Compression in wearable sensor nodes: impacts of node topology.
Imtiaz, Syed Anas; Casson, Alexander J; Rodriguez-Villegas, Esther
2014-04-01
Wearable sensor nodes monitoring the human body must operate autonomously for very long periods of time. Online and low-power data compression embedded within the sensor node is therefore essential to minimize data storage/transmission overheads. This paper presents a low-power MSP430 compressive sensing implementation for providing such compression, focusing particularly on the impact of the sensor node architecture on the compression performance. Compression power performance is compared for four different sensor nodes incorporating different strategies for wireless transmission/on-sensor-node local storage of data. The results demonstrate that the compressive sensing used must be designed differently depending on the underlying node topology, and that the compression strategy should not be guided only by signal processing considerations. We also provide a practical overview of state-of-the-art sensor node topologies. Wireless transmission of data is often preferred as it offers increased flexibility during use, but in general at the cost of increased power consumption. We demonstrate that wireless sensor nodes can highly benefit from the use of compressive sensing and now can achieve power consumptions comparable to, or better than, the use of local memory.
Design of nodes for embedded and ultra low-power wireless sensor networks
NASA Astrophysics Data System (ADS)
Xu, Jun; You, Bo; Cui, Juan; Ma, Jing; Li, Xin
2008-10-01
Sensor network integrates sensor technology, MEMS (Micro-Electro-Mechanical system) technology, embedded computing, wireless communication technology and distributed information management technology. It is of great value to use it where human is quite difficult to reach. Power consumption and size are the most important consideration when nodes are designed for distributed WSN (wireless sensor networks). Consequently, it is of great importance to decrease the size of a node, reduce its power consumption and extend its life in network. WSN nodes have been designed using JN5121-Z01-M01 module produced by jennic company and IEEE 802.15.4/ZigBee technology. Its new features include support for CPU sleep modes and a long-term ultra low power sleep mode for the entire node. In low power configuration the node resembles existing small low power nodes. An embedded temperature sensor node has been developed to verify and explore our architecture. The experiment results indicate that the WSN has the characteristic of high reliability, good stability and ultra low power consumption.
Energy Efficient Real-Time Scheduling Using DPM on Mobile Sensors with a Uniform Multi-Cores
Kim, Youngmin; Lee, Chan-Gun
2017-01-01
In wireless sensor networks (WSNs), sensor nodes are deployed for collecting and analyzing data. These nodes use limited energy batteries for easy deployment and low cost. The use of limited energy batteries is closely related to the lifetime of the sensor nodes when using wireless sensor networks. Efficient-energy management is important to extending the lifetime of the sensor nodes. Most effort for improving power efficiency in tiny sensor nodes has focused mainly on reducing the power consumed during data transmission. However, recent emergence of sensor nodes equipped with multi-cores strongly requires attention to be given to the problem of reducing power consumption in multi-cores. In this paper, we propose an energy efficient scheduling method for sensor nodes supporting a uniform multi-cores. We extend the proposed T-Ler plane based scheduling for global optimal scheduling of a uniform multi-cores and multi-processors to enable power management using dynamic power management. In the proposed approach, processor selection for a scheduling and mapping method between the tasks and processors is proposed to efficiently utilize dynamic power management. Experiments show the effectiveness of the proposed approach compared to other existing methods. PMID:29240695
2017-03-01
A Low- Power Wireless Image Sensor Node with Noise-Robust Moving Object Detection and a Region-of-Interest Based Rate Controller Jong Hwan Ko...Atlanta, GA 30332 USA Contact Author Email: jonghwan.ko@gatech.edu Abstract: This paper presents a low- power wireless image sensor node for...present a low- power wireless image sensor node with a noise-robust moving object detection and region-of-interest based rate controller [Fig. 1]. The
Flexible wearable sensor nodes with solar energy harvesting.
Taiyang Wu; Arefin, Md Shamsul; Redoute, Jean-Michel; Yuce, Mehmet Rasit
2017-07-01
Wearable sensor nodes have gained a lot of attention during the past few years as they can monitor and record people's physical parameters in real time. Wearable sensor nodes can promote healthy lifestyles and prevent the occurrence of potential illness or injuries. This paper presents a flexible wearable sensor system powered by an efficient solar energy harvesting technique. It can measure the subject's heartbeats using a photoplethysmography (PPG) sensor and perform activity monitoring using an accelerometer. The solar energy harvester adopts an output current based maximum power point tracking (MPPT) algorithm, which controls the solar panel to operate within its high output power range. The power consumption of the flexible sensor nodes has been investigated under different operation conditions. Experimental results demonstrate that wearable sensor nodes can work for more than 12 hours when they are powered by the solar energy harvester for 3 hours in the bright sunlight.
A Wind Energy Powered Wireless Temperature Sensor Node
Zhang, Chuang; He, Xue-Feng; Li, Si-Yu; Cheng, Yao-Qing; Rao, Yang
2015-01-01
A wireless temperature sensor node composed of a piezoelectric wind energy harvester, a temperature sensor, a microcontroller, a power management circuit and a wireless transmitting module was developed. The wind-induced vibration energy harvester with a cuboid chamber of 62 mm × 19.6 mm × 10 mm converts ambient wind energy into electrical energy to power the sensor node. A TMP102 temperature sensor and the MSP430 microcontroller are used to measure the temperature. The power management module consists of LTC3588-1 and LT3009 units. The measured temperature is transmitted by the nRF24l01 transceiver. Experimental results show that the critical wind speed of the harvester was about 5.4 m/s and the output power of the harvester was about 1.59 mW for the electrical load of 20 kΩ at wind speed of 11.2 m/s, which was sufficient to power the wireless sensor node to measure and transmit the temperature every 13 s. When the wind speed increased from 6 m/s to 11.5 m/s, the self-powered wireless sensor node worked normally. PMID:25734649
A wind energy powered wireless temperature sensor node.
Zhang, Chuang; He, Xue-Feng; Li, Si-Yu; Cheng, Yao-Qing; Rao, Yang
2015-02-27
A wireless temperature sensor node composed of a piezoelectric wind energy harvester, a temperature sensor, a microcontroller, a power management circuit and a wireless transmitting module was developed. The wind-induced vibration energy harvester with a cuboid chamber of 62 mm × 19.6 mm × 10 mm converts ambient wind energy into electrical energy to power the sensor node. A TMP102 temperature sensor and the MSP430 microcontroller are used to measure the temperature. The power management module consists of LTC3588-1 and LT3009 units. The measured temperature is transmitted by the nRF24l01 transceiver. Experimental results show that the critical wind speed of the harvester was about 5.4 m/s and the output power of the harvester was about 1.59 mW for the electrical load of 20 kΩ at wind speed of 11.2 m/s, which was sufficient to power the wireless sensor node to measure and transmit the temperature every 13 s. When the wind speed increased from 6 m/s to 11.5 m/s, the self-powered wireless sensor node worked normally.
Solar micro-power system for self-powered wireless sensor nodes
NASA Astrophysics Data System (ADS)
He, Yongtai; Li, Yangqiu; Liu, Lihui; Wang, Lei
2008-10-01
In self-powered wireless sensor nodes, the efficiency for environmental energy harvesting, storage and management determines the lifetime and environmental adaptability of the sensor nodes. However, the method of improving output efficiency for traditional photovoltaic power generation is not suitable for a solar micro-power system due to the special requirements for its application. This paper presents a solar micro-power system designed for a solar self-powered wireless sensor node. The Maximum Power Point Tracking (MPPT) of solar cells and energy storage are realized by the hybrid energy storage structure and "window" control. Meanwhile, the mathematical model of energy harvesting, storing and management is formulated. In the novel system, the output conversion efficiency of solar cells is 12%.
A high-efficiency self-powered wireless sensor node for monitoring concerning vibratory events
NASA Astrophysics Data System (ADS)
Xu, Dacheng; Li, Suiqiong; Li, Mengyang; Xie, Danpeng; Dong, Chuan; Li, Xinxin
2017-09-01
This paper presents a self-powered wireless alarming sensor node (SWASN), which was designed to monitor the occurrence of concerning vibratory events. The major components of the sensor node include a vibration-threshold-triggered energy harvester (VTTEH) that powers the sensor node, a dual threshold voltage control circuit (DTVCC) for power management and a radio frequency (RF) signal transmitting module. The VTTEH generates significant electric energy only when the input vibration reaches certain amplitude. Thus, the VTTEH serves as both the power source and the vibration-event-sensing element for the sensor node. The DTVCC was specifically designed to utilize the limited power supply from the VTTEH to operate the sensor node. Constructed with only voltage detectors and MOSFETs, the DTVCC achieved low power consumption, which was 65% lower compared with the power management circuit designed in our previous work. Meanwhile, a RF transmit circuit was constructed based on the commercially available CC1110-F32 wireless transceiver chip and a compact planar antenna was designed to improve the signal transmission distance. The sensor node was fabricated and was characterized both in the laboratory and in the field. Experimental results showed that the SWASN could automatically send out alarming signals when the simulated concerning event occurred. The waiting time between two consecutive transmission periods is less than 125 s and the transmission distance can reach 1.31 km. The SWASN will have broad applications in field surveillances.
Supplying the power requirements to a sensor network using radio frequency power transfer.
Percy, Steven; Knight, Chris; Cooray, Francis; Smart, Ken
2012-01-01
Wireless power transmission is a method of supplying power to small electronic devices when there is no wired connection. One way to increase the range of these systems is to use a directional transmitting antenna, the problem with this approach is that power can only be transmitted through a narrow beam and directly forward, requiring the transmitter to always be aligned with the sensor node position. The work outlined in this article describes the design and testing of an autonomous radio frequency power transfer system that is capable of rotating the base transmitter to track the position of sensor nodes and transferring power to that sensor node. The system's base station monitors the node's energy levels and forms a charge queue to plan charging order and maintain energy levels of the nodes. Results show a radio frequency harvesting circuit with a measured S11 value of -31.5 dB and a conversion efficiency of 39.1%. Simulation and experimentation verified the level of power transfer and efficiency. The results of this work show a small network of three nodes with different storage types powered by a central base node.
Wireless Sensor Node for Autonomous Monitoring and Alerts in Remote Environments
NASA Technical Reports Server (NTRS)
Panangadan, Anand V. (Inventor); Monacos, Steve P. (Inventor)
2015-01-01
A method, apparatus, system, and computer program products provides personal alert and tracking capabilities using one or more nodes. Each node includes radio transceiver chips operating at different frequency ranges, a power amplifier, sensors, a display, and embedded software. The chips enable the node to operate as either a mobile sensor node or a relay base station node while providing a long distance relay link between nodes. The power amplifier enables a line-of-sight communication between the one or more nodes. The sensors provide a GPS signal, temperature, and accelerometer information (used to trigger an alert condition). The embedded software captures and processes the sensor information, provides a multi-hop packet routing protocol to relay the sensor information to and receive alert information from a command center, and to display the alert information on the display.
Energy efficient sensor network implementations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frigo, Janette R; Raby, Eric Y; Brennan, Sean M
In this paper, we discuss a low power embedded sensor node architecture we are developing for distributed sensor network systems deployed in a natural environment. In particular, we examine the sensor node for energy efficient processing-at-the-sensor. We analyze the following modes of operation; event detection, sleep(wake-up), data acquisition, data processing modes using low power, high performance embedded technology such as specialized embedded DSP processors and a low power FPGAs at the sensing node. We use compute intensive sensor node applications: an acoustic vehicle classifier (frequency domain analysis) and a video license plate identification application (learning algorithm) as a case study.more » We report performance and total energy usage for our system implementations and discuss the system architecture design trade offs.« less
McGarry, Scott; Knight, Chris
2012-01-01
Wireless sensor networks are becoming increasingly more common as a means to sense, measure, record and transmit data for scientific and engineering evaluation, remotely and autonomously. Usually, remotely located sensor nodes are powered by batteries which are recharged by solar or wind energy harvesters. Sometimes nodes are located in areas where these forms of energy harvesting are not possible due to local conditions, such as under the canopy of a forest. This article outlines the design and testing of a device capable of harvesting energy from tree movement, and shows the device powering a wireless sensor node continuously. The device uses the force and displacement of the movement of a tree trunk (of a 6 m tall tree) to drive an electromagnetic generator that recharges a nickel metal hydride battery. The battery stores the energy from which a ∼0.5 mW wireless sensor node is powered continuously. This demonstrated method of energy harvesting may allow the placement and powering of nodes in locations previously not possible.
Mi, Shichao; Han, Hui; Chen, Cailian; Yan, Jian; Guan, Xinping
2016-02-19
Heterogeneous wireless sensor networks (HWSNs) can achieve more tasks and prolong the network lifetime. However, they are vulnerable to attacks from the environment or malicious nodes. This paper is concerned with the issues of a consensus secure scheme in HWSNs consisting of two types of sensor nodes. Sensor nodes (SNs) have more computation power, while relay nodes (RNs) with low power can only transmit information for sensor nodes. To address the security issues of distributed estimation in HWSNs, we apply the heterogeneity of responsibilities between the two types of sensors and then propose a parameter adjusted-based consensus scheme (PACS) to mitigate the effect of the malicious node. Finally, the convergence property is proven to be guaranteed, and the simulation results validate the effectiveness and efficiency of PACS.
Development of Light Powered Sensor Networks for Thermal Comfort Measurement
Lee, Dasheng
2008-01-01
Recent technological advances in wireless communications have enabled easy installation of sensor networks with air conditioning equipment control applications. However, the sensor node power supply, through either power lines or battery power, still presents obstacles to the distribution of the sensing systems. In this study, a novel sensor network, powered by the artificial light, was constructed to achieve wireless power transfer and wireless data communications for thermal comfort measurements. The sensing node integrates an IC-based temperature sensor, a radiation thermometer, a relative humidity sensor, a micro machined flow sensor and a microprocessor for predicting mean vote (PMV) calculation. The 935 MHz band RF module was employed for the wireless data communication with a specific protocol based on a special energy beacon enabled mode capable of achieving zero power consumption during the inactive periods of the nodes. A 5W spotlight, with a dual axis tilt platform, can power the distributed nodes over a distance of up to 5 meters. A special algorithm, the maximum entropy method, was developed to estimate the sensing quantity of climate parameters if the communication module did not receive any response from the distributed nodes within a certain time limit. The light-powered sensor networks were able to gather indoor comfort-sensing index levels in good agreement with the comfort-sensing vote (CSV) preferred by a human being and the experimental results within the environment suggested that the sensing system could be used in air conditioning systems to implement a comfort-optimal control strategy. PMID:27873877
NASA Astrophysics Data System (ADS)
Okada, Hironao; Kobayashi, Takeshi; Masuda, Takashi; Itoh, Toshihiro
2009-07-01
We describe a low power consumption wireless sensor node designed for monitoring the conditions of animals, especially of chickens. The node detects variations in 24-h behavior patterns by acquiring the number of the movement of an animal whose acceleration exceeds a threshold measured in per unit time. Wireless sensor nodes when operated intermittently are likely to miss necessary data during their sleep mode state and waste the power in the case of acquiring useless data. We design the node worked only when required acceleration is detected using a piezoelectric accelerometer and a comparator for wake-up source of micro controller unit.
Joint Resource Optimization for Cognitive Sensor Networks with SWIPT-Enabled Relay.
Lu, Weidang; Lin, Yuanrong; Peng, Hong; Nan, Tian; Liu, Xin
2017-09-13
Energy-constrained wireless networks, such as wireless sensor networks (WSNs), are usually powered by fixed energy supplies (e.g., batteries), which limits the operation time of networks. Simultaneous wireless information and power transfer (SWIPT) is a promising technique to prolong the lifetime of energy-constrained wireless networks. This paper investigates the performance of an underlay cognitive sensor network (CSN) with SWIPT-enabled relay node. In the CSN, the amplify-and-forward (AF) relay sensor node harvests energy from the ambient radio-frequency (RF) signals using power splitting-based relaying (PSR) protocol. Then, it helps forward the signal of source sensor node (SSN) to the destination sensor node (DSN) by using the harvested energy. We study the joint resource optimization including the transmit power and power splitting ratio to maximize CSN's achievable rate with the constraint that the interference caused by the CSN to the primary users (PUs) is within the permissible threshold. Simulation results show that the performance of our proposed joint resource optimization can be significantly improved.
Energy Harvesting Chip and the Chip Based Power Supply Development for a Wireless Sensor Network.
Lee, Dasheng
2008-12-02
In this study, an energy harvesting chip was developed to scavenge energy from artificial light to charge a wireless sensor node. The chip core is a miniature transformer with a nano-ferrofluid magnetic core. The chip embedded transformer can convert harvested energy from its solar cell to variable voltage output for driving multiple loads. This chip system yields a simple, small, and more importantly, a battery-less power supply solution. The sensor node is equipped with multiple sensors that can be enabled by the energy harvesting power supply to collect information about the human body comfort degree. Compared with lab instruments, the nodes with temperature, humidity and photosensors driven by harvested energy had variation coefficient measurement precision of less than 6% deviation under low environmental light of 240 lux. The thermal comfort was affected by the air speed. A flow sensor equipped on the sensor node was used to detect airflow speed. Due to its high power consumption, this sensor node provided 15% less accuracy than the instruments, but it still can meet the requirement of analysis for predicted mean votes (PMV) measurement. The energy harvesting wireless sensor network (WSN) was deployed in a 24-hour convenience store to detect thermal comfort degree from the air conditioning control. During one year operation, the sensor network powered by the energy harvesting chip retained normal functions to collect the PMV index of the store. According to the one month statistics of communication status, the packet loss rate (PLR) is 2.3%, which is as good as the presented results of those WSNs powered by battery. Referring to the electric power records, almost 54% energy can be saved by the feedback control of an energy harvesting sensor network. These results illustrate that, scavenging energy not only creates a reliable power source for electronic devices, such as wireless sensor nodes, but can also be an energy source by building an energy efficient program.
Energy Harvesting Chip and the Chip Based Power Supply Development for a Wireless Sensor Network
Lee, Dasheng
2008-01-01
In this study, an energy harvesting chip was developed to scavenge energy from artificial light to charge a wireless sensor node. The chip core is a miniature transformer with a nano-ferrofluid magnetic core. The chip embedded transformer can convert harvested energy from its solar cell to variable voltage output for driving multiple loads. This chip system yields a simple, small, and more importantly, a battery-less power supply solution. The sensor node is equipped with multiple sensors that can be enabled by the energy harvesting power supply to collect information about the human body comfort degree. Compared with lab instruments, the nodes with temperature, humidity and photosensors driven by harvested energy had variation coefficient measurement precision of less than 6% deviation under low environmental light of 240 lux. The thermal comfort was affected by the air speed. A flow sensor equipped on the sensor node was used to detect airflow speed. Due to its high power consumption, this sensor node provided 15% less accuracy than the instruments, but it still can meet the requirement of analysis for predicted mean votes (PMV) measurement. The energy harvesting wireless sensor network (WSN) was deployed in a 24-hour convenience store to detect thermal comfort degree from the air conditioning control. During one year operation, the sensor network powered by the energy harvesting chip retained normal functions to collect the PMV index of the store. According to the one month statistics of communication status, the packet loss rate (PLR) is 2.3%, which is as good as the presented results of those WSNs powered by battery. Referring to the electric power records, almost 54% energy can be saved by the feedback control of an energy harvesting sensor network. These results illustrate that, scavenging energy not only creates a reliable power source for electronic devices, such as wireless sensor nodes, but can also be an energy source by building an energy efficient program. PMID:27873953
A Low Power IoT Sensor Node Architecture for Waste Management Within Smart Cities Context.
Cerchecci, Matteo; Luti, Francesco; Mecocci, Alessandro; Parrino, Stefano; Peruzzi, Giacomo; Pozzebon, Alessandro
2018-04-21
This paper focuses on the realization of an Internet of Things (IoT) architecture to optimize waste management in the context of Smart Cities. In particular, a novel typology of sensor node based on the use of low cost and low power components is described. This node is provided with a single-chip microcontroller, a sensor able to measure the filling level of trash bins using ultrasounds and a data transmission module based on the LoRa LPWAN (Low Power Wide Area Network) technology. Together with the node, a minimal network architecture was designed, based on a LoRa gateway, with the purpose of testing the IoT node performances. Especially, the paper analyzes in detail the node architecture, focusing on the energy saving technologies and policies, with the purpose of extending the batteries lifetime by reducing power consumption, through hardware and software optimization. Tests on sensor and radio module effectiveness are also presented.
A Low Power IoT Sensor Node Architecture for Waste Management Within Smart Cities Context
Cerchecci, Matteo; Luti, Francesco; Mecocci, Alessandro; Parrino, Stefano; Peruzzi, Giacomo
2018-01-01
This paper focuses on the realization of an Internet of Things (IoT) architecture to optimize waste management in the context of Smart Cities. In particular, a novel typology of sensor node based on the use of low cost and low power components is described. This node is provided with a single-chip microcontroller, a sensor able to measure the filling level of trash bins using ultrasounds and a data transmission module based on the LoRa LPWAN (Low Power Wide Area Network) technology. Together with the node, a minimal network architecture was designed, based on a LoRa gateway, with the purpose of testing the IoT node performances. Especially, the paper analyzes in detail the node architecture, focusing on the energy saving technologies and policies, with the purpose of extending the batteries lifetime by reducing power consumption, through hardware and software optimization. Tests on sensor and radio module effectiveness are also presented. PMID:29690552
Development of an LSI for Tactile Sensor Systems on the Whole-Body of Robots
NASA Astrophysics Data System (ADS)
Muroyama, Masanori; Makihata, Mitsutoshi; Nakano, Yoshihiro; Matsuzaki, Sakae; Yamada, Hitoshi; Yamaguchi, Ui; Nakayama, Takahiro; Nonomura, Yutaka; Fujiyoshi, Motohiro; Tanaka, Shuji; Esashi, Masayoshi
We have developed a network type tactile sensor system, which realizes high-density tactile sensors on the whole-body of nursing and communication robots. The system consists of three kinds of nodes: host, relay and sensor nodes. Roles of the sensor node are to sense forces and, to encode the sensing data and to transmit the encoded data on serial channels by interruption handling. Relay nodes and host deal with a number of the encoded sensing data from the sensor nodes. A sensor node consists of a capacitive MEMS force sensor and a signal processing/transmission LSI. In this paper, details of an LSI for the sensor node are described. We designed experimental sensor node LSI chips by a commercial 0.18µm standard CMOS process. The 0.18µm LSIs were supplied in wafer level for MEMS post-process. The LSI chip area is 2.4mm × 2.4mm, which includes logic, CF converter and memory circuits. The maximum clock frequency of the chip with a large capacitive load is 10MHz. Measured power consumption at 10MHz clock is 2.23mW. Experimental results indicate that size, response time, sensor sensitivity and power consumption are all enough for practical tactile sensor systems.
Shi, Juanfei; Calveras, Anna; Cheng, Ye; Liu, Kai
2013-05-15
The extensive usage of wireless sensor networks (WSNs) has led to the development of many power- and energy-efficient routing protocols. Cooperative routing in WSNs can improve performance in these types of networks. In this paper we discuss the existing proposals and we propose a routing algorithm for wireless sensor networks called Power Efficient Location-based Cooperative Routing with Transmission Power-upper-limit (PELCR-TP). The algorithm is based on the principle of minimum link power and aims to take advantage of nodes cooperation to make the link work well in WSNs with a low transmission power. In the proposed scheme, with a determined transmission power upper limit, nodes find the most appropriate next nodes and single-relay nodes with the proposed algorithm. Moreover, this proposal subtly avoids non-working nodes, because we add a Bad nodes Avoidance Strategy (BAS). Simulation results show that the proposed algorithm with BAS can significantly improve the performance in reducing the overall link power, enhancing the transmission success rate and decreasing the retransmission rate.
Shi, Juanfei; Calveras, Anna; Cheng, Ye; Liu, Kai
2013-01-01
The extensive usage of wireless sensor networks (WSNs) has led to the development of many power- and energy-efficient routing protocols. Cooperative routing in WSNs can improve performance in these types of networks. In this paper we discuss the existing proposals and we propose a routing algorithm for wireless sensor networks called Power Efficient Location-based Cooperative Routing with Transmission Power-upper-limit (PELCR-TP). The algorithm is based on the principle of minimum link power and aims to take advantage of nodes cooperation to make the link work well in WSNs with a low transmission power. In the proposed scheme, with a determined transmission power upper limit, nodes find the most appropriate next nodes and single-relay nodes with the proposed algorithm. Moreover, this proposal subtly avoids non-working nodes, because we add a Bad nodes Avoidance Strategy (BAS). Simulation results show that the proposed algorithm with BAS can significantly improve the performance in reducing the overall link power, enhancing the transmission success rate and decreasing the retransmission rate. PMID:23676625
NASA Astrophysics Data System (ADS)
Mehne, P.; Lickert, F.; Bäumker, E.; Kroener, M.; Woias, P.
2016-11-01
In this paper we will first present the measurement of temperatures on different positions at a diesel-powered car. As a result, several locations are identified as suitable to implement a wireless sensor node powered by thermal energy harvesting. Based on the data gained a thermoelectric generator (TEG) has been selected, and measurements of energy generation have been performed. Further, a complete energy-autonomous wireless sensor node was designed, including the TEG with its mounting bracket, an electronic power management, and a Bluetooth Low Energy (BLE) sensor node. Based on temperature differences from -10 K up to 75.3 K occurring in test drives, a low power set up was chosen to achieve a system startup time below 10 minutes and to ensure service even under difficult ambient conditions, like high ambient temperatures or a slow movement of the car in stocking traffic. 2 minutes after starting the engine a power about of 10 mW is available from the chosen TEG, and in peak the power exceeds 1 W. In a 50 minute test drive it was possible to generate 650 J of energy. This information was used to develop the complete system, demonstrating the opportunity to deploy energy-autonomous wireless sensor nodes in a car, e.g. for exhaust gas monitoring. The system is used to gather sensor data, like temperature and humidity, and transmits data successfully via BLE to a prepared main node based on a Raspberry Pi.
Energy-efficient digital and wireless IC design for wireless smart sensing
NASA Astrophysics Data System (ADS)
Zhou, Jun; Huang, Xiongchuan; Wang, Chao; Tae-Hyoung Kim, Tony; Lian, Yong
2017-10-01
Wireless smart sensing is now widely used in various applications such as health monitoring and structural monitoring. In conventional wireless sensor nodes, significant power is consumed in wirelessly transmitting the raw data. Smart sensing adds local intelligence to the sensor node and reduces the amount of wireless data transmission via on-node digital signal processing. While the total power consumption is reduced compared to conventional wireless sensing, the power consumption of the digital processing becomes as dominant as wireless data transmission. This paper reviews the state-of-the-art energy-efficient digital and wireless IC design techniques for reducing the power consumption of the wireless smart sensor node to prolong battery life and enable self-powered applications.
A two-tiered self-powered wireless monitoring system architecture for bridge health management
NASA Astrophysics Data System (ADS)
Kurata, Masahiro; Lynch, Jerome P.; Galchev, Tzeno; Flynn, Michael; Hipley, Patrick; Jacob, Vince; van der Linden, Gwendolyn; Mortazawi, Amir; Najafi, Khalil; Peterson, Rebecca L.; Sheng, Li-Hong; Sylvester, Dennis; Thometz, Edward
2010-04-01
Bridges are an important societal resource used to carry vehicular traffic within a transportation network. As such, the economic impact of the failure of a bridge is high; the recent failure of the I-35W Bridge in Minnesota (2007) serves as a poignant example. Structural health monitoring (SHM) systems can be adopted to detect and quantify structural degradation and damage in an affordable and real-time manner. This paper presents a detailed overview of a multi-tiered architecture for the design of a low power wireless monitoring system for large and complex infrastructure systems. The monitoring system architecture employs two wireless sensor nodes, each with unique functional features and varying power demand. At the lowest tier of the system architecture is the ultra-low power Phoenix wireless sensor node whose design has been optimized to draw minimal power during standby. These ultra low-power nodes are configured to communicate their measurements to a more functionally-rich wireless sensor node residing on the second-tier of the monitoring system architecture. While the Narada wireless sensor node offers more memory, greater processing power and longer communication ranges, it also consumes more power during operation. Radio frequency (RF) and mechanical vibration power harvesting is integrated with the wireless sensor nodes to allow them to operate freely for long periods of time (e.g., years). Elements of the proposed two-tiered monitoring system architecture are validated upon an operational long-span suspension bridge.
Distributed Transforms for Efficient Data Gathering in Sensor Networks
NASA Technical Reports Server (NTRS)
Ortega, Antonio (Inventor); Shen, Godwin (Inventor); Narang, Sunil K. (Inventor); Perez-Trufero, Javier (Inventor)
2014-01-01
Devices, systems, and techniques for data collecting network such as wireless sensors are disclosed. A described technique includes detecting one or more remote nodes included in the wireless sensor network using a local power level that controls a radio range of the local node. The technique includes transmitting a local outdegree. The local outdegree can be based on a quantity of the one or more remote nodes. The technique includes receiving one or more remote outdegrees from the one or more remote nodes. The technique includes determining a local node type of the local node based on detecting a node type of the one or more remote nodes, using the one or more remote outdegrees, and using the local outdegree. The technique includes adjusting characteristics, including an energy usage characteristic and a data compression characteristic, of the wireless sensor network by selectively modifying the local power level and selectively changing the local node type.
Wang, Yishan; Doleschel, Sammy; Wunderlich, Ralf; Heinen, Stefan
2015-03-01
This paper presents a wearable wireless ECG monitoring system based on novel 3-Lead electrode placements for long-term homecare. The experiment for novel 3-Lead electrode placements is carried out, and the results show that the distance between limb electrodes can be significantly reduced. Based on the new electrode position, a small size sensor node, which is powered by a rechargeable battery, is designed to detect, amplify, filter and transmit the ECG signals. The coordinator receives the data and sends it to PC. Finally the signals are displayed on the GUI. In order to control the power consumption of sensor node, a dynamic power adjustment method is applied to automatically adjust the transmission power of the sensor node according to the received signal strength indicator (RSSI), which is related to the distance and obstacle between sensor node and coordinator. The system is evaluated when the user, who wears the sensor, is walking and running. A promising performance is achieved even under body motion. The power consumption can be significantly reduced with this dynamic power adjustment method.
Empowering smartphone users with sensor node for air quality measurement
NASA Astrophysics Data System (ADS)
Oletic, Dinko; Bilas, Vedran
2013-06-01
We present an architecture of a sensor node developed for use with smartphones for participatory sensing of air quality in urban environments. Our solution features inexpensive metal-oxide semiconductor gas sensors (MOX) for measurement of CO, O3, NO2 and VOC, along with sensors for ambient temperature and humidity. We focus on our design of sensor interface consisting of power-regulated heater temperature control, and the design of resistance sensing circuit. Accuracy of the sensor interface is characterized. Power consumption of the sensor node is analysed. Preliminary data obtained from the CO gas sensors in laboratory conditions and during the outdoor field-test is shown.
A wireless laser displacement sensor node for structural health monitoring.
Park, Hyo Seon; Kim, Jong Moon; Choi, Se Woon; Kim, Yousok
2013-09-30
This study describes a wireless laser displacement sensor node that measures displacement as a representative damage index for structural health monitoring (SHM). The proposed measurement system consists of a laser displacement sensor (LDS) and a customized wireless sensor node. Wireless communication is enabled by a sensor node that consists of a sensor module, a code division multiple access (CDMA) communication module, a processor, and a power module. An LDS with a long measurement distance is chosen to increase field applicability. For a wireless sensor node driven by a battery, we use a power control module with a low-power processor, which facilitates switching between the sleep and active modes, thus maximizing the power consumption efficiency during non-measurement and non-transfer periods. The CDMA mode is also used to overcome the limitation of communication distance, which is a challenge for wireless sensor networks and wireless communication. To evaluate the reliability and field applicability of the proposed wireless displacement measurement system, the system is tested onsite to obtain the required vertical displacement measurements during the construction of mega-trusses and an edge truss, which are the primary structural members in a large-scale irregular building currently under construction. The measurement values confirm the validity of the proposed wireless displacement measurement system and its potential for use in safety evaluations of structural elements.
Magnetic sensor nodes for enhanced situational awareness in urban settings
NASA Astrophysics Data System (ADS)
Trammell, Hoke; Shelby, Richard; Mathis, Kevin; Dalichaouch, Yacine; Kumar, Sankaran
2005-05-01
Military forces conducting urban operations are in need of non-line-of-sight sensor technologies for enhanced situational awareness. Disposable sensors ought to be able to detect and track targets through walls and within rooms in a building and relay that information in real-time to the soldier. We have recently developed magnetic sensor nodes aimed towards low cost, small size, low power consumption, and wireless communication. The current design uses a three-axis thin-film magnetoresistive sensor for low bandwidth B-field monitoring of magnetic targets such as vehicles and weapons carried by personnel. These sensor nodes are battery operated and use IEEE 802.15.4 communication link for control and data transmission. Power consumption during signal acquisition and communication is approximately 300 mW per channel. We will present and discuss node array performance, future node development and sensor fusion concepts.
Autonomous solutions for powering wireless sensor nodes in rivers
NASA Astrophysics Data System (ADS)
Kamenar, E.; Maćešić, S.; Gregov, G.; Blažević, D.; Zelenika, S.; Marković, K.; Glažar, V.
2015-05-01
There is an evident need for monitoring pollutants and/or other conditions in river flows via wireless sensor networks. In a typical wireless sensor network topography, a series of sensor nodes is to be deployed in the environment, all wirelessly connected to each other and/or their gateways. Each sensor node is composed of active electronic devices that have to be constantly powered. In general, batteries can be used for this purpose, but problems may occur when they have to be replaced. In the case of large networks, when sensor nodes can be placed in hardly accessible locations, energy harvesting can thus be a viable powering solution. The possibility to use three different small-scale river flow energy harvesting principles is hence thoroughly studied in this work: a miniaturized underwater turbine, a so-called `piezoelectric eel' and a hybrid turbine solution coupled with a rigid piezoelectric beam. The first two concepts are then validated experimentally in laboratory as well as in real river conditions. The concept of the miniaturised hydro-generator is finally embedded into the actual wireless sensor node system and its functionality is confirmed.
Real-Time Performance of a Self-Powered Environmental IoT Sensor Network System
Wu, Fan; Rüdiger, Christoph; Yuce, Mehmet Rasit
2017-01-01
Wireless sensor networks (WSNs) play an increasingly important role in monitoring applications in many areas. With the emergence of the Internet-of-Things (IoT), many more low-power sensors will need to be deployed in various environments to collect and monitor data about environmental factors in real time. Providing power supply to these sensor nodes becomes a critical challenge for realizations of IoT applications as sensor nodes are normally battery-powered and have a limited lifetime. This paper proposes a wireless sensor network that is powered by solar energy harvesting. The sensor network monitors the environmental data with low-power sensor electronics and forms a network using multiple XBee wireless modules. A detailed performance analysis of the network system under solar energy harvesting has been presented. The sensor network system and the proposed energy-harvesting techniques are configured to achieve a continuous energy source for the sensor network. The proposed energy-harvesting system has been successfully designed to enable an energy solution in order to keep sensor nodes active and reliable for a whole day. The paper also outlines some of our experiences in real-time implementation of a sensor network system with energy harvesting. PMID:28157148
NASA Astrophysics Data System (ADS)
Li, Jian; Plotnikov, Yuri; Lin, Wendy W.
2008-02-01
A low power wireless sensor network was developed to monitor the microcrack events in aerospace composites. The microcracks in the composites mostly result from a stress loading or temperature and/or humidity cycles. Generally, a single microcrack is too small to be detected by conventional techniques such as X-ray or ultrasonic C-scan. The whole developed sensor network is aimed to capture the released acoustic signals by the microcracking events in real time. It comprises of a receiving station as well as a series of sensor nodes. Each sensor node includes two acoustic emission transducers as well as two signal amplification and data acquisition channels. Much of our development effort has been focused on reducing the power consumption of each node and improving the detection reliability for each event. Each sensor node is battery-powered and works in a sleep mode most of time. Once a microcrack is initiated in the composite, the acoustic signal triggers the node and wakes it up. The node will then react in several microseconds and digitize the signal. The digitized data is sent to the station wirelessly. The developed wireless sensor network system has been validated with microscopy of microcracked samples after temperature and humidity cycling and has proved to be an effective tool for microcracking detection. Furthermore, our low power consumption design and sophisticated wireless transmission mechanism enables a system with great potential for field structural health monitoring applications.
LWT Based Sensor Node Signal Processing in Vehicle Surveillance Distributed Sensor Network
NASA Astrophysics Data System (ADS)
Cha, Daehyun; Hwang, Chansik
Previous vehicle surveillance researches on distributed sensor network focused on overcoming power limitation and communication bandwidth constraints in sensor node. In spite of this constraints, vehicle surveillance sensor node must have signal compression, feature extraction, target localization, noise cancellation and collaborative signal processing with low computation and communication energy dissipation. In this paper, we introduce an algorithm for light-weight wireless sensor node signal processing based on lifting scheme wavelet analysis feature extraction in distributed sensor network.
IEEE-802.15.4-based low-power body sensor node with RF energy harvester.
Tran, Thang Viet; Chung, Wan-Young
2014-01-01
This paper proposes the design and implementation of a low-voltage and low-power body sensor node based on the IEEE 802.15.4 standard to collect electrocardiography (ECG) and photoplethysmography (PPG) signals. To achieve compact size, low supply voltage, and low power consumption, the proposed platform is integrated into a ZigBee mote, which contains a DC-DC booster, a PPG sensor interface module, and an ECG front-end circuit that has ultra-low current consumption. The input voltage of the proposed node is very low and has a wide range, from 0.65 V to 3.3 V. An RF energy harvester is also designed to charge the battery during the working mode or standby mode of the node. The power consumption of the proposed node reaches 14 mW in working mode to prolong the battery lifetime. The software is supported by the nesC language under the TinyOS environment, which enables the proposed node to be easily configured to function as an individual health monitoring node or a node in a wireless body sensor network (BSN). The proposed node is used to set up a wireless BSN that can simultaneously collect ECG and PPG signals and monitor the results on the personal computer.
An ultra-low power wireless sensor network for bicycle torque performance measurements.
Gharghan, Sadik K; Nordin, Rosdiadee; Ismail, Mahamod
2015-05-21
In this paper, we propose an energy-efficient transmission technique known as the sleep/wake algorithm for a bicycle torque sensor node. This paper aims to highlight the trade-off between energy efficiency and the communication range between the cyclist and coach. Two experiments were conducted. The first experiment utilised the Zigbee protocol (XBee S2), and the second experiment used the Advanced and Adaptive Network Technology (ANT) protocol based on the Nordic nRF24L01 radio transceiver chip. The current consumption of ANT was measured, simulated and compared with a torque sensor node that uses the XBee S2 protocol. In addition, an analytical model was derived to correlate the sensor node average current consumption with a crank arm cadence. The sensor node achieved 98% power savings for ANT relative to ZigBee when they were compared alone, and the power savings amounted to 30% when all components of the sensor node are considered. The achievable communication range was 65 and 50 m for ZigBee and ANT, respectively, during measurement on an outdoor cycling track (i.e., velodrome). The conclusions indicate that the ANT protocol is more suitable for use in a torque sensor node when power consumption is a crucial demand, whereas the ZigBee protocol is more convenient in ensuring data communication between cyclist and coach.
An Ultra-Low Power Wireless Sensor Network for Bicycle Torque Performance Measurements
Gharghan, Sadik K.; Nordin, Rosdiadee; Ismail, Mahamod
2015-01-01
In this paper, we propose an energy-efficient transmission technique known as the sleep/wake algorithm for a bicycle torque sensor node. This paper aims to highlight the trade-off between energy efficiency and the communication range between the cyclist and coach. Two experiments were conducted. The first experiment utilised the Zigbee protocol (XBee S2), and the second experiment used the Advanced and Adaptive Network Technology (ANT) protocol based on the Nordic nRF24L01 radio transceiver chip. The current consumption of ANT was measured, simulated and compared with a torque sensor node that uses the XBee S2 protocol. In addition, an analytical model was derived to correlate the sensor node average current consumption with a crank arm cadence. The sensor node achieved 98% power savings for ANT relative to ZigBee when they were compared alone, and the power savings amounted to 30% when all components of the sensor node are considered. The achievable communication range was 65 and 50 m for ZigBee and ANT, respectively, during measurement on an outdoor cycling track (i.e., velodrome). The conclusions indicate that the ANT protocol is more suitable for use in a torque sensor node when power consumption is a crucial demand, whereas the ZigBee protocol is more convenient in ensuring data communication between cyclist and coach. PMID:26007728
Low Latency MAC Protocol in Wireless Sensor Networks Using Timing Offset
NASA Astrophysics Data System (ADS)
Choi, Seung Sik
This paper proposes a low latency MAC protocol that can be used in sensor networks. To extend the lifetime of sensor nodes, the conventional solution is to synchronize active/sleep periods of all sensor nodes. However, due to these synchronized sensor nodes, packets in the intermediate nodes must wait until the next node wakes up before it can forward a packet. This induces a large delay in sensor nodes. To solve this latency problem, a clustered sensor network which uses two types of sensor nodes and layered architecture is considered. Clustered heads in each cluster are synchronized with different timing offsets to reduce the sleep delay. Using this concept, the latency problem can be solved and more efficient power usage can be obtained.
Zhao, Kun; Wang, Zhong Lin; Yang, Ya
2016-09-27
Wireless sensor networks will be responsible for a majority of the fast growth in intelligent systems in the next decade. However, most of the wireless smart sensor nodes require an external power source such as a Li-ion battery, where the labor cost and environmental waste issues of replacing batteries have largely limited the practical applications. Instead of using a Li-ion battery, we report an ultrastable, highly efficient, and superhydrophobic-surface-based triboelectric nanogenerator (TENG) to scavenge wind energy for sustainably powering a wireless smart temperature sensor node. There is no decrease in the output voltage and current of the TENG after continuous working for about 14 h at a wind speed of 12 m/s. Through a power management circuit, the TENG can deliver a constant output voltage of 3.3 V and a pulsed output current of about 100 mA to achieve highly efficient energy storage in a capacitor. A wireless smart temperature sensor node can be sustainably powered by the TENG for sending the real-time temperature data to an iPhone under a working distance of 26 m, demonstrating the feasibility of the self-powered wireless smart sensor networks.
Davis, Jesse Harper Zehring [Berkeley, CA; Stark, Jr., Douglas Paul; Kershaw, Christopher Patrick [Hayward, CA; Kyker, Ronald Dean [Livermore, CA
2008-06-10
A distributed wireless sensor network node is disclosed. The wireless sensor network node includes a plurality of sensor modules coupled to a system bus and configured to sense a parameter. The parameter may be an object, an event or any other parameter. The node collects data representative of the parameter. The node also includes a communication module coupled to the system bus and configured to allow the node to communicate with other nodes. The node also includes a processing module coupled to the system bus and adapted to receive the data from the sensor module and operable to analyze the data. The node also includes a power module connected to the system bus and operable to generate a regulated voltage.
Sleep Deprivation Attack Detection in Wireless Sensor Network
NASA Astrophysics Data System (ADS)
Bhattasali, Tapalina; Chaki, Rituparna; Sanyal, Sugata
2012-02-01
Deployment of sensor network in hostile environment makes it mainly vulnerable to battery drainage attacks because it is impossible to recharge or replace the battery power of sensor nodes. Among different types of security threats, low power sensor nodes are immensely affected by the attacks which cause random drainage of the energy level of sensors, leading to death of the nodes. The most dangerous type of attack in this category is sleep deprivation, where target of the intruder is to maximize the power consumption of sensor nodes, so that their lifetime is minimized. Most of the existing works on sleep deprivation attack detection involve a lot of overhead, leading to poor throughput. The need of the day is to design a model for detecting intrusions accurately in an energy efficient manner. This paper proposes a hierarchical framework based on distributed collaborative mechanism for detecting sleep deprivation torture in wireless sensor network efficiently. Proposed model uses anomaly detection technique in two steps to reduce the probability of false intrusion.
Design and implementation of smart sensor nodes for wireless disaster monitoring systems
NASA Astrophysics Data System (ADS)
Chen, Yih-Fan; Wu, Wen-Jong; Chen, Chun-Kuang; Wen, Chih-Min; Jin, Ming-Hui; Gau, Chung-Yun; Chang, Chih-Chie; Lee, Chih-Kung
2004-07-01
A newly developed smart sensor node that can monitor the safety of temporary structures such as scaffolds at construction sites is detailed in this paper. The design methodology and its trade-offs, as well as its influence on the optimization of sensor networks, is examined. The potential impact on civil engineering construction sites, environmental and natural disaster pre-warning issues, etc., all of which are foundations of smart sensor nodes and corresponding smart sensor networks, is also presented. To minimize the power requirements in order to achieve a true wireless system both in terms of signal and power, a sensor node was designed by adopting an 8051-based micro-controller, an ISM band RF transceiver, and an auto-balanced strain gage signal conditioner. With the built-in RF transceiver, all measurement data can be transmitted to a local control center for data integrity, security, central monitoring, and full-scale analysis. As a battery is the only well-established power source and there is a strong desire to eliminate the need to install bulky power lines, this system designed includes a battery-powered core with optimal power efficiency. To further extend the service life of the built-in power source, a power control algorithm has been embedded in the microcontroller of each sensor node. The entire system has been verified by experimental tests on full-scale scaffold monitoring. The results show that this system provides a practical method to monitor the structure safety in real time and possesses the potential of reducing maintenance costs significantly. The design of the sensor node, central control station, and the integration of several kinds of wireless communication protocol, all of which are successfully integrated to demonstrate the capabilities of this newly developed system, are detailed. Potential impact to the network topology is briefly examined as well.
Real-Time Performance of a Self-Powered Environmental IoT Sensor Network System.
Wu, Fan; Rüdiger, Christoph; Yuce, Mehmet Rasit
2017-02-01
Wireless sensor networks (WSNs) play an increasingly important role in monitoring applications in many areas. With the emergence of the Internet-of-Things (IoT), many more lowpower sensors will need to be deployed in various environments to collect and monitor data about environmental factors in real time. Providing power supply to these sensor nodes becomes a critical challenge for realizations of IoT applications as sensor nodes are normally battery-powered and have a limited lifetime. This paper proposes a wireless sensor network that is powered by solar energy harvesting. The sensor network monitors the environmental data with low-power sensor electronics and forms a network using multiple XBee wireless modules. A detailed performance analysis of the network system under solar energy harvesting has been presented. The sensor network system and the proposed energy-harvesting techniques are configured to achieve a continuous energy source for the sensor network. The proposed energy-harvesting system has been successfully designed to enable an energy solution in order to keep sensor nodes active and reliable for a whole day. The paper also outlines some of our experiences in real-time implementation of a sensor network system with energy harvesting.
Chen, Yi-Ting; Horng, Mong-Fong; Lo, Chih-Cheng; Chu, Shu-Chuan; Pan, Jeng-Shyang; Liao, Bin-Yih
2013-03-20
Transmission power optimization is the most significant factor in prolonging the lifetime and maintaining the connection quality of wireless sensor networks. Un-optimized transmission power of nodes either interferes with or fails to link neighboring nodes. The optimization of transmission power depends on the expected node degree and node distribution. In this study, an optimization approach to an energy-efficient and full reachability wireless sensor network is proposed. In the proposed approach, an adjustment model of the transmission range with a minimum node degree is proposed that focuses on topology control and optimization of the transmission range according to node degree and node density. The model adjusts the tradeoff between energy efficiency and full reachability to obtain an ideal transmission range. In addition, connectivity and reachability are used as performance indices to evaluate the connection quality of a network. The two indices are compared to demonstrate the practicability of framework through simulation results. Furthermore, the relationship between the indices under the conditions of various node degrees is analyzed to generalize the characteristics of node densities. The research results on the reliability and feasibility of the proposed approach will benefit the future real deployments.
Chen, Yi-Ting; Horng, Mong-Fong; Lo, Chih-Cheng; Chu, Shu-Chuan; Pan, Jeng-Shyang; Liao, Bin-Yih
2013-01-01
Transmission power optimization is the most significant factor in prolonging the lifetime and maintaining the connection quality of wireless sensor networks. Un-optimized transmission power of nodes either interferes with or fails to link neighboring nodes. The optimization of transmission power depends on the expected node degree and node distribution. In this study, an optimization approach to an energy-efficient and full reachability wireless sensor network is proposed. In the proposed approach, an adjustment model of the transmission range with a minimum node degree is proposed that focuses on topology control and optimization of the transmission range according to node degree and node density. The model adjusts the tradeoff between energy efficiency and full reachability to obtain an ideal transmission range. In addition, connectivity and reachability are used as performance indices to evaluate the connection quality of a network. The two indices are compared to demonstrate the practicability of framework through simulation results. Furthermore, the relationship between the indices under the conditions of various node degrees is analyzed to generalize the characteristics of node densities. The research results on the reliability and feasibility of the proposed approach will benefit the future real deployments. PMID:23519351
Energy-Efficient ZigBee-Based Wireless Sensor Network for Track Bicycle Performance Monitoring
Gharghan, Sadik K.; Nordin, Rosdiadee; Ismail, Mahamod
2014-01-01
In a wireless sensor network (WSN), saving power is a vital requirement. In this paper, a simple point-to-point bike WSN was considered. The data of bike parameters, speed and cadence, were monitored and transmitted via a wireless communication based on the ZigBee protocol. Since the bike parameters are monitored and transmitted on every bike wheel rotation, this means the sensor node does not sleep for a long time, causing power consumption to rise. Therefore, a newly proposed algorithm, known as the Redundancy and Converged Data (RCD) algorithm, was implemented for this application to put the sensor node into sleep mode while maintaining the performance measurements. This is achieved by minimizing the data packets transmitted as much as possible and fusing the data of speed and cadence by utilizing the correlation measurements between them to minimize the number of sensor nodes in the network to one node, which results in reduced power consumption, cost, and size, in addition to simpler hardware implementation. Execution of the proposed RCD algorithm shows that this approach can reduce the current consumption to 1.69 mA, and save 95% of the sensor node energy. Also, the comparison results with different wireless standard technologies demonstrate minimal current consumption in the sensor node. PMID:25153141
Wireless and Powerless Sensing Node System Developed for Monitoring Motors.
Lee, Dasheng
2008-08-27
Reliability and maintainability of tooling systems can be improved through condition monitoring of motors. However, it is difficult to deploy sensor nodes due to the harsh environment of industrial plants. Sensor cables are easily damaged, which renders the monitoring system deployed to assure the machine's reliability itself unreliable. A wireless and powerless sensing node integrated with a MEMS (Micro Electro-Mechanical System) sensor, a signal processor, a communication module, and a self-powered generator was developed in this study for implementation of an easily mounted network sensor for monitoring motors. A specially designed communication module transmits a sequence of electromagnetic (EM) pulses in response to the sensor signals. The EM pulses can penetrate through the machine's metal case and delivers signals from the sensor inside the motor to the external data acquisition center. By using induction power, which is generated by the motor's shaft rotation, the sensor node is self-sustaining; therefore, no power line is required. A monitoring system, equipped with novel sensing nodes, was constructed to test its performance. The test results illustrate that, the novel sensing node developed in this study can effectively enhance the reliability of the motor monitoring system and it is expected to be a valuable technology, which will be available to the plant for implementation in a reliable motor management program.
Wireless and Powerless Sensing Node System Developed for Monitoring Motors
Lee, Dasheng
2008-01-01
Reliability and maintainability of tooling systems can be improved through condition monitoring of motors. However, it is difficult to deploy sensor nodes due to the harsh environment of industrial plants. Sensor cables are easily damaged, which renders the monitoring system deployed to assure the machine's reliability itself unreliable. A wireless and powerless sensing node integrated with a MEMS (Micro Electro-Mechanical System) sensor, a signal processor, a communication module, and a self-powered generator was developed in this study for implementation of an easily mounted network sensor for monitoring motors. A specially designed communication module transmits a sequence of electromagnetic (EM) pulses in response to the sensor signals. The EM pulses can penetrate through the machine's metal case and delivers signals from the sensor inside the motor to the external data acquisition center. By using induction power, which is generated by the motor's shaft rotation, the sensor node is self-sustaining; therefore, no power line is required. A monitoring system, equipped with novel sensing nodes, was constructed to test its performance. The test results illustrate that, the novel sensing node developed in this study can effectively enhance the reliability of the motor monitoring system and it is expected to be a valuable technology, which will be available to the plant for implementation in a reliable motor management program. PMID:27873798
Energy-efficient ZigBee-based wireless sensor network for track bicycle performance monitoring.
Gharghan, Sadik K; Nordin, Rosdiadee; Ismail, Mahamod
2014-08-22
In a wireless sensor network (WSN), saving power is a vital requirement. In this paper, a simple point-to-point bike WSN was considered. The data of bike parameters, speed and cadence, were monitored and transmitted via a wireless communication based on the ZigBee protocol. Since the bike parameters are monitored and transmitted on every bike wheel rotation, this means the sensor node does not sleep for a long time, causing power consumption to rise. Therefore, a newly proposed algorithm, known as the Redundancy and Converged Data (RCD) algorithm, was implemented for this application to put the sensor node into sleep mode while maintaining the performance measurements. This is achieved by minimizing the data packets transmitted as much as possible and fusing the data of speed and cadence by utilizing the correlation measurements between them to minimize the number of sensor nodes in the network to one node, which results in reduced power consumption, cost, and size, in addition to simpler hardware implementation. Execution of the proposed RCD algorithm shows that this approach can reduce the current consumption to 1.69 mA, and save 95% of the sensor node energy. Also, the comparison results with different wireless standard technologies demonstrate minimal current consumption in the sensor node.
Low power sensor network for wireless condition monitoring
NASA Astrophysics Data System (ADS)
Richter, Ch.; Frankenstein, B.; Schubert, L.; Weihnacht, B.; Friedmann, H.; Ebert, C.
2009-03-01
For comprehensive fatigue tests and surveillance of large scale structures, a vibration monitoring system working in the Hz and sub Hz frequency range was realized and tested. The system is based on a wireless sensor network and focuses especially on the realization of a low power measurement, signal processing and communication. Regarding the development, we met the challenge of synchronizing the wireless connected sensor nodes with sufficient accuracy. The sensor nodes ware realized by compact, sensor near signal processing structures containing components for analog preprocessing of acoustic signals, their digitization, algorithms for data reduction and network communication. The core component is a digital micro controller which performs the basic algorithms necessary for the data acquisition synchronization and the filtering. As a first application, the system was installed in a rotor blade of a wind power turbine in order to monitor the Eigen modes over a longer period of time. Currently the sensor nodes are battery powered.
Optimal power allocation and joint source-channel coding for wireless DS-CDMA visual sensor networks
NASA Astrophysics Data System (ADS)
Pandremmenou, Katerina; Kondi, Lisimachos P.; Parsopoulos, Konstantinos E.
2011-01-01
In this paper, we propose a scheme for the optimal allocation of power, source coding rate, and channel coding rate for each of the nodes of a wireless Direct Sequence Code Division Multiple Access (DS-CDMA) visual sensor network. The optimization is quality-driven, i.e. the received quality of the video that is transmitted by the nodes is optimized. The scheme takes into account the fact that the sensor nodes may be imaging scenes with varying levels of motion. Nodes that image low-motion scenes will require a lower source coding rate, so they will be able to allocate a greater portion of the total available bit rate to channel coding. Stronger channel coding will mean that such nodes will be able to transmit at lower power. This will both increase battery life and reduce interference to other nodes. Two optimization criteria are considered. One that minimizes the average video distortion of the nodes and one that minimizes the maximum distortion among the nodes. The transmission powers are allowed to take continuous values, whereas the source and channel coding rates can assume only discrete values. Thus, the resulting optimization problem lies in the field of mixed-integer optimization tasks and is solved using Particle Swarm Optimization. Our experimental results show the importance of considering the characteristics of the video sequences when determining the transmission power, source coding rate and channel coding rate for the nodes of the visual sensor network.
NASA Astrophysics Data System (ADS)
Cowell, Martin Andrew
The world already hosts more internet connected devices than people, and that ratio is only increasing. These devices seamlessly integrate with peoples lives to collect rich data and give immediate feedback about complex systems from business, health care, transportation, and security. As every aspect of global economies integrate distributed computing into their industrial systems and these systems benefit from rich datasets. Managing the power demands of these distributed computers will be paramount to ensure the continued operation of these networks, and is elegantly addressed by including local energy harvesting and storage on a per-node basis. By replacing non-rechargeable batteries with energy harvesting, wireless sensor nodes will increase their lifetimes by an order of magnitude. This work investigates the coupling of high power energy storage with energy harvesting technologies to power wireless sensor nodes; with sections covering device manufacturing, system integration, and mathematical modeling. First we consider the energy storage mechanism of supercapacitors and batteries, and identify favorable characteristics in both reservoir types. We then discuss experimental methods used to manufacture high power supercapacitors in our labs. We go on to detail the integration of our fabricated devices with collaborating labs to create functional sensor node demonstrations. With the practical knowledge gained through in-lab manufacturing and system integration, we build mathematical models to aid in device and system design. First, we model the mechanism of energy storage in porous graphene supercapacitors to aid in component architecture optimization. We then model the operation of entire sensor nodes for the purpose of optimally sizing the energy harvesting and energy reservoir components. In consideration of deploying these sensor nodes in real-world environments, we model the operation of our energy harvesting and power management systems subject to spatially and temporally varying energy availability in order to understand sensor node reliability. Looking to the future, we see an opportunity for further research to implement machine learning algorithms to control the energy resources of distributed computing networks.
Ultra-low power wireless sensing for long-term structural health monitoring
NASA Astrophysics Data System (ADS)
Bilbao, Argenis; Hoover, Davis; Rice, Jennifer; Chapman, Jamie
2011-04-01
Researchers have made significant progress in recent years towards realizing long-term structural health monitoring (SHM) utilizing wireless smart sensor networks (WSSNs). These efforts have focused on improving the performance and robustness of such networks to achieve high quality data acquisition and in-network processing. One of the primary challenges still facing the use of smart sensors for long-term monitoring deployments is their limited power resources. Periodically accessing the sensor nodes to change batteries is not feasible or economical in many deployment cases. While energy harvesting techniques show promise for prolonging unattended network life, low-power design and operation are still critically important. This research presents a new, fully integrated ultra-low power wireless smart sensor node and a flexible base station, both designed for long-term SHM applications. The power consumption of the sensor nodes and base station has been minimized through careful hardware selection and the implementation of power-aware network software, without sacrificing flexibility and functionality.
An Energy-Efficient ASIC for Wireless Body Sensor Networks in Medical Applications.
Xiaoyu Zhang; Hanjun Jiang; Lingwei Zhang; Chun Zhang; Zhihua Wang; Xinkai Chen
2010-02-01
An energy-efficient application-specific integrated circuit (ASIC) featured with a work-on-demand protocol is designed for wireless body sensor networks (WBSNs) in medical applications. Dedicated for ultra-low-power wireless sensor nodes, the ASIC consists of a low-power microcontroller unit (MCU), a power-management unit (PMU), reconfigurable sensor interfaces, communication ports controlling a wireless transceiver, and an integrated passive radio-frequency (RF) receiver with energy harvesting ability. The MCU, together with the PMU, provides quite flexible communication and power-control modes for energy-efficient operations. The always-on passive RF receiver with an RF energy harvesting block offers the sensor nodes the capability of work-on-demand with zero standby power. Fabricated in standard 0.18-¿m complementary metal-oxide semiconductor technology, the ASIC occupies a die area of 2 mm × 2.5 mm. A wireless body sensor network sensor-node prototype using this ASIC only consumes < 10-nA current under the passive standby mode, and < 10 ¿A under the active standby mode, when supplied by a 3-V battery.
Energy Options for Wireless Sensor Nodes.
Knight, Chris; Davidson, Joshua; Behrens, Sam
2008-12-08
Reduction in size and power consumption of consumer electronics has opened up many opportunities for low power wireless sensor networks. One of the major challenges is in supporting battery operated devices as the number of nodes in a network grows. The two main alternatives are to utilize higher energy density sources of stored energy, or to generate power at the node from local forms of energy. This paper reviews the state-of-the art technology in the field of both energy storage and energy harvesting for sensor nodes. The options discussed for energy storage include batteries, capacitors, fuel cells, heat engines and betavoltaic systems. The field of energy harvesting is discussed with reference to photovoltaics, temperature gradients, fluid flow, pressure variations and vibration harvesting.
Energy Options for Wireless Sensor Nodes
Knight, Chris; Davidson, Joshua; Behrens, Sam
2008-01-01
Reduction in size and power consumption of consumer electronics has opened up many opportunities for low power wireless sensor networks. One of the major challenges is in supporting battery operated devices as the number of nodes in a network grows. The two main alternatives are to utilize higher energy density sources of stored energy, or to generate power at the node from local forms of energy. This paper reviews the state-of-the art technology in the field of both energy storage and energy harvesting for sensor nodes. The options discussed for energy storage include batteries, capacitors, fuel cells, heat engines and betavoltaic systems. The field of energy harvesting is discussed with reference to photovoltaics, temperature gradients, fluid flow, pressure variations and vibration harvesting. PMID:27873975
A self-optimizing scheme for energy balanced routing in Wireless Sensor Networks using SensorAnt.
Shamsan Saleh, Ahmed M; Ali, Borhanuddin Mohd; Rasid, Mohd Fadlee A; Ismail, Alyani
2012-01-01
Planning of energy-efficient protocols is critical for Wireless Sensor Networks (WSNs) because of the constraints on the sensor nodes' energy. The routing protocol should be able to provide uniform power dissipation during transmission to the sink node. In this paper, we present a self-optimization scheme for WSNs which is able to utilize and optimize the sensor nodes' resources, especially the batteries, to achieve balanced energy consumption across all sensor nodes. This method is based on the Ant Colony Optimization (ACO) metaheuristic which is adopted to enhance the paths with the best quality function. The assessment of this function depends on multi-criteria metrics such as the minimum residual battery power, hop count and average energy of both route and network. This method also distributes the traffic load of sensor nodes throughout the WSN leading to reduced energy usage, extended network life time and reduced packet loss. Simulation results show that our scheme performs much better than the Energy Efficient Ant-Based Routing (EEABR) in terms of energy consumption, balancing and efficiency.
Khan, Anwar; Ahmedy, Ismail; Anisi, Mohammad Hossein; Javaid, Nadeem; Ali, Ihsan; Khan, Nawsher; Alsaqer, Mohammed; Mahmood, Hasan
2018-01-09
Interference and energy holes formation in underwater wireless sensor networks (UWSNs) threaten the reliable delivery of data packets from a source to a destination. Interference also causes inefficient utilization of the limited battery power of the sensor nodes in that more power is consumed in the retransmission of the lost packets. Energy holes are dead nodes close to the surface of water, and their early death interrupts data delivery even when the network has live nodes. This paper proposes a localization-free interference and energy holes minimization (LF-IEHM) routing protocol for UWSNs. The proposed algorithm overcomes interference during data packet forwarding by defining a unique packet holding time for every sensor node. The energy holes formation is mitigated by a variable transmission range of the sensor nodes. As compared to the conventional routing protocols, the proposed protocol does not require the localization information of the sensor nodes, which is cumbersome and difficult to obtain, as nodes change their positions with water currents. Simulation results show superior performance of the proposed scheme in terms of packets received at the final destination and end-to-end delay.
Khan, Anwar; Anisi, Mohammad Hossein; Javaid, Nadeem; Khan, Nawsher; Alsaqer, Mohammed; Mahmood, Hasan
2018-01-01
Interference and energy holes formation in underwater wireless sensor networks (UWSNs) threaten the reliable delivery of data packets from a source to a destination. Interference also causes inefficient utilization of the limited battery power of the sensor nodes in that more power is consumed in the retransmission of the lost packets. Energy holes are dead nodes close to the surface of water, and their early death interrupts data delivery even when the network has live nodes. This paper proposes a localization-free interference and energy holes minimization (LF-IEHM) routing protocol for UWSNs. The proposed algorithm overcomes interference during data packet forwarding by defining a unique packet holding time for every sensor node. The energy holes formation is mitigated by a variable transmission range of the sensor nodes. As compared to the conventional routing protocols, the proposed protocol does not require the localization information of the sensor nodes, which is cumbersome and difficult to obtain, as nodes change their positions with water currents. Simulation results show superior performance of the proposed scheme in terms of packets received at the final destination and end-to-end delay. PMID:29315247
An Energy Aware Adaptive Sampling Algorithm for Energy Harvesting WSN with Energy Hungry Sensors.
Srbinovski, Bruno; Magno, Michele; Edwards-Murphy, Fiona; Pakrashi, Vikram; Popovici, Emanuel
2016-03-28
Wireless sensor nodes have a limited power budget, though they are often expected to be functional in the field once deployed for extended periods of time. Therefore, minimization of energy consumption and energy harvesting technology in Wireless Sensor Networks (WSN) are key tools for maximizing network lifetime, and achieving self-sustainability. This paper proposes an energy aware Adaptive Sampling Algorithm (ASA) for WSN with power hungry sensors and harvesting capabilities, an energy management technique that can be implemented on any WSN platform with enough processing power to execute the proposed algorithm. An existing state-of-the-art ASA developed for wireless sensor networks with power hungry sensors is optimized and enhanced to adapt the sampling frequency according to the available energy of the node. The proposed algorithm is evaluated using two in-field testbeds that are supplied by two different energy harvesting sources (solar and wind). Simulation and comparison between the state-of-the-art ASA and the proposed energy aware ASA (EASA) in terms of energy durability are carried out using in-field measured harvested energy (using both wind and solar sources) and power hungry sensors (ultrasonic wind sensor and gas sensors). The simulation results demonstrate that using ASA in combination with an energy aware function on the nodes can drastically increase the lifetime of a WSN node and enable self-sustainability. In fact, the proposed EASA in conjunction with energy harvesting capability can lead towards perpetual WSN operation and significantly outperform the state-of-the-art ASA.
An Embedded Sensor Node Microcontroller with Crypto-Processors.
Panić, Goran; Stecklina, Oliver; Stamenković, Zoran
2016-04-27
Wireless sensor network applications range from industrial automation and control, agricultural and environmental protection, to surveillance and medicine. In most applications, data are highly sensitive and must be protected from any type of attack and abuse. Security challenges in wireless sensor networks are mainly defined by the power and computing resources of sensor devices, memory size, quality of radio channels and susceptibility to physical capture. In this article, an embedded sensor node microcontroller designed to support sensor network applications with severe security demands is presented. It features a low power 16-bitprocessor core supported by a number of hardware accelerators designed to perform complex operations required by advanced crypto algorithms. The microcontroller integrates an embedded Flash and an 8-channel 12-bit analog-to-digital converter making it a good solution for low-power sensor nodes. The article discusses the most important security topics in wireless sensor networks and presents the architecture of the proposed hardware solution. Furthermore, it gives details on the chip implementation, verification and hardware evaluation. Finally, the chip power dissipation and performance figures are estimated and analyzed.
An Embedded Sensor Node Microcontroller with Crypto-Processors
Panić, Goran; Stecklina, Oliver; Stamenković, Zoran
2016-01-01
Wireless sensor network applications range from industrial automation and control, agricultural and environmental protection, to surveillance and medicine. In most applications, data are highly sensitive and must be protected from any type of attack and abuse. Security challenges in wireless sensor networks are mainly defined by the power and computing resources of sensor devices, memory size, quality of radio channels and susceptibility to physical capture. In this article, an embedded sensor node microcontroller designed to support sensor network applications with severe security demands is presented. It features a low power 16-bitprocessor core supported by a number of hardware accelerators designed to perform complex operations required by advanced crypto algorithms. The microcontroller integrates an embedded Flash and an 8-channel 12-bit analog-to-digital converter making it a good solution for low-power sensor nodes. The article discusses the most important security topics in wireless sensor networks and presents the architecture of the proposed hardware solution. Furthermore, it gives details on the chip implementation, verification and hardware evaluation. Finally, the chip power dissipation and performance figures are estimated and analyzed. PMID:27128925
Open-WiSe: a solar powered wireless sensor network platform.
González, Apolinar; Aquino, Raúl; Mata, Walter; Ochoa, Alberto; Saldaña, Pedro; Edwards, Arthur
2012-01-01
Because battery-powered nodes are required in wireless sensor networks and energy consumption represents an important design consideration, alternate energy sources are needed to provide more effective and optimal function. The main goal of this work is to present an energy harvesting wireless sensor network platform, the Open Wireless Sensor node (WiSe). The design and implementation of the solar powered wireless platform is described including the hardware architecture, firmware, and a POSIX Real-Time Kernel. A sleep and wake up strategy was implemented to prolong the lifetime of the wireless sensor network. This platform was developed as a tool for researchers investigating Wireless sensor network or system integrators.
NASA Astrophysics Data System (ADS)
Mascarenas, David D. L.; Flynn, Eric; Lin, Kaisen; Farinholt, Kevin; Park, Gyuhae; Gupta, Rajesh; Todd, Michael; Farrar, Charles
2008-03-01
A major challenge impeding the deployment of wireless sensor networks for structural health monitoring (SHM) is developing means to supply power to the sensor nodes in a cost-effective manner. In this work an initial test of a roving-host wireless sensor network was performed on a bridge near Truth or Consequences, NM in August of 2007. The roving-host wireless sensor network features a radio controlled helicopter responsible for wirelessly delivering energy to sensor nodes on an "as-needed" basis. In addition, the helicopter also serves as a central data repository and processing center for the information collected by the sensor network. The sensor nodes used on the bridge were developed for measuring the peak displacement of the bridge, as well as measuring the preload of some of the bolted joints in the bridge. These sensors and sensor nodes were specifically designed to be able to operate from energy supplied wirelessly from the helicopter. The ultimate goal of this research is to ease the requirement for battery power supplies in wireless sensor networks.
Ultra-low-power wearable biopotential sensor nodes.
Yazicioglu, R F; Torfs, T; Penders, J; Romero, I; Kim, H; Merken, P; Gyselinckx, B; Yoo, H J; Van Hoof, C
2009-01-01
This paper discusses ultra-low-power wireless sensor nodes intended for wearable biopotential monitoring. Specific attention is given to mixed-signal design approaches and their impact on the overall system power dissipation. Examples of trade-offs in power dissipation between analog front-ends and digital signal processing are also given. It is shown how signal filtering can further reduce the internal power consumption of a node. Such power saving approaches are indispensable as real-life tests of custom wireless ECG patches reveal the need for artifact detection and correction. The power consumption of such additional features has to come from power savings elsewhere in the system as the overall power budget cannot increase.
A Mobile Sensor Network System for Monitoring of Unfriendly Environments.
Song, Guangming; Zhou, Yaoxin; Ding, Fei; Song, Aiguo
2008-11-14
Observing microclimate changes is one of the most popular applications of wireless sensor networks. However, some target environments are often too dangerous or inaccessible to humans or large robots and there are many challenges for deploying and maintaining wireless sensor networks in those unfriendly environments. This paper presents a mobile sensor network system for solving this problem. The system architecture, the mobile node design, the basic behaviors and advanced network capabilities have been investigated respectively. A wheel-based robotic node architecture is proposed here that can add controlled mobility to wireless sensor networks. A testbed including some prototype nodes has also been created for validating the basic functions of the proposed mobile sensor network system. Motion performance tests have been done to get the positioning errors and power consumption model of the mobile nodes. Results of the autonomous deployment experiment show that the mobile nodes can be distributed evenly into the previously unknown environments. It provides powerful support for network deployment and maintenance and can ensure that the sensor network will work properly in unfriendly environments.
Leveraging Energy Harvesting and Wake-Up Receivers for Long-Term Wireless Sensor Networks.
Ait Aoudia, Fayçal; Gautier, Matthieu; Magno, Michele; Berder, Olivier; Benini, Luca
2018-05-15
Wireless sensor nodes are traditionally powered by individual batteries, and a significant effort has been devoted to maximizing the lifetime of these devices. However, as the batteries can only store a finite amount of energy, the network is still doomed to die, and changing the batteries is not always possible. A promising solution is to enable each node to harvest energy directly in its environment, using individual energy harvesters. Moreover, novel ultra-low power wake-up receivers, which allow continuous listening of the channel with negligible power consumption, are emerging. These devices enable asynchronous communication, further reducing the power consumption related to communication, which is typically one the most energy-consuming tasks in wireless sensor networks. Energy harvesting and wake-up receivers can be combined to significantly increase the energy efficiency of sensor networks. In this paper, we propose an energy manager for energy harvesting wireless sensor nodes and an asynchronous medium access control protocol, which exploits ultra-low power wake-up receivers. The two components are designed to work together and especially to fit the stringent constraints of wireless sensor nodes. The proposed approach has been implemented on a real hardware platform and tested in the field. Experimental results demonstrate the benefits of the proposed approach in terms of energy efficiency, power consumption and throughput, which can be up to more than two-times higher compared to traditional schemes.
Leveraging Energy Harvesting and Wake-Up Receivers for Long-Term Wireless Sensor Networks
Ait Aoudia, Fayçal; Gautier, Matthieu; Magno, Michele; Benini, Luca
2018-01-01
Wireless sensor nodes are traditionally powered by individual batteries, and a significant effort has been devoted to maximizing the lifetime of these devices. However, as the batteries can only store a finite amount of energy, the network is still doomed to die, and changing the batteries is not always possible. A promising solution is to enable each node to harvest energy directly in its environment, using individual energy harvesters. Moreover, novel ultra-low power wake-up receivers, which allow continuous listening of the channel with negligible power consumption, are emerging. These devices enable asynchronous communication, further reducing the power consumption related to communication, which is typically one the most energy-consuming tasks in wireless sensor networks. Energy harvesting and wake-up receivers can be combined to significantly increase the energy efficiency of sensor networks. In this paper, we propose an energy manager for energy harvesting wireless sensor nodes and an asynchronous medium access control protocol, which exploits ultra-low power wake-up receivers. The two components are designed to work together and especially to fit the stringent constraints of wireless sensor nodes. The proposed approach has been implemented on a real hardware platform and tested in the field. Experimental results demonstrate the benefits of the proposed approach in terms of energy efficiency, power consumption and throughput, which can be up to more than two-times higher compared to traditional schemes. PMID:29762535
Energy scavenging sensors for ultra-low power sensor networks
NASA Astrophysics Data System (ADS)
O'Brien, Dominic C.; Liu, Jing Jing; Faulkner, Grahame E.; Vachiramon, Pithawat; Collins, Steve; Elston, Steven J.
2010-08-01
The 'internet of things' will require very low power wireless communications, preferably using sensors that scavenge power from their environment. Free space optics allows communications over long ranges, with simple transceivers at each end, offering the possibility of low energy consumption. In addition there can be sufficient energy in the communications beam to power simple terminals. In this paper we report experimental results from an architecture that achieves this. A base station that tracks sensors in its coverage area and communicates with them using low divergence optical beams is presented. Sensor nodes use modulated retro-reflectors to communicate with the base station, and the nodes are powered by the illuminating beam. The paper presents design and implementation details, as well as future directions for this work.
Acoustic energy transmission in cast iron pipelines
NASA Astrophysics Data System (ADS)
Kiziroglou, Michail E.; Boyle, David E.; Wright, Steven W.; Yeatman, Eric M.
2015-12-01
In this paper we propose acoustic power transfer as a method for the remote powering of pipeline sensor nodes. A theoretical framework of acoustic power propagation in the ceramic transducers and the metal structures is drawn, based on the Mason equivalent circuit. The effect of mounting on the electrical response of piezoelectric transducers is studied experimentally. Using two identical transducer structures, power transmission of 0.33 mW through a 1 m long, 118 mm diameter cast iron pipe, with 8 mm wall thickness is demonstrated, at 1 V received voltage amplitude. A near-linear relationship between input and output voltage is observed. These results show that it is possible to deliver significant power to sensor nodes through acoustic waves in solid structures. The proposed method may enable the implementation of acoustic - powered wireless sensor nodes for structural and operation monitoring of pipeline infrastructure.
New strategies for SHM based on a multichannel wireless AE node
NASA Astrophysics Data System (ADS)
Godinez-Azcuaga, Valery; Ley, Obdulia
2014-03-01
This paper discusses the development of an Acoustic Emission (AE) wireless node and its application for SHM (Structural Health Monitoring). The instrument development was planned for applications monitoring steel and concrete bridges components. The final product, now commercially available, is a sensor node which includes multiple sensing elements, on board signal processing and analysis capabilities, signal conditioning electronics, power management circuits, wireless data transmission element and energy harvesting unit. The sensing elements are capable of functioning in both passive and active modes, while the multiple parametric inputs are available for connecting various sensor types to measure external characteristics affecting the performance of the structure under monitoring. The output of all these sensors are combined and analyzed at the node in order to minimize the data transmission rate, which consumes significant amount of power. Power management circuits are used to reduce the data collection intervals through selective data acquisition strategies and minimize the sensor node power consumption. This instrument, known as the 1284, is an excellent platform to deploy SHM in the original bridge applications, but initial prototypes has shown significant potential in monitoring composite wind turbine blades and composites mockups of Unmanned Autonomous Vehicles (UAV) components; currently we are working to extend the use of this system to fields such as coal flow, power transformer, and off-shore platform monitoring.
An Energy Aware Adaptive Sampling Algorithm for Energy Harvesting WSN with Energy Hungry Sensors
Srbinovski, Bruno; Magno, Michele; Edwards-Murphy, Fiona; Pakrashi, Vikram; Popovici, Emanuel
2016-01-01
Wireless sensor nodes have a limited power budget, though they are often expected to be functional in the field once deployed for extended periods of time. Therefore, minimization of energy consumption and energy harvesting technology in Wireless Sensor Networks (WSN) are key tools for maximizing network lifetime, and achieving self-sustainability. This paper proposes an energy aware Adaptive Sampling Algorithm (ASA) for WSN with power hungry sensors and harvesting capabilities, an energy management technique that can be implemented on any WSN platform with enough processing power to execute the proposed algorithm. An existing state-of-the-art ASA developed for wireless sensor networks with power hungry sensors is optimized and enhanced to adapt the sampling frequency according to the available energy of the node. The proposed algorithm is evaluated using two in-field testbeds that are supplied by two different energy harvesting sources (solar and wind). Simulation and comparison between the state-of-the-art ASA and the proposed energy aware ASA (EASA) in terms of energy durability are carried out using in-field measured harvested energy (using both wind and solar sources) and power hungry sensors (ultrasonic wind sensor and gas sensors). The simulation results demonstrate that using ASA in combination with an energy aware function on the nodes can drastically increase the lifetime of a WSN node and enable self-sustainability. In fact, the proposed EASA in conjunction with energy harvesting capability can lead towards perpetual WSN operation and significantly outperform the state-of-the-art ASA. PMID:27043559
Open-WiSe: A Solar Powered Wireless Sensor Network Platform
González, Apolinar; Aquino, Raúl; Mata, Walter; Ochoa, Alberto; Saldaña, Pedro; Edwards, Arthur
2012-01-01
Because battery-powered nodes are required in wireless sensor networks and energy consumption represents an important design consideration, alternate energy sources are needed to provide more effective and optimal function. The main goal of this work is to present an energy harvesting wireless sensor network platform, the Open Wireless Sensor node (WiSe). The design and implementation of the solar powered wireless platform is described including the hardware architecture, firmware, and a POSIX Real-Time Kernel. A sleep and wake up strategy was implemented to prolong the lifetime of the wireless sensor network. This platform was developed as a tool for researchers investigating Wireless sensor network or system integrators. PMID:22969396
RF Energy Harvesting Peel-and-Stick Sensors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lalau-Keraly, Christopher; Schwartz, David; Daniel, George
PARC, a Xerox Company, is developing a low-cost system of peel-and-stick wireless sensors that will enable widespread building environment sensor deployment with the potential to deliver up to 30% energy savings. The system is embodied by a set of RF hubs that provide power to the automatically located sensor nodes, and relays data wirelessly to the building management system (BMS). The sensor nodes are flexible electronic labels powered by rectified RF energy transmitted by a RF hub and can contain multiple printed and conventional sensors. The system design overcomes limitations in wireless sensors related to power delivery, lifetime, and costmore » by eliminating batteries and photovoltaic devices. The sensor localization is performed automatically by the inclusion of a programmable multidirectional antenna array in the RF hub. Comparison of signal strengths when the RF beam is swept allows for sensor localization, further reducing installation effort and enabling automatic recommissioning of sensors that have been relocated, overcoming a significant challenge in building operations. PARC has already demonstrated wireless power and temperature data transmission up to a distance of 20m with a duty cycle less than a minute between measurements, using power levels well within the FCC regulation limits in the 902-928 MHz ISM band. The sensor’s RF energy harvesting antenna dimensions was less than 5cmx9cm, demonstrating the possibility of small form factor for the sensor nodes.« less
NASA Astrophysics Data System (ADS)
Grabham, N. J.; Harden, C.; Vincent, D.; Beeby, S. P.
2016-11-01
A wirelessly powered remote sensor node is presented along with its design process. The purpose of the node is the further expansion of the sensing capabilities of the commercial Perpetuum system used for condition monitoring on trains and rolling stock which operates using vibration energy harvesting. Surplus harvested vibration energy is transferred wirelessly to a remote satellite sensor to allow measurements over a wider area to be made. This additional data is to be used for long term condition monitoring. Performance measurements made on the prototype remote sensor node are reported and advantages and disadvantages of using the same RF frequency for power and data transfer are identified.
Circuit for Communication Over Power Lines
NASA Technical Reports Server (NTRS)
Krasowski, Michael J.; Prokop, Normal F.; Greer, Lawrence C., III; Nappier, Jennifer
2011-01-01
Many distributed systems share common sensors and instruments along with a common power line supplying current to the system. A communication technique and circuit has been developed that allows for the simple inclusion of an instrument, sensor, or actuator node within any system containing a common power bus. Wherever power is available, a node can be added, which can then draw power for itself, its associated sensors, and actuators from the power bus all while communicating with other nodes on the power bus. The technique modulates a DC power bus through capacitive coupling using on-off keying (OOK), and receives and demodulates the signal from the DC power bus through the same capacitive coupling. The circuit acts as serial modem for the physical power line communication. The circuit and technique can be made of commercially available components or included in an application specific integrated circuit (ASIC) design, which allows for the circuit to be included in current designs with additional circuitry or embedded into new designs. This device and technique moves computational, sensing, and actuation abilities closer to the source, and allows for the networking of multiple similar nodes to each other and to a central processor. This technique also allows for reconfigurable systems by adding or removing nodes at any time. It can do so using nothing more than the in situ power wiring of the system.
Modelling the Energy Efficient Sensor Nodes for Wireless Sensor Networks
NASA Astrophysics Data System (ADS)
Dahiya, R.; Arora, A. K.; Singh, V. R.
2015-09-01
Energy is an important requirement of wireless sensor networks for better performance. A widely employed energy-saving technique is to place nodes in sleep mode, corresponding to low-power consumption as well as to reduce operational capabilities. In this paper, Markov model of a sensor network is developed. The node is considered to enter a sleep mode. This model is used to investigate the system performance in terms of energy consumption, network capacity and data delivery delay.
Guimarães, Dayan Adionel; Sakai, Lucas Jun; Alberti, Antonio Marcos; de Souza, Rausley Adriano Amaral
2016-09-20
In this paper, a simple and flexible method for increasing the lifetime of fixed or mobile wireless sensor networks is proposed. Based on past residual energy information reported by the sensor nodes, the sink node or another central node dynamically optimizes the communication activity levels of the sensor nodes to save energy without sacrificing the data throughput. The activity levels are defined to represent portions of time or time-frequency slots in a frame, during which the sensor nodes are scheduled to communicate with the sink node to report sensory measurements. Besides node mobility, it is considered that sensors' batteries may be recharged via a wireless power transmission or equivalent energy harvesting scheme, bringing to the optimization problem an even more dynamic character. We report large increased lifetimes over the non-optimized network and comparable or even larger lifetime improvements with respect to an idealized greedy algorithm that uses both the real-time channel state and the residual energy information.
Wireless Data-Acquisition System for Testing Rocket Engines
NASA Technical Reports Server (NTRS)
Lin, Chujen; Lonske, Ben; Hou, Yalin; Xu, Yingjiu; Gang, Mei
2007-01-01
A prototype wireless data-acquisition system has been developed as a potential replacement for a wired data-acquisition system heretofore used in testing rocket engines. The traditional use of wires to connect sensors, signal-conditioning circuits, and data acquisition circuitry is time-consuming and prone to error, especially when, as is often the case, many sensors are used in a test. The system includes one master and multiple slave nodes. The master node communicates with a computer via an Ethernet connection. The slave nodes are powered by rechargeable batteries and are packaged in weatherproof enclosures. The master unit and each of the slave units are equipped with a time-modulated ultra-wide-band (TMUWB) radio transceiver, which spreads its RF energy over several gigahertz by transmitting extremely low-power and super-narrow pulses. In this prototype system, each slave node can be connected to as many as six sensors: two sensors can be connected directly to analog-to-digital converters (ADCs) in the slave node and four sensors can be connected indirectly to the ADCs via signal conditioners. The maximum sampling rate for streaming data from any given sensor is about 5 kHz. The bandwidth of one channel of the TM-UWB radio communication system is sufficient to accommodate streaming of data from five slave nodes when they are fully loaded with data collected through all possible sensor connections. TM-UWB radios have a much higher spatial capacity than traditional sinusoidal wave-based radios. Hence, this TM-UWB wireless data-acquisition can be scaled to cover denser sensor setups for rocket engine test stands. Another advantage of TM-UWB radios is that it will not interfere with existing wireless transmission. The maximum radio-communication range between the master node and a slave node for this prototype system is about 50 ft (15 m) when the master and slave transceivers are equipped with small dipole antennas. The range can be increased by changing to larger antennas and/or greater transmission power. The battery life of a slave node ranges from about six hours during operation at full capacity to as long as three days when the system is in a "sleep" mode used to conserve battery charge during times between setup and rocket-engine testing. Batteries can be added to prolong operational lifetimes. The radio transceiver dominates the power consumption.
A wireless sensor enabled by wireless power.
Lee, Da-Sheng; Liu, Yu-Hong; Lin, Chii-Ruey
2012-11-22
Through harvesting energy by wireless charging and delivering data by wireless communication, this study proposes the concept of a wireless sensor enabled by wireless power (WPWS) and reports the fabrication of a prototype for functional tests. One WPWS node consists of wireless power module and sensor module with different chip-type sensors. Its main feature is the dual antenna structure. Following RFID system architecture, a power harvesting antenna was designed to gather power from a standard reader working in the 915 MHz band. Referring to the Modbus protocol, the other wireless communication antenna was integrated on a node to send sensor data in parallel. The dual antenna structure integrates both the advantages of an RFID system and a wireless sensor. Using a standard UHF RFID reader, WPWS can be enabled in a distributed area with a diameter up to 4 m. Working status is similar to that of a passive tag, except that a tag can only be queried statically, while the WPWS can send dynamic data from the sensors. The function is the same as a wireless sensor node. Different WPWSs equipped with temperature and humidity, optical and airflow velocity sensors are tested in this study. All sensors can send back detection data within 8 s. The accuracy is within 8% deviation compared with laboratory equipment. A wireless sensor network enabled by wireless power should be a totally wireless sensor network using WPWS. However, distributed WPWSs only can form a star topology, the simplest topology for constructing a sensor network. Because of shielding effects, it is difficult to apply other complex topologies. Despite this limitation, WPWS still can be used to extend sensor network applications in hazardous environments. Further research is needed to improve WPWS to realize a totally wireless sensor network.
A Wireless Sensor Enabled by Wireless Power
Lee, Da-Sheng; Liu, Yu-Hong; Lin, Chii-Ruey
2012-01-01
Through harvesting energy by wireless charging and delivering data by wireless communication, this study proposes the concept of a wireless sensor enabled by wireless power (WPWS) and reports the fabrication of a prototype for functional tests. One WPWS node consists of wireless power module and sensor module with different chip-type sensors. Its main feature is the dual antenna structure. Following RFID system architecture, a power harvesting antenna was designed to gather power from a standard reader working in the 915 MHz band. Referring to the Modbus protocol, the other wireless communication antenna was integrated on a node to send sensor data in parallel. The dual antenna structure integrates both the advantages of an RFID system and a wireless sensor. Using a standard UHF RFID reader, WPWS can be enabled in a distributed area with a diameter up to 4 m. Working status is similar to that of a passive tag, except that a tag can only be queried statically, while the WPWS can send dynamic data from the sensors. The function is the same as a wireless sensor node. Different WPWSs equipped with temperature and humidity, optical and airflow velocity sensors are tested in this study. All sensors can send back detection data within 8 s. The accuracy is within 8% deviation compared with laboratory equipment. A wireless sensor network enabled by wireless power should be a totally wireless sensor network using WPWS. However, distributed WPWSs only can form a star topology, the simplest topology for constructing a sensor network. Because of shielding effects, it is difficult to apply other complex topologies. Despite this limitation, WPWS still can be used to extend sensor network applications in hazardous environments. Further research is needed to improve WPWS to realize a totally wireless sensor network. PMID:23443370
Ullah, Sana; Kwak, Kyung Sup
2012-06-01
Wireless Body Area Network (WBAN) consists of low-power, miniaturized, and autonomous wireless sensor nodes that enable physicians to remotely monitor vital signs of patients and provide real-time feedback with medical diagnosis and consultations. It is the most reliable and cheaper way to take care of patients suffering from chronic diseases such as asthma, diabetes and cardiovascular diseases. Some of the most important attributes of WBAN is low-power consumption and delay. This can be achieved by introducing flexible duty cycling techniques on the energy constraint sensor nodes. Stated otherwise, low duty cycle nodes should not receive frequent synchronization and control packets if they have no data to send/receive. In this paper, we introduce a Traffic-adaptive MAC protocol (TaMAC) by taking into account the traffic information of the sensor nodes. The protocol dynamically adjusts the duty cycle of the sensor nodes according to their traffic-patterns, thus solving the idle listening and overhearing problems. The traffic-patterns of all sensor nodes are organized and maintained by the coordinator. The TaMAC protocol is supported by a wakeup radio that is used to accommodate emergency and on-demand events in a reliable manner. The wakeup radio uses a separate control channel along with the data channel and therefore it has considerably low power consumption requirements. Analytical expressions are derived to analyze and compare the performance of the TaMAC protocol with the well-known beacon-enabled IEEE 802.15.4 MAC, WiseMAC, and SMAC protocols. The analytical derivations are further validated by simulation results. It is shown that the TaMAC protocol outperforms all other protocols in terms of power consumption and delay.
An Autonomous Wireless Sensor Node With Asynchronous ECG Monitoring in 0.18 μ m CMOS.
Mansano, Andre L; Li, Yongjia; Bagga, Sumit; Serdijn, Wouter A
2016-06-01
The design of a 13.56 MHz/402 MHz autonomous wireless sensor node with asynchronous ECG monitoring for near field communication is presented. The sensor node consists of an RF energy harvester (RFEH), a power management unit, an ECG readout, a data encoder and an RF backscattering transmitter. The energy harvester supplies the system with 1.25 V and offers a power conversion efficiency of 19% from a -13 dBm RF source at 13.56 MHz. The power management unit regulates the output voltage of the RFEH to supply the ECG readout with VECG = 0.95 V and the data encoder with VDE = 0.65 V . The ECG readout comprises an analog front-end (low noise amplifier and programmable voltage to current converter) and an asynchronous level crossing ADC with 8 bits resolution. The ADC output is encoded by a pulse generator that drives a backscattering transmitter at 402 MHz. The total power consumption of the sensor node circuitry is 9.7 μ W for a data rate of 90 kb/s and a heart rate of 70 bpm. The chip has been designed in a 0.18 μm CMOS process and shows superior RF input power sensitivity and lower power consumption when compared to previous works.
Lee, Jungwook; Chung, Kwangsue
2011-01-01
Wireless sensor networks collect data from several nodes dispersed at remote sites. Sensor nodes can be installed in harsh environments such as deserts, cities, and indoors, where the link quality changes considerably over time. Particularly, changes in transmission power may be caused by temperature, humidity, and other factors. In order to compensate for link quality changes, existing schemes detect the link quality changes between nodes and control transmission power through a series of feedback processes, but these approaches can cause heavy overhead with the additional control packets needed. In this paper, the change of the link quality according to temperature is examined through empirical experimentation. A new power control scheme combining both temperature-aware link quality compensation and a closed-loop feedback process to adapt to link quality changes is proposed. We prove that the proposed scheme effectively adapts the transmission power to the changing link quality with less control overhead and energy consumption.
Air launch wireless sensor nodes (ALSN) for battle damage assessment (BDA)
NASA Astrophysics Data System (ADS)
Back, Jason M.; Beck, Steven D.; Frank, Mark A.; Hoenes, Eric
2006-05-01
This paper summarizes the Defense Threat Reduction Agency (DTRA) sponsored development and demonstration of an Air Launched Sensor Node (ALSN) system designed to fill DTRA's immediate need to support the Global Strike requirement of weapon-borne deliverable sensors for Battle Damage Assessment (BDA). Unattended ground sensors were integrated into a CBU-103 Tactical Munitions Dispenser (TMD), and flight test demonstrated with the 46 th Test Wing at Eglin AFB, FL. The objectives of the ALSN program were to repackage an existing multi-sensor node system to conform to the payload envelope and deployment configuration design; to integrate this payload into the CBU-103 TMD; and to conduct a combined payload flight test demonstration. The final sensor node included multiple sensors a microphone, a geophone, and multiple directional Passive Infrared (PIR) detectors with processing electronics, a low power wireless communications 802.15.4 mesh network, GPS (Global Positioning System), and power integrated into a form-fit BLU-97 munitions deployable package. This paper will present and discuss the flight test, results, and ALSN performance.
Clustering and Beamforming for Efficient Communication in Wireless Sensor Networks
Porcel-Rodríguez, Francisco; Valenzuela-Valdés, Juan; Padilla, Pablo; Luna-Valero, Francisco; Luque-Baena, Rafael; López-Gordo, Miguel Ángel
2016-01-01
Energy efficiency is a critical issue for wireless sensor networks (WSNs) as sensor nodes have limited power availability. In order to address this issue, this paper tries to maximize the power efficiency in WSNs by means of the evaluation of WSN node networks and their performance when both clustering and antenna beamforming techniques are applied. In this work, four different scenarios are defined, each one considering different numbers of sensors: 50, 20, 10, five, and two nodes per scenario, and each scenario is randomly generated thirty times in order to statistically validate the results. For each experiment, two different target directions for transmission are taken into consideration in the optimization process (φ = 0° and θ = 45°; φ = 45°, and θ = 45°). Each scenario is evaluated for two different types of antennas, an ideal isotropic antenna and a conventional dipole one. In this set of experiments two types of WSN are evaluated: in the first one, all of the sensors have the same amount of power for communications purposes; in the second one, each sensor has a different amount of power for its communications purposes. The analyzed cases in this document are focused on 2D surface and 3D space for the node location. To the authors’ knowledge, this is the first time that beamforming and clustering are simultaneously applied to increase the network lifetime in WSNs. PMID:27556463
Automated Construction of Node Software Using Attributes in a Ubiquitous Sensor Network Environment
Lee, Woojin; Kim, Juil; Kang, JangMook
2010-01-01
In sensor networks, nodes must often operate in a demanding environment facing restrictions such as restricted computing resources, unreliable wireless communication and power shortages. Such factors make the development of ubiquitous sensor network (USN) applications challenging. To help developers construct a large amount of node software for sensor network applications easily and rapidly, this paper proposes an approach to the automated construction of node software for USN applications using attributes. In the proposed technique, application construction proceeds by first developing a model for the sensor network and then designing node software by setting the values of the predefined attributes. After that, the sensor network model and the design of node software are verified. The final source codes of the node software are automatically generated from the sensor network model. We illustrate the efficiency of the proposed technique by using a gas/light monitoring application through a case study of a Gas and Light Monitoring System based on the Nano-Qplus operating system. We evaluate the technique using a quantitative metric—the memory size of execution code for node software. Using the proposed approach, developers are able to easily construct sensor network applications and rapidly generate a large number of node softwares at a time in a ubiquitous sensor network environment. PMID:22163678
Automated construction of node software using attributes in a ubiquitous sensor network environment.
Lee, Woojin; Kim, Juil; Kang, JangMook
2010-01-01
In sensor networks, nodes must often operate in a demanding environment facing restrictions such as restricted computing resources, unreliable wireless communication and power shortages. Such factors make the development of ubiquitous sensor network (USN) applications challenging. To help developers construct a large amount of node software for sensor network applications easily and rapidly, this paper proposes an approach to the automated construction of node software for USN applications using attributes. In the proposed technique, application construction proceeds by first developing a model for the sensor network and then designing node software by setting the values of the predefined attributes. After that, the sensor network model and the design of node software are verified. The final source codes of the node software are automatically generated from the sensor network model. We illustrate the efficiency of the proposed technique by using a gas/light monitoring application through a case study of a Gas and Light Monitoring System based on the Nano-Qplus operating system. We evaluate the technique using a quantitative metric-the memory size of execution code for node software. Using the proposed approach, developers are able to easily construct sensor network applications and rapidly generate a large number of node softwares at a time in a ubiquitous sensor network environment.
Strategies for a better performance of RPL under mobility in wireless sensor networks
NASA Astrophysics Data System (ADS)
Latib, Z. A.; Jamil, A.; Alduais, N. A. M.; Abdullah, J.; Audah, L. H. M.; Alias, R.
2017-09-01
A Wireless Sensor Network (WSN) is usually stationary, which the network comprises of static nodes. The increase demand for mobility in various applications such as environmental monitoring, medical, home automation, and military, raises the question how IPv6 Routing Protocol for Low-Power and Lossy Networks (RPL) would perform under these mobility applications. This paper aims to understand performance of RPL and come out with strategies for a better performance of RPL in mobility scenarios. Because of this, this paper evaluates the performance of the RPL protocol under three different scenarios: sink and sensor nodes are static, static sink and mobile sensor nodes, and sink and sensor nodes are mobile. The network scenarios are implemented in Cooja simulator. A WSN consists of 25 sensor nodes and one sink node is configured in the simulation environment. The simulation is varied over different packet rates and ContikiMAC's Clear Channel Assessment (CCA) rate. As the performance metric, RPL is evaluated in term of packet delivery ratio (PDR), power consumption and packet rates. The simulation results show RPL provides a poor PDR in the mobility scenarios when compared to the static scenario. In addition, RPL consumes more power and increases duty-cycle rate to support mobility when compared to the static scenario. Based on the findings, we suggest three strategies for a better performance of RPL in mobility scenarios. First, RPL should operates at a lower packet rates when implemented in the mobility scenarios. Second, RPL should be implemented with a higher duty-cycle rate. Lastly, the sink node should be positioned as much as possible in the center of the mobile network.
Flow-driven triboelectric generator for directly powering a wireless sensor node.
Wang, Shuhua; Mu, Xiaojing; Yang, Ya; Sun, Chengliang; Gu, Alex Yuandong; Wang, Zhong Lin
2015-01-14
A triboelectric generator (TEG) for scavenging flow-driven mechanical -energy to directly power a wireless sensor node is demonstrated for the first time. The output performances of TEGs with different dimensions are systematically investigated, indicating that a largest output power of about 3.7 mW for one TEG can be achieved under an external load of 3 MΩ. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yoon, Ikjune; Kim, Hyeok; Noh, Dong Kun
2017-01-01
A node in a solar-powered wireless sensor network (WSN) collects energy when the sun shines and stores it in a battery or capacitor for use when no solar power is available, in particular at night. In our scheme, each tiny node in a WSN periodically determines its energy budget, which takes into account its residual energy, and its likely acquisition and consumption. If it expects to acquire more energy than it can store, the data which has it has sensed is aggregated with data from other nodes, compressed, and transmitted. Otherwise, the node continues to sense data, but turns off its wireless communication to reduce energy consumption. We compared several schemes by simulation. Our scheme reduced the number of nodes forced to black out due to lack of energy so that more data arrives at the sink node. PMID:28555010
Yoon, Ikjune; Kim, Hyeok; Noh, Dong Kun
2017-05-27
A node in a solar-powered wireless sensor network (WSN) collects energy when the sun shines and stores it in a battery or capacitor for use when no solar power is available, in particular at night. In our scheme, each tiny node in a WSN periodically determines its energy budget, which takes into account its residual energy, and its likely acquisition and consumption. If it expects to acquire more energy than it can store, the data which has it has sensed is aggregated with data from other nodes, compressed, and transmitted. Otherwise, the node continues to sense data, but turns off its wireless communication to reduce energy consumption. We compared several schemes by simulation. Our scheme reduced the number of nodes forced to black out due to lack of energy so that more data arrives at the sink node.
Iwata, Masanari; Tang, Suhua; Obana, Sadao
2018-01-01
In large-scale wireless sensor networks (WSNs), nodes close to sink nodes consume energy more quickly than other nodes due to packet forwarding. A mobile sink is a good solution to this issue, although it causes two new problems to nodes: (i) overhead of updating routing information; and (ii) increased operating time due to aperiodic query. To solve these problems, this paper proposes an energy-efficient data collection method, Sink-based Centralized transmission Scheduling (SC-Sched), by integrating asymmetric communication and wake-up radio. Specifically, each node is equipped with a low-power wake-up receiver. The sink node determines transmission scheduling, and transmits a wake-up message using a large transmission power, directly activating a pair of nodes simultaneously which will communicate with a normal transmission power. This paper further investigates how to deal with frame loss caused by fading and how to mitigate the impact of the wake-up latency of communication modules. Simulation evaluations confirm that using multiple channels effectively reduces data collection time and SC-Sched works well with a mobile sink. Compared with the conventional duty-cycling method, SC-Sched greatly reduces total energy consumption and improves the network lifetime by 7.47 times in a WSN with 4 data collection points and 300 sensor nodes. PMID:29642397
An Enhanced PSO-Based Clustering Energy Optimization Algorithm for Wireless Sensor Network.
Vimalarani, C; Subramanian, R; Sivanandam, S N
2016-01-01
Wireless Sensor Network (WSN) is a network which formed with a maximum number of sensor nodes which are positioned in an application environment to monitor the physical entities in a target area, for example, temperature monitoring environment, water level, monitoring pressure, and health care, and various military applications. Mostly sensor nodes are equipped with self-supported battery power through which they can perform adequate operations and communication among neighboring nodes. Maximizing the lifetime of the Wireless Sensor networks, energy conservation measures are essential for improving the performance of WSNs. This paper proposes an Enhanced PSO-Based Clustering Energy Optimization (EPSO-CEO) algorithm for Wireless Sensor Network in which clustering and clustering head selection are done by using Particle Swarm Optimization (PSO) algorithm with respect to minimizing the power consumption in WSN. The performance metrics are evaluated and results are compared with competitive clustering algorithm to validate the reduction in energy consumption.
Development of Implantable Wireless Sensor Nodes for Animal Husbandry and MedTech Innovation.
Lu, Jian; Zhang, Lan; Zhang, Dapeng; Matsumoto, Sohei; Hiroshima, Hiroshi; Maeda, Ryutaro; Sato, Mizuho; Toyoda, Atsushi; Gotoh, Takafumi; Ohkohchi, Nobuhiro
2018-03-26
In this paper, we report the development, evaluation, and application of ultra-small low-power wireless sensor nodes for advancing animal husbandry, as well as for innovation of medical technologies. A radio frequency identification (RFID) chip with hybrid interface and neglectable power consumption was introduced to enable switching of ON/OFF and measurement mode after implantation. A wireless power transmission system with a maximum efficiency of 70% and an access distance of up to 5 cm was developed to allow the sensor node to survive for a duration of several weeks from a few minutes' remote charge. The results of field tests using laboratory mice and a cow indicated the high accuracy of the collected biological data and bio-compatibility of the package. As a result of extensive application of the above technologies, a fully solid wireless pH sensor and a surgical navigation system using artificial magnetic field and a 3D MEMS magnetic sensor are introduced in this paper, and the preliminary experimental results are presented and discussed.
Cluster-based adaptive power control protocol using Hidden Markov Model for Wireless Sensor Networks
NASA Astrophysics Data System (ADS)
Vinutha, C. B.; Nalini, N.; Nagaraja, M.
2017-06-01
This paper presents strategies for an efficient and dynamic transmission power control technique, in order to reduce packet drop and hence energy consumption of power-hungry sensor nodes operated in highly non-linear channel conditions of Wireless Sensor Networks. Besides, we also focus to prolong network lifetime and scalability by designing cluster-based network structure. Specifically we consider weight-based clustering approach wherein, minimum significant node is chosen as Cluster Head (CH) which is computed stemmed from the factors distance, remaining residual battery power and received signal strength (RSS). Further, transmission power control schemes to fit into dynamic channel conditions are meticulously implemented using Hidden Markov Model (HMM) where probability transition matrix is formulated based on the observed RSS measurements. Typically, CH estimates initial transmission power of its cluster members (CMs) from RSS using HMM and broadcast this value to its CMs for initialising their power value. Further, if CH finds that there are variations in link quality and RSS of the CMs, it again re-computes and optimises the transmission power level of the nodes using HMM to avoid packet loss due noise interference. We have demonstrated our simulation results to prove that our technique efficiently controls the power levels of sensing nodes to save significant quantity of energy for different sized network.
Guimarães, Dayan Adionel; Sakai, Lucas Jun; Alberti, Antonio Marcos; de Souza, Rausley Adriano Amaral
2016-01-01
In this paper, a simple and flexible method for increasing the lifetime of fixed or mobile wireless sensor networks is proposed. Based on past residual energy information reported by the sensor nodes, the sink node or another central node dynamically optimizes the communication activity levels of the sensor nodes to save energy without sacrificing the data throughput. The activity levels are defined to represent portions of time or time-frequency slots in a frame, during which the sensor nodes are scheduled to communicate with the sink node to report sensory measurements. Besides node mobility, it is considered that sensors’ batteries may be recharged via a wireless power transmission or equivalent energy harvesting scheme, bringing to the optimization problem an even more dynamic character. We report large increased lifetimes over the non-optimized network and comparable or even larger lifetime improvements with respect to an idealized greedy algorithm that uses both the real-time channel state and the residual energy information. PMID:27657075
Performance and analysis of MAC protocols based on application
NASA Astrophysics Data System (ADS)
Yadav, Ravi; Daniel, A. K.
2018-04-01
Wireless Sensor Network is one of the rapid emerging technology in recent decades. It covers large application area as civilian and military. Wireless Sensor Network primary consists of sensor nodes having low-power, low cost and multifunctional activities to collaborates and communicates via wireless medium. The deployment of sensor nodes are adhoc in nature, so sensor nodes are auto organize themselves in such a way to communicate with each other. The characteristics make more challenging areas on WSNs. This paper gives overview about characteristics of WSNs, Architecture and Contention Based MAC protocol. The paper present analysis of various protocol based on performance.
Energy Harvesting Hybrid Acoustic-Optical Underwater Wireless Sensor Networks Localization.
Saeed, Nasir; Celik, Abdulkadir; Al-Naffouri, Tareq Y; Alouini, Mohamed-Slim
2017-12-26
Underwater wireless technologies demand to transmit at higher data rate for ocean exploration. Currently, large coverage is achieved by acoustic sensor networks with low data rate, high cost, high latency, high power consumption, and negative impact on marine mammals. Meanwhile, optical communication for underwater networks has the advantage of the higher data rate albeit for limited communication distances. Moreover, energy consumption is another major problem for underwater sensor networks, due to limited battery power and difficulty in replacing or recharging the battery of a sensor node. The ultimate solution to this problem is to add energy harvesting capability to the acoustic-optical sensor nodes. Localization of underwater sensor networks is of utmost importance because the data collected from underwater sensor nodes is useful only if the location of the nodes is known. Therefore, a novel localization technique for energy harvesting hybrid acoustic-optical underwater wireless sensor networks (AO-UWSNs) is proposed. AO-UWSN employs optical communication for higher data rate at a short transmission distance and employs acoustic communication for low data rate and long transmission distance. A hybrid received signal strength (RSS) based localization technique is proposed to localize the nodes in AO-UWSNs. The proposed technique combines the noisy RSS based measurements from acoustic communication and optical communication and estimates the final locations of acoustic-optical sensor nodes. A weighted multiple observations paradigm is proposed for hybrid estimated distances to suppress the noisy observations and give more importance to the accurate observations. Furthermore, the closed form solution for Cramer-Rao lower bound (CRLB) is derived for localization accuracy of the proposed technique.
Energy Harvesting Hybrid Acoustic-Optical Underwater Wireless Sensor Networks Localization
Saeed, Nasir; Celik, Abdulkadir; Al-Naffouri, Tareq Y.; Alouini, Mohamed-Slim
2017-01-01
Underwater wireless technologies demand to transmit at higher data rate for ocean exploration. Currently, large coverage is achieved by acoustic sensor networks with low data rate, high cost, high latency, high power consumption, and negative impact on marine mammals. Meanwhile, optical communication for underwater networks has the advantage of the higher data rate albeit for limited communication distances. Moreover, energy consumption is another major problem for underwater sensor networks, due to limited battery power and difficulty in replacing or recharging the battery of a sensor node. The ultimate solution to this problem is to add energy harvesting capability to the acoustic-optical sensor nodes. Localization of underwater sensor networks is of utmost importance because the data collected from underwater sensor nodes is useful only if the location of the nodes is known. Therefore, a novel localization technique for energy harvesting hybrid acoustic-optical underwater wireless sensor networks (AO-UWSNs) is proposed. AO-UWSN employs optical communication for higher data rate at a short transmission distance and employs acoustic communication for low data rate and long transmission distance. A hybrid received signal strength (RSS) based localization technique is proposed to localize the nodes in AO-UWSNs. The proposed technique combines the noisy RSS based measurements from acoustic communication and optical communication and estimates the final locations of acoustic-optical sensor nodes. A weighted multiple observations paradigm is proposed for hybrid estimated distances to suppress the noisy observations and give more importance to the accurate observations. Furthermore, the closed form solution for Cramer-Rao lower bound (CRLB) is derived for localization accuracy of the proposed technique. PMID:29278405
Wake-up transceivers for structural health monitoring of bridges
NASA Astrophysics Data System (ADS)
Kumberg, T.; Kokert, J.; Younesi, V.; Koenig, S.; Reindl, L. M.
2016-04-01
In this article we present a wireless sensor network to monitor the structural health of a large-scale highway bridge in Germany. The wireless sensor network consists of several sensor nodes that use wake-up receivers to realize latency free and low-power communication. The sensor nodes are either equipped with very accurate tilt sensor developed by Northrop Grumman LITEF GmbH or with a Novatel OEM615 GNSS receiver. Relay nodes are required to forward measurement data to a base station located on the bridge. The base station is a gateway that transmits the local measurement data to a remote server where it can be further analyzed and processed. Further on, we present an energy harvesting system to supply the energy demanding GNSS sensor nodes to realize long term monitoring.
Image sensor with motion artifact supression and anti-blooming
NASA Technical Reports Server (NTRS)
Pain, Bedabrata (Inventor); Wrigley, Chris (Inventor); Yang, Guang (Inventor); Yadid-Pecht, Orly (Inventor)
2006-01-01
An image sensor includes pixels formed on a semiconductor substrate. Each pixel includes a photoactive region in the semiconductor substrate, a sense node, and a power supply node. A first electrode is disposed near a surface of the semiconductor substrate. A bias signal on the first electrode sets a potential in a region of the semiconductor substrate between the photoactive region and the sense node. A second electrode is disposed near the surface of the semiconductor substrate. A bias signal on the second electrode sets a potential in a region of the semiconductor substrate between the photoactive region and the power supply node. The image sensor includes a controller that causes bias signals to be provided to the electrodes so that photocharges generated in the photoactive region are accumulated in the photoactive region during a pixel integration period, the accumulated photocharges are transferred to the sense node during a charge transfer period, and photocharges generated in the photoactive region are transferred to the power supply node during a third period without passing through the sense node. The imager can operate at high shutter speeds with simultaneous integration of pixels in the array. High quality images can be produced free from motion artifacts. High quantum efficiency, good blooming control, low dark current, low noise and low image lag can be obtained.
Design of sensor node platform for wireless biomedical sensor networks.
Xijun, Chen; -H Meng, Max; Hongliang, Ren
2005-01-01
Design of low-cost, miniature, lightweight, ultra low-power, flexible sensor platform capable of customization and seamless integration into a wireless biomedical sensor network(WBSN) for health monitoring applications presents one of the most challenging tasks. In this paper, we propose a WBSN node platform featuring an ultra low-power microcontroller, an IEEE 802.15.4 compatible transceiver, and a flexible expansion connector. The proposed solution promises a cost-effective, flexible platform that allows easy customization, energy-efficient computation and communication. The development of a common platform for multiple physical sensors will increase reuse and alleviate costs of transition to a new generation of sensors. As a case study, we present an implementation of an ECG (Electrocardiogram) sensor.
NASA Astrophysics Data System (ADS)
Lee, Songjun; Na, Doosu; Koo, Bonmin
Wireless sensor networks with a star network topology are commonly applied for health monitoring systems. To determine the condition of a patient, sensor nodes are attached to the body to transmit the data to a coordinator. However, this process is inefficient because the coordinator is always communicating with each sensor node resulting in a data processing workload for the coordinator that becomes much greater than that of the sensor nodes. In this paper, a method is proposed to reduce the number of data transmissions from the sensor nodes to the coordinator by establishing a threshold for data from the biological signals to ensure that only relevant information is transmitted. This results in a dramatic reduction in power consumption throughout the entire network.
Capella, Juan V.; Perles, Angel; Bonastre, Alberto; Serrano, Juan J.
2011-01-01
We present a set of novel low power wireless sensor nodes designed for monitoring wooden masterpieces and historical buildings, in order to perform an early detection of pests. Although our previous star-based system configuration has been in operation for more than 13 years, it does not scale well for sensorization of large buildings or when deploying hundreds of nodes. In this paper we demonstrate the feasibility of a cluster-based dynamic-tree hierarchical Wireless Sensor Network (WSN) architecture where realistic assumptions of radio frequency data transmission are applied to cluster construction, and a mix of heterogeneous nodes are used to minimize economic cost of the whole system and maximize power saving of the leaf nodes. Simulation results show that the specialization of a fraction of the nodes by providing better antennas and some energy harvesting techniques can dramatically extend the life of the entire WSN and reduce the cost of the whole system. A demonstration of the proposed architecture with a new routing protocol and applied to termite pest detection has been implemented on a set of new nodes and should last for about 10 years, but it provides better scalability, reliability and deployment properties. PMID:22346630
Capella, Juan V; Perles, Angel; Bonastre, Alberto; Serrano, Juan J
2011-01-01
We present a set of novel low power wireless sensor nodes designed for monitoring wooden masterpieces and historical buildings, in order to perform an early detection of pests. Although our previous star-based system configuration has been in operation for more than 13 years, it does not scale well for sensorization of large buildings or when deploying hundreds of nodes. In this paper we demonstrate the feasibility of a cluster-based dynamic-tree hierarchical Wireless Sensor Network (WSN) architecture where realistic assumptions of radio frequency data transmission are applied to cluster construction, and a mix of heterogeneous nodes are used to minimize economic cost of the whole system and maximize power saving of the leaf nodes. Simulation results show that the specialization of a fraction of the nodes by providing better antennas and some energy harvesting techniques can dramatically extend the life of the entire WSN and reduce the cost of the whole system. A demonstration of the proposed architecture with a new routing protocol and applied to termite pest detection has been implemented on a set of new nodes and should last for about 10 years, but it provides better scalability, reliability and deployment properties.
Penders, J; Pop, V; Caballero, L; van de Molengraft, J; van Schaijk, R; Vullers, R; Van Hoof, C
2010-01-01
Recent advances in ultra-low-power circuits and energy harvesters are making self-powered body sensor nodes a reality. Power optimization at the system and application level is crucial in achieving ultra-low-power consumption for the entire system. This paper reviews system-level power optimization techniques, and illustrates their impact on the case of autonomous wireless EMG monitoring. The resulting prototype, an Autonomous wireless EMG sensor power by PV-cells, is presented.
A long-term stable power supply µDMFC stack for wireless sensor node applications
NASA Astrophysics Data System (ADS)
Wu, Zonglin; Wang, Xiaohong; Li, Xiaozhao; Xu, Manqi; Liu, Litian
2014-10-01
In this paper, a passive, air-breathing four-cell micro direct methanol fuel cell (µDMFC) stack featuring a fuel delivery structure for long-term and stable power supply is designed, fabricated and tested. The fuel is reserved in a T-shaped tank and diffuses through the porous diffusion layer to the catalyst at the anode. A peak power density of 25.7 mW cm-2 and a maximum power output of 113 mW are achieved with 3 M methanol at room temperature, and the stack can produce 60 mW of power, even though only 5% fuel remains in the reservoir. Combined with a low-input dc-dc convertor, the stack can realize a stable and optional constant voltage output from 1 V-6 V. The stack successfully powered a heavy metal sensor node for water environment monitoring 12 d continuously, with consumption of 10 mL 5 M methanol solution. As such, it is believed to be applicable for powering wireless sensor nodes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Philip
The research objective of this project is to design and demonstrate a low-cost, compact, easy-to-deploy, maintenance-free sensor node technology, and a network of such sensors, which enable the monitoring of multiphysical parameters and can transform today’s ordinary buildings into smart buildings with environmental awareness. We develop the sensor node and network via engineering and integration of existing technologies, including high-efficiency mechanical energy harvesting, and ultralow-power integrated circuits (ICs) for sensing and wireless communication. Through integration and innovative power management via specifically designed low-power control circuits for wireless sensing applications, and tailoring energy-harvesting components to indoor applications, the target products willmore » have smaller volume, higher efficiency, and much lower cost (in both manufacturing and maintenance) than the baseline technology. Our development and commercialization objective is to create prototypes for our target products under the CWRU-Intwine collaboration.« less
A solar charge and discharge controller for wireless sensor nodes
NASA Astrophysics Data System (ADS)
Dang, Yibo; Shen, Shu
2018-02-01
Aiming at the energy supply problem that restricts the life of wireless sensor nodes, a solar energy charge and discharge controller suitable for wireless sensor nodes is designed in this paper. A Microcontroller is used as the core of the solar charge and discharge controller. The software of the solar charge and discharge controller adopts the C language to realize the program of the main control module. Firstly, the function of monitoring solar panel voltage and lithium battery voltage are simulated by Protel software, and the charge time is tested in cloudy and overcast outdoor environment. The results of the experiment show that our controller meets the power supply demand of wireless sensor nodes.
A Novel Deployment Scheme Based on Three-Dimensional Coverage Model for Wireless Sensor Networks
Xiao, Fu; Yang, Yang; Wang, Ruchuan; Sun, Lijuan
2014-01-01
Coverage pattern and deployment strategy are directly related to the optimum allocation of limited resources for wireless sensor networks, such as energy of nodes, communication bandwidth, and computing power, and quality improvement is largely determined by these for wireless sensor networks. A three-dimensional coverage pattern and deployment scheme are proposed in this paper. Firstly, by analyzing the regular polyhedron models in three-dimensional scene, a coverage pattern based on cuboids is proposed, and then relationship between coverage and sensor nodes' radius is deduced; also the minimum number of sensor nodes to maintain network area's full coverage is calculated. At last, sensor nodes are deployed according to the coverage pattern after the monitor area is subdivided into finite 3D grid. Experimental results show that, compared with traditional random method, sensor nodes number is reduced effectively while coverage rate of monitor area is ensured using our coverage pattern and deterministic deployment scheme. PMID:25045747
Development of Implantable Wireless Sensor Nodes for Animal Husbandry and MedTech Innovation
Lu, Jian; Zhang, Lan; Zhang, Dapeng; Matsumoto, Sohei; Hiroshima, Hiroshi; Maeda, Ryutaro; Sato, Mizuho; Toyoda, Atsushi; Gotoh, Takafumi; Ohkohchi, Nobuhiro
2018-01-01
In this paper, we report the development, evaluation, and application of ultra-small low-power wireless sensor nodes for advancing animal husbandry, as well as for innovation of medical technologies. A radio frequency identification (RFID) chip with hybrid interface and neglectable power consumption was introduced to enable switching of ON/OFF and measurement mode after implantation. A wireless power transmission system with a maximum efficiency of 70% and an access distance of up to 5 cm was developed to allow the sensor node to survive for a duration of several weeks from a few minutes’ remote charge. The results of field tests using laboratory mice and a cow indicated the high accuracy of the collected biological data and bio-compatibility of the package. As a result of extensive application of the above technologies, a fully solid wireless pH sensor and a surgical navigation system using artificial magnetic field and a 3D MEMS magnetic sensor are introduced in this paper, and the preliminary experimental results are presented and discussed. PMID:29587448
Distributed Power Allocation for Wireless Sensor Network Localization: A Potential Game Approach.
Ke, Mingxing; Li, Ding; Tian, Shiwei; Zhang, Yuli; Tong, Kaixiang; Xu, Yuhua
2018-05-08
The problem of distributed power allocation in wireless sensor network (WSN) localization systems is investigated in this paper, using the game theoretic approach. Existing research focuses on the minimization of the localization errors of individual agent nodes over all anchor nodes subject to power budgets. When the service area and the distribution of target nodes are considered, finding the optimal trade-off between localization accuracy and power consumption is a new critical task. To cope with this issue, we propose a power allocation game where each anchor node minimizes the square position error bound (SPEB) of the service area penalized by its individual power. Meanwhile, it is proven that the power allocation game is an exact potential game which has one pure Nash equilibrium (NE) at least. In addition, we also prove the existence of an ϵ -equilibrium point, which is a refinement of NE and the better response dynamic approach can reach the end solution. Analytical and simulation results demonstrate that: (i) when prior distribution information is available, the proposed strategies have better localization accuracy than the uniform strategies; (ii) when prior distribution information is unknown, the performance of the proposed strategies outperforms power management strategies based on the second-order cone program (SOCP) for particular agent nodes after obtaining the estimated distribution of agent nodes. In addition, proposed strategies also provide an instructional trade-off between power consumption and localization accuracy.
Analysis of power management and system latency in wireless sensor networks
NASA Astrophysics Data System (ADS)
Oswald, Matthew T.; Rohwer, Judd A.; Forman, Michael A.
2004-08-01
Successful power management in a wireless sensor network requires optimization of the protocols which affect energy-consumption on each node and the aggregate effects across the larger network. System optimization for a given deployment scenario requires an analysis and trade off of desired node and network features with their associated costs. The sleep protocol for an energy-efficient wireless sensor network for event detection, target classification, and target tracking developed at Sandia National Laboratories is presented. The dynamic source routing (DSR) algorithm is chosen to reduce network maintenance overhead, while providing a self-configuring and self-healing network architecture. A method for determining the optimal sleep time is developed and presented, providing reference data which spans several orders of magnitude. Message timing diagrams show, that a node in a five-node cluster, employing an optimal cyclic single-radio sleep protocol, consumes 3% more energy and incurs a 16-s increase latency than nodes employing the more complex dual-radio STEM protocol.
Wireless sensor node for detection of freight train derailment
NASA Astrophysics Data System (ADS)
Costa, Andrea; Milani, Damiano; Resta, Ferruccio; Tomasini, Gisella
2016-04-01
The target of the research activity presented in this paper is to design, to realize and to test an autonomous sensor node able to measure the accelerations in correspondence of the axle box of a freight train. The final goal of the sensor is to identify the derailment conditions by observing the variations in the spectra of the box accelerations, around the frequencies associated to the wheel revolution and its multiples. The sensor node embeds an accelerometer, a microprocessor, a transmission system, a piezoelectric bimorph energy harvester and an integrated circuit for managing the power distribution to each component of the node. In particular, a mechanical filter to be applied to the node was specifically designed to increment the energy recovered by the harvester and to filter out the high frequency components of the axle-box acceleration, allowing the use of a more sensitive accelerometer. The harvesting system was setup by means of laboratory tests carried out with an electromechanical shaker and the sensor node was finally tested through field tests on freight trains.
SITRUS: Semantic Infrastructure for Wireless Sensor Networks
Bispo, Kalil A.; Rosa, Nelson S.; Cunha, Paulo R. F.
2015-01-01
Wireless sensor networks (WSNs) are made up of nodes with limited resources, such as processing, bandwidth, memory and, most importantly, energy. For this reason, it is essential that WSNs always work to reduce the power consumption as much as possible in order to maximize its lifetime. In this context, this paper presents SITRUS (semantic infrastructure for wireless sensor networks), which aims to reduce the power consumption of WSN nodes using ontologies. SITRUS consists of two major parts: a message-oriented middleware responsible for both an oriented message communication service and a reconfiguration service; and a semantic information processing module whose purpose is to generate a semantic database that provides the basis to decide whether a WSN node needs to be reconfigurated or not. In order to evaluate the proposed solution, we carried out an experimental evaluation to assess the power consumption and memory usage of WSN applications built atop SITRUS. PMID:26528974
Chung, Yun Won; Hwang, Ho Young
2010-01-01
In sensor network, energy conservation is one of the most critical issues since sensor nodes should perform a sensing task for a long time (e.g., lasting a few years) but the battery of them cannot be replaced in most practical situations. For this purpose, numerous energy conservation schemes have been proposed and duty cycling scheme is considered the most suitable power conservation technique, where sensor nodes alternate between states having different levels of power consumption. In order to analyze the energy consumption of energy conservation scheme based on duty cycling, it is essential to obtain the probability of each state. In this paper, we analytically derive steady state probability of sensor node states, i.e., sleep, listen, and active states, based on traffic characteristics and timer values, i.e., sleep timer, listen timer, and active timer. The effect of traffic characteristics and timer values on the steady state probability and energy consumption is analyzed in detail. Our work can provide sensor network operators guideline for selecting appropriate timer values for efficient energy conservation. The analytical methodology developed in this paper can be extended to other energy conservation schemes based on duty cycling with different sensor node states, without much difficulty. PMID:22219676
Smart Sensor Network for Aircraft Corrosion Monitoring
2010-02-01
Network Elements – Hub, Network capable application processor ( NCAP ) – Node, Smart transducer interface module (STIM) Corrosion Sensing and...software Transducer software Network Protocol 1451.2 1451.3 1451.5 1451.6 1451.7 I/O Node -processor Power TEDS Smart Sensor Hub ( NCAP ) IEEE 1451.0 and
NASA Astrophysics Data System (ADS)
Thangaraj, K.; Elefsiniotis, A.; Aslam, S.; Becker, Th.; Schmid, U.; Lees, J.; Featherston, C. A.; Pullin, R.
2013-05-01
This paper describes an approach for efficiently storing the energy harvested from a thermoelectric module for powering autonomous wireless sensor nodes for aeronautical health monitoring applications. A representative temperature difference was created across a thermo electric generator (TEG) by attaching a thermal mass and a cavity containing a phase change material to one side, and a heat source (to represent the aircraft fuselage) to the other. Batteries and supercapacitors are popular choices of storage device, but neither represents the ideal solution; supercapacitors have a lower energy density than batteries and batteries have lower power density than supercapacitors. When using only a battery for storage, the runtime of a typical sensor node is typically reduced by internal impedance, high resistance and other internal losses. Supercapacitors may overcome some of these problems, but generally do not provide sufficient long-term energy to allow advanced health monitoring applications to operate over extended periods. A hybrid energy storage unit can provide both energy and power density to the wireless sensor node simultaneously. Techniques such as acoustic-ultrasonic, acoustic-emission, strain, crack wire sensor and window wireless shading require storage approaches that can provide immediate energy on demand, usually in short, high intensity bursts, and that can be sustained over long periods of time. This application requirement is considered as a significant constraint when working with battery-only and supercapacitor-only solutions and they should be able to store up-to 40-50J of energy.
Jiang, Joe-Air; Chuang, Cheng-Long; Lin, Tzu-Shiang; Chen, Chia-Pang; Hung, Chih-Hung; Wang, Jiing-Yi; Liu, Chang-Wang; Lai, Tzu-Yun
2010-01-01
In recent years, various received signal strength (RSS)-based localization estimation approaches for wireless sensor networks (WSNs) have been proposed. RSS-based localization is regarded as a low-cost solution for many location-aware applications in WSNs. In previous studies, the radiation patterns of all sensor nodes are assumed to be spherical, which is an oversimplification of the radio propagation model in practical applications. In this study, we present an RSS-based cooperative localization method that estimates unknown coordinates of sensor nodes in a network. Arrangement of two external low-cost omnidirectional dipole antennas is developed by using the distance-power gradient model. A modified robust regression is also proposed to determine the relative azimuth and distance between a sensor node and a fixed reference node. In addition, a cooperative localization scheme that incorporates estimations from multiple fixed reference nodes is presented to improve the accuracy of the localization. The proposed method is tested via computer-based analysis and field test. Experimental results demonstrate that the proposed low-cost method is a useful solution for localizing sensor nodes in unknown or changing environments.
NASA Astrophysics Data System (ADS)
Muhammad, Umar B.; Ezugwu, Absalom E.; Ofem, Paulinus O.; Rajamäki, Jyri; Aderemi, Adewumi O.
2017-06-01
Recently, researchers in the field of wireless sensor networks have resorted to energy harvesting techniques that allows energy to be harvested from the ambient environment to power sensor nodes. Using such Energy harvesting techniques together with proper routing protocols, an Energy Neutral state can be achieved so that sensor nodes can run perpetually. In this paper, we propose an Energy Neutral LEACH routing protocol which is an extension to the traditional LEACH protocol. The goal of the proposed protocol is to use Gateway node in each cluster so as to reduce the data transmission ranges of cluster head nodes. Simulation results show that the proposed routing protocol achieves a higher throughput and ensure the energy neutral status of the entire network.
Active Low Intrusion Hybrid Monitor for Wireless Sensor Networks
Navia, Marlon; Campelo, Jose C.; Bonastre, Alberto; Ors, Rafael; Capella, Juan V.; Serrano, Juan J.
2015-01-01
Several systems have been proposed to monitor wireless sensor networks (WSN). These systems may be active (causing a high degree of intrusion) or passive (low observability inside the nodes). This paper presents the implementation of an active hybrid (hardware and software) monitor with low intrusion. It is based on the addition to the sensor node of a monitor node (hardware part) which, through a standard interface, is able to receive the monitoring information sent by a piece of software executed in the sensor node. The intrusion on time, code, and energy caused in the sensor nodes by the monitor is evaluated as a function of data size and the interface used. Then different interfaces, commonly available in sensor nodes, are evaluated: serial transmission (USART), serial peripheral interface (SPI), and parallel. The proposed hybrid monitor provides highly detailed information, barely disturbed by the measurement tool (interference), about the behavior of the WSN that may be used to evaluate many properties such as performance, dependability, security, etc. Monitor nodes are self-powered and may be removed after the monitoring campaign to be reused in other campaigns and/or WSNs. No other hardware-independent monitoring platforms with such low interference have been found in the literature. PMID:26393604
A comparative study of wireless sensor networks and their routing protocols.
Bhattacharyya, Debnath; Kim, Tai-hoon; Pal, Subhajit
2010-01-01
Recent developments in the area of micro-sensor devices have accelerated advances in the sensor networks field leading to many new protocols specifically designed for wireless sensor networks (WSNs). Wireless sensor networks with hundreds to thousands of sensor nodes can gather information from an unattended location and transmit the gathered data to a particular user, depending on the application. These sensor nodes have some constraints due to their limited energy, storage capacity and computing power. Data are routed from one node to other using different routing protocols. There are a number of routing protocols for wireless sensor networks. In this review article, we discuss the architecture of wireless sensor networks. Further, we categorize the routing protocols according to some key factors and summarize their mode of operation. Finally, we provide a comparative study on these various protocols.
A Terrestrial Microbial Fuel Cell for Powering a Single-Hop Wireless Sensor Network.
Zhang, Daxing; Zhu, Yingmin; Pedrycz, Witold; Guo, Yongxian
2016-05-18
Microbial fuel cells (MFCs) are envisioned as one of the most promising alternative renewable energy sources because they can generate electric current continuously while treating waste. Terrestrial Microbial Fuel Cells (TMFCs) can be inoculated and work on the use of soil, which further extends the application areas of MFCs. Energy supply, as a primary influential factor determining the lifetime of Wireless Sensor Network (WSN) nodes, remains an open challenge in sensor networks. In theory, sensor nodes powered by MFCs have an eternal life. However, low power density and high internal resistance of MFCs are two pronounced problems in their operation. A single-hop WSN powered by a TMFC experimental setup was designed and experimented with. Power generation performance of the proposed TMFC, the relationships between the performance of the power generation and the environment temperature, the water content of the soil by weight were measured by experiments. Results show that the TMFC can achieve good power generation performance under special environmental conditions. Furthermore, the experiments with sensor data acquisition and wireless transmission of the TMFC powering WSN were carried out. We demonstrate that the obtained experimental results validate the feasibility of TMFCs powering WSNs.
A Terrestrial Microbial Fuel Cell for Powering a Single-Hop Wireless Sensor Network
Zhang, Daxing; Zhu, Yingmin; Pedrycz, Witold; Guo, Yongxian
2016-01-01
Microbial fuel cells (MFCs) are envisioned as one of the most promising alternative renewable energy sources because they can generate electric current continuously while treating waste. Terrestrial Microbial Fuel Cells (TMFCs) can be inoculated and work on the use of soil, which further extends the application areas of MFCs. Energy supply, as a primary influential factor determining the lifetime of Wireless Sensor Network (WSN) nodes, remains an open challenge in sensor networks. In theory, sensor nodes powered by MFCs have an eternal life. However, low power density and high internal resistance of MFCs are two pronounced problems in their operation. A single-hop WSN powered by a TMFC experimental setup was designed and experimented with. Power generation performance of the proposed TMFC, the relationships between the performance of the power generation and the environment temperature, the water content of the soil by weight were measured by experiments. Results show that the TMFC can achieve good power generation performance under special environmental conditions. Furthermore, the experiments with sensor data acquisition and wireless transmission of the TMFC powering WSN were carried out. We demonstrate that the obtained experimental results validate the feasibility of TMFCs powering WSNs. PMID:27213346
NASA Astrophysics Data System (ADS)
Anton, S. R.; Taylor, S. G.; Raby, E. Y.; Farinholt, K. M.
2013-03-01
With a global interest in the development of clean, renewable energy, wind energy has seen steady growth over the past several years. Advances in wind turbine technology bring larger, more complex turbines and wind farms. An important issue in the development of these complex systems is the ability to monitor the state of each turbine in an effort to improve the efficiency and power generation. Wireless sensor nodes can be used to interrogate the current state and health of wind turbine structures; however, a drawback of most current wireless sensor technology is their reliance on batteries for power. Energy harvesting solutions present the ability to create autonomous power sources for small, low-power electronics through the scavenging of ambient energy; however, most conventional energy harvesting systems employ a single mode of energy conversion, and thus are highly susceptible to variations in the ambient energy. In this work, a multi-source energy harvesting system is developed to power embedded electronics for wind turbine applications in which energy can be scavenged simultaneously from several ambient energy sources. Field testing is performed on a full-size, residential scale wind turbine where both vibration and solar energy harvesting systems are utilized to power wireless sensing systems. Two wireless sensors are investigated, including the wireless impedance device (WID) sensor node, developed at Los Alamos National Laboratory (LANL), and an ultra-low power RF system-on-chip board that is the basis for an embedded wireless accelerometer node currently under development at LANL. Results indicate the ability of the multi-source harvester to successfully power both sensors.
Sensor Systems Based on FPGAs and Their Applications: A Survey
de la Piedra, Antonio; Braeken, An; Touhafi, Abdellah
2012-01-01
In this manuscript, we present a survey of designs and implementations of research sensor nodes that rely on FPGAs, either based upon standalone platforms or as a combination of microcontroller and FPGA. Several current challenges in sensor networks are distinguished and linked to the features of modern FPGAs. As it turns out, low-power optimized FPGAs are able to enhance the computation of several types of algorithms in terms of speed and power consumption in comparison to microcontrollers of commercial sensor nodes. We show that architectures based on the combination of microcontrollers and FPGA can play a key role in the future of sensor networks, in fields where processing capabilities such as strong cryptography, self-testing and data compression, among others, are paramount.
An Efficient Distributed Coverage Hole Detection Protocol for Wireless Sensor Networks.
Sahoo, Prasan Kumar; Chiang, Ming-Jer; Wu, Shih-Lin
2016-03-17
In wireless sensor networks (WSNs), certain areas of the monitoring region may have coverage holes and serious coverage overlapping due to the random deployment of sensors. The failure of electronic components, software bugs and destructive agents could lead to the random death of the nodes. Sensors may be dead due to exhaustion of battery power, which may cause the network to be uncovered and disconnected. Based on the deployment nature of the nodes in remote or hostile environments, such as a battlefield or desert, it is impossible to recharge or replace the battery. However, the data gathered by the sensors are highly essential for the analysis, and therefore, the collaborative detection of coverage holes has strategic importance in WSNs. In this paper, distributed coverage hole detection algorithms are designed, where nodes can collaborate to detect the coverage holes autonomously. The performance evaluation of our protocols suggests that our protocols outperform in terms of hole detection time, limited power consumption and control packet overhead to detect holes as compared to other similar protocols.
Design of autonomous sensor nodes for remote soil monitoring in tropical banana plantation
NASA Astrophysics Data System (ADS)
Tiausas, Francis Jerome G.; Co, Jerelyn; Macalinao, Marc Joseph M.; Guico, Maria Leonora; Monje, Jose Claro; Oppus, Carlos
2017-09-01
Determining the effect of Fusarium oxysporum f. sp. cubense Tropical Race 4 on various soil parameters is essential in modeling and predicting its occurrence in banana plantations. One way to fulfill this is through a sensor network that will continuously and automatically monitor environmental conditions at suspect locations for an extended period of time. A wireless sensor network was developed specifically for this purpose. This sensor network is capable of measuring soil acidity, moisture, temperature, and conductivity. The designed prototype made use of off-the-shelf Parrot Flower Power soil sensor, pH sensor, Bluno Beetle, battery, and 3D-printed materials, catering specifically to the conditions of tropical banana plantations with consideration for sensor node size, communication, and power. Sensor nodes were tested on both simulated tropical environments and on an actual banana plantation in San Jose, General Santos City, Philippines. Challenges were resolved through iterative design and development of prototypes. Several tests including temperature and weather resilience, and structural stress tests were done to validate the design. Findings showed that the WSN nodes developed for this purpose are resilient to high tropical temperatures for up to 12 hours of continuous exposure, are able to withstand compressive forces of up to 8880.6 N, and can reliably collect data automatically from the area 47.96% of the time at an hourly frequency under actual field conditions.
Eslaminejad, Mohammadreza; Razak, Shukor Abd
2012-01-01
Wireless sensor networks basically consist of low cost sensor nodes which collect data from environment and relay them to a sink, where they will be subsequently processed. Since wireless nodes are severely power-constrained, the major concern is how to conserve the nodes' energy so that network lifetime can be extended significantly. Employing one static sink can rapidly exhaust the energy of sink neighbors. Furthermore, using a non-optimal single path together with a maximum transmission power level may quickly deplete the energy of individual nodes on the route. This all results in unbalanced energy consumption through the sensor field, and hence a negative effect on the network lifetime. In this paper, we present a comprehensive taxonomy of the various mechanisms applied for increasing the network lifetime. These techniques, whether in the routing or cross-layer area, fall within the following types: multi-sink, mobile sink, multi-path, power control and bio-inspired algorithms, depending on the protocol operation. In this taxonomy, special attention has been devoted to the multi-sink, power control and bio-inspired algorithms, which have not yet received much consideration in the literature. Moreover, each class covers a variety of the state-of-the-art protocols, which should provide ideas for potential future works. Finally, we compare these mechanisms and discuss open research issues. PMID:23202008
Eslaminejad, Mohammadreza; Razak, Shukor Abd
2012-10-09
Wireless sensor networks basically consist of low cost sensor nodes which collect data from environment and relay them to a sink, where they will be subsequently processed. Since wireless nodes are severely power-constrained, the major concern is how to conserve the nodes' energy so that network lifetime can be extended significantly. Employing one static sink can rapidly exhaust the energy of sink neighbors. Furthermore, using a non-optimal single path together with a maximum transmission power level may quickly deplete the energy of individual nodes on the route. This all results in unbalanced energy consumption through the sensor field, and hence a negative effect on the network lifetime. In this paper, we present a comprehensive taxonomy of the various mechanisms applied for increasing the network lifetime. These techniques, whether in the routing or cross-layer area, fall within the following types: multi-sink, mobile sink, multi-path, power control and bio-inspired algorithms, depending on the protocol operation. In this taxonomy, special attention has been devoted to the multi-sink, power control and bio-inspired algorithms, which have not yet received much consideration in the literature. Moreover, each class covers a variety of the state-of-the-art protocols, which should provide ideas for potential future works. Finally, we compare these mechanisms and discuss open research issues.
PEEL-AND-STICK SENSORS POWERED BY DIRECTED RF ENERGY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lalau-Keraly, Chrisopher; Daniel, George; Lee, Joseph
PARC, a Xerox Company, is developing a low-cost system of peel-and-stick wireless sensors that will enable widespread building environment sensor deployment with the potential to deliver up to 30% energy savings. The system is embodied by a set of RF hubs that provide power to automatically located sensor nodes, and relay data wirelessly to the building management system (BMS). The sensor nodes are flexible electronic labels powered by rectified RF energy transmitted by an RF hub and can contain multiple printed and conventional sensors. The system design overcomes limitations in wireless sensors related to power delivery, lifetime, and cost bymore » eliminating batteries and photovoltaic devices. Sensor localization is performed automatically by the inclusion of a programmable multidirectional antenna array in the RF hub. Comparison of signal strengths while the RF beam is swept allows for sensor localization, reducing installation effort and enabling automatic recommissioning of sensors that have been relocated, overcoming a significant challenge in building operations. PARC has already demonstrated wireless power and temperature data transmission up to a distance of 20m with less than one minute between measurements, using power levels well within the FCC regulation limits in the 902-928 MHz ISM band. The sensor’s RF energy harvesting antenna achieves high performance with dimensions below 5cm x 9cm.« less
Peel-and-Stick Sensors Powered by Directed RF Energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lalau-Keraly, Christopher; Daniel, George; Lee, Joseph
PARC, a Xerox Company, is developing a low-cost system of peel-and-stick wireless sensors that will enable widespread building environment sensor deployment with the potential to deliver up to 30% energy savings. The system is embodied by a set of RF hubs that provide power to automatically located sensor nodes, and relay data wirelessly to the building management system (BMS). The sensor nodes are flexible electronic labels powered by rectified RF energy transmitted by an RF hub and can contain multiple printed and conventional sensors. The system design overcomes limitations in wireless sensors related to power delivery, lifetime, and cost bymore » eliminating batteries and photovoltaic devices. Sensor localization is performed automatically by the inclusion of a programmable multidirectional antenna array in the RF hub. Comparison of signal strengths while the RF beam is swept allows for sensor localization, reducing installation effort and enabling automatic recommissioning of sensors that have been relocated, overcoming a significant challenge in building operations. PARC has already demonstrated wireless power and temperature data transmission up to a distance of 20m with less than one minute between measurements, using power levels well within the FCC regulation limits in the 902-928 MHz ISM band. The sensor’s RF energy harvesting antenna achieves high performance with dimensions below 5cm x 9cm« less
A New Approach to Design Autonomous Wireless Sensor Node Based on RF Energy Harvesting System.
Mouapi, Alex; Hakem, Nadir
2018-01-05
Energy Harvesting techniques are increasingly seen as the solution for freeing the wireless sensor nodes from their battery dependency. However, it remains evident that network performance features, such as network size, packet length, and duty cycle, are influenced by the sum of recovered energy. This paper proposes a new approach to defining the specifications of a stand-alone wireless node based on a Radio-frequency Energy Harvesting System (REHS). To achieve adequate performance regarding the range of the Wireless Sensor Network (WSN), techniques for minimizing the energy consumed by the sensor node are combined with methods for optimizing the performance of the REHS. For more rigor in the design of the autonomous node, a comprehensive energy model of the node in a wireless network is established. For an equitable distribution of network charges between the different nodes that compose it, the Low-Energy Adaptive Clustering Hierarchy (LEACH) protocol is used for this purpose. The model considers five energy-consumption sources, most of which are ignored in recently used models. By using the hardware parameters of commercial off-the-shelf components (Mica2 Motes and CC2520 of Texas Instruments), the energy requirement of a sensor node is quantified. A miniature REHS based on a judicious choice of rectifying diodes is then designed and developed to achieve optimal performance in the Industrial Scientific and Medical (ISM) band centralized at 2.45 GHz . Due to the mismatch between the REHS and the antenna, a band pass filter is designed to reduce reflection losses. A gradient method search is used to optimize the output characteristics of the adapted REHS. At 1 mW of input RF power, the REHS provides an output DC power of 0.57 mW and a comparison with the energy requirement of the node allows the Base Station (BS) to be located at 310 m from the wireless nodes when the Wireless Sensor Network (WSN) has 100 nodes evenly spread over an area of 300 × 300 m 2 and when each round lasts 10 min . The result shows that the range of the autonomous WSN increases when the controlled physical phenomenon varies very slowly. Having taken into account all the dissipation sources coexisting in a sensor node and using actual measurements of an REHS, this work provides the guidelines for the design of autonomous nodes based on REHS.
A Power-Optimized Cooperative MAC Protocol for Lifetime Extension in Wireless Sensor Networks.
Liu, Kai; Wu, Shan; Huang, Bo; Liu, Feng; Xu, Zhen
2016-10-01
In wireless sensor networks, in order to satisfy the requirement of long working time of energy-limited nodes, we need to design an energy-efficient and lifetime-extended medium access control (MAC) protocol. In this paper, a node cooperation mechanism that one or multiple nodes with higher channel gain and sufficient residual energy help a sender relay its data packets to its recipient is employed to achieve this objective. We first propose a transmission power optimization algorithm to prolong network lifetime by optimizing the transmission powers of the sender and its cooperative nodes to maximize their minimum residual energy after their data packet transmissions. Based on it, we propose a corresponding power-optimized cooperative MAC protocol. A cooperative node contention mechanism is designed to ensure that the sender can effectively select a group of cooperative nodes with the lowest energy consumption and the best channel quality for cooperative transmissions, thus further improving the energy efficiency. Simulation results show that compared to typical MAC protocol with direct transmissions and energy-efficient cooperative MAC protocol, the proposed cooperative MAC protocol can efficiently improve the energy efficiency and extend the network lifetime.
A Power-Optimized Cooperative MAC Protocol for Lifetime Extension in Wireless Sensor Networks
Liu, Kai; Wu, Shan; Huang, Bo; Liu, Feng; Xu, Zhen
2016-01-01
In wireless sensor networks, in order to satisfy the requirement of long working time of energy-limited nodes, we need to design an energy-efficient and lifetime-extended medium access control (MAC) protocol. In this paper, a node cooperation mechanism that one or multiple nodes with higher channel gain and sufficient residual energy help a sender relay its data packets to its recipient is employed to achieve this objective. We first propose a transmission power optimization algorithm to prolong network lifetime by optimizing the transmission powers of the sender and its cooperative nodes to maximize their minimum residual energy after their data packet transmissions. Based on it, we propose a corresponding power-optimized cooperative MAC protocol. A cooperative node contention mechanism is designed to ensure that the sender can effectively select a group of cooperative nodes with the lowest energy consumption and the best channel quality for cooperative transmissions, thus further improving the energy efficiency. Simulation results show that compared to typical MAC protocol with direct transmissions and energy-efficient cooperative MAC protocol, the proposed cooperative MAC protocol can efficiently improve the energy efficiency and extend the network lifetime. PMID:27706079
Intelligent self-organization methods for wireless ad hoc sensor networks based on limited resources
NASA Astrophysics Data System (ADS)
Hortos, William S.
2006-05-01
A wireless ad hoc sensor network (WSN) is a configuration for area surveillance that affords rapid, flexible deployment in arbitrary threat environments. There is no infrastructure support and sensor nodes communicate with each other only when they are in transmission range. To a greater degree than the terminals found in mobile ad hoc networks (MANETs) for communications, sensor nodes are resource-constrained, with limited computational processing, bandwidth, memory, and power, and are typically unattended once in operation. Consequently, the level of information exchange among nodes, to support any complex adaptive algorithms to establish network connectivity and optimize throughput, not only deplete those limited resources and creates high overhead in narrowband communications, but also increase network vulnerability to eavesdropping by malicious nodes. Cooperation among nodes, critical to the mission of sensor networks, can thus be disrupted by the inappropriate choice of the method for self-organization. Recent published contributions to the self-configuration of ad hoc sensor networks, e.g., self-organizing mapping and swarm intelligence techniques, have been based on the adaptive control of the cross-layer interactions found in MANET protocols to achieve one or more performance objectives: connectivity, intrusion resistance, power control, throughput, and delay. However, few studies have examined the performance of these algorithms when implemented with the limited resources of WSNs. In this paper, self-organization algorithms for the initiation, operation and maintenance of a network topology from a collection of wireless sensor nodes are proposed that improve the performance metrics significant to WSNs. The intelligent algorithm approach emphasizes low computational complexity, energy efficiency and robust adaptation to change, allowing distributed implementation with the actual limited resources of the cooperative nodes of the network. Extensions of the algorithms from flat topologies to two-tier hierarchies of sensor nodes are presented. Results from a few simulations of the proposed algorithms are compared to the published results of other approaches to sensor network self-organization in common scenarios. The estimated network lifetime and extent under static resource allocations are computed.
Extending Wireless Rechargeable Sensor Network Life without Full Knowledge.
Najeeb, Najeeb W; Detweiler, Carrick
2017-07-17
When extending the life of Wireless Rechargeable Sensor Networks (WRSN), one challenge is charging networks as they grow larger. Overcoming this limitation will render a WRSN more practical and highly adaptable to growth in the real world. Most charging algorithms require a priori full knowledge of sensor nodes' power levels in order to determine the nodes that require charging. In this work, we present a probabilistic algorithm that extends the life of scalable WRSN without a priori power knowledge and without full network exploration. We develop a probability bound on the power level of the sensor nodes and utilize this bound to make decisions while exploring a WRSN. We verify the algorithm by simulating a wireless power transfer unmanned aerial vehicle, and charging a WRSN to extend its life. Our results show that, without knowledge, our proposed algorithm extends the life of a WRSN on average 90% of what an optimal full knowledge algorithm can achieve. This means that the charging robot does not need to explore the whole network, which enables the scaling of WRSN. We analyze the impact of network parameters on our algorithm and show that it is insensitive to a large range of parameter values.
Collaborative Localization Algorithms for Wireless Sensor Networks with Reduced Localization Error
Sahoo, Prasan Kumar; Hwang, I-Shyan
2011-01-01
Localization is an important research issue in Wireless Sensor Networks (WSNs). Though Global Positioning System (GPS) can be used to locate the position of the sensors, unfortunately it is limited to outdoor applications and is costly and power consuming. In order to find location of sensor nodes without help of GPS, collaboration among nodes is highly essential so that localization can be accomplished efficiently. In this paper, novel localization algorithms are proposed to find out possible location information of the normal nodes in a collaborative manner for an outdoor environment with help of few beacons and anchor nodes. In our localization scheme, at most three beacon nodes should be collaborated to find out the accurate location information of any normal node. Besides, analytical methods are designed to calculate and reduce the localization error using probability distribution function. Performance evaluation of our algorithm shows that there is a tradeoff between deployed number of beacon nodes and localization error, and average localization time of the network can be increased with increase in the number of normal nodes deployed over a region. PMID:22163738
IJA: an efficient algorithm for query processing in sensor networks.
Lee, Hyun Chang; Lee, Young Jae; Lim, Ji Hyang; Kim, Dong Hwa
2011-01-01
One of main features in sensor networks is the function that processes real time state information after gathering needed data from many domains. The component technologies consisting of each node called a sensor node that are including physical sensors, processors, actuators and power have advanced significantly over the last decade. Thanks to the advanced technology, over time sensor networks have been adopted in an all-round industry sensing physical phenomenon. However, sensor nodes in sensor networks are considerably constrained because with their energy and memory resources they have a very limited ability to process any information compared to conventional computer systems. Thus query processing over the nodes should be constrained because of their limitations. Due to the problems, the join operations in sensor networks are typically processed in a distributed manner over a set of nodes and have been studied. By way of example while simple queries, such as select and aggregate queries, in sensor networks have been addressed in the literature, the processing of join queries in sensor networks remains to be investigated. Therefore, in this paper, we propose and describe an Incremental Join Algorithm (IJA) in Sensor Networks to reduce the overhead caused by moving a join pair to the final join node or to minimize the communication cost that is the main consumer of the battery when processing the distributed queries in sensor networks environments. At the same time, the simulation result shows that the proposed IJA algorithm significantly reduces the number of bytes to be moved to join nodes compared to the popular synopsis join algorithm.
IJA: An Efficient Algorithm for Query Processing in Sensor Networks
Lee, Hyun Chang; Lee, Young Jae; Lim, Ji Hyang; Kim, Dong Hwa
2011-01-01
One of main features in sensor networks is the function that processes real time state information after gathering needed data from many domains. The component technologies consisting of each node called a sensor node that are including physical sensors, processors, actuators and power have advanced significantly over the last decade. Thanks to the advanced technology, over time sensor networks have been adopted in an all-round industry sensing physical phenomenon. However, sensor nodes in sensor networks are considerably constrained because with their energy and memory resources they have a very limited ability to process any information compared to conventional computer systems. Thus query processing over the nodes should be constrained because of their limitations. Due to the problems, the join operations in sensor networks are typically processed in a distributed manner over a set of nodes and have been studied. By way of example while simple queries, such as select and aggregate queries, in sensor networks have been addressed in the literature, the processing of join queries in sensor networks remains to be investigated. Therefore, in this paper, we propose and describe an Incremental Join Algorithm (IJA) in Sensor Networks to reduce the overhead caused by moving a join pair to the final join node or to minimize the communication cost that is the main consumer of the battery when processing the distributed queries in sensor networks environments. At the same time, the simulation result shows that the proposed IJA algorithm significantly reduces the number of bytes to be moved to join nodes compared to the popular synopsis join algorithm. PMID:22319375
Energy scavenging for long-term deployable wireless sensor networks.
Mathúna, Cian O; O'Donnell, Terence; Martinez-Catala, Rafael V; Rohan, James; O'Flynn, Brendan
2008-05-15
The coming decade will see the rapid emergence of low cost, intelligent, wireless sensors and their widespread deployment throughout our environment. While wearable systems will operate over communications ranges of less than a meter, building management systems will operate with inter-node communications ranges of the order of meters to tens of meters and remote environmental monitoring systems will require communications systems and associated energy systems that will allow reliable operation over kilometers. Autonomous power should allow wireless sensor nodes to operate in a "deploy and forget" mode. The use of rechargeable battery technology is problematic due to battery lifetime issues related to node power budget, battery self-discharge, number of recharge cycles and long-term environmental impact. Duty cycling of wireless sensor nodes with long "SLEEP" times minimises energy usage. A case study of a multi-sensor, wireless, building management system operating using the Zigbee protocol demonstrates that, even with a 1 min cycle time for an 864 ms "ACTIVE" mode, the sensor module is already in SLEEP mode for almost 99% of the time. For a 20-min cycle time, the energy utilisation in SLEEP mode exceeds the ACTIVE mode energy by almost a factor of three and thus dominates the module energy utilisation thereby providing the ultimate limit to the power system lifetime. Energy harvesting techniques can deliver energy densities of 7.5 mW/cm(2) from outdoor solar, 100 microW/cm(2) from indoor lighting, 100 microW/cm(3) from vibrational energy and 60 microW/cm(2) from thermal energy typically found in a building environment. A truly autonomous, "deploy and forget" battery-less system can be achieved by scaling the energy harvesting system to provide all the system energy needs. In the building management case study discussed, for duty cycles of less than 0.07% (i.e. in ACTIVE mode for 0.864 s every 20 min), energy harvester device dimensions of approximately 2 cm on a side would be sufficient to supply the complete wireless sensor node energy. Key research challenges to be addressed to deliver future, remote, wireless, chemo-biosensing systems include the development of low cost, low-power sensors, miniaturised fluidic transport systems, anti-bio-fouling sensor surfaces, sensor calibration, reliable and robust system packaging, as well as associated energy delivery systems and energy budget management.
A Distributed Data-Gathering Protocol Using AUV in Underwater Sensor Networks.
Khan, Jawaad Ullah; Cho, Ho-Shin
2015-08-06
In this paper, we propose a distributed data-gathering scheme using an autonomous underwater vehicle (AUV) working as a mobile sink to gather data from a randomly distributed underwater sensor network where sensor nodes are clustered around several cluster headers. Unlike conventional data-gathering schemes where the AUV visits either every node or every cluster header, the proposed scheme allows the AUV to visit some selected nodes named path-nodes in a way that reduces the overall transmission power of the sensor nodes. Monte Carlo simulations are performed to investigate the performance of the proposed scheme compared with several preexisting techniques employing the AUV in terms of total amount of energy consumption, standard deviation of each node's energy consumption, latency to gather data at a sink, and controlling overhead. Simulation results show that the proposed scheme not only reduces the total energy consumption but also distributes the energy consumption more uniformly over the network, thereby increasing the lifetime of the network.
A long-term stable power supply μDMFC stack for wireless sensor node applications
NASA Astrophysics Data System (ADS)
Wu, Z. L.; Wang, X. H.; Teng, F.; Li, X. Z.; Wu, X. M.; Liu, L. T.
2013-12-01
A passive, air-breathing 4-cell micro direct methanol fuel cell (μDMFC) stack is presented featured by a fuel delivery structure for a long-term & stable power supply. The fuel is reserved in a T shape tank and diffuses through the porous diffusion layer to the catalyst at anode. The stack has a maximum power output of 110mW with 3M methanol at room temperature and output a stable power even thought 5% fuel is the remained in reservoir. Its performance decreases less than 3% for 100 hours continuous work. As such, it is believed to be more applicable for powering the wireless sensor nodes.
A Long-Distance RF-Powered Sensor Node with Adaptive Power Management for IoT Applications.
Pizzotti, Matteo; Perilli, Luca; Del Prete, Massimo; Fabbri, Davide; Canegallo, Roberto; Dini, Michele; Masotti, Diego; Costanzo, Alessandra; Franchi Scarselli, Eleonora; Romani, Aldo
2017-07-28
We present a self-sustained battery-less multi-sensor platform with RF harvesting capability down to -17 dBm and implementing a standard DASH7 wireless communication interface. The node operates at distances up to 17 m from a 2 W UHF carrier. RF power transfer allows operation when common energy scavenging sources (e.g., sun, heat, etc.) are not available, while the DASH7 communication protocol makes it fully compatible with a standard IoT infrastructure. An optimized energy-harvesting module has been designed, including a rectifying antenna (rectenna) and an integrated nano-power DC/DC converter performing maximum-power-point-tracking (MPPT). A nonlinear/electromagnetic co-design procedure is adopted to design the rectenna, which is optimized to operate at ultra-low power levels. An ultra-low power microcontroller controls on-board sensors and wireless protocol, to adapt the power consumption to the available detected power by changing wake-up policies. As a result, adaptive behavior can be observed in the designed platform, to the extent that the transmission data rate is dynamically determined by RF power. Among the novel features of the system, we highlight the use of nano-power energy harvesting, the implementation of specific hardware/software wake-up policies, optimized algorithms for best sampling rate implementation, and adaptive behavior by the node based on the power received.
A Long-Distance RF-Powered Sensor Node with Adaptive Power Management for IoT Applications
del Prete, Massimo; Fabbri, Davide; Canegallo, Roberto; Dini, Michele; Costanzo, Alessandra
2017-01-01
We present a self-sustained battery-less multi-sensor platform with RF harvesting capability down to −17 dBm and implementing a standard DASH7 wireless communication interface. The node operates at distances up to 17 m from a 2 W UHF carrier. RF power transfer allows operation when common energy scavenging sources (e.g., sun, heat, etc.) are not available, while the DASH7 communication protocol makes it fully compatible with a standard IoT infrastructure. An optimized energy-harvesting module has been designed, including a rectifying antenna (rectenna) and an integrated nano-power DC/DC converter performing maximum-power-point-tracking (MPPT). A nonlinear/electromagnetic co-design procedure is adopted to design the rectenna, which is optimized to operate at ultra-low power levels. An ultra-low power microcontroller controls on-board sensors and wireless protocol, to adapt the power consumption to the available detected power by changing wake-up policies. As a result, adaptive behavior can be observed in the designed platform, to the extent that the transmission data rate is dynamically determined by RF power. Among the novel features of the system, we highlight the use of nano-power energy harvesting, the implementation of specific hardware/software wake-up policies, optimized algorithms for best sampling rate implementation, and adaptive behavior by the node based on the power received. PMID:28788084
Providing Self-Healing Ability for Wireless Sensor Node by Using Reconfigurable Hardware
Yuan, Shenfang; Qiu, Lei; Gao, Shang; Tong, Yao; Yang, Weiwei
2012-01-01
Wireless sensor networks (WSNs) have received tremendous attention over the past ten years. In engineering applications of WSNs, a number of sensor nodes are usually spread across some specific geographical area. Some of these nodes have to work in harsh environments. Dependability of the Wireless Sensor Network (WSN) is very important for its successful applications in the engineering area. In ordinary research, when a node has a failure, it is usually discarded and the network is reorganized to ensure the normal operation of the WSN. Using appropriate WSN re-organization methods, though the sensor networks can be reorganized, this causes additional maintenance costs and sometimes still decreases the function of the networks. In those situations where the sensor networks cannot be reorganized, the performance of the whole WSN will surely be degraded. In order to ensure the reliable and low cost operation of WSNs, a method to develop a wireless sensor node with self-healing ability based on reconfigurable hardware is proposed in this paper. Two self-healing WSN node realization paradigms based on reconfigurable hardware are presented, including a redundancy-based self-healing paradigm and a whole FPAA/FPGA based self-healing paradigm. The nodes designed with the self-healing ability can dynamically change their node configurations to repair the nodes' hardware failures. To demonstrate these two paradigms, a strain sensor node is adopted as an illustration to show the concepts. Two strain WSN sensor nodes with self-healing ability are developed respectively according to the proposed self-healing paradigms. Evaluation experiments on self-healing ability and power consumption are performed. Experimental results show that the developed nodes can self-diagnose the failures and recover to a normal state automatically. The research presented can improve the robustness of WSNs and reduce the maintenance cost of WSNs in engineering applications. PMID:23202176
Tang, Chengpei; Shokla, Sanesy Kumcr; Modhawar, George; Wang, Qiang
2016-02-19
Collaborative strategies for mobile sensor nodes ensure the efficiency and the robustness of data processing, while limiting the required communication bandwidth. In order to solve the problem of pipeline inspection and oil leakage monitoring, a collaborative weighted mobile sensing scheme is proposed. By adopting a weighted mobile sensing scheme, the adaptive collaborative clustering protocol can realize an even distribution of energy load among the mobile sensor nodes in each round, and make the best use of battery energy. A detailed theoretical analysis and experimental results revealed that the proposed protocol is an energy efficient collaborative strategy such that the sensor nodes can communicate with a fusion center and produce high power gain.
NASA Astrophysics Data System (ADS)
Kondratjevs, K.; Zabasta, A.; Selmanovs-Pless, V.
2016-02-01
In recent years, there has been significant research focus that revolves around harvesting and minimising energy consumption by wireless sensor network nodes. When a sensor node is depleted of energy, it becomes unresponsive and disconnected from the network that can significantly influence the performance of the whole network. The purpose of the present research is to create a power supply management module in order to provide stable operating voltage for autonomous operations of radio signal repeaters, sensors or gateways of WSN. The developed management module is composed of a solar panel, lithium battery and power supply management module. The novelty of the research is the management module, which ensures stable and uninterrupted operations of electronic equipment in various power supply modes in different situations, simultaneously ensuring energy protection and sustainability of the module components. The management module is able to provide power supply of 5 V for electronics scheme independently, without power interruption switching between power sources and power flows in different directions.
Reliability of Wireless Sensor Networks
Dâmaso, Antônio; Rosa, Nelson; Maciel, Paulo
2014-01-01
Wireless Sensor Networks (WSNs) consist of hundreds or thousands of sensor nodes with limited processing, storage, and battery capabilities. There are several strategies to reduce the power consumption of WSN nodes (by increasing the network lifetime) and increase the reliability of the network (by improving the WSN Quality of Service). However, there is an inherent conflict between power consumption and reliability: an increase in reliability usually leads to an increase in power consumption. For example, routing algorithms can send the same packet though different paths (multipath strategy), which it is important for reliability, but they significantly increase the WSN power consumption. In this context, this paper proposes a model for evaluating the reliability of WSNs considering the battery level as a key factor. Moreover, this model is based on routing algorithms used by WSNs. In order to evaluate the proposed models, three scenarios were considered to show the impact of the power consumption on the reliability of WSNs. PMID:25157553
CMOS: Efficient Clustered Data Monitoring in Sensor Networks
2013-01-01
Tiny and smart sensors enable applications that access a network of hundreds or thousands of sensors. Thus, recently, many researchers have paid attention to wireless sensor networks (WSNs). The limitation of energy is critical since most sensors are battery-powered and it is very difficult to replace batteries in cases that sensor networks are utilized outdoors. Data transmission between sensor nodes needs more energy than computation in a sensor node. In order to reduce the energy consumption of sensors, we present an approximate data gathering technique, called CMOS, based on the Kalman filter. The goal of CMOS is to efficiently obtain the sensor readings within a certain error bound. In our approach, spatially close sensors are grouped as a cluster. Since a cluster header generates approximate readings of member nodes, a user query can be answered efficiently using the cluster headers. In addition, we suggest an energy efficient clustering method to distribute the energy consumption of cluster headers. Our simulation results with synthetic data demonstrate the efficiency and accuracy of our proposed technique. PMID:24459444
CMOS: efficient clustered data monitoring in sensor networks.
Min, Jun-Ki
2013-01-01
Tiny and smart sensors enable applications that access a network of hundreds or thousands of sensors. Thus, recently, many researchers have paid attention to wireless sensor networks (WSNs). The limitation of energy is critical since most sensors are battery-powered and it is very difficult to replace batteries in cases that sensor networks are utilized outdoors. Data transmission between sensor nodes needs more energy than computation in a sensor node. In order to reduce the energy consumption of sensors, we present an approximate data gathering technique, called CMOS, based on the Kalman filter. The goal of CMOS is to efficiently obtain the sensor readings within a certain error bound. In our approach, spatially close sensors are grouped as a cluster. Since a cluster header generates approximate readings of member nodes, a user query can be answered efficiently using the cluster headers. In addition, we suggest an energy efficient clustering method to distribute the energy consumption of cluster headers. Our simulation results with synthetic data demonstrate the efficiency and accuracy of our proposed technique.
Digital seismo-acoustic signal processing aboard a wireless sensor platform
NASA Astrophysics Data System (ADS)
Marcillo, O.; Johnson, J. B.; Lorincz, K.; Werner-Allen, G.; Welsh, M.
2006-12-01
We are developing a low power, low-cost wireless sensor array to conduct real-time signal processing of earthquakes at active volcanoes. The sensor array, which integrates data from both seismic and acoustic sensors, is based on Moteiv TMote Sky wireless sensor nodes (www.moteiv.com). The nodes feature a Texas Instruments MSP430 microcontroller, 48 Kbytes of program memory, 10 Kbytes of static RAM, 1 Mbyte of external flash memory, and a 2.4-GHz Chipcon CC2420 IEEE 802.15.4 radio. The TMote Sky is programmed in TinyOS. Basic signal processing occurs on an array of three peripheral sensor nodes. These nodes are tied into a dedicated GPS receiver node, which is focused on time synchronization, and a central communications node, which handles data integration and additional processing. The sensor nodes incorporate dual 12-bit digitizers sampling a seismic sensor and a pressure transducer at 100 samples per second. The wireless capabilities of the system allow flexible array geometry, with a maximum aperture of 200m. We have already developed the digital signal processing routines on board the Moteiv Tmote sensor nodes. The developed routines accomplish Real-time Seismic-Amplitude Measurement (RSAM), Seismic Spectral- Amplitude Measurement (SSAM), and a user-configured Short Term Averaging / Long Term Averaging (STA LTA ratio), which is used to calculate first arrivals. The processed data from individual nodes are transmitted back to a central node, where additional processing may be performed. Such processing will include back azimuth determination and other wave field analyses. Future on-board signal processing will focus on event characterization utilizing pattern recognition and spectral characterization. The processed data is intended as low bandwidth information which can be transmitted periodically and at low cost through satellite telemetry to a web server. The processing is limited by the computational capabilities (RAM, ROM) of the nodes. Nevertheless, we envision this product to be a useful tool for assessing the state of unrest at remote volcanoes.
Key handling in wireless sensor networks
NASA Astrophysics Data System (ADS)
Li, Y.; Newe, T.
2007-07-01
With the rapid growth of Wireless Sensor Networks (WSNs), many advanced application areas have received significant attention. However, security will be an important factor for their full adoption. Wireless sensor nodes pose unique challenges and as such traditional security protocols, used in traditional networks cannot be applied directly. Some new protocols have been published recently with the goal of providing both privacy of data and authentication of sensor nodes for WSNs. Such protocols can employ private-key and/or public key cryptographic algorithms. Public key algorithms hold the promise of simplifying the network infrastructure required to provide security services such as: privacy, authentication and non-repudiation, while symmetric algorithms require less processing power on the lower power wireless node. In this paper a selection of key establishment/agreement protocols are reviewed and they are broadly divided into two categories: group key agreement protocols and pair-wise key establishment protocols. A summary of the capabilities and security related services provided by each protocol is provided.
NASA Astrophysics Data System (ADS)
Upton, D. W.; Saeed, B. I.; Mather, P. J.; Lazaridis, P. I.; Vieira, M. F. Q.; Atkinson, R. C.; Tachtatzis, C.; Garcia, M. S.; Judd, M. D.; Glover, I. A.
2018-03-01
Monitoring of partial discharge (PD) activity within high-voltage electrical environments is increasingly used for the assessment of insulation condition. Traditional measurement techniques employ technologies that either require off-line installation or have high power consumption and are hence costly. A wireless sensor network is proposed that utilizes only received signal strength to locate areas of PD activity within a high-voltage electricity substation. The network comprises low-power and low-cost radiometric sensor nodes which receive the radiation propagated from a source of PD. Results are reported from several empirical tests performed within a large indoor environment and a substation environment using a network of nine sensor nodes. A portable PD source emulator was placed at multiple locations within the network. Signal strength measured by the nodes is reported via WirelessHART to a data collection hub where it is processed using a location algorithm. The results obtained place the measured location within 2 m of the actual source location.
A Low-Power Sensor Network for Long Duration Monitoring in Deep Caves
NASA Astrophysics Data System (ADS)
Silva, A.; Johnson, I.; Bick, T.; Winclechter, C.; Jorgensen, A. M.; Teare, S. W.; Arechiga, R. O.
2010-12-01
Monitoring deep and inaccessible caves is important and challenging for a variety of reasons. It is of interest to study caves environments for understanding cave ecosystems, and human impact on the ecosystems. Caves may also hold clues to past climate changes. Cave instrumentation must however carry out its job with minimal human intervention and without disturbing the fragile environment. This requires unobtrusive and autonomous instrumentation. Earth-bound caves can also serve as analogs for caves on other planets and act as testbeds for autonomous sensor networks. Here we report on a project to design and implement a low-power, ad-hoc, wireless sensor network for monitoring caves and similar environments. The implemented network is composed of individual nodes which consist of a sensor, processing unit, memory, transceiver and a power source. Data collected at these nodes is transmitted through a wireless ZigBee network to a central data collection point from which the researcher may transfer collected data to a laptop for further analysis. The project accomplished a node design with a physical footprint of 2 inches long by 3 inches wide. The design is based on the EZMSP430-RF2480, a Zigbee hardware base offered by Texas Instruments. Five functioning nodes have been constructed at very low cost and tested. Due to the use of an external analog-to-digital converter the design was able to achieve a 16-bit resolution. The operational time achieved by the prototype was calculated to be approximately 80 days of autonomous operation while sampling once per minute. Each node is able to support and record data from up to four different sensors.
An Efficient Distributed Coverage Hole Detection Protocol for Wireless Sensor Networks
Kumar Sahoo, Prasan; Chiang, Ming-Jer; Wu, Shih-Lin
2016-01-01
In wireless sensor networks (WSNs), certain areas of the monitoring region may have coverage holes and serious coverage overlapping due to the random deployment of sensors. The failure of electronic components, software bugs and destructive agents could lead to the random death of the nodes. Sensors may be dead due to exhaustion of battery power, which may cause the network to be uncovered and disconnected. Based on the deployment nature of the nodes in remote or hostile environments, such as a battlefield or desert, it is impossible to recharge or replace the battery. However, the data gathered by the sensors are highly essential for the analysis, and therefore, the collaborative detection of coverage holes has strategic importance in WSNs. In this paper, distributed coverage hole detection algorithms are designed, where nodes can collaborate to detect the coverage holes autonomously. The performance evaluation of our protocols suggests that our protocols outperform in terms of hole detection time, limited power consumption and control packet overhead to detect holes as compared to other similar protocols. PMID:26999143
A New Approach to Design Autonomous Wireless Sensor Node Based on RF Energy Harvesting System
Hakem, Nadir
2018-01-01
Energy Harvesting techniques are increasingly seen as the solution for freeing the wireless sensor nodes from their battery dependency. However, it remains evident that network performance features, such as network size, packet length, and duty cycle, are influenced by the sum of recovered energy. This paper proposes a new approach to defining the specifications of a stand-alone wireless node based on a Radio-frequency Energy Harvesting System (REHS). To achieve adequate performance regarding the range of the Wireless Sensor Network (WSN), techniques for minimizing the energy consumed by the sensor node are combined with methods for optimizing the performance of the REHS. For more rigor in the design of the autonomous node, a comprehensive energy model of the node in a wireless network is established. For an equitable distribution of network charges between the different nodes that compose it, the Low-Energy Adaptive Clustering Hierarchy (LEACH) protocol is used for this purpose. The model considers five energy-consumption sources, most of which are ignored in recently used models. By using the hardware parameters of commercial off-the-shelf components (Mica2 Motes and CC2520 of Texas Instruments), the energy requirement of a sensor node is quantified. A miniature REHS based on a judicious choice of rectifying diodes is then designed and developed to achieve optimal performance in the Industrial Scientific and Medical (ISM) band centralized at 2.45 GHz. Due to the mismatch between the REHS and the antenna, a band pass filter is designed to reduce reflection losses. A gradient method search is used to optimize the output characteristics of the adapted REHS. At 1 mW of input RF power, the REHS provides an output DC power of 0.57 mW and a comparison with the energy requirement of the node allows the Base Station (BS) to be located at 310 m from the wireless nodes when the Wireless Sensor Network (WSN) has 100 nodes evenly spread over an area of 300 × 300 m2 and when each round lasts 10 min. The result shows that the range of the autonomous WSN increases when the controlled physical phenomenon varies very slowly. Having taken into account all the dissipation sources coexisting in a sensor node and using actual measurements of an REHS, this work provides the guidelines for the design of autonomous nodes based on REHS. PMID:29304002
LoWMob: Intra-PAN Mobility Support Schemes for 6LoWPAN
Bag, Gargi; Raza, Muhammad Taqi; Kim, Ki-Hyung; Yoo, Seung-Wha
2009-01-01
Mobility in 6LoWPAN (IPv6 over Low Power Personal Area Networks) is being utilized in realizing many applications where sensor nodes, while moving, sense and transmit the gathered data to a monitoring server. By employing IEEE802.15.4 as a baseline for the link layer technology, 6LoWPAN implies low data rate and low power consumption with periodic sleep and wakeups for sensor nodes, without requiring them to incorporate complex hardware. Also enabling sensor nodes with IPv6 ensures that the sensor data can be accessed anytime and anywhere from the world. Several existing mobility-related schemes like HMIPv6, MIPv6, HAWAII, and Cellular IP require active participation of mobile nodes in the mobility signaling, thus leading to the mobility-related changes in the protocol stack of mobile nodes. In this paper, we present LoWMob, which is a network-based mobility scheme for mobile 6LoWPAN nodes in which the mobility of 6LoWPAN nodes is handled at the network-side. LoWMob ensures multi-hop communication between gateways and mobile nodes with the help of the static nodes within a 6LoWPAN. In order to reduce the signaling overhead of static nodes for supporting mobile nodes, LoWMob proposes a mobility support packet format at the adaptation layer of 6LoWPAN. Also we present a distributed version of LoWMob, named as DLoWMob (or Distributed LoWMob), which employs Mobility Support Points (MSPs) to distribute the traffic concentration at the gateways and to optimize the multi-hop routing path between source and destination nodes in a 6LoWPAN. Moreover, we have also discussed the security considerations for our proposed mobility schemes. The performance of our proposed schemes is evaluated in terms of mobility signaling costs, end-to-end delay, and packet success ratio. PMID:22346730
LoWMob: Intra-PAN Mobility Support Schemes for 6LoWPAN.
Bag, Gargi; Raza, Muhammad Taqi; Kim, Ki-Hyung; Yoo, Seung-Wha
2009-01-01
Mobility in 6LoWPAN (IPv6 over Low Power Personal Area Networks) is being utilized in realizing many applications where sensor nodes, while moving, sense and transmit the gathered data to a monitoring server. By employing IEEE802.15.4 as a baseline for the link layer technology, 6LoWPAN implies low data rate and low power consumption with periodic sleep and wakeups for sensor nodes, without requiring them to incorporate complex hardware. Also enabling sensor nodes with IPv6 ensures that the sensor data can be accessed anytime and anywhere from the world. Several existing mobility-related schemes like HMIPv6, MIPv6, HAWAII, and Cellular IP require active participation of mobile nodes in the mobility signaling, thus leading to the mobility-related changes in the protocol stack of mobile nodes. In this paper, we present LoWMob, which is a network-based mobility scheme for mobile 6LoWPAN nodes in which the mobility of 6LoWPAN nodes is handled at the network-side. LoWMob ensures multi-hop communication between gateways and mobile nodes with the help of the static nodes within a 6LoWPAN. In order to reduce the signaling overhead of static nodes for supporting mobile nodes, LoWMob proposes a mobility support packet format at the adaptation layer of 6LoWPAN. Also we present a distributed version of LoWMob, named as DLoWMob (or Distributed LoWMob), which employs Mobility Support Points (MSPs) to distribute the traffic concentration at the gateways and to optimize the multi-hop routing path between source and destination nodes in a 6LoWPAN. Moreover, we have also discussed the security considerations for our proposed mobility schemes. The performance of our proposed schemes is evaluated in terms of mobility signaling costs, end-to-end delay, and packet success ratio.
Energy Aware Clustering Algorithms for Wireless Sensor Networks
NASA Astrophysics Data System (ADS)
Rakhshan, Noushin; Rafsanjani, Marjan Kuchaki; Liu, Chenglian
2011-09-01
The sensor nodes deployed in wireless sensor networks (WSNs) are extremely power constrained, so maximizing the lifetime of the entire networks is mainly considered in the design. In wireless sensor networks, hierarchical network structures have the advantage of providing scalable and energy efficient solutions. In this paper, we investigate different clustering algorithms for WSNs and also compare these clustering algorithms based on metrics such as clustering distribution, cluster's load balancing, Cluster Head's (CH) selection strategy, CH's role rotation, node mobility, clusters overlapping, intra-cluster communications, reliability, security and location awareness.
Alanazi, Adwan; Elleithy, Khaled
2016-09-07
Successful transmission of online multimedia streams in wireless multimedia sensor networks (WMSNs) is a big challenge due to their limited bandwidth and power resources. The existing WSN protocols are not completely appropriate for multimedia communication. The effectiveness of WMSNs varies, and it depends on the correct location of its sensor nodes in the field. Thus, maximizing the multimedia coverage is the most important issue in the delivery of multimedia contents. The nodes in WMSNs are either static or mobile. Thus, the node connections change continuously due to the mobility in wireless multimedia communication that causes an additional energy consumption, and synchronization loss between neighboring nodes. In this paper, we introduce an Optimized Hidden Node Detection (OHND) paradigm. The OHND consists of three phases: hidden node detection, message exchange, and location detection. These three phases aim to maximize the multimedia node coverage, and improve energy efficiency, hidden node detection capacity, and packet delivery ratio. OHND helps multimedia sensor nodes to compute the directional coverage. Furthermore, an OHND is used to maintain a continuous node- continuous neighbor discovery process in order to handle the mobility of the nodes. We implement our proposed algorithms by using a network simulator (NS2). The simulation results demonstrate that nodes are capable of maintaining direct coverage and detecting hidden nodes in order to maximize coverage and multimedia node mobility. To evaluate the performance of our proposed algorithms, we compared our results with other known approaches.
Energy efficient wireless sensor networks by using a fuzzy-based solution
NASA Astrophysics Data System (ADS)
Tirrito, Salvatore; Nicolosi, Giuseppina
2016-12-01
Wireless Sensor Networks are characterized by a distributed architecture realized by a set of autonomous electronic devices able to sense data from the surrounding environment and to communicate among them. These devices are battery powered since they may be used even to monitor hazardous events in inaccessible areas. As a consequence, it is preferable to assure the adoption of energy management solutions in order to extend the WSN lifetime, as far as possible. Moreover, it is crucial to guarantee that the nodes receive the transmitted data correctly. It is clear that trading off power optimization and quality of service has become one the most important concerns when dealing with modern systems based on WSNs. This paper introduces a solution based on a Fuzzy Logic Controller (FLC) focusing on the minimization of energy consumption of wireless sensor nodes. This is made possible because the sleeping time of these nodes is dynamically regulated by a FLC.
NASA Astrophysics Data System (ADS)
Wang, Zi; Pakzad, Shamim; Cheng, Liang
2012-04-01
In recent years, wireless sensor network (WSN), as a powerful tool, has been widely applied to structural health monitoring (SHM) due to its low cost of deployment. Several commercial hardware platforms of wireless sensor networks (WSN) have been developed and used for structural monitoring applications [1,2]. A typical design of a node includes a sensor board and a mote connected to it. Sensing units, analog filters and analog-to-digital converters (ADCs) are integrated on the sensor board and the mote consists of a microcontroller and a wireless transceiver. Generally, there are a set of sensor boards compatible with the same model of mote and the selection of the sensor board depends on the specific applications. A WSN system based on this node lacks the capability of interrupting its scheduled task to start a higher priority task. This shortcoming is rooted in the hardware architecture of the node. The proposed sandwich-node architecture is designed to remedy the shortcomings of the existing one for task preemption. A sandwich node is composed of a sensor board and two motes. The first mote is dedicated to managing the sensor board and processing acquired data. The second mote controls the first mote via commands. A prototype has been implemented using Imote2 and verified by an emulation in which one mote is triggered by a remote base station and then preempts the running task at the other mote for handling an emergency event.
A Distributed Data-Gathering Protocol Using AUV in Underwater Sensor Networks
Khan, Jawaad Ullah; Cho, Ho-Shin
2015-01-01
In this paper, we propose a distributed data-gathering scheme using an autonomous underwater vehicle (AUV) working as a mobile sink to gather data from a randomly distributed underwater sensor network where sensor nodes are clustered around several cluster headers. Unlike conventional data-gathering schemes where the AUV visits either every node or every cluster header, the proposed scheme allows the AUV to visit some selected nodes named path-nodes in a way that reduces the overall transmission power of the sensor nodes. Monte Carlo simulations are performed to investigate the performance of the proposed scheme compared with several preexisting techniques employing the AUV in terms of total amount of energy consumption, standard deviation of each node’s energy consumption, latency to gather data at a sink, and controlling overhead. Simulation results show that the proposed scheme not only reduces the total energy consumption but also distributes the energy consumption more uniformly over the network, thereby increasing the lifetime of the network. PMID:26287189
Tang, Chengpei; Shokla, Sanesy Kumcr; Modhawar, George; Wang, Qiang
2016-01-01
Collaborative strategies for mobile sensor nodes ensure the efficiency and the robustness of data processing, while limiting the required communication bandwidth. In order to solve the problem of pipeline inspection and oil leakage monitoring, a collaborative weighted mobile sensing scheme is proposed. By adopting a weighted mobile sensing scheme, the adaptive collaborative clustering protocol can realize an even distribution of energy load among the mobile sensor nodes in each round, and make the best use of battery energy. A detailed theoretical analysis and experimental results revealed that the proposed protocol is an energy efficient collaborative strategy such that the sensor nodes can communicate with a fusion center and produce high power gain. PMID:26907285
High-efficiency integrated piezoelectric energy harvesting systems
NASA Astrophysics Data System (ADS)
Hande, Abhiman; Shah, Pradeep
2010-04-01
This paper describes hierarchically architectured development of an energy harvesting (EH) system that consists of micro and/or macro-scale harvesters matched to multiple components of remote wireless sensor and communication nodes. The micro-scale harvesters consist of thin-film MEMS piezoelectric cantilever arrays and power generation modules in IC-like form to allow efficient EH from vibrations. The design uses new high conversion efficiency thin-film processes combined with novel cantilever structures tuned to multiple resonant frequencies as broadband arrays. The macro-scale harvesters are used to power the collector nodes that have higher power specifications. These bulk harvesters can be integrated with efficient adaptive power management circuits that match transducer impedance and maximize power harvested from multiple scavenging sources with very low intrinsic power consumption. Texas MicroPower, Inc. is developing process based on a composition that has the highest reported energy density as compared to other commercially available bulk PZT-based sensor/actuator ceramic materials and extending it to thin-film materials and miniature conversion transducer structures. The multiform factor harvesters can be deployed for several military and commercial applications such as underground unattended sensors, sensors in oil rigs, structural health monitoring, supply chain management, and battlefield applications such as sensors on soldier apparel, equipment, and wearable electronics.
High speed CMOS imager with motion artifact supression and anti-blooming
NASA Technical Reports Server (NTRS)
Pain, Bedabrata (Inventor); Wrigley, Chris (Inventor); Yang, Guang (Inventor); Yadid-Pecht, Orly (Inventor)
2001-01-01
An image sensor includes pixels formed on a semiconductor substrate. Each pixel includes a photoactive region in the semiconductor substrate, a sense node, and a power supply node. A first electrode is disposed near a surface of the semiconductor substrate. A bias signal on the first electrode sets a potential in a region of the semiconductor substrate between the photoactive region and the sense node. A second electrode is disposed near the surface of the semiconductor substrate. A bias signal on the second electrode sets a potential in a region of the semiconductor substrate between the photoactive region and the power supply node. The image sensor includes a controller that causes bias signals to be provided to the electrodes so that photocharges generated in the photoactive region are accumulated in the photoactive region during a pixel integration period, the accumulated photocharges are transferred to the sense node during a charge transfer period, and photocharges generated in the photoactive region are transferred to the power supply node during a third period without passing through the sense node. The imager can operate at high shutter speeds with simultaneous integration of pixels in the array. High quality images can be produced free from motion artifacts. High quantum efficiency, good blooming control, low dark current, low noise and low image lag can be obtained.
A wireless energy transfer platform, integrated at the bedside.
De Clercq, Hans; Puers, Robert
2013-01-01
This paper presents the design of a wireless energy transfer platform, integrated at the bedside. The system contains a matrix of identical inductive power transmitters, which are optimised to provide power to a wearable sensor network, with the purpose of wirelessly recording vital signals over an extended period of time. The magnetic link, operates at a transfer frequency of 6.78MHz and is able to transfer a power of 3.3mW to the remote side at an inter-coil distance of 100mm. The total efficiency of the power link is 26%. Moreover, the platform is able to dynamically determine the position of freely moving sensor nodes and selectively induce a magnetic field in the area where the sensor nodes are positioned. As a result, the patient will not be subjected to unnecessary radiation and the specific absorption rate standards are met more easily.
Alanazi, Adwan; Elleithy, Khaled
2016-01-01
Successful transmission of online multimedia streams in wireless multimedia sensor networks (WMSNs) is a big challenge due to their limited bandwidth and power resources. The existing WSN protocols are not completely appropriate for multimedia communication. The effectiveness of WMSNs varies, and it depends on the correct location of its sensor nodes in the field. Thus, maximizing the multimedia coverage is the most important issue in the delivery of multimedia contents. The nodes in WMSNs are either static or mobile. Thus, the node connections change continuously due to the mobility in wireless multimedia communication that causes an additional energy consumption, and synchronization loss between neighboring nodes. In this paper, we introduce an Optimized Hidden Node Detection (OHND) paradigm. The OHND consists of three phases: hidden node detection, message exchange, and location detection. These three phases aim to maximize the multimedia node coverage, and improve energy efficiency, hidden node detection capacity, and packet delivery ratio. OHND helps multimedia sensor nodes to compute the directional coverage. Furthermore, an OHND is used to maintain a continuous node– continuous neighbor discovery process in order to handle the mobility of the nodes. We implement our proposed algorithms by using a network simulator (NS2). The simulation results demonstrate that nodes are capable of maintaining direct coverage and detecting hidden nodes in order to maximize coverage and multimedia node mobility. To evaluate the performance of our proposed algorithms, we compared our results with other known approaches. PMID:27618048
Development of a Wireless Network of Temperature Sensors for Yellowstone National Park (USA)
NASA Astrophysics Data System (ADS)
Munday, D. A.; Hutter, T.; Minolli, M.; Obraczka, K.; Manduchi, R.; Petersen, S.; Lowenstern, J. B.; Heasler, H.
2007-12-01
Temperature sensors deployed at Yellowstone clearly document that thermal features can vary in temperature on a variety of timescales and show regional correlations unrelated to meteorological variables such as air temperature. Yellowstone National Park (YNP) staff currently measures temperatures at over 40 thermal features and streams within the park, utilizing USGS stream gaging stations and portable data loggers deployed in geyser basins. The latter measure temperature every 1 to 15 minutes, and the data are physically downloaded after about 30 days. Installation of a wireless sensor network would: 1) save considerable time and effort in data retrieval, 2) minimize lost data due to equipment failure, and 3) provide a means to monitor thermal perturbations in near-real time. To meet this need, we developed a wireless sensor network capable of in-situ monitoring of air and water temperature. Temperature sensors are dispersed as nodes that communicate among themselves and through relays to a single base-station linked to the Internet. The small, weatherproof sensors operate unattended for over six months at temperatures as low as -40°C. Each uses an ultra-low-power Texas Instruments' MSP430 microcontroller and an SD card as mass storage. They are powered by 15Ah, 3.6 v, inert Li-ion batteries and transmit data via 900MHz radio modules with a 1-km range. The initial prototype consists of 4 nodes, and is designed to scale with additional nodes for finer spatial resolution and broader coverage. Temperature measurements are asynchronous from node to node, with intervals as frequent as 30 seconds. Data are stored internally to withstand temporary communication failures; underlying intelligent software is capable of re-routing data through alternative nodes to the base station and a MySQL data archiving system. We also developed a Google-Maps-based, front-end that displays the data, recent trends and sensor locations. The system was tested in the Santa Cruz Mountains and will be used at Yellowstone National Park during Fall 2007.
NASA Astrophysics Data System (ADS)
Reichenberger, Michael A.; Nichols, Daniel M.; Stevenson, Sarah R.; Swope, Tanner M.; Hilger, Caden W.; Unruh, Troy C.; McGregor, Douglas S.; Roberts, Jeremy A.
2017-08-01
Advancements in nuclear reactor core modeling and computational capability have encouraged further development of in-core neutron sensors. Micro-Pocket Fission Detectors (MPFDs) have been fabricated and tested previously, but successful testing of these prior detectors was limited to single-node operation with specialized designs. Described in this work is a modular, four-node MPFD array fabricated and tested at Kansas State University (KSU). The four sensor nodes were equally spaced to span the length of the fuel-region of the KSU TRIGA Mk. II research nuclear reactor core. The encapsulated array was filled with argon gas, serving as an ionization medium in the small cavities of the MPFDs. The unified design improved device ruggedness and simplified construction over previous designs. A 0.315-in. (8-mm) penetration in the upper grid plate of the KSU TRIGA Mk. II research nuclear reactor was used to deploy the array between fuel elements in the core. The MPFD array was coupled to an electronic support system which has been developed to support pulse-mode operation. Neutron-induced pulses were observed on all four sensor channels. Stable device operation was confirmed by testing under steady-state reactor conditions. Each of the four sensors in the array responded to changes in reactor power between 10 kWth and full power (750 kWth). Reactor power transients were observed in real-time including positive transients with periods of 5, 15, and 30 s. Finally, manual reactor power oscillations were observed in real-time.
Ren, Peng; Qian, Jiansheng
2016-01-01
This study proposes a novel power-efficient and anti-fading clustering based on a cross-layer that is specific to the time-varying fading characteristics of channels in the monitoring of coal mine faces with wireless sensor networks. The number of active sensor nodes and a sliding window are set up such that the optimal number of cluster heads (CHs) is selected in each round. Based on a stable expected number of CHs, we explore the channel efficiency between nodes and the base station by using a probe frame and the joint surplus energy in assessing the CH selection. Moreover, the sending power of a node in different periods is regulated by the signal fade margin method. The simulation results demonstrate that compared with several common algorithms, the power-efficient and fading-aware clustering with a cross-layer (PEAFC-CL) protocol features a stable network topology and adaptability under signal time-varying fading, which effectively prolongs the lifetime of the network and reduces network packet loss, thus making it more applicable to the complex and variable environment characteristic of a coal mine face. PMID:27338380
Casson, Alexander J.
2015-01-01
Ultra low power signal processing is an essential part of all sensor nodes, and particularly so in emerging wearable sensors for biomedical applications. Analog signal processing has an important role in these low power, low voltage, low frequency applications, and there is a key drive to decrease the power consumption of existing analog domain signal processing and to map more signal processing approaches into the analog domain. This paper presents an analog domain signal processing circuit which approximates the output of the Discrete Wavelet Transform (DWT) for use in ultra low power wearable sensors. Analog filters are used for the DWT filters and it is demonstrated how these generate analog domain DWT-like information that embeds information from Butterworth and Daubechies maximally flat mother wavelet responses. The Analog DWT is realised in hardware via gmC circuits, designed to operate from a 1.3 V coin cell battery, and provide DWT-like signal processing using under 115 nW of power when implemented in a 0.18 μm CMOS process. Practical examples demonstrate the effective use of the new Analog DWT on ECG (electrocardiogram) and EEG (electroencephalogram) signals recorded from humans. PMID:26694414
Casson, Alexander J
2015-12-17
Ultra low power signal processing is an essential part of all sensor nodes, and particularly so in emerging wearable sensors for biomedical applications. Analog signal processing has an important role in these low power, low voltage, low frequency applications, and there is a key drive to decrease the power consumption of existing analog domain signal processing and to map more signal processing approaches into the analog domain. This paper presents an analog domain signal processing circuit which approximates the output of the Discrete Wavelet Transform (DWT) for use in ultra low power wearable sensors. Analog filters are used for the DWT filters and it is demonstrated how these generate analog domain DWT-like information that embeds information from Butterworth and Daubechies maximally flat mother wavelet responses. The Analog DWT is realised in hardware via g(m)C circuits, designed to operate from a 1.3 V coin cell battery, and provide DWT-like signal processing using under 115 nW of power when implemented in a 0.18 μm CMOS process. Practical examples demonstrate the effective use of the new Analog DWT on ECG (electrocardiogram) and EEG (electroencephalogram) signals recorded from humans.
An Implementation of the Salt-Farm Monitoring System Using Wireless Sensor Network
NASA Astrophysics Data System (ADS)
Ju, Jonggil; Park, Ingon; Lee, Yongwoong; Cho, Jongsik; Cho, Hyunwook; Yoe, Hyun; Shin, Changsun
In producing solar salt, natural environmental factors such as temperature, humidity, solar radiation, wind direction, wind speed and rain are essential elements which influence on the productivity and quality of salt. If we can manage the above mentioned environmental elements efficiently, we could achieve improved results in production of salt with good quality. To monitor and manage the natural environments, this paper suggests the Salt-Farm Monitoring System (SFMS) which is operated with renewable energy power. The system collects environmental factors directly from the environmental measure sensors and the sensor nodes. To implement a stand-alone system, we applied solar cell and wind generator to operate this system. Finally, we showed that the SFMS could monitor the salt-farm environments by using wireless sensor nodes and operate correctly without external power supply.
Distributed control for energy-efficient and fast consensus in wireless sensor networks
NASA Astrophysics Data System (ADS)
Manfredi, Sabato; Tucci, Edmondo Di
2017-05-01
The paper proposes a distributed control of nodes transmission radii in energy-harvesting wireless sensor networks for simultaneously coping with energy consumption and consensus responsiveness requirement. The stability of the closed-loop network under the proposed control law is proved. Simulation validations show the effectiveness of the proposed approach in nominal scenario as well as in the presence of uncertain node power requirements and harvesting system supply.
Tritium-powered radiation sensor network
NASA Astrophysics Data System (ADS)
Litz, Marc S.; Russo, Johnny A.; Katsis, Dimos
2016-05-01
Isotope power supplies offer long-lived (100 years using 63Ni), low-power energy sources, enabling sensors or communications nodes for the lifetime of infrastructure. A tritium beta-source (12.5-year half-life) encapsulated in a phosphor-lined vial couples directly to a photovoltaic (PV) to generate a trickle current into an electrical load. An inexpensive design is described using commercial-of-the-shelf (COTS) components that generate 100 μWe for nextgeneration compact electronics/sensors. A matched radiation sensor has been built for long-duration missions utilizing microprocessor-controlled sleep modes, low-power electronic components, and a passive interrupt driven environmental wake-up. The low-power early-warning radiation detector network and isotope power source enables no-maintenance mission lifetimes.
Wireless Sensor-Based Smart-Clothing Platform for ECG Monitoring
Lin, Chung-Chih; Yu, Yan-Shuo
2015-01-01
The goal of this study is to use wireless sensor technologies to develop a smart clothes service platform for health monitoring. Our platform consists of smart clothes, a sensor node, a gateway server, and a health cloud. The smart clothes have fabric electrodes to detect electrocardiography (ECG) signals. The sensor node improves the accuracy of QRS complexes detection by morphology analysis and reduces power consumption by the power-saving transmission functionality. The gateway server provides a reconfigurable finite state machine (RFSM) software architecture for abnormal ECG detection to support online updating. Most normal ECG can be filtered out, and the abnormal ECG is further analyzed in the health cloud. Three experiments are conducted to evaluate the platform's performance. The results demonstrate that the signal-to-noise ratio (SNR) of the smart clothes exceeds 37 dB, which is within the “very good signal” interval. The average of the QRS sensitivity and positive prediction is above 99.5%. Power-saving transmission is reduced by nearly 1980 times the power consumption in the best-case analysis. PMID:26640512
Wireless Sensor-Based Smart-Clothing Platform for ECG Monitoring.
Wang, Jie; Lin, Chung-Chih; Yu, Yan-Shuo; Yu, Tsang-Chu
2015-01-01
The goal of this study is to use wireless sensor technologies to develop a smart clothes service platform for health monitoring. Our platform consists of smart clothes, a sensor node, a gateway server, and a health cloud. The smart clothes have fabric electrodes to detect electrocardiography (ECG) signals. The sensor node improves the accuracy of QRS complexes detection by morphology analysis and reduces power consumption by the power-saving transmission functionality. The gateway server provides a reconfigurable finite state machine (RFSM) software architecture for abnormal ECG detection to support online updating. Most normal ECG can be filtered out, and the abnormal ECG is further analyzed in the health cloud. Three experiments are conducted to evaluate the platform's performance. The results demonstrate that the signal-to-noise ratio (SNR) of the smart clothes exceeds 37 dB, which is within the "very good signal" interval. The average of the QRS sensitivity and positive prediction is above 99.5%. Power-saving transmission is reduced by nearly 1980 times the power consumption in the best-case analysis.
On computer vision in wireless sensor networks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berry, Nina M.; Ko, Teresa H.
Wireless sensor networks allow detailed sensing of otherwise unknown and inaccessible environments. While it would be beneficial to include cameras in a wireless sensor network because images are so rich in information, the power cost of transmitting an image across the wireless network can dramatically shorten the lifespan of the sensor nodes. This paper describe a new paradigm for the incorporation of imaging into wireless networks. Rather than focusing on transmitting images across the network, we show how an image can be processed locally for key features using simple detectors. Contrasted with traditional event detection systems that trigger an imagemore » capture, this enables a new class of sensors which uses a low power imaging sensor to detect a variety of visual cues. Sharing these features among relevant nodes cues specific actions to better provide information about the environment. We report on various existing techniques developed for traditional computer vision research which can aid in this work.« less
Acoustic power delivery to pipeline monitoring wireless sensors.
Kiziroglou, M E; Boyle, D E; Wright, S W; Yeatman, E M
2017-05-01
The use of energy harvesting for powering wireless sensors is made more challenging in most applications by the requirement for customization to each specific application environment because of specificities of the available energy form, such as precise location, direction and motion frequency, as well as the temporal variation and unpredictability of the energy source. Wireless power transfer from dedicated sources can overcome these difficulties, and in this work, the use of targeted ultrasonic power transfer as a possible method for remote powering of sensor nodes is investigated. A powering system for pipeline monitoring sensors is described and studied experimentally, with a pair of identical, non-inertial piezoelectric transducers used at the transmitter and receiver. Power transmission of 18mW (Root-Mean-Square) through 1m of a118mm diameter cast iron pipe, with 8mm wall thickness is demonstrated. By analysis of the delay between transmission and reception, including reflections from the pipeline edges, a transmission speed of 1000m/s is observed, corresponding to the phase velocity of the L(0,1) axial and F(1,1) radial modes of the pipe structure. A reduction of power delivery with water-filling is observed, yet over 4mW of delivered power through a fully-filled pipe is demonstrated. The transmitted power and voltage levels exceed the requirements for efficient power management, including rectification at cold-starting conditions, and for the operation of low-power sensor nodes. The proposed powering technique may allow the implementation of energy autonomous wireless sensor systems for monitoring industrial and network pipeline infrastructure. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
A wireless medical monitoring over a heterogeneous sensor network.
Yuce, Mehmet R; Ng, Peng Choong; Lee, Chin K; Khan, Jamil Y; Liu, Wentai
2007-01-01
This paper presents a heterogeneous sensor network system that has the capability to monitor physiological parameters from multiple patient bodies by means of different communication standards. The system uses the recently opened medical band called MICS (Medical Implant Communication Service) between the sensor nodes and a remote central control unit (CCU) that behaves as a base station. The CCU communicates with another network standard (the internet or a mobile network) for a long distance data transfer. The proposed system offers mobility to patients and flexibility to medical staff to obtain patient's physiological data on demand basis via Internet. A prototype sensor network including hardware, firmware and software designs has been implemented and tested by incorporating temperature and pulse rate sensors on nodes. The developed system has been optimized for power consumption by having the nodes sleep when there is no communication via a bidirectional communication.
NASA Astrophysics Data System (ADS)
Chen, Lei; Kou, Yingxin; Li, Zhanwu; Xu, An; Wu, Cheng
2018-01-01
We build a complex networks model of combat System-of-Systems (SoS) based on empirical data from a real war-game, this model is a combination of command & control (C2) subnetwork, sensors subnetwork, influencers subnetwork and logistical support subnetwork, each subnetwork has idiographic components and statistical characteristics. The C2 subnetwork is the core of whole combat SoS, it has a hierarchical structure with no modularity, of which robustness is strong enough to maintain normal operation after any two nodes is destroyed; the sensors subnetwork and influencers subnetwork are like sense organ and limbs of whole combat SoS, they are both flat modular networks of which degree distribution obey GEV distribution and power-law distribution respectively. The communication network is the combination of all subnetworks, it is an assortative Small-World network with core-periphery structure, the Intelligence & Communication Stations/Command Center integrated with C2 nodes in the first three level act as the hub nodes in communication network, and all the fourth-level C2 nodes, sensors, influencers and logistical support nodes have communication capability, they act as the periphery nodes in communication network, its degree distribution obeys exponential distribution in the beginning, Gaussian distribution in the middle, and power-law distribution in the end, and its path length obeys GEV distribution. The betweenness centrality distribution, closeness centrality distribution and eigenvector centrality are also been analyzed to measure the vulnerability of nodes.
On the Feasibility of Wireless Multimedia Sensor Networks over IEEE 802.15.5 Mesh Topologies
Garcia-Sanchez, Antonio-Javier; Losilla, Fernando; Rodenas-Herraiz, David; Cruz-Martinez, Felipe; Garcia-Sanchez, Felipe
2016-01-01
Wireless Multimedia Sensor Networks (WMSNs) are a special type of Wireless Sensor Network (WSN) where large amounts of multimedia data are transmitted over networks composed of low power devices. Hierarchical routing protocols typically used in WSNs for multi-path communication tend to overload nodes located within radio communication range of the data collection unit or data sink. The battery life of these nodes is therefore reduced considerably, requiring frequent battery replacement work to extend the operational life of the WSN system. In a wireless sensor network with mesh topology, any node may act as a forwarder node, thereby enabling multiple routing paths toward any other node or collection unit. In addition, mesh topologies have proven advantages, such as data transmission reliability, network robustness against node failures, and potential reduction in energy consumption. This work studies the feasibility of implementing WMSNs in mesh topologies and their limitations by means of exhaustive computer simulation experiments. To this end, a module developed for the Synchronous Energy Saving (SES) mode of the IEEE 802.15.5 mesh standard has been integrated with multimedia tools to thoroughly test video sequences encoded using H.264 in mesh networks. PMID:27164106
On the Feasibility of Wireless Multimedia Sensor Networks over IEEE 802.15.5 Mesh Topologies.
Garcia-Sanchez, Antonio-Javier; Losilla, Fernando; Rodenas-Herraiz, David; Cruz-Martinez, Felipe; Garcia-Sanchez, Felipe
2016-05-05
Wireless Multimedia Sensor Networks (WMSNs) are a special type of Wireless Sensor Network (WSN) where large amounts of multimedia data are transmitted over networks composed of low power devices. Hierarchical routing protocols typically used in WSNs for multi-path communication tend to overload nodes located within radio communication range of the data collection unit or data sink. The battery life of these nodes is therefore reduced considerably, requiring frequent battery replacement work to extend the operational life of the WSN system. In a wireless sensor network with mesh topology, any node may act as a forwarder node, thereby enabling multiple routing paths toward any other node or collection unit. In addition, mesh topologies have proven advantages, such as data transmission reliability, network robustness against node failures, and potential reduction in energy consumption. This work studies the feasibility of implementing WMSNs in mesh topologies and their limitations by means of exhaustive computer simulation experiments. To this end, a module developed for the Synchronous Energy Saving (SES) mode of the IEEE 802.15.5 mesh standard has been integrated with multimedia tools to thoroughly test video sequences encoded using H.264 in mesh networks.
Xu, Jingjing; Yang, Wei; Zhang, Linyuan; Han, Ruisong; Shao, Xiaotao
2015-01-01
In this paper, a wireless sensor network (WSN) technology adapted to underground channel conditions is developed, which has important theoretical and practical value for safety monitoring in underground coal mines. According to the characteristics that the space, time and frequency resources of underground tunnel are open, it is proposed to constitute wireless sensor nodes based on multicarrier code division multiple access (MC-CDMA) to make full use of these resources. To improve the wireless transmission performance of source sensor nodes, it is also proposed to utilize cooperative sensors with good channel conditions from the sink node to assist source sensors with poor channel conditions. Moreover, the total power of the source sensor and its cooperative sensors is allocated on the basis of their channel conditions to increase the energy efficiency of the WSN. To solve the problem that multiple access interference (MAI) arises when multiple source sensors transmit monitoring information simultaneously, a kind of multi-sensor detection (MSD) algorithm with particle swarm optimization (PSO), namely D-PSO, is proposed for the time-frequency coded cooperative MC-CDMA WSN. Simulation results show that the average bit error rate (BER) performance of the proposed WSN in an underground coal mine is improved significantly by using wireless sensor nodes based on MC-CDMA, adopting time-frequency coded cooperative transmission and D-PSO algorithm with particle swarm optimization. PMID:26343660
Xu, Jingjing; Yang, Wei; Zhang, Linyuan; Han, Ruisong; Shao, Xiaotao
2015-08-27
In this paper, a wireless sensor network (WSN) technology adapted to underground channel conditions is developed, which has important theoretical and practical value for safety monitoring in underground coal mines. According to the characteristics that the space, time and frequency resources of underground tunnel are open, it is proposed to constitute wireless sensor nodes based on multicarrier code division multiple access (MC-CDMA) to make full use of these resources. To improve the wireless transmission performance of source sensor nodes, it is also proposed to utilize cooperative sensors with good channel conditions from the sink node to assist source sensors with poor channel conditions. Moreover, the total power of the source sensor and its cooperative sensors is allocated on the basis of their channel conditions to increase the energy efficiency of the WSN. To solve the problem that multiple access interference (MAI) arises when multiple source sensors transmit monitoring information simultaneously, a kind of multi-sensor detection (MSD) algorithm with particle swarm optimization (PSO), namely D-PSO, is proposed for the time-frequency coded cooperative MC-CDMA WSN. Simulation results show that the average bit error rate (BER) performance of the proposed WSN in an underground coal mine is improved significantly by using wireless sensor nodes based on MC-CDMA, adopting time-frequency coded cooperative transmission and D-PSO algorithm with particle swarm optimization.
Joint Transmit Power Allocation and Splitting for SWIPT Aided OFDM-IDMA in Wireless Sensor Networks
Li, Shanshan; Zhou, Xiaotian; Wang, Cheng-Xiang; Yuan, Dongfeng; Zhang, Wensheng
2017-01-01
In this paper, we propose to combine Orthogonal Frequency Division Multiplexing-Interleave Division Multiple Access (OFDM-IDMA) with Simultaneous Wireless Information and Power Transfer (SWIPT), resulting in SWIPT aided OFDM-IDMA scheme for power-limited sensor networks. In the proposed system, the Receive Node (RN) applies Power Splitting (PS) to coordinate the Energy Harvesting (EH) and Information Decoding (ID) process, where the harvested energy is utilized to guarantee the iterative Multi-User Detection (MUD) of IDMA to work under sufficient number of iterations. Our objective is to minimize the total transmit power of Source Node (SN), while satisfying the requirements of both minimum harvested energy and Bit Error Rate (BER) performance from individual receive nodes. We formulate such a problem as a joint power allocation and splitting one, where the iteration number of MUD is also taken into consideration as the key parameter to affect both EH and ID constraints. To solve it, a sub-optimal algorithm is proposed to determine the power profile, PS ratio and iteration number of MUD in an iterative manner. Simulation results verify that the proposed algorithm can provide significant performance improvement. PMID:28677636
Joint Transmit Power Allocation and Splitting for SWIPT Aided OFDM-IDMA in Wireless Sensor Networks.
Li, Shanshan; Zhou, Xiaotian; Wang, Cheng-Xiang; Yuan, Dongfeng; Zhang, Wensheng
2017-07-04
In this paper, we propose to combine Orthogonal Frequency Division Multiplexing-Interleave Division Multiple Access (OFDM-IDMA) with Simultaneous Wireless Information and Power Transfer (SWIPT), resulting in SWIPT aided OFDM-IDMA scheme for power-limited sensor networks. In the proposed system, the Receive Node (RN) applies Power Splitting (PS) to coordinate the Energy Harvesting (EH) and Information Decoding (ID) process, where the harvested energy is utilized to guarantee the iterative Multi-User Detection (MUD) of IDMA to work under sufficient number of iterations. Our objective is to minimize the total transmit power of Source Node (SN), while satisfying the requirements of both minimum harvested energy and Bit Error Rate (BER) performance from individual receive nodes. We formulate such a problem as a joint power allocation and splitting one, where the iteration number of MUD is also taken into consideration as the key parameter to affect both EH and ID constraints. To solve it, a sub-optimal algorithm is proposed to determine the power profile, PS ratio and iteration number of MUD in an iterative manner. Simulation results verify that the proposed algorithm can provide significant performance improvement.
Simulation of Attacks for Security in Wireless Sensor Network.
Diaz, Alvaro; Sanchez, Pablo
2016-11-18
The increasing complexity and low-power constraints of current Wireless Sensor Networks (WSN) require efficient methodologies for network simulation and embedded software performance analysis of nodes. In addition, security is also a very important feature that has to be addressed in most WSNs, since they may work with sensitive data and operate in hostile unattended environments. In this paper, a methodology for security analysis of Wireless Sensor Networks is presented. The methodology allows designing attack-aware embedded software/firmware or attack countermeasures to provide security in WSNs. The proposed methodology includes attacker modeling and attack simulation with performance analysis (node's software execution time and power consumption estimation). After an analysis of different WSN attack types, an attacker model is proposed. This model defines three different types of attackers that can emulate most WSN attacks. In addition, this paper presents a virtual platform that is able to model the node hardware, embedded software and basic wireless channel features. This virtual simulation analyzes the embedded software behavior and node power consumption while it takes into account the network deployment and topology. Additionally, this simulator integrates the previously mentioned attacker model. Thus, the impact of attacks on power consumption and software behavior/execution-time can be analyzed. This provides developers with essential information about the effects that one or multiple attacks could have on the network, helping them to develop more secure WSN systems. This WSN attack simulator is an essential element of the attack-aware embedded software development methodology that is also introduced in this work.
Lee, JongHyup; Pak, Dohyun
2016-01-01
For practical deployment of wireless sensor networks (WSN), WSNs construct clusters, where a sensor node communicates with other nodes in its cluster, and a cluster head support connectivity between the sensor nodes and a sink node. In hybrid WSNs, cluster heads have cellular network interfaces for global connectivity. However, when WSNs are active and the load of cellular networks is high, the optimal assignment of cluster heads to base stations becomes critical. Therefore, in this paper, we propose a game theoretic model to find the optimal assignment of base stations for hybrid WSNs. Since the communication and energy cost is different according to cellular systems, we devise two game models for TDMA/FDMA and CDMA systems employing power prices to adapt to the varying efficiency of recent wireless technologies. The proposed model is defined on the assumptions of the ideal sensing field, but our evaluation shows that the proposed model is more adaptive and energy efficient than local selections. PMID:27589743
Development of a Sensor Node for Precision Horticulture
López, Juan A.; Soto, Fulgencio; Sánchez, Pedro; Iborra, Andrés; Suardiaz, Juan; Vera, Juan A.
2009-01-01
This paper presents the design of a new wireless sensor node (GAIA Soil-Mote) for precision horticulture applications which permits the use of precision agricultural instruments based on the SDI-12 standard. Wireless communication is achieved with a transceiver compliant with the IEEE 802.15.4 standard. The GAIA Soil-Mote software implementation is based on TinyOS. A two-phase methodology was devised to validate the design of this sensor node. The first phase consisted of laboratory validation of the proposed hardware and software solution, including a study on power consumption and autonomy. The second phase consisted of implementing a monitoring application in a real broccoli (Brassica oleracea L. var Marathon) crop in Campo de Cartagena in south-east Spain. In this way the sensor node was validated in real operating conditions. This type of application was chosen because there is a large potential market for it in the farming sector, especially for the development of precision agriculture applications. PMID:22412309
Development of a sensor node for precision horticulture.
López, Juan A; Soto, Fulgencio; Sánchez, Pedro; Iborra, Andrés; Suardiaz, Juan; Vera, Juan A
2009-01-01
This paper presents the design of a new wireless sensor node (GAIA Soil-Mote) for precision horticulture applications which permits the use of precision agricultural instruments based on the SDI-12 standard. Wireless communication is achieved with a transceiver compliant with the IEEE 802.15.4 standard. The GAIA Soil-Mote software implementation is based on TinyOS. A two-phase methodology was devised to validate the design of this sensor node. The first phase consisted of laboratory validation of the proposed hardware and software solution, including a study on power consumption and autonomy. The second phase consisted of implementing a monitoring application in a real broccoli (Brassica oleracea L. var Marathon) crop in Campo de Cartagena in south-east Spain. In this way the sensor node was validated in real operating conditions. This type of application was chosen because there is a large potential market for it in the farming sector, especially for the development of precision agriculture applications.
A Tree Based Self-routing Scheme for Mobility Support in Wireless Sensor Networks
NASA Astrophysics Data System (ADS)
Kim, Young-Duk; Yang, Yeon-Mo; Kang, Won-Seok; Kim, Jin-Wook; An, Jinung
Recently, WSNs (Wireless Sensor Networks) with mobile robot is a growing technology that offer efficient communication services for anytime and anywhere applications. However, the tiny sensor node has very limited network resources due to its low battery power, low data rate, node mobility, and channel interference constraint between neighbors. Thus, in this paper, we proposed a tree based self-routing protocol for autonomous mobile robots based on beacon mode and implemented in real test-bed environments. The proposed scheme offers beacon based real-time scheduling for reliable association process between parent and child nodes. In addition, it supports smooth handover procedure by reducing flooding overhead of control packets. Throughout the performance evaluation by using a real test-bed system and simulation, we illustrate that our proposed scheme demonstrates promising performance for wireless sensor networks with mobile robots.
Powering a wireless sensor node with a vibration-driven piezoelectric energy harvester
NASA Astrophysics Data System (ADS)
Reilly, Elizabeth K.; Burghardt, Fred; Fain, Romy; Wright, Paul
2011-12-01
This paper discusses the direct application of scavenged energy to power a wireless sensor platform. A trapezoidal piezoelectric harvester was designed for a specific machine tool application and tested for robustness and longevity as well as performance. The design focused on resonant performance and distributed strain concentrations at a given resonant frequency and acceleration. Critical issues of power coupling and conditioning between harvester and wireless platform were addressed. The wireless platform consisted of a sensor, controller, power conditioning circuitry, and a custom low power radio. The system transmitted a sensor sample once every 10 s in a scavenging environment of 0.25 g and 100 Hz for a system duty cycle of approximately 0.2%.
A Study on Wireless Charging for Prolonging the Lifetime of Wireless Sensor Networks.
Tu, Weijian; Xu, Xianghua; Ye, Tingcong; Cheng, Zongmao
2017-07-04
Wireless charging is an important issue in wireless sensor networks, since it can provide an emerging and effective solution in the absence of other power supplies. The state-of-the-art methods employ a mobile car and a predefined moving path to charge the sensor nodes in the network. Previous studies only consider a factor of the network (i.e., residual energy of sensor node) as a constraint to design the wireless charging strategy. However, other factors, such as the travelled distance of the mobile car, can also affect the effectiveness of wireless charging strategy. In this work, we study wireless charging strategy based on the analysis of a combination of two factors, including the residual energy of sensor nodes and the travelled distance of the charging car. Firstly, we theoretically analyze the limited size of the sensor network to match the capability of a charging car. Then, the networked factors are selected as the weights of traveling salesman problem (TSP) to design the moving path of the charging car. Thirdly, the charging time of each sensor node is computed based on the linear programming problem for the charging car. Finally, a charging period for the network is studied. The experimental results show that the proposed approach can significantly maximize the lifetime of the wireless sensor network.
Cooperative wireless network control based health and activity monitoring system.
Prakash, R; Ganesh, A Balaji; Girish, Siva V
2016-10-01
A real-time cooperative communication based wireless network is presented for monitoring health and activity of an end-user in their environment. The cooperative communication offers better energy consumption and also an opportunity to aware the current location of a user non-intrusively. The link between mobile sensor node and relay node is dynamically established by using Received Signal Strength Indicator (RSSI) and Link Quality Indicator (LQI) based on adaptive relay selection scheme. The study proposes a Linear Acceleration based Transmission Power Decision Control (LA-TPDC) algorithm to further enhance the energy efficiency of cooperative communication. Further, the occurrences of false alarms are carefully prevented by introducing three stages of sequential warning system. The real-time experiments are carried-out by using the nodes, namely mobile sensor node, relay nodes and a destination node which are indigenously developed by using a CC430 microcontroller integrated with an in-built transceiver at 868 MHz. The wireless node performance characteristics, such as energy consumption, Signal-Noise ratio (SNR), Bit Error Rate (BER), Packet Delivery Ratio (PDR) and transmission offset are evaluated for all the participated nodes. The experimental results observed that the proposed linear acceleration based transmission power decision control algorithm almost doubles the battery life time than energy efficient conventional cooperative communication.
Synchronous wearable wireless body sensor network composed of autonomous textile nodes.
Vanveerdeghem, Peter; Van Torre, Patrick; Stevens, Christiaan; Knockaert, Jos; Rogier, Hendrik
2014-10-09
A novel, fully-autonomous, wearable, wireless sensor network is presented, where each flexible textile node performs cooperative synchronous acquisition and distributed event detection. Computationally efficient situational-awareness algorithms are implemented on the low-power microcontroller present on each flexible node. The detected events are wirelessly transmitted to a base station, directly, as well as forwarded by other on-body nodes. For each node, a dual-polarized textile patch antenna serves as a platform for the flexible electronic circuitry. Therefore, the system is particularly suitable for comfortable and unobtrusive integration into garments. In the meantime, polarization diversity can be exploited to improve the reliability and energy-efficiency of the wireless transmission. Extensive experiments in realistic conditions have demonstrated that this new autonomous, body-centric, textile-antenna, wireless sensor network is able to correctly detect different operating conditions of a firefighter during an intervention. By relying on four network nodes integrated into the protective garment, this functionality is implemented locally, on the body, and in real time. In addition, the received sensor data are reliably transferred to a central access point at the command post, for more detailed and more comprehensive real-time visualization. This information provides coordinators and commanders with situational awareness of the entire rescue operation. A statistical analysis of measured on-body node-to-node, as well as off-body person-to-person channels is included, confirming the reliability of the communication system.
Synchronous Wearable Wireless Body Sensor Network Composed of Autonomous Textile Nodes
Vanveerdeghem, Peter; Van Torre, Patrick; Stevens, Christiaan; Knockaert, Jos; Rogier, Hendrik
2014-01-01
A novel, fully-autonomous, wearable, wireless sensor network is presented, where each flexible textile node performs cooperative synchronous acquisition and distributed event detection. Computationally efficient situational-awareness algorithms are implemented on the low-power microcontroller present on each flexible node. The detected events are wirelessly transmitted to a base station, directly, as well as forwarded by other on-body nodes. For each node, a dual-polarized textile patch antenna serves as a platform for the flexible electronic circuitry. Therefore, the system is particularly suitable for comfortable and unobtrusive integration into garments. In the meantime, polarization diversity can be exploited to improve the reliability and energy-efficiency of the wireless transmission. Extensive experiments in realistic conditions have demonstrated that this new autonomous, body-centric, textile-antenna, wireless sensor network is able to correctly detect different operating conditions of a firefighter during an intervention. By relying on four network nodes integrated into the protective garment, this functionality is implemented locally, on the body, and in real time. In addition, the received sensor data are reliably transferred to a central access point at the command post, for more detailed and more comprehensive real-time visualization. This information provides coordinators and commanders with situational awareness of the entire rescue operation. A statistical analysis of measured on-body node-to-node, as well as off-body person-to-person channels is included, confirming the reliability of the communication system. PMID:25302808
A Wearable Wireless Sensor Network for Indoor Smart Environment Monitoring in Safety Applications
Antolín, Diego; Medrano, Nicolás; Calvo, Belén; Pérez, Francisco
2017-01-01
This paper presents the implementation of a wearable wireless sensor network aimed at monitoring harmful gases in industrial environments. The proposed solution is based on a customized wearable sensor node using a low-power low-rate wireless personal area network (LR-WPAN) communications protocol, which as a first approach measures CO2 concentration, and employs different low power strategies for appropriate energy handling which is essential to achieving long battery life. These wearables nodes are connected to a deployed static network and a web-based application allows data storage, remote control and monitoring of the complete network. Therefore, a complete and versatile remote web application with a locally implemented decision-making system is accomplished, which allows early detection of hazardous situations for exposed workers. PMID:28216556
A Wearable Wireless Sensor Network for Indoor Smart Environment Monitoring in Safety Applications.
Antolín, Diego; Medrano, Nicolás; Calvo, Belén; Pérez, Francisco
2017-02-14
This paper presents the implementation of a wearable wireless sensor network aimed at monitoring harmful gases in industrial environments. The proposed solution is based on a customized wearable sensor node using a low-power low-rate wireless personal area network (LR-WPAN) communications protocol, which as a first approach measures CO₂ concentration, and employs different low power strategies for appropriate energy handling which is essential to achieving long battery life. These wearables nodes are connected to a deployed static network and a web-based application allows data storage, remote control and monitoring of the complete network. Therefore, a complete and versatile remote web application with a locally implemented decision-making system is accomplished, which allows early detection of hazardous situations for exposed workers.
A low-noise low-power EEG acquisition node for scalable brain-machine interfaces
NASA Astrophysics Data System (ADS)
Sullivan, Thomas J.; Deiss, Stephen R.; Cauwenberghs, Gert; Jung, Tzyy-Ping
2007-05-01
Electroencephalograph (EEG) recording systems offer a versatile, noninvasive window on the brain's spatio-temporal activity for many neuroscience and clinical applications. Our research aims at improving the spatial resolution and mobility of EEG recording by reducing the form factor, power drain and signal fanout of the EEG acquisition node in a scalable sensor array architecture. We present such a node integrated onto a dimesized circuit board that contains a sensor's complete signal processing front-end, including amplifier, filters, and analog-to-digital conversion. A daisy-chain configuration between boards with bit-serial output reduces the wiring needed. The circuit's low power consumption of 423 μW supports EEG systems with hundreds of electrodes to operate from small batteries for many hours. Coupling between the bit-serial output and the highly sensitive analog input due to dense integration of analog and digital functions on the circuit board results in a deterministic noise component in the output, larger than the intrinsic sensor and circuit noise. With software correction of this noise contribution, the system achieves an input-referred noise of 0.277 μVrms in the signal band of 1 to 100 Hz, comparable to the best medical-grade systems in use. A chain of seven nodes using EEG dry electrodes created in micro-electrical-mechanical system (MEMS) technology is demonstrated in a real-world setting.
Smart-Home Architecture Based on Bluetooth mesh Technology
NASA Astrophysics Data System (ADS)
Wan, Qing; Liu, Jianghua
2018-03-01
This paper describes the smart home network system based on Nordic nrf52832 device. Nrf52832 is new generation RF SOC device focus on sensor monitor and low power Bluetooth connection applications. In this smart home system, we set up a self-organizing network system which consists of one control node and a lot of monitor nodes. The control node manages the whole network works; the monitor nodes collect the sensor information such as light intensity, temperature, humidity, PM2.5, etc. Then update to the control node by Bluetooth mesh network. The design results show that the Bluetooth mesh wireless network system is flexible and construction cost is low, which is suitable for the communication characteristics of a smart home network. We believe it will be wildly used in the future.
Antolín, Diego; Calvo, Belén; Martínez, Pedro A.
2017-01-01
This paper presents a low-cost high-efficiency solar energy harvesting system to power outdoor wireless sensor nodes. It is based on a Voltage Open Circuit (VOC) algorithm that estimates the open-circuit voltage by means of a multilayer perceptron neural network model trained using local experimental characterization data, which are acquired through a novel low cost characterization system incorporated into the deployed node. Both units—characterization and modelling—are controlled by the same low-cost microcontroller, providing a complete solution which can be understood as a virtual pilot cell, with identical characteristics to those of the specific small solar cell installed on the sensor node, that besides allows an easy adaptation to changes in the actual environmental conditions, panel aging, etc. Experimental comparison to a classical pilot panel based VOC algorithm show better efficiency under the same tested conditions. PMID:28777330
Antolín, Diego; Medrano, Nicolás; Calvo, Belén; Martínez, Pedro A
2017-08-04
This paper presents a low-cost high-efficiency solar energy harvesting system to power outdoor wireless sensor nodes. It is based on a Voltage Open Circuit (VOC) algorithm that estimates the open-circuit voltage by means of a multilayer perceptron neural network model trained using local experimental characterization data, which are acquired through a novel low cost characterization system incorporated into the deployed node. Both units-characterization and modelling-are controlled by the same low-cost microcontroller, providing a complete solution which can be understood as a virtual pilot cell, with identical characteristics to those of the specific small solar cell installed on the sensor node, that besides allows an easy adaptation to changes in the actual environmental conditions, panel aging, etc. Experimental comparison to a classical pilot panel based VOC algorithm show better efficiency under the same tested conditions.
Constrained Low-Interference Relay Node Deployment for Underwater Acoustic Wireless Sensor Networks
NASA Astrophysics Data System (ADS)
Li, Deying; Li, Zheng; Ma, Wenkai; Chen, Wenping
An Underwater Acoustic Wireless Sensor Network (UA-WSN) consists of many resource-constrained Underwater Sensor Nodes (USNs), which are deployed to perform collaborative monitoring tasks over a given region. One way to preserve network connectivity while guaranteing other network QoS is to deploy some Relay Nodes (RNs) in the networks, in which RNs' function is more powerful than USNs and their cost is more expensive. This paper addresses Constrained Low-interference Relay Node Deployment (C-LRND) problem for 3-D UA-WSNs in which the RNs are placed at a subset of candidate locations to ensure connectivity between the USNs, under both the number of RNs deployed and the value of total incremental interference constraints. We first prove that it is NP-hard, then present a general approximation algorithm framework and get two polynomial time O(1)-approximation algorithms.
Development of wireless sensor network for landslide monitoring system
NASA Astrophysics Data System (ADS)
Suryadi; Puranto, Prabowo; Adinanta, Hendra; Tohari, Adrin; Priambodo, Purnomo S.
2017-05-01
A wireless sensor network has been developed to monitor soil movement of some observed areas periodically. The system consists of four nodes and one gateway which installed on a scope area of 0.2 Km2. Each of nodehastwo types of sensor,an inclinometer and an extensometer. An inclinometer sensor is used to measure the tilt of a structure while anextensometer sensor is used to measure the displacement of soil movement. Each of nodeisalso supported by awireless communication device, a solar power supply unit, and a microcontroller unit called sensor module. In this system, there is also gateway module as a main communication system consistinga wireless communication device, power supply unit, and rain gauge to measure the rainfall intensity of the observed area. Each sensor of inclinometer and extensometer isconnected to the sensor module in wiring system but sensor module iscommunicating with gateway in a wireless system. Those four nodes are alsoconnectedeach other in a wireless system collecting the data from inclinometer and extensometer sensors. Module Gateway istransmitting the instruction code to each sensor module one by one and collecting the data from them. Gateway module is an important part to communicate with not only sensor modules but also to the server. This wireless system wasdesigned toreducethe electric consumption powered by 80 WP solar panel and 55Ah battery. This system has been implemented in Pangalengan, Bandung, which has high intensity of rainfall and it can be seen on the website.
Data acquisition, detection and estimation for structural health monitoring.
DOT National Transportation Integrated Search
2014-05-01
This project deals with using a wireless sensor network for structural health monitoring. It includes two objectives: (1) to develop : energy-efficient protocols for sensing and communication that are suitable for battery-powered sensor nodes; (2) to...
NASA Astrophysics Data System (ADS)
Godinez-Azcuaga, Valery F.; Farmer, Justin; Ziehl, Paul H.; Giurgiutiu, Victor; Nanni, Antonio; Inman, Daniel J.
2012-04-01
This paper discusses the development status of a self-powered wireless sensor node for steel and concrete bridges monitoring and prognosis. By the end of the third year in this four-year cross-disciplinary project, the 4-channel acoustic emission wireless node, developed by Mistras Group Inc, has already been deployed in concrete structures by the University of Miami. Also, extensive testing is underway with the node powered by structural vibration and wind energy harvesting modules developed by Virginia Tech. The development of diagnosis tools and models for bridge prognosis, which will be discussed in the paper, continues and the diagnosis tools are expected to be programmed in the node's AVR during the 4th year of the project. The impact of this development extends beyond the area of bridge health monitoring into several fields, such as offshore oil platforms, composite components on military ships and race boats, combat deployable bridges and wind turbine blades. Some of these applications will also be discussed. This project was awarded to a joint venture formed by Mistras Group Inc, Virginia Tech, University of South Carolina and University of Miami by the National Institute of Standards and Technology through its Technology Innovation Program Grant #70NANB9H007.
Energy-efficient and fast data gathering protocols for indoor wireless sensor networks.
Tümer, Abdullah Erdal; Gündüz, Mesut
2010-01-01
Wireless Sensor Networks have become an important technology with numerous potential applications for the interaction of computers and the physical environment in civilian and military areas. In the routing protocols that are specifically designed for the applications used by sensor networks, the limited available power of the sensor nodes has been taken into consideration in order to extend the lifetime of the networks. In this paper, two protocols based on LEACH and called R-EERP and S-EERP with base and threshold values are presented. R-EERP and S-EERP are two efficient energy aware routing protocols that can be used for some critical applications such as detecting dangerous gases (methane, ammonium, carbon monoxide, etc.) in an indoor environment. In R-EERP, sensor nodes are deployed randomly in a field similar to LEACH. In S-EERP, nodes are deployed sequentially in the rooms of the flats of a multi-story building. In both protocols, nodes forming clusters do not change during a cluster change time, only the cluster heads change. Furthermore, an XOR operation is performed on the collected data in order to prevent the sending of the same data sensed by the nodes close to each other. Simulation results show that our proposed protocols are more energy-efficient than the conventional LEACH protocol.
Qin, Zhongyuan; Zhang, Xinshuai; Feng, Kerong; Zhang, Qunfang; Huang, Jie
2014-01-01
With the rapid development and widespread adoption of wireless sensor networks (WSNs), security has become an increasingly prominent problem. How to establish a session key in node communication is a challenging task for WSNs. Considering the limitations in WSNs, such as low computing capacity, small memory, power supply limitations and price, we propose an efficient identity-based key management (IBKM) scheme, which exploits the Bloom filter to authenticate the communication sensor node with storage efficiency. The security analysis shows that IBKM can prevent several attacks effectively with acceptable computation and communication overhead. PMID:25264955
Intelligent Sensing in Dynamic Environments Using Markov Decision Process
Nanayakkara, Thrishantha; Halgamuge, Malka N.; Sridhar, Prasanna; Madni, Asad M.
2011-01-01
In a network of low-powered wireless sensors, it is essential to capture as many environmental events as possible while still preserving the battery life of the sensor node. This paper focuses on a real-time learning algorithm to extend the lifetime of a sensor node to sense and transmit environmental events. A common method that is generally adopted in ad-hoc sensor networks is to periodically put the sensor nodes to sleep. The purpose of the learning algorithm is to couple the sensor’s sleeping behavior to the natural statistics of the environment hence that it can be in optimal harmony with changes in the environment, the sensors can sleep when steady environment and stay awake when turbulent environment. This paper presents theoretical and experimental validation of a reward based learning algorithm that can be implemented on an embedded sensor. The key contribution of the proposed approach is the design and implementation of a reward function that satisfies a trade-off between the above two mutually contradicting objectives, and a linear critic function to approximate the discounted sum of future rewards in order to perform policy learning. PMID:22346624
Energy modelling in sensor networks
NASA Astrophysics Data System (ADS)
Schmidt, D.; Krämer, M.; Kuhn, T.; Wehn, N.
2007-06-01
Wireless sensor networks are one of the key enabling technologies for the vision of ambient intelligence. Energy resources for sensor nodes are very scarce. A key challenge is the design of energy efficient communication protocols. Models of the energy consumption are needed to accurately simulate the efficiency of a protocol or application design, and can also be used for automatic energy optimizations in a model driven design process. We propose a novel methodology to create models for sensor nodes based on few simple measurements. In a case study the methodology was used to create models for MICAz nodes. The models were integrated in a simulation environment as well as in a SDL runtime framework of a model driven design process. Measurements on a test application that was created automatically from an SDL specification showed an 80% reduction in energy consumption compared to an implementation without power saving strategies.
A Distributed Energy-Aware Trust Management System for Secure Routing in Wireless Sensor Networks
NASA Astrophysics Data System (ADS)
Stelios, Yannis; Papayanoulas, Nikos; Trakadas, Panagiotis; Maniatis, Sotiris; Leligou, Helen C.; Zahariadis, Theodore
Wireless sensor networks are inherently vulnerable to security attacks, due to their wireless operation. The situation is further aggravated because they operate in an infrastructure-less environment, which mandates the cooperation among nodes for all networking tasks, including routing, i.e. all nodes act as “routers”, forwarding the packets generated by their neighbours in their way to the sink node. This implies that malicious nodes (denying their cooperation) can significantly affect the network operation. Trust management schemes provide a powerful tool for the detection of unexpected node behaviours (either faulty or malicious). Once misbehaving nodes are detected, their neighbours can use this information to avoid cooperating with them either for data forwarding, data aggregation or any other cooperative function. We propose a secure routing solution based on a novel distributed trust management system, which allows for fast detection of a wide set of attacks and also incorporates energy awareness.
Extending Wireless Rechargeable Sensor Network Life without Full Knowledge
Najeeb, Najeeb W.; Detweiler, Carrick
2017-01-01
When extending the life of Wireless Rechargeable Sensor Networks (WRSN), one challenge is charging networks as they grow larger. Overcoming this limitation will render a WRSN more practical and highly adaptable to growth in the real world. Most charging algorithms require a priori full knowledge of sensor nodes’ power levels in order to determine the nodes that require charging. In this work, we present a probabilistic algorithm that extends the life of scalable WRSN without a priori power knowledge and without full network exploration. We develop a probability bound on the power level of the sensor nodes and utilize this bound to make decisions while exploring a WRSN. We verify the algorithm by simulating a wireless power transfer unmanned aerial vehicle, and charging a WRSN to extend its life. Our results show that, without knowledge, our proposed algorithm extends the life of a WRSN on average 90% of what an optimal full knowledge algorithm can achieve. This means that the charging robot does not need to explore the whole network, which enables the scaling of WRSN. We analyze the impact of network parameters on our algorithm and show that it is insensitive to a large range of parameter values. PMID:28714936
A General Self-Organized Tree-Based Energy-Balance Routing Protocol for Wireless Sensor Network
NASA Astrophysics Data System (ADS)
Han, Zhao; Wu, Jie; Zhang, Jie; Liu, Liefeng; Tian, Kaiyun
2014-04-01
Wireless sensor network (WSN) is a system composed of a large number of low-cost micro-sensors. This network is used to collect and send various kinds of messages to a base station (BS). WSN consists of low-cost nodes with limited battery power, and the battery replacement is not easy for WSN with thousands of physically embedded nodes, which means energy efficient routing protocol should be employed to offer a long-life work time. To achieve the aim, we need not only to minimize total energy consumption but also to balance WSN load. Researchers have proposed many protocols such as LEACH, HEED, PEGASIS, TBC and PEDAP. In this paper, we propose a General Self-Organized Tree-Based Energy-Balance routing protocol (GSTEB) which builds a routing tree using a process where, for each round, BS assigns a root node and broadcasts this selection to all sensor nodes. Subsequently, each node selects its parent by considering only itself and its neighbors' information, thus making GSTEB a dynamic protocol. Simulation results show that GSTEB has a better performance than other protocols in balancing energy consumption, thus prolonging the lifetime of WSN.
Sánchez-Álvarez, David; Rodríguez-Pérez, Francisco-Javier
2018-01-01
In this paper, we present a work based on the computational load distribution among the homogeneous nodes and the Hub/Sink of Wireless Sensor Networks (WSNs). The main contribution of the paper is an early decision support framework helping WSN designers to take decisions about computational load distribution for those WSNs where power consumption is a key issue (when we refer to “framework” in this work, we are considering it as a support tool to make decisions where the executive judgment can be included along with the set of mathematical tools of the WSN designer; this work shows the need to include the load distribution as an integral component of the WSN system for making early decisions regarding energy consumption). The framework takes advantage of the idea that balancing sensors nodes and Hub/Sink computational load can lead to improved energy consumption for the whole or at least the battery-powered nodes of the WSN. The approach is not trivial and it takes into account related issues such as the required data distribution, nodes, and Hub/Sink connectivity and availability due to their connectivity features and duty-cycle. For a practical demonstration, the proposed framework is applied to an agriculture case study, a sector very relevant in our region. In this kind of rural context, distances, low costs due to vegetable selling prices and the lack of continuous power supplies may lead to viable or inviable sensing solutions for the farmers. The proposed framework systematize and facilitates WSN designers the required complex calculations taking into account the most relevant variables regarding power consumption, avoiding full/partial/prototype implementations, and measurements of different computational load distribution potential solutions for a specific WSN. PMID:29570645
USDA-ARS?s Scientific Manuscript database
The objectives of this study were to characterize wireless sensor nodes that we developed in terms of power consumption and functionality, and compare the performance of mesh and non-mesh wireless sensor networks (WSNs) comprised mainly of infrared thermometer thermocouples located on a center pivot...
Using SRAM Based FPGAs for Power-Aware High Performance Wireless Sensor Networks
Valverde, Juan; Otero, Andres; Lopez, Miguel; Portilla, Jorge; de la Torre, Eduardo; Riesgo, Teresa
2012-01-01
While for years traditional wireless sensor nodes have been based on ultra-low power microcontrollers with sufficient but limited computing power, the complexity and number of tasks of today’s applications are constantly increasing. Increasing the node duty cycle is not feasible in all cases, so in many cases more computing power is required. This extra computing power may be achieved by either more powerful microcontrollers, though more power consumption or, in general, any solution capable of accelerating task execution. At this point, the use of hardware based, and in particular FPGA solutions, might appear as a candidate technology, since though power use is higher compared with lower power devices, execution time is reduced, so energy could be reduced overall. In order to demonstrate this, an innovative WSN node architecture is proposed. This architecture is based on a high performance high capacity state-of-the-art FPGA, which combines the advantages of the intrinsic acceleration provided by the parallelism of hardware devices, the use of partial reconfiguration capabilities, as well as a careful power-aware management system, to show that energy savings for certain higher-end applications can be achieved. Finally, comprehensive tests have been done to validate the platform in terms of performance and power consumption, to proof that better energy efficiency compared to processor based solutions can be achieved, for instance, when encryption is imposed by the application requirements. PMID:22736971
Using SRAM based FPGAs for power-aware high performance wireless sensor networks.
Valverde, Juan; Otero, Andres; Lopez, Miguel; Portilla, Jorge; de la Torre, Eduardo; Riesgo, Teresa
2012-01-01
While for years traditional wireless sensor nodes have been based on ultra-low power microcontrollers with sufficient but limited computing power, the complexity and number of tasks of today's applications are constantly increasing. Increasing the node duty cycle is not feasible in all cases, so in many cases more computing power is required. This extra computing power may be achieved by either more powerful microcontrollers, though more power consumption or, in general, any solution capable of accelerating task execution. At this point, the use of hardware based, and in particular FPGA solutions, might appear as a candidate technology, since though power use is higher compared with lower power devices, execution time is reduced, so energy could be reduced overall. In order to demonstrate this, an innovative WSN node architecture is proposed. This architecture is based on a high performance high capacity state-of-the-art FPGA, which combines the advantages of the intrinsic acceleration provided by the parallelism of hardware devices, the use of partial reconfiguration capabilities, as well as a careful power-aware management system, to show that energy savings for certain higher-end applications can be achieved. Finally, comprehensive tests have been done to validate the platform in terms of performance and power consumption, to proof that better energy efficiency compared to processor based solutions can be achieved, for instance, when encryption is imposed by the application requirements.
Yin, Yihang; Liu, Fengzheng; Zhou, Xiang; Li, Quanzhong
2015-08-07
Wireless sensor networks (WSNs) have been widely used to monitor the environment, and sensors in WSNs are usually power constrained. Because inner-node communication consumes most of the power, efficient data compression schemes are needed to reduce the data transmission to prolong the lifetime of WSNs. In this paper, we propose an efficient data compression model to aggregate data, which is based on spatial clustering and principal component analysis (PCA). First, sensors with a strong temporal-spatial correlation are grouped into one cluster for further processing with a novel similarity measure metric. Next, sensor data in one cluster are aggregated in the cluster head sensor node, and an efficient adaptive strategy is proposed for the selection of the cluster head to conserve energy. Finally, the proposed model applies principal component analysis with an error bound guarantee to compress the data and retain the definite variance at the same time. Computer simulations show that the proposed model can greatly reduce communication and obtain a lower mean square error than other PCA-based algorithms.
Wang, Jianing; Niu, Xintao; Zheng, Lingjiao; Zheng, Chuantao; Wang, Yiding
2016-11-18
In this paper, a wireless mid-infrared spectroscopy sensor network was designed and implemented for carbon dioxide fertilization in a greenhouse environment. A mid-infrared carbon dioxide (CO₂) sensor based on non-dispersive infrared (NDIR) with the functionalities of wireless communication and anti-condensation prevention was realized as the sensor node. Smart transmission power regulation was applied in the wireless sensor network, according to the Received Signal Strength Indication (RSSI), to realize high communication stability and low-power consumption deployment. Besides real-time monitoring, this system also provides a CO₂ control facility for manual and automatic control through a LabVIEW platform. According to simulations and field tests, the implemented sensor node has a satisfying anti-condensation ability and reliable measurement performance on CO₂ concentrations ranging from 30 ppm to 5000 ppm. As an application, based on the Fuzzy proportional, integral, and derivative (PID) algorithm realized on a LabVIEW platform, the CO₂ concentration was regulated to some desired concentrations, such as 800 ppm and 1200 ppm, in 30 min with a controlled fluctuation of <±35 ppm in an acre of greenhouse.
NASA Astrophysics Data System (ADS)
Miller, Lindsay Margaret
Wireless sensor networks (WSNs) have the potential to transform engineering infrastructure, manufacturing, and building controls by allowing condition monitoring, asset tracking, demand response, and other intelligent feedback systems. A wireless sensor node consists of a power supply, sensor(s), power conditioning circuitry, radio transmitter and/or receiver, and a micro controller. Such sensor nodes are used for collecting and communicating data regarding the state of a machine, system, or process. The increasing demand for better ways to power wireless devices and increase operation time on a single battery charge drives an interest in energy harvesting research. Today, wireless sensor nodes are typically powered by a standard single-charge battery, which becomes depleted within a relatively short timeframe depending on the application. This introduces tremendous labor costs associated with battery replacement, especially when there are thousands of nodes in a network, the nodes are remotely located, or widely-distributed. Piezoelectric vibration energy harvesting presents a potential solution to the problems associated with too-short battery life and high maintenance requirements, especially in industrial environments where vibrations are ubiquitous. Energy harvester designs typically use the harvester to trickle charge a rechargeable energy storage device rather than directly powering the electronics with the harvested energy. This allows a buffer between the energy harvester supply and the load where energy can be stored in a "tank". Therefore, the harvester does not need to produce the full required power at every instant to successfully power the node. In general, there are tens of microwatts of power available to be harvested from ambient vibrations using micro scale devices and tens of milliwatts available from ambient vibrations using meso scale devices. Given that the power requirements of wireless sensor nodes range from several microwatts to about one hundred milliwatts and are falling steadily as improvements are made, it is feasible to use energy harvesting to power WSNs. This research begins by presenting the results of a thorough survey of ambient vibrations in the machine room of a large campus building, which found that ambient vibrations are low frequency, low amplitude, time varying, and multi-frequency. The modeling and design of fixed-frequency micro scale energy harvesters are then presented. The model is able to take into account rotational inertia of the harvester's proof mass and it accepts arbitrary measured acceleration input, calculating the energy harvester's voltage as an output. The fabrication of the micro electromechanical system (MEMS) energy harvesters is discussed and results of the devices harvesting energy from ambient vibrations are presented. The harvesters had resonance frequencies ranging from 31 - 232 Hz, which was the lowest reported in literature for a MEMS device, and produced 24 pW/g2 - 10 nW/g2 of harvested power from ambient vibrations. A novel method for frequency modification of the released harvester devices using a dispenser printed mass is then presented, demonstrating a frequency shift of 20 Hz. Optimization of the MEMS energy harvester connected to a resistive load is then presented, finding that the harvested power output can be increased to several microwatts with the optimized design as long as the driving frequency matches the harvester's resonance frequency. A framework is then presented to allow a similar optimization to be conducted with the harvester connected to a synchronously switched pre-bias circuit. With the realization that the optimized energy harvester only produces usable amounts of power if the resonance frequency and driving frequency match, which is an unrealistic situation in the case of ambient vibrations which change over time and are not always known
Kim, Jiye; Lee, Donghoon; Jeon, Woongryul; Lee, Youngsook; Won, Dongho
2014-04-09
User authentication and key management are two important security issues in WSNs (Wireless Sensor Networks). In WSNs, for some applications, the user needs to obtain real-time data directly from sensors and several user authentication schemes have been recently proposed for this case. We found that a two-factor mutual authentication scheme with key agreement in WSNs is vulnerable to gateway node bypassing attacks and user impersonation attacks using secret data stored in sensor nodes or an attacker's own smart card. In this paper, we propose an improved scheme to overcome these security weaknesses by storing secret data in unique ciphertext form in each node. In addition, our proposed scheme should provide not only security, but also efficiency since sensors in a WSN operate with resource constraints such as limited power, computation, and storage space. Therefore, we also analyze the performance of the proposed scheme by comparing its computation and communication costs with those of other schemes.
Kim, Jiye; Lee, Donghoon; Jeon, Woongryul; Lee, Youngsook; Won, Dongho
2014-01-01
User authentication and key management are two important security issues in WSNs (Wireless Sensor Networks). In WSNs, for some applications, the user needs to obtain real-time data directly from sensors and several user authentication schemes have been recently proposed for this case. We found that a two-factor mutual authentication scheme with key agreement in WSNs is vulnerable to gateway node bypassing attacks and user impersonation attacks using secret data stored in sensor nodes or an attacker's own smart card. In this paper, we propose an improved scheme to overcome these security weaknesses by storing secret data in unique ciphertext form in each node. In addition, our proposed scheme should provide not only security, but also efficiency since sensors in a WSN operate with resource constraints such as limited power, computation, and storage space. Therefore, we also analyze the performance of the proposed scheme by comparing its computation and communication costs with those of other schemes. PMID:24721764
A Study on Wireless Charging for Prolonging the Lifetime of Wireless Sensor Networks
Tu, Weijian; Xu, Xianghua; Ye, Tingcong; Cheng, Zongmao
2017-01-01
Wireless charging is an important issue in wireless sensor networks, since it can provide an emerging and effective solution in the absence of other power supplies. The state-of-the-art methods employ a mobile car and a predefined moving path to charge the sensor nodes in the network. Previous studies only consider a factor of the network (i.e., residual energy of sensor node) as a constraint to design the wireless charging strategy. However, other factors, such as the travelled distance of the mobile car, can also affect the effectiveness of wireless charging strategy. In this work, we study wireless charging strategy based on the analysis of a combination of two factors, including the residual energy of sensor nodes and the travelled distance of the charging car. Firstly, we theoretically analyze the limited size of the sensor network to match the capability of a charging car. Then, the networked factors are selected as the weights of traveling salesman problem (TSP) to design the moving path of the charging car. Thirdly, the charging time of each sensor node is computed based on the linear programming problem for the charging car. Finally, a charging period for the network is studied. The experimental results show that the proposed approach can significantly maximize the lifetime of the wireless sensor network. PMID:28677639
Landslide and Flood Warning System Prototypes based on Wireless Sensor Networks
NASA Astrophysics Data System (ADS)
Hloupis, George; Stavrakas, Ilias; Triantis, Dimos
2010-05-01
Wireless sensor networks (WSNs) are one of the emerging areas that received great attention during the last few years. This is mainly due to the fact that WSNs have provided scientists with the capability of developing real-time monitoring systems equipped with sensors based on Micro-Electro-Mechanical Systems (MEMS). WSNs have great potential for many applications in environmental monitoring since the sensor nodes that comprised from can host several MEMS sensors (such as temperature, humidity, inertial, pressure, strain-gauge) and transducers (such as position, velocity, acceleration, vibration). The resulting devices are small and inexpensive but with limited memory and computing resources. Each sensor node contains a sensing module which along with an RF transceiver. The communication is broadcast-based since the network topology can change rapidly due to node failures [1]. Sensor nodes can transmit their measurements to central servers through gateway nodes without any processing or they make preliminary calculations locally in order to produce results that will be sent to central servers [2]. Based on the above characteristics, two prototypes using WSNs are presented in this paper: A Landslide detection system and a Flood warning system. Both systems sent their data to central processing server where the core of processing routines exists. Transmission is made using Zigbee and IEEE 802.11b protocol but is capable to use VSAT communication also. Landslide detection system uses structured network topology. Each measuring node comprises of a columnar module that is half buried to the area under investigation. Each sensing module contains a geophone, an inclinometer and a set of strain gauges. Data transmitted to central processing server where possible landslide evolution is monitored. Flood detection system uses unstructured network topology since the failure rate of sensor nodes is expected higher. Each sensing module contains a custom water level sensor (based on plastic optical fiber). Data transmitted directly to server where the early warning algorithms monitor the water level variations in real time. Both sensor nodes use power harvesting techniques in order to extend their battery life as much as possible. [1] Yick J.; Mukherjee, B.; Ghosal, D. Wireless sensor network survey. Comput. Netw. 2008, 52, 2292-2330. [2] Garcia, M.; Bri, D.; Boronat, F.; Lloret, J. A new neighbor selection strategy for group-based wireless sensor networks, In The Fourth International Conference on Networking and Services (ICNS 2008), Gosier, Guadalupe, March 16-21, 2008.
W-MAC: A Workload-Aware MAC Protocol for Heterogeneous Convergecast in Wireless Sensor Networks
Xia, Ming; Dong, Yabo; Lu, Dongming
2011-01-01
The power consumption and latency of existing MAC protocols for wireless sensor networks (WSNs) are high in heterogeneous convergecast, where each sensor node generates different amounts of data in one convergecast operation. To solve this problem, we present W-MAC, a workload-aware MAC protocol for heterogeneous convergecast in WSNs. A subtree-based iterative cascading scheduling mechanism and a workload-aware time slice allocation mechanism are proposed to minimize the power consumption of nodes, while offering a low data latency. In addition, an efficient schedule adjustment mechanism is provided for adapting to data traffic variation and network topology change. Analytical and simulation results show that the proposed protocol provides a significant energy saving and latency reduction in heterogeneous convergecast, and can effectively support data aggregation to further improve the performance. PMID:22163753
NASA Astrophysics Data System (ADS)
Liu, Peipei; Yang, Suyoung; Lim, Hyung Jin; Park, Hyung Chul; Ko, In Chang; Sohn, Hoon
2014-03-01
Fatigue crack is one of the main culprits for the failure of metallic structures. Recently, it has been shown that nonlinear wave modulation spectroscopy (NWMS) is effective in detecting nonlinear mechanisms produced by fatigue crack. In this study, an active wireless sensor node for fatigue crack detection is developed based on NWMS. Using PZT transducers attached to a target structure, ultrasonic waves at two distinctive frequencies are generated, and their modulation due to fatigue crack formation is detected using another PZT transducer. Furthermore, a reference-free NWMS algorithm is developed so that fatigue crack can be detected without relying on history data of the structure with minimal parameter adjustment by the end users. The algorithm is embedded into FPGA, and the diagnosis is transmitted to a base station using a commercial wireless communication system. The whole design of the sensor node is fulfilled in a low power working strategy. Finally, an experimental verification has been performed using aluminum plate specimens to show the feasibility of the developed active wireless NWMS sensor node.
NASA Astrophysics Data System (ADS)
Lu, Y.; O'Riordan, E.; Cottone, F.; Boisseau, S.; Galayko, D.; Blokhina, E.; Marty, F.; Basset, P.
2016-12-01
This paper reports a batch-fabricated, low-frequency and wideband MEMS electrostatic vibration energy harvester (e-VEH), which implements corona-charged vertical electrets and nonlinear elastic stoppers. A numeric model is used to perform parametric study, where we observe a wideband bi-modality resulting from nonlinearity. The nonlinear stoppers improve the bandwidth and induce a frequency-up feature at low frequencies. When the e-VEH works with a bias of 45 V, the power reaches a maximum value of 6.6 μW at 428 Hz and 2.0 g rms, and is above 1 μW at 50 Hz. When the frequency drops below 60 Hz, a ‘frequency-up’ conversion behavior is observed with peaks of power at 34 Hz and 52 Hz. The -3 dB bandwidth is more than 60% of its central frequency, both including and excluding the hysteresis introduced by the nonlinear stoppers. We also perform experiments with wideband Gaussian noise. The device is eventually tested with an RF data transmission setup, where a communication node with an internal temperature sensor is powered. Every 2 min, a data transmission at 868 MHz is performed by the sensor node supplied by the e-VEH, and received at a distance of up to 15 m.
Proposals for the implementation of the variants of automatic control of the telescope AZT-2
NASA Astrophysics Data System (ADS)
Shavlovskyi, V. I.; Puha, S. P.; Vidmachenko, A. P.; Volovyk, D. V.; Puha, G. P.; Obolonskyi, V. O.; Kratko, O. O.; Stefurak, M. V.
2018-05-01
Based on the experience of astronomical observations, structural features and results of the review of the technical state of the mechanism of the telescope AZT-2 in the Main Astronomical Observatory of NAS of Ukraine, in 2012 it was decided to carry out works on its modernization. To this end, it was suggested that the telescope control system should consist of angle sensors on the time axis "alpha" and the axis "delta", personal computer (PC), corresponding software, power control unit, and rotation system of telescope. The angle sensor should be absolute, with a resolution of better than 10 angular minutes. The PC should perform the functions of data processing from the angle sensor, and control the power node. The developed software allows the operator to direct the telescope in an automatic mode, and to set the necessary parameters of the system. With using of PC, the power control node will directly control the engine of the rotation system.
Information-based self-organization of sensor nodes of a sensor network
Ko, Teresa H [Castro Valley, CA; Berry, Nina M [Tracy, CA
2011-09-20
A sensor node detects a plurality of information-based events. The sensor node determines whether at least one other sensor node is an information neighbor of the sensor node based on at least a portion of the plurality of information-based events. The information neighbor has an overlapping field of view with the sensor node. The sensor node sends at least one communication to the at least one other sensor node that is an information neighbor of the sensor node in response to at least one information-based event of the plurality of information-based events.
[Low-power Wireless Micro Ambulatory Electrocardiogram Node].
Cai, Zhipeng; Luo, Kan; Li, Jianqing
2016-02-01
Ambulatory electrocardiogram (ECG) monitoring can effectively reduce the risk and death rate of patients with cardiovascular diseases (CVDs). The Body Sensor Network (BSN) based ECG monitoring is a new and efficien method to protect the CVDs patients. To meet the challenges of miniaturization, low power and high signal quality of the node, we proposed a novel 50 mmX 50 mmX 10 mm, 30 g wireless ECG node, which includes the single-chip an alog front-end AD8232, ultra-low power microprocessor MSP430F1611 and Bluetooth module HM-11. The ECG signal quality is guaranteed by the on-line digital filtering. The difference threshold algorithm results in accuracy of R-wave detection and heart rate. Experiments were carried out to test the node and the results showed that the pro posed node reached the design target, and it has great potential in application of wireless ECG monitoring.
Laissez-Faire : Fully Asymmetric Backscatter Communication
Hu, Pan; Zhang, Pengyu; Ganesan, Deepak
2016-01-01
Backscatter provides dual-benefits of energy harvesting and low-power communication, making it attractive to a broad class of wireless sensors. But the design of a protocol that enables extremely power-efficient radios for harvesting-based sensors as well as high-rate data transfer for data-rich sensors presents a conundrum. In this paper, we present a new fully asymmetric backscatter communication protocol where nodes blindly transmit data as and when they sense. This model enables fully flexible node designs, from extraordinarily power-efficient backscatter radios that consume barely a few micro-watts to high-throughput radios that can stream at hundreds of Kbps while consuming a paltry tens of micro-watts. The challenge, however, lies in decoding concurrent streams at the reader, which we achieve using a novel combination of time-domain separation of interleaved signal edges, and phase-domain separation of colliding transmissions. We provide an implementation of our protocol, LF-Backscatter, and show that it can achieve an order of magnitude or more improvement in throughput, latency and power over state-of-art alternatives. PMID:28286885
2004-03-01
turned off. SLEEP Set the timer for 30 seconds before scheduled transmit time, then sleep the processor. WAKE When timer trips, power up the processor...slots where none of its neighbors are schedule to transmit. This allows the sensor nodes to perform a simple power man- agement scheme that puts the...routing This simple case study highlights the following crucial observation: optimal traffic scheduling in energy constrained networks requires future
A Mobile Anchor Assisted Localization Algorithm Based on Regular Hexagon in Wireless Sensor Networks
Rodrigues, Joel J. P. C.
2014-01-01
Localization is one of the key technologies in wireless sensor networks (WSNs), since it provides fundamental support for many location-aware protocols and applications. Constraints of cost and power consumption make it infeasible to equip each sensor node in the network with a global position system (GPS) unit, especially for large-scale WSNs. A promising method to localize unknown nodes is to use several mobile anchors which are equipped with GPS units moving among unknown nodes and periodically broadcasting their current locations to help nearby unknown nodes with localization. This paper proposes a mobile anchor assisted localization algorithm based on regular hexagon (MAALRH) in two-dimensional WSNs, which can cover the whole monitoring area with a boundary compensation method. Unknown nodes calculate their positions by using trilateration. We compare the MAALRH with HILBERT, CIRCLES, and S-CURVES algorithms in terms of localization ratio, localization accuracy, and path length. Simulations show that the MAALRH can achieve high localization ratio and localization accuracy when the communication range is not smaller than the trajectory resolution. PMID:25133212
Minimum Interference Planar Geometric Topology in Wireless Sensor Networks
NASA Astrophysics Data System (ADS)
Nguyen, Trac N.; Huynh, Dung T.
The approach of using topology control to reduce interference in wireless sensor networks has attracted attention of several researchers. There are at least two definitions of interference in the literature. In a wireless sensor network the interference at a node may be caused by an edge that is transmitting data [15], or it occurs because the node itself is within the transmission range of another [3], [1], [6]. In this paper we show that the problem of assigning power to nodes in the plane to yield a planar geometric graph whose nodes have bounded interference is NP-complete under both interference definitions. Our results provide a rigorous proof for a theorem in [15] whose proof is unconvincing. They also address one of the open issues raised in [6] where Halldórsson and Tokuyama were concerned with the receiver model of node interference, and derived an O(sqrt {Δ}) upper bound for the maximum node interference of a wireless ad hoc network in the plane (Δ is the maximum interference of the so-called uniform radius network). The question as to whether this problem is NP-complete in the 2-dimensional case was left open.
A Hardware-Supported Algorithm for Self-Managed and Choreographed Task Execution in Sensor Networks.
Bordel, Borja; Miguel, Carlos; Alcarria, Ramón; Robles, Tomás
2018-03-07
Nowadays, sensor networks are composed of a great number of tiny resource-constraint nodes, whose management is increasingly more complex. In fact, although collaborative or choreographic task execution schemes are which fit in the most perfect way with the nature of sensor networks, they are rarely implemented because of the high resource consumption of these algorithms (especially if networks include many resource-constrained devices). On the contrary, hierarchical networks are usually designed, in whose cusp it is included a heavy orchestrator with a remarkable processing power, being able to implement any necessary management solution. However, although this orchestration approach solves most practical management problems of sensor networks, a great amount of the operation time is wasted while nodes request the orchestrator to address a conflict and they obtain the required instructions to operate. Therefore, in this paper it is proposed a new mechanism for self-managed and choreographed task execution in sensor networks. The proposed solution considers only a lightweight gateway instead of traditional heavy orchestrators and a hardware-supported algorithm, which consume a negligible amount of resources in sensor nodes. The gateway avoids the congestion of the entire sensor network and the hardware-supported algorithm enables a choreographed task execution scheme, so no particular node is overloaded. The performance of the proposed solution is evaluated through numerical and electronic ModelSim-based simulations.
A Hardware-Supported Algorithm for Self-Managed and Choreographed Task Execution in Sensor Networks
2018-01-01
Nowadays, sensor networks are composed of a great number of tiny resource-constraint nodes, whose management is increasingly more complex. In fact, although collaborative or choreographic task execution schemes are which fit in the most perfect way with the nature of sensor networks, they are rarely implemented because of the high resource consumption of these algorithms (especially if networks include many resource-constrained devices). On the contrary, hierarchical networks are usually designed, in whose cusp it is included a heavy orchestrator with a remarkable processing power, being able to implement any necessary management solution. However, although this orchestration approach solves most practical management problems of sensor networks, a great amount of the operation time is wasted while nodes request the orchestrator to address a conflict and they obtain the required instructions to operate. Therefore, in this paper it is proposed a new mechanism for self-managed and choreographed task execution in sensor networks. The proposed solution considers only a lightweight gateway instead of traditional heavy orchestrators and a hardware-supported algorithm, which consume a negligible amount of resources in sensor nodes. The gateway avoids the congestion of the entire sensor network and the hardware-supported algorithm enables a choreographed task execution scheme, so no particular node is overloaded. The performance of the proposed solution is evaluated through numerical and electronic ModelSim-based simulations. PMID:29518986
A wirelessly programmable actuation and sensing system for structural health monitoring
NASA Astrophysics Data System (ADS)
Long, James; Büyüköztürk, Oral
2016-04-01
Wireless sensor networks promise to deliver low cost, low power and massively distributed systems for structural health monitoring. A key component of these systems, particularly when sampling rates are high, is the capability to process data within the network. Although progress has been made towards this vision, it remains a difficult task to develop and program 'smart' wireless sensing applications. In this paper we present a system which allows data acquisition and computational tasks to be specified in Python, a high level programming language, and executed within the sensor network. Key features of this system include the ability to execute custom application code without firmware updates, to run multiple users' requests concurrently and to conserve power through adjustable sleep settings. Specific examples of sensor node tasks are given to demonstrate the features of this system in the context of structural health monitoring. The system comprises of individual firmware for nodes in the wireless sensor network, and a gateway server and web application through which users can remotely submit their requests.
An Efficient Wireless Sensor Network for Industrial Monitoring and Control.
Aponte-Luis, Juan; Gómez-Galán, Juan Antonio; Gómez-Bravo, Fernando; Sánchez-Raya, Manuel; Alcina-Espigado, Javier; Teixido-Rovira, Pedro Miguel
2018-01-10
This paper presents the design of a wireless sensor network particularly designed for remote monitoring and control of industrial parameters. The article describes the network components, protocol and sensor deployment, aimed to accomplish industrial constraint and to assure reliability and low power consumption. A particular case of study is presented. The system consists of a base station, gas sensing nodes, a tree-based routing scheme for the wireless sensor nodes and a real-time monitoring application that operates from a remote computer and a mobile phone. The system assures that the industrial safety quality and the measurement and monitoring system achieves an efficient industrial monitoring operations. The robustness of the developed system and the security in the communications have been guaranteed both in hardware and software level. The system is flexible and can be adapted to different environments. The testing of the system confirms the feasibility of the proposed implementation and validates the functional requirements of the developed devices, the networking solution and the power consumption management.
An Efficient Wireless Sensor Network for Industrial Monitoring and Control
Aponte-Luis, Juan; Gómez-Bravo, Fernando; Sánchez-Raya, Manuel; Alcina-Espigado, Javier; Teixido-Rovira, Pedro Miguel
2018-01-01
This paper presents the design of a wireless sensor network particularly designed for remote monitoring and control of industrial parameters. The article describes the network components, protocol and sensor deployment, aimed to accomplish industrial constraint and to assure reliability and low power consumption. A particular case of study is presented. The system consists of a base station, gas sensing nodes, a tree-based routing scheme for the wireless sensor nodes and a real-time monitoring application that operates from a remote computer and a mobile phone. The system assures that the industrial safety quality and the measurement and monitoring system achieves an efficient industrial monitoring operations. The robustness of the developed system and the security in the communications have been guaranteed both in hardware and software level. The system is flexible and can be adapted to different environments. The testing of the system confirms the feasibility of the proposed implementation and validates the functional requirements of the developed devices, the networking solution and the power consumption management. PMID:29320466
NASA Astrophysics Data System (ADS)
Balpande, Suresh S.; Pande, Rajesh S.
2016-04-01
Internet of Things (IoT) uses MEMS sensor nodes and actuators to sense and control objects through Internet. IOT deploys millions of chemical battery driven sensors at different locations which are not reliable many times because of frequent requirement of charging & battery replacement in case of underground laying, placement at harsh environmental conditions, huge count and difference between demand (24 % per year) and availability (energy density growing rate 8% per year). Energy harvester fabricated on silicon wafers have been widely used in manufacturing MEMS structures. These devices require complex fabrication processes, costly chemicals & clean room. In addition to this silicon wafer based devices are not suitable for curved surfaces like pipes, human bodies, organisms, or other arbitrary surface like clothes, structure surfaces which does not have flat and smooth surface always. Therefore, devices based on rigid silicon wafers are not suitable for these applications. Flexible structures are the key solution for this problems. Energy transduction mechanism generates power from free surrounding vibrations or impact. Sensor nodes application has been purposefully selected due to discrete power requirement at low duty cycle. Such nodes require an average power budget in the range of about 0.1 microwatt to 1 mW over a period of 3-5 seconds. Energy harvester is the best alternate source in contrast with battery for sensor node application. Novel design of Energy Harvester based on cheapest flexible non silicon substrate i.e. cellulose acetate substrate have been modeled, simulated and analyzed on COMSOL multiphysics and fabricated using sol-gel spin coating setup. Single cantilever based harvester generates 60-75 mV peak electric potential at 22Hz frequency and approximately 22 µW power at 1K-Ohm load. Cantilever array can be employed for generating higher voltage by replicating this structure. This work covers design, optimization, fabrication of harvester and schottky diodes based voltage multiplier.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balpande, Suresh S., E-mail: balpandes@rknec.edu; Pande, Rajesh S.
Internet of Things (IoT) uses MEMS sensor nodes and actuators to sense and control objects through Internet. IOT deploys millions of chemical battery driven sensors at different locations which are not reliable many times because of frequent requirement of charging & battery replacement in case of underground laying, placement at harsh environmental conditions, huge count and difference between demand (24 % per year) and availability (energy density growing rate 8% per year). Energy harvester fabricated on silicon wafers have been widely used in manufacturing MEMS structures. These devices require complex fabrication processes, costly chemicals & clean room. In addition tomore » this silicon wafer based devices are not suitable for curved surfaces like pipes, human bodies, organisms, or other arbitrary surface like clothes, structure surfaces which does not have flat and smooth surface always. Therefore, devices based on rigid silicon wafers are not suitable for these applications. Flexible structures are the key solution for this problems. Energy transduction mechanism generates power from free surrounding vibrations or impact. Sensor nodes application has been purposefully selected due to discrete power requirement at low duty cycle. Such nodes require an average power budget in the range of about 0.1 microwatt to 1 mW over a period of 3-5 seconds. Energy harvester is the best alternate source in contrast with battery for sensor node application. Novel design of Energy Harvester based on cheapest flexible non silicon substrate i.e. cellulose acetate substrate have been modeled, simulated and analyzed on COMSOL multiphysics and fabricated using sol-gel spin coating setup. Single cantilever based harvester generates 60-75 mV peak electric potential at 22Hz frequency and approximately 22 µW power at 1K-Ohm load. Cantilever array can be employed for generating higher voltage by replicating this structure. This work covers design, optimization, fabrication of harvester and schottky diodes based voltage multiplier.« less
Energy-efficient algorithm for broadcasting in ad hoc wireless sensor networks.
Xiong, Naixue; Huang, Xingbo; Cheng, Hongju; Wan, Zheng
2013-04-12
Broadcasting is a common and basic operation used to support various network protocols in wireless networks. To achieve energy-efficient broadcasting is especially important for ad hoc wireless sensor networks because sensors are generally powered by batteries with limited lifetimes. Energy consumption for broadcast operations can be reduced by minimizing the number of relay nodes based on the observation that data transmission processes consume more energy than data reception processes in the sensor nodes, and how to improve the network lifetime is always an interesting issue in sensor network research. The minimum-energy broadcast problem is then equivalent to the problem of finding the minimum Connected Dominating Set (CDS) for a connected graph that is proved NP-complete. In this paper, we introduce an Efficient Minimum CDS algorithm (EMCDS) with help of a proposed ordered sequence list. EMCDS does not concern itself with node energy and broadcast operations might fail if relay nodes are out of energy. Next we have proposed a Minimum Energy-consumption Broadcast Scheme (MEBS) with a modified version of EMCDS, and aimed at providing an efficient scheduling scheme with maximized network lifetime. The simulation results show that the proposed EMCDS algorithm can find smaller CDS compared with related works, and the MEBS can help to increase the network lifetime by efficiently balancing energy among nodes in the networks.
Application Level Processing for Long-Lived and Information Rich Wireless Sensor Networks
NASA Astrophysics Data System (ADS)
Wilkins, R.; Gaura, E.; Brusey, J.
2013-12-01
A primary design goal in Wireless Sensor Networks (WSNs) is to ensure the longest possible node lifetime with the available power budget while still meeting application requirements. Since radio transmissions often consume the most power in WSN devices, it follows that a node should aim to maximise its lifetime by transmitting only the data or information required to enable the motivating application. Full raw data streams are often not required since summaries of data are sufficient to meet application needs summaries are often performed at a central point after collection). When raw data is not a requirement, it makes sense to perform as much application-specific processing on-node as possible to minimise the amount of transmissions a node must make. For example, in home environment monitoring, the amount of time a room spends within an acceptable temperature range is more important than the raw stream of temperature measurements. The work presents Bare Necessities (BN) which implements the calculation of application-specific summaries on-node. In the case of knowing the amount time a room spends within an acceptable temperature range, BN encodes the raw signal as a distribution over bins (e.g. a bin might comprise temperatures between 18 °C and 22 °C). BN conserves power by only transmitting when changes to the distribution occur only sending the bare necessities of information the end user is interested in (thus the algorithm name). In the case of home monitoring it has been shown that BN can lead to a packet transmission reduction of 99.98%, increasing a nodes lifetime by a factor of 14 when compared to sense-and-send nodes. A summary of the Bare Necessities process at the node.
Lifting Scheme DWT Implementation in a Wireless Vision Sensor Network
NASA Astrophysics Data System (ADS)
Ong, Jia Jan; Ang, L.-M.; Seng, K. P.
This paper presents the practical implementation of a Wireless Visual Sensor Network (WVSN) with DWT processing on the visual nodes. WVSN consists of visual nodes that capture video and transmit to the base-station without processing. Limitation of network bandwidth restrains the implementation of real time video streaming from remote visual nodes through wireless communication. Three layers of DWT filters are implemented to process the captured image from the camera. With having all the wavelet coefficients produced, it is possible just to transmit the low frequency band coefficients and obtain an approximate image at the base-station. This will reduce the amount of power required in transmission. When necessary, transmitting all the wavelet coefficients will produce the full detail of image, which is similar to the image captured at the visual nodes. The visual node combines the CMOS camera, Xilinx Spartan-3L FPGA and wireless ZigBee® network that uses the Ember EM250 chip.
Wireless power transmission using ultrasonic guided waves
NASA Astrophysics Data System (ADS)
Kural, A.; Pullin, R.; Featherston, C.; Paget, C.; Holford, K.
2011-07-01
The unavailability of suitable power supply at desired locations is currently an important obstacle in the development of distributed, wireless sensor networks for applications such as structural health monitoring of aircraft. Proposed solutions range from improved batteries to energy harvesting from vibration, temperature gradients and other sources. A novel approach is being investigated at Cardiff University School of Engineering in cooperation with Airbus. It aims to utilise ultrasonic guided Lamb waves to transmit energy through the aircraft skin. A vibration generator is to be placed in a location where electricity supply is readily available. Ultrasonic waves generated by this device will travel through the aircraft structure to a receiver in a remote wireless sensor node. The receiver will convert the mechanical vibration of the ultrasonic waves back to electricity, which will be used to power the sensor node. This paper describes the measurement and modelling of the interference pattern which emerges when Lamb waves are transmitted continuously as in this power transmission application. The discovered features of the pattern, such as a large signal amplitude variation and a relatively high frequency, are presented and their importance for the development of a power transmission system is discussed.
NASA Astrophysics Data System (ADS)
Adabi, Sepideh; Adabi, Sahar; Rezaee, Ali
According to the traditional definition of Wireless Sensor Networks (WSNs), static sensors have limited the feasibility of WSNs in some kind of approaches, so the mobility was introduced in WSN. Mobile nodes in a WSN come equipped with battery and from the point of deployment, this battery reserve becomes a valuable resource since it cannot be replenished. Hence, maximizing the network lifetime by minimizing the energy is an important challenge in Mobile WSN. Energy conservation can be accomplished by different approaches. In this paper, we presented an energy conservation solution based on Cellular Automata. The main objective of this solution is based on dynamically adjusting the transmission range and switching between operational states of the sensor nodes.
A Novel Secure IoT-Based Smart Home Automation System Using a Wireless Sensor Network.
Pirbhulal, Sandeep; Zhang, Heye; E Alahi, Md Eshrat; Ghayvat, Hemant; Mukhopadhyay, Subhas Chandra; Zhang, Yuan-Ting; Wu, Wanqing
2016-12-30
Wireless sensor networks (WSNs) provide noteworthy benefits over traditional approaches for several applications, including smart homes, healthcare, environmental monitoring, and homeland security. WSNs are integrated with the Internet Protocol (IP) to develop the Internet of Things (IoT) for connecting everyday life objects to the internet. Hence, major challenges of WSNs include: (i) how to efficiently utilize small size and low-power nodes to implement security during data transmission among several sensor nodes; (ii) how to resolve security issues associated with the harsh and complex environmental conditions during data transmission over a long coverage range. In this study, a secure IoT-based smart home automation system was developed. To facilitate energy-efficient data encryption, a method namely Triangle Based Security Algorithm (TBSA) based on efficient key generation mechanism was proposed. The proposed TBSA in integration of the low power Wi-Fi were included in WSNs with the Internet to develop a novel IoT-based smart home which could provide secure data transmission among several associated sensor nodes in the network over a long converge range. The developed IoT based system has outstanding performance by fulfilling all the necessary security requirements. The experimental results showed that the proposed TBSA algorithm consumed less energy in comparison with some existing methods.
A Novel Secure IoT-Based Smart Home Automation System Using a Wireless Sensor Network
Pirbhulal, Sandeep; Zhang, Heye; E Alahi, Md Eshrat; Ghayvat, Hemant; Mukhopadhyay, Subhas Chandra; Zhang, Yuan-Ting; Wu, Wanqing
2016-01-01
Wireless sensor networks (WSNs) provide noteworthy benefits over traditional approaches for several applications, including smart homes, healthcare, environmental monitoring, and homeland security. WSNs are integrated with the Internet Protocol (IP) to develop the Internet of Things (IoT) for connecting everyday life objects to the internet. Hence, major challenges of WSNs include: (i) how to efficiently utilize small size and low-power nodes to implement security during data transmission among several sensor nodes; (ii) how to resolve security issues associated with the harsh and complex environmental conditions during data transmission over a long coverage range. In this study, a secure IoT-based smart home automation system was developed. To facilitate energy-efficient data encryption, a method namely Triangle Based Security Algorithm (TBSA) based on efficient key generation mechanism was proposed. The proposed TBSA in integration of the low power Wi-Fi were included in WSNs with the Internet to develop a novel IoT-based smart home which could provide secure data transmission among several associated sensor nodes in the network over a long converge range. The developed IoT based system has outstanding performance by fulfilling all the necessary security requirements. The experimental results showed that the proposed TBSA algorithm consumed less energy in comparison with some existing methods. PMID:28042831
Outage Probability Minimization for Energy Harvesting Cognitive Radio Sensor Networks
Zhang, Fan; Jing, Tao; Huo, Yan; Jiang, Kaiwei
2017-01-01
The incorporation of cognitive radio (CR) capability in wireless sensor networks yields a promising network paradigm known as CR sensor networks (CRSNs), which is able to provide spectrum efficient data communication. However, due to the high energy consumption results from spectrum sensing, as well as subsequent data transmission, the energy supply for the conventional sensor nodes powered by batteries is regarded as a severe bottleneck for sustainable operation. The energy harvesting technique, which gathers energy from the ambient environment, is regarded as a promising solution to perpetually power-up energy-limited devices with a continual source of energy. Therefore, applying the energy harvesting (EH) technique in CRSNs is able to facilitate the self-sustainability of the energy-limited sensors. The primary concern of this study is to design sensing-transmission policies to minimize the long-term outage probability of EH-powered CR sensor nodes. We formulate this problem as an infinite-horizon discounted Markov decision process and propose an ϵ-optimal sensing-transmission (ST) policy through using the value iteration algorithm. ϵ is the error bound between the ST policy and the optimal policy, which can be pre-defined according to the actual need. Moreover, for a special case that the signal-to-noise (SNR) power ratio is sufficiently high, we present an efficient transmission (ET) policy and prove that the ET policy achieves the same performance with the ST policy. Finally, extensive simulations are conducted to evaluate the performance of the proposed policies and the impaction of various network parameters. PMID:28125023
Outage Probability Minimization for Energy Harvesting Cognitive Radio Sensor Networks.
Zhang, Fan; Jing, Tao; Huo, Yan; Jiang, Kaiwei
2017-01-24
The incorporation of cognitive radio (CR) capability in wireless sensor networks yields a promising network paradigm known as CR sensor networks (CRSNs), which is able to provide spectrum efficient data communication. However, due to the high energy consumption results from spectrum sensing, as well as subsequent data transmission, the energy supply for the conventional sensor nodes powered by batteries is regarded as a severe bottleneck for sustainable operation. The energy harvesting technique, which gathers energy from the ambient environment, is regarded as a promising solution to perpetually power-up energy-limited devices with a continual source of energy. Therefore, applying the energy harvesting (EH) technique in CRSNs is able to facilitate the self-sustainability of the energy-limited sensors. The primary concern of this study is to design sensing-transmission policies to minimize the long-term outage probability of EH-powered CR sensor nodes. We formulate this problem as an infinite-horizon discounted Markov decision process and propose an ϵ -optimal sensing-transmission (ST) policy through using the value iteration algorithm. ϵ is the error bound between the ST policy and the optimal policy, which can be pre-defined according to the actual need. Moreover, for a special case that the signal-to-noise (SNR) power ratio is sufficiently high, we present an efficient transmission (ET) policy and prove that the ET policy achieves the same performance with the ST policy. Finally, extensive simulations are conducted to evaluate the performance of the proposed policies and the impaction of various network parameters.
Early results from the Array of Things
NASA Astrophysics Data System (ADS)
Jacob, R. L.; Catlett, C.; Beckman, P. H.; Sankaran, R.
2017-12-01
The Array of Things (AoT) is an experimental sensor and edge-computing network being deployed in the City of Chicago. An AoT node contains sensors for temperature, pressure, humidty and several trace gases as well as 4-core CPU and full Linux operating system. Custom software called "Waggle" controls the hardware and provides the data collection and transmission services. Each node is attached to a traffic signal light and has power 24/7. Data is sent over the cellular network in near realtime. With Chicago's Department of Transportation, we have been making test deployments of AoT nodes, evaluating their capabilities and comparing collected data with that from other observing systems in the Chicago area.
Jeon, Hyeonjae; Park, Kwangjin; Hwang, Dae-Joon; Choo, Hyunseung
2009-01-01
Sensor nodes transmit the sensed information to the sink through wireless sensor networks (WSNs). They have limited power, computational capacities and memory. Portable wireless devices are increasing in popularity. Mechanisms that allow information to be efficiently obtained through mobile WSNs are of significant interest. However, a mobile sink introduces many challenges to data dissemination in large WSNs. For example, it is important to efficiently identify the locations of mobile sinks and disseminate information from multi-source nodes to the multi-mobile sinks. In particular, a stationary dissemination path may no longer be effective in mobile sink applications, due to sink mobility. In this paper, we propose a Sink-oriented Dynamic Location Service (SDLS) approach to handle sink mobility. In SDLS, we propose an Eight-Direction Anchor (EDA) system that acts as a location service server. EDA prevents intensive energy consumption at the border sensor nodes and thus provides energy balancing to all the sensor nodes. Then we propose a Location-based Shortest Relay (LSR) that efficiently forwards (or relays) data from a source node to a sink with minimal delay path. Our results demonstrate that SDLS not only provides an efficient and scalable location service, but also reduces the average data communication overhead in scenarios with multiple and moving sinks and sources.
NASA Astrophysics Data System (ADS)
Pandremmenou, Katerina; Kondi, Lisimachos P.; Parsopoulos, Konstantinos E.
2012-01-01
Surveillance applications usually require high levels of video quality, resulting in high power consumption. The existence of a well-behaved scheme to balance video quality and power consumption is crucial for the system's performance. In the present work, we adopt the game-theoretic approach of Kalai-Smorodinsky Bargaining Solution (KSBS) to deal with the problem of optimal resource allocation in a multi-node wireless visual sensor network (VSN). In our setting, the Direct Sequence Code Division Multiple Access (DS-CDMA) method is used for channel access, while a cross-layer optimization design, which employs a central processing server, accounts for the overall system efficacy through all network layers. The task assigned to the central server is the communication with the nodes and the joint determination of their transmission parameters. The KSBS is applied to non-convex utility spaces, efficiently distributing the source coding rate, channel coding rate and transmission powers among the nodes. In the underlying model, the transmission powers assume continuous values, whereas the source and channel coding rates can take only discrete values. Experimental results are reported and discussed to demonstrate the merits of KSBS over competing policies.
NASA Astrophysics Data System (ADS)
Zhang, Yongjun; Lu, Zhixin
2017-10-01
Spectrum resources are very precious, so it is increasingly important to locate interference signals rapidly. Convex programming algorithms in wireless sensor networks are often used as localization algorithms. But in view of the traditional convex programming algorithm is too much overlap of wireless sensor nodes that bring low positioning accuracy, the paper proposed a new algorithm. Which is mainly based on the traditional convex programming algorithm, the spectrum car sends unmanned aerial vehicles (uses) that can be used to record data periodically along different trajectories. According to the probability density distribution, the positioning area is segmented to further reduce the location area. Because the algorithm only increases the communication process of the power value of the unknown node and the sensor node, the advantages of the convex programming algorithm are basically preserved to realize the simple and real-time performance. The experimental results show that the improved algorithm has a better positioning accuracy than the original convex programming algorithm.
Distributed adaptive diagnosis of sensor faults using structural response data
NASA Astrophysics Data System (ADS)
Dragos, Kosmas; Smarsly, Kay
2016-10-01
The reliability and consistency of wireless structural health monitoring (SHM) systems can be compromised by sensor faults, leading to miscalibrations, corrupted data, or even data loss. Several research approaches towards fault diagnosis, referred to as ‘analytical redundancy’, have been proposed that analyze the correlations between different sensor outputs. In wireless SHM, most analytical redundancy approaches require centralized data storage on a server for data analysis, while other approaches exploit the on-board computing capabilities of wireless sensor nodes, analyzing the raw sensor data directly on board. However, using raw sensor data poses an operational constraint due to the limited power resources of wireless sensor nodes. In this paper, a new distributed autonomous approach towards sensor fault diagnosis based on processed structural response data is presented. The inherent correlations among Fourier amplitudes of acceleration response data, at peaks corresponding to the eigenfrequencies of the structure, are used for diagnosis of abnormal sensor outputs at a given structural condition. Representing an entirely data-driven analytical redundancy approach that does not require any a priori knowledge of the monitored structure or of the SHM system, artificial neural networks (ANN) are embedded into the sensor nodes enabling cooperative fault diagnosis in a fully decentralized manner. The distributed analytical redundancy approach is implemented into a wireless SHM system and validated in laboratory experiments, demonstrating the ability of wireless sensor nodes to self-diagnose sensor faults accurately and efficiently with minimal data traffic. Besides enabling distributed autonomous fault diagnosis, the embedded ANNs are able to adapt to the actual condition of the structure, thus ensuring accurate and efficient fault diagnosis even in case of structural changes.
Wang, Jianing; Niu, Xintao; Zheng, Lingjiao; Zheng, Chuantao; Wang, Yiding
2016-01-01
In this paper, a wireless mid-infrared spectroscopy sensor network was designed and implemented for carbon dioxide fertilization in a greenhouse environment. A mid-infrared carbon dioxide (CO2) sensor based on non-dispersive infrared (NDIR) with the functionalities of wireless communication and anti-condensation prevention was realized as the sensor node. Smart transmission power regulation was applied in the wireless sensor network, according to the Received Signal Strength Indication (RSSI), to realize high communication stability and low-power consumption deployment. Besides real-time monitoring, this system also provides a CO2 control facility for manual and automatic control through a LabVIEW platform. According to simulations and field tests, the implemented sensor node has a satisfying anti-condensation ability and reliable measurement performance on CO2 concentrations ranging from 30 ppm to 5000 ppm. As an application, based on the Fuzzy proportional, integral, and derivative (PID) algorithm realized on a LabVIEW platform, the CO2 concentration was regulated to some desired concentrations, such as 800 ppm and 1200 ppm, in 30 min with a controlled fluctuation of <±35 ppm in an acre of greenhouse. PMID:27869725
Performance Optimization of Priority Assisted CSMA/CA Mechanism of 802.15.6 under Saturation Regime
Shakir, Mustafa; Rehman, Obaid Ur; Rahim, Mudassir; Alrajeh, Nabil; Khan, Zahoor Ali; Khan, Mahmood Ashraf; Niaz, Iftikhar Azim; Javaid, Nadeem
2016-01-01
Due to the recent development in the field of Wireless Sensor Networks (WSNs), the Wireless Body Area Networks (WBANs) have become a major area of interest for the developers and researchers. Human body exhibits postural mobility due to which distance variation occurs and the status of connections amongst sensors change time to time. One of the major requirements of WBAN is to prolong the network lifetime without compromising on other performance measures, i.e., delay, throughput and bandwidth efficiency. Node prioritization is one of the possible solutions to obtain optimum performance in WBAN. IEEE 802.15.6 CSMA/CA standard splits the nodes with different user priorities based on Contention Window (CW) size. Smaller CW size is assigned to higher priority nodes. This standard helps to reduce delay, however, it is not energy efficient. In this paper, we propose a hybrid node prioritization scheme based on IEEE 802.15.6 CSMA/CA to reduce energy consumption and maximize network lifetime. In this scheme, optimum performance is achieved by node prioritization based on CW size as well as power in respective user priority. Our proposed scheme reduces the average back off time for channel access due to CW based prioritization. Additionally, power based prioritization for a respective user priority helps to minimize required number of retransmissions. Furthermore, we also compare our scheme with IEEE 802.15.6 CSMA/CA standard (CW assisted node prioritization) and power assisted node prioritization under postural mobility in WBAN. Mathematical expressions are derived to determine the accurate analytical model for throughput, delay, bandwidth efficiency, energy consumption and life time for each node prioritization scheme. With the intention of analytical model validation, we have performed the simulations in OMNET++/MIXIM framework. Analytical and simulation results show that our proposed hybrid node prioritization scheme outperforms other node prioritization schemes in terms of average network delay, average throughput, average bandwidth efficiency and network lifetime. PMID:27598167
Architecture for WSN Nodes Integration in Context Aware Systems Using Semantic Messages
NASA Astrophysics Data System (ADS)
Larizgoitia, Iker; Muguira, Leire; Vazquez, Juan Ignacio
Wireless sensor networks (WSN) are becoming extremely popular in the development of context aware systems. Traditionally WSN have been focused on capturing data, which was later analyzed and interpreted in a server with more computational power. In this kind of scenario the problem of representing the sensor information needs to be addressed. Every node in the network might have different sensors attached; therefore their correspondent packet structures will be different. The server has to be aware of the meaning of every single structure and data in order to be able to interpret them. Multiple sensors, multiple nodes, multiple packet structures (and not following a standard format) is neither scalable nor interoperable. Context aware systems have solved this problem with the use of semantic technologies. They provide a common framework to achieve a standard definition of any domain. Nevertheless, these representations are computationally expensive, so a WSN cannot afford them. The work presented in this paper tries to bridge the gap between the sensor information and its semantic representation, by defining a simple architecture that enables the definition of this information natively in a semantic way, achieving the integration of the semantic information in the network packets. This will have several benefits, the most important being the possibility of promoting every WSN node to a real semantic information source.
Julie, E Golden; Selvi, S Tamil
2016-01-01
Wireless sensor networks (WSNs) consist of sensor nodes with limited processing capability and limited nonrechargeable battery power. Energy consumption in WSN is a significant issue in networks for improving network lifetime. It is essential to develop an energy aware clustering protocol in WSN to reduce energy consumption for increasing network lifetime. In this paper, a neuro-fuzzy energy aware clustering scheme (NFEACS) is proposed to form optimum and energy aware clusters. NFEACS consists of two parts: fuzzy subsystem and neural network system that achieved energy efficiency in forming clusters and cluster heads in WSN. NFEACS used neural network that provides effective training set related to energy and received signal strength of all nodes to estimate the expected energy for tentative cluster heads. Sensor nodes with higher energy are trained with center location of base station to select energy aware cluster heads. Fuzzy rule is used in fuzzy logic part that inputs to form clusters. NFEACS is designed for WSN handling mobility of node. The proposed scheme NFEACS is compared with related clustering schemes, cluster-head election mechanism using fuzzy logic, and energy aware fuzzy unequal clustering. The experiment results show that NFEACS performs better than the other related schemes.
Julie, E. Golden; Selvi, S. Tamil
2016-01-01
Wireless sensor networks (WSNs) consist of sensor nodes with limited processing capability and limited nonrechargeable battery power. Energy consumption in WSN is a significant issue in networks for improving network lifetime. It is essential to develop an energy aware clustering protocol in WSN to reduce energy consumption for increasing network lifetime. In this paper, a neuro-fuzzy energy aware clustering scheme (NFEACS) is proposed to form optimum and energy aware clusters. NFEACS consists of two parts: fuzzy subsystem and neural network system that achieved energy efficiency in forming clusters and cluster heads in WSN. NFEACS used neural network that provides effective training set related to energy and received signal strength of all nodes to estimate the expected energy for tentative cluster heads. Sensor nodes with higher energy are trained with center location of base station to select energy aware cluster heads. Fuzzy rule is used in fuzzy logic part that inputs to form clusters. NFEACS is designed for WSN handling mobility of node. The proposed scheme NFEACS is compared with related clustering schemes, cluster-head election mechanism using fuzzy logic, and energy aware fuzzy unequal clustering. The experiment results show that NFEACS performs better than the other related schemes. PMID:26881269
Khan, Muhammad Khurram; Alghathbar, Khaled
2010-01-01
User authentication in wireless sensor networks (WSN) is a critical security issue due to their unattended and hostile deployment in the field. Since sensor nodes are equipped with limited computing power, storage, and communication modules; authenticating remote users in such resource-constrained environments is a paramount security concern. Recently, M.L. Das proposed a two-factor user authentication scheme in WSNs and claimed that his scheme is secure against different kinds of attack. However, in this paper, we show that the M.L. Das-scheme has some critical security pitfalls and cannot be recommended for real applications. We point out that in his scheme: users cannot change/update their passwords, it does not provide mutual authentication between gateway node and sensor node, and is vulnerable to gateway node bypassing attack and privileged-insider attack. To overcome the inherent security weaknesses of the M.L. Das-scheme, we propose improvements and security patches that attempt to fix the susceptibilities of his scheme. The proposed security improvements can be incorporated in the M.L. Das-scheme for achieving a more secure and robust two-factor user authentication in WSNs.
Efficient Actor Recovery Paradigm for Wireless Sensor and Actor Networks
Mahjoub, Reem K.; Elleithy, Khaled
2017-01-01
The actor nodes are the spine of wireless sensor and actor networks (WSANs) that collaborate to perform a specific task in an unverified and uneven environment. Thus, there is a possibility of high failure rate in such unfriendly scenarios due to several factors such as power consumption of devices, electronic circuit failure, software errors in nodes or physical impairment of the actor nodes and inter-actor connectivity problem. Therefore, it is extremely important to discover the failure of a cut-vertex actor and network-disjoint in order to improve the Quality-of-Service (QoS). In this paper, we propose an Efficient Actor Recovery (EAR) paradigm to guarantee the contention-free traffic-forwarding capacity. The EAR paradigm consists of a Node Monitoring and Critical Node Detection (NMCND) algorithm that monitors the activities of the nodes to determine the critical node. In addition, it replaces the critical node with backup node prior to complete node-failure which helps balancing the network performance. The packets are handled using Network Integration and Message Forwarding (NIMF) algorithm that determines the source of forwarding the packets; either from actor or sensor. This decision-making capability of the algorithm controls the packet forwarding rate to maintain the network for a longer time. Furthermore, for handling the proper routing strategy, Priority-Based Routing for Node Failure Avoidance (PRNFA) algorithm is deployed to decide the priority of the packets to be forwarded based on the significance of information available in the packet. To validate the effectiveness of the proposed EAR paradigm, the proposed algorithms were tested using OMNET++ simulation. PMID:28420102
Efficient Actor Recovery Paradigm for Wireless Sensor and Actor Networks.
Mahjoub, Reem K; Elleithy, Khaled
2017-04-14
The actor nodes are the spine of wireless sensor and actor networks (WSANs) that collaborate to perform a specific task in an unverified and uneven environment. Thus, there is a possibility of high failure rate in such unfriendly scenarios due to several factors such as power consumption of devices, electronic circuit failure, software errors in nodes or physical impairment of the actor nodes and inter-actor connectivity problem. Therefore, it is extremely important to discover the failure of a cut-vertex actor and network-disjoint in order to improve the Quality-of-Service (QoS). In this paper, we propose an Efficient Actor Recovery (EAR) paradigm to guarantee the contention-free traffic-forwarding capacity. The EAR paradigm consists of a Node Monitoring and Critical Node Detection (NMCND) algorithm that monitors the activities of the nodes to determine the critical node. In addition, it replaces the critical node with backup node prior to complete node-failure which helps balancing the network performance. The packets are handled using Network Integration and Message Forwarding (NIMF) algorithm that determines the source of forwarding the packets; either from actor or sensor. This decision-making capability of the algorithm controls the packet forwarding rate to maintain the network for a longer time. Furthermore, for handling the proper routing strategy, Priority-Based Routing for Node Failure Avoidance (PRNFA) algorithm is deployed to decide the priority of the packets to be forwarded based on the significance of information available in the packet. To validate the effectiveness of the proposed EAR paradigm, the proposed algorithms were tested using OMNET++ simulation.
Design and performance of an integrated ground and space sensor web for monitoring active volcanoes.
NASA Astrophysics Data System (ADS)
Lahusen, Richard; Song, Wenzhan; Kedar, Sharon; Shirazi, Behrooz; Chien, Steve; Doubleday, Joshua; Davies, Ashley; Webb, Frank; Dzurisin, Dan; Pallister, John
2010-05-01
An interdisciplinary team of computer, earth and space scientists collaborated to develop a sensor web system for rapid deployment at active volcanoes. The primary goals of this Optimized Autonomous Space In situ Sensorweb (OASIS) are to: 1) integrate complementary space and in situ (ground-based) elements into an interactive, autonomous sensor web; 2) advance sensor web power and communication resource management technology; and 3) enable scalability for seamless addition sensors and other satellites into the sensor web. This three-year project began with a rigorous multidisciplinary interchange that resulted in definition of system requirements to guide the design of the OASIS network and to achieve the stated project goals. Based on those guidelines, we have developed fully self-contained in situ nodes that integrate GPS, seismic, infrasonic and lightning (ash) detection sensors. The nodes in the wireless sensor network are linked to the ground control center through a mesh network that is highly optimized for remote geophysical monitoring. OASIS also features an autonomous bidirectional interaction between ground nodes and instruments on the EO-1 space platform through continuous analysis and messaging capabilities at the command and control center. Data from both the in situ sensors and satellite-borne hyperspectral imaging sensors stream into a common database for real-time visualization and analysis by earth scientists. We have successfully completed a field deployment of 15 nodes within the crater and on the flanks of Mount St. Helens, Washington. The demonstration that sensor web technology facilitates rapid network deployments and that we can achieve real-time continuous data acquisition. We are now optimizing component performance and improving user interaction for additional deployments at erupting volcanoes in 2010.
Faulty node detection in wireless sensor networks using a recurrent neural network
NASA Astrophysics Data System (ADS)
Atiga, Jamila; Mbarki, Nour Elhouda; Ejbali, Ridha; Zaied, Mourad
2018-04-01
The wireless sensor networks (WSN) consist of a set of sensors that are more and more used in surveillance applications on a large scale in different areas: military, Environment, Health ... etc. Despite the minimization and the reduction of the manufacturing costs of the sensors, they can operate in places difficult to access without the possibility of reloading of battery, they generally have limited resources in terms of power of emission, of processing capacity, data storage and energy. These sensors can be used in a hostile environment, such as, for example, on a field of battle, in the presence of fires, floods, earthquakes. In these environments the sensors can fail, even in a normal operation. It is therefore necessary to develop algorithms tolerant and detection of defects of the nodes for the network of sensor without wires, therefore, the faults of the sensor can reduce the quality of the surveillance if they are not detected. The values that are measured by the sensors are used to estimate the state of the monitored area. We used the Non-linear Auto- Regressive with eXogeneous (NARX), the recursive architecture of the neural network, to predict the state of a node of a sensor from the previous values described by the functions of time series. The experimental results have verified that the prediction of the State is enhanced by our proposed model.
Exploiting node mobility for energy optimization in wireless sensor networks
NASA Astrophysics Data System (ADS)
El-Moukaddem, Fatme Mohammad
Wireless Sensor Networks (WSNs) have become increasingly available for data-intensive applications such as micro-climate monitoring, precision agriculture, and audio/video surveillance. A key challenge faced by data-intensive WSNs is to transmit the sheer amount of data generated within an application's lifetime to the base station despite the fact that sensor nodes have limited power supplies such as batteries or small solar panels. The availability of numerous low-cost robotic units (e.g. Robomote and Khepera) has made it possible to construct sensor networks consisting of mobile sensor nodes. It has been shown that the controlled mobility offered by mobile sensors can be exploited to improve the energy efficiency of a network. In this thesis, we propose schemes that use mobile sensor nodes to reduce the energy consumption of data-intensive WSNs. Our approaches differ from previous work in two main aspects. First, our approaches do not require complex motion planning of mobile nodes, and hence can be implemented on a number of low-cost mobile sensor platforms. Second, we integrate the energy consumption due to both mobility and wireless communications into a holistic optimization framework. We consider three problems arising from the limited energy in the sensor nodes. In the first problem, the network consists of mostly static nodes and contains only a few mobile nodes. In the second and third problems, we assume essentially that all nodes in the WSN are mobile. We first study a new problem called max-data mobile relay configuration (MMRC ) that finds the positions of a set of mobile sensors, referred to as relays, that maximize the total amount of data gathered by the network during its lifetime. We show that the MMRC problem is surprisingly complex even for a trivial network topology due to the joint consideration of the energy consumption of both wireless communication and mechanical locomotion. We present optimal MMRC algorithms and practical distributed implementations for several important network topologies and applications. Second, we consider the problem of minimizing the total energy consumption of a network. We design an iterative algorithm that improves a given configuration by relocating nodes to new positions. We show that this algorithm converges to the optimal configuration for the given transmission routes. Moreover, we propose an efficient distributed implementation that does not require explicit synchronization. Finally, we consider the problem of maximizing the lifetime of the network. We propose an approach that exploits the mobility of the nodes to balance the energy consumption throughout the network. We develop efficient algorithms for single and multiple round approaches. For all three problems, we evaluate the efficiency of our algorithms through simulations. Our simulation results based on realistic energy models obtained from existing mobile and static sensor platforms show that our approaches significantly improve the network's performance and outperform existing approaches.
Monitoring of physiological parameters from multiple patients using wireless sensor network.
Yuce, Mehmet R; Ng, Peng Choong; Khan, Jamil Y
2008-10-01
This paper presents a wireless sensor network system that has the capability to monitor physiological parameters from multiple patient bodies. The system uses the Medical Implant Communication Service band between the sensor nodes and a remote central control unit (CCU) that behaves as a base station. The CCU communicates with another network standard (the internet or a mobile network) for a long distance data transfer. The proposed system offers mobility to patients and flexibility to medical staff to obtain patient's physiological data on demand basis via Internet. A prototype sensor network including hardware, firmware and software designs has been implemented and tested. The developed system has been optimized for power consumption by having the nodes sleep when there is no communication via a bidirectional communication.
A novel topology control approach to maintain the node degree in dynamic wireless sensor networks.
Huang, Yuanjiang; Martínez, José-Fernán; Díaz, Vicente Hernández; Sendra, Juana
2014-03-07
Topology control is an important technique to improve the connectivity and the reliability of Wireless Sensor Networks (WSNs) by means of adjusting the communication range of wireless sensor nodes. In this paper, a novel Fuzzy-logic Topology Control (FTC) is proposed to achieve any desired average node degree by adaptively changing communication range, thus improving the network connectivity, which is the main target of FTC. FTC is a fully localized control algorithm, and does not rely on location information of neighbors. Instead of designing membership functions and if-then rules for fuzzy-logic controller, FTC is constructed from the training data set to facilitate the design process. FTC is proved to be accurate, stable and has short settling time. In order to compare it with other representative localized algorithms (NONE, FLSS, k-Neighbor and LTRT), FTC is evaluated through extensive simulations. The simulation results show that: firstly, similar to k-Neighbor algorithm, FTC is the best to achieve the desired average node degree as node density varies; secondly, FTC is comparable to FLSS and k-Neighbor in terms of energy-efficiency, but is better than LTRT and NONE; thirdly, FTC has the lowest average maximum communication range than other algorithms, which indicates that the most energy-consuming node in the network consumes the lowest power.
An Energy Balanced and Lifetime Extended Routing Protocol for Underwater Sensor Networks.
Wang, Hao; Wang, Shilian; Zhang, Eryang; Lu, Luxi
2018-05-17
Energy limitation is an adverse problem in designing routing protocols for underwater sensor networks (UWSNs). To prolong the network lifetime with limited battery power, an energy balanced and efficient routing protocol, called energy balanced and lifetime extended routing protocol (EBLE), is proposed in this paper. The proposed EBLE not only balances traffic loads according to the residual energy, but also optimizes data transmissions by selecting low-cost paths. Two phases are operated in the EBLE data transmission process: (1) candidate forwarding set selection phase and (2) data transmission phase. In candidate forwarding set selection phase, nodes update candidate forwarding nodes by broadcasting the position and residual energy level information. The cost value of available nodes is calculated and stored in each sensor node. Then in data transmission phase, high residual energy and relatively low-cost paths are selected based on the cost function and residual energy level information. We also introduce detailed analysis of optimal energy consumption in UWSNs. Numerical simulation results on a variety of node distributions and data load distributions prove that EBLE outperforms other routing protocols (BTM, BEAR and direct transmission) in terms of network lifetime and energy efficiency.
Self organization of wireless sensor networks using ultra-wideband radios
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dowla, Farid U; Nekoogar, Franak; Spiridon, Alex
A novel UWB communications method and system that provides self-organization for wireless sensor networks is introduced. The self-organization is in terms of scalability, power conservation, channel estimation, and node synchronization in wireless sensor networks. The UWB receiver in the present invention adds two new tasks to conventional TR receivers. The two additional units are SNR enhancing unit and timing acquisition and tracking unit.
JSC Wireless Sensor Network Update
NASA Technical Reports Server (NTRS)
Wagner, Robert
2010-01-01
Sensor nodes composed of three basic components... radio module: COTS radio module implementing standardized WSN protocol; treated as WSN modem by main board main board: contains application processor (TI MSP430 microcontroller), memory, power supply; responsible for sensor data acquisition, pre-processing, and task scheduling; re-used in every application with growing library of embedded C code sensor card: contains application-specific sensors, data conditioning hardware, and any advanced hardware not built into main board (DSPs, faster A/D, etc.); requires (re-) development for each application.
A Power Planning Algorithm Based on RPL for AMI Wireless Sensor Networks.
Miguel, Marcio L F; Jamhour, Edgard; Pellenz, Marcelo E; Penna, Manoel C
2017-03-25
The advanced metering infrastructure (AMI) is an architecture for two-way communication between electric, gas and water meters and city utilities. The AMI network is a wireless sensor network that provides communication for metering devices in the neighborhood area of the smart grid. Recently, the applicability of a routing protocol for low-power and lossy networks (RPL) has been considered in AMI networks. Some studies in the literature have pointed out problems with RPL, including sub-optimal path selection and instability. In this paper, we defend the viewpoint that careful planning of the transmission power in wireless RPL networks can significantly reduce the pointed problems. This paper presents a method for planning the transmission power in order to assure that, after convergence, the size of the parent set of the RPL nodes is as close as possible to a predefined size. Another important feature is that all nodes in the parent set offer connectivity through links of similar quality.
A Power Planning Algorithm Based on RPL for AMI Wireless Sensor Networks
Miguel, Marcio L. F.; Jamhour, Edgard; Pellenz, Marcelo E.; Penna, Manoel C.
2017-01-01
The advanced metering infrastructure (AMI) is an architecture for two-way communication between electric, gas and water meters and city utilities. The AMI network is a wireless sensor network that provides communication for metering devices in the neighborhood area of the smart grid. Recently, the applicability of a routing protocol for low-power and lossy networks (RPL) has been considered in AMI networks. Some studies in the literature have pointed out problems with RPL, including sub-optimal path selection and instability. In this paper, we defend the viewpoint that careful planning of the transmission power in wireless RPL networks can significantly reduce the pointed problems. This paper presents a method for planning the transmission power in order to assure that, after convergence, the size of the parent set of the RPL nodes is as close as possible to a predefined size. Another important feature is that all nodes in the parent set offer connectivity through links of similar quality. PMID:28346339
Li, Hao; Zhang, Gaofei; Ma, Rui; You, Zheng
2014-01-01
An effective multisource energy harvesting system is presented as power supply for wireless sensor nodes (WSNs). The advanced system contains not only an expandable power management module including control of the charging and discharging process of the lithium polymer battery but also an energy harvesting system using the maximum power point tracking (MPPT) circuit with analog driving scheme for the collection of both solar and vibration energy sources. Since the MPPT and the power management module are utilized, the system is able to effectively achieve a low power consumption. Furthermore, a super capacitor is integrated in the system so that current fluctuations of the lithium polymer battery during the charging and discharging processes can be properly reduced. In addition, through a simple analog switch circuit with low power consumption, the proposed system can successfully switch the power supply path according to the ambient energy sources and load power automatically. A practical WSNs platform shows that efficiency of the energy harvesting system can reach about 75-85% through the 24-hour environmental test, which confirms that the proposed system can be used as a long-term continuous power supply for WSNs.
Li, Hao; Zhang, Gaofei; Ma, Rui; You, Zheng
2014-01-01
An effective multisource energy harvesting system is presented as power supply for wireless sensor nodes (WSNs). The advanced system contains not only an expandable power management module including control of the charging and discharging process of the lithium polymer battery but also an energy harvesting system using the maximum power point tracking (MPPT) circuit with analog driving scheme for the collection of both solar and vibration energy sources. Since the MPPT and the power management module are utilized, the system is able to effectively achieve a low power consumption. Furthermore, a super capacitor is integrated in the system so that current fluctuations of the lithium polymer battery during the charging and discharging processes can be properly reduced. In addition, through a simple analog switch circuit with low power consumption, the proposed system can successfully switch the power supply path according to the ambient energy sources and load power automatically. A practical WSNs platform shows that efficiency of the energy harvesting system can reach about 75–85% through the 24-hour environmental test, which confirms that the proposed system can be used as a long-term continuous power supply for WSNs. PMID:25032233
Pirbhulal, Sandeep; Zhang, Heye; Mukhopadhyay, Subhas Chandra; Li, Chunyue; Wang, Yumei; Li, Guanglin; Wu, Wanqing; Zhang, Yuan-Ting
2015-01-01
Body Sensor Network (BSN) is a network of several associated sensor nodes on, inside or around the human body to monitor vital signals, such as, Electroencephalogram (EEG), Photoplethysmography (PPG), Electrocardiogram (ECG), etc. Each sensor node in BSN delivers major information; therefore, it is very significant to provide data confidentiality and security. All existing approaches to secure BSN are based on complex cryptographic key generation procedures, which not only demands high resource utilization and computation time, but also consumes large amount of energy, power and memory during data transmission. However, it is indispensable to put forward energy efficient and computationally less complex authentication technique for BSN. In this paper, a novel biometric-based algorithm is proposed, which utilizes Heart Rate Variability (HRV) for simple key generation process to secure BSN. Our proposed algorithm is compared with three data authentication techniques, namely Physiological Signal based Key Agreement (PSKA), Data Encryption Standard (DES) and Rivest Shamir Adleman (RSA). Simulation is performed in Matlab and results suggest that proposed algorithm is quite efficient in terms of transmission time utilization, average remaining energy and total power consumption. PMID:26131666
Pirbhulal, Sandeep; Zhang, Heye; Mukhopadhyay, Subhas Chandra; Li, Chunyue; Wang, Yumei; Li, Guanglin; Wu, Wanqing; Zhang, Yuan-Ting
2015-06-26
Body Sensor Network (BSN) is a network of several associated sensor nodes on, inside or around the human body to monitor vital signals, such as, Electroencephalogram (EEG), Photoplethysmography (PPG), Electrocardiogram (ECG), etc. Each sensor node in BSN delivers major information; therefore, it is very significant to provide data confidentiality and security. All existing approaches to secure BSN are based on complex cryptographic key generation procedures, which not only demands high resource utilization and computation time, but also consumes large amount of energy, power and memory during data transmission. However, it is indispensable to put forward energy efficient and computationally less complex authentication technique for BSN. In this paper, a novel biometric-based algorithm is proposed, which utilizes Heart Rate Variability (HRV) for simple key generation process to secure BSN. Our proposed algorithm is compared with three data authentication techniques, namely Physiological Signal based Key Agreement (PSKA), Data Encryption Standard (DES) and Rivest Shamir Adleman (RSA). Simulation is performed in Matlab and results suggest that proposed algorithm is quite efficient in terms of transmission time utilization, average remaining energy and total power consumption.
Traffic Adaptive Energy Efficient and Low Latency Medium Access Control for Wireless Sensor Networks
NASA Astrophysics Data System (ADS)
Yadav, Rajesh; Varma, Shirshu; Malaviya, N.
2008-05-01
Medium access control for wireless sensor networks has been a very active research area in the recent years. The traditional wireless medium access control protocol such as IEEE 802.11 is not suitable for the sensor network application because these are battery powered. The recharging of these sensor nodes is expensive and also not possible. The most of the literature in the medium access for the sensor network focuses on the energy efficiency. The proposed MAC protocol solves the energy inefficiency caused by idle listening, control packet overhead and overhearing taking nodes latency into consideration based on the network traffic. Simulation experiments have been performed to demonstrate the effectiveness of the proposed approach. The validation of the simulation results of the proposed MAC has been done by comparing it with the analytical model. This protocol has been simulated in Network Simulator ns-2.
A Multimodal Adaptive Wireless Control Interface for People With Upper-Body Disabilities.
Fall, Cheikh Latyr; Quevillon, Francis; Blouin, Martine; Latour, Simon; Campeau-Lecours, Alexandre; Gosselin, Clement; Gosselin, Benoit
2018-06-01
This paper describes a multimodal body-machine interface (BoMI) to help individuals with upper-limb disabilities using advanced assistive technologies, such as robotic arms. The proposed system uses a wearable and wireless body sensor network (WBSN) supporting up to six sensor nodes to measure the natural upper-body gesture of the users and translate it into control commands. Natural gesture of the head and upper-body parts, as well as muscular activity, are measured using inertial measurement units (IMUs) and surface electromyography (sEMG) using custom-designed multimodal wireless sensor nodes. An IMU sensing node is attached to a headset worn by the user. It has a size of 2.9 cm 2.9 cm, a maximum power consumption of 31 mW, and provides angular precision of 1. Multimodal patch sensor nodes, including both IMU and sEMG sensing modalities are placed over the user able-body parts to measure the motion and muscular activity. These nodes have a size of 2.5 cm 4.0 cm and a maximum power consumption of 11 mW. The proposed BoMI runs on a Raspberry Pi. It can adapt to several types of users through different control scenarios using the head and shoulder motion, as well as muscular activity, and provides a power autonomy of up to 24 h. JACO, a 6-DoF assistive robotic arm, is used as a testbed to evaluate the performance of the proposed BoMI. Ten able-bodied subjects performed ADLs while operating the AT device, using the Test d'Évaluation des Membres Supérieurs de Personnes Âgées to evaluate and compare the proposed BoMI with the conventional joystick controller. It is shown that the users can perform all tasks with the proposed BoMI, almost as fast as with the joystick controller, with only 30% time overhead on average, while being potentially more accessible to the upper-body disabled who cannot use the conventional joystick controller. Tests show that control performance with the proposed BoMI improved by up to 17% on average, after three trials.
Wireless sensor network for wide-area high-mobility applications
NASA Astrophysics Data System (ADS)
del Castillo, Ignacio; Esper-Chaín, Roberto; Tobajas, Félix; de Armas, Valentín.
2013-05-01
In recent years, IEEE 802.15.4-based Wireless Sensor Networks (WSN) have experienced significant growth, mainly motivated by the standard features, such as small size oriented devices, low power consumption nodes, wireless communication links, and sensing and data processing capabilities. In this paper, the development, implementation and deployment of a novel fully compatible IEEE 802.15.4-based WSN architecture for applications operating over extended geographic regions with high node mobility support, is described. In addition, a practical system implementation of the proposed WSN architecture is presented and described for experimental validation and characterization purposes.
Vibration harvesting in traffic tunnels to power wireless sensor nodes
NASA Astrophysics Data System (ADS)
Wischke, M.; Masur, M.; Kröner, M.; Woias, P.
2011-08-01
Monitoring the traffic and the structural health of traffic tunnels requires numerous sensors. Powering these remote and partially embedded sensors from ambient energies will reduce maintenance costs, and improve the sensor network performance. This work reports on vibration levels detected in railway and road tunnels as a potential energy source for embedded sensors. The measurement results showed that the vibrations at any location in the road tunnel and at the wall in the railway tunnel are too small for useful vibration harvesting. In contrast, the railway sleeper features usable vibrations and sufficient mounting space. For this application site, a robust piezoelectric vibration harvester was designed and equipped with a power interface circuit. Within the field test, it is demonstrated that sufficient energy is harvested to supply a microcontroller with a radio frequency (RF) interface.
Reputation-Based Secure Sensor Localization in Wireless Sensor Networks
He, Jingsha; Xu, Jing; Zhu, Xingye; Zhang, Yuqiang; Zhang, Ting; Fu, Wanqing
2014-01-01
Location information of sensor nodes in wireless sensor networks (WSNs) is very important, for it makes information that is collected and reported by the sensor nodes spatially meaningful for applications. Since most current sensor localization schemes rely on location information that is provided by beacon nodes for the regular sensor nodes to locate themselves, the accuracy of localization depends on the accuracy of location information from the beacon nodes. Therefore, the security and reliability of the beacon nodes become critical in the localization of regular sensor nodes. In this paper, we propose a reputation-based security scheme for sensor localization to improve the security and the accuracy of sensor localization in hostile or untrusted environments. In our proposed scheme, the reputation of each beacon node is evaluated based on a reputation evaluation model so that regular sensor nodes can get credible location information from highly reputable beacon nodes to accomplish localization. We also perform a set of simulation experiments to demonstrate the effectiveness of the proposed reputation-based security scheme. And our simulation results show that the proposed security scheme can enhance the security and, hence, improve the accuracy of sensor localization in hostile or untrusted environments. PMID:24982940
Branch-Based Centralized Data Collection for Smart Grids Using Wireless Sensor Networks
Kim, Kwangsoo; Jin, Seong-il
2015-01-01
A smart grid is one of the most important applications in smart cities. In a smart grid, a smart meter acts as a sensor node in a sensor network, and a central device collects power usage from every smart meter. This paper focuses on a centralized data collection problem of how to collect every power usage from every meter without collisions in an environment in which the time synchronization among smart meters is not guaranteed. To solve the problem, we divide a tree that a sensor network constructs into several branches. A conflict-free query schedule is generated based on the branches. Each power usage is collected according to the schedule. The proposed method has important features: shortening query processing time and avoiding collisions between a query and query responses. We evaluate this method using the ns-2 simulator. The experimental results show that this method can achieve both collision avoidance and fast query processing at the same time. The success rate of data collection at a sink node executing this method is 100%. Its running time is about 35 percent faster than that of the round-robin method, and its memory size is reduced to about 10% of that of the depth-first search method. PMID:26007734
Branch-based centralized data collection for smart grids using wireless sensor networks.
Kim, Kwangsoo; Jin, Seong-il
2015-05-21
A smart grid is one of the most important applications in smart cities. In a smart grid, a smart meter acts as a sensor node in a sensor network, and a central device collects power usage from every smart meter. This paper focuses on a centralized data collection problem of how to collect every power usage from every meter without collisions in an environment in which the time synchronization among smart meters is not guaranteed. To solve the problem, we divide a tree that a sensor network constructs into several branches. A conflict-free query schedule is generated based on the branches. Each power usage is collected according to the schedule. The proposed method has important features: shortening query processing time and avoiding collisions between a query and query responses. We evaluate this method using the ns-2 simulator. The experimental results show that this method can achieve both collision avoidance and fast query processing at the same time. The success rate of data collection at a sink node executing this method is 100%. Its running time is about 35 percent faster than that of the round-robin method, and its memory size is reduced to about 10% of that of the depth-first search method.
Link-state-estimation-based transmission power control in wireless body area networks.
Kim, Seungku; Eom, Doo-Seop
2014-07-01
This paper presents a novel transmission power control protocol to extend the lifetime of sensor nodes and to increase the link reliability in wireless body area networks (WBANs). We first experimentally investigate the properties of the link states using the received signal strength indicator (RSSI). We then propose a practical transmission power control protocol based on both short- and long-term link-state estimations. Both the short- and long-term link-state estimations enable the transceiver to adapt the transmission power level and target the RSSI threshold range, respectively, to simultaneously satisfy the requirements of energy efficiency and link reliability. Finally, the performance of the proposed protocol is experimentally evaluated in two experimental scenarios-body posture change and dynamic body motion-and compared with the typical WBAN transmission power control protocols, a real-time reactive scheme, and a dynamic postural position inference mechanism. From the experimental results, it is found that the proposed protocol increases the lifetime of the sensor nodes by a maximum of 9.86% and enhances the link reliability by reducing the packet loss by a maximum of 3.02%.
Simulation of Attacks for Security in Wireless Sensor Network
Diaz, Alvaro; Sanchez, Pablo
2016-01-01
The increasing complexity and low-power constraints of current Wireless Sensor Networks (WSN) require efficient methodologies for network simulation and embedded software performance analysis of nodes. In addition, security is also a very important feature that has to be addressed in most WSNs, since they may work with sensitive data and operate in hostile unattended environments. In this paper, a methodology for security analysis of Wireless Sensor Networks is presented. The methodology allows designing attack-aware embedded software/firmware or attack countermeasures to provide security in WSNs. The proposed methodology includes attacker modeling and attack simulation with performance analysis (node’s software execution time and power consumption estimation). After an analysis of different WSN attack types, an attacker model is proposed. This model defines three different types of attackers that can emulate most WSN attacks. In addition, this paper presents a virtual platform that is able to model the node hardware, embedded software and basic wireless channel features. This virtual simulation analyzes the embedded software behavior and node power consumption while it takes into account the network deployment and topology. Additionally, this simulator integrates the previously mentioned attacker model. Thus, the impact of attacks on power consumption and software behavior/execution-time can be analyzed. This provides developers with essential information about the effects that one or multiple attacks could have on the network, helping them to develop more secure WSN systems. This WSN attack simulator is an essential element of the attack-aware embedded software development methodology that is also introduced in this work. PMID:27869710
Towards the development of tamper-resistant, ground-based mobile sensor nodes
NASA Astrophysics Data System (ADS)
Mascarenas, David; Stull, Christopher; Farrar, Charles
2011-11-01
Mobile sensor nodes hold great potential for collecting field data using fewer resources than human operators would require and potentially requiring fewer sensors than a fixed-position sensor array. It would be very beneficial to allow these mobile sensor nodes to operate unattended with a minimum of human intervention. In order to allow mobile sensor nodes to operate unattended in a field environment, it is imperative that they be capable of identifying and responding to external agents that may attempt to tamper with, damage or steal the mobile sensor nodes, while still performing their data collection mission. Potentially hostile external agents could include animals, other mobile sensor nodes, or humans. This work will focus on developing control policies to help enable a mobile sensor node to identify and avoid capture by a hostile un-mounted human. The work is developed in a simulation environment, and demonstrated using a non-holonomic, ground-based mobile sensor node. This work will be a preliminary step toward ensuring the cyber-physical security of ground-based mobile sensor nodes that operate unattended in potentially unfriendly environments.
Inferring Human Activity Recognition with Ambient Sound on Wireless Sensor Nodes.
Salomons, Etto L; Havinga, Paul J M; van Leeuwen, Henk
2016-09-27
A wireless sensor network that consists of nodes with a sound sensor can be used to obtain context awareness in home environments. However, the limited processing power of wireless nodes offers a challenge when extracting features from the signal, and subsequently, classifying the source. Although multiple papers can be found on different methods of sound classification, none of these are aimed at limited hardware or take the efficiency of the algorithms into account. In this paper, we compare and evaluate several classification methods on a real sensor platform using different feature types and classifiers, in order to find an approach that results in a good classifier that can run on limited hardware. To be as realistic as possible, we trained our classifiers using sound waves from many different sources. We conclude that despite the fact that the classifiers are often of low quality due to the highly restricted hardware resources, sufficient performance can be achieved when (1) the window length for our classifiers is increased, and (2) if we apply a two-step approach that uses a refined classification after a global classification has been performed.
Mixed H2/H∞-Based Fusion Estimation for Energy-Limited Multi-Sensors in Wearable Body Networks
Li, Chao; Zhang, Zhenjiang; Chao, Han-Chieh
2017-01-01
In wireless sensor networks, sensor nodes collect plenty of data for each time period. If all of data are transmitted to a Fusion Center (FC), the power of sensor node would run out rapidly. On the other hand, the data also needs a filter to remove the noise. Therefore, an efficient fusion estimation model, which can save the energy of the sensor nodes while maintaining higher accuracy, is needed. This paper proposes a novel mixed H2/H∞-based energy-efficient fusion estimation model (MHEEFE) for energy-limited Wearable Body Networks. In the proposed model, the communication cost is firstly reduced efficiently while keeping the estimation accuracy. Then, the parameters in quantization method are discussed, and we confirm them by an optimization method with some prior knowledge. Besides, some calculation methods of important parameters are researched which make the final estimates more stable. Finally, an iteration-based weight calculation algorithm is presented, which can improve the fault tolerance of the final estimate. In the simulation, the impacts of some pivotal parameters are discussed. Meanwhile, compared with the other related models, the MHEEFE shows a better performance in accuracy, energy-efficiency and fault tolerance. PMID:29280950
A Hybrid Memetic Framework for Coverage Optimization in Wireless Sensor Networks.
Chen, Chia-Pang; Mukhopadhyay, Subhas Chandra; Chuang, Cheng-Long; Lin, Tzu-Shiang; Liao, Min-Sheng; Wang, Yung-Chung; Jiang, Joe-Air
2015-10-01
One of the critical concerns in wireless sensor networks (WSNs) is the continuous maintenance of sensing coverage. Many particular applications, such as battlefield intrusion detection and object tracking, require a full-coverage at any time, which is typically resolved by adding redundant sensor nodes. With abundant energy, previous studies suggested that the network lifetime can be maximized while maintaining full coverage through organizing sensor nodes into a maximum number of disjoint sets and alternately turning them on. Since the power of sensor nodes is unevenly consumed over time, and early failure of sensor nodes leads to coverage loss, WSNs require dynamic coverage maintenance. Thus, the task of permanently sustaining full coverage is particularly formulated as a hybrid of disjoint set covers and dynamic-coverage-maintenance problems, and both have been proven to be nondeterministic polynomial-complete. In this paper, a hybrid memetic framework for coverage optimization (Hy-MFCO) is presented to cope with the hybrid problem using two major components: 1) a memetic algorithm (MA)-based scheduling strategy and 2) a heuristic recursive algorithm (HRA). First, the MA-based scheduling strategy adopts a dynamic chromosome structure to create disjoint sets, and then the HRA is utilized to compensate the loss of coverage by awaking some of the hibernated nodes in local regions when a disjoint set fails to maintain full coverage. The results obtained from real-world experiments using a WSN test-bed and computer simulations indicate that the proposed Hy-MFCO is able to maximize sensing coverage while achieving energy efficiency at the same time. Moreover, the results also show that the Hy-MFCO significantly outperforms the existing methods with respect to coverage preservation and energy efficiency.
Self-Learning Power Control in Wireless Sensor Networks.
Chincoli, Michele; Liotta, Antonio
2018-01-27
Current trends in interconnecting myriad smart objects to monetize on Internet of Things applications have led to high-density communications in wireless sensor networks. This aggravates the already over-congested unlicensed radio bands, calling for new mechanisms to improve spectrum management and energy efficiency, such as transmission power control. Existing protocols are based on simplistic heuristics that often approach interference problems (i.e., packet loss, delay and energy waste) by increasing power, leading to detrimental results. The scope of this work is to investigate how machine learning may be used to bring wireless nodes to the lowest possible transmission power level and, in turn, to respect the quality requirements of the overall network. Lowering transmission power has benefits in terms of both energy consumption and interference. We propose a protocol of transmission power control through a reinforcement learning process that we have set in a multi-agent system. The agents are independent learners using the same exploration strategy and reward structure, leading to an overall cooperative network. The simulation results show that the system converges to an equilibrium where each node transmits at the minimum power while respecting high packet reception ratio constraints. Consequently, the system benefits from low energy consumption and packet delay.
Self-Learning Power Control in Wireless Sensor Networks
Liotta, Antonio
2018-01-01
Current trends in interconnecting myriad smart objects to monetize on Internet of Things applications have led to high-density communications in wireless sensor networks. This aggravates the already over-congested unlicensed radio bands, calling for new mechanisms to improve spectrum management and energy efficiency, such as transmission power control. Existing protocols are based on simplistic heuristics that often approach interference problems (i.e., packet loss, delay and energy waste) by increasing power, leading to detrimental results. The scope of this work is to investigate how machine learning may be used to bring wireless nodes to the lowest possible transmission power level and, in turn, to respect the quality requirements of the overall network. Lowering transmission power has benefits in terms of both energy consumption and interference. We propose a protocol of transmission power control through a reinforcement learning process that we have set in a multi-agent system. The agents are independent learners using the same exploration strategy and reward structure, leading to an overall cooperative network. The simulation results show that the system converges to an equilibrium where each node transmits at the minimum power while respecting high packet reception ratio constraints. Consequently, the system benefits from low energy consumption and packet delay. PMID:29382072
Design and characterization of an ultrasonic lamb-wave power delivery system.
Kural, Aleksander; Pullin, Rhys; Holford, Karen; Lees, Jonathan; Naylon, Jack; Paget, Christophe; Featherston, Carol
2013-06-01
In this paper, a novel design for an ultrasonic power transmission system designed for use in aircraft structural monitoring systems is described. The prototype system uses ultrasonic Lamb waves to carry energy along plates, such as those used in aircraft structures, and commercially available piezoelectric patch transducers as the transmitter and receiver. This sets it apart from other acoustic power transmission systems reported to date. The optimum configuration transmitted 12.7 mW of power across a distance of 54 cm in a 1.5-mm-thick aluminum plate, while being driven by a 20-Vpp, 35-kHz sinusoidal electric signal. This is in the same order of magnitude as the power required by the wireless sensors nodes of a structural health monitoring system currently being developed by Cardiff University and its partners. Thus, the power transmission system can be considered a viable component of the power source combination considered for the sensor nodes, which will also include vibration and thermal energy harvesting. The paper describes the design and optimization of the transmission and reception circuits with the use of inductive compensation. The use of laser vibrometry to characterize the transducers and to understand the signal propagation between them is also reported.
Tajeddine, Ayman; Kayssi, Ayman; Chehab, Ali; Elhajj, Imad; Itani, Wassim
2015-01-01
In this paper, we present CENTERA, a CENtralized Trust-based Efficient Routing protocol with an appropriate authentication scheme for wireless sensor networks (WSN). CENTERA utilizes the more powerful base station (BS) to gather minimal neighbor trust information from nodes and calculate the best routes after isolating different types of “bad” nodes. By periodically accumulating these simple local observations and approximating the nodes' battery lives, the BS draws a global view of the network, calculates three quality metrics—maliciousness, cooperation, and compatibility—and evaluates the Data Trust and Forwarding Trust values of each node. Based on these metrics, the BS isolates “bad”, “misbehaving” or malicious nodes for a certain period, and put some nodes on probation. CENTERA increases the node's bad/probation level with repeated “bad” behavior, and decreases it otherwise. Then it uses a very efficient method to distribute the routing information to “good” nodes. Based on its target environment, and if required, CENTERA uses an authentication scheme suitable for severely constrained nodes, ranging from the symmetric RC5 for safe environments under close administration, to pairing-based cryptography (PBC) for hostile environments with a strong attacker model. We simulate CENTERA using TOSSIM and verify its correctness and show some energy calculations. PMID:25648712
Tajeddine, Ayman; Kayssi, Ayman; Chehab, Ali; Elhajj, Imad; Itani, Wassim
2015-02-02
In this paper, we present CENTERA, a CENtralized Trust-based Efficient Routing protocol with an appropriate authentication scheme for wireless sensor networks (WSN). CENTERA utilizes the more powerful base station (BS) to gather minimal neighbor trust information from nodes and calculate the best routes after isolating different types of "bad" nodes. By periodically accumulating these simple local observations and approximating the nodes' battery lives, the BS draws a global view of the network, calculates three quality metrics-maliciousness, cooperation, and compatibility-and evaluates the Data Trust and Forwarding Trust values of each node. Based on these metrics, the BS isolates "bad", "misbehaving" or malicious nodes for a certain period, and put some nodes on probation. CENTERA increases the node's bad/probation level with repeated "bad" behavior, and decreases it otherwise. Then it uses a very efficient method to distribute the routing information to "good" nodes. Based on its target environment, and if required, CENTERA uses an authentication scheme suitable for severely constrained nodes, ranging from the symmetric RC5 for safe environments under close administration, to pairing-based cryptography (PBC) for hostile environments with a strong attacker model. We simulate CENTERA using TOSSIM and verify its correctness and show some energy calculations.
Nearest neighbor imputation using spatial–temporal correlations in wireless sensor networks
Li, YuanYuan; Parker, Lynne E.
2016-01-01
Missing data is common in Wireless Sensor Networks (WSNs), especially with multi-hop communications. There are many reasons for this phenomenon, such as unstable wireless communications, synchronization issues, and unreliable sensors. Unfortunately, missing data creates a number of problems for WSNs. First, since most sensor nodes in the network are battery-powered, it is too expensive to have the nodes retransmit missing data across the network. Data re-transmission may also cause time delays when detecting abnormal changes in an environment. Furthermore, localized reasoning techniques on sensor nodes (such as machine learning algorithms to classify states of the environment) are generally not robust enough to handle missing data. Since sensor data collected by a WSN is generally correlated in time and space, we illustrate how replacing missing sensor values with spatially and temporally correlated sensor values can significantly improve the network’s performance. However, our studies show that it is important to determine which nodes are spatially and temporally correlated with each other. Simple techniques based on Euclidean distance are not sufficient for complex environmental deployments. Thus, we have developed a novel Nearest Neighbor (NN) imputation method that estimates missing data in WSNs by learning spatial and temporal correlations between sensor nodes. To improve the search time, we utilize a kd-tree data structure, which is a non-parametric, data-driven binary search tree. Instead of using traditional mean and variance of each dimension for kd-tree construction, and Euclidean distance for kd-tree search, we use weighted variances and weighted Euclidean distances based on measured percentages of missing data. We have evaluated this approach through experiments on sensor data from a volcano dataset collected by a network of Crossbow motes, as well as experiments using sensor data from a highway traffic monitoring application. Our experimental results show that our proposed 𝒦-NN imputation method has a competitive accuracy with state-of-the-art Expectation–Maximization (EM) techniques, while using much simpler computational techniques, thus making it suitable for use in resource-constrained WSNs. PMID:28435414
Wireless visual sensor network resource allocation using cross-layer optimization
NASA Astrophysics Data System (ADS)
Bentley, Elizabeth S.; Matyjas, John D.; Medley, Michael J.; Kondi, Lisimachos P.
2009-01-01
In this paper, we propose an approach to manage network resources for a Direct Sequence Code Division Multiple Access (DS-CDMA) visual sensor network where nodes monitor scenes with varying levels of motion. It uses cross-layer optimization across the physical layer, the link layer and the application layer. Our technique simultaneously assigns a source coding rate, a channel coding rate, and a power level to all nodes in the network based on one of two criteria that maximize the quality of video of the entire network as a whole, subject to a constraint on the total chip rate. One criterion results in the minimal average end-to-end distortion amongst all nodes, while the other criterion minimizes the maximum distortion of the network. Our approach allows one to determine the capacity of the visual sensor network based on the number of nodes and the quality of video that must be transmitted. For bandwidth-limited applications, one can also determine the minimum bandwidth needed to accommodate a number of nodes with a specific target chip rate. Video captured by a sensor node camera is encoded and decoded using the H.264 video codec by a centralized control unit at the network layer. To reduce the computational complexity of the solution, Universal Rate-Distortion Characteristics (URDCs) are obtained experimentally to relate bit error probabilities to the distortion of corrupted video. Bit error rates are found first by using Viterbi's upper bounds on the bit error probability and second, by simulating nodes transmitting data spread by Total Square Correlation (TSC) codes over a Rayleigh-faded DS-CDMA channel and receiving that data using Auxiliary Vector (AV) filtering.
NASA Technical Reports Server (NTRS)
Chau, Savio; Vatan, Farrokh; Randolph, Vincent; Baroth, Edmund C.
2006-01-01
Future In-Space propulsion systems for exploration programs will invariably require data collection from a large number of sensors. Consider the sensors needed for monitoring several vehicle systems states of health, including the collection of structural health data, over a large area. This would include the fuel tanks, habitat structure, and science containment of systems required for Lunar, Mars, or deep space exploration. Such a system would consist of several hundred or even thousands of sensors. Conventional avionics system design will require these sensors to be connected to a few Remote Health Units (RHU), which are connected to robust, micro flight computers through a serial bus. This results in a large mass of cabling and unacceptable weight. This paper first gives a survey of several techniques that may reduce the cabling mass for sensors. These techniques can be categorized into four classes: power line communication, serial sensor buses, compound serial buses, and wireless network. The power line communication approach uses the power line to carry both power and data, so that the conventional data lines can be eliminated. The serial sensor bus approach reduces most of the cabling by connecting all the sensors with a single (or redundant) serial bus. Many standard buses for industrial control and sensor buses can support several hundreds of nodes, however, have not been space qualified. Conventional avionics serial buses such as the Mil-Std-1553B bus and IEEE 1394a are space qualified but can support only a limited number of nodes. The third approach is to combine avionics buses to increase their addressability. The reliability, EMI/EMC, and flight qualification issues of wireless networks have to be addressed. Several wireless networks such as the IEEE 802.11 and Ultra Wide Band are surveyed in this paper. The placement of sensors can also affect cable mass. Excessive sensors increase the number of cables unnecessarily. Insufficient number of sensors may not provide adequate coverage of the system. This paper also discusses an optimal technique to place and validate sensors.
A Novel Topology Control Approach to Maintain the Node Degree in Dynamic Wireless Sensor Networks
Huang, Yuanjiang; Martínez, José-Fernán; Díaz, Vicente Hernández; Sendra, Juana
2014-01-01
Topology control is an important technique to improve the connectivity and the reliability of Wireless Sensor Networks (WSNs) by means of adjusting the communication range of wireless sensor nodes. In this paper, a novel Fuzzy-logic Topology Control (FTC) is proposed to achieve any desired average node degree by adaptively changing communication range, thus improving the network connectivity, which is the main target of FTC. FTC is a fully localized control algorithm, and does not rely on location information of neighbors. Instead of designing membership functions and if-then rules for fuzzy-logic controller, FTC is constructed from the training data set to facilitate the design process. FTC is proved to be accurate, stable and has short settling time. In order to compare it with other representative localized algorithms (NONE, FLSS, k-Neighbor and LTRT), FTC is evaluated through extensive simulations. The simulation results show that: firstly, similar to k-Neighbor algorithm, FTC is the best to achieve the desired average node degree as node density varies; secondly, FTC is comparable to FLSS and k-Neighbor in terms of energy-efficiency, but is better than LTRT and NONE; thirdly, FTC has the lowest average maximum communication range than other algorithms, which indicates that the most energy-consuming node in the network consumes the lowest power. PMID:24608008
Two-dimensional materials based transparent flexible electronics
NASA Astrophysics Data System (ADS)
Yu, Lili; Ha, Sungjae; El-Damak, Dina; McVay, Elaine; Ling, Xi; Chandrakasan, Anantha; Kong, Jing; Palacios, Tomas
2015-03-01
Two-dimensional (2D) materials have generated great interest recently as a set of tools for electronics, as these materials can push electronics beyond traditional boundaries. These materials and their heterostructures offer excellent mechanical flexibility, optical transparency, and favorable transport properties for realizing electronic, sensing, and optical systems on arbitrary surfaces. These thin, lightweight, bendable, highly rugged and low-power devices may bring dramatic changes in information processing, communications and human-electronic interaction. In this report, for the first time, we demonstrate two complex transparent flexible systems based on molybdenum disulfide (MoS2) grown by chemical vapor method: a transparent active-matrix organic light-emitting diode (AMOLED) display and a MoS2 wireless link for sensor nodes. The 1/2 x 1/2 square inch, 4 x 5 pixels AMOLED structures are built on transparent substrates, containing MoS2 back plane circuit and OLEDs integrated on top of it. The back plane circuit turns on and off the individual pixel with two MoS2 transistors and a capacitor. The device is designed and fabricated based on SPICE simulation to achieve desired DC and transient performance. We have also demonstrated a MoS2 wireless self-powered sensor node. The system consists of as energy harvester, rectifier, sensor node and logic units. AC signals from the environment, such as near-field wireless power transfer, piezoelectric film and RF signal, are harvested, then rectified into DC signal by a MoS2 diode. CIQM, CICS, SRC.
A novel design for sap flux data acquisition in large research plots using open source components
NASA Astrophysics Data System (ADS)
Hawthorne, D. A.; Oishi, A. C.
2017-12-01
Sap flux sensors are a widely-used tool for estimating in-situ, tree-level transpiration rates. These probes are installed in the stems of multiple trees within a study area and are typically left in place throughout the year. Sensors vary in their design and theory of operation, but all require electrical power for a heating element and produce at least one analog signal that must be digitized for storage. There are two topologies traditionally adopted to energize these sensors and gather the data from them. In one, a single data logger and power source are used. Dedicated cables radiate out from the logger to supply power to each of the probes and retrieve analog signals. In the other layout, a standalone data logger is located at each monitored tree. Batteries must then be distributed throughout the plot to service these loggers. We present a hybrid solution based on industrial control systems that employs a central data logger and battery, but co-locates digitizing hardware with the sensors at each tree. Each hardware node is able to communicate and share power over wire links with neighboring nodes. The resulting network provides a fault-tolerant path between the logger and each sensor. The approach is optimized to limit disturbance of the study plot, protect signal integrity and to enhance system reliability. This open-source implementation is built on the Arduino micro-controller system and employs RS485 and Modbus communications protocols. It is supported by laptop based management software coded in Python. The system is designed to be readily fabricated and programmed by non-experts. It works with a variety of sap-flux measurement techniques and it is able to interface to additional environmental sensors.
A smart checkpointing scheme for improving the reliability of clustering routing protocols.
Min, Hong; Jung, Jinman; Kim, Bongjae; Cho, Yookun; Heo, Junyoung; Yi, Sangho; Hong, Jiman
2010-01-01
In wireless sensor networks, system architectures and applications are designed to consider both resource constraints and scalability, because such networks are composed of numerous sensor nodes with various sensors and actuators, small memories, low-power microprocessors, radio modules, and batteries. Clustering routing protocols based on data aggregation schemes aimed at minimizing packet numbers have been proposed to meet these requirements. In clustering routing protocols, the cluster head plays an important role. The cluster head collects data from its member nodes and aggregates the collected data. To improve reliability and reduce recovery latency, we propose a checkpointing scheme for the cluster head. In the proposed scheme, backup nodes monitor and checkpoint the current state of the cluster head periodically. We also derive the checkpointing interval that maximizes reliability while using the same amount of energy consumed by clustering routing protocols that operate without checkpointing. Experimental comparisons with existing non-checkpointing schemes show that our scheme reduces both energy consumption and recovery latency.
A Smart Checkpointing Scheme for Improving the Reliability of Clustering Routing Protocols
Min, Hong; Jung, Jinman; Kim, Bongjae; Cho, Yookun; Heo, Junyoung; Yi, Sangho; Hong, Jiman
2010-01-01
In wireless sensor networks, system architectures and applications are designed to consider both resource constraints and scalability, because such networks are composed of numerous sensor nodes with various sensors and actuators, small memories, low-power microprocessors, radio modules, and batteries. Clustering routing protocols based on data aggregation schemes aimed at minimizing packet numbers have been proposed to meet these requirements. In clustering routing protocols, the cluster head plays an important role. The cluster head collects data from its member nodes and aggregates the collected data. To improve reliability and reduce recovery latency, we propose a checkpointing scheme for the cluster head. In the proposed scheme, backup nodes monitor and checkpoint the current state of the cluster head periodically. We also derive the checkpointing interval that maximizes reliability while using the same amount of energy consumed by clustering routing protocols that operate without checkpointing. Experimental comparisons with existing non-checkpointing schemes show that our scheme reduces both energy consumption and recovery latency. PMID:22163389
An energy-harvesting power supply for underwater bridge scour monitoring sensors
NASA Astrophysics Data System (ADS)
Wang, Yuli; Li, Yingjie; He, Longzhuang; Shamsi, Pourya; Zheng, Yahong R.
2018-03-01
The natural force of scouring has become one of the most critical risk endangering the endurance of bridges, thus leading to the necessity of deploying underwater monitoring sensors to actively detect potential scour holes under bridges. Due to the difficulty in re-charging batteries for underwater sensors, super capacitors with energy harvesting (EH) means are exploited to prolong the sustainability of underwater sensors. In this paper, an energy harvesting power supply based on a helical turbine is proposed to power underwater monitoring sensors. A small helical turbine is designed to convert water flow energy to electrical energy with favorable environmental robustness. A 3-inch diameter, 2.5-inch length and 3-bladed helical turbine was designed with two types of waterproof coupling with the sensor housing. Both designs were prototyped and tested under different flow conditions and we get valid voltage around 0.91 V which is enough to power monitoring sensor. The alternating current (AC) electrical energy generated by the helical turbine is then rectified and boosted to drive a DC charger for efficiently charging one super capacitor. The charging circuit was designed, prototyped and tested thoroughly with the helical turbine harvester. The results were promising, that the overall power supply can power an underwater sensor node with wireless transceivers for long-term operations
Moraes, Celso; Myung, Sunghee; Lee, Sangkeum; Har, Dongsoo
2017-01-10
Provision of energy to wireless sensor networks is crucial for their sustainable operation. Sensor nodes are typically equipped with batteries as their operating energy sources. However, when the sensor nodes are sited in almost inaccessible locations, replacing their batteries incurs high maintenance cost. Under such conditions, wireless charging of sensor nodes by a mobile charger with an antenna can be an efficient solution. When charging distributed sensor nodes, a directional antenna, rather than an omnidirectional antenna, is more energy-efficient because of smaller proportion of off-target radiation. In addition, for densely distributed sensor nodes, it can be more effective for some undercharged sensor nodes to harvest energy from neighboring overcharged sensor nodes than from the remote mobile charger, because this reduces the pathloss of charging signal due to smaller distances. In this paper, we propose a hybrid charging scheme that combines charging by a mobile charger with a directional antenna, and energy trading, e.g., transferring and harvesting, between neighboring sensor nodes. The proposed scheme is compared with other charging scheme. Simulations demonstrate that the hybrid charging scheme with a directional antenna achieves a significant reduction in the total charging time required for all sensor nodes to reach a target energy level.
Moraes, Celso; Myung, Sunghee; Lee, Sangkeum; Har, Dongsoo
2017-01-01
Provision of energy to wireless sensor networks is crucial for their sustainable operation. Sensor nodes are typically equipped with batteries as their operating energy sources. However, when the sensor nodes are sited in almost inaccessible locations, replacing their batteries incurs high maintenance cost. Under such conditions, wireless charging of sensor nodes by a mobile charger with an antenna can be an efficient solution. When charging distributed sensor nodes, a directional antenna, rather than an omnidirectional antenna, is more energy-efficient because of smaller proportion of off-target radiation. In addition, for densely distributed sensor nodes, it can be more effective for some undercharged sensor nodes to harvest energy from neighboring overcharged sensor nodes than from the remote mobile charger, because this reduces the pathloss of charging signal due to smaller distances. In this paper, we propose a hybrid charging scheme that combines charging by a mobile charger with a directional antenna, and energy trading, e.g., transferring and harvesting, between neighboring sensor nodes. The proposed scheme is compared with other charging scheme. Simulations demonstrate that the hybrid charging scheme with a directional antenna achieves a significant reduction in the total charging time required for all sensor nodes to reach a target energy level. PMID:28075372
Assessing the Effects of Multi-Node Sensor Network Configurations on the Operational Tempo
2014-09-01
receiver, nP is the noise power of the receiver, and iL is the implementation loss of the receiver due to hardware manufacturing. The received...13. ABSTRACT (maximum 200 words) The LPISimNet software tool provides the capability to quantify the performance of sensor network configurations by...INTENTIONALLY LEFT BLANK v ABSTRACT The LPISimNet software tool provides the capability to quantify the performance of sensor network configurations
NASA Astrophysics Data System (ADS)
Godinez-Azcuaga, Valery F.; Inman, Daniel J.; Ziehl, Paul H.; Giurgiutiu, Victor; Nanni, Antonio
2011-04-01
This paper presents the most recent advances in the development of a self powered wireless sensor network for steel and concrete bridges monitoring and prognosis. This five-year cross-disciplinary project includes development and deployment of a 4-channel acoustic emission wireless node powered by structural vibration and wind energy harvesting modules. In order to accomplish this ambitious goal, the project includes a series of tasks that encompassed a variety of developments such as ultra low power AE systems, energy harvester hardware and especial sensors for passive and active acoustic wave detection. Key studies on acoustic emission produced by corrosion on reinforced concrete and by crack propagation on steel components to develop diagnosis tools and models for bridge prognosis are also a part of the project activities. It is important to mention that the impact of this project extends beyond the area of bridge health monitoring. Several wireless prototype nodes have been already requested for applications on offshore oil platforms, composite ships, combat deployable bridges and wind turbines. This project was awarded to a joint venture formed by Mistras Group Inc, Virginia Tech, University of South Carolina and University of Miami and is sponsored through the NIST-TIP Grant #70NANB9H007.
ZeroCal: Automatic MAC Protocol Calibration
NASA Astrophysics Data System (ADS)
Meier, Andreas; Woehrle, Matthias; Zimmerling, Marco; Thiele, Lothar
Sensor network MAC protocols are typically configured for an intended deployment scenario once and for all at compile time. This approach, however, leads to suboptimal performance if the network conditions deviate from the expectations. We present ZeroCal, a distributed algorithm that allows nodes to dynamically adapt to variations in traffic volume. Using ZeroCal, each node autonomously configures its MAC protocol at runtime, thereby trying to reduce the maximum energy consumption among all nodes. While the algorithm is readily usable for any asynchronous low-power listening or low-power probing protocol, we validate and demonstrate the effectiveness of ZeroCal on X-MAC. Extensive testbed experiments and simulations indicate that ZeroCal quickly adapts to traffic variations. We further show that ZeroCal extends network lifetime by 50% compared to an optimal configuration with identical and static MAC parameters at all nodes.
Spread Spectrum Based Energy Efficient Collaborative Communication in Wireless Sensor Networks.
Ghani, Anwar; Naqvi, Husnain; Sher, Muhammad; Khan, Muazzam Ali; Khan, Imran; Irshad, Azeem
2016-01-01
Wireless sensor networks consist of resource limited devices. Most crucial of these resources is battery life, as in most applications like battle field or volcanic area monitoring, it is often impossible to replace or recharge the power source. This article presents an energy efficient collaborative communication system based on spread spectrum to achieve energy efficiency as well as immunity against jamming, natural interference, noise suppression and universal frequency reuse. Performance of the proposed system is evaluated using the received signal power, bit error rate (BER) and energy consumption. The results show a direct proportionality between the power gain and the number of collaborative nodes as well as BER and signal-to-noise ratio (Eb/N0). The analytical and simulation results of the proposed system are compared with SISO system. The comparison reveals that SISO perform better than collaborative communication in case of small distances whereas collaborative communication performs better than SISO in case of long distances. On the basis of these results it is safe to conclude that collaborative communication in wireless sensor networks using wideband systems improves the life time of nodes in the networks thereby prolonging the network's life time.
Chen, Xi; Xu, Yixuan; Liu, Anfeng
2017-04-19
High transmission reliability, energy efficiency, and long lifetime are pivotal issues for wireless body area networks (WBANs. However, these performance metrics are not independent of each other, making it hard to obtain overall improvements through optimizing one single aspect. Therefore, a Cross Layer Design Optimal (CLDO) scheme is proposed to simultaneously optimize transmission reliability, energy efficiency, and lifetime of WBANs from several layers. Firstly, due to the fact that the transmission power of nodes directly influences the reliability of links, the optimized transmission power of different nodes is deduced, which is able to maximize energy efficiency in theory under the premise that requirements on delay and jitter are fulfilled. Secondly, a relay decision algorithm is proposed to choose optimized relay nodes. Using this algorithm, nodes will choose relay nodes that ensure a balance of network energy consumption, provided that all nodes transmit with optimized transmission power and the same packet size. Thirdly, the energy consumption of nodes is still unbalanced even with optimized transmission power because of their different locations in the topology of the network. In addition, packet size also has an impact on final performance metrics. Therefore, a synthesized cross layer method for optimization is proposed. With this method, the transmission power of nodes with more residual energy will be enhanced while suitable packet size is determined for different links in the network, leading to further improvements in the WBAN system. Both our comprehensive theoretical analysis and experimental results indicate that the performance of our proposed scheme is better than reported in previous studies. Relative to the relay selection and power control game (RSPCG) scheme, the CLDO scheme can enhance transmission reliability by more than 44.6% and prolong the lifetime by as much as 33.2%.
Chen, Xi; Xu, Yixuan; Liu, Anfeng
2017-01-01
High transmission reliability, energy efficiency, and long lifetime are pivotal issues for wireless body area networks (WBANs). However, these performance metrics are not independent of each other, making it hard to obtain overall improvements through optimizing one single aspect. Therefore, a Cross Layer Design Optimal (CLDO) scheme is proposed to simultaneously optimize transmission reliability, energy efficiency, and lifetime of WBANs from several layers. Firstly, due to the fact that the transmission power of nodes directly influences the reliability of links, the optimized transmission power of different nodes is deduced, which is able to maximize energy efficiency in theory under the premise that requirements on delay and jitter are fulfilled. Secondly, a relay decision algorithm is proposed to choose optimized relay nodes. Using this algorithm, nodes will choose relay nodes that ensure a balance of network energy consumption, provided that all nodes transmit with optimized transmission power and the same packet size. Thirdly, the energy consumption of nodes is still unbalanced even with optimized transmission power because of their different locations in the topology of the network. In addition, packet size also has an impact on final performance metrics. Therefore, a synthesized cross layer method for optimization is proposed. With this method, the transmission power of nodes with more residual energy will be enhanced while suitable packet size is determined for different links in the network, leading to further improvements in the WBAN system. Both our comprehensive theoretical analysis and experimental results indicate that the performance of our proposed scheme is better than reported in previous studies. Relative to the relay selection and power control game (RSPCG) scheme, the CLDO scheme can enhance transmission reliability by more than 44.6% and prolong the lifetime by as much as 33.2%. PMID:28422062
Santana, Jose; Marrero, Domingo; Macías, Elsa; Mena, Vicente; Suárez, Álvaro
2017-07-21
Ubiquitous sensing allows smart cities to take control of many parameters (e.g., road traffic, air or noise pollution levels, etc.). An inexpensive Wireless Mesh Network can be used as an efficient way to transport sensed data. When that mesh is autonomously powered (e.g., solar powered), it constitutes an ideal portable network system which can be deployed when needed. Nevertheless, its power consumption must be restrained to extend its operational cycle and for preserving the environment. To this end, our strategy fosters wireless interface deactivation among nodes which do not participate in any route. As we show, this contributes to a significant power saving for the mesh. Furthermore, our strategy is wireless-friendly, meaning that it gives priority to deactivation of nodes receiving (and also causing) interferences from (to) the rest of the smart city. We also show that a routing protocol can adapt to this strategy in which certain nodes deactivate their own wireless interfaces.
Marrero, Domingo; Macías, Elsa; Mena, Vicente
2017-01-01
Ubiquitous sensing allows smart cities to take control of many parameters (e.g., road traffic, air or noise pollution levels, etc.). An inexpensive Wireless Mesh Network can be used as an efficient way to transport sensed data. When that mesh is autonomously powered (e.g., solar powered), it constitutes an ideal portable network system which can be deployed when needed. Nevertheless, its power consumption must be restrained to extend its operational cycle and for preserving the environment. To this end, our strategy fosters wireless interface deactivation among nodes which do not participate in any route. As we show, this contributes to a significant power saving for the mesh. Furthermore, our strategy is wireless-friendly, meaning that it gives priority to deactivation of nodes receiving (and also causing) interferences from (to) the rest of the smart city. We also show that a routing protocol can adapt to this strategy in which certain nodes deactivate their own wireless interfaces. PMID:28754013
T-L Plane Abstraction-Based Energy-Efficient Real-Time Scheduling for Multi-Core Wireless Sensors.
Kim, Youngmin; Lee, Ki-Seong; Pham, Ngoc-Son; Lee, Sun-Ro; Lee, Chan-Gun
2016-07-08
Energy efficiency is considered as a critical requirement for wireless sensor networks. As more wireless sensor nodes are equipped with multi-cores, there are emerging needs for energy-efficient real-time scheduling algorithms. The T-L plane-based scheme is known to be an optimal global scheduling technique for periodic real-time tasks on multi-cores. Unfortunately, there has been a scarcity of studies on extending T-L plane-based scheduling algorithms to exploit energy-saving techniques. In this paper, we propose a new T-L plane-based algorithm enabling energy-efficient real-time scheduling on multi-core sensor nodes with dynamic power management (DPM). Our approach addresses the overhead of processor mode transitions and reduces fragmentations of the idle time, which are inherent in T-L plane-based algorithms. Our experimental results show the effectiveness of the proposed algorithm compared to other energy-aware scheduling methods on T-L plane abstraction.
Joint Energy Supply and Routing Path Selection for Rechargeable Wireless Sensor Networks.
Tang, Liangrui; Cai, Jinqi; Yan, Jiangyu; Zhou, Zhenyu
2018-06-17
The topic of network lifetime has been attracting much research attention because of its importance in prolonging the standing operation of battery-restricted wireless sensor networks, and the rechargeable wireless sensor network has emerged as a promising solution. In this paper, we propose a joint energy supply and routing path selection algorithm to extend the network lifetime based on an initiative power supply. We develop a two-stage energy replenishment strategy to supplement the energy consumption of nodes as much as possible. Furthermore, the influence of charging factors on the selection of next-hop nodes in data routing is considered. The simulation results show that our algorithm effectively prolong the network lifetime, and different demands of network delay and energy consumption can be obtained by dynamically adjusting parameters.
Bluetooth-based wireless sensor networks
NASA Astrophysics Data System (ADS)
You, Ke; Liu, Rui Qiang
2007-11-01
In this work a Bluetooth-based wireless sensor network is proposed. In this bluetooth-based wireless sensor networks, information-driven star topology and energy-saved mode are used, through which a blue master node can control more than seven slave node, the energy of each sensor node is reduced and secure management of each sensor node is improved.
NASA Astrophysics Data System (ADS)
Yang, Hengzhao; Zhang, Ying
2011-10-01
A new approach is presented to characterize the variable leakage resistance, a parameter in the variable leakage resistance model we developed to model supercapacitors used in environmentally powered wireless sensor network applications. Based on an analysis of the supercapacitor terminal behavior during the self-discharge, the variable leakage resistance is modeled as a function of the supercapacitor terminal voltage instead of the self-discharge time, which is more practical for an environmentally powered wireless sensor node. The new characterization approach is implemented and validated using MATLAB Simulink with a 10 F supercapacitor as an example. In addition, effects of initial voltages and temperatures on the supercapacitor self-discharge rate and the variable leakage resistance value are explored.
Sandia Compact Sensor Node (SCSN) v. 1.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
HARRINGTON, JOHN
2009-01-07
The SCSN communication protocol is implemented in software and incorporates elements of Frequency Division Multiple Access (FDMA), Time Division Multiple Access (TDMA), and Carrier Sense Multiple Access (CSMA) to reduce radio message collisions, latency, and power consumption. Alarm messages are expeditiously routed to a central node as a 'star' network with minimum overhead. Other messages can be routed along network links between any two nodes so that peer-to-peer communication is possible. Broadcast messages can be composed that flood the entire network or just specific portions with minimal radio traffic and latency. Two-way communication with sensor nodes, which sleep most ofmore » the time to conserve battery life, can occur at seven second intervals. SCSN software also incorporates special algorithms to minimize superfluous radio traffic that can result from excessive intrusion alarm messages. A built-in seismic detector is implemented with a geophone and software that distinguishes between pedestrian and vehicular targets. Other external sensors can be attached to a SCSN using supervised interface lines that are controlled by software. All software is written in the ANSI C language for ease of development, maintenance, and portability.« less
Polytopol computing for multi-core and distributed systems
NASA Astrophysics Data System (ADS)
Spaanenburg, Henk; Spaanenburg, Lambert; Ranefors, Johan
2009-05-01
Multi-core computing provides new challenges to software engineering. The paper addresses such issues in the general setting of polytopol computing, that takes multi-core problems in such widely differing areas as ambient intelligence sensor networks and cloud computing into account. It argues that the essence lies in a suitable allocation of free moving tasks. Where hardware is ubiquitous and pervasive, the network is virtualized into a connection of software snippets judiciously injected to such hardware that a system function looks as one again. The concept of polytopol computing provides a further formalization in terms of the partitioning of labor between collector and sensor nodes. Collectors provide functions such as a knowledge integrator, awareness collector, situation displayer/reporter, communicator of clues and an inquiry-interface provider. Sensors provide functions such as anomaly detection (only communicating singularities, not continuous observation), they are generally powered or self-powered, amorphous (not on a grid) with generation-and-attrition, field re-programmable, and sensor plug-and-play-able. Together the collector and the sensor are part of the skeleton injector mechanism, added to every node, and give the network the ability to organize itself into some of many topologies. Finally we will discuss a number of applications and indicate how a multi-core architecture supports the security aspects of the skeleton injector.
Molina-García, Angel; Campelo, José Carlos; Blanc, Sara; Serrano, Juan José; García-Sánchez, Tania; Bueso, María C.
2015-01-01
This paper proposes and assesses an integrated solution to monitor and diagnose photovoltaic (PV) solar modules based on a decentralized wireless sensor acquisition system. Both DC electrical variables and environmental data are collected at PV module level using low-cost and high-energy efficiency node sensors. Data is real-time processed locally and compared with expected PV module performances obtained by a PV module model based on symmetrized-shifted Gompertz functions (as previously developed and assessed by the authors). Sensor nodes send data to a centralized sink-computing module using a multi-hop wireless sensor network architecture. Such integration thus provides extensive analysis of PV installations, and avoids off-line tests or post-processing processes. In comparison with previous approaches, this solution is enhanced with a low-cost system and non-critical performance constraints, and it is suitable for extensive deployment in PV power plants. Moreover, it is easily implemented in existing PV installations, since no additional wiring is required. The system has been implemented and assessed in a Spanish PV power plant connected to the grid. Results and estimations of PV module performances are also included in the paper. PMID:26230694
Unobstructive Body Area Networks (BAN) for efficient movement monitoring.
Felisberto, Filipe; Costa, Nuno; Fdez-Riverola, Florentino; Pereira, António
2012-01-01
The technological advances in medical sensors, low-power microelectronics and miniaturization, wireless communications and networks have enabled the appearance of a new generation of wireless sensor networks: the so-called wireless body area networks (WBAN). These networks can be used for continuous monitoring of vital parameters, movement, and the surrounding environment. The data gathered by these networks contributes to improve users' quality of life and allows the creation of a knowledge database by using learning techniques, useful to infer abnormal behaviour. In this paper we present a wireless body area network architecture to recognize human movement, identify human postures and detect harmful activities in order to prevent risk situations. The WBAN was created using tiny, cheap and low-power nodes with inertial and physiological sensors, strategically placed on the human body. Doing so, in an as ubiquitous as possible way, ensures that its impact on the users' daily actions is minimum. The information collected by these sensors is transmitted to a central server capable of analysing and processing their data. The proposed system creates movement profiles based on the data sent by the WBAN's nodes, and is able to detect in real time any abnormal movement and allows for a monitored rehabilitation of the user.
Molina-García, Angel; Campelo, José Carlos; Blanc, Sara; Serrano, Juan José; García-Sánchez, Tania; Bueso, María C
2015-07-29
This paper proposes and assesses an integrated solution to monitor and diagnose photovoltaic (PV) solar modules based on a decentralized wireless sensor acquisition system. Both DC electrical variables and environmental data are collected at PV module level using low-cost and high-energy efficiency node sensors. Data is real-time processed locally and compared with expected PV module performances obtained by a PV module model based on symmetrized-shifted Gompertz functions (as previously developed and assessed by the authors). Sensor nodes send data to a centralized sink-computing module using a multi-hop wireless sensor network architecture. Such integration thus provides extensive analysis of PV installations, and avoids off-line tests or post-processing processes. In comparison with previous approaches, this solution is enhanced with a low-cost system and non-critical performance constraints, and it is suitable for extensive deployment in PV power plants. Moreover, it is easily implemented in existing PV installations, since no additional wiring is required. The system has been implemented and assessed in a Spanish PV power plant connected to the grid. Results and estimations of PV module performances are also included in the paper.
Malaver, Alexander; Motta, Nunzio; Corke, Peter; Gonzalez, Felipe
2015-01-01
Measuring gases for environmental monitoring is a demanding task that requires long periods of observation and large numbers of sensors. Wireless Sensor Networks (WSNs) and Unmanned Aerial Vehicles (UAVs) currently represent the best alternative to monitor large, remote, and difficult access areas, as these technologies have the possibility of carrying specialized gas sensing systems. This paper presents the development and integration of a WSN and an UAV powered by solar energy in order to enhance their functionality and broader their applications. A gas sensing system implementing nanostructured metal oxide (MOX) and non-dispersive infrared sensors was developed to measure concentrations of CH4 and CO2. Laboratory, bench and field testing results demonstrate the capability of UAV to capture, analyze and geo-locate a gas sample during flight operations. The field testing integrated ground sensor nodes and the UAV to measure CO2 concentration at ground and low aerial altitudes, simultaneously. Data collected during the mission was transmitted in real time to a central node for analysis and 3D mapping of the target gas. The results highlights the accomplishment of the first flight mission of a solar powered UAV equipped with a CO2 sensing system integrated with a WSN. The system provides an effective 3D monitoring and can be used in a wide range of environmental applications such as agriculture, bushfires, mining studies, zoology and botanical studies using a ubiquitous low cost technology. PMID:25679312
Malaver, Alexander; Motta, Nunzio; Corke, Peter; Gonzalez, Felipe
2015-02-11
Measuring gases for environmental monitoring is a demanding task that requires long periods of observation and large numbers of sensors. Wireless Sensor Networks (WSNs) and Unmanned Aerial Vehicles (UAVs) currently represent the best alternative to monitor large, remote, and difficult access areas, as these technologies have the possibility of carrying specialized gas sensing systems. This paper presents the development and integration of a WSN and an UAV powered by solar energy in order to enhance their functionality and broader their applications. A gas sensing system implementing nanostructured metal oxide (MOX) and non-dispersive infrared sensors was developed to measure concentrations of CH4 and CO2. Laboratory, bench and field testing results demonstrate the capability of UAV to capture, analyze and geo-locate a gas sample during flight operations. The field testing integrated ground sensor nodes and the UAV to measure CO2 concentration at ground and low aerial altitudes, simultaneously. Data collected during the mission was transmitted in real time to a central node for analysis and 3D mapping of the target gas. The results highlights the accomplishment of the first flight mission of a solar powered UAV equipped with a CO2 sensing system integrated with a WSN. The system provides an effective 3D monitoring and can be used in a wide range of environmental applications such as agriculture, bushfires, mining studies, zoology and botanical studies using a ubiquitous low cost technology.
Zakerolhosseini, Ali; Sokouti, Massoud; Pezeshkian, Massoud
2013-01-01
Quick responds to heart attack patients before arriving to hospital is a very important factor. In this paper, a combined model of Body Sensor Network and Personal Digital Access using QTRU cipher algorithm in Wifi networks is presented to efficiently overcome these life threatening attacks. The algorithm for optimizing the routing paths between sensor nodes and an algorithm for reducing the power consumption are also applied for achieving the best performance by this model. This system is consumes low power and has encrypting and decrypting processes. It also has an efficient routing path in a fast manner.
Zakerolhosseini, Ali; Sokouti, Massoud; Pezeshkian, Massoud
2013-01-01
Quick responds to heart attack patients before arriving to hospital is a very important factor. In this paper, a combined model of Body Sensor Network and Personal Digital Access using QTRU cipher algorithm in Wifi networks is presented to efficiently overcome these life threatening attacks. The algorithm for optimizing the routing paths between sensor nodes and an algorithm for reducing the power consumption are also applied for achieving the best performance by this model. This system is consumes low power and has encrypting and decrypting processes. It also has an efficient routing path in a fast manner. PMID:24252988
Park, Jihong; Kim, Ki-Hyung; Kim, Kangseok
2017-04-19
The IPv6 Routing Protocol for Low Power and Lossy Networks (RPL) was proposed for various applications of IPv6 low power wireless networks. While RPL supports various routing metrics and is designed to be suitable for wireless sensor network environments, it does not consider the mobility of nodes. Therefore, there is a need for a method that is energy efficient and that provides stable and reliable data transmission by considering the mobility of nodes in RPL networks. This paper proposes an algorithm to support node mobility in RPL in an energy-efficient manner and describes its operating principle based on different scenarios. The proposed algorithm supports the mobility of nodes by dynamically adjusting the transmission interval of the messages that request the route based on the speed and direction of the motion of mobile nodes, as well as the costs between neighboring nodes. The performance of the proposed algorithm and previous algorithms for supporting node mobility were examined experimentally. From the experiment, it was observed that the proposed algorithm requires fewer messages per unit time for selecting a new parent node following the movement of a mobile node. Since fewer messages are used to select a parent node, the energy consumption is also less than that of previous algorithms.
Park, Jihong; Kim, Ki-Hyung; Kim, Kangseok
2017-01-01
The IPv6 Routing Protocol for Low Power and Lossy Networks (RPL) was proposed for various applications of IPv6 low power wireless networks. While RPL supports various routing metrics and is designed to be suitable for wireless sensor network environments, it does not consider the mobility of nodes. Therefore, there is a need for a method that is energy efficient and that provides stable and reliable data transmission by considering the mobility of nodes in RPL networks. This paper proposes an algorithm to support node mobility in RPL in an energy-efficient manner and describes its operating principle based on different scenarios. The proposed algorithm supports the mobility of nodes by dynamically adjusting the transmission interval of the messages that request the route based on the speed and direction of the motion of mobile nodes, as well as the costs between neighboring nodes. The performance of the proposed algorithm and previous algorithms for supporting node mobility were examined experimentally. From the experiment, it was observed that the proposed algorithm requires fewer messages per unit time for selecting a new parent node following the movement of a mobile node. Since fewer messages are used to select a parent node, the energy consumption is also less than that of previous algorithms. PMID:28422084
Water Catchment and Storage Monitoring
NASA Astrophysics Data System (ADS)
Bruenig, Michael; Dunbabin, Matt; Moore, Darren
2010-05-01
Sensors and Sensor Networks technologies provide the means for comprehensive understanding of natural processes in the environment by radically increasing the availability of empirical data about the natural world. This step change is achieved through a dramatic reduction in the cost of data acquisition and many orders of magnitude increase in the spatial and temporal granularity of measurements. Australia's Commonwealth Scientific and Industrial Research Organisation (CSIRO) is undertaking a strategic research program developing wireless sensor network technology for environmental monitoring. As part of this research initiative, we are engaging with government agencies to densely monitor water catchments and storages, thereby enhancing understanding of the environmental processes that affect water quality. In the Gold Coast hinterland in Queensland, Australia, we are building sensor networks to monitor restoration of rainforest within the catchment, and to monitor methane flux release and water quality in the water storages. This poster will present our ongoing work in this region of eastern Australia. The Springbrook plateau in the Gold Coast hinterland lies within a World Heritage listed area, has uniquely high rainfall, hosts a wide range of environmental gradients, and forms part of the catchment for Gold Coast's water storages. Parts of the plateau are being restored from agricultural grassland to native rainforest vegetation. Since April 2008, we have had a 10-node, multi-hop sensor network deployed there to monitor microclimate variables. This network will be expanded to 50-nodes in February 2010, and to around 200-nodes and 1000 sensors by mid-2011, spread over an area of approximately 0.8 square kilometers. The extremely dense microclimate sensing will enhance knowledge of the environmental factors that enhance or inhibit the regeneration of native rainforest. The final network will also include nodes with acoustic and image sensing capability for monitoring higher level parameters such as fauna diversity. The regenerating rainforest environment presents a number of interesting challenges for wireless sensor networks related to energy harvesting and to reliable low-power wireless communications through dense and wet vegetation. Located downstream from the Springbrook plateau, the Little Nerang and Hinze dams are the two major water supply storages for the Gold Coast region. In September 2009 we fitted methane, light, wind, and sonar sensors to our autonomous electric boat platform and successfully demonstrated autonomous collection of methane flux release data on Little Nerang Dam. Sensor and boat status data were relayed back to a human operator on the shore of the dam via a small network of our Fleck™ nodes. The network also included 4 floating nodes each fitted with a string of 6 temperature sensors for profiling temperature at different water depths. We plan to expand the network further during 2010 to incorporate floating methane nodes, additional temperature sensing nodes, as well as land-based microclimate nodes. The overall monitoring system will provide significant data to understand the connected catchment-to-storage system and will provide continuous data to monitor and understand change trends within this world heritage area.
An Energy-Efficient Approach to Enhance Virtual Sensors Provisioning in Sensor Clouds Environments
Filho, Raimir Holanda; Rabêlo, Ricardo de Andrade L.; de Carvalho, Carlos Giovanni N.; Mendes, Douglas Lopes de S.; Costa, Valney da Gama
2018-01-01
Virtual sensors provisioning is a central issue for sensors cloud middleware since it is responsible for selecting physical nodes, usually from Wireless Sensor Networks (WSN) of different owners, to handle user’s queries or applications. Recent works perform provisioning by clustering sensor nodes based on the correlation measurements and then selecting as few nodes as possible to preserve WSN energy. However, such works consider only homogeneous nodes (same set of sensors). Therefore, those works are not entirely appropriate for sensor clouds, which in most cases comprises heterogeneous sensor nodes. In this paper, we propose ACxSIMv2, an approach to enhance the provisioning task by considering heterogeneous environments. Two main algorithms form ACxSIMv2. The first one, ACASIMv1, creates multi-dimensional clusters of sensor nodes, taking into account the measurements correlations instead of the physical distance between nodes like most works on literature. Then, the second algorithm, ACOSIMv2, based on an Ant Colony Optimization system, selects an optimal set of sensors nodes from to respond user’s queries while attending all parameters and preserving the overall energy consumption. Results from initial experiments show that the approach reduces significantly the sensor cloud energy consumption compared to traditional works, providing a solution to be considered in sensor cloud scenarios. PMID:29495406
An Energy-Efficient Approach to Enhance Virtual Sensors Provisioning in Sensor Clouds Environments.
Lemos, Marcus Vinícius de S; Filho, Raimir Holanda; Rabêlo, Ricardo de Andrade L; de Carvalho, Carlos Giovanni N; Mendes, Douglas Lopes de S; Costa, Valney da Gama
2018-02-26
Virtual sensors provisioning is a central issue for sensors cloud middleware since it is responsible for selecting physical nodes, usually from Wireless Sensor Networks (WSN) of different owners, to handle user's queries or applications. Recent works perform provisioning by clustering sensor nodes based on the correlation measurements and then selecting as few nodes as possible to preserve WSN energy. However, such works consider only homogeneous nodes (same set of sensors). Therefore, those works are not entirely appropriate for sensor clouds, which in most cases comprises heterogeneous sensor nodes. In this paper, we propose ACxSIMv2, an approach to enhance the provisioning task by considering heterogeneous environments. Two main algorithms form ACxSIMv2. The first one, ACASIMv1, creates multi-dimensional clusters of sensor nodes, taking into account the measurements correlations instead of the physical distance between nodes like most works on literature. Then, the second algorithm, ACOSIMv2, based on an Ant Colony Optimization system, selects an optimal set of sensors nodes from to respond user's queries while attending all parameters and preserving the overall energy consumption. Results from initial experiments show that the approach reduces significantly the sensor cloud energy consumption compared to traditional works, providing a solution to be considered in sensor cloud scenarios.
Informing Urban Decision Making with an Array of Things
NASA Astrophysics Data System (ADS)
Jacob, R. L.; Catlett, C.; Beckman, P. H.; Sankaran, R.
2015-12-01
Over the next several decades, the population of the world's cities is projected to nearly double, increasing by 2.6 billion people and requiring massive urban expansion globally. This massive growth in urban density and scale will compound ongoing city challenges related to climate change, energy, infrastructure, public health, and more. Cities are using data they already collect such as 311 calls, bus and train operations, street repair orders, census data and building permits to help understand the complex interactions between the human, built and natural systems within a city and inform their decision making. Helping to guide urban decision-making is The Array of Things (AoT): a new tool for measuring many aspects of the physical environment of urban areas at the city block scale with continuous, reliable, integrated data from a variety of sensors. An AoT node includes multiple sensors to measure basic meteorological quantities such as pressure, temperature and humidity as well as light and trace gases such as carbon monoxide, nitrogen dioxide, sulfur dioxide and ozone. The sensors operate 24/7 with ingest frequencies as high as 1Hz. The nodes are modular and allow new sensors to be added or swapped out. The hardware/software backbone of an AoT node is provided by the Waggle architecture. Each AoT node includes, via Waggle, compute power from a single board computer running Linux that allows data to be processed in-situ and, if needed, command and control of components of the node. Data is communicated in near real-time typically through WiFi, 3G or wired ethernet to a designated host and resilience is built-in to prevent data loss if communication is disrupted. The AoT includes a software stack with a programmable API and cloud-based infrastructure for performing data ingest and further analysis. The first full instance of AoT will comprise 500 nodes deployed in the City of Chicago, each with power, Internet, and a base set of sensing and embedded information systems capabilities. A prototype of the Array of Things consisting of 12 nodes has been deployed on the campus of the University of Chicago and initial data from the array will be presented.
Scheduling in Sensor Grid Middleware for Telemedicine Using ABC Algorithm
Vigneswari, T.; Mohamed, M. A. Maluk
2014-01-01
Advances in microelectromechanical systems (MEMS) and nanotechnology have enabled design of low power wireless sensor nodes capable of sensing different vital signs in our body. These nodes can communicate with each other to aggregate data and transmit vital parameters to a base station (BS). The data collected in the base station can be used to monitor health in real time. The patient wearing sensors may be mobile leading to aggregation of data from different BS for processing. Processing real time data is compute-intensive and telemedicine facilities may not have appropriate hardware to process the real time data effectively. To overcome this, sensor grid has been proposed in literature wherein sensor data is integrated to the grid for processing. This work proposes a scheduling algorithm to efficiently process telemedicine data in the grid. The proposed algorithm uses the popular swarm intelligence algorithm for scheduling to overcome the NP complete problem of grid scheduling. Results compared with other heuristic scheduling algorithms show the effectiveness of the proposed algorithm. PMID:25548557
CoAP-Based Mobility Management for the Internet of Things
Chun, Seung-Man; Kim, Hyun-Su; Park, Jong-Tae
2015-01-01
Most of the current mobility management protocols such as Mobile IP and its variants standardized by the IETF may not be suitable to support mobility management for Web-based applications in an Internet of Things (IoT) environment. This is because the sensor nodes have limited power capacity, usually operating in sleep/wakeup mode in a constrained wireless network. In addition, sometimes the sensor nodes may act as the server using the CoAP protocol in an IoT environment. This makes it difficult for Web clients to properly retrieve the sensing data from the mobile sensor nodes in an IoT environment. In this article, we propose a mobility management protocol, named CoMP, which can effectively retrieve the sensing data of sensor nodes while they are moving. The salient feature of CoMP is that it makes use of the IETF CoAP protocol for mobility management, instead of using Mobile IP. Thus CoMP can eliminates the additional signaling overhead of Mobile IP, provides reliable mobility management, and prevents the packet loss. CoMP employs a separate location management server to keep track of the location of the mobile sensor nodes. In order to prevent the loss of important sensing data during movement, a holding mode of operation has been introduced. All the signaling procedures including discovery, registration, binding and holding have been designed by extending the IETF CoAP protocol. The numerical analysis and simulation have been done for performance evaluation in terms of the handover latency and packet loss. The results show that the proposed CoMP is superior to previous mobility management protocols, i.e., Mobile IPv4/v6 (MIPv4/v6), Hierarchical Mobile IPv4/v6 (HMIPv4/v6), in terms of the handover latency and packet loss. PMID:26151214
Khan, Farid Ullah; Khattak, Muhammad Umair
2016-02-01
Rapid developments in micro electronics, micro fabrication, ultra-large scale of integration, ultra-low power sensors, and wireless technology have greatly reduced the power consumption requirements of wireless sensor nodes (WSNs) and make it possible to operate these devices with energy harvesters. Likewise, other energy harvesters, acoustic energy harvesters (AEHs), have been developed and are gaining swift interest in last few years. This paper presents a review of AEHs reported in the literature for the applications of WSNs. Based on transduction mechanism, there are two types of AEHs: piezoelectric acoustic energy harvesters (PEAEHs) and electromagnetic acoustic energy harvesters (EMAEHs). The reported AEHs are mostly characterized under the sound pressure level (SPL) that ranges from 45 to 161 dB. The range for resonant frequency of the produced AEHs is from 146 Hz to 24 kHz and these produced 0.68 × 10(-6) μW to 30 mW power. The maximum power (30 mW) is produced by a PEAEH, when the harvester is subjected to a SPL of 161 dB and 2.64 kHz frequency. However, for EMAEHs, the maximum power reported is about 1.96 mW (at 125 dB and 143 Hz). Under the comparable SPLs, the power production by the reported EMAEHs is relatively better than that of PEAEHs, moreover, due to lower resonant frequency, the EMAEHs are more feasible for the low frequency band acoustical environment.
NASA Astrophysics Data System (ADS)
Khan, Farid Ullah; Khattak, Muhammad Umair
2016-02-01
Rapid developments in micro electronics, micro fabrication, ultra-large scale of integration, ultra-low power sensors, and wireless technology have greatly reduced the power consumption requirements of wireless sensor nodes (WSNs) and make it possible to operate these devices with energy harvesters. Likewise, other energy harvesters, acoustic energy harvesters (AEHs), have been developed and are gaining swift interest in last few years. This paper presents a review of AEHs reported in the literature for the applications of WSNs. Based on transduction mechanism, there are two types of AEHs: piezoelectric acoustic energy harvesters (PEAEHs) and electromagnetic acoustic energy harvesters (EMAEHs). The reported AEHs are mostly characterized under the sound pressure level (SPL) that ranges from 45 to 161 dB. The range for resonant frequency of the produced AEHs is from 146 Hz to 24 kHz and these produced 0.68 × 10-6 μW to 30 mW power. The maximum power (30 mW) is produced by a PEAEH, when the harvester is subjected to a SPL of 161 dB and 2.64 kHz frequency. However, for EMAEHs, the maximum power reported is about 1.96 mW (at 125 dB and 143 Hz). Under the comparable SPLs, the power production by the reported EMAEHs is relatively better than that of PEAEHs, moreover, due to lower resonant frequency, the EMAEHs are more feasible for the low frequency band acoustical environment.
A low-power RFID integrated circuits for intelligent healthcare systems.
Lee, Shuenn-Yuh; Wang, Liang-Hung; Fang, Qiang
2010-11-01
This paper presents low-power radio-frequency identification (RFID) technology for intelligent healthcare systems. With attention to power-efficient communication in the body sensor network, RF power transfer was estimated and the required low-power ICs, which are important in the development of a healthcare system with miniaturization and system integration, are discussed based on the RFID platform. To analyze the power transformation, this paper adopts a 915-MHz industrial, scientific, and medical RF with a radiation power of 70 mW to estimate the power loss under the 1-m communication distance between an RFID reader (bioinformation node) and a transponder (biosignal acquisition nodes). The low-power ICs of the transponder will be implemented in the TSMC 0.18-μm CMOS process. The simulation result reveals that the transponder's IC can fit in with the link budget of the UHF RFID system.
Zhuo, Fan; Duan, Hucai
2017-01-01
The data sequence of spectrum sensing results injected from dedicated spectrum sensor nodes (SSNs) and the data traffic from upstream secondary users (SUs) lead to unpredictable data loads in a sensor network-aided cognitive radio ad hoc network (SN-CRN). As a result, network congestion may occur at a SU acting as fusion center when the offered data load exceeds its available capacity, which degrades network performance. In this paper, we present an effective approach to mitigate congestion of bottlenecked SUs via a proposed distributed power control framework for SSNs over a rectangular grid based SN-CRN, aiming to balance resource load and avoid excessive congestion. To achieve this goal, a distributed power control framework for SSNs from interior tier (IT) and middle tier (MT) is proposed to achieve the tradeoff between channel capacity and energy consumption. In particular, we firstly devise two pricing factors by considering stability of local spectrum sensing and spectrum sensing quality for SSNs. By the aid of pricing factors, the utility function of this power control problem is formulated by jointly taking into account the revenue of power reduction and the cost of energy consumption for IT or MT SSN. By bearing in mind the utility function maximization and linear differential equation constraint of energy consumption, we further formulate the power control problem as a differential game model under a cooperation or noncooperation scenario, and rigorously obtain the optimal solutions to this game model by employing dynamic programming. Then the congestion mitigation for bottlenecked SUs is derived by alleviating the buffer load over their internal buffers. Simulation results are presented to show the effectiveness of the proposed approach under the rectangular grid based SN-CRN scenario. PMID:28914803
Collaborative Distributed Scheduling Approaches for Wireless Sensor Network
Niu, Jianjun; Deng, Zhidong
2009-01-01
Energy constraints restrict the lifetime of wireless sensor networks (WSNs) with battery-powered nodes, which poses great challenges for their large scale application. In this paper, we propose a family of collaborative distributed scheduling approaches (CDSAs) based on the Markov process to reduce the energy consumption of a WSN. The family of CDSAs comprises of two approaches: a one-step collaborative distributed approach and a two-step collaborative distributed approach. The approaches enable nodes to learn the behavior information of its environment collaboratively and integrate sleep scheduling with transmission scheduling to reduce the energy consumption. We analyze the adaptability and practicality features of the CDSAs. The simulation results show that the two proposed approaches can effectively reduce nodes' energy consumption. Some other characteristics of the CDSAs like buffer occupation and packet delay are also analyzed in this paper. We evaluate CDSAs extensively on a 15-node WSN testbed. The test results show that the CDSAs conserve the energy effectively and are feasible for real WSNs. PMID:22408491
Channel and Timeslot Co-Scheduling with Minimal Channel Switching for Data Aggregation in MWSNs
Yeoum, Sanggil; Kang, Byungseok; Lee, Jinkyu; Choo, Hyunseung
2017-01-01
Collision-free transmission and efficient data transfer between nodes can be achieved through a set of channels in multichannel wireless sensor networks (MWSNs). While using multiple channels, we have to carefully consider channel interference, channel and time slot (resources) optimization, channel switching delay, and energy consumption. Since sensor nodes operate on low battery power, the energy consumed in channel switching becomes an important challenge. In this paper, we propose channel and time slot scheduling for minimal channel switching in MWSNs, while achieving efficient and collision-free transmission between nodes. The proposed scheme constructs a duty-cycled tree while reducing the amount of channel switching. As a next step, collision-free time slots are assigned to every node based on the minimal data collection delay. The experimental results demonstrate that the validity of our scheme reduces the amount of channel switching by 17.5%, reduces energy consumption for channel switching by 28%, and reduces the schedule length by 46%, as compared to the existing schemes. PMID:28471416
Channel and Timeslot Co-Scheduling with Minimal Channel Switching for Data Aggregation in MWSNs.
Yeoum, Sanggil; Kang, Byungseok; Lee, Jinkyu; Choo, Hyunseung
2017-05-04
Collision-free transmission and efficient data transfer between nodes can be achieved through a set of channels in multichannel wireless sensor networks (MWSNs). While using multiple channels, we have to carefully consider channel interference, channel and time slot (resources) optimization, channel switching delay, and energy consumption. Since sensor nodes operate on low battery power, the energy consumed in channel switching becomes an important challenge. In this paper, we propose channel and time slot scheduling for minimal channel switching in MWSNs, while achieving efficient and collision-free transmission between nodes. The proposed scheme constructs a duty-cycled tree while reducing the amount of channel switching. As a next step, collision-free time slots are assigned to every node based on the minimal data collection delay. The experimental results demonstrate that the validity of our scheme reduces the amount of channel switching by 17.5%, reduces energy consumption for channel switching by 28%, and reduces the schedule length by 46%, as compared to the existing schemes.
Automatic panoramic thermal integrated sensor
NASA Astrophysics Data System (ADS)
Gutin, Mikhail A.; Tsui, Eddy K.; Gutin, Olga N.
2005-05-01
Historically, the US Army has recognized the advantages of panoramic imagers with high image resolution: increased area coverage with fewer cameras, instantaneous full horizon detection, location and tracking of multiple targets simultaneously, extended range, and others. The novel ViperViewTM high-resolution panoramic thermal imager is the heart of the Automatic Panoramic Thermal Integrated Sensor (APTIS), being jointly developed by Applied Science Innovative, Inc. (ASI) and the Armament Research, Development and Engineering Center (ARDEC) in support of the Future Combat Systems (FCS) and the Intelligent Munitions Systems (IMS). The APTIS is anticipated to operate as an intelligent node in a wireless network of multifunctional nodes that work together to improve situational awareness (SA) in many defense and offensive operations, as well as serve as a sensor node in tactical Intelligence Surveillance Reconnaissance (ISR). The ViperView is as an aberration-corrected omnidirectional imager with small optics designed to match the resolution of a 640x480 pixels IR camera with improved image quality for longer range target detection, classification, and tracking. The same approach is applicable to panoramic cameras working in the visible spectral range. Other components of the ATPIS sensor suite include ancillary sensors, advanced power management, and wakeup capability. This paper describes the development status of the APTIS system.
Exploiting Concurrent Wake-Up Transmissions Using Beat Frequencies.
Kumberg, Timo; Schindelhauer, Christian; Reindl, Leonhard
2017-07-26
Wake-up receivers are the natural choice for wireless sensor networks because of their ultra-low power consumption and their ability to provide communications on demand. A downside of ultra-low power wake-up receivers is their low sensitivity caused by the passive demodulation of the carrier signal. In this article, we present a novel communication scheme by exploiting purposefully-interfering out-of-tune signals of two or more wireless sensor nodes, which produce the wake-up signal as the beat frequency of superposed carriers. Additionally, we introduce a communication algorithm and a flooding protocol based on this approach. Our experiments show that our approach increases the received signal strength up to 3 dB, improving communication robustness and reliability. Furthermore, we demonstrate the feasibility of our newly-developed protocols by means of an outdoor experiment and an indoor setup consisting of several nodes. The flooding algorithm achieves almost a 100% wake-up rate in less than 20 ms.
A Wireless Sensor System for Real-Time Monitoring and Fault Detection of Motor Arrays
Medina-García, Jonathan; Sánchez-Rodríguez, Trinidad; Galán, Juan Antonio Gómez; Delgado, Aránzazu; Gómez-Bravo, Fernando; Jiménez, Raúl
2017-01-01
This paper presents a wireless fault detection system for industrial motors that combines vibration, motor current and temperature analysis, thus improving the detection of mechanical faults. The design also considers the time of detection and further possible actions, which are also important for the early detection of possible malfunctions, and thus for avoiding irreversible damage to the motor. The remote motor condition monitoring is implemented through a wireless sensor network (WSN) based on the IEEE 802.15.4 standard. The deployed network uses the beacon-enabled mode to synchronize several sensor nodes with the coordinator node, and the guaranteed time slot mechanism provides data monitoring with a predetermined latency. A graphic user interface offers remote access to motor conditions and real-time monitoring of several parameters. The developed wireless sensor node exhibits very low power consumption since it has been optimized both in terms of hardware and software. The result is a low cost, highly reliable and compact design, achieving a high degree of autonomy of more than two years with just one 3.3 V/2600 mAh battery. Laboratory and field tests confirm the feasibility of the wireless system. PMID:28245623
A Wireless Sensor System for Real-Time Monitoring and Fault Detection of Motor Arrays.
Medina-García, Jonathan; Sánchez-Rodríguez, Trinidad; Galán, Juan Antonio Gómez; Delgado, Aránzazu; Gómez-Bravo, Fernando; Jiménez, Raúl
2017-02-25
This paper presents a wireless fault detection system for industrial motors that combines vibration, motor current and temperature analysis, thus improving the detection of mechanical faults. The design also considers the time of detection and further possible actions, which are also important for the early detection of possible malfunctions, and thus for avoiding irreversible damage to the motor. The remote motor condition monitoring is implemented through a wireless sensor network (WSN) based on the IEEE 802.15.4 standard. The deployed network uses the beacon-enabled mode to synchronize several sensor nodes with the coordinator node, and the guaranteed time slot mechanism provides data monitoring with a predetermined latency. A graphic user interface offers remote access to motor conditions and real-time monitoring of several parameters. The developed wireless sensor node exhibits very low power consumption since it has been optimized both in terms of hardware and software. The result is a low cost, highly reliable and compact design, achieving a high degree of autonomy of more than two years with just one 3.3 V/2600 mAh battery. Laboratory and field tests confirm the feasibility of the wireless system.
NodePM: A Remote Monitoring Alert System for Energy Consumption Using Probabilistic Techniques
Filho, Geraldo P. R.; Ueyama, Jó; Villas, Leandro A.; Pinto, Alex R.; Gonçalves, Vinícius P.; Pessin, Gustavo; Pazzi, Richard W.; Braun, Torsten
2014-01-01
In this paper, we propose an intelligent method, named the Novelty Detection Power Meter (NodePM), to detect novelties in electronic equipment monitored by a smart grid. Considering the entropy of each device monitored, which is calculated based on a Markov chain model, the proposed method identifies novelties through a machine learning algorithm. To this end, the NodePM is integrated into a platform for the remote monitoring of energy consumption, which consists of a wireless sensors network (WSN). It thus should be stressed that the experiments were conducted in real environments different from many related works, which are evaluated in simulated environments. In this sense, the results show that the NodePM reduces by 13.7% the power consumption of the equipment we monitored. In addition, the NodePM provides better efficiency to detect novelties when compared to an approach from the literature, surpassing it in different scenarios in all evaluations that were carried out. PMID:24399157
Gas Main Sensor and Communications Network System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagen Schempf
Automatika, Inc. was contracted by the Department of Energy (DOE) and with co-funding from the Northeast Gas Association (NGA), to develop an in-pipe natural gas prototype measurement and wireless communications system for assessing and monitoring distribution networks. This projected was completed in April 2006, and culminated in the installation of more than 2 dozen GasNet nodes in both low- and high-pressure cast-iron and steel mains owned by multiple utilities in the northeastern US. Utilities are currently logging data (off-line) and monitoring data in real time from single and multiple networked sensors over cellular networks and collecting data using wireless bluetoothmore » PDA systems. The system was designed to be modular, using in-pipe sensor-wands capable of measuring, flow, pressure, temperature, water-content and vibration. Internal antennae allowed for the use of the pipe-internals as a waveguide for setting up a sensor network to collect data from multiple nodes simultaneously. Sensor nodes were designed to be installed with low- and no-blow techniques and tools. Using a multi-drop bus technique with a custom protocol, all electronics were designed to be buriable and allow for on-board data-collection (SD-card), wireless relaying and cellular network forwarding. Installation options afforded by the design included direct-burial and external polemounted variants. Power was provided by one or more batteries, direct AC-power (Class I Div.2) and solar-array. The utilities are currently in a data-collection phase and intend to use the collected (and processed) data to make capital improvement decisions, compare it to Stoner model predictions and evaluate the use of such a system for future expansion, technology-improvement and commercialization starting later in 2006.« less
Evaluating reliability of WSN with sleep/wake-up interfering nodes
NASA Astrophysics Data System (ADS)
Distefano, Salvatore
2013-10-01
A wireless sensor network (WSN) (singular and plural of acronyms are spelled the same) is a distributed system composed of autonomous sensor nodes wireless connected and randomly scattered into a geographical area to cooperatively monitor physical or environmental conditions. Adequate techniques and strategies are required to manage a WSN so that it works properly, observing specific quantities and metrics to evaluate the WSN operational conditions. Among them, one of the most important is the reliability. Considering a WSN as a system composed of sensor nodes the system reliability approach can be applied, thus expressing the WSN reliability in terms of its nodes' reliability. More specifically, since often standby power management policies are applied at node level and interferences among nodes may arise, a WSN can be considered as a dynamic system. In this article we therefore consider the WSN reliability evaluation problem from the dynamic system reliability perspective. Static-structural interactions are specified by the WSN topology. Sleep/wake-up standby policies and interferences due to wireless communications can be instead considered as dynamic aspects. Thus, in order to represent and to evaluate the WSN reliability, we use dynamic reliability block diagrams and Petri nets. The proposed technique allows to overcome the limits of Markov models when considering non-linear discharge processes, since they cannot adequately represent the aging processes. In order to demonstrate the effectiveness of the technique, we investigate some specific WSN network topologies, providing guidelines for their representation and evaluation.
AES based secure low energy adaptive clustering hierarchy for WSNs
NASA Astrophysics Data System (ADS)
Kishore, K. R.; Sarma, N. V. S. N.
2013-01-01
Wireless sensor networks (WSNs) provide a low cost solution in diversified application areas. The wireless sensor nodes are inexpensive tiny devices with limited storage, computational capability and power. They are being deployed in large scale in both military and civilian applications. Security of the data is one of the key concerns where large numbers of nodes are deployed. Here, an energy-efficient secure routing protocol, secure-LEACH (Low Energy Adaptive Clustering Hierarchy) for WSNs based on the Advanced Encryption Standard (AES) is being proposed. This crypto system is a session based one and a new session key is assigned for each new session. The network (WSN) is divided into number of groups or clusters and a cluster head (CH) is selected among the member nodes of each cluster. The measured data from the nodes is aggregated by the respective CH's and then each CH relays this data to another CH towards the gateway node in the WSN which in turn sends the same to the Base station (BS). In order to maintain confidentiality of data while being transmitted, it is necessary to encrypt the data before sending at every hop, from a node to the CH and from the CH to another CH or to the gateway node.
Authentication and Key Establishment in Dynamic Wireless Sensor Networks
Qiu, Ying; Zhou, Jianying; Baek, Joonsang; Lopez, Javier
2010-01-01
When a sensor node roams within a very large and distributed wireless sensor network, which consists of numerous sensor nodes, its routing path and neighborhood keep changing. In order to provide a high level of security in this environment, the moving sensor node needs to be authenticated to new neighboring nodes and a key established for secure communication. The paper proposes an efficient and scalable protocol to establish and update the authentication key in a dynamic wireless sensor network environment. The protocol guarantees that two sensor nodes share at least one key with probability 1 (100%) with less memory and energy cost, while not causing considerable communication overhead. PMID:22319321
Analytical approach to cross-layer protocol optimization in wireless sensor networks
NASA Astrophysics Data System (ADS)
Hortos, William S.
2008-04-01
In the distributed operations of route discovery and maintenance, strong interaction occurs across mobile ad hoc network (MANET) protocol layers. Quality of service (QoS) requirements of multimedia service classes must be satisfied by the cross-layer protocol, along with minimization of the distributed power consumption at nodes and along routes to battery-limited energy constraints. In previous work by the author, cross-layer interactions in the MANET protocol are modeled in terms of a set of concatenated design parameters and associated resource levels by multivariate point processes (MVPPs). Determination of the "best" cross-layer design is carried out using the optimal control of martingale representations of the MVPPs. In contrast to the competitive interaction among nodes in a MANET for multimedia services using limited resources, the interaction among the nodes of a wireless sensor network (WSN) is distributed and collaborative, based on the processing of data from a variety of sensors at nodes to satisfy common mission objectives. Sensor data originates at the nodes at the periphery of the WSN, is successively transported to other nodes for aggregation based on information-theoretic measures of correlation and ultimately sent as information to one or more destination (decision) nodes. The "multimedia services" in the MANET model are replaced by multiple types of sensors, e.g., audio, seismic, imaging, thermal, etc., at the nodes; the QoS metrics associated with MANETs become those associated with the quality of fused information flow, i.e., throughput, delay, packet error rate, data correlation, etc. Significantly, the essential analytical approach to MANET cross-layer optimization, now based on the MVPPs for discrete random events occurring in the WSN, can be applied to develop the stochastic characteristics and optimality conditions for cross-layer designs of sensor network protocols. Functional dependencies of WSN performance metrics are described in terms of the concatenated protocol parameters. New source-to-destination routes are sought that optimize cross-layer interdependencies to achieve the "best available" performance in the WSN. The protocol design, modified from a known reactive protocol, adapts the achievable performance to the transient network conditions and resource levels. Control of network behavior is realized through the conditional rates of the MVPPs. Optimal cross-layer protocol parameters are determined by stochastic dynamic programming conditions derived from models of transient packetized sensor data flows. Moreover, the defining conditions for WSN configurations, grouping sensor nodes into clusters and establishing data aggregation at processing nodes within those clusters, lead to computationally tractable solutions to the stochastic differential equations that describe network dynamics. Closed-form solution characteristics provide an alternative to the "directed diffusion" methods for resource-efficient WSN protocols published previously by other researchers. Performance verification of the resulting cross-layer designs is found by embedding the optimality conditions for the protocols in actual WSN scenarios replicated in a wireless network simulation environment. Performance tradeoffs among protocol parameters remain for a sequel to the paper.
NASA Astrophysics Data System (ADS)
Aloulou, R.; De Peslouan, P.-O. Lucas; Mnif, H.; Alicalapa, F.; Luk, J. D. Lan Sun; Loulou, M.
2016-05-01
Energy Harvesting circuits are developed as an alternative solution to supply energy to autonomous sensor nodes in Wireless Sensor Networks. In this context, this paper presents a micro-power management system for multi energy sources based on a novel design of charge pump circuit to allow the total autonomy of self-powered sensors. This work proposes a low-voltage and high performance charge pump (CP) suitable for implementation in standard complementary metal oxide semiconductor (CMOS) technologies. The CP design was implemented using Cadence Virtuoso with AMS 0.35μm CMOS technology parameters. Its active area is 0.112 mm2. Consistent results were obtained between the measured findings of the chip testing and the simulation results. The circuit can operate with an 800 mV supply and generate a boosted output voltage of 2.835 V with 1 MHz as frequency.
Wide-Area Persistent Energy-Efficient Maritime Sensing
2015-09-30
Matt Reynolds, Lefteris Kampianakis, and Andreas Pedrosse-Engel at UW designed and tested a Software Defined Radar testbed as well as an Arduino - based ...hardware based on a software-defined radio platform. 2) Development of a standalone Arduino - based backscatter node. 3) Analysis of the limits of the... Arduino - based node that can modulate radar backscatter with data received from a sensor using a low-power Arduino Nano processor. Figure 5 shows a
Secure Multiuser Communications in Wireless Sensor Networks with TAS and Cooperative Jamming
Yang, Maoqiang; Zhang, Bangning; Huang, Yuzhen; Yang, Nan; Guo, Daoxing; Gao, Bin
2016-01-01
In this paper, we investigate the secure transmission in wireless sensor networks (WSNs) consisting of one multiple-antenna base station (BS), multiple single-antenna legitimate users, one single-antenna eavesdropper and one multiple-antenna cooperative jammer. In an effort to reduce the scheduling complexity and extend the battery lifetime of the sensor nodes, the switch-and-stay combining (SSC) scheduling scheme is exploited over the sensor nodes. Meanwhile, transmit antenna selection (TAS) is employed at the BS and cooperative jamming (CJ) is adopted at the jammer node, aiming at achieving a satisfactory secrecy performance. Moreover, depending on whether the jammer node has the global channel state information (CSI) of both the legitimate channel and the eavesdropper’s channel, it explores a zero-forcing beamforming (ZFB) scheme or a null-space artificial noise (NAN) scheme to confound the eavesdropper while avoiding the interference to the legitimate user. Building on this, we propose two novel hybrid secure transmission schemes, termed TAS-SSC-ZFB and TAS-SSC-NAN, for WSNs. We then derive the exact closed-form expressions for the secrecy outage probability and the effective secrecy throughput of both schemes to characterize the secrecy performance. Using these closed-form expressions, we further determine the optimal switching threshold and obtain the optimal power allocation factor between the BS and jammer node for both schemes to minimize the secrecy outage probability, while the optimal secrecy rate is decided to maximize the effective secrecy throughput for both schemes. Numerical results are provided to verify the theoretical analysis and illustrate the impact of key system parameters on the secrecy performance. PMID:27845753
Design of verification platform for wireless vision sensor networks
NASA Astrophysics Data System (ADS)
Ye, Juanjuan; Shang, Fei; Yu, Chuang
2017-08-01
At present, the majority of research for wireless vision sensor networks (WVSNs) still remains in the software simulation stage, and the verification platforms of WVSNs that available for use are very few. This situation seriously restricts the transformation from theory research of WVSNs to practical application. Therefore, it is necessary to study the construction of verification platform of WVSNs. This paper combines wireless transceiver module, visual information acquisition module and power acquisition module, designs a high-performance wireless vision sensor node whose core is ARM11 microprocessor and selects AODV as the routing protocol to set up a verification platform called AdvanWorks for WVSNs. Experiments show that the AdvanWorks can successfully achieve functions of image acquisition, coding, wireless transmission, and obtain the effective distance parameters between nodes, which lays a good foundation for the follow-up application of WVSNs.
Using LOTOS for Formalizing Wireless Sensor Network Applications
Rosa, Nelson Souto; Cunha, Paulo Roberto Freire
2007-01-01
The number of wireless sensor network (WSN) applications is rapidly increasing and becoming an integral part of sensor nodes. These applications have been widely developed on TinyOS operating system using the nesC programming language. However, due to the tight integration to physical world, limited node power and resources (CPU and memory) and complexity of combining components into an application, to build such applications is not a trivial task. In this context, we present an approach for treating with this complexity adopting a formal description technique, namely LOTOS, for formalising the WSN applications ‘behaviour. The formalisation has three main benefits: better understanding on how the application actually works, checking of desired properties of the application's behaviour, and simulation facilities. In order to illustrate the proposed approach, we apply it to two nesC traditional applications, namely BLink and Sense.
Bayes Node Energy Polynomial Distribution to Improve Routing in Wireless Sensor Network
Palanisamy, Thirumoorthy; Krishnasamy, Karthikeyan N.
2015-01-01
Wireless Sensor Network monitor and control the physical world via large number of small, low-priced sensor nodes. Existing method on Wireless Sensor Network (WSN) presented sensed data communication through continuous data collection resulting in higher delay and energy consumption. To conquer the routing issue and reduce energy drain rate, Bayes Node Energy and Polynomial Distribution (BNEPD) technique is introduced with energy aware routing in the wireless sensor network. The Bayes Node Energy Distribution initially distributes the sensor nodes that detect an object of similar event (i.e., temperature, pressure, flow) into specific regions with the application of Bayes rule. The object detection of similar events is accomplished based on the bayes probabilities and is sent to the sink node resulting in minimizing the energy consumption. Next, the Polynomial Regression Function is applied to the target object of similar events considered for different sensors are combined. They are based on the minimum and maximum value of object events and are transferred to the sink node. Finally, the Poly Distribute algorithm effectively distributes the sensor nodes. The energy efficient routing path for each sensor nodes are created by data aggregation at the sink based on polynomial regression function which reduces the energy drain rate with minimum communication overhead. Experimental performance is evaluated using Dodgers Loop Sensor Data Set from UCI repository. Simulation results show that the proposed distribution algorithm significantly reduce the node energy drain rate and ensure fairness among different users reducing the communication overhead. PMID:26426701
Bayes Node Energy Polynomial Distribution to Improve Routing in Wireless Sensor Network.
Palanisamy, Thirumoorthy; Krishnasamy, Karthikeyan N
2015-01-01
Wireless Sensor Network monitor and control the physical world via large number of small, low-priced sensor nodes. Existing method on Wireless Sensor Network (WSN) presented sensed data communication through continuous data collection resulting in higher delay and energy consumption. To conquer the routing issue and reduce energy drain rate, Bayes Node Energy and Polynomial Distribution (BNEPD) technique is introduced with energy aware routing in the wireless sensor network. The Bayes Node Energy Distribution initially distributes the sensor nodes that detect an object of similar event (i.e., temperature, pressure, flow) into specific regions with the application of Bayes rule. The object detection of similar events is accomplished based on the bayes probabilities and is sent to the sink node resulting in minimizing the energy consumption. Next, the Polynomial Regression Function is applied to the target object of similar events considered for different sensors are combined. They are based on the minimum and maximum value of object events and are transferred to the sink node. Finally, the Poly Distribute algorithm effectively distributes the sensor nodes. The energy efficient routing path for each sensor nodes are created by data aggregation at the sink based on polynomial regression function which reduces the energy drain rate with minimum communication overhead. Experimental performance is evaluated using Dodgers Loop Sensor Data Set from UCI repository. Simulation results show that the proposed distribution algorithm significantly reduce the node energy drain rate and ensure fairness among different users reducing the communication overhead.
Distributed cluster management techniques for unattended ground sensor networks
NASA Astrophysics Data System (ADS)
Essawy, Magdi A.; Stelzig, Chad A.; Bevington, James E.; Minor, Sharon
2005-05-01
Smart Sensor Networks are becoming important target detection and tracking tools. The challenging problems in such networks include the sensor fusion, data management and communication schemes. This work discusses techniques used to distribute sensor management and multi-target tracking responsibilities across an ad hoc, self-healing cluster of sensor nodes. Although miniaturized computing resources possess the ability to host complex tracking and data fusion algorithms, there still exist inherent bandwidth constraints on the RF channel. Therefore, special attention is placed on the reduction of node-to-node communications within the cluster by minimizing unsolicited messaging, and distributing the sensor fusion and tracking tasks onto local portions of the network. Several challenging problems are addressed in this work including track initialization and conflict resolution, track ownership handling, and communication control optimization. Emphasis is also placed on increasing the overall robustness of the sensor cluster through independent decision capabilities on all sensor nodes. Track initiation is performed using collaborative sensing within a neighborhood of sensor nodes, allowing each node to independently determine if initial track ownership should be assumed. This autonomous track initiation prevents the formation of duplicate tracks while eliminating the need for a central "management" node to assign tracking responsibilities. Track update is performed as an ownership node requests sensor reports from neighboring nodes based on track error covariance and the neighboring nodes geo-positional location. Track ownership is periodically recomputed using propagated track states to determine which sensing node provides the desired coverage characteristics. High fidelity multi-target simulation results are presented, indicating the distribution of sensor management and tracking capabilities to not only reduce communication bandwidth consumption, but to also simplify multi-target tracking within the cluster.
Energy efficient sensor scheduling with a mobile sink node for the target tracking application.
Maheswararajah, Suhinthan; Halgamuge, Saman; Premaratne, Malin
2009-01-01
Measurement losses adversely affect the performance of target tracking. The sensor network's life span depends on how efficiently the sensor nodes consume energy. In this paper, we focus on minimizing the total energy consumed by the sensor nodes whilst avoiding measurement losses. Since transmitting data over a long distance consumes a significant amount of energy, a mobile sink node collects the measurements and transmits them to the base station. We assume that the default transmission range of the activated sensor node is limited and it can be increased to maximum range only if the mobile sink node is out-side the default transmission range. Moreover, the active sensor node can be changed after a certain time period. The problem is to select an optimal sensor sequence which minimizes the total energy consumed by the sensor nodes. In this paper, we consider two different problems depend on the mobile sink node's path. First, we assume that the mobile sink node's position is known for the entire time horizon and use the dynamic programming technique to solve the problem. Second, the position of the sink node is varied over time according to a known Markov chain, and the problem is solved by stochastic dynamic programming. We also present sub-optimal methods to solve our problem. A numerical example is presented in order to discuss the proposed methods' performance.
Energy Efficient Sensor Scheduling with a Mobile Sink Node for the Target Tracking Application
Maheswararajah, Suhinthan; Halgamuge, Saman; Premaratne, Malin
2009-01-01
Measurement losses adversely affect the performance of target tracking. The sensor network's life span depends on how efficiently the sensor nodes consume energy. In this paper, we focus on minimizing the total energy consumed by the sensor nodes whilst avoiding measurement losses. Since transmitting data over a long distance consumes a significant amount of energy, a mobile sink node collects the measurements and transmits them to the base station. We assume that the default transmission range of the activated sensor node is limited and it can be increased to maximum range only if the mobile sink node is out-side the default transmission range. Moreover, the active sensor node can be changed after a certain time period. The problem is to select an optimal sensor sequence which minimizes the total energy consumed by the sensor nodes. In this paper, we consider two different problems depend on the mobile sink node's path. First, we assume that the mobile sink node's position is known for the entire time horizon and use the dynamic programming technique to solve the problem. Second, the position of the sink node is varied over time according to a known Markov chain, and the problem is solved by stochastic dynamic programming. We also present sub-optimal methods to solve our problem. A numerical example is presented in order to discuss the proposed methods' performance PMID:22399934
SIVEH: numerical computing simulation of wireless energy-harvesting sensor nodes.
Sanchez, Antonio; Blanc, Sara; Climent, Salvador; Yuste, Pedro; Ors, Rafael
2013-09-04
The paper presents a numerical energy harvesting model for sensor nodes, SIVEH (Simulator I-V for EH), based on I-V hardware tracking. I-V tracking is demonstrated to be more accurate than traditional energy modeling techniques when some of the components present different power dissipation at either different operating voltages or drawn currents. SIVEH numerical computing allows fast simulation of long periods of time-days, weeks, months or years-using real solar radiation curves. Moreover, SIVEH modeling has been enhanced with sleep time rate dynamic adjustment, while seeking energy-neutral operation. This paper presents the model description, a functional verification and a critical comparison with the classic energy approach.
SIVEH: Numerical Computing Simulation of Wireless Energy-Harvesting Sensor Nodes
Sanchez, Antonio; Blanc, Sara; Climent, Salvador; Yuste, Pedro; Ors, Rafael
2013-01-01
The paper presents a numerical energy harvesting model for sensor nodes, SIVEH (Simulator I–V for EH), based on I–V hardware tracking. I–V tracking is demonstrated to be more accurate than traditional energy modeling techniques when some of the components present different power dissipation at either different operating voltages or drawn currents. SIVEH numerical computing allows fast simulation of long periods of time—days, weeks, months or years—using real solar radiation curves. Moreover, SIVEH modeling has been enhanced with sleep time rate dynamic adjustment, while seeking energy-neutral operation. This paper presents the model description, a functional verification and a critical comparison with the classic energy approach. PMID:24008287
An Environment IoT Sensor Network for Monitoring the Environment
NASA Astrophysics Data System (ADS)
Martinez, K.; Hart, J. K.; Bragg, O.; Black, A.; Bader, S.; Basford, P. J.; Bragg, G. M.; Fabre, A.
2016-12-01
The Internet of Things is a term which has emerged to describe the increase of Internet connectivity of everyday objects. While wireless sensor networks have developed highly energy efficient designs they need a step-change in their interoperability and usability to become more commonly used in Earth Science. IoT techniques can bring many of these advances while reusing some of the technologies developed for low power sensing. Here we concentrate on developing effective use of internet protocols throughout a low power sensor network. This includes 6LowPAN to provide a mesh IPv6 network, 40mW 868 MHz CC1120 radio transceivers to save power but provide kilometre range, a CC2538 ARM® Cortex®-M3 as main processor and CoAP to provide a binary HTTP-like interface to the nodes. We discuss in detail a system we deployed to monitor periglacial, peat and fluvial processes in the Scottish Highlands. The system linked initial nodes 3km away further up the mountain 2km away and used a CoAP GET sequence from a base station in the valley to gather the data. The IPv6 addressing and tunnelling allowed direct connectivity to desktops in Southampton. This provides insights into how the combination of low power techniques and emerging internet standards will bring advantages in interoperability, heterogeneity, usability and maintainability.
A distributed monitoring system for photovoltaic arrays based on a two-level wireless sensor network
NASA Astrophysics Data System (ADS)
Su, F. P.; Chen, Z. C.; Zhou, H. F.; Wu, L. J.; Lin, P. J.; Cheng, S. Y.; Li, Y. F.
2017-11-01
In this paper, a distributed on-line monitoring system based on a two-level wireless sensor network (WSN) is proposed for real time status monitoring of photovoltaic (PV) arrays to support the fine management and maintenance of PV power plants. The system includes the sensing nodes installed on PV modules (PVM), sensing and routing nodes installed on combiner boxes of PV sub-arrays (PVA), a sink node and a data management centre (DMC) running on a host computer. The first level WSN is implemented by the low-cost wireless transceiver nRF24L01, and it is used to achieve single hop communication between the PVM nodes and their corresponding PVA nodes. The second level WSN is realized by the CC2530 based ZigBee network for multi-hop communication among PVA nodes and the sink node. The PVM nodes are used to monitor the PVM working voltage and backplane temperature, and they send the acquired data to their PVA node via the nRF24L01 based first level WSN. The PVA nodes are used to monitor the array voltage, PV string current and environment irradiance, and they send the acquired and received data to the DMC via the ZigBee based second level WSN. The DMC is designed using the MATLAB GUIDE and MySQL database. Laboratory experiment results show that the system can effectively acquire, display, store and manage the operating and environment parameters of PVA in real time.
Pyroelectric Energy Scavenging Techniques for Self-Powered Nuclear Reactor Wireless Sensor Networks
Hunter, Scott Robert; Lavrik, Nickolay V; Datskos, Panos G; ...
2014-11-01
Recent advances in technologies for harvesting waste thermal energy from ambient environments present an opportunity to implement truly wireless sensor nodes in nuclear power plants. These sensors could continue to operate during extended station blackouts and during periods when operation of the plant s internal power distribution system has been disrupted. The energy required to power the wireless sensors must be generated using energy harvesting techniques from locally available energy sources, and the energy consumption within the sensor circuitry must therefore be low to minimize power and hence the size requirements of the energy harvester. Harvesting electrical energy from thermalmore » energy sources can be achieved using pyroelectric or thermoelectric conversion techniques. Recent modeling and experimental studies have shown that pyroelectric techniques can be cost competitive with thermoelectrics in self powered wireless sensor applications and, using new temperature cycling techniques, has the potential to be several times as efficient as thermoelectrics under comparable operating conditions. The development of a new thermal energy harvester concept, based on temperature cycled pyroelectric thermal-to-electrical energy conversion, is outlined. This paper outlines the modeling of cantilever and pyroelectric structures and single element devices that demonstrate the potential of this technology for the development of high efficiency thermal-to-electrical energy conversion devices.« less
Pyroelectric Energy Scavenging Techniques for Self-Powered Nuclear Reactor Wireless Sensor Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunter, Scott Robert; Lavrik, Nickolay V; Datskos, Panos G
Recent advances in technologies for harvesting waste thermal energy from ambient environments present an opportunity to implement truly wireless sensor nodes in nuclear power plants. These sensors could continue to operate during extended station blackouts and during periods when operation of the plant s internal power distribution system has been disrupted. The energy required to power the wireless sensors must be generated using energy harvesting techniques from locally available energy sources, and the energy consumption within the sensor circuitry must therefore be low to minimize power and hence the size requirements of the energy harvester. Harvesting electrical energy from thermalmore » energy sources can be achieved using pyroelectric or thermoelectric conversion techniques. Recent modeling and experimental studies have shown that pyroelectric techniques can be cost competitive with thermoelectrics in self powered wireless sensor applications and, using new temperature cycling techniques, has the potential to be several times as efficient as thermoelectrics under comparable operating conditions. The development of a new thermal energy harvester concept, based on temperature cycled pyroelectric thermal-to-electrical energy conversion, is outlined. This paper outlines the modeling of cantilever and pyroelectric structures and single element devices that demonstrate the potential of this technology for the development of high efficiency thermal-to-electrical energy conversion devices.« less
Multipath Routing in Wireless Sensor Networks: Survey and Research Challenges
Radi, Marjan; Dezfouli, Behnam; Bakar, Kamalrulnizam Abu; Lee, Malrey
2012-01-01
A wireless sensor network is a large collection of sensor nodes with limited power supply and constrained computational capability. Due to the restricted communication range and high density of sensor nodes, packet forwarding in sensor networks is usually performed through multi-hop data transmission. Therefore, routing in wireless sensor networks has been considered an important field of research over the past decade. Nowadays, multipath routing approach is widely used in wireless sensor networks to improve network performance through efficient utilization of available network resources. Accordingly, the main aim of this survey is to present the concept of the multipath routing approach and its fundamental challenges, as well as the basic motivations for utilizing this technique in wireless sensor networks. In addition, we present a comprehensive taxonomy on the existing multipath routing protocols, which are especially designed for wireless sensor networks. We highlight the primary motivation behind the development of each protocol category and explain the operation of different protocols in detail, with emphasis on their advantages and disadvantages. Furthermore, this paper compares and summarizes the state-of-the-art multipath routing techniques from the network application point of view. Finally, we identify open issues for further research in the development of multipath routing protocols for wireless sensor networks. PMID:22368490
Multipath routing in wireless sensor networks: survey and research challenges.
Radi, Marjan; Dezfouli, Behnam; Abu Bakar, Kamalrulnizam; Lee, Malrey
2012-01-01
A wireless sensor network is a large collection of sensor nodes with limited power supply and constrained computational capability. Due to the restricted communication range and high density of sensor nodes, packet forwarding in sensor networks is usually performed through multi-hop data transmission. Therefore, routing in wireless sensor networks has been considered an important field of research over the past decade. Nowadays, multipath routing approach is widely used in wireless sensor networks to improve network performance through efficient utilization of available network resources. Accordingly, the main aim of this survey is to present the concept of the multipath routing approach and its fundamental challenges, as well as the basic motivations for utilizing this technique in wireless sensor networks. In addition, we present a comprehensive taxonomy on the existing multipath routing protocols, which are especially designed for wireless sensor networks. We highlight the primary motivation behind the development of each protocol category and explain the operation of different protocols in detail, with emphasis on their advantages and disadvantages. Furthermore, this paper compares and summarizes the state-of-the-art multipath routing techniques from the network application point of view. Finally, we identify open issues for further research in the development of multipath routing protocols for wireless sensor networks.
Efficiency Enhancement of a Cantilever-Based Vibration Energy Harvester
Kubba, Ali E.; Jiang, Kyle
2014-01-01
Extracting energy from ambient vibration to power wireless sensor nodes has been an attractive area of research, particularly in the automotive monitoring field. This article reports the design, analysis and testing of a vibration energy harvesting device based on a miniature asymmetric air-spaced cantilever. The developed design offers high power density, and delivers electric power that is sufficient to support most wireless sensor nodes for structural health monitoring (SHM) applications. The optimized design underwent three evolutionary steps, starting from a simple cantilever design, going through an air-spaced cantilever, and ending up with an optimized air-spaced geometry with boosted power density level. Finite Element Analysis (FEA) was used as an initial tool to compare the three geometries' stiffness (K), output open-circuit voltage (Vave), and average normal strain in the piezoelectric transducer (εave) that directly affect its output voltage. Experimental tests were also carried out in order to examine the energy harvesting level in each of the three designs. The experimental results show how to boost the power output level in a thin air-spaced cantilever beam for energy within the same space envelope. The developed thin air-spaced cantilever (8.37 cm3), has a maximum power output of 2.05 mW (H = 29.29 μJ/cycle). PMID:24366177
Efficiency enhancement of a cantilever-based vibration energy harvester.
Kubba, Ali E; Jiang, Kyle
2013-12-23
Extracting energy from ambient vibration to power wireless sensor nodes has been an attractive area of research, particularly in the automotive monitoring field. This article reports the design, analysis and testing of a vibration energy harvesting device based on a miniature asymmetric air-spaced cantilever. The developed design offers high power density, and delivers electric power that is sufficient to support most wireless sensor nodes for structural health monitoring (SHM) applications. The optimized design underwent three evolutionary steps, starting from a simple cantilever design, going through an air-spaced cantilever, and ending up with an optimized air-spaced geometry with boosted power density level. Finite Element Analysis (FEA) was used as an initial tool to compare the three geometries' stiffness (K), output open-circuit voltage (V(ave)), and average normal strain in the piezoelectric transducer (ε(ave)) that directly affect its output voltage. Experimental tests were also carried out in order to examine the energy harvesting level in each of the three designs. The experimental results show how to boost the power output level in a thin air-spaced cantilever beam for energy within the same space envelope. The developed thin air-spaced cantilever (8.37 cm3), has a maximum power output of 2.05 mW (H = 29.29 μJ/cycle).
Energy-aware scheduling of surveillance in wireless multimedia sensor networks.
Wang, Xue; Wang, Sheng; Ma, Junjie; Sun, Xinyao
2010-01-01
Wireless sensor networks involve a large number of sensor nodes with limited energy supply, which impacts the behavior of their application. In wireless multimedia sensor networks, sensor nodes are equipped with audio and visual information collection modules. Multimedia contents are ubiquitously retrieved in surveillance applications. To solve the energy problems during target surveillance with wireless multimedia sensor networks, an energy-aware sensor scheduling method is proposed in this paper. Sensor nodes which acquire acoustic signals are deployed randomly in the sensing fields. Target localization is based on the signal energy feature provided by multiple sensor nodes, employing particle swarm optimization (PSO). During the target surveillance procedure, sensor nodes are adaptively grouped in a totally distributed manner. Specially, the target motion information is extracted by a forecasting algorithm, which is based on the hidden Markov model (HMM). The forecasting results are utilized to awaken sensor node in the vicinity of future target position. According to the two properties, signal energy feature and residual energy, the sensor nodes decide whether to participate in target detection separately with a fuzzy control approach. Meanwhile, the local routing scheme of data transmission towards the observer is discussed. Experimental results demonstrate the efficiency of energy-aware scheduling of surveillance in wireless multimedia sensor network, where significant energy saving is achieved by the sensor awakening approach and data transmission paths are calculated with low computational complexity.
Lucas Martínez, Néstor; Martínez Ortega, José-Fernán; Hernández Díaz, Vicente; Del Toro Matamoros, Raúl M
2016-05-12
The deployment of the nodes in a Wireless Sensor and Actuator Network (WSAN) is typically restricted by the sensing and acting coverage. This implies that the locations of the nodes may be, and usually are, not optimal from the point of view of the radio communication. Additionally, when the transmission power is tuned for those locations, there are other unpredictable factors that can cause connectivity failures, like interferences, signal fading due to passing objects and, of course, radio irregularities. A control-based self-adaptive system is a typical solution to improve the energy consumption while keeping good connectivity. In this paper, we explore how the communication range for each node evolves along the iterations of an energy saving self-adaptive transmission power controller when using different parameter sets in an outdoor scenario, providing a WSAN that automatically adapts to surrounding changes keeping good connectivity. The results obtained in this paper show how the parameters with the best performance keep a k-connected network, where k is in the range of the desired node degree plus or minus a specified tolerance value.
Lucas Martínez, Néstor; Martínez Ortega, José-Fernán; Hernández Díaz, Vicente; del Toro Matamoros, Raúl M.
2016-01-01
The deployment of the nodes in a Wireless Sensor and Actuator Network (WSAN) is typically restricted by the sensing and acting coverage. This implies that the locations of the nodes may be, and usually are, not optimal from the point of view of the radio communication. Additionally, when the transmission power is tuned for those locations, there are other unpredictable factors that can cause connectivity failures, like interferences, signal fading due to passing objects and, of course, radio irregularities. A control-based self-adaptive system is a typical solution to improve the energy consumption while keeping good connectivity. In this paper, we explore how the communication range for each node evolves along the iterations of an energy saving self-adaptive transmission power controller when using different parameter sets in an outdoor scenario, providing a WSAN that automatically adapts to surrounding changes keeping good connectivity. The results obtained in this paper show how the parameters with the best performance keep a k-connected network, where k is in the range of the desired node degree plus or minus a specified tolerance value. PMID:27187397
Low-frequency meandering piezoelectric vibration energy harvester.
Berdy, David F; Srisungsitthisunti, Pornsak; Jung, Byunghoo; Xu, Xianfan; Rhoads, Jeffrey F; Peroulis, Dimitrios
2012-05-01
The design, fabrication, and characterization of a novel low-frequency meandering piezoelectric vibration energy harvester is presented. The energy harvester is designed for sensor node applications where the node targets a width-to-length aspect ratio close to 1:1 while simultaneously achieving a low resonant frequency. The measured power output and normalized power density are 118 μW and 5.02 μW/mm(3)/g(2), respectively, when excited by an acceleration magnitude of 0.2 g at 49.7 Hz. The energy harvester consists of a laser-machined meandering PZT bimorph. Two methods, strain-matched electrode (SME) and strain-matched polarization (SMP), are utilized to mitigate the voltage cancellation caused by having both positive and negative strains in the piezoelectric layer during operation at the meander's first resonant frequency. We have performed finite element analysis and experimentally demonstrated a prototype harvester with a footprint of 27 x 23 mm and a height of 6.5 mm including the tip mass. The device achieves a low resonant frequency while maintaining a form factor suitable for sensor node applications. The meandering design enables energy harvesters to harvest energy from vibration sources with frequencies less than 100 Hz within a compact footprint.
Management of Large-Scale Wireless Sensor Networks Utilizing Multi-Parent Recursive Area Hierarchies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cree, Johnathan V.; Delgado-Frias, Jose
2013-04-19
Autonomously configuring and self-healing a largescale wireless sensor network requires a light-weight maintenance protocol that is scalable. Further, in a battery powered wireless sensor network duty-cycling a node’s radio can reduce the power consumption of a device and extend the lifetime of a network. With duty-cycled nodes the power consumption of a node’s radio depends on the amount of communication is must perform and by reducing the communication the power consumption can also be reduced. Multi-parent hierarchies can be used to reduce the communication cost when constructing a recursive area clustering hierarchy when compared to singleparent solutions that utilize inefficientmore » communication methods such as flooding and information propagation via single-hop broadcasts. The multi-parent hierarchies remain scalable and provides a level of redundancy for the hierarchy.« less
Wireless sensor networks for heritage object deformation detection and tracking algorithm.
Xie, Zhijun; Huang, Guangyan; Zarei, Roozbeh; He, Jing; Zhang, Yanchun; Ye, Hongwu
2014-10-31
Deformation is the direct cause of heritage object collapse. It is significant to monitor and signal the early warnings of the deformation of heritage objects. However, traditional heritage object monitoring methods only roughly monitor a simple-shaped heritage object as a whole, but cannot monitor complicated heritage objects, which may have a large number of surfaces inside and outside. Wireless sensor networks, comprising many small-sized, low-cost, low-power intelligent sensor nodes, are more useful to detect the deformation of every small part of the heritage objects. Wireless sensor networks need an effective mechanism to reduce both the communication costs and energy consumption in order to monitor the heritage objects in real time. In this paper, we provide an effective heritage object deformation detection and tracking method using wireless sensor networks (EffeHDDT). In EffeHDDT, we discover a connected core set of sensor nodes to reduce the communication cost for transmitting and collecting the data of the sensor networks. Particularly, we propose a heritage object boundary detecting and tracking mechanism. Both theoretical analysis and experimental results demonstrate that our EffeHDDT method outperforms the existing methods in terms of network traffic and the precision of the deformation detection.
D-DSC: Decoding Delay-based Distributed Source Coding for Internet of Sensing Things
Akan, Ozgur B.
2018-01-01
Spatial correlation between densely deployed sensor nodes in a wireless sensor network (WSN) can be exploited to reduce the power consumption through a proper source coding mechanism such as distributed source coding (DSC). In this paper, we propose the Decoding Delay-based Distributed Source Coding (D-DSC) to improve the energy efficiency of the classical DSC by employing the decoding delay concept which enables the use of the maximum correlated portion of sensor samples during the event estimation. In D-DSC, network is partitioned into clusters, where the clusterheads communicate their uncompressed samples carrying the side information, and the cluster members send their compressed samples. Sink performs joint decoding of the compressed and uncompressed samples and then reconstructs the event signal using the decoded sensor readings. Based on the observed degree of the correlation among sensor samples, the sink dynamically updates and broadcasts the varying compression rates back to the sensor nodes. Simulation results for the performance evaluation reveal that D-DSC can achieve reliable and energy-efficient event communication and estimation for practical signal detection/estimation applications having massive number of sensors towards the realization of Internet of Sensing Things (IoST). PMID:29538405
D-DSC: Decoding Delay-based Distributed Source Coding for Internet of Sensing Things.
Aktas, Metin; Kuscu, Murat; Dinc, Ergin; Akan, Ozgur B
2018-01-01
Spatial correlation between densely deployed sensor nodes in a wireless sensor network (WSN) can be exploited to reduce the power consumption through a proper source coding mechanism such as distributed source coding (DSC). In this paper, we propose the Decoding Delay-based Distributed Source Coding (D-DSC) to improve the energy efficiency of the classical DSC by employing the decoding delay concept which enables the use of the maximum correlated portion of sensor samples during the event estimation. In D-DSC, network is partitioned into clusters, where the clusterheads communicate their uncompressed samples carrying the side information, and the cluster members send their compressed samples. Sink performs joint decoding of the compressed and uncompressed samples and then reconstructs the event signal using the decoded sensor readings. Based on the observed degree of the correlation among sensor samples, the sink dynamically updates and broadcasts the varying compression rates back to the sensor nodes. Simulation results for the performance evaluation reveal that D-DSC can achieve reliable and energy-efficient event communication and estimation for practical signal detection/estimation applications having massive number of sensors towards the realization of Internet of Sensing Things (IoST).
Wireless Sensor Networks for Heritage Object Deformation Detection and Tracking Algorithm
Xie, Zhijun; Huang, Guangyan; Zarei, Roozbeh; He, Jing; Zhang, Yanchun; Ye, Hongwu
2014-01-01
Deformation is the direct cause of heritage object collapse. It is significant to monitor and signal the early warnings of the deformation of heritage objects. However, traditional heritage object monitoring methods only roughly monitor a simple-shaped heritage object as a whole, but cannot monitor complicated heritage objects, which may have a large number of surfaces inside and outside. Wireless sensor networks, comprising many small-sized, low-cost, low-power intelligent sensor nodes, are more useful to detect the deformation of every small part of the heritage objects. Wireless sensor networks need an effective mechanism to reduce both the communication costs and energy consumption in order to monitor the heritage objects in real time. In this paper, we provide an effective heritage object deformation detection and tracking method using wireless sensor networks (EffeHDDT). In EffeHDDT, we discover a connected core set of sensor nodes to reduce the communication cost for transmitting and collecting the data of the sensor networks. Particularly, we propose a heritage object boundary detecting and tracking mechanism. Both theoretical analysis and experimental results demonstrate that our EffeHDDT method outperforms the existing methods in terms of network traffic and the precision of the deformation detection. PMID:25365458
Unobstructive Body Area Networks (BAN) for Efficient Movement Monitoring
Felisberto, Filipe; Costa, Nuno; Fdez-Riverola, Florentino; Pereira, António
2012-01-01
The technological advances in medical sensors, low-power microelectronics and miniaturization, wireless communications and networks have enabled the appearance of a new generation of wireless sensor networks: the so-called wireless body area networks (WBAN). These networks can be used for continuous monitoring of vital parameters, movement, and the surrounding environment. The data gathered by these networks contributes to improve users' quality of life and allows the creation of a knowledge database by using learning techniques, useful to infer abnormal behaviour. In this paper we present a wireless body area network architecture to recognize human movement, identify human postures and detect harmful activities in order to prevent risk situations. The WBAN was created using tiny, cheap and low-power nodes with inertial and physiological sensors, strategically placed on the human body. Doing so, in an as ubiquitous as possible way, ensures that its impact on the users' daily actions is minimum. The information collected by these sensors is transmitted to a central server capable of analysing and processing their data. The proposed system creates movement profiles based on the data sent by the WBAN's nodes, and is able to detect in real time any abnormal movement and allows for a monitored rehabilitation of the user. PMID:23112726
Using Internet of Things technologies for wireless sensor networks
NASA Astrophysics Data System (ADS)
Martinez, K.; Hart, J. K.; Basford, P. J.; Bragg, G. M.; Ward, T.
2013-12-01
Numerous authors have envisioned the future internet where anything will be connected: the Internet of Things (IoT). The idea is an extrapolation of the spread of networked devices such as phones, tablets etc. Each device is expected to have its own Internet address and thus be easy to access. The key building blocks of any IoT system are networking, hardware platforms and node software - so they are similar to wireless sensor network requirements. Most existing IoT demonstrators and applications have been gadget-style objects where power and connectivity problems are not too restricting. Environmental sensor networks can benefit from using some of the technologies involved in IoT development. However it is expected that tuning the networking and power management will be necessary to make them as efficient as state of the art wireless sensor networks. Some IoT assumptions such as always-connected nodes and full IP capability need to be considered. This paper will illustrate the advantages and disadvantages of IoT techniques for environment sensing drawing on a range of employment scenarios. We also describe a glacial 'Internet of things' project, which aims to monitor glacial processes. In particular we describe the IoT developments in a deployment in Iceland to examine glacier seismicity, velocity and provide camera images.
Analysis of energy efficient routing protocols for implementation of a ubiquitous health system
NASA Astrophysics Data System (ADS)
Kwon, Jongwon; Park, Yongman; Koo, Sangjun; Ayurzana, Odgeral; Kim, Hiesik
2007-12-01
The innovative Ubiquitous-Health was born through convergence of medical service, with development of up to date information technologies and ubiquitous IT. The U-Health can be applied to a variety of special situations for managing functions of each medical center efficiently. This paper focuses on estimation of various routing protocols for implementation of U-health monitoring system. In order to facilitate wireless communication over the network, a routing protocol on the network layer is used to establish precise and efficient route between sensor nodes so that information acquired from sensors may be delivered in a timely manner. A route establishment should be considered to minimize overhead, data loss and power consumption because wireless networks for U-health are organized by a large number of sensor nodes which are small in size and have limited processing power, memory and battery life. In this paper a overview of wireless sensor network technologies commonly known is described as well as evaluation of three multi hop routing protocols which are flooding, gossiping and modified low energy adaptive clustering hierarchy(LEACH) for use with these networks using TOSSIM simulator. As a result of evaluation the integrated wireless sensor board was developed in particular. The board is embedded device based on AVR128 porting TinyOS. Also it employs bio sensor measures blood pressure, pulse frequency and ZigBee module for wireless communication. This paper accelerates the digital convergence age through continual research and development of technologies related the U-Health.
Liu, Xin
2015-10-30
In a cognitive sensor network (CSN), the wastage of sensing time and energy is a challenge to cooperative spectrum sensing, when the number of cooperative cognitive nodes (CNs) becomes very large. In this paper, a novel wireless power transfer (WPT)-based weighed clustering cooperative spectrum sensing model is proposed, which divides all the CNs into several clusters, and then selects the most favorable CNs as the cluster heads and allows the common CNs to transfer the received radio frequency (RF) energy of the primary node (PN) to the cluster heads, in order to supply the electrical energy needed for sensing and cooperation. A joint resource optimization is formulated to maximize the spectrum access probability of the CSN, through jointly allocating sensing time and clustering number. According to the resource optimization results, a clustering algorithm is proposed. The simulation results have shown that compared to the traditional model, the cluster heads of the proposed model can achieve more transmission power and there exists optimal sensing time and clustering number to maximize the spectrum access probability.
Energy-Efficient Control with Harvesting Predictions for Solar-Powered Wireless Sensor Networks.
Zou, Tengyue; Lin, Shouying; Feng, Qijie; Chen, Yanlian
2016-01-04
Wireless sensor networks equipped with rechargeable batteries are useful for outdoor environmental monitoring. However, the severe energy constraints of the sensor nodes present major challenges for long-term applications. To achieve sustainability, solar cells can be used to acquire energy from the environment. Unfortunately, the energy supplied by the harvesting system is generally intermittent and considerably influenced by the weather. To improve the energy efficiency and extend the lifetime of the networks, we propose algorithms for harvested energy prediction using environmental shadow detection. Thus, the sensor nodes can adjust their scheduling plans accordingly to best suit their energy production and residual battery levels. Furthermore, we introduce clustering and routing selection methods to optimize the data transmission, and a Bayesian network is used for warning notifications of bottlenecks along the path. The entire system is implemented on a real-time Texas Instruments CC2530 embedded platform, and the experimental results indicate that these mechanisms sustain the networks' activities in an uninterrupted and efficient manner.
T-L Plane Abstraction-Based Energy-Efficient Real-Time Scheduling for Multi-Core Wireless Sensors
Kim, Youngmin; Lee, Ki-Seong; Pham, Ngoc-Son; Lee, Sun-Ro; Lee, Chan-Gun
2016-01-01
Energy efficiency is considered as a critical requirement for wireless sensor networks. As more wireless sensor nodes are equipped with multi-cores, there are emerging needs for energy-efficient real-time scheduling algorithms. The T-L plane-based scheme is known to be an optimal global scheduling technique for periodic real-time tasks on multi-cores. Unfortunately, there has been a scarcity of studies on extending T-L plane-based scheduling algorithms to exploit energy-saving techniques. In this paper, we propose a new T-L plane-based algorithm enabling energy-efficient real-time scheduling on multi-core sensor nodes with dynamic power management (DPM). Our approach addresses the overhead of processor mode transitions and reduces fragmentations of the idle time, which are inherent in T-L plane-based algorithms. Our experimental results show the effectiveness of the proposed algorithm compared to other energy-aware scheduling methods on T-L plane abstraction. PMID:27399722
Energy-Efficient Control with Harvesting Predictions for Solar-Powered Wireless Sensor Networks
Zou, Tengyue; Lin, Shouying; Feng, Qijie; Chen, Yanlian
2016-01-01
Wireless sensor networks equipped with rechargeable batteries are useful for outdoor environmental monitoring. However, the severe energy constraints of the sensor nodes present major challenges for long-term applications. To achieve sustainability, solar cells can be used to acquire energy from the environment. Unfortunately, the energy supplied by the harvesting system is generally intermittent and considerably influenced by the weather. To improve the energy efficiency and extend the lifetime of the networks, we propose algorithms for harvested energy prediction using environmental shadow detection. Thus, the sensor nodes can adjust their scheduling plans accordingly to best suit their energy production and residual battery levels. Furthermore, we introduce clustering and routing selection methods to optimize the data transmission, and a Bayesian network is used for warning notifications of bottlenecks along the path. The entire system is implemented on a real-time Texas Instruments CC2530 embedded platform, and the experimental results indicate that these mechanisms sustain the networks’ activities in an uninterrupted and efficient manner. PMID:26742042
A secured authentication protocol for wireless sensor networks using elliptic curves cryptography.
Yeh, Hsiu-Lien; Chen, Tien-Ho; Liu, Pin-Chuan; Kim, Tai-Hoo; Wei, Hsin-Wen
2011-01-01
User authentication is a crucial service in wireless sensor networks (WSNs) that is becoming increasingly common in WSNs because wireless sensor nodes are typically deployed in an unattended environment, leaving them open to possible hostile network attack. Because wireless sensor nodes are limited in computing power, data storage and communication capabilities, any user authentication protocol must be designed to operate efficiently in a resource constrained environment. In this paper, we review several proposed WSN user authentication protocols, with a detailed review of the M.L Das protocol and a cryptanalysis of Das' protocol that shows several security weaknesses. Furthermore, this paper proposes an ECC-based user authentication protocol that resolves these weaknesses. According to our analysis of security of the ECC-based protocol, it is suitable for applications with higher security requirements. Finally, we present a comparison of security, computation, and communication costs and performances for the proposed protocols. The ECC-based protocol is shown to be suitable for higher security WSNs.
A Secured Authentication Protocol for Wireless Sensor Networks Using Elliptic Curves Cryptography
Yeh, Hsiu-Lien; Chen, Tien-Ho; Liu, Pin-Chuan; Kim, Tai-Hoo; Wei, Hsin-Wen
2011-01-01
User authentication is a crucial service in wireless sensor networks (WSNs) that is becoming increasingly common in WSNs because wireless sensor nodes are typically deployed in an unattended environment, leaving them open to possible hostile network attack. Because wireless sensor nodes are limited in computing power, data storage and communication capabilities, any user authentication protocol must be designed to operate efficiently in a resource constrained environment. In this paper, we review several proposed WSN user authentication protocols, with a detailed review of the M.L Das protocol and a cryptanalysis of Das’ protocol that shows several security weaknesses. Furthermore, this paper proposes an ECC-based user authentication protocol that resolves these weaknesses. According to our analysis of security of the ECC-based protocol, it is suitable for applications with higher security requirements. Finally, we present a comparison of security, computation, and communication costs and performances for the proposed protocols. The ECC-based protocol is shown to be suitable for higher security WSNs. PMID:22163874
Joint Optimal Placement and Energy Allocation of Underwater Sensors in a Tree Topology
2014-03-10
underwater acoustic sensor nodes with respect to the capacity of the wireless links between the... underwater acoustic sensor nodes with respect to the capacity of the wireless links between the nodes. We assumed that the energy consumption of...nodes’ optimal placements. We achieve the optimal placement of the underwater acoustic sensor nodes with respect to the capacity of the wireless
Method and system for monitoring environmental conditions
Kulesz, James J [Oak Ridge, TN; Lee, Ronald W [Oak Ridge, TN
2010-11-16
A system for detecting the occurrence of anomalies includes a plurality of spaced apart nodes, with each node having adjacent nodes, each of the nodes having one or more sensors associated with the node and capable of detecting anomalies, and each of the nodes having a controller connected to the sensors associated with the node. The system also includes communication links between adjacent nodes, whereby the nodes form a network. At least one software agent is capable of changing the operation of at least one of the controllers in response to the detection of an anomaly by a sensor.
Wireless sensor node for surface seawater density measurements.
Baronti, Federico; Fantechi, Gabriele; Roncella, Roberto; Saletti, Roberto
2012-01-01
An electronic meter to measure surface seawater density is presented. It is based on the measurement of the difference in displacements of a surface level probe and a weighted float, which according to Archimedes' law depends on the density of the water. The displacements are simultaneously measured using a high-accuracy magnetostrictive sensor, to which a custom electronic board provides a wireless connection and power supply so that it can become part of a wireless sensor network. The electronics are designed so that different kinds of wireless networks can be used, by simply changing the wireless module and the relevant firmware of the microcontroller. Lastly, laboratory and at-sea tests are presented and discussed in order to highlight the functionality and the performance of a prototype of the wireless density meter node in a Bluetooth radio network. The experimental results show a good agreement of the values of the calculated density compared to reference hydrometer readings.
Wireless Sensor Node for Surface Seawater Density Measurements
Baronti, Federico; Fantechi, Gabriele; Roncella, Roberto; Saletti, Roberto
2012-01-01
An electronic meter to measure surface seawater density is presented. It is based on the measurement of the difference in displacements of a surface level probe and a weighted float, which according to Archimedes’ law depends on the density of the water. The displacements are simultaneously measured using a high-accuracy magnetostrictive sensor, to which a custom electronic board provides a wireless connection and power supply so that it can become part of a wireless sensor network. The electronics are designed so that different kinds of wireless networks can be used, by simply changing the wireless module and the relevant firmware of the microcontroller. Lastly, laboratory and at-sea tests are presented and discussed in order to highlight the functionality and the performance of a prototype of the wireless density meter node in a Bluetooth radio network. The experimental results show a good agreement of the values of the calculated density compared to reference hydrometer readings. PMID:22736986
Yao, Ke-Han; Jiang, Jehn-Ruey; Tsai, Chung-Hsien; Wu, Zong-Syun
2017-08-20
This paper investigates how to efficiently charge sensor nodes in a wireless rechargeable sensor network (WRSN) with radio frequency (RF) chargers to make the network sustainable. An RF charger is assumed to be equipped with a uniform circular array (UCA) of 12 antennas with the radius λ , where λ is the RF wavelength. The UCA can steer most RF energy in a target direction to charge a specific WRSN node by the beamforming technology. Two evolutionary algorithms (EAs) using the evolution strategy (ES), namely the Evolutionary Beamforming Optimization (EBO) algorithm and the Evolutionary Beamforming Optimization Reseeding (EBO-R) algorithm, are proposed to nearly optimize the power ratio of the UCA beamforming peak side lobe (PSL) and the main lobe (ML) aimed at the given target direction. The proposed algorithms are simulated for performance evaluation and are compared with a related algorithm, called Particle Swarm Optimization Gravitational Search Algorithm-Explore (PSOGSA-Explore), to show their superiority.
NASA Astrophysics Data System (ADS)
Tuna, G.; Örenbaş, H.; Daş, R.; Kogias, D.; Baykara, M.; K, K.
2016-03-01
Wireless Sensor Networks (WSNs) when combined with various energy harvesting solutions managing to prolong the overall lifetime of the system and enhanced capabilities of the communication protocols used by modern sensor nodes are efficiently used in are efficiently used in Smart Grid (SG), an evolutionary system for the modernization of existing power grids. However, wireless communication technology brings various types of security threats. In this study, firstly the use of WSNs for SG applications is presented. Second, the security related issues and challenges as well as the security threats are presented. In addition, proposed security mechanisms for WSN-based SG applications are discussed. Finally, an easy- to-implement and simple attack detection framework to prevent attacks directed to sink and gateway nodes with web interfaces is proposed and its efficiency is proved using a case study.
Adaptive LINE-P: An Adaptive Linear Energy Prediction Model for Wireless Sensor Network Nodes.
Ahmed, Faisal; Tamberg, Gert; Le Moullec, Yannick; Annus, Paul
2018-04-05
In the context of wireless sensor networks, energy prediction models are increasingly useful tools that can facilitate the power management of the wireless sensor network (WSN) nodes. However, most of the existing models suffer from the so-called fixed weighting parameter, which limits their applicability when it comes to, e.g., solar energy harvesters with varying characteristics. Thus, in this article we propose the Adaptive LINE-P (all cases) model that calculates adaptive weighting parameters based on the stored energy profiles. Furthermore, we also present a profile compression method to reduce the memory requirements. To determine the performance of our proposed model, we have used real data for the solar and wind energy profiles. The simulation results show that our model achieves 90-94% accuracy and that the compressed method reduces memory overheads by 50% as compared to state-of-the-art models.
Adaptive LINE-P: An Adaptive Linear Energy Prediction Model for Wireless Sensor Network Nodes
Ahmed, Faisal
2018-01-01
In the context of wireless sensor networks, energy prediction models are increasingly useful tools that can facilitate the power management of the wireless sensor network (WSN) nodes. However, most of the existing models suffer from the so-called fixed weighting parameter, which limits their applicability when it comes to, e.g., solar energy harvesters with varying characteristics. Thus, in this article we propose the Adaptive LINE-P (all cases) model that calculates adaptive weighting parameters based on the stored energy profiles. Furthermore, we also present a profile compression method to reduce the memory requirements. To determine the performance of our proposed model, we have used real data for the solar and wind energy profiles. The simulation results show that our model achieves 90–94% accuracy and that the compressed method reduces memory overheads by 50% as compared to state-of-the-art models. PMID:29621169
Human-motion energy harvester for autonomous body area sensors
NASA Astrophysics Data System (ADS)
Geisler, M.; Boisseau, S.; Perez, M.; Gasnier, P.; Willemin, J.; Ait-Ali, I.; Perraud, S.
2017-03-01
This paper reports on a method to optimize an electromagnetic energy harvester converting the low-frequency body motion and aimed at powering wireless body area sensors. This method is based on recorded accelerations, and mechanical and transduction models that enable an efficient joint optimization of the structural parameters. An optimized prototype of 14.8 mmØ × 52 mm, weighting 20 g, has generated up to 4.95 mW in a resistive load when worn at the arm during a run, and 6.57 mW when hand-shaken. Among the inertial electromagnetic energy harvesters reported so far, this one exhibits one of the highest power densities (up to 730 μW cm-3). The energy harvester was finally used to power a bluetooth low energy wireless sensor node with accelerations measurements at 25 Hz.
Estimation of distributed Fermat-point location for wireless sensor networking.
Huang, Po-Hsian; Chen, Jiann-Liang; Larosa, Yanuarius Teofilus; Chiang, Tsui-Lien
2011-01-01
This work presents a localization scheme for use in wireless sensor networks (WSNs) that is based on a proposed connectivity-based RF localization strategy called the distributed Fermat-point location estimation algorithm (DFPLE). DFPLE applies triangle area of location estimation formed by intersections of three neighboring beacon nodes. The Fermat point is determined as the shortest path from three vertices of the triangle. The area of estimated location then refined using Fermat point to achieve minimum error in estimating sensor nodes location. DFPLE solves problems of large errors and poor performance encountered by localization schemes that are based on a bounding box algorithm. Performance analysis of a 200-node development environment reveals that, when the number of sensor nodes is below 150, the mean error decreases rapidly as the node density increases, and when the number of sensor nodes exceeds 170, the mean error remains below 1% as the node density increases. Second, when the number of beacon nodes is less than 60, normal nodes lack sufficient beacon nodes to enable their locations to be estimated. However, the mean error changes slightly as the number of beacon nodes increases above 60. Simulation results revealed that the proposed algorithm for estimating sensor positions is more accurate than existing algorithms, and improves upon conventional bounding box strategies.
CrossVit: enhancing canopy monitoring management practices in viticulture.
Matese, Alessandro; Vaccari, Francesco Primo; Tomasi, Diego; Di Gennaro, Salvatore Filippo; Primicerio, Jacopo; Sabatini, Francesco; Guidoni, Silvia
2013-06-13
A new wireless sensor network (WSN), called CrossVit, and based on MEMSIC products, has been tested for two growing seasons in two vineyards in Italy. The aims are to evaluate the monitoring performances of the new WSN directly in the vineyard and collect air temperature, air humidity and solar radiation data to support vineyard management practices. The WSN consists of various levels: the Master/Gateway level coordinates the WSN and performs data aggregation; the Farm/Server level takes care of storing data on a server, data processing and graphic rendering; Nodes level is based on a network of peripheral nodes consisting of a MDA300 sensor board and Iris module and equipped with thermistors for air temperature, photodiodes for global and diffuse solar radiation, and an HTM2500LF sensor for relative humidity. The communication levels are: WSN links between gateways and sensor nodes by ZigBee, and long-range GSM/GPRS links between gateways and the server farm level. The system was able to monitor the agrometeorological parameters in the vineyard: solar radiation, air temperature and air humidity, detecting the differences between the canopy treatments applied. The performance of CrossVit, in terms of monitoring and reliability of the system, have been evaluated considering: its handiness, cost-effective, non-invasive dimensions and low power consumption.
CrossVit: Enhancing Canopy Monitoring Management Practices in Viticulture
Matese, Alessandro; Vaccari, Francesco Primo; Tomasi, Diego; Di Gennaro, Salvatore Filippo; Primicerio, Jacopo; Sabatini, Francesco; Guidoni, Silvia
2013-01-01
A new wireless sensor network (WSN), called CrossVit, and based on MEMSIC products, has been tested for two growing seasons in two vineyards in Italy. The aims are to evaluate the monitoring performances of the new WSN directly in the vineyard and collect air temperature, air humidity and solar radiation data to support vineyard management practices. The WSN consists of various levels: the Master/Gateway level coordinates the WSN and performs data aggregation; the Farm/Server level takes care of storing data on a server, data processing and graphic rendering; Nodes level is based on a network of peripheral nodes consisting of a MDA300 sensor board and Iris module and equipped with thermistors for air temperature, photodiodes for global and diffuse solar radiation, and an HTM2500LF sensor for relative humidity. The communication levels are: WSN links between gateways and sensor nodes by ZigBee, and long-range GSM/GPRS links between gateways and the server farm level. The system was able to monitor the agrometeorological parameters in the vineyard: solar radiation, air temperature and air humidity, detecting the differences between the canopy treatments applied. The performance of CrossVit, in terms of monitoring and reliability of the system, have been evaluated considering: its handiness, cost-effective, non-invasive dimensions and low power consumption. PMID:23765273
Breadth-First Search-Based Single-Phase Algorithms for Bridge Detection in Wireless Sensor Networks
Akram, Vahid Khalilpour; Dagdeviren, Orhan
2013-01-01
Wireless sensor networks (WSNs) are promising technologies for exploring harsh environments, such as oceans, wild forests, volcanic regions and outer space. Since sensor nodes may have limited transmission range, application packets may be transmitted by multi-hop communication. Thus, connectivity is a very important issue. A bridge is a critical edge whose removal breaks the connectivity of the network. Hence, it is crucial to detect bridges and take preventions. Since sensor nodes are battery-powered, services running on nodes should consume low energy. In this paper, we propose energy-efficient and distributed bridge detection algorithms for WSNs. Our algorithms run single phase and they are integrated with the Breadth-First Search (BFS) algorithm, which is a popular routing algorithm. Our first algorithm is an extended version of Milic's algorithm, which is designed to reduce the message length. Our second algorithm is novel and uses ancestral knowledge to detect bridges. We explain the operation of the algorithms, analyze their proof of correctness, message, time, space and computational complexities. To evaluate practical importance, we provide testbed experiments and extensive simulations. We show that our proposed algorithms provide less resource consumption, and the energy savings of our algorithms are up by 5.5-times. PMID:23845930
NASA Astrophysics Data System (ADS)
Dayananda, Karanam Ravichandran; Straub, Jeremy
2017-05-01
This paper proposes a new hybrid algorithm for security, which incorporates both distributed and hierarchal approaches. It uses a mobile data collector (MDC) to collect information in order to save energy of sensor nodes in a wireless sensor network (WSN) as, in most networks, these sensor nodes have limited energy. Wireless sensor networks are prone to security problems because, among other things, it is possible to use a rogue sensor node to eavesdrop on or alter the information being transmitted. To prevent this, this paper introduces a security algorithm for MDC-based WSNs. A key use of this algorithm is to protect the confidentiality of the information sent by the sensor nodes. The sensor nodes are deployed in a random fashion and form group structures called clusters. Each cluster has a cluster head. The cluster head collects data from the other nodes using the time-division multiple access protocol. The sensor nodes send their data to the cluster head for transmission to the base station node for further processing. The MDC acts as an intermediate node between the cluster head and base station. The MDC, using its dynamic acyclic graph path, collects the data from the cluster head and sends it to base station. This approach is useful for applications including warfighting, intelligent building and medicine. To assess the proposed system, the paper presents a comparison of its performance with other approaches and algorithms that can be used for similar purposes.
Yang, Jing; Xu, Mai; Zhao, Wei; Xu, Baoguo
2010-01-01
For monitoring burst events in a kind of reactive wireless sensor networks (WSNs), a multipath routing protocol (MRP) based on dynamic clustering and ant colony optimization (ACO) is proposed. Such an approach can maximize the network lifetime and reduce the energy consumption. An important attribute of WSNs is their limited power supply, and therefore some metrics (such as energy consumption of communication among nodes, residual energy, path length) were considered as very important criteria while designing routing in the MRP. Firstly, a cluster head (CH) is selected among nodes located in the event area according to some parameters, such as residual energy. Secondly, an improved ACO algorithm is applied in the search for multiple paths between the CH and sink node. Finally, the CH dynamically chooses a route to transmit data with a probability that depends on many path metrics, such as energy consumption. The simulation results show that MRP can prolong the network lifetime, as well as balance of energy consumption among nodes and reduce the average energy consumption effectively.
NASA Astrophysics Data System (ADS)
Kerkez, B.; Rice, R.; Glaser, S. D.; Bales, R. C.; Saksa, P. C.
2010-12-01
A 100-node wireless sensor network (WSN) was designed for the purpose of monitoring snow depth in two watersheds, spanning 3 km2 in the American River basin, in the central Sierra Nevada of California. The network will be deployed as a prototype project that will become a core element of a larger water information system for the Sierra Nevada. The site conditions range from mid-elevation forested areas to sub-alpine terrain with light forest cover. Extreme temperature and humidity fluctuations, along with heavy rain and snowfall events, create particularly challenging conditions for wireless communications. We show how statistics gathered from a previously deployed 60-node WSN, located in the Southern Sierra Critical Zone Observatory, were used to inform design. We adapted robust network hardware, manufactured by Dust Networks for highly demanding industrial monitoring, and added linear amplifiers to the radios to improve transmission distances. We also designed a custom data-logging board to interface the WSN hardware with snow-depth sensors. Due to the large distance between sensing locations, and complexity of terrain, we analyzed network statistics to select the location of repeater nodes, to create a redundant and reliable mesh. This optimized network topology will maximize transmission distances, while ensuring power-efficient network operations throughout harsh winter conditions. At least 30 of the 100 nodes will actively sense snow depth, while the remainder will act as sensor-ready repeaters in the mesh. Data from a previously conducted snow survey was used to create a Gaussian Process model of snow depth; variance estimates produced by this model were used to suggest near-optimal locations for snow-depth sensors to measure the variability across a 1 km2 grid. We compare the locations selected by the sensor placement algorithm to those made through expert opinion, and offer explanations for differences resulting from each approach.
NASA Astrophysics Data System (ADS)
Gao, J. L.
2002-04-01
In this article, we present a system-level characterization of the energy consumption for sensor network application scenarios. We compute a power efficiency metric -- average watt-per-meter -- for each radio transmission and extend this local metric to find the global energy consumption. This analysis shows how overall energy consumption varies with transceiver characteristics, node density, data traffic distribution, and base-station location.
Exploiting Concurrent Wake-Up Transmissions Using Beat Frequencies
2017-01-01
Wake-up receivers are the natural choice for wireless sensor networks because of their ultra-low power consumption and their ability to provide communications on demand. A downside of ultra-low power wake-up receivers is their low sensitivity caused by the passive demodulation of the carrier signal. In this article, we present a novel communication scheme by exploiting purposefully-interfering out-of-tune signals of two or more wireless sensor nodes, which produce the wake-up signal as the beat frequency of superposed carriers. Additionally, we introduce a communication algorithm and a flooding protocol based on this approach. Our experiments show that our approach increases the received signal strength up to 3 dB, improving communication robustness and reliability. Furthermore, we demonstrate the feasibility of our newly-developed protocols by means of an outdoor experiment and an indoor setup consisting of several nodes. The flooding algorithm achieves almost a 100% wake-up rate in less than 20 ms. PMID:28933749
Multiport Circular Polarized RFID-Tag Antenna for UHF Sensor Applications.
Zaid, Jamal; Abdulhadi, Abdulhadi; Kesavan, Arun; Belaizi, Yassin; Denidni, Tayeb A
2017-07-05
A circular polarized patch antenna for UHF RFID tag-based sensor applications is presented, with the circular polarization (CP) generated by a new antenna shape, an asymmetric stars shaped slotted microstrip patch antenna (CP-ASSSMP). Four stars etched on the patch allow the antenna's size to be reduced by close to 20%. The proposed antenna is matched with two RFID chips via inductive-loop matching. The first chip is connected to a resistive sensor and acts as a sensor node, and the second is used as a reference node. The proposed antenna is used for two targets, serving as both reference and sensor simultaneously, thereby eliminating the need for a second antenna. Its reader can read the RFID chips at any orientation of the tag due to the CP. The measured reading range is about 25 m with mismatch polarization. The operating frequency band is 902-929 MHz for the two ports, which is covered by the US RFID band, and the axial-ratio bandwidth is about 7 MHz. In addition, the reader can also detect temperature, based on the minimum difference in the power required by the reference and sensor.
Multiport Circular Polarized RFID-Tag Antenna for UHF Sensor Applications
Zaid, Jamal; Abdulhadi, Abdulhadi; Kesavan, Arun; Belaizi, Yassin; Denidni, Tayeb A.
2017-01-01
A circular polarized patch antenna for UHF RFID tag-based sensor applications is presented, with the circular polarization (CP) generated by a new antenna shape, an asymmetric stars shaped slotted microstrip patch antenna (CP-ASSSMP). Four stars etched on the patch allow the antenna’s size to be reduced by close to 20%. The proposed antenna is matched with two RFID chips via inductive-loop matching. The first chip is connected to a resistive sensor and acts as a sensor node, and the second is used as a reference node. The proposed antenna is used for two targets, serving as both reference and sensor simultaneously, thereby eliminating the need for a second antenna. Its reader can read the RFID chips at any orientation of the tag due to the CP. The measured reading range is about 25 m with mismatch polarization. The operating frequency band is 902–929 MHz for the two ports, which is covered by the US RFID band, and the axial-ratio bandwidth is about 7 MHz. In addition, the reader can also detect temperature, based on the minimum difference in the power required by the reference and sensor. PMID:28678178
Towards a hybrid energy efficient multi-tree-based optimized routing protocol for wireless networks.
Mitton, Nathalie; Razafindralambo, Tahiry; Simplot-Ryl, David; Stojmenovic, Ivan
2012-12-13
This paper considers the problem of designing power efficient routing with guaranteed delivery for sensor networks with unknown geographic locations. We propose HECTOR, a hybrid energy efficient tree-based optimized routing protocol, based on two sets of virtual coordinates. One set is based on rooted tree coordinates, and the other is based on hop distances toward several landmarks. In HECTOR, the node currently holding the packet forwards it to its neighbor that optimizes ratio of power cost over distance progress with landmark coordinates, among nodes that reduce landmark coordinates and do not increase distance in tree coordinates. If such a node does not exist, then forwarding is made to the neighbor that reduces tree-based distance only and optimizes power cost over tree distance progress ratio. We theoretically prove the packet delivery and propose an extension based on the use of multiple trees. Our simulations show the superiority of our algorithm over existing alternatives while guaranteeing delivery, and only up to 30% additional power compared to centralized shortest weighted path algorithm.
Towards a Hybrid Energy Efficient Multi-Tree-Based Optimized Routing Protocol for Wireless Networks
Mitton, Nathalie; Razafindralambo, Tahiry; Simplot-Ryl, David; Stojmenovic, Ivan
2012-01-01
This paper considers the problem of designing power efficient routing with guaranteed delivery for sensor networks with unknown geographic locations. We propose HECTOR, a hybrid energy efficient tree-based optimized routing protocol, based on two sets of virtual coordinates. One set is based on rooted tree coordinates, and the other is based on hop distances toward several landmarks. In HECTOR, the node currently holding the packet forwards it to its neighbor that optimizes ratio of power cost over distance progress with landmark coordinates, among nodes that reduce landmark coordinates and do not increase distance in tree coordinates. If such a node does not exist, then forwarding is made to the neighbor that reduces tree-based distance only and optimizes power cost over tree distance progress ratio. We theoretically prove the packet delivery and propose an extension based on the use of multiple trees. Our simulations show the superiority of our algorithm over existing alternatives while guaranteeing delivery, and only up to 30% additional power compared to centralized shortest weighted path algorithm. PMID:23443398
Implementation of Distributed Services for a Deep Sea Moored Instrument Network
NASA Astrophysics Data System (ADS)
Oreilly, T. C.; Headley, K. L.; Risi, M.; Davis, D.; Edgington, D. R.; Salamy, K. A.; Chaffey, M.
2004-12-01
The Monterey Ocean Observing System (MOOS) is a moored observatory network consisting of interconnected instrument nodes on the sea surface, midwater, and deep sea floor. We describe Software Infrastructure and Applications for MOOS ("SIAM"), which implement the management, control, and data acquisition infrastructure for the moored observatory. Links in the MOOS network include fiber-optic and 10-BaseT copper connections between the at-sea nodes. A Globalstar satellite transceiver or 900 MHz Freewave terrestrial line-of-sight RF modem provides the link to shore. All of these links support Internet protocols, providing TCP/IP connectivity throughout a system that extends from shore to sensor nodes at the air-sea interface, through the oceanic water column to a benthic network of sensor nodes extending across the deep sea floor. Exploiting this TCP/IP infrastructure as well as capabilities provided by MBARI's MOOS mooring controller, we use powerful Internet software technologies to implement a distributed management, control and data acquisition system for the moored observatory. The system design meets the demanding functional requirements specified for MOOS. Nodes and their instruments are represented by Java RMI "services" having well defined software interfaces. Clients anywhere on the network can interact with any node or instrument through its corresponding service. A client may be on the same node as the service, may be on another node, or may reside on shore. Clients may be human, e.g. when a scientist on shore accesses a deployed instrument in real-time through a user interface. Clients may also be software components that interact autonomously with instruments and nodes, e.g. for purposes such as system resource management or autonomous detection and response to scientifically interesting events. All electrical power to the moored network is provided by solar and wind energy, and the RF shore-to-mooring links are intermittent and relatively low-bandwidth connections. Thus power and wireless bandwidth are limited resources that constrain our choice of service technologies and wireless access strategy. We describe and evaluate system performance in light of actual deployment of observatory elements in Monterey Bay, and discuss how the system can be developed further. We also consider management and control strategies for the cable-to-shore observatory known as MARS ("Monterey Accelerated Research System"). The MARS cable will provide high power and continuous high-bandwidth connectivity between seafloor instrument nodes and shore, thus removing key limitations of the moored observatory. Moreover MARS functional requirements may differ significantly from MOOS requirements. In light of these differences, we discuss how elements of our MOOS moored observatory architecture might be adapted to MARS.
A micro-Doppler sonar for acoustic surveillance in sensor networks
NASA Astrophysics Data System (ADS)
Zhang, Zhaonian
Wireless sensor networks have been employed in a wide variety of applications, despite the limited energy and communication resources at each sensor node. Low power custom VLSI chips implementing passive acoustic sensing algorithms have been successfully integrated into an acoustic surveillance unit and demonstrated for detection and location of sound sources. In this dissertation, I explore active and passive acoustic sensing techniques, signal processing and classification algorithms for detection and classification in a multinodal sensor network environment. I will present the design and characterization of a continuous-wave micro-Doppler sonar to image objects with articulated moving components. As an example application for this system, we use it to image gaits of humans and four-legged animals. I will present the micro-Doppler gait signatures of a walking person, a dog and a horse. I will discuss the resolution and range of this micro-Doppler sonar and use experimental results to support the theoretical analyses. In order to reduce the data rate and make the system amenable to wireless sensor networks, I will present a second micro-Doppler sonar that uses bandpass sampling for data acquisition. Speech recognition algorithms are explored for biometric identifications from one's gait, and I will present and compare the classification performance of the two systems. The acoustic micro-Doppler sonar design and biometric identification results are the first in the field as the previous work used either video camera or microwave technology. I will also review bearing estimation algorithms and present results of applying these algorithms for bearing estimation and tracking of moving vehicles. Another major source of the power consumption at each sensor node is the wireless interface. To address the need of low power communications in a wireless sensor network, I will also discuss the design and implementation of ultra wideband transmitters in a three dimensional silicon on insulator process. Lastly, a prototype of neuromorphic interconnects using ultra wideband radio will be presented.
A Very Low Power MAC (VLPM) Protocol for Wireless Body Area Networks
Ullah, Niamat; Khan, Pervez; Kwak, Kyung Sup
2011-01-01
Wireless Body Area Networks (WBANs) consist of a limited number of battery operated nodes that are used to monitor the vital signs of a patient over long periods of time without restricting the patient’s movements. They are an easy and fast way to diagnose the patient’s status and to consult the doctor. Device as well as network lifetime are among the most important factors in a WBAN. Prolonging the lifetime of the WBAN strongly depends on controlling the energy consumption of sensor nodes. To achieve energy efficiency, low duty cycle MAC protocols are used, but for medical applications, especially in the case of pacemakers where data have time-limited relevance, these protocols increase latency which is highly undesirable and leads to system instability. In this paper, we propose a low power MAC protocol (VLPM) based on existing wakeup radio approaches which reduce energy consumption as well as improving the response time of a node. We categorize the traffic into uplink and downlink traffic. The nodes are equipped with both a low power wake-up transmitter and receiver. The low power wake-up receiver monitors the activity on channel all the time with a very low power and keeps the MCU (Micro Controller Unit) along with main radio in sleep mode. When a node [BN or BNC (BAN Coordinator)] wants to communicate with another node, it uses the low-power radio to send a wakeup packet, which will prompt the receiver to power up its primary radio to listen for the message that follows shortly. The wake-up packet contains the desired node’s ID along with some other information to let the targeted node to wake-up and take part in communication and let all other nodes to go to sleep mode quickly. The VLPM protocol is proposed for applications having low traffic conditions. For high traffic rates, optimization is needed. Analytical results show that the proposed protocol outperforms both synchronized and unsynchronized MAC protocols like T-MAC, SCP-MAC, B-MAC and X-MAC in terms of energy consumption and response time. PMID:22163818
Energy-efficient hierarchical processing in the network of wireless intelligent sensors (WISE)
NASA Astrophysics Data System (ADS)
Raskovic, Dejan
Sensor network nodes have benefited from technological advances in the field of wireless communication, processing, and power sources. However, the processing power of microcontrollers is often not sufficient to perform sophisticated processing, while the power requirements of digital signal processing boards or handheld computers are usually too demanding for prolonged system use. We are matching the intrinsic hierarchical nature of many digital signal-processing applications with the natural hierarchy in distributed wireless networks, and building the hierarchical system of wireless intelligent sensors. Our goal is to build a system that will exploit the hierarchical organization to optimize the power consumption and extend battery life for the given time and memory constraints, while providing real-time processing of sensor signals. In addition, we are designing our system to be able to adapt to the current state of the environment, by dynamically changing the algorithm through procedure replacement. This dissertation presents the analysis of hierarchical environment and methods for energy profiling used to evaluate different system design strategies, and to optimize time-effective and energy-efficient processing.
Tang, Kea-Tiong; Li, Cheng-Han; Chiu, Shih-Wen
2011-01-01
This study developed an electronic-nose sensor node based on a polymer-coated surface acoustic wave (SAW) sensor array. The sensor node comprised an SAW sensor array, a frequency readout circuit, and an Octopus II wireless module. The sensor array was fabricated on a large K2 128° YX LiNbO3 sensing substrate. On the surface of this substrate, an interdigital transducer (IDT) was produced with a Cr/Au film as its metallic structure. A mixed-mode frequency readout application specific integrated circuit (ASIC) was fabricated using a TSMC 0.18 μm process. The ASIC output was connected to a wireless module to transmit sensor data to a base station for data storage and analysis. This sensor node is applicable for wireless sensor network (WSN) applications. PMID:22163865
Tang, Kea-Tiong; Li, Cheng-Han; Chiu, Shih-Wen
2011-01-01
This study developed an electronic-nose sensor node based on a polymer-coated surface acoustic wave (SAW) sensor array. The sensor node comprised an SAW sensor array, a frequency readout circuit, and an Octopus II wireless module. The sensor array was fabricated on a large K(2) 128° YX LiNbO3 sensing substrate. On the surface of this substrate, an interdigital transducer (IDT) was produced with a Cr/Au film as its metallic structure. A mixed-mode frequency readout application specific integrated circuit (ASIC) was fabricated using a TSMC 0.18 μm process. The ASIC output was connected to a wireless module to transmit sensor data to a base station for data storage and analysis. This sensor node is applicable for wireless sensor network (WSN) applications.
Underwater Sensor Nodes and Networks
Lloret, Jaime
2013-01-01
Sensor technology has matured enough to be used in any type of environment. The appearance of new physical sensors has increased the range of environmental parameters for gathering data. Because of the huge amount of unexploited resources in the ocean environment, there is a need of new research in the field of sensors and sensor networks. This special issue is focused on collecting recent advances on underwater sensors and underwater sensor networks in order to measure, monitor, surveillance of and control of underwater environments. On the one hand, from the sensor node perspective, we will see works related with the deployment of physical sensors, development of sensor nodes and transceivers for sensor nodes, sensor measurement analysis and several issues such as layer 1 and 2 protocols for underwater communication and sensor localization and positioning systems. On the other hand, from the sensor network perspective, we will see several architectures and protocols for underwater environments and analysis concerning sensor network measurements. Both sides will provide us a complete view of last scientific advances in this research field. PMID:24013489
NASA Astrophysics Data System (ADS)
Smith, C. J.; Kim, B.; Zhang, Y.; Ng, T. N.; Beck, V.; Ganguli, A.; Saha, B.; Daniel, G.; Lee, J.; Whiting, G.; Meyyappan, M.; Schwartz, D. E.
2015-12-01
We will present our progress on the development of a wireless sensor network that will determine the source and rate of detected methane leaks. The targeted leak detection threshold is 2 g/min with a rate estimation error of 20% and localization error of 1 m within an outdoor area of 100 m2. The network itself is composed of low-cost, high-performance sensor nodes based on printed nanomaterials with expected sensitivity below 1 ppmv methane. High sensitivity to methane is achieved by modifying high surface-area-to-volume-ratio single-walled carbon nanotubes (SWNTs) with materials that adsorb methane molecules. Because the modified SWNTs are not perfectly selective to methane, the sensor nodes contain arrays of variously-modified SWNTs to build diversity of response towards gases with adsorption affinity. Methane selectivity is achieved through advanced pattern-matching algorithms of the array's ensemble response. The system is low power and designed to operate for a year on a single small battery. The SWNT sensing elements consume only microwatts. The largest power consumer is the wireless communication, which provides robust, real-time measurement data. Methane leak localization and rate estimation will be performed by machine-learning algorithms built with the aid of computational fluid dynamics simulations of gas plume formation. This sensor system can be broadly applied at gas wells, distribution systems, refineries, and other downstream facilities. It also can be utilized for industrial and residential safety applications, and adapted to other gases and gas combinations.
I-DWRL: Improved Dual Wireless Radio Localization Using Magnetometer.
Aziz, Abdul; Kumar, Ramesh; Joe, Inwhee
2017-11-15
In the dual wireless radio localization (DWRL) technique each sensor node is equipped with two ultra-wide band (UWB) radios; the distance between the two radios is a few tens of centimeters. For localization, the DWRL technique must use at least two pre-localized nodes to fully localize an unlocalized node. Moreover, in the DWRL technique it is also not possible for two sensor nodes to properly communicate location information unless each of the four UWB radios of two communicating sensor nodes cannot approach the remaining three radios. In this paper, we propose an improved DWRL (I-DWRL) algorithm along with mounting a magnetometer sensor on one of the UWB radios of all sensor nodes. This addition of a magnetometer helps to improve DWRL algorithm such that only one localized sensor node is required for the localization of an unlocalized sensor node, and localization can also be achieved even when some of the four radios of two nodes are unable to communicate with the remaining three radios. The results show that with the use of a magnetometer a greater number of nodes can be localized with a smaller transmission range, less energy and a shorter period of time. In comparison with the conventional DWRL algorithm, our I-DWRL not only maintains the localization error but also requires around half of semi-localizations, 60% of the time, 70% of the energy and a shorter communication range to fully localize an entire network. Moreover, I-DWRL can even localize more nodes while transmission range is not sufficient for DWRL algorithm.
I-DWRL: Improved Dual Wireless Radio Localization Using Magnetometer
Aziz, Abdul; Kumar, Ramesh; Joe, Inwhee
2017-01-01
In the dual wireless radio localization (DWRL) technique each sensor node is equipped with two ultra-wide band (UWB) radios; the distance between the two radios is a few tens of centimeters. For localization, the DWRL technique must use at least two pre-localized nodes to fully localize an unlocalized node. Moreover, in the DWRL technique it is also not possible for two sensor nodes to properly communicate location information unless each of the four UWB radios of two communicating sensor nodes cannot approach the remaining three radios. In this paper, we propose an improved DWRL (I-DWRL) algorithm along with mounting a magnetometer sensor on one of the UWB radios of all sensor nodes. This addition of a magnetometer helps to improve DWRL algorithm such that only one localized sensor node is required for the localization of an unlocalized sensor node, and localization can also be achieved even when some of the four radios of two nodes are unable to communicate with the remaining three radios. The results show that with the use of a magnetometer a greater number of nodes can be localized with a smaller transmission range, less energy and a shorter period of time. In comparison with the conventional DWRL algorithm, our I-DWRL not only maintains the localization error but also requires around half of semi-localizations, 60% of the time, 70% of the energy and a shorter communication range to fully localize an entire network. Moreover, I-DWRL can even localize more nodes while transmission range is not sufficient for DWRL algorithm. PMID:29140291
An Efficient Interactive Model for On-Demand Sensing-As-A-Servicesof Sensor-Cloud
Dinh, Thanh; Kim, Younghan
2016-01-01
This paper proposes an efficient interactive model for the sensor-cloud to enable the sensor-cloud to efficiently provide on-demand sensing services for multiple applications with different requirements at the same time. The interactive model is designed for both the cloud and sensor nodes to optimize the resource consumption of physical sensors, as well as the bandwidth consumption of sensing traffic. In the model, the sensor-cloud plays a key role in aggregating application requests to minimize the workloads required for constrained physical nodes while guaranteeing that the requirements of all applications are satisfied. Physical sensor nodes perform their sensing under the guidance of the sensor-cloud. Based on the interactions with the sensor-cloud, physical sensor nodes adapt their scheduling accordingly to minimize their energy consumption. Comprehensive experimental results show that our proposed system achieves a significant improvement in terms of the energy consumption of physical sensors, the bandwidth consumption from the sink node to the sensor-cloud, the packet delivery latency, reliability and scalability, compared to current approaches. Based on the obtained results, we discuss the economical benefits and how the proposed system enables a win-win model in the sensor-cloud. PMID:27367689
An Efficient Interactive Model for On-Demand Sensing-As-A-Servicesof Sensor-Cloud.
Dinh, Thanh; Kim, Younghan
2016-06-28
This paper proposes an efficient interactive model for the sensor-cloud to enable the sensor-cloud to efficiently provide on-demand sensing services for multiple applications with different requirements at the same time. The interactive model is designed for both the cloud and sensor nodes to optimize the resource consumption of physical sensors, as well as the bandwidth consumption of sensing traffic. In the model, the sensor-cloud plays a key role in aggregating application requests to minimize the workloads required for constrained physical nodes while guaranteeing that the requirements of all applications are satisfied. Physical sensor nodes perform their sensing under the guidance of the sensor-cloud. Based on the interactions with the sensor-cloud, physical sensor nodes adapt their scheduling accordingly to minimize their energy consumption. Comprehensive experimental results show that our proposed system achieves a significant improvement in terms of the energy consumption of physical sensors, the bandwidth consumption from the sink node to the sensor-cloud, the packet delivery latency, reliability and scalability, compared to current approaches. Based on the obtained results, we discuss the economical benefits and how the proposed system enables a win-win model in the sensor-cloud.
Self-powered wireless sensor networks for telemedicine applications
NASA Astrophysics Data System (ADS)
Polk, Todd William
Technology advances in wireless sensor networks have made it possible for these tiny systems to enter the realm of ubiquitous or pervasive computing which has been forecast for several years. These nodes, or motes as they are known, typically run off of battery power and when used sparingly can operate in excess of one year. When requirements necessitate higher usage, battery monitoring and replacement becomes a major issue. Large systems can quickly become cost prohibitive. To combat this issue, researchers have looked to energy harvesting to power these motes. However, this research has mainly centered on outdoor solar harvesting to take advantage of higher energy levels provided by the sun. Indoor harvesting has been presented in the past as not feasible. In this dissertation, we present a system that utilizes energy harvested from overhead fluorescent lights to power the infrastructure (routing) nodes of an indoor telemedicine based wireless network. The limitations of indoor harvesting are exploited and leveraged through creative hardware design. A unique message routing protocol has been developed to control these routing nodes and allow continual operation. Standard medical devices have been interfaced to the system to allow wireless transmission of patient data to a central collection point where the data is organized, stored and presented to the user via a graphical user interface (GUI). The range of the system has been extended by interfacing a cellular modem to the system to allow two-way communication between the GUI and a remote healthcare provider. Extensive physical testing has been done to determine the robustness of the system, and the boundary conditions for extremely large networks were tested via simulation.
Acoustic communications for cabled seafloor observatories
NASA Astrophysics Data System (ADS)
Freitag, L.; Stojanovic, M.
2003-04-01
Cabled seafloor observatories will provide scientists with a continuous presence in both deep and shallow water. In the deep ocean, connecting sensors to seafloor nodes for power and data transfer will require cables and a highly-capable ROV, both of which are potentially expensive. For many applications where very high bandwidth is not required, and where a sensor is already designed to operate on battery power, the use of acoustic links should be considered. Acoustic links are particularly useful for large numbers of low-bandwidth sensors scattered over tens of square kilometers. Sensors used to monitor the chemistry and biology of vent fields are one example. Another important use for acoustic communication is monitoring of AUVs performing pre-programmed or adaptive sampling missions. A high data rate acoustic link with an AUV allows the observer on shore to direct the vehicle in real-time, providing for dynamic event response. Thus both fixed and mobile sensors motivate the development of observatory infrastructure that provides power-efficient, high bandwidth acoustic communication. A proposed system design that can provide the wireless infrastructure, and further examples of its use in networks such as NEPTUNE, are presented.
Underwater Electromagnetic Sensor Networks, Part II: Localization and Network Simulations
Zazo, Javier; Valcarcel Macua, Sergio; Zazo, Santiago; Pérez, Marina; Pérez-Álvarez, Iván; Jiménez, Eugenio; Cardona, Laura; Brito, Joaquín Hernández; Quevedo, Eduardo
2016-01-01
In the first part of the paper, we modeled and characterized the underwater radio channel in shallow waters. In the second part, we analyze the application requirements for an underwater wireless sensor network (U-WSN) operating in the same environment and perform detailed simulations. We consider two localization applications, namely self-localization and navigation aid, and propose algorithms that work well under the specific constraints associated with U-WSN, namely low connectivity, low data rates and high packet loss probability. We propose an algorithm where the sensor nodes collaboratively estimate their unknown positions in the network using a low number of anchor nodes and distance measurements from the underwater channel. Once the network has been self-located, we consider a node estimating its position for underwater navigation communicating with neighboring nodes. We also propose a communication system and simulate the whole electromagnetic U-WSN in the Castalia simulator to evaluate the network performance, including propagation impairments (e.g., noise, interference), radio parameters (e.g., modulation scheme, bandwidth, transmit power), hardware limitations (e.g., clock drift, transmission buffer) and complete MAC and routing protocols. We also explain the changes that have to be done to Castalia in order to perform the simulations. In addition, we propose a parametric model of the communication channel that matches well with the results from the first part of this paper. Finally, we provide simulation results for some illustrative scenarios. PMID:27999309
System perspectives for mobile platform design in m-Health
NASA Astrophysics Data System (ADS)
Roveda, Janet M.; Fink, Wolfgang
2016-05-01
Advances in integrated circuit technologies have led to the integration of medical sensor front ends with data processing circuits, i.e., mobile platform design for wearable sensors. We discuss design methodologies for wearable sensor nodes and their applications in m-Health. From the user perspective, flexibility, comfort, appearance, fashion, ease-of-use, and visibility are key form factors. From the technology development point of view, high accuracy, low power consumption, and high signal to noise ratio are desirable features. From the embedded software design standpoint, real time data analysis algorithms, application and database interfaces are the critical components to create successful wearable sensor-based products.
IMHRP: Improved Multi-Hop Routing Protocol for Wireless Sensor Networks
NASA Astrophysics Data System (ADS)
Huang, Jianhua; Ruan, Danwei; Hong, Yadong; Zhao, Ziming; Zheng, Hong
2017-10-01
Wireless sensor network (WSN) is a self-organizing system formed by a large number of low-cost sensor nodes through wireless communication. Sensor nodes collect environmental information and transmit it to the base station (BS). Sensor nodes usually have very limited battery energy. The batteries cannot be charged or replaced. Therefore, it is necessary to design an energy efficient routing protocol to maximize the network lifetime. This paper presents an improved multi-hop routing protocol (IMHRP) for homogeneous networks. In the IMHRP protocol, based on the distances to the BS, the CH nodes are divided into internal CH nodes and external CH nodes. The set-up phase of the protocol is based on the LEACH protocol and the minimum distance between CH nodes are limited to a special constant distance, so a more uniform distribution of CH nodes is achieved. In the steady-state phase, the routes of different CH nodes are created on the basis of the distances between the CH nodes. The energy efficiency of communication can be maximized. The simulation results show that the proposed algorithm can more effectively reduce the energy consumption of each round and prolong the network lifetime compared with LEACH protocol and MHT protocol.
Salim, Shelly; Moh, Sangman; Choi, Dongmin; Chung, Ilyong
2014-08-11
A cognitive radio sensor network (CRSN) is a wireless sensor network whose sensor nodes are equipped with cognitive radio capability. Clustering is one of the most challenging issues in CRSNs, as all sensor nodes, including the cluster head, have to use the same frequency band in order to form a cluster. However, due to the nature of heterogeneous channels in cognitive radio, it is difficult for sensor nodes to find a cluster head. This paper proposes a novel energy-efficient and compact clustering scheme named clustering with temporary support nodes (CENTRE). CENTRE efficiently achieves a compact cluster formation by adopting two-phase cluster formation with fixed duration. By introducing a novel concept of temporary support nodes to improve the cluster formation, the proposed scheme enables sensor nodes in a network to find a cluster head efficiently. The performance study shows that not only is the clustering process efficient and compact but it also results in remarkable energy savings that prolong the overall network lifetime. In addition, the proposed scheme decreases both the clustering overhead and the average distance between cluster heads and their members.
Salim, Shelly; Moh, Sangman; Choi, Dongmin; Chung, Ilyong
2014-01-01
A cognitive radio sensor network (CRSN) is a wireless sensor network whose sensor nodes are equipped with cognitive radio capability. Clustering is one of the most challenging issues in CRSNs, as all sensor nodes, including the cluster head, have to use the same frequency band in order to form a cluster. However, due to the nature of heterogeneous channels in cognitive radio, it is difficult for sensor nodes to find a cluster head. This paper proposes a novel energy-efficient and compact clustering scheme named clustering with temporary support nodes (CENTRE). CENTRE efficiently achieves a compact cluster formation by adopting two-phase cluster formation with fixed duration. By introducing a novel concept of temporary support nodes to improve the cluster formation, the proposed scheme enables sensor nodes in a network to find a cluster head efficiently. The performance study shows that not only is the clustering process efficient and compact but it also results in remarkable energy savings that prolong the overall network lifetime. In addition, the proposed scheme decreases both the clustering overhead and the average distance between cluster heads and their members. PMID:25116905
Nogami, Hirofumi; Arai, Shozo; Okada, Hironao; Zhan, Lan; Itoh, Toshihiro
2017-01-01
Monitoring rumen conditions in cows is important because a dysfunctional rumen system may cause death. Sub-acute ruminal acidosis (SARA) is a typical disease in cows, and is characterized by repeated periods of low ruminal pH. SARA is regarded as a trigger for rumen atony, rumenitis, and abomasal displacement, which may cause death. In previous studies, rumen conditions were evaluated by wireless sensor nodes with pH measurement capability. The primary advantage of the pH sensor is its ability to continuously measure ruminal pH. However, these sensor nodes have short lifetimes since they are limited by the finite volume of the internal liquid of the reference electrode. Mimicking rumen atony, we attempt to evaluate the rumen condition using wireless sensor nodes with three-axis accelerometers. The theoretical life span of such sensor nodes depends mainly on the transmission frequency of acceleration data and the size of the battery, and the proposed sensor nodes are 30.0 mm in diameter and 70.0 mm in length and have a life span of over 600 days. Using the sensor nodes, we compare the rumen motility of the force transducer measurement with the three-axis accelerometer data. As a result, we can detect discriminative movement of rumen atony. PMID:28346374
Nogami, Hirofumi; Arai, Shozo; Okada, Hironao; Zhan, Lan; Itoh, Toshihiro
2017-03-27
Monitoring rumen conditions in cows is important because a dysfunctional rumen system may cause death. Sub-acute ruminal acidosis (SARA) is a typical disease in cows, and is characterized by repeated periods of low ruminal pH. SARA is regarded as a trigger for rumen atony, rumenitis, and abomasal displacement, which may cause death. In previous studies, rumen conditions were evaluated by wireless sensor nodes with pH measurement capability. The primary advantage of the pH sensor is its ability to continuously measure ruminal pH. However, these sensor nodes have short lifetimes since they are limited by the finite volume of the internal liquid of the reference electrode. Mimicking rumen atony, we attempt to evaluate the rumen condition using wireless sensor nodes with three-axis accelerometers. The theoretical life span of such sensor nodes depends mainly on the transmission frequency of acceleration data and the size of the battery, and the proposed sensor nodes are 30.0 mm in diameter and 70.0 mm in length and have a life span of over 600 days. Using the sensor nodes, we compare the rumen motility of the force transducer measurement with the three-axis accelerometer data. As a result, we can detect discriminative movement of rumen atony.
Road Nail: Experimental Solar Powered Intelligent Road Marking System
NASA Astrophysics Data System (ADS)
Samardžija, Dragan; Teslić, Nikola; Todorović, Branislav M.; Kovač, Erne; Isailović, Đorđe; Miladinović, Bojan
2012-03-01
Driving in low visibility conditions (night time, fog or heavy precipitation) is particularly challenging task with an increased probability of traffic accidents and possible injuries. Road Nail is a solar powered intelligent road marking system of wirelessly networked signaling devices that improve driver safety in low visibility conditions along hazardous roadways. Nails or signaling devices are autonomous nodes with capability to accumulate energy, exchange wireless messages, detect approaching vehicles and emit signalization light. We have built an experimental test-bed that consists of 20 nodes and a cellular gateway. Implementation details of the above system, including extensive measurements and performance evaluations in realistic field deployments are presented. A novel distributed network topology discovery scheme is proposed which integrates both sensor and wireless communication aspects, where nodes act autonomously. Finally, integration of the Road Nail system with the cellular network and the Internet is described.
Cho, Sunghyun; Choi, Ji-Woong; You, Cheolwoo
2013-10-02
Mobile wireless multimedia sensor networks (WMSNs), which consist of mobile sink or sensor nodes and use rich sensing information, require much faster and more reliable wireless links than static wireless sensor networks (WSNs). This paper proposes an adaptive multi-node (MN) multiple input and multiple output (MIMO) transmission to improve the transmission reliability and capacity of mobile sink nodes when they experience spatial correlation. Unlike conventional single-node (SN) MIMO transmission, the proposed scheme considers the use of transmission antennas from more than two sensor nodes. To find an optimal antenna set and a MIMO transmission scheme, a MN MIMO channel model is introduced first, followed by derivation of closed-form ergodic capacity expressions with different MIMO transmission schemes, such as space-time transmit diversity coding and spatial multiplexing. The capacity varies according to the antenna correlation and the path gain from multiple sensor nodes. Based on these statistical results, we propose an adaptive MIMO mode and antenna set switching algorithm that maximizes the ergodic capacity of mobile sink nodes. The ergodic capacity of the proposed scheme is compared with conventional SN MIMO schemes, where the gain increases as the antenna correlation and path gain ratio increase.
Cho, Sunghyun; Choi, Ji-Woong; You, Cheolwoo
2013-01-01
Mobile wireless multimedia sensor networks (WMSNs), which consist of mobile sink or sensor nodes and use rich sensing information, require much faster and more reliable wireless links than static wireless sensor networks (WSNs). This paper proposes an adaptive multi-node (MN) multiple input and multiple output (MIMO) transmission to improve the transmission reliability and capacity of mobile sink nodes when they experience spatial correlation. Unlike conventional single-node (SN) MIMO transmission, the proposed scheme considers the use of transmission antennas from more than two sensor nodes. To find an optimal antenna set and a MIMO transmission scheme, a MN MIMO channel model is introduced first, followed by derivation of closed-form ergodic capacity expressions with different MIMO transmission schemes, such as space-time transmit diversity coding and spatial multiplexing. The capacity varies according to the antenna correlation and the path gain from multiple sensor nodes. Based on these statistical results, we propose an adaptive MIMO mode and antenna set switching algorithm that maximizes the ergodic capacity of mobile sink nodes. The ergodic capacity of the proposed scheme is compared with conventional SN MIMO schemes, where the gain increases as the antenna correlation and path gain ratio increase. PMID:24152920
Wireless Sensor Networks - Node Localization for Various Industry Problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Derr, Kurt; Manic, Milos
Fast, effective monitoring following airborne releases of toxic substances is critical to mitigate risks to threatened population areas. Wireless sensor nodes at fixed predetermined locations may monitor such airborne releases and provide early warnings to the public. A challenging algorithmic problem is determining the locations to place these sensor nodes while meeting several criteria: 1) provide complete coverage of the domain, and 2) create a topology with problem dependent node densities, while 3) minimizing the number of sensor nodes. This manuscript presents a novel approach to determining optimal sensor placement, Advancing Front mEsh generation with Constrained dElaunay Triangulation and Smoothingmore » (AFECETS) that addresses these criteria. A unique aspect of AFECETS is the ability to determine wireless sensor node locations for areas of high interest (hospitals, schools, high population density areas) that require higher density of nodes for monitoring environmental conditions, a feature that is difficult to find in other research work. The AFECETS algorithm was tested on several arbitrary shaped domains. AFECETS simulation results show that the algorithm 1) provides significant reduction in the number of nodes, in some cases over 40%, compared to an advancing front mesh generation algorithm, 2) maintains and improves optimal spacing between nodes, and 3) produces simulation run times suitable for real-time applications.« less
Wireless Sensor Networks - Node Localization for Various Industry Problems
Derr, Kurt; Manic, Milos
2015-06-01
Fast, effective monitoring following airborne releases of toxic substances is critical to mitigate risks to threatened population areas. Wireless sensor nodes at fixed predetermined locations may monitor such airborne releases and provide early warnings to the public. A challenging algorithmic problem is determining the locations to place these sensor nodes while meeting several criteria: 1) provide complete coverage of the domain, and 2) create a topology with problem dependent node densities, while 3) minimizing the number of sensor nodes. This manuscript presents a novel approach to determining optimal sensor placement, Advancing Front mEsh generation with Constrained dElaunay Triangulation and Smoothingmore » (AFECETS) that addresses these criteria. A unique aspect of AFECETS is the ability to determine wireless sensor node locations for areas of high interest (hospitals, schools, high population density areas) that require higher density of nodes for monitoring environmental conditions, a feature that is difficult to find in other research work. The AFECETS algorithm was tested on several arbitrary shaped domains. AFECETS simulation results show that the algorithm 1) provides significant reduction in the number of nodes, in some cases over 40%, compared to an advancing front mesh generation algorithm, 2) maintains and improves optimal spacing between nodes, and 3) produces simulation run times suitable for real-time applications.« less
A Game Theoretic Framework for Power Control in Wireless Sensor Networks (POSTPRINT)
2010-02-01
which the sensor nodes compute based on past observations. Correspondingly, Pe can only be estimated; for example, with a noncoherent FSK modula...bit error probability for the link (i ! j) is given by some inverse function of j. For example, with noncoherent FSK modulation scheme, Pe ¼ 0:5e j...show the results for two different modulation schemes: DPSK and noncoherent PSK. As expected, with improvement in channel condition, i.e., with increase
NASA Astrophysics Data System (ADS)
Dragos, Kosmas; Smarsly, Kay
2016-04-01
System identification has been employed in numerous structural health monitoring (SHM) applications. Traditional system identification methods usually rely on centralized processing of structural response data to extract information on structural parameters. However, in wireless SHM systems the centralized processing of structural response data introduces a significant communication bottleneck. Exploiting the merits of decentralization and on-board processing power of wireless SHM systems, many system identification methods have been successfully implemented in wireless sensor networks. While several system identification approaches for wireless SHM systems have been proposed, little attention has been paid to obtaining information on the physical parameters (e.g. stiffness, damping) of the monitored structure. This paper presents a hybrid system identification methodology suitable for wireless sensor networks based on the principles of component mode synthesis (dynamic substructuring). A numerical model of the monitored structure is embedded into the wireless sensor nodes in a distributed manner, i.e. the entire model is segmented into sub-models, each embedded into one sensor node corresponding to the substructure the sensor node is assigned to. The parameters of each sub-model are estimated by extracting local mode shapes and by applying the equations of the Craig-Bampton method on dynamic substructuring. The proposed methodology is validated in a laboratory test conducted on a four-story frame structure to demonstrate the ability of the methodology to yield accurate estimates of stiffness parameters. Finally, the test results are discussed and an outlook on future research directions is provided.
A black carbon air quality network
NASA Astrophysics Data System (ADS)
Kirchstetter, T.; Caubel, J.; Cados, T.; Preble, C.; Rosen, A.
2016-12-01
We developed a portable, power efficient black carbon sensor for deployment in an air quality network in West Oakland, California. West Oakland is a San Francisco Bay Area residential/industrial community adjacent to regional port and rail yard facilities, and is surrounded by major freeways. As such, the community is affected by diesel particulate matter emissions from heavy-duty diesel trucks, locomotives, and ships associated with freight movement. In partnership with Environmental Defense Fund, the Bay Area Air Quality Management District, and the West Oakland Environmental Indicators Project, we are collaborating with community members to build and operate a 100-sensor black carbon measurement network for a period of several months. The sensor employs the filter-based light transmission method to measure black carbon. Each sensor node in the network transmits data hourly via SMS text messages. Cost, power consumption, and performance are considered in choosing components (e.g., pump) and operating conditions (e.g., sample flow rate). In field evaluation trials over several weeks at three monitoring locations, the sensor nodes provided black carbon concentrations comparable to commercial instruments and ran autonomously for a week before sample filters and rechargeable batteries needed to be replaced. Buildup to the 100-sensor network is taking place during Fall 2016 and will overlap with other ongoing air monitoring projects and monitoring platforms in West Oakland. Sensors will be placed along commercial corridors, adjacent to freeways, upwind of and within the Port, and throughout the residential community. Spatial and temporal black carbon concentration patterns will help characterize pollution sources and demonstrate the value of sensing networks for characterizing intra-urban air pollution concentrations and exposure to air pollution.
NASA Astrophysics Data System (ADS)
Delaney, J. R.; Kelley, D. S.; Proskurowski, G. K.; Kawka, O. E.; Fundis, A.; Mulvihill, M.; Harkins, G.; Harrington, M.; McGuire, C.; Manalang, D.; Light, R.; Stewart, A.; Brand, B.
2013-12-01
Since mid-year 2011, NSF's Ocean Observatories Initiative has made considerable progress in installing its cabled seafloor and water-column component off the Washington-Oregon Coast. The Primary Infrastructure is nearly operational and includes ~900 km of high-power (10 kV) and bandwidth (10 Gbs) submarine electro-optical cable and 7 seafloor power- and communications switching stations (nodes) in a two-cable network spanning tectonically active zones across the Juan de Fuca Plate, with access to the overlying ocean. The system is connected to a shore-landing in Pacific City, Oregon, with a dual-path terrestrial backhaul to Portland where connections to major continent-wide, high-speed networks link via the Internet to the undersea system. During summer 2013 the VISIONS'13 expedition, using the R/V Thompson and the remotely operated vehicle (ROV) ROPOS, placed a number of secondary infrastructure elements on the seafloor, ready to be connected to the Primary Nodes when the system is fully tested and accepted by the Consortium for Ocean Leadership. Secondary infrastructure installed using the ROV ROPOS includes over 23,000 meters of extension cables, which comprise twelve electro-optical and electrical cables that provide links from the Primary Nodes to experimental sites and instrument clusters. Smaller nodes (junction boxes) were also deployed, with three installed on the seafloor. All cables and junction boxes were fully tested, which included powering up and communicating through the nodes and sensors using the ROV ROPOS as a power-communication source, and live data transmission of the resultant engineering and science data to the ship located 3000-1500m above the seafloor. Locations include sites near the base of the continental slope and on Axial Seamount, the most magmatically active volcano on the Juan de Fuca Ridge. Real-time data streamed from instruments connected to extension cables at Axial Volcano via ROPOS revealed a significant local earthquake on the volcano, and a minor signal showing direct tidal measurements from 300 miles offshore. Sensors to be installed and connected in 2014 will provide seismic information, current velocities, inflation and deflation measurements of the volcanic caldera, high-definition video on demand, digital-still imagery, chemical data from methane seeps and vent sites using mass spectrometers, and an array of thermistors in a low-temperature vent field. Six instrumented full water-column moorings with two different types of profilers will be installed and connected to the cable in 2014.
Fault Tolerance in ZigBee Wireless Sensor Networks
NASA Technical Reports Server (NTRS)
Alena, Richard; Gilstrap, Ray; Baldwin, Jarren; Stone, Thom; Wilson, Pete
2011-01-01
Wireless sensor networks (WSN) based on the IEEE 802.15.4 Personal Area Network standard are finding increasing use in the home automation and emerging smart energy markets. The network and application layers, based on the ZigBee 2007 PRO Standard, provide a convenient framework for component-based software that supports customer solutions from multiple vendors. This technology is supported by System-on-a-Chip solutions, resulting in extremely small and low-power nodes. The Wireless Connections in Space Project addresses the aerospace flight domain for both flight-critical and non-critical avionics. WSNs provide the inherent fault tolerance required for aerospace applications utilizing such technology. The team from Ames Research Center has developed techniques for assessing the fault tolerance of ZigBee WSNs challenged by radio frequency (RF) interference or WSN node failure.
Prediction of Sybil attack on WSN using Bayesian network and swarm intelligence
NASA Astrophysics Data System (ADS)
Muraleedharan, Rajani; Ye, Xiang; Osadciw, Lisa Ann
2008-04-01
Security in wireless sensor networks is typically sacrificed or kept minimal due to limited resources such as memory and battery power. Hence, the sensor nodes are prone to Denial-of-service attacks and detecting the threats is crucial in any application. In this paper, the Sybil attack is analyzed and a novel prediction method, combining Bayesian algorithm and Swarm Intelligence (SI) is proposed. Bayesian Networks (BN) is used in representing and reasoning problems, by modeling the elements of uncertainty. The decision from the BN is applied to SI forming an Hybrid Intelligence Scheme (HIS) to re-route the information and disconnecting the malicious nodes in future routes. A performance comparison based on the prediction using HIS vs. Ant System (AS) helps in prioritizing applications where decisions are time-critical.
Video sensor architecture for surveillance applications.
Sánchez, Jordi; Benet, Ginés; Simó, José E
2012-01-01
This paper introduces a flexible hardware and software architecture for a smart video sensor. This sensor has been applied in a video surveillance application where some of these video sensors are deployed, constituting the sensory nodes of a distributed surveillance system. In this system, a video sensor node processes images locally in order to extract objects of interest, and classify them. The sensor node reports the processing results to other nodes in the cloud (a user or higher level software) in the form of an XML description. The hardware architecture of each sensor node has been developed using two DSP processors and an FPGA that controls, in a flexible way, the interconnection among processors and the image data flow. The developed node software is based on pluggable components and runs on a provided execution run-time. Some basic and application-specific software components have been developed, in particular: acquisition, segmentation, labeling, tracking, classification and feature extraction. Preliminary results demonstrate that the system can achieve up to 7.5 frames per second in the worst case, and the true positive rates in the classification of objects are better than 80%.
Video Sensor Architecture for Surveillance Applications
Sánchez, Jordi; Benet, Ginés; Simó, José E.
2012-01-01
This paper introduces a flexible hardware and software architecture for a smart video sensor. This sensor has been applied in a video surveillance application where some of these video sensors are deployed, constituting the sensory nodes of a distributed surveillance system. In this system, a video sensor node processes images locally in order to extract objects of interest, and classify them. The sensor node reports the processing results to other nodes in the cloud (a user or higher level software) in the form of an XML description. The hardware architecture of each sensor node has been developed using two DSP processors and an FPGA that controls, in a flexible way, the interconnection among processors and the image data flow. The developed node software is based on pluggable components and runs on a provided execution run-time. Some basic and application-specific software components have been developed, in particular: acquisition, segmentation, labeling, tracking, classification and feature extraction. Preliminary results demonstrate that the system can achieve up to 7.5 frames per second in the worst case, and the true positive rates in the classification of objects are better than 80%. PMID:22438723
NASA Technical Reports Server (NTRS)
Halyo, Nesim; Choi, Sang H.; Chrisman, Dan A., Jr.; Samms, Richard W.
1987-01-01
Dynamic models and computer simulations were developed for the radiometric sensors utilized in the Earth Radiation Budget Experiment (ERBE). The models were developed to understand performance, improve measurement accuracy by updating model parameters and provide the constants needed for the count conversion algorithms. Model simulations were compared with the sensor's actual responses demonstrated in the ground and inflight calibrations. The models consider thermal and radiative exchange effects, surface specularity, spectral dependence of a filter, radiative interactions among an enclosure's nodes, partial specular and diffuse enclosure surface characteristics and steady-state and transient sensor responses. Relatively few sensor nodes were chosen for the models since there is an accuracy tradeoff between increasing the number of nodes and approximating parameters such as the sensor's size, material properties, geometry, and enclosure surface characteristics. Given that the temperature gradients within a node and between nodes are small enough, approximating with only a few nodes does not jeopardize the accuracy required to perform the parameter estimates and error analyses.
ExScal Backbone Network Architecture
2005-01-01
802.11 battery powered nodes was laid over the sensor network. We adopted the Stargate platform for the backbone tier to serve as the basis for...its head. XSS Hardware and Network: XSS stands for eXtreme Scaling Stargate . A stargate is a linux-based single board computer. It has a 400 MHz
Cross-layer design for intrusion detection and data security in wireless ad hoc sensor networks
NASA Astrophysics Data System (ADS)
Hortos, William S.
2007-09-01
A wireless ad hoc sensor network is a configuration for area surveillance that affords rapid, flexible deployment in arbitrary threat environments. There is no infrastructure support and sensor nodes communicate with each other only when they are in transmission range. The nodes are severely resource-constrained, with limited processing, memory and power capacities and must operate cooperatively to fulfill a common mission in typically unattended modes. In a wireless sensor network (WSN), each sensor at a node can observe locally some underlying physical phenomenon and sends a quantized version of the observation to sink (destination) nodes via wireless links. Since the wireless medium can be easily eavesdropped, links can be compromised by intrusion attacks from nodes that may mount denial-of-service attacks or insert spurious information into routing packets, leading to routing loops, long timeouts, impersonation, and node exhaustion. A cross-layer design based on protocol-layer interactions is proposed for detection and identification of various intrusion attacks on WSN operation. A feature set is formed from selected cross-layer parameters of the WSN protocol to detect and identify security threats due to intrusion attacks. A separate protocol is not constructed from the cross-layer design; instead, security attributes and quantified trust levels at and among nodes established during data exchanges complement customary WSN metrics of energy usage, reliability, route availability, and end-to-end quality-of-service (QoS) provisioning. Statistical pattern recognition algorithms are applied that use observed feature-set patterns observed during network operations, viewed as security audit logs. These algorithms provide the "best" network global performance in the presence of various intrusion attacks. A set of mobile (software) agents distributed at the nodes implement the algorithms, by moving among the layers involved in the network response at each active node and trust neighborhood, collecting parametric information and executing assigned decision tasks. The communications overhead due to security mechanisms and the latency in network response are thus minimized by reducing the need to move large amounts of audit data through resource-limited nodes and by locating detection/identification programs closer to audit data. If network partitioning occurs due to uncoordinated node exhaustion, data compromise or other effects of the attacks, the mobile agents can continue to operate, thereby increasing fault tolerance in the network response to intrusions. Since the mobile agents behave like an ant colony in securing the WSN, published ant colony optimization (ACO) routines and other evolutionary algorithms are adapted to protect network security, using data at and through nodes to create audit records to detect and respond to denial-of-service attacks. Performance evaluations of algorithms are performed by simulation of a few intrusion attacks, such as black hole, flooding, Sybil and others, to validate the ability of the cross-layer algorithms to enable WSNs to survive the attacks. Results are compared for the different algorithms.
Li, Ruiying; Ma, Wenting; Huang, Ning; Kang, Rui
2017-01-01
A sophisticated method for node deployment can efficiently reduce the energy consumption of a Wireless Sensor Network (WSN) and prolong the corresponding network lifetime. Pioneers have proposed many node deployment based lifetime optimization methods for WSNs, however, the retransmission mechanism and the discrete power control strategy, which are widely used in practice and have large effect on the network energy consumption, are often neglected and assumed as a continuous one, respectively, in the previous studies. In this paper, both retransmission and discrete power control are considered together, and a more realistic energy-consumption-based network lifetime model for linear WSNs is provided. Using this model, we then propose a generic deployment-based optimization model that maximizes network lifetime under coverage, connectivity and transmission rate success constraints. The more accurate lifetime evaluation conduces to a longer optimal network lifetime in the realistic situation. To illustrate the effectiveness of our method, both one-tiered and two-tiered uniformly and non-uniformly distributed linear WSNs are optimized in our case studies, and the comparisons between our optimal results and those based on relatively inaccurate lifetime evaluation show the advantage of our method when investigating WSN lifetime optimization problems.
Shi, Binbin; Wei, Wei; Wang, Yihuai; Shu, Wanneng
2016-01-01
In high-density sensor networks, scheduling some sensor nodes to be in the sleep mode while other sensor nodes remain active for monitoring or forwarding packets is an effective control scheme to conserve energy. In this paper, a Coverage-Preserving Control Scheduling Scheme (CPCSS) based on a cloud model and redundancy degree in sensor networks is proposed. Firstly, the normal cloud model is adopted for calculating the similarity degree between the sensor nodes in terms of their historical data, and then all nodes in each grid of the target area can be classified into several categories. Secondly, the redundancy degree of a node is calculated according to its sensing area being covered by the neighboring sensors. Finally, a centralized approximation algorithm based on the partition of the target area is designed to obtain the approximate minimum set of nodes, which can retain the sufficient coverage of the target region and ensure the connectivity of the network at the same time. The simulation results show that the proposed CPCSS can balance the energy consumption and optimize the coverage performance of the sensor network. PMID:27754405
Shi, Binbin; Wei, Wei; Wang, Yihuai; Shu, Wanneng
2016-10-14
In high-density sensor networks, scheduling some sensor nodes to be in the sleep mode while other sensor nodes remain active for monitoring or forwarding packets is an effective control scheme to conserve energy. In this paper, a Coverage-Preserving Control Scheduling Scheme (CPCSS) based on a cloud model and redundancy degree in sensor networks is proposed. Firstly, the normal cloud model is adopted for calculating the similarity degree between the sensor nodes in terms of their historical data, and then all nodes in each grid of the target area can be classified into several categories. Secondly, the redundancy degree of a node is calculated according to its sensing area being covered by the neighboring sensors. Finally, a centralized approximation algorithm based on the partition of the target area is designed to obtain the approximate minimum set of nodes, which can retain the sufficient coverage of the target region and ensure the connectivity of the network at the same time. The simulation results show that the proposed CPCSS can balance the energy consumption and optimize the coverage performance of the sensor network.
Dynamic Reconfiguration of Security Policies in Wireless Sensor Networks
Pinto, Mónica; Gámez, Nadia; Fuentes, Lidia; Amor, Mercedes; Horcas, José Miguel; Ayala, Inmaculada
2015-01-01
Providing security and privacy to wireless sensor nodes (WSNs) is very challenging, due to the heterogeneity of sensor nodes and their limited capabilities in terms of energy, processing power and memory. The applications for these systems run in a myriad of sensors with different low-level programming abstractions, limited capabilities and different routing protocols. This means that applications for WSNs need mechanisms for self-adaptation and for self-protection based on the dynamic adaptation of the algorithms used to provide security. Dynamic software product lines (DSPLs) allow managing both variability and dynamic software adaptation, so they can be considered a key technology in successfully developing self-protected WSN applications. In this paper, we propose a self-protection solution for WSNs based on the combination of the INTER-TRUST security framework (a solution for the dynamic negotiation and deployment of security policies) and the FamiWare middleware (a DSPL approach to automatically configure and reconfigure instances of a middleware for WSNs). We evaluate our approach using a case study from the intelligent transportation system domain. PMID:25746093
Time Series Analysis for Spatial Node Selection in Environment Monitoring Sensor Networks
Bhandari, Siddhartha; Jurdak, Raja; Kusy, Branislav
2017-01-01
Wireless sensor networks are widely used in environmental monitoring. The number of sensor nodes to be deployed will vary depending on the desired spatio-temporal resolution. Selecting an optimal number, position and sampling rate for an array of sensor nodes in environmental monitoring is a challenging question. Most of the current solutions are either theoretical or simulation-based where the problems are tackled using random field theory, computational geometry or computer simulations, limiting their specificity to a given sensor deployment. Using an empirical dataset from a mine rehabilitation monitoring sensor network, this work proposes a data-driven approach where co-integrated time series analysis is used to select the number of sensors from a short-term deployment of a larger set of potential node positions. Analyses conducted on temperature time series show 75% of sensors are co-integrated. Using only 25% of the original nodes can generate a complete dataset within a 0.5 °C average error bound. Our data-driven approach to sensor position selection is applicable for spatiotemporal monitoring of spatially correlated environmental parameters to minimize deployment cost without compromising data resolution. PMID:29271880
Wireless Fidelity Electromagnetic Field Exposure Monitoring With Wearable Body Sensor Networks.
Lecoutere, Jeroen; Thielens, Arno; Agneessens, Sam; Rogier, Hendrik; Joseph, Wout; Puers, Robert
2016-06-01
With the breakthrough of the Internet of Things and the steady increase of wireless applications in the daily environment, the assessment of radio frequency electromagnetic field (RF-EMF) exposure is key in determining possible health effects of exposure to certain levels of RF-EMF. This paper presents the first experimental validation of a novel personal exposimeter system based on a distributed measurement approach to achieve higher measurement quality and lower measurement variability than the commonly used single point measurement approach of existing exposimeters. An important feature of the system is the integration of inertial sensors in order to determine activity and posture during exposure measurements. The system is designed to assess exposure to frequencies within the 389 to 464, 779 to 928 and 2400 to 2483.5 MHz bands using only two transceivers per node. In this study, the 2400 to 2483.5 MHz band is validated. Every node provides antenna diversity for the different bands in order to achieve higher sensitivity at these frequencies. Two AAA batteries power each standalone node and as such determine the node hardware size of this proof of concept (53 mm×25 mm×15 mm) , making it smaller than any other commercially available exposimeter.
An Integrated Intrusion Detection Model of Cluster-Based Wireless Sensor Network
Sun, Xuemei; Yan, Bo; Zhang, Xinzhong; Rong, Chuitian
2015-01-01
Considering wireless sensor network characteristics, this paper combines anomaly and mis-use detection and proposes an integrated detection model of cluster-based wireless sensor network, aiming at enhancing detection rate and reducing false rate. Adaboost algorithm with hierarchical structures is used for anomaly detection of sensor nodes, cluster-head nodes and Sink nodes. Cultural-Algorithm and Artificial-Fish–Swarm-Algorithm optimized Back Propagation is applied to mis-use detection of Sink node. Plenty of simulation demonstrates that this integrated model has a strong performance of intrusion detection. PMID:26447696
An Integrated Intrusion Detection Model of Cluster-Based Wireless Sensor Network.
Sun, Xuemei; Yan, Bo; Zhang, Xinzhong; Rong, Chuitian
2015-01-01
Considering wireless sensor network characteristics, this paper combines anomaly and mis-use detection and proposes an integrated detection model of cluster-based wireless sensor network, aiming at enhancing detection rate and reducing false rate. Adaboost algorithm with hierarchical structures is used for anomaly detection of sensor nodes, cluster-head nodes and Sink nodes. Cultural-Algorithm and Artificial-Fish-Swarm-Algorithm optimized Back Propagation is applied to mis-use detection of Sink node. Plenty of simulation demonstrates that this integrated model has a strong performance of intrusion detection.
Distributed estimation of sensors position in underwater wireless sensor network
NASA Astrophysics Data System (ADS)
Zandi, Rahman; Kamarei, Mahmoud; Amiri, Hadi
2016-05-01
In this paper, a localisation method for determining the position of fixed sensor nodes in an underwater wireless sensor network (UWSN) is introduced. In this simple and range-free scheme, the node localisation is achieved by utilising an autonomous underwater vehicle (AUV) that transverses through the network deployment area, and that periodically emits a message block via four directional acoustic beams. A message block contains the actual known AUV position as well as a directional dependent marker that allows a node to identify the respective transmit beam. The beams form a fixed angle with the AUV body. If a node passively receives message blocks, it could calculate the arithmetic mean of the coordinates existing in each messages sequence, to find coordinates at two different time instants via two different successive beams. The node position can be derived from the two computed positions of the AUV. The major advantage of the proposed localisation algorithm is that it is silent, which leads to energy efficiency for sensor nodes. The proposed method does not require any synchronisation among the nodes owing to being silent. Simulation results, using MATLAB, demonstrated that the proposed method had better performance than other similar AUV-based localisation methods in terms of the rates of well-localised sensor nodes and positional root mean square error.
2017-01-01
Recently, the development of wireless body area sensor network (WBASN) has accelerated due to the rapid development of wireless technology. In the WBASN environment, many WBASNs coexist where communication ranges overlap with each other, resulting in the possibility of interference. Although nodes in a WBASN typically operate at a low power level, to avoid adversely affecting the human body, high transmission rates may be required to support some applications. In addition to this, since many varieties of applications exist in the WBASN environment, each prospective user may have different quality of service (QoS) requirements. Hence, the following issues should be considered in the WBASN environment: (1) interference between adjacent WBASNs, which influences the performance of a specific system, and (2) the degree of satisfaction on the QoS of each user, i.e., the required QoS such as user throughput should be considered to ensure that all users in the network are provided with a fair QoS satisfaction. Thus, in this paper, we propose a transmission power adjustment algorithm that addresses interference problems and guarantees QoS fairness between users. First, we use a new utility function to measure the degree of the satisfaction on the QoS for each user. Then, the transmission power of each sensor node is calculated using the Cucker–Smale model, and the QoS satisfaction of each user is synchronized dispersively. The results of simulations show that the proposed algorithm performs better than existing algorithms, with respect to QoS fairness and energy efficiency. PMID:29036924
Lee, Chan-Jae; Jung, Ji-Young; Lee, Jung-Ryun
2017-10-14
Recently, the development of wireless body area sensor network (WBASN) has accelerated due to the rapid development of wireless technology. In the WBASN environment, many WBASNs coexist where communication ranges overlap with each other, resulting in the possibility of interference. Although nodes in a WBASN typically operate at a low power level, to avoid adversely affecting the human body, high transmission rates may be required to support some applications. In addition to this, since many varieties of applications exist in the WBASN environment, each prospective user may have different quality of service (QoS) requirements. Hence, the following issues should be considered in the WBASN environment: (1) interference between adjacent WBASNs, which influences the performance of a specific system, and (2) the degree of satisfaction on the QoS of each user, i.e., the required QoS such as user throughput should be considered to ensure that all users in the network are provided with a fair QoS satisfaction. Thus, in this paper, we propose a transmission power adjustment algorithm that addresses interference problems and guarantees QoS fairness between users. First, we use a new utility function to measure the degree of the satisfaction on the QoS for each user. Then, the transmission power of each sensor node is calculated using the Cucker-Smale model, and the QoS satisfaction of each user is synchronized dispersively. The results of simulations show that the proposed algorithm performs better than existing algorithms, with respect to QoS fairness and energy efficiency.
An Energy-Efficient Sleep Mode in IEEE 802.15.4 by Considering Sensor Device Mobility
NASA Astrophysics Data System (ADS)
Kim, Jinho; Lee, Jun; Hong, Choong Seon; Lee, Sungwon
The current version of IEEE 802.15.4 MAC protocol does not support energy-efficient mobility for the low-power device. In this paper, we propose an energy-efficient sleep mode as part of the IEEE 802.15.4 that can conserve energy by considering mobility of mobile sensor devices. The proposed energy-efficient sleep mode dynamically extends the sleep interval if there is no data to transmit from the device or receive from corresponding nodes.
Potential and challenges of body area networks for personal health.
Penders, Julien; van de Molengraft, Jef; Brown, Lindsay; Grundlehner, Bernard; Gyselinckx, Bert; Van Hoof, Chris
2009-01-01
This paper illustrates how body area network technology may enable new personal health concepts. A BAN technology platform is presented, which integrates technology building blocks from the Human++ research program on autonomous wireless sensors. Technology evaluation for the case of wireless sleep staging and real-time arousal monitoring is reported. Key technology challenges are discussed. The ultimate target is the development of miniaturized body sensor nodes powered by body-energy, anticipating the needs of emerging personal health applications.
From Micro to Nano: The Evolution of Wireless Sensor-Based Health Care.
Sarkar, Subhadeep; Misra, Sudip
2016-01-01
Over the past decade, embedded systems and microelectromechanical systems have evolved in a radical way, redefining our standard of living and enhancing the quality of life. Health care, among various other fields, has benefited vastly from this technological development. The concept of using sensors for health care purposes originated in the late 1980s when sensors were developed to measure certain physiological parameters associated with the human body. In traditional sensor nodes, the signal sources are mostly different environmental phenomena (such as temperature, vibration, and luminosity) or man-made events (such as intrusion and mobile target tracking), whereas in case of the physiological sensors, the signal source is living human tissue. These sensor nodes, as their primary sensing element, have a diaphragm that converts pressure into displacement. This displacement, in turn, is subsequently transformed into an electrical signal. The concept of wireless physiological sensor nodes, however, gained popularity in the mid-2000s, with the sensed data from the nodes transmitted to the hub via a wireless medium. The network formed by this heterogeneous set of wireless body sensor nodes is termed a wireless body-area network (WBAN). Each WBAN is essentially a composition of multiple wireless body sensor nodes and a single hub. The hub is primarily responsible for acquisition of the raw sensed data from all the component sensor nodes and first-level aggregation of the data before transmitting the aggregated data for further analysis to a remote data acquisition center. Here, we outline the evolution of WBANs in the context of modern health care and its convergence with nanotechnology.
Development of a time synchronization methodology for a wireless seismic array
NASA Astrophysics Data System (ADS)
Moure-García, David; Torres-González, Pedro; del Río, Joaquín; Mihai, Daniel; Domínguez Cerdeña, Itahiza
2017-04-01
Seismic arrays have multiple applications. In the past, the main use was nuclear tests monitoring that began in mid-twentieth century. The major difference with a seismic network is the hypocenter location procedure. With a seismic network the hypocenter's 3D coordinates are calculated while using an array, the source direction of the seismic signal is determined. Seismic arrays are used in volcanology to obtain the source azimuth of volcanic signals related to fluids movement, magma and/or gases, that do not show a clear seismic phases' onset. A key condition in the seismic array operativity is the temporal synchronization of all the sensors, better than 1 microsecond. Because of that, usually all sensors are connected to the acquisition system by cable to ensure an identical sampling time. In this work we present the design of a wireless low-cost and low-power consumption volcanic monitoring seismic array where all nodes (sensors) acquire data synchronously and transmit them to the center node where a coherent signal is pursued in near real time.
Yao, Ke-Han; Jiang, Jehn-Ruey; Tsai, Chung-Hsien; Wu, Zong-Syun
2017-01-01
This paper investigates how to efficiently charge sensor nodes in a wireless rechargeable sensor network (WRSN) with radio frequency (RF) chargers to make the network sustainable. An RF charger is assumed to be equipped with a uniform circular array (UCA) of 12 antennas with the radius λ, where λ is the RF wavelength. The UCA can steer most RF energy in a target direction to charge a specific WRSN node by the beamforming technology. Two evolutionary algorithms (EAs) using the evolution strategy (ES), namely the Evolutionary Beamforming Optimization (EBO) algorithm and the Evolutionary Beamforming Optimization Reseeding (EBO-R) algorithm, are proposed to nearly optimize the power ratio of the UCA beamforming peak side lobe (PSL) and the main lobe (ML) aimed at the given target direction. The proposed algorithms are simulated for performance evaluation and are compared with a related algorithm, called Particle Swarm Optimization Gravitational Search Algorithm-Explore (PSOGSA-Explore), to show their superiority. PMID:28825648
Enhancing the Reliability of Head Nodes in Underwater Sensor Networks
Min, Hong; Cho, Yookun; Heo, Junyoung
2012-01-01
Underwater environments are quite different from terrestrial environments in terms of the communication media and operating conditions associated with those environments. In underwater sensor networks, the probability of node failure is high because sensor nodes are deployed in harsher environments than ground-based networks. The sensor nodes are surrounded by salt water and moved around by waves and currents. Many studies have focused on underwater communication environments in an effort to improve the data transmission throughput. In this paper, we present a checkpointing scheme for the head nodes to quickly recover from a head node failure. Experimental results show that the proposed scheme enhances the reliability of the networks and makes them more efficient in terms of energy consumption and the recovery latency compared to the previous scheme without checkpointing. PMID:22438707
Study on the effect of sink moving trajectory on wireless sensor networks
NASA Astrophysics Data System (ADS)
Zhong, Peijun; Ruan, Feng
2018-03-01
Wireless sensor networks are developing very fast in recent years, due to their wide potential applications. However there exists the so-called hot spot problem, namely the nodes close to static sink node tend to die earlier than other nodes since they have heavier burden to forward. The introduction of mobile sink node can effectively alleviate this problem since sink node can move along certain trajectories, causing hot spot nodes more evenly distributed. In this paper, we make extensive experimental simulations for circular sensor network, with one mobile sink moving along different radius circumference. The whole network is divided into several clusters and there is one cluster head (CH) inside each cluster. The ordinary sensors communicate with CH and CHs construct a chain until the sink node. Simulation results show that the best network performance appears when sink moves along 0.25 R in terms of network lifetime.
de Araújo, Paulo Régis C; Filho, Raimir Holanda; Rodrigues, Joel J P C; Oliveira, João P C M; Braga, Stephanie A
2018-04-24
At present, the standardisation of electrical equipment communications is on the rise. In particular, manufacturers are releasing equipment for the smart grid endowed with communication protocols such as DNP3, IEC 61850, and MODBUS. However, there are legacy equipment operating in the electricity distribution network that cannot communicate using any of these protocols. Thus, we propose an infrastructure to allow the integration of legacy electrical equipment to smart grids by using wireless sensor networks (WSNs). In this infrastructure, each legacy electrical device is connected to a sensor node, and the sink node runs a middleware that enables the integration of this device into a smart grid based on suitable communication protocols. This middleware performs tasks such as the translation of messages between the power substation control centre (PSCC) and electrical equipment in the smart grid. Moreover, the infrastructure satisfies certain requirements for communication between the electrical equipment and the PSCC, such as enhanced security, short response time, and automatic configuration. The paper’s contributions include a solution that enables electrical companies to integrate their legacy equipment into smart-grid networks relying on any of the above mentioned communication protocols. This integration will reduce the costs related to the modernisation of power substations.
de Araújo, Paulo Régis C.; Filho, Raimir Holanda; Oliveira, João P. C. M.; Braga, Stephanie A.
2018-01-01
At present, the standardisation of electrical equipment communications is on the rise. In particular, manufacturers are releasing equipment for the smart grid endowed with communication protocols such as DNP3, IEC 61850, and MODBUS. However, there are legacy equipment operating in the electricity distribution network that cannot communicate using any of these protocols. Thus, we propose an infrastructure to allow the integration of legacy electrical equipment to smart grids by using wireless sensor networks (WSNs). In this infrastructure, each legacy electrical device is connected to a sensor node, and the sink node runs a middleware that enables the integration of this device into a smart grid based on suitable communication protocols. This middleware performs tasks such as the translation of messages between the power substation control centre (PSCC) and electrical equipment in the smart grid. Moreover, the infrastructure satisfies certain requirements for communication between the electrical equipment and the PSCC, such as enhanced security, short response time, and automatic configuration. The paper’s contributions include a solution that enables electrical companies to integrate their legacy equipment into smart-grid networks relying on any of the above mentioned communication protocols. This integration will reduce the costs related to the modernisation of power substations. PMID:29695099
Optimized Autonomous Space In-situ Sensor-Web for volcano monitoring
Song, W.-Z.; Shirazi, B.; Kedar, S.; Chien, S.; Webb, F.; Tran, D.; Davis, A.; Pieri, D.; LaHusen, R.; Pallister, J.; Dzurisin, D.; Moran, S.; Lisowski, M.
2008-01-01
In response to NASA's announced requirement for Earth hazard monitoring sensor-web technology, a multidisciplinary team involving sensor-network experts (Washington State University), space scientists (JPL), and Earth scientists (USGS Cascade Volcano Observatory (CVO)), is developing a prototype dynamic and scaleable hazard monitoring sensor-web and applying it to volcano monitoring. The combined Optimized Autonomous Space -In-situ Sensor-web (OASIS) will have two-way communication capability between ground and space assets, use both space and ground data for optimal allocation of limited power and bandwidth resources on the ground, and use smart management of competing demands for limited space assets. It will also enable scalability and seamless infusion of future space and in-situ assets into the sensor-web. The prototype will be focused on volcano hazard monitoring at Mount St. Helens, which has been active since October 2004. The system is designed to be flexible and easily configurable for many other applications as well. The primary goals of the project are: 1) integrating complementary space (i.e., Earth Observing One (EO-1) satellite) and in-situ (ground-based) elements into an interactive, autonomous sensor-web; 2) advancing sensor-web power and communication resource management technology; and 3) enabling scalability for seamless infusion of future space and in-situ assets into the sensor-web. To meet these goals, we are developing: 1) a test-bed in-situ array with smart sensor nodes capable of making autonomous data acquisition decisions; 2) efficient self-organization algorithm of sensor-web topology to support efficient data communication and command control; 3) smart bandwidth allocation algorithms in which sensor nodes autonomously determine packet priorities based on mission needs and local bandwidth information in real-time; and 4) remote network management and reprogramming tools. The space and in-situ control components of the system will be integrated such that each element is capable of autonomously tasking the other. Sensor-web data acquisition and dissemination will be accomplished through the use of the Open Geospatial Consortium Sensorweb Enablement protocols. The three-year project will demonstrate end-to-end system performance with the in-situ test-bed at Mount St. Helens and NASA's EO-1 platform. ??2008 IEEE.
Directed Diffusion Modelling for Tesso Nilo National Parks Case Study
NASA Astrophysics Data System (ADS)
Yasri, Indra; Safrianti, Ery
2018-01-01
— Directed Diffusion (DD has ability to achieve energy efficiency in Wireless Sensor Network (WSN). This paper proposes Directed Diffusion (DD) modelling for Tesso Nilo National Parks (TNNP) case study. There are 4 stages of scenarios involved in this modelling. It’s started by appointing of sampling area through GPS coordinate. The sampling area is determined by optimization processes from 500m x 500m up to 1000m x 1000m with 100m increment in between. The next stage is sensor node placement. Sensor node is distributed in sampling area with three different quantities i.e. 20 nodes, 30 nodes and 40 nodes. One of those quantities is choose as an optimized sensor node placement. The third stage is to implement all scenarios in stages 1 and stages 2 on DD modelling. In the last stage, the evaluation process to achieve most energy efficient in the combination of optimized sampling area and optimized sensor node placement on Direct Diffusion (DD) routing protocol. The result shows combination between sampling area 500m x 500m and 20 nodes able to achieve energy efficient to support a forest preventive fire system at Tesso Nilo National Parks.
Delay-tolerant mobile network protocol for rice field monitoring using wireless sensor networks
NASA Astrophysics Data System (ADS)
Guitton, Alexandre; Andres, Frédéric; Cardoso, Jarbas Lopes; Kawtrakul, Asanee; Barbin, Silvio E.
2015-10-01
The monitoring of rice fields can improve productivity by helping farmers throughout the rice cultivation cycle, on various issues: when to harvest, when to treat the crops against disease, when to increase the water level, how to share observations and decisions made in a collaborative way, etc. In this paper, we propose an architecture to monitor a rice field by a wireless sensor network. Our architecture is based on static sensor nodes forming a disconnected network, and mobile nodes communicating with the sensor nodes in a delay-tolerant manner. The data collected by the static sensor nodes are transmitted to mobile nodes, which in turn transmit them to a gateway, connected to a database, for further analysis. We focus on the related architecture, as well as on the energy-efficient protocols intended to perform the data collection.
An Alternative Wearable Tracking System Based on a Low-Power Wide-Area Network.
Fernández-Garcia, Raul; Gil, Ignacio
2017-03-14
This work presents an alternative wearable tracking system based on a low-power wide area network. A complete GPS receiver was integrated with a textile substrate, and the latitude and longitude coordinates were sent to the cloud by means of the SIM-less SIGFOX network. To send the coordinates over SIGFOX protocol, a specific codification algorithm was used and a customized UHF antenna on jeans fabric was designed, simulated and tested. Moreover, to guarantee the compliance to international regulations for human body exposure to electromagnetic radiation, the electromagnetic specific absorption rate of this antenna was analyzed. A specific remote server was developed to decode the latitude and longitude coordinates. Once the coordinates have been decoded, the remote server sends this information to the open source data viewer SENTILO to show the location of the sensor node in a map. The functionality of this system has been demonstrated experimentally. The results guarantee the utility and wearability of the proposed tracking system for the development of sensor nodes and point out that it can be a low cost alternative to other commercial products based on GSM networks.
Del Campo, Antonio; Cintioni, Lorenzo; Spinsante, Susanna; Gambi, Ennio
2017-01-01
With the introduction of low-power wireless technologies, like Bluetooth Low Energy (BLE), new applications are approaching the home automation, healthcare, fitness, automotive and consumer electronics markets. BLE devices are designed to maximize the battery life, i.e., to run for long time on a single coin-cell battery. In typical application scenarios of home automation and Ambient Assisted Living (AAL), the sensors that monitor relatively unpredictable and rare events should coexist with other sensors that continuously communicate health or environmental parameter measurements. The former usually work in connectionless mode, acting as advertisers, while the latter need a persistent connection, acting as slave nodes. The coexistence of connectionless and connection-oriented networks, that share the same central node, can be required to reduce the number of handling devices, thus keeping the network complexity low and limiting the packet’s traffic congestion. In this paper, the medium access management, operated by the central node, has been modeled, focusing on the scheduling procedure in both connectionless and connection-oriented communication. The models have been merged to provide a tool supporting the configuration design of BLE devices, during the network design phase that precedes the real implementation. The results highlight the suitability of the proposed tool: the ability to set the device parameters to allow us to keep a practical discovery latency for event-driven sensors and avoid undesired overlaps between scheduled scanning and connection phases due to bad management performed by the central node. PMID:28387724
Del Campo, Antonio; Cintioni, Lorenzo; Spinsante, Susanna; Gambi, Ennio
2017-04-07
With the introduction of low-power wireless technologies, like Bluetooth Low Energy (BLE), new applications are approaching the home automation, healthcare, fitness, automotive and consumer electronics markets. BLE devices are designed to maximize the battery life, i.e., to run for long time on a single coin-cell battery. In typical application scenarios of home automation and Ambient Assisted Living (AAL), the sensors that monitor relatively unpredictable and rare events should coexist with other sensors that continuously communicate health or environmental parameter measurements. The former usually work in connectionless mode, acting as advertisers, while the latter need a persistent connection, acting as slave nodes. The coexistence of connectionless and connection-oriented networks, that share the same central node, can be required to reduce the number of handling devices, thus keeping the network complexity low and limiting the packet's traffic congestion. In this paper, the medium access management, operated by the central node, has been modeled, focusing on the scheduling procedure in both connectionless and connection-oriented communication. The models have been merged to provide a tool supporting the configuration design of BLE devices, during the network design phase that precedes the real implementation. The results highlight the suitability of the proposed tool: the ability to set the device parameters to allow us to keep a practical discovery latency for event-driven sensors and avoid undesired overlaps between scheduled scanning and connection phases due to bad management performed by the central node.
A Deep Learning Approach to on-Node Sensor Data Analytics for Mobile or Wearable Devices.
Ravi, Daniele; Wong, Charence; Lo, Benny; Yang, Guang-Zhong
2017-01-01
The increasing popularity of wearable devices in recent years means that a diverse range of physiological and functional data can now be captured continuously for applications in sports, wellbeing, and healthcare. This wealth of information requires efficient methods of classification and analysis where deep learning is a promising technique for large-scale data analytics. While deep learning has been successful in implementations that utilize high-performance computing platforms, its use on low-power wearable devices is limited by resource constraints. In this paper, we propose a deep learning methodology, which combines features learned from inertial sensor data together with complementary information from a set of shallow features to enable accurate and real-time activity classification. The design of this combined method aims to overcome some of the limitations present in a typical deep learning framework where on-node computation is required. To optimize the proposed method for real-time on-node computation, spectral domain preprocessing is used before the data are passed onto the deep learning framework. The classification accuracy of our proposed deep learning approach is evaluated against state-of-the-art methods using both laboratory and real world activity datasets. Our results show the validity of the approach on different human activity datasets, outperforming other methods, including the two methods used within our combined pipeline. We also demonstrate that the computation times for the proposed method are consistent with the constraints of real-time on-node processing on smartphones and a wearable sensor platform.
2D wireless sensor network deployment based on Centroidal Voronoi Tessellation
NASA Astrophysics Data System (ADS)
Iliodromitis, Athanasios; Pantazis, George; Vescoukis, Vasileios
2017-06-01
In recent years, Wireless Sensor Networks (WSNs) have rapidly evolved and now comprise a powerful tool in monitoring and observation of the natural environment, among other fields. The use of WSNs is critical in early warning systems, which are of high importance today. In fact, WSNs are adopted more and more in various applications, e.g. for fire or deformation detection. The optimum deployment of sensors is a multi-dimensional problem, which has two main components; network and positioning approach. Although lots of work has dealt with the issue, most of it emphasizes on mere network approach (communication, energy consumption) and not on the topography (positioning) of the sensors in achieving ideal geometry. In some cases, it is hard or even impossible to achieve perfect geometry in nodes' deployment. The ideal and desirable scenario of nodes arranged in square or hexagonal grid would raise extremely the cost of the network, especially in unfriendly or hostile environments. In such environments the positions of the sensors have to be chosen among a list of possible points, which in most cases are randomly distributed. This constraint has to be taken under consideration during the WSN planning. Full geographical coverage is in some applications of the same, if not of greater, importance than the network coverage. Cost is a crucial factor at network planning and given that resources are often limited, what matters, is to cover the whole area with the minimum number of sensors. This paper suggests a deployment method for nodes, in large scale and high density WSNs, based on Centroidal Voronoi Tessellation (CVT). It approximates the solution through the geometry of the random points and proposes a deployment plan, for the given characteristics of the study area, in order to achieve a deployment as near as possible to the ideal one.
Mendoza, Beatriz R.; Rodríguez, Silvestre; Pérez-Jiménez, Rafael; Ayala, Alejandro; González, Oswaldo
2016-01-01
In general, the use of angle-diversity receivers makes it possible to reduce the impact of ambient light noise, path loss and multipath distortion, in part by exploiting the fact that they often receive the desired signal from different directions. Angle-diversity detection can be performed using a composite receiver with multiple detector elements looking in different directions. These are called non-imaging angle-diversity receivers. In this paper, a comparison of three non-imaging angle-diversity receivers as input sensors of nodes for an indoor infrared (IR) wireless sensor network is presented. The receivers considered are the conventional angle-diversity receiver (CDR), the sectored angle-diversity receiver (SDR), and the self-orienting receiver (SOR), which have been proposed or studied by research groups in Spain. To this end, the effective signal-collection area of the three receivers is modelled and a Monte-Carlo-based ray-tracing algorithm is implemented which allows us to investigate the effect on the signal to noise ratio and main IR channel parameters, such as path loss and rms delay spread, of using the three receivers in conjunction with different combination techniques in IR links operating at low bit rates. Based on the results of the simulations, we show that the use of a conventional angle-diversity receiver in conjunction with the equal-gain combining technique provides the solution with the best signal to noise ratio, the lowest computational capacity and the lowest transmitted power requirements, which comprise the main limitations for sensor nodes in an indoor infrared wireless sensor network. PMID:27428966
NASA Astrophysics Data System (ADS)
Banerjee, Torsha
Unlike conventional networks, wireless sensor networks (WSNs) are limited in power, have much smaller memory buffers, and possess relatively slower processing speeds. These characteristics necessitate minimum transfer and storage of information in order to prolong the network lifetime. In this dissertation, we exploit the spatio-temporal nature of sensor data to approximate the current values of the sensors based on readings obtained from neighboring sensors and itself. We propose a Tree based polynomial REGression algorithm, (TREG) that addresses the problem of data compression in wireless sensor networks. Instead of aggregated data, a polynomial function (P) is computed by the regression function, TREG. The coefficients of P are then passed to achieve the following goals: (i) The sink can get attribute values in the regions devoid of sensor nodes, and (ii) Readings over any portion of the region can be obtained at one time by querying the root of the tree. As the size of the data packet from each tree node to its parent remains constant, the proposed scheme scales very well with growing network density or increased coverage area. Since physical attributes exhibit a gradual change over time, we propose an iterative scheme, UPDATE_COEFF, which obviates the need to perform the regression function repeatedly and uses approximations based on previous readings. Extensive simulations are performed on real world data to demonstrate the effectiveness of our proposed aggregation algorithm, TREG. Results reveal that for a network density of 0.0025 nodes/m2, a complete binary tree of depth 4 could provide the absolute error to be less than 6%. A data compression ratio of about 0.02 is achieved using our proposed algorithm, which is almost independent of the tree depth. In addition, our proposed updating scheme makes the aggregation process faster while maintaining the desired error bounds. We also propose a Polynomial-based scheme that addresses the problem of Event Region Detection (PERD) for WSNs. When a single event occurs, a child of the tree sends a Flagged Polynomial (FP) to its parent, if the readings approximated by it falls outside the data range defining the existing phenomenon. After the aggregation process is over, the root having the two polynomials, P and FP can be queried for FP (approximating the new event region) instead of flooding the whole network. For multiple such events, instead of computing a polynomial corresponding to each new event, areas with same data range are combined by the corresponding tree nodes and the aggregated coefficients are passed on. Results reveal that a new event can be detected by PERD while error in detection remains constant and is less than a threshold of 10%. As the node density increases, accuracy and delay for event detection are found to remain almost constant, making PERD highly scalable. Whenever an event occurs in a WSN, data is generated by closeby sensors and relaying the data to the base station (BS) make sensors closer to the BS run out of energy at a much faster rate than sensors in other parts of the network. This gives rise to an unequal distribution of residual energy in the network and makes those sensors with lower remaining energy level die at much faster rate than others. We propose a scheme for enhancing network Lifetime using mobile cluster heads (CH) in a WSN. To maintain remaining energy more evenly, some energy-rich nodes are designated as CHs which move in a controlled manner towards sensors rich in energy and data. This eliminates multihop transmission required by the static sensors and thus increases the overall lifetime of the WSN. We combine the idea of clustering and mobile CH to first form clusters of static sensor nodes. A collaborative strategy among the CHs further increases the lifetime of the network. Time taken for transmitting data to the BS is reduced further by making the CHs follow a connectivity strategy that always maintain a connected path to the BS. Spatial correlation of sensor data can be further exploited for dynamic channel selection in Cellular Communication. In such a scenario within a licensed band, wireless sensors can be deployed (each sensor tuned to a frequency of the channel at a particular time) to sense the interference power of the frequency band. In an ideal channel, interference temperature (IT) which is directly proportional to the interference power, can be assumed to vary spatially with the frequency of the sub channel. We propose a scheme for fitting the sub channel frequencies and corresponding ITs to a regression model for calculating the IT of a random sub channel for further analysis of the channel interference at the base station. Our scheme, based on the readings reported by Sensors helps in Dynamic Channel Selection (S-DCS) in extended C-band for assignment to unlicensed secondary users. S-DCS proves to be economic from energy consumption point of view and it also achieves accuracy with error bound within 6.8%. Again, users are assigned empty sub channels without actually probing them, incurring minimum delay in the process. The overall channel throughput is maximized along with fairness to individual users.
Rizvi, Sanam Shahla; Chung, Tae-Sun
2010-01-01
Flash memory has become a more widespread storage medium for modern wireless devices because of its effective characteristics like non-volatility, small size, light weight, fast access speed, shock resistance, high reliability and low power consumption. Sensor nodes are highly resource constrained in terms of limited processing speed, runtime memory, persistent storage, communication bandwidth and finite energy. Therefore, for wireless sensor networks supporting sense, store, merge and send schemes, an efficient and reliable file system is highly required with consideration of sensor node constraints. In this paper, we propose a novel log structured external NAND flash memory based file system, called Proceeding to Intelligent service oriented memorY Allocation for flash based data centric Sensor devices in wireless sensor networks (PIYAS). This is the extended version of our previously proposed PIYA [1]. The main goals of the PIYAS scheme are to achieve instant mounting and reduced SRAM space by keeping memory mapping information to a very low size of and to provide high query response throughput by allocation of memory to the sensor data by network business rules. The scheme intelligently samples and stores the raw data and provides high in-network data availability by keeping the aggregate data for a longer period of time than any other scheme has done before. We propose effective garbage collection and wear-leveling schemes as well. The experimental results show that PIYAS is an optimized memory management scheme allowing high performance for wireless sensor networks.
Localization with a mobile beacon in underwater acoustic sensor networks.
Lee, Sangho; Kim, Kiseon
2012-01-01
Localization is one of the most important issues associated with underwater acoustic sensor networks, especially when sensor nodes are randomly deployed. Given that it is difficult to deploy beacon nodes at predetermined locations, localization schemes with a mobile beacon on the sea surface or along the planned path are inherently convenient, accurate, and energy-efficient. In this paper, we propose a new range-free Localization with a Mobile Beacon (LoMoB). The mobile beacon periodically broadcasts a beacon message containing its location. Sensor nodes are individually localized by passively receiving the beacon messages without inter-node communications. For location estimation, a set of potential locations are obtained as candidates for a node's location and then the node's location is determined through the weighted mean of all the potential locations with the weights computed based on residuals.
Localization with a Mobile Beacon in Underwater Acoustic Sensor Networks
Lee, Sangho; Kim, Kiseon
2012-01-01
Localization is one of the most important issues associated with underwater acoustic sensor networks, especially when sensor nodes are randomly deployed. Given that it is difficult to deploy beacon nodes at predetermined locations, localization schemes with a mobile beacon on the sea surface or along the planned path are inherently convenient, accurate, and energy-efficient. In this paper, we propose a new range-free Localization with a Mobile Beacon (LoMoB). The mobile beacon periodically broadcasts a beacon message containing its location. Sensor nodes are individually localized by passively receiving the beacon messages without inter-node communications. For location estimation, a set of potential locations are obtained as candidates for a node's location and then the node's location is determined through the weighted mean of all the potential locations with the weights computed based on residuals. PMID:22778597
Implementation of a piezoelectric energy harvester in railway health monitoring
NASA Astrophysics Data System (ADS)
Li, Jingcheng; Jang, Shinae; Tang, Jiong
2014-03-01
With development of wireless sensor technology, wireless sensor network has shown a great potential for railway health monitoring. However, how to supply continuous power to the wireless sensor nodes is one of the critical issues in long-term full-scale deployment of the wireless smart sensors. Some energy harvesting methodologies have been available including solar, vibration, wind, etc; among them, vibration-based energy harvester using piezoelectric material showed the potential for converting ambient vibration energy to electric energy in railway health monitoring even for underground subway systems. However, the piezoelectric energy harvester has two major problems including that it could only generate small amount of energy, and that it should match the exact narrow band natural frequency with the excitation frequency. To overcome these problems, a wide band piezoelectric energy harvester, which could generate more power on various frequencies regions, has been designed and validated with experimental test. Then it was applied to a full-scale field test using actual railway train. The power generation of the wide band piezoelectric array has been compared to a narrow-band, resonant-based, piezoelectric energy harvester.
Emergency navigation without an infrastructure.
Gelenbe, Erol; Bi, Huibo
2014-08-18
Emergency navigation systems for buildings and other built environments, such as sport arenas or shopping centres, typically rely on simple sensor networks to detect emergencies and, then, provide automatic signs to direct the evacuees. The major drawbacks of such static wireless sensor network (WSN)-based emergency navigation systems are the very limited computing capacity, which makes adaptivity very difficult, and the restricted battery power, due to the low cost of sensor nodes for unattended operation. If static wireless sensor networks and cloud-computing can be integrated, then intensive computations that are needed to determine optimal evacuation routes in the presence of time-varying hazards can be offloaded to the cloud, but the disadvantages of limited battery life-time at the client side, as well as the high likelihood of system malfunction during an emergency still remain. By making use of the powerful sensing ability of smart phones, which are increasingly ubiquitous, this paper presents a cloud-enabled indoor emergency navigation framework to direct evacuees in a coordinated fashion and to improve the reliability and resilience for both communication and localization. By combining social potential fields (SPF) and a cognitive packet network (CPN)-based algorithm, evacuees are guided to exits in dynamic loose clusters. Rather than relying on a conventional telecommunications infrastructure, we suggest an ad hoc cognitive packet network (AHCPN)-based protocol to adaptively search optimal communication routes between portable devices and the network egress nodes that provide access to cloud servers, in a manner that spares the remaining battery power of smart phones and minimizes the time latency. Experimental results through detailed simulations indicate that smart human motion and smart network management can increase the survival rate of evacuees and reduce the number of drained smart phones in an evacuation process.
Emergency Navigation without an Infrastructure
Gelenbe, Erol; Bi, Huibo
2014-01-01
Emergency navigation systems for buildings and other built environments, such as sport arenas or shopping centres, typically rely on simple sensor networks to detect emergencies and, then, provide automatic signs to direct the evacuees. The major drawbacks of such static wireless sensor network (WSN)-based emergency navigation systems are the very limited computing capacity, which makes adaptivity very difficult, and the restricted battery power, due to the low cost of sensor nodes for unattended operation. If static wireless sensor networks and cloud-computing can be integrated, then intensive computations that are needed to determine optimal evacuation routes in the presence of time-varying hazards can be offloaded to the cloud, but the disadvantages of limited battery life-time at the client side, as well as the high likelihood of system malfunction during an emergency still remain. By making use of the powerful sensing ability of smart phones, which are increasingly ubiquitous, this paper presents a cloud-enabled indoor emergency navigation framework to direct evacuees in a coordinated fashion and to improve the reliability and resilience for both communication and localization. By combining social potential fields (SPF) and a cognitive packet network (CPN)-based algorithm, evacuees are guided to exits in dynamic loose clusters. Rather than relying on a conventional telecommunications infrastructure, we suggest an ad hoc cognitive packet network (AHCPN)-based protocol to adaptively search optimal communication routes between portable devices and the network egress nodes that provide access to cloud servers, in a manner that spares the remaining battery power of smart phones and minimizes the time latency. Experimental results through detailed simulations indicate that smart human motion and smart network management can increase the survival rate of evacuees and reduce the number of drained smart phones in an evacuation process. PMID:25196014
An Energy Efficient MAC Protocol for Multi-Hop Swallowable Body Sensor Networks
Lin, Lin; Yang, Chengfeng; Wong, Kai Juan; Yan, Hao; Shen, Junwen; Phee, Soo Jay
2014-01-01
Swallowable body sensor networks (BSNs) are composed of sensors which are swallowed by patients and send the collected data to the outside coordinator. These sensors are energy constraint and the batteries are difficult to be replaced. The medium access control (MAC) protocol plays an important role in energy management. This paper investigates an energy efficient MAC protocol design for swallowable BSNs. Multi-hop communication is analyzed and proved more energy efficient than single-hop communication within the human body when the circuitry power is low. Based on this result, a centrally controlled time slotting schedule is proposed. The major workload is shifted from the sensors to the coordinator. The coordinator collects the path-loss map and calculates the schedules, including routing, slot assignment and transmission power. Sensor nodes follow the schedules to send data in a multi-hop way. The proposed protocol is compared with the IEEE 802.15.6 protocol in terms of energy consumption. The results show that it is more energy efficient than IEEE 802.15.6 for swallowable BSN scenarios. PMID:25330049
Energy-Efficient Cognitive Radio Sensor Networks: Parametric and Convex Transformations
Naeem, Muhammad; Illanko, Kandasamy; Karmokar, Ashok; Anpalagan, Alagan; Jaseemuddin, Muhammad
2013-01-01
Designing energy-efficient cognitive radio sensor networks is important to intelligently use battery energy and to maximize the sensor network life. In this paper, the problem of determining the power allocation that maximizes the energy-efficiency of cognitive radio-based wireless sensor networks is formed as a constrained optimization problem, where the objective function is the ratio of network throughput and the network power. The proposed constrained optimization problem belongs to a class of nonlinear fractional programming problems. Charnes-Cooper Transformation is used to transform the nonlinear fractional problem into an equivalent concave optimization problem. The structure of the power allocation policy for the transformed concave problem is found to be of a water-filling type. The problem is also transformed into a parametric form for which a ε-optimal iterative solution exists. The convergence of the iterative algorithms is proven, and numerical solutions are presented. The iterative solutions are compared with the optimal solution obtained from the transformed concave problem, and the effects of different system parameters (interference threshold level, the number of primary users and secondary sensor nodes) on the performance of the proposed algorithms are investigated. PMID:23966194
DE-Sync: A Doppler-Enhanced Time Synchronization for Mobile Underwater Sensor Networks.
Zhou, Feng; Wang, Qi; Nie, DongHu; Qiao, Gang
2018-05-25
Time synchronization is the foundation of cooperative work among nodes of underwater sensor networks; it takes a critical role in the research and application of underwater sensor networks. Although numerous time synchronization protocols have been proposed for terrestrial wireless sensor networks, they cannot be directly applied to underwater sensor networks. This is because most of them typically assume that the propagation delay among sensor nodes is negligible, which is not the case in underwater sensor networks. Time synchronization is mainly affected by a long propagation delay among sensor nodes due to the low propagation speed of acoustic signals. Furthermore, sensor nodes in underwater tend to experience some degree of mobility due to wind or ocean current, or some other nodes are on self-propelled vehicles, such as autonomous underwater vehicles (AUVs). In this paper, we propose a Doppler-enhanced time synchronization scheme for mobile underwater sensor networks, called DE-Sync. Our new scheme considers the effect of the clock skew during the process of estimating the Doppler scale factor and directly substitutes the Doppler scale factor into linear regression to achieve the estimation of the clock skew and offset. Simulation results show that DE-Sync outperforms existing time synchronization protocols in both accuracy and energy efficiency.
Low Cost, Open-Source, and Low-Power: But What to Do with the Data?
NASA Astrophysics Data System (ADS)
Horsburgh, J. S.; Aufdenkampe, A. K.; Arscott, D.; Damiano, S. G.; Hicks, S. D.
2017-12-01
There are now many ongoing efforts to develop low-cost, open-source, low-power sensors and datalogging solutions for environmental applications. Many of these have advanced to the point that high quality scientific measurements can be made using relatively inexpensive and increasingly off-the-shelf components. With the development of these innovative systems, however, comes the ability to generate large volumes of high-frequency monitoring data and the challenge of how to log, transmit, store, and share the resulting data. This presentation will focus on a new, web-based system http://data.envirodiy.org that was designed to enable citizen scientists to stream sensor data from a network of EnviroDIY Mayfly Arduino-based dataloggers. This system enables registration of new sensor nodes through a website. Once registered, any Internet connected device (e.g., cellular or WIFI) can then post data to the data.envirodiy.org website through a web service programming interface. Data are stored in a back-end data store that implements Version 2 of the Observations Data Model (ODM2). Live data can then be viewed and downloaded from the data.envirodiy.org website in a simple text format. While this system was purpose built to support an emerging network of Arduino-based sensor nodes deployed by citizen scientists in the Delaware River Basin, the architecture and components are generic and could be used by any Internet connected device capable of making measurements and formulating an HTTP POST request to send them to data.envirodiy.org.
iSANLA: intelligent sensor and actuator network for life science applications.
Schloesser, Mario; Schnitzer, Andreas; Ying, Hong; Silex, Carmen; Schiek, Michael
2008-01-01
In the fields of neurological rehabilitation and neurophysiological research there is a strong need for miniaturized, multi channel, battery driven, wireless networking DAQ systems enabling real-time digital signal processing and feedback experiments. For the scientific investigation on the passive auditory based 3D-orientation of Barn Owls and the scientific research on vegetative locomotor coordination of Parkinson's disease patients during rehabilitation we developed our 'intelligent Sensor and Actuator Network for Life science Application' (iSANLA) system. Implemented on the ultra low power microcontroller MSP430 sample rates up to 96 kHz have been realised for single channel DAQ. The system includes lossless local data storage up to 4 GB. With its outer dimensions of 20mm per rim and less than 15 g of weight including the Lithium-Ion battery our modular designed sensor node is thoroughly capable of up to eight channel recordings with 8 kHz sample rate each and provides sufficient computational power for digital signal processing ready to start our first mobile experiments. For wireless mobility a compact communication protocol based on the IEEE 802.15.4 wireless standard with net data rates up to 141 kbit/s has been implemented. To merge the lossless acquired data of the distributed iNODEs a time synchronization protocol has been developed preserving causality. Hence the necessary time synchronous start of the data acquisition inside a network of multiple sensors with a precision better than the highest sample rate has been realized.
Underwater Sensor Network Redeployment Algorithm Based on Wolf Search
Jiang, Peng; Feng, Yang; Wu, Feng
2016-01-01
This study addresses the optimization of node redeployment coverage in underwater wireless sensor networks. Given that nodes could easily become invalid under a poor environment and the large scale of underwater wireless sensor networks, an underwater sensor network redeployment algorithm was developed based on wolf search. This study is to apply the wolf search algorithm combined with crowded degree control in the deployment of underwater wireless sensor networks. The proposed algorithm uses nodes to ensure coverage of the events, and it avoids the prematurity of the nodes. The algorithm has good coverage effects. In addition, considering that obstacles exist in the underwater environment, nodes are prevented from being invalid by imitating the mechanism of avoiding predators. Thus, the energy consumption of the network is reduced. Comparative analysis shows that the algorithm is simple and effective in wireless sensor network deployment. Compared with the optimized artificial fish swarm algorithm, the proposed algorithm exhibits advantages in network coverage, energy conservation, and obstacle avoidance. PMID:27775659
Optimal Deployment of Sensor Nodes Based on Performance Surface of Underwater Acoustic Communication
Choi, Jee Woong
2017-01-01
The underwater acoustic sensor network (UWASN) is a system that exchanges data between numerous sensor nodes deployed in the sea. The UWASN uses an underwater acoustic communication technique to exchange data. Therefore, it is important to design a robust system that will function even in severely fluctuating underwater communication conditions, along with variations in the ocean environment. In this paper, a new algorithm to find the optimal deployment positions of underwater sensor nodes is proposed. The algorithm uses the communication performance surface, which is a map showing the underwater acoustic communication performance of a targeted area. A virtual force-particle swarm optimization algorithm is then used as an optimization technique to find the optimal deployment positions of the sensor nodes, using the performance surface information to estimate the communication radii of the sensor nodes in each generation. The algorithm is evaluated by comparing simulation results between two different seasons (summer and winter) for an area located off the eastern coast of Korea as the selected targeted area. PMID:29053569
Distributed processing method for arbitrary view generation in camera sensor network
NASA Astrophysics Data System (ADS)
Tehrani, Mehrdad P.; Fujii, Toshiaki; Tanimoto, Masayuki
2003-05-01
Camera sensor network as a new advent of technology is a network that each sensor node can capture video signals, process and communicate them with other nodes. The processing task in this network is to generate arbitrary view, which can be requested from central node or user. To avoid unnecessary communication between nodes in camera sensor network and speed up the processing time, we have distributed the processing tasks between nodes. In this method, each sensor node processes part of interpolation algorithm to generate the interpolated image with local communication between nodes. The processing task in camera sensor network is ray-space interpolation, which is an object independent method and based on MSE minimization by using adaptive filtering. Two methods were proposed for distributing processing tasks, which are Fully Image Shared Decentralized Processing (FIS-DP), and Partially Image Shared Decentralized Processing (PIS-DP), to share image data locally. Comparison of the proposed methods with Centralized Processing (CP) method shows that PIS-DP has the highest processing speed after FIS-DP, and CP has the lowest processing speed. Communication rate of CP and PIS-DP is almost same and better than FIS-DP. So, PIS-DP is recommended because of its better performance than CP and FIS-DP.
A new range-free localisation in wireless sensor networks using support vector machine
NASA Astrophysics Data System (ADS)
Wang, Zengfeng; Zhang, Hao; Lu, Tingting; Sun, Yujuan; Liu, Xing
2018-02-01
Location information of sensor nodes is of vital importance for most applications in wireless sensor networks (WSNs). This paper proposes a new range-free localisation algorithm using support vector machine (SVM) and polar coordinate system (PCS), LSVM-PCS. In LSVM-PCS, two sets of classes are first constructed based on sensor nodes' polar coordinates. Using the boundaries of the defined classes, the operation region of WSN field is partitioned into a finite number of polar grids. Each sensor node can be localised into one of the polar grids by executing two localisation algorithms that are developed on the basis of SVM classification. The centre of the resident polar grid is then estimated as the location of the sensor node. In addition, a two-hop mass-spring optimisation (THMSO) is also proposed to further improve the localisation accuracy of LSVM-PCS. In THMSO, both neighbourhood information and non-neighbourhood information are used to refine the sensor node location. The results obtained verify that the proposed algorithm provides a significant improvement over existing localisation methods.