Science.gov

Sample records for power repetitively pulsed

  1. The repetitive high energy pulsed power module

    SciTech Connect

    Harjes, H.C.; Reed, K.W.; Buttram, M.T.; Turman, B.N.; Neau, E.L.; Martinez, L.; Adcock, J.; Weinbrecht, E.A.; Mann, G.A.; Morgan, F.A.; Laderach, G.E.; Pena, G.; Butler, M.; Schneider, L.X.; Wavrik, R.W.; Penn, K.J.; Weber, G.J.

    1990-01-01

    High average power magnetic pulse compression systems are being considered for use in several applications. One of the key issues in the design of a pulsed power driver for these applications is component reliability, efficiency, and lifetime. In the Repetitive High Energy Pulsed Power (RHEPP) module, pulse compression is done exclusively with magnetic switches (saturable reactors) because such switches have the potential of performing efficiently and reliably for >10{sup 10} shots. The objective of the RHEPP project is to explore the feasibility of using magnetic pulse compression technology in continuous high average power applications. The RHEPP system consists of a compressor which drives a linear induction voltage adder with a diode load. Prime power for the module is supplied by a 600 kW, 120 Hz, alternator (furnished by Westinghouse Electric Corporation). At present, construction and initial testing in a bipolar mode of the first two stages of the compressor has been completed. This system has operated for a total of 332 minutes (4.8 {times} 10{sup 6} pulses) at full power (600 kW) with an efficiency of 94+/{minus}3%. The first stage magnetic switch (MS1) has a pulse compression factor of 8.4 (4.2 ms to 500 {mu}s time to peak). It has two, parallel connected, 67 turn copper coils and a 760 kg core of 2 mil silicon steel with a magnetic cross sectional area of 0. 065 m{sup 2}. The second stage magnetic switch (MS2) has a pulse compression factor of 3 (500 {mu}s to 170 {mu}s). It has two, parallel connected, 36 turn copper coils and a 361 kg core of field annealed 2605CO Metglas with a magnetic area of 0.019 m{sup 2}. A discussion of RHEPP compressor design effort and its baseline design is given. In addition, initial results from the operation of the first two stages are presented. 11 refs., 8 figs., 4 tabs.

  2. A repetitive long-pulse power generator based on pulse forming network and linear transformer driver.

    PubMed

    Li, Mingjia; Kang, Qiang; Tan, Jie; Zhang, Faqiang; Luo, Min; Xiang, Fei

    2016-06-01

    A compact module for long-pulse power generator, based on Blumlein pulse forming network (PFN), was designed. Two Blumlein PFNs with L-type configuration and 20 Ω characteristic impedance were connected symmetrically to the primary coil of the linear transformer driver (LTD) and driven by an identical high voltage spark switch to ensure two Blumlein PFNs synchronizing operation. The output pulse of the module connected with 10 Ω water load is about 135 kV in amplitude and 200 ns in duration with a rise time of ∼50 ns and a flat top of ∼100 ns. On this basis, a repetitive long-pulse power generator based on PFN-LTD has been developed, which was composed of four modules. The following technical parameters of the generator were achieved on planar diode: output voltage amplitude of ∼560 kV, output current amplitude of ∼10 kA at a repetition rate of 25 Hz. The generator operates stable and outputs more than 10(4) pulses. Meanwhile, the continuous operating time of the generator is up to 60 s. PMID:27370479

  3. A repetitive long-pulse power generator based on pulse forming network and linear transformer driver

    NASA Astrophysics Data System (ADS)

    Li, Mingjia; Kang, Qiang; Tan, Jie; Zhang, Faqiang; Luo, Min; Xiang, Fei

    2016-06-01

    A compact module for long-pulse power generator, based on Blumlein pulse forming network (PFN), was designed. Two Blumlein PFNs with L-type configuration and 20 Ω characteristic impedance were connected symmetrically to the primary coil of the linear transformer driver (LTD) and driven by an identical high voltage spark switch to ensure two Blumlein PFNs synchronizing operation. The output pulse of the module connected with 10 Ω water load is about 135 kV in amplitude and 200 ns in duration with a rise time of ˜50 ns and a flat top of ˜100 ns. On this basis, a repetitive long-pulse power generator based on PFN-LTD has been developed, which was composed of four modules. The following technical parameters of the generator were achieved on planar diode: output voltage amplitude of ˜560 kV, output current amplitude of ˜10 kA at a repetition rate of 25 Hz. The generator operates stable and outputs more than 104 pulses. Meanwhile, the continuous operating time of the generator is up to 60 s.

  4. A repetitive long-pulse power generator based on pulse forming network and linear transformer driver.

    PubMed

    Li, Mingjia; Kang, Qiang; Tan, Jie; Zhang, Faqiang; Luo, Min; Xiang, Fei

    2016-06-01

    A compact module for long-pulse power generator, based on Blumlein pulse forming network (PFN), was designed. Two Blumlein PFNs with L-type configuration and 20 Ω characteristic impedance were connected symmetrically to the primary coil of the linear transformer driver (LTD) and driven by an identical high voltage spark switch to ensure two Blumlein PFNs synchronizing operation. The output pulse of the module connected with 10 Ω water load is about 135 kV in amplitude and 200 ns in duration with a rise time of ∼50 ns and a flat top of ∼100 ns. On this basis, a repetitive long-pulse power generator based on PFN-LTD has been developed, which was composed of four modules. The following technical parameters of the generator were achieved on planar diode: output voltage amplitude of ∼560 kV, output current amplitude of ∼10 kA at a repetition rate of 25 Hz. The generator operates stable and outputs more than 10(4) pulses. Meanwhile, the continuous operating time of the generator is up to 60 s.

  5. Power neodymium-glass amplifier of a repetitively pulsed laser

    SciTech Connect

    Vinogradov, Aleksandr V; Gaganov, V E; Garanin, Sergey G; Zhidkov, N V; Krotov, V A; Martynenko, S P; Pozdnyakov, E V; Solomatin, I I

    2011-11-30

    A neodymium-glass diode-pumped amplifier with a zigzag laser beam propagation through the active medium was elaborated; the amplifier is intended for operation in a repetitively pulsed laser. An amplifier unit with an aperture of 20 Multiplication-Sign 25 mm and a {approx}40-cm long active medium was put to a test. The energy of pump radiation amounts to 140 J at a wavelength of 806 nm for a pump duration of 550 {mu}s. The energy parameters of the amplifier were experimentally determined: the small-signal gain per pass {approx}3.2, the linear gain {approx}0.031 cm{sup -1} with a nonuniformity of its distribution over the aperture within 15%, the stored energy of 0.16 - 0.21 J cm{sup -3}. The wavefront distortions in the zigzag laser-beam propagation through the active element of the amplifier did not exceed 0.4{lambda} ({lambda} = 0.63 {mu}m is the probing radiation wavelength).

  6. Power neodymium-glass amplifier of a repetitively pulsed laser

    NASA Astrophysics Data System (ADS)

    Vinogradov, Aleksandr V.; Gaganov, V. E.; Garanin, Sergey G.; Zhidkov, N. V.; Krotov, V. A.; Martynenko, S. P.; Pozdnyakov, E. V.; Solomatin, I. I.

    2011-11-01

    A neodymium-glass diode-pumped amplifier with a zigzag laser beam propagation through the active medium was elaborated; the amplifier is intended for operation in a repetitively pulsed laser. An amplifier unit with an aperture of 20 × 25 mm and a ~40-cm long active medium was put to a test. The energy of pump radiation amounts to 140 J at a wavelength of 806 nm for a pump duration of 550 μs. The energy parameters of the amplifier were experimentally determined: the small-signal gain per pass ~3.2, the linear gain ~0.031 cm-1 with a nonuniformity of its distribution over the aperture within 15%, the stored energy of 0.16 — 0.21 J cm-3. The wavefront distortions in the zigzag laser-beam propagation through the active element of the amplifier did not exceed 0.4λ (λ = 0.63 μm is the probing radiation wavelength).

  7. A simple sub-nanosecond ultraviolet light pulse generator with high repetition rate and peak power.

    PubMed

    Binh, P H; Trong, V D; Renucci, P; Marie, X

    2013-08-01

    We present a simple ultraviolet sub-nanosecond pulse generator using commercial ultraviolet light-emitting diodes with peak emission wavelengths of 290 nm, 318 nm, 338 nm, and 405 nm. The generator is based on step recovery diode, short-circuited transmission line, and current-shaping circuit. The narrowest pulses achieved have 630 ps full width at half maximum at repetition rate of 80 MHz. Optical pulse power in the range of several hundreds of microwatts depends on the applied bias voltage. The bias voltage dependences of the output optical pulse width and peak power are analysed and discussed. Compared to commercial UV sub-nanosecond generators, the proposed generator can produce much higher pulse repetition rate and peak power.

  8. Power scaling of supercontinuum seeded megahertz-repetition rate optical parametric chirped pulse amplifiers.

    PubMed

    Riedel, R; Stephanides, A; Prandolini, M J; Gronloh, B; Jungbluth, B; Mans, T; Tavella, F

    2014-03-15

    Optical parametric chirped-pulse amplifiers with high average power are possible with novel high-power Yb:YAG amplifiers with kW-level output powers. We demonstrate a compact wavelength-tunable sub-30-fs amplifier with 11.4 W average power with 20.7% pump-to-signal conversion efficiency. For parametric amplification, a beta-barium borate crystal is pumped by a 140 W, 1 ps Yb:YAG InnoSlab amplifier at 3.25 MHz repetition rate. The broadband seed is generated via supercontinuum generation in a YAG crystal.

  9. Power scaling of supercontinuum seeded megahertz-repetition rate optical parametric chirped pulse amplifiers.

    PubMed

    Riedel, R; Stephanides, A; Prandolini, M J; Gronloh, B; Jungbluth, B; Mans, T; Tavella, F

    2014-03-15

    Optical parametric chirped-pulse amplifiers with high average power are possible with novel high-power Yb:YAG amplifiers with kW-level output powers. We demonstrate a compact wavelength-tunable sub-30-fs amplifier with 11.4 W average power with 20.7% pump-to-signal conversion efficiency. For parametric amplification, a beta-barium borate crystal is pumped by a 140 W, 1 ps Yb:YAG InnoSlab amplifier at 3.25 MHz repetition rate. The broadband seed is generated via supercontinuum generation in a YAG crystal. PMID:24690803

  10. A Dual-Capacitors Type Energy Recovery Power System for Repetitive Pulsed High Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Xiang, Y. M.; Wan, Q.; Yang, R.; Xiao, H. X.; Ding, H. F.; Li, L.

    2013-03-01

    As a flexible and convenient tool, a repetitive pulsed high magnetic field (RPHMF) would be employed for scientific research and industrial applications. A novel RPHMF system design adopting a dual-capacitors type energy recovery power system is introduced in this paper. The energy stored in the magnet can be fed back to the capacitor by a choke coil and a resonant capacitor while the energy dissipated in the discharge will be replenished to the capacitor through a high frequency resonant capacitor charging power system (CCPS). The main advantages of the design are as followed: first, the energy feedback make the system more efficient; second, during the whole process there is no reverse voltage on the metalized film capacitors, improving the energy storage capacitors' service lifetime and reliability remarkably; finally, convenience can be brought to the high frequency CCPS's application. In this paper, theoretic analysis of RPHMF system is described and an experimental device with a bitter magnet as the load is built to test the design for its verification. A 1.2 Hz, 8 T repetitive pulsed high magnetic field is generated. Experimental results show that there is no reverse voltage on the energy storage capacitors in the whole process. The factors influencing the efficiency and frequency of the system are analyzed in detail.

  11. High-power pulse repetitive HF(DF) laser with a solid-state pump generator

    NASA Astrophysics Data System (ADS)

    Velikanov, S. D.; Domazhirov, A. P.; Zaretskiy, N. A.; Kazantsev, S. Yu; Kononov, I. G.; Kromin, A. A.; Podlesnykh, S. V.; Sivachev, A. A.; Firsov, K. N.; Kharitonov, S. V.; Tsykin, V. S.; Shchurov, V. V.; Yutkin, I. M.

    2015-11-01

    Operation of a repetitively pulsed electric-discharge HF(DF) laser with an all-solid-state pump generator based on FID switches is demonstrated. The energy stored in the pump generator capacitors was 880 J at an open-circuit voltage of 240 kV and a discharge pulse repetition rate of 25 Hz. The specific energy extractions were 3.8 and 3.4 J L-1 for the HF and DF lasers, respectively. The possibilities of improving the output laser characteristics are discussed.

  12. NEO-LISP: Deflecting near-earth objects using high average power, repetitively pulsed lasers

    SciTech Connect

    Phipps, C.R.; Michaelis, M.M.

    1994-10-01

    Several kinds of Near-Earth objects exist for which one would like to cause modest orbit perturbations, but which are inaccessible to normal means of interception because of their number, distance or the lack of early warning. For these objects, LISP (Laser Impulse Space Propulsion) is an appropriate technique for rapidly applying the required mechanical impulse from a ground-based station. In order of increasing laser energy required, examples are: (1) repositioning specially prepared geosynchronous satellites for an enhanced lifetime, (2) causing selected items of space junk to re-enter and burn up in the atmosphere on a computed trajectory, and (3) safely deflecting Earth-directed comet nuclei and earth-crossing asteroids (ECA`s) a few tens of meters in size (the most hazardous size). They will discuss each of these problems in turn and show that each application is best matched by its own matrix of LISP laser pulse width, pulse repetition rate, wavelength and average power. The latter ranges from 100W to 3GW for the cases considered. They will also discuss means of achieving the active beam phase error correction during passage through the atmosphere and very large exit pupil in the optical system which are required in each of these cases.

  13. NEO-LISP: Deflecting near-Earth objects using high average power, repetitively pulsed lasers

    NASA Astrophysics Data System (ADS)

    Phipps, C. R.; Michaelis, M. M.

    Several kinds of Near-Earth objects exist for which one would like to cause modest orbit perturbations, but which are inaccessible to normal means of interception because of their number, distance or the lack of early warning. For these objects, LISP (Laser Impulse Space Propulsion) is an appropriate technique for rapidly applying the required mechanical impulse from a ground-based station. In order of increasing laser energy required, examples are: (1) repositioning specially prepared geosynchronous satellites for an enhanced lifetime; (2) causing selected items of space junk to re-enter and burn up in the atmosphere on a computed trajectory; and (3) safely deflecting Earth-directed comet nuclei and earth-crossing asteroids (ECA's) a few tens of meters in size (the most hazardous size). They will discuss each of these problems in turn and show that each application is best matched by its own matrix of LISP laser pulse width, pulse repetition rate, wavelength and average power. The latter ranges from 100W to 3GW for the cases considered. They will also discuss means of achieving the active beam phase error correction during passage through the atmosphere and very large exit pupil in the optical system which are required in each of these cases.

  14. 500 MW peak power degenerated optical parametric amplifier delivering 52 fs pulses at 97 kHz repetition rate.

    PubMed

    Rothhardt, J; Hädrich, S; Röser, F; Limpert, J; Tünnermann, A

    2008-06-01

    We present a high peak power degenerated parametric amplifier operating at 1030 nm and 97 kHz repetition rate. Pulses of a state-of-the art fiber chirped-pulse amplification (FCPA) system with 840 fs pulse duration and 410 microJ pulse energy are used as pump and seed source for a two stage optical parametric amplifier. Additional spectral broadening of the seed signal in a photonic crystal fiber creates enough bandwidth for ultrashort pulse generation. Subsequent amplification of the broadband seed signal in two 1 mm BBO crystals results in 41 microJ output pulse energy. Compression in a SF 11 prism compressor yields 37 microJ pulses as short as 52 fs. Thus, pulse shortening of more than one order of magnitude is achieved. Further scaling in terms of average power and pulse energy seems possible and will be discussed, since both concepts involved, the fiber laser and the parametric amplifier have the reputation to be immune against thermo-optical effects.

  15. On the possibility of using a corner-cube reflector in resonators of high-power repetitively pulsed lasers

    SciTech Connect

    Bulaev, V D; Gusev, V S; Lysenko, S L; Morozov, Yu B; Poznyshev, A N

    2012-08-31

    An optical cavity with a highly reflecting mirror in the form of a hollow corner-cube reflector (CCR) made of uncooled plane metal mirrors, which, in combination with a plane semitransparent output mirror, ensures complete filling of the output laser beam aperture, is studied. It is shown that, both in the pulsed and repetitively pulsed regimes of high-power far- and mid-IR lasers, it is possible to achieve beam divergence close to the diffraction limit (taking into account the drift of the radiation pattern axis) and dependent only on the quality of surfaces and accuracy of alignment of the hollow CCR mirrors and the resonator. (elements of laser systems)

  16. High-average-power 2 μm few-cycle optical parametric chirped pulse amplifier at 100 kHz repetition rate.

    PubMed

    Shamir, Yariv; Rothhardt, Jan; Hädrich, Steffen; Demmler, Stefan; Tschernajew, Maxim; Limpert, Jens; Tünnermann, Andreas

    2015-12-01

    Sources of long wavelengths few-cycle high repetition rate pulses are becoming increasingly important for a plethora of applications, e.g., in high-field physics. Here, we report on the realization of a tunable optical parametric chirped pulse amplifier at 100 kHz repetition rate. At a central wavelength of 2 μm, the system delivered 33 fs pulses and a 6 W average power corresponding to 60 μJ pulse energy with gigawatt-level peak powers. Idler absorption and its crystal heating is experimentally investigated for a BBO. Strategies for further power scaling to several tens of watts of average power are discussed.

  17. High-average-power 2 μm few-cycle optical parametric chirped pulse amplifier at 100 kHz repetition rate.

    PubMed

    Shamir, Yariv; Rothhardt, Jan; Hädrich, Steffen; Demmler, Stefan; Tschernajew, Maxim; Limpert, Jens; Tünnermann, Andreas

    2015-12-01

    Sources of long wavelengths few-cycle high repetition rate pulses are becoming increasingly important for a plethora of applications, e.g., in high-field physics. Here, we report on the realization of a tunable optical parametric chirped pulse amplifier at 100 kHz repetition rate. At a central wavelength of 2 μm, the system delivered 33 fs pulses and a 6 W average power corresponding to 60 μJ pulse energy with gigawatt-level peak powers. Idler absorption and its crystal heating is experimentally investigated for a BBO. Strategies for further power scaling to several tens of watts of average power are discussed. PMID:26625047

  18. Power, pulse width, and repetition rate agile low-cost multi-spectral semi-active laser simulator

    NASA Astrophysics Data System (ADS)

    O'Daniel, Jason K.; Young, Preston; Golden, Eric; Barton, Robert; Snyder, Donald

    2010-04-01

    The emergence of spectrally multimode smart missiles requires hardware-in-the-loop (HWIL) facilities to simulate multiple spectral signatures simultaneously. While traditional diode-pumped solid-state (DPSS) sources provide a great basic testing source for smart missiles, they typically are bulky and provide substantially more power peak power than what is required for laboratory simulation, have fixed pulse widths, and require some external means to attenuate the output power. HWIL facilities require systems capable of high speed variability of the angular divergence and optical intensity over several orders of magnitude, which is not typically provided by basic DPSS systems. In order to meet the needs of HWIL facilities, we present a low-cost semi-active laser (SAL) simulator source using laser diode sources that emits laser light at the critical wavelengths of 1064 nm and 1550 nm, along with light in the visible for alignment, from a single fiber aperture. Fiber delivery of the multi-spectral output can provide several advantages depending on the testing setup. The SAL simulator source presented is capable of providing attenuation of greater than 70 dB with a response time of a few milliseconds and provides a means to change the angular divergence over an entire dynamic range of 0.02- 6º in less than 400 ms. Further, the SAL simulator is pulse width and pulse repetition rate agile making it capable of producing both current and any future coding format necessary.

  19. Octave-spanning OPCPA system delivering CEP-stable few-cycle pulses and 22 W of average power at 1 MHz repetition rate.

    PubMed

    Rothhardt, Jan; Demmler, Stefan; Hädrich, Steffen; Limpert, Jens; Tünnermann, Andreas

    2012-05-01

    We report on an OPCPA system delivering CEP-stable pulses with a pulse duration of only 1.7 optical cycles at 880 nm wavelength. This pulse duration is achieved by the generation, optical parametric amplification and compression of a full optical octave of bandwidth. The system is pumped by a high average power Yb-fiber laser system, which allows for operation of the OPCPA at up to 1 MHz repetition rate and 22 W of average output power. Further scaling towards single-cycle pulses, higher energy and output power is discussed. PMID:22565712

  20. Numerical simulation of high-power virtual-cathode reflex triode driven by repetitive short pulse electron gun

    SciTech Connect

    Yovchev, I.G.; Spassovsky, I.P.; Nikolov, N.A.; Dimitrov, D.P.; Messina, G.; Raimondi, P.; Barroso, J.J.; Correa, R.A.

    1996-06-01

    A virtual-cathode reflex triode is investigated by numerical simulations. A trapezoidal in shape voltage pulse with an amplitude of 300 kV is applied to the solid cathode of the device to drive the cathode negative. The electron beam-to-microwave power conversion efficiency {epsilon}, calculated for the pulse flat top with a duration {tau}{sub ft} = 1.2 ns is approximately the same (about 1.5--2%) as well as for a long flat top ({tau}{sub ft} = 4 ns). The simulations show a 10--15% increase of {epsilon} at {tau}{sub ft} shortening to 0.6 ns. However, this occurs when the anode mesh transparency is high (80--90%). Considerable enhancement of the efficiency (about four times) for {tau}{sub ft} = 0.6 ns has been calculated if the cathode side surface is brought near to the anode tube (from {approx}0.5% at cathode radius R{sub c} = 1.6 cm to {approx}2% at R{sub c} = 3.8 cm). The obtained results would find an application for the design of virtual-cathode reflex triode devices driven by a short pulse and high repetition rate electron gun.

  1. Properties of water surface discharge at different pulse repetition rates

    SciTech Connect

    Ruma,; Yoshihara, K.; Hosseini, S. H. R. Sakugawa, T.; Akiyama, H.; Akiyama, M.; Lukeš, P.

    2014-09-28

    The properties of water surface discharge plasma for variety of pulse repetition rates are investigated. A magnetic pulse compression (MPC) pulsed power modulator able to deliver pulse repetition rates up to 1000 Hz, with 0.5 J per pulse energy output at 25 kV, was used as the pulsed power source. Positive pulse with a point-to-plane electrode configuration was used for the experiments. The concentration and production yield of hydrogen peroxide (H₂O₂) were quantitatively measured and orange II organic dye was treated, to evaluate the chemical properties of the discharge reactor. Experimental results show that the physical and chemical properties of water surface discharge are not influenced by pulse repetition rate, very different from those observed for under water discharge. The production yield of H₂O₂ and degradation rate per pulse of the dye did not significantly vary at different pulse repetition rates under a constant discharge mode on water surface. In addition, the solution temperature, pH, and conductivity for both water surface and underwater discharge reactors were measured to compare their plasma properties for different pulse repetition rates. The results confirm that surface discharge can be employed at high pulse repetition rates as a reliable and advantageous method for industrial and environmental decontamination applications.

  2. Investigation of a repetitive pulsed electrothermal thruster

    NASA Technical Reports Server (NTRS)

    Burton, R. L.; Fleischer, D.; Goldstein, S. A.; Tidman, D. A.; Winsor, N. K.

    1986-01-01

    A pulsed electrothermal (PET) thruster with 1000:1 ratio nozzle is tested in a repetitive mode on water propellant. The thruster is driven by a 60J pulse forming network at repetition rates up to 10 Hz (600W). The pulse forming network has a .31 ohm impedance, well matched to the capillary discharge resistance of .40 ohm, and is directly coupled to the thruster electrodes without a switch. The discharge is initiated by high voltage breakdown, typically at 2500V, through the water vapor in the interelectrode gap. Water is injected as a jet through a .37 mm orifice on the thruster axis. Thruster voltage, current and impulse bit are recorded for several seconds at various power supply currents. Thruster to power ratio is typically T/P = .07 N/kW. Tank background pressure precludes direct measurement of exhaust velocity which is inferred from calculated pressure and temperature in the discharge to be about 14 km/sec. Efficiency, based on this velocity and measured T/P is .54 + or - .07. Thruster ablation is zero at the throat and becomes measurable further upstream, indicating that radiative ablation is occurring late in the pulse.

  3. 1 W average-power 100 MHz repetition-rate 259 nm femtosecond deep ultraviolet pulse generation from ytterbium fiber amplifier.

    PubMed

    Zhou, Xiangyu; Yoshitomi, Dai; Kobayashi, Yohei; Torizuka, Kenji

    2010-05-15

    We demonstrate 1W average-power ultraviolet (UV) femtosecond (fs) ultrashort pulse generation at a wavelength of 259 nm and a repetition rate as high as 100 MHz by quadrupling a fs ytterbium-fiber laser. A cavity-enhanced design is employed for efficient frequency doubling to the UV region. The optical-to-optical efficiency of UV output to the pump diode is 2.6%.

  4. Repetitive resonant railgun power supply

    DOEpatents

    Honig, E.M.; Nunnally, W.C.

    1985-06-19

    A repetitive resonant railgun power supply provides energy for repetitively propelling projectiles from a pair of parallel rails. The supply comprises an energy storage capacitor, a storage inductor to form a resonant circuit with the energy storage capacitor and a magnetic switch to transfer energy between the resonant circuit and the pair of parallel rails for the propelling of projectiles.

  5. Repetitive resonant railgun power supply

    DOEpatents

    Honig, Emanuel M.; Nunnally, William C.

    1988-01-01

    A repetitive resonant railgun power supply provides energy for repetitively propelling projectiles from a pair of parallel rails. The supply comprises an energy storage capacitor, a storage inductor to form a resonant circuit with the energy storage capacitor and a magnetic switch to transfer energy between the resonant circuit and the pair of parallel rails for the propelling of projectiles.

  6. Nanosecond pulsed power generator for a voltage amplitude up to 300 kV and a repetition rate up to 16 Hz for fine disintegration of quartz

    NASA Astrophysics Data System (ADS)

    Krastelev, E. G.; Sedin, A. A.; Tugushev, V. I.

    2015-12-01

    A generator of high-power high-voltage nanosecond pulses is intended for electrical discharge disintegration of mineral quartz and other nonconducting minerals. It includes a 320 kV Marx pulsed voltage generator, a high-voltage glycerin-insulated coaxial peaking capacitor, and an output gas spark switch followed by a load, an electric discharge disintegration chamber. The main parameters of the generator are as follows: a voltage pulse amplitude of up to 300 kV, an output impedance of ≈10 Ω, a discharge current amplitude of up to 25 kA for a half-period of 80-90 ns, and a pulse repetition rate of up to 16 Hz.

  7. Nanosecond pulsed power generator for a voltage amplitude up to 300 kV and a repetition rate up to 16 Hz for fine disintegration of quartz

    SciTech Connect

    Krastelev, E. G. Sedin, A. A.; Tugushev, V. I.

    2015-12-15

    A generator of high-power high-voltage nanosecond pulses is intended for electrical discharge disintegration of mineral quartz and other nonconducting minerals. It includes a 320 kV Marx pulsed voltage generator, a high-voltage glycerin-insulated coaxial peaking capacitor, and an output gas spark switch followed by a load, an electric discharge disintegration chamber. The main parameters of the generator are as follows: a voltage pulse amplitude of up to 300 kV, an output impedance of ≈10 Ω, a discharge current amplitude of up to 25 kA for a half-period of 80–90 ns, and a pulse repetition rate of up to 16 Hz.

  8. Repetitively pulsed plasma illumination source improvements

    NASA Astrophysics Data System (ADS)

    Root, Robert G.; Falkos, Paul

    1999-05-01

    A repetitively pulsed broad band visible illumination system has been developed that is suitable for capturing images of high speed motion over sizable areas. At full pulse energy, a two lamp system can illuminate 60 square feet for movies at f/4 with 400 ASA color film and framing rates as high as 1700 fps. At reduced energy, for smaller area applications, the framing rate can be doubled. The short pulse length (4.5 microsecond(s) at full energy, 1.5 microsecond(s) at reduced energy) produces sharp images of high speed objects. This paper reports developments since the last presentation, including: (1) higher pulse repetition rates (a few kilohertz), (2) synchronization with high speed camera, (3) full scale burst of several thousand pulses, (4) characteristics of a compact demonstration system, and (5) demonstration of the ability of the short pulse to freeze motion.

  9. Series-counterpulse repetitive-pulse inductive storage circuit

    DOEpatents

    Honig, E.M.

    1984-06-05

    A high-power series-counterpulse repetitive-pulse inductive energy storage and transfer circuit includes an opening switch, a main energy storage coil, and a counterpulse capacitor. The local pulse is initiated simultaneously with the initiation of the counterpulse used to turn the opening switch off. There is no delay from command to output pulse. During the load pulse, the counterpulse capacitor is automatically charged with sufficient energy to accomplish the load counterpulse which terminates the load pulse and turns the load switch off. When the main opening switch is reclosed to terminate the load pulse, the counterpulse capacitor discharges through the load, causing a rapid, sharp cutoff of the load pulse as well as recovering any energy remaining in the load inductance. The counterpulse capacitor is recharged to its original condition by the main energy storage coil after the load pulse is over, not before it begins.

  10. Repetitively pulsed Cr:LiSAF laser for lidar applications

    SciTech Connect

    Shimada, Tsutomu; Early, J.W.; Lester, C.S.; Cockroft, N.J.

    1994-03-01

    A Cr:LiSAF laser has been successfully operated at time averaged powers up to 11 W and at pulse repetition rates to 12 Hz. During Q-switch operation, output energy as high as 450 mJ (32 ns FWHM) was obtained. Finally, line narrowed Q-switched pulses (< 0.1 nm) from the Cr:LiSAF laser were successfully used as a tunable light source for lidar to measure atmospheric water content.

  11. Reversing-counterpulse repetitive-pulse inductive storage circuit

    DOEpatents

    Honig, E.M.

    1987-02-10

    A high-power reversing-counterpulse repetitive-pulse inductive storage and transfer circuit includes an opening switch, a main energy storage coil, a counterpulse capacitor and a small inductor. After counterpulsing the opening switch off, the counterpulse capacitor is recharged by the main energy storage coil before the load pulse is initiated. This gives the counterpulse capacitor sufficient energy for the next counterpulse operation, although the polarity of the capacitor's voltage must be reversed before that can occur. By using a current-zero switch as the counterpulse start switch, the capacitor is disconnected from the circuit (with a full charge) when the load pulse is initiated, preventing the capacitor from depleting its energy store by discharging through the load. After the load pulse is terminated by reclosing the main opening switch, the polarity of the counterpulse capacitor voltage is reversed by discharging the capacitor through a small inductor and interrupting the discharge current oscillation at zero current and peak reversed voltage. The circuit enables high-power, high-repetition-rate operation with reusable switches and features total control (pulse-to-pulse) over output pulse initiation, duration, repetition rate, and, to some extent, risetime. 10 figs.

  12. Reversing-counterpulse repetitive-pulse inductive storage circuit

    DOEpatents

    Honig, Emanuel M.

    1987-01-01

    A high-power reversing-counterpulse repetitive-pulse inductive storage and transfer circuit includes an opening switch, a main energy storage coil, a counterpulse capacitor and a small inductor. After counterpulsing the opening switch off, the counterpulse capacitor is recharged by the main energy storage coil before the load pulse is initiated. This gives the counterpulse capacitor sufficient energy for the next counterpulse operation, although the polarity of the capacitor's voltage must be reversed before that can occur. By using a current-zero switch as the counterpulse start switch, the capacitor is disconnected from the circuit (with a full charge) when the load pulse is initiated, preventing the capacitor from depleting its energy store by discharging through the load. After the load pulse is terminated by reclosing the main opening switch, the polarity of the counterpulse capacitor voltage is reversed by discharging the capacitor through a small inductor and interrupting the discharge current oscillation at zero current and peak reversed voltage. The circuit enables high-power, high-repetition-rate operation with reusable switches and features total control (pulse-to-pulse) over output pulse initiation, duration, repetition rate, and, to some extent, risetime.

  13. Reversing-counterpulse repetitive-pulse inductive storage circuit

    DOEpatents

    Honig, E.M.

    1984-06-05

    A high power reversing-counterpulse repetitive-pulse inductive storage and transfer circuit includes an opening switch, a main energy storage coil, a counterpulse capacitor and a small inductor. After counterpulsing the opening switch off, the counterpulse capacitor is recharged by the main energy storage coil before the load pulse is initiated. This gives the counterpulse capacitor sufficient energy for the next counterpulse operation, although the polarity of the capacitor's voltage must be reversed before that can occur. By using a current-zero switch as the counterpulse start switch, the capacitor is disconnected from the circuit (with a full charge) when the load pulse is initiated, preventing the capacitor from depleting its energy store by discharging through the load. After the load pulse is terminated by reclosing the main opening switch, the polarity of the counterpulse capacitor voltage is reversed by discharging the capacitor through a small inductor and interrupting the discharge current oscillation at zero current and peak reversed voltage. The circuit enables high-power, high-repetition-rate operation with reusable switches and features total control (pulse-to-pulse) over output pulse initiation, duration, repetition rate, and, to some extent, risetime.

  14. Conducted noise analysis and protection of 45 kJ/s, ±50 kV capacitor charging power supply when interfaced with repetitive Marx based pulse power system.

    PubMed

    Naresh, P; Patel, Ankur; Sharma, Archana

    2015-09-01

    Pulse power systems with highly dynamic loads like klystron, backward wave oscillator (BWO), and magnetron generate highly dynamic noise. This noise leads to frequent failure of controlled switches in the inverter stage of charging power supply. Designing a reliable and compatible power supply for pulse power applications is always a tricky job when charging rate is in multiples of 10 kJ/s. A ±50 kV and 45 kJ/s capacitor charging power supply based on 4th order LCLC resonant topology has been developed for a 10 Hz repetitive Marx based system. Conditions for load independent constant current and zero current switching (ZCS) are derived mathematically. Noise generated at load end due to dynamic load is tackled effectively and reduction in magnitude noise voltage is achieved by providing shielding between primary and secondary of high voltage high frequency transformer and with LCLC low pass filter. Shielding scales down the ratio between coupling capacitance (Cc) and the collector-emitter capacitance of insulated gate bi-polar transistor switch, which in turn reduces the common mode noise voltage magnitude. The proposed 4th order LCLC resonant network acts as a low pass filter for differential mode noise in the reverse direction (from load to source). Power supply has been tested repeatedly with 5 Hz repetition rate with repetitive Marx based system connected with BWO load working fine without failure of single switch in the inverter stage. PMID:26429461

  15. Conducted noise analysis and protection of 45 kJ/s, ±50 kV capacitor charging power supply when interfaced with repetitive Marx based pulse power system

    NASA Astrophysics Data System (ADS)

    Naresh, P.; Patel, Ankur; Sharma, Archana

    2015-09-01

    Pulse power systems with highly dynamic loads like klystron, backward wave oscillator (BWO), and magnetron generate highly dynamic noise. This noise leads to frequent failure of controlled switches in the inverter stage of charging power supply. Designing a reliable and compatible power supply for pulse power applications is always a tricky job when charging rate is in multiples of 10 kJ/s. A ±50 kV and 45 kJ/s capacitor charging power supply based on 4th order LCLC resonant topology has been developed for a 10 Hz repetitive Marx based system. Conditions for load independent constant current and zero current switching (ZCS) are derived mathematically. Noise generated at load end due to dynamic load is tackled effectively and reduction in magnitude noise voltage is achieved by providing shielding between primary and secondary of high voltage high frequency transformer and with LCLC low pass filter. Shielding scales down the ratio between coupling capacitance (Cc) and the collector-emitter capacitance of insulated gate bi-polar transistor switch, which in turn reduces the common mode noise voltage magnitude. The proposed 4th order LCLC resonant network acts as a low pass filter for differential mode noise in the reverse direction (from load to source). Power supply has been tested repeatedly with 5 Hz repetition rate with repetitive Marx based system connected with BWO load working fine without failure of single switch in the inverter stage.

  16. Nanosecond repetitively pulsed discharge control of premixed lean methane-air combustion

    NASA Astrophysics Data System (ADS)

    Bak, Moon Soo; Cappelli, Mark A.

    2012-10-01

    Two-dimensional kinetic simulations are carried out to investigate the effects of the discharge repetition rate and pulse width of nanosecond repetitively pulsed discharges on stabilizing premixed lean methane-air combustion. The repetition rate and pulse widths are varied from 10 kHz to 50 kHz and from 9 ns to 2 ns respectively, while the total power is held constant. The lower repetition rates, because of their higher pulse energies, produce a larger fraction of radicals such as O, H, and OH. Surprisingly, however, the effect on flame stabilization is found to be essentially the same for all of the tested repetition rates. The shorter pulse width is found to favor the production of species in higher electronic states, but the varying effects on stabilization is also found to be small. Our results indicate that the total deposited power is the critical element that determines the extent of stabilization over this range of discharge properties studied.

  17. BANSHEE: High-voltage repetitively pulsed electron-beam driver

    SciTech Connect

    VanHaaften, F.

    1992-01-01

    BANSHEE (Beam Accelerator for a New Source of High-Energy Electrons) this is a high-voltage modulator is used to produce a high-current relativistic electron beam for high-power microwave tube development. The goal of the BANSHEE research is first to achieve a voltage pulse of 700--750 kV with a 1-{mu}s pulse width driving a load of {approximately}100 {Omega}, the pulse repetition frequency (PRF) of a few hertz. The ensuing goal is to increase the pulse amplitude to a level approaching 1 MV. We conducted tests using half the modulator with an output load of 200 {Omega}, up to a level of {approximately}650 kV at a PRF of 1 Hz and 525 kV at a PRF of 5 Hz. We then conducted additional testing using the complete system driving a load of {approximately}100 {Omega}.

  18. BANSHEE: High-voltage repetitively pulsed electron-beam driver

    SciTech Connect

    VanHaaften, F.

    1992-08-01

    BANSHEE (Beam Accelerator for a New Source of High-Energy Electrons) this is a high-voltage modulator is used to produce a high-current relativistic electron beam for high-power microwave tube development. The goal of the BANSHEE research is first to achieve a voltage pulse of 700--750 kV with a 1-{mu}s pulse width driving a load of {approximately}100 {Omega}, the pulse repetition frequency (PRF) of a few hertz. The ensuing goal is to increase the pulse amplitude to a level approaching 1 MV. We conducted tests using half the modulator with an output load of 200 {Omega}, up to a level of {approximately}650 kV at a PRF of 1 Hz and 525 kV at a PRF of 5 Hz. We then conducted additional testing using the complete system driving a load of {approximately}100 {Omega}.

  19. Investigation of Fe:ZnSe laser in pulsed and repetitively pulsed regimes

    SciTech Connect

    Velikanov, S D; Zaretskiy, N A; Zotov, E A; Maneshkin, A A; Chuvatkin, R S; Yutkin, I M; Kozlovsky, V I; Korostelin, Yu V; Krokhin, O N; Podmar'kov, Yu P; Savinova, S A; Skasyrsky, Ya K; Frolov, M P

    2015-01-31

    The characteristics of a Fe:ZnSe laser pumped by a single-pulse free-running Er : YAG laser and a repetitively pulsed HF laser are presented. An output energy of 4.9 J is achieved in the case of liquid-nitrogen cooling of the Fe{sup 2+}:ZnSe active laser element longitudinally pumped by an Er:YAG laser with a pulse duration of 1 ms and an energy up to 15 J. The laser efficiency with respect to the absorbed energy is 47%. The output pulse energy at room temperature is 53 mJ. The decrease in the output energy is explained by a strong temperature dependence of the upper laser level lifetime and by pulsed heating of the active element. The temperature dependence of the upper laser level lifetime is used to determine the pump parameters needed to achieve high pulse energies at room temperature. Stable repetitively-pulsed operation of the Fe{sup 2+}:ZnSe laser at room temperature with an average power of 2.4 W and a maximum pulse energy of 14 mJ is achieved upon pumping by a 1-s train of 100-ns HF laser pulses with a repetition rate of 200 Hz. (lasers)

  20. Repetitive transcranial magnetic stimulator with controllable pulse parameters

    NASA Astrophysics Data System (ADS)

    Peterchev, Angel V.; Murphy, David L.; Lisanby, Sarah H.

    2011-06-01

    The characteristics of transcranial magnetic stimulation (TMS) pulses influence the physiological effect of TMS. However, available TMS devices allow very limited adjustment of the pulse parameters. We describe a novel TMS device that uses a circuit topology incorporating two energy storage capacitors and two insulated-gate bipolar transistor (IGBT) modules to generate near-rectangular electric field pulses with adjustable number, polarity, duration, and amplitude of the pulse phases. This controllable pulse parameter TMS (cTMS) device can induce electric field pulses with phase widths of 10-310 µs and positive/negative phase amplitude ratio of 1-56. Compared to conventional monophasic and biphasic TMS, cTMS reduces energy dissipation up to 82% and 57% and decreases coil heating up to 33% and 41%, respectively. We demonstrate repetitive TMS trains of 3000 pulses at frequencies up to 50 Hz with electric field pulse amplitude and width variability less than the measurement resolution (1.7% and 1%, respectively). Offering flexible pulse parameter adjustment and reduced power consumption and coil heating, cTMS enhances existing TMS paradigms, enables novel research applications and could lead to clinical applications with potentially enhanced potency.

  1. Repetitive Transcranial Magnetic Stimulator with Controllable Pulse Parameters

    PubMed Central

    Peterchev, Angel V; Murphy, David L; Lisanby, Sarah H

    2013-01-01

    The characteristics of transcranial magnetic stimulation (TMS) pulses influence the physiological effect of TMS. However, available TMS devices allow very limited adjustment of the pulse parameters. We describe a novel TMS device that uses a circuit topology incorporating two energy storage capacitors and two insulated-gate bipolar transistor (IGBT) modules to generate near-rectangular electric field pulses with adjustable number, polarity, duration, and amplitude of the pulse phases. This controllable pulse parameter TMS (cTMS) device can induce electric field pulses with phase widths of 10–310 μs and positive/negative phase amplitude ratio of 1–56. Compared to conventional monophasic and biphasic TMS, cTMS reduces energy dissipation by up to 82% and 57%, and decreases coil heating by up to 33% and 41%, respectively. We demonstrate repetitive TMS trains of 3,000 pulses at frequencies up to 50 Hz with electric field pulse amplitude and width variability less than the measurement resolution (1.7% and 1%, respectively). Offering flexible pulse parameter adjustment and reduced power consumption and coil heating, cTMS enhances existing TMS paradigms, enables novel research applications, and could lead to clinical applications with potentially enhanced potency. PMID:21540487

  2. Repetitive transcranial magnetic stimulator with controllable pulse parameters.

    PubMed

    Peterchev, Angel V; Murphy, David L; Lisanby, Sarah H

    2011-06-01

    The characteristics of transcranial magnetic stimulation (TMS) pulses influence the physiological effect of TMS. However, available TMS devices allow very limited adjustment of the pulse parameters. We describe a novel TMS device that uses a circuit topology incorporating two energy storage capacitors and two insulated-gate bipolar transistor (IGBT) modules to generate near-rectangular electric field pulses with adjustable number, polarity, duration, and amplitude of the pulse phases. This controllable pulse parameter TMS (cTMS) device can induce electric field pulses with phase widths of 10-310 µs and positive/negative phase amplitude ratio of 1-56. Compared to conventional monophasic and biphasic TMS, cTMS reduces energy dissipation up to 82% and 57% and decreases coil heating up to 33% and 41%, respectively. We demonstrate repetitive TMS trains of 3000 pulses at frequencies up to 50 Hz with electric field pulse amplitude and width variability less than the measurement resolution (1.7% and 1%, respectively). Offering flexible pulse parameter adjustment and reduced power consumption and coil heating, cTMS enhances existing TMS paradigms, enables novel research applications and could lead to clinical applications with potentially enhanced potency. PMID:21540487

  3. Series-counterpulse repetitive-pulse inductive storage circuit

    DOEpatents

    Honig, Emanuel M.

    1986-01-01

    A high-power series-counterpulse repetitive-pulse inductive energy storage and transfer circuit includes an opening switch, a main energy storage coil, and a counterpulse capacitor. The load pulse is initiated simultaneously with the initiation of the counterpulse which is used to turn the opening switch off. There is no delay from command to output pulse. During the load pulse, the counterpulse capacitor is first discharged and then recharged in the opposite polarity with sufficient energy to accomplish the load counterpulse which terminates the load pulse and turns the load switch off. When the main opening switch is triggered closed again to terminate the load pulse, the counterpulse capacitor discharges in the reverse direction through the load switch and through the load, causing a rapid, sharp cutoff of the load pulse as well as recovering any energy remaining in the load inductance. The counterpulse capacitor is recharged to its original condition by the main energy storage coil after the load pulse is over, not before it begins.

  4. Repetitively rated plasma relativistic microwave oscillator with a controllable frequency in every pulse

    SciTech Connect

    Bogdankevich, I. L.; Grishin, D. M.; Gunin, A. V.; Ivanov, I. E.; Korovin, S. D.; Loza, O. T.; Mesyats, G. A.; Pavlov, D. A.; Rostov, V. V.; Strelkov, P. S.; Ul'yanov, D. K.

    2008-10-15

    A repetitively rated microwave oscillator whose frequency can be varied electronically from pulse to pulse in a predetermined manner is created for the first time. The microwave oscillator has a power on the order of 10{sup 8} W and is based on the Cherenkov interaction of a high-current relativistic electron beam with a plasma preformed before each pulse. Electronic control over the plasma properties allows one to arbitrarily vary the microwave frequency from pulse to pulse at a pulse repetition rate of up to 50 Hz.

  5. Simple filtered repetitively pulsed vacuum arc plasma source

    SciTech Connect

    Chekh, Yu.; Zhirkov, I. S.; Delplancke-Ogletree, M. P.

    2010-02-15

    A very simple design of cathodic filtered vacuum arc plasma source is proposed. The source without filter has only four components and none of them require precise machining. The source operates in a repetitively pulsed regime, and for laboratory experiments it can be used without water cooling. Despite the simple construction, the source provides high ion current at the filter outlet reaching 2.5% of 400 A arc current, revealing stable operation in a wide pressure range from high vacuum to oxygen pressure up to more than 10{sup -2} mbar. There is no need in complicated power supply system for this plasma source, only one power supply can be used to ignite the arc, to provide the current for the arc itself, to generate the magnetic field in the filter, and provide its positive electric biasing without any additional high power resistance.

  6. Experiments on a repetitively pulsed electrothermal thruster

    NASA Technical Reports Server (NTRS)

    Burton, R. L.; Fleischer, D.; Goldstein, S. A.; Tidman, D. A.

    1987-01-01

    This paper presents experimental results from an investigation of a pulsed electrothermal (PET) thruster using water propellant. The PET thruster is operated on a calibrated thrust stand, and produces a thrust to power ratio of T/P = 0.07 + or - 0.01 N/kW. The discharge conditions are inferred from a numerical model which predicts pressure and temperature levels of 300-500 atm and 20,000 K, respectively. These values in turn correctly predict the measured values of impulse bit and discharge resistance. The inferred ideal exhaust velocity from these conditions is 17 km/sec, but the injection of water propellant produces a test tank background pressure of 10-20 Torr, which reduces the exhaust velocity to 14 km/sec. This value corresponds to a thrust efficiency of 54 + or - 7 percent when all experimental errors are taken into account.

  7. A long-pulse repetitive operation magnetically insulated transmission line oscillator

    SciTech Connect

    Fan, Yu-Wei; Zhong, Hui-Huang; Zhang, Jian-De; Shu, Ting; Liu, Jin Liang

    2014-05-15

    The improved magnetically insulated transmission line oscillator (MILO) is a gigawatt-class L-band high power microwave tube. It has allowed us to generate 3.1 GW pulse of 40 ns duration in the single-pulse operation and 500 MW pulse of 25 ns duration in the repetition rate operation. However, because of the severe impedance mismatch, the power conversion efficiency is only about 4% in the repetition rate operation. In order to eliminate the impedance mismatch and obtain repetitive long-pulse high-power microwave (HPM), a series of experiments are carried out and the recent progress is presented in this paper. In the single-pulse operation, when the diode voltage is 466 kV and current is 41.6 kA, the radiated microwave power is above 2.2 GW, the pulse duration is above 102 ns, the microwave frequency is about 1.74 GHz, and the power conversion efficiency is about 11.5%. In the repetition rate operation, under the condition of the diode voltage about 400 kV, beam current about 38 kA, the radiated microwave power is about 1.0 GW, the pulse duration is about 85 ns. Moreover, the radiated microwave power and the pulse duration decline little by little when the shot numbers increase gradually. The experimental results show that the impedance matching is a vital factor for HPM systems and one of the major technical challenges is to improve the cathode for the repetition rate operation MILO.

  8. A long-pulse repetitive operation magnetically insulated transmission line oscillator.

    PubMed

    Fan, Yu-Wei; Zhong, Hui-Huang; Zhang, Jian-De; Shu, Ting; Liu, Jin Liang

    2014-05-01

    The improved magnetically insulated transmission line oscillator (MILO) is a gigawatt-class L-band high power microwave tube. It has allowed us to generate 3.1 GW pulse of 40 ns duration in the single-pulse operation and 500 MW pulse of 25 ns duration in the repetition rate operation. However, because of the severe impedance mismatch, the power conversion efficiency is only about 4% in the repetition rate operation. In order to eliminate the impedance mismatch and obtain repetitive long-pulse high-power microwave (HPM), a series of experiments are carried out and the recent progress is presented in this paper. In the single-pulse operation, when the diode voltage is 466 kV and current is 41.6 kA, the radiated microwave power is above 2.2 GW, the pulse duration is above 102 ns, the microwave frequency is about 1.74 GHz, and the power conversion efficiency is about 11.5%. In the repetition rate operation, under the condition of the diode voltage about 400 kV, beam current about 38 kA, the radiated microwave power is about 1.0 GW, the pulse duration is about 85 ns. Moreover, the radiated microwave power and the pulse duration decline little by little when the shot numbers increase gradually. The experimental results show that the impedance matching is a vital factor for HPM systems and one of the major technical challenges is to improve the cathode for the repetition rate operation MILO.

  9. Direct laser writing of amorphous silicon on Si-substrate induced by high repetition femtosecond pulses

    NASA Astrophysics Data System (ADS)

    Kiani, Amirkianoosh; Venkatakrishnan, Krishnan; Tan, Bo

    2010-10-01

    This research aimed to study the effects of laser parameters on direct silicon amorphorization. It was found that higher repetition rate of laser pulses gives smooth morphology with better repeatability. Increasing pulse duration and number of pulses were seen to increase the line width. However, increasing the number of pulses does not result in ablation of the target area. An analytical model is developed for the calculation of the average surface temperature after n-pulses; it was found that for a constant power and a constant repetition rate, an increase in the pulse number does not correspond to a significant increase in the surface temperature. Moreover, at the controlled laser power level, the surface temperature will not exceed the melting point of silicon. Therefore, thermal induced damage is not observed during the amorphization.

  10. Pulsed high-power beams

    SciTech Connect

    Reginato, L.L.; Birx, D.L.

    1988-06-01

    The marriage of induction linac technology with nonlinear magnetic modulators has produced some unique capabilities. It is now possible to produce short-pulse electron beams with average currents measured in amperes, at gradients approaching 1-MeV/m, and with power efficiencies exceeding 50%. A 70-Mev, 3-kA induction accelerator (ETA II) constructed at the Lawrence Livermore National Laboratory incorporates the pulse technology concepts that have evolved over the past several years. The ETA II is a linear induction accelerator and provides a test facility for demonstration of the high-average-power components and high-brightness sources used in such accelerators. The pulse drive for the accelerator is based on state-of-the-art magnetic pulse compressors with very high peak-power capability, repetition rates exceeding 1 kHz, and excellent reliability. 6 figs.

  11. Induction linacs and pulsed power

    SciTech Connect

    Caporaso, G.J.

    1995-07-11

    Progress in electronic power conversion technology is making possible a new class of induction linacs that can operate at extremely high repetition rates. Advances in insulator technology, pulse forming line design and switching may also lead to a new type of high current accelerator with accelerating gradients at least an order of magnitude greater than those attainable today. The evolution of the induction accelerator pulsed power system will be discussed along with some details of these emerging technologies which are at the frontiers of accelerator technology.

  12. Multiple-circuit pulse generator for high repetition rate rare gas halide lasers.

    PubMed

    Wang, C P

    1978-10-01

    A multiple-circuit high pulse repetition frequency (PRF) pulse generator for the pumping of rare gas halide lasers is reported. With this multiple-circuit design, high PRF can be achieved by the use of existing low PRF thyratron switches and capacitors. A two-circuit pulse generator was constructed, and its performance is described. By means of this pulse generator and a blowdown-type fast transverse-flow system, high PRF laser action in XeF was obtained, typically, 6 mJ/pulse at 1 kHz or 6 W average power. High PRF laser action in N(2) was also observed.

  13. An optical parametric chirped-pulse amplifier for seeding high repetition rate free-electron lasers

    SciTech Connect

    Höppner, H.; Tanikawa, T.; Schulz, M.; Riedel, R.; Teubner, U.; Faatz, B.; Tavella, F.

    2015-05-15

    High repetition rate free-electron lasers (FEL), producing highly intense extreme ultraviolet and x-ray pulses, require new high power tunable femtosecond lasers for FEL seeding and FEL pump-probe experiments. A tunable, 112 W (burst mode) optical parametric chirped-pulse amplifier (OPCPA) is demonstrated with center frequencies ranging from 720–900 nm, pulse energies up to 1.12 mJ and a pulse duration of 30 fs at a repetition rate of 100 kHz. Since the power scalability of this OPCPA is limited by the OPCPA-pump amplifier, we also demonstrate a 6.7–13.7 kW (burst mode) thin-disk OPCPA-pump amplifier, increasing the possible OPCPA output power to many hundreds of watts. Furthermore, third and fourth harmonic generation experiments are performed and the results are used to simulate a seeded FEL with high-gain harmonic generation.

  14. High repetition rate tunable femtosecond pulses and broadband amplification from fiber laser pumped parametric amplifier.

    PubMed

    Andersen, T V; Schmidt, O; Bruchmann, C; Limpert, J; Aguergaray, C; Cormier, E; Tünnermann, A

    2006-05-29

    We report on the generation of high energy femtosecond pulses at 1 MHz repetition rate from a fiber laser pumped optical parametric amplifier (OPA). Nonlinear bandwidth enhancement in fibers provides the intrinsically synchronized signal for the parametric amplifier. We demonstrate large tunability extending from 700 nm to 1500 nm of femtosecond pulses with pulse energies as high as 1.2 muJ when the OPA is seeded by a supercontinuum generated in a photonic crystal fiber. Broadband amplification over more than 85 nm is achieved at a fixed wavelength. Subsequent compression in a prism sequence resulted in 46 fs pulses. With an average power of 0.5 W these pulses have a peak-power above 10 MW. In particular, the average power and pulse energy scalability of both involved concepts, the fiber laser and the parametric amplifier, will enable easy up-scaling to higher powers.

  15. Study of periodic surface profile on improving the window capacity at single and repetitive pulses

    SciTech Connect

    Liu, Y. S.; Zhang, X. W.; Zhang, Z. Q.; Shao, H.; Wang, Y.; Liu, W. Y.; Ke, C. F.; Chen, C. H.; Liang, Y. Q.; Wu, X. L.; Guo, L. T.; Chang, C.

    2015-09-15

    The surface breakdown of dielectric windows seriously limits the transmission of high power microwaves (HPM), and has blocked the development of microwave technology in recent decades. In this paper, X-band HPM experiments of window breakdown at the vacuum/dielectric interface and the atmosphere/dielectric interface at single and repetitive pulses were conducted. The cross-linked polystyrene (CLPS) dielectric window with a periodic surface profile can significantly improve the breakdown threshold at single and repetitive pulses. Furthermore, the flat surface layer of CLPS was discovered to be carbonized to a depth of several millimeters and filled with electrical trees at repetitive pulses. Theoretical models were built to understand the underlying physics behind the phenomena in experiments. With the analysis of the electron resonance process breaking the molecular bond and the temperature rise caused by the traversing current in the dielectric material, a microscopic explanation for the carbonization of the dielectric window was introduced.

  16. High-power supercontinuum generation using high-repetition-rate ultrashort-pulse fiber laser for ultrahigh-resolution optical coherence tomography in 1600 nm spectral band

    NASA Astrophysics Data System (ADS)

    Yamanaka, Masahito; Kawagoe, Hiroyuki; Nishizawa, Norihiko

    2016-02-01

    We describe the generation of a high-power, spectrally smooth supercontinuum (SC) in the 1600 nm spectral band for ultrahigh-resolution optical coherence tomography (UHR-OCT). A clean SC was achieved by using a highly nonlinear fiber with normal dispersion properties and a high-quality pedestal-free pulse obtained from a passively mode-locked erbium-doped fiber laser operating at 182 MHz. The center wavelength and spectral width were 1578 and 172 nm, respectively. The output power of the SC was 51 mW. Using the developed SC source, we demonstrated UHR-OCT imaging of biological samples with a sensitivity of 109 dB and an axial resolution of 4.9 µm in tissue.

  17. An Experiment on Repetitive Pulse Operation of Microwave Rocket

    SciTech Connect

    Oda, Yasuhisa; Shibata, Teppei; Komurasaki, Kimiya; Takahashi, Koji; Kasugai, Atsushi; Sakamoto, Keishi

    2008-04-28

    Microwave Rocket was operated with repetitive pulses. The microwave rocket model with forced breathing system was used. The pressure history in the thruster was measured and the thrust impulse was deduced. As a result, the impulse decreased at second pulse and impulses at latter pulses were constant. The dependence of the thrust performance on the partial filling rate of the thruster was compared to the thrust generation model based on the shock wave driven by microwave plasma. The experimental results showed good agreement to the predicted dependency.

  18. Generation of Shear Alfvén Waves by Repetitive High Power Microwave Pulses Near the Electron Plasma Frequency - A laboratory study of a ``Virtual Antenna''

    NASA Astrophysics Data System (ADS)

    Wang, Yuhou; Gekelman, Walter; Pribyl, Patrick; van Compernolle, Bart; Papadopoulos, Konstantinos

    2015-11-01

    ELF / ULF waves are important in terrestrial radio communications but difficult to launch using ground-based structures due to their enormous wavelengths. In spite of this generation of such waves by field-aligned ionospheric heating modulation was first demonstrated using the HAARP facility. In the future heaters near the equator will be constructed and laboratory experiments on cross-field wave propagation could be key to the program's success. Here we report a detailed laboratory study conducted on the Large Plasma Device (LaPD) at UCLA. In this experiment, ten rapid pulses of high power microwaves (250 kW X-band) near the plasma frequency were launched transverse to the background field, and were modulated at a variable fraction (0.1-1.0) of fci. Along with bulk electron heating and density modification, the microwave pulses generated a population of fast electrons. The field-aligned current carried by the fast electrons acted as an antenna that radiated shear Alfvén waves. It was demonstrated that a controllable arbitrary frequency (f power dependence of the virtual antenna is also presented. This work is supported by an AFOSR MURI award, and conducted at the Basic Plasma Science Facility at UCLA funded by DoE and NSF.

  19. Repetitively pulsed Nd-glass slab lasers

    NASA Astrophysics Data System (ADS)

    Denker, B. I.; Kir'ianov, A. V.; Maliutin, A. A.; Kertesz, I.; Kroo, N.

    1989-09-01

    The possibility of obtaining high laser output energies at 1.32 micron using thin LiNdLa phosphate glass slabs with a high Nd(3+) concentration is discussed. Comparison data for 1.054 micron are also given. In the experiments, 3 x 14 x 125-mm slabs were prepared from LiNdLa phosphate glass with Nd concentration 1.2 x 10 to the 21st/cu cm. The uncoated slab facets were tested in a silver-coated quartz tube reflector pumped by 450-microsec flash-lamp pulses. The light passing through the slab returns to it after reflection from the tube surface. Most of the radiation falls on the wider side of the slab at large angles of incidence, thus maximizing its path inside the slab. The 150-mm laser resonator was formed by two flat mirrors. At 1.32 microns an output mirror of reflectivity r = 95 percent was used (with r less than 10 percent at 1.054 micron), while at 1.054 micron, r(output) = 50 percent was chosen. The pump-energy dependence of the output energy was measured.

  20. Energy coupling to the plasma in repetitive nanosecond pulse discharges

    SciTech Connect

    Adamovich, Igor V.; Nishihara, Munetake; Choi, Inchul; Uddi, Mruthunjaya; Lempert, Walter R.

    2009-11-15

    A new analytic quasi-one-dimensional model of energy coupling to nanosecond pulse discharge plasmas in plane-to-plane geometry has been developed. The use of a one-dimensional approach is based on images of repetitively pulsed nanosecond discharge plasmas in dry air demonstrating that the plasma remains diffuse and uniform on a nanosecond time scale over a wide range of pressures. The model provides analytic expressions for the time-dependent electric field and electron density in the plasma, electric field in the sheath, sheath boundary location, and coupled pulse energy. The analytic model predictions are in very good agreement with numerical calculations. The model demonstrates that (i) the energy coupled to the plasma during an individual nanosecond discharge pulse is controlled primarily by the capacitance of the dielectric layers and by the breakdown voltage and (ii) the pulse energy coupled to the plasma during a burst of nanosecond pulses decreases as a function of the pulse number in the burst. This occurs primarily because of plasma temperature rise and resultant reduction in breakdown voltage, such that the coupled pulse energy varies approximately proportionally to the number density. Analytic expression for coupled pulse energy scaling has been incorporated into the air plasma chemistry model, validated previously by comparing with atomic oxygen number density measurements in nanosecond pulse discharges. The results of kinetic modeling using the modified air plasma chemistry model are compared with time-resolved temperature measurements in a repetitively pulsed nanosecond discharge in air, by emission spectroscopy, and purely rotational coherent anti-Stokes Raman spectroscopy showing good agreement.

  1. Energy coupling to the plasma in repetitive nanosecond pulse discharges

    NASA Astrophysics Data System (ADS)

    Adamovich, Igor V.; Nishihara, Munetake; Choi, Inchul; Uddi, Mruthunjaya; Lempert, Walter R.

    2009-11-01

    A new analytic quasi-one-dimensional model of energy coupling to nanosecond pulse discharge plasmas in plane-to-plane geometry has been developed. The use of a one-dimensional approach is based on images of repetitively pulsed nanosecond discharge plasmas in dry air demonstrating that the plasma remains diffuse and uniform on a nanosecond time scale over a wide range of pressures. The model provides analytic expressions for the time-dependent electric field and electron density in the plasma, electric field in the sheath, sheath boundary location, and coupled pulse energy. The analytic model predictions are in very good agreement with numerical calculations. The model demonstrates that (i) the energy coupled to the plasma during an individual nanosecond discharge pulse is controlled primarily by the capacitance of the dielectric layers and by the breakdown voltage and (ii) the pulse energy coupled to the plasma during a burst of nanosecond pulses decreases as a function of the pulse number in the burst. This occurs primarily because of plasma temperature rise and resultant reduction in breakdown voltage, such that the coupled pulse energy varies approximately proportionally to the number density. Analytic expression for coupled pulse energy scaling has been incorporated into the air plasma chemistry model, validated previously by comparing with atomic oxygen number density measurements in nanosecond pulse discharges. The results of kinetic modeling using the modified air plasma chemistry model are compared with time-resolved temperature measurements in a repetitively pulsed nanosecond discharge in air, by emission spectroscopy, and purely rotational coherent anti-Stokes Raman spectroscopy showing good agreement.

  2. Variable pulse repetition frequency output from an optically injected solid state laser.

    PubMed

    Kane, D M; Toomey, J P

    2011-02-28

    An optically injected solid state laser (OISSL) system is known to generate complex nonlinear dynamics within the parameter space of varying the injection strength of the master laser and the frequency detuning between the master and slave lasers. Here we show that within these complex nonlinear dynamics, a system which can be operated as a source of laser pulses with a pulse repetition frequency (prf) that can be continuously varied by a single control, is embedded. Generation of pulse repetition frequencies ranging from 200 kHz up to 4 MHz is shown to be achievable for an optically injected Nd:YVO4 solid state laser system from analysis of prior experimental and simulation results. Generalizing this to other optically injected solid state laser systems, the upper bound on the repetition frequency is of order the relaxation oscillation frequency for the lasers. The system is discussed in the context of prf versatile laser systems more generally. Proposals are made for the next generation of OISSLs that will increase understanding of the variable pulse repetition frequency operation, and determine its practical limitations. Such variable prf laser systems; both low powered, and, higher powered systems achieved using one or more optical power amplifier stages; have many potential applications from interrogating resonance behaviors in microscale structures, through sensing and diagnostics, to laser processing.

  3. Alternative approach for cavitation damage study utilizing repetitive laser pulses

    SciTech Connect

    Ren, Fei; Wang, Jy-An John; Wang, Hong

    2010-01-01

    Cavitation is a common phenomenon in fluid systems that can lead to dramatic degradation of solid materials surface in contact with the cavitating media. Study of cavitation damage has great significance in many engineering fields. Current techniques for cavitation damage study either require large scale equipments or tend to introduce damages from other mechanisms. In this project, we utilized the cavitation phenomenon induced by laser optical breakdown and developed a prototype apparatus for cavitation damage study. In our approach, cavitation was generated by the repetitive pressure waves induced by high-power laser pulses. As proof of principal study, stainless steel and aluminum samples were tested using the novel apparatus. Surface characterization via scanning electron microscopy revealed damages such as indentation and surface pitting, which were similar to those reported in literature using other state-of-the-art techniques. These preliminary results demonstrated the new device was capable of generating cavitation damages and could be used as an alternative method for cavitation damage study.

  4. Lithium batteries for pulse power

    NASA Astrophysics Data System (ADS)

    Redey, Laszlo

    New designs of lithium batteries having bipolar construction and thin cell components possess the very low impedance that is necessary to deliver high-intensity current pulses. The research and development and understanding of the fundamental properties of these pulse batteries have reached an advanced level. Ranges of 50 to 300 kW/kg specific power and 80 to 130 Wh/kg specific energy have been demonstrated with experimental high-temperature lithium alloy/transition-metal disulfide rechargeable bipolar batteries in repeated 1- to 100-ms long pulses. Other versions are designed for repetitive power bursts that may last up to 20 or 30 s and yet may attain high specific power (1 to 10 kW/kg). Primary high-temperature Li-alloy/FeS2 pulse batteries (thermal batteries) are already commercially available. Other high-temperature lithium systems may use chlorine or metal-oxide positive electrodes. Also under development are low-temperature pulse batteries: a 50-kW Li/SOCl2 primary batter and an all solid-state, polymer-electrolyte secondary battery. Such pulse batteries could find use in commercial and military applications in the near future.

  5. Lithium batteries for pulse power

    SciTech Connect

    Redey, L.

    1990-01-01

    New designs of lithium batteries having bipolar construction and thin cell components possess the very low impedance that is necessary to deliver high-intensity current pulses. The R D and understanding of the fundamental properties of these pulse batteries have reached an advanced level. Ranges of 50--300 kW/kg specific power and 80--130 Wh/kg specific energy have been demonstrated with experimental high-temperature lithium alloy/transition-metal disulfide rechargeable bipolar batteries in repeated 1- to 100-ms long pulses. Other versions are designed for repetitive power bursts that may last up to 20 or 30 s and yet may attain high specific power (1--10 kW/kg). Primary high-temperature Li-alloy/FeS{sub 2} pulse batteries (thermal batteries) are already commercially available. Other high-temperature lithium systems may use chlorine or metal-oxide positive electrodes. Also under development are low-temperature pulse batteries: a 50-kW Li/SOCl{sub 2} primary batter and an all solid-state, polymer-electrolyte secondary battery. Such pulse batteries could find use in commercial and military applications in the near future. 21 refs., 8 figs.

  6. Widely tunable repetition-rate and pulse-duration nanosecond pulses from two spectral beam combined fiber amplifiers

    NASA Astrophysics Data System (ADS)

    Hu, Man; Zheng, Ye; Yang, Yifeng; Chen, Xiaolong; Zhao, Chun; Liu, Kai; Wang, Jianhua; Qi, Yunfeng; He, Bing; Zhou, Jun

    2016-10-01

    Nanosecond pulses with a widely tunable repetition-rate and pulse-duration at 1 μm wavelength are obtained by spectrally combining two pulse fiber amplifiers using a home-made polarization-independent multilayer dielectric reflective diffraction grating. The width of the combined pulses can be tuned from 4 ns to 800 ns, and the pulse repetition-rate can be ranged from 1 MHz to 200 MHz. Thanks to the spectral beam combining system, the maximum repetition-rate and pulse-duration of the combined pulses are doubled, compared to the single pulse fiber amplifier, by setting a proper temporal delay between the two pulse channels.

  7. Repetitively pulsed cryogenically cooled quasi-sealed-off slab RF discharge first-overtone CO laser

    NASA Astrophysics Data System (ADS)

    Ionin, A. A.; Kozlov, A. Yu.; Rulev, O. A.; Seleznev, L. V.; Sinitsyn, D. V.

    2016-07-01

    A slab first-overtone CO laser of improved design excited by repetitively pulsed RF discharge was researched and developed. Its quasi-sealed-off operation appeared to be possible only by using active gas mixture composition with extremely high content of oxygen — up to 50 % with respect to CO concentration. Average output power of the first-overtone CO laser came up to ~2 W with the efficiency of ~2 %. The laser spectrum obtained by using three sets of output couplers consisted of more than 100 vibrational-rotational spectral lines in 28 vibrational first-overtone bands of CO molecule within 2.55÷3.90 μm wavelength range. The number of laser radiation pulses which could be produced by the laser in sealed-off mode of operation (without gas mixture renovation) reached ~5×105 at the averaged output power near its maximum, and ~106 at lower (near its half-maximum) averaged output power. Special features of laser radiation temporal behavior were discussed. Under repetitively pulse pump with repetition rate from 300 up to 7500 Hz, a temporal profile of the CO laser radiation changed from the train of time-separated laser pulses with high peak power to quasi-CW mode of operation.

  8. Long-life power sources for continuous and repetitive loads

    SciTech Connect

    Young, T.J.

    1982-03-01

    Long life electrical power sources compatible with continuous and repetitive pulse loads are of increasing interest for Sandia systems. Both primary chemical batteries and radioisotopic thermoelectric generators (RTG) are capable of supplying power for long periods of time. However, each has its particular advantages and disadvantages and neither alone may represent a good match to the system constraints. The purpose of this report is to provide some insight into the power, volume, and cost trade-offs between either of these sources alone and between hybrids consisting of RTGs with primary batteries, secondary batteries, or capacitors. These trade-offs suggest that the hybrid power sources may have significant volume and cost advantages for many applications.

  9. Accumulated destructive effect of nanosecond repetitive voltage pulses on the insulated coatings of Fe-based nanocrystalline ribbon

    SciTech Connect

    Zhang, Yu; Liu, Jinliang

    2013-03-11

    Fe-based nanocrystalline ribbon is widely employed in pulsed power devices and accelerators. A temperature accumulation model is put forward to explain the accumulated destructive effect of discharge plasma bombardment on the TiO{sub 2} coatings of nanocrystalline ribbon under 50 Hz/100 ns voltage pulses. Experimental results revealed that the plasma channel expansion caused by air breakdown in the coating crack heated the coating repetitively, and the coating temperature was increased and accumulated around the crack. The fact that repetitive voltage pulses were more destructive than a single pulse with the same amplitude was caused by the intensified coating ablation under the temperature accumulation effect.

  10. Generating diffuse discharge via repetitive nanosecond pulses and line-line electrodes in atmospheric air.

    PubMed

    Li, Lee; Liu, Yun-Long; Ge, Ya-Feng; Bin, Yu; Huang, Jia-Jia; Lin, Fo-Chan

    2013-10-01

    Diffuse discharge in atmospheric air can generate extremely high power density and large-scale non-thermal plasma. An achievable method of generating diffuse discharge is reported in this paper. Based on the resonance theory, a compact high-voltage repetitive nanosecond pulse generator (HRNPG) has been developed as discharge excitation source. The HRNPG mainly consists of repetitive charging circuit, Tesla transformer and sharpening switch. With the voltage lower than 1.0 kV, the primary repetitive charging circuit comprises two fast thyristors as low-voltage switches. A spiral Tesla transformer is designed to provide a peak transformation ratio of more than 100. The HRNPG prototype is capable of generating a pulse with over 100 kV peak voltage and ~30 ns rise-time at the repetition frequency of 500 Hz. Using the copper line electrodes with a diameter of 0.4 mm, the gaps with highly non-uniform electric field are structured. With the suitable gap spacing and applied pulse, the glow-like diffuse discharge has been generated in line-type and ring-type electrode pairs. Some typical images are presented. PMID:24182161

  11. Generating diffuse discharge via repetitive nanosecond pulses and line-line electrodes in atmospheric air.

    PubMed

    Li, Lee; Liu, Yun-Long; Ge, Ya-Feng; Bin, Yu; Huang, Jia-Jia; Lin, Fo-Chan

    2013-10-01

    Diffuse discharge in atmospheric air can generate extremely high power density and large-scale non-thermal plasma. An achievable method of generating diffuse discharge is reported in this paper. Based on the resonance theory, a compact high-voltage repetitive nanosecond pulse generator (HRNPG) has been developed as discharge excitation source. The HRNPG mainly consists of repetitive charging circuit, Tesla transformer and sharpening switch. With the voltage lower than 1.0 kV, the primary repetitive charging circuit comprises two fast thyristors as low-voltage switches. A spiral Tesla transformer is designed to provide a peak transformation ratio of more than 100. The HRNPG prototype is capable of generating a pulse with over 100 kV peak voltage and ~30 ns rise-time at the repetition frequency of 500 Hz. Using the copper line electrodes with a diameter of 0.4 mm, the gaps with highly non-uniform electric field are structured. With the suitable gap spacing and applied pulse, the glow-like diffuse discharge has been generated in line-type and ring-type electrode pairs. Some typical images are presented.

  12. Generating diffuse discharge via repetitive nanosecond pulses and line-line electrodes in atmospheric air

    NASA Astrophysics Data System (ADS)

    Li, Lee; Liu, Yun-Long; Ge, Ya-Feng; Bin, Yu; Huang, Jia-Jia; Lin, Fo-Chan

    2013-10-01

    Diffuse discharge in atmospheric air can generate extremely high power density and large-scale non-thermal plasma. An achievable method of generating diffuse discharge is reported in this paper. Based on the resonance theory, a compact high-voltage repetitive nanosecond pulse generator (HRNPG) has been developed as discharge excitation source. The HRNPG mainly consists of repetitive charging circuit, Tesla transformer and sharpening switch. With the voltage lower than 1.0 kV, the primary repetitive charging circuit comprises two fast thyristors as low-voltage switches. A spiral Tesla transformer is designed to provide a peak transformation ratio of more than 100. The HRNPG prototype is capable of generating a pulse with over 100 kV peak voltage and ˜30 ns rise-time at the repetition frequency of 500 Hz. Using the copper line electrodes with a diameter of 0.4 mm, the gaps with highly non-uniform electric field are structured. With the suitable gap spacing and applied pulse, the glow-like diffuse discharge has been generated in line-type and ring-type electrode pairs. Some typical images are presented.

  13. CAVITATION DAMAGE STUDY VIA A NOVEL REPETITIVE PRESSURE PULSE APPROACH

    SciTech Connect

    Wang, Jy-An John; Ren, Fei; Wang, Hong

    2010-01-01

    Cavitation damage can significantly affect system performance. Thus, there is great interest in characterizing cavitation damage and improving materials resistance to cavitation damage. In this paper, we present a novel methodology to simulate cavitation environment. A pulsed laser is utilized to induce optical breakdown in the cavitation media, with the emission of shock wave and the generation of bubbles. The pressure waves induced by the optical breakdown fluctuate/propagate within the media, which enables the cavitation to occur and to further develop cavitation damage at the solid boundary. Using the repetitive pulsed-pressure apparatus developed in the current study, cavitation damage in water media was verified on stainless steel and aluminum samples. Characteristic cavitation damages such as pitting and indentation are observed on sample surfaces using scanning electron microscopy.

  14. Note: Emittance measurements of intense pulsed proton beam for different pulse length and repetition rate

    SciTech Connect

    Miracoli, R.; Gammino, S.; Celona, L.; Mascali, D.; Castro, G.; Gobin, R.; Delferriere, O.; Adroit, G.; Senee, F.; Ciavola, G.

    2012-05-15

    The high intensity ion source (SILHI), in operation at CEA-Saclay, has been used to produce a 90 mA pulsed proton beam with pulse length and repetition rates suitable for the European Spallation Source (ESS) linac. Typical r-r{sup '} rms normalized emittance values smaller than 0.2{pi} mm mrad have been measured for operation in pulsed mode (0.01 < duty cycle < 0.15 and 1 ms < pulse duration < 10 ms) that are relevant for the design update of the Linac to be used at the ESS in Lund.

  15. Plasma-Assisted Flame Ignition and Stabilization using Nanosecond Repetitively Pulsed Discharges

    NASA Astrophysics Data System (ADS)

    Laux, Christophe

    2007-10-01

    Ever more stringent environmental regulations are providing impetus for reducing pollutant emissions, in particular nitric oxides and soot, in internal combustion and aircraft engines. Lean or diluted combustible mixtures are of particular interest because they burn at lower flame temperatures than stoichiometric mixtures and thus produce lesser amounts of thermal nitric oxides. Over the past decade, high voltage nanosecond pulsed discharges have been demonstrated as energy efficient way to ignite such mixtures. However, the practical application of these discharges for ignition purposes is limited by the very high electric fields required, especially in high pressure combustion chambers. Moreover, stabilization requires a steady-state addition of energy that cannot be achieved with single or low repetition frequency pulses. In the present work, we investigate the applicability and effectiveness of high voltage nanosecond discharges with high pulse repetition frequencies, typically up to 100 kHz. The high repetition frequencies are chosen to exceed the recombination rate of chemically active species. In this way, the concentration of active species can build up between consecutive pulses, thus yielding significantly higher concentrations than with low frequency pulses. These discharges are investigated for two applications, the ignition of diluted air/propane mixtures at pressures up to several bars in a constant volume chamber, and the stabilization of atmospheric pressure lean premixed air/propane flames. Time-resolved electric and spectroscopic measurements are presented to analyze the discharge regimes, the energy deposition, the gas temperature evolution, the electron number density, and the production of excited species. The results show that nanosecond repetitive pulses produce ultrafast gas heating and atomic oxygen generation, both on nanosecond time scales, via excitation of molecular nitrogen followed by dissociative quenching of molecular oxygen. These

  16. Fast Rise Time and High Voltage Nanosecond Pulses at High Pulse Repetition Frequency

    NASA Astrophysics Data System (ADS)

    Miller, Kenneth E.; Ziemba, Timothy; Prager, James; Picard, Julian; Hashim, Akel

    2015-09-01

    Eagle Harbor Technologies (EHT), Inc. is conducting research to decrease the rise time and increase the output voltage of the EHT Nanosecond Pulser product line, which allows for independently, user-adjustable output voltage (0 - 20 kV), pulse width (20 - 500 ns), and pulse repetition frequency (0 - 100 kHz). The goals are to develop higher voltage pulses (50 - 60 kV), decrease the rise time from 20 to below 10 ns, and maintain the high pulse repetition capabilities. These new capabilities have applications to pseudospark generation, corona production, liquid discharges, and nonlinear transmission line driving for microwave production. This work is supported in part by the US Navy SBIR program.

  17. Power Enhancement Cavity for Burst-Mode Laser Pulses

    SciTech Connect

    Liu, Yun

    2015-01-01

    We demonstrate a novel optical cavity scheme and locking method that can realize the power enhancement of picosecond UV laser pulses operating at a burst mode with arbitrary burst (macropulse) lengths and repetition rates.

  18. High power, high repetition rate, few picosecond Nd:LuVO₄ oscillator with cavity dumping.

    PubMed

    Gao, Peng; Guo, Jie; Li, Jinfeng; Lin, Hua; Yu, Haohai; Zhang, Huaijin; Liang, Xiaoyan

    2015-12-28

    We investigate the potential use of Nd:LuVO4 in high average power, high repetition rate ultrafast lasers. Maximum mode-locked average power of 28 W is obtained at the repetition rate of 58 MHz. The shortest pulse duration is achieved at 4 ps without dispersion compensation. With a cavity dumping technique, the pulse energy is scaling up to 40.7 μJ at 300 kHz and 14.3 μJ at 1.5 MHz. PMID:26831955

  19. An optical parametric chirped-pulse amplifier for seeding high repetition rate free-electron lasers

    DOE PAGES

    Höppner, H.; Hage, A.; Tanikawa, T.; Schulz, M.; Riedel, R.; Teubner, U.; Prandolini, M. J.; Faatz, B.; Tavella, F.

    2015-05-15

    High repetition rate free-electron lasers (FEL), producing highly intense extreme ultraviolet and x-ray pulses, require new high power tunable femtosecond lasers for FEL seeding and FEL pump-probe experiments. A tunable, 112 W (burst mode) optical parametric chirped-pulse amplifier (OPCPA) is demonstrated with center frequencies ranging from 720–900 nm, pulse energies up to 1.12 mJ and a pulse duration of 30 fs at a repetition rate of 100 kHz. Since the power scalability of this OPCPA is limited by the OPCPA-pump amplifier, we also demonstrate a 6.7–13.7 kW (burst mode) thin-disk OPCPA-pump amplifier, increasing the possible OPCPA output power to manymore » hundreds of watts. Furthermore, third and fourth harmonic generation experiments are performed and the results are used to simulate a seeded FEL with high-gain harmonic generation.« less

  20. A high voltage nanosecond pulser with independently adjustable output voltage, pulse width, and pulse repetition frequency

    NASA Astrophysics Data System (ADS)

    Prager, James; Ziemba, Timothy; Miller, Kenneth; Carscadden, John; Slobodov, Ilia

    2014-10-01

    Eagle Harbor Technologies (EHT) is developing a high voltage nanosecond pulser capable of generating microwaves and non-equilibrium plasmas for plasma medicine, material science, enhanced combustion, drag reduction, and other research applications. The EHT nanosecond pulser technology is capable of producing high voltage (up to 60 kV) pulses (width 20-500 ns) with fast rise times (<10 ns) at high pulse repetition frequency (adjustable up to 100 kHz) for CW operation. The pulser does not require the use of saturable core magnetics, which allows for the output voltage, pulse width, and pulse repetition frequency to be fully adjustable, enabling researchers to explore non-equilibrium plasmas over a wide range of parameters. A magnetic compression stage can be added to improve the rise time and drive lower impedance loads without sacrificing high pulse repetition frequency operation. Work supported in part by the US Navy under Contract Number N00014-14-P-1055 and the US Air Force under Contract Number FA9550-14-C-0006.

  1. Acousto-optic pulse picking scheme with carrier-frequency-to-pulse-repetition-rate synchronization.

    PubMed

    de Vries, Oliver; Saule, Tobias; Plötner, Marco; Lücking, Fabian; Eidam, Tino; Hoffmann, Armin; Klenke, Arno; Hädrich, Steffen; Limpert, Jens; Holzberger, Simon; Schreiber, Thomas; Eberhardt, Ramona; Pupeza, Ioachim; Tünnermann, Andreas

    2015-07-27

    We introduce and experimentally validate a pulse picking technique based on a travelling-wave-type acousto-optic modulator (AOM) having the AOM carrier frequency synchronized to the repetition rate of the original pulse train. As a consequence, the phase noise characteristic of the original pulse train is largely preserved, rendering this technique suitable for applications requiring carrier-envelope phase stabilization. In a proof-of-principle experiment, the 1030-nm spectral part of an 74-MHz, carrier-envelope phase stable Ti:sapphire oscillator is amplified and reduced in pulse repetition frequency by a factor of two, maintaining an unprecedentedly low carrier-envelope phase noise spectral density of below 68 mrad. Furthermore, a comparative analysis reveals that the pulse-picking-induced additional amplitude noise is minimized, when the AOM is operated under synchronicity. The proposed scheme is particularly suitable when the down-picked repetition rate is still in the multi-MHz-range, where Pockels cells cannot be applied due to piezoelectric ringing. PMID:26367616

  2. Wind velocity measurement accuracy with highly stable 12 mJ/pulse high repetition rate CO2 laser master oscillator power amplifier

    NASA Technical Reports Server (NTRS)

    Bilbro, James W.; Johnson, Steven C.; Rothermel, Jeffry

    1987-01-01

    A coherent CO2 lidar operating in a master oscillator power amplifier configuration (MOPA) is described for both ground-based and airborne operation. Representative data taken from measurements against stationary targets in both the ground-based and airborne configurations are shown for the evaluation of the frequency stability of the system. Examples of data are also given which show the results of anomalous system operation. Overall results demonstrate that velocity measurements can be performed consistently to an accuracy of + or - 0.5 m/s and in some cases + or - 0.1 m/s.

  3. A Tesla-type repetitive nanosecond pulse generator for solid dielectric breakdown research

    NASA Astrophysics Data System (ADS)

    Zhao, Liang; Pan, Ya Feng; Su, Jian Cang; Zhang, Xi Bo; Wang, Li Min; Fang, Jin Peng; Sun, Xu; Lui, Rui

    2013-10-01

    A Tesla-type repetitive nanosecond pulse generator including a pair of electrode and a matched absorption resistor is established for the application of solid dielectric breakdown research. As major components, a built-in Tesla transformer and a gas-gap switch are designed to boost and shape the output pulse, respectively; the electrode is to form the anticipated electric field; the resistor is parallel to the electrode to absorb the reflected energy from the test sample. The parameters of the generator are a pulse width of 10 ns, a rise and fall time of 3 ns, and a maximum amplitude of 300 kV. By modifying the primary circuit of the Tesla transformer, the generator can produce both positive and negative pulses at a repetition rate of 1-50 Hz. In addition, a real-time measurement and control system is established based on the solid dielectric breakdown requirements for this generator. With this system, experiments on test samples made of common insulation materials in pulsed power systems are conducted. The preliminary experimental results show that the constructed generator is capable to research the solid dielectric breakdown phenomenon on a nanosecond time scale.

  4. A Tesla-type repetitive nanosecond pulse generator for solid dielectric breakdown research.

    PubMed

    Zhao, Liang; Pan, Ya Feng; Su, Jian Cang; Zhang, Xi Bo; Wang, Li Min; Fang, Jin Peng; Sun, Xu; Lui, Rui

    2013-10-01

    A Tesla-type repetitive nanosecond pulse generator including a pair of electrode and a matched absorption resistor is established for the application of solid dielectric breakdown research. As major components, a built-in Tesla transformer and a gas-gap switch are designed to boost and shape the output pulse, respectively; the electrode is to form the anticipated electric field; the resistor is parallel to the electrode to absorb the reflected energy from the test sample. The parameters of the generator are a pulse width of 10 ns, a rise and fall time of 3 ns, and a maximum amplitude of 300 kV. By modifying the primary circuit of the Tesla transformer, the generator can produce both positive and negative pulses at a repetition rate of 1-50 Hz. In addition, a real-time measurement and control system is established based on the solid dielectric breakdown requirements for this generator. With this system, experiments on test samples made of common insulation materials in pulsed power systems are conducted. The preliminary experimental results show that the constructed generator is capable to research the solid dielectric breakdown phenomenon on a nanosecond time scale.

  5. HIGH POWER PULSED OSCILLATOR

    DOEpatents

    Singer, S.; Neher, L.K.

    1957-09-24

    A high powered, radio frequency pulse oscillator is described for generating trains of oscillations at the instant an input direct voltage is impressed, or immediately upon application of a light pulse. In one embodiment, the pulse oscillator comprises a photo-multiplier tube with the cathode connected to the first dynode by means of a resistor, and adjacent dynodes are connected to each other through adjustable resistors. The ohmage of the resistors progressively increases from a very low value for resistors adjacent the cathode to a high value adjacent the plate, the last dynode. Oscillation occurs with this circuit when a high negative voltage pulse is applied to the cathode and the photo cathode is bombarded. Another embodiment adds capacitors at the resistor connection points of the above circuit to increase the duration of the oscillator train.

  6. Characteristics of a velvet cathode under high repetition rate pulse operation

    SciTech Connect

    Xun Tao; Zhang Jiande; Yang Hanwu; Zhang Zicheng; Fan Yuwei

    2009-10-15

    As commonly used material for cold cathodes, velvet works well in single shot and low repetition rate (rep-rate) high-power microwave (HPM) sources. In order to determine the feasibility of velvet cathodes under high rep-rate operation, a series of experiments are carried out on a high-power diode, driven by a {approx}300 kV, {approx}6 ns, {approx}100 {omega}, and 1-300 Hz rep-rate pulser, Torch 02. Characteristics of vacuum compatibility and cathode lifetime under different pulse rep-rate are focused on in this paper. Results of time-resolved pressure history, diode performance, shot-to-shot reproducibility, and velvet microstructure changes are presented. As the rep-rate increases, the equilibrium pressure grows hyperlinearly and the velvet lifetime decreases sharply. At 300 Hz, the pressure in the given diode exceeded 1 Pa, and the utility shots decreased to 2000 pulses for nonstop mode. While, until the velvet begins to degrade, the pulse-to-pulse instability of diode voltage and current is quite small, even under high rep-rate conditions. Possible reasons for the operation limits are discussed, and methods to improve the performance of a rep-rate velvet cathode are also suggested. These results may be of interest to the repetitive HPM systems with cold cathodes.

  7. The discharge characteristics of surface dielectric barrier discharge sustained by repetitive nanosecond pulses in open air

    NASA Astrophysics Data System (ADS)

    Lei, Pang; Kun, He; Qiaogen, Zhang

    2016-09-01

    A nanosecond pulsed surface dielectric barrier discharge (NPSDBD) is a promising method for flow control and combustion. We systematically investigated the influence of pulse parameters on the discharge characteristics of NPSDBD, especially on the conduction current of discharge and the energy deposition curves. Meanwhile, the differences of the characteristics of the discharge generated by positive pulses and negative pulses are focused in this paper. The underlying physics is also discussed. Four different discharge regimes of NPSDBD are presented, which can be distinguished by the temporal emission behaviors of discharge and the conduction current of discharge. The transitions of four discharge regimes were also investigated by changing the pulse amplitude, repetitive rate, and voltage polarity. It was found that it is easier to translate quasi-uniform discharge to filamentary discharge or transition mode for the repetitive pulses with a negative polarity. A phenomenological model was proposed to explain the differences between a positive repetitive pulse discharge and a negative repetitive pulse discharge.

  8. Pulse power linac

    DOEpatents

    Villa, Francesco

    1990-01-01

    A linear acceleration for charged particles is constructed of a plurality of transmission line sections that extend between a power injection region and an accelerating region. Each line section is constructed of spaced plate-like conductors and is coupled to an accelerating gap located at the accelerating region. Each gap is formed between a pair of apertured electrodes, with all of the electrode apertures being aligned along a particle accelerating path. The accelerating gaps are arranged in series, and at the injection region the line sections are connected in parallel. At the injection region a power pulse is applied simultaneously to all line sections. The line sections are graduated in length so that the pulse reaches the gaps in a coordinated sequence whereby pulse energy is applied to particles as they reach each of the gaps along the accelerating path.

  9. A Simulation of the Effects of Varying Repetition Rate and Pulse Width of Nanosecond Discharges on Premixed Lean Methane-Air Combustion

    DOE PAGES

    Bak, Moon Soo; Cappelli, Mark A.

    2012-01-01

    Two-dimensional kinetic simulation has been carried out to investigate the effects of repetition rate and pulse width of nanosecond repetitively pulsed discharges on stabilizing premixed lean methane-air combustion. The repetition rate and pulse width are varied from 10 kHz to 50 kHz and from 9 ns to 2 ns while the total power is kept constant. The lower repetition rates provide larger amounts of radicals such as O, H, and OH. However, the effect on stabilization is found to be the same for all of the tested repetition rates. The shorter pulse width is found to favor the production of species in higher electronicmore » states, but the varying effects on stabilization are also found to be small. Our results indicate that the total deposited power is the critical element that determines the extent of stabilization over this range of discharge properties studied.« less

  10. PULSED POWER APPLICATIONS IN HIGH INTENSITY PROTON RINGS.

    SciTech Connect

    ZHANG, S.Y.; SANDBERG, J.; ET AL.

    2005-05-16

    Pulsed power technology has been applied in particle accelerators and storage rings for over four decades. It is most commonly used in injection, extraction, beam manipulation, source, and focusing systems. These systems belong to the class of repetitive pulsed power. In this presentation, we review and discuss the history, present status, and future challenge of pulsed power applications in high intensity proton accelerators and storage rings.

  11. Method for generating high-energy and high repetition rate laser pulses from CW amplifiers

    DOEpatents

    Zhang, Shukui

    2013-06-18

    A method for obtaining high-energy, high repetition rate laser pulses simultaneously using continuous wave (CW) amplifiers is described. The method provides for generating micro-joule level energy in pico-second laser pulses at Mega-hertz repetition rates.

  12. Performance of large aperture tapered fiber phase conjugate mirror with high pulse energy and 1-kHz repetition rate.

    PubMed

    Zhao, Zhigang; Dong, Yantao; Pan, Sunqiang; Liu, Chong; Chen, Jun; Tong, Lixin; Gao, Qingsong; Tang, Chun

    2012-01-16

    A large aperture fused silica tapered fiber phase conjugate mirror is presented with a maximum 70% stimulated Brillouin scattering (SBS) reflectivity, which is obtained with 1 kHz repetition rate, 15 ns pulse width and 38 mJ input pulse energy. To the best of our knowledge, this is the highest SBS reflectivity ever reported by using optical fiber as a phase conjugate mirror for such high pulse repetition rate (1 kHz) and several tens of millijoule (mJ) input pulse energy. The influences of fiber end surface quality and pump pulse widths on SBS reflectivity are investigated experimentally. The results show that finer fiber end surface quality and longer input pulse widths are preferred for obtaining higher SBS reflectivity with higher input pulse energy. Double passing amplification experiments are also performed. 52 mJ pulse energy is achieved at 1 kHz repetition rate, with a reflected SBS pulse width of 1.5 ns and a M(2) factor of 2.3. The corresponding peak power reaches 34.6 MW. Obvious beam quality improvement is observed. PMID:22274534

  13. Graphene-deposited microfiber photonic device for ultrahigh-repetition rate pulse generation in a fiber laser.

    PubMed

    Qi, You-Li; Liu, Hao; Cui, Hu; Huang, Yu-Qi; Ning, Qiu-Yi; Liu, Meng; Luo, Zhi-Chao; Luo, Ai-Ping; Xu, Wen-Cheng

    2015-07-13

    We report on the generation of a high-repetition-rate pulse in a fiber laser using a graphene-deposited microfiber photonic device (GMPD) and a Fabry-Perot filter. Taking advantage of the unique nonlinear optical properties of the GMPD, dissipative four-wave mixing effect (DFWM) could be induced at low pump power. Based on DFWM mode-locking mechanism, the fiber laser delivers a 100 GHz repetition rate pulse train. The results indicate that the small sized GMPD offers an alternative candidate of highly nonlinear optical component to achieve high-repetition rate pulses, and also opens up possibilities for the investigation of other abundant nonlinear effects or related fields of photonics. PMID:26191834

  14. Cryogenic disk Yb : YAG laser with 120-mJ energy at 500-Hz pulse repetition rate

    SciTech Connect

    Perevezentsev, E A; Mukhin, I B; Kuznetsov, I I; Palashov, O V; Khazanov, Efim A

    2013-03-31

    A repetitively pulsed laser system based on cryogenically cooled Yb : YAG disks is developed. The creation of Yb : YAG/YAG composites and the use of an active liquid nitrogen cooling system made it possible to significantly decrease the effect of amplified spontaneous emission. The average output power of the system is 60 W. (extreme light fields and their applications)

  15. Ultrafast XUV Pulses at High Repetition Rate for Time Resolved Photoelectron Spectroscopy of Surface Dynamics

    NASA Astrophysics Data System (ADS)

    Corder, Christopher; Zhao, Peng; Li, Xinlong; Muraca, Amanda R.; Kershis, Matthew D.; White, Michael G.; Allison, Thomas K.

    2016-05-01

    Ultrafast photoelectron studies of surface dynamics are often limited by low repetition rates. At Stony Brook we have built a cavity-enhanced high-harmonic generation XUV source that delivers ultrafast pulses to a surface science apparatus for photoelectron spectroscopy. We begin with a Ytterbium fiber laser at a repetition rate of 78 MHz and up to 90 W of average power. After compression the pulses have μJ's of energy with < 180 fs pulse width. We then use an enhancement cavity with a finesse of a few hundred to build up to the peak intensity required for high harmonic generation. The enhancement cavity is a six mirror double folded bow-tie geometry with a focus of 15 μm at a Krypton gas jet, followed by a Sapphire crystal at Brewster's angle for the fundamental to allow outcoupling of the harmonics. A single harmonic is selected using a time-preserving monochromator to maintain the short pulses, and is sent to an ultra high vacuum chamber with sample preparation and diagnostic tools as well as an electron energy spectrometer. This allows us to study the electronic dynamics of semiconductor surfaces and their interfaces with adsorbed molecules which enable various charge transfer effects. Supported by AFOSR.

  16. Repetitive transcranial magnetic stimulator with controllable pulse parameters (cTMS).

    PubMed

    Peterchev, Angel V; Murphy, David L; Lisanby, Sarah H

    2010-01-01

    We describe a novel transcranial magnetic stimulation (TMS) device that uses a circuit topology incorporating two energy-storage capacitors and two insulated-gate bipolar transistors (IGBTs) to generate near-rectangular electric field E-field) pulses with adjustable number, polarity, duration, and amplitude of the pulse phases. This controllable-pulse-parameter TMS (cTMS) device can induce E-field pulses with phase widths of 5-200 µs and positive/negative phase amplitude ratio of 1-10. Compared to conventional monophasic and biphasic TMS, cTMS reduces energy dissipation by 78-82% and 55-57% and decreases coil heating by 15-33% and 31-41%, respectively. We demonstrate repetitive TMS (rTMS) trains of 3,000 pulses at frequencies up to 50 Hz with E-field pulse amplitude and width variability of less than 1.7% and 1%, respectively. The reduced power consumption and coil heating, and the flexible pulse parameter adjustment offered by cTMS could enhance existing TMS paradigms and could enable novel research and clinical applications with potentially enhanced potency. PMID:21095986

  17. Review of High Power Pulse Transformer Design

    NASA Astrophysics Data System (ADS)

    Zhang, Zhao; Tan, Xiaohua

    Vacuum devices generally work under high power pulse voltage of order 103 V to 106 V, and this pulse voltage could be generated by high power pulse transformer. Relatively, pulse transformer has the advantages of compact structure and excellent repetitiveness. It is expected of short rise-time, wide pulse-width and high energy transferring efficiency in most applications. Aiming at this purpose, it is feasible to select magnetic core with high permeability and high saturation magnetic flux density, use closed core and take some special measures to diminish leakage inductance in the making-process. This paper is a brief summary of high power pulse transformer design. In this paper, the principle, types and characteristics specification of high power pulse transformer are presented, and the design methods of electrical, magnetic and structure parameters are summarized. The methods of shortening rise time, diminishing droop and expanding output pulse-width (electrical parameter design), testing magnetic core materials (magnetic parameter design) and minimizing leakage inductance (structure parameter design) are emphasized.

  18. Electron density measurements in a pulse-repetitive microwave discharge in air

    SciTech Connect

    Nikolic, M.; Popovic, S.; Vuskovic, L.; Herring, G. C.; Exton, R. J.

    2011-12-01

    We have developed a technique for absolute measurements of electron density in pulse-repetitive microwave discharges in air. The technique is based on the time-resolved absolute intensity of a nitrogen spectral band belonging to the Second Positive System, the kinetic model and the detailed particle balance of the N{sub 2}C{sup 3}{Pi}{sub u} ({nu} = 0) state. This new approach bridges the gap between two existing electron density measurement methods (Langmuir probe and Stark broadening). The electron density is obtained from the time-dependent rate equation for the population of N{sub 2}C{sup 3}{Pi}{sub u} ({nu} = 0) using recorded waveforms of the absolute C{sup 3}{Pi}{sub u}{yields}B{sup 3}{Pi}{sub g} (0-0) band intensity, the forward and reflected microwave power density. Measured electron density waveforms using numerical and approximated analytical methods are presented for the case of pulse repetitive planar surface microwave discharge at the aperture of a horn antenna covered with alumina ceramic plate. The discharge was generated in air at 11.8 Torr with a X-band microwave generator using 3.5 {mu}s microwave pulses at peak power of 210 kW. In this case, we were able to time resolve the electron density within a single 3.5 {mu}s pulse. We obtained (9.0 {+-} 0.6) x 10{sup 13} cm{sup -3} for the peak and (5.0 {+-} 0.6) x 10{sup 13} cm{sup -3} for the pulse-average electron density. The technique presents a convenient, non-intrusive diagnostic method for local, time-defined measurements of electron density in short duration discharges near atmospheric pressures.

  19. Cellular response to high pulse repetition rate nanosecond pulses varies with fluorescent marker identity.

    PubMed

    Steelman, Zachary A; Tolstykh, Gleb P; Beier, Hope T; Ibey, Bennett L

    2016-09-23

    Nanosecond electric pulses (nsEP's) are a well-studied phenomena in biophysics that cause substantial alterations to cellular membrane dynamics, internal biochemistry, and cytoskeletal structure, and induce apoptotic and necrotic cell death. While several studies have attempted to measure the effects of multiple nanosecond pulses, the effect of pulse repetition rate (PRR) has received little attention, especially at frequencies greater than 100 Hz. In this study, uptake of Propidium Iodide, FM 1-43, and YO-PRO-1 fluorescent dyes in CHO-K1 cells was monitored across a wide range of PRRs (5 Hz-500 KHz) using a laser-scanning confocal microscope in order to better understand how high frequency repetition rates impact induced biophysical changes. We show that frequency trends depend on the identity of the dye under study, which could implicate transmembrane protein channels in the uptake response due to their chemical selectivity. Finally, YO-PRO-1 fluorescence was monitored in the presence of Gadolinium (Gd(3+)), Ruthenium Red, and in calcium-free solution to elucidate a mechanism for its unique frequency trend. PMID:27553279

  20. Microwave and Pulsed Power

    SciTech Connect

    Freytag, E.K.

    1993-03-01

    The goals of the Microwave and Pulsed Power thrust area are to identify realizable research and development efforts and to conduct high-quality research in those pulse power and microwave technologies that support existing and emerging programmatic requirements at Lawrence Livermore National Laboratory (LLNL). Our main objective is to work on nationally important problems while enhancing our basic understanding of enabling technologies such as component design and testing, compact systems packaging, exploratory physics experiments, and advanced systems integration and performance. During FY-92, we concentrated our research efforts on the six project areas described in this report. (1) We are investigating the superior electronic and thermal properties of diamond that may make it an ideal material for a high-power, solid-state switch. (2) We are studying the feasibility of using advanced Ground Penetrating Imaging Radar technology for reliable non-destructive evaluation of bridges and other high-value concrete structures. These studies include conceptual designs, modeling, experimental verifications, and image reconstruction of simulated radar data. (3) We are exploring the efficiency of pulsed plasma processing techniques used for the removal of NO{sub x} from various effluent sources. (4) We have finished the investigation of the properties of a magnetically delayed low-pressure gas switch, which was designed here at LLNL. (5) We are applying statistical electromagnetic theory techniques to help assess microwave effects on electronic subsystems, by using a mode stirred chamber as our measurement tool. (6) We are investigating the generation of perfluoroisobutylene (PFIB) in proposed CFC replacement fluids when they are subjected to high electrical stresses and breakdown environments.

  1. Photoluminescence of Traces of Aromatic Compounds in Aqueous Solutions Upon Excitation by a Repetitively Pulsed Laser

    NASA Astrophysics Data System (ADS)

    Agal'Tsov, A. M.; Gorelik, V. S.; Moro, R. A.

    2000-06-01

    A method is suggested for quantitative and qualitative analysis of aromatic compounds in water at extremely low concentrations (<1 ng/l). The method is based on excitation of luminescence by short (20 ns) UV laser pulses with a peak power of 104 W at 255.3 nm and a pulse repetition rate of 10 kHz. The shape of luminescence spectra of benzene, benzoic acid, saccharin, aspirin, and L-tryptophan at low concentrations in water is analyzed. The luminescence kinetics of these compounds is studied at short delay times (10 20 ns). The lifetimes of the electronic excited states of the aromatic compounds are measured. The applications of the method for studies of low-concentration aqueous solutions of biological and medicine compounds are analyzed.

  2. Technology of Pulse Power Capacitors

    NASA Astrophysics Data System (ADS)

    Qin, Shanshan

    Polymer film of pulse discharge capacitors operated at high repetition rate dissipates substantial power. The thermal conductivity of biaxially oriented polypropylene (BOPP) is measured as a function of metallization resistivity. The thermal conductivity in the plane of the film is about twice that of bulk polypropylene. Thermal design is optimized based on the measurement for large capacitors with multiple windings in a container. High discharge speed results in high current density at the wire arc sprayed end connections which tend to deteriorate gradually, resulting in capacitor failure during operation. To assure the end connection quality before assembly, a test procedure and apparatus for end connection integrity was developed based on monitoring the partial discharge pattern from end connection during discharge. The mechanism of clearing is analyzed which shows arc extinguishes due to the increased arc length and reduced energy so that capacitor can function normally after breakdown. In the case of a clearing discharge, the power dissipation appears to increase with time, although this is not a feature of previous models. Submicrosecond discharge requires minimizing inductance which can be achieved by optimizing the winding structure so that submicrosecond discharge becomes practical. An analysis of the inductance of multisection, very high voltage capacitors is carried out, which identifies low inductance structures for this type of capacitor.

  3. Discharge Characteristics of SF6 in a Non-Uniform Electric Field Under Repetitive Nanosecond Pulses

    NASA Astrophysics Data System (ADS)

    Ran, Huijuan; Wang, Lei; Wang, Jue; Wang, Tao; Yan, Ping

    2014-05-01

    The characteristics of high pressure sulphur hexafluoride (SF6) discharges in a highly non-uniform electric field under repetitive nanosecond pulses are investigated in this paper. The influencing factors on discharge process, such as gas pressure, pulse repetition frequency (PRF), and number of applied pulses, are analyzed. Experimental results show that the corona intensity weakens with the increase of gas pressure and strengthens with the increase of PRF or number of applied pulses. Spark discharge images suggest that a shorter and thicker discharge plasma channel will lead to a larger discharge current. The number of applied pulses to breakdown descends with the increase of PRF and ascends with the rise of gas pressure. The reduced electric field (E/p) decreases with the increase of PRF in all circumstances. The experimental results provide significant supplements to the dielectric characteristics of strongly electronegative gases under repetitive nanosecond pulses.

  4. High-repetition rate industrial TEA CO2 laser with average output power of 1.5 kW

    NASA Astrophysics Data System (ADS)

    Wan, Chongyi; Liu, Shiming; Zhou, Jinwen; Qi, Jilan; Yang, Xiaola; Wu, Jin; Tan, Rongqing; Wang, Lichun; Mei, Qichu

    1995-03-01

    High power high repetition rate TEA CO2 laser has potential importance in material processing such as shock hardening, glazing, drilling, welding, and cutting for high damage threshold materials, as well as in chemical reaction and isotope separation. This paper describes a transverse-flow closed-cycle UV-preionized TEA CO2 laser with peak pulse power of 20 MW, maximum average power of 1.5 KW at repetition rate of 300 HZ. The laser has compact constructure of gas flow circulation system using tangential fans. With addition of small amounts of H2 and CO to the normal CO2-N2-He gas mixture, one filling sealed operating lifetime is up to millions of pulses. A novel spark gap switch has been developed for very high repetition rate laser discharge in the condition of high pulse power.

  5. High Repetition Rate Pulsed 2-Micron Laser Transmitter for Coherent CO2 DIAL Measurement

    NASA Technical Reports Server (NTRS)

    Singh, Uprendra N.; Bai, Yingxin; Yu, Jirong; Petros, Mulugeta; Petzar, Paul J.; Trieu, Bo C.; Lee, Hyung

    2009-01-01

    A high repetition rate, highly efficient, Q-switched 2-micron laser system as the transmitter of a coherent differential absorption lidar for CO2 measurement has been developed at NASA Langley Research Center. Such a laser transmitter is a master-slave laser system. The master laser operates in a single frequency, either on-line or off-line of a selected CO2 absorption line. The slave laser is a Q-switched ring-cavity Ho:YLF laser which is pumped by a Tm:fiber laser. The repetition rate can be adjusted from a few hundred Hz to 10 kHz. The injection seeding success rate is from 99.4% to 99.95%. For 1 kHz operation, the output pulse energy is 5.5mJ with the pulse length of approximately 50 ns. The optical-to-optical efficiency is 39% when the pump power is 14.5W. The measured standard deviation of the laser frequency jitter is about 3 MHz.

  6. Switching power pulse system

    DOEpatents

    Aaland, K.

    1983-08-09

    A switching system for delivering pulses of power from a source to a load using a storage capacitor charged through a rectifier, and maintained charged to a reference voltage level by a transistor switch and voltage comparator. A thyristor is triggered to discharge the storage capacitor through a saturable reactor and fractional turn saturable transformer having a secondary to primary turn ratio N of n:l/n = n[sup 2]. The saturable reactor functions as a soaker'' while the thyristor reaches saturation, and then switches to a low impedance state. The saturable transformer functions as a switching transformer with high impedance while a load coupling capacitor charges, and then switches to a low impedance state to dump the charge of the storage capacitor into the load through the coupling capacitor. The transformer is comprised of a multilayer core having two secondary windings tightly wound and connected in parallel to add their output voltage and reduce output inductance, and a number of single turn windings connected in parallel at nodes for the primary winding, each single turn winding linking a different one of the layers of the multilayer core. The load may be comprised of a resistive beampipe for a linear particle accelerator and capacitance of a pulse forming network. To hold off discharge of the capacitance until it is fully charged, a saturable core is provided around the resistive beampipe to isolate the beampipe from the capacitance until it is fully charged. 5 figs.

  7. 486nm blue laser operating at 500 kHz pulse repetition frequency

    NASA Astrophysics Data System (ADS)

    Creeden, Daniel; Blanchard, Jon; Pretorius, Herman; Limongelli, Julia; Setzler, Scott D.

    2016-03-01

    Compact, high power blue light in the 470-490nm region is difficult to generate due to the lack of laser sources which are easily convertible (through parametric processes) to those wavelengths. By using a pulsed Tm-doped fiber laser as a pump source for a 2-stage second harmonic generation (SHG) scheme, we have generated ~2W of 486.5nm light at 500kHz pulse repetition frequency (PRF). To our knowledge, this is the highest PRF and output power achieved in the blue region based on a frequency converted, monolithic fiber laser. This pump laser is a pulsed Tm-doped fiber laser/amplifier which generates 12.8W of 1946nm power at 500kHz PRF with diffraction-limited output from a purely single-mode fiber. The output from this laser is converted to 973nm through second harmonic generation (SHG). The 973nm is then converted to 486.5nm via another SHG stage. This architecture operates with very low peak power, which can be challenging from a nonlinear conversion standpoint. However, the low peak power enables the use of a single-mode monolithic fiber amplifier without undergoing nonlinear effects in the fiber. This also eliminates the need for novel fiber designs, large-mode area fiber, or free-space coupling to rod-type amplifiers, improving reliability and robustness of the laser source. Higher power and conversion efficiency are possible through the addition of Tm-doped fiber amplification stages as well as optimization of the nonlinear conversion process and nonlinear materials. In this paper, we discuss the laser layout, results, and challenges with generating blue light using a low peak power approach.

  8. Surface damage characteristics of CFC and tungsten with repetitive ELM-like pulsed plasma irradiation

    NASA Astrophysics Data System (ADS)

    Kikuchi, Y.; Nishijima, D.; Nakatsuka, M.; Ando, K.; Higashi, T.; Ueno, Y.; Ishihara, M.; Shoda, K.; Nagata, M.; Kawai, T.; Ueda, Y.; Fukumoto, N.; Doerner, R. P.

    2011-08-01

    Surface damage of carbon fiber composite (CFC) and tungsten (W) due to repetitive ELM-like pulsed plasma irradiation has been investigated by using a magnetized coaxial plasma gun. CX2002U CFC and stress-relieved W samples were exposed to repetitive pulsed deuterium plasmas with duration of ˜0.5 ms, incident ion energy of ˜30 eV, and surface absorbed energy density of ˜0.3-0.7 MJ/m2. Bright spots on a CFC surface during pulsed plasma exposures were clearly observed with a high-speed camera, indicating a local surface heating. No melting of a W surface was observed under a single plasma pulse exposure at energy density of ˜0.7 MJ/m2, although cracks were formed. Cracking of the W surface grew with repetitive pulsed plasma exposures. Subsequently, the surface melted due to localized heat absorption.

  9. Electra: durable repetitively pulsed angularly multiplexed KrF laser system

    NASA Astrophysics Data System (ADS)

    Wolford, Matthew F.; Myers, Matthew C.; Giuliani, John L.; Sethian, John D.; Burns, Patrick M.; Hegeler, Frank; Jaynes, Reginald

    2008-02-01

    Electra is a repetitively pulsed, electron beam pumped Krypton Fluoride (KrF) laser at the Naval Research Laboratory that is developing the technologies that can meet the Inertial Fusion Energy (IFE) requirements for durability, efficiency, and cost. The technologies developed on Electra should be directly scalable to a full size fusion power plant beam line. As in a full size fusion power plant beam line, Electra is a multistage laser amplifier system which, consists of a commercial discharge laser (LPX 305i, Lambda Physik), 175 keV electron beam pumped (40 ns flat-top) preamplifier, and 530 keV (100 ns flat-top) main amplifier. Angular multiplexing is used in the optical layout to provide pulse length control and to maximize laser extraction from the amplifiers. Single shot yield of 452 J has been extracted from the initial shots of the Electra laser system using a relatively low energy preamplifier laser beam. In rep-rate burst of 5 Hz for durations of one second a total energy of 1.585 kJ (average 317 J/pulse) has been attained. Total energy of 2.5 kJ has been attained over a two second period. For comparison, the main amplifier of Electra in oscillator mode has demonstrated at 2.5 Hz rep-rate average laser yield of 270 J over a 2 hour period.

  10. Repetitively pulsed regime of Nd : glass large-aperture laser amplifiers

    SciTech Connect

    Kuzmin, A A; Khazanov, Efim A; Shaykin, A A

    2012-04-30

    A repetitively pulsed operation regime of neodymium glass rod laser amplifiers with apertures of 4.5, 6, 8.5, and 10 cm is analysed using experimental data. The limits of an increase in the pulse repetition rates are determined. Universal dependences are obtained, which help finding a compromise between increasing the repetition rate and enhancing the gain for each particular case. In particular, it is shown that an amplifier 4.5-cm in diameter exhibits a five-fold safety factor with respect to a thermo-mechanical breakdown at a repetition rate of 1 pulse min{sup -1} and stored energy of above 100 J. A strong thermally induced birefringence in two such amplifiers is experimentally reduced to a 'cold' level by employing a 90 Degree-Sign optical rotator.

  11. Switching power pulse system

    DOEpatents

    Aaland, Kristian

    1983-01-01

    A switching system for delivering pulses of power from a source (10) to a load (20) using a storage capacitor (C3) charged through a rectifier (D1, D2), and maintained charged to a reference voltage level by a transistor switch (Q1) and voltage comparator (12). A thyristor (22) is triggered to discharge the storage capacitor through a saturable reactor (18) and fractional turn saturable transformer (16) having a secondary to primary turn ratio N of n:l/n=n.sup.2. The saturable reactor (18) functions as a "soaker" while the thyristor reaches saturation, and then switches to a low impedance state. The saturable transformer functions as a switching transformer with high impedance while a load coupling capacitor (C4) charges, and then switches to a low impedance state to dump the charge of the storage capacitor (C3) into the load through the coupling capacitor (C4). The transformer is comprised of a multilayer core (26) having two secondary windings (28, 30) tightly wound and connected in parallel to add their output voltage and reduce output inductance, and a number of single turn windings connected in parallel at nodes (32, 34) for the primary winding, each single turn winding linking a different one of the layers of the multilayer core. The load may be comprised of a resistive beampipe (40) for a linear particle accelerator and capacitance of a pulse forming network (42). To hold off discharge of the capacitance until it is fully charged, a saturable core (44) is provided around the resistive beampipe (40) to isolate the beampipe from the capacitance (42) until it is fully charged.

  12. Generation of 16-fs, 10-TW pulses at a 10-Hz repetition rate with efficient Ti:sapphire amplifiers.

    PubMed

    Yamakawa, K; Aoyama, M; Matsuoka, S; Takuma, H; Barty, C P; Fittinghoff, D

    1998-04-01

    We describe a two-stage Ti:sapphire amplifier laser system that is capable of producing 16-fs pulses of 10-TW peak power at a 10-Hz repetition rate. Thin solid etalons were used to control gain narrowing and gain saturation during amplification. A cylindrical mirror expander was used to permit compensation of the dispersion of the system. An efficiency greater than 90% of the theoretical maximum for conversion of 532-nm pump light to 790-nm radiation is demonstrated.

  13. Neodymium glass laser with a pulse energy of 220 J and a pulse repetition rate of 0.02 Hz

    SciTech Connect

    Kuzmin, A A; Kulagin, O V; Khazanov, Efim A; Shaykin, A A

    2013-07-31

    A compact neodymium glass laser with a pulse energy of 220 J and a record-high pulse repetition rate of 0.02 Hz (pulse duration 30 ns) is developed. Thermally induced phase distortions are compensated using wave phase conjugation. The integral depolarisation of radiation is decreased to 0.4% by using linear compensation schemes. The second harmonic of laser radiation can be used for pumping Ti : sapphire multipetawatt complexes. (letters)

  14. Modeling of dielectric barrier discharge plasma actuators driven by repetitive nanosecond pulses

    SciTech Connect

    Likhanskii, Alexandre V.; Shneider, Mikhail N.; Macheret, Sergey O.; Miles, Richard B.

    2007-07-15

    A detailed physical model for an asymmetric dielectric barrier discharge (DBD) in air driven by repetitive nanosecond voltage pulses is developed. In particular, modeling of DBD with high voltage repetitive negative and positive nanosecond pulses combined with positive dc bias is carried out. Operation at high voltage is compared with operation at low voltage, highlighting the advantage of high voltages, however the effect of backward-directed breakdown in the case of negative pulses results in a decrease of the integral momentum transferred to the gas. The use of positive repetitive pulses with dc bias is demonstrated to be promising for DBD performance improvement. The effects of the voltage waveform not only on force magnitude, but also on the spatial profile of the force, are shown. The crucial role of background photoionization in numerical modeling of ionization waves (streamers) in DBD plasmas is demonstrated.

  15. Effects of pulse frequency of input power on the physical and chemical properties of pulsed streamer discharge plasmas in water

    NASA Astrophysics Data System (ADS)

    Ruma; Lukes, P.; Aoki, N.; Spetlikova, E.; Hosseini, S. H. R.; Sakugawa, T.; Akiyama, H.

    2013-03-01

    A repetitive pulsed-power modulator, which employs a magnetic pulse compression circuit with a high-speed thyristor switch, was used to study the effects of the pulse repetition rate of input power on the physical and chemical properties of pulsed discharges in water. Positive high-voltage pulses of 20 kV with repetition rates of up to 1 kHz were used to generate a discharge in water using the point-to-plane electrode geometry. By varying the pulse repetition rate, two distinct modes of the discharge plasma were formed in water. The first mode was characterized by the formation of a corona-like discharge propagating through water in the form of streamer channels. The second mode was formed typically above 500 Hz, when the formation of streamer channels in water was suppressed and all plasmas occurred inside a spheroidal aggregate of very fine gas bubbles surrounding the tip of the high-voltage electrode. The production of hydrogen peroxide, degradation of organic dye Acid Orange 7 (AO7) and inactivation of bacteria Escherichia coli by the discharge in water were studied under different discharge plasma modes in dependence on the pulse repetition rate of input power. The efficiency of both chemical and biocidal processes induced by the plasma in water decreased significantly with pulse repetition rates above 500 Hz.

  16. Autonomous portable pulsed-periodical generator of high-power radiofrequency-pulses based on gas discharge with hollow cathode.

    PubMed

    Bulychev, Sergey V; Dubinov, Alexander E; L'vov, Igor L; Popolev, Vyacheslav L; Sadovoy, Sergey A; Sadchikov, Eugeny A; Selemir, Victor D; Valiulina, Valeria K; Vyalykh, Dmitry V; Zhdanov, Victor S

    2016-05-01

    Portable autonomous generator of high-power RF-pulses based on the gas discharge with hollow cathode has been designed, fabricated, and tested. Input and output characteristics are the following: discharge current amplitude is 800 A, duration of generated RF-pulses is 350 ns, carrier frequency is ∼90 MHz, power in RF-pulse is 0.5 MW, pulse repetition rate is 0.5 kHz, and device efficiency is ∼25%.

  17. Autonomous portable pulsed-periodical generator of high-power radiofrequency-pulses based on gas discharge with hollow cathode

    NASA Astrophysics Data System (ADS)

    Bulychev, Sergey V.; Dubinov, Alexander E.; L'vov, Igor L.; Popolev, Vyacheslav L.; Sadovoy, Sergey A.; Sadchikov, Eugeny A.; Selemir, Victor D.; Valiulina, Valeria K.; Vyalykh, Dmitry V.; Zhdanov, Victor S.

    2016-05-01

    Portable autonomous generator of high-power RF-pulses based on the gas discharge with hollow cathode has been designed, fabricated, and tested. Input and output characteristics are the following: discharge current amplitude is 800 A, duration of generated RF-pulses is 350 ns, carrier frequency is ˜90 MHz, power in RF-pulse is 0.5 MW, pulse repetition rate is 0.5 kHz, and device efficiency is ˜25%.

  18. Petawatt pulsed-power accelerator

    DOEpatents

    Stygar, William A.; Cuneo, Michael E.; Headley, Daniel I.; Ives, Harry C.; Ives, legal representative; Berry Cottrell; Leeper, Ramon J.; Mazarakis, Michael G.; Olson, Craig L.; Porter, John L.; Wagoner; Tim C.

    2010-03-16

    A petawatt pulsed-power accelerator can be driven by various types of electrical-pulse generators, including conventional Marx generators and linear-transformer drivers. The pulsed-power accelerator can be configured to drive an electrical load from one- or two-sides. Various types of loads can be driven; for example, the accelerator can be used to drive a high-current z-pinch load. When driven by slow-pulse generators (e.g., conventional Marx generators), the accelerator comprises an oil section comprising at least one pulse-generator level having a plurality of pulse generators; a water section comprising a pulse-forming circuit for each pulse generator and a level of monolithic triplate radial-transmission-line impedance transformers, that have variable impedance profiles, for each pulse-generator level; and a vacuum section comprising triplate magnetically insulated transmission lines that feed an electrical load. When driven by LTD generators or other fast-pulse generators, the need for the pulse-forming circuits in the water section can be eliminated.

  19. LASERS: Laser stand for irradiation of targets by laser pulses from the Iskra-5 facility at a repetition rate of 100 MHz

    NASA Astrophysics Data System (ADS)

    Annenkov, V. I.; Garanin, Sergey G.; Eroshenko, V. A.; Zhidkov, N. V.; Zubkov, A. V.; Kalipanov, S. V.; Kalmykov, N. A.; Kovalenko, V. P.; Krotov, V. A.; Lapin, S. G.; Martynenko, S. P.; Pankratov, V. I.; Faizullin, V. S.; Khrustalev, V. A.; Khudikov, N. M.; Chebotar, V. S.

    2009-08-01

    A train of a few tens of high-power subnanosecond laser pulses with a repetition period of 10 ns is generated in the Iskra-5 facility. The laser pulse train has an energy of up to 300 J and contains up to 40 pulses (by the 0.15 intensity level), the single pulse duration in the train being ~0.5 ns. The results of experiments on conversion of a train of laser pulses to a train of X-ray pulses are presented. Upon irradiation of a tungsten target, a train of X-ray pulses is generated with the shape of an envelope in the spectral band from 0.18 to 0.28 keV similar to that of the envelope of the laser pulse train. The duration of a single X-ray pulse in the train is equal to that of a single laser pulse.

  20. Modeling and optimization of single-pass laser amplifiers for high-repetition-rate laser pulses

    SciTech Connect

    Ozawa, Akira; Udem, Thomas; Zeitner, Uwe D.; Haensch, Theodor W.; Hommelhoff, Peter

    2010-09-15

    We propose a model for a continuously pumped single-pass amplifier for continuous and pulsed laser beams. The model takes into account Gaussian shape and focusing geometry of pump and seed beam. As the full-wave simulation is complex we have developed a largely simplified numerical method that can be applied to rotationally symmetric geometries. With the tapered-shell model we treat (focused) propagation and amplification of an initially Gaussian beam in a gain crystal. The implementation can be done with a few lines of code that are given in this paper. With this code, a numerical parameter optimization is straightforward and example results are shown. We compare the results of our simple model with those of a full-wave simulation and show that they agree well. A comparison of model and experimental data also shows good agreement. We investigate in detail different regimes of amplification, namely the unsaturated, the fully saturated, and the intermediate regime. Because the amplification process is affected by spatially varying saturation and exhibits a nonlinear response against pump and seed power, no analytical expression for the expected output is available. For modeling of the amplification we employ a four-level system and show that if the fluorescence lifetime of the gain medium is larger than the inverse repetition rate of the seed beam, continuous-wave amplification can be employed to describe the amplification process of ultrashort pulse trains. We limit ourselves to this regime, which implies that if titanium:sapphire is chosen as gain medium the laser repetition rate has to be larger than a few megahertz. We show detailed simulation results for titanium:sapphire for a large parameter set.

  1. Field Intensity Detection of Individual Terahertz Pulses at 80 MHz Repetition Rate

    NASA Astrophysics Data System (ADS)

    Rettich, F.; Vieweg, N.; Cojocari, O.; Deninger, A.

    2015-07-01

    We present a new approach to detect the intensity of individual terahertz pulses at repetition rates as high as 80 MHz. Our setup comprises a femtosecond fiber laser, an InGaAs-based terahertz emitter, a zero-bias Schottky detector, and a high-speed data acquisition unit. The detected pulses consist of two lobes with half-widths of 1-2 ns, which is much shorter than the inverse repetition rate of the laser. The system lends itself for high-speed terahertz transmission measurements, e.g., to study wetting dynamics in real time.

  2. High pulse repetition frequency, multiple wavelength, pulsed CO2 lidar system for atmospheric transmission and target reflectance measurements

    NASA Astrophysics Data System (ADS)

    Ben-David, Avishai; Emery, Silvio L.; Gotoff, Steven W.; D'Amico, Francis M.

    1992-07-01

    A multiple wavelength, pulsed CO2 lidar system operating at a pulse repetition frequency of 200 Hz and permitting the random selection of CO2 laser wavelengths for each laser pulse is presented. This system was employed to measure target reflectance and atmospheric transmission by using laser pulse bursts consisting of groups with as many as 16 different wavelengths at a repetition rate of 12 Hz. The wavelength tuning mechanism of the transversely excited atmospheric laser consists of a stationary grating and a flat mirror controlled by a galvanometer. Multiple wavelength, differential absorption lidar (DIAL) measurements reduce the effects of differential target reflectance and molecular absorption interference. Examples of multiwavelength DIAL detection for ammonia and water vapor show the dynamic interaction between these two trace gases. Target reflectance measurements for maple trees in winter and autumn are presented.

  3. High pulse repetition frequency, multiple wavelength, pulsed CO(2) lidar system for atmospheric transmission and target reflectance measurements.

    PubMed

    Ben-David, A; Emery, S L; Gotoff, S W; D'Amico, F M

    1992-07-20

    A multiple wavelength, pulsed CO(2) lidar system operating at a pulse repetition frequency of 200 Hz and permitting the random selection of CO(2) laser wavelengths for each laser pulse is presented. This system was employed to measure target reflectance and atmospheric transmission by using laser pulse bursts consisting of groups with as many as 16 different wavelengths at a repetition rate of 12 Hz. The wavelength tuning mechanism of the transversely excited atmospheric laser consists of a stationary grating and a flat mirror controlled by a galvanometer. Multiple wavelength, differential absorption lidar (DIAL) measurements reduce the effects of differential target reflectance and molecular absorption interference. Examples of multiwavelength DIAL detection for ammonia and water vapor show the dynamic interaction between these two trace gases. Target reflectance measurements for maple trees in winter and autumn are presented. PMID:20725406

  4. A compact repetitive high-voltage nanosecond pulse generator for the application of gas discharge.

    PubMed

    Pang, Lei; Zhang, Qiaogen; Ren, Baozhong; He, Kun

    2011-04-01

    Uniform and stable discharge plasma requires very short duration pulses with fast rise times. A repetitive high-voltage nanosecond pulse generator for the application of gas discharge is presented in this paper. It is constructed with all solid-state components. Two-stage magnetic compression is used to generate a short duration pulse. Unlike in some reported studies, common commercial fast recovery diodes instead of a semiconductor opening switch (SOS) are used in our experiment that plays the role of SOS. The SOS-like effects of four different kinds of diodes are studied experimentally to optimize the output performance. It is found that the output pulse voltage is higher with a shorter reverse recovery time, and the rise time of pulse becomes faster when the falling time of reverse recovery current is shorter. The SOS-like effect of the diodes can be adjusted by changing the external circuit parameters. Through optimization the pulse generator can provide a pulsed voltage of 40 kV with a 40 ns duration, 10 ns rise time, and pulse repetition frequency of up to 5 kHz. Diffuse plasma can be formed in air at standard atmospheric pressure using the developed pulse generator. With a light weight and small packaging the pulse generator is suitable for gas discharge application.

  5. Drilling and cutting of thin metal plates in water with radiation of a repetitively pulsed Nd : YAG laser

    SciTech Connect

    Glova, A F; Lysikov, A Yu

    2011-10-31

    The conditions of drilling and cutting of 0.15-mm-thick titanium and stainless steel plates in water with the radiation of a repetitively pulsed Nd : YAG laser having the mean power up to 30 W are studied experimentally in the absence of water and gas jets. Dependences of the maximal cutting speed in water on the radiation power are obtained, the cutting efficiency is determined, and the comparison with the conditions of drilling and cutting of plates in air is carried out.

  6. Method and means for generating a synchronizing pulse from a repetitive wave of varying frequency

    DOEpatents

    DeVolpi, Alexander; Pecina, Ronald J.; Travis, Dale J.

    1976-01-01

    An event that occurs repetitively at continuously changing frequencies can be used to generate a triggering pulse which is used to synchronize or control. The triggering pulse is generated at a predetermined percentage of the period of the repetitive waveform without regard to frequency. Counts are accumulated in two counters, the first counting during the "on" fraction of the period, and the second counting during the "off" fraction. The counts accumulated during each cycle are compared. On equality the trigger pulse is generated. Count input rates to each counter are determined by the ratio of the on-off fractions of the event waveform and the desired phase relationship. This invention is of particular utility in providing a trigger or synchronizing pulse during the open period of the shutter of a high-speed framing camera during its acceleration as well as its period of substantially constant speed.

  7. Thermal management in high average power pulsed compression systems

    SciTech Connect

    Wavrik, R.W.; Reed, K.W.; Harjes, H.C.; Weber, G.J.; Butler, M.; Penn, K.J.; Neau, E.L.

    1992-08-01

    High average power repetitively pulsed compression systems offer a potential source of electron beams which may be applied to sterilization of wastes, treatment of food products, and other environmental and consumer applications. At Sandia National Laboratory, the Repetitive High Energy Pulsed Power (RHEPP) program is developing a 7 stage magnetic pulse compressor driving a linear induction voltage adder with an electron beam diode load. The RHEPP machine is being design to deliver 350 kW of average power to the diode in 60 ns FWHM, 2.5 MV, 3 kJ pulses at a repetition rate of 120 Hz. In addition to the electrical design considerations, the repetition rate requires thermal management of the electrical losses. Steady state temperatures must be kept below the material degradation temperatures to maximize reliability and component life. The optimum design is a trade off between thermal management, maximizing overall electrical performance of the system, reliability, and cost effectiveness. Cooling requirements and configurations were developed for each of the subsystems of RHEPP. Finite element models that combine fluid flow and heat transfer were used to screen design concepts. The analysis includes one, two, and three dimensional heat transfer using surface heat transfer coefficients and boundary layer models. Experiments were conducted to verify the models as well as to evaluate cooling channel fabrication materials and techniques in Metglas wound cores. 10 refs.

  8. Thermal management in high average power pulsed compression systems

    SciTech Connect

    Wavrik, R.W.; Reed, K.W.; Harjes, H.C.; Weber, G.J.; Butler, M.; Penn, K.J.; Neau, E.L.

    1992-01-01

    High average power repetitively pulsed compression systems offer a potential source of electron beams which may be applied to sterilization of wastes, treatment of food products, and other environmental and consumer applications. At Sandia National Laboratory, the Repetitive High Energy Pulsed Power (RHEPP) program is developing a 7 stage magnetic pulse compressor driving a linear induction voltage adder with an electron beam diode load. The RHEPP machine is being design to deliver 350 kW of average power to the diode in 60 ns FWHM, 2.5 MV, 3 kJ pulses at a repetition rate of 120 Hz. In addition to the electrical design considerations, the repetition rate requires thermal management of the electrical losses. Steady state temperatures must be kept below the material degradation temperatures to maximize reliability and component life. The optimum design is a trade off between thermal management, maximizing overall electrical performance of the system, reliability, and cost effectiveness. Cooling requirements and configurations were developed for each of the subsystems of RHEPP. Finite element models that combine fluid flow and heat transfer were used to screen design concepts. The analysis includes one, two, and three dimensional heat transfer using surface heat transfer coefficients and boundary layer models. Experiments were conducted to verify the models as well as to evaluate cooling channel fabrication materials and techniques in Metglas wound cores. 10 refs.

  9. Accurate modeling of high-repetition rate ultrashort pulse amplification in optical fibers

    NASA Astrophysics Data System (ADS)

    Lindberg, Robert; Zeil, Peter; Malmström, Mikael; Laurell, Fredrik; Pasiskevicius, Valdas

    2016-10-01

    A numerical model for amplification of ultrashort pulses with high repetition rates in fiber amplifiers is presented. The pulse propagation is modeled by jointly solving the steady-state rate equations and the generalized nonlinear Schrödinger equation, which allows accurate treatment of nonlinear and dispersive effects whilst considering arbitrary spatial and spectral gain dependencies. Comparison of data acquired by using the developed model and experimental results prove to be in good agreement.

  10. Accurate modeling of high-repetition rate ultrashort pulse amplification in optical fibers

    PubMed Central

    Lindberg, Robert; Zeil, Peter; Malmström, Mikael; Laurell, Fredrik; Pasiskevicius, Valdas

    2016-01-01

    A numerical model for amplification of ultrashort pulses with high repetition rates in fiber amplifiers is presented. The pulse propagation is modeled by jointly solving the steady-state rate equations and the generalized nonlinear Schrödinger equation, which allows accurate treatment of nonlinear and dispersive effects whilst considering arbitrary spatial and spectral gain dependencies. Comparison of data acquired by using the developed model and experimental results prove to be in good agreement. PMID:27713496

  11. Strategies for Using Repetition as a Powerful Teaching Tool

    ERIC Educational Resources Information Center

    Saville, Kirt

    2011-01-01

    Brain research indicates that repetition is of vital importance in the learning process. Repetition is an especially useful tool in the area of music education. The success of repetition can be enhanced by accurate and timely feedback. From "simple repetition" to "repetition with the addition or subtraction of degrees of freedom," there are many…

  12. Two-photon polymerization with variable repetition rate bursts of femtosecond laser pulses.

    PubMed

    Baldacchini, Tommaso; Snider, Scott; Zadoyan, Ruben

    2012-12-31

    We describe fabrication of microstructures by two-photon polymerization using bursts of femtosecond laser pulses. With the aid of an acousto-optic modulator driven by a function generator, two-photon polymerization is performed at variable burst repetition rates. We investigate how the time between the bursts of laser pulses influences the ultimate dimensions of lines written in a photosensitive resin. We observe that when using the same laser fluence, polymer lines fabricated at different burst repetition rates have different dimensions. In particular, the widths of two-photon polymerized lines become smaller with decreasing burst repetition rates. Based on the thermal properties of the resin and experimental writing conditions, we attribute this effect to localized heat accumulation. PMID:23388815

  13. Effect of the pulse repetition rate on fiber-assisted tissue ablation

    NASA Astrophysics Data System (ADS)

    Kang, Hyun Wook

    2016-07-01

    The effect of the pulse repetition rate on ablation performance was evaluated ex vivo at various fiber sweeping speeds for an effective 532-nm laser prostatectomy. Three pulse repetition rates (7.5, 15, and 30 kHz) at 100 W were delivered to bovine liver tissue at three sweeping speeds (2, 4, and 6 mm/s) to achieve bulky tissue removal. Ablation performance was quantitatively compared in terms of the ablation volume and the coagulation thickness. The lowest pulse repetition rate of 7.5 kHz attained the highest ablation volume (101.5 ± 12.0 mm3) and the thinnest coagulation (0.7 ± 0.1 mm) along with superficial carbonization. The highest pulse repetition rate of 30 kHz was associated with the least tissue removal (65.8 ± 5.0 mm3) and the deepest thermal denaturation (1.1 ± 0.2 mm). Quantitative evaluations of laser parameters can be instrumental in facilitating ablation efficiency and maintaining hemostatic coagulation during treatment of large-sized benign prostate hyperplasia.

  14. Modeling and optimizing of low-repetition-rate high-energy pulse amplification in high-concentration erbium-doped fiber amplifiers

    NASA Astrophysics Data System (ADS)

    Li, Jianfeng; Dai, Zhiyong; Ou, Zhonghua; Zhang, Lixun; Liu, Yongzhi; Liu, Yong

    2009-09-01

    Starting from the modeling of isolated ions and ion-pairs, a closed form rate and power evolution equations for pulse amplification in high-concentration erbium-doped fiber amplifiers (EDFAs) are constructed. According to the equations, the effects of ion-pairs on the performance of a high-concentration EDFA in steady state including upper-state population, ASE powers without input signal are analyzed numerically. Furthermore, the effects of ion-pairs on the dynamic characteristics of low-repetition-rate pulse amplification in the EDFA including the storied energy, output pulse energy and evolution of pulse waveform distortion are systematically studied by using the finite-difference method. The results show that the presence of the ion-pairs deteriorates amplifier performance, such as the upper-state population, ASE power, storied energy, output pulse energy, and saturated gain, etc. For the high-concentration EDFA, the optimum fiber length should be modified to achieve a better performance. The relations between the evolution of pulse waveform distortion or output pulse energy and the input pulse peak power are also discussed. The results can provide important guide for the design and optimization of the low-repetition-rate pulse amplification in high-concentration EDFAs.

  15. Scattering-type scanning near-field optical microscopy with low-repetition-rate pulsed light source through phase-domain sampling

    NASA Astrophysics Data System (ADS)

    Wang, Haomin; Wang, Le; Xu, Xiaoji G.

    2016-10-01

    Scattering-type scanning near-field optical microscopy (s-SNOM) allows spectroscopic imaging with spatial resolution below the diffraction limit. With suitable light sources, s-SNOM is instrumental in numerous discoveries at the nanoscale. So far, the light sources have been limited to continuous wave or high-repetition-rate pulsed lasers. Low-repetition-rate pulsed sources cannot be used, due to the limitation of the lock-in detection mechanism that is required for current s-SNOM techniques. Here, we report a near-field signal extraction method that enables low-repetition-rate pulsed light sources. The method correlates scattering signals from pulses with the mechanical phases of the oscillating s-SNOM probe to obtain near-field signal, by-passing the apparent restriction imposed by the Nyquist-Shannon sampling theorem on the repetition rate. The method shall enable s-SNOM with low-repetition-rate pulses with high-peak-powers, such as femtosecond laser amplifiers, to facilitate investigations of strong light-matter interactions and nonlinear processes at the nanoscale.

  16. Scattering-type scanning near-field optical microscopy with low-repetition-rate pulsed light source through phase-domain sampling

    PubMed Central

    Wang, Haomin; Wang, Le; Xu, Xiaoji G.

    2016-01-01

    Scattering-type scanning near-field optical microscopy (s-SNOM) allows spectroscopic imaging with spatial resolution below the diffraction limit. With suitable light sources, s-SNOM is instrumental in numerous discoveries at the nanoscale. So far, the light sources have been limited to continuous wave or high-repetition-rate pulsed lasers. Low-repetition-rate pulsed sources cannot be used, due to the limitation of the lock-in detection mechanism that is required for current s-SNOM techniques. Here, we report a near-field signal extraction method that enables low-repetition-rate pulsed light sources. The method correlates scattering signals from pulses with the mechanical phases of the oscillating s-SNOM probe to obtain near-field signal, by-passing the apparent restriction imposed by the Nyquist–Shannon sampling theorem on the repetition rate. The method shall enable s-SNOM with low-repetition-rate pulses with high-peak-powers, such as femtosecond laser amplifiers, to facilitate investigations of strong light–matter interactions and nonlinear processes at the nanoscale. PMID:27748360

  17. Influence of nanosecond repetitively pulsed discharges on the stability of a swirled propane/air burner representative of an aeronautical combustor.

    PubMed

    Barbosa, S; Pilla, G; Lacoste, D A; Scouflaire, P; Ducruix, S; Laux, C O; Veynante, D

    2015-08-13

    This paper reports on an experimental study of the influence of a nanosecond repetitively pulsed spark discharge on the stability domain of a propane/air flame. This flame is produced in a lean premixed swirled combustor representative of an aeronautical combustion chamber. The lean extinction limits of the flame produced without and with plasma are determined and compared. It appears that only a low mean discharge power is necessary to increase the flame stability domain. Lastly, the effects of several parameters (pulse repetition frequency, global flowrate, electrode location) are studied. PMID:26170424

  18. Influence of nanosecond repetitively pulsed discharges on the stability of a swirled propane/air burner representative of an aeronautical combustor

    PubMed Central

    Barbosa, S.; Pilla, G.; Lacoste, D. A.; Scouflaire, P.; Ducruix, S.; Laux, C. O.; Veynante, D.

    2015-01-01

    This paper reports on an experimental study of the influence of a nanosecond repetitively pulsed spark discharge on the stability domain of a propane/air flame. This flame is produced in a lean premixed swirled combustor representative of an aeronautical combustion chamber. The lean extinction limits of the flame produced without and with plasma are determined and compared. It appears that only a low mean discharge power is necessary to increase the flame stability domain. Lastly, the effects of several parameters (pulse repetition frequency, global flowrate, electrode location) are studied. PMID:26170424

  19. Observation of repetitively nanosecond pulse-width transverse patterns in microchip self-Q-switched laser

    SciTech Connect

    Dong, Jun; Ueda, Ken-ichi

    2006-05-15

    Repetitively nanosecond pulse-width transverse pattern formation in a plane-parallel microchip Cr,Nd: yttrium-aluminum-garnet (YAG) self-Q-switched laser was investigated. The complex point-symmetric transverse patterns were observed by varying the pump beam diameter incident on the Cr,Nd:YAG crystal. The gain guiding effect and the thermal effect induced by the pump power in microchip Cr,Nd:YAG laser control the oscillating transverse modes. These transverse pattern formations were due to the variation of the saturated inversion population and the thermal induced index profile along radial and longitudinal direction in the Cr,Nd:YAG crystal induced by the pump power incident on the Cr,Nd:YAG crystal. These were intrinsic properties of such a microchip self-Q-switched laser. The longitudinal distribution of the saturated inversion population inside the gain medium plays an important role on the transverse pattern formation. Different sets of the transverse patterns corresponds to the different saturated inversion population distribution inside microchip Cr,Nd:YAG crystal.

  20. Pulsed power molten salt battery

    NASA Technical Reports Server (NTRS)

    Argade, Shyam D.

    1992-01-01

    It was concluded that carbon cathodes with chlorine work well. Lithium alloy chlorine at 450 C, 1 atm given high power capability, high energy density, DC + pulsing yields 600 pulses, no initial peak, and can go to red heat without burn-up. Electrochemical performance at the cell and cell stack level out under demanding test regime. Engineering and full prototype development for advancing this technology is warranted.

  1. Pulsed power molten salt battery

    NASA Astrophysics Data System (ADS)

    Argade, Shyam D.

    1992-02-01

    It was concluded that carbon cathodes with chlorine work well. Lithium alloy chlorine at 450 C, 1 atm given high power capability, high energy density, DC + pulsing yields 600 pulses, no initial peak, and can go to red heat without burn-up. Electrochemical performance at the cell and cell stack level out under demanding test regime. Engineering and full prototype development for advancing this technology is warranted.

  2. Thermally induced phase mismatching in a repetitively Gaussian pulsed pumping KTP crystal: a spatiotemporal treatment.

    PubMed

    Rezaee, Mostafa Mohammad; Sabaeian, Mohammad; Motazedian, Alireza; Jalil-Abadi, Fatemeh Sedaghat; Askari, Hadi; Khazrk, Iman

    2015-05-20

    Thermally induced phase mismatching (TIPM) has been proven to be an influential issue in nonlinear phenomena. It occurs when refractive indices of crystal are changed due to temperature rise. In this work, the authors report on a modeling of spatiotemporal dependence of TIPM in a repetitively pulsed pumping KTP crystal. Gaussian profiles for both spatial and temporal dependences of pump beam were used to generate second-harmonic waves in a type II configuration. This modeling is of importance in predicting the nonlinear conversion efficiency of crystals when heat is loaded in the system. To this end, at first, an approach to solve the heat equation in a repetitively pulsed pumping system with consideration of the temperature dependence of thermal conductivity and realistic cooling mechanisms such as conduction, convection, and radiation, is presented. The TIPM is then calculated through the use of experimental thermal dispersion relations of KTP crystal. The results show how accumulative behaviors of temperature and TIPM (with its reverse sign) happen when the number of pulses is increased. Fluctuations accompanying temperature and TIPM were observed which were attributed to the off-time between successive pulses. Moreover, in this work, a numerical procedure for solving a repetitively pulsed pumped crystal is introduced. This procedure enables us to solve the problem with home-used computing machines. PMID:26192515

  3. Thermally induced phase mismatching in a repetitively Gaussian pulsed pumping KTP crystal: a spatiotemporal treatment.

    PubMed

    Rezaee, Mostafa Mohammad; Sabaeian, Mohammad; Motazedian, Alireza; Jalil-Abadi, Fatemeh Sedaghat; Askari, Hadi; Khazrk, Iman

    2015-05-20

    Thermally induced phase mismatching (TIPM) has been proven to be an influential issue in nonlinear phenomena. It occurs when refractive indices of crystal are changed due to temperature rise. In this work, the authors report on a modeling of spatiotemporal dependence of TIPM in a repetitively pulsed pumping KTP crystal. Gaussian profiles for both spatial and temporal dependences of pump beam were used to generate second-harmonic waves in a type II configuration. This modeling is of importance in predicting the nonlinear conversion efficiency of crystals when heat is loaded in the system. To this end, at first, an approach to solve the heat equation in a repetitively pulsed pumping system with consideration of the temperature dependence of thermal conductivity and realistic cooling mechanisms such as conduction, convection, and radiation, is presented. The TIPM is then calculated through the use of experimental thermal dispersion relations of KTP crystal. The results show how accumulative behaviors of temperature and TIPM (with its reverse sign) happen when the number of pulses is increased. Fluctuations accompanying temperature and TIPM were observed which were attributed to the off-time between successive pulses. Moreover, in this work, a numerical procedure for solving a repetitively pulsed pumped crystal is introduced. This procedure enables us to solve the problem with home-used computing machines.

  4. Adjustable high-repetition-rate pulse trains in a passively-mode-locked fiber laser

    NASA Astrophysics Data System (ADS)

    Si Fodil, Rachid; Amrani, Foued; Yang, Changxi; Kellou, Abdelhamid; Grelu, Ph.

    2016-07-01

    We experimentally investigate multipulse regimes obtained within a passively-mode-locked fiber laser that includes a Mach-Zehnder (MZ) interferometer. By adjusting the time delay imbalance of the MZ, ultrashort pulse trains at multi-GHz repetition rates are generated. We compare the observed dynamics with high-harmonic mode locking, and show that the multi-GHz pulse trains display an inherent instability, which has been overlooked. By using a recirculation loop containing the MZ, we demonstrate a significant improvement of the pulse train stability.

  5. Tunable repetitively pulsed Cr{sup 2+} : ZnSe laser

    SciTech Connect

    Egorov, A S; Eremeikin, O N; Pavlenko, K Yu; Savikin, A P; Sharkov, V V

    2012-12-31

    Methods of wavelength tuning of a polycrystalline Cr{sup 2+} : ZnSe laser pumped by a repetitively pulsed Tm : YLF laser (pulse duration {approx}100 ns, pulse repetition rate 3 KHz) are studied. With the use of a prism selector, the laser wavelength was tuned within the range of 2070 - 2400 nm at a linewidth of 11 nm for a SiO{sub 2} prism and 30 nm for a CaF{sub 2} prism. The use of a Lyot filter made it possible to tune the Cr{sup 2+} : ZnSe laser wavelength (with replacement of the cavity mirrors) within the spectral ranges of 2130 - 2400 and 2530 - 2750 nm at a linewidth of 4 nm. (lasers)

  6. 615 fs pulses with 17 mJ energy generated by an Yb:thin-disk amplifier at 3 kHz repetition rate.

    PubMed

    Fischer, Jonathan; Heinrich, Alexander-Cornelius; Maier, Simon; Jungwirth, Julian; Brida, Daniele; Leitenstorfer, Alfred

    2016-01-15

    A combination of Er/Yb:fiber and Yb:thin-disk technology produces 615 fs pulses at 1030 nm with an average output power of 72 W. The regenerative amplifier allows variation of the repetition rate between 3 and 5 kHz with pulse energies from 13 to 17 mJ. A broadband and intense seed provided by the compact and versatile fiber front-end minimizes gain narrowing. The resulting sub-ps performance is ideal for nonlinear frequency conversion and pulse compression. Operating in the upper branch of a bifurcated pulse train, the system exhibits exceptional noise performance and stability.

  7. Pulsed Power Driven Fusion Energy

    SciTech Connect

    SLUTZ,STEPHEN A.

    1999-11-22

    Pulsed power is a robust and inexpensive technology for obtaining high powers. Considerable progress has been made on developing light ion beams as a means of transporting this power to inertial fusion capsules. However, further progress is hampered by the lack of an adequate ion source. Alternatively, z-pinches can efficiently convert pulsed power into thermal radiation, which can be used to drive an inertial fusion capsule. However, a z-pinch driven fusion explosion will destroy a portion of the transmission line that delivers the electrical power to the z-pinch. They investigate several options for providing standoff for z-pinch driven fusion. Recyclable Transmission Lines (RTLs) appear to be the most promising approach.

  8. Effect of interrepetition rest intervals on weight training repetition power output.

    PubMed

    Lawton, Trent W; Cronin, John B; Lindsell, Rod P

    2006-02-01

    The purpose of this study was to determine the change in weight training repetition power output as a consequence of interrepetition rest intervals. Twenty-six elite junior male basketball and soccer players performed bench presses using a 6 repetition maximum (6RM) load. The power output for each repetition was recorded using a linear encoder sampling each 10 ms (100 Hz). Subjects were assigned to 1 of 3 intervention groups, differentiated by the arrangement of rest intervals within the 6 repetitions: 6 x 1 repetition with 20-second rest periods between each repetition (Singles); 3 x 2 repetitions with 50 seconds between each pair of repetitions (Doubles); or 2 x 3 repetitions with 100 seconds of rest between each 3 repetitions (Triples). A timer was used to ensure that the rest interval and duration to complete all interrepetition interventions was equated across groups (118 seconds). Significantly (p < 0.05) greater repetition power outputs (25-49%) were observed in the later repetitions (4-6) of the Singles, Doubles, and Triples loading schemes. Significantly greater total power output (21.6-25.1%) was observed for all interrepetition rest interventions when compared to traditional continuous 6RM total power output. No significant between-group differences were found (p = 0.96). We conclude that utilizing interrepetition rest intervals enables greater repetition and total power output in comparison to traditional loading parameters.

  9. Robust Short-Pulse, High-Peak-Power Laser Transmitter for Optical Communications

    NASA Technical Reports Server (NTRS)

    Wright, Malcolm W.

    2009-01-01

    We report on a pulsed fiber based master oscillator power amplifier laser at 1550 nm to support moderate data rates with high peak powers in a compact package suitable for interplanetary optical communications. To accommodate pulse position modulation, the polarization maintaining laser transmitter generates pulses from 0.1 to 1 ns with variable duty cycle over a pulse repetition frequency range of 10 to 100 MHz.

  10. Transition from interpulse to afterglow plasmas driven by repetitive short-pulse microwaves in a multicusp magnetic field

    SciTech Connect

    Pandey, Shail; Sahu, Debaprasad; Bhattacharjee, Sudeep

    2012-08-15

    In the power-off phase, plasmas generated by repetitive short-pulse microwaves in a multicusp magnetic field show a transitive nature from interpulse to afterglow as a function of pulse duration t{sub w} = 20-200 {mu}s. The ionized medium can be driven from a highly non equilibrium to an equilibrium state inside the pulses, thereby dictating the behavior of the plasma in the power-off phase. Compared to afterglows, interpulse plasmas observed for t{sub w} < 50 {mu}s are characterized by a quasi-steady-state in electron density that persists for {approx} 20-40 {mu}s even after the end of the pulse and has a relatively slower decay rate ({approx} 4.3 Multiplication-Sign 10{sup 4} s{sup -1}) of the electron temperature, as corroborated by optical measurements. The associated electron energy probability function indicates depletion in low energy electrons which appear at higher energies just after the end of the pulse. The transition occurs at t{sub w} {approx} 50 {mu}s as confirmed by time evolution of integrated electron numbers densities obtained from the distribution function.

  11. Ultrashort pulse high repetition rate laser system for biological tissue processing

    DOEpatents

    Neev, Joseph; Da Silva, Luiz B.; Matthews, Dennis L.; Glinsky, Michael E.; Stuart, Brent C.; Perry, Michael D.; Feit, Michael D.; Rubenchik, Alexander M.

    1998-01-01

    A method and apparatus is disclosed for fast, efficient, precise and damage-free biological tissue removal using an ultrashort pulse duration laser system operating at high pulse repetition rates. The duration of each laser pulse is on the order of about 1 fs to less than 50 ps such that energy deposition is localized in a small depth and occurs before significant hydrodynamic motion and thermal conduction, leading to collateral damage, can take place. The depth of material removed per pulse is on the order of about 1 micrometer, and the minimal thermal and mechanical effects associated with this ablation method allows for high repetition rate operation, in the region 10 to over 1000 Hertz, which, in turn, achieves high material removal rates. The input laser energy per ablated volume of tissue is small, and the energy density required to ablate material decreases with decreasing pulse width. The ablation threshold and ablation rate are only weakly dependent on tissue type and condition, allowing for maximum flexibility of use in various biological tissue removal applications. The use of a chirped-pulse amplified Titanium-doped sapphire laser is disclosed as the source in one embodiment.

  12. Ultrashort pulse high repetition rate laser system for biological tissue processing

    DOEpatents

    Neev, J.; Da Silva, L.B.; Matthews, D.L.; Glinsky, M.E.; Stuart, B.C.; Perry, M.D.; Feit, M.D.; Rubenchik, A.M.

    1998-02-24

    A method and apparatus are disclosed for fast, efficient, precise and damage-free biological tissue removal using an ultrashort pulse duration laser system operating at high pulse repetition rates. The duration of each laser pulse is on the order of about 1 fs to less than 50 ps such that energy deposition is localized in a small depth and occurs before significant hydrodynamic motion and thermal conduction, leading to collateral damage, can take place. The depth of material removed per pulse is on the order of about 1 micrometer, and the minimal thermal and mechanical effects associated with this ablation method allows for high repetition rate operation, in the region 10 to over 1000 Hertz, which, in turn, achieves high material removal rates. The input laser energy per ablated volume of tissue is small, and the energy density required to ablate material decreases with decreasing pulse width. The ablation threshold and ablation rate are only weakly dependent on tissue type and condition, allowing for maximum flexibility of use in various biological tissue removal applications. The use of a chirped-pulse amplified Titanium-doped sapphire laser is disclosed as the source in one embodiment. 8 figs.

  13. Design concept and performance considerations for fast high power semiconductor switching for high repetition rate and high power excimer laser

    NASA Astrophysics Data System (ADS)

    Goto, Tatsumi; Kakizaki, Kouji; Takagi, Shigeyuki; Satoh, Saburoh; Shinohe, Takashi; Ohashi, Hiromichi; Endo, Fumihiko; Okamura, Katsuya; Ishii, Akira; Teranishi, Tsuneharu; Yasuoka, Koichi

    1997-07-01

    A semiconductor switching power supply has been developed, in which a novel structure semiconductor device, metal-oxide-semiconductor assisted gate-triggered thyristor (MAGT) was incorporated with a single stage magnetic pulse compression circuit (MPC). The MAGT was specially designed to directly replace thyratrons in a power supply for a high repetition rate laser. Compared with conventional high power semiconductor switching devices, it was designed to enable a fast switching, retaining a high blocking voltage and to extremely reduce the transient turn-on power losses, enduring a higher peak current. A maximum peak current density of 32 kA/cm2 and a current density risetime rate di/dt of 142 kA/(cm2×μs) were obtained at the chip area with an applied anode voltage of 1.5 kV. A MAGT switching unit connecting 32 MAGTs in series was capable of switching on more than 25 kV-300 A at a repetition rate of 5 kHz, which, coupled with the MPC, was equivalent to the capability of a high power thyratron. A high repetition rate and high power XeCl excimer laser was excited by the power supply. The results confirmed the stable laser operation of a repetition rate of up to 5 kHz, the world record to our knowledge. An average output power of 0.56 kW was obtained at 5 kHz where the shortage of the total discharge current was subjoined by a conventional power supply with seven parallel switching thyratrons, simultaneously working, for the MAGT power supply could not switch a greater current than that switched by one thyratron. It was confirmed by those excitations that the MAGT unit with the MPC could replace a high power commercial thyratron directly for excimer lasers. The switching stability was significantly superior to that of the thyratron in a high repetition rate region, judging from the discharge current wave forms. It should be possible for the MAGT unit, in the future, to directly switch the discharge current within a rise time of 0.1 μs with a magnetic assist.

  14. A study of high repetition rate pulse generation and all-optical add/drop multiplexing

    NASA Astrophysics Data System (ADS)

    Chen, Hongmin

    Ultra high-speed optical time-division-multiplexed (OTDM) transmission technologies are essential for the construction of ultra high-speed all-optical networks needed in the information era. In this Ph. D thesis dissertation, essential mechanisms associated with ultra high speed OTDM transmission systems, such as, high speed ultra short pulse generation, all optical demultiplexing and all optical add/drop multiplexing, have been studied. Both experimental demonstrations and numerical simulations have been performed. In order to realize high-speed optical TDM systems, high repetition rate, ultra short pulses are needed. A rational harmonic mode-locked ring fiber laser has been used to produce ultrashort pulses, the pulse jitter will be eliminated using a Phase-Locked-Loop (PLL), and the self-pulsation has been suppressed using a semiconductor optical amplifier (SOA). Sub pico-second pulses are very important for all optical sampling in the ultrahigh-speed OTDM transmission system. In this thesis, a two stage compression scheme utilizing the nonlinearity and dispersion of the optical fibers has been constructed and used to compress the gain switched DFB laser pulses. Also a nonlinear optical loop mirror has been constructed to suppress the wings associated with nonlinear compression. Pedestal free, transform-limited pulses with pulse widths in range of 0.2 to 0.4 ps have been generated. LiNbO3 modulators play a very important role in fiber optical communication systems. In this thesis, LiNbO3 modulators have been used to perform high repetition rate pulse generation, all optical demultiplexing and all optical add/drop for the TDM transmission system.

  15. Numerical Analysis of Narrow Band Ultrasonic Wave Generation with High Repetition Pulse Laser and Laser Scanning

    NASA Astrophysics Data System (ADS)

    Hayashi, T.; Yamaguchi, K.; Biwa, S.

    2014-06-01

    Although the easiest way to enhance ultrasonic energy generated with pulse laser is to increase laser output, excessive laser output causes damage of the surface. This study introduced an alternative way to generate burst signals without any damages at the surface using a newly developed high repetition pulse laser controlled by galvano mirrors. The calculation results using two-dimensional elastodynamic finite integration technique coupled with thermoelastic effect proved that burst wave of 1 MHz and its higher harmonics were generated while supressing excessive temperature rise using this technique. Moreover, significantly large displacements at the frequency range sufficiently lower than laser repetition rate were observed of the same order of displacements generated with one single shot with the same input energy.

  16. Single-pulse picking at kHz repetition rates using a Ge plasma switch at the free-electron laser FELBE

    SciTech Connect

    Schmidt, J. Helm, M.; Winnerl, S.; Seidel, W.; Schneider, H.; Bauer, C.; Gensch, M.

    2015-06-15

    We demonstrate a system for picking of mid-infrared and terahertz (THz) radiation pulses from the free-electron laser (FEL) FELBE operating at a repetition rate of 13 MHz. Single pulses are reflected by a dense electron-hole plasma in a Ge slab that is photoexcited by amplified near-infrared (NIR) laser systems operating at repetition rates of 1 kHz and 100 kHz, respectively. The peak intensity of picked pulses is up to 400 times larger than the peak intensity of residual pulses. The required NIR fluence for picking pulses at wavelengths in the range from 5 μm to 30 μm is discussed. In addition, we show that the reflectivity of the plasma decays on a time scale from 100 ps to 1 ns dependent on the wavelengths of the FEL and the NIR laser. The plasma switch enables experiments with the FEL that require high peak power but lower average power. Furthermore, the system is well suited to investigate processes with decay times in the μs to ms regime, i.e., much longer than the 77 ns long pulse repetition period of FELBE.

  17. The role of molecular vibration in nanosecond repetitively pulsed discharges and in DBDs in hydrogen plasmas

    NASA Astrophysics Data System (ADS)

    Colonna, G.; D'Ammando, G.; Pietanza, L. D.

    2016-10-01

    A self-consistent state-to-state model of pure hydrogen has been used to investigate the development of nanosecond repetitively pulsed discharges and dielectric barrier discharges, the latter coupling the kinetic model with an equation for the circuit, thus mimicking an insulated electrode with an external capacitance. Vibrationally excited states play a fundamental role, affecting the degrees of dissociation and ionization, as well as internal and free-electron distributions.

  18. Experimental study of the hydrodynamic expansion following a nanosecond repetitively pulsed discharge in air

    NASA Astrophysics Data System (ADS)

    Xu, Da A.; Lacoste, Deanna A.; Rusterholtz, Diane L.; Elias, Paul-Quentin; Stancu, Gabi D.; Laux, Christophe O.

    2011-09-01

    We report on an experimental study of the hydrodynamic expansion following a nanosecond repetitively pulsed (NRP) discharge in atmospheric pressure air preheated up to 1000 K. Single-shot schlieren images starting from 50 ns after the discharge were recorded to show the shock-wave propagation and the expansion of the heated gas channel. The temporal evolution of the gas temperature behind the shock-front is estimated from the measured shock-wave velocity by using the Rankine-Hugoniot relationships. The results show that a gas temperature increase of up to 1100 K can be observed 50 ns after the nanosecond pulse.

  19. Coherent THz Repetitive Pulse Generation in a GaSe Crystal by Dual-wavelength Nd:YLF Laser

    NASA Astrophysics Data System (ADS)

    Bezotosnyi, V. V.; Cheshev, E. A.; Gorbunkov, M. V.; Koromyslov, A. L.; Krokhin, O. N.; Mityagin, Yu. A.; Popov, Yu. M.; Savinov, S. A.; Tunkin, V. G.

    We present modification of difference frequency generator of coherent THz radiation in a nonlinear GaSe crystal using dual-wavelength diode-pumped solid-state Nd:YLF laser. Generation at the two wavelengths (1.047 and 1.053 μm) was carried out by equalization of the gains at these wavelengths near the frequency degeneracy of the transverse modes in resonator cavity, Q-switched by acousto-optical modulator. The main parameters of the device were measured: angular synchronism (width 0.6 degrees), polarization ratio (1:100), conversion efficiency (10-7), pulse power (0.8 mW), frequency and width (53,8 сm-1, 0,6 сm-1), pulse width and repetition rate (10 ns,7 kHz). The method is promising for practical purposes.

  20. Extraction of pulse repetition intervals from sperm whale click trains for ocean acoustic data mining.

    PubMed

    Zaugg, Serge; van der Schaar, Mike; Houégnigan, Ludwig; André, Michel

    2013-02-01

    The analysis of acoustic data from the ocean is a valuable tool to study free ranging cetaceans and anthropogenic noise. Due to the typically large volume of acquired data, there is a demand for automated analysis techniques. Many cetaceans produce acoustic pulses (echolocation clicks) with a pulse repetition interval (PRI) remaining nearly constant over several pulses. Analyzing these pulse trains is challenging because they are often interleaved. This article presents an algorithm that estimates a pulse's PRI with respect to neighboring pulses. It includes a deinterleaving step that operates via a spectral dissimilarity metric. The sperm whale (SW) produces trains with PRIs between 0.5 and 2 s. As a validation, the algorithm was used for the PRI-based identification of SW click trains with data from the NEMO-ONDE observatory that contained other pulsed sounds, mainly from ship propellers. Separation of files containing SW clicks with a medium and high signal to noise ratio from files containing other pulsed sounds gave an area under the receiver operating characteristic curve value of 0.96. This study demonstrates that PRI can be used for the automated identification of SW clicks and that deinterleaving via spectral dissimilarity contributes to algorithm performance.

  1. Effect of laser pulse repetition frequency on the optical breakdown threshold of quartz glass

    SciTech Connect

    Kononenko, T V; Konov, V I; Schöneseiffen, S; Dausinger, F

    2013-08-31

    The thresholds of optical breakdown in the volume of quartz glass were measured in relation to the number of pulses under irradiation by ultrashort laser pulses with different pulse repetition frequencies (1 – 400 kHz). Increasing this frequency from 10 to 400 kHz was found to substantially lower the breakdown threshold for 500-fs long pulses (at a wavelength of 1030 nm) and to lower to a smaller degree for 5-ps long pulses (515 nm). A strong frequency dependence of the breakdown threshold is observed under the same conditions as a manifold decrease of the breakdown threshold with increase in the number of pulses in a pulse train. The dependence of the optical breakdown on the number of pulses is attributable to the accumulation of point defects under multiple subthreshold irradiation, which affects the mechanism of collisional ionisation. In this case, the frequency dependence of the breakdown threshold of quartz glass is determined by the engagement of shortlived defects in the ionisation mechanism. (interaction of laser radiation with matter)

  2. High-peak-power, high-repetition-rate LD end-pumped Nd:YVO4 burst mode laser

    NASA Astrophysics Data System (ADS)

    Pan, Hu; Yan, Renpeng; Fa, Xin; Yu, Xin; Ma, Yufei; Fan, Rongwei; Li, Xudong; Chen, Deying; Zhou, Zhongxiang

    2016-06-01

    A compact high-peak-power, high-repetition-rate burst mode laser is achieved by an acousto-optical Q-switched Nd:YVO4 1064 nm laser directly pumped at 878.6 nm. Pulse trains with 10-100 pulses are obtained using acousto-optical Q-switch at repetition rates of 10-100 kHz under a pulsed pumping with a 1 ms duration. At the maximum pump energy of 108.5 mJ, the pulse energy of 10 kHz burst mode laser reaches 44 mJ corresponding to a single pulse energy of 4.4 mJ and an optical-to-optical efficiency of 40.5 %.The maximum peak power of ~468.1 kW at 10 kHz is obtained with a pulse width of 9.4 ns. The beam quality factor is measured to be M 2 ~1.5 and the pulse jitter is estimated to be less than 1 % in both amplitude and time region.

  3. High peak power sub-nanosecond mode-locked pulse characteristics of Nd:GGG laser

    NASA Astrophysics Data System (ADS)

    Zhao, Jia; Zhao, Shengzhi; Li, Tao; Li, Yufei; Yang, Kejian; Li, Guiqiu; Li, Dechun; Qiao, Wenchao; Feng, Chuansheng; Wang, Yonggang

    2015-10-01

    Based on the dual-loss modulation, i.e. electro-optic (EO) modulator and GaAs saturable absorber, a sub-nanosecond mode-locked pulsed Nd:GGG laser with kHz repetition rates is presented for the first time. The repetition rate (0.5-10 kHz) of this pulsed laser is controlled by the modulation rate of EO modulator, so high stability can be obtained. The sub-nanosecond pulse width depends on the mode-locked pulse underneath the Q-switched envelope in the Q-switched mode-locked (QML) laser and high peak power can be generated. The condition on the generation of sub-nanosecond pulse and the needed threshold power for different modulation rates of EO are given. The average output power, the pulse width and the peak power versus pump power for different repetition rates are demonstrated. The shortest pulse width is 426 ps and the highest peak power reaches 239.4 kW. The experimental results show that the dual-loss modulation technology with EO and GaAs saturable absorber in QML laser is an efficient method to generate sub-nanosecond mode-locked pulsed laser with kHz repetition rates.

  4. Solid state pulsed power generator

    SciTech Connect

    Tao, Fengfeng; Saddoughi, Seyed Gholamali; Herbon, John Thomas

    2014-02-11

    A power generator includes one or more full bridge inverter modules coupled to a semiconductor opening switch (SOS) through an inductive resonant branch. Each module includes a plurality of switches that are switched in a fashion causing the one or more full bridge inverter modules to drive the semiconductor opening switch SOS through the resonant circuit to generate pulses to a load connected in parallel with the SOS.

  5. Nanosecond repetitively pulsed discharges in air at atmospheric pressure—the spark regime

    NASA Astrophysics Data System (ADS)

    Pai, David Z.; Lacoste, Deanna A.; Laux, Christophe O.

    2010-12-01

    Nanosecond repetitively pulsed (NRP) spark discharges have been studied in atmospheric pressure air preheated to 1000 K. Measurements of spark initiation and stability, plasma dynamics, gas temperature and current-voltage characteristics of the spark regime are presented. Using 10 ns pulses applied repetitively at 30 kHz, we find that 2-400 pulses are required to initiate the spark, depending on the applied voltage. Furthermore, about 30-50 pulses are required for the spark discharge to reach steady state, following initiation. Based on space- and time-resolved optical emission spectroscopy, the spark discharge in steady state is found to ignite homogeneously in the discharge gap, without evidence of an initial streamer. Using measured emission from the N2 (C-B) 0-0 band, it is found that the gas temperature rises by several thousand Kelvin in the span of about 30 ns following the application of the high-voltage pulse. Current-voltage measurements show that up to 20-40 A of conduction current is generated, which corresponds to an electron number density of up to 1015 cm-3 towards the end of the high-voltage pulse. The discharge dynamics, gas temperature and electron number density are consistent with a streamer-less spark that develops homogeneously through avalanche ionization in volume. This occurs because the pre-ionization electron number density of about 1011 cm-3 produced by the high frequency train of pulses is above the critical density for streamer-less discharge development, which is shown to be about 108 cm-3.

  6. PCF based high power narrow line width pulsed fiber laser

    NASA Astrophysics Data System (ADS)

    Chen, H.; Yan, P.; Xiao, Q.; Wang, Y.; Gong, M.

    2012-09-01

    Based on semiconductor diode seeded multi-stage cascaded fiber amplifiers, we have obtained 88-W average power of a 1063-nm laser with high repetition rate of up to 1.5 MHz and a constant 2-ns pulse duration. No stimulated Brillouin scattering pulse or optical damage occurred although the maximum pulse peak power has exceeded 112 kW. The output laser exhibits excellent beam quality (M2x = 1.24 and M2y = 1.18), associated with a spectral line width as narrow as 0.065 nm (FWHM). Additionally, we demonstrate high polarization extinction ratio of 18.4 dB and good pulse stabilities superior to 1.6 % (RMS).

  7. A megawatt solid-state modulator for high repetition rate pulse generation

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Pribyl, P.; Gekelman, W.

    2016-02-01

    A novel solid-state modulator capable of generating rapid consecutive power pulses is constructed to facilitate experiments on plasma interaction with high power microwave pulses. The modulator is designed to output a 100 kHz tone burst, which consists of up to 10 pulses, each with 1 μs duration and 1 MW peak power. The pulses are formed by discharging a total of 480 μF capacitors through 24 synchronized MOSFETs and 6 step-up transformers. The highly modular design, as a replacement of an old single-pulse version used in earlier experiments which employs a pulse forming network, brings great flexibility and wide potential to its application. A systematic cost-effectiveness analysis is also presented.

  8. A megawatt solid-state modulator for high repetition rate pulse generation.

    PubMed

    Wang, Y; Pribyl, P; Gekelman, W

    2016-02-01

    A novel solid-state modulator capable of generating rapid consecutive power pulses is constructed to facilitate experiments on plasma interaction with high power microwave pulses. The modulator is designed to output a 100 kHz tone burst, which consists of up to 10 pulses, each with 1 μs duration and 1 MW peak power. The pulses are formed by discharging a total of 480 μF capacitors through 24 synchronized MOSFETs and 6 step-up transformers. The highly modular design, as a replacement of an old single-pulse version used in earlier experiments which employs a pulse forming network, brings great flexibility and wide potential to its application. A systematic cost-effectiveness analysis is also presented. PMID:26931851

  9. A megawatt solid-state modulator for high repetition rate pulse generation.

    PubMed

    Wang, Y; Pribyl, P; Gekelman, W

    2016-02-01

    A novel solid-state modulator capable of generating rapid consecutive power pulses is constructed to facilitate experiments on plasma interaction with high power microwave pulses. The modulator is designed to output a 100 kHz tone burst, which consists of up to 10 pulses, each with 1 μs duration and 1 MW peak power. The pulses are formed by discharging a total of 480 μF capacitors through 24 synchronized MOSFETs and 6 step-up transformers. The highly modular design, as a replacement of an old single-pulse version used in earlier experiments which employs a pulse forming network, brings great flexibility and wide potential to its application. A systematic cost-effectiveness analysis is also presented.

  10. Micro-processing of polymers and biological materials using high repetition rate femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Ding, Li

    High repetition rate femtosecond laser micro-processing has been applied to ophthalmological hydrogel polymers and ocular tissues to create novel refractive and diffractive structures. Through the optimization of laser irradiation conditions and material properties, this technology has become feasible for future industrial applications and clinical practices. A femtosecond laser micro-processing workstation has been designed and developed. Different experimental parameters of the workstation such as laser pulse duration, focusing lens, and translational stages have been described and discussed. Diffractive gratings and three-dimensional waveguides have been fabricated and characterized in hydrogel polymers, and refractive index modifications as large as + 0.06 have been observed within the laser-irradiated region. Raman spectroscopic studies have shown that our femtosecond laser micro-processing induces significant thermal accumulation, resulting in a densification of the polymer network and increasing the localized refractive index of polymers within the laser irradiated region. Different kinds of dye chromophores have been doped in hydrogel polymers to enhance the two-photon absorption during femtosecond laser micro-processing. As the result, laser scanning speed can be greatly increased while the large refractive index modifications remain. Femtosecond laser wavelength and pulse energy as well as water and dye concentration of the hydrogels are optimized. Lightly fixed ocular tissues such as corneas and lenses have been micro-processed by focused femtosecond laser pulses, and refractive index modifications without any tissue-breakdown are observed within the stromal layer of the corneas and the cortex of the lenses. Living corneas are doped with Sodium Fluorescein to increase the two-photon absorption during the laser micro-processing, and laser scanning speed can be greatly increased while inducing large refractive index modifications. No evidence of cell death

  11. High-power pulsed thulium fiber oscillator modulated by stimulated Brillouin scattering

    SciTech Connect

    Tang, Yulong Xu, Jianqiu

    2014-01-06

    A pulsed ∼2-μm thulium-doped fiber laser passively modulated by distributed stimulated Brillouin scattering achieves 10.2 W average power and >100 kHz repetition rate with a very simple all-fiber configuration. The maximum pulse energy and peak power surpass 100 μJ and 6 kW, respectively. Another distinct property is that the pulse width is clamped around 17 ns at all power levels. All the average-power, pulse energy, and peak power show the highest values from passively modulated fiber lasers in all wavelength regions.

  12. Advances in high-power harmonic generation: Q-switched lasers with electronically adjustable pulse width

    NASA Astrophysics Data System (ADS)

    Eyres, Loren A.; Morehead, James J.; Gregg, Jeffrey; Richard, Derek J.; Grossman, William

    2006-02-01

    We demonstrate a variable pulse width, internally-frequency-converted, near-diffraction-limited Nd:YAG laser with output power up to 40 Watts at 532 nm and pulse widths electronically adjustable over a 40-300 ns range. The variable pulse width is achieved by clipping the pulse decaying edge with the Q-switch in a laser cavity optimized for post-pulse gain insensitivity. This approach makes possible frequency converted lasers with pulse width and output power substantially independent of repetition rate.

  13. Photoconductive Semiconductor Switches for pulsed power applications

    SciTech Connect

    Loubriel, G.M.; Zutavern, F.J.; Denison, G.J.; Helgeson, W.D.; McLaughlin, D.L.; O`Malley, M.W.; Buttram, M.T.

    1993-08-01

    Photoconductive Semiconductor Switches (PCSS) are being used in, or tested for, many different pulsed power applications as diverse as ultrawideband (UWB) transmitters and high current pulsers. Some aspects of the switches that are relevant to most of the applications are: switch lifetime (longevity), switch opening time (related to the lifetime of carriers in the semiconductor), switching jitter, and the required laser energy. This paper will emphasize the results that we have obtained with Si switches for UWB applications. These include: measurement of switch longevity (a total of 80 Coulombs or 40 C/cm for a 2 cm wide switch and 18.4 Coulombs or 73 Coulombs/cm for a 0.25 cm wide switch), switching at high repetition rates (up to 540 Hz), measurement of carrier lifetime decay rates (a fast one of a few {mu}s, and a slow one of about 330 {mu}s), and measurements on the effect of neutron irradiation on carrier lifetimes. The total charge switched seems to be the highest ever reported for a PCSS. We have used these Si switches in a variety of circuits to produce: a monocycle with a period of about 10 ns corresponding to a center frequency of about 84 MHz, and ringing (many pulse) waveforms with periods of about 1 ns and 7.5 ns corresponding to center frequencies of 770 MHz and 133 MHz. We will also discuss recent studies on the switching properties of GaP.

  14. Role of the optical pulse repetition rate in the efficiency of terahertz emitters

    NASA Astrophysics Data System (ADS)

    Reklaitis, Antanas

    2016-07-01

    Excitation of n-GaAs and p-InAs terahertz emitters by the series of optical pulses is studied by ensemble Monte Carlo simulations. It is found that the spatial separation of photoexcited electrons and holes dramatically reduces the recombination intensity in n-GaAs emitter, the operation of which is based on the surface field effect. The spatial separation of carriers does not affect the recombination intensity in p-InAs emitter, the operation of which is based on the photo-Dember effect. Therefore, the recovery time of equilibrium state after optical pulse in n-GaAs emitter significantly exceeds the corresponding recovery time in p-InAs emitter. This fact leads to a substantial reduction of photocurrent amplitude in n-GaAs emitter excited by the optical pulse series at high repetition rate.

  15. All-fiber high-average power nanosecond-pulsed master-oscillator power amplifier at 2  μm with mJ-level pulse energy.

    PubMed

    Wang, Xiong; Jin, Xiaoxi; Zhou, Pu; Wang, Xiaolin; Xiao, Hu; Liu, Zejin

    2016-03-10

    We present a high-power nanosecond-pulsed Tm-doped fiber amplifier at 1.971 μm based on a master-oscillator power amplifier (MOPA) configuration. When the repetition rate is 500 kHz and the pulse width is 63.3 ns, the average power reaches 238 W, the peak power reaches 7.06 kW, and the pulse energy is 0.477 mJ. When the pulse train's repetition rate is 300 kHz with a pulse width of 63.7 ns, the average power reaches 197 W, the peak power reaches 9.73 kW, and the pulse energy is 0.66 mJ. When the pulse train's repetition rate is 200 kHz with a pulse width of 58.2 ns, the average power reaches 150 W, the peak power reaches 12.1 kW, and the pulse energy is 0.749 mJ. The spectral linewidths of the pulse trains are 0.15, 0.14, and 0.10 nm for 500 kHz repetition rate, 300 kHz repetition rate, and 200 kHz repetition rate, respectively. To the best of our knowledge, this is the first demonstration of high-power nanosecond-pulsed MOPA at 2 μm with the maximum average power reaching 238 W, the maximum peak power reaching 12.1 kW, and the maximum pulse energy reaching 0.749 mJ.

  16. Fourier-transform spectroscopy using an Er-doped fiber femtosecond laser by sweeping the pulse repetition rate

    PubMed Central

    Lee, Keunwoo; Lee, Joohyung; Jang, Yoon-Soo; Han, Seongheum; Jang, Heesuk; Kim, Young-Jin; Kim, Seung-Woo

    2015-01-01

    Femtosecond lasers allow for simultaneous detection of multiple absorption lines of a specimen over a broad spectral range of infrared or visible light with a single spectroscopic measurement. Here, we present an 8-THz bandwidth, 0.5-GHz resolution scheme of Fourier-transform spectroscopy using an Er-doped fiber femtosecond laser. A resolving power of 1.6 × 104 about a 1560-nm center wavelength is achieved by sweeping the pulse repetition rate of the light source on a fiber Mach-Zehnder interferometer configured to capture interferograms with a 0.02-fs temporal sampling accuracy through a well-stabilized 60-m unbalance arm length. A dual-servo mechanism is realized by combining a mechanical linear stage with an electro-optic modulator (EOM) within the fiber laser cavity, enabling stable sweeping control of the pulse repetition rate over a 1.0-MHz scan range with 0.4-Hz steps with reference to the Rb clock. Experimental results demonstrate that the P-branch lines of the H13CN reference cell can be observed with a signal-to-noise ratio reaching 350 for the most intense line. PMID:26503257

  17. Control of Analyte Electrolysis in Electrospray Ionization Mass Spectrometry Using Repetitively Pulsed High Voltage

    SciTech Connect

    Kertesz, Vilmos; Van Berkel, Gary J

    2011-01-01

    Analyte electrolysis using a repetitively pulsed high voltage ion source was investigated and compared to that using a regular, continuously operating direct current high voltage ion source in electrospray ionization mass spectrometry. The extent of analyte electrolysis was explored as a function of the length and frequency of the high voltage pulse using the model compound reserpine in positive ion mode. Using +5 kV as the maximum high voltage amplitude, reserpine was oxidized to its 2, 4, 6 and 8-electron oxidation products when direct current high voltage was employed. In contrast, when using a pulsed high voltage, oxidation of reserpine was eliminated by employing the appropriate high voltage pulse length and frequency. This effect was caused by inefficient mass transport of the analyte to the electrode surface during the duration of the high voltage pulse and the subsequent relaxation of the emitter electrode/ electrolyte interface during the time period when the high voltage was turned off. This mode of ESI source operation allows for analyte electrolysis to be quickly and simply switched on or off electronically via a change in voltage pulse variables.

  18. High Power Picosecond Laser Pulse Recirculation

    SciTech Connect

    Shverdin, M Y; Jovanovic, I; Semenov, V A; Betts, S M; Brown, C; Gibson, D J; Shuttlesworth, R M; Hartemann, F V; Siders, C W; Barty, C P

    2010-04-12

    We demonstrate a nonlinear crystal-based short pulse recirculation cavity for trapping the second harmonic of an incident high power laser pulse. This scheme aims to increase the efficiency and flux of Compton-scattering based light sources. We demonstrate up to 36x average power enhancement of frequency doubled sub-millijoule picosecond pulses, and 17x average power enhancement of 177 mJ, 10 ps, 10 Hz pulses.

  19. High-power picosecond laser pulse recirculation.

    PubMed

    Shverdin, M Y; Jovanovic, I; Semenov, V A; Betts, S M; Brown, C; Gibson, D J; Shuttlesworth, R M; Hartemann, F V; Siders, C W; Barty, C P J

    2010-07-01

    We demonstrate a nonlinear crystal-based short pulse recirculation cavity for trapping the second harmonic of an incident high-power laser pulse. This scheme aims to increase the efficiency and flux of Compton-scattering-based light sources. We demonstrate up to 40x average power enhancement of frequency-doubled submillijoule picosecond pulses, and 17x average power enhancement of 177 mJ, 10 ps, 10 Hz pulses.

  20. High-power picosecond laser pulse recirculation.

    PubMed

    Shverdin, M Y; Jovanovic, I; Semenov, V A; Betts, S M; Brown, C; Gibson, D J; Shuttlesworth, R M; Hartemann, F V; Siders, C W; Barty, C P J

    2010-07-01

    We demonstrate a nonlinear crystal-based short pulse recirculation cavity for trapping the second harmonic of an incident high-power laser pulse. This scheme aims to increase the efficiency and flux of Compton-scattering-based light sources. We demonstrate up to 40x average power enhancement of frequency-doubled submillijoule picosecond pulses, and 17x average power enhancement of 177 mJ, 10 ps, 10 Hz pulses. PMID:20596201

  1. Effect of master oscillator stability over pulse repetition frequency on hybrid semiconductor mode-locked laser

    NASA Astrophysics Data System (ADS)

    Castro Alves, D.; Abreu, Manuel; Cabral, Alexandre; Rebordão, J. M.

    2015-04-01

    Semiconductor mode-locked lasers are a very attractive laser pulse source for high accuracy length metrology. However, for some applications, this kind of device does not have the required frequency stability. Operating the laser in hybrid mode will increase the laser pulse repetition frequency (PRF) stability. In this study it is showed that the laser PRF is not only locked to the master oscillator but also maintains the same level of stability of the master oscillator. The device used in this work is a 10 mm long mode-locked asymmetrical cladding single section InAs/InP quantum dash diode laser emitting at 1580 nm with a pulse repetition frequency of ≈4.37 GHz. The laser nominal stability in passive mode (no external oscillator) shows direct dependence with the gain current and the stability range goes from 10-4 to 10-7. Several oscillators with different stabilities were used for the hybrid-mode operation (with external oscillator) and the resulting mode-locked laser stability compared. For low cost oscillators with low stability, the laser PRF stability achieves a value of 10-7 and for higher stable oscillation source (such as oven controlled quartz oscillators (OXCO)) the stability can reach values up to 10-12 (τ =1 s).

  2. A Tesla-pulse forming line-plasma opening switch pulsed power generator.

    PubMed

    Novac, B M; Kumar, R; Smith, I R

    2010-10-01

    A pulsed power generator based on a high-voltage Tesla transformer which charges a 3.85 Ω/55 ns water-filled pulse forming line to 300 kV has been developed at Loughborough University as a training tool for pulsed power students. The generator uses all forms of insulation specific to pulsed power technology, liquid (oil and water), gas (SF(6)), and magnetic insulation in vacuum, and a number of fast voltage and current sensors are implemented for diagnostic purposes. A miniature (centimeter-size) plasma opening switch has recently been coupled to the output of the pulse forming line, with the overall system comprising the first phase of a program aimed at the development of a novel repetitive, table-top generator capable of producing 15 GW pulses for high power microwave loads. Technical details of all the generator components and the main experimental results obtained during the program and demonstrations of their performance are presented in the paper, together with a description of the various diagnostic tools involved. In particular, it is shown that the miniature plasma opening switch is capable of reducing the rise time of the input current while significantly increasing the load power. Future plans are outlined in the conclusions.

  3. High-power pulsed lasers

    SciTech Connect

    Holzrichter, J.F.

    1980-04-02

    The ideas that led to the successful construction and operation of large multibeam fusion lasers at the Lawrence Livermore Laboratory are reviewed. These lasers are based on the use of Nd:glass laser materials. However, most of the concepts are applicable to any laser being designed for fusion experimentation. This report is a summary of lectures given by the author at the 20th Scottish University Summer School in Physics, on Laser Plasma Interaction. This report includes basic concepts of the laser plasma system, a discussion of lasers that are useful for short-pulse, high-power operation, laser design constraints, optical diagnostics, and system organization.

  4. Nova pulse power design and operational experience

    NASA Astrophysics Data System (ADS)

    Whitham, K.; Larson, D.; Merritt, B.; Christie, D.

    1987-01-01

    Nova is a 100 TW Nd++ solid state laser designed for experiments with laser fusion at Lawrence Livermore National Laboratory (LLNL). The pulsed power for Nova includes a 58 MJ capacitor bank driving 5336 flashlamps with millisecond pulses and subnanosecond high voltages for electro optics. This paper summarizes the pulsed power designs and the operational experience to date.

  5. Detector response in time-of-flight mass spectrometry at high pulse repetition frequencies

    NASA Technical Reports Server (NTRS)

    Gulcicek, Erol E.; Boyle, James G.

    1993-01-01

    Dead time effects in chevron configured dual microchannel plates (MCPs) are investigated. Response times are determined experimentally for one chevron-configured dual MCP-type detector and two discrete dynode-type electron multipliers with 16 and 23 resistively divided stages. All of these detectors are found to be suitable for time-of-flight mass spectrometry (TOF MS), yielding 3-6-ns (FWHM) response times triggered on a single ion pulse. It is concluded that, unless there are viable solutions to overcome dead time disadvantages for continuous dynode detectors, suitable discrete dynode detectors for TOF MS appear to have a significant advantage for high repetition rate operation.

  6. Ranchero Explosive Pulsed Power Experiments

    SciTech Connect

    Goforth, J.H.; Atchison, W.L.; Deninger, W.J.; Fowler, C.M.; Herrera, D.H.; King, J.C.; Lopez, E.A.; Oona, H.; Reinovsky, R.E.; Stokes, J.L.; Sena, F.C.; Tabaka, L.J.; Tasker, D.G.; Torres, D.T.; Lindemuth, I.R.; Faehl, R.J.; Keinigs, R.K.; Taylor, A.J.; Rodriguez, G.; Oro, D.M.; Garcia, O.F.; parker, J.V.; Broste, W.B.

    1999-06-27

    The authors are developing the Ranchero high explosive pulsed power (HEPP) system to power cylindrically imploding solid-density liners for hydrodynamics experiments. The near-term goal is to conduct experiments in the regime pertinent to the Atlas Capacitor bank. That is, they will attempt to implode liners of {approximately}50 g mass at velocities approaching 15 km/sec. The basic building block of the HEPP system is a coaxial generator with a 304.8 mm diameter stator, and an initial armature diameter of 152 mm. The armature is expanded by a high explosive (HE) charge detonated simultaneously along its axis. They have reported a variety of experiments conducted with generator modules 43 cm long and have presented an initial design for hydrodynamic liner experiments. In this paper they give a synopsis of their first system test, and a status report on the development of a generator module that is 1.4 m long.

  7. Non-Contact Thrust Stand Calibration Method for Repetitively-Pulsed Electric Thrusters

    NASA Technical Reports Server (NTRS)

    Wong, Andrea R.; Toftul, Alexandra; Polzin, Kurt A.; Pearson, J. Boise

    2011-01-01

    A thrust stand calibration technique for use in testing repetitively-pulsed electric thrusters for in-space propulsion has been developed and tested using a modified hanging pendulum thrust stand. In the implementation of this technique, current pulses are applied to a solenoidal coil to produce a pulsed magnetic field that acts against the magnetic field produced by a permanent magnet mounted to the thrust stand pendulum arm. The force on the magnet is applied in this non-contact manner, with the entire pulsed force transferred to the pendulum arm through a piezoelectric force transducer to provide a time-accurate force measurement. Modeling of the pendulum arm dynamics reveals that after an initial transient in thrust stand motion the quasisteady average deflection of the thrust stand arm away from the unforced or zero position can be related to the average applied force through a simple linear Hooke s law relationship. Modeling demonstrates that this technique is universally applicable except when the pulsing period is increased to the point where it approaches the period of natural thrust stand motion. Calibration data were obtained using a modified hanging pendulum thrust stand previously used for steady-state thrust measurements. Data were obtained for varying impulse bit at constant pulse frequency and for varying pulse frequency. The two data sets exhibit excellent quantitative agreement with each other as the constant relating average deflection and average thrust match within the errors on the linear regression curve fit of the data. Quantitatively, the error on the calibration coefficient is roughly 1% of the coefficient value.

  8. Prefire identification for pulse power systems

    DOEpatents

    Longmire, Jerry L.; Thuot, Michael E.; Warren, David S.

    1985-01-01

    Prefires in a high-power, high-frequency, multi-stage pulse generator are detected by a system having an EMI shielded pulse timing transmitter associated with and tailored to each stage of the pulse generator. Each pulse timing transmitter upon detection of a pulse triggers a laser diode to send an optical signal through a high frequency fiber optic cable to a pulse timing receiver which converts the optical signal to an electrical pulse. The electrical pulses from all pulse timing receivers are fed through an OR circuit to start a time interval measuring device and each electrical pulse is used to stop an individual channel in the measuring device thereby recording the firing sequence of the multi-stage pulse generator.

  9. Prefire identification for pulse-power systems

    DOEpatents

    Longmire, J.L.; Thuot, M.E.; Warren, D.S.

    1982-08-23

    Prefires in a high-power, high-frequency, multi-stage pulse generator are detected by a system having an EMI shielded pulse timing transmitter associated with and tailored to each stage of the pulse generator. Each pulse timing transmitter upon detection of a pulse triggers a laser diode to send an optical signal through a high frequency fiber optic cable to a pulse timing receiver which converts the optical signal to an electrical pulse. The electrical pulses from all pulse timing receivers are fed through an OR circuit to start a time interval measuring device and each electrical pulse is used to stop an individual channel in the measuring device thereby recording the firing sequence of the multi-stage pulse generator.

  10. Beamlet pulsed-power system

    SciTech Connect

    Larson, D.

    1996-06-01

    The 13-MJ Beamlet pulsed-power system provides power to the 512 flash lamps in the cavity and booster amplifiers. Since the flash lamps pump all of the apertures in the 2 x 2 amplifier array, the capacitor bank provides roughly four times the energy required to pump the single active beam line. During the 40 s prior to the shot, the capacitors are charged by constant-current power supplies. Ignitron switches transfer the capacitor energy to the flash lamps via coaxial cables. A preionization system triggers the flash lamps and delivers roughly 1 % of the capacitor energy 200 {mu}s prior to the main discharge. This is the first time flash-lamp preionization has been used in a large facility. Preionization improves the amplifier efficiency by roughly 5% and increases the lifetime of the flash lamps. LabVIEW control panels provide an operator interface with the modular controls and diagnostics. To improve the reliability of the system, high-energy-density, self-healing, metallized dielectric capacitors are used. High-frequency, voltage-regulated switching power supplies are integrated into each module on Beamlet, allowing greater independence among the modules and improved charge voltage accuracy, flexibility, and repeatability.

  11. Ytterbium fiber-based, 270 fs, 100 W chirped pulse amplification laser system with 1 MHz repetition rate

    NASA Astrophysics Data System (ADS)

    Zhao, Zhigang; Kobayashi, Yohei

    2016-01-01

    A 100 W Yb-doped, fiber-based, femtosecond, chirped pulse amplification laser system was developed with a repetition rate of 1 MHz, corresponding to a pulse energy of 100 µJ. Large-scale, fused-silica transmission gratings were used for both the pulse stretcher and compressor, with a compression throughput efficiency of ∼85%. A pulse duration of 270 fs was measured by second harmonic generation frequency-resolved optical gating (SHG-FROG). To the best of our knowledge, this is the shortest pulse duration ever achieved by a 100-W-level fiber chirped pulse amplification laser system at a repetition rate of few megahertz, without any special post-compression manipulation.

  12. Nanosecond Repetitively Pulsed Discharges in Air at Atmospheric Pressure -- Experiment and Theory of Regime Transitions

    NASA Astrophysics Data System (ADS)

    Pai, David; Lacoste, Deanna; Laux, Christophe

    2009-10-01

    In atmospheric pressure air preheated from 300 to 1000 K, the Nanosecond Repetitively Pulsed (NRP) method has been used to generate corona, glow, and spark discharges. Experiments have been performed to determine the parameter space (applied voltage, pulse repetition frequency, ambient gas temperature, and inter-electrode gap distance) of each discharge regime. Notably, there is a minimum gap distance for the existence of the glow regime that increases with decreasing gas temperature. A theory is developed to describe the Corona-to-Glow (C-G) and Glow-to-Spark (G-S) transitions for NRP discharges. The C-G transition is shown to depend on the Avalanche-to-Streamer Transition (AST) as well as the electric field strength in the positive column. The G-S transition is due to the thermal ionization instability. The minimum gap distance for the existence of the glow regime can be understood by considering that the applied voltage of the AST must be lower than that of the thermal ionization instability. This is a previously unknown criterion for generating glow discharges, as it does not correspond to the Paschen minimum or to the Meek-Raether criterion.

  13. Characterization of MHz pulse repetition rate femtosecond laser-irradiated gold-coated silicon surfaces

    NASA Astrophysics Data System (ADS)

    Sivakumar, Manickam; Venkatakrishnan, Krishnan; Tan, Bo

    2011-12-01

    In this study, MHz pulse repetition rate femtosecond laser-irradiated gold-coated silicon surfaces under ambient condition were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction analysis (XRD), and X-ray photoelectron spectroscopy (XPS). The radiation fluence used was 0.5 J/cm2 at a pulse repetition rate of 25 MHz with 1 ms interaction time. SEM analysis of the irradiated surfaces showed self-assembled intermingled weblike nanofibrous structure in and around the laser-irradiated spots. Further TEM investigation on this nanostructure revealed that the nanofibrous structure is formed due to aggregation of Au-Si/Si nanoparticles. The XRD peaks at 32.2°, 39.7°, and 62.5° were identified as (200), (211), and (321) reflections, respectively, corresponding to gold silicide. In addition, the observed chemical shift of Au 4 f and Si 2 p lines in XPS spectrum of the irradiated surface illustrated the presence of gold silicide at the irradiated surface. The generation of Si/Au-Si alloy fibrous nanoparticles aggregate is explained by the nucleation and subsequent condensation of vapor in the plasma plume during irradiation and expulsion of molten material due to high plasma pressure.

  14. Characterization of MHz pulse repetition rate femtosecond laser-irradiated gold-coated silicon surfaces

    PubMed Central

    2011-01-01

    In this study, MHz pulse repetition rate femtosecond laser-irradiated gold-coated silicon surfaces under ambient condition were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction analysis (XRD), and X-ray photoelectron spectroscopy (XPS). The radiation fluence used was 0.5 J/cm2 at a pulse repetition rate of 25 MHz with 1 ms interaction time. SEM analysis of the irradiated surfaces showed self-assembled intermingled weblike nanofibrous structure in and around the laser-irradiated spots. Further TEM investigation on this nanostructure revealed that the nanofibrous structure is formed due to aggregation of Au-Si/Si nanoparticles. The XRD peaks at 32.2°, 39.7°, and 62.5° were identified as (200), (211), and (321) reflections, respectively, corresponding to gold silicide. In addition, the observed chemical shift of Au 4f and Si 2p lines in XPS spectrum of the irradiated surface illustrated the presence of gold silicide at the irradiated surface. The generation of Si/Au-Si alloy fibrous nanoparticles aggregate is explained by the nucleation and subsequent condensation of vapor in the plasma plume during irradiation and expulsion of molten material due to high plasma pressure. PMID:21711595

  15. High-Power Laser Pulse Recirculation for Inverse Compton Scattering-Produced Gamma-Rays

    SciTech Connect

    Jovanovic, I; Shverdin, M; Gibson, D; Brown, C

    2007-04-17

    Inverse Compton scattering of high-power laser pulses on relativistic electron bunches represents an attractive method for high-brightness, quasi-monoenergetic {gamma}-ray production. The efficiency of {gamma}-ray generation via inverse Compton scattering is severely constrained by the small Thomson scattering cross section. Furthermore, repetition rates of high-energy short-pulse lasers are poorly matched with those available from electron accelerators, resulting in low repetition rates for generated {gamma}-rays. Laser recirculation has been proposed as a method to address those limitations, but has been limited to only small pulse energies and peak powers. Here we propose and experimentally demonstrate an alternative method for laser pulse recirculation that is uniquely capable of recirculating short pulses with energies exceeding 1 J. Inverse Compton scattering of recirculated Joule-level laser pulses has a potential to produce unprecedented peak and average {gamma}-ray brightness in the next generation of sources.

  16. Diode-pumped short pulse passively Q-switched 912 nm Nd:GdVO4/Cr:YAG laser at high repetition rate operation

    NASA Astrophysics Data System (ADS)

    Chen, F.; Yu, X.; Wang, C.; Yan, R. P.; Li, X. D.; Gao, J.; Zhang, Z. H.; Yu, J. H.

    2010-06-01

    A diode-end-pumped passively Q-switched 912 nm Nd:GdVO4/Cr:YAG laser is demonstrated for the first time. In a concave-piano cavity, pulsed 912 nm laser performance is investigated using two kinds of Cr:YAG crystal with different unsaturated transmission ( T U) of 95% and 90% at 912 nm as the saturable absorbers. When the T U = 90% Cr:YAG is used, as much as 2.6 W average output power for short pulsed 912 nm laser is achieved at an absorbed pump power of 34.0 W, corresponding to an optical efficiency of 7.6% and a slope efficiency of 20.3%. Moreover, 10.5 ns duration pulses and up to 2.3 kW peak power is obtained at the repetition rate around 81.6 kHz.

  17. Nova pulse power system description and status

    SciTech Connect

    Holloway, R.W.; Whitham, K.; Merritt, B.T.; Gritton, D.G.; Oicles, J.A.

    1981-06-01

    The Nova laser system is designed to produce critical data in the nation's inertial confinement fusion effort. It is the world's largest peak power laser and presents various unique pulse power problems. In this paper, pulse power systems for this laser are described, the evolutionary points from prior systems are pointed out, and the current status of the hardware is given.

  18. Optical Parameter Variability in Laser Nerve Stimulation: A Study of Pulse Duration, Repetition Rate, and Wavelength

    PubMed Central

    Walsh, Joseph T.; Jansen, E. Duco; Bendett, Mark; Webb, Jim; Ralph, Heather; Richter, Claus-Peter

    2012-01-01

    Pulsed lasers can evoke neural activity from motor as well as sensory neurons in vivo. Lasers allow more selective spatial resolution of stimulation than the conventional electrical stimulation. To date, few studies have examined pulsed, mid-infrared laser stimulation of nerves and very little of the available optical parameter space has been studied. In this study, a pulsed diode laser, with wavelength between 1.844–1.873 μm, was used to elicit compound action potentials (CAPs) from the auditory system of the gerbil. We found that pulse durations as short as 35 μs elicit a CAP from the cochlea. In addition, repetition rates up to 13 Hz can continually stimulate cochlear spiral ganglion cells for extended periods of time. Varying the wavelength and, therefore, the optical penetration depth, allowed different populations of neurons to be stimulated. The technology of optical stimulation could significantly improve cochlear implants, which are hampered by a lack of spatial selectivity. PMID:17554829

  19. Non-chain pulsed DF laser with an average power of the order of 100 W

    NASA Astrophysics Data System (ADS)

    Pan, Qikun; Xie, Jijiang; Wang, Chunrui; Shao, Chunlei; Shao, Mingzhen; Chen, Fei; Guo, Jin

    2016-07-01

    The design and performance of a closed-cycle repetitively pulsed DF laser are described. The Fitch circuit and thyratron switch are introduced to realize self-sustained volume discharge in SF6-D2 mixtures. The influences of gas parameters and charging voltage on output characteristics of non-chain pulsed DF laser are experimentally investigated. In order to improve the laser power stability over a long period of working time, zeolites with different apertures are used to scrub out the de-excitation particles produced in electric discharge. An average output power of the order of 100 W was obtained at an operating repetition rate of 50 Hz, with amplitude difference in laser pulses <8 %. And under the action of micropore alkaline zeolites, the average power fell by 20 % after the laser continuing working 100 s at repetition frequency of 50 Hz.

  20. Dentin bond strength after ablation using a CO2 laser operating at high pulse repetition rates

    NASA Astrophysics Data System (ADS)

    Hedayatollahnajafi, Saba; Staninec, Michal; Watanabe, Larry; Lee, Chulsung; Fried, Daniel

    2009-02-01

    Pulsed CO2 lasers show great promise for the rapid and efficient ablation of dental hard tissues. Our objective was to demonstrate that CO2 lasers operated at high repetition rates can be used for the rapid removal of dentin without excessive thermal damage and without compromising adhesion to restorative materials. Human dentin samples (3x3mm2) were rapidly ablated with a pulsed CO2 laser operating at a wavelength of 9.3-µm, pulse repetition rate of 300-Hz and an irradiation intensity of 18-J/cm2. The bond strength to composite was determined by the modified single plane shear test. There were 8 test groups each containing 10 blocks: negative control (non-irradiated non-etched), positive control (non-irradiated acid-etched), and six laser treated groups (three etched and three non-etched sets). The first and second etched and non-etched sets were ablated at a speed of 25 mm/sec and 50 mm/sec with water, respectively. The third set was also ablated at 50 mm/sec without application of water during laser irradiation. Minimal thermal damage was observed on the dentin surfaces for which water cooling was applied. Bond strengths exceeded 20 MPa for laser treated surfaces that were acid-etched after ablation (25-mm/sec: 29.9-MPa, 50-mm/sec: 21.3-MPa). The water-cooled etched laser groups all produced significantly stronger bonds than the negative control (p<0.001) and a lower bond strength than the positive control (p<0.05). These measurements demonstrate that dentin surfaces can be rapidly ablated by a CO2 lasers with minimal peripheral thermal damage. Additional studies are needed to determine if a lower bond strength than the acid-etched control samples is clinically significant where durability of these bonded restoration supersedes high bond strength.

  1. Gain-switched laser diode seeded Yb-doped fiber amplifier delivering 11-ps pulses at repetition rates up to 40-MHz

    NASA Astrophysics Data System (ADS)

    Ryser, Manuel; Neff, Martin; Pilz, Soenke; Burn, Andreas; Romano, Valerio

    2012-02-01

    Here, we demonstrate all-fiber direct amplification of 11 picosecond pulses from a gain-switched laser diode at 1063 nm. The diode was driven at a repetition rate of 40 MHz and delivered 13 μW of fiber-coupled average output power. For the low output pulse energy of 0.33 pJ we have designed a multi-stage core pumped preamplifier based on single clad Yb-doped fibers in order to keep the contribution of undesired amplified spontaneous emission as low as possible and to minimize temporal and spectral broadening. After the preamplifier we reduced the 40 MHz repetition rate to 1 MHz using a fiber coupled pulse-picker. The final amplification was done with a cladding pumped Yb-doped large mode area fiber and a subsequent Yb-doped rod-type fiber. With our setup we achieved amplification of 72 dBs to an output pulse energy of 5.7 μJ, pulse duration of 11 ps and peak power of >0.6 MW.

  2. High energy pulses generation with giant spectrum bandwidth and submegahertz repetition rate from a passively mode-locked Yb-doped fiber laser in all normal dispersion cavity

    NASA Astrophysics Data System (ADS)

    Lin, J.-H.; Wang, D.; Lin, K.-H.

    2011-01-01

    Robust passively mode-locked pulse generation with low pulse repetition rate and giant spectrum bandwidth in an all-fiber, all-normal-dispersion ytterbium-doped fiber laser has been experimentally demonstrated using nonlinear polarization evolution technique. The highest pulse energy over 20 nJ with spectrum bandwidth over 50 nm can be experimentally obtained at 175 mW pump power. The mode-locked pulses reveal broadened 3-dB pulsewidth about several nanosecond and widened pedestal in time trace that is resulted from enormous dispersion in laser cavity and gain dynamics. At certain mode-locking state, a spectrum gap around 1056 nm are observed between the three and four energy levels of Yb-doped fiber laser. By properly rotating the polarization controller, the gap can be eliminated due to four-wave mixing to produce more flattened spectrum output.

  3. AN UPDATE ON NIF PULSED POWER

    SciTech Connect

    Arnold, P A; James, G F; Petersen, D E; Pendleton, D L; McHale, G B; Barbosa, F; Runtal, A S; Stratton, P L

    2009-06-22

    The National Ignition Facility (NIF) is a 192-beam laser fusion driver operating at Lawrence Livermore National Laboratory. NIF relies on three large-scale pulsed power systems to achieve its goals: the Power Conditioning Unit (PCU), which provides flashlamp excitation for the laser's injection system; the Power Conditioning System (PCS), which provides the multi-megajoule pulsed excitation required to drive flashlamps in the laser's optical amplifiers; and the Plasma Electrode Pockels Cell (PEPC), which enables NIF to take advantage of a fourpass main amplifier. Years of production, installation, and commissioning of the three NIF pulsed power systems are now complete. Seven-day-per-week operation of the laser has commenced, with the three pulsed power systems providing routine support of laser operations. We present the details of the status and operational experience associated with the three systems along with a projection of the future for NIF pulsed power.

  4. Species and temperature measurements of methane oxidation in a nanosecond repetitively pulsed discharge.

    PubMed

    Lefkowitz, Joseph K; Guo, Peng; Rousso, Aric; Ju, Yiguang

    2015-08-13

    Speciation and temperature measurements of methane oxidation during a nanosecond repetitively pulsed discharge in a low-temperature flow reactor have been performed. Measurements of temperature and formaldehyde during a burst of pulses were made on a time-dependent basis using tunable diode laser absorption spectroscopy, and measurements of all other major stable species were made downstream of a continuously pulsed discharge using gas chromatography. The major species for a stoichiometric methane/oxygen/helium mixture with 75% dilution are H(2)O, CO, CO(2), H(2), CH(2)O, CH(3)OH, C(2)H(6), C(2)H(4) and C(2)H(2). A modelling tool to simulate homogeneous plasma combustion kinetics is assembled by combining the ZDPlasKin and CHEMKIN codes. In addition, a kinetic model for plasma-assisted combustion (HP-Mech/plasma) of methane, oxygen and helium mixtures has been assembled to simulate the measurements. Predictions can accurately capture reactant consumption as well as production of the major product species. However, significant disagreement is found for minor species, particularly CH(2)O and CH(3)OH. Further analysis revealed that the plasma-activated low-temperature oxidation pathways, particularly those involving CH(3)O(2) radical reactions and methane reactions with O((1)D), are responsible for this disagreement. PMID:26170433

  5. Species and temperature measurements of methane oxidation in a nanosecond repetitively pulsed discharge

    PubMed Central

    Lefkowitz, Joseph K; Guo, Peng; Rousso, Aric; Ju, Yiguang

    2015-01-01

    Speciation and temperature measurements of methane oxidation during a nanosecond repetitively pulsed discharge in a low-temperature flow reactor have been performed. Measurements of temperature and formaldehyde during a burst of pulses were made on a time-dependent basis using tunable diode laser absorption spectroscopy, and measurements of all other major stable species were made downstream of a continuously pulsed discharge using gas chromatography. The major species for a stoichiometric methane/oxygen/helium mixture with 75% dilution are H2O, CO, CO2, H2, CH2O, CH3OH, C2H6, C2H4 and C2H2. A modelling tool to simulate homogeneous plasma combustion kinetics is assembled by combining the ZDPlasKin and CHEMKIN codes. In addition, a kinetic model for plasma-assisted combustion (HP-Mech/plasma) of methane, oxygen and helium mixtures has been assembled to simulate the measurements. Predictions can accurately capture reactant consumption as well as production of the major product species. However, significant disagreement is found for minor species, particularly CH2O and CH3OH. Further analysis revealed that the plasma-activated low-temperature oxidation pathways, particularly those involving CH3O2 radical reactions and methane reactions with O(1D), are responsible for this disagreement. PMID:26170433

  6. A Real-Time Terahertz Time-Domain Polarization Analyzer with 80-MHz Repetition-Rate Femtosecond Laser Pulses

    PubMed Central

    Watanabe, Shinichi; Yasumatsu, Naoya; Oguchi, Kenichi; Takeda, Masatoshi; Suzuki, Takeshi; Tachizaki, Takehiro

    2013-01-01

    We have developed a real-time terahertz time-domain polarization analyzer by using 80-MHz repetition-rate femtosecond laser pulses. Our technique is based on the spinning electro-optic sensor method, which we recently proposed and demonstrated by using a regenerative amplifier laser system; here we improve the detection scheme in order to be able to use it with a femtosecond laser oscillator with laser pulses of a much higher repetition rate. This improvement brings great advantages for realizing broadband, compact and stable real-time terahertz time-domain polarization measurement systems for scientific and industrial applications. PMID:23478599

  7. Picosecond supercontinuum light source for stroboscopic white-light interferometry with freely adjustable pulse repetition rate.

    PubMed

    Novotny, Steffen; Durairaj, Vasuki; Shavrin, Igor; Lipiäinen, Lauri; Kokkonen, Kimmo; Kaivola, Matti; Ludvigsen, Hanne

    2014-06-01

    We present a picosecond supercontinuum light source designed for stroboscopic white-light interferometry. This source offers a potential for high-resolution characterization of vibrational fields in electromechanical components with frequencies up to the GHz range. The light source concept combines a gain-switched laser diode, the output of which is amplified in a two-stage fiber amplifier, with supercontinuum generation in a microstructured optical fiber. Implemented in our white-light interferometer setup, optical pulses with optimized spectral properties and below 310 ps duration are used for stroboscopic illumination at freely adjustable repetition rates. The performance of the source is demonstrated by characterizing the surface vibration field of a square-plate silicon MEMS resonator at 3.37 MHz. A minimum detectable vibration amplitude of less than 100 pm is reached.

  8. Fixed lag smoothing target tracking in clutter for a high pulse repetition frequency radar

    NASA Astrophysics Data System (ADS)

    Khan, Uzair; Shi, Yi Fang; Song, Taek Lyul

    2015-12-01

    A new method to smooth the target hybrid state with Gaussian mixture measurement likelihood-integrated track splitting (GMM-ITS) in the presence of clutter for a high pulse repetition frequency (HPRF) radar is proposed. This method smooths the target state at fixed lag N and considers all feasible multi-scan target existence sequences in the temporal window of scans in order to smooth the target hybrid state. The smoothing window can be of any length N. The proposed method to smooth the target hybrid state at fixed lag is also applied to the enhanced multiple model (EMM) tracking algorithm. Simulation results indicate that the performance of fixed lag smoothing GMM-ITS significantly improves false track discrimination and root mean square errors (RMSEs).

  9. Luminescence of black silicon fabricated by high-repetition rate femtosecond laser pulses

    SciTech Connect

    Chen Tao; Si Jinhai; Hou Xun; Kanehira, Shingo; Miura, Kiyotaka; Hirao, Kazuyuki

    2011-10-01

    We studied the photoluminescence (PL) from black silicon that was fabricated using an 800 nm, 250 kHz femtosecond laser in air. By changing the scan velocity and the fluence of the femtosecond laser, the formation of the PL band between the orange (600 nm) and red bands (near 680 nm) could be controlled. The red band PL from the photoinduced microstructures on the black silicon was observed even without annealing due to the thermal accumulation of high-repetition rate femtosecond laser pulses. The orange band PL was easily quenched under 532 nm cw laser irradiation, whereas the red band PL was more stable; this can be attributed to ''defect luminescence'' and ''quantum confinement'', respectively.

  10. Laser plasma cryogenic target on translating substrate for generation of continuously repetitive EUV and soft X-ray pulses

    SciTech Connect

    Amano, Sho

    2014-06-15

    To generate continuously repetitive EUV and soft X-ray pulses with various wavelengths from laser-produced plasmas, a one-dimensionally translating substrate system with a closed He gas cryostat that can continuously supply various cryogenic targets for ∼10 Hz laser pulses has been developed. The system was successfully operated at a lowest temperature of 15 K and at a maximum up-down speed of 12 mm/s. Solid Ar, Kr, and Xe layers were formed, and their growth rates and the laser crater sizes on them were studied. By optimization of the operational parameters in accordance with our design rule, it was shown that stable output power was achieved continuously from the plasma emission at frequencies of 1–10 Hz. The average soft X-ray and EUV powers obtained were 19 mW at 3.2 nm, 33 mW at 10.0 nm, and 66 mW at 10.8 nm, with 10% bandwidths, from the Ar, Kr, and Xe solid targets, respectively, with a laser power of 1 W. We will be able to achieve higher frequencies using a high beam quality laser that produces smaller craters, and can expect higher powers. Although only Ar, Kr, and Xe gases were tested in this study, the target system achieved a temperature of 15 K and can thus solidify almost all target gases, apart from H and He, and can continuously supply the solid target. The use of various target materials will enable expansion of the EUV and soft X-ray emission wavelength range.

  11. Laser plasma cryogenic target on translating substrate for generation of continuously repetitive EUV and soft X-ray pulses.

    PubMed

    Amano, Sho

    2014-06-01

    To generate continuously repetitive EUV and soft X-ray pulses with various wavelengths from laser-produced plasmas, a one-dimensionally translating substrate system with a closed He gas cryostat that can continuously supply various cryogenic targets for ~10 Hz laser pulses has been developed. The system was successfully operated at a lowest temperature of 15 K and at a maximum up-down speed of 12 mm/s. Solid Ar, Kr, and Xe layers were formed, and their growth rates and the laser crater sizes on them were studied. By optimization of the operational parameters in accordance with our design rule, it was shown that stable output power was achieved continuously from the plasma emission at frequencies of 1-10 Hz. The average soft X-ray and EUV powers obtained were 19 mW at 3.2 nm, 33 mW at 10.0 nm, and 66 mW at 10.8 nm, with 10% bandwidths, from the Ar, Kr, and Xe solid targets, respectively, with a laser power of 1 W. We will be able to achieve higher frequencies using a high beam quality laser that produces smaller craters, and can expect higher powers. Although only Ar, Kr, and Xe gases were tested in this study, the target system achieved a temperature of 15 K and can thus solidify almost all target gases, apart from H and He, and can continuously supply the solid target. The use of various target materials will enable expansion of the EUV and soft X-ray emission wavelength range. PMID:24985796

  12. Loss of echogenicity and onset of cavitation from echogenic liposomes: pulse repetition frequency independence

    PubMed Central

    Radhakrishnan, Kirthi; Haworth, Kevin J; Peng, Tao; McPherson, David D.; Holland, Christy K.

    2014-01-01

    Echogenic liposomes (ELIP) are being developed for the early detection and treatment of atherosclerotic lesions. An 80% loss of echogenicity of ELIP (Radhakrishnan et al. 2013) has been shown to be concomitant with the onset of stable and inertial cavitation. The ultrasound pressure amplitude at which this occurs is weakly dependent on pulse duration. Smith et al. (2007) have reported that the rapid fragmentation threshold of ELIP (based on changes in echogenicity) is dependent on the insonation pulse repetition frequency (PRF). The current study evaluates the relationship between loss of echogenicity and cavitation emissions from ELIP insonified by duplex Doppler pulses at four PRFs (1.25 kHz, 2.5 kHz, 5 kHz, and 8.33 kHz). Loss of echogenicity was evaluated on B-mode images of ELIP. Cavitation emissions from ELIP were recorded passively on a focused single-element transducer and a linear array. Emissions recorded by the linear array were beamformed and the spatial widths of stable and inertial cavitation emissions were compared to the calibrated azimuthal beamwidth of the Doppler pulse exceeding the stable and inertial cavitation thresholds. The inertial cavitation thresholds had a very weak dependence on PRF and stable cavitation thresholds were independent of PRF. The spatial widths of the cavitation emissions recorded by the passive cavitation imaging system agreed with the calibrated Doppler beamwidths. The results also show that 64%–79% loss of echogenicity can be used to classify the presence or absence of cavitation emissions with greater than 80% accuracy. PMID:25438849

  13. Plasma relaxation mechanics of pulsed high power microwave surface flashover

    NASA Astrophysics Data System (ADS)

    Beeson, S.; Dickens, J.; Neuber, A.

    2013-09-01

    Microwave transmission and reflection characteristics of pulsed radio frequency field generated plasmas are elucidated for air, N2, and He environments under pressure conditions ranging from 10 to 600 torr. The pulsed, low temperature plasma is generated along the atmospheric side of the dielectric boundary between the source (under vacuum) and the radiating environment with a thickness on the order of 5 mm and a cross sectional area just smaller than that of the waveguide. Utilizing custom multi-standard waveguide couplers and a continuous low power probing source, the scattering parameters were measured before, during, and after the high power microwave pulse with emphasis on the latter. From these scattering parameters, temporal electron density estimations (specifically the longitudinal integral of the density) were calculated using a 1D plane wave-excited model for analysis of the relaxation processes associated. These relaxation characteristics ultimately determine the maximum repetition rate for many pulsed electric field applications and thus are applicable to a much larger scope in the plasma community than just those related to high power microwaves. This manuscript discusses the diagnostic setup for acquiring the power measurements along with a detailed description of the kinematic and chemical behavior of the plasma as it decays down to its undisturbed state under various gas type and pressure conditions.

  14. Plasma relaxation mechanics of pulsed high power microwave surface flashover

    SciTech Connect

    Beeson, S.; Dickens, J.; Neuber, A.

    2013-09-15

    Microwave transmission and reflection characteristics of pulsed radio frequency field generated plasmas are elucidated for air, N{sub 2}, and He environments under pressure conditions ranging from 10 to 600 torr. The pulsed, low temperature plasma is generated along the atmospheric side of the dielectric boundary between the source (under vacuum) and the radiating environment with a thickness on the order of 5 mm and a cross sectional area just smaller than that of the waveguide. Utilizing custom multi-standard waveguide couplers and a continuous low power probing source, the scattering parameters were measured before, during, and after the high power microwave pulse with emphasis on the latter. From these scattering parameters, temporal electron density estimations (specifically the longitudinal integral of the density) were calculated using a 1D plane wave-excited model for analysis of the relaxation processes associated. These relaxation characteristics ultimately determine the maximum repetition rate for many pulsed electric field applications and thus are applicable to a much larger scope in the plasma community than just those related to high power microwaves. This manuscript discusses the diagnostic setup for acquiring the power measurements along with a detailed description of the kinematic and chemical behavior of the plasma as it decays down to its undisturbed state under various gas type and pressure conditions.

  15. A fast pulsed power source applied to treatment of conducting liquids and air

    SciTech Connect

    Heesch, E.J.M. van; Pemen, A.J.M.; Huijbrechts, P.A.H.J.; Laan, P.C.T. van der; Ptasinski, K.J.; Zanstra, G.J.; Jong, P. de

    2000-02-01

    Two pilot pulsed power sources were developed for fundamental investigations and industrial demonstrations of treatment of conducting liquids. The developed heavy-duty power sources have an output voltage of 100 kV (rise time 10 ns, pulse duration 150 ns, pulse repetition rate maximum 1,000 pps). A pulse energy of 0.5--3 J/pulse and an average pulse power of 1.5 kW have been achieved with an efficiency of about 80%. In addition, adequate electromagnetic compatibility is achieved between the high-voltage pulse sources and the surrounding equipment. Various applications, such as the use of pulsed electric fields (PEF's) or pulsed corona discharges for inactivation of microorganisms in liquids or air, have been tested in the laboratory. For PEF treatment, homogeneous electric fields in the liquid of up to 70 kV/cm at a pulse repetition rate of 10--400 pps could be achieved. The inactivation is found to be 85 kJ/L per log reduction for Pseudomonas fluorescens and 500 kJ/L per log reduction for spores of Bacillus cereus. Corona directly applied to the liquid is found to be more efficient than PEF. With direct corona they achieve 25 kJ/L per log reduction for both Gram positive and Gram negative bacteria. For air disinfection using their corona pulse source, the measured efficiencies are excellent: 2 J/L per log reduction.

  16. Pulsed Power Discharges in Water

    NASA Astrophysics Data System (ADS)

    Kratel, Axel Wolf Hendrik

    An Electrohydraulic Discharge Process (EHD) for the treatment of hazardous chemical wastes in water has been developed. Liquid waste in a 4 L EHD reactor is directly exposed to high-energy pulsed electrical discharges between two submerged electrodes. The high-temperature (> 14,000 K) plasma channel created by an EHD discharge emits ultraviolet radiation, and produces an intense shock wave as it expands against the surrounding water. A simulation of the EHD process is presented along with experimental results. The simulation assumes a uniform plasma channel with a plasma that obeys the ideal gas law and the Spitzer conductivity law. The results agree with previously published data. The simulation is used to predict the total energy efficiency, energy partitioning, maximum plasma channel temperature and pressure for the Caltech Pulsed Power Facility (CPPF). The simulation shows that capacitance, initial voltage and gap length can be used to control the efficiency of the discharge. The oxidative degradation of 4-chlorophenol (4 -CP), 3,4-dichloroaniline (3,4-DCA), and 2,4,6 trinitrotoluene (TNT) in an EHD reactor was explored. The initial rates of degradation for the three substrates are described by a first-order rate equation, where k_{ it 0/} is the zero-order rate constant that accounts for direct photolysis; and k_ {it 1/} is the first-order term that accounts for oxidation in the plasma channel region. For 4-CP in the 4.0 L reactor, the values of these two rate constants are k_{it 0/} = 0.73 +/- 0.08 mu M, and k_{ it 1/} =(9.4 +/- 1.4) times 10^{-4}. For a 200 mu M 4-CP solution this corresponds to an overall intrinsic zero-order rate constant of 0.022 M s^{it -1/} , and a G-value of 4.45 times 10^{-3}. Ozone increases the rate and extent of degradation of the substrates in the EHD reactor. Combined EHD/ozone treatment of a 160 mu M TNT solution resulted in the complete degradation of TNT, and a 34% reduction of the total organic carbon (TOC). The intrinsic

  17. Pulsed picosecond 766 nm laser source operating between 1-80 MHz with automatic pump power management

    NASA Astrophysics Data System (ADS)

    Schönau, Thomas; Siebert, Torsten; Härtel, Romano; Eckhardt, Thomas; Klemme, Dietmar; Lauritsen, Kristian; Erdmann, Rainer

    2013-03-01

    The optical amplification and frequency conversion of a gain-switched 1532 nm distributed feedback (DFB) laser diode over a wide range of repetition rates are studied. A two stage Erbium fiber amplifier setup is pumped at 976 nm and operated at 1 to 80MHz pulse repetition frequency. The seed laser repetition rate is evaluated directly inside the pumping electronics to set the optimum pump power. Second-harmonic generation to 766 nm is achieved in a periodically poled lithium niobate bulk crystal. There is a high demand of several hundred milliwatt of picosecond pulsed laser power for stimulated emission depletion (STED) microscopy.

  18. Ultrashort Two-Photon-Absorption Laser-Induced Fluorescence in Nanosecond-Duration, Repetitively Pulsed Discharges

    NASA Astrophysics Data System (ADS)

    Schmidt, Jacob Brian

    Absolute number densities of atomic species produced by nanosecond duration, repetitively pulsed electric discharges are measured by two-photon absorption laser-induced fluorescence (TALIF). Relatively high plasma discharge pulse energies (=1 mJ/pulse) are used to generate atomic hydrogen, oxygen, and nitrogen in a variety of discharge conditions and geometries. Unique to this work is the development of femtosecond-laser-based TALIF (fs-TALIF). Fs-TALIF offers a number of advantages compared to more conventional ns-pulse-duration laser systems, including better accuracy of direct quenching measurements in challenging environments, significantly reduced photolytic interference including photo-dissociation and photo-ionization, higher signal and increased laser-pulse bandwidth, the ability to collect two-dimensional images of atomic species number densities with far greater spatial resolution compared with more conventional diagnostics, and much higher laser repetition rates allowing for more efficient and accurate measurements of atomic species number densities. In order to fully characterize the fs-TALIF diagnostic and compare it with conventional ns-TALIF, low pressure (100 Torr) ns-duration pulsed discharges are operated in mixtures of H2, O2, and N2 with different buffer gases including argon, helium, and nitrogen. These discharge conditions are used to demonstrate the capability for two-dimensional imaging measurements. The images produced are the first of their kind and offer quantitative insight into spatially and temporally resolved kinetics and transport in ns-pulsed discharge plasmas. The two-dimensional images make possible comparison with high-fidelity plasma kinetics models of the presented data. The comparison with the quasi-one-dimensional kinetic model show good spatial and temporal agreement. The same diagnostics are used at atmospheric pressure, when atomic oxygen fs-TALIF is performed in an atmospheric-pressure plasma jet (APPJ). Here, the

  19. Pulsed UV-C disinfection of Escherichia coli with light-emitting diodes, emitted at various repetition rates and duty cycles.

    PubMed

    Wengraitis, Stephen; McCubbin, Patrick; Wade, Mary Margaret; Biggs, Tracey D; Hall, Shane; Williams, Leslie I; Zulich, Alan W

    2013-01-01

    A 2010 study exposed Staphylococcus aureus to ultraviolet (UV) radiation and thermal heating from pulsed xenon flash lamps. The results suggested that disinfection could be caused not only by photochemical changes from UV radiation, but also by photophysical stress damage caused by the disturbance from incoming pulses. The study called for more research in this area. The recent advances in light-emitting diode (LED) technology include the development of LEDs that emit in narrow bands in the ultraviolet-C (UV-C) range (100-280 nm), which is highly effective for UV disinfection of organisms. Further, LEDs would use less power, and allow more flexibility than other sources of UV energy in that the user may select various pulse repetition frequencies (PRFs), pulse irradiances, pulse widths, duty cycles and types of waveform output (e.g. square waves, sine waves, triangular waves, etc.). Our study exposed Escherichia coli samples to square pulses of 272 nm radiation at various PRFs and duty cycles. A statistically significant correlation was found between E. coli's disinfection sensitivity and these parameters. Although our sample size was small, these results show promise and are worthy of further investigation. Comparisons are also made with pulsed disinfection by LEDs emitting at 365 nm, and pulsed disinfection by xenon flash lamps.

  20. Power limitations and pulse distortions in an Yb : KGW chirped-pulse amplification laser system

    SciTech Connect

    Kim, G H; Yang, J; Kulik, A V; Sall, E G; Chizhov, S A; Kang, U; Yashin, V E

    2013-08-31

    We have studied self-action effects (self-focusing and self-phase modulation) and stimulated Raman scattering in an Yb : KGW chirped-pulse amplification laser system. The results demonstrate that self-focusing in combination with thermal lensing may significantly limit the chirped pulse energy in this system (down to 200 μJ) even at a relatively long pulse duration (50 ps). Nonlinear lenses in the laser crystals in combination with thermal lenses bring the regenerative amplifier cavity in the laser system to the instability zone and limit the average output power at pulse repetition rates under 50 kHz. Self-phase modulation, a manifestation of self-action, may significantly distort a recompressed femtosecond pulse at energies near the self-focusing threshold. Stimulated Raman scattering in such a laser has a weaker effect on output parameters than do self-focusing and thermal lensing, and Raman spectra are only observed in the case of pulse energy instability. (nonlinear optical phenomena)

  1. Pulse compression of a high-power thin disk laser using rod-type fiber amplifiers.

    PubMed

    Saraceno, C J; Heckl, O H; Baer, C R E; Südmeyer, T; Keller, U

    2011-01-17

    We report on two pulse compressors for a high-power thin disk laser oscillator using rod-type fiber amplifiers. Both systems are seeded by a standard SESAM modelocked thin disk laser that delivers 16 W of average power at a repetition rate of 10.6 MHz with a pulse energy of 1.5 μJ and a pulse duration of 1 ps. We discuss two results with different fiber parameters with different trade-offs in pulse duration, average power, damage and complexity. The first amplifier setup consists of a Yb-doped fiber amplifier with a 2200 μm2 core area and a length of 55 cm, resulting in a compressed average power of 55 W with 98-fs pulses at a repetition rate of 10.6 MHz. The second system uses a shorter 36-cm fiber with a larger core area of 4500 μm2. In a stretcher-free configuration we obtained 34 W of compressed average power and 65-fs pulses. In both cases peak powers of > 30 MW were demonstrated at several μJ pulse energies. The power scaling limitations due to damage and self-focusing are discussed.

  2. A repetitively pulsed xenon chloride excimer laser with all ferrite magnetic cores (AFMC) based all solid state exciter

    NASA Astrophysics Data System (ADS)

    Benerji, N. S.; Varshnay, N. K.; Ghodke, D. V.; Singh, A.

    2016-10-01

    Performance of repetitively pulsed xenon chloride excimer laser (λ~308 nm) with solid state pulser consisting of magnetic pulse compression circuit (MPC) using all ferrite magnetic cores (AFMC) is reported. Laser system suitable for 100 Hz operation with inbuilt pre-ionizer, compact gas circulation and cooling has been developed and presented. In this configuration, high voltage pulses of ~8 μs duration are compressed to ~100 ns by magnetic pulse compression circuit with overall compression factor of ~80. Pulse energy of ~18 J stored in the primary capacitor is transferred to the laser head with an efficiency of ~85% compared to ~70% that is normally achieved in such configurations using annealed met-glass core. This is a significant improvement of about 21%. Maximum output laser pulse energy of ~100 mJ was achieved at repetition rate of 100 Hz with a typical pulse to pulse energy stability of ±5% and laser pulse energy of 150 mJ was generated at low rep-rate of ~40 Hz. This exciter uses a low current and low voltage solid state switch (SCR) that replaces high voltage and high current switch i. e, thyratron completely. The use of solid state exciter in turn reduces electromagnetic interference (EMI) effects particularly in excimer lasers where high EMI is present due to high di/dt. The laser is focused on a thin copper sheet for generation of micro-hole and the SEM image of the generated micro hole shows the energy stability of the laser at high repetition rate operation. Nearly homogeneous, regular and well developed xenon chloride (XeCl) laser beam spot was achieved using the laser.

  3. SBS-managed high-peak-power nanosecond-pulse fiber-based master oscillator power amplifier.

    PubMed

    Di Teodoro, F; Morais, J; McComb, T S; Hemmat, M K; Cheung, E C; Weber, M; Moyer, R

    2013-07-01

    We report on a compactly packaged Yb-doped fiber-based laser architecture featuring an actively pulse controlled, single-longitudinal-mode seeder and multistage amplifier chain terminated by a "folded" rod-type photonic crystal fiber. In this laser source, stimulated Brillouin scattering (SBS) is the power-limiting factor, but is managed by phase modulating the seeder with a pseudo-random noise signal. Pulse energy/peak power of ~2 mJ/1.5 MW at 10 kHz repetition rate are thus obtained within ~1.55 ns pulses of peak spectral brightness >20 kW cm(-2) sr(-1) Hz(-1). PMID:23811864

  4. SBS-managed high-peak-power nanosecond-pulse fiber-based master oscillator power amplifier.

    PubMed

    Di Teodoro, F; Morais, J; McComb, T S; Hemmat, M K; Cheung, E C; Weber, M; Moyer, R

    2013-07-01

    We report on a compactly packaged Yb-doped fiber-based laser architecture featuring an actively pulse controlled, single-longitudinal-mode seeder and multistage amplifier chain terminated by a "folded" rod-type photonic crystal fiber. In this laser source, stimulated Brillouin scattering (SBS) is the power-limiting factor, but is managed by phase modulating the seeder with a pseudo-random noise signal. Pulse energy/peak power of ~2 mJ/1.5 MW at 10 kHz repetition rate are thus obtained within ~1.55 ns pulses of peak spectral brightness >20 kW cm(-2) sr(-1) Hz(-1).

  5. Micro-ablation with high power pulsed copper vapor lasers.

    PubMed

    Knowles, M

    2000-07-17

    Visible and UV lasers with nanosecond pulse durations, diffraction-limited beam quality and high pulse repetition rates have demonstrated micro-ablation in a wide variety of materials with sub-micron precision and sub-micron-sized heat-affected zones. The copper vapour laser (CVL) is one of the important industrial lasers for micro-ablation applications. Manufacturing applications for the CVL include orifice drilling in fuel injection components and inkjet printers, micro-milling of micromoulds, via hole drilling in printed circuit boards and silicon machining. Recent advances in higher power (100W visible, 5W UV), diffraction-limited, compact CVLs are opening new possibilities for manufacturing with this class of nanosecond laser.

  6. Pulse power applications of flux compression generators

    SciTech Connect

    Fowler, C.M.; Caird, R.S.; Erickson, D.J.; Freeman, B.L.

    1981-01-01

    Characteristics are presented for two different types of explosive driven flux compression generators and a megavolt pulse transformer. Status reports are given for rail gun and plasma focus programs for which the generators serve as power sources.

  7. A low power pulsed arcjet thruster for spacecraft propulsion

    NASA Astrophysics Data System (ADS)

    Willmes, Gary Francis

    1997-11-01

    An electrothermal thruster that operates in a pulsed mode at low power (<200 W) is investigated. The thruster, called a pulsed arcjet, uses a capacitor and a pulse- forming electrical circuit to transfer stored electrical energy to a helium propellant gas in 3-10 μsec arc discharges at repetition rates of 550 to 2600 pulses-per- second with pulse energies from 24 to 130 mJ. The arc discharges occur in a cylindrical capillary upstream of a converging-diverging nozzle, and all the energy addition occurs in the subsonic region. Peak currents in the arc are 110 to 270 amps. Pulsed arcjet performance at thermal steady state is measured for two 20 degree half angle conical nozzles with area ratios of 20 and 230. Thrust levels from 10 to 30 mN are measured on an inverted pendulum-type thrust stand, and input power levels from 24 to 119 watts are determined from measurements of pulse rate and breakdown voltage. A maximum specific impulse of 305 seconds is achieved with 38% efficiency. A time-dependent, quasi-1D numerical model is developed to evaluate energy losses in the pulsed arcjet. The numerical model uses a time-marching procedure and the MacCormack predictor-corrector algorithm. Viscous and heat transfer effects are incorporated though a friction factor and an average heat transfer coefficient. A numerical study of nozzle parameters, capillary geometry, wall temperature, and pulse energy shows that the performance is insensitive to capillary and nozzle geometry and that thermal characteristics are the dominant factor affecting performance. The specific impulse and efficiency of the pulsed arcjet are found to be sensitive to wall temperature due to heat transfer losses in the subsonic region. A pulse-forming electrical circuit is developed to reduce energy losses in the storage capacitor, and greater than 85% of the initial stored energy is transferred to the arc in a unipolar pulse. A high current diode installed across the capacitor terminals is used to eliminate

  8. Pulsed power supply for three APS septum magnets

    SciTech Connect

    McGhee, D.G.

    1991-03-24

    Three septum magnets will be operated at a repetition-rate of 2 Hz. Two of the septum magnets are identical and operate at the same values; these are the synchrotron extraction and the storage ring injection magnets. They are transformer septum magnets, with a primary inductance of 23 {mu}H and resistance of 6.3 m{Omega}, and must be pulsed at a 2 Hz rate to extract beam from the synchrotron and inject beam into the storage ring at 7.7 GeV. The third septum magnet is used to inject electrons into the synchrotron at 650 MeV or positrons at 450 MeV. It is also a transformer septum magnet, with a primary inductance of 21 {mu}H and resistance of 6.7 m{Omega}, and must be pulsed at a 2 Hz rate. A design study was performed of the power supply proposed in the APS Title I design. This supply produces a pulse that is approximately a half-sine-wave with a base width of approximately 1/3 ms; its peakcurrent is adjustable from 470 A to 4.7 kA and is repeatable within {plus_minus}0.05%. The septum steel is reset by a half-sine pulse of reverse polarity a few milliseconds after the forward current pulse. No beam is present during reset. The use of the transformer design minimizes the cost of the capacitors used for energy storage.

  9. High power ultrashort pulse lasers

    SciTech Connect

    Perry, M.D.

    1994-10-07

    Small scale terawatt and soon even petawatt (1000 terawatt) class laser systems are made possible by application of the chirped-pulse amplification technique to solid-state lasers combined with the availability of broad bandwidth materials. These lasers make possible a new class of high gradient accelerators based on the large electric fields associated with intense laser-plasma interactions or from the intense laser field directly. Here, we concentrate on the laser technology to produce these intense pulses. Application of the smallest of these systems to the production of high brightness electron sources is also introduced.

  10. Counter-facing plasma focus system as a repetitive and/or long-pulse high energy density plasma source

    NASA Astrophysics Data System (ADS)

    Aoyama, Yutaka; Nakajima, Mitsuo; Horioka, Kazuhiko

    2009-11-01

    A plasma focus system composed of a pair of counter-facing coaxial plasma guns is proposed as a long-pulse and/or repetitive high energy density plasma source. A proof-of-concept experiment demonstrated that with an assist of breakdown and outer electrode connections, current sheets evolved into a configuration for stable plasma confinement at the center of the electrodes. The current sheets could successively compress and confine the high energy density plasma every half period of the discharge current, enabling highly repetitive light emissions in extreme ultraviolet region with time durations in at least ten microseconds.

  11. Counter-facing plasma focus system as a repetitive and/or long-pulse high energy density plasma source

    SciTech Connect

    Aoyama, Yutaka; Nakajima, Mitsuo; Horioka, Kazuhiko

    2009-11-15

    A plasma focus system composed of a pair of counter-facing coaxial plasma guns is proposed as a long-pulse and/or repetitive high energy density plasma source. A proof-of-concept experiment demonstrated that with an assist of breakdown and outer electrode connections, current sheets evolved into a configuration for stable plasma confinement at the center of the electrodes. The current sheets could successively compress and confine the high energy density plasma every half period of the discharge current, enabling highly repetitive light emissions in extreme ultraviolet region with time durations in at least ten microseconds.

  12. A rapidly-tuned, short-pulse-length, high-repetition-rate CO{sub 2} laser for IR dial

    SciTech Connect

    Zaugg, T.; Thompson, D.; Leland, W.T.; Busch, G.

    1997-08-01

    Analysis of noise sources in Differential Absorption LIDAR (DIAL) in the infrared region of the spectrum indicates that the signal-to-noise ratio for direct detection can be improved if multiple-wavelength, short-pulse-length beams are transmitted and received at high repetition rates. Atmospheric effects can be minimized, albedo can be rapidly scanned, and uncorrelated speckle can be acquired at the maximum possible rate. A compact, rugged, RF-excited waveguide laser can produce 15 nanosecond pulses at a 100 kHz rate with sufficient energy per pulse to reach the speckle limit of the signal-to-noise ratio. A high-repetition-rate laser has been procured and will be used to verify these signal and noise scaling relationships at high repetition rates. Current line-tuning devices are mechanical and are capable of switching lines at a rate up to a few hundred Hertz. Acousto-optic modulators, deflectors or tunable filters can be substituted for these mechanical devices in the resonator of a CO{sub 2} laser and used to rapidly line-tune the laser across the 9 and 10 micron bands at a rate as high as 100 kHz. Several configurations for line tuning using acousto-optic and electro-optic devices with and without gratings are presented. The merits of and constraints on each design are also discussed. A pair of large aperture, acousto-optic deflectors has been purchased and the various line-tuning designs will be evaluated in a conventional, glass tube, CO{sub 2} laser, with a view to incorporation into the high-repetition-rate, waveguide laser. A computer model of the dynamics of an RF-excited, short-pulse-length, high-repetition-rate waveguide laser has been developed. The model will be used to test the consequences of various line-tuning designs.

  13. High-power LD side-pump Nd: YAG regenerative amplifier at 1 kHz repetition rate with volume Bragg gratings (VBG) for broadening and compressor

    NASA Astrophysics Data System (ADS)

    Long, Ming-Liang; Chen, Li-Yuan; Chen, Meng; Li, Gang

    2016-05-01

    Pulse width of 8.7 ps was broadened to 102.2, 198 ps with single and double pass the VBG respectively. When the 102.2 ps pulse was injected into 1 kHz repetition rate of LD side-pump Nd: YAG regenerative amplifier (RA), pulse width of 87.5 ps at 1 kHz was obtained with the pulse energy of 9.4 mJ, the beam quality of M^2 factor was 1.2. The pulse width was compressed to 32.7 ps with a single pass VBG and the pulse energy reduced to 8.8 mJ, and the power density was up to 15.2 GW/cm2, the stability for pulse to pulse rms is about 0.6 %, beam pointing was about 35 μrad. In addition, when 198 ps pulse was injected into RA, pulse width of 156 ps was obtained which energy was 9.6 mJ, the pulse width was compressed to 38 ps by double passing the VBG, the pulse energy decreased to 8.5 mJ. Chirped VBG is a new way to obtain high-intensity picosecond pulse laser system simple and smaller.

  14. Nanosecond repetitively pulsed discharges in N2-O2 mixtures: inception cloud and streamer emergence

    NASA Astrophysics Data System (ADS)

    Chen, She; Heijmans, L. C. J.; Zeng, Rong; Nijdam, S.; Ebert, U.

    2015-05-01

    We evaluate the nanosecond temporal evolution of tens of thousands of positive discharges in a 16 cm point-plane gap in high purity nitrogen 6.0 and in N2-O2 gas mixtures with oxygen contents of 100 ppm, 0.2%, 2% and 20%, for pressures between 66.7 and 200 mbar. The voltage pulses have amplitudes of 20 to 40 kV with rise times of 20 or 60 ns and repetition frequencies of 0.1 to 10 Hz. The discharges first rapidly form a growing cloud around the tip, then they expand much more slowly like a shell and finally after a stagnation stage they can break up into rapid streamers. The radius of cloud and shell in artificial air is about 10% below the theoretically predicted value and scales with pressure p as theoretically expected, while the observed scaling of time scales with p raises questions. We find characteristic dependences on the oxygen content. No cloud and shell stage can be seen in nitrogen 6.0, and streamers emerge immediately. The radius of cloud and shell increases with oxygen concentration. On the other hand, the stagnation time after the shell phase is maximal for the intermediate oxygen concentration of 0.1% and the number of streamers formed is minimal; here the cloud and shell phase seem to be particularly stable against destabilization into streamers.

  15. Design and fabrication of hollow-core photonic crystal fibers for high-power ultrashort pulse transportation and pulse compression.

    PubMed

    Wang, Y Y; Peng, Xiang; Alharbi, M; Dutin, C Fourcade; Bradley, T D; Gérôme, F; Mielke, Michael; Booth, Timothy; Benabid, F

    2012-08-01

    We report on the recent design and fabrication of kagome-type hollow-core photonic crystal fibers for the purpose of high-power ultrashort pulse transportation. The fabricated seven-cell three-ring hypocycloid-shaped large core fiber exhibits an up-to-date lowest attenuation (among all kagome fibers) of 40 dB/km over a broadband transmission centered at 1500 nm. We show that the large core size, low attenuation, broadband transmission, single-mode guidance, and low dispersion make it an ideal host for high-power laser beam transportation. By filling the fiber with helium gas, a 74 μJ, 850 fs, and 40 kHz repetition rate ultrashort pulse at 1550 nm has been faithfully delivered at the fiber output with little propagation pulse distortion. Compression of a 105 μJ laser pulse from 850 fs down to 300 fs has been achieved by operating the fiber in ambient air.

  16. Pulsed power supply for an electrostatic precipitator

    SciTech Connect

    Santamaria, G.T.

    1986-07-15

    An electrostatic precipitator power supply circuit is described for generating voltage pulses on the precipitator while allowing a residual collection voltage to be retained on the precipitator during intervals between pulses, where the voltage of the pulses is substantially in excess of the residual voltage, the power supply circuit comprising: means for generating the high voltage pulses at the secondary inductance of a step-up transformer by discharging a capacitor through the primary inductance of the step-up transformer; the electrostatic precipitator connected to the secondary inductance of the step-up transformer to receive the high voltage pulses; and means for returning a portion of the high voltage pulses to the capacitor, and for maintaining the residual voltage on the precipitator during interpulse periods including means with a variable impedance adapted for providing a maximum impedance during interpulse periods and a minimum impedance during high voltage pulses and means for causing the variable impedance means to exhibit a minimum impedance during the return of a portion of the high voltage pulses.

  17. Low power arcjet thruster pulse ignition

    NASA Technical Reports Server (NTRS)

    Sarmiento, Charles J.; Gruber, Robert P.

    1987-01-01

    An investigation of the pulse ignition characteristics of a 1 kW class arcjet using an inductive energy storage pulse generator with a pulse width modulated power converter identified several thruster and pulse generator parameters that influence breakdown voltage including pulse generator rate of voltage rise. This work was conducted with an arcjet tested on hydrogen-nitrogen gas mixtures to simulate fully decomposed hydrazine. Over all ranges of thruster and pulser parameters investigated, the mean breakdown voltages varied from 1.4 to 2.7 kV. Ignition tests at elevated thruster temperatures under certain conditions revealed occasional breakdowns to thruster voltages higher than the power converter output voltage. These post breakdown discharges sometimes failed to transition to the lower voltage arc discharge mode and the thruster would not ignite. Under the same conditions, a transition to the arc mode would occur for a subsequent pulse and the thruster would ignite. An automated 11 600 cycle starting and transition to steady state test demonstrated ignition on the first pulse and required application of a second pulse only two times to initiate breakdown.

  18. Compact inductive energy storage pulse power system.

    PubMed

    K, Senthil; Mitra, S; Roy, Amitava; Sharma, Archana; Chakravarthy, D P

    2012-05-01

    An inductive energy storage pulse power system is being developed in BARC, India. Simple, compact, and robust opening switches, capable of generating hundreds of kV, are key elements in the development of inductive energy storage pulsed power sources. It employs an inductive energy storage and opening switch power conditioning techniques with high energy density capacitors as the primary energy store. The energy stored in the capacitor bank is transferred to an air cored storage inductor in 5.5 μs through wire fuses. By optimizing the exploding wire parameters, a compact, robust, high voltage pulse power system, capable of generating reproducibly 240 kV, is developed. This paper presents the full details of the system along with the experimental data. PMID:22667637

  19. Compact inductive energy storage pulse power system.

    PubMed

    K, Senthil; Mitra, S; Roy, Amitava; Sharma, Archana; Chakravarthy, D P

    2012-05-01

    An inductive energy storage pulse power system is being developed in BARC, India. Simple, compact, and robust opening switches, capable of generating hundreds of kV, are key elements in the development of inductive energy storage pulsed power sources. It employs an inductive energy storage and opening switch power conditioning techniques with high energy density capacitors as the primary energy store. The energy stored in the capacitor bank is transferred to an air cored storage inductor in 5.5 μs through wire fuses. By optimizing the exploding wire parameters, a compact, robust, high voltage pulse power system, capable of generating reproducibly 240 kV, is developed. This paper presents the full details of the system along with the experimental data.

  20. High-power widely tunable sub-20 fs Gaussian laser pulses for ultrafast nonlinear spectroscopy.

    PubMed

    Metzger, Bernd; Steinmann, Andy; Giessen, Harald

    2011-11-21

    We demonstrate the generation of widely tunable sub-20 fs Gaussian-shaped laser pulses using a grating-based 4-f pulse shaper and a liquid crystal spatial light modulator. Our pump source is an Yb:KGW solitary mode-locked oscillator at 44 MHz repetition rate which is coupled into a large mode area microstructured fiber to generate a broad spectrum from below 900 nm to above 1150 nm. These pulses are precompressed by a prism sequence and subsequently sent into the pulse shaper. We use the multiphoton intrapulse interference phase scan (MIIPS) for phase shaping and iterative amplitude optimization to achieve Gaussian-like tunable sub-20 fs pulses with output powers of up to 142 mW as well as nontunable pulses with 310 mW output power as short as 11.5 fs. PMID:22109462

  1. High-repetition-rate high-power variable-bandwidth dye laser

    SciTech Connect

    Lavi, S.; Amit, M.; Bialolanker, G.; Miron, E.; Levin, L.A.

    1985-07-01

    An efficient high-repetition-rate dye laser is described which has a bandwidth that can be tailored to match typical atomic inhomogeneous linewidths. The dye laser is pumped by a 4-kHz 2--6 mJ/pulse copper vapor laser. The total efficiency of the dye laser (oscillator and amplifier) is 45% for rhodamine 6G and 30% for rhodamine B.

  2. Temporal evolution of temperature and OH density produced by nanosecond repetitively pulsed discharges in water vapour at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Sainct, F. P.; Lacoste, D. A.; Kirkpatrick, M. J.; Odic, E.; Laux, C. O.

    2014-02-01

    We report on an experimental study of the temporal evolution of OH density and gas temperature in spark discharges created by nanosecond repetitively pulsed discharges in pure water vapour at 475 K and atmospheric pressure. The plasma was generated by 20 kV, 20 ns pulses, at a repetition frequency of 10 kHz. The temperature was measured during the discharge by optical emission spectroscopy of the second positive system of N2, and between two discharges by two-colour OH-planar laser induced fluorescence (OH-PLIF) using two pairs of rotational transitions. Between two successive discharges, the relative density of OH was measured by OH-PLIF and was found to decay very slowly, with a 1/e decay time of about 50 µs. With the use of a chemical kinetics model, the OH density was placed on an absolute scale.

  3. Self-mode-locked all-fibre erbium laser with a low repetition rate and high pulse energy

    SciTech Connect

    Denisov, Vladimir I; Nyushkov, B N; Pivtsov, V S

    2010-01-31

    Self-starting mode locking is demonstrated for the first time in an all-fibre erbium laser with a cavity length above 1 km and high positive (normal) intracavity dispersion. The unconventional cavity design, with polarisation instability compensation, ensures stable operation and good frequency stability. The laser generates pulses with a record low repetition rate (82.4 kHz) and record high energy (564.3 nJ). (lasers)

  4. Criteria for formation of low-frequency sound under wide-aperture repetitively pulsed laser irradiation of solids

    SciTech Connect

    Tishchenko, V N; Posukh, V G; Gulidov, A I; Zapryagaev, V I; Pavlov, A A; Boyarintsev, Ye L; Golubev, M P; Kavun, I N; Melekhov, A V; Golobokova, L S; Miroshnichenko, I B; Pavlov, Al A; Shmakov, A S

    2011-10-31

    The criteria for merging shock waves formed by optical breakdowns on the surface of solids have been investigated. Targets made of different materials were successively irradiated by two CO{sub 2}-laser pulses with energies up to 200 J and a duration of {approx}1 {mu}s. It is shown that the criteria under consideration can be applied to different targets and irradiation regimes and make it possible to calculate the parameters of repetitively pulsed laser radiation that are necessary to generate low-frequency sound and ultrasound in air.

  5. The Role of Pulse Repetition Rate in nsPEF-Induced Electroporation: A Biological and Numerical Investigation.

    PubMed

    Lamberti, Patrizia; Romeo, Stefania; Sannino, Anna; Zeni, Luigi; Zeni, Olga

    2015-09-01

    The impact of pulse repetition rate (PRR) in modulating electroporation (EP) induced by nanosecond pulsed electric fields (nsPEFs) in mammalian cells was approached here by performing both biological and numerical analysis. Plasma membrane permeabilization and viability of Jurkat cells were analyzed after exposure to 500, 1.3 MV/m, 40 ns PEFs with variable PRR (2-30 Hz). A finite-element model was used to investigate EP dynamics in a single cell under the same pulsing conditions, by looking at the time course of transmembrane voltage and pore density on the ns time scale. The biological observations showed an increased EP and reduced viability of the exposed cells at lower PRR in the considered range. The numerical analysis resulted in different dynamics of plasma membrane response when ns pulses were delivered with different PRR, consistently with a phenomenon of electrodesensitization recently hypothesized by another research group. PMID:25850084

  6. Study of filamentation with a high power high repetition rate ps laser at 1.03 µm.

    PubMed

    Houard, A; Jukna, V; Point, G; André, Y-B; Klingebiel, S; Schultze, M; Michel, K; Metzger, T; Mysyrowicz, A

    2016-04-01

    We study the propagation of intense, high repetition rate laser pulses of picosecond duration at 1.03 µm central wavelength through air. Evidence of filamentation is obtained from measurements of the beam profile as a function of distance, from photoemission imaging and from spatially resolved sonometric recordings. Good agreement is found with numerical simulations. Simulations reveal an important self shortening of the pulse duration, suggesting that laser pulses with few optical cycles could be obtained via double filamentation. An important lowering of the voltage required to induce guided electric discharges between charged electrodes is measured at high laser pulse repetition rate.

  7. Study of filamentation with a high power high repetition rate ps laser at 1.03 µm.

    PubMed

    Houard, A; Jukna, V; Point, G; André, Y-B; Klingebiel, S; Schultze, M; Michel, K; Metzger, T; Mysyrowicz, A

    2016-04-01

    We study the propagation of intense, high repetition rate laser pulses of picosecond duration at 1.03 µm central wavelength through air. Evidence of filamentation is obtained from measurements of the beam profile as a function of distance, from photoemission imaging and from spatially resolved sonometric recordings. Good agreement is found with numerical simulations. Simulations reveal an important self shortening of the pulse duration, suggesting that laser pulses with few optical cycles could be obtained via double filamentation. An important lowering of the voltage required to induce guided electric discharges between charged electrodes is measured at high laser pulse repetition rate. PMID:27137034

  8. Transitions between corona, glow, and spark regimes of nanosecond repetitively pulsed discharges in air at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Pai, David Z.; Lacoste, Deanna A.; Laux, Christophe O.

    2010-05-01

    In atmospheric pressure air preheated from 300 to 1000 K, the nanosecond repetitively pulsed (NRP) method has been used to generate corona, glow, and spark discharges. Experiments have been performed to determine the parameter space (applied voltage, pulse repetition frequency, ambient gas temperature, and interelectrode gap distance) of each discharge regime. In particular, the experimental conditions necessary for the glow regime of NRP discharges have been determined, with the notable result that there exists a minimum and maximum gap distance for its existence at a given ambient gas temperature. The minimum gap distance increases with decreasing gas temperature, whereas the maximum does not vary appreciably. To explain the experimental results, an analytical model is developed to explain the corona-to-glow (C-G) and glow-to-spark (G-S) transitions. The C-G transition is analyzed in terms of the avalanche-to-streamer transition and the breakdown field during the conduction phase following the establishment of a conducting channel across the discharge gap. The G-S transition is determined by the thermal ionization instability, and we show analytically that this transition occurs at a certain reduced electric field for the NRP discharges studied here. This model shows that the electrode geometry plays an important role in the existence of the NRP glow regime at a given gas temperature. We derive a criterion for the existence of the NRP glow regime as a function of the ambient gas temperature, pulse repetition frequency, electrode radius of curvature, and interelectrode gap distance.

  9. Electromagnetic pulse and the electric power network

    SciTech Connect

    Klein, K.W.; Barnes, P.R.; Zaininger, H.W.

    1984-01-01

    This paper defines the nuclear electromagnetic pulse (EMP) - electric power system interaction problem. A description of high altitude EMP (HEMP) characteristics, source region EMP (SREMP) characteristics, and magnetohydrodynamics EMP (MHD-EMP) characteristics are presented. The results of initial calculations of EMP induced surges on electric power transmission and distribution lines are presented and compared with lightning induced surges. Potential EMP impacts on electric power systems are discussed, and an overview of the Department of Energy (DOE) EMP research program is presented.

  10. High-throughput machining using high average power ultrashort pulse lasers and ultrafast polygon scanner

    NASA Astrophysics Data System (ADS)

    Schille, Joerg; Schneider, Lutz; Streek, André; Kloetzer, Sascha; Loeschner, Udo

    2016-03-01

    In this paper, high-throughput ultrashort pulse laser machining is investigated on various industrial grade metals (Aluminium, Copper, Stainless steel) and Al2O3 ceramic at unprecedented processing speeds. This is achieved by using a high pulse repetition frequency picosecond laser with maximum average output power of 270 W in conjunction with a unique, in-house developed two-axis polygon scanner. Initially, different concepts of polygon scanners are engineered and tested to find out the optimal architecture for ultrafast and precision laser beam scanning. Remarkable 1,000 m/s scan speed is achieved on the substrate, and thanks to the resulting low pulse overlap, thermal accumulation and plasma absorption effects are avoided at up to 20 MHz pulse repetition frequencies. In order to identify optimum processing conditions for efficient high-average power laser machining, the depths of cavities produced under varied parameter settings are analyzed and, from the results obtained, the characteristic removal values are specified. The maximum removal rate is achieved as high as 27.8 mm3/min for Aluminium, 21.4 mm3/min for Copper, 15.3 mm3/min for Stainless steel and 129.1 mm3/min for Al2O3 when full available laser power is irradiated at optimum pulse repetition frequency.

  11. High-power industrial pulsed CO2 laser

    NASA Astrophysics Data System (ADS)

    Levin, G. I.

    1983-12-01

    The use of a pulsed TEA CO2 laser (with maximum average power 1.0 kW; maximum pulse energy 3.5 J; repetition frequency 400-600 Hz; half-width pulse duration 15 microsec; circular-coupling-aperture beam diameter 6, 8, or 12 mm; and beam divergence 10 mrad) in industrial welding applications is investigated experimentally in carbon and stainless steels, Zr, Ti, and Ni of various thicknesses. The power required to melt the metals is found to be about 120-200 W/sq cm, or 5-6 times less than that for CW lasers. It is shown that deep narrow-seam welds with mechanical properties identical to those of the bulk metal can be obtained with little or no intercrystalline corrosion or thermal distortion of the surrounding area. Disadvantages such as the 65-dB noise level, low welding speed, formation of an overlap at the top and a crater at the bottom of the weld, and root porosity are considered the primary limitations on the applicability of the device tested.

  12. Loads for pulsed power cylindrical implosion experiments

    SciTech Connect

    Anderson, W.E.; Armijo, E.V.; Barthell, B.L.; Bartos, J.J.; Bush, H.; Foreman, L.R.; Garcia, F.P.; Gobby, P.L.; Gomez, V.M.; Gurule, V.A.

    1994-07-01

    Pulse power can be used to generate high energy density conditions in convergent hollow cylindrical geometry through the use of appropriate electrode configuration and cylindrical loads. Cylindrically symmetric experiments are conducted with the Pegasus-H inductive store, capacitor energized pulse power facility at Los Alamos using both precision machined cylindrical liner loads and low mass vapor deposited cylindrical foil loads. The liner experiments investigate solid density hydrodynamic topics. Foil loads vaporize from Joule heating to generate an imploding cylindrical plasma which can be used to simulate some fluxes associated with fusion energy processes. Similar experiments are conducted with {open_quotes}Procyon{close_quotes} inductive store pulse power assemblies energized by explosively driven magnetic flux compression.

  13. Pulsed power systems for the DARHT accelerators

    SciTech Connect

    Downing, J.N.; Parsons, W.M.; Earley, L.M.; Melton, J.G.; Moir, D.C.; Carlson, R.L.; Barnes, G.A.; Builta, L.A.; Eversole, S.A.; Keel, G.I.; Rader, D.C.; Romero, J.A.; Shurter, R.P.

    1991-01-01

    The Dual-Axis Radiographic Hydro Test (DARHT) Facility is being designed to produce high-resolution flash radiographs of hydrodynamics experiments. Two 16- to 20-MeV linear induction accelerators (LIA), with an included angle of 90{degree}, are used to produce intense bremsstrahlung x-ray pulses of short duration (60-ns flat-top). Each accelerator has a 4-MeV electron source that injects an electron beam into a series of 250-kV induction cells. The three major pulsed-power systems are the injectors, the induction-cell pulsed-power (ICPP) units, and the ICPP trigger systems, and are discussed in this paper. 11 refs., 5 figs, 3 tabs.

  14. Electra: Repetitively Pulsed Angularly Multiplexed KrF Laser System Performance

    NASA Astrophysics Data System (ADS)

    Wolford, Matthew; Myers, Matthew; Giuliani, John; Sethian, John; Burns, Patrick; Hegeler, Frank; Jaynes, Reginald

    2008-11-01

    As in a full size fusion power plant beam line, Electra is a multistage laser amplifier system. The multistage amplifier system consists of a commercial discharge laser and two doubled sided electron beam pumped amplifiers. Angular multiplexing is used in the optical layout to provide pulse length control and to maximize laser extraction from the amplifiers. Two angularly multiplexed beams have extracted 30 J of KrF laser light with an aperture 8 x 10 cm^2, which is sufficient to extract over 500 J from the main amplifier and models agree. The main amplifier of Electra in oscillator mode has demonstrated single shot and rep-rate laser energies exceeding 700 J with 100 ns pulsewidth at 248 nm with an aperture 29 x 29 cm^2. Continuous operation of the KrF electron beam pumped oscillator has lasted for more than 2.5 hours without failure at 1 Hz and 2.5 Hz. The measured intensity and pulse energy for durations greater than thousand shots are consistent at measurable rep-rates of 1 Hz, 2.5 Hz and 5 Hz.

  15. Copper bromide vapor brightness amplifiers with 100 kHz pulse repetition frequency

    NASA Astrophysics Data System (ADS)

    Trigub, M. V.; Evtushenko, G. S.; Torgaev, S. N.; Shiyanov, D. V.; Evtushenko, T. G.

    2016-10-01

    The paper presents a laser monitor with 10 μs time-resolution based on a high-frequency copper bromide vapor brightness amplifier. A sync circuit has been designed for single-pulse imaging. The analysis of amplifying characteristics of the active elements and active optical system (laser monitor) parameters allowed to determine the optimal concentration of HBr at which the images can be obtained with minimum distortions. For the active element operating at high frequencies (more than 50 kHz) as a brightness amplifier, the concentration of HBr must be lower than that needed for obtaining the maximum output power. The limiting brightness temperature of the background radiation which does not affect the image quality is determined. The potential feasibility of using a proposed brightness amplifier for visualizing processes blocked from viewing by the background radiation with the brightness temperature up to 8000 K is demonstrated.

  16. Survivable pulse power space radiator

    DOEpatents

    Mims, J.; Buden, D.; Williams, K.

    1988-03-11

    A thermal radiator system is described for use on an outer space vehicle, which must survive a long period of nonuse and then radiate large amounts of heat for a limited period of time. The radiator includes groups of radiator panels that are pivotally connected in tandem, so that they can be moved to deployed configuration wherein the panels lie largely coplanar, and to a stowed configuration wherein the panels lie in a stack to resist micrometerorite damage. The panels are mounted on a boom which separates a hot power source from a payload. While the panels are stowed, warm fluid passes through their arteries to keep them warm enough to maintain the coolant in a liquid state and avoid embrittlement of material. The panels can be stored in a largely cylindrical shell, with panels progressively further from the boom being of progressively shorter length. 5 figs.

  17. Survivable pulse power space radiator

    DOEpatents

    Mims, James; Buden, David; Williams, Kenneth

    1989-01-01

    A thermal radiator system is described for use on an outer space vehicle, which must survive a long period of nonuse and then radiate large amounts of heat for a limited period of time. The radiator includes groups of radiator panels that are pivotally connected in tandem, so that they can be moved to deployed configuration wherein the panels lie largely coplanar, and to a stowed configuration wherein the panels lie in a stack to resist micrometeorite damage. The panels are mounted on a boom which separates a hot power source from a payload. While the panels are stowed, warm fluid passes through their arteries to keep them warm enough to maintain the coolant in a liquid state and avoid embrittlement of material. The panels can be stored in a largely cylindrical shell, with panels progressively further from the boom being of progressively shorter length.

  18. 948 kHz repetition rate, picosecond pulse duration, all-PM 1.03 μm mode-locked fiber laser based on nonlinear polarization evolution

    NASA Astrophysics Data System (ADS)

    Boivinet, S.; Lecourt, J.-B.; Hernandez, Y.; Fotiadi, A.; Mégret, P.

    2014-05-01

    We present in this study a PM all-fiber laser oscillator passively mode-locked (ML) at 1.03 μm. The laser is based on Nonlinear Polarization Evolution (NPE) in polarization maintaining (PM) fibers. In order to obtain the mode-locking regime, a nonlinear reflective mirror including a fibered polarizer, a long fiber span and a fibered Faraday mirror (FM) is inserted in a Fabry-Perot laser cavity. In this work we explain the principles of operation of this original laser design that permits to generate ultrashort pulses at low repetition (lower that 1MHz) rate with a cavity length of 100 m of fiber. In this experiment, the measured pulse duration is about 6 ps. To our knowledge this is the first all-PM mode-locked laser based on the NPE with a cavity of 100m length fiber and a delivered pulse duration of few picosecondes. Furthermore, the different mode-locked regimes of the laser, i.e. multi-pulse, noise-like mode-locked and single pulse, are presented together with the ways of controlling the apparition of these regimes. When the single pulse mode-locking regime is achieved, the laser delivers linearly polarized pulses in a very stable way. Finally, this study includes numerical results which are obtained with the resolution of the NonLinear Schrodinger Equations (NLSE) with the Split-Step Fourier (SSF) algorithm. This modeling has led to the understanding of the different modes of operation of the laser. In particular, the influence of the peak power on the reflection of the nonlinear mirror and its operation are studied.

  19. The COMET: A 6-MV, 400-kJ, magnetically-switched pulse-power module

    NASA Astrophysics Data System (ADS)

    Neau, E. L.

    The Inertial Confinement Fusion program at Sandia National Laboratories (SNL) is based on the use of large, economical, multi-module, multimegavolt accelerators to drive ion beam generating diodes or imploding plasma loads. This type of accelerator uses several stages of pulse time compression to raise the peak power to the multi-terrawatt level. Pulsed power accelerators have traditionally relied on the ionization of a gaseous, liquid, or solid material, through one or several channels, to connect one pulse compression stage to a succeeding stage. The large change in inductance of a region enclosing a saturable ferri or ferromagnetic material can, with proper design, be substituted for the more conventional switching techniques in certain applications. The use of amorphous METGLAS 2606SC saturable cores, based on earlier system studies, as a possible low-loss repetitive substitute for the self-closing water switches used in the final stages of one class of the pulse power accelerators was investigated.

  20. Laminar lean premixed methane/air combustion near the lean flammability limit using nanosecond repetitive pulsed discharge plasmas

    NASA Astrophysics Data System (ADS)

    Bak, Moon Soo; Do, Hyungrok; Mungal, Mark G.; Cappelli, Mark A.

    2011-10-01

    Gas chromatographic and temperature measurements have been carried out to investigate the extent of premixed methane/air combustion with the application of nanosecond repetitive pulsed discharges around the lean flammability limit for laminar flows. The results show that the discharges lead to the complete combustion when the equivalence ratio is above 0.54, but when the ratio is below the limit, the combustion is quenched at the downstream flow. To investigate the kinetics in detail, 2-D simulations of plasma-induced combustion have been conducted for methane/air mixtures at below and above the lean flammability limit. The simulations reveal that methane is mostly combusted in the discharge region since the discharge repetition timescale is much shorter than the species diffusion and advection timescales, and so the discharge serves more as a heat and radical source rather than a small combustor, to flame hold near the lean flammability limit.

  1. Repetitive transcranial magnetic stimulation induces oscillatory power changes in chronic tinnitus

    PubMed Central

    Schecklmann, Martin; Lehner, Astrid; Gollmitzer, Judith; Schmidt, Eldrid; Schlee, Winfried; Langguth, Berthold

    2015-01-01

    Chronic tinnitus is associated with neuroplastic changes in auditory and non-auditory cortical areas. About 10 years ago, repetitive transcranial magnetic stimulation (rTMS) of auditory and prefrontal cortex was introduced as potential treatment for tinnitus. The resulting changes in tinnitus loudness are interpreted in the context of rTMS induced activity changes (neuroplasticity). Here, we investigate the effect of single rTMS sessions on oscillatory power to probe the capacity of rTMS to interfere with tinnitus-specific cortical plasticity. We measured 20 patients with bilateral chronic tinnitus and 20 healthy controls comparable for age, sex, handedness, and hearing level with a 63-channel electroencephalography (EEG) system. Educational level, intelligence, depressivity and hyperacusis were controlled for by analysis of covariance. Different rTMS protocols were tested: Left and right temporal and left and right prefrontal cortices were each stimulated with 200 pulses at 1 Hz and with an intensity of 60% stimulator output. Stimulation of central parietal cortex with 6-fold reduced intensity (inverted passive-cooled coil) served as sham condition. Before and after each rTMS protocol 5 min of resting state EEG were recorded. The order of rTMS protocols was randomized over two sessions with 1 week interval in between. Analyses on electrode level showed that people with and without tinnitus differed in their response to left temporal and right frontal stimulation. In tinnitus patients left temporal rTMS decreased frontal theta and delta and increased beta2 power, whereas right frontal rTMS decreased right temporal beta3 and gamma power. No changes or increases were observed in the control group. Only non-systematic changes in tinnitus loudness were induced by single sessions of rTMS. This is the first study to show tinnitus-related alterations of neuroplasticity that were specific to stimulation site and oscillatory frequency. The observed effects can be

  2. Dynamic absorption and scattering of water and hydrogel during high-repetition-rate (>100 MHz) burst-mode ultrafast-pulse laser ablation.

    PubMed

    Qian, Zuoming; Covarrubias, Andrés; Grindal, Alexander W; Akens, Margarete K; Lilge, Lothar; Marjoribanks, Robin S

    2016-06-01

    High-repetition-rate burst-mode ultrafast-laser ablation and disruption of biological tissues depends on interaction of each pulse with the sample, but under those particular conditions which persist from previous pulses. This work characterizes and compares the dynamics of absorption and scattering of a 133-MHz repetition-rate, burst-mode ultrafast-pulse laser, in agar hydrogel targets and distilled water. The differences in energy partition are quantified, pulse-by-pulse, using a time-resolving integrating-sphere-based device. These measurements reveal that high-repetition-rate burst-mode ultrafast-laser ablation is a highly dynamical process affected by the persistence of ionization, dissipation of plasma plume, neutral material flow, tissue tensile strength, and the hydrodynamic oscillation of cavitation bubbles. PMID:27375948

  3. Dynamic absorption and scattering of water and hydrogel during high-repetition-rate (>100 MHz) burst-mode ultrafast-pulse laser ablation

    PubMed Central

    Qian, Zuoming; Covarrubias, Andrés; Grindal, Alexander W.; Akens, Margarete K.; Lilge, Lothar; Marjoribanks, Robin S.

    2016-01-01

    High-repetition-rate burst-mode ultrafast-laser ablation and disruption of biological tissues depends on interaction of each pulse with the sample, but under those particular conditions which persist from previous pulses. This work characterizes and compares the dynamics of absorption and scattering of a 133-MHz repetition-rate, burst-mode ultrafast-pulse laser, in agar hydrogel targets and distilled water. The differences in energy partition are quantified, pulse-by-pulse, using a time-resolving integrating-sphere-based device. These measurements reveal that high-repetition-rate burst-mode ultrafast-laser ablation is a highly dynamical process affected by the persistence of ionization, dissipation of plasma plume, neutral material flow, tissue tensile strength, and the hydrodynamic oscillation of cavitation bubbles. PMID:27375948

  4. A short pulse (7 μs FWHM) and high repetition rate (dc-5kHz) cantilever piezovalve for pulsed atomic and molecular beams

    NASA Astrophysics Data System (ADS)

    Irimia, Daniel; Dobrikov, Dimitar; Kortekaas, Rob; Voet, Han; van den Ende, Daan A.; Groen, Wilhelm A.; Janssen, Maurice H. M.

    2009-11-01

    In this paper we report on the design and operation of a novel piezovalve for the production of short pulsed atomic or molecular beams. The high speed valve operates on the principle of a cantilever piezo. The only moving part, besides the cantilever piezo itself, is a very small O-ring that forms the vacuum seal. The valve can operate continuous (dc) and in pulsed mode with the same drive electronics. Pulsed operation has been tested at repetition frequencies up to 5 kHz. The static deflection of the cantilever, as mounted in the valve body, was measured as a function of driving field strength with a confocal microscope. The deflection and high speed dynamical response of the cantilever can be easily changed and optimized for a particular nozzle diameter or repetition rate by a simple adjustment of the free cantilever length. Pulsed molecular beams with a full width at half maximum pulse width as low as 7 μs have been measured at a position 10 cm downstream of the nozzle exit. This represents a gas pulse with a length of only 10 mm making it well matched to for instance experiments using laser beams. Such a short pulse with 6 bar backing pressure behind a 150 μm nozzle releases about 1016 particles/pulse and the beam brightness was estimated to be 4×1022 particles/(s str). The short pulses of the cantilever piezovalve result in a much reduced gas load in the vacuum system. We demonstrate operation of the pulsed valve with skimmer in a single vacuum chamber pumped by a 520 l/s turbomolecular pump maintaining a pressure of 5×10-6 Torr, which is an excellent vacuum to have the strong and cold skimmed molecular beam interact with laser beams only 10 cm downstream of the nozzle to do velocity map slice imaging with a microchannel-plate imaging detector in a single chamber. The piezovalve produces cold and narrow (Δv /v=2%-3%) velocity distributions of molecules seeded in helium or neon at modest backing pressures of only 6 bar. The low gas load of the cantilever

  5. A short pulse (7 {mu}s FWHM) and high repetition rate (dc-5kHz) cantilever piezovalve for pulsed atomic and molecular beams

    SciTech Connect

    Irimia, Daniel; Dobrikov, Dimitar; Kortekaas, Rob; Voet, Han; Janssen, Maurice H. M.; Ende, Daan A. van den; Groen, Wilhelm A.

    2009-11-15

    In this paper we report on the design and operation of a novel piezovalve for the production of short pulsed atomic or molecular beams. The high speed valve operates on the principle of a cantilever piezo. The only moving part, besides the cantilever piezo itself, is a very small O-ring that forms the vacuum seal. The valve can operate continuous (dc) and in pulsed mode with the same drive electronics. Pulsed operation has been tested at repetition frequencies up to 5 kHz. The static deflection of the cantilever, as mounted in the valve body, was measured as a function of driving field strength with a confocal microscope. The deflection and high speed dynamical response of the cantilever can be easily changed and optimized for a particular nozzle diameter or repetition rate by a simple adjustment of the free cantilever length. Pulsed molecular beams with a full width at half maximum pulse width as low as 7 {mu}s have been measured at a position 10 cm downstream of the nozzle exit. This represents a gas pulse with a length of only 10 mm making it well matched to for instance experiments using laser beams. Such a short pulse with 6 bar backing pressure behind a 150 {mu}m nozzle releases about 10{sup 16} particles/pulse and the beam brightness was estimated to be 4x10{sup 22} particles/(s str). The short pulses of the cantilever piezovalve result in a much reduced gas load in the vacuum system. We demonstrate operation of the pulsed valve with skimmer in a single vacuum chamber pumped by a 520 l/s turbomolecular pump maintaining a pressure of 5x10{sup -6} Torr, which is an excellent vacuum to have the strong and cold skimmed molecular beam interact with laser beams only 10 cm downstream of the nozzle to do velocity map slice imaging with a microchannel-plate imaging detector in a single chamber. The piezovalve produces cold and narrow ({Delta}v/v=2%-3%) velocity distributions of molecules seeded in helium or neon at modest backing pressures of only 6 bar. The low gas

  6. A short pulse (7 micros FWHM) and high repetition rate (dc-5 kHz) cantilever piezovalve for pulsed atomic and molecular beams.

    PubMed

    Irimia, Daniel; Dobrikov, Dimitar; Kortekaas, Rob; Voet, Han; van den Ende, Daan A; Groen, Wilhelm A; Janssen, Maurice H M

    2009-11-01

    In this paper we report on the design and operation of a novel piezovalve for the production of short pulsed atomic or molecular beams. The high speed valve operates on the principle of a cantilever piezo. The only moving part, besides the cantilever piezo itself, is a very small O-ring that forms the vacuum seal. The valve can operate continuous (dc) and in pulsed mode with the same drive electronics. Pulsed operation has been tested at repetition frequencies up to 5 kHz. The static deflection of the cantilever, as mounted in the valve body, was measured as a function of driving field strength with a confocal microscope. The deflection and high speed dynamical response of the cantilever can be easily changed and optimized for a particular nozzle diameter or repetition rate by a simple adjustment of the free cantilever length. Pulsed molecular beams with a full width at half maximum pulse width as low as 7 micros have been measured at a position 10 cm downstream of the nozzle exit. This represents a gas pulse with a length of only 10 mm making it well matched to for instance experiments using laser beams. Such a short pulse with 6 bar backing pressure behind a 150 microm nozzle releases about 10(16) particles/pulse and the beam brightness was estimated to be 4x10(22) particles/(s str). The short pulses of the cantilever piezovalve result in a much reduced gas load in the vacuum system. We demonstrate operation of the pulsed valve with skimmer in a single vacuum chamber pumped by a 520 l/s turbomolecular pump maintaining a pressure of 5x10(-6) Torr, which is an excellent vacuum to have the strong and cold skimmed molecular beam interact with laser beams only 10 cm downstream of the nozzle to do velocity map slice imaging with a microchannel-plate imaging detector in a single chamber. The piezovalve produces cold and narrow (Delta v/v=2%-3%) velocity distributions of molecules seeded in helium or neon at modest backing pressures of only 6 bar. The low gas load of the

  7. Temporal evolution of the electron density produced by nanosecond repetitively pulsed discharges in water vapor at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Sainct, Florent; Lacoste, Deanna; Kirkpatrick, Michael; Odic, Emmanuel; Laux, Christophe

    2014-10-01

    A study of plasma discharges produced by nanosecond repetitive pulses (NRP) in water vapor at 450 K and 1 atm is presented. The plasma was generated between two point electrodes with 20-ns duration, high-voltage (0--20 kV) pulses, at a repetition frequency of 10 kHz, in the spark regime (2 mJ/pulse). Atomic lines measured by optical emission spectroscopy were used to determine the electron number density in this non-equilibrium water-vapor plasma. The broadenings and shifts of the Hα and Hβ lines of the hydrogen Balmer series and of the atomic oxygen triplet at 777 nm were analyzed. For a maximum reduced electric field of about 200 Td, a maximum electron density of 2 × 1018 cm-3 was measured, corresponding to an ionization level of about 10 %. This ionization level is two orders of magnitude higher than the one obtained for similar NRP discharges in air at atmospheric pressure.

  8. Repetitively pulsed UV radiation source based on a run-away electron preionised diffuse discharge in nitrogen

    NASA Astrophysics Data System (ADS)

    Baksht, E. Kh; Burachenko, A. G.; Lomaev, M. I.; Panchenko, A. N.; Tarasenko, V. F.

    2015-04-01

    An extended repetitively pulsed source of spontaneous UV radiation is fabricated, which may also be used for producing laser radiation. Voltage pulses with an incident wave amplitude of up to 30 kV, a half-amplitude duration of ~4 ns and a rise time of ~2.5 ns are applied to a gap with a nonuniform electric field. For an excitation region length of 35 cm and a nitrogen pressure of 30 - 760 Torr, a diffusive discharge up to a pulse repetition rate of 2 kHz is produced without using an additional system for gap preionisation. An investigation is made of the plasma of the run-away electron preionised diffuse discharge. Using a CCD camera it is found that the dense diffused plasma fills the gap in a time shorter than 1 ns. X-ray radiation is recorded from behind the foil anode throughout the pressure range under study; a supershort avalanche electron beam is recorded by the collector electrode at pressures below 100 Torr.

  9. Experimental research on pulse forming based on high-temperature SMES applied in pulsed power

    NASA Astrophysics Data System (ADS)

    Zhou, Yusheng; Kuang, Jianghua; Tang, Yuejin; Song, Meng; Wei, Bin; Cheng, Shijie; Pan, Yuan

    2009-03-01

    To research the key problems of storage energy and pulse forming in pulsed power, a pulse magnet made of Bi2223/Ag high-temperature superconducting (HTS) tapes applied in pulsed power experiment was developed. After determining electromagnetic characteristics of the magnet, a pulse forming network was designed. HTS magnet was immersed in liquid nitrogen bath, experiments were carried out about discharging pulse current to resistance load based on HTS magnet energy storage (SMES). The results show that pulse current waves were obtained through adjusted circuit construction and magnet parameters by acting delay of switches in the pulse forming network. The technical schemes about pulse forming based on SMES were presented.

  10. Peak power tunable mid-infrared oscillator pumped by a high power picosecond pulsed fiber amplifier with bunch output

    NASA Astrophysics Data System (ADS)

    Wei, Kaihua; Guo, Yan; Lai, Xiaomin; Fan, Shanhui

    2016-07-01

    A high power mid-infrared optical parametric oscillator (OPO) with picosecond pulse bunch output is experimentally demonstrated. The pump source was a high power master oscillation power amplifier (MOPA) picosecond pulsed fiber amplifier. The seed of the MOPA was a gain-switched distributed Bragg reflector (DBR) laser diode (LD) with picosecond pulse operation at a high repetition rate. The seed laser was amplified to 50 W by two-stage pre-amplifiers and a large mode area (LMA) Yb fiber based power-amplifier. A fiber-pigtailed acousto-optic modulator with the first order diffraction transmission was inserted into the second pre-amplifier to form a picosecond pulse bunch train and to change the peak power simultaneously. The power-amplified pulse bunches were focused to pump a wavelength-tunable OPO for emitting high power mid-infrared laser. By adjusting the OPO cavity length, the maximum average idler powers obtained at 3.1, 3.3 and 3.5 μm were 7, 6.6 and 6.4 W respectively.

  11. Pulsed power performance of PBFA Z

    SciTech Connect

    Spielman, R.B.; Stygar, W.A.; Seamen, J.F.

    1997-08-01

    PBFA Z is a new 60-TW/5-MJ electrical driver located at Sandia National Laboratories. The authors use PBFA Z to drive z pinches. The pulsed power design of PBFA Z is based on conventional single-pulse Marx generator, water-line pulse-forming technology used on the earlier Saturn and PBFA II accelerators. PBFA Z stores 11.4 MJ in its 36 Marx generators, couples 5 MJ in a 60-TW/105-ns pulse to the output water transmission lines, and delivers 3.0 MJ and 50 TW of electrical energy to the z-pinch load. Depending on the initial load inductance and the implosion time, the authors attain peak currents of 16-20 MA with a rise time of 105 ns. Current is fed to the z-pinch load through self magnetically-insulated transmission lines (MITLs). Peak electric fields in the MITLs exceed 2 MV/cm. The current from the four independent conical-disk MITLs is combined together in a double post-hole vacuum convolute with an efficiency greater than 95%. The authors achieved x-ray powers of 200 TW and x-ray energies of 1.9 MJ from tungsten wire-array z-pinch loads.

  12. Pulsed power accelerator for material physics experiments

    NASA Astrophysics Data System (ADS)

    Reisman, D. B.; Stoltzfus, B. S.; Stygar, W. A.; Austin, K. N.; Waisman, E. M.; Hickman, R. J.; Davis, J.-P.; Haill, T. A.; Knudson, M. D.; Seagle, C. T.; Brown, J. L.; Goerz, D. A.; Spielman, R. B.; Goldlust, J. A.; Cravey, W. R.

    2015-09-01

    We have developed the design of Thor: a pulsed power accelerator that delivers a precisely shaped current pulse with a peak value as high as 7 MA to a strip-line load. The peak magnetic pressure achieved within a 1-cm-wide load is as high as 100 GPa. Thor is powered by as many as 288 decoupled and transit-time isolated bricks. Each brick consists of a single switch and two capacitors connected electrically in series. The bricks can be individually triggered to achieve a high degree of current pulse tailoring. Because the accelerator is impedance matched throughout, capacitor energy is delivered to the strip-line load with an efficiency as high as 50%. We used an iterative finite element method (FEM), circuit, and magnetohydrodynamic simulations to develop an optimized accelerator design. When powered by 96 bricks, Thor delivers as much as 4.1 MA to a load, and achieves peak magnetic pressures as high as 65 GPa. When powered by 288 bricks, Thor delivers as much as 6.9 MA to a load, and achieves magnetic pressures as high as 170 GPa. We have developed an algebraic calculational procedure that uses the single brick basis function to determine the brick-triggering sequence necessary to generate a highly tailored current pulse time history for shockless loading of samples. Thor will drive a wide variety of magnetically driven shockless ramp compression, shockless flyer plate, shock-ramp, equation of state, material strength, phase transition, and other advanced material physics experiments.

  13. Laser beam deflection monitoring of Nd: YAG laser ablation: pulse shape and repetition rate effects

    NASA Astrophysics Data System (ADS)

    Diaci, Janez; Možina, Janez

    1993-05-01

    The laser beam deflection probe has been employed to study blast waves generated during ablation of metallic surfaces by sequences of 1.06 μm Nd:YAG laser pulses separated by less than 1μs. A fluence threshold has been found, below which the effects of individual pulses can be resolved by the laser probe. Above that, the deflection signal has a similar form as if the surface were irradiated with a single pulse. Analysis of the signals in terms of the spherical blast wave theory shows that a pulse sequence generates a weaker blast wave than a single pulse of equal total energy. On the other hand, the sequence yields a higher etch depth than the single pulse.

  14. Pulsed Power Peer Review Committee Report

    SciTech Connect

    BLOOMQUIST,DOUGLAS D.

    2000-12-01

    In 1993, the Government Performance and Results Act (GPRA, PL 103-62) was enacted. GPRA, which applies to all federal programs, has three components: strategic plans, annual performance plans, and metrics to show how well annual plans are being followed. As part of meeting the GRPA requirement in FY2000, a 14-member external peer review panel (the Garwin Committee) was convened on May 17-19, 2000 to review Sandia National Laboratories' Pulsed Power Programs as a component of the Performance Appraisal Process negotiated with the Department of Energy (DOE). The scope of the review included activities in inertial confinement fission (ICF), weapon physics, development of radiation sources for weapons effects simulation, x-ray radiography, basic research in high energy density physics (HEDP), and pulsed power technology research and development. In his charge to the committee, Jeffrey Quintenz, Director of Pulsed Power Sciences (1600) asked that the review be based on four criteria (1) quality of science, technology, and engineering, (2) programmatic performance, management, and planning, (3) relevance to national needs and agency missions, and (4) performance in the operation and construction of major research facilities. In addition, specific programmatic questions were posed by the director and by the DOE-Defense Programs (DP). The accompanying report, produced as a SAND document, is the report of the committee's findings.

  15. Pulsed power peer review committee report.

    SciTech Connect

    Not Available

    2004-08-01

    As part of meeting the GRPA (Government Performance and Results Act) requirements and to provide input to Sandia's annual Performance Evaluation Assessment Report (PEAR) to the National Nuclear Security Administration in FY2004, a 14-member external review committee chaired by Dr. Alvin Trivelpiece was convened by Sandia National Laboratories (SNL) on May 4-6, 2004 to review Sandia National Laboratories' Pulsed Power Programs. The scope of the review included activities in high energy density physics (HEDP), inertial confinement fusion (ICF), radiation/weapon physics, the petawatt laser initiative (PW) and fast ignition, equation-of state studies, radiation effects science and lethality, x-ray radiography, ZR development, basic research and pulsed power technology research and development, as well as electromagnetics and work for others. In his charge to the Committee, Dr. Jeffrey P. Quintenz, Director of Pulsed Power Sciences (Org. 1600) asked that the evaluation and feedback be based on three criteria: (1) quality of technical activities in science, technology, and engineering, (2) programmatic performance, management, and planning, and (3) relevance to national needs and agency missions. In addition, the director posed specific programmatic questions. The accompanying report, produced as a SAND document, is the report of the Committee's finding.

  16. Characterization of power IGBTs under pulsed power conditions

    SciTech Connect

    Dale, Gregory E; Vangordon, James; Kovaleski, Scott

    2009-01-01

    The power insulated gate bipolar transistor (IGBT) is used in many types of applications. Although the use of the power IGBT has been well characterized for many continuous operation power electronics applications, little published information is available regarding the performance of a given IGBT under pulsed power conditions. Additionally, component libraries in circuit simulation software packages have a finite number of IGBTs. This paper presents a process for characterizing the performance of a given power IGBT under pulsed power conditions. Specifically, signals up to 3.5 kV and 1 kA with 1-10 {micro}s pulse widths have been applied to a Powerex QIS4506001 IGBT. This process utilizes least squares curve fitting techniques with collected data to determine values for a set of modeling parameters. These parameters were used in the Oziemkiewicz implementation of the Hefner model for the IGBT that is utilized in some circuit simulation software packages. After the nominal parameter values are determined, they can be inserted into the Oziemkiewicz implementation to simulate a given IGBT.

  17. Influence of air flow parameters on nanosecond repetitively pulsed discharges in a pin-annular electrode configuration

    NASA Astrophysics Data System (ADS)

    Heitz, Sylvain A.; Moeck, Jonas P.; Schuller, Thierry; Veynante, Denis; Lacoste, Deanna A.

    2016-04-01

    The effect of various air flow parameters on the plasma regimes of nanosecond repetitively pulsed (NRP) discharges is investigated at atmospheric pressure. The two electrodes are in a pin-annular configuration, transverse to the mean flow. The voltage pulses have amplitudes up to 15 kV, a duration of 10 ns and a repetition frequency ranging from 15 to 30 kHz. The NRP corona to NRP spark (C-S) regime transition and the NRP spark to NRP corona (S-C) regime transition are investigated for different steady and harmonically oscillating flows. First, the strong effect of a transverse flow on the C-S and S-C transitions, as reported in previous studies, is verified. Second, it is shown that the azimuthal flow imparted by a swirler does not affect the regime transition voltages. Finally, the influence of low frequency harmonic oscillations of the air flow, generated by a loudspeaker, is studied. A strong effect of frequency and amplitude of the incoming flow modulation on the NRP plasma regime is observed. Results are interpreted based on the cumulative effect of the NRP discharges and an analysis of the residence times of fluid particles in the inter-electrode region.

  18. Pulse Detonation Rocket Magnetohydrodynamic Power Experiment

    NASA Technical Reports Server (NTRS)

    Litchford, R. J.; Jones, J. E.; Dobson, C. C.; Cole, J. W.; Thompson, B. R.; Plemmons, D. H.; Turner, M. W.

    2003-01-01

    The production of onboard electrical power by pulse detonation engines is problematic in that they generate no shaft power; however, pulse detonation driven magnetohydrodynamic (MHD) power generation represents one intriguing possibility for attaining self-sustained engine operation and generating large quantities of burst power for onboard electrical systems. To examine this possibility further, a simple heat-sink apparatus was developed for experimentally investigating pulse detonation driven MHD generator concepts. The hydrogen oxygen fired driver was a 90 cm long stainless steel tube having a 4.5 cm square internal cross section and a short Schelkin spiral near the head end to promote rapid formation of a detonation wave. The tube was intermittently filled to atmospheric pressure and seeded with a CsOH/methanol prior to ignition by electrical spark. The driver exhausted through an aluminum nozzle having an area contraction ratio of A*/A(sub zeta) = 1/10 and an area expansion ratio of A(sub zeta)/A* = 3.2 (as limited by available magnet bore size). The nozzle exhausted through a 24-electrode segmented Faraday channel (30.5 cm active length), which was inserted into a 0.6 T permanent magnet assembly. Initial experiments verified proper drive operation with and without the nozzle attachment, and head end pressure and time resolved thrust measurements were acquired. The exhaust jet from the nozzle was interrogated using a polychromatic microwave interferometer yielding an electron number density on the order of 10(exp 12)/cm at the generator entrance. In this case, MHD power generation experiments suffered from severe near-electrode voltage drops and low MHD interaction; i.e., low flow velocity, due to an inherent physical constraint on expansion with the available magnet. Increased scaling, improved seeding techniques, higher magnetic fields, and higher expansion ratios are expected to greatly improve performance.

  19. Genetic algorithm based optimization of pulse profile for MOPA based high power fiber lasers

    NASA Astrophysics Data System (ADS)

    Zhang, Jiawei; Tang, Ming; Shi, Jun; Fu, Songnian; Li, Lihua; Liu, Ying; Cheng, Xueping; Liu, Jian; Shum, Ping

    2015-03-01

    Although the Master Oscillator Power-Amplifier (MOPA) based fiber laser has received much attention for laser marking process due to its large tunabilty of pulse duration (from 10ns to 1ms), repetition rate (100Hz to 500kHz), high peak power and extraordinary heat dissipating capability, the output pulse deformation due to the saturation effect of fiber amplifier is detrimental for many applications. We proposed and demonstrated that, by utilizing Genetic algorithm (GA) based optimization technique, the input pulse profile from the master oscillator (current-driven laser diode) could be conveniently optimized to achieve targeted output pulse shape according to real parameters' constraints. In this work, an Yb-doped high power fiber amplifier is considered and a 200ns square shaped pulse profile is the optimization target. Since the input pulse with longer leading edge and shorter trailing edge can compensate the saturation effect, linear, quadratic and cubic polynomial functions are used to describe the input pulse with limited number of unknowns(<5). Coefficients of the polynomial functions are the optimization objects. With reasonable cost and hardware limitations, the cubic input pulse with 4 coefficients is found to be the best as the output amplified pulse can achieve excellent flatness within the square shape. Considering the bandwidth constraint of practical electronics, we examined high-frequency component cut-off effect of input pulses and found that the optimized cubic input pulses with 300MHz bandwidth is still quite acceptable to satisfy the requirement for the amplified output pulse and it is feasible to establish such a pulse generator in real applications.

  20. Update on PHELIX Pulsed-Power Hydrodynamics Experiments and Modeling

    NASA Astrophysics Data System (ADS)

    Rousculp, Christopher; Reass, William; Oro, David; Griego, Jeffery; Turchi, Peter; Reinovsky, Robert; Devolder, Barbara

    2013-10-01

    The PHELIX pulsed-power driver is a 300 kJ, portable, transformer-coupled, capacitor bank capable of delivering 3-5 MA, 10 μs pulse into a low inductance load. Here we describe further testing and hydrodynamics experiments. First, a 4 nH static inductive load has been constructed. This allows for repetitive high-voltage, high-current testing of the system. Results are used in the calibration of simple circuit models and numerical simulations across a range of bank charges (+/-20 < V0 < +/-40 kV). Furthermore, a dynamic liner-on-target load experiment has been conducted to explore the shock-launched transport of particulates (diam. ~ 1 μm) from a surface. The trajectories of the particulates are diagnosed with radiography. Results are compared to 2D hydro-code simulations. Finally, initial studies are underway to assess the feasibility of using the PHELIX driver as an electromagnetic launcher for planer shock-physics experiments. Work supported by United States-DOE under contract DE-AC52-06NA25396.

  1. Derivation of a formula describing the saturation correction of plane-parallel ionization chambers in pulsed fields with arbitrary repetition rate

    NASA Astrophysics Data System (ADS)

    Karsch, Leonhard

    2016-04-01

    Gas-filled ionization chambers are widely used radiation detectors in radiotherapy. A quantitative description and correction of the recombination effects exists for two cases, for continuous radiation exposure and for pulsed radiation fields with short single pulses. This work gives a derivation of a formula for pulsed beams with arbitrary pulse rate for which the prerequisites of the two existing descriptions are not fulfilled. Furthermore, an extension of the validity of the two known cases is investigated. The temporal evolution of idealized charge density distributions within a plane parallel chamber volume is described for pulsed beams of vanishing pulse duration and arbitrary pulse repetition rate. First, the radiation induced release, movement and collection of the charge carriers without recombination are considered. Then, charge recombination is calculated basing on these simplified charge distributions and the time dependent spatial overlap of positive and negative charge carrier distributions. Finally, a formula for the calculation of the saturation correction factor is derived by calculation and simplification of the first two terms of a Taylor expansion for small recombination. The new formula of saturation correction contains the two existing cases, descriptions for exposure by single pulses and continuous irradiation, as limiting cases. Furthermore, it is possible to determine the pulse rate range for which each of the three descriptions is applicable by comparing the dependencies of the new formula with the two existing cases. As long as the time between two pulses is lower than one third of the collection time of the chamber, the formalism for a continuous exposure can be used. The known description for single pulse irradiation is only valid if the repetition rate is less than 1.2 times the inverse collection time. For all other repetition rates in between the new formula should be used. The experimental determination by Jaffe diagrams can be

  2. Comparison of two high-repetition-rate pulsed CO/sub 2/ laser discharge geometries

    SciTech Connect

    Faszer, W.; Tulip, J.; Seguin, H.

    1980-11-01

    Two discharge geometries are commonly used for pumping high-repetition-rate transversely excited atmosphere (TEA) lasers. One uses solid electrodes with preionization provided by downstream spark pins. The other uses a solid electrode and a screen electrode with preionization provided by an auxiliary discharge behind the screen. In this study the performance of the two systems was compared. The repetition rate at which arcing occurs was found to increase linearly with flow velocity but decrease with increasing energy density. It was also dependent on system geometry and the spark pin preionized system performed better than the auxiliary discharge preionized system. Data are given for discharges in N/sub 2/, CO/sub 2/, He, and a CO/sub 2/ laser mixture.

  3. Surface modifications on toughened, fine-grained, recrystallized tungsten with repetitive ELM-like pulsed plasma irradiation

    NASA Astrophysics Data System (ADS)

    Kikuchi, Y.; Sakuma, I.; Kitagawa, Y.; Asai, Y.; Onishi, K.; Fukumoto, N.; Nagata, M.; Ueda, Y.; Kurishita, H.

    2015-08-01

    Surface modifications of toughened, fine-grained, recrystallized tungsten (TFGR W) materials with 1.1 wt.% TiC and 3.3 wt.% TaC dispersoids due to repetitive ELM-like pulsed (∼0.15 ms) helium plasma irradiation have been investigated by using a magnetized coaxial plasma gun. No surface cracking at the center part of the TFGR W samples exposed to 20 plasma pulses of ∼0.3 MJ m-2 was observed. The suppression of surface crack formation due to the increase of the grain boundary strength by addition of TiC and TaC dispersoids was confirmed in comparison with a pure W material. On the other hand, surface cracks and small pits appeared at the edge part of the TFGR W sample after the pulsed plasma irradiation. Erosion of the TiC and TaC dispersoids due to the pulsed plasma irradiation could cause the small pits on the surface, resulting in the surface crack formation.

  4. High repetition rate (100 Hz), high peak power, high contrast femtosecond laser chain

    NASA Astrophysics Data System (ADS)

    Clady, R.; Tcheremiskine, V.; Azamoum, Y.; Ferré, A.; Charmasson, L.; Utéza, O.; Sentis, M.

    2016-03-01

    High intensity femtosecond laser are now routinely used to produce energetic particles and photons via interaction with solid targets. However, the relatively low conversion efficiency of such processes requires the use of high repetition rate laser to increase the average power of the laser-induced secondary source. Furthermore, for high intensity laser-matter interaction, a high temporal contrast is of primary importance as the presence of a ns ASE pedestal (Amplified Spontaneous Emission) and/or various prepulses may significantly affect the governing interaction processes by creating a pre-plasma on the target surface. We present the characterization of a laser chain based on Ti:Sa technology and CPA technique, which presents unique laser characteristics : a high repetition rate (100 Hz), a high peak power (>5 TW) and a high contrast ratio (ASE<10-10) obtained thanks to a specific design with 3 saturable absorbers inserted in the amplification chain. A deformable mirror placed before the focusing parabolic mirror should allow us to focus the beam almost at the limit of diffraction. In these conditions, peak intensity above 1019W.cm-2 on target could be achieved at 100 Hz, allowing the study of relativistic optics at a high repetition rate.

  5. High power UV and VUV pulsed excilamps

    NASA Astrophysics Data System (ADS)

    Tarasenko, V.; Erofeev, M.; Lomaev, M.; Rybka, D.

    2008-07-01

    Emission characteristics of a nanosecond discharge in inert gases and its halogenides without preionization of the gap from an auxiliary source have been investigated. A volume discharge, initiated by an avalanche electron beam (VDIAEB) was realized at pressures up to 12 atm. In xenon at pressure of 1.2 atm, the energy of spontaneous radiation in the full solid angle was sim 45 mJ/cm^3, and the FWHM of a radiation pulse was sim 110 ns. The spontaneous radiation power rise in xenon was observed at pressures up to 12 atm. Pulsed radiant exitance of inert gases halogenides excited by VDIAEB was sim 4.5 kW/cm^2 at efficiency up to 5.5 %.

  6. Pulsed power accelerators for particle beam fusion

    SciTech Connect

    Martin, T.H.; Barr, G.W.; VanDevender, J.P.; White, R.A.; Johnson, D.L.

    1980-01-01

    Sandia National Laboratories is completing the construction phase of the Particle Beam Fusion Accelerator-I (PBFA-I). Testing of the 36 module, 30 TW, 1 MJ output accelerator is in the initial stages. The 4 MJ, PBFA Marx generator has provided 3.6 MA into water-copper sulfate load resistors with a spread from first to last Marx firing between 15 to 25 ns and an output power of 5.7 TW. This accelerator is a modular, lower voltage, pulsed power device that is capable of scaling to power levels exceeding 100 TW. The elements of the PBFA technology and their integration into an accelerator system for particle beam fusion will be discussed.

  7. Generation of stable Ps, mJ pulses at high repetition rate for ultrafast diagnostic experiments: Final report

    SciTech Connect

    Mourou, G.

    1986-10-01

    Nd:Glass amplifiers have very good energy storage capabilities (5 J/cm/sup 2/), but, the energy extraction is extremely inefficient for short-pulse amplification. At relatively high peak intensities of approx. 10 GW/cm/sup 2/, nonlinear phase shifts occur, leading to beam wavefront distortion which can result in filamentation and irreversible damage. In order that the peak intensity in the amplifier remain below this damage level, a picosecond pulse can be amplified only to an energy density of approx. 10 mJ/cm/sup 2/, two orders of magnitude less than the stored energy level of 5 J/cm/sup 2/. We have developed an amplification system, which uses an optical pulse compression technique to circumvent this peak power limitation. This technique is analogous to a method developed over forty years ago for the amplification of radar pulses. Briefly: a long optical pulse is deliberately produced by stretching a short, low-energy pulse, amplified and then compressed. The frequency chirp and the temporal broadening are produced by propagating a high-intensity pulse along a single-mode fiber. At the beginning of the fiber, the pulse undergoes self-phase modulation which produces a frequncy chirp. The chirp is then linearized by the group-velocity dispersion of the fiber. This long, frequency-chirped, pulse is amplified, and then compressed to a pulsewidth approximately equal to 1/..delta..f, where ..delta..f is the chirped bandwidth. With this system, short pulses can reach the high saturation energy levels, with moderately low peak power levels being maintained in the amplifying medium.

  8. Pulsed power supply for streamer corona electrofilter with 100 KV pseudospark switch

    SciTech Connect

    Bochkov, V.D.; Gnedin, I.N.; Djagiley, V.M.

    1996-12-31

    The pulsed-plasma-based reactor is currently created for the biggest in Moscow region thermal Kashira Power Plant. The reactor is intended to increase a precipitation of fly ash, SO{sub 2} and NO{sub x} from flue gas. The principal parameters of the electrostatic precipitator and pulse power supply for streamer corona discharge are as follows: gas flow rate - 300000 Nm{sup 3}/h gas velocity - 2 m/s, average power - 300 kW, pulse repetition rate - up to 2 kHz. The power supply has a module design with the single module power of about 25-50 kW, pulse voltage up to 120 kV, pulse energy of 30 J, pulse length of 500 ns. The pseudospark switch with hold-off voltage up to 100 kV is used in the module. It is supposed that the switch should offer a possibility to transfer a total charge of about 10{sup 7} C.

  9. Pulsed Power for Solid-State Lasers

    SciTech Connect

    Gagnon, W; Albrecht, G; Trenholme, J; Newton, M

    2007-04-19

    Beginning in the early 1970s, a number of research and development efforts were undertaken at U.S. National Laboratories with a goal of developing high power lasers whose characteristics were suitable for investigating the feasibility of laser-driven fusion. A number of different laser systems were developed and tested at ever larger scale in pursuit of the optimum driver for laser fusion experiments. Each of these systems had associated with it a unique pulsed power option. A considerable amount of original and innovative engineering was carried out in support of these options. Ultimately, the Solid-state Laser approach was selected as the optimum driver for the application. Following this, the Laser Program at the Lawrence Livermore National Laboratory and the University of Rochester undertook aggressive efforts directed at developing the technology. In particular, at Lawrence Livermore National Laboratory, a series of laser systems beginning with the Cyclops laser and culminating in the present with the National Ignition Facility were developed and tested. As a result, a large amount of design information for solid-state laser pulsed power systems has been documented. Some of it is in the form of published papers, but most of it is buried in internal memoranda, engineering reports and LLNL annual reports. One of the goals of this book is to gather this information into a single useable format, such that it is easily accessed and understood by other engineers and physicists for use with future designs. It can also serve as a primer, which when seriously studied, makes the subsequent reading of original work and follow-up references considerably easier. While this book deals only with the solid-state laser pulsed power systems, in the bibliography we have included a representative cross section of papers and references from much of the very fine work carried out at other institutions in support of different laser approaches. Finally, in recent years, there has

  10. Study on the mode-transition of nanosecond-pulsed dielectric barrier discharge between uniform and filamentary by controlling pressures and pulse repetition frequencies

    NASA Astrophysics Data System (ADS)

    Yu, S.; Pei, X.; Hasnain, Q.; Nie, L.; Lu, X.

    2016-02-01

    In this paper, we investigate the temporally resolved evolution of the nanosecond pulsed dielectric barrier discharge (DBD) in a moderate 6 mm discharge gap under various pressures and pulse repetition frequencies (PRFs) by intensified charge-coupled device (ICCD) images, using dry air and its components oxygen and nitrogen. It is found that the pressures are very different when the mode transits between uniform and filamentary in air, oxygen, and nitrogen. The PRFs can also obviously affect the mode-transition. The transition mechanism in the pulsed DBD is not Townsend-to-Streamer, which is dominant in the traditional alternating-voltage DBD. The pulsed DBD in a uniform mode develops in the form of plane ionization wave due to overlap of primary avalanches, while the increase in pressure disturbs the overlap and discharge develops in streamer, corresponding to the filamentary mode. Increasing the initial electron density by pre-ionization may contribute to discharge uniformity at higher pressures. We also found that the dependence of homogeneity upon PRF is a non-monotonic one.

  11. A high pulse repetition frequency ultrasound system for the ex vivo measurement of mechanical properties of crystalline lenses with laser-induced microbubbles interrogated by acoustic radiation force.

    PubMed

    Yoon, Sangpil; Aglyamov, Salavat; Karpiouk, Andrei; Emelianov, Stanislav

    2012-08-01

    A high pulse repetition frequency ultrasound system for an ex vivo measurement of mechanical properties of an animal crystalline lens was developed and validated. We measured the bulk displacement of laser-induced microbubbles created at different positions within the lens using nanosecond laser pulses. An impulsive acoustic radiation force was applied to the microbubble, and spatio-temporal measurements of the microbubble displacement were assessed using a custom-made high pulse repetition frequency ultrasound system consisting of two 25 MHz focused ultrasound transducers. One of these transducers was used to emit a train of ultrasound pulses and another transducer was used to receive the ultrasound echoes reflected from the microbubble. The developed system was operating at 1 MHz pulse repetition frequency. Based on the measured motion of the microbubble, Young's moduli of surrounding tissue were reconstructed and the values were compared with those measured using the indentation test. Measured values of Young's moduli of four bovine lenses ranged from 2.6 ± 0.1 to 26 ± 1.4 kPa, and there was good agreement between the two methods. Therefore, our studies, utilizing the high pulse repetition frequency ultrasound system, suggest that the developed approach can be used to assess the mechanical properties of ex vivo crystalline lenses. Furthermore, the potential of the presented approach for in vivo measurements is discussed.

  12. Chamber dynamic research with pulsed power

    SciTech Connect

    PETERSON,ROBERT R.; OLSON,CRAIG L.; RENK,TIMOTHY J.; ROCHAU,GARY E.; SWEENEY,MARY ANN

    2000-05-15

    In Inertial Fusion Energy (IFE), Target Chamber Dynamics (TCD) is an integral part of the target chamber design and performance. TCD includes target output deposition of target x-rays, ions and neutrons in target chamber gases and structures, vaporization and melting of target chamber materials, radiation-hydrodynamics in target chamber vapors and gases, and chamber conditions at the time of target and beam injections. Pulsed power provides a unique environment for IFE-TCD validation experiments in two important ways: they do not require the very clean conditions which lasers need and they currently provide large x-ray and ion energies.

  13. Westinghouse programs in pulsed homopolar power supplies

    NASA Technical Reports Server (NTRS)

    Litz, D. C.; Mullan, E.

    1984-01-01

    This document details Westinghouse's ongoing study of homopolar machines since 1929 with the major effort occurring in the early 1970's to the present. The effort has enabled Westinghouse to develop expertise in the technology required for the design, fabrication and testing of such machines. This includes electrical design, electromagnetic analysis, current collection, mechanical design, advanced cooling, stress analysis, transient rotor performance, bearing analysis and seal technology. Westinghouse is using this capability to explore the use of homopolar machines as pulsed power supplies for future systems in both military and commercial applications.

  14. Performance of Low-Power Pulsed Arcjets

    NASA Technical Reports Server (NTRS)

    Burton, Rodney L.

    1995-01-01

    The Electric Propulsion Laboratory at UIUC has in place all the capability and diagnostics required for performance testing of low power pulsed and DC arcjets. The UIUC thrust stand is operating with excellent accuracy and sensitivity at very low thrust levels. An important aspect of the experimental setup is the use of a PID controller to maintain a constant thruster position, which reduces hysterisis effects. Electrical noise from the arcjet induces some noise into the thrust signal, but this does not affect the measurement.

  15. Agricultural and Food Processing Applications of Pulsed Power and Plasma Technologies

    NASA Astrophysics Data System (ADS)

    Takaki, Koichi

    Agricultural and food processing applications of pulsed power and plasma technologies are described in this paper. Repetitively operated compact pulsed power generators with a moderate peak power are developed for the agricultural and the food processing applications. These applications are mainly based on biological effects and can be categorized as germination control of plants such as Basidiomycota and arabidopsis inactivation of bacteria in soil and liquid medium of hydroponics; extraction of juice from fruits and vegetables; decontamination of air and liquid, etc. Types of pulsed power that have biological effects are caused with gas discharges, water discharges, and electromagnetic fields. The discharges yield free radicals, UV radiation, intense electric field, and shock waves. Biologically based applications of pulsed power and plasma are performed by selecting the type that gives the target objects the adequate result from among these agents or byproducts. For instance, intense electric fields form pores on the cell membrane, which is called electroporation, or influence the nuclei. This paper mainly describes the application of the pulsed power for the germination control of Basidiomycota i.e. mushroom, inactivation of fungi in the soil and the liquid medium in hydroponics, and extraction of polyphenol from skins of grape.

  16. Towards Integrated Pulse Detonation Propulsion and MHD Power

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Thompson, Bryan R.; Lineberry, John T.

    1999-01-01

    The interest in pulse detonation engines (PDE) arises primarily from the advantages that accrue from the significant combustion pressure rise that is developed in the detonation process. Conventional rocket engines, for example, must obtain all of their compression from the turbopumps, while the PDE provides additional compression in the combustor. Thus PDE's are expected to achieve higher I(sub sp) than conventional rocket engines and to require smaller turbopumps. The increase in I(sub sp) and the decrease in turbopump capacity must be traded off against each other. Additional advantages include the ability to vary thrust level by adjusting the firing rate rather than throttling the flow through injector elements. The common conclusion derived from these aggregated performance attributes is that PDEs should result in engines which are smaller, lower in cost, and lighter in weight than conventional engines. Unfortunately, the analysis of PDEs is highly complex due to their unsteady operation and non-ideal processes. Although the feasibility of the basic PDE concept has been proven in several experimental and theoretical efforts, the implied performance improvements have yet to be convincingly demonstrated. Also, there are certain developmental issues affecting the practical application of pulse detonation propulsion systems which are yet to be fully resolved. Practical detonation combustion engines, for example, require a repetitive cycle of charge induction, mixing, initiation/propagation of the detonation wave, and expulsion/scavenging of the combustion product gases. Clearly, the performance and power density of such a device depends upon the maximum rate at which this cycle can be successfully implemented. In addition, the electrical energy required for direct detonation initiation can be significant, and a means for direct electrical power production is needed to achieve self-sustained engine operation. This work addresses the technological issues associated

  17. Narrow high power microwave pulses from a free electron laser

    SciTech Connect

    Marshall, T.C.; Zhang, T.B.

    1995-11-01

    The authors have explored high power microwave ({lambda} = 1.5mm) pulse amplification along a tapered undulator FEL using the 1D Compton FEL equations with slippage. For an appropriate taper, sideband instabilities are suppressed and a short ({approximately}50psec) Gaussian pulse will propagate in a nearly self-similar way as it grows in power, slipping through a much longer electron pulse (beam energy, 750kV; current, 100A; radius = 2mm; length = 200 radiation periods). This is in contrast to the example of pulse propagation in a constant parameter undulator, where the Gaussian pulse breaks up into irregularities identified with sidebanding. Variation of initial pulse width shows convergence to a 50psec wide output pulse. Because of the slippage of the radiation pulse through the electron pulse, the peak microwave pulse intensity, {approximately}3GW/cm2, is about three times the kinetic energy density of the electron beam.

  18. All-optical repetition rate multiplication of pseudorandom bit sequences by employing power coupler and equalizer

    NASA Astrophysics Data System (ADS)

    Sun, Zhenchao; Wang, Zhi; Wu, Chongqing; Wang, Fu; Li, Qiang

    2015-10-01

    A scheme for all-optical repetition rate multiplication of pseudorandom bit sequences (PRBS) is demonstrated with a precision delay feedback loop cascaded with a terahertz optical asymmetric demultiplexer (TOAD)-based power equalizer. Its feasibility has been verified by experiments, which show a multiplication for PRBS at cycle 2^7-1 from 2.5 to 10 Gb/s. This scheme can be employed for the rate multiplication of a much longer cycle PRBS at a much higher bit rate over 40 Gb/s if the time-delay, the loss, and the dispersion of an optical delay line are all precisely managed.

  19. Wavelength dependence of repetitive-pulse laser-induced damage threshold in beta-BaB2O4.

    PubMed

    Kouta, H

    1999-01-20

    The dependence on wavelength of repetitive-pulse (10 Hz, 8-10 ns) laser-induced damage on beta barium metaborate (BBO) has been investigated. The thresholds of dielectric breakdown in bulk crystal have been found to be 0.3 GW/cm(2) at 266 nm, 0.9 GW/cm(2) at 355 nm, 2.3 GW/cm(2) at 532 nm, and 4.5 GW/cm(2) at 1064 nm. Results indicate two-photon absorption at 266 and 355 nm, which helps to produce an avalanche effect that causes breakdown at each of the four wavelengths tested. Neither the BBO refractive indices nor the absorption spectrum change until breakdown occurs.

  20. Synchronized ps fiber lasers with pulse durations (25, 50, 100-2000ps) and repetition rates (100kHz-150Mhz) continuously tunable over three orders of magnitude

    NASA Astrophysics Data System (ADS)

    Dupuis, Alexandre; Burgoyne, Bryan; Pena, Guido; Archambault, André; Lemieux, Dominic; Solomonean, Vasile; Duong, Maxime; Villeneuve, Alain

    2013-03-01

    Ultrafast lasers are enabling precision machining of a wide variety of materials. However, the optimal laser parameters for proper material processing can differ greatly from one material to another. In order to cut high aspect-ratio features at high processing speeds the laser parameters such as pulse energy, repetition rate, and cutting speed need to be optimized. In particular, a shorter pulse duration plays an important role in reducing the thermal damage in the Heat-Affected Zones. In this paper we present a novel ps fiber laser whose electronically tunable parameters aim to facilitate the search for optimal processing parameters. The 20W 1064nm Yb fiber laser is based on a Master Oscillator Power Amplifier (MOPA) architecture with a repetition rate that can be tuned continuously from 120kHz to 120MHz. More importantly, the integration of three different pulse generators enables the pulse duration to be switched from 25ps to 50ps, or to any value within the 55ps to 2000ps range. By reducing the pulse duration from the ns-regime down to 25ps, the laser approaches the transition from the thermal processing regime to the ablation regime of most materials. Moreover, in this paper we demonstrate the synchronization of the pulses from two such MOPA lasers. This enables more elaborate multipulse processing schemes where the pulses of each laser can be set to different parameter values, such as an initial etching pulse followed by a thermal annealing pulse. It should be noted that all the laser parameters are controlled electronically with no moving parts, including the synchronization.

  1. X-ray and runaway electron generation in repetitive pulsed discharges in atmospheric pressure air with a point-to-plane gap

    NASA Astrophysics Data System (ADS)

    Shao, Tao; Tarasenko, Victor F.; Zhang, Cheng; Shut'ko, Yuliya V.; Yan, Ping

    2011-05-01

    In this paper, using two repetitive nanosecond generators, x-rays were detected in atmospheric air with a highly inhomogeneous electric field by a point-to- plane gap. The rise times of the generators were about 15 and 1 ns. The x-rays were directly measured by various dosimeters and a NaI scintillator with a photomultiplier tube. X-rays were detected in the continuous mode at pulse repetition frequency up to 1 kHz and a voltage pulse rise time of ˜15 ns. It is shown that the maximum x-ray intensity is attainable at different pulse repetition frequencies depending on the voltage pulse parameters and cathode design. In atmospheric pressure air the x-ray intensity is found to increase with increasing the pulse repetition frequency up to 1 kHz. It is confirmed that the maximum x-ray intensity is attained in a diffuse discharge in a point-to-plane gap.

  2. X-ray and runaway electron generation in repetitive pulsed discharges in atmospheric pressure air with a point-to-plane gap

    SciTech Connect

    Shao Tao; Yan Ping; Tarasenko, Victor F.; Shut'ko, Yuliya V.; Zhang Cheng

    2011-05-15

    In this paper, using two repetitive nanosecond generators, x-rays were detected in atmospheric air with a highly inhomogeneous electric field by a point-to- plane gap. The rise times of the generators were about 15 and 1 ns. The x-rays were directly measured by various dosimeters and a NaI scintillator with a photomultiplier tube. X-rays were detected in the continuous mode at pulse repetition frequency up to 1 kHz and a voltage pulse rise time of {approx}15 ns. It is shown that the maximum x-ray intensity is attainable at different pulse repetition frequencies depending on the voltage pulse parameters and cathode design. In atmospheric pressure air the x-ray intensity is found to increase with increasing the pulse repetition frequency up to 1 kHz. It is confirmed that the maximum x-ray intensity is attained in a diffuse discharge in a point-to-plane gap.

  3. Maximal power at different percentages of one repetition maximum: influence of resistance and gender.

    PubMed

    Thomas, Gwendolyn A; Kraemer, William J; Spiering, Barry A; Volek, Jeff S; Anderson, Jeffrey M; Maresh, Carl M

    2007-05-01

    National Collegiate Athletic Association Division I athletes were tested to determine the load at which maximal mechanical output is achieved. Athletes performed power testing at 30, 40, 50, 60, and 70% of individual 1 repetition maximum (1RM) in the squat jump, bench press, and hang pull exercises. Additionally, hang pull power testing was performed using free-form (i.e., barbell) and fixed-form (i.e., Smith machine) techniques. There were differences between genders in optimal power output during the squat jump (30-40% of 1RM for men; 30-50% of 1RM for women) and bench throw (30% of 1RM for men; 30-50% of 1RM for women) exercises. There were no gender or form interactions during the hang pull exercise; maximal power output during the hang pull occurred at 30-60% of 1RM. In conclusion, these results indicate that (a) gender differences exist in the load at which maximal power output occurs during the squat jump and bench throw; and (b) although no gender or form interactions occurred during the hang pull exercise, greater power could be generated during fixed-form exercise. In general, 30% of 1RM will elicit peak power outputs for both genders and all exercises used in this study, allowing this standard percentage to be used as a starting point in order to train maximal mechanical power output capabilities in these lifts in strength trained athletes.

  4. Integrated Pulse Detonation Propulsion and Magnetohydrodynamic Power

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.

    2001-01-01

    The prospects for realizing an integrated pulse detonation propulsion and magnetohydrodynamic (MHD) power system are examined. First, energy requirements for direct detonation initiation of various fuel-oxygen and fuel-air mixtures are deduced from available experimental data and theoretical models. Second, the pumping power requirements for effective chamber scavenging are examined through the introduction of a scavenging ratio parameter and a scavenging efficiency parameter. A series of laboratory experiments were carried out to investigate the basic engineering performance characteristics of a pulse detonation-driven MHD electric power generator. In these experiments, stoichiometric oxy-acetylene mixtures seeded with a cesium hydroxide/methanol spray were detonated at atmospheric pressure in a 1-m-long tube having an i.d. of 2.54 cm. Experiments with a plasma diagnostic channel attached to the end of the tube confirmed the attainment of detonation conditions (p2/p1 approximately 34 and D approximately 2,400 m/sec) and enabled the direct measurement of current density and electrical conductivity (approximately = 6 S/m) behind the detonation wave front, In a second set of experiments, a 30-cm-long continuous electrode Faraday channel, having a height of 2.54 cm and a width of 2 cm, was attached to the end of the tube using an area transition duct. The Faraday channel was inserted in applied magnetic fields of 0.6 and 0.95 T, and the electrodes were connected to an active loading circuit to characterize power extraction dependence on load impedance while also simulating higher effective magnetic induction. The experiments indicated peak power extraction at a load impedance between 5 and 10 Omega. The measured power density was in reasonable agreement with a simple electrodynamic model incorporating a correction for near-electrode potential losses. The time-resolved thrust characteristics of the system were also measured, and it was found that the NM interaction

  5. Integrated Pulse Detonation Propulsion and Magnetohydrodynamic Power

    NASA Technical Reports Server (NTRS)

    Litchford, R. J.; Lyles, Garry M. (Technical Monitor)

    2001-01-01

    The prospects for realizing an integrated pulse detonation propulsion and magnetohydrodynamic (MHD) power system are examined. First, energy requirements for direct detonation initiation of various fuel-oxygen and fuel-air mixtures are deduced from available experimental data and theoretical models. Second, the pumping power requirements for effective chamber scavenging are examined through the introduction of a scavenging ratio parameter and a scavenging efficiency parameter. A series of laboratory experiments were carried out to investigate the basic engineering performance characteristics of a pulse detonation-driven MHD electric power generator. In these experiments, stoichiometric oxy-acetylene mixtures seeded with a cesium hydroxide/methanol spray were detonated at atmospheric pressure in a 1-m-long tube having an i.d. of 2.54 cm. Experiments with a plasma diagnostic channel attached to the end of the tube confirmed the attainment of detonation conditions (p(sub 2)/p(sub 1) approx. 34 and D approx. 2,400 m/sec) and enabled the direct measurement of current density and electrical conductivity (=6 S/m) behind the detonation wave front. In a second set of experiments, a 30-cm-long continuous electrode Faraday channel, having a height of 2.54 cm and a width of 2 cm, was attached to the end of the tube using an area transition duct. The Faraday channel was inserted in applied magnetic fields of 0.6 and 0.95 T. and the electrodes were connected to an active loading circuit to characterize power extraction dependence on load impedance while also simulating higher effective magnetic induction. The experiments indicated peak power extraction at a load impedance between 5 and 10 Ohm. The measured power density was in reasonable agreement with a simple electrodynamic model incorporating a correction for near-electrode potential losses. The time-resolved thrust characteristics of the system were also measured, and it was found that the MHD interaction exerted a

  6. Three-dimensional polymer nanostructures for applications in cell biology generated by high-repetition rate sub-15 fs near-infrared laser pulses

    NASA Astrophysics Data System (ADS)

    Licht, Martin; Straub, Martin; König, Karsten; Afshar, Maziar; Feili, Dara; Seidel, Helmut

    2011-03-01

    In recent years two-photon photopolymerization has emerged as a novel and extremely powerful technique of three-dimensional nanostructure formation. Complex-shaped structures can be generated using appropriate beam steering or nanopositioning systems. Here, we report on the fabrication of three-dimensional arrangements made of biocompatible polymer material, which can be used as templates for cell growth. Using three-dimensional cell cages as cell culture substrates is advantageous, as cells may develop in a more natural environment as compared to conventional planar growth methods. The two-photon fabrication experiments were carried out on a commercial microscope setup. Sub-15 fs pulsed Ti:Sapphire laser light (centre wavelength 800 nm, bandwidth 120 nm, repetition rate 85 MHz) was focused into the polymer material by a high-numerical aperture oil immersion objective. Due to the high peak intensities picojoule pulse energies in the focal spot are sufficient to polymerize the material at sub-100 nm structural element dimensions. Therefore, cell cages of sophisticated architecture can be constructed involving very fine features which take into account the specific needs of various types of cells. Ultimately, our research aims at three-dimensional assemblies of photopolymerized structural elements involving sub-100 nm features, which provide cell culture substrates far superior to those currently existing.

  7. Pulse transmission transceiver architecture for low power communications

    DOEpatents

    Dress, Jr., William B.; Smith, Stephen F.

    2003-08-05

    Systems and methods for pulse-transmission low-power communication modes are disclosed. A method of pulse transmission communications includes: generating a modulated pulse signal waveform; transforming said modulated pulse signal waveform into at least one higher-order derivative waveform; and transmitting said at least one higher-order derivative waveform as an emitted pulse. The systems and methods significantly reduce lower-frequency emissions from pulse transmission spread-spectrum communication modes, which reduces potentially harmful interference to existing radio frequency services and users and also simultaneously permit transmission of multiple data bits by utilizing specific pulse shapes.

  8. Measurement of repetitive surface displacement modulation induced by illuminating femto-second laser pulses

    NASA Astrophysics Data System (ADS)

    Tozawa, Ryoma; Barada, Daisuke; Kawata, Shigeo

    2015-09-01

    In this study, a light-driven deformable mirror is fabricated by electron beam lithography. The mirror is consisted of a deformation layer and a micromirror array. The deformation layer is made of an azobenzene polymer and the micromirro array is deposited on the deformation layer. The deformation of azobenzene polymer is induced by illuminating a continuum wave beam or femto-second pulse laser beam. Then, the micromirror is displaced. The displacement modulation is experimentally confirmed by interference measurement.

  9. An all solid state pulse power source for high PRF induction accelerators

    SciTech Connect

    Kirbie, H., LLNL

    1998-06-01

    Researchers at the Lawrence Livermore National Laboratory (LLNL) are developing a flexible, all solid-state pulsed power source that will enable an induction accelerator to produce mulitkiloampere electron beams at a maximum pulse repetition frequency (prf) of 2 MHz. The prototype source consists of three, 15-kV, 4.8-kA solid-state modulators stacked in an induction adder configuration. Each modulator contains over 1300 field-effect transistors (FETs) that quickly connect and disconnect four banks of energy storage capacitors to a magnetic induction core. The FETs are commanded on and off by an optical signal that determines the duration of the accelerating pulse. Further electronic circuitry is provided that resets the magnetic cores in each modulator immediately after the accelerating pulse. The system produces bursts of five or more pulses with an adjustable pulse width that ranges from 200 ns to 2 {micro}s The pulse duty factor within a burst can be as high as 25% while still allowing time for the induction core to reset. The solid-state modulator described above is called ARM-II and is named for the Advanced Radiographic Machine (ARM)-a powerful radiographic accelerator that will be the principal diagnostic device for the future Advanced Hydrotest Facility (AHF).

  10. Pulsed Yb:fiber system capable of >250kW peak power with tunable pulses in the 50ps to 1.5ns range

    NASA Astrophysics Data System (ADS)

    McComb, Timothy S.; Lowder, Tyson L.; Leadbetter, Vickie; Reynolds, Mitch; Saracco, Matthieu J.; Hutchinson, Joel; Green, Jared; McCal, Dennis; Burkholder, Gary; Kutscha, Tim; Dittli, Adam; Hamilton, Chuck; Kliner, Dahv A. V.; Randall, Matthew; Fanning, Geoff; Bell, Jake

    2013-03-01

    We have demonstrated a pulsed 1064 nm PM Yb:fiber laser system incorporating a seed source with a tunable pulse repetition rate and pulse duration and a multistage fiber amplifier, ending in a large core (>650 μm2 mode field area), tapered fiber amplifier. The amplifier chain is all-fiber, with the exception of the final amplifier's pump combiner, allowing robust, compact packaging. The air-cooled laser system is rated for >60 W of average power and beam quality of M2 < 1.3 at repetition rates below 100 kHz to 10's of MHz, with pulses discretely tunable over a range spanning 50 ps to greater than 1.5 ns. Maximum pulse energies, limited by the onset of self phase modulation and stimulated Raman scattering, are greater than 12.5 μJ at 50 ps and 375 μJ at 1.5 ns , corresponding to >250 kW peak power across the pulse tuning range. We present frequency conversion to 532 nm with efficiency greater than 70% and conversion to UV via frequency tripling, with initial feasibility experiments showing >30% UV conversion efficiency. Application results of the laser in scribing, thin film removal and micro-machining will be discussed.

  11. A reliable, compact, and repetitive-rate high power microwave generation system

    SciTech Connect

    Li, Wei; Li, Zhi-qiang; Sun, Xiao-liang; Zhang, Jun

    2015-11-15

    A compact high power microwave (HPM) generation system is described in this paper. The main parts of the HPM system are a Marx generator with a pulse forming line and a magnetron with diffraction output. The total weight and length of the system are 250 kg and 120 cm, respectively. The output microwave power of the HPM system at 550 kV of applied voltage and 0.33 T of magnetic field reaches 1 GW at 2.32 GHz of central frequency with 38 ns of pulse duration, 23% of power conversion efficiency, and Gaussian radiation pattern. In the bursts operation, both time and amplitude jitters are less than 4 ns and lower than 1.5 dB, respectively.

  12. Enhanced multi-colour gating for the generation of high-power isolated attosecond pulses

    PubMed Central

    Haessler, S.; Balčiūnas, T.; Fan, G.; Chipperfield, L. E.; Baltuška, A.

    2015-01-01

    Isolated attosecond pulses (IAP) generated by high-order harmonic generation are valuable tools that enable dynamics to be studied on the attosecond time scale. The applicability of these IAP would be widened drastically by increasing their energy. Here we analyze the potential of using multi-colour driving pulses for temporally gating the attosecond pulse generation process. We devise how this approach can enable the generation of IAP with the available high-energy kHz-repetition-rate Ytterbium-based laser amplifiers (delivering 180-fs, 1030-nm pulses). We show theoretically that this requires a three-colour field composed of the fundamental and its second harmonic as well as a lower-frequency auxiliary component. We present pulse characterization measurements of such auxiliary pulses generated directly by white-light seeded OPA with the required significantly shorter pulse duration than that of the fundamental. This, combined with our recent experimental results on three-colour waveform synthesis, proves that the theoretically considered multi-colour drivers for IAP generation can be realized with existing high-power laser technology. The high-energy driver pulses, combined with the strongly enhanced single-atom-level conversion efficiency we observe in our calculations, thus make multi-colour drivers prime candidates for the development of unprecedented high-energy IAP sources in the near future. PMID:25997917

  13. Complete anisotropic time-dependent heat equation in KTP crystal under repetitively pulsed Gaussian beams: a numerical approach.

    PubMed

    Rezaee, Mostafa Mohammad; Sabaeian, Mohammad; Motazedian, Alireza; Jalil-Abadi, Fatemeh Sedaghat; Khaldi-Nasab, Ali

    2015-02-20

    In this work, a thorough and detailed solution for the time-dependent heat equation for a cylindrical nonlinear potassium titanyl phosphate (KTP) crystal under a repetitively pulsed pumping source is developed. The convection and radiation boundary conditions, which are usually ignored in the literature, have been taken into account, and their importance on the temperature distribution has been discussed in detail. Moreover, the temperature dependence of thermal conductivity of KTP was considered in the calculations, and its impact is discussed. It is shown that the radiation term has a negligible effect and can be dropped safely, while the temperature dependence of thermal conductivity is more influential, such that ignorance of it brings some errors into the modeling. The time evolution of the temperature while the crystal is pumping with a train of successive Gaussian pulses until reaching equilibrium is shown. To accomplish numerical calculations, we developed a homemade code written with the finite difference time domain method in Intel Fortran (ifort) and ran it with the Linux operating system. PMID:25968183

  14. Repetitively pulsed TEA CO2 laser and its application for second harmonic generation in ZnGeP2 crystal

    NASA Astrophysics Data System (ADS)

    Koval'chuk, L. V.; Grezev, A. N.; Niz'ev, V. G.; Yakunin, V. P.; Mezhevov, V. S.; Goryachkin, D. A.; Sergeev, V. V.; Kalintsev, A. G.

    2015-10-01

    Experimental results are presented on the development of a radiation source emitting at a wavelength of 4.775 μm with a pulse energy up to 50 mJ and an average power up to several watts in short pulse trains. A TEA CO2 laser and a nonlinear converter based on a ZnGeP2 crystal, which are specially designed for these experiments, are described. The main limitations of nonlinear conversion and possible ways to overcome these limitations are considered.

  15. Effect of repetitive laser pulses on the electrical conductivity of intervertebral disc tissue

    SciTech Connect

    Omel'chenko, A I; Sobol', E N

    2009-03-31

    The thermomechanical effect of 1.56-{mu}m fibre laser pulses on intervertebral disc cartilage has been studied using ac conductivity measurements with coaxial electrodes integrated with an optical fibre for laser radiation delivery to the tissue. The observed time dependences of tissue conductivity can be interpreted in terms of hydraulic effects and thermomechanical changes in tissue structure. The laserinduced changes in the electrical parameters of the tissue are shown to correlate with the structural changes, which were visualised using shadowgraph imaging. Local ac conductivity measurements in the bulk of tissue can be used to develop a diagnostic/monitoring system for laser regeneration of intervertebral discs. (laser biology and medicine)

  16. Si nanostructures grown by picosecond high repetition rate pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Pervolaraki, M.; Komninou, Ph.; Kioseoglou, J.; Athanasopoulos, G. I.; Giapintzakis, J.

    2013-08-01

    One-step growth of n-doped Si nanostructures by picosecond ultra fast pulsed laser deposition at 1064 nm is reported for the first time. The structure and morphology of the Si nanostructures were characterized by X-ray diffraction, scanning electron microscopy and atomic force microscopy. Transmission electron microscopy studies revealed that the shape of the Si nanostructures depends on the ambient argon pressure. Fibrous networks, cauliflower formations and Si rectangular crystals grew when argon pressure of 300 Pa, 30 Pa and vacuum (10-3 Pa) conditions were used, respectively. In addition, the electrical resistance of the vacuum made material was investigated.

  17. Rapid scanning terahertz time-domain magnetospectroscopy with a table-top repetitive pulsed magnet.

    PubMed

    Noe, G Timothy; Zhang, Qi; Lee, Joseph; Kato, Eiji; Woods, Gary L; Nojiri, Hiroyuki; Kono, Junichiro

    2014-09-10

    We have performed terahertz time-domain magnetospectroscopy by combining a rapid scanning terahertz time-domain spectrometer based on the electronically controlled optical sampling method with a table-top minicoil pulsed magnet capable of producing magnetic fields up to 30 T. We demonstrate the capability of this system by measuring coherent cyclotron resonance oscillations in a high-mobility two-dimensional electron gas in GaAs and interference-induced terahertz transmittance modifications in a magnetoplasma in lightly doped n-InSb.

  18. Design of pulsed guiding magnetic field for high power microwave generators

    SciTech Connect

    Ju, J.-C. Zhang, H.; Zhang, J.; Shu, T.; Zhong, H.-H.

    2014-09-15

    In this paper, we present a comprehensive study on designing solenoid together with the corresponding power supply system to excite pulsed magnetic field required for high power microwave generators. Particularly, a solenoid is designed and the excited magnetic field is applied to a Ku-band overmoded Cerenkov generator. It is found in experiment that the electron beam is properly guided by the magnetic field and a 1.1 GW high power microwave is achieved at a central frequency of 13.76 GHz. Pulsed solenoid system has the advantages of compactness and low energy consumption, which are of great interest for repetitive operation. The reported studies and results can be generalized to other applications which require magnetic fields.

  19. Design of pulsed guiding magnetic field for high power microwave generators.

    PubMed

    Ju, J-C; Zhang, H; Zhang, J; Shu, T; Zhong, H-H

    2014-09-01

    In this paper, we present a comprehensive study on designing solenoid together with the corresponding power supply system to excite pulsed magnetic field required for high power microwave generators. Particularly, a solenoid is designed and the excited magnetic field is applied to a Ku-band overmoded Cerenkov generator. It is found in experiment that the electron beam is properly guided by the magnetic field and a 1.1 GW high power microwave is achieved at a central frequency of 13.76 GHz. Pulsed solenoid system has the advantages of compactness and low energy consumption, which are of great interest for repetitive operation. The reported studies and results can be generalized to other applications which require magnetic fields. PMID:25273750

  20. High-average-power operation of a pulsed Raman fiber amplifier at 1686 nm.

    PubMed

    Yao, Weichao; Chen, Bihui; Zhang, Jianing; Zhao, Yongguang; Chen, Hao; Shen, Deyuan

    2015-05-01

    We report on high-average-power operation of a pulsed Raman fiber amplifier at ~1686 nm which cannot be covered by rare-earth-doped fiber lasers. The Raman fiber amplifier was pumped by a home-made 1565.2 nm Q-switched Er,Yb fiber laser and worked at a repetition frequency of 184 kHz. With 0.8 km Raman fiber, 4.4 W of average output power at the 1st order Stokes wavelength of 1686.5 nm was obtained for launched pump power of 16.2 W, corresponding to an optical-to-optical conversion efficiency of 27.2%. Further increasing the pump power, high-order Stokes waves grew gradually, resulting in a total output power of 6.7 W at the 19.2 W launched pump power. PMID:25969195

  1. Effect of the stimulus frequency and pulse number of repetitive transcranial magnetic stimulation on the inter-reversal time of perceptual reversal on the right superior parietal lobule

    NASA Astrophysics Data System (ADS)

    Nojima, Kazuhisa; Ge, Sheng; Katayama, Yoshinori; Ueno, Shoogo; Iramina, Keiji

    2010-05-01

    The aim of this study is to investigate the effect of the stimulus frequency and pulses number of repetitive transcranial magnetic stimulation (rTMS) on the inter-reversal time (IRT) of perceptual reversal on the right superior parietal lobule (SPL). The spinning wheel illusion was used as the ambiguous figures stimulation in this study. To investigate the rTMS effect over the right SPL during perceptual reversal, 0.25 Hz 60 pulse, 1 Hz 60 pulse, 0.5 Hz 120 pulse, 1 Hz 120 pulse, and 1 Hz 240 pulse biphasic rTMS at 90% of resting motor threshold was applied over the right SPL and the right posterior temporal lobe (PTL), respectively. As a control, a no TMS was also conducted. It was found that rTMS on 0.25 Hz 60 pulse and 1 Hz 60 pulse applied over the right SPL caused shorter IRT. In contrast, it was found that rTMS on 1 Hz 240-pulse applied over the right SPL caused longer IRT. On the other hand, there is no significant difference between IRTs when the rTMS on 0.5 Hz 120 pulse and 1 Hz 120 pulse were applied over the right SPL. Therefore, the applying of rTMS over the right SPL suggests that the IRT of perceptual reversal is effected by the rTMS conditions such as the stimulus frequency and the number of pulses.

  2. High-power, high-repetition-rate performance characteristics of β-BaB₂O₄ for single-pass picosecond ultraviolet generation at 266 nm.

    PubMed

    Kumar, S Chaitanya; Casals, J Canals; Wei, Junxiong; Ebrahim-Zadeh, M

    2015-10-19

    We report a systematic study on the performance characteristics of a high-power, high-repetition-rate, picosecond ultraviolet (UV) source at 266 nm based on β-BaB2O4 (BBO). The source, based on single-pass fourth harmonic generation (FHG) of a compact Yb-fiber laser in a two-crystal spatial walk-off compensation scheme, generates up to 2.9 W of average power at 266 nm at a pulse repetition rate of ~80 MHz with a single-pass FHG efficiency of 35% from the green to UV. Detrimental issues such as thermal effects have been studied and confirmed by performing relevant measurements. Angular and temperature acceptance bandwidths in BBO for FHG to 266 nm are experimentally determined, indicating that the effective interaction length is limited by spatial walk-off and thermal gradients under high-power operation. The origin of dynamic color center formation due to two-photon absorption in BBO is investigated by measurements of intensity-dependent transmission at 266 nm. Using a suitable theoretical model, two-photon absorption coefficients as well as the color center densities have been estimated at different temperatures. The measurements show that the two-photon absorption coefficient in BBO at 266 nm is ~3.5 times lower at 200°C compared to that at room temperature. The long-term power stability as well as beam pointing stability is analyzed at different output power levels and focusing conditions. Using cylindrical optics, we have circularized the generated elliptic UV beam to a circularity of >90%. To our knowledge, this is the first time such high average powers and temperature-dependent two-photon absorption measurements at 266 nm are reported at repetition rates as high as ~80 MHz.

  3. High-power, high-repetition-rate performance characteristics of β-BaB₂O₄ for single-pass picosecond ultraviolet generation at 266 nm.

    PubMed

    Kumar, S Chaitanya; Casals, J Canals; Wei, Junxiong; Ebrahim-Zadeh, M

    2015-10-19

    We report a systematic study on the performance characteristics of a high-power, high-repetition-rate, picosecond ultraviolet (UV) source at 266 nm based on β-BaB2O4 (BBO). The source, based on single-pass fourth harmonic generation (FHG) of a compact Yb-fiber laser in a two-crystal spatial walk-off compensation scheme, generates up to 2.9 W of average power at 266 nm at a pulse repetition rate of ~80 MHz with a single-pass FHG efficiency of 35% from the green to UV. Detrimental issues such as thermal effects have been studied and confirmed by performing relevant measurements. Angular and temperature acceptance bandwidths in BBO for FHG to 266 nm are experimentally determined, indicating that the effective interaction length is limited by spatial walk-off and thermal gradients under high-power operation. The origin of dynamic color center formation due to two-photon absorption in BBO is investigated by measurements of intensity-dependent transmission at 266 nm. Using a suitable theoretical model, two-photon absorption coefficients as well as the color center densities have been estimated at different temperatures. The measurements show that the two-photon absorption coefficient in BBO at 266 nm is ~3.5 times lower at 200°C compared to that at room temperature. The long-term power stability as well as beam pointing stability is analyzed at different output power levels and focusing conditions. Using cylindrical optics, we have circularized the generated elliptic UV beam to a circularity of >90%. To our knowledge, this is the first time such high average powers and temperature-dependent two-photon absorption measurements at 266 nm are reported at repetition rates as high as ~80 MHz. PMID:26480467

  4. Analysis and experimental study on formation conditions of large-scale barrier-free diffuse atmospheric pressure air plasmas in repetitive pulse mode

    SciTech Connect

    Li, Lee Liu, Lun; Liu, Yun-Long; Bin, Yu; Ge, Ya-Feng; Lin, Fo-Chang

    2014-01-14

    Atmospheric air diffuse plasmas have enormous application potential in various fields of science and technology. Without dielectric barrier, generating large-scale air diffuse plasmas is always a challenging issue. This paper discusses and analyses the formation mechanism of cold homogenous plasma. It is proposed that generating stable diffuse atmospheric plasmas in open air should meet the three conditions: high transient power with low average power, excitation in low average E-field with locally high E-field region, and multiple overlapping electron avalanches. Accordingly, an experimental configuration of generating large-scale barrier-free diffuse air plasmas is designed. Based on runaway electron theory, a low duty-ratio, high voltage repetitive nanosecond pulse generator is chosen as a discharge excitation source. Using the wire-electrodes with small curvature radius, the gaps with highly non-uniform E-field are structured. Experimental results show that the volume-scaleable, barrier-free, homogeneous air non-thermal plasmas have been obtained between the gap spacing with the copper-wire electrodes. The area of air cold plasmas has been up to hundreds of square centimeters. The proposed formation conditions of large-scale barrier-free diffuse air plasmas are proved to be reasonable and feasible.

  5. Analysis and experimental study on formation conditions of large-scale barrier-free diffuse atmospheric pressure air plasmas in repetitive pulse mode

    NASA Astrophysics Data System (ADS)

    Li, Lee; Liu, Lun; Liu, Yun-Long; Bin, Yu; Ge, Ya-Feng; Lin, Fo-Chang

    2014-01-01

    Atmospheric air diffuse plasmas have enormous application potential in various fields of science and technology. Without dielectric barrier, generating large-scale air diffuse plasmas is always a challenging issue. This paper discusses and analyses the formation mechanism of cold homogenous plasma. It is proposed that generating stable diffuse atmospheric plasmas in open air should meet the three conditions: high transient power with low average power, excitation in low average E-field with locally high E-field region, and multiple overlapping electron avalanches. Accordingly, an experimental configuration of generating large-scale barrier-free diffuse air plasmas is designed. Based on runaway electron theory, a low duty-ratio, high voltage repetitive nanosecond pulse generator is chosen as a discharge excitation source. Using the wire-electrodes with small curvature radius, the gaps with highly non-uniform E-field are structured. Experimental results show that the volume-scaleable, barrier-free, homogeneous air non-thermal plasmas have been obtained between the gap spacing with the copper-wire electrodes. The area of air cold plasmas has been up to hundreds of square centimeters. The proposed formation conditions of large-scale barrier-free diffuse air plasmas are proved to be reasonable and feasible.

  6. Pulse Detonation Rocket MHD Power Experiment

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Cook, Stephen (Technical Monitor)

    2002-01-01

    A pulse detonation research engine (MSFC (Marshall Space Flight Center) Model PDRE (Pulse Detonation Rocket Engine) G-2) has been developed for the purpose of examining integrated propulsion and magnetohydrodynamic power generation applications. The engine is based on a rectangular cross-section tube coupled to a converging-diverging nozzle, which is in turn attached to a segmented Faraday channel. As part of the shakedown testing activity, the pressure wave was interrogated along the length of the engine while running on hydrogen/oxygen propellants. Rapid transition to detonation wave propagation was insured through the use of a short Schelkin spiral near the head of the engine. The measured detonation wave velocities were in excess of 2500 m/s in agreement with the theoretical C-J velocity. The engine was first tested in a straight tube configuration without a nozzle, and the time resolved thrust was measured simultaneously with the head-end pressure. Similar measurements were made with the converging-diverging nozzle attached. The time correlation of the thrust and head-end pressure data was found to be excellent. The major purpose of the converging-diverging nozzle was to configure the engine for driving an MHD generator for the direct production of electrical power. Additional tests were therefore necessary in which seed (cesium-hydroxide dissolved in methanol) was directly injected into the engine as a spray. The exhaust plume was then interrogated with a microwave interferometer in an attempt to characterize the plasma conditions, and emission spectroscopy measurements were also acquired. Data reduction efforts indicate that the plasma exhaust is very highly ionized, although there is some uncertainty at this time as to the relative abundance of negative OH ions. The emission spectroscopy data provided some indication of the species in the exhaust as well as a measurement of temperature. A 24-electrode-pair segmented Faraday channel and 0.6 Tesla permanent

  7. Reliability of the one-repetition-maximum power clean test in adolescent athletes.

    PubMed

    Faigenbaum, Avery D; McFarland, James E; Herman, Robert E; Naclerio, Fernando; Ratamess, Nicholas A; Kang, Jie; Myer, Gregory D

    2012-02-01

    Although the power clean test is routinely used to assess strength and power performance in adult athletes, the reliability of this measure in younger populations has not been examined. Therefore, the purpose of this study was to determine the reliability of the 1-repetition maximum (1RM) power clean in adolescent athletes. Thirty-six male athletes (age 15.9 ± 1.1 years, body mass 79.1 ± 20.3 kg, height 175.1 ±7.4 cm) who had >1 year of training experience in weightlifting exercises performed a 1RM power clean on 2 nonconsecutive days in the afternoon following standardized procedures. All test procedures were supervised by a senior level weightlifting coach and consisted of a systematic progression in test load until the maximum resistance that could be lifted for 1 repetition using proper exercise technique was determined. Data were analyzed using an intraclass correlation coefficient (ICC[2,k]), Pearson correlation coefficient (r), repeated measures analysis of variance, Bland-Altman plot, and typical error analyses. Analysis of the data revealed that the test measures were highly reliable demonstrating a test-retest ICC of 0.98 (95% confidence interval = 0.96-0.99). Testing also demonstrated a strong relationship between 1RM measures in trials 1 and 2 (r = 0.98, p < 0.0001) with no significant difference in power clean performance between trials (70.6 ± 19.8 vs. 69.8 ± 19.8 kg). Bland-Altman plots confirmed no systematic shift in 1RM between trials 1 and 2. The typical error to be expected between 1RM power clean trials is 2.9 kg, and a change of at least 8.0 kg is indicated to determine a real change in lifting performance between tests in young lifters. No injuries occurred during the study period, and the testing protocol was well tolerated by all the subjects. These findings indicate that 1RM power clean testing has a high degree of reproducibility in trained male adolescent athletes when standardized testing procedures are followed and qualified

  8. Microsecond gain-switched master oscillator power amplifier (1958 nm) with high pulse energy

    SciTech Connect

    Ke Yin; Weiqiang Yang; Bin Zhang; Ying Li; Jing Hou

    2014-02-28

    An all-fibre master oscillator power amplifier (MOPA) emitting high-energy pulses at 1958 nm is presented. The seed laser is a microsecond gain-switched thulium-doped fibre laser (TDFL) pumped with a commercial 1550-nm pulsed fibre laser. The TDFL operates at a repetition rate f in the range of 10 to 100 kHz. The two-stage thulium-doped fibre amplifier is built to scale the energy of the pulses generated by the seed laser. The maximum output pulse energy higher than 0.5 mJ at 10 kHz is achieved which is comparable with the theoretical maximum extractable pulse energy. The slope efficiency of the second stage amplifier with respect to the pump power is 30.4% at f = 10 kHz. The wavelength of the output pulse laser is centred near 1958 nm at a spectral width of 0.25 nm after amplification. Neither nonlinear effects nor significant amplified spontaneous emission (ASE) is observed in the amplification experiments. (lasers)

  9. Effect of laser annealing using high repetition rate pulsed laser on optical properties of phosphorus-ion-implanted ZnO nanorods

    NASA Astrophysics Data System (ADS)

    Shimogaki, Tetsuya; Ofuji, Taihei; Tetsuyama, Norihiro; Okazaki, Kota; Higashihata, Mitsuhiro; Nakamura, Daisuke; Ikenoue, Hiroshi; Asano, Tanemasa; Okada, Tatsuo

    2013-03-01

    The effect of high repetition rate pulsed laser annealing with a KrF excimer laser on the optical properties of phosphorus-ion-implanted zinc oxide nanorods has been investigated. The recovery levels of phosphorus-ion-implanted zinc oxide nanorods have been measured by photoluminescence spectra and cathode luminescence images. Cathode luminescence disappeared over 300 nm below the surface due to the damage caused by ion implantation with an acceleration voltage of 25 kV. When the annealing was performed at a low repetition rate of the KrF excimer laser, cathode luminescence was recovered only in a shallow area below the surface. The depth of the annealed area was increased along with the repetition rate of the annealing laser. By optimizing the annealing conditions such as the repetition rate, the irradiation fluence and so on, we have succeeded in annealing the whole damaged area of over 300 nm in depth and in observing cathode luminescence. Thus, the effectiveness of high repetition rate pulsed laser annealing on phosphorus-ion-implanted zinc oxide nanorods was demonstrated.

  10. Effect of laser annealing using high repetition rate pulsed laser on optical properties of phosphorus-ion-implanted ZnO nanorods

    NASA Astrophysics Data System (ADS)

    Shimogaki, Tetsuya; Ofuji, Taihei; Tetsuyama, Norihiro; Okazaki, Kota; Higashihata, Mitsuhiro; Nakamura, Daisuke; Ikenoue, Hiroshi; Asano, Tanemasa; Okada, Tatsuo

    2014-02-01

    The effect of high repetition rate pulsed laser annealing with a KrF excimer laser on the optical properties of phosphorus-ion-implanted zinc oxide nanorods has been investigated. The recovery levels of phosphorus-ion-implanted zinc oxide nanorods have been measured by photoluminescence spectra and cathode luminescence images. Cathode luminescence disappeared over 300 nm below the surface due to the damage caused by ion implantation with an acceleration voltage of 25 kV. When the annealing was performed at a low repetition rate of the KrF excimer laser, cathode luminescence was recovered only in a shallow area below the surface. The depth of the annealed area was increased along with the repetition rate of the annealing laser. By optimizing the annealing conditions such as the repetition rate, the irradiation fluence and so on, we have succeeded in annealing the whole damaged area of over 300 nm in depth and in observing cathode luminescence. Thus, the effectiveness of high repetition rate pulsed laser annealing on phosphorus-ion-implanted zinc oxide nanorods was demonstrated.

  11. High-power high-repetition-rate copper-vapor-pumped dye laser

    SciTech Connect

    Singh, S.; Dasgupta, K.; Kumar, S.; Manohar, K.G.; Nair, L.G.; Chatterjee, U.K. . Laser and Plasma Technology Div.)

    1994-06-01

    The design and development of an efficient high average power dye laser oscillator-amplifier system developed at the Laser and Plasma Technology Division, Bhabha Atomic Research Centre, is reported. The dye laser is pumped by a 6.5-kHz repetition rate copper vapor laser. The signal beam to the dye amplifier is obtained from an efficient narrow-band grazing incidence grating (GIG) dye laser oscillator incorporating a multiple prism beam expander. Amplifier extraction efficiency up to 40% was obtained in a single amplifier stage, using rhodamine 6G (Rh6G) in ethanol. The authors have also demonstrated simultaneous amplification of two laser beams at different wavelengths in the same dye amplifier cell.

  12. Conversion of CH4 /CO2 by a nanosecond repetitively pulsed discharge

    NASA Astrophysics Data System (ADS)

    Scapinello, M.; Martini, L. M.; Dilecce, G.; Tosi, P.

    2016-02-01

    A possible way to store both renewable energy and CO2 in chemical energy is to produce value-added chemicals and fuels starting from CO2 and green electricity. This can be done by exploiting the non-equilibrium properties of gaseous electrical discharges. Discharges, in addition, can be switched on and off quickly, thus being suitable to be coupled with an intermittent energy source. In this study, we have used a nanosecond pulsed discharge to dissociate CO2 and CH4 in a 1:1 mixture at atmospheric pressure, and compared our results with literature data obtained by other discharges. The main products are CO, H2, C2H2, water and solid carbon. We estimate an energy efficiency of 40% for syngas (CO and H2) production, higher if other products are also considered. Such values are among the highest compared to other discharges, and, although not very high on an absolute scale, are likely improvable via possible routes discussed in the paper and by coupling to the discharge a heterogeneous catalysis stage.

  13. Beams 92: Proceedings. Volume 1: Invited papers, pulsed power

    SciTech Connect

    Mosher, D.; Cooperstein, G.

    1993-12-31

    This report contains papers on the following topics: Ion beam papers; electron beam, bremsstrahlung, and diagnostics papers; radiating Z- pinch papers; microwave papers; electron laser papers; advanced accelerator papers; beam and pulsed power applications papers; pulsed power papers; and these papers have been indexed separately elsewhere.

  14. Design and testing of 45 kV, 50 kHz pulse power supply for dielectric barrier discharges

    NASA Astrophysics Data System (ADS)

    Sharma, Surender Kumar; Shyam, Anurag

    2016-10-01

    The design, construction, and testing of high frequency, high voltage pulse power supply are reported. The purpose of the power supply is to generate dielectric barrier discharges for industrial applications. The power supply is compact and has the advantage of low cost, over current protection, and convenient control for voltage and frequency selection. The power supply can generate high voltage pulses of up to 45 kV at the repetitive frequency range of 1 kHz-50 kHz with 1.2 kW input power. The output current of the power supply is limited to 500 mA. The pulse rise time and fall time are less than 2 μs and the pulse width is 2 μs. The power supply is short circuit proof and can withstand variable plasma load conditions. The power supply mainly consists of a half bridge series resonant converter to charge an intermediate capacitor, which discharges through a step-up transformer at high frequency to generate high voltage pulses. Semiconductor switches and amorphous cores are used for power modulation at higher frequencies. The power supply is tested with quartz tube dielectric barrier discharge load and worked stably. The design details and the performance of the power supply on no load and dielectric barrier discharge load are presented.

  15. The Ranchero explosive pulsed power system

    SciTech Connect

    Goforth, J.H.; Atchison, W.L.; Bartram, D.E.

    1997-09-01

    The authors are currently developing a high explosive pulsed power system concept that they call Ranchero. Ranchero systems consist of series-parallel combinations of simultaneously initiated coaxial magnetic flux compression generators, and are intended to operate in the range from 50 MA to a few hundred MA currents. One example of a Ranchero system is shown here. The coaxial modules lend themselves to extracting the current output either from one end or along the generator midplane. They have previously published design considerations related to the different module configurations, and in this paper they concentrate on the system that they will use for their first imploding liner tests. A single module with end output. The module is 1.4-m long and expands the armature by a factor of two to reach the 30-cm OD stator. The first heavy liner implosion experiments will be conducted in the range of 40--50 MA currents. Electrical tests, to date, have employed high explosive (HE) charges 43-cm long. They have performed tests and related 1D MHD calculations at the 45-MA current level with small loads. From these results, they determine that they can deliver currents of approximately 50 MA to loads of 8 nH.

  16. High power linear pulsed beam annealer

    DOEpatents

    Strathman, Michael D.; Sadana, Devendra K.; True, Richard B.

    1983-01-01

    A high power pulsed electron beam is produced in a system comprised of an electron gun having a heated cathode, control grid, focus ring, and a curved drift tube. The drift tube is maintained at a high positive voltage with respect to the cathode to accelerate electrons passing through the focus ring and to thereby eliminate space charge. A coil surrounding the curved drift tube provides a magnetic field which maintains the electron beam focused about the axis of the tube and imparts motion on electrons in a spiral path for shallow penetration of the electrons into a target. The curvature of the tube is selected so there is no line of sight between the cathode and a target holder positioned within a second drift tube spaced coaxially from the curved tube. The second tube and the target holder are maintained at a reference voltage that decelerates the electrons. A second coil surrounding the second drift tube maintains the electron beam focused about the axis of the second drift tube and compresses the electron beam to the area of the target. The target holder can be adjusted to position the target where the cross section of the beam matches the area of the target.

  17. Power enhancement of burst-mode UV pulses using a doubly-resonant optical cavity

    SciTech Connect

    Rahkman, Abdurahim; Notcutt, Mark; Liu, Yun

    2015-11-24

    We report a doubly-resonant enhancement cavity (DREC) that can realize a simultaneous enhancement of two incoming laser beams at different wavelengths and different temporal structures. The double-resonance condition is theoretically analyzed and different DREC locking methods are experimentally investigated. Simultaneous locking of a Fabry-Perot cavity to both an infrared (IR, 1064 nm) and its frequency tripled ultraviolet (UV, 355 nm) pulses has been demonstrated by controlling the frequency difference between the two beams with a fiber optic frequency shifter. The DREC technique opens a new paradigm in the applications of optical cavities to power enhancement of burst-mode lasers with arbitrary macropulse width and repetition rate.

  18. Power enhancement of burst-mode ultraviolet pulses using a doubly resonant optical cavity.

    PubMed

    Rakhman, Abdurahim; Notcutt, Mark; Liu, Yun

    2015-12-01

    We report a doubly resonant enhancement cavity (DREC) that can realize a simultaneous enhancement of two incoming laser beams at different wavelengths and different temporal structures. The double-resonance condition is theoretically analyzed, and different DREC locking methods are experimentally investigated. Simultaneous locking of a Fabry-Perot cavity to both an infrared (1064 nm) and its frequency-tripled ultraviolet (355 nm) pulses has been demonstrated by controlling the frequency difference between the two beams with a fiber-optic frequency shifter. The DREC technique enables novel applications of optical cavities to power enhancement of burst-mode lasers with arbitrary macropulse width and repetition rate. PMID:26625051

  19. Laser ablation efficiency during the production of Ag nanoparticles in ethanol at a low pulse repetition rate (1-10 Hz)

    NASA Astrophysics Data System (ADS)

    Valverde-Alva, M. A.; García-Fernández, T.; Esparza-Alegría, E.; Villagrán-Muniz, M.; Sánchez-Aké, C.; Castañeda-Guzmán, R.; de la Mora, M. B.; Márquez-Herrera, C. E.; Sánchez Llamazares, J. L.

    2016-10-01

    We studied the effect of the repetition rate of laser pulses (RRLP) in the range from 1-10 Hz in the production of silver nanoparticles (Ag-NPs) by laser ablation in ethanol. Laser pulses with a duration of 7 ns, a wavelength of 1064 nm and an energy of 60 mJ were used to ablate a 99.99% pure silver target immersed in 10 ml of ethanol. Transmittance analysis and atomic absorption spectroscopy were used to study the silver concentration in the colloidal solutions. The ablation process was studied by measuring the transmission of the laser pulses through the colloid. It is shown that for a fixed number of laser pulses (NLP) the ablation efficiency, in terms of the ablated silver mass per laser pulse, increases with the RRLP. This result contradicts what had previously been established in the literature.

  20. IBEX - a pulsed power accelerator that generates no prepulse

    SciTech Connect

    Ramirez, J.J.; Corley, J.P.; Mazarakis, M.G.

    1983-01-01

    Intense relativistic electron beams are produced in vacuum diodes driven by pulsed power accelerators. For pulse widths approx. 100 nsec, pulse forming lines (PPL) are used to generate the accelerating voltage pulse. This pulse is produced by sequential switching of stored energy through two or more stages. Capacitance and/or inductive coupling usually results in the generation of a low level prepulse voltage some time during the switching sequence. This prepulse is known to have a substantial effect on the performance of the vacuum diode during the main accelerating pulse. Most accelerators use various schemes for reducing this prepulse to acceptable levels. The Isolated Blumlein PPL concept was developed at Sandia to allow for the generation of the main accelerating pulse without generating a prepulse voltage. This concept was implemented into the IBEX accelerator that generates a 4 MV, 100 kA, 20 nsec output pulse. Design and performance data are presented.

  1. Note: All solid-state high repetitive sub-nanosecond risetime pulse generator based on bulk gallium arsenide avalanche semiconductor switches.

    PubMed

    Hu, Long; Su, Jiancang; Ding, Zhenjie; Hao, Qingsong; Fan, Yajun; Liu, Chunliang

    2016-08-01

    An all solid-state high repetitive sub-nanosecond risetime pulse generator featuring low-energy-triggered bulk gallium arsenide (GaAs) avalanche semiconductor switches and a step-type transmission line is presented. The step-type transmission line with two stages is charged to a potential of 5.0 kV also biasing at the switches. The bulk GaAs avalanche semiconductor switch closes within sub-nanosecond range when illuminated with approximately 87 nJ of laser energy at 905 nm in a single pulse. An asymmetric dipolar pulse with peak-to-peak amplitude of 9.6 kV and risetime of 0.65 ns is produced on a resistive load of 50 Ω. A technique that allows for repetition-rate multiplication of pulse trains experimentally demonstrated that the parallel-connected bulk GaAs avalanche semiconductor switches are triggered in sequence. The highest repetition rate is decided by recovery time of the bulk GaAs avalanche semiconductor switch, and the operating result of 100 kHz of the generator is discussed. PMID:27587178

  2. Note: All solid-state high repetitive sub-nanosecond risetime pulse generator based on bulk gallium arsenide avalanche semiconductor switches.

    PubMed

    Hu, Long; Su, Jiancang; Ding, Zhenjie; Hao, Qingsong; Fan, Yajun; Liu, Chunliang

    2016-08-01

    An all solid-state high repetitive sub-nanosecond risetime pulse generator featuring low-energy-triggered bulk gallium arsenide (GaAs) avalanche semiconductor switches and a step-type transmission line is presented. The step-type transmission line with two stages is charged to a potential of 5.0 kV also biasing at the switches. The bulk GaAs avalanche semiconductor switch closes within sub-nanosecond range when illuminated with approximately 87 nJ of laser energy at 905 nm in a single pulse. An asymmetric dipolar pulse with peak-to-peak amplitude of 9.6 kV and risetime of 0.65 ns is produced on a resistive load of 50 Ω. A technique that allows for repetition-rate multiplication of pulse trains experimentally demonstrated that the parallel-connected bulk GaAs avalanche semiconductor switches are triggered in sequence. The highest repetition rate is decided by recovery time of the bulk GaAs avalanche semiconductor switch, and the operating result of 100 kHz of the generator is discussed.

  3. Note: All solid-state high repetitive sub-nanosecond risetime pulse generator based on bulk gallium arsenide avalanche semiconductor switches

    NASA Astrophysics Data System (ADS)

    Hu, Long; Su, Jiancang; Ding, Zhenjie; Hao, Qingsong; Fan, Yajun; Liu, Chunliang

    2016-08-01

    An all solid-state high repetitive sub-nanosecond risetime pulse generator featuring low-energy-triggered bulk gallium arsenide (GaAs) avalanche semiconductor switches and a step-type transmission line is presented. The step-type transmission line with two stages is charged to a potential of 5.0 kV also biasing at the switches. The bulk GaAs avalanche semiconductor switch closes within sub-nanosecond range when illuminated with approximately 87 nJ of laser energy at 905 nm in a single pulse. An asymmetric dipolar pulse with peak-to-peak amplitude of 9.6 kV and risetime of 0.65 ns is produced on a resistive load of 50 Ω. A technique that allows for repetition-rate multiplication of pulse trains experimentally demonstrated that the parallel-connected bulk GaAs avalanche semiconductor switches are triggered in sequence. The highest repetition rate is decided by recovery time of the bulk GaAs avalanche semiconductor switch, and the operating result of 100 kHz of the generator is discussed.

  4. Temporal pulse compression in a xenon-filled Kagome-type hollow-core photonic crystal fiber at high average power.

    PubMed

    Heckl, O H; Saraceno, C J; Baer, C R E; Südmeyer, T; Wang, Y Y; Cheng, Y; Benabid, F; Keller, U

    2011-09-26

    In this study we demonstrate the suitability of Hollow-Core Photonic Crystal Fibers (HC-PCF) for multiwatt average power pulse compression. We spectrally broadened picosecond pulses from a SESAM mode-locked thin disk laser in a xenon gas filled Kagome-type HC-PCF and compressed these pulses to below 250 fs with a hypocycloid-core fiber and 470 fs with a single cell core defect fiber. The compressed average output power of 7.2 W and 10.2 W at a pulse repetition rate of approximately 10 MHz corresponds to pulse energies of 0.7 µJ and 1 µJ and to peak powers of 1.6 MW and 1.7 MW, respectively. Further optimization of the fiber parameters should enable pulse compression to below 50 fs duration at substantially higher pulse energies.

  5. Reaching white-light radiation source of ultrafast laser pulses with tunable peak power using nonlinear self-phase modulation in neon gas

    NASA Astrophysics Data System (ADS)

    Tawfik, Walid

    2016-08-01

    A source of white-light radiation that generates few-cycle pulses with controlled peak power values has been developed. These ultrafast pulses have been observed by spectral broadening of 32 fs pulses through nonlinear self-phase modulation in a neon-filled hollow-fiber then compressed with a pair of chirped mirrors for dispersion compensation. The observed pulses reached transform-limited duration of 5.77 fs and their peak power values varied from 57 GW up to 104 GW at repetition rate of 1 kHz. Moreover, the applied method is used for a direct tuning of the peak power of the output pulses through varying the chirping of the input pulses at different neon pressures. The observed results may give an opportunity to control the ultrafast interaction dynamics on the femtosecond time scale and facilitate the regeneration of attosecond pulses.

  6. High-power, high-repetition-rate mid-infrared generation with PE-SRO based on a fan-out periodically poled MgO-doped lithium niobate

    NASA Astrophysics Data System (ADS)

    Xiong, Bo; Ma, Jian-Li; Chen, Ran; Wang, Bao-Hua; Cui, Qian-Jin; Zhang, Ling; Guo, Lin; Hou, Wei; Lin, Xue-Chun; Li, Jin-Min

    2011-03-01

    We present a high-average-power, pulsed mid-infrared pump-enhanced singly-resonant optical parametric oscillator (PE-SRO) using a fan-out periodically poled MgO-doped lithium niobate (MgO:PPLN). The pump laser is a Q-switched Nd:YAG laser with a repetition rate of 10 kHz. When the pump power was 22.0 W, a maximum idler output power of 3.4 W at 3781.4 nm was obtained. The thermal guiding effect caused by signal absorption was observed and the crystal heating power was measured with a new method.

  7. Present and Future of Semiconductor Pulsed Power Generator ˜Role of Power Semiconductor Devices in Plasma Research˜ 6.High-Speed, Large-Current Power Semiconductors for Pulse Power Generation

    NASA Astrophysics Data System (ADS)

    Takata, Ikunori

    This paper describes the operation principles and limits of power semiconductors. In addition, operation mechanisms of the new pulse power devices, SOS (Semiconductor Opening Switch) and dynistors, are explained qualitatively. The fastest operating power device is the series connection of comparatively low-voltage devices. For large-current operation, a uniformly operating pin-diode structure device is essential. An SOS is constructed from dozens of medium voltage (about 3kV) special hard-recovery diodes. This can shut off 2kA current at 10kV with in 10ns. The dynistor has n+pnp+ four layers and two electrodes. Serial-connected dynistors have the potential to replace thyratrons. These new devices can endure over 10 kA/cm2 at much higher voltage than their static breakdown values in the repetitive use more than 1011 times.

  8. Progress of high average power, short-pulse laser technology for the Compton X-ray source

    NASA Astrophysics Data System (ADS)

    Endo, Akira; Sakaue, Kazuyuki; Washio, Masakazu

    2011-05-01

    Recent progress is reported in the development of high average power, short-pulse laser technology, which is relevant toward achieving a high X-ray flux in a Compton X-ray source for use in various applications. The Yb-based laser material is suitable for high-pulse energy in a picosecond pulse length. The thin disc amplifier technology is now close to operating continuously with 1 J, 2 ps, at a 100 Hz repetition rate with a multi-pass amplification scheme. The average power is 100 W at a 1030 nm wavelength. The laser beam quality is fine enough to focus on the bunched electron beam from a photocathode/S-band linac single-pass accelerator and to generate an X-ray flux of 109 photons/s at 100 Hz. The short-pulse carbon dioxide (CO2) laser has an advantage for a Compton X-ray source in high X-ray flux applications. The short-pulse amplification of the CO2 laser pulse has been demonstrated, at a power level of more than 10 kW at a 100 kHz repetition rate in a single laser beam, for application in the plasma generation for an extreme ultraviolet light source, using a commercially available RF-pumped laser module. The pulse length is now limited to around 1 ns because of the bandwidth of the low-pressure gain medium. The additional pulse compression scheme makes a high average power, pulsed CO2 laser ideal for various applications of the Compton X-ray source.

  9. Plasma Switch for High-Power Active Pulse Compressor

    SciTech Connect

    Hirshfield, Jay L.

    2013-11-04

    Results are presented from experiments carried out at the Naval Research Laboratory X-band magnicon facility on a two-channel X-band active RF pulse compressor that employed plasma switches. Experimental evidence is shown to validate the basic goals of the project, which include: simultaneous firing of plasma switches in both channels of the RF circuit, operation of quasi-optical 3-dB hybrid directional coupler coherent superposition of RF compressed pulses from both channels, and operation of the X-band magnicon directly in the RF pulse compressor. For incident 1.2 ?s pulses in the range 0.63 ? 1.35 MW, compressed pulses of peak powers 5.7 ? 11.3 MW were obtained, corresponding to peak power gain ratios of 8.3 ? 9.3. Insufficient bakeout and conditioning of the high-power RF circuit prevented experiments from being conducted at higher RF input power levels.

  10. Multirail electromagnetic launcher powered from a pulsed magnetohydrodynamic generator

    NASA Astrophysics Data System (ADS)

    Afonin, A. G.; Butov, V. G.; Panchenko, V. P.; Sinyaev, S. V.; Solonenko, V. A.; Shvetsov, G. A.; Yakushev, A. A.

    2015-09-01

    The operation of an electromagnetic multirail launcher of solids powered from a pulsed magnetohydrodynamic (MHD) generator is studied. The plasma flow in the channel of the pulsed MHD generator and the possibility of launching solids in a rapid-fire mode of launcher operation are considered. It is shown that this mode of launcher operation can be implemented by matching the plasma flow dynamics in the channel of the pulsed MHD generator and the launching conditions. It is also shown that powerful pulsed MHD generators can be used as a source of electrical energy for rapid-fire electromagnetic rail launchers operating in a burst mode.

  11. The e-SCRUB Machine: an 800-kV, 500-kW average power pulsed electron beam generator for flue-gas scrubbing

    NASA Astrophysics Data System (ADS)

    Cooper, James R.; Briggs, Ray; Crewson, Walter F.; Johnson, R. D.; Ratafia-Brown, J. A.; Richardson, W. K.; Rienstra, W. W.; Ballard, Perry G.; Cukr, Jeffrey; Cassel, R. L.; Schlitt, Leland; Genuario, R. D.; Morgan, R. D.; Tripoli, G. A.

    1995-03-01

    This paper gives an overview of electron beam dry scrubbing (EBDS) to remove SOx and NOx from flue gases of coal-fired power plants. It also describes the e-SCRUB program, a program currently underway to commercialize this process with an integrated pulsed electron beam. The electron beam, together with injected water and ammonia, causes chemical reactions which convert the SOx and NOx into commercial grade agricultural fertilizer, a usable byproduct. The e-SCRUB facility is a test bed to demonstrate the feasibility and performance of a repetitive, reliable pulsed electron beam generator operating at average power levels of up to 1 MW. This facility contains the electron beam generator and all the auxiliary and support systems required by the machine, including a computer driven central experiment control system, a 100,000 SCFM flowing dry nitrogen load which simulates the characteristics of a power plant flue, and a 2 MVA dedicated electrical service to power the machine. The e-SCRUB electron beam machine is designed to produce an 800 kV pulsed electron beam with a repetition rate of 667 pps. The energy per pulse deposited into the flue gas is approximately 750 J. The pulsed power system converts the utility power input to a 667 pps, 800 kV pulse train which powers the electron gun. The functional units of the pulsed power system will be discussed in the paper, along with some preliminary experimental results.

  12. High power, single mode, all-fiber source of femtosecond pulses at 1550 nm and its use in supercontinuum generation

    NASA Astrophysics Data System (ADS)

    Nicholson, Jeffrey W.; Yablon, A. D.; Westbrook, P. S.; Feder, K. S.; Yan, M. F.

    2004-06-01

    We present a source of high power femtosecond pulses at 1550 nm with compressed pulses at the end of a single mode fiber (SMF) pigtail. The system generates 34 femtosecond pulses at a repetition rate of 46 MHz, with average powers greater than 400 mW. The pulses are generated in a passively modelocked, erbium-doped fiber laser, and amplified in a short, erbium-doped fiber amplifier. The output of the fiber amplifier consists of highly chirped picosecond pulses. These picosecond pulses are then compressed in standard single mode fiber. While the compressed pulses in the SMF pigtail do show a low pedestal that could be avoided with the use of bulk-optic compression, the desire to compress the pulses in SMF is motivated by the ability to splice the single mode fiber to a nonlinear fiber, for continuum generation applications. We demonstrate that with highly nonlinear dispersion shifted fiber (HNLF) fusion spliced directly to the amplifier output, we generate a supercontinuum spectrum that spans more than an octave, with an average power 400 mW. Such a high power, all-fiber supercontinuum source has many important applications including frequency metrology and bio-medical imaging.

  13. High power, single mode, all-fiber source of femtosecond pulses at 1550 nm and its use in supercontinuum generation.

    PubMed

    Nicholson, Jeffrey; Yablon, A; Westbrook, P; Feder, K; Yan, M

    2004-06-28

    We present a source of high power femtosecond pulses at 1550 nm with compressed pulses at the end of a single mode fiber (SMF) pigtail. The system generates 34 femtosecond pulses at a repetition rate of 46 MHz, with average powers greater than 400 mW. The pulses are generated in a passively modelocked, erbium-doped fiber laser, and amplified in a short, erbium-doped fiber amplifier. The output of the fiber amplifier consists of highly chirped picosecond pulses. These picosecond pulses are then compressed in standard single mode fiber. While the compressed pulses in the SMF pigtail do show a low pedestal that could be avoided with the use of bulk-optic compression, the desire to compress the pulses in SMF is motivated by the ability to splice the single mode fiber to a nonlinear fiber, for continuum generation applications. We demonstrate that with highly nonlinear dispersion shifted fiber (HNLF) fusion spliced directly to the amplifier output, we generate a supercontinuum spectrum that spans more than an octave, with an average power 400 mW. Such a high power, all-fiber supercontinuum source has many important applications including frequency metrology and bio-medical imaging. PMID:19483820

  14. High peak- and average-power pulse shaped fiber laser in the ns-regime applying step-index XLMA gain fibers

    NASA Astrophysics Data System (ADS)

    Dinger, R.; Grundmann, F.-P.; Hapke, C.; Ruppik, S.

    2014-03-01

    Pulsed fiber lasers and continuous-wave (cw) fiber lasers have become the tool of choice in more and more laser based industrial applications like metal cutting and welding mainly because of their robustness, compactness, high brightness, high efficiency and reasonable costs. However, to further increase the productivity with those laser types there is a great demand for even higher laser power specifications. In this context we demonstrate a pulsed high peak- and averagepower fiber laser in a Master Oscillator Power Amplifier (MOPA) configuration with selectable pulse durations between 1 ns and several hundred nanoseconds. To overcome fiber nonlinearities such as stimulated Raman scattering (SRS) and self-phase-modulation (SPM) flexible Ytterbium doped extra-large mode area (XLMA) step index fibers, prepared by novel powder-sinter technology, have been used as gain fibers. As an example, for 12 ns pulses with a repetition rate of 10 kHz, a pump power limited average laser output power of more than 400 W in combination with peak powers of more than 3.5 MW (close to self-focusing-threshold) has been achieved in stable operation. The potentials of this laser system have been further explored towards longer pulse durations in order to achieve even higher pulse energies by means of pulse shaping techniques. In addition, investigations have been conducted with reduced pulse energies and repetition rates up to 500 kHz and average powers of more than 500 W at nearly diffraction limited beam quality.

  15. Comparison of the DiversiLab repetitive element PCR system with spa typing and pulsed-field gel electrophoresis for clonal characterization of methicillin-resistant Staphylococcus aureus.

    PubMed

    Babouee, B; Frei, R; Schultheiss, E; Widmer, A F; Goldenberger, D

    2011-04-01

    The emergence of methicillin-resistant Staphylococcus aureus (MRSA) has become an increasing problem worldwide in recent decades. Molecular typing methods have been developed to identify clonality of strains and monitor spread of MRSA. We compared a new commercially available DiversiLab (DL) repetitive element PCR system with spa typing, spa clonal cluster analysis, and pulsed-field gel electrophoresis (PFGE) in terms of discriminatory power and concordance. A collection of 106 well-defined MRSA strains from our hospital was analyzed, isolated between 1994 and 2006. In addition, we analyzed 6 USA300 strains collected in our institution. DL typing separated the 106 MRSA isolates in 10 distinct clusters and 8 singleton patterns. Clustering analysis into spa clonal complexes resulted in 3 clusters: spa-CC 067/548, spa-CC 008, and spa-CC 012. The discriminatory powers (Simpson's index of diversity) were 0.982, 0.950, 0.846, and 0.757 for PFGE, spa typing, DL typing, and spa clonal clustering, respectively. DL typing and spa clonal clustering showed the highest concordance, calculated by adjusted Rand's coefficients. The 6 USA300 isolates grouped homogeneously into distinct PFGE and DL clusters, and all belonged to spa type t008 and spa-CC 008. Among the three methods, DL proved to be rapid and easy to perform. DL typing qualifies for initial screening during outbreak investigation. However, compared to PFGE and spa typing, DL typing has limited discriminatory power and therefore should be complemented by more discriminative methods in isolates that share identical DL patterns.

  16. Ultrafast laser with an average power of 120 W at 515 nm and a highly dynamic repetition rate in the MHz range for novel applications in micromachining

    NASA Astrophysics Data System (ADS)

    Harth, F.; Piontek, M. C.; Herrmann, T.; L'huillier, J. A.

    2016-03-01

    A new generation of resonant scanners in the kHz-range shows ultra-high deflection speeds of more than 1000m/s but suffer from an inherent nonlinear mirror oscillation. If this oscillation is not compensated, a typical bitmap, written point by point, would be strongly distorted because of the decreasing spot distance at the turning point of the scanning mirror. However, this can be avoided by a dynamic adaption of the repetition rate (RR) of the ultrafast laser. Since resonant scanners are operated in the 10 kHz-range, this means that the RR has to be continuously swept up to several 10 000 times per second between e.g. 5MHz and 10 MHz. High-speed continuous adaption of the RR could also optimize laser micromachining of narrow curved geometries, where nowadays a time consuming approximation with numerous vectors is required. We present a laser system, which is capable of sweeping the RR more than 32 000 times per second between 5MHz and 10MHz at an average output power of more than 120W at 515nm with a pulse duration of about 40 ps. The laser consists of a semiconductor oscillator, a 3-stage fiber pre-amplifier, a solid state InnoSlab power amplifier and a SHG stage. We systematically analyzed the dynamic of the laser system as well as the spectral and temporal behavior of the optical pulses. Switching the repetition rate typically causes a varying pulse energy, which could affect the machining quality over one scanning line. This effect will be analyzed and discussed. Possible techniques to compensate or avoid this effect will be considered.

  17. Picosecond to femtosecond pulses from high power self mode-locked ytterbium rod-type fiber laser.

    PubMed

    Deslandes, Pierre; Perrin, Mathias; Saby, Julien; Sangla, Damien; Salin, François; Freysz, Eric

    2013-05-01

    We have designed an ytterbium rod-type fiber laser oscillator with tunable pulse duration. This system that delivers more than 10 W of average power is self mode-locked. It yields femtosecond to picosecond laser pulses at a repetition rate of 74 MHz. The pulse duration is adjusted by changing the spectral width of a band pass filter that is inserted in the laser cavity. Using volume Bragg gratings of 0.9 nm and 0.07 nm spectrum bandwidth, this oscillator delivers nearly Fourier limited 2.8 ps and 18.5 ps pulses, respectively. With a 4 nm interference filter, one obtains picosecond pulses that have been externally dechirped down to 130 fs.

  18. Repetition, Power Imbalance, and Intentionality: Do These Criteria Conform to Teenagers' Perception of Bullying? A Role-Based Analysis

    ERIC Educational Resources Information Center

    Cuadrado-Gordillo, Isabel

    2012-01-01

    The criteria that researchers use to classify aggressive behaviour as bullying are "repetition", "power imbalance", and "intent to hurt". However, studies that have analyzed adolescents' perceptions of bullying find that most adolescents do not simultaneously consider these three criteria. This paper examines adolescents' perceptions of bullying…

  19. Applications of pulsed power in advanced oxidation and reduction processes for pollution control

    SciTech Connect

    Rosocha, L.A.; Coogan, J.J.; Secker, D.A.; Smith, J.D.

    1993-08-01

    A growing social awareness of the adverse impact of pollutants on our environment and the promulgation of environmental laws and regulations has recently stimulated the development of technologies for pollution abatement and hazardous waste destruction. Pulsed power shows strong promise for contributing to the development of innovative technologies aimed at these applications. At Los Alamos we are engaged in two projects which apply pulsed power technology to the environment: the use of relativistic electron beams and nonequilibrium plasmas for the destruction of hazardous organic compounds in aqueous-based and gaseous-based medial, respectively. Electron beams and nonequilibrium plasmas have also been applied to the treatment of flue gases such as SO{sub x} and NO{sub x} by other researchers. In this paper, we will describe our electron-beam and plasma experiments carried out on hazardous waste destruction. Additionally, we will describe the scaling of electron-beam and nonequilibrium plasma systems to industrial sizes, including discussions of electron accelerator architecture, comparison of continuous-duty versus repetitively pulsed accelerators, plasma-discharge modulators, and needed pulsed power technology development.

  20. Parameters of a trigatron-driven low-pulse-repetition-rate TEA CO{sub 2} laser preionised by a surface corona discharge

    SciTech Connect

    Aram, M; Shabanzadeh, M; Mansori, F; Behjat, A

    2007-01-31

    The design of a TEA CO{sub 2} laser with UV preionisation by a surface corona discharge is described and the dependences of its average output energy on the gas-flow rate, discharge voltage and pulse repetition rate are presented. The scheme of the electric circuit and the geometry of the pre-ionisation system are considered. The electric circuit is designed to produce only impulse voltage difference between the laser electrodes. The triggering system of the trigatron is used to prevent the appearance of the arc. The dependences of the current, voltage and average output energy on the gas-mixture composition and applied voltages at a low pulse repetition rate are presented. The central output wavelength of the laser was measured with an IR spectrometer. Lasing at two adjacent vibrational-rotational transitions of the CO{sub 2} molecule was observed, which demonstrates the possibility of simultaneous lasing at several lines. (lasers)

  1. Investigation of the lasing characteristics of a barium vapor laser with pulse repetition frequencies up to 320 kHz for navigation

    NASA Astrophysics Data System (ADS)

    Soldatov, A. N.; Polunin, Yu. P.

    2015-11-01

    Results of experimental investigations into the characteristics of a laser on self-terminating transitions of the barium atom with λ = 1499 nm are presented for high pulse repetition frequencies (PRF). The frequency-energy characteristics are investigated in the self-heating mode of laser operation. Record values of PRF for the barium vapor laser, equal to ~320 kHz, have been attained.

  2. Supercontinuum generation at 1.55 μm in an all-normal dispersion photonic crystal fiber with high-repetition-rate picosecond pulses

    NASA Astrophysics Data System (ADS)

    Xu, Yong-zhao; Han, Tao; Song, Jian-xun; Ling, Dong-xiong; Li, Hong-tao

    2014-11-01

    We demonstrate the generation of supercontinuum (SC) spectrum covering S+C+L band of optical communication by injecting 1.4 ps optical pulses with center wavelength of 1 552 nm and repetition rate of 10 GHz into an all-normal dispersion photonic crystal fiber (PCF) with length of 80 m. The experimental results are in good agreement with the numerical simulations, which are used to illustrate the SC generation dynamics by self-phase modulation and optical wave breaking (WB).

  3. Pulsed Power: Sandia's Plans for the New Millenium

    SciTech Connect

    QUINTENZ,JEFFREY P.

    2000-07-20

    Pulsed power science and engineering activities at Sandia National Laboratories grew out of a programmatic need for intense radiation sources to advance capabilities in radiographic imaging and to create environments for testing and certifying the hardness of components and systems to radiation in hostile environments. By the early 1970s, scientists in laboratories around the world began utilizing pulsed power drivers with very short (10s of nanoseconds) pulse lengths for Inertial Confinement Fusion (ICF) experiments. In the United States, Defense Programs within the Department of Energy has sponsored this research. Recent progress in pulsed power, specifically fast-pulsed-power-driven z pinches, in creating temperatures relevant to ICF has been remarkable. Worldwide developments in pulsed power technologies and increased applications in both defense and industry are contrasted with ever increasing stress on research and development tiding. The current environment has prompted us at Sandia to evaluate our role in the continued development of pulsed power science and to consider options for the future. This presentation will highlight our recent progress and provide an overview of our plans as we begin the new millennium.

  4. Approaches to solar cell design for pulsed laser power receivers

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.; Landis, Geoffrey A.

    1993-01-01

    Using a laser to beam power from Earth to a photovoltaic receiver in space could be a technology with applications to many space missions. Extremely high average-power lasers would be required in a wavelength range of 700-1000 nm. However, high-power lasers inherently operate in a pulsed format. Existing solar cells are not well designed to respond to pulsed incident power. To better understand cell response to pulsed illumination at high intensity, the PC-1D finite-element computer model was used to analyze the response of solar cells to continuous and pulsed laser illumination. Over 50 percent efficiency was calculated for both InP and GaAs cells under steady-state illumination near the optimum wavelength. The time-dependent response of a high-efficiency GaAs concentrator cell to a laser pulse was modeled, and the effect of laser intensity, wavelength, and bias point was studied. Three main effects decrease the efficiency of a solar cell under pulsed laser illumination: series resistance, L-C 'ringing' with the output circuit, and current limiting due to the output inductance. The problems can be solved either by changing the pulse shape or designing a solar cell to accept the pulsed input. Cell design possibilities discussed are a high-efficiency, light-trapping silicon cell, and a monolithic, low-inductance GaAs cell.

  5. Influence of pulse duration on the plasma characteristics in high-power pulsed magnetron discharges

    SciTech Connect

    Konstantinidis, S.; Dauchot, J.P.; Ganciu, M.; Ricard, A.; Hecq, M.

    2006-01-01

    High-power pulsed magnetron discharges have drawn an increasing interest as an approach to produce highly ionized metallic vapor. In this paper we propose to study how the plasma composition and the deposition rate are influenced by the pulse duration. The plasma is studied by time-resolved optical emission and absorption spectroscopies and the deposition rate is controlled thanks to a quartz microbalance. The pulse length is varied between 2.5 and 20 {mu}s at 2 and 10 mTorr in pure argon. The sputtered material is titanium. For a constant discharge power, the deposition rate increases as the pulse length decreases. With 5 {mu}s pulse, for an average power of 300 W, the deposition rate is {approx}70% of the deposition rate obtained in direct current magnetron sputtering at the same power. The increase of deposition rate can be related to the sputtering regime. For long pulses, self-sputtering seems to occur as demonstrated by time-resolved optical emission diagnostic of the discharge. In contrary, the metallic vapor ionization rate, as determined by absorption measurements, diminishes as the pulses are shortened. Nevertheless, the ionization rate is in the range of 50% for 5 {mu}s pulses while it lies below 10% in the case of a classical continuous magnetron discharge.

  6. Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs.

    PubMed

    Li, Jiang; Lee, Hansuek; Chen, Tong; Vahala, Kerry J

    2012-12-01

    Microresonator-based frequency combs (microcombs or Kerr combs) can potentially miniaturize the numerous applications of conventional frequency combs. A priority is the realization of broadband (ideally octave spanning) spectra at detectable repetition rates for comb self-referencing. However, access to these rates involves pumping larger mode volumes and hence higher threshold powers. Moreover, threshold power sets both the scale for power per comb tooth and also the optical pump. Along these lines, it is shown that a class of resonators having surface-loss-limited Q factors can operate over a wide range of repetition rates with minimal variation in threshold power. A new, surface-loss-limited resonator illustrates the idea. Comb generation on mode spacings ranging from 2.6 to 220 GHz with overall low threshold power (as low as 1 mW) is demonstrated. A record number of comb lines for a microcomb (around 1900) is also observed with pump power of 200 mW. The ability to engineer a wide range of repetition rates with these devices is also used to investigate a recently observed mechanism in microcombs associated with dispersion of subcomb offset frequencies. We observe high-coherence phase locking in cases where these offset frequencies are small enough so as to be tuned into coincidence. In these cases, a record-low microcomb phase noise is reported at a level comparable to an open-loop, high-performance microwave oscillator.

  7. 1400, +/- 900V PEAK PULSE SWITCH MODE POWER SUPPLIES FOR SNS INJECTION KICKERS.

    SciTech Connect

    LAMBIASE,R.ENG,W.SANDBERG,J.DEWAN,S.HOLMES,R.RUST,K.ZENG,J.

    2004-03-10

    This paper describes simulation and experimental results for a 1400A, {+-} 900V peak rated, switch mode power supply for SNS Injection Kicker Magnets. For each magnet (13 m{Omega}, 160{micro}H), the power supply must supply controlled pulses at 60 Hz repetition rate. The pulse current must rise from zero to maximum in less than 1 millisec in a controlled manner, flat top for up to 2 millisec, and should fall in a controlled manner to less than 4A within 500{micro}s. The low current performance during fall time is the biggest challenge in this power supply. The simulation results show that to meet the controlled fall of the current and the current ripple requirements, voltage loop bandwidth of at least 10 kHz and switching frequency of at least 100 kHz are required. To achieve high power high frequency switching with IGBT switches, a series connected topology with three phase shifted (O{sup o}, 60{sup o} & 120{sup o}) converters each with 40 kHz switching frequency (IGBT at 20kHz), has been achieved. In this paper, the circuit topology, relevant system specifications and experimental results that meet the requirements of the power supply are described in detail. A unique six pulse SCR rectifier circuit with capacitor storage has been implemented to achieve minimum pulse width to meet required performance during current fall time below 50A due to the very narrow pulse width and non-linearity from IGBT turn-on/off times.

  8. Efficient spectral broadening in the 100-W average power regime using gas-filled kagome HC-PCF and pulse compression.

    PubMed

    Emaury, Florian; Saraceno, Clara J; Debord, Benoit; Ghosh, Debashri; Diebold, Andreas; Gèrôme, Frederic; Südmeyer, Thomas; Benabid, Fetah; Keller, Ursula

    2014-12-15

    We present nonlinear pulse compression of a high-power SESAM-modelocked thin-disk laser (TDL) using an Ar-filled hypocycloid-core kagome hollow-core photonic crystal fiber (HC-PCF). The output of the modelocked Yb:YAG TDL with 127 W average power, a pulse repetition rate of 7 MHz, and a pulse duration of 740 fs was spectrally broadened 16-fold while propagating in a kagome HC-PCF containing 13 bar of static argon gas. Subsequent compression tests performed using 8.4% of the full available power resulted in a pulse duration as short as 88 fs using the spectrally broadened output from the fiber. Compressing the full transmitted power through the fiber (118 W) could lead to a compressed output of >100  W of average power and >100  MW of peak power with an average power compression efficiency of 88%. This simple laser system with only one ultrafast laser oscillator and a simple single-pass fiber pulse compressor, generating both high peak power >100  MW and sub-100-fs pulses at megahertz repetition rate, is very interesting for many applications such as high harmonic generation and attosecond science with improved signal-to-noise performance.

  9. Concept study of high volume food irradiation with a pulsed power accelerator

    SciTech Connect

    Turman, B.N.; Prestwich, K.R.; Neau, E.L.; Johnson, D.L.; Kensek, R.P.

    1993-12-31

    A concept study was initiated to establish technical requirements and processing cost estimates for a high power, high volume x-radiation food processing facility using pulsed power technology. The design study was directed toward a central processing plant that would transport and process the food products in standard pallets of 1.1m {times} 1.2m {times} 1.2m dimensions. The 1.2m depth of penetration, and a dose uniformity requirement of a factor of 2 between the maximum and minimum dose, led to a decision to employ x-radiation, produced from a 5 MeV electron beam. The electron beam is produced from a large-area cathode and accelerated by a multi-module pulsed power accelerator. The beam power for this design is 500 kW. An example application is developed for illustration, based on produce disinfestation at maximum exposure level of l00 krad and minimum exposure of 50 krad. In order to achieve this ratio of maximum to minimum dose, the pallet is rotated through 3609 while being exposed. The estimated process rate is approximately 30 metric tons/hour. The accelerator design was developed by scaling from the present high average power beam experiments in the Repetitive High Energy Pulsed Power (RHEPP) program, which will deliver an output of 350 kW in a 2.5 MeV beam. The high voltage is achieved by using 250 kV pulses that are added together with inductively-isolated adder cavities. This technology will be described, and results from the RHEPP experiments will be compared with the design requirements for the high power food processor application. Processing issues, technology limits, dose calculations, and cost estimates will be discussed.

  10. Pulsed pyroelectric crystal-powered gamma source

    SciTech Connect

    Chen, A. X.; Antolak, A. J.; Leung, K.-N.; Raber, T. N.; Morse, D. H.

    2013-04-19

    A compact pulsed gamma generator is being developed to replace radiological sources used in commercial, industrial and medical applications. Mono-energetic gammas are produced in the 0.4 - 1.0 MeV energy range using nuclear reactions such as {sup 9}Be(d,n{gamma}){sup 10}B. The gamma generator employs an RF-driven inductively coupled plasma ion source to produce deuterium ion current densities up to 2 mA/mm{sup 2} and ampere-level current pulses can be attained by utilizing an array extraction grid. The extracted deuterium ions are accelerated to approximately 300 keV via a compact stacked pyroelectric crystal system and then bombard the beryllium target to generate gammas. The resulting microsecond pulse of gammas is equivalent to a radiological source with curie-level activity.

  11. A source of high-power pulses of elliptically polarized ultrawideband radiation

    SciTech Connect

    Andreev, Yu. A. Efremov, A. M.; Koshelev, V. I.; Kovalchuk, B. M.; Petkun, A. A.; Sukhushin, K. N.; Zorkaltseva, M. Yu.

    2014-10-01

    Here, we describe a source of high-power ultrawideband radiation with elliptical polarization. The source consisting of a monopolar pulse generator, a bipolar pulse former, and a helical antenna placed into a radioparent container may be used in tests for electromagnetic compatibility. In the source, the helical antenna with the number of turns N = 4 is excited with a high-voltage bipolar pulse. Preliminary, we examined helical antennas at a low-voltage source aiming to select an optimal N and to estimate a radiation center position and boundary of a far-field zone. Finally, characteristics of the source in the operating mode at a pulse repetition rate of 100 Hz are presented in the paper as well. Energy efficiency of the antenna is 0.75 at the axial ratio equal to 1.3. The effective potential of radiation of the source at the voltage amplitudes of the bipolar pulse generator equal to -175/+200 kV reaches 280 kV.

  12. A 5 kA pulsed power supply for inductive and plasma loads in large volume plasma device.

    PubMed

    Srivastava, P K; Singh, S K; Sanyasi, A K; Awasthi, L M; Mattoo, S K

    2016-07-01

    This paper describes 5 kA, 12 ms pulsed power supply for inductive load of Electron Energy Filter (EEF) in large volume plasma device. The power supply is based upon the principle of rapid sourcing of energy from the capacitor bank (2.8 F/200 V) by using a static switch, comprising of ten Insulated Gate Bipolar Transistors (IGBTs). A suitable mechanism is developed to ensure equal sharing of current and uniform power distribution during the operation of these IGBTs. Safe commutation of power to the EEF is ensured by the proper optimization of its components and by the introduction of over voltage protection (>6 kV) using an indigenously designed snubber circuit. Various time sequences relevant to different actions of power supply, viz., pulse width control and repetition rate, are realized through optically isolated computer controlled interface. PMID:27475553

  13. A 5 kA pulsed power supply for inductive and plasma loads in large volume plasma device

    NASA Astrophysics Data System (ADS)

    Srivastava, P. K.; Singh, S. K.; Sanyasi, A. K.; Awasthi, L. M.; Mattoo, S. K.

    2016-07-01

    This paper describes 5 kA, 12 ms pulsed power supply for inductive load of Electron Energy Filter (EEF) in large volume plasma device. The power supply is based upon the principle of rapid sourcing of energy from the capacitor bank (2.8 F/200 V) by using a static switch, comprising of ten Insulated Gate Bipolar Transistors (IGBTs). A suitable mechanism is developed to ensure equal sharing of current and uniform power distribution during the operation of these IGBTs. Safe commutation of power to the EEF is ensured by the proper optimization of its components and by the introduction of over voltage protection (>6 kV) using an indigenously designed snubber circuit. Various time sequences relevant to different actions of power supply, viz., pulse width control and repetition rate, are realized through optically isolated computer controlled interface.

  14. Extended Propagation of Powerful Laser Pulses in Focusing Kerr Media

    NASA Astrophysics Data System (ADS)

    Malkin, V. M.; Fisch, N. J.

    2016-09-01

    Powerful incoherent laser pulses can propagate in focusing Kerr media much longer distances than can coherent pulses, due to the fast phase mixing that prevents transverse filamentation. This distance is limited by 4-wave scattering, which accumulates waves at small transverse wave numbers, where phase mixing is too slow to retain the incoherence and thus prevent the filamentation. However, we identify how this theoretical limit can be overcome by countering this accumulation through transverse heating of the pulse by random fluctuations of the refractive index. Thus, the laser pulse propagation distances are significantly extended, making feasible, in particular, the generation of unprecedentedly intense and powerful short laser pulses in a plasma by means of backward Raman amplification in new random laser regimes.

  15. High-power picosecond pulse delivery through hollow core photonic band gap fibers

    NASA Astrophysics Data System (ADS)

    Michieletto, Mattia; Johansen, Mette M.; Lyngsø, Jens K.; Lægsgaard, Jesper; Bang, Ole; Alkeskjold, Thomas T.

    2016-03-01

    We demonstrated robust and bend insensitive fiber delivery of high power laser with diffraction limited beam quality for two different kinds of hollow core band gap fibers. The light source for this experiment consists of ytterbium-doped double clad fiber aeroGAIN-ROD-PM85 in a high power amplifier setup. It provided 22ps pulses with a maximum average power of 95W, 40MHz repetition rate at 1032nm (~2.4μJ pulse energy), with M2 <1.3. We determined the facet damage threshold for a 7-cells hollow core photonic bandgap fiber and showed up to 59W average power output for a 5 meters fiber. The damage threshold for a 19-cell hollow core photonic bandgap fiber exceeded the maximum power provided by the light source and up to 76W average output power was demonstrated for a 1m fiber. In both cases, no special attention was needed to mitigate bend sensitivity. The fibers were coiled on 8 centimeters radius spools and even lower bending radii were present. In addition, stimulated rotational Raman scattering arising from nitrogen molecules was measured through a 42m long 19 cell hollow core fiber.

  16. Analysis of the pan genome of Campylobacter jejuni isolates recovered from poultry by pulsed-field gel electrophoresis, multilocus sequence typing (MLST), and repetitive sequence polymerase chain reaction (rep-PCR) reveals different discriminatory capabilities.

    PubMed

    Wilson, Melissa K; Lane, Alison B; Law, Bibiana F; Miller, William G; Joens, Lynn A; Konkel, Michael E; White, Bryan A

    2009-11-01

    Campylobacter jejuni is one of the leading bacterial causes of food-borne illness in the USA. Molecular typing methods are often used in food safety for identifying sources of infection and pathways of transmission. Moreover, the identification of genetically related isolates (i.e., clades) may facilitate the development of intervention strategies for control and prevention of food-borne diseases. We analyzed the pan genome (i.e., core and variable genes) of 63 C. jejuni isolates recovered from chickens raised in conventional, organic, and free-range poultry flocks to gain insight into the genetic diversity of C. jejuni isolates recovered from different environments. We assessed the discriminatory power of three genotyping methods [i.e., pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), and repetitive extragenic palindromic polymerase chain reaction (rep-PCR)]. The rep-PCR fingerprint was generated by determining the presence of repetitive sequences that are interspersed throughout the genome via repetitive extragenic palindromic PCR, enterobacterial repetitive intergenic consensus sequence PCR (ERIC-PCR), and BOX element PCR (BOX-PCR) and combining the data to form a composite fingerprint. The genetic fingerprints were subjected to computer-assisted pattern analysis. Comparison of the three genotypic methods revealed that repREB-PCR showed greater discriminatory power than PFGE and MLST. ERIC-PCR and BOX-PCR yielded the highest number of PCR products and greatest reproducibility. Regardless of the genotyping method, C. jejuni isolates recovered from chickens reared in conventional, organic, and free-range environments all exhibit a high level of genotypic diversity.

  17. Design and development of a prototype 25 kV, 10 A long pulse Marx modulator for high power klystron

    NASA Astrophysics Data System (ADS)

    Acharya, Mahesh; Shrivastava, Purushottam

    2016-02-01

    Research, design, and development of high average power modulators for the proposed Indian Spallation Neutron Source are in progress at Raja Ramanna Centre for Advanced Technology. With this objective, a prototype of 25 kV, 10 A, 1 ms Marx modulator at repetition rate of 1 Hz has been designed and developed which serves as a proof of principle and technology assessment stage for further development of high repetition rate high voltage high average power modulators. Insulated Gate Bipolar Transistor (IGBT) based modules of 2.8 kV switching capability have been used as main modules. The modulator had 8.2% droop in output voltage pulse without any droop compensation circuit. A droop compensation involving 15 corrector modules has been used to reduce the droop up to 1%. We have used IGBT based 250 V switches to realize the corrector module. A microcontroller based control unit was designed and developed for triggering the main and corrector modules. With this control unit, programmable output pulse has been achieved. Electrical isolation between high voltage circuits and control circuit has been achieved by the use of fiber optic based control signal transmission. Output pulses of 1 ms pulse width, 800 ns rise time, and 5 μs fall time have been achieved. The modulator has advantages of modular design, adjustable pulse width, adjustable rise time, and fall time.

  18. Comparison of automated repetitive-sequence-based polymerase chain reaction and spa typing versus pulsed-field gel electrophoresis for molecular typing of methicillin-resistant Staphylococcus aureus.

    PubMed

    Church, Deirdre L; Chow, Barbara L; Lloyd, Tracie; Gregson, Daniel B

    2011-01-01

    Automated repetitive polymerase chain reaction (PCR) (DiversiLab, bioMérieux, St. Laurent, Quebec, Canada) and single locus sequence typing of the Staphylococcus protein A (spa) gene with spa-type assignment by StaphType RIDOM software were compared to pulsed-field gel electrophoresis (PFGE) as the "gold standard" method for methicillin-resistant Staphylococcus aureus (MRSA) typing. Fifty-four MRSA isolates were typed by all methods: 10 of known PFGE CMRSA type and 44 clinical isolates. Correct assignment of CMRSA type or cluster occurred for 47 of 54 (87%) of the isolates when using a rep-PCR similarity index (SI) of ≥95%. Rep-PCR gave 7 discordant results [CMRSA1 (3), CMRSA2 (1), CMRSA4 (1), and CMRSA10 (2)], and some CMRSA clusters were not distinguished (CMRSA10/5/9, CMRSA 7/8, and CMRSA3/6). Several spa types occurred within a single PFGE or repetitive PCR types among the 19 different spa types found. spa type t037 was shared by CMRSA3 and CMRSA6 strains, and CMRSA9 and most CMRSA10 strains shared spa type t008. Time to results for PFGE, repetitive PCR, and spa typing was 3-4 days, 24 h, and 48 h, respectively. The annual costs of using spa or repetitive PCR were 2.4× and 1.9× higher, respectively, than PFGE but routine use of spa typing would lower annual labor costs by 0.10 full-time equivalents compared to PFGE. Repetitive PCR is a good method for rapid outbreak screening, but MRSA isolates that share the same repetitive PCR or PFGE patterns can be distinguished by spa typing.

  19. Transparent Si-DLC coatings on metals with high repetition bi-polar pulses of a PBII system

    NASA Astrophysics Data System (ADS)

    Ikeyama, Masami; Sonoda, Tsutomu

    2013-07-01

    Diamond-like carbon (DLC) is widely used because of its good properties. However, the color of DLC is usually dark brown or black. Recently, we have made fairly transparent Si contained DLC (Si-DLC) coatings in visible light region. The fairly transparent Si-DLC was made by using our original bi-polar pulse type plasma based ion implantation (PBII) system, with recently introduced high slew rate pulse power supply. The colors of metal sample surface were uniformly changed as subdued red, yellow, subdued green and subdued blue or violet, with the change of Si-DLC coating's thickness. The colors come from the interference between reflected lights at the surface of the Si-DLC coatings and the surface of the metal samples. The colors were also changed with the angle of glancing. Estimated refractive indexes show well agreements among almost all Si-DLC coatings, instead of the differences of coating conditions. Generally, the longer coating time or slower coating process makes the higher refractive index in near infrared region. Estimated band gap of a Si-DLC coating was about 1.5 eV. The developed Si-DLC coatings must be useful as not only protective but also decorative coatings.

  20. An experimental study of high power microwave pulsed discharge in nitrogen

    NASA Astrophysics Data System (ADS)

    Mesko, M.; Bonaventura, Z.; Vasina, P.; Kudrle, V.; Tálský, A.; Trunec, D.; Frgala, Z.; Janca, J.

    2006-08-01

    We investigated a plasma excited by high power pulsed microwaves (MWs) (pulse duration 2.5 µs, repetition rate 400 Hz, peak power 105 W, frequency 9.4 GHz) in nitrogen at reduced pressure (pressure range 10-2000 Pa) with the aim of a better understanding of such types of discharge. The construction of the experimental device suppresses the plasma-wall interactions and therefore the volume processes are predominant. To obtain the temporal evolution of the electron density we used two MW interferometers at frequencies of 15 and 35 GHz with dielectric rod waveguides which gives them the capability of localized measurements. We estimated the effective collision frequency from the absorption of a measurement beam. Time resolved optical emission spectroscopy of the 1st negative system and the 2nd positive system was carried out, too. Due to a high power input the discharge dynamics was fast and the steady state was typically reached in 1 µs. We found that the effective collision frequency has the same temporal behaviour as the 2nd positive system of N2, including a characteristic maximum at the beginning of the pulse.

  1. The effect of pulse repetition rate on the delay sensitivity of neurons in the auditory cortex of the FM bat, Myotis lucifugus.

    PubMed

    Wong, D; Maekawa, M; Tanaka, H

    1992-04-01

    1. Echo delay is the primary cue used by echolocating bats to determine target range. During target-directed flight, the repetition rate of pulse emission increases systematically as range decreases. Thus, we examined the delay tuning of 120 neurons in the auditory cortex of the bat, Myotis lucifugus, as repetition rate was varied. 2. Delay sensitivity was exhibited in 77% of the neurons over different ranges of pulse repetition rates (PRRs). Delay tuning typically narrowed and eventually disappeared at higher PRRs. 3. Two major types of delay-sensitive neurons were found: i) delay-tuned neurons (59%) had a single fixed best delay, while ii) tracking neurons (22%) changed their best delay with PRR. 4. PRRs from 1-100/s were represented by the population of delay-sensitive neurons, with the majority of neurons delay-sensitive at PRRs of at least 10-20/s. Thus, delay-dependent neurons in Myotis are most active during the search phase of echolocation. 5. Delay-sensitive neurons that also responded to single sounds were common. At PRRs where delay sensitivity was found, the responses to single sounds were reduced and the responses to pulse-echo pairs at particular delays were greater than the single-sound responses. In facilitated neurons (53%), the maximal delay-dependent response was always larger than the best single-sound responses, whereas in enhanced neurons (47%), these responses were comparable. The presence of neurons that respond maximally to single sounds at one PRR and to pulse-echo pairs with particular echo delays at other PRRs suggests that these neurons perform echo-ranging in conjunction with other biosonar functions during target pursuit. PMID:1625215

  2. Design and fabrication of hollow-core photonic crystal fibers for high power fast laser beam transportation and pulse compression

    NASA Astrophysics Data System (ADS)

    Wang, Y. Y.; Peng, Xiang; Alharbi, M.; Dutin, C. F.; Bradley, T. D.; Mielke, Michael; Booth, Timothy; Benabid, F.

    2012-03-01

    We report on recent design and fabrication of Kagome type hollow-core photonic crystal fiber (HC-PCF) for the purpose of high power fast laser beam transportation. The fabricated seven-cell three-ring hypocycloid-shaped large core fiber exhibits an up-to-date lowest attenuation (among all Kagome fibers) of 40dB/km over a broadband transmission centered at 1500nm. We show that the large core size, low attenuation, broadband transmission, single modedness, low dispersion and relatively low banding loss makes it an ideal host for high power laser beam transportation. By filling the fiber with helium gas, a 74μJ, 850fs and 40kHz repetition rate ultra-short pulse at 1550nm has been faithfully delivered with little propagation pulse distortion. Compression of a 105μJ laser pulse from 850fs to 300fs has been achieved by operating the fiber in ambient air.

  3. All solid-state spectral broadening: an average and peak power scalable method for compression of ultrashort pulses.

    PubMed

    Seidel, Marcus; Arisholm, Gunnar; Brons, Jonathan; Pervak, Vladimir; Pronin, Oleg

    2016-05-01

    Spectral broadening in bulk material is a simple, robust and low-cost method to extend the bandwidth of a laser source. Consequently, it enables ultrashort pulse compression. Experiments with a 38 MHz repetition rate, 50 W average power Kerr-lens mode-locked thin-disk oscillator were performed. The initially 1.2 μJ, 250 fs pulses are compressed to 43 fs by means of self-phase modulation in a single 15 mm thick quartz crystal and subsequent chirped-mirror compression. The losses due to spatial nonlinear effects are only about 40 %. A second broadening stage reduced the Fourier transform limit to 15 fs. It is shown that the intensity noise of the oscillator is preserved independent of the broadening factor. Simulations manifest the peak power scalability of the concept and show that it is applicable to a wide range of input pulse durations and energies.

  4. Effects of picosecond terawatt UV laser beam filamentation and a repetitive pulse train on creation of prolonged plasma channels in atmospheric air

    NASA Astrophysics Data System (ADS)

    Zvorykin, V. D.; Ionin, A. A.; Levchenko, A. O.; Seleznev, L. V.; Shutov, A. V.; Sinitsyn, D. V.; Smetanin, I. V.; Ustinovskii, N. N.

    2013-08-01

    Amplitude-modulated UV laser pulse of up to 30 J energy was produced at hybrid Ti:Sapphire/KrF GARPUN-MTW laser facility when a preliminary amplified train of short pulses was injected into unstable resonator cavity of the main e-beam-pumped KrF amplifier. The combined radiation consisted of regeneratively amplified picosecond pulses with subTW peak power overlapped with 100-ns pulse of a free-running lasing. The advantages of combined radiation for production of long-lived prolonged plasma channels in air and HV discharge triggering were demonstrated: photocurrent sustained by modulated pulse is two orders of magnitude higher and HV breakdown distance is twice longer than for a smooth UV pulse. It was found that in contrast to IR radiation multiple filamentation of high-power UV laser beam does not produce extended nonlinear focusing of UV radiation.

  5. Pulsed power systems for environmental and industrial applications

    NASA Astrophysics Data System (ADS)

    Neau, E. L.

    1994-10-01

    The development of high peak power simulators, laser drivers, free electron lasers, and Inertial Confinement Fusion drivers is being extended to high average power short-pulse machines with the capabilities of performing new roles in environmental cleanup and industrial manufacturing processes. We discuss a new class of short-pulse, high average power accelerator that achieves megavolt electron and ion beams with 10's of kiloamperes of current and average power levels in excess of 100 kW. Large treatment areas are possible with these systems because kilojoules of energy are available in each output pulse. These systems can use large area x-ray converters for applications requiring grater depth of penetration such as food pasteurization and waste treatment. The combined development of this class of accelerators and applications, and Sandia National Laboratories, is called Quantum Manufacturing.

  6. Pulsed power systems for environmental and industrial applications

    SciTech Connect

    Neau, E.L.

    1993-12-31

    The development of high peak power simulators, laser drivers, free electron lasers, and Inertial Confinement Fusion drivers is being extended to high average power short-pulse machines with the capabilities of performing new roles in environmental cleanup and industrial manufacturing processes. We discuss a new class of short-pulse, high average power accelerator that achieves megavolt electron and ion beams with 10`s of kiloamperes of current and average power levels in excess of 100 KW. Large treatment areas are possible with these systems because kilojoules of energy are available in each output pulse. These systems can use large area x-ray converters for applications requiring greater depth of penetration such as food pasteurization and waste treatment. The combined development of this class of accelerators and applications, at Sandia National Laboratories, is called Quantum Manufacturing.

  7. Adaptive pulse width control and sampling for low power pulse oximetry.

    PubMed

    Gubbi, Sagar Venkatesh; Amrutur, Bharadwaj

    2015-04-01

    Remote sensing of physiological parameters could be a cost effective approach to improving health care, and low-power sensors are essential for remote sensing because these sensors are often energy constrained. This paper presents a power optimized photoplethysmographic sensor interface to sense arterial oxygen saturation, a technique to dynamically trade off SNR for power during sensor operation, and a simple algorithm to choose when to acquire samples in photoplethysmography. A prototype of the proposed pulse oximeter built using commercial-off-the-shelf (COTS) components is tested on 10 adults. The dynamic adaptation techniques described reduce power consumption considerably compared to our reference implementation, and our approach is competitive to state-of-the-art implementations. The techniques presented in this paper may be applied to low-power sensor interface designs where acquiring samples is expensive in terms of power as epitomized by pulse oximetry. PMID:25014964

  8. Low power pulsed MPD thruster system analysis and applications

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.; Domonkos, Matthew; Gilland, James H.

    1993-01-01

    Pulsed MPD thruster systems were analyzed for application to solar-electric orbit transfer vehicles at power levels ranging from 10 to 40 kW. Potential system level benefits of pulsed propulsion technology include ease of power scaling without thruster performance changes, improved transportability from low power flight experiments to operational systems, and reduced ground qualification costs. Required pulsed propulsion system components include a pulsed applied-field MPD thruster, a pulse-forming network, a charge control unit, a cathode heater supply, and high speed valves. Mass estimates were obtained for each propulsion subsystem and spacecraft component. Results indicate that for payloads of 1000 and 2000 kg, pulsed MPD thrusters can reduce launch mass by between 1000 and 2500 kg relative to hydrogen arcjets, reducing launch vehicle class and launch cost. While the achievable mass savings depends on the trip time allowed for the mission, cases are shown in which the launch vehicle required for a mission is decreased from an Atlas IIAS to an Atlas I or Delta 7920.

  9. Low power pulsed MPD thruster system analysis and applications

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.; Domonkos, Matthew; Gilland, James H.

    1993-01-01

    Pulsed magnetoplasmadynamic (MPD) thruster systems were analyzed for application to solar-electric orbit transfer vehicles at power levels ranging from 10 to 40 kW. Potential system level benefits of pulsed propulsion technology include ease of power scaling without thruster performance changes, improved transportability from low power flight experiments to operational systems, and reduced ground qualification costs. Required pulsed propulsion system components include a pulsed applied-field MPD thruster, a pulse-forming network, a charge control unit, a cathode heater supply, and high speed valves. Mass estimates were obtained for each propulsion subsystem and spacecraft component using off-the-shelf technology whenever possible. Results indicate that for payloads of 1000 and 2000 kg pulsed MPD thrusters can reduce launch mass by between 1000 and 2500 kg over those achievable with hydrogen arcjets, which can be used to reduce launch vehicle class and the associated launch cost. While the achievable mass savings depends on the trip time allowed for the mission, cases are shown in which the launch vehicle required for a mission is decreased from an Atlas IIAS to an Atlas I or Delta 7920.

  10. Investigation of Input Signal Curve Effect on Formed Pulse of Hydraulic-Powered Pulse Machine

    NASA Astrophysics Data System (ADS)

    Novoseltseva, M. V.; Masson, I. A.; Pashkov, E. N.

    2016-04-01

    Well drilling machines should have as high efficiency factor as it is possible. This work proposes factors that are affected by change of input signal pulse curve. A series of runs are conducted on mathematical model of hydraulic-powered pulse machine. From this experiment, interrelations between input pulse curve and construction parameters are found. Results of conducted experiment are obtained with the help of the mathematical model, which is created in Simulink Matlab. Keywords - mathematical modelling; impact machine; output signal amplitude; input signal curve.

  11. Bandwidth and repetition rate programmable Nyquist sinc-shaped pulse train source based on intensity modulators and four-wave mixing.

    PubMed

    Cordette, S; Vedadi, A; Shoaie, M A; Brès, C-S

    2014-12-01

    We propose and experimentally demonstrate an all-optical Nyquist sinc-shaped pulse train source based on intensity modulation and four-wave mixing. The proposed scheme allows for the tunability of the bandwidth and the full flexibility of the repetition rate in the limit of the electronic bandwidth of the modulators used through the flexible synthesis of rectangular frequency combs. Bandwidth up to 360 GHz at 40 GHz rate and up to 45 frequency lines at 5 GHz rate are demonstrated with 40 GHz modulators.

  12. Evaluation of Light-Triggered Thyristors for Pulsed Power Applications

    SciTech Connect

    Tully, L K; Fulkerson, E S; Goerz, D A; Speer, R D

    2008-05-20

    Lawrence Livermore National Laboratory has many needs for high reliability, high peak current, high di/dt switches. Solid-state switch technology offers the demonstrated advantage of reliability under a variety of conditions. Light-triggered switches operate with a reduced susceptibility to electromagnetic interference commonly found within pulsed power environments. Despite the advantages, commercially available solid-state switches are not typically designed for the often extreme pulsed power requirements. Testing was performed to bound the limits of devices for pulsed power applications beyond the manufacturers specified ratings. To test the applicability of recent commercial light-triggered solid-state designs, an adjustable high current switch test stand was assembled. Results from testing and subsequent selected implementations are presented.

  13. The VELOCE pulsed power generator for isentropic compression experiments

    SciTech Connect

    Ao, Tommy; Asay, James Russell; Chantrenne, Sophie J.; Hickman, Randall John; Willis, Michael David; Shay, Andrew W.; Grine-Jones, Suzi A.; Hall, Clint Allen; Baer, Melvin R.

    2007-12-01

    Veloce is a medium-voltage, high-current, compact pulsed power generator developed for isentropic and shock compression experiments. Because of its increased availability and ease of operation, Veloce is well suited for studying isentropic compression experiments (ICE) in much greater detail than previously allowed with larger pulsed power machines such as the Z accelerator. Since the compact pulsed power technology used for dynamic material experiments has not been previously used, it is necessary to examine several key issues to ensure that accurate results are obtained. In the present experiments, issues such as panel and sample preparation, uniformity of loading, and edge effects were extensively examined. In addition, magnetohydrodynamic (MHD) simulations using the ALEGRA code were performed to interpret the experimental results and to design improved sample/panel configurations. Examples of recent ICE studies on aluminum are presented.

  14. Exploring new frontiers in the pulsed power laboratory: Recent progress

    NASA Astrophysics Data System (ADS)

    Adamenko, S.; Esaulov, A.; Ulmen, B.; Novikov, V.; Ponomarev, S.; Adamenko, A.; Artyuh, V.; Gurin, A.; Prokopenko, V.; Kolomiyets, V.; Belous, V.; Kim, K.-J.; Miley, G.; Bassuney, A.; Novikov, D.

    One of the most fundamental processes in the Universe, nucleosynthesis of elements drives energy production in stars as well as the creation of all atoms heavier than hydrogen. To harness this process and open new ways for energy production, we must recreate some of the extreme conditions in which it occurs. We present results of experiments using a pulsed power facility to induce collective nuclear interactions producing stable nuclei of virtually every element in the periodic table. A high-power electron beam pulse striking a small metallic target is used to create the extreme dynamic environment. Material analysis studies detect an anomalously high presence of new chemical elements in the remnants of the exploded target supporting theoretical conjectures of the experiment. These results provide strong motivation to continue our research looking for additional proofs that heavy element nucleosynthesis is possible in pulsed power laboratory.

  15. High Average Power, High Energy Short Pulse Fiber Laser System

    SciTech Connect

    Messerly, M J

    2007-11-13

    Recently continuous wave fiber laser systems with output powers in excess of 500W with good beam quality have been demonstrated [1]. High energy, ultrafast, chirped pulsed fiber laser systems have achieved record output energies of 1mJ [2]. However, these high-energy systems have not been scaled beyond a few watts of average output power. Fiber laser systems are attractive for many applications because they offer the promise of high efficiency, compact, robust systems that are turn key. Applications such as cutting, drilling and materials processing, front end systems for high energy pulsed lasers (such as petawatts) and laser based sources of high spatial coherence, high flux x-rays all require high energy short pulses and two of the three of these applications also require high average power. The challenge in creating a high energy chirped pulse fiber laser system is to find a way to scale the output energy while avoiding nonlinear effects and maintaining good beam quality in the amplifier fiber. To this end, our 3-year LDRD program sought to demonstrate a high energy, high average power fiber laser system. This work included exploring designs of large mode area optical fiber amplifiers for high energy systems as well as understanding the issues associated chirped pulse amplification in optical fiber amplifier systems.

  16. Design and development of repetitive capacitor charging power supply based on series-parallel resonant converter topology

    NASA Astrophysics Data System (ADS)

    Patel, Ankur; Nagesh, K. V.; Kolge, Tanmay; Chakravarthy, D. P.

    2011-04-01

    LCL resonant converter based repetitive capacitor charging power supply (CCPS) is designed and developed in the division. The LCL converter acts as a constant current source when switching frequency is equal to the resonant frequency. When both resonant inductors' values of LCL converter are same, it results in inherent zero current switching (ZCS) in switches. In this paper, ac analysis with fundamental frequency approximation of LCL resonant tank circuit, frequency dependent of current gain converter followed by design, development, simulation, and practical result is described. Effect of change in switching frequency and resonant frequency and change in resonant inductors ratio on CCPS will be discussed. An efficient CCPS of average output power of 1.2 kJ/s, output voltage 3 kV, and 300 Hz repetition rate is developed in the division. The performance of this CCPS has been evaluated in the laboratory by charging several values of load capacitance at various repetition rates. These results indicate that this design is very feasible for use in capacitor-charging applications.

  17. Design and development of repetitive capacitor charging power supply based on series-parallel resonant converter topology.

    PubMed

    Patel, Ankur; Nagesh, K V; Kolge, Tanmay; Chakravarthy, D P

    2011-04-01

    LCL resonant converter based repetitive capacitor charging power supply (CCPS) is designed and developed in the division. The LCL converter acts as a constant current source when switching frequency is equal to the resonant frequency. When both resonant inductors' values of LCL converter are same, it results in inherent zero current switching (ZCS) in switches. In this paper, ac analysis with fundamental frequency approximation of LCL resonant tank circuit, frequency dependent of current gain converter followed by design, development, simulation, and practical result is described. Effect of change in switching frequency and resonant frequency and change in resonant inductors ratio on CCPS will be discussed. An efficient CCPS of average output power of 1.2 kJ/s, output voltage 3 kV, and 300 Hz repetition rate is developed in the division. The performance of this CCPS has been evaluated in the laboratory by charging several values of load capacitance at various repetition rates. These results indicate that this design is very feasible for use in capacitor-charging applications. PMID:21529043

  18. Effects of repetitive pulsing on multi-kHz planar laser-induced incandescence imaging in laminar and turbulent flames

    DOE PAGES

    Michael, James B.; Venkateswaran, Prabhakar; Shaddix, Christopher R.; Meyer, Terrence R.

    2015-04-08

    Planar laser-induced incandescence (LII) imaging is reported at repetition rates up to 100 kHz using a burst-mode laser system to enable studies of soot formation dynamics in highly turbulent flames. Furthermore, to quantify the accuracy and uncertainty of relative soot volume fraction measurements, the temporal evolution of the LII field in laminar and turbulent flames is examined at various laser operating conditions. Under high-speed repetitive probing, it is found that LII signals are sensitive to changes in soot physical characteristics when operating at high laser fluences within the soot vaporization regime. For these laser conditions, strong planar LII signals aremore » observed at measurement rates up to 100 kHz but are primarily useful for qualitative tracking of soot structure dynamics. However, LII signals collected at lower fluences allow sequential planar measurements of the relative soot volume fraction with a sufficient signal-to-noise ratio at repetition rates of 10–50 kHz. Finally, guidelines for identifying and avoiding the onset of repetitive probe effects in the LII signals are discussed, along with other potential sources of measurement error and uncertainty.« less

  19. Effects of repetitive pulsing on multi-kHz planar laser-induced incandescence imaging in laminar and turbulent flames

    SciTech Connect

    Michael, James B.; Venkateswaran, Prabhakar; Shaddix, Christopher R.; Meyer, Terrence R.

    2015-04-08

    Planar laser-induced incandescence (LII) imaging is reported at repetition rates up to 100 kHz using a burst-mode laser system to enable studies of soot formation dynamics in highly turbulent flames. Furthermore, to quantify the accuracy and uncertainty of relative soot volume fraction measurements, the temporal evolution of the LII field in laminar and turbulent flames is examined at various laser operating conditions. Under high-speed repetitive probing, it is found that LII signals are sensitive to changes in soot physical characteristics when operating at high laser fluences within the soot vaporization regime. For these laser conditions, strong planar LII signals are observed at measurement rates up to 100 kHz but are primarily useful for qualitative tracking of soot structure dynamics. However, LII signals collected at lower fluences allow sequential planar measurements of the relative soot volume fraction with a sufficient signal-to-noise ratio at repetition rates of 10–50 kHz. Finally, guidelines for identifying and avoiding the onset of repetitive probe effects in the LII signals are discussed, along with other potential sources of measurement error and uncertainty.

  20. Technology and engineering aspects of high power pulsed single longitudinal mode dye lasers

    NASA Astrophysics Data System (ADS)

    Rawat, V. S.; Mukherjee, Jaya; Gantayet, L. M.

    2015-09-01

    Tunable single mode pulsed dye lasers are capable of generating optical radiations in the visible range having very small bandwidths (transform limited), high average power (a few kW) at a high pulse repetition rate (a few tens of kHz), small beam divergence and relatively higher efficiencies. These dye lasers are generally utilized laser dyes dissolved in solvents such as water, heavy water, ethanol, methanol, etc. to provide a rapidly flowing gain medium. The dye laser is a versatile tool, which can lase either in the continuous wave (CW) or in the pulsed mode with pulse duration as small as a few tens of femtoseconds. In this review, we have examined the several cavity designs, various types of gain mediums and numerous types of dye cell geometries for obtaining the single longitudinal mode pulsed dye laser. Different types of cavity configuration, such as very short cavity, short cavity with frequency selective element and relatively longer cavity with multiple frequency selective elements were reviewed. These single mode lasers have been pumped by all kinds of pumping sources such as flash lamps, Excimer, Nitrogen, Ruby, Nd:YAG, Copper Bromide and Copper Vapor Lasers. The single mode dye lasers are either pumped transversely or longitudinally to the resonator axis. The pulse repletion rate of these pump lasers were ranging from a few Hz to a few tens of kHz. Physics technology and engineering aspects of tuning mechanism, mode hop free scanning and dye cell designs are also presented in this review. Tuning of a single mode dye laser with a resolution of a few MHz per step is a technologically challenging task, which is discussed here.

  1. POWER RECYCLING OF BURST-MODE LASER PULSES FOR LASER PARTICLE INTERACTIONS

    SciTech Connect

    Liu, Yun

    2016-01-01

    A number of laser-particle interaction experiments such as the laser assisted hydrogen ion beam stripping or X-/ -ray generations via inverse-Compton scattering involve light sources operating in a burst mode to match the tem-poral structure of the particle beam. To mitigate the laser power challenge, it is important to make the interaction inside an optical cavity to recycle the laser power. In many cases, conventional cavity locking techniques will not work since the burst normally has a very small duty factor and low repetition rate and it is impossible to gen-erate an effective control signal. This work reports on the development of a doubly-resonant optical cavity scheme and its locking techniques that enables a simultaneous resonance of two laser beams with different spectra and/or temporal structures. We demonstrate that such a cavity can be used to recycle burst-mode ultra-violet laser pulses with arbitrary burst lengths and repetition rates.

  2. Pulsed power drivers for ICF and high energy density physics

    NASA Astrophysics Data System (ADS)

    Ramirez, Juan J.; Matzen, M. Keith; McDaniel, Dillon H.

    Nanosecond Pulsed Power Science and Technology has its origins in the 1960s and over the past decade has matured into a flexible and robust discipline capable of addressing key physics issues of importance to Inertial Confinement Fusion (ICF) and high Energy Density Physics. The major leverage provided by pulsed power is its ability to generate and deliver high energy and high power at low cost and high efficiency. A low-cost, high-efficiency driver is important because of the very large capital investment required for multi-megajoule ignition-class systems. High efficiency is of additional importance for a commercially viable inertial fusion energy option. Nanosecond pulsed power has been aggressively and successfully developed at Sandia over the past twenty years. This effort has led to the development of unique multi-purpose facilities supported by highly capable diagnostic, calculational and analytic capabilities. The Sandia Particle-beam Fusion Program has evolved as part of an integrated national ICF Program. It applies the low-cost, high-efficiency leverage provided by nanosecond pulsed power systems to the longer-term goals of the national program, i.e., the Laboratory Microfusion Facility and Inertial Fusion Energy. A separate effort has led to the application of nanosecond pulsed power to the generation of intense, high-energy laboratory x-ray sources for application to x-ray laser and radiation effects science research. Saturn is the most powerful of these sources to date. It generates (approximately) 500 kilojoules of x-rays from a magnetically driven implosion (Z-pinch). This paper describes results of x-ray physics experiments performed on Saturn, plans for a new Z-pinch drive capability for PBFA-2, and a design concept for the proposed (approximately) 15 MJ Jupiter facility. The opportunities for ICF-relevant research using these facilities will also be discussed.

  3. Pulsed power -- Research and technology at Sandia National Laboratories

    SciTech Connect

    1981-12-31

    Over the past 15 years, steady and sometimes exciting progress has been made in the hybrid technology called Pulsed Power. Based on both electrical engineering and physics, pulsed power involves the generation, modification, and use of electrical pulses up to the multitrillion-watt and multimillion-volt ranges. The final product of these powerful pulses can take diverse forms--hypervelocity projectiles or imploding liners, energetic and intense particle beams, X-ray and gamma-ray pulses, laser light beams that cover the spectrum from ultraviolet to infrared, or powerful microwave bursts. At first, the needs of specific applications largely shaped research and technology in this field. New the authors are beginning to see the reverse--new applications arising from technical capabilities that until recently were though impossible. Compressing and heating microscopic quantities of matter until they reach ultra-high energy density represents one boundary of their scientific exploration. The other boundary might be a defensive weapon that can project vast amounts of highly directed energy over long distances. Other applications of the technology may range from the use of electron beams to sterilize sewage, to laboratory simulation of radiation effects on electronics, to electromagnetic launchings of projectiles into earth or into solar orbits. Eventually the authors hope to use pulsed power to produce an inexhaustible supply of energy by means of inertial confinement fusion (ICF)--a technique for heating and containing deuterium-tritium fuel through compression. Topics covered here are: (1) inertial confinement fusion; (2) simulation technology; (3) development of new technology; and (4) application to directed energy technologies.

  4. Detailed performance modeling of a pulsed high-power single-frequency Ti:sapphire laser.

    PubMed

    Wagner, Gerd; Wulfmeyer, Volker; Behrendt, Andreas

    2011-11-01

    Differential absorption lidar (DIAL) is a unique technique for profiling water vapor from the ground up to the lower stratosphere. For accurate measurements, the DIAL laser transmitter has to meet stringent requirements. These include high average power (up to 10 W) and high single-shot pulse energy, a spectral purity >99.9%, a frequency instability <60 MHz rms, and narrow spectral bandwidth (single-mode, <160 MHz). We describe extensive modeling efforts to optimize the resonator design of a Ti:sapphire ring laser in these respects. The simulations were made for the wavelength range of 820 nm, which is optimum for ground-based observations, and for both stable and unstable resonator configurations. The simulator consists of four modules: (1) a thermal module for determining the thermal lensing of the Brewster-cut Ti:sapphire crystal collinear pumped from both ends with a high-power, frequency-doubled Nd:YAG laser; (2) a module for calculating the in-cavity beam propagations for stable and unstable resonators; (3) a performance module for simulating the pumping efficiency and the laser pulse energy; and (4) a spectral module for simulating injection seeding and the spectral properties of the laser radiation including spectral impurity. Both a stable and an unstable Ti:sapphire laser resonator were designed for delivering an average power of 10 W at a pulse repetition frequency of 250 Hz with a pulse length of approximately 40 ns, satisfying all spectral requirements. Although the unstable resonator design is more complex to align and has a higher lasing threshold, it yields similar efficiency and higher spectral purity at higher overall mode volume, which is promising for long-term routine operations. PMID:22086016

  5. Pulse shortening in high-peak-power Reltron tubes

    NASA Astrophysics Data System (ADS)

    Miller, R. Bruce

    1996-10-01

    Most high-peak-power (>= 100 MW) microwave tubes are seemingly limited to an output RF energy per pulse of about 100 J. While Titan's L-band Reltron tubes have achieved 250 J/pulse, we have also observed pulse-shortening phenomena in both the modulating cavity and output cavity regions. We have examined the effects of construction materials, fabrication techniques, vacuum pressure, and conditioning. We will present data from these experiments and discuss a plausible pulse-shortening hypothesis involving electric- field-induced gas evolution and subsequent ionization. We believe that our energy-per-pulse limitations are the result of our current tube construction approach which uses explosive emission cathodes, plastic insulators, and grids to define cavity boundaries. While some simple extensions of this approach offers some hope for increasing the energy per pulse to perhaps 500 joules in L-band, we believe that achieving >= 1 kJ/pulse will require the use of conventional microwave tube construction techniques, including thermionic cathodes, ceramic insulators, and brazed joining with high-temperature bakeout. We will present the design of an L-band Reltron tube having these features.

  6. Process optimization in high-average-power ultrashort pulse laser microfabrication: how laser process parameters influence efficiency, throughput and quality

    NASA Astrophysics Data System (ADS)

    Schille, Joerg; Schneider, Lutz; Loeschner, Udo

    2015-09-01

    In this paper, laser processing of technical grade stainless steel and copper using high-average-power ultrashort pulse lasers is studied in order to gain deeper insight into material removal for microfabrication. A high-pulse repetition frequency picosecond and femtosecond laser is used in conjunction with high-performance galvanometer scanners and an in-house developed two-axis polygon scanner system. By varying the processing parameters such as wavelength, pulse length, fluence and repetition rate, cavities of standardized geometry are fabricated and analyzed. From the depths of the cavities produced, the ablation rate and removal efficiency are estimated. In addition, the quality of the cavities is evaluated by means of scanning electron microscope micrographs or rather surface roughness measurements. From the results obtained, the influence of the machining parameters on material removal and machining quality is discussed. In addition, it is shown that both material removal rate and quality increase by using femtosecond compared to picosecond laser pulses. On stainless steel, a maximum throughput of 6.81 mm3/min is achieved with 32 W femtosecond laser powers; if using 187 W picosecond laser powers, the maximum is 15.04 mm3/min, respectively. On copper, the maximum throughputs are 6.1 mm3/min and 21.4 mm3/min, obtained with 32 W femtosecond and 187 W picosecond laser powers. The findings indicate that ultrashort pulses in the mid-fluence regime yield most efficient material removal. In conclusion, from the results of this analysis, a range of optimum processing parameters are derived feasible to enhance machining efficiency, throughput and quality in high-rate micromachining. The work carried out here clearly opens the way to significant industrial applications.

  7. Active high-power RF switch and pulse compression system

    DOEpatents

    Tantawi, Sami G.; Ruth, Ronald D.; Zolotorev, Max

    1998-01-01

    A high-power RF switching device employs a semiconductor wafer positioned in the third port of a three-port RF device. A controllable source of directed energy, such as a suitable laser or electron beam, is aimed at the semiconductor material. When the source is turned on, the energy incident on the wafer induces an electron-hole plasma layer on the wafer, changing the wafer's dielectric constant, turning the third port into a termination for incident RF signals, and. causing all incident RF signals to be reflected from the surface of the wafer. The propagation constant of RF signals through port 3, therefore, can be changed by controlling the beam. By making the RF coupling to the third port as small as necessary, one can reduce the peak electric field on the unexcited silicon surface for any level of input power from port 1, thereby reducing risk of damaging the wafer by RF with high peak power. The switch is useful to the construction of an improved pulse compression system to boost the peak power of microwave tubes driving linear accelerators. In this application, the high-power RF switch is placed at the coupling iris between the charging waveguide and the resonant storage line of a pulse compression system. This optically controlled high power RF pulse compression system can handle hundreds of Megawatts of power at X-band.

  8. Accelerating Thick Aluminum Liners Using Pulsed Power

    SciTech Connect

    Kyrala, G.A.; Hammerburg, J.E.; Bowers, D.; Stokes, J.; Morgan, D.V.; Anderson, W.E.; Cochrane, J.C.

    1999-06-28

    The authors have investigated the acceleration of very thick cylindrical aluminum liners using the Pegasus II capacitory bank. These accelerated solid liners will be used to impact other objects at velocities below 1.5 km/sec, allowing one to generate and sustain shocks of a few 100 kilobar for a few microseconds. A cylindrical shell of 1100 series aluminum with an initial inner radius of 23.61 mm, an initial thickness of 3.0 mm, and a height of 20 mm, was accelerated using a current pulse of 7.15 MA peak current and a 7.4 microsecond quarter cycle time. The aluminum shell was imploded within confining copper glide planes with decreasing separation with an inward slope of 8 degrees. At impact with a cylindrical target of diameter 3-cm, the liner was moving at 1.4 km/sec and its thickness increased to 4.5 mm. Radial X-ray radiograms of the liner showed both the liner and the glide plane interface. The curvature of the inner surface of the liner was measured before impact with the 15-mm radius target. The radiograms also showed that the copper glide planes distorted as the liner radius decreased and that some axial stress is induced in the liner. The axial stresses did not affect the inner curvature significantly. Post-shot calculations of the liner behavior indicated that the thickness of the glide plane played a significant role in the distortion of the interface between the liner and the glide plane.

  9. Environmental and industrial applications of pulsed power systems

    SciTech Connect

    Neau, E.L.

    1993-10-01

    The technology base formed by the development of high peak power simulators, laser drivers, free electron lasers (FEL`s), and Inertial Confinement Fusion (ICF) drivers from the early 60`s through the late 80`s is being extended to high average power short-pulse machines with the capabilities of performing new roles in environmental cleanup applications and in supporting new types of industrial manufacturing processes. Some of these processes will require very high average beam power levels of hundreds of kilowatts to perhaps megawatts. In this paper we briefly discuss new technology capabilities and then concentrate on specific application areas that may benefit from the high specific energies and high average powers attainable with short-pulse machines.

  10. Possible high power limitations from RF pulsed heating

    NASA Astrophysics Data System (ADS)

    Pritzkau, David P.; Bowden, Gordon B.; Menegat, Al; Siemann, Robert H.

    1999-05-01

    One of the possible limitations to achieving high power in RF structures is damage to metal surfaces due to RF pulsed heating. Such damage may lead to degradation of RF performance. An experiment to study RF pulsed heating on copper has been developed at SLAC. The experiment consists of operating two pillbox cavities in the TE011 mode using a 50 MW X-Band klystron. The estimated temperature rise of the surface of copper is 350 °C for a power input of 20 MW to each cavity with a pulse length of 1.5 μs. Preliminary results from an experiment performed earlier are presented. A revised design for continued experiments is also presented along with relevant theory and calculations.

  11. Gas-dynamic perturbations in an electric-discharge repetitively pulsed DF laser and the role of He in their suppression

    NASA Astrophysics Data System (ADS)

    Evdokimov, P. A.; Sokolov, D. V.

    2015-11-01

    The gas-dynamic perturbations in a repetitively pulsed DF laser are studied using a Michelson interferometer. Based on the analysis of experimental data obtained in two experimental sets (working medium without buffer gas and with up to 90% of He), it is concluded that such phenomena as isentropic expansion of a thermal plug, gas heating by shock waves and resonance acoustic waves do not considerably decrease the upper limit of the pulse repetition rate below a value determined by the time of the thermal plug flush out of the discharge gap. It is suggested that this decrease for a DF laser with the SF6 - D2 working mixture is caused by the development of overheat instability due to an increased energy deposition into the near-electrode regions and to the formation of electrode shock waves. Addition of He to the active media of the DF laser changes the discharge structure and improves its homogeneity over the discharge gape cross section, thus eliminating the reason for the development of this instability. A signification dilution of the active medium of a DF laser with helium up to the atmospheric pressure allowed us to achieve the limiting discharge initiation frequencies with the active medium replacement ratio K ~ 1.

  12. Warm dense mater: another application for pulsed power hydrodynamics

    SciTech Connect

    Reinovsky, Robert Emil

    2009-01-01

    Pulsed Power Hydrodynamics (PPH) is an application of low-impedance pulsed power, and high magnetic field technology to the study of advanced hydrodynamic problems, instabilities, turbulence, and material properties. PPH can potentially be applied to the study of the properties of warm dense matter (WDM) as well. Exploration of the properties of warm dense matter such as equation of state, viscosity, conductivity is an emerging area of study focused on the behavior of matter at density near solid density (from 10% of solid density to slightly above solid density) and modest temperatures ({approx}1-10 eV). Conditions characteristic of WDM are difficult to obtain, and even more difficult to diagnose. One approach to producing WDM uses laser or particle beam heating of very small quantities of matter on timescales short compared to the subsequent hydrodynamic expansion timescales (isochoric heating) and a vigorous community of researchers are applying these techniques. Pulsed power hydrodynamic techniques, such as large convergence liner compression of a large volume, modest density, low temperature plasma to densities approaching solid density or through multiple shock compression and heating of normal density material between a massive, high density, energetic liner and a high density central 'anvil' are possible ways to reach relevant conditions. Another avenue to WDM conditions is through the explosion and subsequent expansion of a conductor (wire) against a high pressure (density) gas background (isobaric expansion) techniques. However, both techniques demand substantial energy, proper power conditioning and delivery, and an understanding of the hydrodynamic and instability processes that limit each technique. In this paper we will examine the challenges to pulsed power technology and to pulsed power systems presented by the opportunity to explore this interesting region of parameter space.

  13. High (1 GHz) repetition rate compact femtosecond laser: A powerful multiphoton tool for nanomedicine and nanobiotechnology

    NASA Astrophysics Data System (ADS)

    Ehlers, A.; Riemann, I.; Martin, S.; Le Harzic, R.; Bartels, A.; Janke, C.; König, K.

    2007-07-01

    Multiphoton tomography of human skin and nanosurgery of human chromosomes have been performed with a 1GHz repetition rate laser by the use of the commercially available femtosecond multiphoton laser tomograph DermaInspect as well as a compact galvoscanning microscope. We performed the autofluorescence tomography up to 100μm in the depth of human skin. Submicron cutting lines and hole drillings have been conducted on labeled human chromosomes.

  14. High peak power optical pulses generated with a monolithic master-oscillator power amplifier.

    PubMed

    Wenzel, Hans; Schwertfeger, Sven; Klehr, Andreas; Jedrzejczyk, Daniel; Hoffmann, Thomas; Erbert, Götz

    2012-06-01

    We present results on a monolithic semiconductor-based master-oscillator power amplifier (MOPA) combining a distributed-feedback (DFB) laser and a tapered amplifier on a single chip. The MOPA reaches an output power of almost 12 W at an emission wavelength around 1064 nm in continuous-wave operation. Pulses with a length of around 100 ps can be obtained either by injecting nanosecond current pulses into the tapered amplifier alone or into both the DFB laser and the tapered amplifier. In the latter case, pulses with a width of 84 ps, a peak power of 42 W, and a spectral width of 160 pm are generated. PMID:22660042

  15. Power enhancement of burst-mode UV pulses using a doubly-resonant optical cavity

    DOE PAGES

    Rahkman, Abdurahim; Notcutt, Mark; Liu, Yun

    2015-11-24

    We report a doubly-resonant enhancement cavity (DREC) that can realize a simultaneous enhancement of two incoming laser beams at different wavelengths and different temporal structures. The double-resonance condition is theoretically analyzed and different DREC locking methods are experimentally investigated. Simultaneous locking of a Fabry-Perot cavity to both an infrared (IR, 1064 nm) and its frequency tripled ultraviolet (UV, 355 nm) pulses has been demonstrated by controlling the frequency difference between the two beams with a fiber optic frequency shifter. The DREC technique opens a new paradigm in the applications of optical cavities to power enhancement of burst-mode lasers with arbitrarymore » macropulse width and repetition rate.« less

  16. Plasma regimes in high power pulsed magnetron sputtering

    NASA Astrophysics Data System (ADS)

    de Los Arcos, Teresa

    2013-09-01

    High Power Pulsed Magnetron Sputtering (HPPMS) is a relatively recent variation of magnetron sputtering where high power is applied to the magnetron in short pulses. The result is the formation of dense transient plasmas with a high fraction of ionized species, ideally leading to better control of film growth through substrate bias. However, the broad range of experimental conditions accessible in pulsed discharges results in bewildering variations in current and voltage pulse shapes, pulse power densities, etc, which represent different discharge behaviors, making it difficult to identify relevant deposition conditions. The complexity of the plasma dynamics is evident. Within each pulse, plasma characteristics such as plasma composition, density, gas rarefaction, spatial distribution, degree of self-sputtering, etc. vary with time. A recent development has been the discovery that the plasma emission can self-organize into well-defined regions of high and low plasma emissivity above the racetrack (spokes), which rotate in the direction given by the E ×B drift and that significantly influence the transport mechanisms in HPPMS. One seemingly universal characteristic of HPPMS plasmas is the existence of well defined plasma regimes for different power ranges. These regimes are clearly differentiated in terms of plasma conductivity, plasma composition and spatial plasma self-organization. We will discuss the global characteristics of these regimes in terms of current-voltage characteristics, energy-resolved QMS and OES analysis, and fast imaging. In particular we will discuss how the reorganization of the plasma emission into spokes is associated only to specific regimes of high plasma conductivity. We will also briefly discuss the role of the target in shaping the characteristics of the HPPMS plasma, since sputtering is a surface-driven process. This work was supported by the Deutsche Forschungsgemeinschaft (DFG) within the framework of the SFB-TR87.

  17. Frequency-Domain Methods for Characterization of Pulsed Power Diagnostics

    SciTech Connect

    White, A D; Anderson, R A; Ferriera, T J; Goerz, D A

    2009-07-27

    This paper discusses methods of frequency-domain characterization of pulsed power sensors using vector network analyzer and spectrum analyzer techniques that offer significant simplification over time-domain methods, while mitigating or minimizing the effect of the difficulties present in time domain characterization. These methods are applicable to characterization of a wide variety of sensors.

  18. Evaluation of pulse power devices in electric vehicle propulsion systems

    SciTech Connect

    Burke, A.F. ); Dowgiallo, E.J. )

    1990-01-01

    The application of pulse power devices in electric vehicle propulsion systems to load level the main energy storage battery has been studied. Both high energy density capacitors (ultracapacitors) and high power density, bipolar batteries are considered. Computer simulations of vehicle operation with hybrid (two power source) powertrains indicated the energy storage capacities of the pulse power devices required to load level the main battery are 300 to 500 Wh for the capacitors and 5 to 10 Ah for the bipolar batteries can be reduced from 79 W/kg to about 40 W/kg depending on the vehicle gradeability (speed, percent grade, and length of grade) desired. Evaluation of the status of the technology for the pulse power devices indicated that for both devices, improvements in technology are needed before the devices can be used in EV applications. In the case of the ultracapacitor, the energy density of present devices are 1 to 2 Wh/kg. A minimum energy density of about 5 Wh/kg is needed for electric vehicle applications. Progress in increasing the energy density of ultracapacitors has been rapid in recent years and the prospects for meeting the 5 Wh/kg requirement for EVs appear to be good. For bipolar batteries, a minimum power density of 500 W/kg is needed and the internal resistance must be reduced by about a factor of ten from that found in present designs.

  19. High repetition-rate neutron generation by several-mJ, 35 fs pulses interacting with free-flowing D2O

    NASA Astrophysics Data System (ADS)

    Hah, J.; Petrov, G. M.; Nees, J. A.; He, Z.-H.; Hammig, M. D.; Krushelnick, K.; Thomas, A. G. R.

    2016-10-01

    Using several-mJ energy pulses from a high-repetition rate (1/2 kHz), ultrashort (35 fs) pulsed laser interacting with a ˜ 10 μm diameter stream of free-flowing heavy water (D2O), we demonstrate a 2.45 MeV neutron flux of 105/s. Operating at high intensity (of order 1019 W/cm2), laser pulse energy is efficiently absorbed in the pre-plasma, generating energetic deuterons. These collide with deuterium nuclei in both the bulk target and the large volume of low density D2O vapor surrounding the target to generate neutrons through d ( d , n ) 3 He reactions. The neutron flux, as measured by a calibrated neutron bubble detector, increases as the laser pulse energy is increased from 6 mJ to 12 mJ. A quantitative comparison between the measured flux and the results derived from 2D-particle-in-cell simulations shows comparable neutron fluxes for laser characteristics similar to the experiment. The simulations reveal that there are two groups of deuterons. Forward moving deuterons generate deuterium-deuterium fusion reactions in the D2O stream and act as a point source of neutrons, while backward moving deuterons propagate through the low-density D2O vapor filled chamber and yield a volumetric source of neutrons.

  20. High-energy femtosecond Yb-doped all-fiber monolithic chirped-pulse amplifier at repetition rate of 1 MHz

    NASA Astrophysics Data System (ADS)

    Lv, Zhi-Guo; Teng, Hao; Wang, Li-Na; Wang, Jun-Li; Wei, Zhi-Yi

    2016-09-01

    A high-energy femtosecond all ytterbium fiber amplifier based on a chirped-pulse amplification (CPA) technique at a repetition rate of 1 MHz seeded by a dispersion-management mode-locked picosecond broadband oscillator is studied. We find that the compressed pulse duration is dependent on the amplified energy, the pulse duration of 804 fs corresponds to the maximum amplified energy of 10.5 μJ, while the shortest pulse duration of 424 fs corresponds to the amplified energy of 6.75 μJ. The measured energy fluctuation is approximately 0.46% root mean square (RMS) over 2 h. The low-cost femtosecond fiber laser source with super-stability will be widely used in industrial micromachines, medical therapy, and scientific studies. Project supported by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (Grant No. 2012BAC23B03), the National Key Basic Research Program of China (Grant No. 2013CB922401), and the National Natural Science Foundation of China (Grant No. 11474002).

  1. The Neuronal Responses to Repetitive Acoustic Pulses in Different Fields of the Auditory Cortex of Awake Rats

    PubMed Central

    Ma, Lanlan; Tai, Xuhui; Su, Liye; Shi, Lijuan; Wang, Enhua; Qin, Ling

    2013-01-01

    Cortical representation of time-varying features of acoustic signals is a fundamental issue of acoustic processing remaining unresolved. The rat is a widely used animal model for auditory cortical processing. Though some electrophysiological studies have investigated the neural responses to temporal repetitive sounds in the auditory cortex (AC) of rats, most of them were conducted under anesthetized condition. Recently, it has been shown that anesthesia could significantly alter the temporal patterns of neural response. For this reason, we systematically examined the single-unit neural responses to click-trains in the core region of rat AC under awake condition. Consistent with the reports on anesthetized rats, we confirmed the existence of characteristic tonotopic organizations, which were used to divide the AC into anterior auditory field (AAF), primary auditory cortex (A1) and posterior auditory field (PAF). We further found that the neuron's capability to synchronize to the temporal repetitive stimuli progressively decreased along the anterior-to-posterior direction of AC. The median of maximum synchronization rate was 64, 32 and 16 Hz in AAF, A1 and PAF, respectively. On the other hand, the percentage of neurons, which showed non-synchronized responses and could represent the stimulus repetition rate by the mean firing rate, increased from 7% in AAF and A1 to 20% in PAF. These results suggest that the temporal resolution of acoustic processing gradually increases from the anterior to posterior part of AC, and thus there may be a hierarchical stream along this direction of rat AC. PMID:23696877

  2. Bubble Phenomena caused by High Repetitive Plasmas in Water

    NASA Astrophysics Data System (ADS)

    Akiyama, Masahiro; Oikawa, Takuma; Fue, Masatoshi; Ogata, Ryoma; Takaki, Koich; Akiyama, Hidenori; Iwate Univ Team; Kumamoto Univ Collaboration

    2015-09-01

    Streamer discharges in water were generated by a pulsed power generator. The streamer shape changed depending on pulse repetition rate. Streamer discharges at 500 pulses per second (pps) resulted in a ball shape. Under this formation, small bubbles gather near the electrode tip. Our aims are the analysis and discussion of the bubble phenomena caused by high repetitive plasmas produced in water. Pulsed power with a maximum output of 1 J/pulse was applied to an electrode of 0.8 mm in diameter covered by an insulator of 2 mm thickness. The electrode was inserted into tap water with conductivity of 170 uS/cm. The polarity was positive. Phenomena, in which the resulting gas bubbles oscillate and gather, were found to have an important role in producing ball shape streamer discharges.

  3. Multi-color carrier-envelope-phase stabilization for high-repetition-rate multi-pulse coherent synthesis.

    PubMed

    McCracken, Richard A; Gianani, Ilaria; Wyatt, Adam S; Reid, Derryck T

    2015-04-01

    Using a zero-offset carrier-envelope locking technique, we have synthesized an octave-spanning composite frequency comb exhibiting 132-attosecond timing jitter between the constituent pulses over a one-second observation window. In the frequency domain, this composite comb has a modal structure and coherence which are indistinguishable from those of a comb that might be produced by a hypothetical single mode locked oscillator of equivalent bandwidth. The associated phase stability enables the participating multi-color pulse sequences to be coherently combined, representing an example of multi-pulse synthesis using a femtosecond oscillator.

  4. Workshop on Solid State Switches for Pulsed Power

    NASA Astrophysics Data System (ADS)

    Portnoy, W. M.; Kristiansen, M.

    1983-05-01

    A Workshop on Solid State Pulsed Power Switching was conducted by Texas Tech U at Tamarron, Colorado, in January, 1983 for the US Army Research Office. The Workshop addressed the state-of-the-art in solid state switching, particularly semiconductor switches, and new solid state related switching concepts for pulsed power applications. An important objective of the Workshop was to establish research priorities. Group discussions were augmented by invited presentations. The principal topics included opening switches, high power closing switches, extremely fast risetime closing switches and state transition switches; devices of particular interest were thyristors, avalanche switches and the optically triggered intrinsic switch. The invited papers, along with summaries of the Working Group discussions and recommendations, are presented in this report. A general summary, including suggested research topics, is included.

  5. Optically isolated, 2 kHz repetition rate, 4 kV solid-state pulse trigger generator.

    PubMed

    Barnett, D H; Parson, J M; Lynn, C F; Kelly, P M; Taylor, M; Calico, S; Scott, M C; Dickens, J C; Neuber, A A; Mankowski, J J

    2015-03-01

    This paper presents the design and operation characteristics of a solid-state high voltage pulse generator. Its primary utilization is aimed at triggering a gaseous spark gap with high repeatability. Specifically, the trigger generator is designed to achieve a risetime on the order of 0.1 kV/ns to trigger the first stage, trigatron spark gap of a 10-stage, 500 kV Marx generator. The major design components are comprised of a 60 W constant current DC-DC converter for high voltage charging, a single 4 kV thyristor, a step-up pulse transformer, and magnetic switch for pulse steepening. A risetime of <30 ns and pulse magnitude of 4 kV is achieved matching the simulated performance of the design.

  6. Optically isolated, 2 kHz repetition rate, 4 kV solid-state pulse trigger generator

    NASA Astrophysics Data System (ADS)

    Barnett, D. H.; Parson, J. M.; Lynn, C. F.; Kelly, P. M.; Taylor, M.; Calico, S.; Scott, M. C.; Dickens, J. C.; Neuber, A. A.; Mankowski, J. J.

    2015-03-01

    This paper presents the design and operation characteristics of a solid-state high voltage pulse generator. Its primary utilization is aimed at triggering a gaseous spark gap with high repeatability. Specifically, the trigger generator is designed to achieve a risetime on the order of 0.1 kV/ns to trigger the first stage, trigatron spark gap of a 10-stage, 500 kV Marx generator. The major design components are comprised of a 60 W constant current DC-DC converter for high voltage charging, a single 4 kV thyristor, a step-up pulse transformer, and magnetic switch for pulse steepening. A risetime of <30 ns and pulse magnitude of 4 kV is achieved matching the simulated performance of the design.

  7. High average/peak power linearly polarized all-fiber picosecond MOPA seeded by mode-locked noise-like pulses

    NASA Astrophysics Data System (ADS)

    Yu, H. L.; Ma, P. F.; Tao, R. M.; Wang, X. L.; Zhou, P.; Chen, J. B.

    2015-06-01

    The characteristics of mode-locked noise-like pulses generated from a passively mode-locked fiber oscillator are experimentally investigated. By carefully adjusting the two polarization controllers, stable mode-locked noise-like pulse emission with a high radio frequency signal/noise ratio of  >55 dB is successfully achieved, ensuring the safety and possibility of high power amplification. To investigate the amplification characteristics of such pulses, one all-fiber master oscillator power amplifier (MOPA) is built to boost the power and energy of such pulses. Amplified noise-like pulses with average output power of 423 W, repetition rate of 18.71 MHz, pulse energy of 22.61 μJ, pulse duration of 72.1 ps and peak power of 314 kW are obtained. Near diffraction-limited beam is also demonstrated with M2 factor measured at full power operation of ~1.2 in the X and Y directions. The polarization extinction ratio at output power of 183 W is measured to be ~13 dB. To the best of our knowledge, this is the first demonstration of high-power amplification of noise-like pulses and the highest peak power ever reported in all-fiber picosecond MOPAs. The temporal self-compression process of such pulses and high peak power when amplified make it an ideal pump source for generation of high-power supercontinuum. Other potential applications, such as material processing and optical coherent tomography, could also be foreseen.

  8. Final design of the control and auxiliary systems for the Balcones 60 MJ homopolar pulse power supply

    NASA Astrophysics Data System (ADS)

    Hildenbrand, D. J.; Pichot, M. A.; Price, J. H.

    1986-11-01

    Design criteria and features of a 60 MJ pulse power supply to be operated at the Center for Electromechanics at the University of Texas are described. The system is driven by six 10 MJ homopolar generators (HPG) which can be operated in series, in parallel, or in combination configurations. Component modularity, operational dependability, repetition rate, maintainability, drive train simplicity and failsafe operation criteria were met in the final design. The generators have removable brush assemblies and water cooled field coil assemblies and hydrostatic bearings. A block diagram is provided of the control I-O architecture and back-up systems and operational procedures are outlined.

  9. High power fiber MOPA based QCW laser delivering pulses with arbitrary duration on demand at high modulation bandwidth.

    PubMed

    Petkovšek, Rok; Novak, Vid; Agrež, Vid

    2015-12-28

    We report on a concept of a fiber MOPA based quasi-CW laser working at high modulation bandwidths up to 40 MHz capable of producing arbitrary pulse durations at arbitrary repetition rates. An output power of over 100 W was achieved and an on-off contrast of 25 dB. The laser features a dual-channel (dual-wavelength) seed source, a double stage YDF amplifier and a volume-Bragg-grating-based signal de-multiplexer. Minimization of transients was conducted through experiment and model analysis. PMID:26831982

  10. Topics in high voltage pulsed power plasma devices and applications

    NASA Astrophysics Data System (ADS)

    Chen, Hao

    Pulsed power technology is one of the tools that is used by scientists and engineers nowadays to produce gas plasmas. The transient ultra high power is able to provide a huge pulse of energy which is sometimes greater than the ionization energy of the gas, and therefore separates the ions and electrons to form the plasma. Sometimes, the pulsed power components themselves are plasma devices. For example, the gas type switches can "turn on" the circuit by creating the plasma channel between the switch electrodes. Mini Back Lighted Thyratron, or as we call it, mini-BLT, is one of these gas type plasma switches. The development of the reduced size and weight "mini-BLT" is presented in this dissertation. Based on the operation characteristics testing of the mini-BLT, suggestions of optimizing the design of the switch are proposed. All the factors such as the geometry of the hollow electrodes and switch housing, the gas condition, the optical triggering source, etc. are necessary to consider when we design and operate the mini-BLT. By reducing the diameter of the cylindrical gas path between the electrodes in the BLT, a novel high density plasma source is developed, producing the plasma in the "squeezed" capillary. The pulsed power generator, of course, is inevitably used to provide the ionization energy for hydrogen gas sealed in the capillary. Plasma diagnostics are necessarily analyzed and presented in detail to properly complete and understand the capillary plasma. This high density plasma source (1019 cm-3) has the potential applications in the plasma wakefield accelerator. The resonant oscillation behavior of the particles in plasmas allows for dynamically generated accelerating electric fields that have orders of magnitude larger than those available in the conventional RF accelerators. Finally, the solid state switches are introduced as a comparison to the gas type switch. Pulsed power circuit topologies such as the Marx Bank, magnetic pulse compression and diode

  11. Design of kW level picosecond compressor of pump pulses for high power OPCPA

    NASA Astrophysics Data System (ADS)

    Bakule, Pavel; Novák, Jakub; Kramer, Daniel; Strkula, Petr; Novák, Miroslav; Hřebíček, Jan; Koutris, Efstratios; Zervos, Charalampos; Baše, Radek; Batysta, František; Hubka, Zbyněk.; Green, Jonathan T.; Rus, Bedřich

    2013-05-01

    We present a design of a high average power vacuum compressor unit for 1 kHz repetition rate pump laser operating at 1030 nm. The unit comprises two compressors and two SHG units located in a common vacuum vessel. Both compressors are designed with GDD of -270.5 ps2 for compressing high energy, 1J, 500 ps pulses to 1.5 ps duration with efficiency that exceeds 88.5%. We also considered the feasibility of high efficiency, average power conversion to 515 nm in a range of nonlinear crystals in vacuum. The calculated temperature profiles in large aperture crystals are compared with temperature acceptance bandwidths for the second harmonic generation. It is concluded that in LBO and YCOB crystals the conversion efficiency can exceed 60%, thus allowing generation of 1 kHz train of 1.5 ps pulses at 515 nm with energy exceeding 0.5 J that will be used for pumping the high energy amplifier stages of a femtosecond OPCPA system.

  12. DC Studies of Coaxial Vacuum Gap Breakdown for Pulsed Power Liners

    NASA Astrophysics Data System (ADS)

    Meisenhelder, C. M.; Bott-Suzuki, S. C.; Haas, D. M.

    2013-10-01

    Previously, pulsed power loads for inertial fusion have been envisioned as cylindrical wire arrays, which could easily be constrained to be in contact with both electrodes for a good electrical connection. Recently, solid liners have become the load of choice for Magnetized Liner Inertial Fusion (MagLIF) experiments which are currently being conducted on the Z-Machine at Sandia National Laboratory. These liners cannot easily be constrained as previous wire loads were, particularly for a repetitive system. The result is a vacuum gap between the driver electrodes and load, which may have unknown effects on the stability and development of the plasma system. DC voltages up to 30 kV will be applied to coaxial electrodes in vacuum to simulate a variety of possible gap parameters for pulsed power liners. This work investigates the breakdown-timing, azimuthal symmetry and coupling of the driver energy to the load as a function of gap parameters to better understand the subsequent behavior of a liner load. Supported by the National Undergraduate Fellowship Program in Plasma Physics and Fusion Energy Sciences and under DE-NA0001836 and GA IR&D funding.

  13. Ruthenium Oxide Electrochemical Super Capacitor Optimization for Pulse Power Applications

    NASA Technical Reports Server (NTRS)

    Merryman, Stephen A.; Chen, Zheng

    2000-01-01

    Electrical actuator systems are being pursued as alternatives to hydraulic systems to reduce maintenance time, weight and costs while increasing reliability. Additionally, safety and environmental hazards associated with the hydraulic fluids can be eliminated. For most actuation systems, the actuation process is typically pulsed with high peak power requirements but with relatively modest average power levels. The power-time requirements for electrical actuators are characteristic of pulsed power technologies where the source can be sized for the average power levels while providing the capability to achieve the peak requirements. Among the options for the power source are battery systems, capacitor systems or battery-capacitor hybrid systems. Battery technologies are energy dense but deficient in power density; capacitor technologies are power dense but limited by energy density. The battery-capacitor hybrid system uses the battery to supply the average power and the capacitor to meet the peak demands. It has been demonstrated in previous work that the hybrid electrical power source can potentially provide a weight savings of approximately 59% over a battery-only source. Electrochemical capacitors have many properties that make them well-suited for electrical actuator applications. They have the highest demonstrated energy density for capacitive storage (up to 100 J/g), have power densities much greater than most battery technologies (greater than 30kW/kg), are capable of greater than one million charge-discharge cycles, can be charged at extremely high rates, and have non-explosive failure modes. Thus, electrochemical capacitors exhibit a combination of desirable battery and capacitor characteristics.

  14. Generation of 18-fs, multiterawatt pulses by regenerative pulse shaping and chirped-pulse amplification.

    PubMed

    Barty, C P; Guo, T; Le Blanc, C; Raksi, F; Rose-Petruck, C; Squier, J; Wilson, K R; Yakovlev, V V; Yamakawa, K

    1996-05-01

    Transform-limited, 18-fs pulses of 4.4-TW peak power are produced in a Ti:sapphire-based chirped-pulsed amplification system at a repetition rate of 50 Hz. Regenerative pulse shaping is used to control gain narrowing during amplification, and an optimized, quintic-phase-limited dispersion compensation scheme is used to control higher-order phase distortions over a bandwidth of ~100 nm. Seed pulses are temporally stretched >100,000 times before amplification.

  15. Ballistic phonon and thermal radiation transport across a minute vacuum gap in between aluminum and silicon thin films: Effect of laser repetitive pulses on transport characteristics

    NASA Astrophysics Data System (ADS)

    Yilbas, B. S.; Ali, H.

    2016-08-01

    Short-pulse laser heating of aluminum and silicon thin films pair with presence of a minute vacuum gap in between them is considered and energy transfer across the thin films pair is predicted. The frequency dependent Boltzmann equation is used to predict the phonon intensity distribution along the films pair for three cycles of the repetitive short-pulse laser irradiation on the aluminum film surface. Since the gap size considered is within the Casimir limit, thermal radiation and ballistic phonon contributions to energy transfer across the vacuum gap is incorporated. The laser irradiated field is formulated in line with the Lambert's Beer law and it is considered as the volumetric source in the governing equations of energy transport. In order to assess the phonon intensity distribution in the films pair, equivalent equilibrium temperature is introduced. It is demonstrated that thermal separation of electron and lattice sub-systems in the aluminum film, due to the short-pulse laser irradiation, takes place and electron temperature remains high in the aluminum film while equivalent equilibrium temperature for phonons decays sharply in the close region of the aluminum film interface. This behavior is attributed to the phonon boundary scattering at the interface and the ballistic phonon transfer to the silicon film across the vacuum gap. Energy transfer due to the ballistic phonon contribution is significantly higher than that of the thermal radiation across the vacuum gap.

  16. INPIStron switched pulsed power for dense plasma pinches

    NASA Technical Reports Server (NTRS)

    Han, Kwang S.; Lee, Ja H.

    1993-01-01

    The inverse plasma switch INPIStron was employed for 10kJ/40kV capacitor bank discharge system to produce focused dense plasmas in hypocycloidal-pinch (HCP) devices. A single unit and an array of multiple HCP's were coupled as the load of the pulsed power circuit. The geometry and switching plasma dynamics were found advantageous and convenient for commutating the large current pulse from the low impedance transmission line to the low impedance plasma load. The pulse power system with a single unit HCP, the system A, was used for production of high temperature plasma focus and its diagnostics. The radially running down plasma dynamics, revealed in image converter photographs, could be simulated by a simple snow-plow model with a correction for plasma resistivity. The system B with an array of 8-HCP units which forms a long coaxial discharge chamber was used for pumping a Ti-sapphire laser. The intense UV emission from the plasma was frequency shifted with dye-solution jacket to match the absorption band of the Ti crystal laser near 500 nm. An untuned laser pulse energy of 0.6 J/pulse was obtained for 6.4 kJ/40 kV discharge, or near 103 times of the explosion limit of conventional flash lamps. For both systems the advantages of the INPIStron were well demonstrated: a single unit is sufficient for a large current (greater than 50 kA) without increasing the system impedance, highly reliable and long life operation and implied scalability for the high power ranges above I(sub peak) = 1 MA and V(sub hold) = 100 kV.

  17. A 16 MJ compact pulsed power system for electromagnetic launch

    NASA Astrophysics Data System (ADS)

    Dai, Ling; Zhang, Qin; Zhong, Heqing; Lin, Fuchang; Li, Hua; Wang, Yan; Su, Cheng; Huang, Qinghua; Chen, Xu

    2015-07-01

    This paper has established a compact pulsed power system (PPS) of 16 MJ for electromagnetic rail gun. The PPS consists of pulsed forming network (PFN), chargers, monitoring system, and current junction. The PFN is composed of 156 pulse forming units (PFUs). Every PFU can be triggered simultaneously or sequentially in order to obtain different total current waveforms. The whole device except general control table is divided into two frameworks with size of 7.5 m × 2.2 m × 2.3 m. It is important to estimate the discharge current of PFU accurately for the design of the whole electromagnetic launch system. In this paper, the on-state characteristics of pulse thyristor have been researched to improve the estimation accuracy. The on-state characteristics of pulse thyristor are expressed as a logarithmic function based on experimental data. The circuit current waveform of the single PFU agrees with the simulating one. On the other hand, the coaxial discharge cable is a quick wear part in PFU because the discharge current will be up to dozens of kA even hundreds of kA. In this article, the electromagnetic field existing in the coaxial cable is calculated by finite element method. On basis of the calculation results, the structure of cable is optimized in order to improve the limit current value of the cable. At the end of the paper, the experiment current wave of the PPS with the load of rail gun is provided.

  18. Pulsed Power for a Dynamic Transmission Electron Microscope

    SciTech Connect

    dehope, w j; browning, n; campbell, g; cook, e; king, w; lagrange, t; reed, b; stuart, b; Shuttlesworth, R; Pyke, B

    2009-06-25

    Lawrence Livermore National Laboratory (LLNL) has converted a commercial 200kV transmission electron microscope (TEM) into an ultrafast, nanoscale diagnostic tool for material science studies. The resulting Dynamic Transmission Electron Microscope (DTEM) has provided a unique tool for the study of material phase transitions, reaction front analyses, and other studies in the fields of chemistry, materials science, and biology. The TEM's thermionic electron emission source was replaced with a fast photocathode and a laser beam path was provided for ultraviolet surface illumination. The resulting photoelectron beam gives downstream images of 2 and 20 ns exposure times at 100 and 10 nm spatial resolution. A separate laser, used as a pump pulse, is used to heat, ignite, or shock samples while the photocathode electron pulses, carefully time-synchronized with the pump, function as probe in fast transient studies. The device functions in both imaging and diffraction modes. A laser upgrade is underway to make arbitrary cathode pulse trains of variable pulse width of 10-1000 ns. Along with a fast e-beam deflection scheme, a 'movie mode' capability will be added to this unique diagnostic tool. This talk will review conventional electron microscopy and its limitations, discuss the development and capabilities of DTEM, in particularly addressing the prime and pulsed power considerations in the design and fabrication of the DTEM, and conclude with the presentation of a deflector and solid-state pulser design for Movie-Mode DTEM.

  19. A 16 MJ compact pulsed power system for electromagnetic launch.

    PubMed

    Dai, Ling; Zhang, Qin; Zhong, Heqing; Lin, Fuchang; Li, Hua; Wang, Yan; Su, Cheng; Huang, Qinghua; Chen, Xu

    2015-07-01

    This paper has established a compact pulsed power system (PPS) of 16 MJ for electromagnetic rail gun. The PPS consists of pulsed forming network (PFN), chargers, monitoring system, and current junction. The PFN is composed of 156 pulse forming units (PFUs). Every PFU can be triggered simultaneously or sequentially in order to obtain different total current waveforms. The whole device except general control table is divided into two frameworks with size of 7.5 m × 2.2 m × 2.3 m. It is important to estimate the discharge current of PFU accurately for the design of the whole electromagnetic launch system. In this paper, the on-state characteristics of pulse thyristor have been researched to improve the estimation accuracy. The on-state characteristics of pulse thyristor are expressed as a logarithmic function based on experimental data. The circuit current waveform of the single PFU agrees with the simulating one. On the other hand, the coaxial discharge cable is a quick wear part in PFU because the discharge current will be up to dozens of kA even hundreds of kA. In this article, the electromagnetic field existing in the coaxial cable is calculated by finite element method. On basis of the calculation results, the structure of cable is optimized in order to improve the limit current value of the cable. At the end of the paper, the experiment current wave of the PPS with the load of rail gun is provided. PMID:26233401

  20. Application of lasers and pulsed power to coating removal

    NASA Astrophysics Data System (ADS)

    Young, Chris M.; Moeny, William M.; Curry, Randy D.; McDonald, Ken; Bosma, John T.

    1995-03-01

    Lasers and other pulsed power systems are uniquely suited for removal of coatings from a wide variety of substrates. Coatings which can be removed by these systems include paint, adhesives, epoxies, dips, rust, scale, and bird droppings. Suitable substrates include wood, metal, cloth, stone, ceramic, plastics, and even skin. These systems have the advantage over chemical stripping or mechanical abrasion in that the substrate is left virtually unharmed and in many cases the residue is reduced to a form that is more easily disposed of without toxic byproducts or expensive refurbishment. Furthermore, laser and other pulsed power based systems can be operated using only local containment without the need for special operator protective gear or complete enclosure of the substrate structure. Additional advantages are gained in these systems because they typically combine multiple removal mechanisms for greater effectiveness. For example, pulsed lasers create rapid heating of the coating. This rapid heating can result in chemical breakdown of the coating, thermomechanical stress induced dislocation, shock wave agitation, and physical ablation. This paper presents some of the latest research findings on coating removal using these systems. A comparative survey of the system technology, effectiveness, cost, and application is presented. Also presented is a survey of the commercial potential for the systems. Systems which are presented include lasers (CW, pulsed, Infrared, UV, etc.), flashlamps, electro-cathodic debonders, electron beams, and glow discharges.

  1. Nuclear electromagnetic pulse and the electric power system

    SciTech Connect

    Legro, J.R.; Reed, T.J.

    1985-01-01

    A single, high-altitude nuclear detonation over the continental United States can expose large geographic areas to transient, electromagnetic pulse (EMP). The initial electromagnetic fields produced by this event have been defined as high-altitude electromagnetic pulse (HEMP). Later-time, low frequency fields have been defined as magnetohydrodynamic-electromagnetic pulse (MHD-EMP). Nuclear detonations at, or near the surface of the earth can also produce transient EMP. These electromagnetic phenomena have been defined as source region electromagnetic pulse (SREMP). The Division of Electric Energy Systems (EES) of the United States Department of Energy (DOE) has formulated and implemented a Program Plan to assess the possible effects of the above nuclear EMP on civilian electric power systems. This unclassified research effort is under the technical leadership of the Oak Ridge National Laboratory. This paper presents a brief perspective of EMP phenomenology and important interaction issues for power systems based on research performed by Westinghouse Advanced Systems Technology as a principal subcontractor in the research effort.

  2. Basic research on pulsed power for narrowband high-power microwave sources

    NASA Astrophysics Data System (ADS)

    Schamiloglu, Edl; Schoenbach, Karl H.; Vidmar, Robert

    2002-06-01

    Relativistic, intense beam-driven High Power Microwave (HPM) sources emerged as consequence of the development of pulsed power. In this context, pulsed power refers to components of a system following the prime power source, and before the load, which is typically an electron beam diode. Progress in fielding HPM sources on mobile platforms requires developing more compact pulsed power drivers. The Air Force Office of Scientific Research is sponsoring, using resources allocated by DDR&E, a Multidisciplinary University Research Initiative (MURI) program to study basic phenomena and processes that can lead to the design of more compact pulsed power systems. The University of New Mexico is leading a consortium, uniting researchers at Old Dominion University and the University of Nevada-Reno, to study basic phenomena relating to breakdown in solid and liquid dielectrics, high dielectric constant ceramics for use in compact, folded Blumlein transmission lines, gas switches, thermal management in compact pulsed power systems, among other topics. This paper describes the research activities on this program that are being performed in the initial year.

  3. A compact diode-pumped pulsed Nd:YAG slab laser based on a master oscillator power amplifier configuration

    NASA Astrophysics Data System (ADS)

    Maleki, A.; Kavosh Tehrani, M.; Saghafifar, H.; Moghtader Dindarlu, M. H.; Ebadian, H.

    2016-02-01

    In this paper, the design and construction of a pulsed Nd:YAG laser is described. The structure of this laser is based on a master oscillator power amplifier system. A master oscillator is an electro-optical Q-switched Nd:YAG rod laser. Face-pumping is used for the excitation of the slab structure, and a double-pass method is designed for the amplification stages. Two Nd:YAG zigzag slabs are utilized as power amplification stages in this laser. The laser diodes are stacked in a compact configuration and are used for rod and slabs pumping. The total pump energy in the amplifier stages is 3200 mJ at 808 nm. The output pulse energy achieved at 1064 nm is about 850 mJ of 10 ns pulse duration corresponding to 26.5% optical-to-optical conversion efficiency. Moreover, this laser can generate pulse energies around 430 mJ at 532 nm. The dependence of the output energy of MOPA and second harmonic generation operations on different pulse repetition rates (PRRs) from 1 to 100 Hz has been investigated. Experimental results show that the maximum fluctuations of the output energies are about 2.5 and 4% for 1064 and 532 nm, respectively.

  4. Development of a stereo-symmetrical nanosecond pulsed power generator composed of modularized avalanche transistor Marx circuits

    NASA Astrophysics Data System (ADS)

    Li, Jiang-Tao; Zhong, Xu; Cao, Hui; Zhao, Zheng; Xue, Jing; Li, Tao; Li, Zheng; Wang, Ya-Nan

    2015-09-01

    Avalanche transistors have been widely studied and used in nanosecond high voltage pulse generations. However, output power improvement is always limited by the low thermal capacities of avalanche transistors, especially under high repetitive working frequency. Parallel stacked transistors can effectively improve the output current but the controlling of trigger and output synchronism has always been a hard and complex work. In this paper, a novel stereo-symmetrical nanosecond pulsed power generator with high reliability was developed. By analyzing and testing the special performances of the combined Marx circuits, numbers of meaningful conclusions on the pulse amplitude, pulse back edge, and output impedance were drawn. The combining synchronism of the generator was confirmed excellent and lower conducting current through the transistors was realized. Experimental results showed that, on a 50 Ω resistive load, pulses with 1.5-5.2 kV amplitude and 5.3-14.0 ns width could be flexibly generated by adjusting the number of combined modules, the supply voltage, and the module type.

  5. Environmental and industrial applications of pulsed power systems

    SciTech Connect

    Neau, E.L. )

    1994-02-01

    The technology base formed by the development of high peak power simulators, laser drivers, free electron lasers, and Inertial Confinement Fusion drivers from the early 60's through the late 80's is being extended to high average power short-pulse machines with the capabilities of performing new roles in environmental cleanup applications and in supporting new types of industrial manufacturing processes. Processes requiring high volume throughput and moderate dose levels, such as flue gas cleanup and food pasteurization plants, will require very high average beam power levels of hundreds of kilowatts to perhaps several megawatts. In this paper the authors briefly discuss a new class of short-pulse high average power accelerators, now operating in laboratory environments, using semiconductor and magnetic switches to achieve megavolt electron and ion beams with 10's of kiloamperes of current and average power levels in excess of 100 kW. The technology is modular, robust in concept, and appears to be suitable for extension to the megawatt power level. After a brief introduction to the technology, the paper then concentrates on specific application areas that are being explored.

  6. Diode-pumped passively Q-switched high-repetition-rate Yb microchip laser

    SciTech Connect

    Kisel', V E; Yasukevich, A S; Kondratyuk, N V; Kuleshov, N V

    2009-11-30

    The system of balance equations is modified for quasi-three-level passively Q-switched lasers with a slow saturable absorber. Optimal parameters of a Yb{sup 3+}:YAG microchip laser with a passive Cr{sup 4+}:YAG Q switch are calculated at a pulse repetition rate of {approx}100 kHz. The single-mode operation of the Yb:YAG-Cr:YAG laser with a pulse repetition rate above 100 kHz, the average output power 0.45 W and peak power 1.5 kW is experimentally demonstrated. In the multimode lasing regime, pulses with a peak power of 4.2 kW are obtained at an average output power of 0.8 W and a pulse repetition rate of 10 kHz. (lasers)

  7. Single and Multi-Pulse Low-Energy Conical Theta Pinch Inductive Pulsed Plasma Thruster Performance

    NASA Technical Reports Server (NTRS)

    Hallock, Ashley K.; Martin, Adam; Polzin, Kurt; Kimberlin, Adam; Eskridge, Richard

    2013-01-01

    Fabricated and tested CTP IPPTs at cone angles of 20deg, 38deg, and 60deg, and performed direct single-pulse impulse bit measurements with continuous gas flow. Single pulse performance highest for 38deg angle with impulse bit of approx.1 mN-s for both argon and xenon. Estimated efficiencies low, but not unexpectedly so based on historical data trends and the direction of the force vector in the CTP. Capacitor charging system assembled to provide rapid recharging of capacitor bank, permitting repetition-rate operation. IPPT operated at repetition-rate of 5 Hz, at maximum average power of 2.5 kW, representing to our knowledge the highest average power for a repetitively-pulsed thruster. Average thrust in repetition-rate mode (at 5 kV, 75 sccm argon) was greater than simply multiplying the single-pulse impulse bit and the repetition rate.

  8. Optical discharge with absorption of repetitive CO{sub 2} laser pulses in supersonic air flow: wave structure and condition of a quasi-steady state

    SciTech Connect

    Bobarykina, T A; Malov, A N; Orishich, A M; Chirkashenko, V F; Yakovlev, V I

    2014-09-30

    We report a study of the wave structure formed by an optical discharge plasma upon the absorption of repetitively pulsed CO{sub 2} laser radiation in a supersonic (M = 1.36) air flow. Experimental data are presented on the configuration of the head shock wave and the geometry and characteristic dimensions of breakdown regions behind a laser plasma pulsating in the flow at a frequency of up to 150 kHz. The data are compared to calculation in a point explosion model with allowance for counterpressure, which makes it possible to identify the relationship between laser radiation and supersonic flow parameters that ensures quasisteady- state energy delivery and is necessary for extending the possibilities of controlling the structure of supersonic flows. (interaction of laser radiation with matter)

  9. Terahertz metrology on power, frequency, spectroscopy, and pulse parameters

    NASA Astrophysics Data System (ADS)

    Wu, Bin; Ying, Cheng Ping; Wang, Heng Fei; Zhang, Peng; Liu, Hong Yuan; Jiang, Bin

    2015-11-01

    Terahertz metrology is becoming more and more important along with the fast development of terahertz technology. This paper reviews the research works of the groups from the physikalisch-technische bundesanstalt (PTB), National institute of standards and technology (NIST), National physical laboratory (NPL), National institute of metrology (NIM) and some other research institutes. The contents mainly focus on the metrology of parameters of power, frequency, spectrum and pulse. At the end of the paper, the prospect of terahertz metrology is predicted.

  10. Bipolar high-repetition-rate high-voltage nanosecond pulser

    SciTech Connect

    Tian Fuqiang; Wang Yi; Shi Hongsheng; Lei Qingquan

    2008-06-15

    The pulser designed is mainly used for producing corona plasma in waste water treatment system. Also its application in study of dielectric electrical properties will be discussed. The pulser consists of a variable dc power source for high-voltage supply, two graded capacitors for energy storage, and the rotating spark gap switch. The key part is the multielectrode rotating spark gap switch (MER-SGS), which can ensure wider range modulation of pulse repetition rate, longer pulse width, shorter pulse rise time, remarkable electrical field distortion, and greatly favors recovery of the gap insulation strength, insulation design, the life of the switch, etc. The voltage of the output pulses switched by the MER-SGS is in the order of 3-50 kV with pulse rise time of less than 10 ns and pulse repetition rate of 1-3 kHz. An energy of 1.25-125 J per pulse and an average power of up to 10-50 kW are attainable. The highest pulse repetition rate is determined by the driver motor revolution and the electrode number of MER-SGS. Even higher voltage and energy can be switched by adjusting the gas pressure or employing N{sub 2} as the insulation gas or enlarging the size of MER-SGS to guarantee enough insulation level.

  11. Innovation on high-power long-pulse gyrotrons

    NASA Astrophysics Data System (ADS)

    Litvak, Alexander; Sakamoto, Keishi; Thumm, Manfred

    2011-12-01

    Progress in the worldwide development of high-power gyrotrons for magnetic confinement fusion plasma applications is described. After technology breakthroughs in research on gyrotron components in the 1990s, significant progress has been achieved in the last decade, in particular, in the field of long-pulse and continuous wave (CW) gyrotrons for a wide range of frequencies. At present, the development of 1 MW-class CW gyrotrons has been very successful; these are applicable for self-ignition experiments on fusion plasmas and their confinement in the tokamak ITER, for long-pulse confinement experiments in the stellarator Wendelstein 7-X (W7-X) and for EC H&CD in the future tokamak JT-60SA. For this progress in the field of high-power long-pulse gyrotrons, innovations such as the realization of high-efficiency stable oscillation in very high order cavity modes, the use of single-stage depressed collectors for energy recovery, highly efficient internal quasi-optical mode converters and synthetic diamond windows have essentially contributed. The total tube efficiencies are around 50% and the purity of the fundamental Gaussian output mode is 97% and higher. In addition, activities for advanced gyrotrons, e.g. a 2 MW gyrotron using a coaxial cavity, multi-frequency 1 MW gyrotrons and power modulation technology, have made progress.

  12. Coherent THz Pulses from Linear Accelerators

    SciTech Connect

    G.L. Carr; H. Loos; J.B. Murphy; T. Shaftan; B. Sheehy; X.-J. Wang; W.R. McKinney; M.C. Martin; G.P. Williams; K. Jordan; G. Neil

    2003-10-01

    Coherent THz pulses are being produced at several facilities using relativistic electrons from linear accelerators. The THz pulses produced at the Brookhaven accelerator have pulse energies exceeding 50 {micro}J and reach a frequency of 2 THz. The high repetition rate of the Jefferson Lab accelerator leads to an average THz power of 20 watts. Possible uses for these high power pulses are discussed.

  13. Investigation of a high power electromagnetic pulse source

    NASA Astrophysics Data System (ADS)

    Wang, Yuwei; Chen, Dongqun; Zhang, Jiande; Cao, Shengguang; Li, Da; Liu, Chebo

    2012-09-01

    A high power electromagnetic pulse source with a resonant antenna driven by a compact power supply was investigated in this paper. To match the impedance of the resonant antenna and initial power source, a compact power conditioning circuit based on electro exploding opening switch (EEOS) and pulsed transformer was adopted. In the preliminary experiments, an impulse capacitor was used to drive the system. With the opening of the EEOS at the current of 15 kA flowing trough the primary of the transformer, the resonant antenna was rapidly charged to about -370 kV within a time of about 100 ns. When the switch in the resonant antenna closed at the charging voltage of about -202 kV, the peak intensity of the detected electric field at a distance of about 10 m from the center of the source was 7.2 kV/m. The corresponding peak power of the radiated electromagnetic field reached 76 MW, while the total radiated electromagnetic energy was about 0.65 J. The total energy efficiency of the resonant antenna was about 22% which can be improved by increasing the closing rapidity of the switch in the antenna.

  14. Investigation of a high power electromagnetic pulse source.

    PubMed

    Wang, Yuwei; Chen, Dongqun; Zhang, Jiande; Cao, Shengguang; Li, Da; Liu, Chebo

    2012-09-01

    A high power electromagnetic pulse source with a resonant antenna driven by a compact power supply was investigated in this paper. To match the impedance of the resonant antenna and initial power source, a compact power conditioning circuit based on electro exploding opening switch (EEOS) and pulsed transformer was adopted. In the preliminary experiments, an impulse capacitor was used to drive the system. With the opening of the EEOS at the current of 15 kA flowing trough the primary of the transformer, the resonant antenna was rapidly charged to about -370 kV within a time of about 100 ns. When the switch in the resonant antenna closed at the charging voltage of about -202 kV, the peak intensity of the detected electric field at a distance of about 10 m from the center of the source was 7.2 kV∕m. The corresponding peak power of the radiated electromagnetic field reached 76 MW, while the total radiated electromagnetic energy was about 0.65 J. The total energy efficiency of the resonant antenna was about 22% which can be improved by increasing the closing rapidity of the switch in the antenna. PMID:23020399

  15. Development of a linear piston-type pulse power electric generator for powering electric guns

    NASA Astrophysics Data System (ADS)

    Summerfield, Martin

    1993-01-01

    The development of a linear piston-type electric pulse-power generator capable of powering electric guns and EM (rail and coil) guns and ET guns, presently under development, is discussed. The pulse-power generator consists of a cylindrical armature pushed by gases from the combustion of fuel or propellant through an externally produced magnetic field. An arrangement of electrodes and connecting straps serves to extract current from the moving armature and to send it to an external load (the electric gun).

  16. Medium Repetition Rate TEA Laser For Industrial Applications

    NASA Astrophysics Data System (ADS)

    Walter, Bruno

    1987-09-01

    The design and performance of an inexpensive compact repetitively pulsed TEA CO2 laser is described. The device uses a modified corona preionization technique and a fast transverse gas flow to achieve high repetition rates. An output energy of 500 mJ per pulse and an out-put power of 6.2W at 40Hz have been obtained. Due to the small energy needed for preionization, the efficiency of the device is high, whereas the gas dissociation is low when compared with commercial laser systems. This results in the relatively small fresh laser gas exchange of 20 ltr h-1 for long term operation.

  17. Determination of modeling parameters for power IGBTs under pulsed power conditions

    SciTech Connect

    Dale, Gregory E; Van Gordon, Jim A; Kovaleski, Scott D

    2010-01-01

    While the power insulated gate bipolar transistor (IGRT) is used in many applications, it is not well characterized under pulsed power conditions. This makes the IGBT difficult to model for solid state pulsed power applications. The Oziemkiewicz implementation of the Hefner model is utilized to simulate IGBTs in some circuit simulation software packages. However, the seventeen parameters necessary for the Oziemkiewicz implementation must be known for the conditions under which the device will be operating. Using both experimental and simulated data with a least squares curve fitting technique, the parameters necessary to model a given IGBT can be determined. This paper presents two sets of these seventeen parameters that correspond to two different models of power IGBTs. Specifically, these parameters correspond to voltages up to 3.5 kV, currents up to 750 A, and pulse widths up to 10 {micro}s. Additionally, comparisons of the experimental and simulated data will be presented.

  18. High-power soliton fiber laser based on pulse width control with chirped fiber Bragg gratings

    SciTech Connect

    Fermann, M.E.; Sugden, K.; Bennion, I.

    1995-01-15

    Chirped fiber Bragg gratings control the pulse width and energy in Kerr mode-locked erbium fiber soliton lasers. We create high-energy pulses by providing large amounts of excessive negative dispersion, which increases the pulse width while keeping the nonlinearity of the cavity constant. With a chirped fiber grating of 3.4-ps{sup 2} dispersion, 3-ps pulses with an energy content higher than 1 nJ are generated at a repetition rate of 27 MHz. By controlling the polarization state in the cavity, we obtain a tuning range from 1.550 to 1.562 {mu}m.

  19. Pulse swallowing frequency divider with low power and compact structure

    NASA Astrophysics Data System (ADS)

    Haijun, Gao; Lingling, Sun; Chaobo, Cai; Haiting, Zhan

    2012-11-01

    A pulse swallowing frequency divider with low power and compact structure is presented. One of the DFFs in the divided by 2/3 prescaler is controlled by the modulus control signal, and automatically powered off when it has no contribution to the operation of the prescaler. The DFFs in the program counter and the swallow counter are shared to compose a compact structure, which reduces the power consumption further. The proposed multi-modulus frequency divider was implemented in a standard 65 nm CMOS process with an area of 28 × 22 μm2. The power consumption of the divider is 0.6 mW under 1.2 V supply voltage when operating at 988 MHz.

  20. Compact repetitively Q-switched Yb:YCa4O(BO3)3 laser with an acousto-optic modulator

    NASA Astrophysics Data System (ADS)

    Chen, Xiaowen; Xu, Honghao; Han, Wenjuan; Yi, Hongying; Yu, Haohai; Zhang, Huaijin; Liu, Junhai

    2015-07-01

    Repetitively Q-switched operation was achieved with a Yb:YCa4O(BO3)3 laser in a wide repetition rate range from 20 down to 0.1 kHz. An output power of 6.81 W at 20 kHz was generated with pulse duration of 42 ns; while operated at a low repetition rate of 0.1 kHz, the laser produced 0.53 W of output power with pulse width of 21 ns, the resulting pulse energy and peak power amounted respectively to 5.3 mJ and 252.4 kW.

  1. Sterilizing tissue-materials using pulsed power plasma.

    PubMed

    Heidarkhan Tehrani, Ashkan; Davari, Pooya; Singh, Sanjleena; Oloyede, Adekunle

    2014-04-01

    This paper investigates the potential of pulsed power to sterilize hard and soft tissues and its impact on their physico-mechanical properties. It hypothesizes that pulsed plasma can sterilize both vascular and avascular tissues and the transitive layers in between without deleterious effects on their functional characteristics. Cartilage/bone laminate was chosen as a model to demonstrate the concept, treated at low temperature, at atmospheric pressure, in short durations and in buffered environment using a purposed-built pulsed power unit. Input voltage and time of exposure were assigned as controlling parameters in a full factorial design of experiment to determine physical and mechanical alteration pre- and post-treatment. The results demonstrated that, discharges of 11 kV sterilized samples in 45 s, reducing intrinsic elastic modules from 1.4 ± 0.9 to 0.9 ± 0.6 MPa. There was a decrease of 14.1 % in stiffness and 27.8 % in elastic-strain energy for the top quartile. Mechanical impairment was directly proportional to input voltage (P value < 0.05). Bacterial inactivation was proportional to treatment time for input voltages above 32 V (P < 0.001; R Sq = 0.98). Thermal analysis revealed that helix-coil transition decelerated with exposure time and collagen fibrils were destabilized as denaturation enthalpy reduced by 200 μV. We concluded by presenting a safe operating threshold for pulsed power plasma as a feasible protocol for effective sterilization of connective tissues with varying level of loss in mechanical robustness which we argue to be acceptable in certain medical and tissue engineering application.

  2. Design concepts for a pulse power test facility to simulate EMP surges in overhead power lines. Part I. Fast pulse

    SciTech Connect

    Ramrus, A.

    1986-02-01

    Objective of the study was to create conceptual designs of high voltage pulsers capable of simulating two types of electromagnetic pulses (EMPs) caused by a high-altitude nuclear burst; the slow rise time magnetohydrodynamic (MHD-EMP) and the fast rise time high-altitude EMP (HEMP). The pulser design was directed towards facilities capable of performing EMP vulnerability testing of components used in the national electric power system.

  3. Laser-induced molybdenum oxide formation by low energy (nJ)-high repetition rate (MHz) femtosecond pulses

    NASA Astrophysics Data System (ADS)

    Cano-Lara, M.; Camacho-López, S.; Esparza-García, A.; Camacho-López, M. A.

    2011-09-01

    Experimental results on femtosecond (fs) laser-induced oxidation of molybdenum (Mo) thin films are presented. The Mo thin films were deposited on fused silica substrates by the magnetron DC-sputtering technique. The as-deposited thin films were characterized by X-ray diffraction, which indicates that bbc-molybdenum was grown. The films were irradiated in ambient air, using a femtosecond Ti:Sapphire laser (800 nm, 60 fs pulse duration, 70 MHz and 6.5 nJ per pulse). The molybdenum thin films were laser scanned in the form of several millimeters long straight line traces, by using a per pulse laser fluence well below the (previously reported) ablation threshold. Optical Microscopy (OM) and Scanning Electron Microscopy (SEM) were used to study the laser-induced optical and morphology changes on the exposed zone. Energy Dispersive Spectrometry (EDS) and Micro-Raman Spectroscopy (MRS) were used to determine the degree of oxidation and the phase change across the laser irradiated paths on the Mo thin film. Under the above described experimental conditions our results show that it is possible to laser-induce a specific oxide phase from the molybdenum starting material. Our micro-Raman results clearly demonstrate that the fs-laser irradiation induces the m-MoO 2 and o-Mo 4O 11 crystalline phases at the directly laser irradiated trace and its close proximity.

  4. Pulse doubling in zigzag-connected autotransformer-based 12-pulse ac-dc converter for power quality improvement

    NASA Astrophysics Data System (ADS)

    Abdollahi, Rohollah

    2012-12-01

    This paper presents a pulse doubling technique in a 12-pulse ac-dc converter which supplies direct torque controlled motor drives (DTCIMDs) in order to have better power quality conditions at the point of common coupling. The proposed technique increases the number of rectification pulses without significant changes in the installations and yields in harmonic reduction in both ac and dc sides. The 12-pulse rectified output voltage is accomplished via two paralleled six-pulse acdc converters each of them consisting of three-phase diode bridge rectifiers. An autotransformer is designed to supply the rectifiers. The design procedure of magnetics is in a way such that makes it suitable for retrofit applications where a six-pulse diode bridge rectifier is being utilized. Independent operation of paralleled diode-bridge rectifiers, i.e. dc-ripple re-injection methodology, requires a Zero Sequence Blocking Transformer (ZSBT). Finally, a tapped interphase reactor is connected at the output of ZSBT to double the pulse numbers of output voltage up to 24 pulses. The aforementioned structure improves power quality criteria at ac mains and makes them consistent with the IEEE-519 standard requirements for varying loads. Furthermore, near unity power factor is obtained for a wide range of DTCIMD operation. A comparison is made between 6-pulse, 12-pulse, and proposed converters from view point of power quality indices. Results show that input current total harmonic distortion (THD) is less than 5% for the proposed topology at various loads.

  5. Pulsed Power Aspects of the NIF Plasma Electrode Pockels Cell

    SciTech Connect

    Arnold, P A; Ollis, C W; Hinz, A F; Barbosa, F; Fulkerson, E S

    2005-06-09

    The Plasma Electrode Pockels Cell (PEPC) embodies technology essential to the National Ignition Facility (NIF). Together with a thin-film polarizer, PEPC functions as an optical switch for the main amplifier cavity, allowing optical pulses to be trapped, and then released, and enabling NIF to take advantage of the attendant gain and cost-savings. Details of the genesis, development, and prototyping of the PEPC are well documented. After moving from its laboratory setting to the NIF facility, PEPC--via its performance during the two-year NIF Early Light (NEL) campaign and its ongoing operation during facility build-out--has proven to be a fully functional system. When complete, NIF will accommodate 192 beams, capable of delivering 1.8 MJ to a fusion target. Forty-eight Plasma Electrode Pockels--driven by nearly 300 high-power, high-voltage pulse generators--will support this complement of beams. As deployed, PEPC is a complex association of state-of-the-art optics; low-voltage and high-voltage electronics; and mechanical, gas, and vacuum subsystems--all under computer control. In this paper, we briefly describe each of these elements, but focus on the pulse power aspects of the PEPC system.

  6. Improved pen harvester for powering a pulse rate sensor

    NASA Astrophysics Data System (ADS)

    Marin, Anthony; Heitzmann, Patrick; Twiefel, Jens; Priya, Shashank

    2012-04-01

    With the continued advancement in electronics the power requirement for micro-sensors has been decreasing opening the possibility for incorporating on-board energy harvesting devices to create self-powered sensors. The requirement for the energy harvesters are small size, light weight and the possibility of a low-budget mass production. In this study, we focus on developing an energy harvester for powering a pulse rate sensor. We propose to integrate an inductive energy harvester within a commonly available pen to harvest vibration energy from normal human motions like jogging and jumping. An existing prototype was reviewed which consists of a magnet wedged between two mechanical springs housed within a cylindrical shell. A single copper coil surrounds the cylindrical shell which harvests energy through Faraday's effect during magnet oscillation. This study reports a design change to the previous prototype providing a significant reduction in the device foot print without causing major losses in power generation. By breaking the single coil in the previous prototype into three separate coils an increase in power density was achieved. Several pulse rate sensors were evaluated to determine a target power requirement of 0.3 mW. To evaluate the prototype as a potential solution, the harvester was excited at various frequencies and accelerations typically produced through jogging and jumping motion. The improved prototype generated 0.043 mW at 0.56 grms and 3 Hz; and 0.13 mW at 1.14 grms at 5 Hz. The design change allowed reduction in total volume from 8.59 cm3 to 1.31 cm3 without significant losses in power generation.

  7. 1-kHz-repetition-rate femtosecond Raman laser

    NASA Astrophysics Data System (ADS)

    Didenko, N. V.; Konyashchenko, A. V.; Kostryukov, P. V.; Losev, L. L.; Pazyuk, V. S.; Tenyakov, S. Yu

    2016-07-01

    A femtosecond Raman laser utilising compressed hydrogen is experimentally investigated under pumping by radiation from a 1-kHz-repetition-rate Ti : sapphire laser. In the regime of double-pulse pumping, the conditions are determined, which correspond to the minimal energy dispersion of Stokes pulses. The optical scheme is realised, which is capable of ensuring the long-term stability of the average power of the first Stokes component with a variation of less than 2%. The Stokes pulses are produced with a pulse duration of 60 fs and energy of 0.26 mJ at a conversion efficiency of 14%.

  8. LASER BIOLOGY AND MEDICINE: Effect of repetitive laser pulses on the electrical conductivity of intervertebral disc tissue

    NASA Astrophysics Data System (ADS)

    Omel'chenko, A. I.; Sobol', E. N.

    2009-03-01

    The thermomechanical effect of 1.56-μm fibre laser pulses on intervertebral disc cartilage has been studied using ac conductivity measurements with coaxial electrodes integrated with an optical fibre for laser radiation delivery to the tissue. The observed time dependences of tissue conductivity can be interpreted in terms of hydraulic effects and thermomechanical changes in tissue structure. The laserinduced changes in the electrical parameters of the tissue are shown to correlate with the structural changes, which were visualised using shadowgraph imaging. Local ac conductivity measurements in the bulk of tissue can be used to develop a diagnostic/monitoring system for laser regeneration of intervertebral discs.

  9. Laser-Material Interaction of Powerful Ultrashort Laser Pulses

    SciTech Connect

    Komashko, A

    2003-01-06

    Laser-material interaction of powerful (up to a terawatt) ultrashort (several picoseconds or shorter) laser pulses and laser-induced effects were investigated theoretically in this dissertation. Since the ultrashort laser pulse (USLP) duration time is much smaller than the characteristic time of the hydrodynamic expansion and thermal diffusion, the interaction occurs at a solid-like material density with most of the light energy absorbed in a thin surface layer. Powerful USLP creates hot, high-pressure plasma, which is quickly ejected without significant energy diffusion into the bulk of the material, Thus collateral damage is reduced. These and other features make USLPs attractive for a variety of applications. The purpose of this dissertation was development of the physical models and numerical tools for improvement of our understanding of the process and as an aid in optimization of the USLP applications. The study is concentrated on two types of materials - simple metals (materials like aluminum or copper) and wide-bandgap dielectrics (fused silica, water). First, key physical phenomena of the ultrashort light interaction with metals and the models needed to describe it are presented. Then, employing one-dimensional plasma hydrodynamics code enhanced with models for laser energy deposition and material properties at low and moderate temperatures, light absorption was self-consistently simulated as a function of laser wavelength, pulse energy and length, angle of incidence and polarization. Next, material response on time scales much longer than the pulse duration was studied using the hydrocode and analytical models. These studies include examination of evolution of the pressure pulses, effects of the shock waves, material ablation and removal and three-dimensional dynamics of the ablation plume. Investigation of the interaction with wide-bandgap dielectrics was stimulated by the experimental studies of the USLP surface ablation of water (water is a model of

  10. Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses

    SciTech Connect

    Shimizu, Masahiro; Miura, Kiyotaka; Hirao, Kazuyuki; Sakakura, Masaaki; Shimotsuma, Yasuhiko; Ohnishi, Masatoshi; Nakaya, Takayuki

    2010-10-15

    Accumulation of thermal energies by highly repeated irradiation of femtosecond laser pulses inside a glass induces the heat-modification whose volume is much larger than that of the photoexcited region. It has been proposed that the heat-modification occurs in the region in which the temperature had overcome a threshold temperature during exposure of laser pulses. In order to understand the mechanism of the heat-modification, we investigated the temperature distribution during laser exposure and the threshold temperature by analyzing the volume of the modification based on a thermal diffusion model. We found that the threshold temperature becomes lower with increasing laser exposure time. The dependence of the threshold temperature on the laser exposure time was explained by the deformation mechanism based on the temperature-dependent viscosity and viscoelastic behavior of a glass under a stress loading by thermal expansion. The deformation mechanism also could simulate a tear-drop shape of a heat-modification by simultaneous double-beams' irradiation and the distribution of birefringence in a heat-modification. The mechanism proposed in this study means that the temperature-dependence of the viscosity of a glass should be essential for predicting and controlling the heat-modification.

  11. Stacked Blumlein devices generating high-power, nanosecond-wide electrical pulses

    NASA Astrophysics Data System (ADS)

    Borovina, Dan Lucretiu

    1997-11-01

    , however, required solutions to several problems not previously resolved, the worst of which concerned spontaneous triggering during charging. When arranged to operate for avalanche conditions, the switch was subjected to a high electric field, causing it to leak current, generating heat, and ultimately inducing unwanted triggering. Therefore, in this work, an intermediary device was introduced which applied the charging voltage for a very limited amount of time. In addition, the switching voltage was reduced by utilizing a stacked Blumlein geometry in which several transmission lines were commutated by the switch in a parallel circuit. The lines were then combined in series at the output, increasing the generated voltage. The operating parameters were studied and optimized to find the region in which a GaAs switch could avalanche, producing output voltages of 70 kV, when activated by laser diode pulse energies as low as 40 μJ. The successful resolution of these issues provided for the construction of a power source capable of delivering kiloamp pulses to loads dissipating 70 MW with switching times as fast as 100 ps. The level of achievement was enhanced by the fact that the device was compact and operational at high repetition rates when triggered by simple, commercially available laser diodes. The resulting device could operate with combinations of parameters which were not possible before, but which will be required by the next advances in high-energy and microwave technology.

  12. Effect of pulse repetition frequency and scan step size on the dimensions of the lesions formed in agar by HIFU histotripsy.

    PubMed

    Xu, Jin; Bigelow, Timothy A; Lee, Hangil

    2013-04-01

    Histotripsy uses high-intensity focused ultrasound pulses at low duty cycle to generate energetic bubble clouds inside tissue to fractionate a region. As a potential tumor treatment modality, this cavitation-based non-invasive technique has the advantages of easy monitoring and sharp borders. Aiming at therapy efficiency, we experimentally investigated the effects of pulse repetition frequency (PRF) and lateral scan step size on the dimensions of lesions formed through HIFU histotripsy in agar mimicking tissue in terms of mechanical (not acoustical) properties. The single-element spherically focused source (1.1 MHz, 6.34 cm focal length, f/1) was excited to reach the peak compressional and rarefactional pressures of ~102 and 17 MPa, respectively. A targeted rectangular block of 4.5 mm wide (lateral) and 6mm deep (axial) was scanned in a raster pattern with a constant axial step size of 3mm. The lateral step size was varied between 375, 750, 1500, 2250 and 4500 μm. Pulses at each treatment location consisted of 5000 20-cycle sine wave tone bursts with the PRF of 167, 333 or 1000 Hz. Results suggested that the bubble activity region could extend beyond the -3 dB region and that refining the lateral scan mesh and/or increasing PRF enlarged the lesion extent. The 1500 μm-333 Hz and the 1500 μm-1 kHz conditions were in a more favorable position to be viewed as optimal with regard to lesion volume generation rate, bubble activity region width, and the potential for thermal damage.

  13. The pulsed nature of the nightside contribution to polar cap convection: repetitive substorm activity under steady interplanetary driving

    NASA Astrophysics Data System (ADS)

    Sandholt, P. E.; Andalsvik, Y. L.; Farrugia, C. J.

    2012-10-01

    The aim of this study is to investigate the relative contributions of dayside and nightside processes to the spatial and temporal structure of polar cap plasma convection. The central parameter is the cross-polar cap potential (CPCP). Selecting a 10-h-long interval of stable interplanetary driving by an interplanetary CME (ICME), we are able to distinguish between the dayside and nightside sources of the convection. The event was initiated by an abrupt enhancement of the magnetopause (MP) reconnection rate triggered by a southward turning of the ICME magnetic field. This was followed by a long interval (10 h) of steady and strong driving. Under the latter condition a long series of electrojet intensifications was observed which recurred at 50 min intervals. The detailed temporal structure of polar cap convection in relation to polar cap contraction events is obtained by combining continuous ground observations of convection-related magnetic deflections (including polar cap magnetic indices in the Northern and Southern Hemispheres, PCN and PCS) and the more direct, but lower-resolution ion drift data obtained from a satellite (DMSP F13) in polar orbit. The observed PCN enhancements combined with DMSP satellite observations (F13 and F15 data) of polar cap contractions during the evolution of selected substorm expansions allowed us to estimate the CPCP enhancements (25%) associated with individual events in the series. Ground-satellite conjunctions are further used to investigate the spatial structure of polar cap convection, i.e., the homogeneous plasma flow in the centre (Vi ≤ 1 km s-1) versus channels of enhanced antisunward flows (Vi ≥ 1 km s-1) along the periphery of the polar cap. We emphasise the temporal structure of these polar cap flow phenomena in relation to the prevailing solar wind forcing and the repetitive substorm activity.

  14. Pen harvester for powering a pulse rate sensor

    NASA Astrophysics Data System (ADS)

    Bedekar, Vishwas; Oliver, Josiah; Priya, Shashank

    2009-05-01

    Rapid developments in the area of micro-sensors for various applications such as structural health monitoring, bio-chemical sensors and pressure sensors have increased the demand for portable, low cost, high efficiency energy harvesting devices. In this paper, we describe the scheme for powering a pulse rate sensor with a vibration energy harvester integrated inside a pen commonly carried by humans in the pocket close to the heart. Electromagnetic energy harvesting was selected in order to achieve high power at lower frequencies. The prototype pen harvester was found to generate 3 mW at 5 Hz and 1 mW at 3.5 Hz operating under displacement amplitude of 16 mm (corresponding to an acceleration of approximately 1.14 grms at 5 Hz and 0.56 grms at 3.5 Hz, respectively). A comprehensive mathematical modelling and simulations were performed in order to optimize the performance of the vibration energy harvester. The integrated pen harvester prototype was found to generate continuous power of 0.46-0.66 mW under normal human actions such as jogging and jumping which is enough for a small scale pulse rate sensor.

  15. Hydrodynamics and Material Properties Experiments Using Pulsed Power Techniques*

    NASA Astrophysics Data System (ADS)

    Reinovsky, Robert; Trainor, R. James

    1999-06-01

    Within the last few years a new approach for exploring dynamic material properties and advanced hydrodynamics at extreme conditions has joined the traditional techniques of high velocity guns,and explosives. The principle tool is the high precision, magnetically imploded, near-solid density liner. The most attractive pulse power system for driving such experiments is an ultra-highcurrent, low impedance, microsecond time-scale source that is economical both the build and operate. Liner specifications vary but in general share requirements for a high degree of symmetry and uniformity after implosion. When imploded in free flight to velocities 10-30 km/sec and kinetic energies of from one to 25 MJ/cm of height, liners are attractive impactors for producing strong (>10 Mbar) shocks in the target. Simple geometries can, in principle, produce multi-shock environments to reach off-hugoniot states. When filled with a compressible material, liners can deliver almost adiabatic compression to the target. When the liner surrounds a (small)nearly incompressible target material, for example a condensed noble gas, a liner can deliver enormous pressure to the target almost isentropically. When the compressible material is a magnetic field, flux compression can results in compressed fields above 1000 tesla in macroscopic volumes for materials studies.In this paper we will review basic scaling argumentsthat set the scale of environments available. We will mention the pulse power technology under development at Los Alamos and provide a summary of results from experiments testing solid metal liners under magnetic drive and a few examples of experiments performed withinterim systems. Other papers in this conference will provide specific proposals for pulse power driven shock-wave experiments.

  16. Picosecond pulse amplification up to a peak power of 42  W by a quantum-dot tapered optical amplifier and a mode-locked laser emitting at 1.26 µm.

    PubMed

    Weber, Christoph; Drzewietzki, Lukas; Rossetti, Mattia; Xu, Tianhong; Bardella, Paolo; Simos, Hercules; Mesaritakis, Charis; Ruiz, Mike; Krestnikov, Igor; Livshits, Daniil; Krakowski, Michel; Syvridis, Dimitris; Montrosset, Ivo; Rafailov, Edik U; Elsäßer, Wolfgang; Breuer, Stefan

    2015-02-01

    We experimentally study the generation and amplification of stable picosecond-short optical pulses by a master oscillator power-amplifier configuration consisting of a monolithic quantum-dot-based gain-guided tapered laser and amplifier emitting at 1.26 µm without pulse compression, external cavity, gain- or Q-switched operation. We report a peak power of 42 W and a figure-of-merit for second-order nonlinear imaging of 38.5  W2 at a repetition rate of 16 GHz and an associated pulse width of 1.37 ps. PMID:25680056

  17. Generation of 25-ns pulses with a peak power of over 10 kW from a gain-switched, 2-mm Tm-doped fibre laser and amplifier system

    SciTech Connect

    Swiderski, J; Michalska, M; Pichola, W; Mamajek, M

    2014-04-28

    We report on an all-fibre, gain-switched, Tm{sup 3+}-doped silica fibre laser and amplifier system generating a train of pulses at a wavelength of 1994.4 nm. When operating at a pulse repetition frequency f=''100'' kHz, it delivered the maximum average power as high as 9.03 W with a slope efficiency of 36.4%. At f = 26 kHz, stable 25-ns pulses with an energy of 0.28 mJ corresponding to a peak power of 10.5 kW were obtained. The performance of the laser system is described. (lasers)

  18. 100 Repetitions

    ERIC Educational Resources Information Center

    Benson, Jeffrey

    2012-01-01

    One hundred repetitions--100 "useful" repetitions. This notion has guided the author's work in alternative education programs for almost 20 years, dealing with the most challenging students, from addicts to conduct-disordered adolescents to traumatized 5th graders. There are no magic tricks. The role of educators is to align with the healthy…

  19. A table-top, repetitive pulsed magnet for nonlinear and ultrafast spectroscopy in high magnetic fields up to 30 T

    SciTech Connect

    Noe, G. Timothy; Lee, Joseph; Woods, Gary L.; Nojiri, Hiroyuki; Léotin, Jean; Kono, Junichiro

    2013-12-15

    We have developed a mini-coil pulsed magnet system with direct optical access, ideally suited for nonlinear and ultrafast spectroscopy studies of materials in high magnetic fields up to 30 T. The apparatus consists of a small coil in a liquid nitrogen cryostat coupled with a helium flow cryostat to provide sample temperatures down to below 10 K. Direct optical access to the sample is achieved with the use of easily interchangeable windows separated by a short distance of ∼135 mm on either side of the coupled cryostats with numerical apertures of 0.20 and 0.03 for measurements employing the Faraday geometry. As a demonstration, we performed time-resolved and time-integrated photoluminescence measurements as well as transmission measurements on InGaAs quantum wells.

  20. 94 GHz pulsed coherent radar for high power amplifier evaluation

    NASA Astrophysics Data System (ADS)

    Robertson, Duncan A.; Hunter, Robert I.; Gallacher, Thomas F.

    2016-05-01

    We present the design and characterization of a 94 GHz pulsed coherent radar to be used for the evaluation and demonstration of novel wideband, high power vacuum tube amplifier technology. The radar is designed to be fully coherent and exploits a low phase noise architecture to maximize Doppler performance. We selected to use horn-fed Fresnel zone plate lens antennas (FZPs) with 4-level phase quantization as a low cost method of realizing large aperture (0.5 m) antennas. The measured performance of these FZPs agrees closely with the design predictions and exceeds that obtainable with a Cassegrain of an equivalent size.

  1. Pulsed power and electron beams in the 21st century.

    SciTech Connect

    Ekdahl, C. A.

    2002-01-01

    Pulsed power and accelerator technology for high energy density physics, radiography, and simulation has matured to the point that new facilities promise users reliability of quality data return unheard of just a short time ago. By this metric alone these machines and accelerators have graduated from being experiments in their own right, to the solid foundation of a new era of experimental science. The projected performance of a few of these new capabilities will be highlighted, along with some modest speculation concerning their future.

  2. Design concepts for a pulse power test facility to simulate EMP surges. Part II. Slow pulses

    SciTech Connect

    Dethlefsen, R.

    1985-10-01

    The work described in this report was sponsored by the Division of Electric Energy Systems (EES) of the US Department of Energy (DOE) through a subcontract with the Power Systems Technology Program at the Oak Ridge National Laboratory (ORNL). The work deals with the effect of high altitude nuclear bursts on electric power systems. In addition to fast voltage transients, slow, quasi-dc currents are also induced into extended power systems with grounded neutral connections. Similar phenomena at lower magnitude are generated by solar induced electromagnetic pulses (EMP). These have caused power outages, related to solar storms, at northern latitudes. The applicable utility experience is reviewed in order to formulate an optimum approach to future testing. From a wide variety of options two pulser designs were selected as most practical, a transformer-rectifier power supply, and a lead acid battery pulser. both can be mounted on a trailer as required for field testing on utility systems. The battery system results in the least cost. Testing on power systems requires that the dc pulser pass high values of alternating current, resulting from neutral imbalance or from potential fault currents. Batteries have a high ability to pass alternating currents. Most other pulser options must be protected by an ac bypass in the form of an expensive capacitor bank. 8D truck batteries can meet the original specification of 1 kA test current. Improved batteries for higher discharge currents are available.

  3. Reliability of high-power pulsed IMPATT diodes

    NASA Astrophysics Data System (ADS)

    Ayyagari, M. S.; Heaton, J. L.; Jansen, N.

    1981-11-01

    Because of their present and future use in military systems, particularly missile seekers, high power pulsed IMPATT reliability is of considerable interest. This report is concerned with a reliability study of gallium arsenide double-drift pulsed IMPATTs of the Read doping profile type, that is both n and p active regions and contains avalanche confining doping structures. Both short-term (freak failure region) and long-term reliability testing have been carried out, comparing performance and failure mechanisms of the gallium arsenide devices with a smaller number of silicon flat profile double-drift devices, and Schottky-barrier, single-drift, low-high-low doping profile gallium arsenide devices. In the second phase of testing, devices were stressed under oscillating conditions, with a set of increasing bias current values, until failure occurred. The test was repeated at 16 different pulse widths and duty cycle combinations allowing determination of the most stringent operating conditions, and evaluation of failure mechanisms characteristic of such overstress. The third phase of testing was directed at examination of long-term reliability and wear-out failure mechanisms. Both a high temperature storage step-stress test and a long-term operation constant stress test were carried out.

  4. Spiking suppression of high power QCW pulse 1319 nm Nd:YAG laser with different intracavity doublers

    NASA Astrophysics Data System (ADS)

    Bian, Qi; Zuo, Jun-Wei; Guo, Chuan; Xu, Chang; Shen, Yu; Zong, Nan; Bo, Yong; Peng, Qin-Jun; Chen, Hong-Bin; Cui, Da-Fu; Xu, Zu-Yan

    2016-09-01

    We describe the results of our efforts in suppressing spiking of a high power, high beam quality 1319 nm Nd:YAG microsecond-pulse laser with three different intracavity frequency doublers. The 1319 nm laser is generated by a quasi-continuous-wave diode-pumped Nd:YAG ring laser system. One potassium titanyl phosphate (KTP), two KTPs and one lithium triborate (LBO) as frequency doublers are installed in the ring resonator and tested, respectively. At 800 Hz repetition rate, with a pulse width of 100 µs, performances of spiking suppression for each case are observed. The average output power are 23.6 W, 22.7 W and 23.4 W with beam quality factors of M 2  =  2.21, 1.28 and 1.25 for one KTP, two KTPs and one LBO, respectively. The corresponding brightness are 270 MW/(cm2·sr), 780 MW/(cm2·sr) and 860 MW/(cm2·sr). With better beam quality, higher brightness, and easier maintainability, the LBO is the best option of the three. A laser rate equation model including the insertion loss of the doubler is applied for theoretical analysis of the output temporal pulse shape and power, and the simulated results agree well with the experimental data.

  5. Generation of spectrally-stable continuous-wave emission and ns pulses at 800 nm and 975 nm with a peak power of 4 W using a distributed Bragg reflector laser and a ridge-waveguide power amplifier

    NASA Astrophysics Data System (ADS)

    Klehr, A.; Wenzel, H.; Fricke, J.; Bugge, F.; Liero, A.; Hoffmann, Th.; Erbert, G.; Tränkle, G.

    2015-03-01

    Semiconductor based sources which emit high-power spectrally stable nearly diffraction-limited optical pulses in the nanosecond range are ideally suited for a lot of applications, such as free-space communications, metrology, material processing, seed lasers for fiber or solid state lasers, spectroscopy, LIDAR and frequency doubling. Detailed experimental investigations of 975 nm and 800 nm diode lasers based on master oscillator power amplifier (MOPA) light sources are presented. The MOPA systems consist of distributed Bragg reflector lasers (DBR) as master oscillators driven by a constant current and ridge waveguide power amplifiers which can be driven DC and by current pulses. In pulse regime the amplifiers modulated with rectangular current pulses of about 5 ns width and a repetition frequency of 200 kHz act as optical gates, converting the continuous wave (CW) input beam emitted by the DBR lasers into a train of short optical pulses which are amplified. With these experimental MOPA arrangements no relaxation oscillations in the pulse power occur. With a seed power of about 5 mW at a wavelength of 973 nm output powers behind the amplifier of about 1 W under DC injection and 4 W under pulsed operation, corresponding to amplification factors of 200 (amplifier gain 23 dB) and 800 (gain 29 dB) respectively, are reached. At 800 nm a CW power of 1 W is obtained for a seed power of 40 mW. The optical spectra of the emission of the amplifiers exhibit a single peak at a constant wavelength with a line width < 10 pm in the whole investigated current ranges. The ratios between laser and ASE levels were > 50 dB. The output beams are nearly diffraction limited with beam propagation ratios M2lat ~ 1.1 and M2ver ~ 1.2 up to 4 W pulse power.

  6. Explosive pulsed power system for new radiation sources.

    SciTech Connect

    Oona, H.; Goforth, J. H.; Idzorek, G. C.; Herrera, D. H.; King, J. C.; Lopez, E. A.; Tasker, D. G.; Torres, D. T.

    2004-01-01

    High explosive pulsed power (HEPP) systems are capable of accessing very high energy densities and can reach conditions that are not possible with capacitor bank systems. The Procyon system was developed and used for experiments over a period of six years, and is exemplary of the capabilities of HEPP systems for state-of-the-art research. In this paper we will summarize some of the more interesting aspects of the work done in the past but will suggest ideas toward applications for future research. One of the main, unique features of HEPP systems is that they integrate easily to a particular physics experiment and the power flow can be optimized for a specific test. Magnetic flux compression generators have been an ideal power source for both high current plasma physics and hydrodynamic experimental loads. These experiments have contributed greatly to the understanding of high temperature and density plasmas and more recently to the understanding of instability growth in thick ({approx}1 mm) imploding metal cylinders. Common to all these experiments is the application of a large current pulse to a cylindrically symmetric load. The resulting Lorenz force compresses the load to produce hydrodynamic motion and/or high temperature, high density plasma. In the plasma physics experiments, plasma thermalizes on axis and a black body distribution of x-rays is produced. To get better access to the radiation pulse, the load electrode geometry was modified. For example, by shaping the plasma implosion glide planes, a mass depletion region was formed along one electrode at pinch time which generated a very large voltage drop across a 1-2 mm segment of the pinch, and also produced a high energy ion beam on axis. These results were predicted by magneto-hydro-dynamic (MHD) codes and verified with framing camera and x-ray, pinhole, camera pictures. We have not previously published these features but will take another look and propose possible scenarios for studying and generating

  7. Numerical simulation of de-NOx performance by repetitive pulsed discharge when added with hydrocarbons such as ethylene

    NASA Astrophysics Data System (ADS)

    Onda, Kazuo; Kusunoki, Hironobu; Ito, Kohei; Ibaraki, Hiroshi; Araki, Takuto

    2005-01-01

    Emission regulations are gradually being tightened recently to prevent further air pollution. Cost-effective and efficient technologies must be developed to process the NOx generated in the combustion of fossil fuels. One of the candidate technologies to process NOx is the denitrification of flue gas by pulsed corona discharge, which has been demonstrated experimentally to show high de-NOx performance. However, the optimization of operation conditions and the appropriate understanding of the de-NOx process still remain to be clarified. Therefore, following our previous study on ammonia injection, we have simulated in the present study the de-NOx process to which hydrocarbons such as ethylene have been added to provide guidelines on its proper operation conditions and its main reaction paths to remove NOx. The simulated results show that the removal efficiency in a case of ethylene addition becomes lower than for ammonia addition, but the de-NOx energy consumption rate becomes lower than for ammonia injection. However, with ethylene injection the production of the pollutant, formaldehyde, limits the allowable amount of injected ethylene. The de-NOx performance is better with propylene than ethylene injection because propylene reacts with the OH radical more than ethylene to oxide NOx. However, formaldehyde is also produced in the case of propylene injection, limiting the allowable amount of injected propylene. The de-NOx performance is also assessed in a case where HNO2 is considered as NxOy.

  8. Numerical Simulation of DeNOx Performance by Repetitive Pulsed Discharge added by Hydrocarbon such as Ethylene

    NASA Astrophysics Data System (ADS)

    Kusunoki, Hironobu; Ibaraki, Hiroshi; Ito, Kohei; Araki, Takuto; Onda, Kazuo

    Emission regulation is being tightened up recently to prevent expansion of air pollution. Economic and efficient technologies are desired to process NOx generated in combustion of fossil fuel. One of the candidate technologies to process NOx is the denitrification of flue gas by pulsed corona discharge, which has been demonstrated experimentally to have the high deNOx performance. However, the optimization of operation conditions and the appropriate understanding of the deNOx process are still remained not to be cleared. Therefore, we have simulated in this study the deNOx process added by hydrocarbon such as ethylene to give its proper operation conditions and its main reaction paths to remove NOx, following our previous study on ammonia addition. The simulated results show that the removal efficiency in a case of ethylene addition becomes lower than that in ammonia addition, but the deNOx energy consumption rate becomes lower than the ammonia injection case. However, the ethylene injection leads to produce the pollutant of formaldehyde, which limits the allowable amount of injected ethylene. In a case of propylene injection its deNOx performance is better than the ethylene addition case, because propylene reacts with OH radical more than ethylene to oxide NOx. However, formaldehyde is also produced in propylene injection case, limiting the allowable amount of injected propylene.

  9. Influence of gas temperature on self-sustained volume discharge characteristics in working mixtures of a repetitively pulsed COIL

    SciTech Connect

    Aksinin, V I; Kazantsev, S Yu; Kononov, I G; Podlesnykh, S V; Firsov, K N; Antsiferov, S A; Velikanov, S D; Kalinovskii, V V; Konovalov, V V; Mikhalkin, V N; Sevryugin, I V

    2014-02-28

    The influence of gas temperature on the characteristics of a self-sustained volume discharge was studied in the working mixtures of a chemical oxygen – iodine laser with pulsed electricdischarge production of iodine atoms. In experiments, laser working mixtures were modelled by the mixture of air and iodide C{sub 2}H{sub 5}I. It was established that mixture heating is accompanied by an increase in the voltage across the discharge plasma and by a decrease in the discharge current. By varying the temperature of the mixture with the iodine content of ∼2.7% and initial pressure p=12 Torr from 22 °C to 96 °C, the current amplitude falls by ∼12%, and at the instant corresponding to a maximal current the voltage raises by ∼22%. Such a change in the discharge characteristics is explained by a higher rate of electron attachment to vibrationally excited iodide molecules at elevated temperatures. (active media)

  10. Synthesis of 3D nanostructured metal alloy of immiscible materials induced by megahertz-repetition femtosecond laser pulses

    PubMed Central

    2012-01-01

    In this work, we have proposed a concept for the generation of three-dimensional (3D) nanostructured metal alloys of immiscible materials induced by megahertz-frequency ultrafast laser pulses. A mixture of two microparticle materials (aluminum and nickel oxide) and nickel oxide microparticles coated onto an aluminum foil have been used in this study. After laser irradiation, three different types of nanostructure composites have been observed: aluminum embedded in nickel nuclei, agglomerated chain of aluminum and nickel nanoparticles, and finally, aluminum nanoparticles grown on nickel microparticles. In comparison with current nanofabrication methods which are used only for one-dimensional nanofabrication, this technique enables us to fabricate 3D nanostructured metal alloys of two or more nanoparticle materials with varied composite concentrations under various predetermined conditions. This technique can lead to promising solutions for the fabrication of 3D nanostructured metal alloys in applications such as fuel-cell energy generation and development of custom-designed, functionally graded biomaterials and biocomposites. PMID:22999219

  11. Synthesis of 3D nanostructured metal alloy of immiscible materials induced by megahertz-repetition femtosecond laser pulses.

    PubMed

    Kiani, Amirkianoosh; Waraich, Palneet Singh; Venkatakrishnan, Krishnan; Tan, Bo

    2012-01-01

    : In this work, we have proposed a concept for the generation of three-dimensional (3D) nanostructured metal alloys of immiscible materials induced by megahertz-frequency ultrafast laser pulses. A mixture of two microparticle materials (aluminum and nickel oxide) and nickel oxide microparticles coated onto an aluminum foil have been used in this study. After laser irradiation, three different types of nanostructure composites have been observed: aluminum embedded in nickel nuclei, agglomerated chain of aluminum and nickel nanoparticles, and finally, aluminum nanoparticles grown on nickel microparticles. In comparison with current nanofabrication methods which are used only for one-dimensional nanofabrication, this technique enables us to fabricate 3D nanostructured metal alloys of two or more nanoparticle materials with varied composite concentrations under various predetermined conditions. This technique can lead to promising solutions for the fabrication of 3D nanostructured metal alloys in applications such as fuel-cell energy generation and development of custom-designed, functionally graded biomaterials and biocomposites. PMID:22999219

  12. Synthesis of 3D nanostructured metal alloy of immiscible materials induced by megahertz-repetition femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Kiani, Amirkianoosh; Waraich, Palneet Singh; Venkatakrishnan, Krishnan; Tan, Bo

    2012-09-01

    In this work, we have proposed a concept for the generation of three-dimensional (3D) nanostructured metal alloys of immiscible materials induced by megahertz-frequency ultrafast laser pulses. A mixture of two microparticle materials (aluminum and nickel oxide) and nickel oxide microparticles coated onto an aluminum foil have been used in this study. After laser irradiation, three different types of nanostructure composites have been observed: aluminum embedded in nickel nuclei, agglomerated chain of aluminum and nickel nanoparticles, and finally, aluminum nanoparticles grown on nickel microparticles. In comparison with current nanofabrication methods which are used only for one-dimensional nanofabrication, this technique enables us to fabricate 3D nanostructured metal alloys of two or more nanoparticle materials with varied composite concentrations under various predetermined conditions. This technique can lead to promising solutions for the fabrication of 3D nanostructured metal alloys in applications such as fuel-cell energy generation and development of custom-designed, functionally graded biomaterials and biocomposites.

  13. NUMERICAL SIMULATIONS OF CONVERGING SHOCKS IN PULSED POWER DRIVEN EXPERIMENTS

    SciTech Connect

    R. KANZLEITER; W. ATCHISON; ET AL

    2000-12-01

    The final shot of the current Near Term Liner Experiment (NTLX) series occurred on September 29, 2000. Utilization of a pulsed power source with a standardized liner/target ''cartridge'' produced a uniform implosion to drive hydrodynamic experiments. Diagnostics showed that high quality data of shock propagation can be obtained from pulsed power liner drivers as in the current NTLX series. Very good agreement in calculating shock locations was obtained between the codes used to model the NTLX series, RAGE and RAVEN. RAVEN also accurately predicts liner/target impact as measured by B-Dot probes. Large differences are observed between the calculated and measured positions of converging shock waves even in simple geometrical configurations. Liner/target impact is accurately calculated and similar results are produced for shock velocities in Lucite. RAGE and RAVEN use different hydrodynamic algorithms, yet agree, this focuses current efforts on EOS issues within the outer tin target to resolve discrepancies. Further diagnostics covering shock breakout from the outer tin target and shock propagation shortly thereafter would be highly beneficial.

  14. Pulsed power conditioning system for the Magajoule laser

    NASA Astrophysics Data System (ADS)

    Mexmain, Jean-Marc; Rubin de Cervens, D.; Marret, Jean-Pierre; Roos, V.; Cassany, B.; Eyl, P.; Pere, P.; Havre, Sierra S.; Fauvel, J.; Mathieu, P.; Benin, P.; Callu, G.; Vincent, C.; Michalczyk, Pierre

    2003-07-01

    The CEA is responsible for the Megajoule Laser (LMJ) facility. This facility is a large Flashlamp pump laser (1.8 MJ optical output). CEA entered into a contract with THALES to carry out the pulsed power conditioning system for the Megajoule Laser. The pulsed power conditioning system has a modular design which makes the facility more flexible and safer. This complete primary storage is a 450 MJ energy capacitor bank composed of 270 modules of 1.6 MJ energy. Each module is a stand-alone capacitor bank equipped with twelve 100 kJ capacitors and its embedded control/monitor and diagnostic system which is connected by an optical Ethernet link to the Command Control Supervisor of the facility. In the first step of the LMJ program, called "Line Integration Laser" (LIL), one laser chain will be built. The capacitor bank used to drive the LIL is comprised of 10 modules. This paper describes the design of the modules and the results of testing. The overall electrical performance meets the requirements.

  15. Soft x-ray diagnostics for pulsed power machines

    SciTech Connect

    Idzorek, G.C.; Coulter, W.L.; Walsh, P.J.; Montoya, R.R.

    1995-08-01

    A variety of soft x-ray diagnostics are being fielded on the Los Alamos National Laboratory Pegasus and Procyon pulsed power systems and also being fielded on joint US/Russian magnetized target fusion experiments known as MAGO (Magnitoye Obzhatiye). The authors have designed a low-cost modular photoemissive detector designated the XRD-96 that uses commercial 1100 series aluminum for the photocathode. In addition to photocathode detectors a number of designs using solid state silicon photodiodes have been designed and fielded. They also present a soft x-ray time-integrated pinhole camera system that uses standard type TMAX-400 photographic film that obviates the need for expensive and no longer produced zero-overcoat soft x-ray emulsion film. In a typical experiment the desired spectral energy cuts, signal intensity levels, and desired field of view will determine diagnostic geometry and x-ray filters selected. The authors have developed several computer codes to assist in the diagnostic design process and data deconvolution. Examples of the diagnostic design process and data analysis for a typical pulsed power experiment are presented.

  16. Generation of spectrally stable continuous-wave emission and ns pulses with a peak power of 4 W using a distributed Bragg reflector laser and a ridge-waveguide power amplifier.

    PubMed

    Klehr, A; Wenzel, H; Fricke, J; Bugge, F; Erbert, G

    2014-10-01

    We have developed a diode-laser based master oscillator power amplifier (MOPA) light source which emits high-power spectrally stabilized and nearly-diffraction limited optical pulses in the nanoseconds range as required by many applications. The MOPA consists of a distributed Bragg reflector (DBR) laser as master oscillator driven by a constant current and a ridge waveguide power amplifier (PA) which can be driven by a constant current (DC) or by rectangular current pulses with a width of 5 ns at a repetition frequency of 200 kHz. Under pulsed operation the amplifier acts as an optical gate, converting the CW input beam emitted by the DBR laser into a train of short amplified optical pulses. With this experimental MOPA arrangement no relaxation oscillations occur. A continuous wave power of 1 W under DC injection and a pulse power of 4 W under pulsed operation are reached. For both operational modes the optical spectrum of the emission of the amplifier exhibits a peak at a constant wavelength of 973.5 nm with a spectral width < 10 pm.

  17. Laser driven nuclear science and applications: The need of high efficiency, high power and high repetition rate Laser beams

    NASA Astrophysics Data System (ADS)

    Gales, S.

    2015-10-01

    Extreme Light Infrastructure (ELI) is a pan European research initiative selected on the European Strategy Forum on Research Infrastructures Roadmap that aims to close the gap between the existing laboratory-based laser driven research and international facility-grade research centre. The ELI-NP facility, one of the three ELI pillars under construction, placed in Romania and to be operational in 2018, has as core elements a couple of new generation 10 PW laser systems and a narrow bandwidth Compton backscattering gamma source with photon energies up to 19 MeV. ELI-NP will address nuclear photonics, nuclear astrophysics and quantum electrodynamics involving extreme photon fields. Prospective applications of high power laser in nuclear astrophysics, accelerator physics, in particular towards future Accelerator Driven System, as well as in nuclear photonics, for detection and characterization of nuclear material, and for nuclear medicine, will be discussed. Key issues in these research areas will be at reach with significant increase of the repetition rates and of the efficiency at the plug of the high power laser systems as proposed by the ICAN collaboration.

  18. Generation of sub-50 fs pulses from a high-power Yb-doped fiber amplifier.

    PubMed

    Deng, Yujun; Chien, Ching-Yuan; Fidric, Bernard G; Kafka, James D

    2009-11-15

    We demonstrate the generation of 48 fs pulses with 18 W average power and 226 nJ of pulse energy from a Yb-doped fiber amplifier. The system uses a simple stretcher-free single-stage amplifier configuration operating in the parabolic pulse regime. The gain fiber length and pump wavelength are chosen in order to reduce the gain per unit length and generate both shorter pulses and higher pulse energy.

  19. Repetitive light pulse-induced photoinhibition of photosystem I severely affects CO2 assimilation and photoprotection in wheat leaves.

    PubMed

    Zivcak, Marek; Brestic, Marian; Kunderlikova, Kristyna; Sytar, Oksana; Allakhverdiev, Suleyman I

    2015-12-01

    It was previously found that photosystem I (PSI) photoinhibition represents mostly irreversible damage with a slow recovery; however, its physiological significance has not been sufficiently characterized. The aim of the study was to assess the effect of PSI photoinhibition on photosynthesis in vivo. The inactivation of PSI was done by a series of short light saturation pulses applied by fluorimeter in darkness (every 10 s for 15 min), which led to decrease of both PSI (~60 %) and photosystem II (PSII) (~15 %) photochemical activity. No PSI recovery was observed within 2 days, whereas the PSII was fully recovered. Strongly limited PSI electron transport led to an imbalance between PSII and PSI photochemistry, with a high excitation pressure on PSII acceptor side and low oxidation of the PSI donor side. Low and delayed light-induced NPQ and P700(+) rise in inactivated samples indicated a decrease in formation of transthylakoid proton gradient (ΔpH), which was confirmed also by analysis of electrochromic bandshift (ECSt) records. In parallel with photochemical parameters, the CO2 assimilation was also strongly inhibited, more in low light (~70 %) than in high light (~45 %); the decrease was not caused by stomatal closure. PSI electron transport limited the CO2 assimilation at low to moderate light intensities, but it seems not to be directly responsible for a low CO2 assimilation at high light. In this regard, the possible effects of PSI photoinhibition on the redox signaling in chloroplast and its role in downregulation of Calvin cycle activity are discussed.

  20. STUDENT AWARD FINALIST: Simulation of the ignition of a H2-air mixture at atmospheric pressure by a nanosecond repetitively pulsed discharge

    NASA Astrophysics Data System (ADS)

    Tholin, Fabien; Bourdon, Anne

    2012-10-01

    Nanosecond repetitively Pulsed Discharges (NRPD) have a great potential for many applications at atmospheric pressure due to their ability to produce efficiently many reactive chemical species at a low energy cost. Recent measurements have shown that in the ``spark'' regime of NRP discharges, an ultra-fast local heating of the gas could be obtained. This effect is of great interest for applications as flow control and plasma assisted combustion (PAC). In this work, we have carried out 2D numerical simulations of the coupling of the NRP discharge in air at atmospheric pressure in a point-point geometry with the background air. In particular, we have simulated shock waves generated by the NRPD in the spark regime and we have compared our results with experiments. Then, we have studied the production of active species by the NRP discharge in the spark regime. Finally, for plasma assisted combustion applications, we have simulated the ignition of a flame kernel in a lean H2-air mixture by a spark NRPD. Based on this work, the relative importance for the combustion ignition of gas heating and production of active species by the spark NRP is discussed.