Rankine Cycle (ORC) electric generator with a nuclear reactor heat source is being designed and fabricated. Incorporating existing ORC technology with proven reactor technology, the compact reactor/ORC power source offers high reliability while minimizing the need for component development. Thermal power at 125 kWt is removed from the coated particle fueled, graphite moderated reactor by heat pipes operating at 500/sup 0/C. Outside the reactor vessel and connected to the heat pipes are vaporizers in which the toluene ORC working fluid is heated to 370/sup 0/C. In the turbine-alternator-pump (TAP) combined-rotating unit, the thermal energy of the toluene is converted to 25 kWe of electric power. Lumped parameter systems analyses combined with a finite element thermal analysis have aided in the power source design. The analyses have provided assurance of reliable multiyear normal operation as well as full power operation with upset conditions, such as failed heat pipes and inoperative ORC vaporizers. Because of inherent high reliability, long life, and insensitivity to upset conditions, this power source is especially suited for use in remote, inaccessible locations where fuel delivery and maintenance costs are high. 10 refs.

  3. The problem of optimizing the water chemistry used in the primary coolant circuit of a nuclear power station equipped with VVER reactors under the conditions of longer fuel cycle campaigns and increased capacity of power units

    NASA Astrophysics Data System (ADS)

    Sharafutdinov, R. B.; Kharitonova, N. L.

    2011-05-01

    It is shown that the optimal water chemistry of the primary coolant circuit must be substantiated while introducing measures aimed at increasing the power output in operating power units and for the project called AES-2006/AES TOI (a typical optimized project of a nuclear power station with enhanced information support). The experience gained from operation of PWR reactors with an elongated fuel cycle at an increased level of power is analyzed. Conditions under which boron compounds are locally concentrated on the fuel rod surfaces (the hideout phenomenon) and axial offset anomaly occurs are enlisted, and the influence of lithium on the hideout in the pores of deposits on the surfaces of fuel assemblies is shown.

  4. Fast Reactor Fuel Type and Reactor Safety Performance

    SciTech Connect

    R. Wigeland; J. Cahalan

    2009-09-01

    Fast Reactor Fuel Type and Reactor Safety Performance R. Wigeland , Idaho National Laboratory J. Cahalan, Argonne National Laboratory The sodium-cooled fast neutron reactor is currently being evaluated for the efficient transmutation of the highly-hazardous, long-lived, transuranic elements that are present in spent nuclear fuel. One of the fundamental choices that will be made is the selection of the fuel type for the fast reactor, whether oxide, metal, carbide, nitride, etc. It is likely that a decision on the fuel type will need to be made before many of the related technologies and facilities can be selected, from fuel fabrication to spent fuel reprocessing. A decision on fuel type should consider all impacts on the fast reactor system, including safety. Past work has demonstrated that the choice of fuel type may have a significant impact on the severity of consequences arising from accidents, especially for severe accidents of low probability. In this paper, the response of sodium-cooled fast reactors is discussed for both oxide and metal fuel types, highlighting the similarities and differences in reactor response and accident consequences. Any fast reactor facility must be designed to be able to successfully prevent, mitigate, or accommodate all consequences of potential events, including accidents. This is typically accomplished by using multiple barriers to the release of radiation, including the cladding on the fuel, the intact primary cooling system, and most visibly the reactor containment building. More recently, this has also included the use of ‘inherent safety’ concepts to reduce or eliminate the potential for serious damage in some cases. Past experience with oxide and metal fuel has demonstrated that both fuel types are suitable for use as fuel in a sodium-cooled fast reactor. However, safety analyses for these two fuel types have also shown that there can be substantial differences in accident consequences due to the neutronic and

  5. Evaluation of Metal-Fueled Surface Reactor Concepts

    SciTech Connect

    Poston, David I.; Marcille, Thomas F.; Kapernick, Richard J.; Hiatt, Matthew T.; Amiri, Benjamin W.

    2007-01-30

    Surface fission power systems for use on the Moon and Mars may provide the first use of near-term reactor technology in space. Most near-term surface reactor concepts specify reactor temperatures <1000 K to allow the use of established material and power conversion technology and minimize the impact of the in-situ environment. Metal alloy fuels (e.g. U-10Zr and U-10Mo) have not traditionally been considered for space reactors because of high-temperature requirements, but they might be an attractive option for these lower temperature surface power missions. In addition to temperature limitations, metal fuels are also known to swell significantly at rather low fuel burnups ({approx}1 a/o), but near-term surface missions can mitigate this concern as well, because power and lifetime requirements generally keep fuel burnups <1 a/o. If temperature and swelling issues are not a concern, then a surface reactor concept may be able to benefit from the high uranium density and relative ease of manufacture of metal fuels. This paper investigates two reactor concepts that utilize metal fuels. It is found that these concepts compare very well to concepts that utilize other fuels (UN, UO2, UZrH) on a mass basis, while also providing the potential to simplify material safeguards issues.

  6. Stationary Liquid Fuel Fast Reactor

    SciTech Connect

    Yang, Won Sik; Grandy, Andrew; Boroski, Andrew; Krajtl, Lubomir; Johnson, Terry

    2015-09-30

    For effective burning of hazardous transuranic (TRU) elements of used nuclear fuel, a transformational advanced reactor concept named SLFFR (Stationary Liquid Fuel Fast Reactor) was proposed based on stationary molten metallic fuel. The fuel enters the reactor vessel in a solid form, and then it is heated to molten temperature in a small melting heater. The fuel is contained within a closed, thick container with penetrating coolant channels, and thus it is not mixed with coolant nor flow through the primary heat transfer circuit. The makeup fuel is semi- continuously added to the system, and thus a very small excess reactivity is required. Gaseous fission products are also removed continuously, and a fraction of the fuel is periodically drawn off from the fuel container to a processing facility where non-gaseous mixed fission products and other impurities are removed and then the cleaned fuel is recycled into the fuel container. A reference core design and a preliminary plant system design of a 1000 MWt TRU- burning SLFFR concept were developed using TRU-Ce-Co fuel, Ta-10W fuel container, and sodium coolant. Conservative design approaches were adopted to stay within the current material performance database. Detailed neutronics and thermal-fluidic analyses were performed to develop a reference core design. Region-dependent 33-group cross sections were generated based on the ENDF/B-VII.0 data using the MC2-3 code. Core and fuel cycle analyses were performed in theta-r-z geometries using the DIF3D and REBUS-3 codes. Reactivity coefficients and kinetics parameters were calculated using the VARI3D perturbation theory code. Thermo-fluidic analyses were performed using the ANSYS FLUENT computational fluid dynamics (CFD) code. Figure 0.1 shows a schematic radial layout of the reference 1000 MWt SLFFR core, and Table 0.1 summarizes the main design parameters of SLFFR-1000 loop plant. The fuel container is a 2.5 cm thick cylinder with an inner radius of 87.5 cm. The fuel

  7. REACTOR-FLASH BOILER-FLYWHEEL POWER PLANT

    DOEpatents

    Loeb, E.

    1961-01-17

    A power generator in the form of a flywheel with four reactors positioned about its rim is described. The reactors are so positioned that steam, produced in the reactor, exists tangentially to the flywheel, giving it a rotation. The reactors are incompletely moderated without water. The water enters the flywheel at its axis, under sufficient pressure to force it through the reactors, where it is converted to steam. The fuel consists of parallel twisted ribbons assembled to approximate a cylinder.

  8. Fuel Summary Report: Shippingport Light Water Breeder Reactor - Rev. 2

    SciTech Connect

    Olson, Gail Lynn; Mc Cardell, Richard Keith; Illum, Douglas Brent

    2002-09-01

    The Shippingport Light Water Breeder Reactor (LWBR) was developed by Bettis Atomic Power Laboratory to demonstrate the potential of a water-cooled, thorium oxide fuel cycle breeder reactor. The LWBR core operated from 1977-82 without major incident. The fuel and fuel components suffered minimal damage during operation, and the reactor testing was deemed successful. Extensive destructive and nondestructive postirradiation examinations confirmed that the fuel was in good condition with minimal amounts of cladding deformities and fuel pellet cracks. Fuel was placed in wet storage upon arrival at the Expended Core Facility, then dried and sent to the Idaho Nuclear Technology and Engineering Center for underground dry storage. It is likely that the fuel remains in good condition at its current underground dry storage location at the Idaho Nuclear Technology and Engineering Center. Reports show no indication of damage to the core associated with shipping, loading, or storage.

  9. Fuel Cycle Performance of Thermal Spectrum Small Modular Reactors

    SciTech Connect

    Worrall, Andrew; Todosow, Michael

    2016-01-01

    Small modular reactors may offer potential benefits, such as enhanced operational flexibility. However, it is vital to understand the holistic impact of small modular reactors on the nuclear fuel cycle and fuel cycle performance. The focus of this paper is on the fuel cycle impacts of light water small modular reactors in a once-through fuel cycle with low-enriched uranium fuel. A key objective of this paper is to describe preliminary reactor core physics and fuel cycle analyses conducted in support of the U.S. Department of Energy Office of Nuclear Energy Fuel Cycle Options Campaign. Challenges with small modular reactors include: increased neutron leakage, fewer assemblies in the core (and therefore fewer degrees of freedom in the core design), complex enrichment and burnable absorber loadings, full power operation with inserted control rods, the potential for frequent load-following operation, and shortened core height. Each of these will impact the achievable discharge burn-up in the reactor and the fuel cycle performance. This paper summarizes the results of an expert elicitation focused on developing a list of the factors relevant to small modular reactor fuel, core, and operation that will impact fuel cycle performance. Preliminary scoping analyses were performed using a regulatory-grade reactor core simulator. The hypothetical light water small modular reactor considered in these preliminary scoping studies is a cartridge type one-batch core with 4.9% enrichment. Some core parameters, such as the size of the reactor and general assembly layout, are similar to an example small modular reactor concept from industry. The high-level issues identified and preliminary scoping calculations in this paper are intended to inform on potential fuel cycle impacts of one-batch thermal spectrum SMRs. In particular, this paper highlights the impact of increased neutron leakage and reduced number of batches on the achievable burn-up of the reactor. Fuel cycle performance

  10. Spent fuel utilization in a compact traveling wave reactor

    SciTech Connect

    Hartanto, Donny; Kim, Yonghee

    2012-06-06

    In recent years, several innovative designs of nuclear reactors are proposed. One of them is Traveling Wave Reactor (TWR). The unique characteristic of a TWR is the capability of breeding its own fuel in the reactor. The reactor is fueled by mostly depleted, natural uranium or spent nuclear fuel and a small amount of enriched uranium to initiate the fission process. Later on in the core, the reactor gradually converts the non-fissile material into the fissile in a process like a traveling wave. In this work, a TWR with spent nuclear fuel blanket was studied. Several parameters such as reactivity coefficients, delayed neutron fraction, prompt neutron generation lifetime, and fission power, were analyzed. The discharge burnup composition was also analyzed. The calculation is performed by a continuous energy Monte Carlo code McCARD.

  11. Control of autothermal reforming reactor of diesel fuel

    NASA Astrophysics Data System (ADS)

    Dolanc, Gregor; Pregelj, Boštjan; Petrovčič, Janko; Pasel, Joachim; Kolb, Gunther

    2016-05-01

    In this paper a control system for autothermal reforming reactor for diesel fuel is presented. Autothermal reforming reactors and the pertaining purification reactors are used to convert diesel fuel into hydrogen-rich reformate gas, which is then converted into electricity by the fuel cell. The purpose of the presented control system is to control the hydrogen production rate and the temperature of the autothermal reforming reactor. The system is designed in such a way that the two control loops do not interact, which is required for stable operation of the fuel cell. The presented control system is a part of the complete control system of the diesel fuel cell auxiliary power unit (APU).

  12. Corrosion Minimization for Research Reactor Fuel

    SciTech Connect

    Eric Shaber; Gerard Hofman

    2005-06-01

    Existing university research reactors are being converted to use low-enriched uranium fue to eliminate the use of highly-enriched uranium. These conversions require increases in fuel loading that will result in the use of elements with more fuel plates, resulting in a net decrease in the water annulus between fuel plates. The proposed decrease in the water annulus raises questions about the requirements and stability of the surface hydroxide on the aluminum fuel cladding and the potential for runaway corrosion resulting in fuel over-temperature incidents. The Nuclear Regulatory Commission (NRC), as regulator for these university reactors, must ensure that proposed fuel modifications will not result in any increased risk or hazard to the reactor operators or the public. This document reviews the characteristics and behavior of aluminum hydroxides, analyzes the drivers for fuel plate corrosion, reviews relevant historical incidents, and provides recommendations on fuel design, surface treatment, and reactor operational practices to avoid corrosion issues.

  13. REACTOR PHYSICS MODELING OF SPENT NUCLEAR RESEARCH REACTOR FUEL FOR SNM ATTRIBUTION AND NUCLEAR FORENSICS

    SciTech Connect

    Sternat, M.; Beals, D.; Webb, R.; Nichols, T.

    2010-06-09

    Nuclear research reactors are the least safeguarded type of reactor; in some cases this may be attributed to low risk and in most cases it is due to difficulty from dynamic operation. Research reactors vary greatly in size, fuel type, enrichment, power and burnup providing a significant challenge to any standardized safeguard system. If a whole fuel assembly was interdicted, based on geometry and other traditional forensics work, one could identify the material's origin fairly accurately. If the material has been dispersed or reprocessed, in-depth reactor physics models may be used to help with the identification. Should there be a need to attribute research reactor fuel material, the Savannah River National Laboratory would perform radiochemical analysis of samples of the material as well as other non-destructive measurements. In depth reactor physics modeling would then be performed to compare to these measured results in an attempt to associate the measured results with various reactor parameters. Several reactor physics codes are being used and considered for this purpose, including: MONTEBURNS/ORIGEN/MCNP5, CINDER/MCNPX and WIMS. In attempt to identify reactor characteristics, such as time since shutdown, burnup, or power, various isotopes are used. Complexities arise when the inherent assumptions embedded in different reactor physics codes handle the isotopes differently and may quantify them to different levels of accuracy. A technical approach to modeling spent research reactor fuel begins at the assembly level upon acquiring detailed information of the reactor to be modeled. A single assembly is run using periodic boundary conditions to simulate an infinite lattice which may be repeatedly burned to produce input fuel isotopic vectors of various burnups for a core level model. A core level model will then be constructed using the assembly level results as inputs for the specific fuel shuffling pattern in an attempt to establish an equilibrium cycle. The

  14. Fuel elements of research reactor CM

    SciTech Connect

    Kozlov, A.V.; Morozov, A.V.; Vatulin, A.V.; Ershov, S.A.

    2013-07-01

    In 1961 the CM research reactor was commissioned at the Research Institute of Atomic Reactors (Dimitrovgrad, Russia), it was intended to carry on investigations and the production of transuranium nuclides. The reactor is of a tank type. Original fuel assembly contained plate fuels that were spaced with vanes and corrugated bands. Nickel was used as a cladding material, fuel meat was produced from UO{sub 2} + electrolytic nickel composition. Fuel plates have been replaced by self-spacing cross-shaped dispersion fuels clad in stainless steel. In 2005 the reactor was updated. The purpose of this updating was to increase the quantity of irradiation channels in the reactor core and to improve the neutron balance. The updating was implemented at the expense of 20 % reduction in the quantity of fuel elements in the core which released a space for extra channels and decreased the mass of structural materials in the core. The updated reactor is loaded with modified standard fuel elements with 20 % higher uranium masses. At the same time stainless steel in fuel assembly shrouds was substituted by zirconium alloy. Today in progress are investigations and work to promote the second stage of reactor updating that involve developments of cross-shaped fuel elements having low neutron absorption matrix materials. This article gives an historical account of the design and main technical changes that occurred for the CM reactor since its commissioning.

  15. Molten salt reactors for burning dismantled weapons fuel

    SciTech Connect

    Gat, U.; Engel, J.R. ); Dodds, H.L. . Dept. of Nuclear Engineering)

    1992-12-01

    In this paper, the molten salt reactor (MSR) option for burning fissile fuel form dismantled weapons is examined. It is concluded that MSRs are potentially suitable for beneficial utilization of the dismantled fuel. the MSRs have the flexibility to utilize any fissile fuel in continuous operation with no special modifications, as demonstrated in the Molten Salt Reactor Experiment, while maintaining their economy. The MSRs further require a minimum of special fuel preparation and can tolerate denaturing and dilution of the fuel. Fuel shipments can be arbitrarily small, which may reduce the risk of diversion. The MSRs have inherent safety features that make them acceptable and attractive. They can burn a fuel type completely and convert it to other fuels. The MSRs also have the potential for burning the actinides and delivering the waste in an optimal form, thus contributing to the solution of one of the major remaining problems for deployment o nuclear power.

  16. Research reactor de-fueling and fuel shipment

    SciTech Connect

    Ice, R.D.; Jawdeh, E.; Strydom, J.

    1998-08-01

    Planning for the Georgia Institute of Technology Research Reactor operations during the 1996 Summer Olympic Games began in early 1995. Before any details could be outlined, several preliminary administrative decisions had to be agreed upon by state, city, and university officials. The two major administrative decisions involving the reactor were (1) the security level and requirements and (2) the fuel status of the reactor. The Georgia Tech Research Reactor (GTRR) was a heavy-water moderated and cooled reactor, fueled with high-enriched uranium. The reactor was first licensed in 1964 with an engineered lifetime of thirty years. The reactor was intended for use in research applications and as a teaching facility for nuclear engineering students and reactor operators. Approximately one year prior to the olympics, the Georgia Tech administration decided that the GTRR fuel would be removed. In addition, a heightened, beyond regulatory requirements, security system was to be implemented. This report describes the scheduling, operations, and procedures.

  17. Plasma-gun fueling for tokamak reactors

    SciTech Connect

    Ehst, D.A.

    1980-11-01

    In light of the uncertain extrapolation of gas puffing for reactor fueling and certain limitations to pellet injection, the snowplow plasma gun has been studied as a fueling device. Based on current understanding of gun and plasma behavior a design is proposed, and its performance is predicted in a tokamak reactor environment.

  18. DECONTAMINATION OF NEUTRON-IRRADIATED REACTOR FUEL

    DOEpatents

    Buyers, A.G.; Rosen, F.D.; Motta, E.E.

    1959-12-22

    A pyrometallurgical method of decontaminating neutronirradiated reactor fuel is presented. In accordance with the invention, neutron-irradiated reactor fuel may be decontaminated by countercurrently contacting the fuel with a bed of alkali and alkaine fluorides under an inert gas atmosphere and inductively melting the fuel and tracking the resulting descending molten fuel with induction heating as it passes through the bed. By this method, a large, continually fresh surface of salt is exposed to the descending molten fuel which enhances the efficiency of the scrubbing operation.

  19. United States Domestic Research Reactor Infrastrucutre TRIGA Reactor Fuel Support

    SciTech Connect

    Douglas Morrell

    2011-03-01

    The United State Domestic Research Reactor Infrastructure Program at the Idaho National Laboratory manages and provides project management, technical, quality engineering, quality inspection and nuclear material support for the United States Department of Energy sponsored University Reactor Fuels Program. This program provides fresh, unirradiated nuclear fuel to Domestic University Research Reactor Facilities and is responsible for the return of the DOE-owned, irradiated nuclear fuel over the life of the program. This presentation will introduce the program management team, the universities supported by the program, the status of the program and focus on the return process of irradiated nuclear fuel for long term storage at DOE managed receipt facilities. It will include lessons learned from research reactor facilities that have successfully shipped spent fuel elements to DOE receipt facilities.

  20. High power density reactors based on direct cooled particle beds

    NASA Astrophysics Data System (ADS)

    Powell, J. R.; Horn, F. L.

    Reactors based on direct cooled High Temperature Gas Cooled Reactor (HTGR) type particle fuel are described. The small diameter particle fuel is packed between concentric porous cylinders to make annular fuel elements, with the inlet coolant gas flowing inwards. Hot exit gas flows out along the central channel of each element. Because of the very large heat transfer area in the packed beds, power densities in particle bed reactors (PBRs) are extremely high resulting in compact, lightweight systems. Coolant exit temperatures are high, because of the ceramic fuel temperature capabilities, and the reactors can be ramped to full power and temperature very rapidly. PBR systems can generate very high burst power levels using open cycle hydrogen coolant, or high continuous powers using closed cycle helium coolant. PBR technology is described and development requirements assessed.

  1. Specific power of liquid-metal-cooled reactors

    SciTech Connect

    Dobranich, D.

    1987-10-01

    Calculations of the core specific power for conceptual space-based liquid-metal-cooled reactors, based on heat transfer considerations, are presented for three different fuel types: (1) pin-type fuel; (2) cermet fuel; and (3) thermionic fuel. The calculations are based on simple models and are intended to provide preliminary comparative results. The specific power is of interest because it is a measure of the core mass required to produce a given amount of power. Potential problems concerning zero-g critical heat flux and loss-of-coolant accidents are also discussed because these concerns may limit the core specific power. Insufficient experimental data exists to accurately determine the critical heat flux of liquid-metal-cooled reactors in space; however, preliminary calculations indicate that it may be a concern. Results also indicate that the specific power of the pin-type fuels can be increased significantly if the gap between the fuel and the clad is eliminated. Cermet reactors offer the highest specific power because of the excellent thermal conductivity of the core matrix material. However, it may not be possible to take fuel advantage of this characteristic when loss-of-coolant accidents are considered in the final core design. The specific power of the thermionic fuels is dependent mainly on the emitter temperature. The small diameter thermionic fuels have specific powers comparable to those of pin-type fuels. 11 refs., 12 figs, 2 tabs.

  2. Fuel Development For Gas-Cooled Fast Reactors

    SciTech Connect

    M. K. Meyer

    2006-06-01

    The Generation IV Gas-cooled Fast Reactor (GFR) concept is proposed to combine the advantages of high-temperature gas-cooled reactors (such as efficient direct conversion with a gas turbine and the potential for application of high-temperature process heat), with the sustainability advantages that are possible with a fast-spectrum reactor. The latter include the ability to fission all transuranics and the potential for breeding. The GFR is part of a consistent set of gas-cooled reactors that includes a medium-term Pebble Bed Modular Reactor (PBMR)-like concept, or concepts based on the Gas Turbine Modular Helium Reactor (GT-MHR), and specialized concepts such as the Very High Temperature Reactor (VHTR), as well as actinide burning concepts [ ]. To achieve the necessary high power density and the ability to retain fission gas at high temperature, the primary fuel concept proposed for testing in the United States is a dispersion coated fuel particles in a ceramic matrix. Alternative fuel concepts considered in the U.S. and internationally include coated particle beds, ceramic clad fuel pins, and novel ceramic ‘honeycomb’ structures. Both mixed carbide and mixed nitride-based solid solutions are considered as fuel phases.

  3. Fuel development for gas-cooled fast reactors

    NASA Astrophysics Data System (ADS)

    Meyer, M. K.; Fielding, R.; Gan, J.

    2007-09-01

    The Generation IV Gas-cooled Fast Reactor (GFR) concept is proposed to combine the advantages of high-temperature gas-cooled reactors (such as efficient direct conversion with a gas turbine and the potential for application of high-temperature process heat), with the sustainability advantages that are possible with a fast-spectrum reactor. The latter include the ability to fission all transuranics and the potential for breeding. The GFR is part of a consistent set of gas-cooled reactors that includes a medium-term Pebble Bed Modular Reactor (PBMR)-like concept, or concepts based on the Gas Turbine Modular Helium Reactor (GT-MHR), and specialized concepts such as the Very High-Temperature Reactor (VHTR), as well as actinide burning concepts [A Technology Roadmap for Generation IV Nuclear Energy Systems, US DOE Nuclear Energy Research Advisory Committee and the Generation IV International Forum, December 2002]. To achieve the necessary high power density and the ability to retain fission gas at high temperature, the primary fuel concept proposed for testing in the United States is dispersion coated fuel particles in a ceramic matrix. Alternative fuel concepts considered in the US and internationally include coated particle beds, ceramic clad fuel pins, and novel ceramic 'honeycomb' structures. Both mixed carbide and mixed nitride-based solid solutions are considered as fuel phases.

  4. FUEL-BREEDER FUEL ELEMENT FOR NUCLEAR REACTOR

    DOEpatents

    Abbott, W.E.; Balent, R.

    1958-09-16

    A fuel element design to facilitate breeding reactor fuel is described. The fuel element is comprised of a coatainer, a central core of fertile material in the container, a first bonding material surrounding the core, a sheet of fissionable material immediately surrounding the first bonding material, and a second bonding material surrounding the fissionable material and being in coniact with said container.

  5. Hybrid fusion reactor for production of nuclear fuel with minimum radioactive contamination of the fuel cycle

    NASA Astrophysics Data System (ADS)

    Velikhov, E. P.; Kovalchuk, M. V.; Azizov, E. A.; Ignatiev, V. V.; Subbotin, S. A.; Tsibulskiy, V. F.

    2015-12-01

    The paper presents the results of the system research on the coordinated development of nuclear and fusion power engineering in the current century. Considering the increasing problems of resource procurement, including limited natural uranium resources, it seems reasonable to use fusion reactors as high-power neutron sources for production of nuclear fuel in a blanket. It is shown that the share of fusion sources in this structural configuration of the energy system can be relatively small. A fundamentally important aspect of this solution to the problem of closure of the fuel cycle is that recycling of highly active spent fuel can be abandoned. Radioactivity released during the recycling of the spent fuel from the hybrid reactor blanket is at least two orders of magnitude lower than during the production of the same number of fissile isotopes after the recycling of the spent fuel from a fast reactor.

  6. Hybrid fusion reactor for production of nuclear fuel with minimum radioactive contamination of the fuel cycle

    SciTech Connect

    Velikhov, E. P.; Kovalchuk, M. V.; Azizov, E. A. Ignatiev, V. V.; Subbotin, S. A. Tsibulskiy, V. F.

    2015-12-15

    The paper presents the results of the system research on the coordinated development of nuclear and fusion power engineering in the current century. Considering the increasing problems of resource procurement, including limited natural uranium resources, it seems reasonable to use fusion reactors as high-power neutron sources for production of nuclear fuel in a blanket. It is shown that the share of fusion sources in this structural configuration of the energy system can be relatively small. A fundamentally important aspect of this solution to the problem of closure of the fuel cycle is that recycling of highly active spent fuel can be abandoned. Radioactivity released during the recycling of the spent fuel from the hybrid reactor blanket is at least two orders of magnitude lower than during the production of the same number of fissile isotopes after the recycling of the spent fuel from a fast reactor.

  7. Monolithic fuel cell based power source for burst power generation

    NASA Astrophysics Data System (ADS)

    Fee, D. C.; Blackburn, P. E.; Busch, D. E.; Dees, D. W.; Dusek, J.; Easler, T. E.; Ellingson, W. A.; Flandermeyer, B. K.; Fousek, R. J.; Heiberger, J. J.

    A unique fuel cell coupled with a low power nuclear reactor presents an attractive approach for SDI burst power requirements. The monolithic fuel cell looks attractive for space applications and represents a quantum jump in fuel cell technology. Such a breakthrough in design is the enabling technology for lightweight, low volume power sources for space based pulse power systems. The monolith is unique among fuel cells in being an all solid state device. The capability for miniaturization, inherent in solid state devices, gives the low volume required for space missions. In addition, the solid oxide fuel cell technology employed in the monolith has high temperature reject heat and can be operated in either closed or open cycles. Both these features are attractive for integration into a burst power system.

  8. Preliminary results of calculations for heavy-water nuclear-power-plant reactors employing 235U, 233U, and 232Th as a fuel and meeting requirements of a nonproliferation of nuclear weapons

    NASA Astrophysics Data System (ADS)

    Ioffe, B. L.; Kochurov, B. P.

    2012-02-01

    A physical design is developed for a gas-cooled heavy-water nuclear reactor intended for a project of a nuclear power plant. As a fuel, the reactor would employ thorium with a small admixture of enriched uranium that contains not more than 20% of 235U. It operates in the open-cycle mode involving 233U production from thorium and its subsequent burnup. The reactor meets the conditions of a nonproliferation of nuclear weapons: the content of fissionable isotopes in uranium at all stages of the process, including the final one, is below the threshold for constructing an atomic bomb, the amount of product plutonium being extremely small.

  9. Preliminary results of calculations for heavy-water nuclear-power-plant reactors employing {sup 235}U, {sup 233}U, and {sup 232}Th as a fuel and meeting requirements of a nonproliferation of nuclear weapons

    SciTech Connect

    Ioffe, B. L.; Kochurov, B. P.

    2012-02-15

    A physical design is developed for a gas-cooled heavy-water nuclear reactor intended for a project of a nuclear power plant. As a fuel, the reactor would employ thorium with a small admixture of enriched uranium that contains not more than 20% of {sup 235}U. It operates in the open-cycle mode involving {sup 233}U production from thorium and its subsequent burnup. The reactor meets the conditions of a nonproliferation of nuclear weapons: the content of fissionable isotopes in uranium at all stages of the process, including the final one, is below the threshold for constructing an atomic bomb, the amount of product plutonium being extremely small.

  10. Multimegawatt space power reactors

    SciTech Connect

    Dearien, J.A.; Whitbeck, J.F.

    1989-01-01

    In response to the need of the Strategic Defense Initiative (SDI) and long range space exploration and extra-terrestrial basing by the National Air and Space Administration (NASA), concepts for nuclear power systems in the multi-megawatt levels are being designed and evaluated. The requirements for these power systems are being driven primarily by the need to minimize weight and maximize safety and reliability. This paper will discuss the present requirements for space based advanced power systems, technological issues associated with the development of these advanced nuclear power systems, and some of the concepts proposed for generating large amounts of power in space. 31 figs.

  11. Novel microfibrous composite bed reactor: high efficiency H2 production from NH3 with potential for portable fuel cell power supplies.

    PubMed

    Lu, Yong; Wang, Hong; Liu, Ye; Xue, Qingsong; Chen, Li; He, Mingyuan

    2007-01-01

    A novel microfibrous composite bed reactor was developed and was demonstrated for high efficiency hydrogen production by the decomposition of ammonia at moderate temperatures in portable fuel cell power system applications. By using a high-speed and low-cost papermaking technology combined with a subsequent sintering process, sinter-locked three-dimensional microfibrous networks consisting of approximately 3 vol% 8 microm (dia.) nickel microfibers were utilized to entrap approximately 35 vol% 100-200 microm dia. porous Al(2)O(3) support particulates. A CeO(2) promoter and active Ni component were then dispersed onto the pore surface of the entrapped Al(2)O(3) support particulates by a stepwise incipient wetness impregnation method. The microfibrous structure took advantage of a large void volume, entirely open structure, high heat/mass transfer, high permeability, good thermal stability, and unique form factors. Addition of ceria significantly promoted the low-temperature activity of Ni/Al(2)O(3) catalyst particulates incorporated into the micorfibrous structure. The use of fine particles of catalyst significantly attenuated the intraparticle mass transport limitations. As a result, the present novel microfibrous composite bed reactor provided excellent activity and structure stability in ammonia decomposition, as well as low pressure drop and high efficiency reactor design. At a 90% conversion of a 145 sccm ammonia feed rate, the microfibrous entrapped Ni/CeO(2)-Al(2)O(3) catalyst composite bed could provide a 4-fold reduction of catalytic bed volume and a 5-fold reduction of catalytic bed weight (or 9-fold reduction of catalyst dosage), while leading to a reduction of reaction temperature of 100 degrees C, compared to a packed bed with 2 mm dia. Ni/CeO(2)-Al(2)O(3) catalyst pellets. This composite bed was capable of producing roughly 22 W of hydrogen power, with an ammonia conversion of 99% at 600 degrees C in a bed volume of 0.5 cm(3) throughout a 100 h

  12. NEUTRONIC REACTOR FUEL ELEMENT AND CORE SYSTEM

    DOEpatents

    Moore, W.T.

    1958-09-01

    This patent relates to neutronic reactors and in particular to an improved fuel element and a novel reactor core system for facilitating removal of contaminating fission products, as they are fermed, from association with the flssionable fuel, so as to mitigate the interferent effects of such fission products during reactor operation. The fuel elements are comprised of tubular members impervious to fluid and contatning on their interior surfaces a thin layer of fissionable material providing a central void. The core structure is comprised of a plurality of the tubular fuel elements arranged in parallel and a closed manifold connected to their ends. In the reactor the core structure is dispersed in a water moderator and coolant within a pressure vessel, and a means connected to said manifuld is provided for withdrawing and disposing of mobile fission product contamination from the interior of the feel tubes and manifold.

  13. Plutonium Discharge Rates and Spent Nuclear Fuel Inventory Estimates for Nuclear Reactors Worldwide

    SciTech Connect

    Brian K. Castle; Shauna A. Hoiland; Richard A. Rankin; James W. Sterbentz

    2012-09-01

    This report presents a preliminary survey and analysis of the five primary types of commercial nuclear power reactors currently in use around the world. Plutonium mass discharge rates from the reactors’ spent fuel at reload are estimated based on a simple methodology that is able to use limited reactor burnup and operational characteristics collected from a variety of public domain sources. Selected commercial reactor operating and nuclear core characteristics are also given for each reactor type. In addition to the worldwide commercial reactors survey, a materials test reactor survey was conducted to identify reactors of this type with a significant core power rating. Over 100 material or research reactors with a core power rating >1 MW fall into this category. Fuel characteristics and spent fuel inventories for these material test reactors are also provided herein.

  14. POWER GENERATING NEUTRONIC REACTOR SYSTEM

    DOEpatents

    Vernon, H.C.

    1958-03-01

    This patent relates to reactor systems of the type wherein the cooiing medium is a liquid which is converted by the heat of the reaction to steam which is conveyed directly to a pnime mover such as a steam turbine driving a generatore after which it is condensed and returred to the coolant circuit. In this design, the reactor core is disposed within a tank for containing either a slurry type fuel or an aggregation of solid fuel elements such as elongated rods submerged in a liquid moderator such as heavy water. The top of the tank is provided with a nozzle which extends into an expansion chamber connected with the upper end of the tank, the coolant being maintained in the expansion chamber at a level above the nozzle and the steam being formed in the expansion chamber.

  15. Nuclear proliferation and civilian nuclear power. Report of the Nonproliferation Alternative Systems Assessment Program. Volume IX. Reactor and fuel cycle description

    SciTech Connect

    Not Available

    1980-06-01

    The Nonproliferation Alterntive Systems Assessment Program (NASAP) has characterized and assessed various reactor/fuel-cycle systems. Volume IX provides, in summary form, the technical descriptions of the reactor/fuel-cycle systems studied. This includes the status of the system technology, as well as a discussion of the safety, environmental, and licensing needs from a technical perspective. This information was then used in developing the research, development, and demonstration (RD and D) program, including its cost and time frame, to advance the existing technology to the level needed for commercial use. Wherever possible, the cost data are given as ranges to reflect the uncertainties in the estimates.

  16. REACTOR PHYSICS MODELING OF SPENT RESEARCH REACTOR FUEL FOR TECHNICAL NUCLEAR FORENSICS

    SciTech Connect

    Nichols, T.; Beals, D.; Sternat, M.

    2011-07-18

    Technical nuclear forensics (TNF) refers to the collection, analysis and evaluation of pre- and post-detonation radiological or nuclear materials, devices, and/or debris. TNF is an integral component, complementing traditional forensics and investigative work, to help enable the attribution of discovered radiological or nuclear material. Research is needed to improve the capabilities of TNF. One research area of interest is determining the isotopic signatures of research reactors. Research reactors are a potential source of both radiological and nuclear material. Research reactors are often the least safeguarded type of reactor; they vary greatly in size, fuel type, enrichment, power, and burn-up. Many research reactors are fueled with highly-enriched uranium (HEU), up to {approx}93% {sup 235}U, which could potentially be used as weapons material. All of them have significant amounts of radiological material with which a radioactive dispersal device (RDD) could be built. Therefore, the ability to attribute if material originated from or was produced in a specific research reactor is an important tool in providing for the security of the United States. Currently there are approximately 237 operating research reactors worldwide, another 12 are in temporary shutdown and 224 research reactors are reported as shut down. Little is currently known about the isotopic signatures of spent research reactor fuel. An effort is underway at Savannah River National Laboratory (SRNL) to analyze spent research reactor fuel to determine these signatures. Computer models, using reactor physics codes, are being compared to the measured analytes in the spent fuel. This allows for improving the reactor physics codes in modeling research reactors for the purpose of nuclear forensics. Currently the Oak Ridge Research reactor (ORR) is being modeled and fuel samples are being analyzed for comparison. Samples of an ORR spent fuel assembly were taken by SRNL for analytical and radiochemical

  17. Critical Issues for Particle-Bed Reactor Fuels

    NASA Astrophysics Data System (ADS)

    Evans, Robert S.; Husser, Dewayne L.; Jensen, Russell R.; Kerr, John M.

    1994-07-01

    Particle-Bed Reactors (PBRs) potentially offer performance advantages for nuclear thermal propulsion, including very high power densities, thrust-to-weight ratios, and specific impulses. A key factor in achieving all of these is the development of a very-high-temperature fuel. The critical issues for all such PBR fuels are uranium loading, thermomechanical and thermochemical stability, compatibility with contacting materials, fission product retention, manufacturability, and operational tolerance for particle failures. Each issue is discussed with respect to its importance to PBR operation, its status among current fuels, and additional development needs. Mixed-carbide-based fuels are recommended for further development to support high-performance PBRs.

  18. Estimate of radiation-induced steel embrittlement in the BWR core shroud and vessel wall from reactor-grade MOX/UOX fuel for the nuclear power plant at Laguna Verde, Veracruz, Mexico

    NASA Astrophysics Data System (ADS)

    Vickers, Lisa Rene

    The government of Mexico has expressed interest to utilize the Laguna Verde boiling water reactor (BWR) nuclear power plant for the disposition of reprocessed spent uranium oxide (UOX) fuel in the form of reactor-grade mixed-oxide (MOX) fuel. MOX fuel would replace spent UOX fuel as a fraction in the core from 18--30% depending on the fuel loading cycle. MOX fuel is expected to increase the neutron fluence, flux, fuel centerline temperature, reactor core pressure, and yield higher energy neutrons. There is concern that a core with a fraction of MOX fuel (i.e., increased 239Pu wt%) would increase the radiation-induced steel embrittlement within the core shroud and vessel wall as compared to only conventional, enriched UOX fuel in the core. The evaluation of radiation-induced steel embrittlement within the core shroud and vessel wall is a concern because of the potentially adverse affect to plant and public safety, environment, and operating life of the reactor. This dissertation provides computational results of the neutron fluence, flux, energy spectrum, and radiation damage displacements per atom per second (dpa-s-1) in steel within the core shroud and vessel wall of the Laguna Verde Unit 1 BWR. The results were computed using the nuclear data processing code NJOY99 and the continuous energy Monte Carlo Neutral Particle transport code MCNP4B. The MCNP4B model of the reactor core was for maximum core loading fractions of ⅓ MOX and ⅔ UOX reactor-grade fuel in an equilibrium core. The primary conclusion of this dissertation was that the addition of the maximum fraction of ⅓ MOX fuel to the LV1 BWR core did significantly accelerate the radiation-induced steel embrittlement such that without mitigation of steel embrittlement by periodic thermal annealing or reduction in operating parameters such as, neutron fluence, core temperature and pressure, it posed a potentially adverse affect to the plant and public safety, environment, and operating life of the reactor.

  19. NON-CORROSIVE REACTOR FUEL SYSTEM

    DOEpatents

    Herrick, C.C.

    1962-08-14

    A non-corrosive nuclear reactor fuel system was developed utilizing a molten plutonium-- iron alloy fuel having about 2 at.% carbon and contained in a tantalum vessel. This carbon reacts with the interior surface of the tantalum vessel to form a plutonium resistant self-healing tantalum carbide film. (AEC)

  20. Modular stellarator reactor: a fusion power plant

    SciTech Connect

    Miller, R.L.; Bathke, C.G.; Krakowski, R.A.; Heck, F.M.; Green, L.; Karbowski, J.S.; Murphy, J.H.; Tupper, R.B.; DeLuca, R.A.; Moazed, A.

    1983-07-01

    A comparative analysis of the modular stellarator and the torsatron concepts is made based upon a steady-state ignited, DT-fueled, reactor embodiment of each concept for use as a central electric-power station. Parametric tradeoff calculations lead to the selection of four design points for an approx. 4-GWt plant based upon Alcator transport scaling in l = 2 systems of moderate aspect ratio. The four design points represent high-aspect ratio. The four design points represent high-(0.08) and low-(0.04) beta versions of the modular stellarator and torsatron concepts. The physics basis of each design point is described together with supporting engineering and economic analyses. The primary intent of this study is the elucidation of key physics and engineering tradeoffs, constraints, and uncertainties with respect to the ultimate power reactor embodiment.

  1. Determination of maximum reactor power level consistent with the requirement that flow reversal occurs without fuel damage

    SciTech Connect

    Rao, D.V.; Darby, J.L.; Ross, S.B.; Clark, R.A.

    1990-04-19

    The High Flux Beam Reactor (HFBR) operated by Brookhaven National Laboratory (BNL) employs forced downflow for heat removal during normal operation. In the event of total loss of forced flow, the reactor will shutdown and the flow reversal valves open. When the downward core flow becomes sufficiently small then the opposing thermal buoyancy induces flow reversal leading to decay heat removal by natural convection. There is some uncertainty as to whether the natural circulation is adequate for decay heat removal after 60 MW operation. BNL- staff carried out a series of calculations to establish the adequacy of flow reversal to remove decay heat. Their calculations are based on a natural convective CHF model. The primary purpose of the present calculations is to review the accuracy and applicability of Fauske`s CHF model for the HFBR, and the assumptions and methodology employed by BNL-staff to determine the heat removal limit in the HFBR during a flow reversal and natural convection situation.

  2. EXTENDING SODIUM FAST REACTOR DRIVER FUEL USE TO HIGHER TEMPERATURES

    SciTech Connect

    Douglas L. Porter

    2011-02-01

    Calculations of potential sodium-cooled fast reactor fuel temperatures were performed to estimate the effects of increasing the outlet temperature of a given fast reactor design by increasing pin power, decreasing assembly flow, or increasing inlet temperature. Based upon experience in the U.S., both metal and mixed oxide (MOX) fuel types are discussed in terms of potential performance effects created by the increased operating temperatures. Assembly outlet temperatures of 600, 650 and 700 °C were used as goal temperatures. Fuel/cladding chemical interaction (FCCI) and fuel melting, as well as challenges to the mechanical integrity of the cladding material, were identified as the limiting phenomena. For example, starting with a recent 1000 MWth fast reactor design, raising the outlet temperature to 650 °C through pin power increase increased the MOX centerline temperature to more than 3300 °C and the metal fuel peak cladding temperature to more than 700 °C. These exceeded limitations to fuel performance; fuel melting was limiting for MOX and FCCI for metal fuel. Both could be alleviated by design ‘fixes’, such as using a barrier inside the cladding to minimize FCCI in the metal fuel, or using annular fuel in the case of MOX. Both would also require an advanced cladding material with improved stress rupture properties. While some of these are costly, the benefits of having a high-temperature reactor which can support hydrogen production, or other missions requiring high process heat may make the extra costs justified.

  3. Liquid metal cooled reactors for space power applications

    NASA Technical Reports Server (NTRS)

    Bailey, S.; Vaidyanathan, S.; Van Hoomissen, J.

    1985-01-01

    The technology basis for evaluation of liquid metal cooled space reactors is summarized. Requirements for space nuclear power which are relevant to selection of the reactor subsystem are then reviewed. The attributes of liquid metal cooled reactors are considered in relation to these requirements in the areas of liquid metal properties, neutron spectrum characteristics, and fuel form. Key features of typical reactor designs are illustrated. It is concluded that liquid metal cooled fast spectrum reactors provide a high confidence, flexible option for meeting requirements for SP-100 and beyond.

  4. Fuel processor for fuel cell power system

    DOEpatents

    Vanderborgh, Nicholas E.; Springer, Thomas E.; Huff, James R.

    1987-01-01

    A catalytic organic fuel processing apparatus, which can be used in a fuel cell power system, contains within a housing a catalyst chamber, a variable speed fan, and a combustion chamber. Vaporized organic fuel is circulated by the fan past the combustion chamber with which it is in indirect heat exchange relationship. The heated vaporized organic fuel enters a catalyst bed where it is converted into a desired product such as hydrogen needed to power the fuel cell. During periods of high demand, air is injected upstream of the combustion chamber and organic fuel injection means to burn with some of the organic fuel on the outside of the combustion chamber, and thus be in direct heat exchange relation with the organic fuel going into the catalyst bed.

  5. Fission-suppressed blankets for fissile fuel breeding fusion reactors

    NASA Astrophysics Data System (ADS)

    Lee, J. D.; Moir, R. W.

    1981-07-01

    Two blanket concepts for deuterium-tritium (DT) fusion reactors are presented which maximize fissile fuel production while at the same time suppress fission reactions. By suppressing fission reactions, the reactor will be less hazardous, and therefore easier to design, develop, and license. A fusion breeder operating a given nuclear power level can produce much more fissile fuel by suppressing fission reactions. The two blankets described use beryllium for neutron multiplication. One blanket uses two separate circulating molten salts: one salt for tritium breeding and the other salt for U-233 breeding. The other uses separate solid forms of lithium and thorium for breeding and helium for cooling.

  6. Diversion assumptions for high-powered research reactors

    SciTech Connect

    Binford, F.T.

    1984-01-01

    This study deals with diversion assumptions for high-powered research reactors -- specifically, MTR fuel; pool- or tank-type research reactors with light-water moderator; and water, beryllium, or graphite reflectors, and which have a power level of 25 MW(t) or more. The objective is to provide assistance to the IAEA in documentation of criteria and inspection observables related to undeclared plutonium production in the reactors described above, including: criteria for undeclared plutonium production, necessary design information for implementation of these criteria, verification guidelines including neutron physics and heat transfer, and safeguards measures to facilitate the detection of undeclared plutonium production at large research reactors.

  7. Dismantled weapons fuel burning in molten salt reactors

    SciTech Connect

    Gat, U.; Engel, J.R.

    1993-10-01

    The advantages of burning fissile material from dismantled weapons in molten salt reactors (MSRs) are described. The fluid fuel MSRs with some, or full, processing are nondedicated reactors that generate energy and completely burn the fissile material on a continuous basis. No fuel fabrication is needed, and the entire dismantling can be done in a secure facility. Shipments are made in small, safe, and secure quantities. Denaturing, spiking, or mixing can be done at the source for added safety. MSRs are very safe reactors that help close the fuel cycle and simplify waste treatment, thereby contributing to acceptability. Additionally, MSRs are expected to be economically competitive as electric power stations. The safety, security, simplicity, economy, and proliferation resistant properties support the deployment in countries that have the need.

  8. Nuclear reactor with fuel pin bracing grid

    SciTech Connect

    Jolly, R.

    1980-01-01

    A fuel pin bracing grid for a nuclear fuel sub-assembly comprises a honeycomb array of unit cells formed from discrete strips. The cells are hexagonal, three alternate sides having windows and the remaining sides have linear groups of three embossments to provide guide pads for fuel pins. The openings provide a measure of compliancy for the grid to facilitate insertion and withdrawal of the pins. A fuel sub-assembly for a liquid metal cooled fast breeder nuclear reactor has a central fuel section with end extensions, the fuel section comprising a bundle of fuel pins in a hexagonal wrapper the pins being braced by a series of grids according to the invention. Reprocessing of the fuel is facilitated because the pins are withdrawable collectively from the compliant grids and wrapper combination merely by cutting an end extension from the wrapper. 4 claims.

  9. Depletion analysis of mixed-oxide fuel pins in light water reactors and the Advanced Test Reactor

    SciTech Connect

    Chang, G.S.; Ryskamp, J.M.

    2000-03-01

    An experiment containing weapons-grade mixed-oxide (WG-MOX) fuel has been designed and is being irradiated in the Advanced Test Reactor (ATR) at the Idaho National Engineering and Environmental Laboratory (INEEL). The ability to accurately predict fuel pin performance is an essential requirement for the MOX fuel test assembly design. Detailed radial fission power and temperature profile effects and fission gas release in the fuel pin are a function of the fuel pin's temperature, fission power, and fission product ad actinide concentration profiles. In addition, the burnup-dependent profile analyses in irradiated fuel pins is important for fuel performance analysis to support the potential licensing of the MOX fuel made from WG-plutonium and depleted uranium for use in US reactors. The MCNP Coupling With ORIGEN2 burnup calculation code (MCWO) can analyze the detailed burnup profiles of WG-MOX and reactor-grade mixed-oxide (RG-MOX) fuel pins. The validated code MCWO can provide the best-estimate neutronic characteristics of fuel burnup performance analysis. Applying this capability with a new minicell method allows calculation of detailed nuclide concentration and power distributions within the MOX pins as a function of burnup. This methodology was applied to MOX fuel in a commercial pressurized water reactor and in an experiment currently being irradiated in the ATR. The prediction of nuclide concentration profiles and power distributions in irradiated MOX plus via this new methodology can provide insights into MOX fuel performance.

  10. History of fast reactor fuel development

    NASA Astrophysics Data System (ADS)

    Kittel, J. H.; Frost, B. R. T.; Mustelier, J. P.; Bagley, K. Q.; Crittenden, G. C.; Van Dievoet, J.

    1993-09-01

    The first fast breeder reactors, constructed in the 1945-1960 time period, used metallic fuels composed of uranium, plutonium, or their alloys. They were chosen because most existing reactor operating experience had been obtained on metallic fuels and because they provided the highest breeding ratios. Difficulties in obtaining adequate dimensional stability in metallic fuel elements under conditions of high fuel burnup led in the 1960s to the virtual worldwide choice of ceramic fuels. Although ceramic fuels provide lower breeding performance, this objective is no longer an important consideration in most national programs. Mixed uranium and plutonium dioxide became the ceramic fuel that has received the widest use. The more advanced ceramic fuels, mixed uranium and plutonium carbides and nitrides, continue under development. More recently, metal fuel elements of improved design have joined ceramic fuels in achieving goal burnups of 15 to 20 percent. Low-swelling fuel cladding alloys have also been continuously developed to deal with the unexpected problem of void formation in stainless steels subjected to fast neutron irradiation, a phenomenon first observed in the 1960s.

  11. An In-Core Power Deposition and Fuel Thermal Environmental Monitor for Long-Lived Reactor Cores

    SciTech Connect

    Don W. Miller

    2004-09-28

    The primary objective of this program is to develop the Constant Temperature Power Sensor (CTPS) as in-core instrumentation that will provide a detailed map of local nuclear power deposition and coolant thermal-hydraulic conditions during the entire life of the core.

  12. Safety evaluation report related to the evaluation of low-enriched uranium silicide-aluminum dispersion fuel for use in non-power reactors

    SciTech Connect

    Not Available

    1988-07-01

    Low-enriched uranium silicide-aluminum dispersion plate-type fuels have been extensively researched and developed under the international program, Reduced Enrichment in Research and Test Reactors. The international effort was led by Argonne National Laboratory (ANL) in the United States. This evaluation is based primarily on reports issued by ANL that discuss and summarize the developmental tests and experiments, including postirradiation examinations, of both miniature and full-sized plates of prototypical fuel compositions. This evaluation concludes that plate-type fuels suitable and acceptable for use in research and test reactors can be fabricated with U/sub 3/Si/sub 2/-Al dispersion compacts with uranium densities up to 4.8 g/cm/sup 3/. 4 refs., 1 fig.

  13. Reactor Physics Scoping and Characterization Study on Implementation of TRIGA Fuel in the Advanced Test Reactor

    SciTech Connect

    Jennifer Lyons; Wade R. Marcum; Mark D. DeHart; Sean R. Morrell

    2014-01-01

    The Advanced Test Reactor (ATR), under the Reduced Enrichment for Research and Test Reactors (RERTR) Program and the Global Threat Reduction Initiative (GTRI), is conducting feasibility studies for the conversion of its fuel from a highly enriched uranium (HEU) composition to a low enriched uranium (LEU) composition. These studies have considered a wide variety of LEU plate-type fuels to replace the current HEU fuel. Continuing to investigate potential alternatives to the present HEU fuel form, this study presents a preliminary analysis of TRIGA® fuel within the current ATR fuel envelopes and compares it to the functional requirements delineated by the Naval Reactors Program, which includes: greater than 4.8E+14 fissions/s/g of 235U, a fast to thermal neutron flux ratio that is less than 5% deviation of its current value, a constant cycle power within the corner lobes, and an operational cycle length of 56 days at 120 MW. Other parameters outside those put forth by the Naval Reactors Program which are investigated herein include axial and radial power profiles, effective delayed neutron fraction, and mean neutron generation time.

  14. Synergistic Smart Fuel For In-pile Nuclear Reactor Measurements

    SciTech Connect

    James A. Smith; Dale K. Kotter; Randall A. Ali; Steven L . Garrett

    2013-10-01

    In March 2011, an earthquake of magnitude 9.0 on the Richter scale struck Japan with its epicenter on the northeast coast, near the Tohoku region. In addition to the immense physical destruction and casualties across the country, several nuclear power plants (NPP) were affected. It was the Fukushima Daiichi NPP that experienced the most severe and irreversible damage. The earthquake brought the reactors at Fukushima to an automatic shutdown and because the power transmission lines were damaged, emergency diesel generators (EDGs) were activated to ensure that there was continued cooling of the reactors and spent fuel pools. The situation was being successfully managed until the tsunami hit about forty-five minutes later with a maximum wave height of approximately 15 m. The influx of water submerged the EDGs, the electrical switchgear, and dc batteries, resulting in the total loss of power to the reactors.2 At this point, the situation became critical. There was a loss of the sensors and instrumentation within the reactor that could have provided valuable information to guide the operators to make informed decisions and avoid the unfortunate events that followed. In the light of these events, we have developed and tested a potential self-powered thermoacoustic system, which will have the ability to serve as a temperature sensor and can transmit data independently of electronic networks. Such a device is synergistic with the harsh environment of the nuclear reactor as it utilizes the heat from the nuclear fuel to provide the input power.

  15. Fuel assembly for nuclear reactors

    DOEpatents

    Creagan, Robert J.; Frisch, Erling

    1977-01-01

    A new and improved fuel assembly is formed to minimize the amount of parasitic structural material wherein a plurality of hollow tubular members are juxtaposed to the fuel elements of the assembly. The tubular members may serve as guide tubes for control elements and are secured to a number of longitudinally spaced grid members along the fuel assembly. The grid members include means thereon engaging each of the fuel elements to laterally position the fuel elements in a predetermined array. Openings in the bottom of each hollow member serve as a shock absorber to cushion shock transmitted to the structure when the control elements are rapidly inserted in their corresponding tubular members.

  16. Gas-core reactor power transient analysis

    NASA Technical Reports Server (NTRS)

    Kascak, A. F.

    1972-01-01

    The gas core reactor is a proposed device which features high temperatures. It has applications in high specific impulse space missions, and possibly in low thermal pollution MHD power plants. The nuclear fuel is a ball of uranium plasma radiating thermal photons as opposed to gamma rays. This thermal energy is picked up before it reaches the solid cavity liner by an inflowing seeded propellant stream and convected out through a rocket nozzle. A wall-burnout condition will exist if there is not enough flow of propellant to convect the energy back into the cavity. A reactor must therefore operate with a certain amount of excess propellant flow. Due to the thermal inertia of the flowing propellant, the reactor can undergo power transients in excess of the steady-state wall burnout power for short periods of time. The objective of this study was to determine how long the wall burnout power could be exceeded without burning out the cavity liner. The model used in the heat-transfer calculation was one-dimensional, and thermal radiation was assumed to be a diffusion process.

  17. An experimental aluminum-fueled power plant

    NASA Astrophysics Data System (ADS)

    Vlaskin, M. S.; Shkolnikov, E. I.; Bersh, A. V.; Zhuk, A. Z.; Lisicyn, A. V.; Sorokovikov, A. I.; Pankina, Yu. V.

    2011-10-01

    An experimental co-generation power plant (CGPP-10) using aluminum micron powder (with average particle size up to 70 μm) as primary fuel and water as primary oxidant was developed and tested. Power plant can work in autonomous (unconnected from industrial network) nonstop regime producing hydrogen, electrical energy and heat. One of the key components of experimental plant is aluminum-water high-pressure reactor projected for hydrogen production rate of ∼10 nm3 h-1. Hydrogen from the reactor goes through condenser and dehumidifier and with -25 °C dew-point temperature enters into the air-hydrogen fuel cell 16 kW-battery. From 1 kg of aluminum the experimental plant produces 1 kWh of electrical energy and 5-7 kWh of heat. Power consumer gets about 10 kW of electrical power. Plant electrical and total efficiencies are 12% and 72%, respectively.

  18. Development of a Monolithic Research Reactor Fuel Type at Argonne National Laboratory

    SciTech Connect

    Clark, C.R.; Briggs, R.J.

    2004-10-06

    The Reduced Enrichment for Research and Test Reactors (RERTR) program has been tasked with the conversion of research reactors from highly enriched to low-enriched uranium (LEU). To convert several high power reactors, monolithic fuel, a new fuel type, is being developed. This fuel type replaces the standard fuel dispersion with a fuel alloy foil, which allows for fuel densities far in excess of that found in dispersion fuel. The single-piece fuel foil also contains a significantly lower interface area between the fuel and the aluminum in the plate than the standard fuel type, limiting the amount of detrimental fuel-aluminum interaction that can occur. Implementation of monolithic fuel is dependant on the development of a suitable fabrication method as traditional roll-bonding techniques are inadequate.

  19. Monolithic fuel cell based power source for sprint power generation

    NASA Astrophysics Data System (ADS)

    Fee, D. C.; Busch, D. E.; Dees, D. W.; Dusek, J.; Easler, T. E.; Ellingson, W. A.; Flandermeyer, B. K.; Fousek, R. J.; Heiberger, J. J.; Majumdar, S.

    A unique fuel cell (monolith) coupled with a low power nuclear reactor presents an attractive approach for SDI burst power requirements. The high power, long duration bursts, appear achievable within a single shuttle launch limitation with appropriate development of the concept. The feasibility of the monolithic fuel cell concept has been demonstrated. Small arrays (stacks) of the monolithic design have been operated for hundreds of hours. The challenge is to improve the fabrication technology so that larger array of the monolithic design can be operated.

  20. Simulation on reactor TRIGA Puspati core kinetics fueled with thorium (Th) based fuel element

    NASA Astrophysics Data System (ADS)

    Mohammed, Abdul Aziz; Pauzi, Anas Muhamad; Rahman, Shaik Mohmmed Haikhal Abdul; Zin, Muhamad Rawi Muhammad; Jamro, Rafhayudi; Idris, Faridah Mohamad

    2016-01-01

    In confronting global energy requirement and the search for better technologies, there is a real case for widening the range of potential variations in the design of nuclear power plants. Smaller and simpler reactors are attractive, provided they can meet safety and security standards and non-proliferation issues. On fuel cycle aspect, thorium fuel cycles produce much less plutonium and other radioactive transuranic elements than uranium fuel cycles. Although not fissile itself, Th-232 will absorb slow neutrons to produce uranium-233 (233U), which is fissile. By introducing Thorium, the numbers of highly enriched uranium fuel element can be reduced while maintaining the core neutronic performance. This paper describes the core kinetic of a small research reactor core like TRIGA fueled with a Th filled fuel element matrix using a general purpose Monte Carlo N-Particle (MCNP) code.

  1. Fuel leak detection apparatus for gas cooled nuclear reactors

    DOEpatents

    Burnette, Richard D.

    1977-01-01

    Apparatus is disclosed for detecting nuclear fuel leaks within nuclear power system reactors, such as high temperature gas cooled reactors. The apparatus includes a probe assembly that is inserted into the high temperature reactor coolant gaseous stream. The probe has an aperture adapted to communicate gaseous fluid between its inside and outside surfaces and also contains an inner tube for sampling gaseous fluid present near the aperture. A high pressure supply of noncontaminated gas is provided to selectively balance the pressure of the stream being sampled to prevent gas from entering the probe through the aperture. The apparatus includes valves that are operable to cause various directional flows and pressures, which valves are located outside of the reactor walls to permit maintenance work and the like to be performed without shutting down the reactor.

  2. Evolution of Particle Bed Reactor Fuel

    NASA Astrophysics Data System (ADS)

    Jensen, Russell R.; Evans, Robert S.; Husser, Dewayne L.; Kerr, John M.

    1994-07-01

    To realize the potential performance advantages inherent in a particle bed reactor (PBR) for nuclear thermal propulsion (NTP) applications, high performance particle fuel is required. This fuel must operate safely and without failure at high temperature in high pressure, flowing hydrogen propellant. The mixed mean outlet temperature of the propellant is an important characteristic of PBR performance. This temperature is also a critical parameter for fuel particle design because it dictates the required maximum fuel operating temperature. In this paper, the evolution in PBR fuel form to achieve higher operating temperatures is discussed and the potential thermal performance of the different fuel types is evaluated. It is shown that the optimum fuel type for operation under the demanding conditions in a PBR is a coated, solid carbide particle.

  3. A Study of Fast Reactor Fuel Transmutation in a Candidate Dispersion Fuel Design

    SciTech Connect

    Mark DeHart; Hongbin Zhang; Eric Shaber; Matthew Jesse

    2010-11-01

    Dispersion fuels represent a significant departure from typical ceramic fuels to address swelling and radiation damage in high burnup fuel. Such fuels use a manufacturing process in which fuel particles are encapsulated within a non-fuel matrix. Dispersion fuels have been studied since 1997 as part of an international effort to develop and test very high density fuel types for the Reduced Enrichment for Research and Test Reactors (RERTR) program.[1] The Idaho National Laboratory is performing research in the development of an innovative dispersion fuel concept that will meet the challenges of transuranic (TRU) transmutation by providing an integral fission gas plenum within the fuel itself, to eliminate the swelling that accompanies the irradiation of TRU. In this process, a metal TRU vector produced in a separations process is atomized into solid microspheres. The dispersion fuel process overcoats the microspheres with a mixture of resin and hollow carbon microspheres to create a TRUC. The foam may then be heated and mixed with a metal power (e.g., Zr, Ti, or Si) and resin to form a matrix metal carbide, that may be compacted and extruded into fuel elements. In this paper, we perform reactor physics calculations for a core loaded with the conceptual fuel design. We will assume a “typical” TRU vector and a reference matrix density. We will employ a fuel and core design based on the Advanced Burner Test Reactor (ABTR) design.[2] Using the CSAS6 and TRITON modules of the SCALE system [3] for preliminary scoping studies, we will demonstrate the feasibility of reactor operations. This paper will describe the results of these analyses.

  4. The IAEA international conference on fast reactors and related fuel cycles: highlights and main outcomes

    SciTech Connect

    Monti, S.; Toti, A.

    2013-07-01

    The 'International Conference on Fast Reactors and Related Fuel Cycles', which is regularly held every four years, represents the main international event dealing with fast reactors technology and related fuel cycles options. Main topics of the conference were new fast reactor concepts, design and simulation capabilities, safety of fast reactors, fast reactor fuels and innovative fuel cycles, analysis of past experience, fast reactor knowledge management. Particular emphasis was put on safety aspects, considering the current need of developing and harmonizing safety standards for fast reactors at the international level, taking also into account the lessons learned from the accident occurred at the Fukushima- Daiichi nuclear power plant in March 2011. Main advances in the several key areas of technological development were presented through 208 oral presentations during 41 technical sessions which shows the importance taken by fast reactors in the future of nuclear energy.

  5. Proliferation resistant fuel for pebble bed modular reactors

    SciTech Connect

    Ronen, Y.; Aboudy, M.; Regev, D.; Gilad, E.

    2012-07-01

    We show that it is possible to denature the Plutonium produced in Pebble Bed Modular Reactors (PBMR) by doping the nuclear fuel with either 3050 ppm of {sup 237}Np or 2100 ppm of Am vector. A correct choice of these isotopes concentration yields denatured Plutonium with isotopic ratio {sup 238}Pu/Pu {>=} 6%, for the entire fuel burnup cycle. The penalty for introducing these isotopes into the nuclear fuel is a subsequent shortening of the fuel burnup cycle, with respect to a non-doped reference fuel, by 41.2 Full Power Days (FPDs) and 19.9 FPDs, respectively, which correspond to 4070 MWd/ton and 1965 MWd/ton reduction in fuel discharge burnup. (authors)

  6. Freeze-casting as a Novel Manufacturing Process for Fast Reactor Fuels. Final Report

    SciTech Connect

    Wegst, Ulrike G.K.; Allen, Todd; Sridharan, Kumar

    2014-04-07

    Advanced burner reactors are designed to reduce the amount of long-lived radioactive isotopes that need to be disposed of as waste. The input feedstock for creating advanced fuel forms comes from either recycle of used light water reactor fuel or recycle of fuel from a fast burner reactor. Fuel for burner reactors requires novel fuel types based on new materials and designs that can achieve higher performance requirements (higher burn up, higher power, and greater margins to fuel melting) then yet achieved. One promising strategy to improved fuel performance is the manufacture of metal or ceramic scaffolds which are designed to allow for a well-defined placement of the fuel into the host, and this in a manner that permits greater control than that possible in the production of typical CERMET fuels.

  7. Reactor-specific spent fuel discharge projections, 1984 to 2020

    SciTech Connect

    Heeb, C.M.; Libby, R.A.; Holter, G.M.

    1985-04-01

    The original spent fuel utility data base (SFDB) has been adjusted to produce agreement with the EIA nuclear energy generation forecast. The procedure developed allows the detail of the utility data base to remain intact, while the overall nuclear generation is changed to match any uniform nuclear generation forecast. This procedure adjusts the weight of the reactor discharges as reported on the SFDB and makes a minimal (less than 10%) change in the original discharge exposures in order to preserve discharges of an integral number of fuel assemblies. The procedure used in developing the reactor-specific spent fuel discharge projections, as well as the resulting data bases themselves, are described in detail in this report. Discussions of the procedure cover the following topics: a description of the data base; data base adjustment procedures; addition of generic power reactors; and accuracy of the data base adjustments. Reactor-specific discharge and storage requirements are presented. Annual and cumulative discharge projections are provided. Annual and cumulative requirements for additional storage are shown for the maximum at-reactor (AR) storage assumption, and for the maximum AR with transshipment assumption. These compare directly to the storage requirements from the utility-supplied data, as reported in the Spent Fuel Storage Requirements Report. The results presented in this report include: the disaggregated spent fuel discharge projections; and disaggregated projections of requirements for additional spent fuel storage capacity prior to 1998. Descriptions of the methodology and the results are included in this report. Details supporting the discussions in the main body of the report, including descriptions of the capacity and fuel discharge projections, are included. 3 refs., 6 figs., 12 tabs.

  8. Optimally moderated nuclear fission reactor and fuel source therefor

    DOEpatents

    Ougouag, Abderrafi M.; Terry, William K.; Gougar, Hans D.

    2008-07-22

    An improved nuclear fission reactor of the continuous fueling type involves determining an asymptotic equilibrium state for the nuclear fission reactor and providing the reactor with a moderator-to-fuel ratio that is optimally moderated for the asymptotic equilibrium state of the nuclear fission reactor; the fuel-to-moderator ratio allowing the nuclear fission reactor to be substantially continuously operated in an optimally moderated state.

  9. Direct conversion nuclear reactor space power systems

    SciTech Connect

    Britt, E.J.; Fitzpatrick, G.O.

    1982-08-01

    This paper presents the results of a study of space nuclear reactor power systems using either thermoelectric or thermionic energy converters. An in-core reactor design and two heat pipe cooled out-of-core reactor designs were considered. One of the out-of-core cases utilized, long heat pipes (LHP) directly coupled to the energy converter. The second utilized a larger number of smaller heat pipes (mini-pipe) radiatively coupled to the energy converter. In all cases the entire system, including power conditioning, was constrained to be launched in a single shuttle flight. Assuming presently available performance, both the LHP thermoelectric system and minipipe thermionic system, designed to produce 100 kWe for seven years, would have a specific mass near 22kg/kWe. The specific mass of the thermionic minipipe system designed for a one year mission is 165 kg/kWe due to less fuel swelling. Shuttle imposed growth limits are near 300 kWe and 1.2 MWe for the thermoelectric and thermionic systems, respectively. Converter performance improvements could double this potential, and over 10 MWe may be possible for very short missions.

  10. Deployment history and design considerations for space reactor power systems

    NASA Astrophysics Data System (ADS)

    El-Genk, Mohamed S.

    2009-05-01

    The history of the deployment of nuclear reactors in Earth orbits is reviewed with emphases on lessons learned and the operation and safety experiences. The former Soviet Union's "BUK" power systems, with SiGe thermoelectric conversion and fast neutron energy spectrum reactors, powered a total of 31 Radar Ocean Reconnaissance Satellites (RORSATs) from 1970 to 1988 in 260 km orbit. Two of the former Soviet Union's TOPAZ reactors, with in-core thermionic conversion and epithermal neutron energy spectrum, powered two Cosmos missions launched in 1987 in ˜800 km orbit. The US' SNAP-10A system, with SiGe energy conversion and a thermal neutron energy spectrum reactor, was launched in 1965 in 1300 km orbit. The three reactor systems used liquid NaK-78 coolant, stainless steel structure and highly enriched uranium fuel (90-96 wt%) and operated at a reactor exit temperature of 833-973 K. The BUK reactors used U-Mo fuel rods, TOPAZ used UO 2 fuel rods and four ZrH moderator disks, and the SNAP-10A used moderated U-ZrH fuel rods. These low power space reactor systems were designed for short missions (˜0.5 kW e and ˜1 year for SNAP-10A, <3.0 kW e and <6 months for BUK, and ˜5.5 kW e and up to 1 year for TOPAZ). The deactivated BUK reactors at the end of mission, which varied in duration from a few hours to ˜4.5 months, were boosted into ˜800 km storage orbit with a decay life of more than 600 year. The ejection of the last 16 BUK reactor fuel cores caused significant contamination of Earth orbits with NaK droplets that varied in sizes from a few microns to 5 cm. Power systems to enhance or enable future interplanetary exploration, in-situ resources utilization on Mars and the Moon, and civilian missions in 1000-3000 km orbits would generate significantly more power of 10's to 100's kW e for 5-10 years, or even longer. A number of design options to enhance the operation reliability and safety of these high power space reactor power systems are presented and discussed.

  11. MOLTEN PLUTONIUM FUELED FAST BREEDER REACTOR

    DOEpatents

    Kiehn, R.M.; King, L.D.P.; Peterson, R.E.; Swickard, E.O. Jr.

    1962-06-26

    A description is given of a nuclear fast reactor fueled with molten plutonium containing about 20 kg of plutonium in a tantalum container, cooled by circulating liquid sodium at about 600 to 650 deg C, having a large negative temperature coefficient of reactivity, and control rods and movable reflector for criticality control. (AEC)

  12. A Parametric Study of the DUPIC Fuel Cycle to Reflect Pressurized Water Reactor Fuel Management Strategy

    SciTech Connect

    Rozon, Daniel; Shen Wei

    2001-05-15

    For both pressurized water reactor (PWR) and Canada deuterium uranium (CANDU) tandem analysis, the Direct Use of spent PWR fuel In CANDU reactor (DUPIC) fuel cycle in a CANDU 6 reactor is studied using the DRAGON/DONJON chain of codes with the ENDF/B-V and ENDF/B-VI libraries. The reference feed material is a 17 x 17 French standard 900-MW(electric) PWR fuel. The PWR spent-fuel composition is obtained from two-dimensional DRAGON assembly transport and depletion calculations. After a number of years of cooling, this defines the initial fuel nuclide field in the CANDU unit cell calculations in DRAGON, where it is further depleted with the same neutron group structure. The resulting macroscopic cross sections are condensed and tabulated to be used in a full-core model of a CANDU 6 reactor to find an optimized channel fueling rate distribution on a time-average basis. Assuming equilibrium refueling conditions and a particular refueling sequence, instantaneous full-core diffusion calculations are finally performed with the DONJON code, from which both the channel power peaking factors and local parameter effects are estimated. A generic study of the DUPIC fuel cycle is carried out using the linear reactivity model for initial enrichments ranging from 3.2 to 4.5 wt% in a PWR. Because of the uneven power histories of the spent PWR assemblies, the spent PWR fuel composition is expected to differ from one assembly to the next. Uneven mixing of the powder during DUPIC fuel fabrication may lead to uncertainties in the composition of the fuel bundle and larger peaking factors in CANDU. A mixing method for reducing composition uncertainties is discussed.

  13. Corrosion of spent Advanced Test Reactor fuel

    SciTech Connect

    Lundberg, L.B.; Croson, M.L.

    1994-11-01

    The results of a study of the condition of spent nuclear fuel elements from the Advanced Test Reactor (ATR) currently being stored underwater at the Idaho National Engineering Laboratory (INEL) are presented. This study was motivated by a need to estimate the corrosion behavior of dried, spent ATR fuel elements during dry storage for periods up to 50 years. The study indicated that the condition of spent ATR fuel elements currently stored underwater at the INEL is not very well known. Based on the limited data and observed corrosion behavior in the reactor and in underwater storage, it was concluded that many of the fuel elements currently stored under water in the facility called ICPP-603 FSF are in a degraded condition, and it is probable that many have breached cladding. The anticipated dehydration behavior of corroded spent ATR fuel elements was also studied, and a list of issues to be addressed by fuel element characterization before and after forced drying of the fuel elements and during dry storage is presented.

  14. PLUTONIUM METALLIC FUELS FOR FAST REACTORS

    SciTech Connect

    STAN, MARIUS; HECKER, SIEGFRIED S.

    2007-02-07

    Early interest in metallic plutonium fuels for fast reactors led to much research on plutonium alloy systems including binary solid solutions with the addition of aluminum, gallium, or zirconium and low-melting eutectic alloys with iron and nickel or cobalt. There was also interest in ternaries of these elements with plutonium and cerium. The solid solution and eutectic alloys have most unusual properties, including negative thermal expansion in some solid-solution alloys and the highest viscosity known for liquid metals in the Pu-Fe system. Although metallic fuels have many potential advantages over ceramic fuels, the early attempts were unsuccessful because these fuels suffered from high swelling rates during burn up and high smearing densities. The liquid metal fuels experienced excessive corrosion. Subsequent work on higher-melting U-PuZr metallic fuels was much more promising. In light of the recent rebirth of interest in fast reactors, we review some of the key properties of the early fuels and discuss the challenges presented by the ternary alloys.

  15. Gas-cooled reactor power systems for space

    SciTech Connect

    Walter, C.E.

    1987-01-01

    Efficiency and mass characteristics for four gas-cooled reactor power system configurations in the 2- to 20-MWe power range are modeled. The configurations use direct and indirect Brayton cycles with and without regeneration in the power conversion loop. The prismatic ceramic core of the reactor consists of several thousand pencil-shaped tubes made from a homogeneous mixture of moderator and fuel. The heat rejection system is found to be the major contributor to system mass, particularly at high power levels. A direct, regenerated Brayton cycle with helium working fluid permits high efficiency and low specific mass for a 10-MWe system.

  16. FUEL ELEMENT FOR NUCLEAR REACTOR

    DOEpatents

    Carney, K.G. Jr.

    1959-07-14

    A nuclear fuel element comprising a large number og wafers of fissionable material and a protective jacket having compartments holding these wafers is described. The compartments of the jacket aid the removal of heat from the wafers, keep the wafers or fragments thereof from migrating in the jacket, and permit the escape of gaseous fission products.

  17. PYROCHEMICAL DECONTAMINATION METHOD FOR REACTOR FUEL

    DOEpatents

    Buyers, A.G.

    1959-06-30

    A pyro-chemical method is presented for decontaminating neutron irradiated uranium and separating plutonium therefrom by contact in the molten state with a metal chloride salt. Uranium trichloride and uranium tetrachloride either alone or in admixture with alkaline metal and alkaline eanth metal fluorides under specified temperature and specified phase ratio conditions extract substantially all of the uranium from the irradiated uranium fuel together with certain fission products. The phases are then separated leaving purified uranium metal. The uranium and plutonium in the salt phase can be reduced to forin a highly decontaminated uraniumplutonium alloy. The present method possesses advantages for economically decontaminating irradiated nuclear fuel elements since irradiated fuel may be proccessed immediately after withdrawal from the reactor and the uranium need not be dissolved and later reduced to the metallic form. Accordingly, the uranium may be economically refabricated and reinserted into the reactor.

  18. NEUTRONIC REACTOR AND FUEL ELEMENT THEREFOR

    DOEpatents

    Szilard, L.; Young, G.J.

    1958-03-01

    This patent relates to a reactor design of the type which employs solid fuel elements disposed in channels within the moderator through which channels and around the fuel elements is conveyed a coolant fiuid. The coolant channels are comprised of aluminum tubes extending through a solid moderator such as graphite and the fuel elements are comprised of an elongated solid body of natural uranium jacketed in an aluminum jacket with the ends thereof closed by aluminum caps of substantially greater thickness than the jacket was and in good thermal contact with the fuel material to facilitate the conduction of heat from the central portion of said ends to the coolant surrounding the fuel element to prevent overheating of said central portion.

  19. FUEL COMPOSITION FOR NUCLEAR REACTORS

    DOEpatents

    Andersen, J.C.

    1963-08-01

    A process for making refractory nuclear fuel elements involves heating uranium and silicon powders in an inert atmosphere to 1600 to 1800 deg C to form USi/sub 3/; adding silicon carbide, carbon, 15% by weight of nickel and aluminum, and possibly also molybdenum and silicon powders; shaping the mixture; and heating to 1700 to 2050 deg C again in an inert atmosphere. Information on obtaining specific compositions is included. (AEC)

  20. Natural fueling of a tokamak fusion reactor

    NASA Astrophysics Data System (ADS)

    Wan, Weigang; Parker, Scott E.; Chen, Yang; Perkins, Francis W.

    2010-04-01

    A natural fueling mechanism that helps to maintain the main core deuterium and tritium (DT) density profiles in a tokamak fusion reactor is presented. In H-mode plasmas dominated by ion-temperature gradient (ITG) driven turbulence, cold DT ions near the edge will naturally pinch radially inward toward the core. This mechanism is due to the quasineutral heat flux dominated nature of ITG turbulence and still applies when trapped and passing kinetic electron effects are included. Fueling using shallow pellet injection is augmented by an inward pinch of cold DT fuel. The natural fueling mechanism is investigated using the gyrokinetic turbulence code GEM [Y. Chen and S. E. Parker, J. Comput. Phys. 220, 839 (2007)] and is analyzed using quasilinear theory. Profiles similar to those used for conservative International Thermonuclear Experimental Reactor [R. Aymar et al., Nucl. Fusion 41, 1301 (2001)] transport modeling that have a completely flat density profile are examined and it is found that natural fueling actually reduces the linear growth rate and energy transport. Natural fueling requires a two-component plasma and ion-ion and charge-exchange collisions set limits on this favorable effect.

  1. Method and system to directly produce electrical power within the lithium blanket region of a magnetically confined, deuterium-tritium (DT) fueled, thermonuclear fusion reactor

    DOEpatents

    Woolley, Robert D.

    1999-01-01

    A method for integrating liquid metal magnetohydrodynamic power generation with fusion blanket technology to produce electrical power from a thermonuclear fusion reactor located within a confining magnetic field and within a toroidal structure. A hot liquid metal flows from a liquid metal blanket region into a pump duct of an electromagnetic pump which moves the liquid metal to a mixer where a gas of predetermined pressure is mixed with the pressurized liquid metal to form a Froth mixture. Electrical power is generated by flowing the Froth mixture between electrodes in a generator duct. When the Froth mixture exits the generator the gas is separated from the liquid metal and both are recycled.

  2. Method and System to Directly Produce Electrical Power within the Lithium Blanket Region of a Magnetically Confined, Deuterium-Tritium (DT) Fueled, Thermonuclear Fusion Reactor

    SciTech Connect

    Woolley, Robert D.

    1998-09-22

    A method for integrating liquid metal magnetohydrodynamic power generation with fusion blanket technology to produce electrical power from a thermonuclear fusion reactor located within a confining magnetic field and within a toroidal structure. A hot liquid metal flows from a liquid metal blanket region into a pump duct of an electromagnetic pump which moves the liquid metal to a mixer where a gas of predetermined pressure is mixed with the pressurized liquid metal to form a Froth mixture. Electrical power is generated by flowing the Froth mixture between electrodes in a generator duct. When the Froth mixture exits the generator the gas is separated from the liquid metal and both are recycled.

  3. Development potential for thermal reactors and their fuel cycles

    SciTech Connect

    Dodds, H.L.; Gat, U.

    1997-08-01

    The advantages of molten salt reactors (MSRs) for power production are very briefly described in this paper. The MSRs considered are those with on-line fuel processing, external cooling, and fluoride salt separation. Characteristics noted include lack of meltdown potential, small radioactive source terms, and complete burnup of fissile material. The burnup capability of MSRs would allow them to be used to dispose of plutonium while producing energy. 8 refs.

  4. Impact of conversion to mixed-oxide fuels on reactor structural components

    SciTech Connect

    Yahr, G.T.

    1997-04-01

    The use of mixed-oxide (MOX) fuel to replace conventional uranium fuel in commercial light-water power reactors will result in an increase in the neutron flux. The impact of the higher flux on the structural integrity of reactor structural components must be evaluated. This report briefly reviews the effects of radiation on the mechanical properties of metals. Aging degradation studies and reactor operating experience provide a basis for determining the areas where conversion to MOX fuels has the potential to impact the structural integrity of reactor components.

  5. Nuclear fuel cycle analysis of the SABR fusion-fission hybrid transmutation reactor

    NASA Astrophysics Data System (ADS)

    Sommer, Chris; Stacey, Weston; Petrovic, Bojan

    2009-11-01

    Various fuel cycles have been designed and analyzed for the Subcritical Advanced Burner Reactor (SABR). SABR is a sodium cooled fast reactor fueled with transuranics (TRU) from spent fuel of light water reactors and driven by a tokamak fusion neutron source based on ITER physics and technology. SABR employs a four batch fuel cycle using an out-to-in shuffling pattern, with the fuel being reprocessed at the end of each cycle. The reprocessing method assumes recovery rates of 99.9% of the actinides and 0.1% of the fission products remain in the recycled fuel. The reprocessing fuel cycles were analyzed to find an optimal cycle length in terms of burn up, power distribution, and materials limitations. Fuel cycles are analyzed using CEA's ERANOS2.0 code, with fuel residence times limited by radiation damage at 100, 150 and 200 dpa.

  6. Fuel Summary Report: Shippingport Light Water Breeder Reactor

    SciTech Connect

    Illum, D.B.; Olson, G.L.; McCardell, R.K.

    1999-01-01

    The Shippingport Light Water Breeder Reactor (LWBR) was a small water cooled, U-233/Th-232 cycle breeder reactor developed by the Pittsburgh Naval Reactors to improve utilization of the nation's nuclear fuel resources in light water reactors. The LWBR was operated at Shippingport Atomic Power Station (APS), which was a Department of Energy (DOE) (formerly Atomic Energy Commission)-owned reactor plant. Shippingport APS was the first large-scale, central-station nuclear power plant in the United States and the first plant of such size in the world operated solely to produce electric power. The Shippingport LWBR was operated successfully from 1977 to 1982 at the APS. During the five years of operation, the LWBR generated more than 29,000 effective full power hours (EFPH) of energy. After final shutdown, the 39 core modules of the LWBR were shipped to the Expended Core Facility (ECF) at Naval Reactors Facility at the Idaho National Engineering and Environmental Laboratory (INEEL). At ECF, 12 of the 39 modules were dismantled and about 1000 of more than 17,000 rods were removed from the modules of proof-of-breeding and fuel performance testing. Some of the removed rods were kept at ECF, some were sent to Argonne National Laboratory-West (ANL-W) in Idaho and some to ANL-East in Chicago for a variety of physical, chemical and radiological examinations. All rods and rod sections remaining after the experiments were shipped back to ECF, where modules and loose rods were repackaged in liners for dry storage. In a series of shipments, the liners were transported from ECF to Idaho Nuclear Technology Engineering Center (INTEC), formerly the Idaho Chemical Processing Plant (ICPP). The 47 liners containing the fully-rodded and partially-derodded core modules, the loose rods, and the rod scraps, are now stored in underground dry wells at CPP-749.

  7. The neutronics studies of fusion fission hybrid power reactor

    SciTech Connect

    Zheng Youqi; Wu Hongchun; Zu Tiejun; Yang Chao; Cao Liangzhi

    2012-06-19

    In this paper, a series of neutronics analysis of hybrid power reactor is proposed. The ideas of loading different fuels in a modular-type fission blanket is analyzed, fitting different level of fusion developments, i.e., the current experimental power output, the level can be obtained in the coming future and the high-power fusion reactor like ITER. The energy multiplication of fission blankets and tritium breeding ratio are evaluated as the criterion of design. The analysis is implemented based on the D-type simplified model, aiming to find a feasible 1000MWe hybrid power reactor for 5 years' lifetime. Three patterns are analyzed: 1) for the low fusion power, the reprocessed fuel is chosen. The fuel with high plutonium content is loaded to achieve large energy multiplication. 2) For the middle fusion power, the spent fuel from PWRs can be used to realize about 30 times energy multiplication. 3) For the high fusion power, the natural uranium can be directly used and about 10 times energy multiplication can be achieved.

  8. Performance of boiling water reactor fuel lead test assemblies to 35 MWd/kg U

    SciTech Connect

    Rowland, T.C.; Ikemoto, R.N.; Gehl, S.

    1986-01-01

    This joint Electric Power Research Institute/General Electric (EPRI/GE) fuel performance program involved thorough preirradiation characterization of fuel used in lead test assemblies (LTAs), detailed surveillance of their operation, and interim site examinations of the assemblies during reactor outages. The program originally included four GE-5 LTAs operating in the Peach Bottom-2 (PB-2) reactor. The program was later modified to include the pressurized fuel rod test assembly in the Peach Bottom-3 (PB-3) reactor. The program modification also included extending the operation of the PB-2 and PB-3 LTA fuel beyond normal discharge exposures. Results are summarized in the paper.

  9. Advanced thermionic reactors for surface nuclear power applications

    NASA Astrophysics Data System (ADS)

    Parlos, Alexander G.; Kent, Karl; Peddicord, Kenneth L.; Khan, Ehsan U.

    1991-09-01

    A preliminary feasibility study on a new concept for a highly compact space reactor power system is presented, consisting of in-core thermionic fuel elements and in-core heat pipes for passive core cooling. The reference fuel considered in this study is uranium carbide. The calculations reported include a neutronic design analysis using a 2D neutron transport model, as well as a simplified 1D thermal analysis of the reactor core, using a preliminary thermal sizing of the in-core heat pipes. Initial results indicate that the proposed core design is thermally and neutronically feasible, with a maximum steady-state fuel temperature below 2000 K. Alternate advanced fuels, such as various oxides of Am-242, result in exceedingly high fuel centerline temperatures because of the associated low thermal conductivities.

  10. A compact breed and burn fast reactor using spent nuclear fuel blanket

    SciTech Connect

    Hartanto, D.; Kim, Y.

    2012-07-01

    A long-life breed-and-burn (B and B) type fast reactor has been investigated from the neutronics points of view. The B and B reactor has the capability to breed the fissile fuels and use the bred fuel in situ in the same reactor. In this work, feasibility of a compact sodium-cooled B and B fast reactor using spent nuclear fuel as blanket material has been studied. In order to derive a compact B and B fast reactor, a tight fuel lattice and relatively large fuel pin are used to achieve high fuel volume fraction. The core is initially loaded with an LEU (Low Enriched Uranium) fuel and a metallic fuel is used in the core. The Monte Carlo depletion has been performed for the core to see the long-term behavior of the B and B reactor. Several important parameters such as reactivity coefficients, delayed neutron fraction, prompt neutron generation lifetime, fission power, and fast neutron fluence, are analyzed through Monte Carlo reactor analysis. Evolution of the core fuel composition is also analyzed as a function of burnup. Although the long-life small B and B fast reactor is found to be feasible from the neutronics point of view, it is characterized to have several challenging technical issues including a very high fast neutron fluence of the structural materials. (authors)

  11. Safeguards instrument to monitor spent reactor fuel

    NASA Astrophysics Data System (ADS)

    Nicholson, N.; Dowdy, E. J.; Holt, D. M.; Stump, C.

    1981-10-01

    A hand held instrument for monitoring irradiated nuclear fuel inventories located in water filled storage ponds has been developed. This instrument provides sufficient precise qualitative and quantitative information to be useful as a confirmatory technique to International Atomic Energy Agency inspectors, and is believed to be of potential use to nuclear fuel managers and to operators of spent fuel storage facilities, both at reactor and away from reactor, and to operators of nuclear fuel reprocessing plants. Because the Cerenkov radiation glow can barely be seen by the unaided eye under darkened conditions, a night vision device is incorporated to aid the operator in locating the fuel assembly to be measured. Beam splitting optics placed in front of the image intensifier and a preset aperture select a predetermined portion of the observed scene for measurement of the light intensity using a photomultiplier (PM) tube and digital readout. The PM tube gain is adjusted by use of an internal optical reference source, providing long term repeatability and instrument to instrument consistency. Interchangeable lenses accommodate various viewing and measuring conditions.

  12. Hybrid thermionic space reactor for power and propulsion

    SciTech Connect

    Sahin, S. . Teknik Egitim Fakueltesi); Kennel, E.B. )

    1994-08-01

    A thermo-hydrodynamic-neutronic analysis is performed for a fast, uranium carbide (UC) fueled space-craft nuclear in-core thermionic reactor. The thermo-hydrodynamic analysis shows that a hybrid thermionic spacecraft nuclear reactor can be designed for both electricity generation and nuclear thermal propulsion purposes. The neutronic analysis has been conducted in S[sub 8]-P[sub 3] approximation with the help of one- and two-dimensional neutron transport codes ANISN and DORT, respectively. The calculations have shown that a UC fueled electricity generating single mode thermionic nuclear reactor can be designed to be extremely compact because of the high atomic density of the nuclear fuel (by 95% sintering density), namely, with a core radius of 8.7 cm and core height of 25 cm, leading to power levels as low as 5 kW (electric) by an electrical output on an emitter surface of 1.243 W/cm[sup 2]. A reactor control with boronated reflector drums at the outer periphery of the radial reflector of 16-cm thickness would make possible reactivity changes of [Delta]k[sub eff] > 10% -- amply sufficient for a fast reactor -- without a significant distortion of the fission power profile during all phases of the space mission. The hybrid thermionic spacecraft nuclear reactor mode contains cooling channels in the nuclear fuel for the hydrogen propellant. This increase the critical reactor size because of the lower uranium atomic density in this design concept. Calculations have lead to a reactor with a core radius of 22 cm and core height of 35 cm leading to power levels [approximately] 50 kW(electric) under the aforementioned thermionic conversion conditions.

  13. JACKETED FUEL ELEMENTS FOR GRAPHITE MODERATED REACTORS

    DOEpatents

    Szilard, L.; Wigner, E.P.; Creutz, E.C.

    1959-05-12

    Fuel elements for a heterogeneous, fluid cooled, graphite moderated reactor are described. The fuel elements are comprised of a body of natural uranium hermetically sealed in a jacket of corrosion resistant material. The jacket, which may be aluminum or some other material which is non-fissionable and of a type having a low neutron capture cross-section, acts as a barrier between the fissioning isotope and the coolant or moderator or both. The jacket minimizes the tendency of the moderator and coolant to become radioactive and/or contaminated by fission fragments from the fissioning isotope.

  14. Nuclear reactor fuel rod attachment system

    DOEpatents

    Not Available

    1980-09-17

    A reusable system is described for removably attaching a nuclear reactor fuel rod to a support member. A locking cap is secured to the fuel rod and a locking strip is fastened to the support member. The locking cap has two opposing fingers shaped to form a socket having a body portion. The locking strip has an extension shaped to rigidly attach to the socket's body portion. The locking cap's fingers are resiliently deflectable. For attachment, the locking cap is longitudinally pushed onto the locking strip causing the extension to temporarily deflect open the fingers to engage the socket's body portion. For removal, the process is reversed.

  15. Fuel handling system for a nuclear reactor

    DOEpatents

    Saiveau, James G.; Kann, William J.; Burelbach, James P.

    1986-01-01

    A pool type nuclear fission reactor has a core, with a plurality of core elements and a redan which confines coolant as a hot pool at a first end of the core separated from a cold pool at a second end of the core by the redan. A fuel handling system for use with such reactors comprises a core element storage basket located outside of the redan in the cold pool. An access passage is formed in the redan with a gate for opening and closing the passage to maintain the temperature differential between the hot pool and the cold pool. A mechanism is provided for opening and closing the gate. A lifting arm is also provided for manipulating the fuel core elements through the access passage between the storage basket and the core when the redan gate is open.

  16. Fuel handling system for a nuclear reactor

    DOEpatents

    Saiveau, James G.; Kann, William J.; Burelbach, James P.

    1986-12-02

    A pool type nuclear fission reactor has a core, with a plurality of core elements and a redan which confines coolant as a hot pool at a first end of the core separated from a cold pool at a second end of the core by the redan. A fuel handling system for use with such reactors comprises a core element storage basket located outside of the redan in the cold pool. An access passage is formed in the redan with a gate for opening and closing the passage to maintain the temperature differential between the hot pool and the cold pool. A mechanism is provided for opening and closing the gate. A lifting arm is also provided for manipulating the fuel core elements through the access passage between the storage basket and the core when the redan gate is open.

  17. TFE fast driver reactor system for low-power applications

    NASA Astrophysics Data System (ADS)

    Van Hagan, Thomas H.; Lewis, Bryan R.; Bellis, Elizabeth A.; Fisher, Mike V.

    1992-01-01

    This paper addresses reactor design considerations for an in-core thermionic system concept proposed for emerging space power applications with electric power requirements in the 10 to 50-kWe range. At this power level an in-core thermionic rector core requires a combination of thermionic fuel elements (TFEs) and driver fuel elements to achieve nuclear criticality. A pumped liquid-metal loop cools the reactor, transporting the reject heat to a heat pipe radiator. The system concept is a straightforward derivative of the thermionic 100-kWe system designed during the SP-100 Phase 1 program. Combining existing thermionic technology with LMFBR fuel technology and pumped-loop waste heat removal defines a concept that has the advantages of reliability, scalability, technology maturity, and design flexibility.

  18. Economic Analyiss of "Symbiotic" Light Water Reactor/Fast Burner Reactor Fuel Cycles Proposed as Part of the U.S. Advanced Fuel Cycle Initiative (AFCI)

    SciTech Connect

    Williams, Kent Alan; Shropshire, David E.

    2009-01-01

    A spreadsheet-based 'static equilibrium' economic analysis was performed for three nuclear fuel cycle scenarios, each designed for 100 GWe-years of electrical generation annually: (1) a 'once-through' fuel cycle based on 100% LWRs fueled by standard UO2 fuel assemblies with all used fuel destined for geologic repository emplacement, (2) a 'single-tier recycle' scenario involving multiple fast burner reactors (37% of generation) accepting actinides (Pu,Np,Am,Cm) from the reprocessing of used fuel from the uranium-fueled LWR fleet (63% of generation), and (3) a 'two-tier' 'thermal+fast' recycle scenario where co-extracted U,Pu from the reprocessing of used fuel from the uranium-fueled part of the LWR fleet (66% of generation) is recycled once as full-core LWR MOX fuel (8% of generation), with the LWR MOX used fuel being reprocessed and all actinide products from both UO2 and MOX used fuel reprocessing being introduced into the closed fast burner reactor (26% of generation) fuel cycle. The latter two 'closed' fuel cycles, which involve symbiotic use of both thermal and fast reactors, have the advantages of lower natural uranium requirements per kilowatt-hour generated and less geologic repository space per kilowatt-hour as compared to the 'once-through' cycle. The overall fuel cycle cost in terms of $ per megawatt-hr of generation, however, for the closed cycles is 15% (single tier) to 29% (two-tier) higher than for the once-through cycle, based on 'expected values' from an uncertainty analysis using triangular distributions for the unit costs for each required step of the fuel cycle. (The fuel cycle cost does not include the levelized reactor life cycle costs.) Since fuel cycle costs are a relatively small percentage (10 to 20%) of the overall busbar cost (LUEC or 'levelized unit electricity cost') of nuclear power generation, this fuel cycle cost increase should not have a highly deleterious effect on the competitiveness of nuclear power. If the reactor life cycle

  19. NUCLEAR REACTOR AND THERMIONIC FUEL ELEMENT THEREFOR

    DOEpatents

    Rasor, N.S.; Hirsch, R.L.

    1963-12-01

    The patent relates to the direct conversion of fission heat to electricity by use of thermionic plasma diodes having fissionable material cathodes, said diodes arranged to form a critical mass in a nuclear reactor. The patent describes a fuel element comprising a plurality of diodes each having a fissionable material cathode, an anode around said cathode, and an ionizable gas therebetween. Provision is made for flowing the gas and current serially through the diodes. (AEC)

  20. Aircraft Fuel Cell Power Systems

    NASA Technical Reports Server (NTRS)

    Needham, Robert

    2004-01-01

    In recent years, fuel cells have been explored for use in aircraft. While the weight and size of fuel cells allows only the smallest of aircraft to use fuel cells for their primary engines, fuel cells have showed promise for use as auxiliary power units (APUs), which power aircraft accessories and serve as an electrical backup in case of an engine failure. Fuel cell MUS are both more efficient and emit fewer pollutants. However, sea-level fuel cells need modifications to be properly used in aircraft applications. At high altitudes, the ambient air has a much lower pressure than at sea level, which makes it much more difficult to get air into the fuel cell to react and produce electricity. Compressors can be used to pressurize the air, but this leads to added weight, volume, and power usage, all of which are undesirable things. Another problem is that fuel cells require hydrogen to create electricity, and ever since the Hindenburg burst into flames, aircraft carrying large quantities of hydrogen have not been in high demand. However, jet fuel is a hydrocarbon, so it is possible to reform it into hydrogen. Since jet fuel is already used to power conventional APUs, it is very convenient to use this to generate the hydrogen for fuel-cell-based APUs. Fuel cells also tend to get large and heavy when used for applications that require a large amount of power. Reducing the size and weight becomes especially beneficial when it comes to fuel cells for aircraft. My goal this summer is to work on several aspects of Aircraft Fuel Cell Power System project. My first goal is to perform checks on a newly built injector rig designed to test different catalysts to determine the best setup for reforming Jet-A fuel into hydrogen. These checks include testing various thermocouples, transmitters, and transducers, as well making sure that the rig was actually built to the design specifications. These checks will help to ensure that the rig will operate properly and give correct results

  1. Proliferation resistance of small modular reactors fuels

    SciTech Connect

    Polidoro, F.; Parozzi, F.; Fassnacht, F.; Kuett, M.; Englert, M.

    2013-07-01

    In this paper the proliferation resistance of different types of Small Modular Reactors (SMRs) has been examined and classified with criteria available in the literature. In the first part of the study, the level of proliferation attractiveness of traditional low-enriched UO{sub 2} and MOX fuels to be used in SMRs based on pressurized water technology has been analyzed. On the basis of numerical simulations both cores show significant proliferation risks. Although the MOX core is less proliferation prone in comparison to the UO{sub 2} core, it still can be highly attractive for diversion or undeclared production of nuclear material. In the second part of the paper, calculations to assess the proliferation attractiveness of fuel in typical small sodium cooled fast reactor show that proliferation risks from spent fuel cannot be neglected. The core contains a highly attractive plutonium composition during the whole life cycle. Despite some aspects of the design like the sealed core that enables easy detection of unauthorized withdrawal of fissile material and enhances proliferation resistance, in case of open Non-Proliferation Treaty break-out, weapon-grade plutonium in sufficient quantities could be extracted from the reactor core.

  2. Fuel Cell Powered Lift Truck

    SciTech Connect

    Moulden, Steve

    2015-08-20

    This project, entitled “Recovery Act: Fuel Cell-Powered Lift Truck Sysco (Houston) Fleet Deployment”, was in response to DOE funding opportunity announcement DE-PS36-08GO98009, Topic 7B, which promotes the deployment of fuel cell powered material handling equipment in large, multi-shift distribution centers. This project promoted large-volume commercialdeployments and helped to create a market pull for material handling equipment (MHE) powered fuel cell systems. Specific outcomes and benefits involved the proliferation of fuel cell systems in 5-to 20-kW lift trucks at a high-profile, real-world site that demonstrated the benefits of fuel cell technology and served as a focal point for other nascent customers. The project allowed for the creation of expertise in providing service and support for MHE fuel cell powered systems, growth of existing product manufacturing expertise, and promoted existing fuel cell system and component companies. The project also stimulated other MHE fleet conversions helping to speed the adoption of fuel cell systems and hydrogen fueling technology. This document also contains the lessons learned during the project in order to communicate the successes and difficulties experienced, which could potentially assist others planning similar projects.

  3. Zirconium Hydride Space Power Reactor design.

    NASA Technical Reports Server (NTRS)

    Asquith, J. G.; Mason, D. G.; Stamp, S.

    1972-01-01

    The Zirconium Hydride Space Power Reactor being designed and fabricated at Atomics International is intended for a wide range of potential applications. Throughout the program a series of reactor designs have been evaluated to establish the unique requirements imposed by coupling with various power conversion systems and for specific applications. Current design and development emphasis is upon a 100 kilowatt thermal reactor for application in a 5 kwe thermoelectric space power generating system, which is scheduled to be fabricated and ground tested in the mid 70s. The reactor design considerations reviewed in this paper will be discussed in the context of this 100 kwt reactor and a 300 kwt reactor previously designed for larger power demand applications.

  4. PREPARING THE HIGH FLUX ISOTOPE REACTOR FOR CONVERSION TO LOW ENRICHED URANIUM FUEL ? RETURN TO 100 MW

    SciTech Connect

    Smith, Kevin Arthur; Primm, Trent

    2009-01-01

    The feasibility of low-enriched uranium (LEU) fuel as a replacement for the current, high enriched uranium (HEU) fuel for the High Flux Isotope Reactor (HFIR) has been under study since 2006. Reactor performance studies have been completed for conceptual plate designs and show that maintaining reactor performance while converting to LEU fuel requires returning the reactor power to 100 MW from 85 MW. The analyses required to up-rate the reactor power and the methods to perform these analyses are discussed. Comments regarding the regulatory approval process are provided along with a conceptual schedule.

  5. Nuclear Power from Fission Reactors. An Introduction.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Technical Information Center.

    The purpose of this booklet is to provide a basic understanding of nuclear fission energy and different fission reaction concepts. Topics discussed are: energy use and production, current uses of fuels, oil and gas consumption, alternative energy sources, fossil fuel plants, nuclear plants, boiling water and pressurized water reactors, the light…

  6. Reference Reactor Module for the Affordable Fission Surface Power System

    NASA Astrophysics Data System (ADS)

    Poston, David I.; Kapernick, Richard J.; Dixon, David D.; Amiri, Benjamin W.; Marcille, Thomas F.

    2008-01-01

    Surface fission power systems on the Moon and Mars may provide the first US application of fission reactor technology in space since 1965. The requirements of many surface power applications allow the consideration of systems with much less development risk than most other space reactor applications, because of modest power (10s of kWe) and no driving need for minimal mass (allowing temperatures <1000 K). The Affordable Fission Surface Power System (AFSPS) study was completed by NASA/DOE to determine the cost of a modest performance, low-technical risk surface power system. This paper describes the reference AFSPS reactor module concept, which is designed to provide a net power of 40 kWe for 8 years on the lunar surface; note, the system has been designed with technologies that are fully compatible with a Martian surface application. The reactor concept uses stainless-steel based, UO2-fueled, liquid metal-cooled fission reactor coupled to free-piston Stirling converters. The reactor shielding approach utilizes both in-situ and launched shielding to keep the dose to astronauts much lower than the natural background radiation on the lunar surface. One of the important ``affordability'' attributes is that the concept has been designed to minimize both the technical and programmatic safety risk.

  7. Reference Reactor Module for the Affordable Fission Surface Power System

    SciTech Connect

    Poston, David I.; Kapernick, Richard J.; Dixon, David D.; Amiri, Benjamin W.; Marcille, Thomas F.

    2008-01-21

    Surface fission power systems on the Moon and Mars may provide the first US application of fission reactor technology in space since 1965. The requirements of many surface power applications allow the consideration of systems with much less development risk than most other space reactor applications, because of modest power (10s of kWe) and no driving need for minimal mass (allowing temperatures <1000 K). The Affordable Fission Surface Power System (AFSPS) study was completed by NASA/DOE to determine the cost of a modest performance, low-technical risk surface power system. This paper describes the reference AFSPS reactor module concept, which is designed to provide a net power of 40 kWe for 8 years on the lunar surface; note, the system has been designed with technologies that are fully compatible with a Martian surface application. The reactor concept uses stainless-steel based, UO{sub 2}-fueled, liquid metal-cooled fission reactor coupled to free-piston Stirling converters. The reactor shielding approach utilizes both in-situ and launched shielding to keep the dose to astronauts much lower than the natural background radiation on the lunar surface. One of the important 'affordability' attributes is that the concept has been designed to minimize both the technical and programmatic safety risk.

  8. Decommissioning of nuclear reactor fuel channels using laser technology

    NASA Astrophysics Data System (ADS)

    Panchenko, Vladislav Y.; Zabelin, Alexandre M.; Slepokon, Yu. I.; Ryahin, V. M.; Kuznetsov, P. P.; Panasyuk, V. F.; Korotchenko, A. V.; Kislov, V. S.; Loktev, S. V.

    2000-07-01

    Decommissioning of nuclear reactors using laser remote dismounting and welding was experimentally proved at a nuclear reactor of Kursk Nuclear Power Plant. The main reason of laser beam application in this case is the marked decrease of radioactive exposure of the service personnel. The use of a high-power laser beam provided for laser cutting and welding processes realization at a distance up to 35 m between the laser and the workstation placed behind a radiation shield. By application of laser cutting gas and dust contamination is ten-fold decreased. Some results of decommissioning application of a stationary laser workstation based upon a 5 kW fast-transverse-flow discharge CW CO2 laser TL-5M installed at a nuclear reactor site are presented. A special high-beam- quality model of the laser was developed to satisfy the needs of decommissioning. Laser cutting process was applied to decommissioning of fuel channels (FC) of RBMK-1000 reactor, after their extractor from the reactor active zone during the procedure of channels replacement.

  9. Water reactive hydrogen fuel cell power system

    SciTech Connect

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-11-25

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into the fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  10. Water reactive hydrogen fuel cell power system

    SciTech Connect

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-01-21

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  11. Spring element for holding down nuclear reactor fuel assembly

    SciTech Connect

    Steinke, A.

    1981-07-14

    Spring element is described for holding down and bracing a fuel assembly against a hold-down plate upwardly limiting the reactor core of a nuclear reactor. Includes a spring-loaded rod-shaped member separately formed independently of the fuel assembly and being slidable axially and form-lockingly into the fuel assembly.

  12. Summary of space nuclear reactor power systems, 1983 - 1992

    NASA Astrophysics Data System (ADS)

    Buden, D.

    1993-08-01

    This report summarizes major developments in the last ten years which have greatly expanded the space nuclear reactor power systems technology base. In the SP-100 program, after a competition between liquid-metal, gas-cooled, thermionic, and heat pipe reactors integrated with various combinations of thermoelectric thermionic, Brayton, Rankine, and Stirling energy conversion systems, three concepts were selected for further evaluation. In 1985, the high-temperature (1,350 K), lithium-cooled reactor with thermoelectric conversion was selected for full scale development. Since then, significant progress has been achieved including the demonstration of a 7-y-life uranium nitride fuel pin. Progress on the lithium-cooled reactor with thermoelectrics has progressed from a concept, through a generic flight system design, to the design, development, and testing of specific components. Meanwhile, the USSR in 1987-88 orbited a new generation of nuclear power systems beyond the, thermoelectric plants on the RORSAT satellites. The US has continued to advance its own thermionic fuel element development, concentrating on a multicell fuel element configuration. Experimental work has demonstrated a single cell operating time of about 1 1/2-y. Technology advances have also been made in the Stirling engine; an advanced engine that operates at 1,050 K is ready for testing. Additional concepts have been studied and experiments have been performed on a variety of systems to meet changing needs; such as powers of tens-to-hundreds of megawatts and highly survivable systems of tens-of-kilowatts power.

  13. Thermonuclear inverse magnetic pumping power cycle for stellarator reactors

    NASA Astrophysics Data System (ADS)

    Ho, D. D. M.; Kulsrud, R. M.

    1985-09-01

    A novel power cycle for direct conversion of alpha-particle energy into electricity is proposed for an ignited plasma in a stellerator reactor. The plasma column is alternately compressed and expanded in minor radius by periodic variation of the toroidal magnetic field strength. As a result of the way a stellarator is expected to work, the plasma pressure during expansion is greater than the corresponding pressure during compression. Therefore, negative work is done on the plasma during a complete cycle. This work manifests itself as a back-voltage in the toroidal field coils, and direct electrical energy is obtained from this voltage. For a typical reactor, the average power obtained from this cycle (with a minor radius compression factor on the order of 50%) can be as much as 50% of the electrical power obtained from the thermonuclear neutrons without compressing the plasma. Thus, if it is feasible to vary the toroidal field strength, the power cycle provides an alternative scheme of energy conversion for a deuterium-tritium fueled reactor. The cycle may become an important method of energy conversion for advanced neutron-lean fueled reactors. By operating two or more reactors in tandem, the cycle can be made self-sustaining.

  14. Reference reactor module for NASA's lunar surface fission power system

    SciTech Connect

    Poston, David I; Kapernick, Richard J; Dixon, David D; Werner, James; Qualls, Louis; Radel, Ross

    2009-01-01

    Surface fission power systems on the Moon and Mars may provide the first US application of fission reactor technology in space since 1965. The Affordable Fission Surface Power System (AFSPS) study was completed by NASA/DOE to determine the cost of a modest performance, low-technical risk surface power system. The AFSPS concept is now being further developed within the Fission Surface Power (FSP) Project, which is a near-term technology program to demonstrate system-level TRL-6 by 2013. This paper describes the reference FSP reactor module concept, which is designed to provide a net power of 40 kWe for 8 years on the lunar surface; note, the system has been designed with technologies that are fully compatible with a Martian surface application. The reactor concept uses stainless-steel based. UO{sub 2}-fueled, pumped-NaK fission reactor coupled to free-piston Stirling converters. The reactor shielding approach utilizes both in-situ and launched shielding to keep the dose to astronauts much lower than the natural background radiation on the lunar surface. The ultimate goal of this work is to provide a 'workhorse' power system that NASA can utilize in near-term and future Lunar and Martian mission architectures, with the eventual capability to evolve to very high power, low mass systems, for either surface, deep space, and/or orbital missions.

  15. Advanced ceramic cladding for water reactor fuel

    SciTech Connect

    Feinroth, H.

    2000-07-01

    Under the US Department of Energy's Nuclear Energy Research Initiatives (NERI) program, continuous fiber ceramic composites (CFCCs) are being developed as cladding for water reactor fuel elements. The purpose is to substantially increase the passive safety of water reactors. A development effort was initiated in 1991 to fabricate CFCC-clad tubes using commercially available fibers and a sol-gel process developed by McDermott Technologies. Two small-diameter CFCC tubes were fabricated using pure alumina and alumina-zirconia fibers in an alumina matrix. Densities of {approximately}60% of theoretical were achieved. Higher densities are required to guarantee fission gas containment. This NERI work has just begun, and only preliminary results are presented herein. Should the work prove successful, further development is required to evaluate CFCC cladding and performance, including in-pile tests containing fuel and exploring a marriage of CFCC cladding materials with suitable advanced fuel and core designs. The possibility of much higher temperature core designs, possibly cooled with supercritical water, and achievement of plant efficiencies {ge}50% would be examined.

  16. 75 FR 79423 - In the Matter of All Power Reactor Licensees and Research Reactor Licensees Who Transport Spent...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-20

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY... All Power Reactor Licensees and Research Reactor Licensees Who Transport Spent Nuclear Fuel; Order... issued a specific license by the U.S. Nuclear Regulatory Commission (NRC or Commission) authorizing...

  17. 75 FR 70042 - In the Matter of All Power Reactor Licensees and Research Reactor Licensees Who Transport Spent...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-16

    ... From the Federal Register Online via the Government Publishing Office ] NUCLEAR REGULATORY... All Power Reactor Licensees and Research Reactor Licensees Who Transport Spent Nuclear Fuel; Order... been issued a specific license by the U.S. Nuclear Regulatory Commission (NRC or...

  18. Spent nuclear fuel discharges from U.S. reactors 1994

    SciTech Connect

    1996-02-01

    Spent Nuclear Fuel Discharges from US Reactors 1994 provides current statistical data on fuel assemblies irradiated at commercial nuclear reactors operating in the US. This year`s report provides data on the current inventories and storage capacities at these reactors. Detailed statistics on the data are presented in four chapters that highlight 1994 spent fuel discharges, storage capacities and inventories, canister and nonfuel component data, and assembly characteristics. Five appendices, a glossary, and bibliography are also included. 10 figs., 34 tabs.

  19. Reactor physics and safety aspects of various design options of a Russian light water reactor with rock-like fuels

    NASA Astrophysics Data System (ADS)

    Bondarenko, A. V.; Komissarov, O. V.; Kozmenkov, Ya. K.; Matveev, Yu. V.; Orekhov, Yu. I.; Pivovarov, V. A.; Sharapov, V. N.

    2003-06-01

    This paper presents results of analytical studies on weapons grade plutonium incineration in VVER (640) medium size light water reactors using a special composition of rock-like fuel (ROX-fuel) to assure spent fuel long-term storage without its reprocessing. The main goal is to achieve high degree of plutonium incineration in once-through cycle. In this paper we considered two fuel compositions. In both compositions weapons grade plutonium is used as fissile material. Spinel (MgAl 2O 4) is used as the 'preserving' material assuring safe storage of the spent fuel. Besides an inert matrix, the option of rock-like fuel with thorium dioxide was studied. One of principal problems in the realization of the proposed approach is the substantial change of properties of the light water reactor core when passing to the use of the ROX-fuel, in particular: (i) due to the absence of 238U the Doppler effect playing a crucial role in reactor's self-regulation and limiting the consequences of reactivity accidents, decreases significantly, (ii) no fuel breeding on one hand, and the quest to attain the maximum plutonium burnup on the other hand, would result in a drastical change of the fuel assembly power during the lifetime and, as a consequence, the rise in irregularity of the power density of fuel assemblies, (iii) both the control rods worth and dissolved boron worth decrease in view of neutron spectrum hardening brought on by the larger absorption cross-section of plutonium as compared to uranium, (iv) βeff is markedly reduced. All these distinctive features are potentially detrimental to the reactor nuclear safety. The principal objective of this work is that to identify a variant of the fuel composition and the reactor layout, which would permit neutralize the negative effect of the above-mentioned distinctive features.

  20. Gas-cooled reactor for space power systems

    SciTech Connect

    Walter, C.E.; Pearson, J.S.

    1987-05-01

    Reactor characteristics based on extensive development work on the 500-MWt reactor for the Pluto nuclear ramjet are described for space power systems useful in the range of 2 to 20 MWe for operating times of 1 y. The modest pressure drop through the prismatic ceramic core is supported at the outlet end by a ceramic dome which also serves as a neutron reflector. Three core materials are considered which are useful at temperatures up to about 2000 K. Most of the calculations are based on a beryllium oxide with uranium dioxide core. Reactor control is accomplished by use of a burnable poison, a variable-leakage reflector, and internal control rods. Reactivity swings of 20% are obtained with a dozen internal boron-10 rods for the size cores studied. Criticality calculations were performed using the ALICE Monte Carlo code. The inherent high-temperature capability of the reactor design removes the reactor as a limiting condition on system performance. The low fuel inventories required, particularly for beryllium oxide reactors, make space power systems based on gas-cooled near-thermal reactors a lesser safeguard risk than those based on fast reactors.

  1. 10 CFR 50.46 - Acceptance criteria for emergency core cooling systems for light-water nuclear power reactors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... light-water nuclear power reactors. 50.46 Section 50.46 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC... Approvals § 50.46 Acceptance criteria for emergency core cooling systems for light-water nuclear power reactors. (a)(1)(i) Each boiling or pressurized light-water nuclear power reactor fueled with uranium...

  2. 10 CFR 50.46 - Acceptance criteria for emergency core cooling systems for light-water nuclear power reactors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... light-water nuclear power reactors. 50.46 Section 50.46 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC... Approvals § 50.46 Acceptance criteria for emergency core cooling systems for light-water nuclear power reactors. (a)(1)(i) Each boiling or pressurized light-water nuclear power reactor fueled with uranium...

  3. 10 CFR 50.46 - Acceptance criteria for emergency core cooling systems for light-water nuclear power reactors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... light-water nuclear power reactors. 50.46 Section 50.46 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC... Approvals § 50.46 Acceptance criteria for emergency core cooling systems for light-water nuclear power reactors. (a)(1)(i) Each boiling or pressurized light-water nuclear power reactor fueled with uranium...

  4. 10 CFR 50.46 - Acceptance criteria for emergency core cooling systems for light-water nuclear power reactors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... light-water nuclear power reactors. 50.46 Section 50.46 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC... Approvals § 50.46 Acceptance criteria for emergency core cooling systems for light-water nuclear power reactors. (a)(1)(i) Each boiling or pressurized light-water nuclear power reactor fueled with uranium...

  5. 10 CFR 50.46 - Acceptance criteria for emergency core cooling systems for light-water nuclear power reactors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... light-water nuclear power reactors. 50.46 Section 50.46 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC... Approvals § 50.46 Acceptance criteria for emergency core cooling systems for light-water nuclear power reactors. (a)(1)(i) Each boiling or pressurized light-water nuclear power reactor fueled with uranium...

  6. Consolidated fuel reprocessing program: Criticality experiments with fast test reactor fuel pins in an organic moderator

    SciTech Connect

    Bierman, S.R.

    1986-12-01

    The results obtained in a series of criticality experiments performed as part of a joint program on criticality data development between the United States Department of Energy and the Power Reactor and Nuclear Fuel Development Corporation of Japan are presented in this report along with a complete description of the experiments. The experiments involved lattices of Fast Test Reactor (FTR) fuel pins in an organic moderator mixture similar to that used in the solvent extraction stage of fuel reprocessing. The experiments are designed to provide data for direct comparison with previously performed experimental measurements with water moderated lattices of FTR fuel pins. The same lattice arrangements and FTR fuel pin types are used in these organic moderated experimental assemblies as were used in the water moderated experiments. The organic moderator is a mixture of 38 wt % tributylphosphate in a normal paraffin hydrocarbon mixture of C{sub 11}H{sub 24} to C{sub 15}H{sub 32} molecules. Critical sizes of 1054.8, 599.2, 301.8, 199.5 and 165.3 fuel pins were obtained respectively for organic moderated lattices having 0.761 cm, 0.968 cm, 1.242 cm, 1.537 cm and 1.935 cm square lattice pitches as compared to 1046.9, 571.9, 293.9, 199.7 and 165.1 fuel pins for the same lattices water moderated.

  7. REACTOR

    DOEpatents

    Roman, W.G.

    1961-06-27

    A pressurized water reactor in which automatic control is achieved by varying the average density of the liquid moderator-cooiant is patented. Density is controlled by the temperature and power level of the reactor ftself. This control can be effected by the use of either plate, pellet, or tubular fuel elements. The fuel elements are disposed between upper and lower coolant plenum chambers and are designed to permit unrestricted coolant flow. The control chamber has an inlet opening communicating with the lower coolant plenum chamber and a restricted vapor vent communicating with the upper coolant plenum chamber. Thus, a variation in temperature of the fuel elements will cause a variation in the average moderator density in the chamber which directly affects the power level of the reactor.

  8. Development of Improved Burnable Poisons for Commercial Nuclear Power Reactors

    SciTech Connect

    M. L. Grossbeck J-P.A. Renier Tim Bigelow

    2003-09-30

    Burnable poisons are used in nuclear reactors to produce a more level distribution of power in the reactor core and to reduce to necessity for a large control system. An ideal burnable poison would burn at the same rate as the fuel. In this study, separation of neutron-absorbing isotopes was investigated in order to eliminate isotopes that remain as absorbers at the end of fuel life, thus reducing useful fuel life. The isotopes Gd-157, Dy-164, and Er-167 were found to have desirable properties. These isotopes were separated from naturally occurring elements by means of plasma separation to evaluate feasibility and cost. It was found that pure Gd-157 could save approximately $6 million at the end of four years. However, the cost of separation, using the existing facility, made separation cost- ineffective. Using a magnet with three times the field strength is expected to reduce the cost by a factor of ten, making isotopically separated burnable poisons a favorable method of increasing fuel life in commercial reactors, in particular Generation-IV reactors. The project also investigated various burnable poison configurations, and studied incorporation of metallic burnable poisons into fuel cladding.

  9. Hybrid fusion-fission reactor with a thorium blanket: Its potential in the fuel cycle of nuclear reactors

    NASA Astrophysics Data System (ADS)

    Shmelev, A. N.; Kulikov, G. G.; Kurnaev, V. A.; Salahutdinov, G. H.; Kulikov, E. G.; Apse, V. A.

    2015-12-01

    Discussions are currently going on as to whether it is suitable to employ thorium in the nuclear fuel cycle. This work demonstrates that the 231Pa-232U-233U-Th composition to be produced in the thorium blanket of a hybrid thermonuclear reactor (HTR) as a fuel for light-water reactors opens up the possibility of achieving high, up to 30% of heavy metals (HM), or even ultrahigh fuel burnup. This is because the above fuel composition is able to stabilize its neutron-multiplying properties in the process of high fuel burnup. In addition, it allows the nuclear fuel cycle (NFC) to be better protected against unauthorized proliferation of fissile materials owing to an unprecedentedly large fraction of 232U (several percent!) in the uranium bred from the Th blanket, which will substantially hamper the use of fissile materials in a closed NFC for purposes other than power production.

  10. Hybrid fusion–fission reactor with a thorium blanket: Its potential in the fuel cycle of nuclear reactors

    SciTech Connect

    Shmelev, A. N. Kulikov, G. G. Kurnaev, V. A. Salahutdinov, G. H. Kulikov, E. G. Apse, V. A.

    2015-12-15

    Discussions are currently going on as to whether it is suitable to employ thorium in the nuclear fuel cycle. This work demonstrates that the {sup 231}Pa–{sup 232}U–{sup 233}U–Th composition to be produced in the thorium blanket of a hybrid thermonuclear reactor (HTR) as a fuel for light-water reactors opens up the possibility of achieving high, up to 30% of heavy metals (HM), or even ultrahigh fuel burnup. This is because the above fuel composition is able to stabilize its neutron-multiplying properties in the process of high fuel burnup. In addition, it allows the nuclear fuel cycle (NFC) to be better protected against unauthorized proliferation of fissile materials owing to an unprecedentedly large fraction of {sup 232}U (several percent!) in the uranium bred from the Th blanket, which will substantially hamper the use of fissile materials in a closed NFC for purposes other than power production.

  11. Nuclear reactor fuel rod attachment system

    DOEpatents

    Christiansen, David W.

    1982-01-01

    A reusable system for removably attaching a nuclear reactor fuel rod (12) to a support member (14). A locking cap (22) is secured to the fuel rod (12) and a locking strip (24) is fastened to the support member (14). The locking cap (22) has two opposing fingers (24a and 24b) shaped to form a socket having a body portion (26). The locking strip has an extension (36) shaped to rigidly attach to the socket's body portion (26). The locking cap's fingers are resiliently deflectable. For attachment, the locking cap (22) is longitudinally pushed onto the locking strip (24) causing the extension (36) to temporarily deflect open the fingers (24a and 24b) to engage the socket's body portion (26). For removal, the process is reversed.

  12. N-Reactor (U-metal) Fuel Characteristics for Disposal Criticality Analysis

    SciTech Connect

    Taylor, Larry Lorin

    2000-05-01

    DOE-owned spent nuclear fuels encompass many fuel types. In an effort to facilitate criticality analysis for these various fuel types, they were categorized into nine characteristic fuel groups with emphasis on fuel matrix composition. Out of each fuel group, a representative fuel type was chosen for analysis as a bounding case within that fuel group. Generally, burnup data, fissile enrichments, and total fuel and fissile mass govern the selection of the representative or candidate fuel within that group. Additionally, the criticality analysis will also require data to support design of the canister internals, thermal, and radiation shielding. The purpose of this report is to consolidate and provide in a concise format, material and information/data needed to perform supporting analyses to qualify N-Reactor fuels for acceptance into the designated repository. The N Reactor fuels incorporate zirconium cladding and uranium metal with unique fabrication details in terms of physical size, and method of construction. The fuel construction and post-irradiation handling have created attendant issues relative to cladding failure in the underwater storage environment. These fuels were comprised of low-enriched metal (0.947 to 1.25 wt% 235U) that were originally intended to generate weapons-grade plutonium for national defense. Modifications in subsequent fuel design and changes in the mode of reactor operation in later years were focused more toward power production.

  13. Heat pipe nuclear reactor for space power

    NASA Technical Reports Server (NTRS)

    Koening, D. R.

    1976-01-01

    A heat-pipe-cooled nuclear reactor has been designed to provide 3.2 MWth to an out-of-core thermionic conversion system. The reactor is a fast reactor designed to operate at a nominal heat-pipe temperature of 1675 K. Each reactor fuel element consists of a hexagonal molybdenum block which is bonded along its axis to one end of a molybdenum/lithium-vapor heat pipe. The block is perforated with an array of longitudinal holes which are loaded with UO2 pellets. The heat pipe transfers heat directly to a string of six thermionic converters which are bonded along the other end of the heat pipe. An assembly of 90 such fuel elements forms a hexagonal core. The core is surrounded by a thermal radiation shield, a thin thermal neutron absorber, and a BeO reflector containing boron-loaded control drums.

  14. Utilization of Minor Actinides (Np, Am, Cm) in Nuclear Power Reactor

    NASA Astrophysics Data System (ADS)

    Gerasimov, A.; Bergelson, B.; Tikhomirov, G.

    2014-06-01

    Calculation research of the utilization process of minor actinides (transmutation with use of power released) is performed for specialized power reactor of the VVER type operating on the level of electric power of 1000 MW. Five subsequent cycles are considered for the reactor with fuel elements containing minor actinides along with enriched uranium. It was shown that one specialized reactor for the one cycle (900 days) can utilize minor actinides from several VVER-1000 reactors without any technological and structural modifications. Power released because of minor actinide fission is about 4% with respect to the total power

  15. Pressurized water reactor fuel crud and corrosion modeling

    NASA Astrophysics Data System (ADS)

    Deshon, Jeff; Hussey, Dennis; Kendrick, Brian; McGurk, John; Secker, Jeff; Short, Michael

    2011-08-01

    Pressurized water reactors circulate high-temperature water that slowly corrodes Inconel and stainless steel system surfaces, and the nickel/iron based corrosion products deposit in regions of the fuel where sub-cooled nucleate boiling occurs. The deposited corrosion products, called `crud', can have an adverse impact on fuel performance. Boron can concentrate within the crud in the boiling regions of the fuel leading to a phenomenon known as axial offset anomaly (AOA). In rare cases, fuel clad integrity can be compromised because of crud-induced localized corrosion (CILC) of the zirconium-based alloy. Westinghouse and the Electric Power Research Institute have committed to understanding the crud transport process and develop a risk assessment software tool called boron-induced offset anomaly (BOA) to avoid AOA and CILC. This paper reviews the history of the BOA model development and new efforts to develop a micro-scale model called MAMBA for use in the Consortium for Advanced Light Water Reactor Simulation (CASL) program.

  16. Chemical Looping Combustion System-Fuel Reactor Modeling

    SciTech Connect

    Gamwo, I.K.; Jung, J.; Anderson, R.R.; Soong, Y.

    2007-04-01

    Chemical looping combustion (CLC) is a process in which an oxygen carrier is used for fuel combustion instead of air or pure oxygen as shown in the figure below. The combustion is split into air and fuel reactors where the oxidation of the oxygen carrier and the reduction of the oxidized metal occur respectively. The CLC system provides a sequestration-ready CO2 stream with no additional energy required for separation. This major advantage places combustion looping at the leading edge of a possible shift in strict control of CO2 emissions from power plants. Research in this novel technology has been focused in three distinct areas: techno-economic evaluations, integration of the system into power plant concepts, and experimental development of oxygen carrier metals such as Fe, Ni, Mn, Cu, and Ca. Our recent thorough literature review shows that multiphase fluid dynamics modeling for CLC is not available in the open literature. Here, we have modified the MFIX code to model fluid dynamic in the fuel reactor. A computer generated movie of our simulation shows bubble behavior consistent with experimental observations.

  17. Comparison of REMIX vs. MOX fuel characteristics in multiple recycling in VVER reactor

    SciTech Connect

    Dekusar, V.M.; Kalashnikov, A.G.; Kapranova, E.N.; Korobitsyn, V.E.; Puzakov, A.Y.

    2013-07-01

    Multiple recycling of regenerated uranium-plutonium fuel in thermal reactors of VVER-1000 type with high enriched uranium feeding (REMIX-fuel) gives a possibility to terminate the accumulation of spent nuclear fuels (SNF) and Pu and decrease the accumulation of irradiated uranium by an order of magnitude. Results of comparison of VVER-1000 nuclear fuel cycle characteristics vs different fuel types such as UOX, MOX and REMIX-fuel have been presented. REMIX fuel (Regenerated Mixture of U-, Pu oxides) is the mixture of plutonium and uranium extracted from SNF and refined from other actinides and fission products with the addition of enriched uranium to provide the power potential necessary. The savings in terms of uranium quantities and separation works in the nuclear energy system (NES) with reactors using REMIX-fuel compared to the NES with uranium-fuelled reactors are shown to be of about 30% and 8%, respectively. For the NES with thermal reactors partially loaded with MOX-fuel, the uranium and separation works saving of about 14% would be obtained. Production of neptunium and americium in reactors with REMIX-fuel in steady state increases by a factor 3, and production of curium - by 10 compared to the reactors with UOX-fuel. This increase of minor actinide buildup is owed to the multiple recycling of plutonium. It should be noted that in this case all fuel assemblies contain high-background plutonium, and their manufacturing involves an expensive technology. Besides, management of REMIX-fuel will require special protection measures even during the fresh fuel manufacturing phase. The above-said gives ground to state that the use of REMIX fuel would be questionable in economic aspect.

  18. MODERATOR ELEMENTS FOR UNIFORM POWER NUCLEAR REACTOR

    DOEpatents

    Balent, R.

    1963-03-12

    This patent describes a method of obtaining a flatter flux and more uniform power generation across the core of a nuclear reactor. The method comprises using moderator elements having differing moderating strength. The elements have an increasing amount of the better moderating material as a function of radial and/or axial distance from the reactor core center. (AEC)

  19. Modeling of the performance of weapons MOX fuel in light water reactors

    SciTech Connect

    Alvis, J.; Bellanger, P.; Medvedev, P.G.; Peddicord, K.L.; Gellene, G.I.

    1999-05-01

    Both the Russian Federation and the US are pursing mixed uranium-plutonium oxide (MOX) fuel in light water reactors (LWRs) for the disposition of excess plutonium from disassembled nuclear warheads. Fuel performance models are used which describe the behavior of MOX fuel during irradiation under typical power reactor conditions. The objective of this project is to perform the analysis of the thermal, mechanical, and chemical behavior of weapons MOX fuel pins under LWR conditions. If fuel performance analysis indicates potential questions, it then becomes imperative to assess the fuel pin design and the proposed operating strategies to reduce the probability of clad failure and the associated release of radioactive fission products into the primary coolant system. Applying the updated code to anticipated fuel and reactor designs, which would be used for weapons MOX fuel in the US, and analyzing the performance of the WWER-100 fuel for Russian weapons plutonium disposition are addressed in this report. The COMETHE code was found to do an excellent job in predicting fuel central temperatures. Also, despite minor predicted differences in thermo-mechanical behavior of MOX and UO{sub 2} fuels, the preliminary estimate indicated that, during normal reactor operations, these deviations remained within limits foreseen by fuel pin design.

  20. Multi-cycle boiling water reactor fuel cycle optimization

    SciTech Connect

    Ottinger, K.; Maldonado, G.I.

    2013-07-01

    In this work a new computer code, BWROPT (Boiling Water Reactor Optimization), is presented. BWROPT uses the Parallel Simulated Annealing (PSA) algorithm to solve the out-of-core optimization problem coupled with an in-core optimization that determines the optimum fuel loading pattern. However it uses a Haling power profile for the depletion instead of optimizing the operating strategy. The result of this optimization is the optimum new fuel inventory and the core loading pattern for the first cycle considered in the optimization. Several changes were made to the optimization algorithm with respect to other nuclear fuel cycle optimization codes that use PSA. Instead of using constant sampling probabilities for the solution perturbation types throughout the optimization as is usually done in PSA optimizations the sampling probabilities are varied to get a better solution and/or decrease runtime. The new fuel types available for use can be sorted into an array based on any number of parameters so that each parameter can be incremented or decremented, which allows for more precise fuel type selection compared to random sampling. Also, the results are sorted by the new fuel inventory of the first cycle for ease of comparing alternative solutions. (authors)

  1. A fuel for sub-critical fast reactor

    SciTech Connect

    Moiseenko, V. E.; Chernitskiy, S. V.; Agren, O.; Noack, K.

    2012-06-19

    Along with the problem of the nuclear waste transmutation, the problem of minimization of waste production is of current interest. It is not possible to eliminate production of waste at a nuclear power plant, but, as is shown in this report, it is in principle possible to arrange a fuel composition with no net production of transuranic elements. The idea is to find the transuranic elements composition to which the depleted uranium is continuously supplied during frequent reprocessing, and amount of each other transuranic fuel component remains unchanged in time. For each transuranic component, the balance is achieved by equating burnup and production rates. The production is due to neutron capture by the neighboring lighter isotope and subsequent beta-decay. The burnup includes fission, neutron capture and decays. For the calculations a simplified burnup model which accounts for 9 isotopes of uranium, neptunium, plutonium and americium is used. The calculated fuel composition consists mainly of uranium with minority of plutonium isotopes. Such a fuel, after usage in a sub-critical fast reactor, should be reprocessed. The fission product content increases during burnup, representing a net production of waste, while the transuranic elements and {sup 238}U should be recycled into a new fuel. For such a fuel cycle, the net consumption is only for 238U, and the net waste production is just fission products.

  2. A fuel for sub-critical fast reactor

    NASA Astrophysics Data System (ADS)

    Moiseenko, V. E.; Chernitskiy, S. V.; Ågren, O.; Noack, K.

    2012-06-01

    Along with the problem of the nuclear waste transmutation, the problem of minimization of waste production is of current interest. It is not possible to eliminate production of waste at a nuclear power plant, but, as is shown in this report, it is in principle possible to arrange a fuel composition with no net production of transuranic elements. The idea is to find the transuranic elements composition to which the depleted uranium is continuously supplied during frequent reprocessing, and amount of each other transuranic fuel component remains unchanged in time. For each transuranic component, the balance is achieved by equating burnup and production rates. The production is due to neutron capture by the neighboring lighter isotope and subsequent beta-decay. The burnup includes fission, neutron capture and decays. For the calculations a simplified burnup model which accounts for 9 isotopes of uranium, neptunium, plutonium and americium is used. The calculated fuel composition consists mainly of uranium with minority of plutonium isotopes. Such a fuel, after usage in a sub-critical fast reactor, should be reprocessed. The fission product content increases during burnup, representing a net production of waste, while the transuranic elements and 238U should be recycled into a new fuel. For such a fuel cycle, the net consumption is only for 238U, and the net waste production is just fission products.

  3. A gas-cooled reactor surface power system

    NASA Astrophysics Data System (ADS)

    Lipinski, Ronald J.; Wright, Steven A.; Lenard, Roger X.; Harms, Gary A.

    1999-01-01

    A human outpost on Mars requires plentiful power to assure survival of the astronauts. Anywhere from 50 to 500 kW of electric power (kWe) will be needed, depending on the number of astronauts, level of scientific activity, and life-cycle closure desired. This paper describes a 250-kWe power system based on a gas-cooled nuclear reactor with a recuperated closed Brayton cycle conversion system. The design draws upon the extensive data and engineering experience developed under the various high-temperature gas cooled reactor programs and under the SP-100 program. The reactor core is similar in power and size to the research reactors found on numerous university campuses. The fuel is uranium nitride clad in Nb1%Zr, which has been extensively tested under the SP-100 program. The fuel rods are arranged in a hexagonal array within a BeO block. The BeO softens the spectrum, allowing better use of the fuel and stabilizing the geometry against deformation during impact or other loadings. The system has a negative temperature feedback coefficient so that the power level will automatically follow a variable load without the need for continuous adjustment of control elements. Waste heat is removed by an air-cooled heat exchanger using cold Martian air. The amount of radioactivity in the reactor at launch is very small (less than a Curie, and about equal to a truckload of uranium ore). The system will need to be engineered so that criticality can not occur for any launch accident. This system is also adaptable for electric propulsion or life-support during transit to and from Mars.

  4. A gas-cooled reactor surface power system

    SciTech Connect

    Lipinski, R.J.; Wright, S.A.; Lenard, R.X.; Harms, G.A.

    1999-01-01

    A human outpost on Mars requires plentiful power to assure survival of the astronauts. Anywhere from 50 to 500 kW of electric power (kWe) will be needed, depending on the number of astronauts, level of scientific activity, and life-cycle closure desired. This paper describes a 250-kWe power system based on a gas-cooled nuclear reactor with a recuperated closed Brayton cycle conversion system. The design draws upon the extensive data and engineering experience developed under the various high-temperature gas cooled reactor programs and under the SP-100 program. The reactor core is similar in power and size to the research reactors found on numerous university campuses. The fuel is uranium nitride clad in Nb1{percent}Zr, which has been extensively tested under the SP-100 program. The fuel rods are arranged in a hexagonal array within a BeO block. The BeO softens the spectrum, allowing better use of the fuel and stabilizing the geometry against deformation during impact or other loadings. The system has a negative temperature feedback coefficient so that the power level will automatically follow a variable load without the need for continuous adjustment of control elements. Waste heat is removed by an air-cooled heat exchanger using cold Martian air. The amount of radioactivity in the reactor at launch is very small (less than a Curie, and about equal to a truckload of uranium ore). The system will need to be engineered so that criticality can not occur for any launch accident. This system is also adaptable for electric propulsion or life-support during transit to and from Mars. {copyright} {ital 1999 American Institute of Physics.}

  5. A gas-cooled reactor surface power system

    SciTech Connect

    Lipinski, Ronald J.; Wright, Steven A.; Lenard, Roger X.; Harms, Gary A.

    1999-01-22

    A human outpost on Mars requires plentiful power to assure survival of the astronauts. Anywhere from 50 to 500 kW of electric power (kWe) will be needed, depending on the number of astronauts, level of scientific activity, and life-cycle closure desired. This paper describes a 250-kWe power system based on a gas-cooled nuclear reactor with a recuperated closed Brayton cycle conversion system. The design draws upon the extensive data and engineering experience developed under the various high-temperature gas cooled reactor programs and under the SP-100 program. The reactor core is similar in power and size to the research reactors found on numerous university campuses. The fuel is uranium nitride clad in Nb1%Zr, which has been extensively tested under the SP-100 program. The fuel rods are arranged in a hexagonal array within a BeO block. The BeO softens the spectrum, allowing better use of the fuel and stabilizing the geometry against deformation during impact or other loadings. The system has a negative temperature feedback coefficient so that the power level will automatically follow a variable load without the need for continuous adjustment of control elements. Waste heat is removed by an air-cooled heat exchanger using cold Martian air. The amount of radioactivity in the reactor at launch is very small (less than a Curie, and about equal to a truckload of uranium ore). The system will need to be engineered so that criticality can not occur for any launch accident. This system is also adaptable for electric propulsion or life-support during transit to and from Mars.

  6. Distribution of characteristics of LWR [light water reactor] spent fuel

    SciTech Connect

    Reich, W.J.; Notz, K.J.; Moore, R.S.

    1991-01-01

    The purpose of this report is to develop a collective description of the entire spent fuel inventory in terms of various fuel properties relevant to Approved Testing Materials (ATMs) using information available from the Characteristics Data Base (CBD), which is sponsored by the US Department of Energy`s (DOE`s) Office of Civilian Radioactive Waste Management. A number of light-water reactor (LWR) characteristics were analyzed including assembly class representation, fuel burnup, enrichment, fuel fabrication data, defective fuel quantities, and, at PNL`s specific request, linear heat generation rate (LHGR) and the utilization of burnable poisons. A quantitative relationships was developed between burnup and enrichment for BWRs and PWRs. The relationship shows that the existing BWR ATM is near the center of the burnup-enrichment distribution, while the four PWR ATMs bracket the center of the burnup range but are on the low side of the enrichment range. Fuel fabrication data are based on vendor specifications for new fuel. Defective fuel distributions were analyzed in terms of assembly class and vendor design. LHGR values were calculated from utility data on burnup and effective full-power days; these calculations incorporate some unavoidable assumptions which may compromise the value of the results. Only a limited amount of data are available on burnable poisons at this time. Based on this distribution study, suggestions for additional ATMs are made. These are based on the class and design concepts and include BWR/2,3 barrier fuel, and the WE 17 {times} 17 class with integral burnable poison. Both should be at relatively high burnups. 16 refs., 5 figs., 15 tabs.

  7. A combined gas cooled nuclear reactor and fuel cell cycle

    NASA Astrophysics Data System (ADS)

    Palmer, David J.

    Rising oil costs, global warming, national security concerns, economic concerns and escalating energy demands are forcing the engineering communities to explore methods to address these concerns. It is the intention of this thesis to offer a proposal for a novel design of a combined cycle, an advanced nuclear helium reactor/solid oxide fuel cell (SOFC) plant that will help to mitigate some of the above concerns. Moreover, the adoption of this proposal may help to reinvigorate the Nuclear Power industry while providing a practical method to foster the development of a hydrogen economy. Specifically, this thesis concentrates on the importance of the U.S. Nuclear Navy adopting this novel design for its nuclear electric vessels of the future with discussion on efficiency and thermodynamic performance characteristics related to the combined cycle. Thus, the goals and objectives are to develop an innovative combined cycle that provides a solution to the stated concerns and show that it provides superior performance. In order to show performance, it is necessary to develop a rigorous thermodynamic model and computer program to analyze the SOFC in relation with the overall cycle. A large increase in efficiency over the conventional pressurized water reactor cycle is realized. Both sides of the cycle achieve higher efficiencies at partial loads which is extremely important as most naval vessels operate at partial loads as well as the fact that traditional gas turbines operating alone have poor performance at reduced speeds. Furthermore, each side of the cycle provides important benefits to the other side. The high temperature exhaust from the overall exothermic reaction of the fuel cell provides heat for the reheater allowing for an overall increase in power on the nuclear side of the cycle. Likewise, the high temperature helium exiting the nuclear reactor provides a controllable method to stabilize the fuel cell at an optimal temperature band even during transients helping

  8. Advanced Fuels Campaign Light Water Reactor Accident Tolerant Fuel Performance Metrics

    SciTech Connect

    Brad Merrill; Melissa Teague; Robert Youngblood; Larry Ott; Kevin Robb; Michael Todosow; Chris Stanek; Mitchell Farmer; Michael Billone; Robert Montgomery; Nicholas Brown; Shannon Bragg-Sitton

    2014-02-01

    The safe, reliable and economic operation of the nation’s nuclear power reactor fleet has always been a top priority for the United States’ nuclear industry. As a result, continual improvement of technology, including advanced materials and nuclear fuels, remains central to industry’s success. Decades of research combined with continual operation have produced steady advancements in technology and yielded an extensive base of data, experience, and knowledge on light water reactor (LWR) fuel performance under both normal and accident conditions. In 2011, following the Great East Japan Earthquake, resulting tsunami, and subsequent damage to the Fukushima Daiichi nuclear power plant complex, enhancing the accident tolerance of LWRs became a topic of serious discussion. As a result of direction from the U.S. Congress, the U.S. Department of Energy Office of Nuclear Energy (DOE-NE) initiated an Accident Tolerant Fuel (ATF) Development program. The complex multiphysics behavior of LWR nuclear fuel makes defining specific material or design improvements difficult; as such, establishing qualitative attributes is critical to guide the design and development of fuels and cladding with enhanced accident tolerance. This report summarizes a common set of technical evaluation metrics to aid in the optimization and down selection of candidate designs. As used herein, “metrics” describe a set of technical bases by which multiple concepts can be fairly evaluated against a common baseline and against one another. Furthermore, this report describes a proposed technical evaluation methodology that can be applied to assess the ability of each concept to meet performance and safety goals relative to the current UO2 – zirconium alloy system and relative to one another. The resultant ranked evaluation can then inform concept down-selection, such that the most promising accident tolerant fuel design option(s) can continue to be developed for lead test rod or lead test assembly

  9. Materials technology for an advanced space power nuclear reactor concept: Program summary

    NASA Technical Reports Server (NTRS)

    Gluyas, R. E.; Watson, G. K.

    1975-01-01

    The results of a materials technology program for a long-life (50,000 hr), high-temperature (950 C coolant outlet), lithium-cooled, nuclear space power reactor concept are reviewed and discussed. Fabrication methods and compatibility and property data were developed for candidate materials for fuel pins and, to a lesser extent, for potential control systems, reflectors, reactor vessel and piping, and other reactor structural materials. The effects of selected materials variables on fuel pin irradiation performance were determined. The most promising materials for fuel pins were found to be 85 percent dense uranium mononitride (UN) fuel clad with tungsten-lined T-111 (Ta-8W-2Hf).

  10. Thermal Aspects of Using Alternative Nuclear Fuels in Supercritical Water-Cooled Reactors

    NASA Astrophysics Data System (ADS)

    Grande, Lisa Christine

    A SuperCritical Water-cooled Nuclear Reactor (SCWR) is a Generation IV concept currently being developed worldwide. Unique to this reactor type is the use of light-water coolant above its critical point. The current research presents a thermal-hydraulic analysis of a single fuel channel within a Pressure Tube (PT)-type SCWR with a single-reheat cycle. Since this reactor is in its early design phase many fuel-channel components are being investigated in various combinations. Analysis inputs are: steam cycle, Axial Heat Flux Profile (AHFP), fuel-bundle geometry, and thermophysical properties of reactor coolant, fuel sheath and fuel. Uniform and non-uniform AHFPs for average channel power were applied to a variety of alternative fuels (mixed oxide, thorium dioxide, uranium dicarbide, uranium nitride and uranium carbide) enclosed in an Inconel-600 43-element bundle. The results depict bulk-fluid, outer-sheath and fuel-centreline temperature profiles together with the Heat Transfer Coefficient (HTC) profiles along the heated length of fuel channel. The objective is to identify the best options in terms of fuel, sheath material and AHFPS in which the outer-sheath and fuel-centreline temperatures will be below the accepted temperature limits of 850°C and 1850°C respectively. The 43-element Inconel-600 fuel bundle is suitable for SCWR use as the sheath-temperature design limit of 850°C was maintained for all analyzed cases at average channel power. Thoria, UC2, UN and UC fuels for all AHFPs are acceptable since the maximum fuel-centreline temperature does not exceed the industry accepted limit of 1850°C. Conversely, the fuel-centreline temperature limit was exceeded for MOX at all AHFPs, and UO2 for both cosine and downstream-skewed cosine AHFPs. Therefore, fuel-bundle modifications are required for UO2 and MOX to be feasible nuclear fuels for SCWRs.

  11. Calculated power distribution of a thermionic, beryllium oxide reflected, fast-spectrum reactor

    NASA Technical Reports Server (NTRS)

    Mayo, W.; Lantz, E.

    1973-01-01

    A procedure is developed and used to calculate the detailed power distribution in the fuel elements next to a beryllium oxide reflector of a fast-spectrum, thermionic reactor. The results of the calculations show that, although the average power density in these outer fuel elements is not far from the core average, the power density at the very edge of the fuel closest to the beryllium oxide is about 1.8 times the core avearge.

  12. Integral reactor system and method for fuel cells

    DOEpatents

    Fernandes, Neil Edward; Brown, Michael S; Cheekatamarla, Praveen; Deng, Thomas; Dimitrakopoulos, James; Litka, Anthony F

    2013-11-19

    A reactor system is integrated internally within an anode-side cavity of a fuel cell. The reactor system is configured to convert hydrocarbons to smaller species while mitigating the lower production of solid carbon. The reactor system may incorporate one or more of a pre-reforming section, an anode exhaust gas recirculation device, and a reforming section.

  13. Fuel-Powered Artificial Muscles

    NASA Astrophysics Data System (ADS)

    Ebron, Von Howard; Yang, Zhiwei; Seyer, Daniel J.; Kozlov, Mikhail E.; Oh, Jiyoung; Xie, Hui; Razal, Joselito; Hall, Lee J.; Ferraris, John P.; MacDiarmid, Alan G.; Baughman, Ray H.

    2006-03-01

    Artificial muscles and electric motors found in autonomous robots and prosthetic limbs are typically battery-powered, which severely restricts the duration of their performance and can necessitate long inactivity during battery recharge. To help solve these problems, we demonstrated two types of artificial muscles that convert the chemical energy of high-energy-density fuels to mechanical energy. The first type stores electrical charge and uses changes in stored charge for mechanical actuation. In contrast with electrically powered electrochemical muscles, only half of the actuator cycle is electrochemical. The second type of fuel-powered muscle provides a demonstrated actuator stroke and power density comparable to those of natural skeletal muscle and generated stresses that are over a hundred times higher.

  14. Safeguards operations in the integral fast reactor fuel cycle

    SciTech Connect

    Goff, K.M.; Benedict, R.W.; Brumbach, S.B.; Dickerman, C.E.; Tompot, R.W.

    1994-08-01

    Argonne National Laboratory is currently demonstrating the fuel cycle for the Integral Fast Reactor (IFR), an advanced reactor concept that takes advantage of the properties of metallic fuel and liquid metal cooling to offer significant improvements in reactor safety, operation, fuel-cycle economics, environmental protection, and safeguards. The IFR fuel cycle employs a pyrometallurgical process using molten salts and liquid metals to recover actinides from spent fuel. The safeguards aspects of the fuel cycle demonstration must be approved by the United States Department of Energy, but a further goal of the program is to develop a safeguards system that could gain acceptance from the Nuclear Regulatory Commission and International Atomic Energy Agency. This fuel cycle is described with emphasis on aspects that differ from aqueous reprocessing and on its improved safeguardability due to decreased attractiveness and diversion potential of all process streams, including the fuel product.

  15. Axially staggered seed-blanket reactor fuel module construction

    DOEpatents

    Cowell, Gary K.; DiGuiseppe, Carl P.

    1985-01-01

    A heterogeneous nuclear reactor of the seed-blanket type is provided wher the fissile (seed) and fertile (blanket) nuclear fuels are segregated axially within each fuel element such that fissile and fertile regions occur in an alternating pattern along the length of the fuel element. Further, different axial stacking patterns are used for the fuel elements of at least two module types such that when modules of different types are positioned adjacent to one another, the fertile regions of the modules are offset or staggered. Thus, when a module of one type is surrounded by modules of the second type the fertile regions thereof will be surrounded on all sides by fissile material. This provides enhanced neutron communication both radially and axially, thereby resulting in greater power oscillation stability than other axial arrangements. The arrangements of the fissile and fertile regions in an alternating axial manner minimizes the radial power peaking factors and provides a more optional thermal-hydraulic design than is afforded by radial arrangements.

  16. Estimates of power requirements for a Manned Mars Rover powered by a nuclear reactor

    NASA Astrophysics Data System (ADS)

    Morley, Nicholas J.; El-Genk, Mohamed S.; Cataldo, Robert; Bloomfield, Harvey

    This paper assesses the power requirement for a Manned Mars Rover vehicle. Auxiliary power needs are fulfilled using a hybrid solar photovoltaic/regenerative fuel cell system, while the primary power needs are meet using an SP-100 type reactor. The primary electric power needs, which include 30-kW(e) net user power, depend on the reactor thermal power and the efficiency of the power conversion system. Results show that an SP-100 type reactor coupled to a Free Piston Stirling Engine yields the lowest total vehicle mass and lowest specific mass for the power system. The second lowest mass was for a SP-100 reactor coupled to a Closed Brayton Cycle using He/Xe as the working fluid. The specific mass of the nuclear reactor power system, including a man-rated radiation shield, ranged from 150-kg/kW(e) to 190-kg/KW(e) and the total mass of the Rover vehicle varied depend upon the cruising speed.

  17. Estimates of power requirements for a manned Mars rover powered by a nuclear reactor

    NASA Astrophysics Data System (ADS)

    Morley, Nicholas J.; El-Genk, Mohamed S.; Cataldo, Robert; Bloomfield, Harvey

    1991-01-01

    This paper assesses the power requirement for a Manned Mars Rover vehicle. Auxiliary power needs are fulfilled using a hybrid solar photovoltaic/regenerative fuel cell system, while the primary power needs are met using an SP-100 type reactor. The primary electric power needs, which include 30-kWe net user power, depend on the reactor thermal power and the efficiency of the power conversion system. Results show that an SP-100 type reactor coupled to a Free Piston Stirling Engine (FPSE) yields the lowest total vehicle mass and lowest specific mass for the power system. The second lowest mass was for a SP-100 reactor coupled to a Closed Brayton Cycle (CBC) using He/Xe as the working fluid. The specific mass of the nuclear reactor power systrem, including a man-rated radiation shield, ranged from 150-kg/kWe to 190-kg/kWe and the total mass of the Rover vehicle varied depend upon the cruising speed.

  18. Estimates of power requirements for a Manned Mars Rover powered by a nuclear reactor

    NASA Technical Reports Server (NTRS)

    Morley, Nicholas J.; El-Genk, Mohamed S.; Cataldo, Robert; Bloomfield, Harvey

    1991-01-01

    This paper assesses the power requirement for a Manned Mars Rover vehicle. Auxiliary power needs are fulfilled using a hybrid solar photovoltaic/regenerative fuel cell system, while the primary power needs are meet using an SP-100 type reactor. The primary electric power needs, which include 30-kW(e) net user power, depend on the reactor thermal power and the efficiency of the power conversion system. Results show that an SP-100 type reactor coupled to a Free Piston Stirling Engine yields the lowest total vehicle mass and lowest specific mass for the power system. The second lowest mass was for a SP-100 reactor coupled to a Closed Brayton Cycle using He/Xe as the working fluid. The specific mass of the nuclear reactor power system, including a man-rated radiation shield, ranged from 150-kg/kW(e) to 190-kg/KW(e) and the total mass of the Rover vehicle varied depend upon the cruising speed.

  19. Space reactor power 1986 - A year of choices and transition

    NASA Technical Reports Server (NTRS)

    Wiley, R. L.; Verga, R. L.; Schnyer, A. D.; Sholtis, J. A., Jr.; Wahlquist, E. J.

    1986-01-01

    Both the SP-100 and Multimegawatt programs have made significant progress over the last year and that progress is the focus of this paper. In the SP-100 program the thermoelectric energy conversion concept powered by a compact, high-temperature, lithium-cooled, uranium-nitride-fueled fast spectrum reactor was selected for engineering development and ground demonstration testing at an electrical power level of 300 kilowatts. In the Multimegawatt program, activities moved from the planning phase into one of technology development and assessment with attendant preliminary definition and evaluation of power concepts against requirements of the Strategic Defense Initiative.

  20. Development of an internally cooled annular fuel bundle for pressurized heavy water reactors

    SciTech Connect

    Hamilton, H.; Armstrong, J.; Kittmer, A.; Zhuchkova, A.; Xu, R.; Hyland, B.; King, M.; Nava-Dominguez, A.; Livingstone, S.; Bergeron, A.

    2013-07-01

    A number of preliminary studies have been conducted at Atomic Energy of Canada Limited to explore the potential of using internally cooled annular fuel (ICAF) in CANDU reactors including finite element thermo-mechanical modelling, reactor physics, thermal hydraulics, fabrication and mechanical design. The most compelling argument for this design compared to the conventional solid-rod design is the significant reduction in maximum fuel temperature for equivalent LERs (linear element ratings). This feature presents the potential for power up-rating or higher burnup and a decreased defect probability due to in-core power increases. The thermal-mechanical evaluation confirmed the significant reduction in maximum fuel temperatures for ICAF fuel compared to solid-rod fuel for equivalent LER. The maximum fuel temperature increase as a function of LER increase is also significantly less for ICAF fuel. As a result, the sheath stress induced by an equivalent power increase is approximately six times less for ICAF fuel than solid-rod fuel. This suggests that the power-increase thresholds to failure (due to stress-corrosion cracking) for ICAF fuel should be well above those for solid-rod fuel, providing improvement in operation flexibility and safety.

  1. Reactor-specific spent fuel discharge projections, 1987-2020

    SciTech Connect

    Walling, R.C.; Heeb, C.M.; Purcell, W.L.

    1988-03-01

    The creation of five reactor-specific spent fuel data bases that contain information on the projected amounts of spent fuel to be discharged from U.S. commercial nuclear reactors through the year 2020 is described. The data bases contain detailed spent fuel information from existing, planned, and projected pressurized water reactors (PWR) and boiling water eactors (BWR), and one existing high temperature gas reactor (HTGR). The projections are based on individual reactor information supplied by the U.S. reactor owners. The basic information is adjusted to conform to Energy Information Administration (EIA) forecasts for nuclear installed capacity, generation, and spent fuel discharged. The EIA cases considered are: No New Orders (assumes increasing burnup), No New Orders with No Increased Burnup, Upper Reference (assumes increasing burnup), Upper Reference with No Increased Burnup, and Lower Reference (assumes increasing burnup). Detailed, by-reactor tables are provided for annual discharged amounts of spent fuel, for storage requirements assuming maximum at-reactor storage, and for storage requirements assuming maximum at-reactor storage plus intra-utility transshipment of spent fuel. 8 refs., 8 figs., 10 tabs.

  2. Reactor-specific spent fuel discharge projections: 1986 to 2020

    SciTech Connect

    Heeb, C.M.; Walling, R.C.; Purcell, W.L.

    1987-03-01

    The creation of five reactor-specific spent fuel data bases that contain information on the projected amounts of spent fuel to be discharged from US commercial nuclear reactors through the year 2020 is described. The data bases contain detailed spent-fuel information from existing, planned, and projected pressurized water reactors (PWR) and boiling water reactors (BWR). The projections are based on individual reactor information supplied by the US reactor owners. The basic information is adjusted to conform to Energy Information Agency (EIA) forecasts for nuclear installed capacity, generation, and spent fuel discharged. The EIA cases considered are: (1) No new orders with extended burnup, (2) No new orders with constant burnup, (3) Upper reference (which assumes extended burnup), (4) Upper reference with constant burnup, and (5) Lower reference (which assumes extended burnup). Detailed, by-reactor tables are provided for annual discharged amounts of spent fuel, for storage requirements assuming maximum-at-reactor storage, and for storage requirements assuming maximum-at-reactor plus intra-utility transshipment of spent fuel. 6 refs., 8 figs., 8 tabs.

  3. Preliminary Advanced Test Reactor LEU Fuel Conversion Feasibility Study

    SciTech Connect

    G. S. Chang; R. G. Ambrosek

    2005-11-01

    The Advanced Test Reactor (ATR) is a high power density, high neutron flux research reactor operating in the United States. The ATR has large irradiation test volumes located in high flux areas. Powered with highly enriched uranium (HEU), the ATR has a maximum thermal power rating of 250 MWth with a maximum unperturbed thermal neutron flux rating of 1.0 x 1015 n/cm2–s. As a result, the ATR is a representative candidate for assessing the necessary modifications and evaluating the subsequent operating effects associated with low-enriched uranium (LEU) fuel conversion. A detailed plate-by-plate MCNP ATR 1/8th core model was developed for the fuel cycle burnup comparison analysis. Using the current HEU 235U enrichment of 93.0 % as a baseline, an analysis can be performed to determine the LEU uranium density and 235U enrichment required in the fuel meat to yield an equivalent Keff between the HEU core and a LEU core versus effective full power days (EFPD). The MCNP ATR 1/8th core model will be used to optimize the 235U loading in the LEU core, such that the differences in Keff between the HEU and LEU core can be minimized for operation at 150 EFPD with a total core power of 115 MW. The Monte-Carlo with ORIGEN-2 (MCWO) method was used to calculate Keff versus EFPDs. The MCWO-calculated results for the LEU case demonstrated adequate excess reactivity such that the LEU core conversion designer should be able to optimize the 235U content of each fuel plate, so that the Keff and relative radial fission heat flux profile are similar to the reference ATR HEU case. However, to demonstrate that the LEU core fuel cycle performance can meet the Upgraded Final Safety Analysis Report (UFSAR) safety requirements, a further study will be required in order to investigate the detailed radial, axial, and azimuthal heat flux profile variations versus EFPDs.

  4. Technological Transfer from Research Nuclear Reactors to New Generation Nuclear Power Reactors

    NASA Astrophysics Data System (ADS)

    Radulescu, Laura; Pavelescu, Margarit

    2010-01-01

    The goal of this paper is the analysis of the technological transfer role in the nuclear field, with particular emphasis on nuclear reactors domain. The presentation is sustained by historical arguments. In this frame, it is very important to start with the achievements of the first nuclear systems, for instant those with natural uranium as fuel and heavy water as moderator, following in time through the history until the New Generation Nuclear Power Reactors. Starting with 1940, the accelerated development of the industry has implied the increase of the global demand for energy. In this respect, the nuclear energy could play an important role, being essentially an unlimited source of energy. However, the nuclear option faces the challenges of increasingly demanding safety requirements, economic competitiveness and public acceptance. Worldwide, a significant amount of experience has been accumulated during development, licensing, construction, and operation of nuclear power reactors. The experience gained is a strong basis for further improvements. Actually, the nuclear programs of many countries are addressing the development of advanced reactors, which are intended to have better economics, higher reliability, improved safety, and proliferation-resistant characteristics in order to overcome the current concerns about nuclear power. Advanced reactors, now under development, may help to meet the demand for energy power of both developed and developing countries as well as for district heating, desalination and for process heat. The paper gives historical examples that illustrate the steps pursued from first research nuclear reactors to present advanced power reactors. Emphasis was laid upon the fact that the progress is due to the great discoveries of the nuclear scientists using the technological transfer.

  5. Technological Transfer from Research Nuclear Reactors to New Generation Nuclear Power Reactors

    SciTech Connect

    Radulescu, Laura; Pavelescu, Margarit

    2010-01-21

    The goal of this paper is the analysis of the technological transfer role in the nuclear field, with particular emphasis on nuclear reactors domain. The presentation is sustained by historical arguments. In this frame, it is very important to start with the achievements of the first nuclear systems, for instant those with natural uranium as fuel and heavy water as moderator, following in time through the history until the New Generation Nuclear Power Reactors.Starting with 1940, the accelerated development of the industry has implied the increase of the global demand for energy. In this respect, the nuclear energy could play an important role, being essentially an unlimited source of energy. However, the nuclear option faces the challenges of increasingly demanding safety requirements, economic competitiveness and public acceptance. Worldwide, a significant amount of experience has been accumulated during development, licensing, construction, and operation of nuclear power reactors. The experience gained is a strong basis for further improvements. Actually, the nuclear programs of many countries are addressing the development of advanced reactors, which are intended to have better economics, higher reliability, improved safety, and proliferation-resistant characteristics in order to overcome the current concerns about nuclear power. Advanced reactors, now under development, may help to meet the demand for energy power of both developed and developing countries as well as for district heating, desalination and for process heat.The paper gives historical examples that illustrate the steps pursued from first research nuclear reactors to present advanced power reactors. Emphasis was laid upon the fact that the progress is due to the great discoveries of the nuclear scientists using the technological transfer.

  6. Very High Temperature Reactor (VHTR) Deep Burn Core and Fuel Analysis -- Complete Design Selection for the Pebble Bed Reactor

    SciTech Connect

    B. Boer; A. M. Ougouag

    2010-09-01

    The Deep-Burn (DB) concept focuses on the destruction of transuranic nuclides from used light water reactor fuel. These transuranic nuclides are incorporated into TRISO coated fuel particles and used in gas-cooled reactors with the aim of a fractional fuel burnup of 60 to 70% in fissions per initial metal atom (FIMA). This high performance is expected through the use of multiple recirculation passes of the fuel in pebble form without any physical or chemical changes between passes. In particular, the concept does not call for reprocessing of the fuel between passes. In principle, the DB pebble bed concept employs the same reactor designs as the presently envisioned low-enriched uranium core designs, such as the 400 MWth Pebble Bed Modular Reactor (PBMR-400). Although it has been shown in the previous Fiscal Year (2009) that a PuO2 fueled pebble bed reactor concept is viable, achieving a high fuel burnup, while remaining within safety-imposed prescribed operational limits for fuel temperature, power peaking and temperature reactivity feedback coefficients for the entire temperature range, is challenging. The presence of the isotopes 239-Pu, 240-Pu and 241-Pu that have resonances in the thermal energy range significantly modifies the neutron thermal energy spectrum as compared to a ”standard,” UO2-fueled core. Therefore, the DB pebble bed core exhibits a relatively hard neutron energy spectrum. However, regions within the pebble bed that are near the graphite reflectors experience a locally softer spectrum. This can lead to power and temperature peaking in these regions. Furthermore, a shift of the thermal energy spectrum with increasing temperature can lead to increased absorption in the resonances of the fissile Pu isotopes. This can lead to a positive temperature reactivity coefficient for the graphite moderator under certain operating conditions. The effort of this task in FY 2010 has focused on the optimization of the core to maximize the pebble discharge

  7. Parliament votes against building fifth power reactor

    SciTech Connect

    Not Available

    1993-11-01

    After a heated three-day debate, Finland's parliament voted on September 24 to reject the proposal to build the country's fifth nuclear power reactor. As predicted, the vote was close: 107 voted against more nuclear power, 90 were in favor, two members of the 200-seat parliament were not present, and the speaker did not vote.

  8. Comparison of the radiological hazard of thorium and uranium spent fuels from VVER-1000 reactor

    NASA Astrophysics Data System (ADS)

    Frybort, Jan

    2014-11-01

    Thorium fuel is considered as a viable alternative to the uranium fuel used in the current generation of nuclear power plants. Switch from uranium to thorium means a complete change of composition of the spent nuclear fuel produced as a result of the fuel depletion during operation of a reactor. If the Th-U fuel cycle is implemented, production of minor actinides in the spent fuel is negligible. This is favourable for the spent fuel disposal. On the other hand, thorium fuel utilisation is connected with production of 232U, which decays via several alpha decays into a strong gamma emitter 208Tl. Presence of this nuclide might complicate manipulations with the irradiated thorium fuel. Monte-Carlo computation code MCNPX can be used to simulate thorium fuel depletion in a VVER-1000 reactor. The calculated actinide composition will be analysed and dose rate from produced gamma radiation will be calculated. The results will be compared to the reference uranium fuel. Dependence of the dose rate on time of decay after the end of irradiation in the reactor will be analysed. This study will compare the radiological hazard of the spent thorium and uranium fuel handling.

  9. Preparation of high temperature gas-cooled reactor fuel element

    DOEpatents

    Bradley, Ronnie A.; Sease, John D.

    1976-01-01

    This invention relates to a method for the preparation of high temperature gas-cooled reactor (HTGR) fuel elements wherein uncarbonized fuel rods are inserted in appropriate channels of an HTGR fuel element block and the entire block is inserted in an autoclave for in situ carbonization under high pressure. The method is particularly applicable to remote handling techniques.

  10. Reactor-specific spent fuel discharge projections: 1985 to 2020

    SciTech Connect

    Heeb, C.M.; Libby, R.A.; Walling, R.C.; Purcell, W.L.

    1986-09-01

    The creation of four spent-fuel data bases that contain information on the projected amounts of spent fuel to be discharged from US commercial nuclear reactors through the year 2020 is described. The data bases contain detailed spent-fuel information from existing, planned, and projected pressurized water reactors (PWR) and boiling water reactors (BWR). The projections are based on individual reactor information supplied by the US reactor owners. The basic information is adjusted to conform to Energy Information Agency (EIA) forecasts for nuclear installed capacity, generation, and spent fuel discharged. The EIA cases considered are: (1) No New Orders with Extended Burnup, (2) No New Orders with Constant Burnup, (3) Middle Case with Extended Burnup, and (4) Middle Case with Constant Burnup. Detailed, by-reactor tables are provided for annual discharged amounts of spent fuel, for storage requirements assuming maximum-at-reactor storage, and for storage requirements assuming maximum-at-reactor plus intra-utility transshipment of spent fuel.

  11. Development of remote disassembly technology for liquid-metal reactor (LMR) fuel

    SciTech Connect

    Bradley, E.C.; Evans, J.H.; Metz, C.F. III; Weil, B.S.

    1990-01-01

    A major objective of the Consolidated Fuel Reprocessing Program (CFRP) is to develop equipment and demonstrate technology to reprocess fast breeder reactor fuel. Experimental work on fuel disassembly cutting methods began in the 1970s. High-power laser cutting was selected as the preferred cutting method for fuel disassembly. Remotely operated development equipment was designed, fabricated, installed, and tested at Oak Ridge National Laboratory (ORNL). Development testing included remote automatic operation, remote maintenance testing, and laser cutting process development. This paper summarizes the development work performed at ORNL on remote fuel disassembly. 2 refs., 1 fig.

  12. 10 CFR 51.23 - Temporary storage of spent fuel after cessation of reactor operation-generic determination of no...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... for a nuclear power reactor under parts 50 and 54 of this chapter, or issuance or amendment of a combined license for a nuclear power reactor under parts 52 and 54 of this chapter, or the issuance of an... 10 Energy 2 2012-01-01 2012-01-01 false Temporary storage of spent fuel after cessation of...

  13. 10 CFR 51.23 - Temporary storage of spent fuel after cessation of reactor operation-generic determination of no...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... issuance or amendment of an operating license for a nuclear power reactor under parts 50 and 54 of this chapter, or issuance or amendment of a combined license for a nuclear power reactor under parts 52 and 54... 10 Energy 2 2010-01-01 2010-01-01 false Temporary storage of spent fuel after cessation of...

  14. 10 CFR 51.23 - Temporary storage of spent fuel after cessation of reactor operation-generic determination of no...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... for a nuclear power reactor under parts 50 and 54 of this chapter, or issuance or amendment of a combined license for a nuclear power reactor under parts 52 and 54 of this chapter, or the issuance of an... 10 Energy 2 2013-01-01 2013-01-01 false Temporary storage of spent fuel after cessation of...

  15. 10 CFR 51.23 - Temporary storage of spent fuel after cessation of reactor operation-generic determination of no...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... for a nuclear power reactor under parts 50 and 54 of this chapter, or issuance or amendment of a combined license for a nuclear power reactor under parts 52 and 54 of this chapter, or the issuance of an... 10 Energy 2 2014-01-01 2014-01-01 false Temporary storage of spent fuel after cessation of...

  16. 10 CFR 51.23 - Temporary storage of spent fuel after cessation of reactor operation-generic determination of no...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... issuance or amendment of an operating license for a nuclear power reactor under parts 50 and 54 of this chapter, or issuance or amendment of a combined license for a nuclear power reactor under parts 52 and 54... 10 Energy 2 2011-01-01 2011-01-01 false Temporary storage of spent fuel after cessation of...

  17. Integrated Decision-Making Tool to Develop Spent Fuel Strategies for Research Reactors

    SciTech Connect

    Beatty, Randy L; Harrison, Thomas J

    2016-01-01

    IAEA Member States operating or having previously operated a Research Reactor are responsible for the safe and sustainable management and disposal of associated radioactive waste, including research reactor spent nuclear fuel (RRSNF). This includes the safe disposal of RRSNF or the corresponding equivalent waste returned after spent fuel reprocessing. One key challenge to developing general recommendations lies in the diversity of spent fuel types, locations and national/regional circumstances rather than mass or volume alone. This is especially true given that RRSNF inventories are relatively small, and research reactors are rarely operated at a high power level or duration typical of commercial power plants. Presently, many countries lack an effective long-term policy for managing RRSNF. This paper presents results of the International Atomic Energy Agency (IAEA) Coordinated Research Project (CRP) #T33001 on Options and Technologies for Managing the Back End of the Research Reactor Nuclear Fuel Cycle which includes an Integrated Decision Making Tool called BRIDE (Back-end Research reactor Integrated Decision Evaluation). This is a multi-attribute decision-making tool that combines the Total Estimated Cost of each life-cycle scenario with Non-economic factors such as public acceptance, technical maturity etc and ranks optional back-end scenarios specific to member states situations in order to develop a specific member state strategic plan with a preferred or recommended option for managing spent fuel from Research Reactors.

  18. Summary of space nuclear reactor power systems, 1983--1992

    SciTech Connect

    Buden, D.

    1993-08-11

    This report summarizes major developments in the last ten years which have greatly expanded the space nuclear reactor power systems technology base. In the SP-100 program, after a competition between liquid-metal, gas-cooled, thermionic, and heat pipe reactors integrated with various combinations of thermoelectric thermionic, Brayton, Rankine, and Stirling energy conversion systems, three concepts:were selected for further evaluation. In 1985, the high-temperature (1,350 K), lithium-cooled reactor with thermoelectric conversion was selected for full scale development. Since then, significant progress has been achieved including the demonstration of a 7-y-life uranium nitride fuel pin. Progress on the lithium-cooled reactor with thermoelectrics has progressed from a concept, through a generic flight system design, to the design, development, and testing of specific components. Meanwhile, the USSR in 1987--88 orbited a new generation of nuclear power systems beyond the, thermoelectric plants on the RORSAT satellites. The US has continued to advance its own thermionic fuel element development, concentrating on a multicell fuel element configuration. Experimental work has demonstrated a single cell operating time of about 1 1/2-y. Technology advances have also been made in the Stirling engine; an advanced engine that operates at 1,050 K is ready for testing. Additional concepts have been studied and experiments have been performed on a variety of systems to meet changing needs; such as powers of tens-to-hundreds of megawatts and highly survivable systems of tens-of-kilowatts power.

  19. Fuel-Cycle and Nuclear Material Disposition Issues Associated with High-Temperature Gas Reactors

    SciTech Connect

    Shropshire, D.E.; Herring, J.S.

    2004-10-03

    The objective of this paper is to facilitate a better understanding of the fuel-cycle and nuclear material disposition issues associated with high-temperature gas reactors (HTGRs). This paper reviews the nuclear fuel cycles supporting early and present day gas reactors, and identifies challenges for the advanced fuel cycles and waste management systems supporting the next generation of HTGRs, including the Very High Temperature Reactor, which is under development in the Generation IV Program. The earliest gas-cooled reactors were the carbon dioxide (CO2)-cooled reactors. Historical experience is available from over 1,000 reactor-years of operation from 52 electricity-generating, CO2-cooled reactor plants that were placed in operation worldwide. Following the CO2 reactor development, seven HTGR plants were built and operated. The HTGR came about from the combination of helium coolant and graphite moderator. Helium was used instead of air or CO2 as the coolant. The helium gas has a significant technical base due to the experience gained in the United States from the 40-MWe Peach Bottom and 330-MWe Fort St. Vrain reactors designed by General Atomics. Germany also built and operated the 15-MWe Arbeitsgemeinschaft Versuchsreaktor (AVR) and the 300-MWe Thorium High-Temperature Reactor (THTR) power plants. The AVR, THTR, Peach Bottom and Fort St. Vrain all used fuel containing thorium in various forms (i.e., carbides, oxides, thorium particles) and mixtures with highly enriched uranium. The operational experience gained from these early gas reactors can be applied to the next generation of nuclear power systems. HTGR systems are being developed in South Africa, China, Japan, the United States, and Russia. Elements of the HTGR system evaluated included fuel demands on uranium ore mining and milling, conversion, enrichment services, and fuel fabrication; fuel management in-core; spent fuel characteristics affecting fuel recycling and refabrication, fuel handling, interim

  20. Radio-toxicity of spent fuel of the advanced heavy water reactor.

    PubMed

    Anand, S; Singh, K D S; Sharma, V K

    2010-01-01

    The Advanced Heavy Water Reactor (AHWR) is a new power reactor concept being developed at Bhabha Atomic Research Centre, Mumbai. The reactor retains many desirable features of the existing Pressurised Heavy Water Reactor (PHWR), while incorporating new, advanced safety features. The reactor aims to utilise the vast thorium resources available in India. The reactor core will use plutonium as the make-up fuel, while breeding (233)U in situ. On account of this unique combination of fuel materials, the operational characteristics of the fuel as determined by its radioactivity, decay heat and radio-toxicity are being viewed with great interest. Radio-toxicity of the spent fuel is a measure of potential radiological hazard to the members of the public and also important from the ecological point of view. The radio-toxicity of the AHWR fuel is extremely high to start with, being approximately 10(4) times that of the fresh natural U fuel used in a PHWR, and continues to remain relatively high during operation and subsequent cooling. A unique feature of this fuel is the peak observed in its radio-toxicity at approximately 10(5) y of decay cooling. The delayed increase in fuel toxicity has been traced primarily to a build-up of (229)Th, (230)Th and (226)Ra. This phenomenon has been observed earlier for thorium-based fuels and is confirmed for the AHWR fuel. This paper presents radio-toxicity data for AHWR spent fuel up to a period of 10(6) y and the results are compared with the radio-toxicity of PHWR. PMID:19776247

  1. Radio-toxicity of spent fuel of the advanced heavy water reactor.

    PubMed

    Anand, S; Singh, K D S; Sharma, V K

    2010-01-01

    The Advanced Heavy Water Reactor (AHWR) is a new power reactor concept being developed at Bhabha Atomic Research Centre, Mumbai. The reactor retains many desirable features of the existing Pressurised Heavy Water Reactor (PHWR), while incorporating new, advanced safety features. The reactor aims to utilise the vast thorium resources available in India. The reactor core will use plutonium as the make-up fuel, while breeding (233)U in situ. On account of this unique combination of fuel materials, the operational characteristics of the fuel as determined by its radioactivity, decay heat and radio-toxicity are being viewed with great interest. Radio-toxicity of the spent fuel is a measure of potential radiological hazard to the members of the public and also important from the ecological point of view. The radio-toxicity of the AHWR fuel is extremely high to start with, being approximately 10(4) times that of the fresh natural U fuel used in a PHWR, and continues to remain relatively high during operation and subsequent cooling. A unique feature of this fuel is the peak observed in its radio-toxicity at approximately 10(5) y of decay cooling. The delayed increase in fuel toxicity has been traced primarily to a build-up of (229)Th, (230)Th and (226)Ra. This phenomenon has been observed earlier for thorium-based fuels and is confirmed for the AHWR fuel. This paper presents radio-toxicity data for AHWR spent fuel up to a period of 10(6) y and the results are compared with the radio-toxicity of PHWR.

  2. Design of small gas cooled fast reactor with two region of natural Uranium fuel fraction

    NASA Astrophysics Data System (ADS)

    Ariani, Menik; Su'ud, Zaki; Waris, Abdul; Khairurrijal, Monado, Fiber; Sekimoto, Hiroshi; Nakayama, Sinsuke

    2012-06-01

    A design study of small Gas Cooled Fast Reactor with two region fuel has been performed. In this study, design GCFR with Helium coolant which can be continuously operated by supplying mixed Natural Uranium without fuel enrichment plant or fuel reprocessing plant. The active reactor cores are divided into two region fuel i.e. 60% fuel fraction of Natural Uranium as inner core and 65% fuel fraction of Natural Uranium as outer core. Each fuel core regions are subdivided into ten parts (region-1 until region-10) with the same volume in the axial direction. The fresh Natural Uranium initially put in region-1, after one cycle of 10 years of burn-up it is shifted to region-2 and the each region-1 filled by fresh Natural Uranium. This concept is basically applied to all regions in both cores area, i.e. shifted the core of ith region into i+1 region after the end of 10 years burn-up cycle. For the next cycles, we will add only Natural Uranium on each region-1. The burn-up calculation is performed using collision probability method PIJ (cell burn-up calculation) in SRAC code which then given eight energy group macroscopic cross section data to be used in two dimensional R-Z geometry multi groups diffusion calculation in CITATION code. This reactor can results power thermal 600 MWth with average power density i.e. 80 watt/cc. After reactor start-up the operation, furthermore reactor only needs Natural Uranium supply for continue operation along 100 years. This calculation result then compared with one region fuel design i.e. 60% and 65% fuel fraction. This core design with two region fuel fraction can be an option for fuel optimization.

  3. Breeding nuclear fuels with accelerators — replacement for breeder reactors

    NASA Astrophysics Data System (ADS)

    Grand, P.; Takahashi, H.

    1985-05-01

    High-current, high-energy linear accelerators are potential competitors to breeder reactors and fusion devices for the production of fissile fuel. Accelerator breeder studies, conducted at Chalk River (Canada) and Brookhaven National Laboratory during the last decade, indicate that the technology is available and system's costs competitive with that of the LMFBR and Fusion-Hybrid systems. This paper addresses the technical issues to be faced in an accelerator specifically designed for commercial operation of this kind, the neutronics and engineering feasibility of target systems, and related fuel-cycle cost/benefit analysis. A nearly optimized accelerator breeder concept consisting of a 1.5 GeV, 300 mA linear accelerator, and of a H 2O-cooled, U-metal target (or thorium) has been designed and costed. Accelerator efficiency, beam-to-plug, is estimated at 50% and target power generation efficiency, beam-to-thermal output, at about 600% (U-metal case). Fuel costs produced by the facility are practically entirely driven by capital investment costs. This is also true for any competing system. On the basis, the accelerator breeder is economically competitive with the LMFBR while offering real advantages in terms of safety, fuel cycle flexibility, and resource independence.

  4. Fresh nuclear fuel measurements at Ukrainian nuclear power plants

    SciTech Connect

    Kuzminski, Jozef; Ewing, Tom; Dickman, Debbie; Gavrilyuk, Victor; Drapey, Sergey; Kirischuk, Vladimir; Strilchuk, Nikolay

    2009-01-01

    In 2005, the Provisions on Nuclear Material Measurement System was enacted in Ukraine as an important regulatory driver to support international obligations in nuclear safeguards and nonproliferation. It defines key provisions and requirements for material measurement and measurement control programs to ensure the quality and reliability of measurement data within the framework of the State MC&A System. Implementing the Provisions requires establishing a number of measurement techniques for both fresh and spent nuclear fuel for various types of Ukrainian reactors. Our first efforts focused on measurements of fresh nuclear fuel from a WWR-1000 power reactor.

  5. Structural Materials and Fuels for Space Power Plants

    NASA Technical Reports Server (NTRS)

    Bowman, Cheryl; Busby, Jeremy; Porter, Douglas

    2008-01-01

    A fission reactor combined with Stirling convertor power generation is one promising candidate in on-going Fission Surface Power (FSP) studies for future lunar and Martian bases. There are many challenges for designing and qualifying space-rated nuclear power plants. In order to have an affordable and sustainable program, NASA and DOE designers want to build upon the extensive foundation in nuclear fuels and structural materials. This talk will outline the current Fission Surface Power program and outline baseline design options for a lunar power plant with an emphasis on materials challenges. NASA first organized an Affordable Fission Surface Power System Study Team to establish a reference design that could be scrutinized for technical and fiscal feasibility. Previous papers and presentations have discussed this study process in detail. Considerations for the reference design included that no significant nuclear technology, fuels, or material development were required for near term use. The desire was to build upon terrestrial-derived reactor technology including conventional fuels and materials. Here we will present an overview of the reference design, Figure 1, and examine the materials choices. The system definition included analysis and recommendations for power level and life, plant configuration, shielding approach, reactor type, and power conversion type. It is important to note that this is just one concept undergoing refinement. The design team, however, understands that materials selection and improvement must be an integral part of the system development.

  6. A computer program to determine the specific power of prismatic-core reactors

    SciTech Connect

    Dobranich, D.

    1987-05-01

    A computer program has been developed to determine the maximum specific power for prismatic-core reactors as a function of maximum allowable fuel temperature, core pressure drop, and coolant velocity. The prismatic-core reactors consist of hexagonally shaped fuel elements grouped together to form a cylindrically shaped core. A gas coolant flows axially through circular channels within the elements, and the fuel is dispersed within the solid element material either as a composite or in the form of coated pellets. Different coolant, fuel, coating, and element materials can be selected to represent different prismatic-core concepts. The computer program allows the user to divide the core into any arbitrary number of axial levels to account for different axial power shapes. An option in the program allows the automatic determination of the core height that results in the maximum specific power. The results of parametric specific power calculations using this program are presented for various reactor concepts.

  7. Hanford single-pass reactor fuel storage basin demolition.

    PubMed

    Armstrong, Jason A

    2003-02-01

    The Environmental Restoration Contractor at the Hanford Site is tasked with removing auxiliary reactor structures and leaving the remaining concrete structure surrounding each reactor core. This is referred to as Interim Safe Storage. Part of placing the F Reactor into Interim Safe Storage is the demolition of the fuel storage basin, which was deactivated in 1970 by placing debris material into the basin prior to back filling with soil. Besides the debris material (wooden floor decking, handrails, and monorail pieces), the fuel storage basin contents included the possibility of spent nuclear fuel, fuel buckets, fuel spacers, process tubes, and tongs. Demolition of the fuel storage basin offered many unique radiological control challenges and innovative approaches to demolition. This paper describes how the total effective dose equivalent and contamination were controlled, how the use of a remote operated excavator was employed to remove high-dose-rate material, and how wireless technology was used to monitor changing radiological conditions.

  8. End-of-life nondestructive examination of Light Water Breeder Reactor fuel rods (LWBR Development Program)

    SciTech Connect

    Gorscak, D.A.; Campbell, W.R.; Clayton, J.C.

    1987-10-01

    In-bundle and out-of-bundle (single rod) nondestructive examinations of Light Water Breeder Reactor fuel rods were performed. In-bundle examinations included visual examination and measurement of rod bow, rod-to-rod gaps, and rod removal forces. Out-of-bundle examinations included rod visuals and measurement of fuel rod length, diameter and ovality, cladding oxide and crud thickness, support grid induced cladding wear mark depth and volume, and fuel rod free hanging bow. The out-of-bundle examination also included ultrasonic inspection for cladding defects, neutron radiography for pellet integrity and plenum gap measurements, and gamma scans for instack axial gap screening and binary fuel stack length measurements. The measurements confirmed design predictions of fuel rod performance and provided evidence of excellent fuel rod performance for operation of Light Water Breeder Reactor to 29,047 effective full power hours (EFPH).

  9. High-intensity power-resolved radiation imaging of an operational nuclear reactor.

    PubMed

    Beaumont, Jonathan S; Mellor, Matthew P; Villa, Mario; Joyce, Malcolm J

    2015-01-01

    Knowledge of the neutron distribution in a nuclear reactor is necessary to ensure the safe and efficient burnup of reactor fuel. Currently these measurements are performed by in-core systems in what are extremely hostile environments and in most reactor accident scenarios it is likely that these systems would be damaged. Here we present a compact and portable radiation imaging system with the ability to image high-intensity fast-neutron and gamma-ray fields simultaneously. This system has been deployed to image radiation fields emitted during the operation of a TRIGA test reactor allowing a spatial visualization of the internal reactor conditions to be obtained. The imaged flux in each case is found to scale linearly with reactor power indicating that this method may be used for power-resolved reactor monitoring and for the assay of ongoing nuclear criticalities in damaged nuclear reactors. PMID:26450669

  10. High-intensity power-resolved radiation imaging of an operational nuclear reactor.

    PubMed

    Beaumont, Jonathan S; Mellor, Matthew P; Villa, Mario; Joyce, Malcolm J

    2015-10-09

    Knowledge of the neutron distribution in a nuclear reactor is necessary to ensure the safe and efficient burnup of reactor fuel. Currently these measurements are performed by in-core systems in what are extremely hostile environments and in most reactor accident scenarios it is likely that these systems would be damaged. Here we present a compact and portable radiation imaging system with the ability to image high-intensity fast-neutron and gamma-ray fields simultaneously. This system has been deployed to image radiation fields emitted during the operation of a TRIGA test reactor allowing a spatial visualization of the internal reactor conditions to be obtained. The imaged flux in each case is found to scale linearly with reactor power indicating that this method may be used for power-resolved reactor monitoring and for the assay of ongoing nuclear criticalities in damaged nuclear reactors.

  11. High-intensity power-resolved radiation imaging of an operational nuclear reactor

    NASA Astrophysics Data System (ADS)

    Beaumont, Jonathan S.; Mellor, Matthew P.; Villa, Mario; Joyce, Malcolm J.

    2015-10-01

    Knowledge of the neutron distribution in a nuclear reactor is necessary to ensure the safe and efficient burnup of reactor fuel. Currently these measurements are performed by in-core systems in what are extremely hostile environments and in most reactor accident scenarios it is likely that these systems would be damaged. Here we present a compact and portable radiation imaging system with the ability to image high-intensity fast-neutron and gamma-ray fields simultaneously. This system has been deployed to image radiation fields emitted during the operation of a TRIGA test reactor allowing a spatial visualization of the internal reactor conditions to be obtained. The imaged flux in each case is found to scale linearly with reactor power indicating that this method may be used for power-resolved reactor monitoring and for the assay of ongoing nuclear criticalities in damaged nuclear reactors.

  12. High-intensity power-resolved radiation imaging of an operational nuclear reactor

    PubMed Central

    Beaumont, Jonathan S.; Mellor, Matthew P.; Villa, Mario; Joyce, Malcolm J.

    2015-01-01

    Knowledge of the neutron distribution in a nuclear reactor is necessary to ensure the safe and efficient burnup of reactor fuel. Currently these measurements are performed by in-core systems in what are extremely hostile environments and in most reactor accident scenarios it is likely that these systems would be damaged. Here we present a compact and portable radiation imaging system with the ability to image high-intensity fast-neutron and gamma-ray fields simultaneously. This system has been deployed to image radiation fields emitted during the operation of a TRIGA test reactor allowing a spatial visualization of the internal reactor conditions to be obtained. The imaged flux in each case is found to scale linearly with reactor power indicating that this method may be used for power-resolved reactor monitoring and for the assay of ongoing nuclear criticalities in damaged nuclear reactors. PMID:26450669

  13. Reactor power system deployment and startup

    NASA Technical Reports Server (NTRS)

    Wetch, J. R.; Nelin, C. J.; Britt, E. J.; Klein, G.

    1985-01-01

    This paper addresses issues that should receive further examination in the near-term as concept selection for development of a U.S. space reactor power system is approached. The issues include: the economics, practicality and system reliability associated with transfer of nuclear spacecraft from low earth shuttle orbits to operational orbits, via chemical propulsion versus nuclear electric propulsion; possible astronaut supervised reactor and nuclear electric propulsion startup in low altitude Shuttle orbit; potential deployment methods for nuclear powered spacecraft from Shuttle; the general public safety of low altitude startup and nuclear safe and disposal orbits; the question of preferred reactor power level; and the question of frozen versus molten alkali metal coolant during launch and deployment. These issues must be considered now because they impact the SP-100 concept selection, power level selection, weight and size limits, use of deployable radiators, reliability requirements, and economics, as well as the degree of need for and the urgency of developing space reactor power systems.

  14. The DOE Advanced Gas Reactor Fuel Development and Qualification Program

    SciTech Connect

    David Petti

    2010-09-01

    The high outlet temperatures and high thermal-energy conversion efficiency of modular High Temperature Gas-cooled Reactors (HTGRs) enable an efficient and cost effective integration of the reactor system with non-electricity generation applications, such as process heat and/or hydrogen production, for the many petrochemical and other industrial processes that require temperatures between 300°C and 900°C. The Department of Energy (DOE) has selected the HTGR concept for the Next Generation Nuclear Plant (NGNP) Project as a transformative application of nuclear energy that will demonstrate emissions-free nuclear-assisted electricity, process heat, and hydrogen production, thereby reducing greenhouse-gas emissions and enhancing energy security. The objective of the DOE Advanced Gas Reactor (AGR) Fuel Development and Qualification program is to qualify tristructural isotropic (TRISO)-coated particle fuel for use in HTGRs. The Advanced Gas Reactor Fuel Development and Qualification Program consists of five elements: fuel manufacture, fuel and materials irradiations, post-irradiation examination (PIE) and safety testing, fuel performance modeling, and fission-product transport and source term evaluation. An underlying theme for the fuel development work is the need to develop a more complete, fundamental understanding of the relationship between the fuel fabrication process and key fuel properties, the irradiation and accident safety performance of the fuel, and the release and transport of fission products in the NGNP primary coolant system. An overview of the program and recent progress is presented.

  15. Development of Improved Burnable Poisons for Commercial Nuclear Power Reactors

    SciTech Connect

    Renier, J.A.

    2002-04-17

    Burnable poisons are used in all modern nuclear reactors to permit higher loading of fuel without the necessity of an overly large control rod system. This not only permits a longer core life but can also be used to level the power distribution. Commercial nuclear reactors commonly use B{sub 4}C in separate non-fueled rods and more recently, zirconium boride coatings on the fuel pellets or gadolinium oxide mixed with the fuel. Although the advantages are great, there are problems with using these materials. Boron, which is an effective neutron absorber, transmutes to lithium and helium upon absorption of a neutron. Helium is insoluble and is eventually released to the interior of the fuel rod, where it produces an internal pressure. When sufficiently high, this pressure stress could cause separation of the cladding from the fuel, causing overly high centerline temperatures. Gadolinium has several very strongly absorbing isotopes, but not all have large cross sections and result in residual burnable poison reactivity worth at the end of the fuel life. Even if the amount of this residual absorber is small and the penalty in operation small, the cost of this penalty, even if only several days, can be very high. The objective of this investigation was to study the performance of single isotopes in order to reduce the residual negative reactivity left over at the end of the fuel cycle. Since the behavior of burnable poisons can be strongly influenced by their configuration, four forms for the absorbers were studied: homogeneously mixed with the fuel, mixed with only the outer one-third of the fuel pellet, coated on the perimeter of the fuel pellets, and alloyed with the cladding. In addition, the numbers of fuel rods containing burnable poison were chosen as 8, 16, 64, and 104. Other configurations were chosen for a few special cases. An enrichment of 4.5 wt% {sup 235}U was chosen for most cases for study in order to achieve a 4-year fuel cycle. A standard pressurized

  16. Fabrication of (U, Zr) C-fueled/tungsten-clad specimens for irradiation in the Plum Brook Reactor Facility

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Fuel samples, 90UC - 10 ZrC, and chemically vapor deposited tungsten fuel cups were fabricated for the study of the long term dimensional stability and compatibility of the carbide-tungsten fuel-cladding systems under irradiation. These fuel samples and fuel cups were assembled into the fuel pins of two capsules, designated as V-2E and V-2F, for irradiation in NASA Plum Brook Reactor Facility at a fission power density of 172 watts/c.c. and a miximum cladding temperature of 1823 K. Fabrication methods and characteristics of the fuel samples and fuel cups prepared are described.

  17. Core design study of a supercritical light water reactor with double row fuel rods

    SciTech Connect

    Zhao, C.; Wu, H.; Cao, L.; Zheng, Y.; Yang, J.; Zhang, Y.

    2012-07-01

    An equilibrium core for supercritical light water reactor has been designed. A novel type of fuel assembly with dual rows of fuel rods between water rods is chosen and optimized to get more uniform assembly power distributions. Stainless steel is used for fuel rod cladding and structural material. Honeycomb structure filled with thermal isolation is introduced to reduce the usage of stainless steel and to keep moderator temperature below the pseudo critical temperature. Water flow scheme with ascending coolant flow in inner regions is carried out to achieve high outlet temperature. In order to enhance coolant outlet temperature, the radial power distributions needs to be as flat as possible through operation cycle. Fuel loading pattern and control rod pattern are optimized to flatten power distribution at inner regions. Axial fuel enrichment is divided into three parts to control axial power peak, which affects maximum cladding surface temperature. (authors)

  18. A Basic LEGO Reactor Design for the Provision of Lunar Surface Power

    SciTech Connect

    John Darrell Bess

    2008-06-01

    A final design has been established for a basic Lunar Evolutionary Growth-Optimized (LEGO) Reactor using current and near-term technologies. The LEGO Reactor is a modular, fast-fission, heatpipe-cooled, clustered-reactor system for lunar-surface power generation. The reactor is divided into subcritical units that can be safely launched with lunar shipments from Earth, and then emplaced directly into holes drilled into the lunar regolith to form a critical reactor assembly. The regolith would not just provide radiation shielding, but serve as neutron-reflector material as well. The reactor subunits are to be manufactured using proven and tested materials for use in radiation environments, such as uranium-dioxide fuel, stainless-steel cladding and structural support, and liquid-sodium heatpipes. The LEGO Reactor system promotes reliability, safety, and ease of manufacture and testing at the cost of an increase in launch mass per overall rated power level and a reduction in neutron economy when compared to a single-reactor system. A single unshielded LEGO Reactor subunit has an estimated mass of approximately 448 kg and provides approximately 5 kWe. The overall envelope for a single subunit with fully extended radiator panels has a height of 8.77 m and a diameter of 0.50 m. Six subunits could provide sufficient power generation throughout the initial stages of establishing a lunar outpost. Portions of the reactor may be neutronically decoupled to allow for reduced power production during unmanned periods of base operations. During later stages of lunar-base development, additional subunits may be emplaced and coupled into the existing LEGO Reactor network, subject to lunar base power demand. Improvements in reactor control methods, fuel form and matrix, shielding, as well as power conversion and heat rejection techniques can help generate an even more competitive LEGO Reactor design. Further modifications in the design could provide power generative opportunities for

  19. A Gas-Cooled Reactor Surface Power System

    SciTech Connect

    Harms, G.A.; Lenard, R.X.; Lipinski, R.J.; Wright, S.A.

    1998-11-09

    A human outpost on Mars requires plentiful power to assure survival of the astronauts. Anywhere from 50 to 500 kW of electric power (kWe) will be needed, depending on the number of astronauts, level of scientific activity, and life- cycle closure desired. This paper describes a 250-kWe power system based on a gas-cooled nuclear reactor with a recuperated closed Brayton cycle conversion system. The design draws upon the extensive data and engineering experience developed under the various high-temperature gas cooled reactor programs and under the SP-100 program. The reactor core is similar in power and size to the research reactors found on numerous university campuses. The fuel is uranium nitide clad in Nb 1 %Zr, which has been extensively tested under the SP-I 00 program The fiel rods are arranged in a hexagonal array within a BeO block. The BeO softens the spectrum, allowing better use of the fbel and stabilizing the geometty against deformation during impact or other loadings. The system has a negative temperature feedback coefficient so that the power level will automatically follow a variable load without the need for continuous adjustment of control elements. Waste heat is removed by an air-cooled heat exchanger using cold Martian air. The amount of radioactivity in the reactor at launch is very small (less than a Curie, and about equal to a truckload of uranium ore). The system will need to be engineered so that criticality cannot occur for any launch accident. This system is also adaptable for electric propulsion or life-support during transit to and from Mars.

  20. A dynamic fuel cycle analysis for a heterogeneous thorium-DUPIC recycle in CANDU reactors

    SciTech Connect

    Jeong, C. J.; Park, C. J.; Choi, H.

    2006-07-01

    A heterogeneous thorium fuel recycle scenario in a Canada deuterium uranium (CANDU) reactor has been analyzed by the dynamic analysis method. The thorium recycling is performed through a dry process which has a strong proliferation resistance. In the fuel cycle model, the existing nuclear power plant construction plan was considered up to 2016, while the nuclear demand growth rate from the year 2016 was assumed to be 0%. In this analysis, the spent fuel inventory as well as the amount of plutonium, minor actinides, and fission products of a multiple thorium recycling fuel cycle were estimated and compared to those of the once-through fuel cycle. The analysis results have shown that the heterogeneous thorium fuel cycle can be constructed through the dry process technology. It is also shown that the heterogeneous thorium fuel cycle can reduce the spent fuel inventory and save on the natural uranium resources when compared with the once-through cycle. (authors)

  1. Spent nuclear fuel discharges from US reactors 1993

    SciTech Connect

    Not Available

    1995-02-01

    The Energy Information Administration (EIA) of the U.S. Department of Energy (DOE) administers the Nuclear Fuel Data Survey, Form RW-859. This form is used to collect data on fuel assemblies irradiated at commercial nuclear reactors operating in the United States, and the current inventories and storage capacities of those reactors. These data are important to the design and operation of the equipment and facilities that DOE will use for the future acceptance, transportation, and disposal of spent fuels. The data collected and presented identifies trends in burnup, enrichment, and spent nuclear fuel discharged form commercial light-water reactor as of December 31, 1993. The document covers not only spent nuclear fuel discharges; but also site capacities and inventories; canisters and nonfuel components; and assembly type characteristics.

  2. Yttrium and rare earth stabilized fast reactor metal fuel

    DOEpatents

    Guon, Jerold; Grantham, LeRoy F.; Specht, Eugene R.

    1992-01-01

    To increase the operating temperature of a reactor, the melting point and mechanical properties of the fuel must be increased. For an actinide-rich fuel, yttrium, lanthanum and/or rare earth elements can be added, as stabilizers, to uranium and plutonium and/or a mixture of other actinides to raise the melting point of the fuel and improve its mechanical properties. Since only about 1% of the actinide fuel may be yttrium, lanthanum, or a rare earth element, the neutron penalty is low, the reactor core size can be reduced, the fuel can be burned efficiently, reprocessing requirements are reduced, and the nuclear waste disposal volumes reduced. A further advantage occurs when yttrium, lanthanum, and/or other rare earth elements are exposed to radiation in a reactor, they produce only short half life radioisotopes, which reduce nuclear waste disposal problems through much shorter assured-isolation requirements.

  3. End-of-life destructive examination of light water breeder reactor fuel rods (LWBR Development Program)

    SciTech Connect

    Richardson, K.D.

    1987-10-01

    Destructive examination of 12 representative Light Water Breeder Reactor fuel rods was performed following successful operation in the Shippingport Atomic Power Station for 29,047 effective full power hours, about five years. Light Water Breeder Reactor fuel rods were unique in that the thorium oxide and uranium-233 oxide fuel was contained within Zircaloy-4 cladding. Destructive examinations included analysis of released fission gas; chemical analysis of the fuel to determine depletion, iodine, and cesium levels; chemical analysis of the cladding to determine hydrogen, iodine, and cesium levels; metallographic examination of the cladding, fuel, and other rod components to determine microstructural features and cladding corrosion features; and tensile testing of the irradiated cladding to determine mechanical strength. The examinations confirmed that Light Water Breeder Reactor fuel rod performance was excellent. No evidence of fuel rod failure was observed, and the fuel operating temperature was low (below 2580/sup 0/F at which an increased percentage of fission gas is released). 21 refs., 80 figs., 20 tabs.

  4. Impact of thorium based molten salt reactor on the closure of the nuclear fuel cycle

    NASA Astrophysics Data System (ADS)

    Jaradat, Safwan Qasim Mohammad

    Molten salt reactor (MSR) is one of six reactors selected by the Generation IV International Forum (GIF). The liquid fluoride thorium reactor (LFTR) is a MSR concept based on thorium fuel cycle. LFTR uses liquid fluoride salts as a nuclear fuel. It uses 232Th and 233U as the fertile and fissile materials, respectively. Fluoride salt of these nuclides is dissolved in a mixed carrier salt of lithium and beryllium (FLiBe). The objective of this research was to complete feasibility studies of a small commercial thermal LFTR. The focus was on neutronic calculations in order to prescribe core design parameter such as core size, fuel block pitch (p), fuel channel radius, fuel path, reflector thickness, fuel salt composition, and power. In order to achieve this objective, the applicability of Monte Carlo N-Particle Transport Code (MCNP) to MSR modeling was verified. Then, a prescription for conceptual small thermal reactor LFTR and relevant calculations were performed using MCNP to determine the main neutronic parameters of the core reactor. The MCNP code was used to study the reactor physics characteristics for the FUJI-U3 reactor. The results were then compared with the results obtained from the original FUJI-U3 using the reactor physics code SRAC95 and the burnup analysis code ORIPHY2. The results were comparable with each other. Based on the results, MCNP was found to be a reliable code to model a small thermal LFTR and study all the related reactor physics characteristics. The results of this study were promising and successful in demonstrating a prefatory small commercial LFTR design. The outcome of using a small core reactor with a diameter/height of 280/260 cm that would operate for more than five years at a power level of 150 MWth was studied. The fuel system 7LiF - BeF2 - ThF4 - UF4 with a (233U/ 232Th) = 2.01 % was the candidate fuel for this reactor core.

  5. Fuel, Structural Material and Coolant for an Advanced Fast Micro-Reactor

    NASA Astrophysics Data System (ADS)

    Do Nascimento, J. A.; Duimarães, L. N. F.; Ono, S.

    The use of nuclear reactors in space, seabed or other Earth hostile environment in the future is a vision that some Brazilian nuclear researchers share. Currently, the USA, a leader in space exploration, has as long-term objectives the establishment of a permanent Moon base and to launch a manned mission to Mars. A nuclear micro-reactor is the power source chosen to provide energy for life support, electricity for systems, in these missions. A strategy to develop an advanced micro-reactor technologies may consider the current fast reactor technologies as back-up and the development of advanced fuel, structural and coolant materials. The next generation reactors (GEN-IV) for terrestrial applications will operate with high output temperature to allow advanced conversion cycle, such as Brayton, and hydrogen production, among others. The development of an advanced fast micro-reactor may create a synergy between the GEN-IV and space reactor technologies. Considering a set of basic requirements and materials properties this paper discusses the choice of advanced fuel, structural and coolant materials for a fast micro-reactor. The chosen candidate materials are: nitride, oxide as back-up, for fuel, lead, tin and gallium for coolant, ferritic MA-ODS and Mo alloys for core structures. The next step will be the neutronic and burnup evaluation of core concepts with this set of materials.

  6. Diversion assumptions for high-powered research reactors. ISPO C-50 Phase 1

    SciTech Connect

    Binford, F.T.

    1984-01-01

    This study deals with diversion assumptions for high-powered research reactors -- specifically, MTR fuel; pool- or tank-type research reactors with light-water moderator; and water, beryllium, or graphite reflectors, and which have a power level of 25 MW(t) or more. The objective is to provide assistance to the IAEA in documentation of criteria and inspection observables related to undeclared plutonium production in the reactors described above, including: criteria for undeclared plutonium production, necessary design information for implementation of these criteria, verification guidelines including neutron physics and heat transfer, and safeguards measures to facilitate the detection of undeclared plutonium production at large research reactors.

  7. Use of freeze-casting in advanced burner reactor fuel design

    SciTech Connect

    Lang, A. L.; Yablinsky, C. A.; Allen, T. R.; Burger, J.; Hunger, P. M.; Wegst, U. G. K.

    2012-07-01

    This paper will detail the modeling of a fast reactor with fuel pins created using a freeze-casting process. Freeze-casting is a method of creating an inert scaffold within a fuel pin. The scaffold is created using a directional solidification process and results in open porosity for emplacement of fuel, with pores ranging in size from 300 microns to 500 microns in diameter. These pores allow multiple fuel types and enrichments to be loaded into one fuel pin. Also, each pore could be filled with varying amounts of fuel to allow for the specific volume of fission gases created by that fuel type. Currently fast reactors, including advanced burner reactors (ABR's), are not economically feasible due to the high cost of operating the reactors and of reprocessing the fuel. However, if the fuel could be very precisely placed, such as within a freeze-cast scaffold, this could increase fuel performance and result in a valid design with a much lower cost per megawatt. In addition to competitive costs, freeze-cast fuel would also allow for selective breeding or burning of actinides within specific locations in fast reactors. For example, fast flux peak locations could be utilized on a minute scale to target specific actinides for transmutation. Freeze-cast fuel is extremely flexible and has great potential in a variety of applications. This paper performs initial modeling of freeze-cast fuel, with the generic fast reactor parameters for this model based on EBR-II. The core has an assumed power of 62.5 MWt. The neutronics code used was Monte Carlo N-Particle (MCNP5) transport code. Uniform pore sizes were used in increments of 100 microns. Two different freeze-cast scaffold materials were used: ceramic (MgO-ZrO{sub 2}) and steel (SS316L). Separate models were needed for each material because the freeze-cast ceramic and metal scaffolds have different structural characteristics and overall porosities. Basic criticality results were compiled for the various models. Preliminary

  8. Core conversion of the Portuguese research reactor to LEU fuel

    SciTech Connect

    Marques, J.G.; Ramos, A.R.; Kocher, A.

    2008-07-15

    Core conversion of the Portuguese Research Reactor (RPI) to LEU fuel is being performed within IAEA's Technical Cooperation project POR/4/016, with financial support from the US and Portugal. CERCA was selected as manufacturer of the LEU assemblies by the IAEA after an international call for bids. CERCA provided a comprehensive package to the RPI which included the mechanical verification of the design of the assemblies, their manufacture and arrangements for a joint inspection of the finished assemblies. The LEU fuel assemblies were manufactured within 8 months upon final approval of the design. The safety analyses for the core conversion to LEU fuel were made with the assistance of the RERTR program and were submitted for review by the IAEA and by Portuguese authorities in January 2007. Revised documents were submitted in June 2007 addressing the issues raised during review. Regulatory approval was received in early August and core conversion was done in early September. All measured safety parameters are within the defined acceptance limits. Operation at full power is expected by the end of October. (author)

  9. Nuclear reactor vessel fuel thermal insulating barrier

    SciTech Connect

    Keegan, C. Patrick; Scobel, James H.; Wright, Richard F.

    2013-03-19

    The reactor vessel of a nuclear reactor installation which is suspended from the cold leg nozzles in a reactor cavity is provided with a lower thermal insulating barrier spaced from the reactor vessel that has a hemispherical lower section that increases in volume from the center line of the reactor to the outer extent of the diameter of the thermal insulating barrier and smoothly transitions up the side walls of the vessel. The space between the thermal insulating harrier and the reactor vessel forms a chamber which can be flooded with cooling water through passive valving to directly cool the reactor vessel in the event of a severe accident. The passive inlet valve for the cooling water includes a buoyant door that is normally maintained sealed under its own weight and floats open when the cavity is Hooded. Passively opening steam vents are also provided.

  10. Fuel processing in integrated micro-structured heat-exchanger reactors

    NASA Astrophysics Data System (ADS)

    Kolb, G.; Schürer, J.; Tiemann, D.; Wichert, M.; Zapf, R.; Hessel, V.; Löwe, H.

    Micro-structured fuel processors are under development at IMM for different fuels such as methanol, ethanol, propane/butane (LPG), gasoline and diesel. The target application are mobile, portable and small scale stationary auxiliary power units (APU) based upon fuel cell technology. The key feature of the systems is an integrated plate heat-exchanger technology which allows for the thermal integration of several functions in a single device. Steam reforming may be coupled with catalytic combustion in separate flow paths of a heat-exchanger. Reactors and complete fuel processors are tested up to the size range of 5 kW power output of a corresponding fuel cell. On top of reactor and system prototyping and testing, catalyst coatings are under development at IMM for numerous reactions such as steam reforming of LPG, ethanol and methanol, catalytic combustion of LPG and methanol, and for CO clean-up reactions, namely water-gas shift, methanation and the preferential oxidation of carbon monoxide. These catalysts are investigated in specially developed testing reactors. In selected cases 1000 h stability testing is performed on catalyst coatings at weight hourly space velocities, which are sufficiently high to meet the demands of future fuel processing reactors.

  11. Fuel Burnup and Fuel Pool Shielding Analysis for Bushehr Nuclear Reactor VVER-1000

    NASA Astrophysics Data System (ADS)

    Hadad, Kamal; Ayobian, Navid

    Bushehr Nuclear power plant (BNPP) is currently under construction. The VVER-1000 reactor will be loaded with 126 tons of about 4% enriched fuel having 3-years life cycle. The spent fuel (SF) will be transferred into the spent fuel pool (SPF), where it stays for 8 years before being transferred to Russia. The SPF plays a crucial role during 8 years when the SP resides in there. This paper investigates the shielding of this structure as it is designed to shield the SF radiation. In this study, the SF isotope inventory, for different cycles and with different burnups, was calculated using WIMS/4D transport code. Using MCNP4C nuclear code, the intensity of γ rays was obtained in different layers of SFP shields. These layers include the water above fuel assemblies (FA) in pool, concrete wall of the pool and water laid above transferring fuels. Results show that γ rays leakage from the shield in the mentioned layers are in agreement with the plant's PSAR data. Finally we analyzed an accident were the water height above the FA in the pool drops to 47 cm. In this case it was observed that exposure dose above pool, 10 and 30 days from the accident, are still high and in the levels of 1000 and 758 R/hr.

  12. Drop-in capsule testing of plutonium-based fuels in the Advanced Test Reactor

    SciTech Connect

    Chang, G.S.; Ryskamp, J.M.; Terry, W.K.; Ambrosek, R.G.; Palmer, A.J.; Roesener, R.A.

    1996-09-01

    The most attractive way to dispose of weapons-grade plutonium (WGPu) is to use it as fuel in existing light water reactors (LWRs) in the form of mixed oxide (MOX) fuel - i.e., plutonia (PuO[sub 2]) mixed with urania (UO[sub 2]). Before U.S. reactors could be used for this purpose, their operating licenses would have to be amended. Numerous technical issues must be resolved before LWR operating licenses can be amended to allow the use of MOX fuel. The proposed weapons-grade MOX fuel is unusual, even relative to ongoing foreign experience with reactor-grade MOX power reactor fuel. Some demonstration of the in- reactor thermal, mechanical, and fission gas release behavior of the prototype fuel will most likely be required in a limited number of test reactor irradiations. The application to license operation with MOX fuel must be amply supported by experimental data. The Advanced Test Reactor (ATR) at the Idaho National Engineering Laboratory (INEL) is capable of playing a key role in the irradiation, development, and licensing of these new fuel types. The ATR is a 250- MW (thermal) LWR designed to study the effects of intense radiation on reactor fuels and materials. For 25 years, the primary role of the ATR has been to serve in experimental investigations for the development of advanced nuclear fuels. Both large- and small-volume test positions in the ATR could be used for MOX fuel irradiation. The ATR would be a nearly ideal test bed for developing data needed to support applications to license LWRs for operation with MOX fuel made from weapons-grade plutonium. Furthermore, these data can be obtained more quickly by using ATR instead of testing in a commercial LWR. Our previous work in this area has demonstrated that it is technically feasible to perform MOX fuel testing in the ATR. This report documents our analyses of sealed drop-in capsules containing plutonium-based test specimens placed in various ATR positions.

  13. Study on neutronic of very small Pb - Bi cooled no-onsite refueling nuclear power reactor (VSPINNOR)

    SciTech Connect

    Arianto, Fajar; Su'ud, Zaki; Zuhair

    2014-09-30

    A conceptual design study on Very Small Pb-Bi No-Onsite Refueling Cooled Nuclear Reactor (VSPINNOR) with Uranium nitride fuel using MCNPX program has been performed. In this design the reactor core is divided into three regions with different enrichment. At the center of the core is laid fuel without enrichment (internal blanket). While for the outer region using fuel enrichment variations. VSPINNOR fast reactor was operated for 10 years without refueling. Neutronic analysis shows optimized result of VSPINNOR has a core of 50 cm radius and 100 cm height with 300 MWth thermal power output at 60% fuel fraction that can be operated 18 years without refueling or fuel shuffling.

  14. Low-Enriched Fuel Design Concept for the Prismatic Very High Temperature Reactor Core

    SciTech Connect

    Sterbentz, James W

    2007-05-01

    A new non-TRISO fuel and clad design concept is proposed for the prismatic, heliumcooled Very High Temperature Reactor core. The new concept could substantially reduce the current 10-20 wt% TRISO uranium enrichments down to 4-6 wt% for both initial and reload cores. The proposed fuel form would be a high-temperature, high-density uranium ceramic, for example UO2, configured into very small diameter cylindrical rods. The small diameter fuel rods significantly increase core reactivity through improved neutron moderation and fuel lumping. Although a high-temperature clad system for the concept remains to be developed, recent success in tube fabrication and preliminary irradiation testing of silicon carbide (SiC) cladding for light water reactor applications offers good potential for this application, and for future development of other carbide clad designs. A high-temperature ceramic fuel, together with a high-temperature clad material, could also lead to higher thermal safety margins during both normal and transient reactor conditions relative to TRISO fuel. The calculated neutronic results show that the lowenrichment, small diameter fuel rods and low thermal neutron absorbing clad retain the strong negative Doppler fuel temperature coefficient of reactivity that ensures inherent safe operation of the VHTR, and depletion studies demonstrate that an 18-month power cycle can be achieved with the lower enrichment fuel.

  15. Summary of the radiological assessment of the fuel cycle for a thorium-uranium carbide-fueled fast breeder reactor

    SciTech Connect

    Tennery, V.J.; Bomar, E.S.; Bond, W.D.; Meyer, H.R.; Morse, L.E.; Till, J.E.; Yalcintas, M.G.

    1980-01-01

    A large fraction of the potential fuel for nuclear power reactors employing fissionable materials exists as ores of thorium. In addition, certain characteristics of a fuel system based on breeding of the fissionable isotope {sup 233}U from thorium offer the possibility of a greater resistance to the diversion of fissionable material for the fabrication of nuclear weapons. This report consolidates into a single source the principal content of two previous reports which assess the radiological environmental impact of mining and milling of thorium ore and of the reprocessing and refabrication of spent FBR thorium-uranium carbide fuel.

  16. Investigation of stainless steel clad fuel rod failures and fuel performance in the Connecticut Yankee Reactor. Final report

    SciTech Connect

    Pasupathi, V.; Klingensmith, R. W.

    1981-11-01

    Significant levels of fuel rod failures were observed in the batch 8 fuel assemblies of the Connecticut Yankee reactor. Failure of 304 stainless steel cladding in a PWR environment was not expected. Therefore a detailed poolside and hot cell examination program was conducted to determine the cause of failure and identify differences between batch 8 fuel and previous batches which had operated without failures. Hot cell work conducted consisted of detailed nondestructive and destructive examination of fuel rods from batches 7 and 8. The results indicate that the batch 8 failure mechanism was stress corrosion cracking initiating on the clad outer surface. The sources of cladding stresses are believed to be (a) fuel pellet chips wedged in the cladding gap, (b) swelling of highly nondensifying batch 8 fuel and (c) potentially harmful effects of a power change event that occurred near the end of the second cycle of irradiation for batch 8.

  17. NEUTRON REACTOR FUEL ELEMENT UTILIZING ZIRCONIUM-BASE ALLOYS

    DOEpatents

    Saller, H.A.; Keeler, J.R.; Szumachowski, E.R.

    1957-11-12

    This patent relates to clad fuel elements for use in neutronic reactors and is drawn to such a fuel element which consists of a core of fissionable material, comprised of an alloy of zirconium and U/sup 235/ enriched uranium, encased in a jacket of a binary zirconium-tin alloy in which the tin content ranges between 1 and 15% by weight.

  18. Metallic fast reactor fuel fabrication for the global nuclear energy partnership

    NASA Astrophysics Data System (ADS)

    Burkes, Douglas E.; Fielding, Randall S.; Porter, Douglas L.

    2009-07-01

    Fast reactors are once again being considered for nuclear power generation, in addition to transmutation of long-lived fission products resident in spent nuclear fuels. This re-consideration follows with intense developmental programs for both fuel and reactor design. One of the two leading candidates for next generation fast reactor fuel is metal alloys, resulting primarily from the successes achieved in the 1960s to early 1990s with both the experimental breeding reactor-II and the fast flux test facility. The goal of the current program is to develop and qualify a nuclear fuel system that performs all of the functions of a conventional, fast-spectrum nuclear fuel while destroying recycled actinides, thereby closing the nuclear fuel cycle. In order to meet this goal, the program must develop efficient and safe fuel fabrication processes designed for remote operation. This paper provides an overview of advanced casting processes investigated in the past, and the development of a gaseous diffusion calculation that demonstrates how straightforward process parameter modification can mitigate the loss of volatile minor actinides in the metal alloy melt.

  19. Non-Proliferative, Thorium-Based, Core and Fuel Cycle for Pressurized Water Reactors

    SciTech Connect

    Todosow M.; Todosow M.; Raitses, G. Galperin, A.

    2009-07-12

    Two of the major barriers to the expansion of worldwide adoption of nuclear power are related to proliferation potential of the nuclear fuel cycle and issues associated with the final disposal of spent fuel. The Radkowsky Thorium Fuel (RTF) concept proposed by Professor A. Radkowsky offers a partial solution to these problems. The main idea of the concept is the utilization of the seed-blanket unit (SBU) fuel assembly geometry which is a direct replacement for a 'conventional' assembly in either a Russian pressurized water reactor (VVER-1000) or a Western pressurized water reactor (PWR). The seed-blanket fuel assembly consists of a fissile (U) zone, known as seed, and a fertile (Th) zone known as blanket. The separation of fissile and fertile allows separate fuel management schemes for the thorium part of the fuel (a subcritical 'blanket') and the 'driving' part of the core (a supercritical 'seed'). The design objective for the blanket is an efficient generation and in-situ fissioning of the U233 isotope, while the design objective for the seed is to supply neutrons to the blanket in a most economic way, i.e. with minimal investment of natural uranium. The introduction of thorium as a fertile component in the nuclear fuel cycle significantly reduces the quantity of plutonium production and modifies its isotopic composition, reducing the overall proliferation potential of the fuel cycle. Thorium based spent fuel also contains fewer higher actinides, hence reducing the long-term radioactivity of the spent fuel. The analyses show that the RTF core can satisfy the requirements of fuel cycle length, and the safety margins of conventional pressurized water reactors. The coefficients of reactivity are comparable to currently operating VVER's/PWR's. The major feature of the RTF cycle is related to the total amount of spent fuel discharged for each cycle from the reactor core. The fuel management scheme adopted for RTF core designs allows a significant decrease in the

  20. Static conversion systems. [for space power reactors

    NASA Technical Reports Server (NTRS)

    Ewell, R.; Mondt, J.

    1985-01-01

    Historically, all space power systems that have actually flown in space have relied on static energy conversion technology. Thus, static conversion is being considered for space nuclear power systems as well. There are four potential static conversion technologies which should be considered. These include: the alkali metal thermoelectric converter (AMTEC), the thermionic converter, the thermoelectric converter, and the thermophotovoltaic converter (TPV). These four conversion technologies will be described in brief detail along with their current status and development needs. In addition, the systems implications of using each of these conversion technologies with a space nuclear reactor power system will be evaluated and some comparisons made.

  1. PBF Reactor Building (PER620). Detail of fuel test assembly in ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Reactor Building (PER-620). Detail of fuel test assembly in preparation for test. When complete, it will fit into in-pile tube. The maximum outside diameter of which must be about 8.25 inches. Date: 1982. INEEL negative no. 82-4908 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  2. Code System for Reactor Physics and Fuel Cycle Simulation.

    1999-04-21

    Version 00 VSOP94 (Very Superior Old Programs) is a system of codes linked together for the simulation of reactor life histories. It comprises neutron cross section libraries and processing routines, repeated neutron spectrum evaluation, 2-D diffusion calculation based on neutron flux synthesis with depletion and shut-down features, in-core and out-of-pile fuel management, fuel cycle cost analysis, and thermal hydraulics (at present restricted to Pebble Bed HTRs). Various techniques have been employed to accelerate the iterativemore » processes and to optimize the internal data transfer. The code system has been used extensively for comparison studies of reactors, their fuel cycles, and related detailed features. In addition to its use in research and development work for the High Temperature Reactor, the system has been applied successfully to Light Water and Heavy Water Reactors.« less

  3. Code System for Reactor Physics and Fuel Cycle Simulation.

    SciTech Connect

    TEUCHERT, E.

    1999-04-21

    Version 00 VSOP94 (Very Superior Old Programs) is a system of codes linked together for the simulation of reactor life histories. It comprises neutron cross section libraries and processing routines, repeated neutron spectrum evaluation, 2-D diffusion calculation based on neutron flux synthesis with depletion and shut-down features, in-core and out-of-pile fuel management, fuel cycle cost analysis, and thermal hydraulics (at present restricted to Pebble Bed HTRs). Various techniques have been employed to accelerate the iterative processes and to optimize the internal data transfer. The code system has been used extensively for comparison studies of reactors, their fuel cycles, and related detailed features. In addition to its use in research and development work for the High Temperature Reactor, the system has been applied successfully to Light Water and Heavy Water Reactors.

  4. Technology gap analysis on sodium-cooled reactor fuel handling system supporting advanced burner reactor development.

    SciTech Connect

    Chikazawa, Y.; Farmer, M.; Grandy, C.; Nuclear Engineering Division

    2009-03-01

    The goals of the Global Nuclear Energy Partnership (GNEP) are to expand the use of nuclear energy to meet increasing global energy demand in an environmentally sustainable manner, to address nuclear waste management issues without making separated plutonium, and to address nonproliferation concerns. The advanced burner reactor (ABR) is a fast reactor concept which supports the GNEP fuel cycle system. Since the integral fast reactor (IFR) and advanced liquid-metal reactor (ALMR) projects were terminated in 1994, there has been no major development on sodium-cooled fast reactors in the United States. Therefore, in support of the GNEP fast reactor program, the history of sodium-cooled reactor development was reviewed to support the initiation of this technology within the United States and to gain an understanding of the technology gaps that may still remain for sodium fast reactor technology. The fuel-handling system is a key element of any fast reactor design. The major functions of this system are to receive, test, store, and then load fresh fuel into the core; unload from the core; then clean, test, store, and ship spent fuel. Major requirements are that the system must be reliable and relatively easy to maintain. In addition, the system should be designed so that it does not adversely impact plant economics from the viewpoints of capital investment or plant operations. In this gap analysis, information on fuel-handling operating experiences in the following reactor plants was carefully reviewed: EBR-I, SRE, HNPF, Fermi, SEFOR, FFTF, CRBR, EBR-II, DFR, PFR, Rapsodie, Phenix, Superphenix, KNK, SNR-300, Joyo, and Monju. The results of this evaluation indicate that a standardized fuel-handling system for a commercial fast reactor is yet to be established. However, in the past sodium-cooled reactor plants, most major fuel-handling components-such as the rotatable plug, in-vessel fuel-handling machine, ex-vessel fuel transportation cask, ex-vessel sodium-cooled storage

  5. Small Externally-fueled Heat Pipe Thermionic Reactor (SEHPTR) for dual mode applications

    NASA Astrophysics Data System (ADS)

    Malloy, John; Jacox, Michael; Zubrin, Robert

    1992-07-01

    The Small Externally Fueled Heat-Pipe Thermionic Reactor (SEHPTR) is described in the context of applications as a dual-mode nuclear power source for satellites. The SEHPTR is a thermionic power system based on a reactor with modular fuel elements around cylindrical thermionic heat-pipe modules with diodes for heat rejection. The SEHPTR concept is theorized to be suitable for directly heating hydrogen gas in the core to increase propulsion and reduce orbit-transfer times. The advantages of dual-mode operation of the SEHPTR are listed including enhanced mission safety and performance at relatively low costs. The SEHPTR could provide direct thermal thrust and an integrated stage that symbiotically utilizes electric power, direct thrust, and hydrogen arcjets. The system is argued to be more effective than a nuclear power system designed solely for electrical power production.

  6. Small Externally-fueled Heat Pipe Thermionic Reactor (SEHPTR) for dual mode applications

    SciTech Connect

    Malloy, J.; Jacox, M.; Zubrin, R. Idaho National Engineering Laboratory, Idaho Falls Martin Marietta Astronautics Group, Denver, CO )

    1992-07-01

    The Small Externally Fueled Heat-Pipe Thermionic Reactor (SEHPTR) is described in the context of applications as a dual-mode nuclear power source for satellites. The SEHPTR is a thermionic power system based on a reactor with modular fuel elements around cylindrical thermionic heat-pipe modules with diodes for heat rejection. The SEHPTR concept is theorized to be suitable for directly heating hydrogen gas in the core to increase propulsion and reduce orbit-transfer times. The advantages of dual-mode operation of the SEHPTR are listed including enhanced mission safety and performance at relatively low costs. The SEHPTR could provide direct thermal thrust and an integrated stage that symbiotically utilizes electric power, direct thrust, and hydrogen arcjets. The system is argued to be more effective than a nuclear power system designed solely for electrical power production. 7 refs.

  7. Sub-watt Power Using an Integrated Fuel Processor and Fuel Cell

    SciTech Connect

    Jones, Evan O. ); Holladay, Jamie D. ); Perry, Steven T. ); Orth, Rick J. ); Rozmiarek, Robert T. ); Hu, Jianli ); Phelps, Max R.; Guzman-Leong, Consuelo E. ); M. Matlosz, W. Ehrfield, et al.

    2002-01-01

    A sub-watt power system is being developed as an alternative to conventional battery technology to better meet energy and power densities needed for operating wireless electronic devices, such as microsensors and microelectromechanical systems. This system integrates a microscale fuel processor, which produces a hydrogen-rich stream from liquid fuels, such as methanol and butane, and a microscale fuel cell, which uses the hydrogen as fuel to produce electric power. Battelle, Pacific Northwest Division and Case Western Reserve University are developing and demonstrating this technology for the Defense Advanced Research Projects Agency. This paper describes work being performed by Battelle on the fuel processor, in particular, catalyst and reactor design and testing. The microscale fuel processor (integrated vaporizer/steam reformer/combustor) assembled, fabricated, and tested during this study generated an equivalent power level of 10 to 500 mWe. This steam reformer test system has a reactor volume of less than 0.5 mm3. Catalyst testing achieved a near-maximum theoretical conversion for methanol with <1% CO in product H2 gas. High conversion and H2 selectivity was also achieved during catalyst testing with butane, but at higher temperatures.

  8. Analysis of burnable poison in Ford Nuclear Reactor fuel to extend fuel lifetime. Final report, August 1, 1994--September 29, 1996

    SciTech Connect

    Burn, R.R.; Lee, J.C.

    1996-12-01

    The objective of the project was to establish the feasibility of extending the lifetime of fuel elements for the Ford Nuclear Reactor (FNR) by replacing current aluminide fuel with silicide fuel comprising a heavier uranium loading but with the same fissile enrichment of 19.5 wt% {sup 235}U. The project has focused on fuel designs where burnable absorbers, in the form of B{sub 4}C, are admixed with uranium silicide in fuel plates so that increases in the control reactivity requirements and peak power density, due to the heavier fuel loading, may be minimized. The authors have developed equilibrium cycle models simulating current full-size aluminide core configurations with 43 {approximately} 45 fuel elements. Adequacy of the overall equilibrium cycle approach has been verified through comparison with recent FNR experience in spent fuel discharge rates and simulation of reactor physics characteristics for two representative cycles. Fuel cycle studies have been performed to compare equilibrium cycle characteristics of silicide fuel designs, including burnable absorbers, with current aluminide fuel. These equilibrium cycle studies have established the feasibility of doubling the fuel element lifetime, with minimal perturbations to the control reactivity requirements and peak power density, by judicious additions of burnable absorbers to silicide fuel. Further study will be required to investigate a more practical silicide fuel design, which incorporates burnable absorbers in side plates of each fuel element rather than uniformly mixes them in fuel plates.

  9. Study of fueling requirements for the Engineering Test Reactor

    SciTech Connect

    Ho, S.K.; Perkins, L.J.

    1987-10-16

    An assessment of the fueling requirement for the TIBER Engineering Test Reactor is studied. The neutral shielding pellet ablation model with the inclusion of the effects of the alpha particles is used for our study. The high electron temperature in a reactor-grade plasma makes pellet penetration very difficult. The launch length has to be very large (several tens of meters) in order to avoid pellet breakage due to the low inertial strength of DT ''ice.'' The minimum repetition rate corresponding to the largest allowable pellet, is found to be about 1 Hz. A brief survey is done on the various operational and conceptual pellet injection schemes for plasma fueling. The underlying conclusion is that an alternative fueling scheme of coaxial compact-toroid plasma gun is very likely needed for effective central fueling of reactor-grade plasmas. 16 refs.

  10. NACA Zero Power Reactor Facility Hazards Summary

    NASA Technical Reports Server (NTRS)

    1957-01-01

    The Lewis Flight Propulsion Laboratory of the National Advisory Committee for Aeronautics proposes to build a zero power research reactor facility which will be located in the laboratory grounds near Clevelaurd, Ohio. The purpose of this report is to inform the Advisory Commit tee on Reactor Safeguards of the U. S. Atomic Energy Commission in re gard to the design of the reactor facility, the cha,acteristics of th e site, and the hazards of operation at this location, The purpose o f this reactor is to perform critical experiments, to measure reactiv ity effects, to serve as a neutron source, and to serve as a training tool. The reactor facility is described. This is followed by a discu ssion of the nuclear characteristics and the control system. Site cha racteristics are then discussed followed by a discussion of the exper iments which may be conducted in the facility. The potential hazards of the facility are then considered, particularly, the maximum credib le accident. Finally, the administrative procedure is discussed.

  11. 77 FR 38742 - Non-Power Reactor License Renewal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-29

    ...; ] NUCLEAR REGULATORY COMMISSION 10 CFR Part 50 RIN 3150-AI96 Non-Power Reactor License Renewal AGENCY... renewal requirements for non-power reactors. This contemplated rulemaking would also make conforming changes to address technical issues in existing non-power reactor regulations. The NRC is seeking...

  12. An Implicit Solution Framework for Reactor Fuel Performance Simulation

    SciTech Connect

    Glen Hansen; Chris Newman; Derek Gaston; Cody Permann

    2009-08-01

    The simulation of nuclear reactor fuel performance involves complex thermomechanical processes between fuel pellets, made of fissile material, and the protective cladding that surrounds the pellets. An important design goal for a fuel is to maximize the life of the cladding thereby allowing the fuel to remain in the reactor for a longer period of time to achieve higher degrees of burnup. This presentation presents an initial approach for modeling the thermomechanical response of reactor fuel, and details of the solution method employed within INL's fuel performance code, BISON. The code employs advanced methods for solving coupled partial differential equation systems that describe multidimensional fuel thermomechanics, heat generation, and oxygen transport within the fuel. This discussion explores the effectiveness of a JFNK-based solution of a problem involving three dimensional fully coupled, nonlinear transient heat conduction and that includes pellet displacement and oxygen diffusion effects. These equations are closed using empirical data that is a function of temperature, density, and oxygen hyperstoichiometry. The method appears quite effective for the fuel pellet / cladding configurations examined, with excellent nonlinear convergence properties exhibited on the combined system. In closing, fully coupled solutions of three dimensional thermomechanics coupled with oxygen diffusion appear quite attractive using the JFNK approach described here, at least for configurations similar to those examined in this report.

  13. Status of Fuel Development and Manufacturing for Space Nuclear Reactors at BWX Technologies

    SciTech Connect

    Carmack, W.J.; Husser, D.L.; Mohr, T.C.; Richardson, W.C.

    2004-02-04

    New advanced nuclear space propulsion systems will soon seek a high temperature, stable fuel form. BWX Technologies Inc (BWXT) has a long history of fuel manufacturing. UO2, UCO, and UCx have been fabricated at BWXT for various US and international programs. Recent efforts at BWXT have focused on establishing the manufacturing techniques and analysis capabilities needed to provide a high quality, high power, compact nuclear reactor for use in space nuclear powered missions. To support the production of a space nuclear reactor, uranium nitride has recently been manufactured by BWXT. In addition, analytical chemistry and analysis techniques have been developed to provide verification and qualification of the uranium nitride production process. The fabrication of a space nuclear reactor will require the ability to place an unclad fuel form into a clad structure for assembly into a reactor core configuration. To this end, BWX Technologies has reestablished its capability for machining, GTA welding, and EB welding of refractory metals. Specifically, BWX Technologies has demonstrated GTA welding of niobium flat plate and EB welding of niobium and Nb-1Zr tubing. In performing these demonstration activities, BWX Technologies has established the necessary infrastructure to manufacture UO2, UCx, or UNx fuel, components, and complete reactor assemblies in support of space nuclear programs.

  14. Status of Fuel Development and Manufacturing for Space Nuclear Reactors at BWX Technologies

    NASA Astrophysics Data System (ADS)

    Carmack, W. J.; Husser, D. L.; Mohr, T. C.; Richardson, W. C.

    2004-02-01

    New advanced nuclear space propulsion systems will soon seek a high temperature, stable fuel form. BWX Technologies Inc (BWXT) has a long history of fuel manufacturing. UO2, UCO, and UCx have been fabricated at BWXT for various US and international programs. Recent efforts at BWXT have focused on establishing the manufacturing techniques and analysis capabilities needed to provide a high quality, high power, compact nuclear reactor for use in space nuclear powered missions. To support the production of a space nuclear reactor, uranium nitride has recently been manufactured by BWXT. In addition, analytical chemistry and analysis techniques have been developed to provide verification and qualification of the uranium nitride production process. The fabrication of a space nuclear reactor will require the ability to place an unclad fuel form into a clad structure for assembly into a reactor core configuration. To this end, BWX Technologies has reestablished its capability for machining, GTA welding, and EB welding of refractory metals. Specifically, BWX Technologies has demonstrated GTA welding of niobium flat plate and EB welding of niobium and Nb-1Zr tubing. In performing these demonstration activities, BWX Technologies has established the necessary infrastructure to manufacture UO2, UCx, or UNx fuel, components, and complete reactor assemblies in support of space nuclear programs.

  15. Categorization of failed and damaged spent LWR (light-water reactor) fuel currently in storage

    SciTech Connect

    Bailey, W.J.

    1987-11-01

    The results of a study that was jointly sponsored by the US Department of Energy and the Electric Power Research Institute are described in this report. The purpose of the study was to (1) estimate the number of failed fuel assemblies and damaged fuel assemblies (i.e., ones that have sustained mechanical or chemical damage but with fuel rod cladding that is not breached) in storage, (2) categorize those fuel assemblies, and (3) prepare this report as an authoritative, illustrated source of information on such fuel. Among the more than 45,975 spent light-water reactor fuel assemblies currently in storage in the United States, it appears that there are nearly 5000 failed or damaged fuel assemblies. 78 refs., 23 figs., 19 tabs.

  16. FUEL ELEMENT FOR A NEUTRONIC REACTOR

    DOEpatents

    McGeary, R.K.; Winslow, F.R.

    1963-08-13

    A method of making fuel elements wherein several individual fuel pellets are positioned into a cladding tube and the tape stretched longitudinally until the cladding tube grips each pellet and, in addition, necks down between each pellet is described. (AEC)

  17. Analysis of fluid fuel flow to the neutron kinetics on molten salt reactor FUJI-12

    NASA Astrophysics Data System (ADS)

    Aji, Indarta Kuncoro; Waris, Abdul; Permana, Sidik

    2015-09-01

    Molten Salt Reactor is a reactor are operating with molten salt fuel flowing. This condition interpret that the neutron kinetics of this reactor is affected by the flow rate of the fuel. This research analyze effect by the alteration velocity of the fuel by MSR type Fuji-12, with fuel composition LiF-BeF2-ThF4-233UF4 respectively 71.78%-16%-11.86%-0.36%. Calculation process in this study is performed numerically by SOR and finite difference method use C programming language. Data of reactivity, neutron flux, and the macroscopic fission cross section for calculation process obtain from SRAC-CITATION (Standard thermal Reactor Analysis Code) and JENDL-4.0 data library. SRAC system designed and developed by JAEA (Japan Atomic Energy Agency). This study aims to observe the effect of the velocity of fuel salt to the power generated from neutron precursors at fourth year of reactor operate (last critical condition) with number of multiplication effective; 1.0155.

  18. Analysis of fluid fuel flow to the neutron kinetics on molten salt reactor FUJI-12

    SciTech Connect

    Aji, Indarta Kuncoro; Waris, Abdul Permana, Sidik

    2015-09-30

    Molten Salt Reactor is a reactor are operating with molten salt fuel flowing. This condition interpret that the neutron kinetics of this reactor is affected by the flow rate of the fuel. This research analyze effect by the alteration velocity of the fuel by MSR type Fuji-12, with fuel composition LiF-BeF{sub 2}-ThF{sub 4}-{sup 233}UF{sub 4} respectively 71.78%-16%-11.86%-0.36%. Calculation process in this study is performed numerically by SOR and finite difference method use C programming language. Data of reactivity, neutron flux, and the macroscopic fission cross section for calculation process obtain from SRAC-CITATION (Standard thermal Reactor Analysis Code) and JENDL-4.0 data library. SRAC system designed and developed by JAEA (Japan Atomic Energy Agency). This study aims to observe the effect of the velocity of fuel salt to the power generated from neutron precursors at fourth year of reactor operate (last critical condition) with number of multiplication effective; 1.0155.

  19. Nuclear reactor fuel element having improved heat transfer

    DOEpatents

    Garnier, J.E.; Begej, S.; Williford, R.E.; Christensen, J.A.

    1982-03-03

    A nuclear reactor fuel element having improved heat transfer between fuel material and cladding is described. The element consists of an outer cladding tube divided into an upper fuel section containing a central core of fissionable or mixed fissionable and fertile fuel material, slightly smaller in diameter than the inner surface of the cladding tube and a small lower accumulator section, the cladding tube being which is filled with a low molecular weight gas to transfer heat from fuel material to cladding during irradiation. A plurality of essentially vertical grooves in the fuel section extend downward and communicate with the accumulator section. The radial depth of the grooves is sufficient to provide a thermal gradient between the hot fuel surface and the relatively cooler cladding surface to allow thermal segregation to take place between the low molecular weight heat transfer gas and high molecular weight fission product gases produced by the fuel material during irradiation.

  20. Optimum Reflector Configurations for Minimizing Fission Power Peaking in a Lithium-Cooled, Liquid-Metal Reactor with Sliding Reflectors

    SciTech Connect

    Fensin, Michael L.; Poston, David I.

    2005-02-06

    Many design constraints limit the development of a space fission power system optimized for fuel performance, system reliability, and mission cost. These design constraints include fuel mass provisions to meet cycle-length requirements, fuel centerline and clad temperatures, and clad creep from fission gas generation. Decreasing the fission power peaking of the reactor system enhances all of the mentioned parameters. This design study identifies the cause, determines the reflector configurations for reactor criticality, and generates worth curves for minimized fission-power-peaking configuration in a lithium-cooled liquid-metal reactor that uses sliding reflectors. Because of the characteristics of the core axial power distribution and axial power distortions inherent to the sliding reflector design, minimizing the power peaking of the reactor involves placing the reflectors in a position that least distorts the axial power distribution. The views expressed in this document are those of the author and do not necessarily reflect agreement by the Government.

  1. Lattice cell and full core physics of internally cooled annular fuel in heavy water moderated reactors

    SciTech Connect

    Armstrong, J.; Hamilton, H.; Hyland, B.

    2013-07-01

    A program is underway at Atomic Energy of Canada Limited (AECL) to develop a new fuel bundle concept to enable greater burnups for PT-HWR (pressure tube heavy water reactor) cores. One option that AECL is investigating is an internally cooled annular fuel (ICAF) element concept. ICAF contains annular cylindrical pellets with cladding on the inner and outer diameters. Coolant flows along the outside of the element and through the centre. With such a concept, the maximum fuel temperature as a function of linear element rating is significantly reduced compared to conventional, solid-rod type fuel. The preliminary ICAF bundle concept considered in this study contains 24 half-metre long internally cooled annular fuel elements and one non-fuelled centre pin. The introduction of the non-fuelled centre pin reduces the coolant void reactivity (CVR), which is the increase in reactivity that occurs on voiding the coolant in accident scenarios. Lattice cell and full core physics calculations of the preliminary ICAF fuel bundle concept have been performed for medium burnups of approximately 18 GWd/tU using WIMS-AECL and reactor fuel simulation program (RFSP). The results will be used to assist in concept configuration optimization. The effects of radial and axial core power distributions, linear element power ratings, refuelling rates and operational power ramps have been analyzed. The results suggest that burnups of greater than 18 GWd/tU can be achieved in current reactor designs. At approximately 18 GWd/tU, expected maximum linear element ratings in a PT-HWR with online-refuelling are approximately 90 kW/m. These conditions would be prohibitive for solid-rod fuel, but may be possible in ICAF fuel given the reduced maximum fuel temperature as a function of linear element rating. (authors)

  2. Impact investigation of reactor fuel operating parameters on reactivity for use in burnup credit applications

    NASA Astrophysics Data System (ADS)

    Sloma, Tanya Noel

    When representing the behavior of commercial spent nuclear fuel (SNF), credit is sought for the reduced reactivity associated with the net depletion of fissile isotopes and the creation of neutron-absorbing isotopes, a process that begins when a commercial nuclear reactor is first operated at power. Burnup credit accounts for the reduced reactivity potential of a fuel assembly and varies with the fuel burnup, cooling time, and the initial enrichment of fissile material in the fuel. With regard to long-term SNF disposal and transportation, tremendous benefits, such as increased capacity, flexibility of design and system operations, and reduced overall costs, provide an incentive to seek burnup credit for criticality safety evaluations. The Nuclear Regulatory Commission issued Interim Staff Guidance 8, Revision 2 in 2002, endorsing burnup credit of actinide composition changes only; credit due to actinides encompasses approximately 30% of exiting pressurized water reactor SNF inventory and could potentially be increased to 90% if fission product credit were accepted. However, one significant issue for utilizing full burnup credit, compensating for actinide and fission product composition changes, is establishing a set of depletion parameters that produce an adequately conservative representation of the fuel's isotopic inventory. Depletion parameters can have a significant effect on the isotopic inventory of the fuel, and thus the residual reactivity. This research seeks to quantify the reactivity impact on a system from dominant depletion parameters (i.e., fuel temperature, moderator density, burnable poison rod, burnable poison rod history, and soluble boron concentration). Bounding depletion parameters were developed by statistical evaluation of a database containing reactor operating histories. The database was generated from summary reports of commercial reactor criticality data. Through depletion calculations, utilizing the SCALE 6 code package, several light

  3. Mixed oxide fuels testing in the advanced test reactor to support plutonium disposition

    SciTech Connect

    Ryskamp, J.M.; Sterbentz, J.W.; Chang, G.S.

    1995-09-01

    An intense worldwide effort is now under way to find means of reducing the stockpile of weapons-grade plutonium. One of the most attractive solutions would be to use WGPu as fuel in existing light water reactors (LWRs) in the form of mixed oxide (MOX) fuel - i.e., plutonia (PUO{sub 2}) mixed with urania (UO{sub 2}). Before U.S. reactors could be used for this purpose, their operating licenses would have to be amended. Numerous technical issues must be resolved before LWR operating licenses can be amended to allow the use of MOX fuel. These issues include the following: (1) MOX fuel fabrication process verification, (2) Whether and how to use burnable poisons to depress MOX fuel initial reactivity, which is higher than that of urania, (3) The effects of WGPu isotopic composition, (4) The feasibility of loading MOX fuel with plutonia content up to 7% by weight, (5) The effects of americium and gallium in WGPu, (6) Fission gas release from MOX fuel pellets made from WGPu, (7) Fuel/cladding gap closure, (8) The effects of power cycling and off-normal events on fuel integrity, (9) Development of radial distributions of burnup and fission products, (10) Power spiking near the interfaces of MOX and urania fuel assemblies, and (11) Fuel performance code validation. We have performed calculations to show that the use of hafnium shrouds can produce spectrum adjustments that will bring the flux spectrum in ATR test loops into a good approximation to the spectrum anticipated in a commercial LWR containing MOX fuel while allowing operation of the test fuel assemblies near their optimum values of linear heat generation rate. The ATR would be a nearly ideal test bed for developing data needed to support applications to license LWRs for operation with MOX fuel made from weapons-grade plutonium. The requirements for planning and implementing a test program in the ATR have been identified.

  4. Power conditioning for space nuclear reactor systems

    NASA Technical Reports Server (NTRS)

    Berman, Baruch

    1987-01-01

    This paper addresses the power conditioning subsystem for both Stirling and Brayton conversion of space nuclear reactor systems. Included are the requirements summary, trade results related to subsystem implementation, subsystem description, voltage level versus weight, efficiency and operational integrity, components selection, and shielding considerations. The discussion is supported by pertinent circuit and block diagrams. Summary conclusions and recommendations derived from the above studies are included.

  5. Annular seed-blanket thorium fuel core concepts for heavy water moderated reactors

    SciTech Connect

    Bromley, B.P.; Hyland, B.

    2013-07-01

    New reactor concepts to implement thorium-based fuel cycles have been explored to achieve maximum resource utilization. Pressure tube heavy water reactors (PT-HWR) are highly advantageous for implementing the use of thorium-based fuels because of their high neutron economy and on-line re-fuelling capability. The use of heterogeneous seed-blanket core concepts in a PT-HWR where higher-fissile-content seed fuel bundles are physically separate from lower-fissile-content blanket bundles allows more flexibility and control in fuel management to maximize the fissile utilization and conversion of fertile fuel. The lattice concept chosen is a 35-element bundle made with a homogeneous mixture of reactor grade Pu and Th, and with a central zirconia rod to help reduce coolant void reactivity. Several annular heterogeneous seed-blanket core concepts with plutonium-thorium-based fuels in a 700-MWe-class PT-HWR were analyzed, using a once-through thorium (OTT) cycle. Different combinations of seed and blanket fuel were tested to determine the impact on core-average burnup, fissile utilization, power distributions, and other performance parameters. It was found that the various core concepts can achieve a fissile utilization that is up to 30% higher than is currently achieved in a PT-HWR using conventional natural uranium fuel bundles. Up to 67% of the Pu is consumed; up to 43% of the energy is produced from thorium, and up to 363 kg/year of U-233 is produced. Seed-blanket cores with ∼50% content of low-power blanket bundles may require power de-rating (∼58% to 65%) to avoid exceeding maximum limits for peak channel power, bundle power and linear element ratings. (authors)

  6. Liquid fuel molten salt reactors for thorium utilization

    DOE PAGES

    Gehin, Jess C.; Powers, Jeffrey J.

    2016-04-08

    Molten salt reactors (MSRs) represent a class of reactors that use liquid salt, usually fluoride- or chloride-based, as either a coolant with a solid fuel (such as fluoride salt-cooled high temperature reactors) or as a combined coolant and fuel with fuel dissolved in a carrier salt. For liquid-fuelled MSRs, the salt can be processed online or in a batch mode to allow for removal of fission products as well as introduction of fissile fuel and fertile materials during reactor operation. The MSR is most commonly associated with the 233U/thorium fuel cycle, as the nuclear properties of 233U combined with themore » online removal of parasitic absorbers allow for the ability to design a thermal-spectrum breeder reactor; however, MSR concepts have been developed using all neutron energy spectra (thermal, intermediate, fast, and mixed-spectrum zoned concepts) and with a variety of fuels including uranium, thorium, plutonium, and minor actinides. Early MSR work was supported by a significant research and development (R&D) program that resulted in two experimental systems operating at ORNL in the 1960s, the Aircraft Reactor Experiment and the Molten Salt Reactor Experiment. Subsequent design studies in the 1970s focusing on thermal-spectrum thorium-fueled systems established reference concepts for two major design variants: (1) a molten salt breeder reactor (MSBR), with multiple configurations that could breed additional fissile material or maintain self-sustaining operation; and (2) a denatured molten salt reactor (DMSR) with enhanced proliferation-resistance. T MSRs has been selected as one of six most promising Generation IV systems and development activities have been seen in fast-spectrum MSRs, waste-burning MSRs, MSRs fueled with low-enriched uranium (LEU), as well as more traditional thorium fuel cycle-based MSRs. This study provides an historical background of MSR R&D efforts, surveys and summarizes many of the recent development, and provides analysis comparing

  7. Power flattening on modified CANDLE small long life gas-cooled fast reactor

    NASA Astrophysics Data System (ADS)

    Monado, Fiber; Su'ud, Zaki; Waris, Abdul; Basar, Khairul; Ariani, Menik; Sekimoto, Hiroshi

    2014-09-01

    Gas-cooled Fast Reactor (GFR) is one of the candidates of next generation Nuclear Power Plants (NPPs) that expected to be operated commercially after 2030. In this research conceptual design study of long life 350 MWt GFR with natural uranium metallic fuel as fuel cycle input has been performed. Modified CANDLE burn-up strategy with first and second regions located near the last region (type B) has been applied. This reactor can be operated for 10 years without refuelling and fuel shuffling. Power peaking reduction is conducted by arranging the core radial direction into three regions with respectively uses fuel volume fraction 62.5%, 64% and 67.5%. The average power density in the modified core is about 82 Watt/cc and the power peaking factor decreased from 4.03 to 3.43.

  8. Power flattening on modified CANDLE small long life gas-cooled fast reactor

    SciTech Connect

    Monado, Fiber; Su'ud, Zaki; Waris, Abdul; Basar, Khairul; Ariani, Menik; Sekimoto, Hiroshi

    2014-09-30

    Gas-cooled Fast Reactor (GFR) is one of the candidates of next generation Nuclear Power Plants (NPPs) that expected to be operated commercially after 2030. In this research conceptual design study of long life 350 MWt GFR with natural uranium metallic fuel as fuel cycle input has been performed. Modified CANDLE burn-up strategy with first and second regions located near the last region (type B) has been applied. This reactor can be operated for 10 years without refuelling and fuel shuffling. Power peaking reduction is conducted by arranging the core radial direction into three regions with respectively uses fuel volume fraction 62.5%, 64% and 67.5%. The average power density in the modified core is about 82 Watt/cc and the power peaking factor decreased from 4.03 to 3.43.

  9. Advanced Fuels Campaign Light Water Reactor Accident Tolerant Fuel Performance Metrics Executive Summary

    SciTech Connect

    Shannon Bragg-Sitton

    2014-02-01

    Research and development (R&D) activities on advanced, higher performance Light Water Reactor (LWR) fuels have been ongoing for the last few years. Following the unfortunate March 2011 events at the Fukushima Nuclear Power Plant in Japan, the R&D shifted toward enhancing the accident tolerance of LWRs. Qualitative attributes for fuels with enhanced accident tolerance, such as improved reaction kinetics with steam resulting in slower hydrogen generation rate, provide guidance for the design and development of fuels and cladding with enhanced accident tolerance. A common set of technical metrics should be established to aid in the optimization and down selection of candidate designs on a more quantitative basis. “Metrics” describe a set of technical bases by which multiple concepts can be fairly evaluated against a common baseline and against one another. This report describes a proposed technical evaluation methodology that can be applied to evaluate the ability of each concept to meet performance and safety goals relative to the current UO2 – zirconium alloy system and relative to one another. The resultant ranked evaluation can then inform concept down-selection, such that the most promising accident tolerant fuel design option(s) can continue to be developed toward qualification.

  10. Cermet fuel for fast reactor - Fabrication and characterization

    NASA Astrophysics Data System (ADS)

    Mishra, Sudhir; Kutty, P. S.; Kutty, T. R. G.; Das, Shantanu; Dey, G. K.; Kumar, Arun

    2013-11-01

    (U, Pu)O2 ceramic fuel is the well-established fuel for the fast reactors and (U, Pu, Zr) metallic fuel is the future fuel. Both the fuels have their own merits and demerits. Optimal solution may lie in opting for a fuel which combines the favorable features of both fuel systems. The choice may be the use of cermet fuel which can be either (U, PuO2) or (Enriched U, UO2). In the present study, attempt has been made to fabricate (Natural U, UO2) cermet fuel by powder metallurgy route. Characterization of the fuel has been carried out using dilatometer, differential thermal analyzer, X-ray diffractometer, and Scanning Electron Microscope. The results show a high solidus temperature, high thermal expansion, presence of porosities, etc. in the fuel. The thermal conductivity of the fuel has also been measured. X-ray diffraction study on the fuel compact reveals presence of α U and UO2 phases in the matrix of the fuel.

  11. Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems

    SciTech Connect

    D. E. Shropshire

    2009-01-01

    The Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems, prepared to support the U.S. Advanced Fuel Cycle Initiative (AFCI) systems analysis, provides a technology-oriented baseline system cost comparison between the open fuel cycle and closed fuel cycle systems. The intent is to understand their overall cost trends, cost sensitivities, and trade-offs. This analysis also improves the AFCI Program’s understanding of the cost drivers that will determine nuclear power’s cost competitiveness vis-a-vis other baseload generation systems. The common reactor-related costs consist of capital, operating, and decontamination and decommissioning costs. Fuel cycle costs include front-end (pre-irradiation) and back-end (post-iradiation) costs, as well as costs specifically associated with fuel recycling. This analysis reveals that there are large cost uncertainties associated with all the fuel cycle strategies, and that overall systems (reactor plus fuel cycle) using a closed fuel cycle are about 10% more expensive in terms of electricity generation cost than open cycle systems. The study concludes that further U.S. and joint international-based design studies are needed to reduce the cost uncertainties with respect to fast reactor, fuel separation and fabrication, and waste disposition. The results of this work can help provide insight to the cost-related factors and conditions needed to keep nuclear energy (including closed fuel cycles) economically competitive in the U.S. and worldwide. These results may be updated over time based on new cost information, revised assumptions, and feedback received from additional reviews.

  12. Enhanced CANDU6: Reactor and fuel cycle options - Natural uranium and beyond

    SciTech Connect

    Ovanes, M.; Chan, P. S. W.; Mao, J.; Alderson, N.; Hopwood, J. M.

    2012-07-01

    The Enhanced CANDU 6{sup R} (ECo{sup R}) is the updated version of the well established CANDU 6 family of units incorporating improved safety characteristics designed to meet or exceed Generation III nuclear power plant expectations. The EC6 retains the excellent neutron economy and fuel cycle flexibility that are inherent in the CANDU reactor design. The reference design is based on natural uranium fuel, but the EC6 is also able to utilize additional fuel options, including the use of Recovered Uranium (RU) and Thorium based fuels, without requiring major hardware upgrades to the existing control and safety systems. This paper outlines the major changes in the EC6 core design from the existing C6 design that significantly enhance the safety characteristics and operating efficiency of the reactor. The use of RU fuel as a transparent replacement fuel for the standard 37-el NU fuel, and several RU based advanced fuel designs that give significant improvements in fuel burnup and inherent safety characteristics are also discussed in the paper. In addition, the suitability of the EC6 to use MOX and related Pu-based fuels will also be discussed. (authors)

  13. AFC-1 Fuel Rodlet Fission Power Deposition Validation in ATR

    SciTech Connect

    G. S. Chang; M. A. Lillo; D. J. Utterbeck

    2008-11-01

    One of the viable options of long-term geological disposal of the nuclear power reactors generated spent fuel is to extract plutonium, the minor actinides (MA) and potentially long-lived fission products from the spent fuel and transmute them into short-lived or stable radionuclides in an appropriate reactor for the reduction of the radiological toxicity of the nuclear waste stream. An important component of that technology will be a non-fertile / low-fertile actinide transmutation fuel form containing the plutonium, neptunium, americium (and possibly curium) isotopes to be transmuted. Such advanced fuel forms, especially ones enriched in the long-life minor actinide (LLMA) elements (i.e., Np, Am, Cm), have minimal irradiation performance data available from which to establish a transmutation fuel form design. Recognizing these needs, an Advanced Fuel Cycle test series-1 (AFC-1) irradiation test on a variety of candidate fuel forms is now being conducted in Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL). The first advanced fuel experiment (AFC-1) has been finalized and the test assembly analyzed for insertion and irradiation in ATR. The ATR core consists of a serpentine and rotationally symmetric fuel assembly about the z-axis of the core center. The plan view of the ATR core configuration is shown in Fig. 5, in Ref. 1. A cadmium filter with a 0.178 cm (0.045") thickness and 121.5 cm (48") in length, is currently used in the actinide-fuel capsule design for the East Flux Trap (EFT) position in ATR, to depress the linear heat generation rate (LHGR) lower than the project’s 330 W/cm limit for the experimental fuel rodlets. The LHGR is proportional to the fission power deposited in the fuel rodlets from the neutron fissions. The fraction of the fission power generated from the neutron fission reactions deposited in the fuel rodlet is an important parameter for test assembly thermal analysis, which will be validated in this summary.

  14. Development of an on-line fuel failure monitoring system for CANDU reactors

    NASA Astrophysics Data System (ADS)

    Livingstone, Stephen Jason

    this thesis is considered a Beta version ready for testing at a commercial station, and for development to add and improve algorithms and the user interface. There are several possible improvements discussed, including gaps in defected fuel understanding that require further research. COLDD is highly stable and has been demonstrated to be effective; it is a new powerful tool in the arsenal ofa reactor operator faced with defected fuel in core. Key words: Defected fuel, CANDU, Nuclear, Fission Product Release, Diagnostic.

  15. 75 FR 62695 - Physical Protection of Irradiated Reactor Fuel in Transit

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-13

    ... COMMISSION 10 CFR Part 73 RIN 3150-AI64 Physical Protection of Irradiated Reactor Fuel in Transit AGENCY...) is proposing to amend its security regulations pertaining to the transport of irradiated reactor fuel (for purposes of this rulemaking, the terms ``irradiated reactor fuel'' and ``spent nuclear fuel''...

  16. Reactor Physics Behavior of Transuranic-Bearing TRISO-Particle Fuel in a Pressurized Water Reactor

    SciTech Connect

    Michael A. Pope; R. Sonat Sen; Abderrafi M. Ougouag; Gilles Youinou; Brian Boer

    2012-04-01

    Calculations have been performed to assess the neutronic behavior of pins of Fully-Ceramic Micro-encapsulated (FCM) fuel in otherwise-conventional Pressurized Water Reactor (PWR) fuel pins. The FCM fuel contains transuranic (TRU)-only oxide fuel in tri-isotropic (TRISO) particles with the TRU loading coming from the spent fuel of a conventional LWR after 5 years of cooling. Use of the TRISO particle fuel would provide an additional barrier to fission product release in the event of cladding failure. Depletion calculations were performed to evaluate reactivity-limited burnup of the TRU-only FCM fuel. These calculations showed that due to relatively little space available for fuel, the achievable burnup with these pins alone is quite small. Various reactivity parameters were also evaluated at each burnup step including moderator temperature coefficient (MTC), Doppler, and soluble boron worth. These were compared to reference UO{sub 2} and MOX unit cells. The TRU-only FCM fuel exhibits degraded MTC and Doppler coefficients relative to UO{sub 2} and MOX. Also, the reactivity effects of coolant voiding suggest that the behavior of this fuel would be similar to a MOX fuel of very high plutonium fraction, which are known to have positive void reactivity. In general, loading of TRU-only FCM fuel into an assembly without significant quantities of uranium presents challenges to the reactor design. However, if such FCM fuel pins are included in a heterogeneous assembly alongside LEU fuel pins, the overall reactivity behavior would be dominated by the uranium pins while attractive TRU destruction performance levels in the TRU-only FCM fuel pins is. From this work, it is concluded that use of heterogeneous assemblies such as these appears feasible from a preliminary reactor physics standpoint.

  17. POWER GENERATION FROM LIQUID METAL NUCLEAR FUEL

    DOEpatents

    Dwyer, O.E.

    1958-12-23

    A nuclear reactor system is described wherein the reactor is the type using a liquid metal fuel, such as a dispersion of fissile material in bismuth. The reactor is designed ln the form of a closed loop having a core sectlon and heat exchanger sections. The liquid fuel is clrculated through the loop undergoing flssion in the core section to produce heat energy and transferrlng this heat energy to secondary fluids in the heat exchanger sections. The fission in the core may be produced by a separate neutron source or by a selfsustained chain reaction of the liquid fuel present in the core section. Additional auxiliary heat exchangers are used in the system to convert water into steam which drives a turbine.

  18. Measurements of fuel pin/water hole worths and power peaking, void coefficients, and temperature coefficients for 4. 81 wt% enriched UO[sub 2] fuel rods

    SciTech Connect

    Harris, D.R.; Rohr, R.R.; Angelo, P.L.; Patrou, N.T.; Buckwheat, K.W.; Hayes, D.K.

    1990-01-01

    The Rensselaer Polytechnic Institute reactor critical facility is currently the only facility in North America providing critical measurement data in support of the light water reactor electric power industry. The reactor is fueled by 4.81 wt% [sup 235]U enriched UO[sub 2] high-density pellets in stainless steel clad fuel rods at the present time, although experiments with other fuels are being analyzed. The fuel pins are supported by inexpensive stainless steel lattice plates in a large open water tank. Three sets of lattice plates have been fabricated for fuel pins in square array with pitches 0.585, 0.613, and 0.640 in. (1.486, 0.613, and 1.656 cm, respectively) to provide a relevant range of water-to-fuel volume ratios. The measurements reported here are for the first of these, a relatively tight lattice of considerable interest for reactor physics methods for advanced fuels and reactors.

  19. High Density Fuel Development for Research Reactors

    SciTech Connect

    Daniel Wachs; Dennis Keiser; Mitchell Meyer; Douglas Burkes; Curtis Clark; Glenn Moore; Jan-Fong Jue; Totju Totev; Gerard Hofman; Tom Wiencek; Yeon So Kim; Jim Snelgrove

    2007-09-01

    An international effort to develop, qualify, and license high and very high density fuels has been underway for several years within the framework of multi-national RERTR programs. The current development status is the result of significant contributions from many laboratories, specifically CNEA in Argentina, AECL in Canada, CEA in France, TUM in Germany, KAERI in Korea, VNIIM, RDIPE, IPPE, NCCP and RIARR in Russia, INL, ANL and Y-12 in USA. These programs are mainly engaged with UMo dispersion fuels with densities from 6 to 8 gU/cm3 (high density fuel) and UMo monolithic fuel with density as high as 16 gU/cm3 (very high density fuel). This paper, mainly focused on the French & US programs, gives the status of high density UMo fuel development and perspectives on their qualification.

  20. Analysis of fuel options for the breakeven core configuration of the Advanced Recycling Reactor

    SciTech Connect

    Stauff, N.E.; Klim, T.K.; Taiwo, T.A.; Fiorina, C.; Franceschini, F.

    2013-07-01

    A trade-off study is performed to determine the impacts of various fuel forms on the core design and core physics characteristics of the sodium-cooled Toshiba- Westinghouse Advanced Recycling Reactor (ARR). The fuel forms include oxide, nitride, and metallic forms of U and Th. The ARR core configuration is redesigned with driver and blanket regions in order to achieve breakeven fissile breeding performance with the various fuel types. State-of-the-art core physics tools are used for the analyses. In addition, a quasi-static reactivity balance approach is used for a preliminary comparison of the inherent safety performances of the various fuel options. Thorium-fueled cores exhibit lower breeding ratios and require larger blankets compared to the U-fueled cores, which is detrimental to core compactness and increases reprocessing and manufacturing requirements. The Th cores also exhibit higher reactivity swings through each cycle, which penalizes reactivity control and increases the number of control rods required. On the other hand, using Th leads to drastic reductions in void and coolant expansion coefficients of reactivity, with the potential for enhancing inherent core safety. Among the U-fueled ARR cores, metallic and nitride fuels result in higher breeding ratios due to their higher heavy metal densities. On the other hand, oxide fuels provide a softer spectrum, which increases the Doppler effect and reduces the positive sodium void worth. A lower fuel temperature is obtained with the metallic and nitride fuels due to their higher thermal conductivities and compatibility with sodium bonds. This is especially beneficial from an inherent safety point of view since it facilitates the reactor cool-down during loss of power removal transients. The advantages in terms of inherent safety of nitride and metallic fuels are maintained when using Th fuel. However, there is a lower relative increase in heavy metal density and in breeding ratio going from oxide to metallic

  1. Transition from HEU to LEU fuel in Romania's 14-MW TRIGA reactor

    SciTech Connect

    Bretscher, M.M.; Snelgrove, J.L.

    1991-01-01

    The 14-MW TRIGA steady state reactor (SSR) located in Pitesti, Romania, first went critical in the fall of 1979. Initially, the core configuration for full power operation used 29 fuel clusters each containing a 5 {times} 5 square array of HEU (10 wt%) -- ZrH -- Er (2.8 wt%) fuel-moderator rods (1.295 cm o.d.) clad in Incology. With a total inventory of 35 HEU fuel clusters, burnup considerations required a gradual expansion of the core from 29 to 32 and finally to 35 clusters before the reactor was shut down because of insufficient excess reactivity. At this time each of the original 29 fuel clusters had an overage {sup 235}U burnup in the range from 50 to 62%. Because of the US policy regarding the export of highly enriched uranium, fresh HEU TRIGA replacement fuel is not available. After a number of safety-related measurements, the SSR is expected to resume full power operation in the near future using a mixed core containing five LEU TRIGA clusters of the same geometry as the original fuel but with fuel-moderator rods containing 45 wt% U (19.7% {sup 235}U enrichment) and 1.1 wt% Er. Rods for 14 additional LEU fuel clusters will be fabricated by General Atomics. In support of the SSR mixed core operation numerous neutronic calculations have been performed. This paper presents some of the results of those calculations.

  2. Transition from HEU to LEU fuel in Romania`s 14-MW TRIGA reactor

    SciTech Connect

    Bretscher, M.M.; Snelgrove, J.L.

    1991-12-31

    The 14-MW TRIGA steady state reactor (SSR) located in Pitesti, Romania, first went critical in the fall of 1979. Initially, the core configuration for full power operation used 29 fuel clusters each containing a 5 {times} 5 square array of HEU (10 wt%) -- ZrH -- Er (2.8 wt%) fuel-moderator rods (1.295 cm o.d.) clad in Incology. With a total inventory of 35 HEU fuel clusters, burnup considerations required a gradual expansion of the core from 29 to 32 and finally to 35 clusters before the reactor was shut down because of insufficient excess reactivity. At this time each of the original 29 fuel clusters had an overage {sup 235}U burnup in the range from 50 to 62%. Because of the US policy regarding the export of highly enriched uranium, fresh HEU TRIGA replacement fuel is not available. After a number of safety-related measurements, the SSR is expected to resume full power operation in the near future using a mixed core containing five LEU TRIGA clusters of the same geometry as the original fuel but with fuel-moderator rods containing 45 wt% U (19.7% {sup 235}U enrichment) and 1.1 wt% Er. Rods for 14 additional LEU fuel clusters will be fabricated by General Atomics. In support of the SSR mixed core operation numerous neutronic calculations have been performed. This paper presents some of the results of those calculations.

  3. System for fuel rod removal from a reactor module

    DOEpatents

    Matchett, Richard L.; Roof, David R.; Kikta, Thomas J.; Wilczynski, Rosemarie; Nilsen, Roy J.; Bacvinskas, William S.; Fodor, George

    1990-01-01

    A robotic system for remote underwater withdrawal of the fuel rods from fuel modules of a light water breeder reactor includes a collet/grapple assembly for gripping and removing fuel rods in each module, which is positioned by use of a winch and a radial support means attached to a vertical support tube which is mounted over the fuel module. A programmable logic controller in conjunction with a microcomputer, provides control for the accurate positioning and pulling force of the rod grapple assembly. Closed circuit television cameras are provided which aid in operator interface with the robotic system.

  4. System for fuel rod removal from a reactor module

    DOEpatents

    Matchett, R.L.; Fodor, G.; Kikta, T.J.; Bacvinsicas, W.S.; Roof, D.R.; Nilsen, R.J.; Wilczynski, R.

    1988-07-28

    A robotic system for remote underwater withdrawal of the fuel rods from fuel modules of a light water breeder reactor includes a collet/grapple assembly for gripping and removing fuel rods in each module, which is positioned by use of a winch and a radial support means attached to a vertical support tube which is mounted over the fuel module. A programmable logic controller in conjunction with a microcomputer, provides control for the accurate positioning and pulling force of the rod grapple assembly. Closed circuit television cameras are provided which aid in operator interface with the robotic system. 7 figs.

  5. Reactor Physics Assessment of the Inclusion of Unseparated Neptunium in MOX Reactor Fuel

    SciTech Connect

    Ellis, Ronald James

    2009-01-01

    Reducing the number of actinide separation streams in a spent fuel recovery process would reduce the cost and complexity of the process, and lower the quantity and numbers of solvents needed. It is more difficult and costly to separate Np and recombine it with Am-Cm prior to co-conversion than to simply co-strip it with the U-Pu-Np. Inclusion of the Np in mixed oxide (MOX) fuel for light water reactor (LWR) applications should not seriously affect the operating behavior of the reactor, nor should it pose insurmountable fuel design issues. In this work, the U, Pu, and Np from typical discharged and cooled PWR spent nuclear fuel are assumed to be used together in the preparation of MOX fuel for use in a pressurized water reactor (PWR). The reactor grade Pu isotopic vector is used in the model and the relative mass ratio of the Pu and Np content (Np/Pu mass is 0.061) from the cooled spent fuel is maintained but the overall Pu-Np MOX wt% is adjusted with respect to the U content (assumed to be at 0.25 wt% 235U enrichment) to offset reactivity and cycle length effects. The SCALE 5.1 scientific package (especially modules TRITON, NEWT, ORIGEN-S, ORIGEN-ARP) was used for the calculations presented in this paper. A typical Westinghouse 17x17 fuel assembly design was modeled at nominal PWR operating conditions. It was seen that U-Pu-Np MOX fuel with NpO2 and PuO2 representing 11.5wt% of the total MOX fuel would be similar to standard MOX fuel in which PuO2 is 9wt% of the fuel. The reactivity, isotopic composition, and neutron and ? sources, and the decay heat details for the discharged MOX fuel are presented and discussed in this paper.

  6. Power distributions in fresh and depleted LEU and HEU cores of the MITR reactor.

    SciTech Connect

    Wilson, E.H.; Horelik, N.E.; Dunn, F.E.; Newton, T.H., Jr.; Hu, L.; Stevens, J.G.

    2012-04-04

    The Massachusetts Institute of Technology Reactor (MITR-II) is a research reactor in Cambridge, Massachusetts designed primarily for experiments using neutron beam and in-core irradiation facilities. It delivers a neutron flux comparable to current LWR power reactors in a compact 6 MW core using Highly Enriched Uranium (HEU) fuel. In the framework of its non-proliferation policies, the international community presently aims to minimize the amount of nuclear material available that could be used for nuclear weapons. In this geopolitical context, most research and test reactors both domestic and international have started a program of conversion to the use of Low Enriched Uranium (LEU) fuel. A new type of LEU fuel based on an alloy of uranium and molybdenum (UMo) is expected to allow the conversion of U.S. domestic high performance reactors like the MITR-II reactor. Toward this goal, core geometry and power distributions are presented. Distributions of power are calculated for LEU cores depleted with MCODE using an MCNP5 Monte Carlo model. The MCNP5 HEU and LEU MITR models were previously compared to experimental benchmark data for the MITR-II. This same model was used with a finer spatial depletion in order to generate power distributions for the LEU cores. The objective of this work is to generate and characterize a series of fresh and depleted core peak power distributions, and provide a thermal hydraulic evaluation of the geometry which should be considered for subsequent thermal hydraulic safety analyses.

  7. Advanced Neutron Source Reactor thermal analysis of fuel plate defects

    SciTech Connect

    Giles, G.E.

    1995-08-01

    The Advanced Neutron Source Reactor (ANSR) is a research reactor designed to provide the highest continuous neutron beam intensity of any reactor in the world. The present technology for determining safe operations were developed for the High Flux Isotope Reactor (HFIR). These techniques are conservative and provide confidence in the safe operation of HFIR. However, the more intense requirements of ANSR necessitate the development of more accurate, but still conservative, techniques. This report details the development of a Local Analysis Technique (LAT) that provides an appropriate approach. Application of the LAT to two ANSR core designs are presented. New theories of the thermal and nuclear behavior of the U{sub 3}Si{sub 2} fuel are utilized. The implications of lower fuel enrichment and of modifying the inspection procedures are also discussed. Development of the computer codes that enable the automate execution of the LAT is included.

  8. Performance optimization considerations for thermionic fuel elements in a heat pipe cooled thermionic reactor

    NASA Astrophysics Data System (ADS)

    Bellis, Elizabeth A.

    1992-01-01

    A heat pipe-cooled, in-core thermionic (HPTI) reactor design has been proposed in support of the Air Force Thermionic Space Nuclear Power Program. As part of this design, the performance of the power conversion system has been characterized. This paper focuses on the performance optimization studies carried out of a thermionic fuel element (TFE) which will be used in a reactor design capable of producing 40 kWe over a 10 year operating life. The technical approach to the optimization studies closely couples converter lifetime constraints with converter performance to produce the best possible design choice.

  9. Checkerboard seed-blanket thorium fuel core concepts for heavy water moderated reactors

    SciTech Connect

    Bromley, B.P.; Hyland, B.

    2013-07-01

    New reactor concepts to implement thorium-based fuel cycles have been explored to achieve maximum resource utilization. Pressure tube heavy water reactors (PT-HWR) are highly advantageous for implementing the use of thorium-based fuels because of their high neutron economy and on-line re-fuelling capability. The use of heterogeneous seed-blanket core concepts in a PT-HWR where higher-fissile-content seed fuel bundles are physically separate from lower-fissile-content blanket bundles allows more flexibility and control in fuel management to maximize the fissile utilization and conversion of fertile fuel. The lattice concept chosen was a 35-element bundle made with a homogeneous mixture of reactor grade Pu (about 67 wt% fissile) and Th, and with a central zirconia rod to help reduce coolant void reactivity. Several checkerboard heterogeneous seed-blanket core concepts with plutonium-thorium-based fuels in a 700-MWe-class PT-HWR were analyzed, using a once-through thorium (OTT) cycle. Different combinations of seed and blanket fuel were tested to determine the impact on core-average burnup, fissile utilization, power distributions, and other performance parameters. It was found that various checkerboard core concepts can achieve a fissile utilization that is up to 26% higher than that achieved in a PT-HWR using more conventional natural uranium fuel bundles. Up to 60% of the Pu is consumed; up to 43% of the energy is produced from thorium, and up to 303 kg/year of Pa-233/U-233/U-235 are produced. Checkerboard cores with about 50% of low-power blanket bundles may require power de-rating (65% to 74%) to avoid exceeding maximum limits for channel and bundle powers and linear element ratings. (authors)

  10. BISON and MARMOT Development for Modeling Fast Reactor Fuel Performance

    SciTech Connect

    Gamble, Kyle Allan Lawrence; Williamson, Richard L.; Schwen, Daniel; Zhang, Yongfeng; Novascone, Stephen Rhead; Medvedev, Pavel G.

    2015-09-01

    BISON and MARMOT are two codes under development at the Idaho National Laboratory for engineering scale and lower length scale fuel performance modeling. It is desired to add capabilities for fast reactor applications to these codes. The fast reactor fuel types under consideration are metal (U-Pu-Zr) and oxide (MOX). The cladding types of interest include 316SS, D9, and HT9. The purpose of this report is to outline the proposed plans for code development and provide an overview of the models added to the BISON and MARMOT codes for fast reactor fuel behavior. A brief overview of preliminary discussions on the formation of a bilateral agreement between the Idaho National Laboratory and the National Nuclear Laboratory in the United Kingdom is presented.

  11. Feasibility study on the thorium fueled boiling water breeder reactor

    SciTech Connect

    PetrusTakaki, N.

    2012-07-01

    The feasibility of (Th,U)O 2 fueled, boiling water breeder reactor based on conventional BWR technology has been studied. In order to determine the potential use of water cooled thorium reactor as a competitive breeder, this study evaluated criticality, breeding and void reactivity coefficient in response to changes made in MFR and fissile enrichments. The result of the study shows that while using light water as moderator, low moderator to fuel volume ratio (MFR=0.5), it was possible to breed fissile fuel in negative void reactivity condition. However the burnup value was lower than the value of the current LWR. On the other hand, heavy water cooled reactor shows relatively wider feasible breeding region, which lead into possibility of designing a core having better neutronic and economic performance than light water with negative void reactivity coefficient. (authors)

  12. Sensitivity Analysis of Reprocessing Cooling Times on Light Water Reactor and Sodium Fast Reactor Fuel Cycles

    SciTech Connect

    R. M. Ferrer; S. Bays; M. Pope

    2008-04-01

    The purpose of this study is to quantify the effects of variations of the Light Water Reactor (LWR) Spent Nuclear Fuel (SNF) and fast reactor reprocessing cooling time on a Sodium Fast Reactor (SFR) assuming a single-tier fuel cycle scenario. The results from this study show the effects of different cooling times on the SFR’s transuranic (TRU) conversion ratio (CR) and transuranic fuel enrichment. Also, the decay heat, gamma heat and neutron emission of the SFR’s fresh fuel charge were evaluated. A 1000 MWth commercial-scale SFR design was selected as the baseline in this study. Both metal and oxide CR=0.50 SFR designs are investigated.

  13. Fuel Cycle Comparison for Distributed Power Technologies

    SciTech Connect

    Elgowainy, A.; Wang, M. Q.

    2008-11-15

    This report examines backup power and prime power systems and addresses the potential energy and environmental effects of substituting fuel cells for existing combustion technologies based on microturbines and internal combustion engines.

  14. Tower Power: Producing Fuels from Solar Energy

    ERIC Educational Resources Information Center

    Antal, M. J., Jr.

    1976-01-01

    This article examines the use of power tower technologies for the production of synthetic fuels. This process overcomes the limitations of other processes by using a solar furnace to drive endothermic fuel producing reactions and the resulting fuels serve as a medium for storing solar energy. (BT)

  15. Installation of the Light-Water Breeder Reactor at the Shippingport Atomic Power Station (LWBR Development Program)

    SciTech Connect

    Massimino, R.J.; Williams, D.A.

    1983-05-01

    This report summarizes the refueling operations performed to install a Light Water Breeder Reactor (LWBR) core into the existing pressurized water reactor vessel at the Shippingport Atomic Power Station. Detailed descriptions of the major installation operations (e.g., primary system preconditioning, fuel installation, pressure boundary seal welding) are included as appendices to this report; these operations are of technical interest to any reactor servicing operation, whether the reactor is a breeder or a conventional light water non-breeder core.

  16. Pebble Fuel Handling and Reactivity Control for Salt-Cooled High Temperature Reactors

    SciTech Connect

    Peterson, Per; Greenspan, Ehud

    2015-02-09

    This report documents the work completed on the X-PREX facility under NEUP Project 11- 3172. This project seeks to demonstrate the viability of pebble fuel handling and reactivity control for fluoride salt-cooled high-temperature reactors (FHRs). The research results also improve the understanding of pebble motion in helium-cooled reactors, as well as the general, fundamental understanding of low-velocity granular flows. Successful use of pebble fuels in with salt coolants would bring major benefits for high-temperature reactor technology. Pebble fuels enable on-line refueling and operation with low excess reactivity, and thus simpler reactivity control and improved fuel utilization. If fixed fuel designs are used, the power density of salt- cooled reactors is limited to 10 MW/m3 to obtain adequate duration between refueling, but pebble fuels allow power densities in the range of 20 to 30 MW/m3. This can be compared to the typical modular helium reactor power density of 5 MW/m3. Pebble fuels also permit radial zoning in annular cores and use of thorium or graphite pebble blankets to reduce neutron fluences to outer radial reflectors and increase total power production. Combined with high power conversion efficiency, compact low-pressure primary and containment systems, and unique safety characteristics including very large thermal margins (>500°C) to fuel damage during transients and accidents, salt-cooled pebble fuel cores offer the potential to meet the major goals of the Advanced Reactor Concepts Development program to provide electricity at lower cost than light water reactors with improved safety and system performance.This report presents the facility description, experimental results, and supporting simulation methods of the new X-Ray Pebble Recirculation Experiment (X-PREX), which is now operational and being used to collect data on the behavior of slow dense granular flows relevant to pebble bed reactor core designs. The X

  17. Fuel pins with both target and fuel pellets in an isotope-production reactor

    DOEpatents

    Cawley, W.E.; Omberg, R.P.

    1982-08-19

    A method is described for producing tritium in a fast breeder reactor cooled with liquid metal. Lithium target pellets are placed in close contact with fissile fuel pellets in order to increase the tritium production rate.

  18. Low-Enriched Uranium Fuel Design with Two-Dimensional Grading for the High Flux Isotope Reactor

    SciTech Connect

    Ilas, Germina; Primm, Trent

    2011-05-01

    An engineering design study of the conversion of the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel is ongoing at Oak Ridge National Laboratory. The computational models developed during fiscal year 2010 to search for an LEU fuel design that would meet the requirements for the conversion and the results obtained with these models are documented and discussed in this report. Estimates of relevant reactor performance parameters for the LEU fuel core are presented and compared with the corresponding data for the currently operating HEU fuel core. The results obtained indicate that the LEU fuel design would maintain the current performance of the HFIR with respect to the neutron flux to the central target region, reflector, and beam tube locations under the assumption that the operating power for the reactor fueled with LEU can be increased from the current value of 85 MW to 100 MW.

  19. Fuel cells for low power applications

    NASA Astrophysics Data System (ADS)

    Heinzel, A.; Hebling, C.; Müller, M.; Zedda, M.; Müller, C.

    Electronic devices show an ever-increasing power demand and thus, require innovative concepts for power supply. For a wide range of power and energy capacity, membrane fuel cells are an attractive alternative to conventional batteries. The main advantages are the flexibility with respect to power and capacity achievable with different devices for energy conversion and energy storage, the long lifetime and long service life, the good ecological balance, very low self-discharge. Therefore, the development of fuel cell systems for portable electronic devices is an attractive, although also a challenging, goal. The fuel for a membrane fuel cell might be hydrogen from a hydride storage system or methanol/water as a liquid alternative. The main differences between the two systems are the much higher power density for hydrogen fuel cells, the higher energy density per weight for the liquid fuel, safety aspects and infrastructure for fuel supply for hydride materials. For different applications, different system designs are required. High power cells are required for portable computers, low power methanol fuel cells required for mobile phones in hybrid systems with batteries and micro-fuel cells are required, e.g. for hand held PCs in the sub-Watt range. All these technologies are currently under development. Performance data and results of simulations and experimental investigations will be presented.

  20. Spent nuclear fuel discharges from US reactors 1992

    SciTech Connect

    Not Available

    1994-05-05

    This report provides current statistical data on every fuel assembly irradiated in commercial nuclear reactors operating in the United States. It also provides data on the current inventories and storage capacities of those reactors to a wide audience, including Congress, Federal and State agencies, the nuclear and electric industries and the general public. It uses data from the mandatory, ``Nuclear Fuel Data`` survey, Form RW-859 for 1992 and historical data collected by the Energy Information Administration (EIA) on previous Form RW-859 surveys. The report was prepared by the EIA under a Memorandum of Understanding with the Office of Civilian Radioactive Waste Management.

  1. Performance Comparison of Metallic, Actinide Burning Fuel in Lead-Bismuth and Sodium Cooled Fast Reactors

    SciTech Connect

    Weaver, Kevan Dean; Herring, James Stephen; Mac Donald, Philip Elsworth

    2001-04-01

    Various methods have been proposed to “incinerate” or “transmutate” the current inventory of trans-uranic waste (TRU) that exits in spent light-water-reactor (LWR) fuel, and weapons plutonium. These methods include both critical (e.g., fast reactors) and non-critical (e.g., accelerator transmutation) systems. The work discussed here is part of a larger effort at the Idaho National Engineering and Environmental Laboratory (INEEL) and at the Massachusetts Institute of Technology (MIT) to investigate the suitability of lead and lead-alloy cooled fast reactors for producing low-cost electricity as well as for actinide burning. The neutronics of non-fertile fuel loaded with 20 or 30-wt% light water reactor (LWR) plutonium plus minor actinides for use in a lead-bismuth cooled fast reactor are discussed in this paper, with an emphasis on the fuel cycle life and isotopic content. Calculations show that the average actinide burn rate is similar for both the sodium and lead-bismuth cooled cases ranging from -1.02 to -1.16 g/MWd, compared to a typical LWR actinide generation rate of 0.303 g/MWd. However, when using the same parameters, the sodium-cooled case went subcritical after 0.2 to 0.8 effective full power years, and the lead-bismuth cooled case ranged from 1.5 to 4.5 effective full power years.

  2. Fuel cells for distributed power generation

    NASA Astrophysics Data System (ADS)

    Tarman, Paul B.

    Deregulation has caused a major change in power distribution in the USA. Large central power stations are being and will continue to be replaced by smaller, distributed power generation sources of less than 20 kW. Fuel cells, specifically molten carbonate fuel cells (MCFCs), are best suited to serve this need. Small turbines cannot achieve the efficiency or environmental friendliness of MCFCs in this power range. This paper discusses the goals of M-C Power Corporation and the advantages of its IMHEX® MCFC technology. M-C Power's factory, demonstration testing program, and its market-entry power plant are also described, as are its commercialization strategy and schedule.

  3. Temperature measuring analysis of the nuclear reactor fuel assembly

    NASA Astrophysics Data System (ADS)

    F., Urban; Ľ., Kučák; Bereznai, J.; Závodný, Z.; Muškát, P.

    2014-08-01

    Study was based on rapid changes of measured temperature values from the thermocouple in the VVER 440 nuclear reactor fuel assembly. Task was to determine origin of fluctuations of the temperature values by experiments on physical model of the fuel assembly. During an experiment, heated water was circulating in the system and cold water inlet through central tube to record sensitivity of the temperature sensor. Two positions of the sensor was used. First, just above the central tube in the physical model fuel assembly axis and second at the position of the thermocouple in the VVER 440 nuclear reactor fuel assembly. Dependency of the temperature values on time are presented in the diagram form in the paper.

  4. Retrievable fuel pin end member for a nuclear reactor

    DOEpatents

    Rosa, Jerry M.

    1982-01-01

    A bottom end member (17b) on a retrievable fuel pin (13b) secures the pin (13b) within a nuclear reactor (12) by engaging on a transverse attachment rail (18) with a spring clip type of action. Removal and reinstallation if facilitated as only axial movement of the fuel pin (13b) is required for either operation. A pair of resilient axially extending blades (31) are spaced apart to define a slot (24) having a seat region (34) which receives the rail (18) and having a land region (37), closer to the tips (39) of the blades (31) which is normally of less width than the rail (18). Thus an axially directed force sufficient to wedge the resilient blades (31) apart is required to emplace or release the fuel pin (13b) such force being greater than the axial forces on the fuel pins (13b) which occur during operation of the reactor (12).

  5. High Temperature Reactor (HTR) Deep Burn Core and Fuel Analysis: Design Selection for the Prismatic Block Reactor

    SciTech Connect

    Francesco Venneri; Chang-Keun Jo; Jae-Man Noh; Yonghee Kim; Claudio Filippone; Jonghwa Chang; Chris Hamilton; Young-Min Kim; Ji-Su Jun; Moon-Sung Cho; Hong-Sik Lim; MIchael A. Pope; Abderrafi M. Ougouag; Vincent Descotes; Brian Boer

    2010-09-01

    The Deep Burn (DB) Project is a U.S. Department of Energy sponsored feasibility study of Transuranic Management using high burnup fuel in the high temperature helium cooled reactor (HTR). The DB Project consists of seven tasks: project management, core and fuel analysis, spent fuel management, fuel cycle integration, TRU fuel modeling, TRU fuel qualification, and HTR fuel recycle. In the Phase II of the Project, we conducted nuclear analysis of TRU destruction/utilization in the HTR prismatic block design (Task 2.1), deep burn fuel/TRISO microanalysis (Task 2.3), and synergy with fast reactors (Task 4.2). The Task 2.1 covers the core physics design, thermo-hydraulic CFD analysis, and the thermofluid and safety analysis (low pressure conduction cooling, LPCC) of the HTR prismatic block design. The Task 2.3 covers the analysis of the structural behavior of TRISO fuel containing TRU at very high burnup level, i.e. exceeding 50% of FIMA. The Task 4.2 includes the self-cleaning HTR based on recycle of HTR-generated TRU in the same HTR. Chapter IV contains the design and analysis results of the 600MWth DB-HTR core physics with the cycle length, the average discharged burnup, heavy metal and plutonium consumptions, radial and axial power distributions, temperature reactivity coefficients. Also, it contains the analysis results of the 450MWth DB-HTR core physics and the analysis of the decay heat of a TRU loaded DB-HTR core. The evaluation of the hot spot fuel temperature of the fuel block in the DB-HTR (Deep-Burn High Temperature Reactor) core under full operating power conditions are described in Chapter V. The investigated designs are the 600MWth and 460MWth DB-HTRs. In Chapter VI, the thermo-fluid and safety of the 600MWth DB-HTRs has been analyzed to investigate a thermal-fluid design performance at the steady state and a passive safety performance during an LPCC event. Chapter VII describes the analysis results of the TRISO fuel microanalysis of the 600MWth and 450

  6. Validating MCNP for LEU Fuel Design via Power Distribution Comparisons

    SciTech Connect

    Primm, Trent; Maldonado, G Ivan; Chandler, David

    2008-11-01

    The mission of the Reduced Enrichment for Research and Test Reactors (RERTR) Program is to minimize and, to the extent possible, eliminate the use of highly enriched uranium (HEU) in civilian nuclear applications by working to convert research and test reactors, as well as radioisotope production processes, to low enriched uranium (LEU) fuel and targets. Oak Ridge National Lab (ORNL) is reviewing the design bases and key operating criteria including fuel operating parameters, enrichment-related safety analyses, fuel performance, and fuel fabrication in regard to converting the fuel of the High Flux Isotope Reactor (HFIR) from HEU to LEU. The purpose of this study is to validate Monte Carlo methods currently in use for conversion analyses. The methods have been validated for the prediction of flux values in the reactor target, reflector, and beam tubes, but this study focuses on the prediction of the power density profile in the core. A current 3-D Monte Carlo N-Particle (MCNP) model was modified to replicate the HFIR Critical Experiment 3 (HFIRCE-3) core of 1965. In this experiment, the power profile was determined by counting the gamma activity at selected locations in the core. Foils (chunks of fuel meat and clad) were punched out of the fuel elements in HFIRCE-3 following irradiation and experimental relative power densities were obtained by measuring the activity of these foils and comparing each foil s activity to the activity of a normalizing foil. The current work consisted of calculating corresponding activities by inserting volume tallies into the modified MCNP model to represent the punchings. The average fission density was calculated for each foil location and then normalized to the normalizing foil. Power distributions were obtained for the clean core (no poison in moderator and symmetrical rod position at 17.5 inches) and fully poisoned-moderator (1.35 g B/liter in moderator and rods fully withdrawn) conditions. The observed deviations between the

  7. Testing of Gas Reactor Fuel and Materials in the Advanced Test Reactor

    SciTech Connect

    S. Blaine Grover

    2006-10-01

    The recent growth in interest for high temperature gas reactors has resulted in an increased need for materials and fuel testing for this type of reactor. The Advanced Test Reactor (ATR), located at the US Department of Energy’s Idaho National Laboratory, has long been involved in testing gas reactor fuel and materials, and has facilities and capabilities to provide the right environment for gas reactor irradiation experiments. These capabilities include both passive sealed capsule experiments, and instrumented/actively controlled experiments. The instrumented/actively controlled experiments typically contain thermocouples and control the irradiation temperature, but on-line measurements and controls for pressure and gas environment have also been performed in past irradiations. The ATR has an existing automated gas temperature control system that can maintain temperature in an irradiation experiment within very tight bounds, and has developed an on-line fission product monitoring system that is especially well suited for testing gas reactor particle fuel. The ATR’s control system, which consists primarily of vertical cylinders used to rotate neutron poisons/reflectors toward or away from the reactor core, provides a constant vertical flux profile over the duration of each operating cycle. This constant chopped cosine shaped axial flux profile, with a relatively flat peak at the vertical centre of the core, is more desirable for experiments than a constantly moving axial flux peak resulting from a control system of axially positioned control components which are vertically withdrawn from the core.

  8. FUEL ELEMENTS FOR THERMAL-FISSION NUCLEAR REACTORS

    DOEpatents

    Flint, O.

    1961-01-10

    Fuel elements for thermal-fission nuclear reactors are described. The fuel element is comprised of a core of alumina, a film of a metal of the class consisting of copper, silver, and nickel on the outer face of the core, and a coating of an oxide of a metal isotope of the class consisting of Un/sup 235/, U/ sup 233/, and Pu/sup 239/ on the metal f ilm.

  9. Means for supporting fuel elements in a nuclear reactor

    DOEpatents

    Andrews, Harry N.; Keller, Herbert W.

    1980-01-01

    A grid structure for a nuclear reactor fuel assembly comprising a plurality of connecting members forming at least one longitudinally extending opening peripheral and inner fuel element openings through each of which openings at least one nuclear fuel element extends, said connecting members forming wall means surrounding said each peripheral and inner fuel element opening, a pair of rigid projections longitudinally spaced from one another extending from a portion of said wall means into said each peripheral and inner opening for rigidly engaging said each fuel element, respectively, yet permit individual longitudinal slippage thereof, and resilient means formed integrally on and from said wall means and positioned in said each peripheral and inner opening in opposed relationship with said projections and located to engage said fuel element to bias the latter into engagement with said rigid projections, respectively

  10. Evaluation of Launch Accident Safety Options for Low-Power Surface Reactors

    NASA Astrophysics Data System (ADS)

    Fung Poon, Cindy; Poston, David I.

    2006-01-01

    Safety options for surface reactors of less than 800 kW (thermal power) are analyzed. The concepts under consideration are heat pipe cooled reactors fueled with either uranium nitride or uranium dioxide. This study investigates the impact of launch accident criteria on the system mass, while ensuring the mechanical integrity and reliability of the system through launch accident scenarios. The four criticality scenarios analyzed for shutdown determination are dry sand surround with reflectors stripped, water submersion on concrete, water submersion with all control drums in, and the nominal shutdown reactor condition. Additionally the following two operational criteria are analyzed: reactor is warm and swelled, and reactor is warm and swelled with one drum in (where swelled includes both thermal mechanical expansion and irradiation induced swelling of the fuel).

  11. Evaluation of Launch Accident Safety Options for Low-Power Surface Reactors

    SciTech Connect

    Fung Poon, Cindy; Poston, David I.

    2006-01-20

    Safety options for surface reactors of less than 800 kW (thermal power) are analyzed. The concepts under consideration are heat pipe cooled reactors fueled with either uranium nitride or uranium dioxide. This study investigates the impact of launch accident criteria on the system mass, while ensuring the mechanical integrity and reliability of the system through launch accident scenarios. The four criticality scenarios analyzed for shutdown determination are dry sand surround with reflectors stripped, water submersion on concrete, water submersion with all control drums in, and the nominal shutdown reactor condition. Additionally the following two operational criteria are analyzed: reactor is warm and swelled, and reactor is warm and swelled with one drum in (where swelled includes both thermal mechanical expansion and irradiation induced swelling of the fuel)

  12. Metrics for the Evaluation of Light Water Reactor Accident Tolerant Fuel

    SciTech Connect

    Shannon M. Bragg-Sitton

    2001-09-01

    The safe, reliable and economic operation of the nation’s nuclear power reactor fleet has always been a top priority for the nuclear industry. Continual improvement of technology, including advanced materials and nuclear fuels, remains central to the industry’s success. Enhancing the accident tolerance of LWRs became a topic of serious discussion following the 2011 Great East Japan Earthquake, resulting tsunami, and subsequent damage to the Fukushima Daiichi nuclear power plant complex. The overall goal of accident tolerant fuel (ATF) development is to identify alternative fuel system technologies to further enhance the safety, competitiveness, and economics of commercial nuclear power. The complex multiphysics behavior of LWR nuclear fuel in the integrated reactor system makes defining specific material or design improvements difficult; as such, establishing desirable performance attributes is critical in guiding the design and development of fuels and cladding with enhanced accident tolerance. The U.S. Department of Energy is sponsoring multiple teams to develop ATF concepts within multiple national laboratories, universities, and the nuclear industry. Concepts under investigation offer both evolutionary and revolutionary changes to the current nuclear fuel system. This paper summarizes technical evaluation methodology proposed in the U.S. to aid in the optimization and down-selection of candidate ATF designs. This methodology will continue to be refined via input from the research community and industry, such that it is available to support the planned down-selection of ATF concepts in 2016.

  13. Silicon carbide composite for light water reactor fuel assembly applications

    NASA Astrophysics Data System (ADS)

    Yueh, Ken; Terrani, Kurt A.

    2014-05-01

    The feasibility of using SiCf-SiCm composites in light water reactor (LWR) fuel designs was evaluated. The evaluation was motivated by the desire to improve fuel performance under normal and accident conditions. The Fukushima accident once again highlighted the need for improved fuel materials that can maintain fuel integrity to higher temperatures for longer periods of time. The review identified many benefits as well as issues in using the material. Issues perceived as presenting the biggest challenges to the concept were identified to be flux gradient induced differential volumetric swelling, fragmentation and thermal shock resistance. The oxidation of silicon and its release into the coolant as silica has been identified as an issue because existing plant systems have limited ability for its removal. Detailed evaluation using available literature data and testing as part of this evaluation effort have eliminated most of the major concerns. The evaluation identified Boiling Water Reactor (BWR) channel, BWR fuel water tube, and Pressurized Water Reactor (PWR) guide tube as feasible applications for SiC composite. A program has been initiated to resolve some of the remaining issues and to generate physical property data to support the design of commercial fuel components.

  14. Dynamic neutronic and stability analysis of a burst mode, single cavity gas core reactor Brayton cycle space power system

    NASA Astrophysics Data System (ADS)

    Dugan, Edward T.; Kutikkad, Kiratadas

    The conceptual, burst-mode gaseous-core reactor (GCR) space nuclear power system presently subjected to reactor-dynamics and system stability studies operates on a closed Brayton cycle, via disk MHD generator for energy conversion. While the gaseous fuel density power coefficient of reactivity is found to be capable of rapidly stabilizing the GCR system, the power of this feedback renders standard external reactivity insertions inadequate for significant power-level changes during normal operation.

  15. Conceptual design and selection of a biodiesel fuel processor for a vehicle fuel cell auxiliary power unit

    NASA Astrophysics Data System (ADS)

    Specchia, S.; Tillemans, F. W. A.; van den Oosterkamp, P. F.; Saracco, G.

    Within the European project BIOFEAT (biodiesel fuel processor for a fuel cell auxiliary power unit for a vehicle), a complete modular 10 kW e biodiesel fuel processor capable of feeding a PEMFC will be developed, built and tested to generate electricity for a vehicle auxiliary power unit (APU). Tail pipe emissions reduction, increased use of renewable fuels, increase of hydrogen-fuel economy and efficient supply of present and future APU for road vehicles are the main project goals. Biodiesel is the chosen feedstock because it is a completely natural and thus renewable fuel. Three fuel processing options were taken into account at a conceptual design level and compared for hydrogen production: (i) autothermal reformer (ATR) with high and low temperature shift (HTS/LTS) reactors; (ii) autothermal reformer (ATR) with a single medium temperature shift (MTS) reactor; (iii) thermal cracker (TC) with high and low temperature shift (HTS/LTS) reactors. Based on a number of simulations (with the AspenPlus® software), the best operating conditions were determined (steam-to-carbon and O 2/C ratios, operating temperatures and pressures) for each process alternative. The selection of the preferential fuel processing option was consequently carried out, based on a number of criteria (efficiency, complexity, compactness, safety, controllability, emissions, etc.); the ATR with both HTS and LTS reactors shows the most promising results, with a net electrical efficiency of 29% (LHV).

  16. LIGHT WATER REACTOR ACCIDENT TOLERANT FUELS IRRADIATION TESTING

    SciTech Connect

    Carmack, William Jonathan; Barrett, Kristine Eloise; Chichester, Heather Jean MacLean

    2015-09-01

    The purpose of Accident Tolerant Fuels (ATF) experiments is to test novel fuel and cladding concepts designed to replace the current zirconium alloy uranium dioxide (UO2) fuel system. The objective of this Research and Development (R&D) is to develop novel ATF concepts that will be able to withstand loss of active cooling in the reactor core for a considerably longer time period than the current fuel system while maintaining or improving the fuel performance during normal operations, operational transients, design basis, and beyond design basis events. It was necessary to design, analyze, and fabricate drop-in capsules to meet the requirements for testing under prototypic LWR temperatures in Idaho National Laboratory's Advanced Test Reactor (ATR). Three industry led teams and one DOE team from Oak Ridge National Laboratory provided fuel rodlet samples for their new concepts for ATR insertion in 2015. As-built projected temperature calculations were performed on the ATF capsules using the BISON fuel performance code. BISON is an application of INL’s Multi-physics Object Oriented Simulation Environment (MOOSE), which is a massively parallel finite element based framework used to solve systems of fully coupled nonlinear partial differential equations. Both 2D and 3D models were set up to examine cladding and fuel performance.

  17. Exploratory Design of a Reactor/Fuel Cycle Using Spent Nuclear Fuel Without Conventional Reprocessing - 13579

    SciTech Connect

    Bertch, Timothy C.; Schleicher, Robert W.; Rawls, John D.

    2013-07-01

    General Atomics has started design of a waste to energy nuclear reactor (EM2) that can use light water reactor (LWR) spent nuclear fuel (SNF). This effort addresses two problems: using an advanced small reactor with long core life to reduce nuclear energy overnight cost and providing a disposal path for LWR SNF. LWR SNF is re-fabricated into new EM2 fuel using a dry voloxidation process modeled on AIROX/ OREOX processes which remove some of the fission products but no heavy metals. By not removing all of the fission products the fuel remains self-protecting. By not separating heavy metals, the process remains proliferation resistant. Implementation of Energy Multiplier Module (EM2) fuel cycle will provide low cost nuclear energy while providing a long term LWR SNF disposition path which is important for LWR waste confidence. With LWR waste confidence recent impacts on reactor licensing, an alternate disposition path is highly relevant. Centered on a reactor operating at 250 MWe, the compact electricity generating system design maximizes site flexibility with truck transport of all system components and available dry cooling features that removes the need to be located near a body of water. A high temperature system using helium coolant, electricity is efficiently produced using an asynchronous high-speed gas turbine while the LWR SNF is converted to fission products. Reactor design features such as vented fuel and silicon carbide cladding support reactor operation for decades between refueling, with improved fuel utilization. Beyond the reactor, the fuel cycle is designed so that subsequent generations of EM2 reactor fuel will use the previous EM2 discharge, providing its own waste confidence plus eliminating the need for enrichment after the first generation. Additional LWR SNF is added at each re-fabrication to replace the removed fission products. The fuel cycle uses a dry voloxidation process for both the initial LWR SNF re-fabrication and later for EM2

  18. Subcritical power reactor with irradiation by a beam of accelerated protons

    SciTech Connect

    Ado, Yu.M.; Kryuchkov, V.P.; Lebedev, V.N.

    1995-04-01

    The physical and economic aspects of constructing a reactivity accident-free nuclear reactor are discussed. The approach described is based on uranium fission in a deeply subcritical reactor in which the chain reaction is initiated by an external source of neutrons, thus eliminating runaway. Protons are assumed to be the primary particles because the accelerator technology is best developed for this method of irradiation. A subcritical reactor and a high-power proton accelerator is determined to be sound in principle, and has the advantages of eliminating runaway accidents, decreasing fuel costs, higher efficiency due to increased intervals between fuel loadings, and controlling the reactor power and shielding by changing the beam current of the accelerator. 29 refs., 8 figs., 2 tabs.

  19. Space reactor/Stirling cycle systems for high power Lunar applications

    SciTech Connect

    Schmitz, P.D.; Mason, L.S.

    1994-09-01

    NASA`s Space Exploration Initiative (SEI) has proposed the use of high power nuclear power systems on the lunar surface as a necessary alternative to solar power. Because of the long lunar night ({approximately} 14 earth days) solar powered systems with the requisite energy storage in the form of regenerative fuel cells or batteries becomes prohibitively heavy at high power levels ({approximately} 100 kWe). At these high power levels nuclear power systems become an enabling technology for variety of missions. One way of producing power on the lunar surface is with an SP-100 class reactor coupled with Stirling power converters. In this study, analysis and characterization of the SP-100 class reactor coupled with Free Piston Stirling Power Conversion (FPSPC) system will be performed. Comparison of results with previous studies of other systems, particularly Brayton and Thermionic, are made.

  20. The role of actinide burning and the Integral Fast Reactor in the future of nuclear power

    SciTech Connect

    Hollaway, W.R.; Lidsky, L.M.; Miller, M.M.

    1990-12-01

    A preliminary assessment is made of the potential role of actinide burning and the Integral Fast Reactor (IFR) in the future of nuclear power. The development of a usable actinide burning strategy could be an important factor in the acceptance and implementation of a next generation of nuclear power. First, the need for nuclear generating capacity is established through the analysis of energy and electricity demand forecasting models which cover the spectrum of bias from anti-nuclear to pro-nuclear. The analyses take into account the issues of global warming and the potential for technological advances in energy efficiency. We conclude, as do many others, that there will almost certainly be a need for substantial nuclear power capacity in the 2000--2030 time frame. We point out also that any reprocessing scheme will open up proliferation-related questions which can only be assessed in very specific contexts. The focus of this report is on the fuel cycle impacts of actinide burning. Scenarios are developed for the deployment of future nuclear generating capacity which exploit the advantages of actinide partitioning and actinide burning. Three alternative reactor designs are utilized in these future scenarios: The Light Water Reactor (LWR); the Modular Gas-Cooled Reactor (MGR); and the Integral Fast Reactor (FR). Each of these alternative reactor designs is described in some detail, with specific emphasis on their spent fuel streams and the back-end of the nuclear fuel cycle. Four separation and partitioning processes are utilized in building the future nuclear power scenarios: Thermal reactor spent fuel preprocessing to reduce the ceramic oxide spent fuel to metallic form, the conventional PUREX process, the TRUEX process, and pyrometallurgical reprocessing.

  1. DIRECT FUEL CELL/TURBINE POWER PLANT

    SciTech Connect

    Hossein Ghezel-Ayagh

    2004-11-01

    This report includes the progress in development of Direct FuelCell/Turbine{reg_sign} (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. The operation of sub-MW hybrid Direct FuelCell/Turbine power plant test facility with a Capstone C60 microturbine was initiated in March 2003. The inclusion of the C60 microturbine extended the range of operation of the hybrid power plant to higher current densities (higher power) than achieved in previous tests using a 30kW microturbine. The design of multi-MW DFC/T hybrid systems, approaching 75% efficiency on natural gas, was initiated. A new concept was developed based on clusters of One-MW fuel cell modules as the building blocks. System analyses were performed, including systems for near-term deployment and power plants with long-term ultra high efficiency objectives. Preliminary assessment of the fuel cell cluster concept, including power plant layout for a 14MW power plant, was performed.

  2. Ultrahigh temperature vapor core reactor-MHD system for space nuclear electric power

    NASA Technical Reports Server (NTRS)

    Maya, Isaac; Anghaie, Samim; Diaz, Nils J.; Dugan, Edward T.

    1991-01-01

    The conceptual design of a nuclear space power system based on the ultrahigh temperature vapor core reactor with MHD energy conversion is presented. This UF4 fueled gas core cavity reactor operates at 4000 K maximum core temperature and 40 atm. Materials experiments, conducted with UF4 up to 2200 K, demonstrate acceptable compatibility with tungsten-molybdenum-, and carbon-based materials. The supporting nuclear, heat transfer, fluid flow and MHD analysis, and fissioning plasma physics experiments are also discussed.

  3. Nuclear breeder reactor fuel element with silicon carbide getter

    DOEpatents

    Christiansen, David W.; Karnesky, Richard A.

    1987-01-01

    An improved cesium getter 28 is provided in a breeder reactor fuel element or pin in the form of an extended surface area, low density element formed in one embodiment as a helically wound foil 30 located with silicon carbide, and located at the upper end of the fertile material upper blanket 20.

  4. Method of controlling crystallite size in nuclear-reactor fuels

    DOEpatents

    Lloyd, Milton H.; Collins, Jack L.; Shell, Sam E.

    1985-01-01

    Improved spherules for making enhanced forms of nuclear-reactor fuels are prepared by internal gelation procedures within a sol-gel operation and are accomplished by first boiling the concentrated HMTA-urea feed solution before engaging in the spherule-forming operation thereby effectively controlling crystallite size in the product spherules.

  5. Method of controlling crystallite size in nuclear-reactor fuels

    DOEpatents

    Lloyd, M.H.; Collins, J.L.; Shell, S.E.

    Improved spherules for making enhanced forms of nuclear-reactor fuels are prepared by internal gelation procedures within a sol-gel operation and are accomplished by first boiling the concentrated HMTA-urea feed solution before engaging in the spherule-forming operation thereby effectively controlling crystallite size in the product spherules.

  6. Yttrium and rare earth stabilized fast reactor metal fuel

    SciTech Connect

    Guon, J.; Grantham, L.F.; Specht, E.R.

    1992-05-12

    This patent describes an improved metal alloy reactor fuel consisting essentially of uranium, plutonium, and at least one element from the group consisting of yttrium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium.

  7. Treatment of Off-Gases from Melting Reactor Fuel

    SciTech Connect

    Peacock, H.B.

    2002-05-02

    The ''Melt-Dilute'' process has been studied as a method for preparing spent highly enriched reactor fuels for repository disposition. This study was undertaken to determine the behavior of cesium under projected process conditions, and to investigate techniques for its recovery and disposition.

  8. METHOD OF FORMING A FUEL ELEMENT FOR A NUCLEAR REACTOR

    DOEpatents

    Layer, E.H. Jr.; Peet, C.S.

    1962-01-23

    A method is given for preparing a fuel element for a nuclear reactor. The method includes the steps of sandblasting a body of uranium dioxide to roughen the surface thereof, depositing a thin layer of carbon thereon by thermal decomposition of methane, and cladding the uranium dioxide body with zirconium by gas pressure bonding. (AEC)

  9. METHOD OF PREPARING A FUEL ELEMENT FOR A NUCLEAR REACTOR

    DOEpatents

    Hauth, J.J.; Anicetti, R.J.

    1962-12-01

    A method is described for preparing a fuel element for a nuclear reactor. According to the patent uranium dioxide is compacted in a metal tabe by directlng intense sound waves at the tabe prior to tamp packing or vibration compaction of the powder. (AEC)

  10. Computational study of the influence of some systematic factors on the fuel temperature in a very high temperature gas-cooled reactor with prismatic fuel assemblies

    SciTech Connect

    Sedov, A. A.; Frolov, A. A.

    2011-12-15

    The influence of the main systematic factors of overheating (such as nonuniformity of power density and cold leaks of coolant) on the fuel temperatures in a very high temperature gas-cooled reactor NGNP (Next Generation Nuclear Plant) with prismatic fuel blocks is studied. The results of computations show a high sensitivity of the fuel temperatures to systematic factors of overheating. This circumstance indicates the necessity of high-precision three-dimensional modeling of the gas dynamics and heat transfer in the core when designing this type of reactor.

  11. Advanced Gas Reactor (AGR)-5/6/7 Fuel Irradiation Experiments in the Advanced Test Reactor

    SciTech Connect

    A. Joseph Palmer; David A. Petti; S. Blaine Grover

    2014-04-01

    The United States Department of Energy’s Very High Temperature Reactor (VHTR) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating up to seven separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which each consist of at least five separate capsules, are being irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gases also have on-line fission product monitoring the effluent from each capsule to track performance of the fuel during irradiation. The first two experiments (designated AGR-1 and AGR-2), have been completed. The third and fourth experiments have been combined into a single experiment designated AGR-3/4, which started its irradiation in December 2011 and is currently scheduled to be completed in April 2014. The design of the fuel qualification experiment, designated AGR-5/6/7, is well underway and incorporates lessons learned from the three previous experiments. Various design issues will be discussed with particular details related to selection of thermometry.

  12. The DOE advanced gas reactor fuel development and qualification program

    NASA Astrophysics Data System (ADS)

    Petti, David; Maki, John; Hunn, John; Pappano, Pete; Barnes, Charles; Saurwein, John; Nagley, Scott; Kendall, Jim; Hobbins, Richard

    2010-09-01

    The high outlet temperatures and high thermal-energy conversion efficiency of modular high-temperature gas-cooled reactors (HTGRs) enable an efficient and cost-effective integration of the reactor system with non-electricity-generation applications, such as process heat and/or hydrogen production, for the many petrochemical and other industrial processes that require temperatures between 300°C and 900°C. The U.S. Department of Energy (DOE) has selected the HTGR concept for the Next Generation Nuclear Plant (NGNP) Project as a transformative application of nuclear energy that will demonstrate emissions-free nuclear-assisted electricity, process heat, and hydrogen production, thereby reducing greenhouse-gas emissions and enhancing energy security. The objective of the DOE Advanced Gas Reactor (AGR) Fuel Development and Qualification program is to qualify tristructural isotropic (TRISO)-coated particle fuel for use in HTGRs. An overview of the program and recent progress is presented.

  13. Electrolysis cell for reprocessing plutonium reactor fuel

    DOEpatents

    Miller, W.E.; Steindler, M.J.; Burris, L.

    1985-01-04

    An electrolytic cell for refining a mixture of metals including spent fuel containing U and Pu contaminated with other metals is claimed. The cell includes a metallic pot containing a metallic pool as one anode at a lower level, a fused salt as the electrolyte at an intermediate level and a cathode and an anode basket in spaced-apart positions in the electrolyte with the cathode and anode being retractable to positions above the electrolyte during which spent fuel may be added to the anode basket. The anode basket is extendable into the lower pool to dissolve at least some metallic contaminants; the anode basket contains the spent fuel acting as a second anode when in the electrolyte.

  14. Electrolysis cell for reprocessing plutonium reactor fuel

    DOEpatents

    Miller, William E.; Steindler, Martin J.; Burris, Leslie

    1986-01-01

    An electrolytic cell for refining a mixture of metals including spent fuel containing U and Pu contaminated with other metals, the cell including a metallic pot containing a metallic pool as one anode at a lower level, a fused salt as the electrolyte at an intermediate level and a cathode and an anode basket in spaced-apart positions in the electrolyte with the cathode and anode being retractable to positions above the electrolyte during which spent fuel may be added to the anode basket and the anode basket being extendable into the lower pool to dissolve at least some metallic contaminants, the anode basket containing the spent fuel acting as a second anode when in the electrolyte.

  15. Chemicals from heavy fuels in millisecond catalytic reactors

    NASA Astrophysics Data System (ADS)

    Krummenacher, Jakob Jose

    The role that millisecond catalytic reactors play on the development of the hydrogen economy is crucial because they have higher throughputs and smaller volumes than their traditional counter parts. Issues with the storage and production of hydrogen give an advantage to these reactors because their compact and small size makes them highly portable. As with the development of any new technology challenges that threaten the operation of the millisecond catalytic reactor with liquid fuels were encountered. First, the autoignition of linear alkanes is higher than their boiling points. This makes it impossible to simply vaporize the fuel and mix it with air. Second, analyzing such a diverse range of products using gas chromatography is not possible with conventional equipment. The first results of the especially engineered reactor show the successful partial oxidation of linear alkanes. Decane and hexadecane over rhodium catalysts produce synthesis gas with selectivities exceeding 80%. Experiments confirmed the highly tunable nature of the reactor. A fuel concentrated feed produces ethylene and alpha-olefins with high selectivities. A proposed mechanism and experimental results obtained suggest that these olefins are formed by homogeneous endothermic cracking. A single fuel, decane, was used to study further the millisecond catalytic reactor versatility. Several operating conditions such as catalyst porosity, effect of wash-coat, addition of steam, and addition of hydrogen were studied. Rhodium, platinum, and platinum-rhodium mixtures were coated on supports of different porosity to determine the differences in metal reactivities. The results show that rhodium is the best catalyst for making hydrogen or synthesis gas and that adding steam improves its performance. The highest yields of ethylene and a-olefins were obtained using a platinum catalyst coated with a small amount of rhodium on the front face. A rough economic analysis gives a sound idea of the potential that

  16. Design of the Advanced Gas Reactor Fuel Experiments for Irradiation in the Advanced Test Reactor

    SciTech Connect

    S. Blaine Grover

    2005-10-01

    The United States Department of Energy’s Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating eight particle fuel tests in the Advanced Test Reactor (ATR) located at the newly formed Idaho National Laboratory (INL) to support development of the next generation Very High Temperature Reactor (VHTR) in the United States. The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the new United States Department of Energy’s lead laboratory for nuclear energy development. These AGR fuel experiments will be irradiated over the next ten years to demonstrate and qualify new particle fuel for use in high temperature gas reactors. The experiments will be irradiated in an inert sweep gas atmosphere with on-line temperature monitoring and control combined with on-line fission product monitoring of the sweep gas. The final design phase has just been completed on the first experiment (AGR-1) in this series and the support systems and fission product monitoring system that will monitor and control the experiment during irradiation. This paper discusses the development of the experimental hardware and support system designs and the status of the experiment.

  17. Fuel cell electric power production

    DOEpatents

    Hwang, Herng-Shinn; Heck, Ronald M.; Yarrington, Robert M.

    1985-01-01

    A process for generating electricity from a fuel cell includes generating a hydrogen-rich gas as the fuel for the fuel cell by treating a hydrocarbon feed, which may be a normally liquid feed, in an autothermal reformer utilizing a first monolithic catalyst zone having palladium and platinum catalytic components therein and a second, platinum group metal steam reforming catalyst. Air is used as the oxidant in the hydrocarbon reforming zone and a low oxygen to carbon ratio is maintained to control the amount of dilution of the hydrogen-rich gas with nitrogen of the air without sustaining an insupportable amount of carbon deposition on the catalyst. Anode vent gas may be utilized as the fuel to preheat the inlet stream to the reformer. The fuel cell and the reformer are preferably operated at elevated pressures, up to about a pressure of 150 psia for the fuel cell.

  18. 10 CFR 71.97 - Advance notification of shipment of irradiated reactor fuel and nuclear waste.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... notification of shipment of irradiated reactor fuel and nuclear waste. (a)(1) As specified in paragraphs (b... shipment of irradiated reactor fuel or nuclear waste must contain the following information: (1) The name... nuclear waste shipment; (2) A description of the irradiated reactor fuel or nuclear waste contained in...

  19. 10 CFR 71.97 - Advance notification of shipment of irradiated reactor fuel and nuclear waste.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... notification of shipment of irradiated reactor fuel and nuclear waste. (a) As specified in paragraphs (b), (c... of the shipper, carrier, and receiver of the irradiated reactor fuel or nuclear waste shipment; (2) A description of the irradiated reactor fuel or nuclear waste contained in the shipment, as specified in...

  20. 10 CFR 71.97 - Advance notification of shipment of irradiated reactor fuel and nuclear waste.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... notification of shipment of irradiated reactor fuel and nuclear waste. (a) As specified in paragraphs (b), (c... of the shipper, carrier, and receiver of the irradiated reactor fuel or nuclear waste shipment; (2) A description of the irradiated reactor fuel or nuclear waste contained in the shipment, as specified in...

  1. 10 CFR 71.97 - Advance notification of shipment of irradiated reactor fuel and nuclear waste.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... notification of shipment of irradiated reactor fuel and nuclear waste. (a)(1) As specified in paragraphs (b... shipment of irradiated reactor fuel or nuclear waste must contain the following information: (1) The name... nuclear waste shipment; (2) A description of the irradiated reactor fuel or nuclear waste contained in...

  2. Radial Power Profile of MOX and LEU Fuel Pellet Versus Burnup

    SciTech Connect

    Chang, Gray S.; Pedersen, Robert C.

    2002-07-01

    One of challenge to burn the WG-Pu in Mixed Oxide (MOX) fuel in light water reactors (LWR) is to demonstrate that the differences between WG-MOX, RG-MOX, and LWR LEU fuel are minimal, and therefore, the commercial MOX and LEU fuel experience base is applicable. The MCWO-calculated Radial Power Profile of LEU, Weapons Grade-MOX and Reactor Grade-MOX fuel pellets at various burnups are similar toward the end of life (50 GWd/t). Therefore, the LEU fuel performance evaluation code - FRAPCON-3 with modifications, such as, the detailed fission power profiles versus burnup, can be used in the MOX fuel pellet performance analysis. MCWO also calculated the {sup 240}Pu/Pu ratio in WG-MOX versus burnup, which reaches an average of 31.25% at discharged burnup of 50 GWd/t. It meets the spent fuel standard for WG-Pu disposition in LWR. (authors)

  3. Proliferation resistance for fast reactors and related fuel cycles: issues and impacts

    SciTech Connect

    Pilat, Joseph F

    2010-01-01

    The prospects for a dramatic growth in nuclear power may depend to a significant degree on the effectiveness of, and the resources devoted to, plans to develop and implement technologies and approaches that strengthen proliferation resistance and nuclear materials accountability. The challenges for fast reactors and related fuel cycles are especially critical. They are being explored in the Generation IV Tnternational Forum (GIF) and the Tnternational Atomic Energy Agency's (IAEA's) International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) initiative, as well as by many states that are looking to these systems for the efficient lise of uranium resources and long-term energy security. How do any proliferation risks they may pose compare to other reactors, both existing and under development, and their fuel cycles? Can they be designed with intrinsic (technological) features to make these systems more proliferation resistant? What roles can extrinsic (institutional) features play in proliferation resistance? What are the anticipated safeguards requirements, and will new technologies and approaches need to be developed? How can safeguards be facilitated by the design process? These and other questions require a rethinking of proliferation resistance and the prospects for new technologies and other intrinsic and extrinsic features being developed that are responsive to specific issues for fast reactors and related fuel cycles and to the broader threat environment in which these systems will have to operate. There are no technologies that can wholly eliminate the risk of proliferation by a determined state, but technology and design can playa role in reducing state threats and perhaps in eliminating non-state threats. There will be a significant role for extrinsic factors, especially the various measures - from safeguards and physical protection to export controls - embodied in the international nuclear nonproliferation regime. This paper will offer

  4. Improved Prediction of the Temperature Feedback in TRISO-Fueled Reactors

    SciTech Connect

    Javier Ortensi; Abderrafi M. Ougouag

    2009-08-01

    The Doppler feedback mechanism is a major contributor to the passive safety of gas-cooled, graphite-moderated high temperature reactors that use fuel based on Tristructural-Isotropic coated particles. It follows that the correct prediction of the magnitude and time-dependence of this feedback effect is essential to the conduct of safety analyses for these reactors. We present a fuel conduction model for obtaining better estimates of the temperature feedback during moderate and fast transients. The fuel model has been incorporated in the CYNOD-THERMIX-KONVEK suite of coupled codes as a single TRISO particle within each calculation cell. The heat generation rate is scaled down from the neutronic solution and a Dirichlet boundary condition is imposed as the bulk graphite temperature from the thermal-hydraulic solution. This simplified approach yields similar results to those obtained with more complex methods, requiring multi-TRISO calculations within one control volume, but with much less computational effort. An analysis of the hypothetical total control ejection in the PBMR-400 design verifies the performance of the code during fast transients. In addition, the analysis of the earthquake-initiated event in the PBMR-400 design verifies the performance of the code during slow transients. These events clearly depict the improvement in the predictions of the fuel temperature, and consequently, of the power escalations. In addition, a brief study of the potential effects of particle layer de-bonding on the transient behavior of high temperature reactors is included. Although the formation of a gap occurs under special conditions its consequences on the dynamic behavior of the reactor should be analyzed. The presence of a gap in the fuel can cause some unusual reactor behavior during fast transients, but still the reactor shuts down due to the strong feedback effects.

  5. 78 FR 73898 - Operator Licensing Examination Standards for Power Reactors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-09

    ... COMMISSION Operator Licensing Examination Standards for Power Reactors AGENCY: Nuclear Regulatory Commission... Standards for Power Reactors.'' DATES: Submit comments by February 7, 2014. Comments received after this..., and grading of examinations used for licensing operators at nuclear power plants pursuant to...

  6. Thermionic reactor power conditioner design for nuclear electric propulsion.

    NASA Technical Reports Server (NTRS)

    Jacobsen, A. S.; Tasca, D. M.

    1971-01-01

    Consideration of the effects of various thermionic reactor parameters and requirements upon spacecraft power conditioning design. A basic spacecraft is defined using nuclear electric propulsion, requiring approximately 120 kWe. The interrelationships of reactor operating characteristics and power conditioning requirements are discussed and evaluated, and the effects on power conditioner design and performance are presented.

  7. Testing of Gas Reactor Materials and Fuel in the Advanced Test Reactor

    SciTech Connect

    S. Blaine Grover

    2004-10-01

    The Advanced Test Reactor (ATR) has long been involved in testing gas reactor materials, and has developed facilities well suited for providing the right conditions and environment for gas reactor tests. This paper discusses the different types of irradiation hardware that have been utilized in past ATR irradiation tests of gas reactor materials. The new Gas Test Loop facility currently being developed for the ATR is discussed and the different approaches being considered in the design of the facility. The different options for an irradiation experiment such as active versus passive temperature control, neutron spectrum tailoring, and different types of lead experiment sweep gas monitors are also discussed. The paper is then concluded with examples of different past and present gas reactor material and fuel irradiations.

  8. TESTING OF GAS REACTOR MATERIALS AND FUEL IN THE ADVANCED TEST REACTOR

    SciTech Connect

    Grover, S.B.

    2004-10-06

    The Advanced Test Reactor (ATR) has long been involved in testing gas reactor materials, and has developed facilities well suited for providing the right conditions and environment for gas reactor tests. This paper discusses the different types of irradiation hardware that have been utilized in past ATR irradiation tests of gas reactor materials. The new Gas Test Loop facility currently being developed for the ATR is discussed and the different approaches being considered in the design of the facility. The different options for an irradiation experiment such as active versus passive temperature control, neutron spectrum tailoring, and different types of lead experiment sweep gas monitors are also discussed. The paper is then concluded with examples of different past and present gas reactor material and fuel irradiations.

  9. ALLOY FOR FUEL OF NEUTRONIC REACTORS

    DOEpatents

    Bloomster, C.H.; Katayama, Y.B.

    1963-04-23

    This patent deals with an aluminum alloy suitable as nuclear fuel and consisting mainly of from 1 to 10 wt% of plutonium, from 2 to 3.5 wt% of nickel, the balance being aluminum. The alloy may also contain from 0.9 to 1.1 wt% of silicon and up to 0.7% of iron. (AEC)

  10. Thermal barrier and support for nuclear reactor fuel core

    DOEpatents

    Betts, Jr., William S.; Pickering, J. Larry; Black, William E.

    1987-01-01

    A thermal barrier/core support for the fuel core of a nuclear reactor having a metallic cylinder secured to the reactor vessel liner and surrounded by fibrous insulation material. A top cap is secured to the upper end of the metallic cylinder that locates and orients a cover block and post seat. Under normal operating conditions, the metallic cylinder supports the entire load exerted by its associated fuel core post. Disposed within the metallic cylinder is a column of ceramic material, the height of which is less than that of the metallic cylinder, and thus is not normally load bearing. In the event of a temperature excursion beyond the design limits of the metallic cylinder and resulting in deformation of the cylinder, the ceramic column will abut the top cap to support the fuel core post.

  11. Nuclear reactor power for an electrically powered orbital transfer vehicle

    NASA Technical Reports Server (NTRS)

    Jaffe, L.; Beatty, R.; Bhandari, P.; Chow, E.; Deininger, W.; Ewell, R.; Fujita, T.; Grossman, M.; Kia, T.; Nesmith, B.

    1987-01-01

    To help determine the systems requirements for a 300-kWe space nuclear reactor power system, a mission and spacecraft have been examined which utilize electric propulsion and this nuclear reactor power for multiple transfers of cargo between low earth orbit (LEO) and geosynchronous earth orbit (GEO). A propulsion system employing ion thrusters and xenon propellant was selected. Propellant and thrusters are replaced after each sortie to GEO. The mass of the Orbital Transfer Vehicle (OTV), empty and dry, is 11,000 kg; nominal propellant load is 5000 kg. The OTV operates between a circular orbit at 925 km altitude, 28.5 deg inclination, and GEO. Cargo is brought to the OTV by Shuttle and an Orbital Maneuvering Vehicle (OMV); the OTV then takes it to GEO. The OTV can also bring cargo back from GEO, for transfer by OMV to the Shuttle. OTV propellant is resupplied and the ion thrusters are replaced by the OMV before each trip to GEO. At the end of mission life, the OTV's electric propulsion is used to place it in a heliocentric orbit so that the reactor will not return to earth. The nominal cargo capability to GEO is 6000 kg with a transit time of 120 days; 1350 kg can be transferred in 90 days, and 14,300 kg in 240 days. These capabilities can be considerably increased by using separate Shuttle launches to bring up propellant and cargo, or by changing to mercury propellant.

  12. Nuclear reactor power for an electrically powered orbital transfer vehicle

    SciTech Connect

    Jaffe, L.; Beatty, R.; Bhandari, P.; Chow, E.; Deininger, W.; Ewell, R.; Fujita, T.; Grossman, M.; Kia, T.; Nesmith, B.

    1987-05-01

    To help determine the systems requirements for a 300-kWe space nuclear reactor power system, a mission and spacecraft have been examined which utilize electric propulsion and this nuclear reactor power for multiple transfers of cargo between low earth orbit (LEO) and geosynchronous earth orbit (GEO). A propulsion system employing ion thrusters and xenon propellant was selected. Propellant and thrusters are replaced after each sortie to GEO. The mass of the Orbital Transfer Vehicle (OTV), empty and dry, is 11,000 kg; nominal propellant load is 5000 kg. The OTV operates between a circular orbit at 925 km altitude, 28.5 deg inclination, and GEO. Cargo is brought to the OTV by Shuttle and an Orbital Maneuvering Vehicle (OMV); the OTV then takes it to GEO. The OTV can also bring cargo back from GEO, for transfer by OMV to the Shuttle. OTV propellant is resupplied and the ion thrusters are replaced by the OMV before each trip to GEO. At the end of mission life, the OTV's electric propulsion is used to place it in a heliocentric orbit so that the reactor will not return to earth. The nominal cargo capability to GEO is 6000 kg with a transit time of 120 days; 1350 kg can be transferred in 90 days, and 14,300 kg in 240 days. These capabilities can be considerably increased by using separate Shuttle launches to bring up propellant and cargo, or by changing to mercury propellant.

  13. A cermet fuel reactor for nuclear thermal propulsion

    NASA Technical Reports Server (NTRS)

    Kruger, Gordon

    1991-01-01

    Work on the cermet fuel reactor done in the 1960's by General Electric (GE) and the Argonne National Laboratory (ANL) that had as its goal the development of systems that could be used for nuclear rocket propulsion as well as closed cycle propulsion system designs for ship propulsion, space nuclear propulsion, and other propulsion systems is reviewed. It is concluded that the work done in the 1960's has demonstrated that we can have excellent thermal and mechanical performance with cermet fuel. Thousands of hours of testing were performed on the cermet fuel at both GE and AGL, including very rapid transients and some radiation performance history. We conclude that there are no feasibility issues with cermet fuel. What is needed is reactivation of existing technology and qualification testing of a specific fuel form. We believe this can be done with a minimum development risk.

  14. Deep-Burn Modular Helium Reactor Fuel Development Plan

    SciTech Connect

    McEachern, D

    2002-12-02

    This document contains the workscope, schedule and cost for the technology development tasks needed to satisfy the fuel and fission product transport Design Data Needs (DDNs) for the Gas Turbine-Modular Helium Reactor (GT-MHR), operating in its role of transmuting transuranic (TRU) nuclides in spent fuel discharged from commercial light-water reactors (LWRs). In its application for transmutation, the GT-MHR is referred to as the Deep-Burn MHR (DB-MHR). This Fuel Development Plan (FDP) describes part of the overall program being undertaken by the U.S. Department of Energy (DOE), utilities, and industry to evaluate the use of the GT-MHR to transmute transuranic nuclides from spent nuclear fuel. The Fuel Development Plan (FDP) includes the work on fuel necessary to support the design and licensing of the DB-MHR. The FDP is organized into ten sections. Section 1 provides a summary of the most important features of the plan, including cost and schedule information. Section 2 describes the DB-MHR concept, the features of its fuel and the plan to develop coated particle fuel for transmutation. Section 3 describes the knowledge base for fabrication of coated particles, the experience with irradiation performance of coated particle fuels, the database for fission product transport in HTGR cores, and describes test data and calculations for the performance of coated particle fuel while in a repository. Section 4 presents the fuel performance requirements in terms of as-manufactured quality and performance of the fuel coatings under irradiation and accident conditions. These requirements are provisional because the design of the DB-MHR is in an early stage. However, the requirements are presented in this preliminary form to guide the initial work on the fuel development. Section 4 also presents limits on the irradiation conditions to which the coated particle fuel can be subjected for the core design. These limits are based on past irradiation experience. Section 5 describes

  15. Sodium fast reactor fuels and materials : research needs.

    SciTech Connect

    Denman, Matthew R.; Porter, Douglas; Wright, Art; Lambert, John; Hayes, Steven; Natesan, Ken; Ott, Larry J.; Garner, Frank; Walters, Leon; Yacout, Abdellatif

    2011-09-01

    An expert panel was assembled to identify gaps in fuels and materials research prior to licensing sodium cooled fast reactor (SFR) design. The expert panel considered both metal and oxide fuels, various cladding and duct materials, structural materials, fuel performance codes, fabrication capability and records, and transient behavior of fuel types. A methodology was developed to rate the relative importance of phenomena and properties both as to importance to a regulatory body and the maturity of the technology base. The technology base for fuels and cladding was divided into three regimes: information of high maturity under conservative operating conditions, information of low maturity under more aggressive operating conditions, and future design expectations where meager data exist.

  16. Neutron dose estimation in a zero power nuclear reactor

    NASA Astrophysics Data System (ADS)

    Triviño, S.; Vedelago, J.; Cantargi, F.; Keil, W.; Figueroa, R.; Mattea, F.; Chautemps, A.; Santibañez, M.; Valente, M.

    2016-10-01

    This work presents the characterization and contribution of neutron and gamma components to the absorbed dose in a zero power nuclear reactor. A dosimetric method based on Fricke gel was implemented to evaluate the separation between dose components in the mixed field. The validation of this proposed method was performed by means of direct measurements of neutron flux in different positions using Au and Mg-Ni activation foils. Monte Carlo simulations were conversely performed using the MCNP main code with a dedicated subroutine to incorporate the exact complete geometry of the nuclear reactor facility. Once nuclear fuel elements were defined, the simulations computed the different contributions to the absorbed dose in specific positions inside the core. Thermal/epithermal contributions of absorbed dose were assessed by means of Fricke gel dosimetry using different isotopic compositions aimed at modifying the sensitivity of the dosimeter for specific dose components. Clear distinctions between gamma and neutron capture dose were obtained. Both Monte Carlo simulations and experimental results provided reliable estimations about neutron flux rate as well as dose rate during the reactor operation. Simulations and experimental results are in good agreement in every positions measured and simulated in the core.

  17. Moving bed reactor for solar thermochemical fuel production

    SciTech Connect

    Ermanoski, Ivan

    2013-04-16

    Reactors and methods for solar thermochemical reactions are disclosed. Embodiments of reactors include at least two distinct reactor chambers between which there is at least a pressure differential. In embodiments, reactive particles are exchanged between chambers during a reaction cycle to thermally reduce the particles at first conditions and oxidize the particles at second conditions to produce chemical work from heat. In embodiments, chambers of a reactor are coupled to a heat exchanger to pre-heat the reactive particles prior to direct exposure to thermal energy with heat transferred from reduced reactive particles as the particles are oppositely conveyed between the thermal reduction chamber and the fuel production chamber. In an embodiment, particle conveyance is in part provided by an elevator which may further function as a heat exchanger.

  18. Power Limits and Thermodynamics in Fuel Cells

    NASA Astrophysics Data System (ADS)

    Sieniutycz, Stanisław

    2012-10-01

    This paper deals with various energy converters, in particular thermal or chemical engines and fuel cells. Applying a general thermodynamic framework we derive formulae for converters' efficiencies and apply them to estimate power limits in these power systems. We consider power limits for thermal systems propelled by differences of temperatures and chemical or electrochemical systems driven by differences of chemical potentials. We focus on fuel cells which are the electrochemical energy generators. We show that fuel cells satisfy the same modeling principles as thermal machines and apply similar computational schemes.

  19. Design of a new portable fork detector for research reactor spent fuel

    SciTech Connect

    Hsue, S.T.; Menlove, H.O.; Rinard, P.M.

    1995-02-01

    There are many situations in nonproliferation and international safeguards when one needs to verify spent research-reactor fuel. Special inspections, a reactor coming under safeguards for the first time, and failed surveillance are prime examples. Several years ago, Los Alamos developed the FORK detector for the IAEA and EURATOM. This detector, together with the GRAND electronics package, is used routinely by inspectors to verify light-water-reactor spent fuels. Both the FORK detector and the GRAND electronics technologies have been transferred and are now commercially available. Recent incidents in the world indicate that research-reactor fuel is potentially a greater concern for proliferation than light-water-reactor fuels. A device similar to the FORK/GRAND should be developed to verify research-reactor spent fuels because the signals from light-water-reactor spent fuel are quite different than those from research-reactor fuels.

  20. Effect of Fuel Fraction on Small Modified CANDLE Burn-up Based Gas Cooled Fast Reactors

    NASA Astrophysics Data System (ADS)

    Ariani, Menik; Su'ud, Zaki; Waris, Abdul; Khairurrijal, Asiah, Nur; Shafii, M. Ali

    2010-12-01

    A conceptual design study of Gas Cooled Fast Reactors with Modified CANDLE Burn-up has been performed. The objective of this research is to get optimal design parameters of such type reactors. The parameters of nuclear design including the critical condition, conversion ratio, and burn-up level were compared. These parameters are calculated by variation in the fuel fraction 47.5% up to 70%. Two dimensional full core multi groups diffusion calculations was performed by CITATION code. Group constant preparations are performed by using SRAC code system with JENDL-3.2 nuclear data library. In this design the reactor cores with cylindrical cell two dimensional R-Z core models are subdivided into several parts with the same volume in the axial directions. The placement of fuel in core arranged so that the result of plutonium from natural uranium can be utilized optimally for 10 years reactor operation. Modified CANDLE burn-up was established successfully in a core radial width 1.4 m. Total thermal power output for reference core is 550 MW. Study on the effect of fuel to coolant ratio shows that effective multiplication factor (keff) is in almost linear relations with the change of the fuel volume to coolant ratio.

  1. Toxicity of irradiated advanced heavy water reactor fuels.

    PubMed

    Priest, N D; Richardson, R B; Edwards, G W R

    2013-02-01

    The good neutron economy and online refueling capability of the CANDU® heavy water moderated reactor (HWR) enable it to use many different fuels such as low enriched uranium (LEU), plutonium, or thorium, in addition to its traditional natural uranium (NU) fuel. The toxicity and radiological protection methods for these proposed fuels, unlike those for NU, are not well established. This study uses software to compare the fuel composition and toxicity of irradiated NU fuel against those of two irradiated advanced HWR fuel bundles as a function of post-irradiation time. The first bundle investigated is a CANFLEX® low void reactor fuel (LVRF), of which only the dysprosium-poisoned central element, and not the outer 42 LEU elements, is specifically analyzed. The second bundle investigated is a heterogeneous high-burnup (LEU,Th)O(2) fuelled bundle, whose two components (LEU in the outer 35 elements and thorium in the central eight elements) are analyzed separately. The LVRF central element was estimated to have a much lower toxicity than that of NU at all times after shutdown. Both the high burnup LEU and the thorium fuel had similar toxicity to NU at shutdown, but due to the creation of such inhalation hazards as (238)Pu, (240)Pu, (242)Am, (242)Cm, and (244)Cm (in high burnup LEU), and (232)U and (228)Th (in irradiated thorium), the toxicity of these fuels was almost double that of irradiated NU after 2,700 d of cooling. New urine bioassay methods for higher actinoids and the analysis of thorium in fecal samples are recommended to assess the internal dose from these two fuels. PMID:23274823

  2. Toxicity of irradiated advanced heavy water reactor fuels.

    PubMed

    Priest, N D; Richardson, R B; Edwards, G W R

    2013-02-01

    The good neutron economy and online refueling capability of the CANDU® heavy water moderated reactor (HWR) enable it to use many different fuels such as low enriched uranium (LEU), plutonium, or thorium, in addition to its traditional natural uranium (NU) fuel. The toxicity and radiological protection methods for these proposed fuels, unlike those for NU, are not well established. This study uses software to compare the fuel composition and toxicity of irradiated NU fuel against those of two irradiated advanced HWR fuel bundles as a function of post-irradiation time. The first bundle investigated is a CANFLEX® low void reactor fuel (LVRF), of which only the dysprosium-poisoned central element, and not the outer 42 LEU elements, is specifically analyzed. The second bundle investigated is a heterogeneous high-burnup (LEU,Th)O(2) fuelled bundle, whose two components (LEU in the outer 35 elements and thorium in the central eight elements) are analyzed separately. The LVRF central element was estimated to have a much lower toxicity than that of NU at all times after shutdown. Both the high burnup LEU and the thorium fuel had similar toxicity to NU at shutdown, but due to the creation of such inhalation hazards as (238)Pu, (240)Pu, (242)Am, (242)Cm, and (244)Cm (in high burnup LEU), and (232)U and (228)Th (in irradiated thorium), the toxicity of these fuels was almost double that of irradiated NU after 2,700 d of cooling. New urine bioassay methods for higher actinoids and the analysis of thorium in fecal samples are recommended to assess the internal dose from these two fuels.

  3. UF6 breeder reactor power plants for electric power generation

    NASA Technical Reports Server (NTRS)

    Rust, J. H.; Clement, J. D.; Hohl, F.

    1976-01-01

    The reactor concept analyzed is a U-233F6 core surrounded by a molten salt (Li(7)F, BeF2, ThF4) blanket. Nuclear survey calculations were carried out for both spherical and cylindrical geometries. Thermodynamic cycle calculations were performed for a variety of Rankine cycles. A conceptual design is presented along with a system layout for a 1000 MW stationary power plant. Advantages of the gas core breeder reactor (GCBR) are as follows: (1) high efficiency; (2) simplified on-line reprocessing; (3) inherent safety considerations; (4) high breeding ratio; (5) possibility of burning all or most of the long-lived nuclear waste actinides; and (6) possibility of extrapolating the technology to higher temperatures and MHD direct conversion.

  4. Fuel cell power system for utility vehicle

    SciTech Connect

    Graham, M.; Barbir, F.; Marken, F.; Nadal, M.

    1996-12-31

    Based on the experience of designing and building the Green Car, a fuel cell/battery hybrid vehicle, and Genesis, a hydrogen/oxygen fuel cell powered transporter, Energy Partners has developed a fuel cell power system for propulsion of an off-road utility vehicle. A 10 kW hydrogen/air fuel cell stack has been developed as a prototype for future mass production. The main features of this stack are discussed in this paper. Design considerations and selection criteria for the main components of the vehicular fuel cell system, such as traction motor, air compressor and compressor motor, hydrogen storage and delivery, water and heat management, power conditioning, and control and monitoring subsystem are discussed in detail.

  5. Partial Defect Verification of the Pressurized Water Reactor Spent Fuel Assemblies

    SciTech Connect

    Ham, Y S; Sitaraman, S

    2010-02-05

    The International Atomic Energy Agency (IAEA) has the responsibility to carry out independent inspections of all nuclear material and facilities subject to safeguards agreements in order to verify compliance with non-proliferation commitments. New technologies have been continuously explored by the IAEA and Member States to improve the verification measures to account for declared inventory of nuclear material and detect clandestine diversion and production of nuclear materials. Even with these efforts, a technical safeguards challenge has remained for decades for the case of developing a method in identifying possible diversion of nuclear fuel pins from the Light Water Reactor (LWR) spent fuel assemblies. We had embarked on this challenging task and successfully developed a novel methodology in detecting partial removal of fuel from pressurized water reactor spent fuel assemblies. The methodology uses multiple tiny neutron and gamma detectors in the form of a cluster and a high precision driving system to obtain underwater radiation measurements inside a Pressurized Water Reactor (PWR) spent fuel assembly without any movement of the fuel. The data obtained in such a manner can provide spatial distribution of neutron and gamma flux within a spent fuel assembly. The combined information of gamma and neutron signature is used to produce base signatures and they are principally dependent on the geometry of the detector locations, and exhibit little sensitivity to initial enrichment, burn-up or cooling time. A small variation in the fuel bundle such as a few missing pins changes the shape of the signature to enable detection. This resulted in a breakthrough method which can be used to detect pin diversion without relying on the nuclear power plant operator's declared operation data. Presented are the results of various Monte Carlo simulation studies and experiments from actual commercial PWR spent fuel assemblies.

  6. Fuel-cell-powered golf cart

    SciTech Connect

    Bobbett, R.E.; McCormick, J.B.; Lynn, D.K.; Kerwin, W.J.; Derouin, C.R.; Salazar, P.H.

    1980-01-01

    The implementation of a battery/fuel-cell-powered golf cart test bed designed to verify computer simulations and to gain operational experience with a fuel cell in a vehicular environment is described. A technically untrained driver can easily operate the golf cart because the motor and fuel cell controllers automatically sense and execute the appropriate on/off sequencing. A voltage imbalance circuit and a throttle compress circuit were developed that are directly applicable to electric vehicles in general.

  7. Safeguards and Non-proliferation Issues as Related to Advanced Fuel Cycle and Advanced Fast Reactor Development with Processing of Reactor Fuel

    SciTech Connect

    Rahmat Aryaeinejad; Jerry D. Cole; Mark W. Drigert; Dee E. Vaden

    2006-10-01

    The goal of this work is to establish basic data and techniques to enable safeguards appropriate to a new generation of nuclear power systems that will be based on fast spectrum reactors and mixed actinide fuels containing significant quantities of "minor" actinides, possibly due to reprocessing, and determination of what new radiation signatures and parameters need to be considered. The research effort focuses on several problems associated with the use of fuel having significantly different actinide inventories that current practice and on the development of innovative techniques using new radiation signatures and other parameters useful for safeguards and monitoring. In addition, the development of new distinctive radiation signatures as an aid in controlling proliferation of nuclear materials has parallel applications to support Gen-IV and current advanced fuel cycle initiative (AFCI) goals as well as the anticipated Global Nuclear Energy Partnership (GNEP).

  8. Electrolytic recovery of reactor metal fuel

    DOEpatents

    Miller, W.E.; Tomczuk, Z.

    1994-09-20

    A new electrolytic process and apparatus are provided using sodium, cerium or a similar metal in alloy or within a sodium beta or beta[double prime]-alumina sodium ion conductor to electrolytically displace each of the spent fuel metals except for cesium and strontium on a selective basis from the electrolyte to an inert metal cathode. Each of the metals can be deposited separately. An electrolytic transfer of spent fuel into the electrolyte includes a sodium or cerium salt in the electrolyte with sodium or cerium alloy being deposited on the cathode during the transfer of the metals from the spent fuel. The cathode with the deposit of sodium or cerium alloy is then shunted to an anode and the reverse transfer is carried out on a selective basis with each metal being deposited separately at the cathode. The result is that the sodium or cerium needed for the process is regenerated in the first step and no additional source of these reactants is required. 2 figs.

  9. Electrolytic recovery of reactor metal fuel

    DOEpatents

    Miller, William E.; Tomczuk, Zygmunt

    1994-01-01

    A new electrolytic process and apparatus are provided using sodium, cerium or a similar metal in alloy or within a sodium beta or beta"-alumina sodium ion conductor to electrolytically displace each of the spent fuel metals except for cesium and strontium on a selective basis from the electrolyte to an inert metal cathode. Each of the metals can be deposited separately. An electrolytic transfer of spent fuel into the electrolyte includes a sodium or cerium salt in the electrolyte with sodium or cerium alloy being deposited on the cathode during the transfer of the metals from the spent fuel. The cathode with the deposit of sodium or cerium alloy is then chanted to an anode and the reverse transfer is carried out on a selective basis with each metal being deposited separately at the cathode. The result is that the sodium or cerium needed for the process is regenerated in the first step and no additional source of these reactants is required.

  10. Electrolytic recovery of reactor metal fuel

    DOEpatents

    Miller, W.E.; Tomczuk, Z.

    1993-02-03

    This invention is comprised of a new electrolytic process and apparatus using sodium, cerium or a similar metal in an alloy or within a sodium beta or beta-alumina sodium ion conductor to electrolytically displace each of the spent fuel metals except for Cesium and strontium on a selective basis from the electrolyte to an inert metal cathode. Each of the metals can be deposited separately. An electrolytic transfer of spent fuel into the electrolyte includes a sodium or cerium salt in the electrolyte with sodium or cerium alloy being deposited on the cathode during the transfer of the metals from the spent fuel. The cathode with the deposit of sodium or cerium alloy is then changed to an anode and the reverse transfer is carried out on a selective basis with each metal being deposited separately at the cathode. The result is that the sodium or cerium needed for the process is regenerated in the first step and no additional source of these reactants is required.

  11. Enhanced Low-Enriched Uranium Fuel Element for the Advanced Test Reactor

    SciTech Connect

    Pope, M. A.; DeHart, M. D.; Morrell, S. R.; Jamison, R. K.; Nef, E. C.; Nigg, D. W.

    2015-03-01

    Under the current US Department of Energy (DOE) policy and planning scenario, the Advanced Test Reactor (ATR) and its associated critical facility (ATRC) will be reconfigured to operate on low-enriched uranium (LEU) fuel. This effort has produced a conceptual design for an Enhanced LEU Fuel (ELF) element. This fuel features monolithic U-10Mo fuel foils and aluminum cladding separated by a thin zirconium barrier. As with previous iterations of the ELF design, radial power peaking is managed using different U-10Mo foil thicknesses in different plates of the element. The lead fuel element design, ELF Mk1A, features only three fuel meat thicknesses, a reduction from the previous iterations meant to simplify manufacturing. Evaluation of the ELF Mk1A fuel design against reactor performance requirements is ongoing, as are investigations of the impact of manufacturing uncertainty on safety margins. The element design has been evaluated in what are expected to be the most demanding design basis accident scenarios and has met all initial thermal-hydraulic criteria.

  12. IRRADIATION TESTING OF THE RERTR FUEL MINIPLATES WITH BURNABLE ABSORBERS IN THE ADVANCED TEST REACTOR

    SciTech Connect

    I. Glagolenko; D. Wachs; N. Woolstenhulme; G. Chang; B. Rabin; C. Clark; T. Wiencek

    2010-10-01

    Based on the results of the reactor physics assessment, conversion of the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL) can be potentially accomplished in two ways, by either using U-10Mo monolithic or U-7Mo dispersion type plates in the ATR fuel element. Both designs, however, would require incorporation of the burnable absorber in several plates of the fuel element to compensate for the excess reactivity and to flatten the radial power profile. Several different types of burnable absorbers were considered initially, but only borated compounds, such as B4C, ZrB2 and Al-B alloys, were selected for testing primarily due to the length of the ATR fuel cycle and fuel manufacturing constraints. To assess and compare irradiation performance of the U-Mo fuels with different burnable absorbers we have designed and manufactured 28 RERTR miniplates (20 fueled and 8 non-fueled) containing fore-mentioned borated compounds. These miniplates will be tested in the ATR as part of the RERTR-13 experiment, which is described in this paper. Detailed plate design, compositions and irradiations conditions are discussed.

  13. Opportunities for mixed oxide fuel testing in the advanced test reactor to support plutonium disposition

    SciTech Connect

    Terry, W.K.; Ryskamp, J.M.; Sterbentz, J.W.

    1995-08-01

    Numerous technical issues must be resolved before LWR operating licenses can be amended to allow the use of MOX fuel. These issues include the following: (1) MOX fuel fabrication process verification; (2) Whether and how to use burnable poisons to depress MOX fuel initial reactivity, which is higher than that of urania; (3) The effects of WGPu isotopic composition; (4) The feasibility of loading MOX fuel with plutonia content up to 7% by weight; (5) The effects of americium and gallium in WGPu; (6) Fission gas release from MOX fuel pellets made from WGPu; (7) Fuel/cladding gap closure; (8) The effects of power cycling and off-normal events on fuel integrity; (9) Development of radial distributions of burnup and fission products; (10) Power spiking near the interfaces of MOX and urania fuel assemblies; and (11) Fuel performance code validation. The Advanced Test Reactor (ATR) at the Idaho National Engineering Laboratory possesses many advantages for performing tests to resolve most of the issues identified above. We have performed calculations to show that the use of hafnium shrouds can produce spectrum adjustments that will bring the flux spectrum in ATR test loops into a good approximation to the spectrum anticipated in a commercial LWR containing MOX fuel while allowing operation of the test fuel assemblies near their optimum values of linear heat generation rate. The ATR would be a nearly ideal test bed for developing data needed to support applications to license LWRs for operation with MOX fuel made from weapons-grade plutonium. The requirements for planning and implementing a test program in the ATR have been identified. The facilities at Argonne National Laboratory-West can meet all potential needs for pre- and post-irradiation examination that might arise in a MOX fuel qualification program.

  14. Nitrogen-Based Fuels: A Power-to-Fuel-to-Power Analysis.

    PubMed

    Grinberg Dana, Alon; Elishav, Oren; Bardow, André; Shter, Gennady E; Grader, Gideon S

    2016-07-25

    What are the fuels of the future? Seven representative carbon- and nitrogen-based fuels are evaluated on an energy basis in a power-to-fuel-to-power analysis as possible future chemical hydrogen-storage media. It is intriguing to consider that a nitrogen economy, where hydrogen obtained from water splitting is chemically stored on abundant nitrogen in the form of a nontoxic and safe nitrogen-based alternative fuel, is energetically feasible.

  15. Nitrogen-Based Fuels: A Power-to-Fuel-to-Power Analysis.

    PubMed

    Grinberg Dana, Alon; Elishav, Oren; Bardow, André; Shter, Gennady E; Grader, Gideon S

    2016-07-25

    What are the fuels of the future? Seven representative carbon- and nitrogen-based fuels are evaluated on an energy basis in a power-to-fuel-to-power analysis as possible future chemical hydrogen-storage media. It is intriguing to consider that a nitrogen economy, where hydrogen obtained from water splitting is chemically stored on abundant nitrogen in the form of a nontoxic and safe nitrogen-based alternative fuel, is energetically feasible. PMID:27286557

  16. High power density carbonate fuel cell

    SciTech Connect

    Yuh, C.; Johnsen, R.; Doyon, J.; Allen, J.

    1996-12-31

    Carbonate fuel cell is a highly efficient and environmentally clean source of power generation. Many organizations worldwide are actively pursuing the development of the technology. Field demonstration of multi-MW size power plant has been initiated in 1996, a step toward commercialization before the turn of the century, Energy Research Corporation (ERC) is planning to introduce a 2.85MW commercial fuel cell power plant with an efficiency of 58%, which is quite attractive for distributed power generation. However, to further expand competitive edge over alternative systems and to achieve wider market penetration, ERC is exploring advanced carbonate fuel cells having significantly higher power densities. A more compact power plant would also stimulate interest in new markets such as ships and submarines where space limitations exist. The activities focused on reducing cell polarization and internal resistance as well as on advanced thin cell components.

  17. Programmable AC power supply for simulating power transient expected in fusion reactor

    SciTech Connect

    Halimi, B.; Suh, K. Y.

    2012-07-01

    This paper focus on control engineering of the programmable AC power source which has capability to simulate power transient expected in fusion reactor. To generate the programmable power source, AC-AC power electronics converter is adopted to control the power of a set of heaters to represent the transient phenomena of heat exchangers or heat sources of a fusion reactor. The International Thermonuclear Experimental Reactor (ITER) plasma operation scenario is used as the basic reference for producing this transient power source. (authors)

  18. Reactor Physics Characterization of the HTR Module with UCO Fuel

    SciTech Connect

    Gerhard Strydom

    2011-01-01

    ABSTRACT The HTR Module [1] is a graphite-moderated, helium cooled pebble bed High Temperature Reactor (HTR) design that has been extensively used as a reference template for the former South African and current Chinese HTR [2] programs. This design utilized spherical fuel elements packed into a dynamic pebble bed, consisting of TRISO coated uranium oxide (UO2) fuel kernels with a U-235 enrichment of 7.8% and a Heavy Metal loading of 7 grams per pebble. The main objective of this study is to compare several important reactor physics and core design parameters for the HTR Module and an identical design utilizing UCO fuel kernels. Fuel kernels of this type are currently being tested in the Idaho National Laboratory’s (INL) Advanced Test Reactor (ATR) as part of the larger Next Generation Nuclear Plant (NGNP) project. The PEBBED-THERMIX [3] code, which was developed specifically for the analysis of pebble bed HTRs, was used to compare the coupled neutronic and thermal fluid performance of the two designs.

  19. Recent view to the results of pulse tests in the IGR reactor with high burn-up fuel

    SciTech Connect

    Asmolov, V.; Yegorova, L.

    1996-03-01

    Testing of 43 fuel elements (13 fuel elements with high burn-up fuel, 10 fuel elements with preirradiated cladding and fresh fuel, and 20 non-irradiated fuel elements) was carried out in the IGR pulse reactor with a half width of the reactor power pulse of about 0.7 sec. Tests were conducted in capsules with no coolant flow and with standard initial conditions in the capsule of 20{degrees}C and 0.2 MPa. Two types of coolant were used: water and air. One purpose of the test program was to determine the thresholds and mechanisms of fuel rod failure under RIA conditions for VVER fuel rods over their entire exposure range, from zero to high burn-up. These failure thresholds are often used in safety analyses. The tests and analyses were designed to reveal the influence on fuel rod failure of (1) the mechanical properties of the cladding, (2) the pellet-to-cladding gap, (3) fuel burn-up, (4) fuel-to-coolant heat transfer, and other parameters. The resulting data base can also be used for validation of computer codes used for analyzing fuel rod behavior. Three types of test specimens were used in the tests, and diagrams of these specimens are shown in Fig. 1. {open_quotes}Type-C{close_quotes} specimens were re-fabricated from commercial fuel rods of the VVER-1000 type that had been subjected to many power cycles of operation in the Novovoronezh Nuclear Power Plant (NV NPP). {open_quotes}Type-D{close_quotes} specimens were fabricated from the same commercial fuel rods used above, but the high burn-up oxide fuel was removed from the cladding and was replaced with fresh oxide fuel pellets. {open_quotes}Type-D{close_quotes} specimens thus provided a means of separating the effects of the cladding and the oxide fuel pellets and were used to examine cladding effects only.

  20. Sensitivity of the Antineutrino Emission from Reactors to the Fuel Content

    SciTech Connect

    Hayes-Sterbenz, Anna C

    2012-06-25

    We investigated the antineutrino signals for several reactor core designs. In all cases we found that the antineutrino signals are distinct. The signals are distinguishable by the combination of their magnitudes and their rate of change with fuel burn-up. If the thermal power of the reactor is known, the overall uncertainty in the antineutrino flux emitted from the reactor is about 5%. The quoted uncertainty in the number of antineutrinos per fission for {sup 235}U, {sup 239}Pu, and {sup 241}Pu is less than 3% and for {sup 238}U is 8%. When folded with the uncertainty in the thermal power measurement and the uncertainty in converting the thermal power to a fission rate, the total antineutrino flux is typically quoted with an accuracy of 3-5%. This overall uncertainty in the antineutrino flux, together with the calculations presented here, suggests that the differences in fuels for the class of reactor designed considered would be detectable using antineutrino monitoring.

  1. Heat pipe cooled reactors for multi-kilowatt space power supplies

    NASA Astrophysics Data System (ADS)

    Ranken, W. A.; Houts, M. G.

    Three nuclear reactor space power system designs are described that demonstrate how the use of high temperature heat pipes for reactor heat transport, combined with direct conversion of heat to electricity, can result in eliminating pumped heat transport loops for both primary reactor cooling and heat rejection. The result is a significant reduction in system complexity that leads to very low mass systems with high reliability, especially in the power range of 1 to 20 kWe. In addition to removing heat exchangers, electromagnetic pumps, and coolant expansion chambers, the heat pipe/direct conversion combination provides such capabilities as startup from the frozen state, automatic rejection of reactor decay heat in the event of emergency or accidental reactor shutdown, and the elimination of single point failures in the reactor cooling system. The power system designs described include a thermoelectric system that can produce 1 to 2 kWe, a bimodal modification of this system to increase its power level to 5 kWe and incorporate high temperature hydrogen propulsion capability, and a moderated thermionic reactor concept with 5 to 20 kWe power output that is based on beryllium modules that thermally couple cylindrical thermionic fuel elements (TFE's) to radiator heat pipes.

  2. Heat pipe cooled reactors for multi-kilowatt space power supplies

    SciTech Connect

    Ranken, W.A.; Houts, M.G.

    1995-01-01

    Three nuclear reactor space power system designs are described that demonstrate how the use of high temperature heat pipes for reactor heat transport, combined with direct conversion of heat to electricity, can result in eliminating pumped heat transport loops for both primary reactor cooling and heat rejection. The result is a significant reduction in system complexity that leads to very low mass systems with high reliability, especially in the power range of 1 to 20 kWe. In addition to removing heat exchangers, electromagnetic pumps, and coolant expansion chambers, the heat pipe/direct conversion combination provides such capabilities as startup from the frozen state, automatic rejection of reactor decay heat in the event of emergency or accidental reactor shutdown, and the elimination of single point failures in the reactor cooling system. The power system designs described include a thermoelectric system that can produce 1 to 2 kWe, a bimodal modification of this system to increase its power level to 5 kWe and incorporate high temperature hydrogen propulsion capability, and a moderated thermionic reactor concept with 5 to 20 kWe power output that is based on beryllium modules that thermally couple cylindrical thermionic fuel elements (TFEs) to radiator heat pipes.

  3. A Qualitative Reactivity and Isotopic Assessment of Fuels for Lead-Alloy Cooled Fast Reactors

    SciTech Connect

    Kevan Weaver; Phil MacDonald

    2004-09-01

    Various methods have been proposed to transmute and thus consume the current inventory of transuranic waste from spent light water reactor (LWR) fuel and plutonium from weapons. We discuss the neutronics performance of nonfertile, fertile metallic, and fertile nitride fuels loaded with 20 to 30 wt% LWR-grade plutonium plus minor actinides and burned in an open-lattice lead-alloy-cooled fast reactor, with an emphasis on the fuel cycle life and spent fuel isotopic content. As a comparison, similar fuel was also studied in a sodium-cooled fast reactor. Our calculations show that the average actinide burn rate for fertile-free fuel is similar for both the sodium- and lead-bismuth-cooled cases, ranging from 1.02 to 1.16 g/MWd, compared to a typical LWR actinide generation rate of 0.303 g/MWd. In addition, our calculations show that the effective full-power days (EFPDs) of operation (or equivalent reactivity-limited burnup) using fertile fuel can extend beyond 20 yr, and the average actinide burn rate is similar for both the sodium- and lead-bismuth-cooled cases, ranging from 0.5 to 0.9 g/MWd. Using the same parameters (i.e., a large pitch-to-diameter ratio, same linear power, and fissile/fertile loading, etc.), the lead-alloy-cooled cases had an EFPD that was 18% to several times greater than their sodium-cooled counterparts. However, tight sodium-cooled lattices are equivalent to the looser lead-alloy lattices in terms of beginning-of-life excess reactivity.

  4. A Qualitative Reactivity and Isotopic Assessment of Fuels for Lead-Alloy-Cooled Fast Reactors

    SciTech Connect

    Weaver, Kevan D.; MacDonald, Philip E.

    2004-09-15

    Various methods have been proposed to transmute and thus consume the current inventory of transuranic waste from spent light water reactor (LWR) fuel and plutonium from weapons. We discuss the neutronics performance of nonfertile, fertile metallic, and fertile nitride fuels loaded with 20 to 30 wt% LWR-grade plutonium plus minor actinides and burned in an open-lattice lead-alloy-cooled fast reactor, with an emphasis on the fuel cycle life and spent fuel isotopic content. As a comparison, similar fuel was also studied in a sodium-cooled fast reactor. Our calculations show that the average actinide burn rate for fertile-free fuel is similar for both the sodium- and lead-bismuth-cooled cases, ranging from 1.02 to 1.16 g/MWd, compared to a typical LWR actinide generation rate of 0.303 g/MWd. In addition, our calculations show that the effective full-power days (EFPDs) of operation (or equivalent reactivity-limited burnup) using fertile fuel can extend beyond 20 yr, and the average actinide burn rate is similar for both the sodium- and lead-bismuth-cooled cases, ranging from 0.5 to 0.9 g/MWd. Using the same parameters (i.e., a large pitch-to-diameter ratio, same linear power, and fissile/fertile loading, etc.), the lead-alloy-cooled cases had an EFPD that was 18% to several times greater than their sodium-cooled counterparts. However, tight sodium-cooled lattices are equivalent to the looser lead-alloy lattices in terms of beginning-of-life excess reactivity.

  5. Fuel economy and range estimates for fuel cell powered automobiles

    SciTech Connect

    Steinbugler, M.; Ogden, J.

    1996-12-31

    While a number of automotive fuel cell applications have been demonstrated, including a golf cart, buses, and a van, these systems and others that have been proposed have utilized differing configurations ranging from direct hydrogen fuel cell-only power plants to fuel cell/battery hybrids operating on reformed methanol. To date there is no clear consensus on which configuration, from among the possible combinations of fuel cell, peaking device, and fuel type, is the most likely to be successfully commercialized. System simplicity favors direct hydrogen fuel cell vehicles, but infrastructure is lacking. Infrastructure favors a system using a liquid fuel with a fuel processor, but system integration and performance issues remain. A number of studies have analyzed particular configurations on either a system or vehicle scale. The objective of this work is to estimate, within a consistent framework, fuel economies and ranges for a variety of configurations using flexible models with the goal of identifying the most promising configurations and the most important areas for further research and development.

  6. Space Molten Salt Reactor Concept for Nuclear Electric Propulsion and Surface Power

    NASA Astrophysics Data System (ADS)

    Eades, M.; Flanders, J.; McMurray, N.; Denning, R.; Sun, X.; Windl, W.; Blue, T.

    Students at The Ohio State University working under the NASA Steckler Grant sought to investigate how molten salt reactors with fissile material dissolved in a liquid fuel medium can be applied to space applications. Molten salt reactors of this kind, built for non-space applications, have demonstrated high power densities, high temperature operation without pressurization, high fuel burn up and other characteristics that are ideal for space fission systems. However, little research has been published on the application of molten salt reactor technology to space fission systems. This paper presents a conceptual design of the Space Molten Salt Reactor (SMSR), which utilizes molten salt reactor technology for Nuclear Electric Propulsion (NEP) and surface power at the 100 kWe to 15 MWe level. Central to the SMSR design is a liquid mixture of LiF, BeF2 and highly enriched U235F4 that acts as both fuel and core coolant. In brief, some of the positive characteristics of the SMSR are compact size, simplified core design, high fuel burn up percentages, proliferation resistant features, passive safety mechanisms, a considerable body of previous research, and the possibility for flexible mission architecture.

  7. Movable-molybdenum-reflector reactivity experiments for control studies of compact space power reactor concepts

    NASA Technical Reports Server (NTRS)

    Fox, T. A.

    1973-01-01

    An experimental reflector reactivity study was made with a compact cylindrical reactor using a uranyl fluoride - water fuel solution. The reactor was axially unreflected and radially reflected with segments of molybdenum. The reflector segments were displaced incrementally in both the axial and radial dimensions, and the shutdown of each configuration was measured by using the pulsed-neutron source technique. The reactivity effects for axial and radial displacement of reflector segments are tabulated separately and compared. The experiments provide data for control-system studies of compact-space-power-reactor concepts.

  8. Split-core heat-pipe reactors for out-of-pile thermionic power systems.

    NASA Technical Reports Server (NTRS)

    Niederauer, G.; Lantz, E.; Breitweiser, R.

    1971-01-01

    Description of the concept of splitting a heat-pipe reactor for out-of-core thermionics into two identical halves and using the resulting center gap for reactivity control. Short Li-W reactor heat pipes penetrate the axial reflectors and form a heat exchanger with long heat pipes which wind through the shield to the thermionic diodes. With one reactor half anchored to the shield, the other is attached to a long arm with a pivot behind the shield and swings through a small arc for reactivity control. A safety shim prevents large reactivity inputs, and a fueled control arm drive shaft acts as a power stabilizer. Reactors fueled with U-235C and with U-233C have been studied.-

  9. Irradiation experiment on fast reactor metal fuels containing minor actinides up to 7 at.% burnup

    SciTech Connect

    Ohta, H.; Yokoo, T.; Ogata, T.; Inoue, T.; Ougier, M.; Glatz, J.P.; Fontaine, B.; Breton, L.

    2007-07-01

    Fast reactor metal fuels containing minor actinides (MAs: Np, Am, Cm) and rare earths (REs) have been irradiated in the fast reactor PHENIX. In this experiment, four types of fuel alloys, U-19Pu-10Zr, U-19Pu-10Zr-2MA-2RE, U-19Pu-10Zr-5MA-5RE and U-19Pu-10Zr-5MA (wt.%), are loaded into part of standard metal fuel stacks. The postirradiation examinations will be conducted at {approx}2.4, {approx}7 and {approx}11 at.% burnup. As for the low-burnup fuel pins, nondestructive postirradiation tests have already been performed and the fuel integrity was confirmed. Furthermore, the irradiation experiment for the intermediate burnup goal of {approx}7 at.% was completed in July 2006. For the irradiation period of 356.63 equivalent full-power days, the neutron flux level remained in the range of 3.5-3.6 x 10{sup 15} n/cm{sup 2}/s at the axial peak position. On the other hand, the maximum linear power of fuel alloys decreased gradually from 305-315 W/cm (beginning of irradiation) to 250-260 W/cm (end of irradiation). The discharged peak burnup was estimated to be 6.59-7.23 at.%. The irradiation behavior of MA-containing metal fuels up to 7 at.% burnup was predicted using the ALFUS code, which was developed for U-Pu-Zr ternary fuel performance analysis. As a result, it was evaluated that the fuel temperature is distributed between {approx}410 deg. C and {approx}645 deg. C at the end of the irradiation experiment. From the stress-strain analysis based on the preliminarily employed cladding irradiation properties and the FCMI stress distribution history, it was predicted that a cladding strain of not more than 0.9% would appear. (authors)

  10. Fossil fuel combined cycle power system

    DOEpatents

    Labinov, Solomon Davidovich; Armstrong, Timothy Robert; Judkins, Roddie Reagan

    2006-10-10

    A system for converting fuel energy to electricity includes a reformer for converting a higher molecular weight gas into at least one lower molecular weight gas, at least one turbine to produce electricity from expansion of at least one of the lower molecular weight gases, and at least one fuel cell. The system can further include at least one separation device for substantially dividing the lower molecular weight gases into at least two gas streams prior to the electrochemical oxidization step. A nuclear reactor can be used to supply at least a portion of the heat the required for the chemical conversion process.

  11. Loop system with gas control of the power production in the MR reactor

    SciTech Connect

    Andreev, V.I.; Kolyadin, V.I.; Smirnov, A.I.; Yakovlev, V.V.

    1987-01-01

    An unsolved problem in reactor design is premature fuel-pin failure on account of mechanical interaction between the fuel and the sheath under nonstationary operating conditions. To examine the effects of this interaction on the viability, the authors have built an experimental system with the MR reactor. To provide for varying the power production over wide ranges, gas regulation based on /sup 3/He as neutron absorber is used. A map of core loading in the MR reactor is provided and variation in power in the experimental fuel assembly in accordance with /sup 3/He pressure and control location is shown. A structural diagram shows the reactor apparatus with gas power control in the experimental pin assembly. The relative changes in channel power in relation to neutron absorber pressure in GCU in channel 1-4 are presented. The results are offered on the power variation in the experimental assembly and reactivity as functions of /sup 3/He pressure in the GCU, together with the calculated data.

  12. Assessment of nuclear reactor concepts for low power space applications

    NASA Technical Reports Server (NTRS)

    Klein, Andrew C.; Gedeon, Stephen R.; Morey, Dennis C.

    1988-01-01

    The results of a preliminary small reactor concepts feasibility and safety evaluation designed to provide a first order validation of the nuclear feasibility and safety of six small reactor concepts are given. These small reactor concepts have potential space applications for missions in the 1 to 20 kWe power output range. It was concluded that low power concepts are available from the U.S. nuclear industry that have the potential for meeting both the operational and launch safety space mission requirements. However, each design has its uncertainties, and further work is required. The reactor concepts must be mated to a power conversion technology that can offer safe and reliable operation.

  13. Plasma engineering studies for Tennessee Tokamak (TENTOK) fusion power reactor

    SciTech Connect

    Yokoyama, K.E.; Lacatski, J.T.; Miller, J.B.; Bryan, W.E.; King, P.W.; Santoro, R.T.; Uckan, N.A.; Shannon, T.E.

    1984-02-01

    This paper summarizes the results of the plasma engineering and systems analysis studies for the Tennessee Tokamak (TENTOK) fusion power reactor. TENTOK is a 3000-MW(t) central station power plant that uses deuterium-tritium fuel in a D-shaped tokamak plasma configuration with a double-null poloidal divertor. The major parameters are R/sub 0/ = 6.4 m, a = 1.6 m, sigma (elongation) = 1.65, (n) = 1.5 x 10/sup 20/ m/sup -3/, (T) = 15 keV, (..beta..) = 6%, B/sub T/ (on-axis) = 5.6 T, I/sub p/ = 8.5 MA, and wall loading = 3 MW/m/sup 2/. Detailed analyses are performed in the areas of (1) transport simulation using the one-and-one-half-dimensional (1-1/2-D) WHIST transport code, (2) equilibrium/poloidal field coil systems, (3) neutral beam and radiofrequency (rf) heating, and (4) pellet fueling. In addition, impurity control systems, diagnostics and controls, and possible microwave plasma preheating and steady-state current drive options are also considered. Some of the major features of TENTOK include rf heating in the ion cyclotron range of frequencies, superconducting equilibrium field coils outside the superconducting toroidal field coils, a double-null poloidal divertor for impurity control and alpha ash removal, and rf-assisted plasma preheating and current startup.

  14. Conceptual design of fuel transfer cask for Reactor TRIGA PUSPATI (RTP)

    NASA Astrophysics Data System (ADS)

    Muhamad, Shalina Sheik; Hamzah, Mohd Arif Arif B.

    2014-02-01

    Spent fuel transfer cask is used to transfer a spent fuel from the reactor tank to the spent fuel storage or for spent fuel inspection. Typically, the cask made from steel cylinders that are either welded or bolted closed. The cylinder is enclosed with additional steel, concrete, or other material to provide radiation shielding and containment of the spent fuel. This paper will discuss the Conceptual Design of fuel transfer cask for Reactor TRIGA Puspati (RTP).

  15. The Fuel Cell Powered Club Car Carryall

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.

    2005-01-01

    The NASA Glenn Research Center initiated development of the Fuel Cell Powered Club Car Carryall as a way to reduce pollution in industrial settings, reduce fossil fuel consumption and reduce operating costs for transportation systems. The Club Car Carryall provides an inexpensive approach to advance the state of the art in electric vehicle technology in a practical application. The project transfers space technology to terrestrial use via non-traditional partners, and provides power system data valuable for future aeronautics and space applications. The work was done under the Hybrid Power Management (HPM) Program. The Carryall is a state of the art, dedicated, electric utility vehicle. Hydrogen powered proton exchange membrane (PEM) fuel cells are the primary power source. Ultracapacitors were used for energy storage as long life, maintenance free operation, and excellent low temperature performance is essential. Metal hydride hydrogen storage was used to store hydrogen in a safe and efficient low-pressure solid form. The report concludes that the Fuel Cell Powered Club Car Carryall can provide excellent performance, and that the implementation of fuel cells in conjunction with ultracapacitors in the power system can provide significant reliability and performance improvements.

  16. Solid-Core, Gas-Cooled Reactor for Space and Surface Power

    NASA Astrophysics Data System (ADS)

    King, Jeffrey C.; El-Genk, Mohamed S.

    2006-01-01

    The solid-core, gas-cooled, Submersion-Subcritical Safe Space (S∧4) reactor is developed for future space power applications and avoidance of single point failures. The Mo-14%Re reactor core is loaded with uranium nitride fuel in enclosed cavities, cooled by He-30%Xe, and sized to provide 550 kWth for seven years of equivalent full power operation. The beryllium oxide reflector disassembles upon impact on water or soil. In addition to decreasing the reactor and shadow shield mass, Spectral Shift Absorber (SSA) materials added to the reactor core ensure that it remains subcritical in the worst-case submersion accident. With a 0.1 mm thick boron carbide coating on the outside surface of the core block and 0.25 mm thick iridium sleeves around the fuel stacks, the reflector outer diameter is 43.5 cm and the combined reactor and shadow shield mass is 935.1 kg. With 12.5 atom% gadolinium-155 added to the fuel, 2.0 mm diameter gadolinium-155 sesquioxide intersititial pins, and a 0.1 mm thick gadolinium-155 sesquioxide coating, the S∧4 reactor has a slightly smaller reflector outer diameter of 43.0 cm, and a total reactor and shield mass of 901.7 kg. With 8.0 atom% europium-151 added to the fuel, 2.0 mm diameter europium-151 sesquioxide interstitial pins, and a 0.1 mm thick europium-151 sesquioxide coating, the reflector's outer diameter and the total reactor and shield mass are further reduced to 41.5 cm and 869.2 kg, respectively.

  17. Solid-Core, Gas-Cooled Reactor for Space and Surface Power

    SciTech Connect

    King, Jeffrey C.; El-Genk, Mohamed S.

    2006-01-20

    The solid-core, gas-cooled, Submersion-Subcritical Safe Space (S and 4) reactor is developed for future space power applications and avoidance of single point failures. The Mo-14%Re reactor core is loaded with uranium nitride fuel in enclosed cavities, cooled by He-30%Xe, and sized to provide 550 kWth for seven years of equivalent full power operation. The beryllium oxide reflector disassembles upon impact on water or soil. In addition to decreasing the reactor and shadow shield mass, Spectral Shift Absorber (SSA) materials added to the reactor core ensure that it remains subcritical in the worst-case submersion accident. With a 0.1 mm thick boron carbide coating on the outside surface of the core block and 0.25 mm thick iridium sleeves around the fuel stacks, the reflector outer diameter is 43.5 cm and the combined reactor and shadow shield mass is 935.1 kg. With 12.5 atom% gadolinium-155 added to the fuel, 2.0 mm diameter gadolinium-155 sesquioxide intersititial pins, and a 0.1 mm thick gadolinium-155 sesquioxide coating, the S and 4 reactor has a slightly smaller reflector outer diameter of 43.0 cm, and a total reactor and shield mass of 901.7 kg. With 8.0 atom% europium-151 added to the fuel, 2.0 mm diameter europium-151 sesquioxide interstitial pins, and a 0.1 mm thick europium-151 sesquioxide coating, the reflector's outer diameter and the total reactor and shield mass are further reduced to 41.5 cm and 869.2 kg, respect0011ive.

  18. Advanced fuels for plutonium management in pressurized water reactors

    NASA Astrophysics Data System (ADS)

    Vasile, A.; Dufour, Ph; Golfier, H.; Grouiller, J. P.; Guillet, J. L.; Poinot, Ch; Youinou, G.; Zaetta, A.

    2003-06-01

    Several fuel concepts are under investigation at CEA with the aim of manage plutonium inventories in pressurized water reactors. This options range from the use of mature technologies like MOX adapted in the case of MOX-EUS (enriched uranium support) and COmbustible Recyclage A ILot (CORAIL) assemblies to more innovative technologies using IMF like DUPLEX and advanced plutonium assembly (APA). The plutonium burning performances reported to the electrical production go from 7 to 60 kg (TW h) -1. More detailed analysis covering economic, sustainability, reliability and safety aspects and their integration in the whole fuel cycle would allow identifying the best candidate.

  19. Some Tooling for Manufacturing Research Reactor Fuel Plates

    SciTech Connect

    Knight, R.W.

    1999-10-03

    This paper will discuss some of the tooling necessary to manufacture aluminum-based research reactor fuel plates. Most of this tooling is intended for use in a high-production facility. Some of the tools shown have manufactured more than 150,000 pieces. The only maintenance has been sharpening. With careful design, tools can be made to accommodate the manufacture of several different fuel elements, thus, reducing tooling costs and maintaining tools that the operators are trained to use. An important feature is to design the tools using materials with good lasting quality. Good tools can increase return on investment.

  20. Fuel subassembly leak test chamber for a nuclear reactor

    DOEpatents

    Divona, Charles J.

    1978-04-04

    A container with a valve at one end is inserted into a nuclear reactor coolant pool. Once in the pool, the valve is opened by a mechanical linkage. An individual fuel subassembly is lifted into the container by a gripper; the valve is then closed providing an isolated chamber for the subassembly. A vacuum is drawn on the chamber to encourage gaseous fission product leakage through any defects in the cladding of the fuel rods comprising the subassembly; this leakage may be detected by instrumentation, and the need for replacement of the assembly ascertained.

  1. FUEL SUBASSEMBLY CONSTRUCTION FOR RADIAL FLOW IN A NUCLEAR REACTOR

    DOEpatents

    Treshow, M.

    1962-12-25

    An assembly of fuel elements for a boiling water reactor arranged for radial flow of the coolant is described. The ingress for the coolant is through a central header tube, perforated with parallel circumferertial rows of openings each having a lip to direct the coolant flow downward. Around the central tube there are a number of equally spaced concentric trays, closely fitiing the central header tube. Cylindrical fuel elements are placed in a regular pattern around the central tube, piercing the trays. A larger tube encloses the arrangement, with space provided for upward flow of coolart beyond the edge of the trays. (AEC)

  2. Secure automated fabrication: remote fabrication of breeder-reactor fuel

    SciTech Connect

    Gerber, E.W.; Rice, L.H.; Horgos, R.M.; Nagamoto, T.T.; Graham, R.A.

    1981-05-01

    The Secure Automated Fabrication (SAF) Program was initiated at the Hanford Engineering Development Laboratory (HEDL) to develop and demonstrate an advanced manufacturing line (SAF line) for plutonium oxide breeder reactor fuel pins. The SAF line is to be installed in the Fuels and Materials Examination Facility (FMEF) at Hanford and will utilize technology that focuses on improved safety features for plant operating personnel, the public, and the environment. Equipment and process improvements incorporated by the SAF line will yield significant gains in nuclear materials safeguards, product quality and productivity.

  3. Nuclear reactor fuel element with vanadium getter on cladding

    DOEpatents

    Johnson, Carl E.; Carroll, Kenneth G.

    1977-01-01

    A nuclear reactor fuel element is described which has an outer cladding, a central core of fissionable or mixed fissionable and fertile fuel material and a layer of vanadium as an oxygen getter on the inner surface of the cladding. The vanadium reacts with oxygen released by the fissionable material during irradiation of the core to prevent the oxygen from reacting with and corroding the cladding. Also described is a method for coating the inner surface of small diameter tubes of cladding with a layer of vanadium.

  4. FABRICATION OF TUBE TYPE FUEL ELEMENT FOR NUCLEAR REACTORS

    DOEpatents

    Loeb, E.; Nicklas, J.H.

    1959-02-01

    A method of fabricating a nuclear reactor fuel element is given. It consists essentially of fixing two tubes in concentric relationship with respect to one another to provide an annulus therebetween, filling the annulus with a fissionablematerial-containing powder, compacting the powder material within the annulus and closing the ends thereof. The powder material is further compacted by swaging the inner surface of the inner tube to increase its diameter while maintaining the original size of the outer tube. This process results in reduced fabrication costs of powdered fissionable material type fuel elements and a substantial reduction in the peak core temperatures while materially enhancing the heat removal characteristics.

  5. Catalytic reactor for low-Btu fuels

    SciTech Connect

    Smith, Lance; Etemad, Shahrokh; Karim, Hasan; Pfefferle, William C.

    2009-04-21

    An improved catalytic reactor includes a housing having a plate positioned therein defining a first zone and a second zone, and a plurality of conduits fabricated from a heat conducting material and adapted for conducting a fluid therethrough. The conduits are positioned within the housing such that the conduit exterior surfaces and the housing interior surface within the second zone define a first flow path while the conduit interior surfaces define a second flow path through the second zone and not in fluid communication with the first flow path. The conduit exits define a second flow path exit, the conduit exits and the first flow path exit being proximately located and interspersed. The conduits define at least one expanded section that contacts adjacent conduits thereby spacing the conduits within the second zone and forming first flow path exit flow orifices having an aggregate exit area greater than a defined percent of the housing exit plane area. Lastly, at least a portion of the first flow path defines a catalytically active surface.

  6. 77 FR 60039 - Non-Power Reactor License Renewal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-02

    ... FR 38742), for comment from the public, licensees, certificate holders, and other stakeholders. The... COMMISSION 10 CFR Part 50 RIN 3150-AI96 Non-Power Reactor License Renewal AGENCY: Nuclear Regulatory... streamline non-power reactor license renewal. This final regulatory basis incorporates input from the...

  7. 78 FR 64028 - Decommissioning of Nuclear Power Reactors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-25

    ... Register on February 14, 2012 (77 FR 8902), for a 60-day public comment period. The public comment period... COMMISSION Decommissioning of Nuclear Power Reactors AGENCY: Nuclear Regulatory Commission. ACTION... regulatory guide (RG) 1.184 ``Decommissioning of Nuclear Power Reactors.'' This guide describes a method...

  8. The design and performance of the research reactor fuel counter

    SciTech Connect

    Abhold, M.E.; Hsue, S.T.; Menlove, H.O.; Walton, G.; Holt, S.

    1996-09-01

    This paper describes the design features, hardware specifications, and performance characteristics of the Research Reactor Fuel Counter (RRFC) System. The system is an active mode neutron coincidence counter intended to assay material test reactor fuel assemblies under water. The RRFC contains 12 {sup 3}He tubes, each with its own preamplifier, and a single ion chamber. The neutron counting electronics are based on the Los Alamos Portable Shift Register (PSR) and the gamma readout is a manual-range pico-ammeter of Los Alamos design. The RRFC is connected to the surface by a 20-m-long cable bundle. The PSR is controlled by a portable IBM computer running a modified version of the Los Alamos neutron coincidence counting code also called RRFC. There is a manual that describes the RRFC software.

  9. Preapplication safety evaluation report for the Power Reactor Innovative Small Module (PRISM) liquid-metal reactor. Final report

    SciTech Connect

    Donoghue, J.E.; Donohew, J.N.; Golub, G.R.; Kenneally, R.M.; Moore, P.B.; Sands, S.P.; Throm, E.D.; Wetzel, B.A.

    1994-02-01

    This preapplication safety evaluation report (PSER) presents the results of the preapplication desip review for die Power Reactor Innovative Small Module (PRISM) liquid-mew (sodium)-cooled reactor, Nuclear Regulatory Commission (NRC) Project No. 674. The PRISM conceptual desip was submitted by the US Department of Energy in accordance with the NRC`s ``Statement of Policy for the Regulation of Advanced Nuclear Power Plants`` (51 Federal Register 24643). This policy provides for the early Commission review and interaction with designers and licensees. The PRISM reactor desip is a small, modular, pool-type, liquid-mew (sodium)-cooled reactor. The standard plant design consists of dim identical power blocks with a total electrical output rating of 1395 MWe- Each power block comprises three reactor modules, each with a thermal rating of 471 MWt. Each module is located in its own below-grade silo and is co to its own intermediate heat transport system and steam generator system. The reactors utilize a metallic-type fuel, a ternary alloy of U-Pu-Zr. The design includes passive reactor shutdown and passive decay heat removal features. The PSER is the NRC`s preliminary evaluation of the safety features in the PRISM design, including the projected research and development programs required to support the design and the proposed testing needs. Because the NRC review was based on a conceptual design, the PSER did not result in an approval of the design. Instead it identified certain key safety issues, provided some guidance on applicable licensing criteria, assessed the adequacy of the preapplicant`s research and development programs, and concluded that no obvious impediments to licensing the PRISM design had been identified.

  10. Destruction of plutonium using non-uranium fuels in pressurized water reactor peripheral assemblies

    SciTech Connect

    Chodak, P. III

    1996-05-01

    This thesis examines and confirms the feasibility of using non-uranium fuel in a pressurized water reactor (PWR) radial blanket to eliminate plutonium of both weapons and civilian origin. In the equilibrium cycle, the periphery of the PWR is loaded with alternating fresh and once burned non-uranium fuel assemblies, with the interior of the core comprised of conventional three batch UO{sub 2} assemblies. Plutonium throughput is such that there is no net plutonium production: production in the interior is offset by destruction in the periphery. Using this approach a 50 MT WGPu inventory could be eliminated in approximately 400 reactor years of operation. Assuming all other existing constraints were removed, the 72 operating US PWRs could disposition 50 MT of WGPu in 5.6 years. Use of a low fissile loading plutonium-erbium inert-oxide-matrix composition in the peripheral assemblies essentially destroys 100% of the {sup 239}Pu and {ge}90% {sub total}Pu over two 18 month fuel cycles. Core radial power peaking, reactivity vs EFPD profiles and core average reactivity coefficients were found to be comparable to standard PWR values. Hence, minimal impact on reload licensing is anticipated. Examination of potential candidate fuel matrices based on the existing experience base and thermo-physical properties resulted in the recommendation of three inert fuel matrix compositions for further study: zirconia, alumina and TRISO particle fuels. Objective metrics for quantifying the inherent proliferation resistance of plutonium host waste and fuel forms are proposed and were applied to compare the proposed spent WGPu non-uranium fuel to spent WGPu MOX fuels and WGPu borosilicate glass logs. The elimination disposition option spent non-uranium fuel product was found to present significantly greater barriers to proliferation than other plutonium disposal products.

  11. Thermal analysis for fuel handling system for sodium cooled reactor considering minor actinide-bearing metal fuel.

    SciTech Connect

    Chikazawa, Y.; Grandy, C.; Nuclear Engineering Division

    2009-03-01

    The Advanced Burner Reactor (ABR) is one of the components of the Global Nuclear Energy Partnership (GNEP) used to close the fuel cycle. ABR is a sodium-cooled fast reactor that is used to consume transuranic elements resulting from the reprocessing of light water reactor spent nuclear fuel. ABR-1000 [1000 MW(thermal)] is a fast reactor concept created at Argonne National Laboratory to be used as a reference concept for various future trade-offs. ABR-1000 meets the GNEP goals although it uses what is considered base sodium fast reactor technology for its systems and components. One of the considerations of any fast reactor plant concept is the ability to perform fuel-handling operations with new and spent fast reactor fuel. The transmutation fuel proposed as the ABR fuel has a very little experience base, and thus, this paper investigates a fuel-handling concept and potential issues of handling fast reactor fuel containing minor actinides. In this study, two thermal analyses supporting a conceptual design study on the ABR-1000 fuel-handling system were carried out. One analysis investigated passive dry spent fuel storage, and the other analysis investigated a fresh fuel shipping cask. Passive dry storage can be made suitable for the ABR-1000 spent fuel storage with sodium-bonded metal fuel. The thermal analysis shows that spent fast reactor fuel with a decay heat of 2 kW or less can be stored passively in a helium atmosphere. The 2-kW value seems to be a reasonable and practical level, and a combination of reasonably-sized in-sodium storage followed by passive dry storage could be a candidate for spent fuel storage for the next-generation sodium-cooled reactor with sodium-bonded metal fuel. Requirements for the shipping casks for minor actinide-bearing fuel with a high decay heat level are also discussed in this paper. The shipping cask for fresh sodium-cooled-reactor fuel should be a dry type to reduce the reaction between residual moisture on fresh fuel and the

  12. Reactor Fuel Isotopics and Code Validation for Nuclear Applications

    SciTech Connect

    Francis, Matthew W.; Weber, Charles F.; Pigni, Marco T.; Gauld, Ian C.

    2015-02-01

    Experimentally measured isotopic concentrations of well characterized spent nuclear fuel (SNF) samples have been collected and analyzed by previous researchers. These sets of experimental data have been used extensively to validate the accuracy of depletion code predictions for given sets of burnups, initial enrichments, and varying power histories for different reactor types. The purpose of this report is to present the diversity of data in a concise manner and summarize the current accuracy of depletion modeling. All calculations performed for this report were done using the Oak Ridge Isotope GENeration (ORIGEN) code, an internationally used irradiation and decay code solver within the SCALE comprehensive modeling and simulation code. The diversity of data given in this report includes key actinides, stable fission products, and radioactive fission products. In general, when using the current ENDF/B-VII.0 nuclear data libraries in SCALE, the major actinides are predicted to within 5% of the measured values. Large improvements were seen for several of the curium isotopes when using improved cross section data found in evaluated nuclear data file ENDF/B-VII.0 as compared to ENDF/B-V-based results. The impact of the flux spectrum on the plutonium isotope concentrations as a function of burnup was also shown. The general accuracy noted for the actinide samples for reactor types with burnups greater than 5,000 MWd/MTU was not observed for the low-burnup Hanford B samples. More work is needed in understanding these large discrepancies. The stable neodymium and samarium isotopes were predicted to within a few percent of the measured values. Large improvements were seen in prediction for a few of the samarium isotopes when using the ENDF/B-VII.0 libraries compared to results obtained with ENDF/B-V libraries. Very accurate predictions were obtained for 133Cs and 153Eu. However, the predicted values for the stable ruthenium and rhodium isotopes varied

  13. Axially staggered seed-blanket reactor-fuel-module construction. [LWBR

    DOEpatents

    Cowell, G.K.; DiGuiseppe, C.P.

    1982-10-28

    A heterogeneous nuclear reactor of the seed-blanket type is provided wherein the fissile (seed) and fertile (blanket) nuclear fuels are segregated axially within each fuel element such that fissile and fertile regions occur in an alternating pattern along the length of the fuel element. Further, different axial stacking patterns are used for the fuel elements of at least two module types such that when modules of different types are positioned adjacent to one another, the fertile regions of the modules are offset or staggered. Thus, when a module of one type is surrounded by modules of the second type the fertile regions thereof will be surrounded on all sides by fissile material. This provides enhanced neutron communication both radially and axially, thereby resulting in greater power oscillation stability than other axial arrangements.

  14. Detachable connection for a nuclear reactor fuel assembly

    DOEpatents

    Christiansen, D.W.; Karnesky, R.A.

    1983-08-29

    A locking connection for releasably attaching a handling socket to the duct tube of a fuel assembly for a nuclear reactor. The connection comprises a load pad housing mechanically attached to the duct tube and a handling socket threadably secured within the housing. A retaining ring is interposed between the housing and the handling socket and is formed with a projection and depression engagable within a cavity and groove of the housing and handling socket, respectively, to form a detachable interlocked connection assembly.

  15. Detachable connection for a nuclear reactor fuel assembly

    DOEpatents

    Christiansen, David W.; Karnesky, Richard A.

    1986-01-01

    A locking connection for releasably attaching a handling socket to the duct tube of a fuel assembly for a nuclear reactor. The connection comprises a load pad housing mechanically attached to the duct tube and a handling socket threadably secured within the housing. A retaining ring is interposed between the housing and the handling socket and is formed with a projection and depression engageable within a cavity and groove of the housing and handling socket, respectively, to form a detachable interlocked connection assembly.

  16. FUEL ELEMENTS FOR NUCLEAR REACTORS AND PROCESS OF MAKING

    DOEpatents

    Roake, W.E.

    1958-08-19

    A process is described for producing uranium metal granules for use in reactor fuel elements. The granules are made by suspending powdered uramiunn metal or uranium hydride in a viscous, non-reactive liquid, such as paraffin oil, aad pouring the resulting suspension in droplet, on to a bed of powdered absorbent. In this manner the liquid vehicle is taken up by the sorbent and spherical pellets of uranium metal are obtained. The

  17. Preliminary study on new configuration with LEU fuel assemblies for the Dalat nuclear research reactor

    SciTech Connect

    Van Lam Pham; Vinh Vinh Le; Ton Nghiem Huynh; Ba Vien Luong; Kien Cuong Nguyen

    2008-07-15

    The fuel conversion of the Dalat Nuclear Research Reactor (DNRR) is being realized. The DNRR is a pool type research reactor which was reconstructed from the 250 kW TRIGA- MARK II reactor. The reconstructed reactor attained its nominal power of 500 kW in February 1984. According to the results of design and safety analyses performed by the joint study between RERTR Program at Argonne National Laboratory (ANL) and Vietnam Atomic Energy Commission (VAEC) the mixed core of irradiated HEU and new LEU WWR-M2 fuel assemblies will be created soon. This paper presents the results of preliminary study on new configuration with only LEU fuel assemblies for the DNRR. The codes MCNP, REBUS and VARI3D are used to calculate neutron flux performance in irradiation positions and kinetics parameters. The idea of change of Beryllium rod reloading enables to get working configuration assured shutdown margin, thermal-hydraulic safety and increase in thermal neutron flux in neutron trap at the center of DNRR active core. (author)

  18. Power ascension strategy following a reactor trip during EOC coastdown

    SciTech Connect

    Beard, C.L.; Heibel, M.D. ); Lesnick, D.C. )

    1992-01-01

    The difficulties associated with returning a reactor to the pretrip power level following a reactor trip during an end-of-cycle (EOC) power coastdown maneuver, and maintaining it once achieved, have caused utilities to abandon the restart and enter their refueling outages ahead of schedule. The Commonwealth Edison Company (CECo) Braidwood and Byron units have experienced reactor trips during EOC power coastdown maneuvers and have successfully performed restarts. The installation of the BEACON core monitoring system, which provides core monitoring, measurement reduction, core analysis and follow, and core prediction capability utilizing a very fast and accurate three-dimensional nodal code, at the CECo Byron, Braidwood, and Zion stations allows the reactor engineers at these units to accurately determine reactor response. The capabilities of the BEACON system allow an optimal return to power strategy to be developed and continuously updated. This paper presents a method for establishing the optimal return to power strategy utilizing the BEACON system.

  19. Fuel Breeding and Core Behavior Analyses on In Core Fuel Management of Water Cooled Thorium Reactors

    NASA Astrophysics Data System (ADS)

    Permana, Sidik; Sekimoto, Hiroshi; Waris, Abdul; Subhki, Muhamad Nurul; Ismail

    2010-12-01

    Thorium fuel cycle with recycled U-233 has been widely recognized having some contributions to improve the water-cooled breeder reactor program which has been shown by a feasible area of breeding and negative void reactivity which confirms that fissile of 233U contributes to better fuel breeding and effective for obtaining negative void reactivity coefficient as the main fissile material. The present study has the objective to estimate the effect of whole core configuration as well as burnup effects to the reactor core profile by adopting two dimensional model of fuel core management. About more than 40 months of cycle period has been employed for one cycle fuel irradiation of three batches fuel system for large water cooled thorium reactors. All position of fuel arrangement contributes to the total core conversion ratio which gives conversion ratio less than unity of at the BOC and it contributes to higher than unity (1.01) at the EOC after some irradiation process. Inner part and central part give the important part of breeding contribution with increasing burnup process, while criticality is reduced with increasing the irradiation time. Feasibility of breeding capability of water-cooled thorium reactors for whole core fuel arrangement has confirmed from the obtained conversion ratio which shows higher than unity. Whole core analysis on evaluating reactivity change which is caused by the change of voided condition has been employed for conservative assumption that 100% coolant and moderator are voided. It obtained always a negative void reactivity coefficient during reactor operation which shows relatively more negative void coefficient at BOC (fresh fuel composition), and it becomes less negative void coefficient with increasing the operation time. Negative value of void reactivity coefficient shows the reactor has good safety properties in relation to the reactivity profile which is the main parameter in term of criticality safety analysis. Therefore, this

  20. Fuel Breeding and Core Behavior Analyses on In Core Fuel Management of Water Cooled Thorium Reactors

    SciTech Connect

    Permana, Sidik; Sekimoto, Hiroshi; Waris, Abdul; Subhki, Muhamad Nurul; Ismail,

    2010-12-23

    Thorium fuel cycle with recycled U-233 has been widely recognized having some contributions to improve the water-cooled breeder reactor program which has been shown by a feasible area of breeding and negative void reactivity which confirms that fissile of 233U contributes to better fuel breeding and effective for obtaining negative void reactivity coefficient as the main fissile material. The present study has the objective to estimate the effect of whole core configuration as well as burnup effects to the reactor core profile by adopting two dimensional model of fuel core management. About more than 40 months of cycle period has been employed for one cycle fuel irradiation of three batches fuel system for large water cooled thorium reactors. All position of fuel arrangement contributes to the total core conversion ratio which gives conversion ratio less than unity of at the BOC and it contributes to higher than unity (1.01) at the EOC after some irradiation process. Inner part and central part give the important part of breeding contribution with increasing burnup process, while criticality is reduced with increasing the irradiation time. Feasibility of breeding capability of water-cooled thorium reactors for whole core fuel arrangement has confirmed from the obtained conversion ratio which shows higher than unity. Whole core analysis on evaluating reactivity change which is caused by the change of voided condition has been employed for conservative assumption that 100% coolant and moderator are voided. It obtained always a negative void reactivity coefficient during reactor operation which shows relatively more negative void coefficient at BOC (fresh fuel composition), and it becomes less negative void coefficient with increasing the operation time. Negative value of void reactivity coefficient shows the reactor has good safety properties in relation to the reactivity profile which is the main parameter in term of criticality safety analysis. Therefore, this