Sample records for power station projects

  1. Concentrating Solar Power Projects - Jemalong Solar Thermal Station |

    Science.gov Websites

    Concentrating Solar Power | NREL Jemalong Solar Thermal Station This page provides information on Jemalong Solar Thermal Station, a concentrating solar power (CSP) project, with data organized by Project Name: Jemalong Solar Thermal Station Country: Australia Location: Jemalong (New South Wales) Owner

  2. Tampa Electric Company Polk Power Station IGCC project: Project status

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDaniel, J.E.; Carlson, M.R.; Hurd, R.

    1997-12-31

    The Tampa Electric Company Polk Power Station is a nominal 250 MW (net) Integrated Gasification Combined Cycle (IGCC) power plant located to the southeast of Tampa, Florida in Polk County, Florida. This project is being partially funded under the Department of Energy`s Clean Coal Technology Program pursuant to a Round II award. The Polk Power Station uses oxygen-blown, entrained-flow IGCC technology licensed from Texaco Development Corporation to demonstrate significant reductions of SO{sub 2} and NO{sub x} emissions when compared to existing and future conventional coal-fired power plants. In addition, this project demonstrates the technical feasibility of commercial scale IGCC andmore » Hot Gas Clean Up (HGCU) technology. The Polk Power Station achieved ``first fire`` of the gasification system on schedule in mid-July, 1996. Since that time, significant advances have occurred in the operation of the entire IGCC train. This paper addresses the operating experiences which occurred in the start-up and shakedown phase of the plant. Also, with the plant being declared in commercial operation as of September 30, 1996, the paper discusses the challenges encountered in the early phases of commercial operation. Finally, the future plans for improving the reliability and efficiency of the Unit in the first quarter of 1997 and beyond, as well as plans for future alternate fuel test burns, are detailed. The presentation features an up-to-the-minute update on actual performance parameters achieved by the Polk Power Station. These parameters include overall Unit capacity, heat rate, and availability. In addition, the current status of the start-up activities for the HGCU portion of the plant is discussed.« less

  3. A Renewably Powered Hydrogen Generation and Fueling Station Community Project

    NASA Technical Reports Server (NTRS)

    Lyons, Valerie J.; Sekura, Linda S.; Prokopius, Paul; Theirl, Susan

    2009-01-01

    The proposed project goal is to encourage the use of renewable energy and clean fuel technologies for transportation and other applications while generating economic development. This can be done by creating an incubator for collaborators, and creating a manufacturing hub for the energy economy of the future by training both white- and blue-collar workers for the new energy economy. Hydrogen electrolyzer fueling stations could be mass-produced, shipped and installed in collaboration with renewable energy power stations, or installed connected to the grid with renewable power added later.

  4. Photovoltaic power system for satellite Earth stations in remote areas: Project status and design description

    NASA Technical Reports Server (NTRS)

    Delombard, R.

    1984-01-01

    A photovoltaic power system which will be installed at a remote location in Indonesia to provide power for a satellite Earth station and a classroom for video and audio teleconferences are described. The Earth station may also provide telephone service to a nearby village. The use of satellite communications for development assistance applications and the suitability of a hybrid photovoltaic engine generator power system for remote satellite Earth stations are demonstrated. The Indonesian rural satellite project is discussed and the photovoltaic power system is described.

  5. Development of low head Kaplan turbine for power station rehabilitation project

    NASA Astrophysics Data System (ADS)

    Lim, S. M.; Ohtake, N.; Kurosawa, S.; Suzuki, T.; Yamasaki, T.; Nishi, H.

    2012-11-01

    This paper presents the latest Kaplan turbine rehabilitation project for Funagira Power Station in Japan completed by J-POWER Group in collaboration with Toshiba Corporation. Area of rehabilitation was restricted to guide vane and runner. The main goal of the rehabilitation project was to expand the operating range of the existing turbine in terms of discharge and power with high operational stability, low noise as well as high cavitation performance. Computational Fluids Dynamics and model test were used to optimize the shape of guide vane and runner in development stage. Finally, field tests and runner inspection were carried out to confirm the performance of the new turbine. It was found that the new turbine has excellent performance in efficiency, power output, operational stability compared with existing turbine. Moreover, no sign of cavitation on the runner blade surface was observed after 5078 hours of operation near 100% load.

  6. Concentrating Solar Power Projects - Linear Fresnel Reflector Projects |

    Science.gov Websites

    Kimberlina solar thermal power plant, a linear Fresnel reflector system located near Bakersfield, California Solar Thermal Project eLLO Solar Thermal Project (Llo) IRESEN 1 MWe CSP-ORC pilot project Kimberlina Solar Thermal Power Plant (Kimberlina) Liddell Power Station Puerto Errado 1 Thermosolar Power Plant

  7. Space Station power system autonomy demonstration

    NASA Technical Reports Server (NTRS)

    Kish, James A.; Dolce, James L.; Weeks, David J.

    1988-01-01

    The Systems Autonomy Demonstration Program (SADP) represents NASA's major effort to demonstrate, through a series of complex ground experiments, the application and benefits of applying advanced automation technologies to the Space Station project. Lewis Research Center (LeRC) and Marshall Space Flight Center (MSFC) will first jointly develop an autonomous power system using existing Space Station testbed facilities at each center. The subsequent 1990 power-thermal demonstration will then involve the cooperative operation of the LeRC/MSFC power system with the Johnson Space Center (JSC's) thermal control and DMS/OMS testbed facilities. The testbeds and expert systems at each of the NASA centers will be interconnected via communication links. The appropriate knowledge-based technology will be developed for each testbed and applied to problems requiring intersystem cooperation. Primary emphasis will be focused on failure detection and classification, system reconfiguration, planning and scheduling of electrical power resources, and integration of knowledge-based and conventional control system software into the design and operation of Space Station testbeds.

  8. Baseline Testing of the Ultracapacitor Enhanced Photovoltaic Power Station

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.; Kolacz, John S.; Tavernelli, Paul F.

    2001-01-01

    The NASA John H. Glenn Research Center is developing an advanced ultracapacitor enhanced photovoltaic power station. Goals of this effort include maximizing photovoltaic power generation efficiency and extending the life of photovoltaic energy storage systems. Unique aspects of the power station include the use of a solar tracker, and ultracapacitors for energy storage. The photovoltaic power station is seen as a way to provide electric power in remote locations that would otherwise not have electric power, provide independence form utility systems, reduce pollution, reduce fossil fuel consumption, and reduce operating costs. The work was done under the Hybrid Power Management (HPM) Program, which includes the Hybrid Electric Transit Bus (HETB), and the E-Bike. The power station complements the E-Bike extremely well in that it permits the charging of the vehicle batteries in remote locations. Other applications include scientific research and medical power sources in isolated regions. The power station is an inexpensive approach to advance the state of the art in power technology in a practical application. The project transfers space technology to terrestrial use via nontraditional partners, and provides power system data valuable for future space applications. A description of the ultracapacitor enhanced power station, the results of performance testing and future power station development plans is the subject of this report. The report concludes that the ultracapacitor enhanced power station provides excellent performance, and that the implementation of ultracapacitors in the power system can provide significant performance improvements.

  9. System impacts of solar dynamic and growth power systems on space station

    NASA Technical Reports Server (NTRS)

    Farmer, J. T.; Cuddihy, W. F.; Lovelace, U. M.; Badi, D. M.

    1986-01-01

    Concepts for the 1990's space station envision an initial operational capability with electrical power output requirements of approximately 75 kW and growth power requirements in the range of 300 kW over a period of a few years. Photovoltaic and solar dynamic power generation techniques are contenders for supplying this power to the space station. A study was performed to identify growth power subsystem impacts on other space station subsystems. Subsystem interactions that might suggest early design changes for the space station were emphasized. Quantitative analyses of the effects of power subsystem mass and projected area on space station controllability and reboost requirements were conducted for a range of growth station configurations. Impacts on space station structural dynamics as a function of power subsystem growth were also considered.

  10. Shippingport station decommissioning project ALARA Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crimi, F.P.

    1995-03-01

    Properly planned and implemented ALARA programs help to maintain nuclear worker radiation exposures {open_quotes}As Low As Reasonably Achievable.{close_quotes}. This paper describes the ALARA program developed and implemented for the decontamination and decommissioning (D&D) of the Shippingport Atomic Power Station. The elements required for a successful ALARA program are discussed along with examples of good ALARA practices. The Shippingport Atomic Power Station (SAPS) was the first commercial nuclear power plant to be built in the United States. It was located 35 miles northwest of Pittsburgh, PA on the south bank of the Ohio river. The reactor plant achieved initial criticality inmore » December 1959. During its 25-year life, it produced 7.5 billion kilowatts of electricity. The SAPS was shut down in October 1982 and was the first large-scale U.S. nuclear power plant to be totally decommissioned and the site released for unrestricted use. The Decommission Project was estimated to take 1,007 man-rem of radiation exposure and $.98.3 million to complete. Physical decommissioning commenced in September 1985 and was completed in September 1989. The actual man-rem of exposure was 155. The project was completed 6 months ahead of schedule at a cost of $91.3 million.« less

  11. Practical design considerations for photovoltaic power station

    NASA Astrophysics Data System (ADS)

    Swanson, T. D.

    Aspects of photovoltaic (PV) technology are discussed along with generic PV design considerations, taking into account the resource sunlight, PV modules and their reliability, questions of PV system design, the support structure subsystem, and a power conditioning unit subsystem. A description is presented of two recent projects which demonstrate the translation of an idea into actual working PV systems. A privately financed project in Denton, Maryland, went on line in early December, 1982, and began providing power to the local utility grid. It represents the first intermediate size, grid-connected, privately financed power station in the U.S. Based on firm quotes, the actual cost of this system is about $13/W peak. The other project, called the PV Breeder, is an energy independent facility which utilizes solar power to make new solar cells. It is also the first large industrial structure completely powered by the sun.

  12. 75 FR 8895 - Basin Electric Power Cooperative: Deer Creek Station

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-26

    .... The purpose of the proposed Project is to help serve increased load demand for electric power in the... Basin Electric Power Cooperative: Deer Creek Station AGENCY: Rural Utilities Service, USDA. ACTION...) and the Western Area Power Administration (Western) have issued a Draft Environmental Impact Statement...

  13. The Space Station Module Power Management and Distribution automation test bed

    NASA Technical Reports Server (NTRS)

    Lollar, Louis F.

    1991-01-01

    The Space Station Module Power Management And Distribution (SSM/PMAD) automation test bed project was begun at NASA/Marshall Space Flight Center (MSFC) in the mid-1980s to develop an autonomous, user-supportive power management and distribution test bed simulating the Space Station Freedom Hab/Lab modules. As the test bed has matured, many new technologies and projects have been added. The author focuses on three primary areas. The first area is the overall accomplishments of the test bed itself. These include a much-improved user interface, a more efficient expert system scheduler, improved communication among the three expert systems, and initial work on adding intermediate levels of autonomy. The second area is the addition of a more realistic power source to the SSM/PMAD test bed; this project is called the Large Autonomous Spacecraft Electrical Power System (LASEPS). The third area is the completion of a virtual link between the SSM/PMAD test bed at MSFC and the Autonomous Power Expert at Lewis Research Center.

  14. Lunar base thermoelectric power station study

    NASA Technical Reports Server (NTRS)

    Determan, William; Frye, Patrick; Mondt, Jack; Fleurial, Jean-Pierre; Johnson, Ken; Stapfer, G.; Brooks, Michael D.; Heshmatpour, Ben

    2006-01-01

    Under NASA's Project Prometheus, the Nuclear Systems Program, the Jet Propulsion Laboratory, Pratt & Whitney Rocketdyne, and Teledyne Energy Systems have teamed with a number of universities, under the Segmented Thermoelectric Multicouple Converter (STMC) program, to develop the next generation of advanced thermoelectric converters for space reactor power systems. Work on the STMC converter assembly has progressed to the point where the lower temperature stage of the segmented multicouple converter assembly is ready for laboratory testing and the upper stage materials have been identified and their properties are being characterized. One aspect of the program involves mission application studies to help define the potential benefits from the use of these STMC technologies for designated NASA missions such as the lunar base power station where kilowatts of power are required to maintain a permanent manned presence on the surface of the moon. A modular 50 kWe thermoelectric power station concept was developed to address a specific set of requirements developed for this mission. Previous lunar lander concepts had proposed the use of lunar regolith as in-situ radiation shielding material for a reactor power station with a one kilometer exclusion zone radius to minimize astronaut radiation dose rate levels. In the present concept, we will examine the benefits and requirements for a hermetically-sealed reactor thermoelectric power station module suspended within a man-made lunar surface cavity. The concept appears to maximize the shielding capabilities of the lunar regolith while minimizing its handling requirements. Both thermal and nuclear radiation levels from operation of the station, at its 100-m exclusion zone radius, were evaluated and found to be acceptable. Site preparation activities are reviewed and well as transport issues for this concept. The goal of the study was to review the entire life cycle of the unit to assess its technical problems and technology

  15. 47 CFR 74.785 - Low power TV digital data service pilot project.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Low power TV digital data service pilot project... Power TV, TV Translator, and TV Booster Stations § 74.785 Low power TV digital data service pilot project. Low power TV stations authorized pursuant to the LPTV Digital Data Services Act (Public Law 106...

  16. 47 CFR 74.785 - Low power TV digital data service pilot project.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Low power TV digital data service pilot project... Power TV, TV Translator, and TV Booster Stations § 74.785 Low power TV digital data service pilot project. Low power TV stations authorized pursuant to the LPTV Digital Data Services Act (Public Law 106...

  17. Solar power station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wenzel, J.

    1982-11-30

    Solar power station with semiconductor solar cells for generating electric power is described, wherein the semiconductor solar cells are provided on a member such as a balloon or a kite which carries the solar cells into the air. The function of the balloon or kite can also be fulfilled by a glider or airship. The solar power station can be operated by allowing the system to ascend at sunrise and descend at sunset or when the wind is going to be too strong in order to avoid any demage.

  18. Concentrating Solar Power Projects - La Florida | Concentrating Solar Power

    Science.gov Websites

    | NREL Florida This page provides information on La Florida, a concentrating solar power (CSP : March 20, 2017 Project Overview Project Name: La Florida Country: Spain Location: Badajoz (Badajoz Solar Resource: La Florida Weather Station Electricity Generation: 175,000 MWh/yr (Estimated) Contact(s

  19. DC-DC power converter research for Orbiter/Station power exchange

    NASA Technical Reports Server (NTRS)

    Ehsani, M.

    1993-01-01

    This project was to produce innovative DC-DC power converter concepts which are appropriate for the power exchange between the Orbiter and the Space Station Freedom (SSF). The new converters must interface three regulated power buses on SSF, which are at different voltages, with three fuel cell power buses on the Orbiter which can be at different voltages and should be tracked independently. Power exchange is to be bi-directional between the SSF and the Orbiter. The new converters must satisfy the above operational requirements with better weight, volume, efficiency, and reliability than is available from the present conventional technology. Two families of zero current DC-DC converters were developed and successfully adapted to this application. Most of the converters developed are new and are presented.

  20. Electrical Power Station Theory. A Course of Technical Information for Electrical Power Station Wireman Apprentices. Revised Edition.

    ERIC Educational Resources Information Center

    Lane Community Coll., Eugene, OR.

    This third-year course for electrical power station wirer apprentices is a foundation for the study of all aspects of installation and maintenance of power station equipment. It also provides a good technical background as well as the general knowledge essential to power station operator trainees. The course is intended to be equivalent to a…

  1. System for a displaying at a remote station data generated at a central station and for powering the remote station from the central station

    NASA Technical Reports Server (NTRS)

    Perry, J. C. (Inventor)

    1980-01-01

    A system for displaying at a remote station data generated at a central station and for powering the remote station from the central station is presented. A power signal is generated at the central station and time multiplexed with the data and then transmitted to the remote station. An energy storage device at the remote station is responsive to the transmitted power signal to provide energizing power for the circuits at the remote station during the time interval data is being transmitted to the remote station. Energizing power for the circuits at the remote station is provided by the power signal itself during the time this signal is transmitted. Preferably the energy storage device is a capacitor which is charged by the power signal during the time the power is transmitted and is slightly discharged during the time the data is transmitted to energize the circuits at the remote station.

  2. A new Space Station power system

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    1988-01-01

    A new concept for a Space Station power system is proposed which reduces the drag effect of the solar panels and eliminates eclipsing by the Earth. The solar generator is physically separated from the Space Station, and power transmitted to the station by a microwave beam. The power station can thus be placed high enough that drag is not a significant factor. For a resonant orbit where the ratio of periods s:p is a ratio of odd integers, and the orbital planes nearly perpendicular, an orbit can be chosen such that the line of sight is never blocked if the lower orbit has an altitude greater than calculatable mininum. For the 1:3 resonance, this minimum altitude is 0.5 r(e). Finally, by placing the power station into a sun-synchronous orbit, it can be made to avoid shadowing by the Earth, thus providing continuous power.

  3. Mission Analysis for LEO Microwave Power-Beaming Station in Orbital Launch of Microwave Lightcraft

    NASA Technical Reports Server (NTRS)

    Myrabo, L. N.; Dickenson, T.

    2005-01-01

    A detailed mission analysis study has been performed for a 1 km diameter, rechargeable satellite solar power station (SPS) designed to boost 20m diameter, 2400 kg Micr,oWave Lightcraft (MWLC) into low earth orbit (LEO) Positioned in a 476 km daily-repeating oi.bit, the 35 GHz microwave power station is configured like a spinning, thin-film bicycle wheel covered by 30% efficient sola cells on one side and billions of solid state microwave transmitter elements on the other, At the rim of this wheel are two superconducting magnets that can stor,e 2000 G.J of energy from the 320 MW, solar array over a period of several orbits. In preparation for launch, the entire station rotates to coarsely point at the Lightcraft, and then phases up using fine-pointing information sent from a beacon on-board the Lightcraft. Upon demand, the station transmits a 10 gigawatt microwave beam to lift the MWLC from the earth surface into LEO in a flight of several minutes duration. The mission analysis study was comprised of two parts: a) Power station assessment; and b) Analysis of MWLC dynamics during the ascent to orbit including the power-beaming relationships. The power station portion addressed eight critical issues: 1) Drag force vs. station orbital altitude; 2) Solar pressure force on the station; 3) Station orbital lifetime; 4) Feasibility of geo-magnetic re-boost; 5) Beta angle (i..e., sola1 alignment) and power station effective area relationship; 6) Power station percent time in sun vs, mission elapsed time; 7) Station beta angle vs.. charge time; 8) Stresses in station structures.. The launch dynamics portion examined four issues: 1) Ascent mission/trajecto1y profile; 2) MWLC/power-station mission geometry; 3) MWLC thrust angle vs. time; 4) Power station pitch rate during power beaming. Results indicate that approximately 0 58 N of drag force acts upon the station when rotated edge-on to project the minimum frontal area of 5000 sq m. An ion engine or perhaps an electrodynamic

  4. Successful multi-technology NO{sub x} reduction project experience at New England Power Company - Salem Harbor station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fynan, G.A.; Sload, A.; Adamson, E.J.

    This paper presents the successes and lessons learned during recent low NOx burner and SNCR projects on generating units at New England Power`s Salem Harbor Generating Station. The principals involved in the project were New England Power Company, New England Power Service Company, Stone and Webster Engineering Corp. and Deutsche-Babcock Riley Inc. One unit was retrofitted with 16 Riley CCV burners with an OFA system, the other with 12 low NOx burners only. In addition to the burners, a SNCR system was also installed on three units. Since each of the burner systems are interdependent (SNCR was treated separately duringmore » design phases and optimized along with the burner systems), close cooperation during the design stages was essential to ensuring a successful installation, startup and optimization. This paper will present the coordinated effort put forth by each company toward this goal with the hope of assisting others who may be planning a similar effort. A summary of the operating results will also be presented. The up front teamwork and advance planning that went into the design stages of the project resulted in a number of successful outcomes e.g. scanner reliability, properly operating oil supply system, compatibility of burners and burner front oil system with new Burner Management System (BMS), reliable first attempt burner ignition and more. Advance planning facilitated pre-outage work and factored into keeping schedules and budgets on track.« less

  5. Space Station power system issues

    NASA Technical Reports Server (NTRS)

    Giudici, R. J.

    1985-01-01

    Issues governing the selection of power systems for long-term manned Space Stations intended solely for earth orbital missions are covered briefly, drawing on trade study results from both in-house and contracted studies that have been conducted over nearly two decades. An involvement, from the Program Development Office at MSFC, with current Space Station concepts began in late 1982 with the NASA-wide Systems Definition Working Group and continued throughout 1984 in support of various planning activities. The premise for this discussion is that, within the confines of the current Space Station concept, there is good reason to consider photovoltaic power systems to be a venerable technology option for both the initial 75 kW and 300 kW (or much greater) growth stations. The issue of large physical size required by photovoltaic power systems is presented considering mass, atmospheric drag, launch packaging and power transmission voltage as being possible practicality limitations. The validity of searching for a cross-over point necessitating the introduction of solar thermal or nuclear power system options as enabling technologies is considered with reference to programs ranging from the 4.8 kW Skylab to the 9.5 gW Space Power Satellite.

  6. Solar photovoltaic power system for a radio station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nichols, B. E.

    1980-12-01

    Under sponsorship of the US Department of Energy, Massachusetts Institute of Technology Lincoln Laboratory has developed a concept for a small photovoltaic power system. Of simple construction, the system uses low-cost, prefabricated, transportable units for easy, fast installation and requires minimal site preparation. The first application of this experimental system began operation in August 1979 at daytime AM radio station WNBO in Bryan, Ohio. The project was jointly undertaken by the Laboratory and the radio station. The photovoltaic system described holds promise for a wide range of applications and economic feasibility by the mid- to late-1980s.

  7. The space station power system

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The requirements for electrical power by the proposed Space Station Freedom are discussed. The options currently under consideration are examined. The three power options are photovoltaic, solar dynamic, and a hybrid system. Advantages and disadvantages of each system are tabulated. Drawings and artist concepts of the Space Station configuration are provided.

  8. Wind-powered electrical systems : highway rest areas, weigh stations, and team section buildings.

    DOT National Transportation Integrated Search

    2009-02-01

    This project considered the use of wind for providing electrical power at Illinois Department of Transportation : (IDOT) highway rest areas, weigh stations, and team section buildings. The goal of the project was to determine : the extent to which wi...

  9. 35. SITE BUILDING 004 ELECTRIC POWER STATION CONTROL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. SITE BUILDING 004 - ELECTRIC POWER STATION - CONTROL ROOM OF ELECTRIC POWER STATION WITH DIESEL ENGINE POWERED ELECTRIC GENERATION EQUIPMENT IN BACKGROUND. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  10. International remote monitoring project Argentina Nuclear Power Station Spent Fuel Transfer Remote Monitoring System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, S.; Lucero, R.; Glidewell, D.

    1997-08-01

    The Autoridad Regulataria Nuclear (ARN) and the United States Department of Energy (DOE) are cooperating on the development of a Remote Monitoring System for nuclear nonproliferation efforts. A Remote Monitoring System for spent fuel transfer will be installed at the Argentina Nuclear Power Station in Embalse, Argentina. The system has been designed by Sandia National Laboratories (SNL), with Los Alamos National Laboratory (LANL) and Oak Ridge National Laboratory (ORNL) providing gamma and neutron sensors. This project will test and evaluate the fundamental design and implementation of the Remote Monitoring System in its application to regional and international safeguards efficiency. Thismore » paper provides a description of the monitoring system and its functions. The Remote Monitoring System consists of gamma and neutron radiation sensors, RF systems, and video systems integrated into a coherent functioning whole. All sensor data communicate over an Echelon LonWorks Network to a single data logger. The Neumann DCM 14 video module is integrated into the Remote Monitoring System. All sensor and image data are stored on a Data Acquisition System (DAS) and archived and reviewed on a Data and Image Review Station (DIRS). Conventional phone lines are used as the telecommunications link to transmit on-site collected data and images to remote locations. The data and images are authenticated before transmission. Data review stations will be installed at ARN in Buenos Aires, Argentina, ABACC in Rio De Janeiro, IAEA Headquarters in Vienna, and Sandia National Laboratories in Albuquerque, New Mexico. 2 refs., 2 figs.« less

  11. 75 FR 75706 - Dresden Nuclear Power Station, Units 2 and 3 and Quad Cities Nuclear Power Station, Unit Nos. 1...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-06

    ...- 2010-0373] Dresden Nuclear Power Station, Units 2 and 3 and Quad Cities Nuclear Power Station, Unit Nos... and DPR-25 for Dresden Nuclear Power Station, Units 2 and 3, respectively, located in Grundy County, Illinois, and to Renewed Facility Operating License Nos. DPR-29 and DPR-30 for Quad Cities Nuclear Power...

  12. Concentrating Solar Power Projects in the United States | Concentrating

    Science.gov Websites

    States are listed belowâ€"alphabetical by state, then by project name. You can browse a project profile by clicking on the project name. Arizona Maricopa Solar Project (Maricopa) Saguaro Power Plant Solana Generating Station (Solana) California Genesis Solar Energy Project Ivanpah Solar Electric

  13. Power components for the space station 20-kHz power distribution system

    NASA Technical Reports Server (NTRS)

    Renz, David D.

    1988-01-01

    Since 1984, NASA Lewis Research Center was developing high power, high frequency space power components as part of The Space Station Advanced Development program. The purpose of The Advanced Development program was to accelerate existing component programs to ensure their availability for use on the Space Station. These components include a rotary power transfer device, remote power controllers, remote bus isolators, high power semiconductor, a high power semiconductor package, high frequency-high power cable, high frequency-high power connectors, and high frequency-high power transformers. All the components were developed to the prototype level and will be installed in the Lewis Research Center Space Station power system test bed.

  14. Power components for the Space Station 20-kHz power distribution system

    NASA Technical Reports Server (NTRS)

    Renz, David D.

    1988-01-01

    Since 1984, NASA Lewis Research Center was developing high power, high frequency space power components as part of The Space Station Advanced Development program. The purpose of the Advanced Development program was to accelerate existing component programs to ensure their availability for use on the Space Station. These components include a rotary power transfer device, remote power controllers, remote bus isolators, high power semiconductor, a high power semiconductor package, high frequency-high power cable, high frequency-high power connectors, and high frequency-high power transformers. All the components were developed to the prototype level and will be installed in the Lewis Research Center Space Station power system test bed.

  15. Application of flywheel battery in mobile power station

    NASA Astrophysics Data System (ADS)

    Wang, Xinggui; Zhang, Bing; Li, Xiaoying; Sun, Xiaojing

    2013-03-01

    The flywheel battery is used to the mobile station for continuous power supply, once the commercial power or other independent power supply is outage or failure, the flywheel battery will provide uninterrupted power supply during the switch to the commercial power and the diesel generator sets, ensuring the power supply system is continuous and maintaining the performance and parameters of the power supply which will not influence or discontinuous change because of commercial power failure. Simulation results show that the flywheel battery used to the mobile station can effectively improve the performance of the mobile power station system.

  16. 47 CFR 74.793 - Digital low power TV and TV translator station protection of broadcast stations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Digital low power TV and TV translator station... DISTRIBUTIONAL SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.793 Digital low power TV and TV translator station protection of broadcast stations. (a) An application to construct a new digital low power...

  17. TidGen Power System Commercialization Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sauer, Christopher R.; McEntee, Jarlath

    2013-12-30

    ORPC Maine, LLC, a wholly-owned subsidiary of Ocean Renewable Power Company, LLC (collectively ORPC), submits this Final Technical Report for the TidGen® Power System Commercialization Project (Project), partially funded by the U.S. Department of Energy (DE-EE0003647). The Project was built and operated in compliance with the Federal Energy Regulatory Commission (FERC) pilot project license (P-12711) and other permits and approvals needed for the Project. This report documents the methodologies, activities and results of the various phases of the Project, including design, engineering, procurement, assembly, installation, operation, licensing, environmental monitoring, retrieval, maintenance and repair. The Project represents a significant achievement formore » the renewable energy portfolio of the U.S. in general, and for the U.S. marine hydrokinetic (MHK) industry in particular. The stated Project goal was to advance, demonstrate and accelerate deployment and commercialization of ORPC’s tidal-current based hydrokinetic power generation system, including the energy extraction and conversion technology, associated power electronics, and interconnection equipment capable of reliably delivering electricity to the domestic power grid. ORPC achieved this goal by designing, building and operating the TidGen® Power System in 2012 and becoming the first federally licensed hydrokinetic tidal energy project to deliver electricity to a power grid under a power purchase agreement in North America. Located in Cobscook Bay between Eastport and Lubec, Maine, the TidGen® Power System was connected to the Bangor Hydro Electric utility grid at an on-shore station in North Lubec on September 13, 2012. ORPC obtained a FERC pilot project license for the Project on February 12, 2012 and the first Maine Department of Environmental Protection General Permit issued for a tidal energy project on January 31, 2012. In addition, ORPC entered into a 20-year agreement with Bangor Hydro

  18. Space Station Freedom power - A reliability, availability, and maintainability assessment of the proposed Space Station Freedom electric power system

    NASA Technical Reports Server (NTRS)

    Turnquist, S. R.; Twombly, M.; Hoffman, D.

    1989-01-01

    A preliminary reliability, availability, and maintainability (RAM) analysis of the proposed Space Station Freedom electric power system (EPS) was performed using the unit reliability, availability, and maintainability (UNIRAM) analysis methodology. Orbital replacement units (ORUs) having the most significant impact on EPS availability measures were identified. Also, the sensitivity of the EPS to variations in ORU RAM data was evaluated for each ORU. Estimates were made of average EPS power output levels and availability of power to the core area of the space station. The results of assessments of the availability of EPS power and power to load distribution points in the space stations are given. Some highlights of continuing studies being performed to understand EPS availability considerations are presented.

  19. 36. SITE BUILDING 004 ELECTRIC POWER STATION CLOSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. SITE BUILDING 004 - ELECTRIC POWER STATION - CLOSE UP VIEW OF 1200 HORSEPOWER STANDBY POWER DIESEL ENGINE/GENERATOR SETS. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  20. Observations of Earth space by self-powered stations in Antarctica.

    PubMed

    Mende, S B; Rachelson, W; Sterling, R; Frey, H U; Harris, S E; McBride, S; Rosenberg, T J; Detrick, D; Doolittle, J L; Engebretson, M; Inan, U; Labelle, J W; Lanzerotti, L J; Weatherwax, A T

    2009-12-01

    Coupling of the solar wind to the Earth magnetosphere/ionosphere is primarily through the high latitude regions, and there are distinct advantages in making remote sensing observations of these regions with a network of ground-based observatories over other techniques. The Antarctic continent is ideally situated for such a network, especially for optical studies, because the larger offset between geographic and geomagnetic poles in the south enables optical observations at a larger range of magnetic latitudes during the winter darkness. The greatest challenge for such ground-based observations is the generation of power and heat for a sizable ground station that can accommodate an optical imaging instrument. Under the sponsorship of the National Science Foundation, we have developed suitable automatic observing platforms, the Automatic Geophysical Observatories (AGOs) for a network of six autonomous stations on the Antarctic plateau. Each station housed a suite of science instruments including a dual wavelength intensified all-sky camera that records the auroral activity, an imaging riometer, fluxgate and search-coil magnetometers, and ELF/VLF and LM/MF/HF receivers. Originally these stations were powered by propane fuelled thermoelectric generators with the fuel delivered to the site each Antarctic summer. A by-product of this power generation was a large amount of useful heat, which was applied to maintain the operating temperature of the electronics in the stations. Although a reasonable degree of reliability was achieved with these stations, the high cost of the fuel air lift and some remaining technical issues necessitated the development of a different type of power unit. In the second phase of the project we have developed a power generation system using renewable energy that can operate automatically in the Antarctic winter. The most reliable power system consists of a type of wind turbine using a simple permanent magnet rotor and a new type of power

  1. Observations of Earth space by self-powered stations in Antarctica

    NASA Astrophysics Data System (ADS)

    Mende, S. B.; Rachelson, W.; Sterling, R.; Frey, H. U.; Harris, S. E.; McBride, S.; Rosenberg, T. J.; Detrick, D.; Doolittle, J. L.; Engebretson, M.; Inan, U.; Labelle, J. W.; Lanzerotti, L. J.; Weatherwax, A. T.

    2009-12-01

    Coupling of the solar wind to the Earth magnetosphere/ionosphere is primarily through the high latitude regions, and there are distinct advantages in making remote sensing observations of these regions with a network of ground-based observatories over other techniques. The Antarctic continent is ideally situated for such a network, especially for optical studies, because the larger offset between geographic and geomagnetic poles in the south enables optical observations at a larger range of magnetic latitudes during the winter darkness. The greatest challenge for such ground-based observations is the generation of power and heat for a sizable ground station that can accommodate an optical imaging instrument. Under the sponsorship of the National Science Foundation, we have developed suitable automatic observing platforms, the Automatic Geophysical Observatories (AGOs) for a network of six autonomous stations on the Antarctic plateau. Each station housed a suite of science instruments including a dual wavelength intensified all-sky camera that records the auroral activity, an imaging riometer, fluxgate and search-coil magnetometers, and ELF/VLF and LM/MF/HF receivers. Originally these stations were powered by propane fuelled thermoelectric generators with the fuel delivered to the site each Antarctic summer. A by-product of this power generation was a large amount of useful heat, which was applied to maintain the operating temperature of the electronics in the stations. Although a reasonable degree of reliability was achieved with these stations, the high cost of the fuel air lift and some remaining technical issues necessitated the development of a different type of power unit. In the second phase of the project we have developed a power generation system using renewable energy that can operate automatically in the Antarctic winter. The most reliable power system consists of a type of wind turbine using a simple permanent magnet rotor and a new type of power

  2. 37. SITE BUILDING 004 ELECTRIC POWER STATION ELEVATED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. SITE BUILDING 004 - ELECTRIC POWER STATION - ELEVATED VIEW OF FIVE (5) 1200 HORSEPOWER STANDBY - POWER DIESEL ENGINE/GENERATOR SETS. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  3. 75 FR 13600 - Virginia Electric and Power Company, North Anna Power Station, Unit Nos. 1 and 2, Surry Power...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-22

    ...- 2010-0116] Virginia Electric and Power Company, North Anna Power Station, Unit Nos. 1 and 2, Surry Power Station, Unit Nos. 1 and 2; Environmental Assessment and Finding of No Significant Impact The U.S... Anna Power Station, Unit Nos. 1 and 2 (NAPS), and Surry Power Station, Unit Nos. 1 and 2 (SPS), located...

  4. Project EGRESS: Earthbound Guaranteed Reentry from Space Station. the Design of an Assured Crew Recovery Vehicle for the Space Station

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Unlike previously designed space-based working environments, the shuttle orbiter servicing the space station will not remain docked the entire time the station is occupied. While an Apollo capsule was permanently available on Skylab, plans for Space Station Freedom call for a shuttle orbiter to be docked at the space station for no more than two weeks four times each year. Consideration of crew safety inspired the design of an Assured Crew Recovery Vehicle (ACRV). A conceptual design of an ACRV was developed. The system allows the escape of one or more crew members from Space Station Freedom in case of emergency. The design of the vehicle addresses propulsion, orbital operations, reentry, landing and recovery, power and communication, and life support. In light of recent modifications in space station design, Project EGRESS (Earthbound Guaranteed ReEntry from Space Station) pays particular attention to its impact on space station operations, interfaces and docking facilities, and maintenance needs. A water-landing medium-lift vehicle was found to best satisfy project goals of simplicity and cost efficiency without sacrificing safety and reliability requirements. One or more seriously injured crew members could be returned to an earth-based health facility with minimal pilot involvement. Since the craft is capable of returning up to five crew members, two such permanently docked vehicles would allow a full evacuation of the space station. The craft could be constructed entirely with available 1990 technology, and launched aboard a shuttle orbiter.

  5. Evolutionary growth for Space Station Freedom electrical power system

    NASA Technical Reports Server (NTRS)

    Marshall, Matthew Fisk; Mclallin, Kerry; Zernic, Mike

    1989-01-01

    Over an operational lifetime of at least 30 yr, Space Station Freedom will encounter increased Space Station user requirements and advancing technologies. The Space Station electrical power system is designed with the flexibility to accommodate these emerging technologies and expert systems and is being designed with the necessary software hooks and hardware scars to accommodate increased growth demand. The electrical power system is planned to grow from the initial 75 kW up to 300 kW. The Phase 1 station will utilize photovoltaic arrays to produce the electrical power; however, for growth to 300 kW, solar dynamic power modules will be utilized. Pairs of 25 kW solar dynamic power modules will be added to the station to reach the power growth level. The addition of solar dynamic power in the growth phase places constraints in the initial Space Station systems such as guidance, navigation, and control, external thermal, truss structural stiffness, computational capabilities and storage, which must be planned-in, in order to facilitate the addition of the solar dynamic modules.

  6. The US space station and its electric power system

    NASA Technical Reports Server (NTRS)

    Thomas, Ronald L.

    1988-01-01

    The United States has embarked on a major development program to have a space station operating in low earth orbit by the mid-1990s. This endeavor draws on the talents of NASA and most of the aerospace firms in the U.S. Plans are being pursued to include the participation of Canada, Japan, and the European Space Agency in the space station. From the start of the program these was a focus on the utilization of the space station for science, technology, and commercial endeavors. These requirements were utilized in the design of the station and manifest themselves in: pressurized volume; crew time; power availability and level of power; external payload accommodations; microgravity levels; servicing facilities; and the ability to grow and evolve the space station to meet future needs. President Reagan directed NASA to develop a permanently manned space station in his 1984 State of the Union message. Since then the definition phase was completed and the development phase initiated. A major subsystem of the space station is its 75 kW electric power system. The electric power system has characteristics similar to those of terrestrial power systems. Routine maintenance and replacement of failed equipment must be accomplished safely and easily and in a minimum time while providing reliable power to users. Because of the very high value placed on crew time it is essential that the power system operate in an autonomous mode to minimize crew time required. The power system design must also easily accommodate growth as the power demands by users are expected to grow. An overview of the U.S. space station is provided with special emphasis on its electrical power system.

  7. 77 FR 63342 - Virginia Electric and Power Company, Surry Power Station Units 1 and 2 and North Anna Power...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-16

    ...] Virginia Electric and Power Company, Surry Power Station Units 1 and 2 and North Anna Power Station Units 1... Operating License Nos. DPR-32 and DPR-37, NPF-4 and NPF-7 for Surry Power Station, Units 1 and 2, Surry County, [[Page 63343

  8. Concentrating Solar Power Projects - Power Tower Projects | Concentrating

    Science.gov Websites

    (CSP) projects that use power tower systems are listed below-alphabetically by project name. You can browse a project profile by clicking on the project name. You can also find related information on power Aurora Solar Energy Project Copiapó Crescent Dunes Solar Energy Project (Tonopah) Dahan Power Plant DEWA

  9. Experience gained at the Ural Turbine Works with retrofitting steam turbine units for thermal power stations

    NASA Astrophysics Data System (ADS)

    Valamin, A. E.; Kultyshev, A. Yu.; Gol'dberg, A. A.; Shibaev, T. L.; Paneque Aguilera, H. C.

    2013-08-01

    Examples of projects on retrofitting, modernizing, and renovating steam turbine units at thermal power stations implemented with participation of the Ural Turbine Works are given. Advanced construction and layout solutions were used in implementing these projects both on the territory of Russia and abroad.

  10. Photovoltaic power for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Baraona, Cosmo R.

    1990-01-01

    Space Station Freedom is described with special attention given to its electric power system. The photovoltaic arrays, the battery energy storage system, and the power management, and distribution system are also discussed. The current design of Freedom's power system and the system requirements, trade studies, and competing factors which lead to system selections are referenced. This will be the largest power system ever flown in space. This system represents the culmination of many developments that have improved system performance, reduced cost, and improved reliability. Key developments and their evolution into the current space station solar array design are briefly described. The features of the solar cell and the array including the development, design, test, and flight hardware production status are given.

  11. Photovoltaic power for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Baraona, Cosmo R.

    1990-01-01

    Space Station Freedom is described with special attention to its electric power system. The photovoltaic arrays, the battery energy storage system, and the power management and distribution system are also discussed. The current design of Freedom's power system and the system requirements, trade studies, and competing factors which lead to system selections are referenced. This will be the largest power system ever flown in space. This system represents the culmination of many developments that have improved system performance, reduced cost, and improved reliability. Key developments and their evolution into the current space station solar array design are briefly described. The features of the solar cell and the array including the development, design, test, and flight hardware production status are given.

  12. Project EGRESS: The design of an assured crew return vehicle for the space station

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Keeping preliminary studies by NASA in mind, an Assured Crew Return Vehicle (ACRV) was developed. The system allows the escape of one or more crew members from Space Station Freedom in case of emergency. The design of the vehicle addresses propulsion, orbital operations, reentry, landing and recovery, power and communication, and life support. In light of recent modifications in Space Station design, Project EGRESS (Earthbound Guaranteed ReEntry from Space Station) pays particular attention to its impact on Space Station operations, interfaces and docking facilities, and maintenance needs. A water landing, medium lift vehicle was found to best satisfy project goals of simplicity and cost efficiency without sacrificing the safety and reliability requirements. With a single vehicle, one injured crew member could be returned to Earth with minimal pilot involvement. Since the craft is capable of returning up to five crew members, two such permanently docked vehicles would allow full evacuation of the Space Station. The craft could be constructed entirely with available 1990 technology and launched aboard a shuttle orbiter.

  13. 15. SITE BUILDING 004 ELECTRIC POWER STATION VIEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. SITE BUILDING 004 - ELECTRIC POWER STATION - VIEW IS LOOKING SOUTH 55° EAST AT FIVE DIESEL ENGINE/ GENERATOR SILENCER SYSTEM EXHAUST STACKS. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  14. 78 FR 9745 - Kewaunee Power Station; Application for Amendment to Facility Operating License

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-11

    ... FURTHER INFORMATION CONTACT: Karl Feintuch, Project Manager, Office of Nuclear Reactor Regulation, U.S... Licensing, Office of Nuclear Reactor Regulation. [FR Doc. 2013-03037 Filed 2-8-13; 8:45 am] BILLING CODE... NUCLEAR REGULATORY COMMISSION [Docket No. 50-305; NRC-2013-0028] Kewaunee Power Station...

  15. Live from Space Station Learning Technologies Project

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This is the Final Report for the Live From Space Station (LFSS) project under the Learning Technologies Project FY 2001 of the MSFC Education Programs Department. AZ Technology, Inc. (AZTek) has developed and implemented science education software tools to support tasks under the LTP program. Initial audience consisted of 26 TreK in the Classroom schools and thousands of museum visitors to the International Space Station: The Earth Tour exhibit sponsored by Discovery Place museum.

  16. Analysis of electromagnetic interference from power system processing and transmission components for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Barber, Peter W.; Demerdash, Nabeel A. O.; Hurysz, B.; Luo, Z.; Denny, Hugh W.; Millard, David P.; Herkert, R.; Wang, R.

    1992-01-01

    The goal of this research project was to analyze the potential effects of electromagnetic interference (EMI) originating from power system processing and transmission components for Space Station Freedom. The approach consists of four steps: (1) developing analytical tools (models and computer programs); (2) conducting parameterization (what if?) studies; (3) predicting the global space station EMI environment; and (4) providing a basis for modification of EMI standards.

  17. 75 FR 53984 - Virginia Electric and Power Company North Anna Power Station, Unit Nos. 1 and 2 Surry Power...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-02

    ...- 2010-0283] Virginia Electric and Power Company North Anna Power Station, Unit Nos. 1 and 2 Surry Power Station, Unit Nos. 1 and 2 Environmental Assessment and Finding of No Significant Impact The U.S. Nuclear... applications for North Anna Power Station, Unit Nos. 1 and 2 (NAPS), for Renewed Facility Operating License Nos...

  18. Tethered nuclear power for the Space Station

    NASA Technical Reports Server (NTRS)

    Bents, D. J.

    1985-01-01

    A nuclear space power system the SP-100 is being developed for future missions where large amounts of electrical power will be required. Although it is primarily intended for unmanned spacecraft, it can be adapted to a manned space platform by tethering it above the station through an electrical transmission line which isolates the reactor far away from the inhabited platform and conveys its power back to where it is needed. The transmission line, used in conjunction with an instrument rate shield, attenuates reactor radiation in the vicinity of the space station to less than one-one hundredth of the natural background which is already there. This combination of shielding and distance attenuation is less than one-tenth the mass of boom-mounted or onboard man-rated shields that are required when the reactor is mounted nearby. This paper describes how connection is made to the platform (configuration, operational requirements) and introduces a new element the coaxial transmission tube which enables efficient transmission of electrical power through long tethers in space. Design methodology for transmission tubes and tube arrays is discussed. An example conceptual design is presented that shows SP-100 at three power levels 100 kWe, 300 kWe, and 1000 kWe connected to space station via a 2 km HVDC transmission line/tether. Power system performance, mass, and radiation hazard are estimated with impacts on space station architecture and operation.

  19. Tethered nuclear power for the space station

    NASA Technical Reports Server (NTRS)

    Bents, D. J.

    1985-01-01

    A nuclear space power system the SP-100 is being developed for future missions where large amounts of electrical power will be required. Although it is primarily intended for unmanned spacecraft, it can be adapted to a manned space platform by tethering it above the station through an electrical transmission line which isolates the reactor far away from the inhabited platform and conveys its power back to where it is needed. The transmission line, used in conjunction with an instrument rate shield, attenuates reactor radiation in the vicinity of the space station to less than one-one hundredth of the natural background which is already there. This combination of shielding and distance attenuation is less than one-tenth the mass of boom-mounted or onboard man-rated shields that are required when the reactor is mounted nearby. This paper describes how connection is made to the platform (configuration, operational requirements) and introduces a new element the coaxial transmission tube which enables efficient transmission of electrical power through long tethers in space. Design methodology for transmission tubes and tube arrays is discussed. An example conceptual design is presented that shows SP-100 at three power levels 100 kWe, 300 kWe, and 1000 kWe connected to space station via a 2 km HVDC transmission line/tether. Power system performance, mass, and radiation hazard are estimated with impacts on space station architecture and operation.

  20. 77 FR 76541 - Entergy Nuclear Operations, Inc.; Pilgrim Nuclear Power Station

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-28

    ....; Pilgrim Nuclear Power Station AGENCY: Nuclear Regulatory Commission. ACTION: Environmental assessment and... licensee), for operation of the Pilgrim Nuclear Power Station (Pilgrim), located in Plymouth, Massachusetts... Regarding Pilgrim Nuclear Power Station, Final Report- Appendices,'' published in July 2007 (ADAMS Accession...

  1. Modular space station Phase B extension preliminary performance specification. Volume 2: Project

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The four systems of the modular space station project are described, and the interfaces between this project and the shuttle project, the tracking and data relay satellite project, and an arbitrarily defined experiment project are defined. The experiment project was synthesized from internal experiments, detached research and application modules, and attached research and application modules to derive a set of interface requirements which will support multiple combinations of these elements expected during the modular space station mission. The modular space station project element defines a 6-man orbital program capable of growth to a 12-man orbital program capability. The modular space station project element specification defines the modular space station system, the premission operations support system, the mission operations support system, and the cargo module system and their interfaces.

  2. 38. SITE BUILDING 004 ELECTRIC POWER STATION AT INTERIOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    38. SITE BUILDING 004 - ELECTRIC POWER STATION AT INTERIOR - OBLIQUE VIEW AT FLOOR LEVEL SHOWING DIESEL ENGINE/GENERATOR SET NUMBER 5. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  3. Operations research investigations of satellite power stations

    NASA Technical Reports Server (NTRS)

    Cole, J. W.; Ballard, J. L.

    1976-01-01

    A systems model reflecting the design concepts of Satellite Power Stations (SPS) was developed. The model is of sufficient scope to include the interrelationships of the following major design parameters: the transportation to and between orbits; assembly of the SPS; and maintenance of the SPS. The systems model is composed of a set of equations that are nonlinear with respect to the system parameters and decision variables. The model determines a figure of merit from which alternative concepts concerning transportation, assembly, and maintenance of satellite power stations are studied. A hybrid optimization model was developed to optimize the system's decision variables. The optimization model consists of a random search procedure and the optimal-steepest descent method. A FORTRAN computer program was developed to enable the user to optimize nonlinear functions using the model. Specifically, the computer program was used to optimize Satellite Power Station system components.

  4. 47 CFR 74.707 - Low power TV and TV translator station protection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.707 Low power TV and TV translator... low power TV or TV translator stations, or TV booster stations within the following predicted contours... construct a new low power TV, TV translator, or TV booster station or change the facilities of an existing...

  5. 47 CFR 74.707 - Low power TV and TV translator station protection.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.707 Low power TV and TV translator... low power TV or TV translator stations, or TV booster stations within the following predicted contours... construct a new low power TV, TV translator, or TV booster station or change the facilities of an existing...

  6. 47 CFR 74.707 - Low power TV and TV translator station protection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.707 Low power TV and TV translator... low power TV or TV translator stations, or TV booster stations within the following predicted contours... construct a new low power TV, TV translator, or TV booster station or change the facilities of an existing...

  7. 47 CFR 74.707 - Low power TV and TV translator station protection.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.707 Low power TV and TV translator... low power TV or TV translator stations, or TV booster stations within the following predicted contours... construct a new low power TV, TV translator, or TV booster station or change the facilities of an existing...

  8. 76 FR 82201 - General Site Suitability Criteria for Nuclear Power Stations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-30

    ..., and 52 [NRC-2011-0297] General Site Suitability Criteria for Nuclear Power Stations AGENCY: Nuclear... Suitability Criteria for Nuclear Power Stations.'' This guide describes a method that the NRC staff considers acceptable to implement the site suitability requirements for nuclear power stations. DATES: Submit comments...

  9. Complex Mobile Independent Power Station for Urban Areas

    NASA Astrophysics Data System (ADS)

    Tunik, A. A.; Tolstoy, M. Y.

    2017-11-01

    A new type of a complex mobile independent power station developed in the Department of Engineering Communications and Life-Support Systems of Irkutsk National Research Technical University, is presented in this article. This station contains only solar panel, wind turbine, accumulator, diesel generator and microbial fuel cell for to produce electric energy, heat pump and solar collector to generate heat energy and also wastewater treatment plant and new complex control system. The complex mobile independent power station is intended for full power supply of a different kind of consumers located even in remote areas thus reducing their dependence from centralized energy supply systems, decrease the fossil fuel consumption, improve the environment of urban areas and solve the problems of the purification of industrial and municipal wastewater.

  10. Equipment of the binary-cycle geothermal power unit at the Pauzhet geothermal power station

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Nikol'skii, A. I.; Semenov, V. N.; Shipkov, A. A.

    2014-06-01

    The equipment of and technological processes in the pilot industrial model of the domestically produced binary-cycle geothermal power unit operating on the discharge separate at the Pauzhet geothermal power station are considered. The development principles, the design and operational features, and the data on selecting the metal in manufacturing the main equipment of the 2.5-MW binary power unit of the geothermal power station are described.

  11. 47 CFR 74.6 - Licensing of broadcast auxiliary and low power auxiliary stations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Licensing of broadcast auxiliary and low power... low power auxiliary stations. Applicants for and licensees of remote pickup broadcast stations, aural broadcast auxiliary stations, television broadcast auxiliary stations, and low power auxiliary stations...

  12. VIEW NORTHEAST, Interior of Power Station, upper level showing windows ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW NORTHEAST, Interior of Power Station, upper level showing windows on east and north elevations - Bay City Traction & Electric Company, Power Station, 301 Washington Street, Bay City, Bay County, MI

  13. VIEW SOUTHEAST, Interior of Power Station, upper level showing windows ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW SOUTHEAST, Interior of Power Station, upper level showing windows on east and south elevations - Bay City Traction & Electric Company, Power Station, 301 Washington Street, Bay City, Bay County, MI

  14. NASA Growth Space Station missions and candidate nuclear/solar power systems

    NASA Technical Reports Server (NTRS)

    Heller, Jack A.; Nainiger, Joseph J.

    1987-01-01

    A brief summary is presented of a NASA study contract and in-house investigation on Growth Space Station missions and appropriate nuclear and solar space electric power systems. By the year 2000 some 300 kWe will be needed for missions and housekeeping power for a 12 to 18 person Station crew. Several Space Station configurations employing nuclear reactor power systems are discussed, including shielding requirements and power transmission schemes. Advantages of reactor power include a greatly simplified Station orientation procedure, greatly reduced occultation of views of the earth and deep space, near elimination of energy storage requirements, and significantly reduced station-keeping propellant mass due to very low drag of the reactor power system. The in-house studies of viable alternative Growth Space Station power systems showed that at 300 kWe a rigid silicon solar cell array with NiCd batteries had the highest specific mass at 275 kg/kWe, with solar Stirling the lowest at 40 kg/kWe. However, when 10 year propellant mass requirements are factored in, the 300 kWe nuclear Stirling exhibits the lowest total mass.

  15. Space station power semiconductor package

    NASA Technical Reports Server (NTRS)

    Balodis, Vilnis; Berman, Albert; Devance, Darrell; Ludlow, Gerry; Wagner, Lee

    1987-01-01

    A package of high-power switching semiconductors for the space station have been designed and fabricated. The package includes a high-voltage (600 volts) high current (50 amps) NPN Fast Switching Power Transistor and a high-voltage (1200 volts), high-current (50 amps) Fast Recovery Diode. The package features an isolated collector for the transistors and an isolated anode for the diode. Beryllia is used as the isolation material resulting in a thermal resistance for both devices of .2 degrees per watt. Additional features include a hermetical seal for long life -- greater than 10 years in a space environment. Also, the package design resulted in a low electrical energy loss with the reduction of eddy currents, stray inductances, circuit inductance, and capacitance. The required package design and device parameters have been achieved. Test results for the transistor and diode utilizing the space station package is given.

  16. A modular Space Station/Base electrical power system - Requirements and design study.

    NASA Technical Reports Server (NTRS)

    Eliason, J. T.; Adkisson, W. B.

    1972-01-01

    The requirements and procedures necessary for definition and specification of an electrical power system (EPS) for the future space station are discussed herein. The considered space station EPS consists of a replaceable main power module with self-contained auxiliary power, guidance, control, and communication subsystems. This independent power source may 'plug into' a space station module which has its own electrical distribution, control, power conditioning, and auxiliary power subsystems. Integration problems are discussed, and a transmission system selected with local floor-by-floor power conditioning and distribution in the station module. This technique eliminates the need for an immediate long range decision on the ultimate space base power sources by providing capability for almost any currently considered option.

  17. Space Station laboratory module power loading analysis

    NASA Astrophysics Data System (ADS)

    Fu, S. J.

    1994-07-01

    The electrical power system of Space Station Freedom is an isolated electrical power generation and distribution network designed to meet the demands of a large number of electrical loads. An algorithm is developed to determine the power bus loading status under normal operating conditions to ensure the supply meets demand. The probabilities of power availability for payload operations (experiments) are also derived.

  18. 78 FR 71675 - License Amendment Application for Vermont Yankee Nuclear Power Station

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-29

    ... Vermont Yankee Nuclear Power Station AGENCY: Nuclear Regulatory Commission. ACTION: License amendment... Vermont Yankee Nuclear Power Station, located in Windham County, VT. The proposed amendment would have... Vermont Yankee Nuclear Power Station, located in Windham County, VT. The proposed amendment would have...

  19. The Satellite Nuclear Power Station - An option for future power generation.

    NASA Technical Reports Server (NTRS)

    Williams, J. R.; Clement, J. D.

    1973-01-01

    A new concept in nuclear power generation is being explored which essentially eliminates major objections to nuclear power. The Satellite Nuclear Power Station, remotely operated in synchronous orbit, would transmit power safely to the ground by a microwave beam. Fuel reprocessing would take place in space and no radioactive materials would ever be returned to earth. Even the worst possible accident to such a plant should have negligible effect on the earth. An exploratory study of a satellite nuclear power station to provide 10,000 MWe to the earth has shown that the system could weigh about 20 million pounds and cost less than $1000/KWe. An advanced breeder reactor operating with an MHD power cycle could achieve an efficiency of about 50% with a 1100 K radiator temperature. If a hydrogen moderated gas core reactor is used, its breeding ratio of 1.10 would result in a fuel doubling time of a few years. A rotating fluidized bed or NERVA type reactor might also be used. The efficiency of power transmission from synchronous orbit would range from 70% to 80%.

  20. 47 CFR 74.707 - Low power TV and TV translator station protection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Low power TV and TV translator station... SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.707 Low power TV and TV translator station protection. (a)(1) A low power TV or TV translator will be protected from interference from other...

  1. Bioremediation for coal-fired power stations using macroalgae.

    PubMed

    Roberts, David A; Paul, Nicholas A; Bird, Michael I; de Nys, Rocky

    2015-04-15

    Macroalgae are a productive resource that can be cultured in metal-contaminated waste water for bioremediation but there have been no demonstrations of this biotechnology integrated with industry. Coal-fired power production is a water-limited industry that requires novel approaches to waste water treatment and recycling. In this study, a freshwater macroalga (genus Oedogonium) was cultivated in contaminated ash water amended with flue gas (containing 20% CO₂) at an Australian coal-fired power station. The continuous process of macroalgal growth and intracellular metal sequestration reduced the concentrations of all metals in the treated ash water. Predictive modelling shows that the power station could feasibly achieve zero discharge of most regulated metals (Al, As, Cd, Cr, Cu, Ni, and Zn) in waste water by using the ash water dam for bioremediation with algal cultivation ponds rather than storage of ash water. Slow pyrolysis of the cultivated algae immobilised the accumulated metals in a recalcitrant C-rich biochar. While the algal biochar had higher total metal concentrations than the algae feedstock, the biochar had very low concentrations of leachable metals and therefore has potential for use as an ameliorant for low-fertility soils. This study demonstrates a bioremediation technology at a large scale for a water-limited industry that could be implemented at new or existing power stations, or during the decommissioning of older power stations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. 76 FR 58844 - Virginia Electric and Power Company, Surry Power Station, Units 1 and 2; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-22

    ... hours. After the high wind conditions pass, wind damage to the plant and surrounding area might preclude... Power Company, Surry Power Station, Units 1 and 2; Exemption 1.0 Background Virginia Electric and Power... authorize operation of the Surry Power Station, Units 1 and 2 (Surry 1 and 2) respectively. The license...

  3. Spacelab, Spacehab, and Space Station Freedom payload interface projects

    NASA Technical Reports Server (NTRS)

    Smith, Dean Lance

    1992-01-01

    Contributions were made to several projects. Howard Nguyen was assisted in developing the Space Station RPS (Rack Power Supply). The RPS is a computer controlled power supply that helps test equipment used for experiments before the equipment is installed on Space Station Freedom. Ron Bennett of General Electric Government Services was assisted in the design and analysis of the Standard Interface Rack Controller hardware and software. An analysis was made of the GPIB (General Purpose Interface Bus), looking for any potential problems while transmitting data across the bus, such as the interaction of the bus controller with a data talker and its listeners. An analysis was made of GPIB bus communications in general, including any negative impact the bus may have on transmitting data back to Earth. A study was made of transmitting digital data back to Earth over a video channel. A report was written about the study and a revised version of the report will be submitted for publication. Work was started on the design of a PC/AT compatible circuit board that will combine digital data with a video signal. Another PC/AT compatible circuit board is being designed to recover the digital data from the video signal. A proposal was submitted to support the continued development of the interface boards after the author returns to Memphis State University in the fall. A study was also made of storing circuit board design software and data on the hard disk server of a LAN (Local Area Network) that connects several IBM style PCs. A report was written that makes several recommendations. A preliminary design review was started of the AIVS (Automatic Interface Verification System). The summer was over before any significant contribution could be made to this project.

  4. Space station electrical power system availability study

    NASA Technical Reports Server (NTRS)

    Turnquist, Scott R.; Twombly, Mark A.

    1988-01-01

    ARINC Research Corporation performed a preliminary reliability, and maintainability (RAM) anlaysis of the NASA space station Electric Power Station (EPS). The analysis was performed using the ARINC Research developed UNIRAM RAM assessment methodology and software program. The analysis was performed in two phases: EPS modeling and EPS RAM assessment. The EPS was modeled in four parts: the insolar power generation system, the eclipse power generation system, the power management and distribution system (both ring and radial power distribution control unit (PDCU) architectures), and the power distribution to the inner keel PDCUs. The EPS RAM assessment was conducted in five steps: the use of UNIRAM to perform baseline EPS model analyses and to determine the orbital replacement unit (ORU) criticalities; the determination of EPS sensitivity to on-orbit spared of ORUs and the provision of an indication of which ORUs may need to be spared on-orbit; the determination of EPS sensitivity to changes in ORU reliability; the determination of the expected annual number of ORU failures; and the integration of the power generator system model results with the distribution system model results to assess the full EPS. Conclusions were drawn and recommendations were made.

  5. 1. RUINS OF THE ELECTRIC POWER STATION (NOTE PART OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. RUINS OF THE ELECTRIC POWER STATION (NOTE PART OF THE CONTROL PANEL VISIBLE THROUGH THE DOORWAY), VIEW TO THE NORTHWEST). - Foster Gulch Mine, Electric Power Station Ruins, Bear Creek 1 mile Southwest of Town of Bear Creek, Red Lodge, Carbon County, MT

  6. Overview of IMS infrasound station and engineering projects

    NASA Astrophysics Data System (ADS)

    Marty, J.; Doury, B.; Kramer, A.; Martysevich, P.

    2015-12-01

    The Provisional Technical Secretariat (PTS) of the Comprehensive Nuclear-Test-Ban Treaty (CTBTO) has a continuous interest in enhancing its capability in acoustic source detection, localization and characterization. The infrasound component of the International Monitoring System (IMS) constitutes the only worldwide ground-based infrasound network. It consists of sixty stations, among which forty-eight are already certified and continuously transmit data to the International Data Centre (IDC) in Vienna, Austria. Each infrasound station is composed of an array of infrasound sensors capable of measuring micro-pressure changes produced at ground level by infrasonic waves. The characteristics of infrasonic waves are computed in near real-time by IDC automatic detection software and are used as an input to IDC source categorization and localization algorithms. The PTS is continuously working towards the completion and sustainment of the IMS infrasound network. The objective of this presentation is to review the main activities performed in the IMS infrasound network over the last five years. This includes construction, installation, certification, major upgrade and revalidation activities. Major technology development projects to improve the reliability and robustness of IMS infrasound stations as well as their compliance with IMS Operational Manual requirements will also be presented. This includes advances in array geometry, wind noise reduction, system calibration, meteorological data as well as power and communication infrastructures. Finally the impact of all these changes on the overall detection capability of the IMS infrasound network will be highlighted.

  7. Nuclear Power 2010 Program Dominion Virginia Power Cooperative Project U.S. Department of Energy Cooperative Agreement DE-FC07-05ID14635 Construction and Operating License Demonstration Project Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eugene S. Grecheck

    2010-11-30

    This report serves to summarize the major activities completed as part of Virginia Electric and Power Company's North Anna construction and operating license demonstration project with DOE. Project successes, lessons learned, and suggestions for improvement are discussed. Objectives of the North Anna COL project included preparation and submittal of a COLA to the USNRC incorporating ESBWR technology for a third unit a the North Anna Power Station site, support for the NRC review process and mandatory hearing, obtaining NRC approval of the COLA and issuance of a COL, and development of a business case necessary to support a decision onmore » building a new nuclear power plant at the North Anna site.« less

  8. Joint Solar Power Industry and Department of Energy Solar Resource and Meteorological Assessment Project (SOLRMAP)

    NASA Astrophysics Data System (ADS)

    Wilcox, Steve; Myers, Daryl

    2009-08-01

    The U.S. Department of Energy's National Renewable Energy Laboratory has embarked on a collaborative effort with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of concentrating solar thermal power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result will be high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  9. Automated power distribution system hardware. [for space station power supplies

    NASA Technical Reports Server (NTRS)

    Anderson, Paul M.; Martin, James A.; Thomason, Cindy

    1989-01-01

    An automated power distribution system testbed for the space station common modules has been developed. It incorporates automated control and monitoring of a utility-type power system. Automated power system switchgear, control and sensor hardware requirements, hardware design, test results, and potential applications are discussed. The system is designed so that the automated control and monitoring of the power system is compatible with both a 208-V, 20-kHz single-phase AC system and a high-voltage (120 to 150 V) DC system.

  10. Measurements and modelling of base station power consumption under real traffic loads.

    PubMed

    Lorincz, Josip; Garma, Tonko; Petrovic, Goran

    2012-01-01

    Base stations represent the main contributor to the energy consumption of a mobile cellular network. Since traffic load in mobile networks significantly varies during a working or weekend day, it is important to quantify the influence of these variations on the base station power consumption. Therefore, this paper investigates changes in the instantaneous power consumption of GSM (Global System for Mobile Communications) and UMTS (Universal Mobile Telecommunications System) base stations according to their respective traffic load. The real data in terms of the power consumption and traffic load have been obtained from continuous measurements performed on a fully operated base station site. Measurements show the existence of a direct relationship between base station traffic load and power consumption. According to this relationship, we develop a linear power consumption model for base stations of both technologies. This paper also gives an overview of the most important concepts which are being proposed to make cellular networks more energy-efficient.

  11. Space Station power distribution and control

    NASA Technical Reports Server (NTRS)

    Willis, A. H.

    1986-01-01

    A general description of the Space Station is given with the basic requirements of the power distribution and controls system presented. The dual bus and branch circuit concepts are discussed and a computer control method presented.

  12. 78 FR 45984 - Yankee Atomic Electric Company, Yankee Nuclear Power Station

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-30

    ... Electric Company, Yankee Nuclear Power Station AGENCY: Nuclear Regulatory Commission. ACTION: Environmental... (YAEC) is the holder of Possession-Only License DPR-3 for the Yankee Nuclear Power Station (YNPS... on the site of any nuclear power reactor. In its Statement of Considerations (SOC) for the Final Rule...

  13. Automated electric power management and control for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Dolce, James L.; Mellor, Pamela A.; Kish, James A.

    1990-01-01

    A comprehensive automation design is being developed for Space Station Freedom's electric power system. It strives to increase station productivity by applying expert systems and conventional algorithms to automate power system operation. An integrated approach to the power system command and control problem is defined and used to direct technology development in: diagnosis, security monitoring and analysis, battery management, and cooperative problem-solving for resource allocation. The prototype automated power system is developed using simulations and test-beds.

  14. 47 CFR 74.710 - Digital low power TV and TV translator station protection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Digital low power TV and TV translator station... SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.710 Digital low power TV and TV translator station protection. (a) An application to construct a new low power TV, TV translator, or TV...

  15. Implementing CDIO project-based learning in training of Heat and Power engineers

    NASA Astrophysics Data System (ADS)

    Boiko, E. A.; Shishmarev, P. V.; Karabarin, D. I.; Yanov, S. R.; Pikalova, A. A.

    2017-11-01

    This paper presents the experience and current results of CDIO standards implementation in training of bachelors in Heat and Power Engineering at Thermal Power Stations academic department in Siberian Federal University. It provides information on methodology of modernization of educational programs, curricula and programs of disciplines in transition to CDIO project-based learning technology. Preliminary assessment and analysis of lessons learned and scaling perspectives are given.

  16. Concentrating Solar Power Projects - Solar Electric Generating Station IX |

    Science.gov Websites

    Station IX (SEGS IX) Country: United States Location: Harper Dry Lake, California (Mojave Desert) Owner(s : Parabolic trough Status: Operational Country: United States City: Harper Dry Lake State: California County

  17. Milliwatt radioisotope power supply for the PASCAL Mars surface stations

    NASA Astrophysics Data System (ADS)

    Allen, Daniel T.; Murbach, Marcus S.

    2001-02-01

    A milliwatt power supply is being developed based on the 1 watt Light-Weight Radioisotope Heater Unit (RHU), which has already been used to provide heating alone on numerous spacecraft. In the past year the power supply has been integrated into the design of the proposed PASCAL Mars Network Mission, which is intended to place 24 surface climate monitoring stations on Mars. The PASCAL Mars mission calls for the individual surface stations to be transported together in one spacecraft on a trajectory direct from launch to orbit around Mars. From orbit around Mars each surface station will be deployed on a SCRAMP (slotted compression ramp) probe and, after aerodynamic and parachute deceleration, land at a preselected location on the planet. During descent sounding data and still images will be accumulated, and, once on the surface, the station will take measurements of pressure, temperature and overhead atmospheric optical depth for a period of 10 Mars years (18.8 Earth years). Power for periodic data acquisition and transmission to orbital then to Earth relay will come from a bank of ultracapacitors which will be continuously recharged by the radioisotope power supply. This electronic system has been designed and a breadboard built. In the ultimate design the electronics will be arrayed on the exterior surface of the radioisotope power supply in order to take advantage of the reject heat. This assembly in turn is packaged within the SCRAMP, and that assembly comprises the surface station. An electrically heated but otherwise prototypical power supply was operated in combination with the surface station breadboard system, which included the ultracapacitors. Other issues addressed in this work have been the capability of the generator to withstand the mechanical shock of the landing on Mars and the effectiveness of the generator's multi-foil vacuum thermal insulation. .

  18. Photovoltaic Power Station with Ultracapacitors for Storage

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.; Kolacz, John S.; Soltis, Richard F.; Tavernelli, Paul F.

    2003-01-01

    A solar photovoltaic power station in which ultracapacitors, rather than batteries, are used to store energy is discussed. Developments in the semiconductor industry have reduced the cost and increased the attainable efficiency of commercially available photovoltaic panels; as a result, photovoltaic generation of power for diverse applications has become practical. Photovoltaic generation can provide electric power in remote locations where electric power would otherwise not be available. Photovoltaic generation can also afford independence from utility systems. Applications include supplying power to scientific instruments and medical equipment in isolated geographical regions.

  19. System performance predictions for Space Station Freedom's electric power system

    NASA Technical Reports Server (NTRS)

    Kerslake, Thomas W.; Hojnicki, Jeffrey S.; Green, Robert D.; Follo, Jeffrey C.

    1993-01-01

    Space Station Freedom Electric Power System (EPS) capability to effectively deliver power to housekeeping and user loads continues to strongly influence Freedom's design and planned approaches for assembly and operations. The EPS design consists of silicon photovoltaic (PV) arrays, nickel-hydrogen batteries, and direct current power management and distribution hardware and cabling. To properly characterize the inherent EPS design capability, detailed system performance analyses must be performed for early stages as well as for the fully assembled station up to 15 years after beginning of life. Such analyses were repeatedly performed using the FORTRAN code SPACE (Station Power Analysis for Capability Evaluation) developed at the NASA Lewis Research Center over a 10-year period. SPACE combines orbital mechanics routines, station orientation/pointing routines, PV array and battery performance models, and a distribution system load-flow analysis to predict EPS performance. Time-dependent, performance degradation, low earth orbit environmental interactions, and EPS architecture build-up are incorporated in SPACE. Results from two typical SPACE analytical cases are presented: (1) an electric load driven case and (2) a maximum EPS capability case.

  20. Definitional-mission report: Combined-cycle power plant, Sultan Iskandar Power Station Phase 2-B, Tenaga Nasional BHD, Malaysia. Export trade information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kadagathur, G.

    1990-12-10

    Tenaga Nasional BHD (TEN) formerly known as National Electricity Board of Malaysia is proposing to construct a Combined Cycle Power Plant at Pasir Gudang. The project is known as Sultan Iskandar Power Station Phase 2 (SIPS-2). U.S. engineering companies and U.S. equipment manufacturers are having difficulty in procuring contracts from the Malaysian Power Industry. To date, the industry is dominated by consortia with British and Swiss participation. Several U.S. engineering companies have approached the US Trade and Development Program (TDP) to assist them in breaking into the Malaysian utility market by supporting their effort on their current proposals for SIPS-2more » project. It is recommended that TDP should approve a grant to TEN that would provide funds for engineering upto the preparation of equipment specifications and associated technology transfer. The grant along with the weak dollar should be attractive enough for TEN to strongly consider consortia with U.S. companies very favorably. The project also offers a potential for the export of U.S. manufactured equipment in the range of $170 million.« less

  1. 47 CFR 73.6019 - Digital Class A TV station protection of low power TV, TV translator, digital low power TV and...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... power TV, TV translator, digital low power TV and digital TV translator stations. 73.6019 Section 73... low power TV, TV translator, digital low power TV and digital TV translator stations. An application... A TV station will not be accepted if it fails to protect authorized low power TV, TV translator...

  2. Advantage of incorporating geothermal energy into power-station cycles

    NASA Astrophysics Data System (ADS)

    White, A. A. L.

    1980-06-01

    The generation of electricity from low-temperature geothermal sources has been hampered by the low conversion efficiencies of Rankine cycle operating below 150 C. It is shown how the electrical output derived from a geothermal borehole may be substantially improved on that expected from these cycles by incorporating the geothermal heat into a conventional steam-cycle power station to provide feedwater heating. This technique can yield thermal conversion efficiencies of 11% which, for a well-head temperature of 100 C, is 50% greater than the output expected from a Rankine cycle. Coupled with the smaller capital costs involved, feedwater heating is thus a more attractive technique of converting heat into electricity. Although power stations above suitable geothermal resources would ideally have the geothermal heat incorporated from the design stage, experiments at Marchwood Power Station have shown that small existing sets can be modified to accept geothermal feedwater heating.

  3. 47 CFR 74.710 - Digital low power TV and TV translator station protection.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.710 Digital low power TV and TV... booster station or change the facilities of an existing station will not be accepted if it fails to... filed prior to the date the low power TV, TV translator, or TV booster application is filed. (b...

  4. 47 CFR 74.710 - Digital low power TV and TV translator station protection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.710 Digital low power TV and TV... booster station or change the facilities of an existing station will not be accepted if it fails to... filed prior to the date the low power TV, TV translator, or TV booster application is filed. (b...

  5. 47 CFR 74.710 - Digital low power TV and TV translator station protection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.710 Digital low power TV and TV... booster station or change the facilities of an existing station will not be accepted if it fails to... filed prior to the date the low power TV, TV translator, or TV booster application is filed. (b...

  6. 47 CFR 74.710 - Digital low power TV and TV translator station protection.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.710 Digital low power TV and TV... booster station or change the facilities of an existing station will not be accepted if it fails to... filed prior to the date the low power TV, TV translator, or TV booster application is filed. (b...

  7. Measurements and Modelling of Base Station Power Consumption under Real Traffic Loads †

    PubMed Central

    Lorincz, Josip; Garma, Tonko; Petrovic, Goran

    2012-01-01

    Base stations represent the main contributor to the energy consumption of a mobile cellular network. Since traffic load in mobile networks significantly varies during a working or weekend day, it is important to quantify the influence of these variations on the base station power consumption. Therefore, this paper investigates changes in the instantaneous power consumption of GSM (Global System for Mobile Communications) and UMTS (Universal Mobile Telecommunications System) base stations according to their respective traffic load. The real data in terms of the power consumption and traffic load have been obtained from continuous measurements performed on a fully operated base station site. Measurements show the existence of a direct relationship between base station traffic load and power consumption. According to this relationship, we develop a linear power consumption model for base stations of both technologies. This paper also gives an overview of the most important concepts which are being proposed to make cellular networks more energy-efficient. PMID:22666026

  8. 78 FR 784 - Entergy Nuclear Operations, Inc.; Pilgrim Nuclear Power Station; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-04

    ....; Pilgrim Nuclear Power Station; Exemption 1.0 Background Entergy Nuclear Operations, Inc. (the licensee) is... Nuclear Power Station (PNPS). The license provides, among other things, that the facility is subject to... participated in two FEMA-evaluated exercises in conjunction with the Vermont Yankee Nuclear Power Plant and...

  9. Research on comprehensive decision-making of PV power station connecting system

    NASA Astrophysics Data System (ADS)

    Zhou, Erxiong; Xin, Chaoshan; Ma, Botao; Cheng, Kai

    2018-04-01

    In allusion to the incomplete indexes system and not making decision on the subjectivity and objectivity of PV power station connecting system, based on the combination of improved Analytic Hierarchy Process (AHP), Criteria Importance Through Intercriteria Correlation (CRITIC) as well as grey correlation degree analysis (GCDA) is comprehensively proposed to select the appropriate system connecting scheme of PV power station. Firstly, indexes of PV power station connecting system are divided the recursion order hierarchy and calculated subjective weight by the improved AHP. Then, CRITIC is adopted to determine the objective weight of each index through the comparison intensity and conflict between indexes. The last the improved GCDA is applied to screen the optimal scheme, so as to, from the subjective and objective angle, select the connecting system. Comprehensive decision of Xinjiang PV power station is conducted and reasonable analysis results are attained. The research results might provide scientific basis for investment decision.

  10. 47 CFR 74.792 - Digital low power TV and TV translator station protected contour.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Digital low power TV and TV translator station... SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.792 Digital low power TV and TV translator station protected contour. (a) A digital low power TV or TV translator will be protected from...

  11. Modelling of the Installed Capacity of Landfill Power Stations

    NASA Astrophysics Data System (ADS)

    Blumberga, D.; Kuplais, Ģ.; Veidenbergs, I.; Dāce, E.; Gušča, J.

    2009-01-01

    More and more landfills are being developed, in which biogas is produced and accumulated, which can be used for electricity production. Currently, due to technological reasons, electricity generation from biogas has a very low level of efficiency. In order to develop this type of energy production, it is important to find answers to various engineering, economic and ecological issues. The paper outlines the results obtained by creating a model for the calculations of electricity production in landfill power stations and by testing it in the municipal solid waste landfill "Daibe". The algorithm of the mathematical model for the operation of a biogas power station consists of four main modules: • initial data module, • engineering calculation module, • tariff calculation module, and • climate calculation module. As a result, the optimum capacity of the power station in the landfill "Daibe" is determined, as well as the analysis of the landfill's economic data and cost-effectiveness is conducted.

  12. 47 CFR 74.780 - Broadcast regulations applicable to translators, low power, and booster stations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., low power, and booster stations. 74.780 Section 74.780 Telecommunication FEDERAL COMMUNICATIONS... PROGRAM DISTRIBUTIONAL SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.780 Broadcast regulations applicable to translators, low power, and booster stations. The following rules are applicable to...

  13. 47 CFR 74.780 - Broadcast regulations applicable to translators, low power, and booster stations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., low power, and booster stations. 74.780 Section 74.780 Telecommunication FEDERAL COMMUNICATIONS... PROGRAM DISTRIBUTIONAL SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.780 Broadcast regulations applicable to translators, low power, and booster stations. The following rules are applicable to...

  14. 47 CFR 74.780 - Broadcast regulations applicable to translators, low power, and booster stations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., low power, and booster stations. 74.780 Section 74.780 Telecommunication FEDERAL COMMUNICATIONS... PROGRAM DISTRIBUTIONAL SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.780 Broadcast regulations applicable to translators, low power, and booster stations. The following rules are applicable to...

  15. 75 FR 11205 - Entergy Nuclear Operations, Inc; Pilgrim Nuclear Power Station Environmental Assessment and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-10

    ...; Pilgrim Nuclear Power Station Environmental Assessment and Finding of No Significant Impact The U.S... licensee), for operation of Pilgrim Nuclear Power Station (Pilgrim), located in Plymouth County, MA. In... License Renewal of Nuclear Plants: Regarding Pilgrim Nuclear Power Station,'' NUREG-1437, Supplement 29...

  16. Measurement instruments for automatically monitoring the water chemistry of reactor coolant at nuclear power stations equipped with VVER reactors. Selection of measurement instruments and experience gained from their operation at Russian and foreign NPSs

    NASA Astrophysics Data System (ADS)

    Ivanov, Yu. A.

    2007-12-01

    An analytical review is given of Russian and foreign measurement instruments employed in a system for automatically monitoring the water chemistry of the reactor coolant circuit and used in the development of projects of nuclear power stations equipped with VVER-1000 reactors and the nuclear station project AES 2006. The results of experience gained from the use of such measurement instruments at nuclear power stations operating in Russia and abroad are presented.

  17. A design for an intelligent monitor and controller for space station electrical power using parallel distributed problem solving

    NASA Technical Reports Server (NTRS)

    Morris, Robert A.

    1990-01-01

    The emphasis is on defining a set of communicating processes for intelligent spacecraft secondary power distribution and control. The computer hardware and software implementation platform for this work is that of the ADEPTS project at the Johnson Space Center (JSC). The electrical power system design which was used as the basis for this research is that of Space Station Freedom, although the functionality of the processes defined here generalize to any permanent manned space power control application. First, the Space Station Electrical Power Subsystem (EPS) hardware to be monitored is described, followed by a set of scenarios describing typical monitor and control activity. Then, the parallel distributed problem solving approach to knowledge engineering is introduced. There follows a two-step presentation of the intelligent software design for secondary power control. The first step decomposes the problem of monitoring and control into three primary functions. Each of the primary functions is described in detail. Suggestions for refinements and embelishments in design specifications are given.

  18. Express Payload Project - A new method for rapid access to Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Uhran, Mark L.; Timm, Marc G.

    1993-01-01

    The deployment and permanent operation of Space Station Freedom will enable researchers to enter a new era in the 21st century, in which continuous on-orbit experimentation and observation become routine. In support of this objective, the Space Station Freedom Program Office has initiated the Express Payload Project. The fundamental project goal is to reduce the marginal cost associated with small payload development, integration, and operation. This is to be accomplished by developing small payload accommodations hardware and a new streamlined small payload integration process. Standardization of small payload interfaces, certification of small payload containers, and increased payload developer responsibility for mission success are key aspects of the Express Payload Project. As the project progresses, the principles will be applied to both pressurized payloads flown inside the station laboratories and unpressurized payloads attached to the station external structures. The increased access to space afforded by Space Station Freedom and the Express Payload Project has the potential to significantly expand the scope, magnitude, and success of future research in the microgravity environment.

  19. 75 FR 12311 - Entergy Nuclear Operations, Inc; Vermont Yankee Nuclear Power Station Environmental Assessment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-15

    ...; Vermont Yankee Nuclear Power Station Environmental Assessment and Finding of No Significant Impact The U.S... licensee), for operation of Vermont Yankee Nuclear Power Station (Vermont Yankee), located in Windham... Statement for Vermont Yankee Nuclear Power Station, Docket No. 50-271, dated July 1972, as supplemented...

  20. 77 FR 36302 - Yankee Atomic Electric Company, Yankee Nuclear Power Station, Confirmatory Order Modifying...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-18

    ... Atomic Electric Company, Yankee Nuclear Power Station, Confirmatory Order Modifying License (Effective... of 10 CFR part 72, Subpart K at the Yankee Nuclear Power Station. The facility is located at the... Facility Operating License for Yankee Nuclear Power Station must be modified to include provisions with...

  1. The Electric Power System of the International Space Station: A Platform for Power Technology Development

    NASA Technical Reports Server (NTRS)

    Gietl, Eric B.; Gholdston, Edward W.; Manners, Bruce A.; Delventhal, Rex A.

    2000-01-01

    The electrical power system developed for the International Space Station represents the largest space-based power system ever designed and, consequently, has driven some key technology aspects and operational challenges. The full U.S.-built system consists of a 160-Volt dc primary network, and a more tightly regulated 120-Volt dc secondary network. Additionally, the U.S. system interfaces with the 28-Volt system in the Russian segment. The international nature of the Station has resulted in modular converters, switchgear, outlet panels, and other components being built by different countries, with the associated interface challenges. This paper provides details of the architecture and unique hardware developed for the Space Station, and examines the opportunities it provides for further long-term space power technology development, such as concentrating solar arrays and flywheel energy storage systems.

  2. Space Power Facility Readiness for Space Station Power System Testing

    NASA Technical Reports Server (NTRS)

    Smith, Roger L.

    1995-01-01

    This document provides information which shows that the NASA Lewis Research Center's Space Power Facility (SPF) will be ready to execute the Space Station electric power system thermal vacuum chamber testing. The SPF is located at LeRC West (formerly the Plum Brook Station), Sandusky, Ohio. The SPF is the largest space environmental chamber in the world, having an inside horizontal diameter of 100 ft. and an inside height at the top of the hemisphere of 122 ft. The vacuum system can achieve a pressure lower than 1 x 10(exp -5) Torr. The cryoshroud, cooled by gaseous nitrogen, can reach a temperature of -250 F, and is 80 ft. long x 40 ft. wide x 22 ft. high. There is access to the chamber through two 50 ft. x 50 ft. doors. Each door opens into an assembly area about 150 ft. long x 70 ft. wide x 80 ft. high. Other available facilities are offices, shop area, data acquisition system with 930 pairs of hard lines, 7 megawatts of power to chamber, 245K gal. liquid nitrogen storage, cooling tower, natural gas, service air, and cranes up to 25 tons.

  3. Space Station Freedom primary power wiring requirements

    NASA Technical Reports Server (NTRS)

    Hill, Thomas J.

    1994-01-01

    The Space Station Freedom (SSF) Program requirements are a 30 year reliable service life in low Earth orbit in hard vacuum or pressurized module service without detrimental degradation. Specific requirements are outlined in this presentation for SSF primary power and cable insulation. The primary power cable status and the WP-4 planned cable test program are also reviewed along with Rocketdyne-WP04 prime insulation candidates.

  4. Space Station Freedom power supply commonality via modular design

    NASA Technical Reports Server (NTRS)

    Krauthamer, S.; Gangal, M. D.; Das, R.

    1990-01-01

    At mature operations, Space Station Freedom will need more than 2000 power supplies to feed housekeeping and user loads. Advanced technology power supplies from 20 to 250 W have been hybridized for terrestrial, aerospace, and industry applications in compact, efficient, reliable, lightweight packages compatible with electromagnetic interference requirements. The use of these hybridized packages as modules, either singly or in parallel, to satisfy the wide range of user power supply needs for all elements of the station is proposed. Proposed characteristics for the power supplies include common mechanical packaging, digital control, self-protection, high efficiency at full and partial loads, synchronization capability to reduce electromagnetic interference, redundancy, and soft-start capability. The inherent reliability is improved compared with conventional discrete component power supplies because the hybrid circuits use high-reliability components such as ceramic capacitors. Reliability is further improved over conventional supplies because the hybrid packages, which may be treated as a single part, reduce the parts count in the power supply.

  5. Undergraduate Earth System Science Education: Project-Based Learning, Land-Atmosphere Interaction, and a Newly Established Student Weather Station

    NASA Astrophysics Data System (ADS)

    Baker, D.

    2004-12-01

    Undergraduate students conducted a semester-long research project as part of a special topics course that launched the Austin College Weather Station in spring 2001. The weather station is located on restored prairie roughly 100 km north of Dallas, Texas. In addition to standard meteorological observations, the Austin College Weather Station measures surface quantities such as soil moisture, soil temperature, solar radiation, infrared radiation, and soil heat flux. These additional quantities are used to calculate the surface energy balance using the Bowen ratio method. Thus, the Austin College Weather Station provides valuable information on land-atmosphere interaction in a prairie environment. This project provided a remarkable learning experience for the students. Each student supervised two instruments on the weather station. Students skillfully learned instrumentation details and the physical phenomena measured by the instruments. Team meetings were held each week to discuss issues such as station location, power requirements, telecommunication options, and data acquisition. Students made important decisions during the meetings. They would then work collaboratively on specific tasks that needed to be accomplished before the next meeting. Students also assessed the validity of their measurements after the weather station came on-line. With this approach, students became the experts. They utilized the scientific method to think critically and to solve problems. For at least a semester, students became Earth system scientists.

  6. Concentrating Solar Power Projects - Godawari Solar Project | Concentrating

    Science.gov Websites

    Solar Power | NREL Godawari Solar Project This page provides information on Godawari Solar Project, a concentrating solar power (CSP) project, with data organized by background, participants, and power plant configuration. Status Date: February 13, 2014 Project Overview Project Name: Godawari Solar

  7. Concentrating Solar Power Projects - Saguaro Power Plant | Concentrating

    Science.gov Websites

    Solar Power | NREL Saguaro Power Plant This page provides information on Saguaro, a concentrating solar power (CSP) project, with data organized by background, participants, and power plant configuration. Status Date: April 14, 2017 Project Overview Project Name: Saguaro Power Plant Country: United

  8. Solar dynamic power for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Labus, Thomas L.; Secunde, Richard R.; Lovely, Ronald G.

    1989-01-01

    The Space Station Freedom Program is presently planned to consist of two phases. At the completion of Phase 1, Freedom's manned base will consist of a transverse boom with attached manned modules and 75 kW of available electric power supplied by photovoltaic (PV) power sources. In Phase 2, electric power available to the manned base will be increased to 125 kW by the addition of two solar dynamic (SD) power modules, one at each end of the transverse boom. Power for manned base growth beyond Phase 2 will be supplied by additional SD modules. Studies show that SD power for the growth eras will result in life cycle cost savings of $3 to $4 billion when compared to PV-supplied power. In the SD power modules for Space Station Freedom, an offset parabolic concentrator collects and focuses solar energy into a heat receiver. To allow full power operation over the entire orbit, the receiver includes integral thermal energy storage by means of the heat of fusion of a salt mixture. Thermal energy is removed from the receiver and converted to electrical energy by a power conversion unit (PCU) which includes a closed brayton cycle (CBC) heat engine and an alternator. The receiver/PCU/radiator combination will be completely assembled and charged with gas and cooling fluid on earth before launch to orbit. The concentrator subassemblies will be pre-aligned and stowed in the orbiter bay before launch. On orbit, the receiver/PCU/radiator assembly will be installed as a unit. The pre-aligned concentrator panels will then be latched together and the total concentrator attached to the receiver/PCU/radiator by the astronauts. After final electric connections are made and checkout is complete, the SD power module will be ready for operation.

  9. Solar dynamic power for space station freedom

    NASA Technical Reports Server (NTRS)

    Labus, Thomas L.; Secunde, Richard R.; Lovely, Ronald G.

    1989-01-01

    The Space Station Freedom Program is presently planned to consist of two phases. At the completion of Phase 1, Freedom's manned base will consist of a transverse boom with attached manned modules and 75 kW of available electric power supplied by photovoltaic (PV) power sources. In Phase 2, electric power available to the manned base will be increased to 125 kW by the addition of two solar dynamic (SD) power modules, one at each end of the transverse boom. Power for manned base growth beyond Phase 2 will be supplied by additional SD modules. Studies show that SD power for the growth eras will result in life cycle cost savings of $3 to $4 billion when compared to PV-supplied power. In the SD power modules for Space Station Freedom, an offset parabolic concentrator collects and focuses solar energy into a heat receiver. To allow full power operation over the entire orbit, the receiver includes integral thermal energy storage by means of the heat of fusion of a salt mixture. Thermal energy is removed from the receiver and converted to electrical energy by a power conversion unit (PCU) which includes a closed brayton cycle (CBC) heat engine and an alternator. The receiver/PCU/radiator combination will be completely assembled and charged with gas and cooling fluid on Earth before launch to orbit. The concentrator subassemblies will be pre-aligned and stowed in the orbiter bay before launch. On orbit, the receiver/PCU/radiator assembly will be installed as a unit. The pre-aligned concentrator panels will then be latched together and the total concentrator attached to the receiver/PCU/radiator by the astronauts. After final electric connections are made and checkout is complete, the SD power module will be ready for operation.

  10. Pinon Pine power project nears start-up

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tatar, G.A.; Gonzalez, M.; Mathur, G.K.

    1997-12-31

    The IGCC facility being built by Sierra Pacific Power Company (SPPCo) at their Tracy Station in Nevada is one of three IGCC facilities being cost-shared by the US Department of Energy (DOE) under their Clean Coal Technology Program. The specific technology to be demonstrated in SPPCo`s Round Four Project, known as the Pinon Pine IGCC Project, includes the KRW air blown pressurized fluidized bed gasification process with hot gas cleanup coupled with a combined cycle facility based on a new GE 6FA gas turbine. Construction of the 100 MW IGCC facility began in February 1995 and the first firing ofmore » the gas turbine occurred as scheduled on August 15, 1996 with natural gas. Mechanical completion of the gasifier and other outstanding work is due in January 1997. Following the startup of the plant, the project will enter a 42 month operating and testing period during which low sulfur western and high sulfur eastern or midwestern coals will be processed.« less

  11. Utilization of artificial intelligence techniques for the Space Station power system

    NASA Technical Reports Server (NTRS)

    Evatt, Thomas C.; Gholdston, Edward W.

    1988-01-01

    Due to the complexity of the Space Station Electrical Power System (EPS) as currently envisioned, artificial intelligence/expert system techniques are being investigated to automate operations, maintenance, and diagnostic functions. A study was conducted to investigate this technology as it applies to failure detection, isolation, and reconfiguration (FDIR) and health monitoring of power system components and of the total system. Control system utilization of expert systems for load scheduling and shedding operations was also researched. A discussion of the utilization of artificial intelligence/expert systems for Initial Operating Capability (IOC) for the Space Station effort is presented along with future plans at Rocketdyne for the utilization of this technology for enhanced Space Station power capability.

  12. Saguaro power plant solar repowering project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-03-01

    The subsystem characteristics, design requirements, and system environmental requirements for the Saguaro Power Plant Solar Repowering Project are defined. The plant conceptual design, performance, and economic data to be provided for the solar additions are identified as well as certain design data for the existing plant. All of the 115 MWe net No. 1 steam-Rankine unit of the Saguaro station is to be repowered. The receiver heat transport fluid is draw salt (60% sodium nitrate and 40% potassium nitrate) that is also used to provide 4 hours of sensible heat storage. The receiver is quad-cavity type, and there is amore » field of 10,500 second generation heliostats. (LEW)« less

  13. Concentrating Solar Power Projects - Genesis Solar Energy Project |

    Science.gov Websites

    Concentrating Solar Power | NREL Genesis Solar Energy Project This page provides information on the Genesis Solar Energy Project, a concentrating solar power (CSP) project, with data organized by background, participants, and power plant configuration. The Project includes two 125-MW units incorporating

  14. 75 FR 76498 - Firstenergy Nuclear Operating Company, Davis-Besse Nuclear Power Station; Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-08

    ... Company, Davis-Besse Nuclear Power Station; Environmental Assessment And Finding of No Significant Impact... operation of the Davis-Besse Nuclear Power Station, Unit 1 (DBNPS), located in Ottawa County, Ohio. In... the reactor coolant pressure boundary of light-water nuclear power reactors provide adequate margins...

  15. 47 CFR 74.792 - Digital low power TV and TV translator station protected contour.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.792 Digital low power TV and TV... interference from other low power TV, TV translator, Class A TV or TV booster stations or digital low power TV...

  16. 47 CFR 74.792 - Digital low power TV and TV translator station protected contour.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.792 Digital low power TV and TV... interference from other low power TV, TV translator, Class A TV or TV booster stations or digital low power TV...

  17. 47 CFR 74.792 - Digital low power TV and TV translator station protected contour.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.792 Digital low power TV and TV... interference from other low power TV, TV translator, Class A TV or TV booster stations or digital low power TV...

  18. 47 CFR 74.792 - Digital low power TV and TV translator station protected contour.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.792 Digital low power TV and TV... interference from other low power TV, TV translator, Class A TV or TV booster stations or digital low power TV...

  19. CHARACTERISTIC QUALITIES OF SOME ATOMIC POWER STATIONS (in Hungarian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ligeti, G.

    1962-04-01

    Mostly as the result of economic factors, the current rate of construction of public atomic power stations has slowed down. The use of atomic energy is considered economical only in a few special cases, such as ship propulsion or supplying power to remote regions. For this reason, many reactors were designed especially for the construction of such midget'' power stations, operating at power levels ranging from 10 to 70 Mw. Technical details are given of such already-built or proposed systems, including the following: pressurized- water reactors such as the Babcock and Wilcox 60-Mw reactor, using 2.4% U/sup 235/ fuel; themore » Humphrey-Glasow Company's 20 Mw reactor; the gascooled system of the de Havilland Company; the organicmoderated reactor of the English Electric Company; the organic-moderated system of the Hawker-Siddeley Nuclear Power Company; the boiling-water reactor of the Mitchell Engineering Company and the steam-cooled, heavy-water reactor of the Rolls-Royce & Vickers Company. (TTT)« less

  20. Station Blackout Analysis of HTGR-Type Experimental Power Reactor

    NASA Astrophysics Data System (ADS)

    Syarip; Zuhdi, Aliq; Falah, Sabilul

    2018-01-01

    The National Nuclear Energy Agency of Indonesia has decided to build an experimental power reactor of high-temperature gas-cooled reactor (HTGR) type located at Puspiptek Complex. The purpose of this project is to demonstrate a small modular nuclear power plant that can be operated safely. One of the reactor safety characteristics is the reliability of the reactor to the station blackout (SBO) event. The event was observed due to relatively high disturbance frequency of electricity network in Indonesia. The PCTRAN-HTR functional simulator code was used to observe fuel and coolant temperature, and coolant pressure during the SBO event. The reactor simulated at 10 MW for 7200 s then the SBO occurred for 1-3 minutes. The analysis result shows that the reactor power decreases automatically as the temperature increase during SBO accident without operator’s active action. The fuel temperature increased by 36.57 °C every minute during SBO and the power decreased by 0.069 MW every °C fuel temperature rise at the condition of anticipated transient without reactor scram. Whilst, the maximum coolant (helium) temperature and pressure are 1004 °C and 9.2 MPa respectively. The maximum fuel temperature is 1282 °C, this value still far below the fuel temperature limiting condition i.e. 1600 °C, its mean that the HTGR has a very good inherent safety system.

  1. 76 FR 50274 - Terrestrial Environmental Studies for Nuclear Power Stations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-12

    ... NUCLEAR REGULATORY COMMISSION [NRC-2011-0182] Terrestrial Environmental Studies for Nuclear Power... draft regulatory guide (DG), DG-4016, ``Terrestrial Environmental Studies for Nuclear Power Stations... environmental studies and analyses supporting licensing decisions for nuclear power reactors. DATES: Submit...

  2. 47 CFR 74.780 - Broadcast regulations applicable to translators, low power, and booster stations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... TV translator, low power TV, and TV booster stations: Section 73.653—Operation of TV aural and visual... stations locally originating programming as defined by § 74.701(h)). Section 73.1201—Station identification (for low power TV stations locally originating programming as defined by § 74.701(h)). Section 73.1206...

  3. 78 FR 61400 - Entergy Nuclear Operations, Inc., Pilgrim Nuclear Power Station, Issuance of Director's Decision

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-03

    ... Nuclear Operations, Inc., Pilgrim Nuclear Power Station, Issuance of Director's Decision Notice is hereby... ML102210411, respectively), concerns the operation of Pilgrim Nuclear Power Station (Pilgrim), owned by...) inaccessible cables at Pilgrim Nuclear Power Station (Pilgrim) are capable of performing their required...

  4. Space station automation of common module power management and distribution

    NASA Technical Reports Server (NTRS)

    Miller, W.; Jones, E.; Ashworth, B.; Riedesel, J.; Myers, C.; Freeman, K.; Steele, D.; Palmer, R.; Walsh, R.; Gohring, J.

    1989-01-01

    The purpose is to automate a breadboard level Power Management and Distribution (PMAD) system which possesses many functional characteristics of a specified Space Station power system. The automation system was built upon 20 kHz ac source with redundancy of the power buses. There are two power distribution control units which furnish power to six load centers which in turn enable load circuits based upon a system generated schedule. The progress in building this specified autonomous system is described. Automation of Space Station Module PMAD was accomplished by segmenting the complete task in the following four independent tasks: (1) develop a detailed approach for PMAD automation; (2) define the software and hardware elements of automation; (3) develop the automation system for the PMAD breadboard; and (4) select an appropriate host processing environment.

  5. Space station electric power system requirements and design

    NASA Technical Reports Server (NTRS)

    Teren, Fred

    1987-01-01

    An overview of the conceptual definition and design of the space station Electric Power System (EPS) is given. Responsibilities for the design and development of the EPS are defined. The EPS requirements are listed and discussed, including average and peak power requirements, contingency requirements, and fault tolerance. The most significant Phase B trade study results are summarized, and the design selections and rationale are given. Finally, the power management and distribution system architecture is presented.

  6. Gas-turbine expander power generating systems for internal needs of compressor stations of gas-main pipelines

    NASA Astrophysics Data System (ADS)

    Shimanov, A. A.; Biryuk, V. V.; Sheludko, L. P.; Shabanov, K. Yu.

    2017-08-01

    In the framework of this paper, there have been analyzed power station building methods to construct a power station for utilities for gas-main pipelines compressor stations. The application efficiency of turbo expanders in them to expand the power gas of compressor stations' gas compressor units has been shown. New schemes for gas-turbine expander power generating systems have been proposed.

  7. 47 CFR 73.6019 - Digital Class A TV station protection of low power TV, TV translator, digital low power TV and...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Digital Class A TV station protection of low power TV, TV translator, digital low power TV and digital TV translator stations. 73.6019 Section 73... BROADCAST SERVICES Class A Television Broadcast Stations § 73.6019 Digital Class A TV station protection of...

  8. 28. CONTEXT VIEW OF BUILDING 229 (ELECTRIC POWER STATION) IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. CONTEXT VIEW OF BUILDING 229 (ELECTRIC POWER STATION) IN ASSEMBLY AREA WITH BUILDING 227 (FIRE STATION) IMMEDIATELY TO THE LEFT. - Loring Air Force Base, Weapons Storage Area, Northeastern corner of base at northern end of Maine Road, Limestone, Aroostook County, ME

  9. H2FIRST Reference Station Design Task: Project Deliverable 2-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pratt, Joseph; Terlip, Danny; Ainscough, Chris

    2015-04-20

    This report presents near-term station cost results and discusses cost trends of different station types. It compares various vehicle rollout scenarios and projects realistic near-term station utilization values using the station infrastructure rollout in California as an example. It describes near-term market demands and matches those to cost-effective station concepts. Finally, the report contains detailed designs for five selected stations, which include piping and instrumentation diagrams, bills of materials, and several site-specific layout studies that incorporate the setbacks required by NFPA 2, the National Fire Protection Association Hydrogen Technologies Code. This work identified those setbacks as a significant factor affectingmore » the ability to site a hydrogen station, particularly liquid stations at existing gasoline stations. For all station types, utilization has a large influence on the financial viability of the station.« less

  10. Feasibility, Design and Construction of a Small Hydroelectric Power Generation Station as a Student Design Project.

    ERIC Educational Resources Information Center

    Peterson, James N.; Hess, Herbert L.

    An undergraduate capstone engineering design project now provides hydroelectric power to a remote wilderness location. Students investigated the feasibility of designing, building, and installing a 4kW hydroelectric system to satisfy the need for electric power to support the research and teaching functions of Taylor Ranch, a university facility…

  11. Toluene stability Space Station Rankine power system

    NASA Technical Reports Server (NTRS)

    Havens, V. N.; Ragaller, D. R.; Sibert, L.; Miller, D.

    1987-01-01

    A dynamic test loop is designed to evaluate the thermal stability of an organic Rankine cycle working fluid, toluene, for potential application to the Space Station power conversion unit. Samples of the noncondensible gases and the liquid toluene were taken periodically during the 3410 hour test at 750 F peak temperature. The results obtained from the toluene stability loop verify that toluene degradation will not lead to a loss of performance over the 30-year Space Station mission life requirement. The identity of the degradation products and the low rates of formation were as expected from toluene capsule test data.

  12. 77 FR 18271 - Terrestrial Environmental Studies for Nuclear Power Stations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-27

    ... NUCLEAR REGULATORY COMMISSION [NRC-2011-0182] Terrestrial Environmental Studies for Nuclear Power... Environmental Studies for Nuclear Power Stations.'' This guide provides technical guidance that the NRC staff... nuclear power reactors. ADDRESSES: Please refer to Docket ID NRC-2011-0182 when contacting the NRC about...

  13. Commentary: childhood cancer near nuclear power stations

    PubMed Central

    2009-01-01

    In 2008, the KiKK study in Germany reported a 1.6-fold increase in solid cancers and a 2.2-fold increase in leukemias among children living within 5 km of all German nuclear power stations. The study has triggered debates as to the cause(s) of these increased cancers. This article reports on the findings of the KiKK study; discusses past and more recent epidemiological studies of leukemias near nuclear installations around the world, and outlines a possible biological mechanism to explain the increased cancers. This suggests that the observed high rates of infant leukemias may be a teratogenic effect from incorporated radionuclides. Doses from environmental emissions from nuclear reactors to embryos and fetuses in pregnant women near nuclear power stations may be larger than suspected. Hematopoietic tissues appear to be considerably more radiosensitive in embryos/fetuses than in newborn babies. Recommendations for advice to local residents and for further research are made. PMID:19775438

  14. Space Station module Power Management And Distribution (PMAD) system

    NASA Technical Reports Server (NTRS)

    Walls, Bryan

    1990-01-01

    This project consists of several tasks which are unified toward experimentally demonstrating the operation of a highly autonomous, user-supportive power management and distribution system for Space Station Freedom (SSF) habitation/laboratory modules. This goal will be extended to a demonstration of autonomous, cooperative power system operation for the whole SSF power system through a joint effort with NASA's Lewis Research Center, using their Autonomous Power System. Short term goals for the space station module power management and distribution include having an operational breadboard reflecting current plans for SSF, improving performance of the system communications, and improving the organization and mutability of the artificial intelligence (AI) systems. In the middle term, intermediate levels of autonomy will be added, user interfaces will be modified, and enhanced modeling capabilities will be integrated in the system. Long term goals involve conversion of all software into Ada, vigorous verification and validation efforts and, finally, seeing an impact of this research on the operation of SSF. Conversion of the system to a DC Star configuration is now in progress, and should be completed by the end of October, 1989. This configuration reflects the latest SSF module architecture. Hardware is now being procured which will improve system communications significantly. The Knowledge-Based Management System (KBMS) is initially developed and the rules from FRAMES have been implemented in the KBMS. Rules in the other two AI systems are also being grouped modularly, making them more tractable, and easier to eventually move into the KBMS. Adding an intermediate level of autonomy will require development of a planning utility, which will also be built using the KBMS. These changes will require having the user interface for the whole system available from one interface. An Enhanced Model will be developed, which will allow exercise of the system through the interface

  15. High current/high power beam experiments from the space station

    NASA Technical Reports Server (NTRS)

    Cohen, Herbert A.

    1986-01-01

    In this overview, on the possible uses of high power beams aboard the space station, the advantages of the space station as compared to previous space vehicles are considered along with the kind of intense beams that could be generated, the possible scientific uses of these beams and associated problems. This order was delibrately chosen to emphasize that the means, that is, the high power particle ejection devices, will lead towards the possible ends, scientific measurements in the Earth's upper atmosphere using large fluxes of energetic particles.

  16. The 26-meter S-X Conversion Project. [Deep Space Network stations

    NASA Technical Reports Server (NTRS)

    Lobb, V. B.

    1977-01-01

    The 26-meter S-X conversion project provides for the conversion of an existing 26-meter S-band subnet to a 34-meter S- and X-band subnet. The subnet chosen for conversion consists of the following stations: DSS 12 near Barstow, DSS 44 in Australia, and DSS 62 in Spain. The main subsystems effected by this project are the antenna mechanical, antenna microwave, and receiver-exciter. In addition to these, there are many project-related electronic equipments that have been added to the existing station equipment. The major subsystems are essentially through the design stage with the antenna mechanical subsystem completed through detail design with procurement in process.

  17. Automation in the Space Station module power management and distribution Breadboard

    NASA Technical Reports Server (NTRS)

    Walls, Bryan; Lollar, Louis F.

    1990-01-01

    The Space Station Module Power Management and Distribution (SSM/PMAD) Breadboard, located at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama, models the power distribution within a Space Station Freedom Habitation or Laboratory module. Originally designed for 20 kHz ac power, the system is now being converted to high voltage dc power with power levels on a par with those expected for a space station module. In addition to the power distribution hardware, the system includes computer control through a hierarchy of processes. The lowest level process consists of fast, simple (from a computing standpoint) switchgear, capable of quickly safing the system. The next level consists of local load center processors called Lowest Level Processors (LLP's). These LLP's execute load scheduling, perform redundant switching, and shed loads which use more than scheduled power. The level above the LLP's contains a Communication and Algorithmic Controller (CAC) which coordinates communications with the highest level. Finally, at this highest level, three cooperating Artificial Intelligence (AI) systems manage load prioritization, load scheduling, load shedding, and fault recovery and management. The system provides an excellent venue for developing and examining advanced automation techniques. The current system and the plans for its future are examined.

  18. Space Station Freedom secondary power wiring requirements

    NASA Technical Reports Server (NTRS)

    Sawyer, C. R.

    1994-01-01

    Secondary power is produced by DDCU's (direct current to direct current converter units) and routed to and through secondary power distribution assemblies (SPDA's) to loads or tertiary distribution assemblies. This presentation outlines requirements of Space Station Freedom (SSF) EEE (electrical, electronic, and electromechanical) parts wire and the approved electrical wire and cable. The SSF PDRD (Program Definition and Requirements Document) language problems and resolution are reviewed. The cable routing to and from the SPDA's is presented as diagrams and the wire recommendations and characteristics are given.

  19. 78 FR 66965 - In the Matter of Exelon Generation Company, LLC; Dresden Nuclear Power Station Confirmatory Order...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-07

    ...; NRC-2013-0245] In the Matter of Exelon Generation Company, LLC; Dresden Nuclear Power Station... licenses authorize the operation of the Dresden Nuclear Power Station (Dresden Station) in accordance with... actions described below will be taken at Dresden Nuclear Power Station and other nuclear plants in Exelon...

  20. Concentrating Solar Power Projects - Solar Electric Generating Station II |

    Science.gov Websites

    of power purchase agreement to Southern California Edison. Status Date: November 7, 2017 Photo with Facility Independent Power Producer, with special Standard Offer 2 (SO-2) type power purchase agreement to

  1. Concentrating Solar Power Projects - Solar Electric Generating Station VI |

    Science.gov Websites

    of power purchase agreement to Southern California Edison. Status Date: October 1, 2015 Photo with an Independent Power Producer, with special Standard Offer 2 (SO-2) type power purchase agreement to Southern

  2. Insulation co-ordination aspects for power stations with generator circuit-breakers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanders, M.; Koeppl, G.; Kreuzer, J.

    1995-07-01

    The generator circuit-breaker (gen. c.b.) located between the generator and the step-up transformer, is now being applied world-wide. It has become a recognized electrical component of power stations which is largely due to economical advantages and increased power station availability. Technical protection considerations for power stations have always been the reason for discussion and the object of improvement. With the use of a gen. c.b., some points of view need to be considered anew. Not only the protection system in case of fault conditions will be influenced, but also the insulation co-ordination philosophy. Below the results of some calculations concerningmore » expected overvoltages are presented. These calculations are based on a transformer rated 264/15.5kV, 220 MVA. But the results are transferable to other power plants. Some measurements carried out on a transformer of the same rating complement the calculations. The findings may contribute to an improvement in insulation co-ordination and protection of the electrical system generator--step-up transformer.« less

  3. Water turbine technology for small power stations

    NASA Astrophysics Data System (ADS)

    Salovaara, T.

    1980-02-01

    The paper examines hydro-power stations and the efficiency and costs of using water turbines to run them. Attention is given to different turbine types emphasizing the use of Kaplan-turbines and runners. Hydraulic characteristics and mechanical properties of low head turbines and small turbines, constructed of fully fabricated steel plate structures, are presented.

  4. Small space station electrical power system design concepts

    NASA Technical Reports Server (NTRS)

    Jones, G. M.; Mercer, L. N.

    1976-01-01

    A small manned facility, i.e., a small space station, placed in earth orbit by the Shuttle transportation system would be a viable, cost effective addition to the basic Shuttle system to provide many opportunities for R&D programs, particularly in the area of earth applications. The small space station would have many similarities with Skylab. This paper presents design concepts for an electrical power system (EPS) for the small space station based on Skylab experience, in-house work at Marshall Space Flight Center, SEPS (Solar Electric Propulsion Stage) solar array development studies, and other studies sponsored by MSFC. The proposed EPS would be a solar array/secondary battery system. Design concepts expressed are based on maximizing system efficiency and five year operational reliability. Cost, weight, volume, and complexity considerations are inherent in the concepts presented. A small space station EPS based on these concepts would be highly efficient, reliable, and relatively inexpensive.

  5. Automation of Space Station module power management and distribution system

    NASA Technical Reports Server (NTRS)

    Bechtel, Robert; Weeks, Dave; Walls, Bryan

    1990-01-01

    Viewgraphs on automation of space station module (SSM) power management and distribution (PMAD) system are presented. Topics covered include: reasons for power system automation; SSM/PMAD approach to automation; SSM/PMAD test bed; SSM/PMAD topology; functional partitioning; SSM/PMAD control; rack level autonomy; FRAMES AI system; and future technology needs for power system automation.

  6. A feasibility assessment of nuclear reactor power system concepts for the NASA Growth Space Station

    NASA Technical Reports Server (NTRS)

    Bloomfield, H. S.; Heller, J. A.

    1986-01-01

    A preliminary feasibility assessment of the integration of reactor power system concepts with a projected growth Space Station architecture was conducted to address a variety of installation, operational, disposition and safety issues. A previous NASA sponsored study, which showed the advantages of Space Station - attached concepts, served as the basis for this study. A study methodology was defined and implemented to assess compatible combinations of reactor power installation concepts, disposal destinations, and propulsion methods. Three installation concepts that met a set of integration criteria were characterized from a configuration and operational viewpoint, with end-of-life disposal mass identified. Disposal destinations that met current aerospace nuclear safety criteria were identified and characterized from an operational and energy requirements viewpoint, with delta-V energy requirement as a key parameter. Chemical propulsion methods that met current and near-term application criteria were identified and payload mass and delta-V capabilities were characterized. These capabilities were matched against concept disposal mass and destination delta-V requirements to provide a feasibility of each combination.

  7. GHG PSD Permit: Cheyenne Light, Fuel & Power / Black Hills Power, Inc. – Cheyenne Prairie Generating Station

    EPA Pesticide Factsheets

    This page contains the final PSD permit for the Cheyenne Light, Fuel & Power / Black Hills Power, Inc. Cheyenne Prairie Generating Station, located in Laramie, Wyoming, and operated by Black Hills Service Company.

  8. 47 CFR 73.6012 - Protection of Class A TV, low power TV and TV translator stations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... translator stations. 73.6012 Section 73.6012 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED... of Class A TV, low power TV and TV translator stations. An application to change the facilities of an... power TV and TV translator stations and applications for changes in such stations filed prior to the...

  9. Evaluation of Maximum Radionuclide Groundwater Concentrations for Basement Fill Model. Zion Station Restoration Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, T.

    2016-05-20

    ZionSolutions is in the process of decommissioning the Zion Nuclear Power Station (ZNPS). After decommissioning is completed, the site will contain two reactor Containment Buildings, the Fuel Handling Building and Transfer Canals, Auxiliary Building, Turbine Building, Crib House/Forebay, and a Waste Water Treatment Facility that have been demolished to a depth of 3 feet below grade. Additional below ground structures remaining will include the Main Steam Tunnels and large diameter intake and discharge pipes. These additional structures are not included in the modeling described in this report, but the inventory remaining (expected to be very low) will be included withmore » one of the structures that are modeled as designated in the Zion Station Restoration Project (ZSRP) License Termination Plan (LTP). The remaining underground structures will be backfilled with clean material. The final selection of fill material has not been made.« less

  10. Exercise of the SSM/PMAD Breadboard. [Space Station Module/Power Management And Distribution

    NASA Technical Reports Server (NTRS)

    Walls, Bryan

    1989-01-01

    The Space Station Module Power Management and Distribution (SSM/PMAD) Breadboard is a test facility designed for advanced development of space power automation. Originally designed for 20-kHz power, the system is being converted to work with direct current (dc). Power levels are on a par with those expected for a Space Station module. Some of the strengths and weaknesses of the SSM/PMAD system in design and function are examined, and the future directions foreseen for the system are outlined.

  11. The ALTCRISS Project On Board the International Space Station

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Casolino, M.; Altamura, F.; Minori, M.; Picozza, P.; Fuglesang, C.; Galper, A.; Popov, A.; Benghin, V.; Petrov, V. M.

    2006-01-01

    The Altcriss project aims to perform a long term survey of the radiation environment on board the International Space Station. Measurements are being performed with active and passive devices in different locations and orientations of the Russian segment of the station. The goal is perform a detailed evaluation of the differences in particle fluence and nuclear composition due to different shielding material and attitude of the station. The Sileye-3/Alteino detector is used to identify nuclei up to Iron in the energy range above approximately equal to 60 MeV/n; a number of passive dosimeters (TLDs, CR39) are also placed in the same location of Sileye-3 detector. Polyethylene shielding is periodically interposed in front of the detectors to evaluate the effectiveness of shielding on the nuclear component of the cosmic radiation. The project was submitted to ESA in reply to the AO the Life and Physical Science of 2004 and was begun in December 2005. Dosimeters and data cards are rotated every six months: up to now three launches of dosimeters and data cards have been performed and have been returned with the end expedition 12 and 13.

  12. Automation of the space station core module power management and distribution system

    NASA Technical Reports Server (NTRS)

    Weeks, David J.

    1988-01-01

    Under the Advanced Development Program for Space Station, Marshall Space Flight Center has been developing advanced automation applications for the Power Management and Distribution (PMAD) system inside the Space Station modules for the past three years. The Space Station Module Power Management and Distribution System (SSM/PMAD) test bed features three artificial intelligence (AI) systems coupled with conventional automation software functioning in an autonomous or closed-loop fashion. The AI systems in the test bed include a baseline scheduler/dynamic rescheduler (LES), a load shedding management system (LPLMS), and a fault recovery and management expert system (FRAMES). This test bed will be part of the NASA Systems Autonomy Demonstration for 1990 featuring cooperating expert systems in various Space Station subsystem test beds. It is concluded that advanced automation technology involving AI approaches is sufficiently mature to begin applying the technology to current and planned spacecraft applications including the Space Station.

  13. Power transmission cable development for the Space Station Freedom electrical power system

    NASA Technical Reports Server (NTRS)

    Schmitz, Gregory V.; Biess, John J.

    1989-01-01

    Power transmission cable is presently being evaluated under a NASA Lewis Research Center advanced development contract for application in the Space Station Freedom (SSF) electrical power system (EPS). Evaluation testing has been performed by TRW and NASA Lewis Research Center. The results of this development contract are presented. The primary cable design goals are to provide (1) a low characteristic inductance to minimize line voltage drop at 20 kHz, (2) electromagnetic compatibility control of the 20-kHz ac power current, (3) a physical configuration that minimizes ac resistance and (4) release of trapped air for corona-free operation.

  14. Concentrating Solar Power Projects - eCare Solar Thermal Project |

    Science.gov Websites

    Concentrating Solar Power | NREL eCare Solar Thermal Project This page provides information on eCare Solar Thermal Project, a concentrating solar power (CSP) project, with data organized by Project Name: eCare Solar Thermal Project Country: Morocco Location: Undefined Owner(s): CNIM (100

  15. Space station WP-04 power system. Volume 2: Study results

    NASA Technical Reports Server (NTRS)

    Hallinan, G. J.

    1987-01-01

    Results of the phase B study contract for the definition of the space station Electric Power System (EPS) are presented in detail along with backup information and supporting data. Systems analysis and trades, preliminary design, advanced development, customer accommodations, operations planning, product assurance, and design and development phase planning are addressed. The station design is a hybrid approach which provides user power of 25 kWe from the photovoltaic subsystem and 50 kWe from the solar dynamic subsystem. The electric power is distributed to users as a utility service; single phase at a frequency of 20 kHz and voltage of 440VAC. The solar array NiH2 batteries of the photovoltaic subsystem are based on commonality to those used on the co-orbiting and solar platforms.

  16. 76 FR 11680 - Digital Low Power Television, Television Translator, and Television Booster Stations and Digital...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-03

    ...] Digital Low Power Television, Television Translator, and Television Booster Stations and Digital Class A... Commission's Rules to Establish Rules for Digital Low Power, Television Translator, and Television Booster... Digital Low Power Television Translator, Television Booster Stations, and to Amend Rules for Digital Class...

  17. 77 FR 36298 - In the Matter of Maine Yankee Atomic Power Company; Maine Yankee Atomic Power Station...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-18

    ... the Matter of Maine Yankee Atomic Power Company; Maine Yankee Atomic Power Station; Confirmatory Order... Regulatory Commission (NRC or the Commission) issued a Confirmatory Order to Maine Yankee Atomic Power...: (301) 492-3342; Email: [email protected] . I Maine Yankee Atomic Power Company (Maine Yankee or the...

  18. Network, system, and status software enhancements for the autonomously managed electrical power system breadboard. Volume 1: Project summary

    NASA Technical Reports Server (NTRS)

    Mckee, James W.

    1990-01-01

    This volume (1 of 4) gives a summary of the original AMPS software system configuration, points out some of the problem areas in the original software design that this project is to address, and in the appendix collects all the bimonthly status reports. The purpose of AMPS is to provide a self reliant system to control the generation and distribution of power in the space station. The software in the AMPS breadboard can be divided into three levels: the operating environment software, the protocol software, and the station specific software. This project deals only with the operating environment software and the protocol software. The present station specific software will not change except as necessary to conform to new data formats.

  19. Nevada Power: Clark Station; Las Vegas, Nevada (Data)

    DOE Data Explorer

    Stoffel, T.; Andreas, A.

    2006-03-27

    A partnership with the University of Nevada and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.

  20. Design of the Space Station Freedom power system

    NASA Technical Reports Server (NTRS)

    Thomas, Ronald L.; Hallinan, George J.

    1989-01-01

    The design of Space Station Freedom's electric power system (EPS) is reviewed, highlighting the key design goals of performance, low cost, reliability and safety. Tradeoff study results that illustrate the competing factors responsible for many of the more important design decisions are discussed. When Freedom's EPS is compared with previous space power designs, two major differences stand out. The first is the size of the EPS, which is larger than any prior system. The second major difference between the EPS and other space power designs is the indefinite expected life of Freedom; 30 years has been used for life-cycle-cost calculations.

  1. Space Station Freedom power management and distribution system design

    NASA Technical Reports Server (NTRS)

    Teren, Fred

    1989-01-01

    The design is described of the Space Station Freedom Power Management and Distribution (PMAD) System. In addition, the significant trade studies which were conducted are described, which led to the current PMAD system configuration.

  2. Concentrating Solar Power Projects - Solar Electric Generating Station IV |

    Science.gov Websites

    of power purchase agreement to Southern California Edison. Status Date: October 1, 2015 Photo from a ) type power purchase agreement to Southern California Edison Incentives: Accelerated depreciation

  3. Neural network based inspection of voids and karst conduits in hydro-electric power station tunnels using GPR

    NASA Astrophysics Data System (ADS)

    Kilic, Gokhan; Eren, Levent

    2018-04-01

    This paper reports on the fundamental role played by Ground Penetrating Radar (GPR), alongside advanced processing and presentation methods, during the tunnel boring project at a Dam and Hydro-Electric Power Station. It identifies from collected GPR data such issues as incomplete grouting and the presence of karst conduits and voids and provides full details of the procedures adopted. In particular, the application of collected GPR data to the Neural Network (NN) method is discussed.

  4. 76 FR 72849 - Digital Low Power Television, Television Translator, and Television Booster Stations and To Amend...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-28

    ...] Digital Low Power Television, Television Translator, and Television Booster Stations and To Amend Rules... for Digital Low Power Television, Television Translator, and Television Booster Stations and to Amend... television, TV translator, and Class A television station DTV licensees''). The Commission has also revised...

  5. 75 FR 38147 - FirstEnergy Nuclear Operating Company; Davis-Besse Nuclear Power Station; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-01

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-346; NRC-2010-0240] FirstEnergy Nuclear Operating Company; Davis-Besse Nuclear Power Station; Exemption 1.0 Background FirstEnergy Nuclear Operating Company... of the Davis-Besse Nuclear Power Station, Unit 1 (DBNPS). The license provides, among other things...

  6. 75 FR 80549 - FirstEnergy Nuclear Operating Company, Davis-Besse Nuclear Power Station; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-22

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-346; NRC-2010-0378] FirstEnergy Nuclear Operating Company, Davis-Besse Nuclear Power Station; Exemption 1.0 Background FirstEnergy Nuclear Operating Company... of the Davis-Besse Nuclear Power Station, Unit 1 (DBNPS). The license provides, among other things...

  7. 75 FR 2164 - Entergy Nuclear Operations, Inc.; Pilgrim Nuclear Power Station; Environmental Assessment and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-14

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-293; NRC-2010-0010] Entergy Nuclear Operations, Inc.; Pilgrim Nuclear Power Station; Environmental Assessment and Finding of No Significant Impact The U.S... Entergy Nuclear Operations, Inc. (Entergy or the licensee), for operation of Pilgrim Nuclear Power Station...

  8. Thermodynamic power stations at low temperatures

    NASA Astrophysics Data System (ADS)

    Malherbe, J.; Ployart, R.; Alleau, T.; Bandelier, P.; Lauro, F.

    The development of low-temperature thermodynamic power stations using solar energy is considered, with special attention given to the choice of the thermodynamic cycle (Rankine), working fluids (frigorific halogen compounds), and heat exchangers. Thermomechanical conversion machines, such as ac motors and rotating volumetric motors are discussed. A system is recommended for the use of solar energy for irrigation and pumping in remote areas. Other applications include the production of cold of fresh water from brackish waters, and energy recovery from hot springs.

  9. Concentrating Solar Power Projects - Solar Electric Generating Station V |

    Science.gov Websites

    of power purchase agreement to Southern California Edison. Status Date: October 1, 2015 Photo of the Standard Offer 2 (SO-2) type power purchase agreement to Southern California Edison Incentives: Accelerated

  10. Concentrating Solar Power Projects - Solar Electric Generating Station VII

    Science.gov Websites

    type of power purchase agreement to Southern California Edison. Status Date: October 1, 2015 Photo from Producer, with special Standard Offer 2 (SO-2) type power purchase agreement to Southern California Edison

  11. Concentrating Solar Power Projects - Solar Electric Generating Station III

    Science.gov Websites

    type of power purchase agreement to Southern California Edison. Status Date: October 1, 2015 Photo with Producer, with special Standard Offer 2 (SO-2) type power purchase agreement to Southern California Edison

  12. 76 FR 29277 - Exelon Generation Company, LLC; Peach Bottom Atomic Power Station Unit Nos. 2 and 3...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-20

    ... Company, LLC; Peach Bottom Atomic Power Station Unit Nos. 2 and 3; Environmental Assessment and Finding of..., LLC (Exelon, the licensee) for operation of the Peach Bottom Atomic Power Station, Units 2 and 3...) in the Peach Bottom Atomic Power Station (PBAPS) LLRW Storage Facility. Considering the nature of the...

  13. 47 CFR 74.780 - Broadcast regulations applicable to translators, low power, and booster stations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Broadcast regulations applicable to translators... PROGRAM DISTRIBUTIONAL SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.780 Broadcast regulations applicable to translators, low power, and booster stations. The following rules are applicable to...

  14. Status of 20 kHz space station power distribution technology

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.

    1988-01-01

    Power Distribution on the NASA Space Station will be accomplished by a 20 kHz sinusoidal, 440 VRMS, single phase system. In order to minimize both system complexity and the total power coversion steps required, high frequency power will be distributed end-to-end in the system. To support the final design of flight power system hardware, advanced development and demonstrations have been made on key system technologies and components. The current status of this program is discussed.

  15. Space Station Freedom photovoltaic power module design status

    NASA Technical Reports Server (NTRS)

    Jimenez, Amador P.; Hoberecht, Mark A.

    1989-01-01

    Electric power generation for the Space Station Freedom will be provided by four photovoltaic (PV) power modules using silicon solar cells during phase I operation. Each PV power module requires two solar arrays with 32,800 solar cells generating 18.75 kW of dc power for a total of 75 kW. A portion of this power will be stored in nickel-hydrogen batteries for use during eclipse, and the balance will be processed and converted to 20 kHz ac power for distribution to end users through the power management and distribution system. The design incorporates an optimized thermal control system, pointing and tracking provision with the application of gimbals, and the use of orbital replacement units to achieve modularization. The design status of the PV power module, as derived from major trade studies, is discussed at hardware levels ranging from component to system. Details of the design are presented where appropriate.

  16. Space Station Freedom photovoltaic power module design status

    NASA Technical Reports Server (NTRS)

    Jimenez, Amador P.; Hoberecht, Mark A.

    1989-01-01

    Electric power generation for Space Station Freedom will be provided by four photovoltaic (PV) power modules using silicon solar cells during Phase 1 operation. Each PV power module requires two solar arrays with 32,800 solar cells generating 18.75 kW of dc power for a total of 75 kW. A portion of this power will be stored in nickel-hydrogen batteries for use during eclipse, and the balance will be processed and converted to 20 kHz ac power for distribution to end users through the power management and distribution system. The design incorporates an optimized thermal control system, pointing and tracking provision with the application of gimbals, and the use of orbital replacement units (ORU's) to achieve modularization. Design status of the PV power module, as derived from major trade studies, is discussed at hardware levels ranging from component to system. Details of the design are presented where appropriate.

  17. Space Station Freedom power management and distribution design status

    NASA Technical Reports Server (NTRS)

    Javidi, S.; Gholdston, E.; Stroh, P.

    1989-01-01

    The design status of the power management and distribution electric power system for the Space Station Freedom is presented. The current design is a star architecture, which has been found to be the best approach for meeting the requirement to deliver 120 V dc to the user interface. The architecture minimizes mass and power losses while improving element-to-element isolation and system flexibility. The design is partitioned into three elements: energy collection, storage and conversion, system protection and distribution, and management and control.

  18. Concentrating Solar Power Projects - eLLO Solar Thermal Project |

    Science.gov Websites

    Concentrating Solar Power | NREL eLLO Solar Thermal Project This page provides information on Llo Solar Thermal Project, a concentrating solar power (CSP) project, with data organized by Name: eLLO Solar Thermal Project (Llo) Country: France Location: Llo (Pyrénées Orientales) Owner(s

  19. 47 CFR 74.789 - Broadcast regulations applicable to digital low power television and television translator stations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... power television and television translator stations. 74.789 Section 74.789 Telecommunication FEDERAL... AND OTHER PROGRAM DISTRIBUTIONAL SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.789 Broadcast regulations applicable to digital low power television and television translator...

  20. Space station experiment definition: Advanced power system test bed

    NASA Technical Reports Server (NTRS)

    Pollard, H. E.; Neff, R. E.

    1986-01-01

    A conceptual design for an advanced photovoltaic power system test bed was provided and the requirements for advanced photovoltaic power system experiments better defined. Results of this study will be used in the design efforts conducted in phase B and phase C/D of the space station program so that the test bed capabilities will be responsive to user needs. Critical PV and energy storage technologies were identified and inputs were received from the idustry (government and commercial, U.S. and international) which identified experimental requirements. These inputs were used to develop a number of different conceptual designs. Pros and cons of each were discussed and a strawman candidate identified. A preliminary evolutionary plan, which included necessary precursor activities, was established and cost estimates presented which would allow for a successful implementation to the space station in the 1994 time frame.

  1. Lewis Research Center space station electric power system test facilities

    NASA Technical Reports Server (NTRS)

    Birchenough, Arthur G.; Martin, Donald F.

    1988-01-01

    NASA Lewis Research Center facilities were developed to support testing of the Space Station Electric Power System. The capabilities and plans for these facilities are described. The three facilities which are required in the Phase C/D testing, the Power Systems Facility, the Space Power Facility, and the EPS Simulation Lab, are described in detail. The responsibilities of NASA Lewis and outside groups in conducting tests are also discussed.

  2. Low Earth orbit environmental effects on the space station photovoltaic power generation systems

    NASA Technical Reports Server (NTRS)

    Nahra, Henry K.

    1987-01-01

    A summary of the Low Earth Orbital Environment, its impact on the Photovoltaic Power systems of the space station and the solutions implemented to resolve the environmental concerns or issues are described. Low Earth Orbital Environment (LEO) presents several concerns to the Photovoltaic power systems of the space station. These concerns include atomic oxygen interaction with the polymeric substrate of the solar arrays, ionized environment effects on the array operating voltage, the effects of the meteoroids and debris impacts and penetration through the different layers of the solar cells and their circuits, and the high energy particle and radiation effects on the overall solar array performance. Potential solutions to some of the degrading environmental interactions that will provide the photovoltaic power system of the space station with the desired life are also summarized.

  3. Time Averaged Transmitter Power and Exposure to Electromagnetic Fields from Mobile Phone Base Stations

    PubMed Central

    Bürgi, Alfred; Scanferla, Damiano; Lehmann, Hugo

    2014-01-01

    Models for exposure assessment of high frequency electromagnetic fields from mobile phone base stations need the technical data of the base stations as input. One of these parameters, the Equivalent Radiated Power (ERP), is a time-varying quantity, depending on communication traffic. In order to determine temporal averages of the exposure, corresponding averages of the ERP have to be available. These can be determined as duty factors, the ratios of the time-averaged power to the maximum output power according to the transmitter setting. We determine duty factors for UMTS from the data of 37 base stations in the Swisscom network. The UMTS base stations sample contains sites from different regions of Switzerland and also different site types (rural/suburban/urban/hotspot). Averaged over all regions and site types, a UMTS duty factor F ≈ 0.32 ± 0.08 for the 24 h-average is obtained, i.e., the average output power corresponds to about a third of the maximum power. We also give duty factors for GSM based on simple approximations and a lower limit for LTE estimated from the base load on the signalling channels. PMID:25105551

  4. Noise test system of rotating machinery in nuclear power station based on microphone array

    NASA Astrophysics Data System (ADS)

    Chang, Xincai; Guan, Jishi; Qi, Liangcai

    2017-12-01

    Rotating machinery plays an important role in all walks of life. Once the equipment fails, equipment maintenance and shutdown will cause great social harm and economic losses. Equipment safety operations at nuclear power stations have always been of top priority. It is prone to noise when the equipment is out of order or aging. Failure to find or develop equipment at the initial stage of equipment failure or ageing will pose a serious threat to the safety of the plant’s equipment. In this paper, sound imaging diagnosis technology is applied as a supplementary method to the condition monitoring and diagnosis system of rotating machinery in nuclear power stations. It provides a powerful guarantee for the condition monitoring and fault diagnosis of rotating machinery in nuclear power stations.

  5. Solar dynamic power system development for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The development of a solar dynamic electric power generation system as part of the Space Station Freedom Program is documented. The solar dynamic power system includes a solar concentrator, which collects sunlight; a receiver, which accepts and stores the concentrated solar energy and transfers this energy to a gas; a Brayton turbine, alternator, and compressor unit, which generates electric power; and a radiator, which rejects waste heat. Solar dynamic systems have greater efficiency and lower maintenance costs than photovoltaic systems and are being considered for future growth of Space Station Freedom. Solar dynamic development managed by the NASA Lewis Research Center from 1986 to Feb. 1991 is covered. It summarizes technology and hardware development, describes 'lessons learned', and, through an extensive bibliography, serves as a source list of documents that provide details of the design and analytic results achieved. It was prepared by the staff of the Solar Dynamic Power System Branch at the NASA Lewis Research Center in Cleveland, Ohio. The report includes results from the prime contractor as well as from in-house efforts, university grants, and other contracts. Also included are the writers' opinions on the best way to proceed technically and programmatically with solar dynamic efforts in the future, on the basis of their experiences in this program.

  6. Proceedings of the Flat-Plate Solar Array Project Research Forum on the Design of Flat-Plate Photovoltaic Arrays for Central Stations

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The Flat Plate Solar Array Project, focuses on advancing technologies relevant to the design and construction of megawatt level central station systems. Photovoltaic modules and arrays for flat plate central station or other large scale electric power production facilities require the establishment of a technical base that resolves design issues and results in practical and cost effective configurations. Design, qualification and maintenance issues related to central station arrays derived from the engineering and operating experiences of early applications and parallel laboratory reserch activities are investigated. Technical issues are examined from the viewpoint of the utility engineer, architect/engineer and laboratory researcher. Topics on optimum source circuit designs, module insulation design for high system voltages, array safety, structural interface design, measurements, and array operation and maintenance are discussed.

  7. Concentrating Solar Power Projects - National Solar Thermal Power Facility

    Science.gov Websites

    | Concentrating Solar Power | NREL National Solar Thermal Power Facility Status Date: February 13, 2014 Project Overview Project Name: National Solar Thermal Power Facility Country: India Location Capacity (Net): 1.0 MW Output Type: Steam Rankine Thermal Storage Storage Type: None

  8. Power considerations for an early manned Mars mission utilizing the space station

    NASA Technical Reports Server (NTRS)

    Valgora, Martin E.

    1987-01-01

    Power requirements and candidate electrical power sources were examined for the supporting space infrastructure for an early (2004) manned Mars mission. This two-year mission (60-day stay time) assumed a single six crew piloted vehicle with a Mars lander for four of the crew. The transportation vehicle was assumed to be a hydrogen/oxygen propulsion design with or without large aerobrakes and assembled and checked out on the LEO Space Station. The long transit time necessitated artificial gravity of the crew by rotating the crew compartments. This rotation complicates power source selection. Candidate power sources were examined for the Lander, Mars Orbiter, supporting Space Station, co-orbiting Propellant Storage Depot, and alternatively, a co-orbiting Propellant Generation (water electrolysis) Depot. Candidates considered were photovoltaics with regenerative fuel cells or batteries, solar dynamics, isotope dynamics, and nuclear power.

  9. NASA chooses hybrid power system for Space Station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holt, D.J.

    1986-06-01

    The hybrid solar power system being developed for the Space Station is characterized. Major components of the 75-kW system required for the initial operational phase of the Station are 25-kW photovoltaic arrays (with Ni-H storage batteries for eclipse-phase power and some means of conversion to ac for distribution) and a 50-kW solar dynamic system comprising a reflecting concentrator, a thermal-energy storage unit, and a heat engine based either on an organic Rankine cycle (described by Holt, 1985) or on a closed Brayton cycle. The design and operating principle of a Brayton-cycle engine using an He-Xe mixture as the working fluid,more » gas-foil journal bearings, an LiF/MgF2 thermal-storage unit, and a 95-percent-effectiveness plate-fin-type recuperator are described and illustrated with drawings. This engine is designed to operate at 25,000-50,000 rpm with overall day/night cycle efficiency 27.6 percent for 95-min orbits, and to be restartable under zero-g conditions.« less

  10. Space station electrical power distribution analysis using a load flow approach

    NASA Technical Reports Server (NTRS)

    Emanuel, Ervin M.

    1987-01-01

    The space station's electrical power system will evolve and grow in a manner much similar to the present terrestrial electrical power system utilities. The initial baseline reference configuration will contain more than 50 nodes or busses, inverters, transformers, overcurrent protection devices, distribution lines, solar arrays, and/or solar dynamic power generating sources. The system is designed to manage and distribute 75 KW of power single phase or three phase at 20 KHz, and grow to a level of 300 KW steady state, and must be capable of operating at a peak of 450 KW for 5 to 10 min. In order to plan far into the future and keep pace with load growth, a load flow power system analysis approach must be developed and utilized. This method is a well known energy assessment and management tool that is widely used throughout the Electrical Power Utility Industry. The results of a comprehensive evaluation and assessment of an Electrical Distribution System Analysis Program (EDSA) is discussed. Its potential use as an analysis and design tool for the 20 KHz space station electrical power system is addressed.

  11. Solar-assisted MED treatment of Eskom power station waste water

    NASA Astrophysics Data System (ADS)

    Roos, Thomas H.; Rogers, David E. C.; Gericke, Gerhard

    2017-06-01

    The comparative benefits of multi-effect distillation (MED) used in conjunction with Nano Filtration (NF), Reverse Osmosis (RO) and Eutectic Freeze Crystallization (EFC) are determined for waste water minimization for inland coal fired power stations for Zero Liquid Effluent Discharge (ZLED). A sequence of technologies is proposed to achieve maximal water recovery and brine concentration: NF - physico-chemical treatment - MED - EFC. The possibility of extending the concentration of RO reject arising from minewater treatment at the Lethabo power station with MED alone is evaluated with mineral formation modelling using the thermochemical modelling software Phreeq-C. It is shown that pretreatment is essential to extend the amount of water that can be recovered, and this can be beneficially supported by NF.

  12. Solar dynamic power systems for space station

    NASA Technical Reports Server (NTRS)

    Irvine, Thomas B.; Nall, Marsha M.; Seidel, Robert C.

    1986-01-01

    The Parabolic Offset Linearly Actuated Reflector (POLAR) solar dynamic module was selected as the baseline design for a solar dynamic power system aboard the space station. The POLAR concept was chosen over other candidate designs after extensive trade studies. The primary advantages of the POLAR concept are the low mass moment of inertia of the module about the transverse boom and the compactness of the stowed module which enables packaging of two complete modules in the Shuttle orbiter payload bay. The fine pointing control system required for the solar dynamic module has been studied and initial results indicate that if disturbances from the station are allowed to back drive the rotary alpha joint, pointing errors caused by transient loads on the space station can be minimized. This would allow pointing controls to operate in bandwidths near system structural frequencies. The incorporation of the fine pointing control system into the solar dynamic module is fairly straightforward for the three strut concentrator support structure. However, results of structural analyses indicate that this three strut support is not optimum. Incorporation of a vernier pointing system into the proposed six strut support structure is being studied.

  13. 76 FR 44821 - Digital Low Power Television, Television Translator, and Television Booster Stations and To Amend...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-27

    ...] Digital Low Power Television, Television Translator, and Television Booster Stations and To Amend Rules... this proceeding in order to allow a timely and successful completion of the low power television digital transition. Although Congress established a hard deadline of June 12, 2009 for full power stations...

  14. 76 FR 30204 - Exelon Nuclear, Dresden Nuclear Power Station, Unit 1; Exemption From Certain Security Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-24

    ... Power Station, Unit 1; Exemption From Certain Security Requirements 1.0 Background Exelon Nuclear is the licensee and holder of Facility Operating License No. DPR-2 issued for Dresden Nuclear Power Station (DNPS... protection of licensed activities in nuclear power reactors against radiological sabotage,'' paragraph (b)(1...

  15. 76 FR 44376 - Vermont Yankee Nuclear Power Station; Notice of Withdrawal of Application for Amendment to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-25

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-271, NRC-2011-0168] Vermont Yankee Nuclear Power... Regulatory Commission (NRC or the Commission) has granted the request of Vermont Yankee Nuclear Power Station... Operating License No. DPR-28 for the Vermont Yankee Nuclear Power Station, located in Vernon, Vermont. The...

  16. Automating security monitoring and analysis for Space Station Freedom's electric power system

    NASA Technical Reports Server (NTRS)

    Dolce, James L.; Sobajic, Dejan J.; Pao, Yoh-Han

    1990-01-01

    Operating a large, space power system requires classifying the system's status and analyzing its security. Conventional algorithms are used by terrestrial electric utilities to provide such information to their dispatchers, but their application aboard Space Station Freedom will consume too much processing time. A new approach for monitoring and analysis using adaptive pattern techniques is presented. This approach yields an on-line security monitoring and analysis algorithm that is accurate and fast; and thus, it can free the Space Station Freedom's power control computers for other tasks.

  17. Automating security monitoring and analysis for Space Station Freedom's electric power system

    NASA Technical Reports Server (NTRS)

    Dolce, James L.; Sobajic, Dejan J.; Pao, Yoh-Han

    1990-01-01

    Operating a large, space power system requires classifying the system's status and analyzing its security. Conventional algorithms are used by terrestrial electric utilities to provide such information to their dispatchers, but their application aboard Space Station Freedom will consume too much processing time. A novel approach for monitoring and analysis using adaptive pattern techniques is presented. This approach yields an on-line security monitoring and analysis algorithm that is accurate and fast; and thus, it can free the Space Station Freedom's power control computers for other tasks.

  18. 76 FR 39134 - ZIONSOLUTIONS, LLC; Zion Nuclear Power Station, Units 1 and 2 Exemption From Recordkeeping...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-05

    ...; Zion Nuclear Power Station, Units 1 and 2 Exemption From Recordkeeping Requirements 1.0 Background Zion Nuclear Power Station (ZNPS or Zion), Unit 1, is a Westinghouse 3250 MWt Pressurized Water Reactor which... previously applicable to the nuclear power units and associated systems, structures, and components (SSC) are...

  19. State-of-the art of dc components for secondary power distribution of Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Krauthamer, Stanley; Gangal, Mukund; Das, Radhe S. L.

    1991-01-01

    120-V dc secondary power distribution has been selected for Space Station Freedom. State-of-the art components and subsystems are examined in terms of performance, size, and topology. One of the objectives of this work is to inform Space Station users what is available in power supplies and power control devices. The other objective is to stimulate interest in the component industry so that more focused product development can be started. Based on results of this study, it is estimated that, with some redesign, modifications, and space qualification, may of these components may be applied to Space Station needs.

  20. Alternate space station freedom configuration considerations to accommodate solar dynamic power

    NASA Technical Reports Server (NTRS)

    Deryder, L. J.; Cruz, J. N.; Heck, M. L.; Robertson, B. P.; Troutman, P. A.

    1989-01-01

    The results of a technical audit of the Space Station Freedom Program conducted by the Program Director was announced in early 1989 and included a proposal to use solar dynamic power generation systems to provide primary electrical energy for orbital flight operations rather than photovoltaic solar array systems. To generate the current program baseline power of 75 kW, two or more solar concentrators approximately 50 feet in diameter would be required to replace four pairs of solar arrays whose rectangular blanket size is approximately 200 feet by 30 feet. The photovoltaic power system concept uses solar arrays to generate electricity that is stored in nickel-hydrogen batteries. The proposed concept uses the solar concentrator dishes to reflect and focus the Sun's energy to heat helium-xenon gas to drive electricity generating turbines. The purpose here is to consider the station configuration issues for incorporation of solar dynamic power system components. Key flight dynamic configuration geometry issues are addressed and an assembly sequence scenario is developed.

  1. Concentrating Solar Power Projects - Redstone Solar Thermal Power Plant |

    Science.gov Websites

    Concentrating Solar Power | NREL Redstone Solar Thermal Power Plant Status Date: September 8 , 2016 Project Overview Project Name: Redstone Solar Thermal Power Plant Country: South Africa Location ): 100.0 MW Turbine Capacity (Net): 100.0 MW Cooling Method: Dry cooling Thermal Storage Storage Type: 2

  2. 30. EAST CORNER OF BUILDING 229 (ELECTRIC POWER STATION) IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. EAST CORNER OF BUILDING 229 (ELECTRIC POWER STATION) IN ASSEMBLY AREA. - Loring Air Force Base, Weapons Storage Area, Northeastern corner of base at northern end of Maine Road, Limestone, Aroostook County, ME

  3. 47 CFR 74.789 - Broadcast regulations applicable to digital low power television and television translator stations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... AND OTHER PROGRAM DISTRIBUTIONAL SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74... applicable to translators, low power, and booster stations (except § 73.653—Operation of TV aural and visual...

  4. 47 CFR 74.789 - Broadcast regulations applicable to digital low power television and television translator stations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... AND OTHER PROGRAM DISTRIBUTIONAL SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74... applicable to translators, low power, and booster stations (except § 73.653—Operation of TV aural and visual...

  5. 47 CFR 74.789 - Broadcast regulations applicable to digital low power television and television translator stations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... AND OTHER PROGRAM DISTRIBUTIONAL SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74... applicable to translators, low power, and booster stations (except § 73.653—Operation of TV aural and visual...

  6. 47 CFR 74.789 - Broadcast regulations applicable to digital low power television and television translator stations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... AND OTHER PROGRAM DISTRIBUTIONAL SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74... applicable to translators, low power, and booster stations (except § 73.653—Operation of TV aural and visual...

  7. 29. SOUTHEAST FRONT ELEVATION OF BUILDING 229 (ELECTRIC POWER STATION) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. SOUTHEAST FRONT ELEVATION OF BUILDING 229 (ELECTRIC POWER STATION) IN ASSEMBLY AREA. - Loring Air Force Base, Weapons Storage Area, Northeastern corner of base at northern end of Maine Road, Limestone, Aroostook County, ME

  8. TROUBLE 3: A fault diagnostic expert system for Space Station Freedom's power system

    NASA Technical Reports Server (NTRS)

    Manner, David B.

    1990-01-01

    Designing Space Station Freedom has given NASA many opportunities to develop expert systems that automate onboard operations of space based systems. One such development, TROUBLE 3, an expert system that was designed to automate the fault diagnostics of Space Station Freedom's electric power system is described. TROUBLE 3's design is complicated by the fact that Space Station Freedom's power system is evolving and changing. TROUBLE 3 has to be made flexible enough to handle changes with minimal changes to the program. Three types of expert systems were studied: rule-based, set-covering, and model-based. A set-covering approach was selected for TROUBLE 3 because if offered the needed flexibility that was missing from the other approaches. With this flexibility, TROUBLE 3 is not limited to Space Station Freedom applications, it can easily be adapted to handle any diagnostic system.

  9. 76 FR 59745 - Virginia Electric and Power Company; North Anna Power Station, Unit Nos. 1 and 2; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-27

    ... hours. After the high wind conditions pass, wind damage to the plant and surrounding area might preclude... NUCLEAR REGULATORY COMMISSION [Docket Nos. 50-338 and 50-339] Virginia Electric and Power Company; North Anna Power Station, Unit Nos. 1 and 2; Exemption 1.0 Background Virginia Electric Power Company...

  10. Cooperating Expert Systems For Space Station Power Distribution Management

    NASA Astrophysics Data System (ADS)

    Nguyen, T. A.; Chiou, W. C.

    1987-02-01

    In a complex system such as the manned Space Station, it is deem necessary that many expert systems must perform tasks in a concurrent and cooperative manner. An important question arise is: what cooperative-task-performing models are appropriate for multiple expert systems to jointly perform tasks. The solution to this question will provide a crucial automation design criteria for the Space Station complex systems architecture. Based on a client/server model for performing tasks, we have developed a system that acts as a front-end to support loosely-coupled communications between expert systems running on multiple Symbolics machines. As an example, we use two ART*-based expert systems to demonstrate the concept of parallel symbolic manipulation for power distribution management and dynamic load planner/scheduler in the simulated Space Station environment. This on-going work will also explore other cooperative-task-performing models as alternatives which can evaluate inter and intra expert system communication mechanisms. It will be served as a testbed and a bench-marking tool for other Space Station expert subsystem communication and information exchange.

  11. Concentrating Solar Power Projects - Bokpoort | Concentrating Solar Power |

    Science.gov Websites

    ) project, with data organized by background, parcipants and power plant configuration. Status Date: April (Northern Cape Province) Owner(s): ACWA Power Solafrica Bokpoort CSP Power Plant (Pty) Ltd Technology Participants Developer(s): ACWA Power Owner(s) (%): ACWA Power Solafrica Bokpoort CSP Power Plant (Pty) Ltd EPC

  12. 50. Stream gaging station in steelpipe well and shelter, looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    50. Stream gaging station in steel-pipe well and shelter, looking west. Photo by Robin Lee Tedder, Puget Power, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA

  13. Space Station Biological Research Project.

    PubMed

    Johnson, C C; Wade, C E; Givens, J J

    1997-06-01

    To meet NASA's objective of using the unique aspects of the space environment to expand fundamental knowledge in the biological sciences, the Space Station Biological Research Project at Ames Research Center is developing, or providing oversight, for two major suites of hardware which will be installed on the International Space Station (ISS). The first, the Gravitational Biology Facility, consists of Habitats to support plants, rodents, cells, aquatic specimens, avian and reptilian eggs, and insects and the Habitat Holding Rack in which to house them at microgravity; the second, the Centrifuge Facility, consists of a 2.5 m diameter centrifuge that will provide acceleration levels between 0.01 g and 2.0 g and a Life Sciences Glovebox. These two facilities will support the conduct of experiments to: 1) investigate the effect of microgravity on living systems; 2) what level of gravity is required to maintain normal form and function, and 3) study the use of artificial gravity as a countermeasure to the deleterious effects of microgravity observed in the crew. Upon completion, the ISS will have three complementary laboratory modules provided by NASA, the European Space Agency and the Japanese space agency, NASDA. Use of all facilities in each of the modules will be available to investigators from participating space agencies. With the advent of the ISS, space-based gravitational biology research will transition from 10-16 day short-duration Space Shuttle flights to 90-day-or-longer ISS increments.

  14. Space Station Biological Research Project

    NASA Technical Reports Server (NTRS)

    Johnson, C. C.; Wade, C. E.; Givens, J. J.

    1997-01-01

    To meet NASA's objective of using the unique aspects of the space environment to expand fundamental knowledge in the biological sciences, the Space Station Biological Research Project at Ames Research Center is developing, or providing oversight, for two major suites of hardware which will be installed on the International Space Station (ISS). The first, the Gravitational Biology Facility, consists of Habitats to support plants, rodents, cells, aquatic specimens, avian and reptilian eggs, and insects and the Habitat Holding Rack in which to house them at microgravity; the second, the Centrifuge Facility, consists of a 2.5 m diameter centrifuge that will provide acceleration levels between 0.01 g and 2.0 g and a Life Sciences Glovebox. These two facilities will support the conduct of experiments to: 1) investigate the effect of microgravity on living systems; 2) what level of gravity is required to maintain normal form and function, and 3) study the use of artificial gravity as a countermeasure to the deleterious effects of microgravity observed in the crew. Upon completion, the ISS will have three complementary laboratory modules provided by NASA, the European Space Agency and the Japanese space agency, NASDA. Use of all facilities in each of the modules will be available to investigators from participating space agencies. With the advent of the ISS, space-based gravitational biology research will transition from 10-16 day short-duration Space Shuttle flights to 90-day-or-longer ISS increments.

  15. Freedom is an international partnership. [foreign contributions to NASA Space Station project

    NASA Technical Reports Server (NTRS)

    Kohrs, Richard H.

    1990-01-01

    The NASA Space Station Freedom (SSF) project initiated in 1984 is a collaborative one among the U.S., Japan, Canada, and the 10 nations participating in ESA. The SSF partners have over the last six years defined user requirements, decided on the hardware to be manufactured, and constructed a framework for long-term cooperation. SSF will be composed of user elements furnished by the foreign partners and a U.S.-supplied infrastructure encompassing the truss assembly, electrical power system, and crew living quarters. The U.S. will also furnish a lab and a polar-orbit platform; ESA, a second lab and the coorbiting Free-Flying Laboratory, as well as a second polar platform. Japan's Japanese Experiment Module shall include an Exposed Facility and an Experimental Logistics module. Canada will contribute the Mobile Servicing System robotic assembler/maintainer for the whole of SFF.

  16. 49. View of unlined canal near inline stream gaging station, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    49. View of unlined canal near in-line stream gaging station, looking west. Photo by Robin Lee Tedder, Puget Power, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA

  17. UF/RO applications at the Browns Ferry Nuclear Power Station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palino, G.F.; Sailor, W.C.; Sawochka, S.G.

    1981-04-01

    In June 1979, NWT was contracted by TVA to review the applicability of reverse osmosis (RO) and ultrafiltration (UF) membrane treatment technology at the Browns Ferry Nuclear Power Station. Specific program tasks are described and results presented.

  18. The Environment Friendly Power Source for Power Supply of Mobile Communication Base Stations

    NASA Astrophysics Data System (ADS)

    Rudenko, N. V.; Ershov, V. V.; Evstafiev, V. V.

    2017-05-01

    The article describes the technical proposals to improve environmental and resource characteristics of the autonomous power supply systems of mobile communication base stations based on renewable energy sources, while ensuring the required reliability and security of power supply. These include: the replacement of diesel-generator with clean energy source - an electrochemical generator based on hydrogen fuel cells; the use of wind turbines with a vertical axis; use of specialized batteries. Based on the analysis of the know technical solutions, the structural circuit diagram of the hybrid solar-wind-hydrogen power plant and the basic principles of the algorithm of its work were proposed. The implementation of these proposals will improve the environmental and resource characteristics.

  19. Concentrating Solar Power Projects - Parabolic Trough Projects |

    Science.gov Websites

    Project Godawari Solar Project Gujarat Solar One Gulang 100MW Thermal Oil Parabolic Trough project Guzmán Kuraymat (ISCC Kuraymat) Kathu Solar Park KaXu Solar One KVK Energy Solar Project La Africana La Dehesa La Power Facility Nevada Solar One (NSO) NOOR I NOOR II Olivenza 1 Orellana Palma del Río I Palma del Río

  20. Concentrating Solar Power Projects - Hami 50 MW CSP Project | Concentrating

    Science.gov Websites

    Solar Power | NREL Hami 50 MW CSP Project Status Date: April 6, 2018 Project Overview Project MW Status: Under construction Do you have more information, corrections, or comments? Background Technology: Power tower Status: Under construction Country: China City: Hami Region: Xinjiang Autonomous

  1. Applicability of 100kWe-class of space reactor power systems to NASA manned space station missions

    NASA Technical Reports Server (NTRS)

    Silverman, S. W.; Willenberg, H. J.; Robertson, C.

    1985-01-01

    An assessment is made of a manned space station operating with sufficiently high power demands to require a multihundred kilowatt range electrical power system. The nuclear reactor is a competitor for supplying this power level. Load levels were selected at 150kWe and 300kWe. Interactions among the reactor electrical power system, the manned space station, the space transportation system, and the mission were evaluated. The reactor shield and the conversion equipment were assumed to be in different positions with respect to the station; on board, tethered, and on a free flyer platform. Mission analyses showed that the free flyer concept resulted in unacceptable costs and technical problems. The tethered reactor providing power to an electrolyzer for regenerative fuel cells on the space station, results in a minimum weight shield and can be designed to release the reactor power section so that it moves to a high altitude orbit where the decay period is at least 300 years. Placing the reactor on the station, on a structural boom is an attractive design, but heavier than the long tethered reactor design because of the shield weight for manned activity near the reactor.

  2. TEP Power Partners Project [Tucson Electric Power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2014-02-06

    The Arizona Governor’s Office of Energy Policy, in partnership with Tucson Electric Power (TEP), Tendril, and Next Phase Energy (NPE), formed the TEP Power Partners pilot project to demonstrate how residential customers could access their energy usage data and third party applications using data obtained from an Automatic Meter Reading (AMR) network. The project applied for and was awarded a Smart Grid Data Access grant through the U.S. Department of Energy. The project participants’ goal for Phase I is to actively engage 1,700 residential customers to demonstrate sustained participation, reduction in energy usage (kWh) and cost ($), and measure relatedmore » aspects of customer satisfaction. This Demonstration report presents a summary of the findings, effectiveness, and customer satisfaction with the 15-month TEP Power Partners pilot project. The objective of the program is to provide residential customers with energy consumption data from AMR metering and empower these participants to better manage their electricity use. The pilot recruitment goals included migrating 700 existing customers from the completed Power Partners Demand Response Load Control Project (DRLC), and enrolling 1,000 new participants. Upon conclusion of the project on November 19, 2013; 1,390 Home Area Networks (HANs) were registered; 797 new participants installed a HAN; Survey respondents’ are satisfied with the program and found value with a variety of specific program components; Survey respondents report feeling greater control over their energy usage and report taking energy savings actions in their homes after participating in the program; On average, 43 % of the participants returned to the web portal monthly and 15% returned weekly; and An impact evaluation was completed by Opinion Dynamics and found average participant savings for the treatment period1 to be 2.3% of their household use during this period.2 In total, the program saved 163 MWh in the treatment period of 2013.« less

  3. Conceptual planning for Space Station life sciences human research project

    NASA Technical Reports Server (NTRS)

    Primeaux, Gary R.; Miller, Ladonna J.; Michaud, Roger B.

    1986-01-01

    The Life Sciences Research Facility dedicated laboratory is currently undergoing system definition within the NASA Space Station program. Attention is presently given to the Humam Research Project portion of the Facility, in view of representative experimentation requirement scenarios and with the intention of accommodating the Facility within the Initial Operational Capability configuration of the Space Station. Such basic engineering questions as orbital and ground logistics operations and hardware maintenance/servicing requirements are addressed. Biospherics, calcium homeostasis, endocrinology, exercise physiology, hematology, immunology, muscle physiology, neurosciences, radiation effects, and reproduction and development, are among the fields of inquiry encompassed by the Facility.

  4. Grumman evaluates Space Station thermal control and power systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kandebo, S.W.

    1985-09-01

    Attention is given to the definition of requirements for the NASA Space Station's electrical power and thermal control systems, which must be highly dependable to minimize the need for external support and will embody a highly flexible modular design concept. Module maintenance will be performed by in-orbit replacement of failed modules, and energy storage system growth will be accomplished by the incorporation of additional modules. Both photovoltaic and solar heat-driven electrical generator concepts are under consideration as the basis of the power system.

  5. WEAPONS STORAGE AREA, LOOKING TOWARD ELECTRIC POWER STATION BUILDING (BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    WEAPONS STORAGE AREA, LOOKING TOWARD ELECTRIC POWER STATION BUILDING (BUILDING 3583), STORAGE BUILDING (BUILDING 3584)NIGHT AND SECURITY POLICE ENTRY CONTROL (BUILDING 3582)LEFT. VIEW TO NORTHEAST - Plattsburgh Air Force Base, U.S. Route 9, Plattsburgh, Clinton County, NY

  6. Augmentation of the space station module power management and distribution breadboard

    NASA Technical Reports Server (NTRS)

    Walls, Bryan; Hall, David K.; Lollar, Louis F.

    1991-01-01

    The space station module power management and distribution (SSM/PMAD) breadboard models power distribution and management, including scheduling, load prioritization, and a fault detection, identification, and recovery (FDIR) system within a Space Station Freedom habitation or laboratory module. This 120 VDC system is capable of distributing up to 30 kW of power among more than 25 loads. In addition to the power distribution hardware, the system includes computer control through a hierarchy of processes. The lowest level consists of fast, simple (from a computing standpoint) switchgear that is capable of quickly safing the system. At the next level are local load center processors, (LLP's) which execute load scheduling, perform redundant switching, and shed loads which use more than scheduled power. Above the LLP's are three cooperating artificial intelligence (AI) systems which manage load prioritizations, load scheduling, load shedding, and fault recovery and management. Recent upgrades to hardware and modifications to software at both the LLP and AI system levels promise a drastic increase in speed, a significant increase in functionality and reliability, and potential for further examination of advanced automation techniques. The background, SSM/PMAD, interface to the Lewis Research Center test bed, the large autonomous spacecraft electrical power system, and future plans are discussed.

  7. 77 FR 47680 - Entergy Nuclear Operations, Inc.; Pilgrim Nuclear Power Station Receipt of Request for Action

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-09

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-293; License No. DPR-35; NRC-2012-0186] Entergy Nuclear Operations, Inc.; Pilgrim Nuclear Power Station Receipt of Request for Action Notice is hereby... the Commission) take action with regard to the Pilgrim Nuclear Power Station (Pilgrim). The Petitioner...

  8. Space station WP-04 power system. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Hallinan, G. J.

    1987-01-01

    Major study activities and results of the phase B study contract for the preliminary design of the space station Electrical Power System (EPS) are summarized. The areas addressed include the general system design, man-tended option, automation and robotics, evolutionary growth, software development environment, advanced development, customer accommodations, operations planning, product assurance, and design and development phase planning. The EPS consists of a combination photovoltaic and solar dynamic power generation subsystem and a power management and distribution (PMAD) subsystem. System trade studies and costing activities are also summarized.

  9. Simulation test beds for the space station electrical power system

    NASA Technical Reports Server (NTRS)

    Sadler, Gerald G.

    1988-01-01

    NASA Lewis Research Center and its prime contractor are responsible for developing the electrical power system on the space station. The power system will be controlled by a network of distributed processors. Control software will be verified, validated, and tested in hardware and software test beds. Current plans for the software test bed involve using real time and nonreal time simulations of the power system. This paper will discuss the general simulation objectives and configurations, control architecture, interfaces between simulator and controls, types of tests, and facility configurations.

  10. Thermal control system for Space Station Freedom photovoltaic power module

    NASA Technical Reports Server (NTRS)

    Hacha, Thomas H.; Howard, Laura

    1994-01-01

    The electric power for Space Station Freedom (SSF) is generated by the solar arrays of the photovoltaic power modules (PVM's) and conditioned, controlled, and distributed by a power management and distribution system. The PVM's are located outboard of the alpha gimbals of SSF. A single-phase thermal control system is being developed to provide thermal control of PVM electrical equipment and energy storage batteries. This system uses ammonia as the coolant and a direct-flow deployable radiator. The description and development status of the PVM thermal control system is presented.

  11. Thermal control system for Space Station Freedom photovoltaic power module

    NASA Technical Reports Server (NTRS)

    Hacha, Thomas H.; Howard, Laura S.

    1992-01-01

    The electric power for Space Station Freedom (SSF) is generated by the solar arrays of the photovoltaic power modules (PVM's) and conditioned, controlled, and distributed by a power management and distribution system. The PVM's are located outboard of the alpha gimbals of SSF. A single-phase thermal control system is being developed to provide thermal control of PVM electrical equipment and energy storage batteries. This system uses ammonia as the coolant and a direct-flow deployable radiator. This paper presents the description and development status of the PVM thermal control system.

  12. 76 FR 28983 - Media Bureau Seeks Comment on the Economic Impact of Low-Power FM Stations on Full-Service...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-19

    ... the Economic Impact of Low-Power FM Stations on Full-Service Commercial FM Stations AGENCY: Federal... comments on the economic impact of low-power FM stations on full-service commercial FM stations in connection with the Commission's preparation of an economic study and report due to Congress, as required by...

  13. Space Power Facility at NASA’s Plum Brook Station

    NASA Image and Video Library

    1969-02-21

    Exterior view of the Space Power Facility at the National Aeronautics and Space Administration’s (NASA) Plum Brook Station in Sandusky, Ohio. The $28.4-million facility, which began operations in 1969, is the largest high vacuum chamber ever built. The chamber is 100 feet in diameter and 120 feet high. It produces a vacuum deep enough to simulate the conditions at 300 miles altitude. The facility can sustain a high vacuum; simulate solar radiation via a 4-megawatt quartz heat lamp array, solar spectrum by a 400-kilowatt arc lamp, and cold environments. The Space Power Facility was originally designed to test nuclear power sources for spacecraft during long durations in a space atmosphere, but it was never used for that purpose. The facility’s first test in 1970 involved a 15 to 20-kilowatt Brayton Cycle Power System for space applications. Three different methods of simulating solar heat were employed during the Brayton tests. The facility was also used for jettison tests of the Centaur Standard Shroud. The shroud was designed for the new Titan-Centaur rocket that was scheduled to launch the Viking spacecraft to Mars. The new shroud was tested under conditions that simulated the time from launch to the separation of the stages. Test programs at the facility include high-energy experiments, shroud separation tests, Mars Lander system tests, deployable Solar Sail tests and International Space Station hardware tests.

  14. [Water-soluble anions of atmosphere on Tianwan nuclear power station].

    PubMed

    Zhao, Heng-Qiang; He, Ying; Zheng, Xiao-Ling; Chen, Fa-Rong; Pang, Shi-Ping; Wang, Cai-Xia; Wang, Xiao-Ru

    2010-11-01

    Three major water-soluble anions (Cl-, SO4(2-) and NO3-) in the atmosphere of the Tianwan nuclear power station in Lianyungang were determined by ion chromatography from June 2005 to May 2006. The results showed that the annual average concentration of Cl-, SO4(2-) and NO3- in the atmosphere of Tianwan nuclear power station was (33.12 +/- 53.63) microg x m(-3), (53.34 +/- 30.34) microg x m(-3) and (8.34 +/- 4.47) microg x m(-3), respectively. The concentrations of the three water-soluble anions showed evident trend of seasonal variation. The concentrations of Cl-, SO4(2-) reached the highest level in summer and the lowest level in winter, while the concentration of NO3- in autumn and winter was higher than those in summer and spring. Meteorological parameters such as wind direction, wind speed, temperature and relative humidity were studied and showed definite influence to the anions concentration of the atmosphere. This is the first simultaneous monitoring of corrosive anions in the atmosphere of Chinese coastal nuclear power plant, and it will provide basis for the prevention of marine atmospheric corrosion, which will ensure the safely operating of our nuclear power industry.

  15. In situ monitoring of animal micronuclei before the operation of Daya Bay Nuclear Power Station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Y.N. Cai; H.Y. He; L.M. Qian

    1994-12-31

    Daya Bay Nuclear Power Station, a newly-built nuclear power station in southern mainland China, started its operation in 1993. We examined micro-nucleated cells of Invertibrate (Bivalves) and Vertibrate (Fish and Amphibia) in different spots within the 50km surroundings of the Power Station during 1986-1993. This paper reports the results of the investigation carried out in Dong Shan, a place 4.7km to the Power Station:Bivalves; Pteria martensil 5.1(1986),4.8(1988),4.8(1991),5,0(1993),Mytilus smardinus 4.7(1987),4.6(1988); Chamys nobilis 4.9(1987);4.9(1991),4.5(1992),4.5(1993). Fish; Therapon jarbua 0.48(1991),0.67(1992),0.47(1993). Amphibia; Bufo melanostictus 0.29 (1987), 0.34(1988),0.39(1992),0.39(1993). These results showed that the environmental situation, estimated by using the frequencies of micronucleated cells, was stable-there wasmore » no obvious chromosome damage in the animals studied. It was found that the incidence of micronucleated cells of Bivalves was higher than that of Fish and Amphibia, suggesting the epithelial cells to be more sensitive than peripheral erythrocytes to environmental genotoxic effects. The results of our studies for other spots will be reported afterward. These data can be used as the original background information to monitor the environment when the Nuclear Power Station is in operation.« less

  16. Prognostic Modeling of Valve Degradation within Power Stations

    DTIC Science & Technology

    2014-10-02

    from the University of Strathclyde in 2013. His PhD focuses on condition monitoring and prognostics for tidal turbines , in collaboration with Andritz...Hydro Hammerfest, a leading tidal turbine manufacturer. Victoria M. Catterson is a Lecturer within the Institute for Energy and Environment at the...based method. Case study data is generated through simulation of valves within a 400MW Combined Cycle Gas Turbine power station. High fidelity

  17. Preliminary site evaluation report on Potomac Electric Power Company's proposed station H. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-06-01

    This report provides a preliminary environmental assessment of two 375-MW Coal Gasification-Combined Cycle (GCC) units which the Potomac Electric Power Company proposes to construct on their existing Dickerson Generating Station site in western Montgomery County, Maryland. A mass-burn municipal solid-waste incinerator is also proposed at the site by Montgomery County. Research on the GCC technology and data for the air, land, and water environs in and around the site indicates that the proposed GCC technology offers substantial engineering, environmental, and economic benefits. Overall environmental impacts should be less than those anticipated for a comparably sized pulverized-coal power plant. Projected air,more » land, and water impacts appear to be within any applicable regulatory standards or limitations. However, four areas of concern were identified which could be of significant consequence to the suitability of the site. Recommendations are provided for detailed site evaluations including monitoring recommendations to fill data or information gaps.« less

  18. Space Station Freedom electric power system availability study

    NASA Technical Reports Server (NTRS)

    Turnquist, Scott R.

    1990-01-01

    The results are detailed of follow-on availability analyses performed on the Space Station Freedom electric power system (EPS). The scope includes analyses of several EPS design variations, these are: the 4-photovoltaic (PV) module baseline EPS design, a 6-PV module EPS design, and a 3-solar dynamic module EPS design which included a 10 kW PV module. The analyses performed included: determining the discrete power levels that the EPS will operate at upon various component failures and the availability of each of these operating states; ranking EPS components by the relative contribution each component type gives to the power availability of the EPS; determining the availability impacts of including structural and long-life EPS components in the availability models used in the analyses; determining optimum sparing strategies, for storing space EPS components on-orbit, to maintain high average-power-capability with low lift-mass requirements; and analyses to determine the sensitivity of EPS-availability to uncertainties in the component reliability and maintainability data used.

  19. Saguaro Power Plant Solar Repowering Project. Volume II. System requirements specification. Final technical report, September 1979-July 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, E.R.

    1980-07-01

    This specification defines the system and subsystem characteristics, design requirements, and system environmental requirements for the Saguaro Power Plant Solar Repowering Project. This project involves the solar repowering of all (120.2 MWe gross) of the 115 MWe net power No. One steam-Rankine unit of the Arizona Public Service Company's Saguaro station. The receiver heat transport fluid is draw salt (60% sodium nitrate and 40% potassium nitrate) that is also used to provide 3.8 hours of sensible heat thermal energy storage. The quad-cavity type receiver is mounted on a tower within a single surrounding collector field of 10,500 second generation heliostats.

  20. 75 FR 52374 - National Environmental Policy Act; NASA Glenn Research Center Plum Brook Station Wind Farm Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-25

    ...; NASA Glenn Research Center Plum Brook Station Wind Farm Project AGENCY: National Aeronautics and Space... Environmental Impact Statement (EIS) for the NASA GRC Plum Brook Station Wind Farm Project located near Sandusky... obtain public comments on construction and operation of the wind farm. The purpose of constructing and...

  1. NPDES Permit for Potomac Electric Power Company (PEPCO) Benning Generating Station

    EPA Pesticide Factsheets

    Under National Pollutant Discharge Elimination System permit number DC0000094, the Potomac Electric Power Company (PEPCO) Benning Generating Station is authorized to discharge from from a facility to receiving waters named Anacostia River.

  2. 77 FR 12885 - Millstone Power Station, Units 1, 2 and 3, Dominion Nuclear Connecticut, Inc.; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-02

    ... high wind conditions pass, wind damage to the plant and surrounding area might preclude a sufficient... Power Station, Units 1, 2 and 3, Dominion Nuclear Connecticut, Inc.; Exemption 1.0 Background Dominion..., DPR-65 and NPF-49, which authorize operation of the Millstone Power Station, Unit Nos. 1, 2 and 3...

  3. The Systems Autonomy Demonstration Project - Catalyst for Space Station advanced automation

    NASA Technical Reports Server (NTRS)

    Healey, Kathleen J.

    1988-01-01

    The Systems Autonomy Demonstration Project (SADP) was initiated by NASA to address the advanced automation needs for the Space Station program. The application of advanced automation to the Space Station's operations management system (OMS) is discussed. The SADP's future goals and objectives are discussed with respect to OMS functional requirements, design, and desired evolutionary capabilities. Major technical challenges facing the designers, developers, and users of the OMS are identified in order to guide the definition of objectives, plans, and scenarios for future SADP demonstrations, and to focus the efforts on the supporting research.

  4. Concentrating Solar Power Projects in Australia | Concentrating Solar Power

    Science.gov Websites

    ‚¬"alphabetical by project name. You can browse a project profile by clicking on the project name | NREL Australia Concentrating solar power (CSP) projects in Australia are listed belowââ

  5. Historical and projected power requirements

    NASA Technical Reports Server (NTRS)

    Wolfe, M. G.

    1978-01-01

    Policy planning for projected space power requirements is discussed. Topics of discussion cover: (1) historical space power trends (prime power requirements and power system costs); and (2) two approaches to future space power requirements (mission/traffic model approach and advanced system scenario approach). Graphs, tables, and flow charts are presented.

  6. The AP1000{sup R} nuclear power plant innovative features for extended station blackout mitigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vereb, F.; Winters, J.; Schulz, T.

    2012-07-01

    Station Blackout (SBO) is defined as 'a condition wherein a nuclear power plant sustains a loss of all offsite electric power system concurrent with turbine trip and unavailability of all onsite emergency alternating current (AC) power system. Station blackout does not include the loss of available AC power to buses fed by station batteries through inverters or by alternate AC sources as defined in this section, nor does it assume a concurrent single failure or design basis accident...' in accordance with Reference 1. In this paper, the innovative features of the AP1000 plant design are described with their operation inmore » the scenario of an extended station blackout event. General operation of the passive safety systems are described as well as the unique features which allow the AP1000 plant to cope for at least 7 days during station blackout. Points of emphasis will include: - Passive safety system operation during SBO - 'Fail-safe' nature of key passive safety system valves; automatically places the valve in a conservatively safe alignment even in case of multiple failures in all power supply systems, including normal AC and battery backup - Passive Spent Fuel Pool cooling and makeup water supply during SBO - Robustness of AP1000 plant due to the location of key systems, structures and components required for Safe Shutdown - Diverse means of supplying makeup water to the Passive Containment Cooling System (PCS) and the Spent Fuel Pool (SFP) through use of an engineered, safety-related piping interface and portable equipment, as well as with permanently installed onsite ancillary equipment. (authors)« less

  7. Environmental interactions of the Space Station Freedom electric power system

    NASA Technical Reports Server (NTRS)

    Nahra, Henry K.; Lu, Cheng-Yi

    1991-01-01

    The Space Station Freedom operates in a low earth orbit (LEO) environment. Such operation results in different potential interactions with the Space Station systems including the Electric Power System (EPS). These potential interactions result in environmental effects which include neutral species effects such as atomic oxygen erosion, effects of micrometeoroid and orbital debris impacts, plasma effects, ionizing radiation, and induced contamination degradation effects. The EPS design and its interactions with the LEO environment are briefly described and the results of analyses and testing programs planned and performed thus far to resolve environmental concerns related to the EPS and its function in LEO environment.

  8. 76 FR 72007 - ZionSolutions, LLC; Zion Nuclear Power Station, Units 1 and 2; Exemption From Certain Security...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-21

    ...; Zion Nuclear Power Station, Units 1 and 2; Exemption From Certain Security Requirements 1.0 Background Zion Nuclear Power Station (ZNPS or Zion), Unit 1, is a Westinghouse 3250 MWt Pressurized Water Reactor... activities in nuclear power reactors against radiological sabotage,'' paragraph (b)(1) states, ``The licensee...

  9. 47 CFR 15.216 - Disclosure requirements for wireless microphones and other low power auxiliary stations capable...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... microphones and other low power auxiliary stations capable of operating in the core TV bands. 15.216 Section... wireless microphones and other low power auxiliary stations capable of operating in the core TV bands. (a... capable of operating in the core TV bands (channels 2-51, excluding channel 37) is subject to the...

  10. 25 CFR 169.27 - Power projects.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Power projects. 169.27 Section 169.27 Indians BUREAU OF... projects. (a) The Act of March 4, 1911 (36 Stat. 1253), as amended by the Act of May 27, 1952 (66 Stat. 95... on any project for the generation of electric power, or the transmission or distribution of...

  11. 25 CFR 169.27 - Power projects.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 1 2014-04-01 2014-04-01 false Power projects. 169.27 Section 169.27 Indians BUREAU OF... projects. (a) The Act of March 4, 1911 (36 Stat. 1253), as amended by the Act of May 27, 1952 (66 Stat. 95... on any project for the generation of electric power, or the transmission or distribution of...

  12. 25 CFR 169.27 - Power projects.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 1 2012-04-01 2011-04-01 true Power projects. 169.27 Section 169.27 Indians BUREAU OF... projects. (a) The Act of March 4, 1911 (36 Stat. 1253), as amended by the Act of May 27, 1952 (66 Stat. 95... on any project for the generation of electric power, or the transmission or distribution of...

  13. 25 CFR 169.27 - Power projects.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false Power projects. 169.27 Section 169.27 Indians BUREAU OF... projects. (a) The Act of March 4, 1911 (36 Stat. 1253), as amended by the Act of May 27, 1952 (66 Stat. 95... on any project for the generation of electric power, or the transmission or distribution of...

  14. Concentrating Solar Power Projects in Greece | Concentrating Solar Power |

    Science.gov Websites

    ;alphabetical by project name. You can browse a project profile by clicking on the project name. MINOS NREL Greece Concentrating solar power (CSP) projects in Greece are listed belowâ€"

  15. Concentrating Solar Power Projects in Algeria | Concentrating Solar Power |

    Science.gov Websites

    ;alphabetical by project name. You can browse a project profile by clicking on the project name. ISCC Hassi NREL Algeria Concentrating solar power (CSP) projects in Algeria are listed belowâ€"

  16. Concentrating Solar Power Projects in Thailand | Concentrating Solar Power

    Science.gov Websites

    ;alphabetical by project name. You can browse a project profile by clicking on the project name. Thai Solar | NREL Thailand Concentrating solar power (CSP) projects in Thailand are listed belowâ€"

  17. Concentrating Solar Power Projects in Israel | Concentrating Solar Power |

    Science.gov Websites

    ;alphabetical by project name. You can browse a project profile by clicking on the project name. Ashalim Ashalim NREL Israel Concentrating solar power (CSP) projects in Israel are listed belowâ€"

  18. Concentrating Solar Power Projects in Egypt | Concentrating Solar Power |

    Science.gov Websites

    ;alphabetical by project name. You can browse a project profile by clicking on the project name. ISCC Kuraymat NREL Egypt Concentrating solar power (CSP) projects in Egypt are listed belowâ€"

  19. Concentrating Solar Power Projects in Kuwait | Concentrating Solar Power |

    Science.gov Websites

    ;alphabetical by project name. You can browse a project profile by clicking on the project name. Shagaya CSP NREL Kuwait Concentrating solar power (CSP) projects in Kuwait are listed belowâ€"

  20. Concentrating Solar Power Projects in Turkey | Concentrating Solar Power |

    Science.gov Websites

    ;alphabetical by project name. You can browse a project profile by clicking on the project name. Greenway CSP NREL Turkey Concentrating solar power (CSP) projects in Turkey are listed belowâ€"

  1. Concentrating Solar Power Projects in Italy | Concentrating Solar Power |

    Science.gov Websites

    ;alphabetical by project name. You can browse a project profile by clicking on the project name. Archimede ASE NREL Italy Concentrating solar power (CSP) projects in Italy are listed belowâ€"

  2. Concentrating Solar Power Projects in Chile | Concentrating Solar Power |

    Science.gov Websites

    ;alphabetical by project name. You can browse a project profile by clicking on the project name. Atacama-1 NREL Chile Concentrating solar power (CSP) projects in Chile are listed belowâ€"

  3. FUEL CELL OPERATION ON LANDFILL GAS AT PENROSE POWER STATION

    EPA Science Inventory

    This demonstration test successfully demonstrated operation of a commercial phosphoric acid fuel cell (FC) on landfill gas (LG) at the Penrose Power Station in Sun Valley, CA. Demonstration output included operation up to 137 kW; 37.1% efficiency at 120 kW; exceptionally low sec...

  4. Concentrating Solar Power Projects by Country | Concentrating Solar Power |

    Science.gov Websites

    NREL Country In this section, you can select a country from the map or the following list of countries. You can then select a specific concentrating solar power (CSP) project and review a profile covering project basics, participating organizations, and power plant configuration data for the solar

  5. PROGRESS REPORT: COFIRING PROJECTS FOR WILLOW ISLAND AND ALBRIGHT GENERATING STATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    K. Payette; D. Tillman

    During the period April 1, 2001--June 30, 2001, Allegheny Energy Supply Co., LLC (Allegheny) accelerated construction of the Willow Island cofiring project, completed the installation of foundations for the fuel storage facility, the fuel receiving facility, and the processing building. Allegheny received all processing equipment to be installed at Willow Island. Allegheny completed the combustion modeling for the Willow Island project. During this time period construction of the Albright Generating Station cofiring facility was completed, with few items left for final action. The facility was dedicated at a ceremony on June 29. Initial testing of cofiring at the facility commenced.more » This report summarizes the activities associated with the Designer Opportunity Fuel program, and demonstrations at Willow Island and Albright Generating Stations. It details the construction activities at both sites along with the combustion modeling at the Willow Island site.« less

  6. Concentrating Solar Power Projects in India | Concentrating Solar Power |

    Science.gov Websites

    ;alphabetical by project name. You can browse a project profile by clicking on the project name. Abhijeet Solar Project ACME Solar Tower Dadri ISCC Plant Dhursar Diwakar Godawari Solar Project Gujarat Solar One KVK Energy Solar Project Megha Solar Plant National Solar Thermal Power Facility

  7. Concentrating Solar Power Projects in Denmark | Concentrating Solar Power |

    Science.gov Websites

    ;alphabetical by project name. You can browse a project profile by clicking on the project name. Aalborg CSP-Brà NREL Denmark Concentrating solar power (CSP) projects in Denmark are listed belowâ€"

  8. Concentrating Solar Power Projects in Canada | Concentrating Solar Power |

    Science.gov Websites

    ;alphabetical by project name. You can browse a project profile by clicking on the project name. City of NREL Canada Concentrating solar power (CSP) projects in Canada are listed belowâ€"

  9. Concentrating Solar Power Projects in France | Concentrating Solar Power |

    Science.gov Websites

    ;alphabetical by project name. You can browse a project profile by clicking on the project name. eLLO Solar NREL France Concentrating solar power (CSP) projects in France are listed belowâ€"

  10. Concentrating Solar Power Projects in Mexico | Concentrating Solar Power |

    Science.gov Websites

    ;alphabetical by project name. You can browse a project profile by clicking on the project name. Agua Prieta II NREL Mexico Concentrating solar power (CSP) projects in Mexico are listed belowâ€"

  11. Concentrating Solar Power Projects in Germany | Concentrating Solar Power |

    Science.gov Websites

    ;alphabetical by project name. You can browse a project profile by clicking on the project name. Jülich Solar NREL Germany Concentrating solar power (CSP) projects in Germany are listed belowâ€"

  12. IYL project: pinky-powered photons

    NASA Astrophysics Data System (ADS)

    Dreyer, Elizabeth F. C.; Aku-Leh, Cynthia; Nees, John A.; Sala, Anca L.; Smith, Arlene; Jones, Timothy

    2016-09-01

    Pinky-powered Photons is an activity created by the Michigan Light Project during the International Year of Light to encourage creativity in learning about light. It is a low-cost project. Participants make and take home a colorful LED light powered entirely by their fingers. Younger visitors "package" the electrical element into their own creation while older visitors solder the electrical parts together and then create their own design. This paper will detail the learning objectives and outcomes of this project as well as how to implement it in an outreach event or classroom.

  13. On the possibility of generation of cold and additional electric energy at thermal power stations

    NASA Astrophysics Data System (ADS)

    Klimenko, A. V.; Agababov, V. S.; Borisova, P. N.

    2017-06-01

    A layout of a cogeneration plant for centralized supply of the users with electricity and cold (ECCG plant) is presented. The basic components of the plant are an expander-generator unit (EGU) and a vapor-compression thermotransformer (VCTT). At the natural-gas-pressure-reducing stations, viz., gas-distribution stations and gas-control units, the plant is connected in parallel to a throttler and replaces the latter completely or partially. The plant operates using only the energy of the natural gas flow without burning the gas; therefore, it can be classified as a fuelless installation. The authors compare the thermodynamic efficiencies of a centralized cold supply system based on the proposed plant integrated into the thermal power station scheme and a decentralized cold supply system in which the cold is generated by electrically driven vapor-compression thermotransformers installed on the user's premises. To perform comparative analysis, the exergy efficiency was taken as the criterion since in one of the systems under investigation the electricity and the cold are generated, which are energies of different kinds. It is shown that the thermodynamic efficiency of the power supply using the proposed plant proves to be higher within the entire range of the parameters under consideration. The article presents the results of investigating the impact of the gas heating temperature upstream from the expander on the electric power of the plant, its total cooling capacity, and the cooling capacities of the heat exchangers installed downstream from the EGU and the evaporator of the VCTT. The results of calculations are discussed that show that the cold generated at the gas-control unit of a powerful thermal power station can be used for the centralized supply of the cold to the ventilation and conditioning systems of both the buildings of the power station and the neighboring dwelling houses, schools, and public facilities during the summer season.

  14. 75 FR 10833 - In the Matter of Entergy Nuclear Operations; Vermont Yankee Nuclear Power Station; Demand for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-09

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 05000271; License No. DPR-28; EA-10-034; NRC-2010-0089] In the Matter of Entergy Nuclear Operations; Vermont Yankee Nuclear Power Station; Demand for.... The license authorizes the operation of the Vermont Yankee Nuclear Power Station (Vermont Yankee) in...

  15. Space solar power stations. Problems of energy generation and using its on the earth surface and nearest cosmos

    NASA Astrophysics Data System (ADS)

    Sinkevich, OA; Gerasimov, DN; Glazkov, VV

    2017-11-01

    Three important physical and technical problems for solar power stations (SPS) are considered: collection of solar energy and effective conversion of this energy to electricity in space power stations, energy transportation by the microwave beam to the Earth surface and direct utilization of the microwave beam energy for global environmental problems. Effectiveness of solar energy conversion into electricity in space power stations using gas and steam turbines plants, and magneto-hydrodynamic generator (MHDG) are analyzed. The closed cycle MHDG working on non-equilibrium magnetized plasmas of inert gases seeded with the alkaline metal vapors are considered. The special emphases are placed on MHDG and gas-turbine installations that are operating without compressor. Also opportunities for using the produced by space power stations energy for ecological needs on Earth and in Space are discussed.

  16. A project of upgrading the operations control system of the Hungarian electric power system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oroszki, L.; Kovacs, G.

    About 20 years ago an on-line EMS/SCADA system replaced the previously used off-line control system in the Hungarian power system. The system that has met the technological requirements of that time now became obsolete. A project started in 1995 by the Hungarian Power Companies, Ltd. (MVM Rt.), the regional utility companies and the power plant companies, with funding through a World Bank loan to cover international procurement, aims to upgrade that system into a complex, intelligent and state-of-the-art process control system. The new hierarchical system will rely on a distributed computer network structure, universally accepted hardware/software interface standards and communicationmore » protocols and use hardware platform independent software. The automatic generation control, performed from the National Dispatch Centre, will have expanded functionality, the most important single item of this will be the inclusion of automatic voltage/var control. The upgrading project includes the replacement of the substation and power plant remote terminal units and the installation of a telecommunication network to provide this telecontrol system with the necessary communications links. The supply contracts for both the master station and the remote terminal unit parts were awarded to the winners of open international bidding processes. In the project implementation MVM has the overall responsibility and works with assistance from international and Hungarian engineering firms.« less

  17. 14. PROJECT PLAN, INTAKE PIER, RAW WATER CONDUITS, PUMPING STATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. PROJECT PLAN, INTAKE PIER, RAW WATER CONDUITS, PUMPING STATION FORCE MAINS, TREATED WATER PIPELINES, AND FILTRATION PLANT, SHEET 1 OF 117, 1920. - Sacramento River Water Treatment Plant Intake Pier & Access Bridge, Spanning Sacramento River approximately 175 feet west of eastern levee on river; roughly .5 mile downstream from confluence of Sacramento & American Rivers, Sacramento, Sacramento County, CA

  18. Forecast Inaccuracies in Power Plant Projects From Project Managers' Perspectives

    NASA Astrophysics Data System (ADS)

    Sanabria, Orlando

    Guided by organizational theory, this phenomenological study explored the factors affecting forecast preparation and inaccuracies during the construction of fossil fuel-fired power plants in the United States. Forecast inaccuracies can create financial stress and uncertain profits during the project construction phase. A combination of purposeful and snowball sampling supported the selection of participants. Twenty project managers with over 15 years of experience in power generation and project experience across the United States were interviewed within a 2-month period. From the inductive codification and descriptive analysis, 5 themes emerged: (a) project monitoring, (b) cost control, (c) management review frequency, (d) factors to achieve a precise forecast, and (e) factors causing forecast inaccuracies. The findings of the study showed the factors necessary to achieve a precise forecast includes a detailed project schedule, accurate labor cost estimates, monthly project reviews and risk assessment, and proper utilization of accounting systems to monitor costs. The primary factors reported as causing forecast inaccuracies were cost overruns by subcontractors, scope gaps, labor cost and availability of labor, and equipment and material cost. Results of this study could improve planning accuracy and the effective use of resources during construction of power plants. The study results could contribute to social change by providing a framework to project managers to lessen forecast inaccuracies, and promote construction of power plants that will generate employment opportunities and economic development.

  19. Concentrating Solar Power Projects by Project Name | Concentrating Solar

    Science.gov Websites

    Tower Plant Gujarat Solar One Gulang 100MW Thermal Oil Parabolic Trough project Guzmán Hami 50 MW CSP ¼lich Solar Tower Kathu Solar Park KaXu Solar One Khi Solar One Kimberlina Solar Thermal Power Plant Solar Plant MINOS Mojave Solar Project Morón National Solar Thermal Power Facility Nevada Solar One

  20. The manned space station

    NASA Astrophysics Data System (ADS)

    Kovit, B.

    The development and establishment of a manned space station represents the next major U.S. space program after the Space Shuttle. If all goes according to plan, the space station could be in orbit around the earth by 1992. A 'power tower' station configuration has been selected as a 'reference' design. This configuration involves a central truss structure to which various elements are attached. An eight-foot-square truss forms the backbone of a structure about 400 feet long. At its lower end, nearest the earth, are attached pressurized manned modules. These modules include two laboratory modules and two so-called 'habitat/command' modules, which provide living and working space for the projected crew of six persons. Later, the station's pressurized space would be expanded to accommodate up to 18 persons. By comparison, the Soviets will provide habitable space for 12 aboard a 300-ton station which they are expected to place in orbit. According to current plans the six U.S. astronauts will work in two teams of three persons each. A ninety-day tour of duty is considered.

  1. Modelling a reliable wind/PV/storage power system for remote radio base station sites without utility power

    NASA Astrophysics Data System (ADS)

    Bitterlin, Ian F.

    The development of photovoltaic (PV) cells has made steady progress from the early days, when only the USA space program could afford to deploy them, to now, seeing them applied to roadside applications even in our Northern European climes. The manufacturing cost per watt has fallen and the daylight-to-power conversion efficiency increased. At the same time, the perception that the sun has to be directly shining on it for a PV array to work has faded. On some of those roadside applications, particularly for remote emergency telephones or for temporary roadwork signage where a utility electrical power connection is not practical, the keen observer will spot, usually in addition to a PV array, a small wind-turbine and an electrical cabinet quite obviously (by virtue of its volume) containing a storage battery. In the UK, we have the lions share (>40%) of Europe's entire wind power resource although, despite press coverage of the "anti-wind" lobby to the contrary, we have hardly started to harvest this clean and free energy source. Taking this (established and proven) roadside solution one step further, we will consider higher power applications. A cellular phone system is one where a multitude of remote radio base stations (RBS) are required to provide geographical coverage. With networks developing into the so called "3G" technologies the need for base stations has tripled, as each 3G cell covers only 1/3 the geographical area of its "2G" counterpart. To cover >90% of the UK's topology (>97% population coverage) with 3G cellular technology will requires in excess of 12,000 radio base stations per operator network. In 2001, there were around 25,000 established sites and, with an anticipated degree of collocation by necessity, that figure is forecast to rise to >47,000. Of course, the vast majority of these sites have a convenient grid connection. However, it is easy to see that the combination of wind and PV power generation and an energy storage system may be an

  2. Space Station Biological Research Project: Reference Experiment Book

    NASA Technical Reports Server (NTRS)

    Johnson, Catherine (Editor); Wade, Charles (Editor)

    1996-01-01

    The Space Station Biological Research Project (SSBRP), which is the combined efforts of the Centrifuge Facility (CF) and the Gravitational Biology Facility (GBF), is responsible for the development of life sciences hardware to be used on the International Space Station to support cell, developmental, and plant biology research. The SSBRP Reference Experiment Book was developed to use as a tool for guiding this development effort. The reference experiments characterize the research interests of the international scientific community and serve to identify the hardware capabilities and support equipment needed to support such research. The reference experiments also serve as a tool for understanding the operational aspects of conducting research on board the Space Station. This material was generated by the science community by way of their responses to reference experiment solicitation packages sent to them by SSBRP scientists. The solicitation process was executed in two phases. The first phase was completed in February of 1992 and the second phase completed in November of 1995. Representing these phases, the document is subdivided into a Section 1 and a Section 2. The reference experiments contained in this document are only representative microgravity experiments. They are not intended to define actual flight experiments. Ground and flight experiments will be selected through the formal NASA Research Announcement (NRA) and Announcement of Opportunity (AO) experiment solicitation, review, and selection process.

  3. Electric motorcycle charging station powered by solar energy

    NASA Astrophysics Data System (ADS)

    Siriwattanapong, Akarawat; Chantharasenawong, Chawin

    2018-01-01

    This research proposes a design and verification of an off-grid photovoltaic system (PVS) for electric motorcycle charging station to be located in King’s Mongkut’s University of Technology Thonburi, Bangkok, Thailand. The system is designed to work independently (off-grid) and it must be able to fully charge the batteries of a typical passenger electric motorcycle every evening. A 1,000W Toyotron electric motorcycle is chosen for this study. It carries five units of 12.8V 20Ah batteries in series; hence its maximum energy requirement per day is 1,200Wh. An assessment of solar irradiation data and the Generation Factor in Bangkok, Thailand suggests that the charging system consists of one 500W PV panel, an MPPT charge controller, 48V 150Ah battery, a 1,000W DC to AC inverter and other safety devices such as fuses and breakers. An experiment is conducted to verify the viability of the off-grid PVS charging station by collecting the total daily energy generation data in the raining season and winter. The data suggests that the designed off-grid solar power charging station for electric motorcycle is able to supply sufficient energy for daily charging requirements.

  4. 75 FR 58445 - Exelon Generation Company, LLC; Peach Bottom Atomic Power Station Unit Nos. 2 and 3...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-24

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. 50-277 AND 50-278; NRC-2010-0303] Exelon Generation Company, LLC; Peach Bottom Atomic Power Station Unit Nos. 2 and 3; Environmental Assessment and Finding of... Bottom Atomic Power Station (PBAPS), Unit Nos. 2 and 3, located in York and Lancaster Counties...

  5. Reactor engineering support of operations at the Davis-Besse nuclear power station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelley, D.B.

    1995-12-31

    Reactor engineering functions differ greatly from unit to unit; however, direct support of the reactor operators during reactor startups and operational transients is common to all units. This paper summarizes the support the reactor engineers provide the reactor operators during reactor startups and power changes through the use of automated computer programs at the Davis-Besse nuclear power station.

  6. 75 FR 3639 - Revisions to Rules Authorizing the Operation of Low Power Auxiliary Stations in the 698-806 MHz...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-22

    ... 698-806 MHz Band; Public Interest Spectrum Coalition, Petition for Rulemaking Regarding Low Power... Power Auxiliary Stations in the 698-806 MHz Band; Public Interest Spectrum Coalition, Petition for... Operation of Low Power Auxiliary Stations in the 698-806 MHz Band; Public Interest Spectrum Coalition...

  7. Technology for Space Station Evolution. Volume 4: Power Systems/Propulsion/Robotics

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA's Office of Aeronautics and Space Technology (OAST) conducted a workshop on technology for space station evolution on 16-19 Jan. 1990. The purpose of this workshop was to collect and clarify Space Station Freedom technology requirements for evolution and to describe technologies that can potentially fill those requirements. These proceedings are organized into an Executive Summary and Overview and five volumes containing the Technology Discipline Presentations. Volume 4 consists of the technology discipline sections for Power, Propulsion, and Robotics. For each technology discipline, there is a Level 3 subsystem description, along with the papers.

  8. Methane Emissions from Permafrost Regions using Low-Power Eddy Covariance Stations

    NASA Astrophysics Data System (ADS)

    Burba, G.; Sturtevant, C.; Schreiber, P.; Peltola, O.; Zulueta, R.; Mammarella, I.; Haapanala, S.; Rinne, J.; Vesala, T.; McDermitt, D.; Oechel, W.

    2012-04-01

    result, spatial coverage of eddy covariance methane flux measurements remains limited. Remote permafrost wetlands of Arctic tundra, northern boreal peatlands of Canada and Siberia, and other highly methanogenic ecosystems have few eddy covariance methane measurement stations. Those existing are often located near grid power sources and roads rather than in the middle of the methane-producing ecosystem, while those that are placed appropriately may require extraordinary efforts to build and maintain them, with large investments into man-power and infrastructure. Alternatively, open-path approach allows methane flux measurements at ambient pressure without the need for a pump. As a result, the measurements can be done with very low-power (e.g. 5-10 Watts), light (5 .2 kg) instruments permitting solar- and wind- powered remote deployments in hard-to-reach sites from permanent, portable or mobile stations, and cost-effective additions of a methane measurement to the present array of CO2 and H2O measurements. The low-power operation and light weight of open-path eddy covariance stations is important for a number of ecosystems (rice fields, landfills, wetlands, cattle yards), but it is especially important for permafrost regions where grid power and access roads are generally not available, and the logistics of running the experiments are particularly expensive. Emerging research on methane flux measurements using low-power stations equipped with LI-7700 open-path methane analyzer (LI-COR Biosciences) are presented from several permafrost ecosystems with contrasting setups, and weather conditions. Principles of operation, station characteristics and requirements are also discussed.

  9. Development Status: Automation Advanced Development Space Station Freedom Electric Power System

    NASA Technical Reports Server (NTRS)

    Dolce, James L.; Kish, James A.; Mellor, Pamela A.

    1990-01-01

    Electric power system automation for Space Station Freedom is intended to operate in a loop. Data from the power system is used for diagnosis and security analysis to generate Operations Management System (OMS) requests, which are sent to an arbiter, which sends a plan to a commander generator connected to the electric power system. This viewgraph presentation profiles automation software for diagnosis, scheduling, and constraint interfaces, and simulation to support automation development. The automation development process is diagrammed, and the process of creating Ada and ART versions of the automation software is described.

  10. 3. DISTANT VIEW (TO THE NORTHEAST) OF THE POWER STATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. DISTANT VIEW (TO THE NORTHEAST) OF THE POWER STATION (FAR LEFT, WOOD SHED, AND CHANGE HOUSE (CENTER). THE SMALLER ATTACHED SECTION ON THE CHANGE HOUSE SERVED AS THE MINE OFFICE AND RECORDS STORAGE ROOM. - Foster Gulch Mine, Bear Creek 1 mile Southwest of Town of Bear Creek, Red Lodge, Carbon County, MT

  11. An atmosphere protection subsystem in the thermal power station automated process control system

    NASA Astrophysics Data System (ADS)

    Parchevskii, V. M.; Kislov, E. A.

    2014-03-01

    Matters concerned with development of methodical and mathematical support for an atmosphere protection subsystem in the thermal power station automated process control system are considered taking as an example the problem of controlling nitrogen oxide emissions at a gas-and-oil-fired thermal power station. The combined environmental-and-economic characteristics of boilers, which correlate the costs for suppressing emissions with the boiler steam load and mass discharge of nitrogen oxides in analytic form, are used as the main tool for optimal control. A procedure for constructing and applying environmental-and-economic characteristics on the basis of technical facilities available in modern instrumentation and control systems is presented.

  12. Biomass power for rural development. Technical progress report, January 1, 1997--March 31, 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neuhauser, E.

    Detailed task progress reports and schedules are provided for the DOE/USDA sponsored Biomass Power for Rural Development project. The focus of the project is on developing commercial energy crops for power generation by the year 2000. The New York based Salix Consortium project is a multi-partner endeavor, implemented in three stages. Phase-1, Final Design and Project Development, will conclude with the preparation of construction and/or operating permits, feedstock production plans, and contracts ready for signature. Field trials of willow (Salix) have been initiated at several locations in New York (Tully, Lockport, King Ferry, La Fayette, Massena, and Himrod) and co-firingmore » tests are underway at Greenidge Station (NYSEG) and Dunkirk Station (NMPC). Phase-II of the project will focus on scale-up of willow crop acreage, construction of co-firing facilities at Dunkirk Station (NMPC), and final modifications for Greenidge Station. Cofiring willow is also under consideration for GPU`s Seward Station where testing is under way. There will be an evaluation of the energy crop as part of the gasification trials occurring at BED`s McNeill power station. Phase-III will represent fullscale commercialization of the energy crop and power generation on a sustainable basis.« less

  13. Biomass power for rural development. Technical progress report, April 1, 1997--June 30, 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neuhauser, E.

    Detailed task progress reports and schedules are provided for the DOE/USDA sponsored Biomass Power for Rural Development project. The focus of the project is on developing commercial energy crops for power generation by the year 2000. The New York based Salix Consortium project is a multi-partner endeavor, implemented in three stages. Phase-I, Final Design and Project Development, will conclude with the preparation of construction and/or operating permits, feedstock production plans, and contracts ready for signature. Field trials of willow (Salix) have been initiated at several locations in New York (Tully, Lockport, King Ferry, La Fayette, Massena, and Himrod) and co-firingmore » tests are underway at Greenidge Station (NYSEG) and Dunkirk Station (NMPC). Phase-H of the project will focus on scale-up of willow crop acreage, construction of co-firing facilities at Dunkirk Station (NMPC), and final modifications for Greenidge Station. Cofiring willow is also under consideration for GPU`s Seward Station where testing is under way. There will be an evaluation of the energy crop as part of the gasification trials occurring at BED`s McNeill power station. Phase-III will represent fullscale commercialization of the energy crop and power generation on a sustainable basis.« less

  14. PBO Nucleus Project Status: Integration of 209 Existing GPS Stations into the Plate Boundary Observatory

    NASA Astrophysics Data System (ADS)

    Blume, F.; Meertens, C.; Anderson, G.; Eriksson, S.; Boyce, E.

    2007-12-01

    Tectonic and earthquake research in the US has experienced a quiet revolution over the last decade precipitated by the recognition that slow-motion faulting events can both trigger and be triggered by regular earthquakes. Transient motion has now been found in essentially all tectonic environments, and the detection and analysis of such events is the first-order science target of the EarthScope Project. Because of this and a host of other fundamental tectonics questions that can be answered only with long-duration geodetic time series, the incipient 1100-station EarthScope Plate Boundary Observatory (PBO) network has been designed to leverage 445 existing continuous GPS stations whose measurements extend back over a decade. The irreplaceable recording history of these stations will accelerate EarthScope scientific return by providing the highest possible resolution. This resolution will be used to detect and understand transients, to determine the three-dimensional velocity field (particularly vertical motion), and to improve measurement precision by understanding the complex noise sources inherent in GPS. The PBO Nucleus project supports the operation, maintenance and hardware upgrades of a subset of the six western U.S. geodetic networks until they are subsumed by PBO. Uninterrupted data flow from these stations will effectively double the time-series length of PBO over the expected life of EarthScope, and has created, for the first time, a single GPS-based geodetic network in the US. The other existing sites remain in operation under support from non-NSF sources (e.g. the USGS), and EarthScope continues to benefit from their continued operation On the grounds of relevance to EarthScope science goals, geographic distribution and data quality, 209 of the 432 existing stations were selected as the nucleus upon which to build PBO. Conversion of these stations to a PBO-compatible mode of operation was begun under previous funding, and as a result data now flow

  15. Looking east at canal and R. Paul Smith Power Station. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking east at canal and R. Paul Smith Power Station. The dark trestle at right center carried the spur track to coal unloading facilities located in the space now occupied by the coal pile. - Potomac Edison Company, Chesapeake & Ohio Canal Bridge, Spanning C & O Canal South of U.S. 11, Williamsport, Washington County, MD

  16. BOILING NUCLEAR SUPERHEATER (BONUS) POWER STATION. Final Summary Design Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1962-05-01

    The design and construction of the Boiling Nuclear Superheater (BONUS) Power Station at Punta Higuera on the seacoast at the westernmost tip of Puerto Rico are described. The reactor has an output of 17.5 Mw(e). This report will serve as a source of information for personnel engaged in management, evaluation, and training. (N.W.R.)

  17. Reduction technique of drop voltage and power losses to improve power quality using ETAP Power Station simulation model

    NASA Astrophysics Data System (ADS)

    Satrio, Reza Indra; Subiyanto

    2018-03-01

    The effect of electric loads growth emerged direct impact in power systems distribution. Drop voltage and power losses one of the important things in power systems distribution. This paper presents modelling approach used to restructrure electrical network configuration, reduce drop voltage, reduce power losses and add new distribution transformer to enhance reliability of power systems distribution. Restructrure electrical network was aimed to analyse and investigate electric loads of a distribution transformer. Measurement of real voltage and real current were finished two times for each consumer, that were morning period and night period or when peak load. Design and simulation were conduct by using ETAP Power Station Software. Based on result of simulation and real measurement precentage of drop voltage and total power losses were mismatch with SPLN (Standard PLN) 72:1987. After added a new distribution transformer and restructrured electricity network configuration, the result of simulation could reduce drop voltage from 1.3 % - 31.3 % to 8.1 % - 9.6 % and power losses from 646.7 watt to 233.29 watt. Result showed, restructrure electricity network configuration and added new distribution transformer can be applied as an effective method to reduce drop voltage and reduce power losses.

  18. Optimization of waste heat utilization in cold end system of thermal power station based on neural network algorithm

    NASA Astrophysics Data System (ADS)

    Du, Zenghui

    2018-04-01

    At present, the flue gas waste heat utilization projects of coal-fired boilers are often limited by low temperature corrosion problems and conventional PID control. The flue gas temperature cannot be reduced to the best efficiency temperature of wet desulphurization, resulting in the failure of heat recovery to be the maximum. Therefore, this paper analyzes, researches and solves the remaining problems of the cold end system of thermal power station, so as to provide solutions and theoretical support for energy saving and emission reduction and upgrading and the improvement of the comprehensive efficiency of the units.

  19. Autonomous power expert fault diagnostic system for Space Station Freedom electrical power system testbed

    NASA Technical Reports Server (NTRS)

    Truong, Long V.; Walters, Jerry L.; Roth, Mary Ellen; Quinn, Todd M.; Krawczonek, Walter M.

    1990-01-01

    The goal of the Autonomous Power System (APS) program is to develop and apply intelligent problem solving and control to the Space Station Freedom Electrical Power System (SSF/EPS) testbed being developed and demonstrated at NASA Lewis Research Center. The objectives of the program are to establish artificial intelligence technology paths, to craft knowledge-based tools with advanced human-operator interfaces for power systems, and to interface and integrate knowledge-based systems with conventional controllers. The Autonomous Power EXpert (APEX) portion of the APS program will integrate a knowledge-based fault diagnostic system and a power resource planner-scheduler. Then APEX will interface on-line with the SSF/EPS testbed and its Power Management Controller (PMC). The key tasks include establishing knowledge bases for system diagnostics, fault detection and isolation analysis, on-line information accessing through PMC, enhanced data management, and multiple-level, object-oriented operator displays. The first prototype of the diagnostic expert system for fault detection and isolation has been developed. The knowledge bases and the rule-based model that were developed for the Power Distribution Control Unit subsystem of the SSF/EPS testbed are described. A corresponding troubleshooting technique is also described.

  20. Space Station Freedom electrical power system hardware commonality with the United States Polar Platform

    NASA Technical Reports Server (NTRS)

    Rieker, Lorra L.; Haraburda, Francis M.

    1989-01-01

    Information is presented on how the concept of commonality is being implemented with respect to electric power system hardware for the Space Station Freedom and the U.S. Polar Platform. Included is a historical account of the candidate common items which have the potential to serve the same power system functions on both Freedom and the Polar Platform. The Space Station program and objectives are described, focusing on the test and development responsibilities. The program definition and preliminary design phase and the design and development phase are discussed. The goal of this work is to reduce the program cost.

  1. Geopolitical model of investment power station construction project implementation

    NASA Astrophysics Data System (ADS)

    Malafeyev, Oleg; Farvazov, Konstantin; Zenovich, Olga; Zaitseva, Irina; Kostyukov, Konstantin; Svechinskaya, Tatiana

    2018-04-01

    Two geopolitical actors implement a geopolitical project that involves transportaion and storage of some commodities. They interact with each other through a transport network. The network consists of several interconnected vertices. Some of the vetrices are trading hubs, storage spaces, production hubs and goods buyers. Actors wish to satify the demand of buyers and recieve the highest possible profit subject to compromise solution principle. A numerical example is given.

  2. Verification of Space Station Secondary Power System Stability Using Design of Experiment

    NASA Technical Reports Server (NTRS)

    Karimi, Kamiar J.; Booker, Andrew J.; Mong, Alvin C.; Manners, Bruce

    1998-01-01

    This paper describes analytical methods used in verification of large DC power systems with applications to the International Space Station (ISS). Large DC power systems contain many switching power converters with negative resistor characteristics. The ISS power system presents numerous challenges with respect to system stability such as complex sources and undefined loads. The Space Station program has developed impedance specifications for sources and loads. The overall approach to system stability consists of specific hardware requirements coupled with extensive system analysis and testing. Testing of large complex distributed power systems is not practical due to size and complexity of the system. Computer modeling has been extensively used to develop hardware specifications as well as to identify system configurations for lab testing. The statistical method of Design of Experiments (DoE) is used as an analysis tool for verification of these large systems. DOE reduces the number of computer runs which are necessary to analyze the performance of a complex power system consisting of hundreds of DC/DC converters. DoE also provides valuable information about the effect of changes in system parameters on the performance of the system. DoE provides information about various operating scenarios and identification of the ones with potential for instability. In this paper we will describe how we have used computer modeling to analyze a large DC power system. A brief description of DoE is given. Examples using applications of DoE to analysis and verification of the ISS power system are provided.

  3. UMTS Network Stations

    NASA Astrophysics Data System (ADS)

    Hernandez, C.

    2010-09-01

    The weakness of small island electrical grids implies a handicap for the electrical generation with renewable energy sources. With the intention of maximizing the installation of photovoltaic generators in the Canary Islands, arises the need to develop a solar forecasting system that allows knowing in advance the amount of PV generated electricity that will be going into the grid, from the installed PV power plants installed in the island. The forecasting tools need to get feedback from real weather data in "real time" from remote weather stations. Nevertheless, the transference of this data to the calculation computer servers is very complicated with the old point to point telecommunication systems that, neither allow the transfer of data from several remote weather stations simultaneously nor high frequency of sampling of weather parameters due to slowness of the connection. This one project has developed a telecommunications infrastructure that allows sensorizadas remote stations, to send data of its sensors, once every minute and simultaneously, to the calculation server running the solar forecasting numerical models. For it, the Canary Islands Institute of Technology has added a sophisticated communications network to its 30 weather stations measuring irradiation at strategic sites, areas with high penetration of photovoltaic generation or that have potential to host in the future photovoltaic power plants connected to the grid. In each one of the stations, irradiance and temperature measurement instruments have been installed, over inclined silicon cell, global radiation on horizontal surface and room temperature. Mobile telephone devices have been installed and programmed in each one of the weather stations, which allow the transfer of their data taking advantage of the UMTS service offered by the local telephone operator. Every minute the computer server running the numerical weather forecasting models receives data inputs from 120 instruments distributed

  4. The NASA CSTI high capacity power project

    NASA Technical Reports Server (NTRS)

    Winter, J.; Dudenhoefer, J.; Juhasz, A.; Schwarze, G.; Patterson, R.; Ferguson, D.; Titran, R.; Schmitz, P.; Vandersande, J.

    1992-01-01

    The SP-100 Space Nuclear Power Program was established in 1983 by DOD, DOE, and NASA as a joint program to develop technology for military and civil applications. Starting in 1986, NASA has funded a technology program to maintain the momentum of promising aerospace technology advancement started during Phase 1 of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for a wide range of future space applications. The elements of the Civilian Space Technology Initiative (CSTI) High Capacity Power Project include Systems Analysis, Stirling Power Conversion, Thermoelectric Power Conversion, Thermal Management, Power Management, Systems Diagnostics, Environmental Interactions, and Material/Structural Development. Technology advancement in all elements is required to provide the growth capability, high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall project will develop and demonstrate the technology base required to provide a wide range of modular power systems compatible with the SP-100 reactor which facilitates operation during lunar and planetary day/night cycles as well as allowing spacecraft operation at any attitude or distance from the sun. Significant accomplishments in all of the project elements will be presented, along with revised goals and project timelines recently developed.

  5. The NASA CSTI high capacity power project

    NASA Astrophysics Data System (ADS)

    Winter, J.; Dudenhoefer, J.; Juhasz, A.; Schwarze, G.; Patterson, R.; Ferguson, D.; Titran, R.; Schmitz, P.; Vandersande, J.

    1992-08-01

    The SP-100 Space Nuclear Power Program was established in 1983 by DOD, DOE, and NASA as a joint program to develop technology for military and civil applications. Starting in 1986, NASA has funded a technology program to maintain the momentum of promising aerospace technology advancement started during Phase 1 of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for a wide range of future space applications. The elements of the Civilian Space Technology Initiative (CSTI) High Capacity Power Project include Systems Analysis, Stirling Power Conversion, Thermoelectric Power Conversion, Thermal Management, Power Management, Systems Diagnostics, Environmental Interactions, and Material/Structural Development. Technology advancement in all elements is required to provide the growth capability, high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall project will develop and demonstrate the technology base required to provide a wide range of modular power systems compatible with the SP-100 reactor which facilitates operation during lunar and planetary day/night cycles as well as allowing spacecraft operation at any attitude or distance from the sun. Significant accomplishments in all of the project elements will be presented, along with revised goals and project timelines recently developed.

  6. Energy storage and thermal control system design status. [for space station power supplies

    NASA Technical Reports Server (NTRS)

    Simons, Stephen N.; Willhoite, Bryan C.; Van Ommering, Gert

    1989-01-01

    The Space Station Freedom electric power system (EPS) will initially rely on photovoltaics for power generation and Ni/H2 batteries for electrical energy storage. The current design for the development status of two major subsystems in the PV Power Module is discussed. The energy storage subsystem comprised of high capacity Ni/H2 batteries and the single-phase thermal control system that rejects the excess heat generated by the batteries and other components associated with power generation andstorage is described.

  7. 76 FR 25378 - Exelon Generation Company, LLC; PSEG Nuclear, LLC; Peach Bottom Atomic Power Station, Units 2 and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-04

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. 50-277 and 50-278; NRC-2011-0101] Exelon Generation Company, LLC; PSEG Nuclear, LLC; Peach Bottom Atomic Power Station, Units 2 and 3; Notice of Withdrawal of... for the Peach Bottom Atomic Power Station (PBAPS), Units 2 and 3, located in York and Lancaster...

  8. A feasibility assessment of installation, operation and disposal options for nuclear reactor power system concepts for a NASA growth space station

    NASA Technical Reports Server (NTRS)

    Bloomfield, Harvey S.; Heller, Jack A.

    1987-01-01

    A preliminary feasibility assessment of the integration of reactor power system concepts with a projected growth space station architecture was conducted to address a variety of installation, operational disposition, and safety issues. A previous NASA sponsored study, which showed the advantages of space station - attached concepts, served as the basis for this study. A study methodology was defined and implemented to assess compatible combinations of reactor power installation concepts, disposal destinations, and propulsion methods. Three installation concepts that met a set of integration criteria were characterized from a configuration and operational viewpoint, with end-of-life disposal mass identified. Disposal destinations that met current aerospace nuclear safety criteria were identified and characterized from an operational and energy requirements viewpoint, with delta-V energy requirement as a key parameter. Chemical propulsion methods that met current and near-term application criteria were identified and payload mass and delta-V capabilities were characterized. These capabilities were matched against concept disposal mass and destination delta-V requirements to provide the feasibility of each combination.

  9. 75 FR 6071 - Exelon Generation Company, LLC; PSEG Nuclear, LLC; Peach Bottom Atomic Power Station Units 2 and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-05

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. 50-277 and 50-278; NRC-2010-0042] Exelon Generation Company, LLC; PSEG Nuclear, LLC; Peach Bottom Atomic Power Station Units 2 and 3; Notice of Withdrawal of... and DPR-56 for the Peach Bottom Atomic Power Station (PBAPS), Units 2 and 3, located in York and...

  10. Nuclear techniques for the on-line bulk analysis of carbon in coal-fired power stations.

    PubMed

    Sowerby, B D

    2009-09-01

    Carbon trading schemes usually require large emitters of CO(2), such as coal-fired power stations, to monitor, report and be audited on their CO(2) emissions. The emission price provides a significant additional incentive for power stations to improve efficiency. In the present paper, previous work on the bulk determination of carbon in coal is reviewed and assessed. The most favourable method is that based on neutron inelastic scattering. The potential role of on-line carbon analysers in improving boiler efficiency and in carbon accounting is discussed.

  11. The kinelite project. A new powerful motion analyser for spacelab and space station

    NASA Astrophysics Data System (ADS)

    Venet, M.; Pinard, H.; McIntyre, J.; Berthoz, A.; Lacquaniti, F.

    The goal of the Kinelite Project is to develop a space qualified motion analysis system to be used in space by the scientific community, mainly to support neuroscience protocols. The measurement principle of the Kinelite is to determine, by triangulation mean, the 3D position of small, lightweight, reflective markers positionned at the different points of interest. The scene is illuminated by Infra Red flashes and the reflected light is acquired by up to 8 precalibrated and synchronized CCD cameras. The main characteristics of the system are: - Camera field of view: 45 °, - Number of cameras: 2 to 8, - Acquisition frequency: 25, 50, 100 or 200 Hz, - CCD format: 256 × 256, - Number of markers: up to 64, - 3D accuracy: 2 mm, - Main dimensions: 45 cm × 45 cm × 30 cm, - Mass: 23 kg, - Power consumption: less than 200 W. The Kinelite will first fly aboard the NASA Spacelab; it will be used, during the NEUROLAB mission (4/98), to support the "Frames of References and Internal Models" (Principal Investigator: Pr. A.BERTHOZ, Co Investigators: J. Mc INTYRE, F. LACQUANITI).

  12. Space Station Freedom electrical power system hardware commonality with the United States Polar Platform

    NASA Technical Reports Server (NTRS)

    Rieker, Lorra L.; Haraburda, Francis M.

    1989-01-01

    The National Aeronautics and Space Administration has adopted the policy to achieve the maximum practical level of commonality for the Space Station Freedom program in order to significantly reduce life cycle costs. Commonality means using identical or similar hardware/software for meeting common sets of functionally similar requirements. Information on how the concept of commonality is being implemented with respect to electric power system hardware for the Space Station Freedom and the U.S. Polar Platform is presented. Included is a historical account of the candidate common items which have the potential to serve the same power system functions on both Freedom and the Polar Platform.

  13. 75 FR 43915 - Basin Electric Power Cooperative: Deer Creek Station

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-27

    ... factors that could be affected by the proposed Project were evaluated in detail in the EIS. These issues... DEPARTMENT OF AGRICULTURE Rural Utilities Service Basin Electric Power Cooperative: Deer Creek... Energy Facility project (Project) in Brookings and Deuel Counties, South Dakota. The Administrator of RUS...

  14. Woody biomass-based bioenergy development at the Atikokan Power Generating Station: Local perceptions and public opinions

    NASA Astrophysics Data System (ADS)

    Baten, Cassia Sanzida

    To tackle climate change, reduce air pollution and promote development of renewable energy, the Ontario government is investing in the conversion of the coal-based Atikokan Power Generating Station (APGS) in Atikokan, Ontario, to woody biomass feedstock. This research offers one of the first looks at the perspectives of different individuals and groups on converting woody biomass to energy. Using a combination of study instruments which include literature review, surveys, interviews with key informants, semi-structured interviews, and focus group discussions, this dissertation uses qualitative research to provide a picture of the public's opinions and attitudes towards the APGS biomass energy development. Given Ontario's huge and sustainably managed forest resource, woody biomass is expected to be a major component of renewable energy production in Ontario. The move towards renewable energy that replaces fossil fuels with woody biomass will have considerable socio-economic implications for local and First Nation communities living in and around the bioenergy power generating station. Findings indicate that there is wide support for biomass utilization at the APGS by local people, especially since the project would create sustainable employment. The connection of woody biomass-based energy generation and rural community development provides opportunities and challenges for Atikokan's economic development. Respondents identified economic, environmental and social barriers to biomass utilization, and emphasized trust and transparency as key elements in the successful implementation of the APGS project. As demand for woody biomass-based energy increases, special attention will be needed to ensure and maintain the social, economic and environmental sustainability of biomass use at the APGS. In this research, respondents' views about biomass utilization for energy mainly focused on forest-related issues rather than energy. In Atikokan much of the project's social

  15. 75 FR 13318 - Virginia Electric and Power Company; Surry Power Station, Unit Nos. 1 and 2 (Surry 1 and 2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-19

    ... notice. SUMMARY: This document corrects a notice appearing in the Federal Register on March 3, 2010 (75... Power Company; Surry Power Station, Unit Nos. 1 and 2 (Surry 1 and 2); Correction to Environmental... Surry 1 and 2, respectively.'' This action is necessary to add an implementation date for Surry Unit 2...

  16. Analysis and design of a 10 to 30 kW grid-connected solar power system for the JPL fire station and first aid station

    NASA Technical Reports Server (NTRS)

    Josephs, R. H.

    1982-01-01

    The design and performance of a modestly sized utility-connected power conditioning system and its supporting photovoltaic collector are described and estimated. Utility preparations and guidelines to conform with the output of a small generating station with that of a large power network are examined.

  17. Themis - A solar power station

    NASA Astrophysics Data System (ADS)

    Hillairet, J.

    The organization, goals, equipment, costs, and performance of the French Themis (Thermo-helio-electric-MW) project are outlined. The program was begun for both the domestic energy market and for export. The installation comprises a molten eutectic salt loop which receives heat from radiators situated in a central tower. The salt transfers the heat to water for steam generation of electricity. A storage tank holds enough molten salt to supply one day's reserve of power, 40 MWh. A field of heliostats directs the suns rays for an estimated 2400 hr/yr onto the central receiver aperture, while 11 additional parabolic concentrators provide sufficient heat to keep the salt reservoir at temperatures exceeding 200 C. In a test run of several months during the spring of 1982 the heliostats directed the sun's rays with an average efficiency of 75 percent, yielding 2.3 MW of power at a system efficiency of 20.5 percent in completely automatic operation.

  18. Project WISH: The Emerald City

    NASA Technical Reports Server (NTRS)

    1990-01-01

    When Project WISH (Wandering Interplanetary Space Harbor) was initiated as a multi-year project, several design requirements were specified. The space station must have a lifetime of at least 50 years, be autonomous and independent of Earth resources, be capable of traveling throughout the solar system within a maximum flight time of three years, and have a population of 500 to 1000 people. The purpose of the station is to provide a permanent home for space colonists and to serve as a service station for space missions. The orbital mechanics, propulsion system, vehicle dynamics and control, life support system, communication system, power system, and thermal system are discussed.

  19. The Ongoing Addition of Infrasound Sensors and the Flexette Wind-Noise Reducing System to Global Seismic Network Stations Operated by Project IDA

    NASA Astrophysics Data System (ADS)

    Ebeling, C. W.; Coon, C.

    2017-12-01

    Infrasound sensors are now being installed at Global Seismic Network (GSN) stations meeting certain infrastructure criteria. Manufactured by Hyperion Technology Group, Inc., these instruments (model IFS-3312) have a nominal sensitivity of 140 mV/Pa (at 1 Hz), a full-scale range of ±100 Pa, and a dynamic range of 120 dB. Low power consumption (750 mW at 12 VDC) and small size (153 mm x 178 mm) ease incorporation into the mix of existing GSN instrumentation. The accompanying flexible rosette ("Flexette") acoustic wind-noise reducing system, designed by Project IDA (International Deployment of Accelerometers-IDA), optimally includes 24 inlets, 4 secondary manifolds, and a single primary manifold. Each secondary manifold is connected to 6 inlets and to the primary manifold by 10-ft air hoses, thus eliminating stresses and the greater potential for leaks associated with the use of pipe. While the main design goal was to maximize the reduction of acoustic wind-noise over the widest range of wind speeds possible, consideration of additional criteria resulted in a Flexette base design easily tailored to meet individual station constraints and restrictions, made up of inexpensive (total cost stations operated by Project IDA, KDAK (Kodiak island, Alaska, USA) was the first-in September 2016-to have an infrasound sensor and Flexette installed. Additional IDA GSN stations with this capability added since then include CMLA (Cha de Macela, Sao Miguel Island, Azores, Portugal), in June 2017; and the new GSN station KWJN (Kwajalein Atoll, Marshall Islands), in August 2017. During the next 6 months infrasound capability will be extended to IDA GSN stations BORG (Borganes, Iceland), EFI (Mount Kent, East Falkland Islands), and SACV (Santiago Island, Cape Verde).As with other data from GSN stations, real-time infrasound data are freely available from the Incorporated Research

  20. Space Station Furnace Facility Preliminary Project Implementation Plan (PIP). Volume 2, Appendix 2

    NASA Technical Reports Server (NTRS)

    Perkey, John K.

    1992-01-01

    The Space Station Furnace Facility (SSFF) is an advanced facility for materials research in the microgravity environment of the Space Station Freedom and will consist of Core equipment and various sets of Furnace Module (FM) equipment in a three-rack configuration. This Project Implementation Plan (PIP) document was developed to satisfy the requirements of Data Requirement Number 4 for the SSFF study (Phase B). This PIP shall address the planning of the activities required to perform the detailed design and development of the SSFF for the Phase C/D portion of this contract.

  1. Static analysis of rectifier cabinet for nuclear power generating stations based on finite element method

    NASA Astrophysics Data System (ADS)

    Yin, Qiang; Chen, Tian-jin; Li, Wei-yang; Xiong, Ze-cheng; Ma, Rui

    2017-09-01

    In order to obtain the deformation map and equivalent stress distribution of rectifier cabinet for nuclear power generating stations, the quality distribution of structure and electrical are described, the tensile bond strengths of the rings are checked, and the finite element model of cabinet is set up by ANSYS. The transport conditions of the hoisting state and fork loading state are analyzed. The deformation map and equivalent stress distribution are obtained. The attentive problems are put forward. It is a reference for analysis method and the obtained results for the transport of rectifier cabinet for nuclear power generating stations.

  2. Accident at the Fukushima Dai-ichi nuclear power stations of TEPCO--outline & lessons learned.

    PubMed

    Tanaka, Shun-ichi

    2012-01-01

    The severe accident that broke out at Fukushima Dai-ichi nuclear power stations on March 11, 2011, caused seemingly infinite damage to the daily life of residents. Serious and wide-spread contamination of the environment occurred due to radioactive materials discharged from nuclear power stations (NPSs). At the same time, many issues were highlighted concerning countermeasures to severe nuclear accidents. The accident is outlined, and lessons learned are extracted with respect to the safety of NPSs, as well as radiation protection of residents under the emergency involving the accident. The materials of the current paper are those released by governmental agencies, academic societies, interim reports of committees under the government, and others.

  3. Automating a spacecraft electrical power system using expert systems

    NASA Technical Reports Server (NTRS)

    Lollar, L. F.

    1991-01-01

    Since Skylab, Marshall Space Flight Center (MSFC) has recognized the need for large electrical power systems (EPS's) in upcoming Spacecraft. The operation of the spacecraft depends on the EPS. Therefore, it must be efficient, safe, and reliable. In 1978, as a consequence of having to supply a large number of EPS personnel to monitor and control Skylab, the Electrical power Branch of MSFC began the autonomously managed power system (AMPS) project. This project resulted in the assembly of a 25-kW high-voltage dc test facility and provided the means of getting man out of the loop as much as possible. AMPS includes several embedded controllers which allow a significant level of autonomous operation. More recently, the Electrical Division at MSFC has developed the space station module power management and distribution (SSM/PMAD) breadboard to investigate managing and distributing power in the Space Station Freedom habitation and laboratory modules. Again, the requirement for a high level of autonomy for the efficient operation over the lifetime of the station and for the benefits of enhanced safety has been demonstrated. This paper describes the two breadboards and the hierarchical approach to automation which was developed through these projects.

  4. Space Station Power Upgrade on This Week @NASA – January 6, 2017

    NASA Image and Video Library

    2017-01-06

    On Jan. 6, Expedition 50 Commander Shane Kimbrough and Flight Engineer Peggy Whitson of NASA conducted the first of two planned spacewalks outside the International Space Station to upgrade the station’s power system. Kimbrough and Whitson began installation of adapter plates and completing electrical connections for six new lithium-ion batteries, which arrived in December. Kimbrough will venture outside the station again on Jan. 13 with Flight Engineer Thomas Pesquet of ESA (European Space Agency) to continue and complete the upgrade. Also, New Discovery Missions, NASA Astrophysics Mission Discussed at AAS, and Tracing the 2017 Solar Eclipse!

  5. SOARCA Peach Bottom Atomic Power Station Long-Term Station Blackout Uncertainty Analysis: Knowledge Advancement.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gauntt, Randall O.; Mattie, Patrick D.; Bixler, Nathan E.

    2014-02-01

    This paper describes the knowledge advancements from the uncertainty analysis for the State-of- the-Art Reactor Consequence Analyses (SOARCA) unmitigated long-term station blackout accident scenario at the Peach Bottom Atomic Power Station. This work assessed key MELCOR and MELCOR Accident Consequence Code System, Version 2 (MACCS2) modeling uncertainties in an integrated fashion to quantify the relative importance of each uncertain input on potential accident progression, radiological releases, and off-site consequences. This quantitative uncertainty analysis provides measures of the effects on consequences, of each of the selected uncertain parameters both individually and in interaction with other parameters. The results measure the modelmore » response (e.g., variance in the output) to uncertainty in the selected input. Investigation into the important uncertain parameters in turn yields insights into important phenomena for accident progression and off-site consequences. This uncertainty analysis confirmed the known importance of some parameters, such as failure rate of the Safety Relief Valve in accident progression modeling and the dry deposition velocity in off-site consequence modeling. The analysis also revealed some new insights, such as dependent effect of cesium chemical form for different accident progressions. (auth)« less

  6. Space Station Biological Research Project

    NASA Technical Reports Server (NTRS)

    Johnson, Catherine C.; Hargens, Alan R.; Wade, Charles E.

    1995-01-01

    NASA Ames Research Center is responsible for the development of the Space Station Biological Research Project (SSBRP) which will support non-human life sciences research on the International Space Station Alpha (ISSA). The SSBRP is designed to support both basic research to understand the effect of altered gravity fields on biological systems and applied research to investigate the effects of space flight on biological systems. The SSBRP will provide the necessary habitats to support avian and reptile eggs, cells and tissues, plants and rodents. In addition a habitat to support aquatic specimens will be provided by our international partners. Habitats will be mounted in ISSA compatible racks at u-g and will also be mounted on a 2.5 m diameter centrifuge except for the egg incubator which has an internal centrifuge. The 2.5 m centrifuge will provide artificial gravity levels over the range of 0.01 G to 2 G. The current schedule is to launch the first rack in 1999, the Life Sciences glovebox and a second rack early in 2001, a 4 habitat 2.5 in centrifuge later the same year in its own module, and to upgrade the centrifuge to 8 habitats in 2004. The rodent habitats will be derived from the Advanced Animal Habitat currently under development for the Shuttle program and will be capable of housing either rats or mice individually or in groups (6 rats/group and at least 12 mice/group). The egg incubator will be an upgraded Avian Development Facility also developed for the Shuttle program through a Small Business and Innovative Research grant. The Space Tissue Loss cell culture apparatus, developed by Walter Reed Army Institute of Research, is being considered for the cell and tissue culture habitat. The Life Sciences Glovebox is crucial to all life sciences experiments for specimen manipulation and performance of science procedures. It will provide two levels of containment between the work volume and the crew through the use of seals and negative pressure. The glovebox

  7. JPL - Small Power Systems Applications Project. [for solar thermal power plant development and commercialization

    NASA Technical Reports Server (NTRS)

    Ferber, R. R.; Marriott, A. T.; Truscello, V.

    1978-01-01

    The Small Power Systems Applications (SPSA) Project has been established to develop and commercialize small solar thermal power plants. The technologies of interest include all distributed and central receiver technologies which are potentially economically viable in power plant sizes of one to 10 MWe. The paper presents an overview of the SPSA Project and briefly discusses electric utility involvement in the Project.

  8. High-frequency ac power distribution in Space Station

    NASA Technical Reports Server (NTRS)

    Tsai, Fu-Sheng; Lee, Fred C. Y.

    1990-01-01

    A utility-type 20-kHz ac power distribution system for the Space Station, employing resonant power-conversion techniques, is presented. The system converts raw dc voltage from photovoltaic cells or three-phase LF ac voltage from a solar dynamic generator into a regulated 20-kHz ac voltage for distribution among various loads. The results of EASY5 computer simulations of the local and global performance show that the system has fast response and good transient behavior. The ac bus voltage is effectively regulated using the phase-control scheme, which is demonstrated with both line and load variations. The feasibility of paralleling the driver-module outputs is illustrated with the driver modules synchronized and sharing a common feedback loop. An HF sinusoidal ac voltage is generated in the three-phase ac input case, when the driver modules are phased 120 deg away from one another and their outputs are connected in series.

  9. Space Station Biological Research Project Habitat: Incubator

    NASA Technical Reports Server (NTRS)

    Nakamura, G. J.; Kirven-Brooks, M.; Scheller, N. M.

    2001-01-01

    Developed as part of the suite of Space Station Biological Research Project (SSBRP) hardware to support research aboard the International Space Station (ISS), the Incubator is a temperature-controlled chamber, for conducting life science research with small animal, plant and microbial specimens. The Incubator is designed for use only on the ISS and is transported to/from the ISS, unpowered and without specimens, in the Multi-Purpose Logistics Module (MPLM) of the Shuttle. The Incubator interfaces with the three SSBRP Host Systems; the Habitat Holding Racks (HHR), the Life Sciences Glovebox (LSG) and the 2.5 m Centrifuge Rotor (CR), providing investigators with the ability to conduct research in microgravity and at variable gravity levels of up to 2-g. The temperature within the Specimen Chamber can be controlled between 4 and 45 C. Cabin air is recirculated within the Specimen Chamber and can be exchanged with the ISS cabin at a rate of approximately equal 50 cc/min. The humidity of the Specimen Chamber is monitored. The Specimen Chamber has a usable volume of approximately equal 19 liters and contains two (2) connectors at 28v dc, (60W) for science equipment; 5 dedicated thermometers for science; ports to support analog and digital signals from experiment unique sensors or other equipment; an Ethernet port; and a video port. It is currently manifested for UF-3 and will be launched integrated within the first SSBRP Habitat Holding Rack.

  10. Concentrating Solar Power Projects in Saudi Arabia | Concentrating Solar

    Science.gov Websites

    belowâ€"alphabetical by project name. You can browse a project profile by clicking on the project Power | NREL Saudi Arabia Concentrating solar power (CSP) projects in Saudi Arabia are listed

  11. Concentrating Solar Power Projects in South Africa | Concentrating Solar

    Science.gov Websites

    belowâ€"alphabetical by project name. You can browse a project profile by clicking on the project Power | NREL South Africa Concentrating solar power (CSP) projects in South Africa are listed

  12. In-orbit assembly mission for the Space Solar Power Station

    NASA Astrophysics Data System (ADS)

    Cheng, ZhengAi; Hou, Xinbin; Zhang, Xinghua; Zhou, Lu; Guo, Jifeng; Song, Chunlin

    2016-12-01

    The Space Solar Power Station (SSPS) is a large spacecraft that utilizes solar power in space to supply power to an electric grid on Earth. A large symmetrical integrated concept has been proposed by the China Academy of Space Technology (CAST). Considering its large scale, the SSPS requires a modular design and unitized general interfaces that would be assembled in orbit. Facilities system supporting assembly procedures, which include a Reusable Heavy Lift Launch Vehicle, orbital transfer and space robots, is introduced. An integrated assembly scheme utilizing space robots to realize this platform SSPS concept is presented. This paper tried to give a preliminary discussion about the minimized time and energy cost of the assembly mission under best sequence and route This optimized assembly mission planning allows the SSPS to be built in orbit rapidly, effectively and reliably.

  13. Concentrating Solar Power Projects - La Dehesa | Concentrating Solar Power

    Science.gov Websites

    | NREL Dehesa This page provides information on La Dehesa, a concentrating solar power (CSP : March 20, 2017 Project Overview Project Name: La Dehesa Country: Spain Location: La Garrovilla (Badajoz ? Background Technology: Parabolic trough Status: Operational Country: Spain City: La Garrovilla Region

  14. PBO Nucleus Project Status: Integration of 209 Existing GPS Stations into the Plate Boundary Observatory.

    NASA Astrophysics Data System (ADS)

    Blume, F.; Prescott, W.; Anderson, G.; Eriksson, S.; Feldl, N.

    2006-12-01

    Tectonic and earthquake research in the US has experienced a quiet revolution over the last decade precipitated by the recognition that slow-motion faulting events can both trigger and be triggered by regular earthquakes. Transient motion has now been found in essentially all tectonic environments, and the detection and analysis of such events is the first-order science target of the EarthScope Project. Because of this and a host of other fundamental tectonics questions that can be answered only with long-duration geodetic time series, the incipient 1400-station EarthScope Plate Boundary Observatory (PBO) network has been designed to leverage 432 existing continuous GPS stations whose measurements extend back over a decade. The irreplaceable recording history of these stations is accelerating EarthScope scientific return by providing the highest possible resolution. This resolution will be used to detect and understand transients, to determine the three-dimensional velocity field (particularly vertical motion), and to improve measurement precision by understanding the complex noise sources inherent in GPS. The PBO Nucleus project supports the operation, maintenance and hardware upgrades of a subset of the six western U.S. geodetic networks until they are subsumed by PBO. Uninterrupted data flow from these stations will effectively double the time-series length of PBO over the expected life of EarthScope, and has created, for the first time, a single GPS-based geodetic network in the US. The other existing sites remain in operation under support from non-NSF sources (e.g. the USGS), and EarthScope continues to benefit from their continued operation. On the grounds of relevance to EarthScope science goals, geographic distribution and data quality, 209 of the 432 existing stations were selected as the nucleus upon which to build PBO. Conversion of these stations to a PBO-compatible mode of operation was begun under previous funding, and as a result data now flow

  15. Wave Power Demonstration Project at Reedsport, Oregon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mekhiche, Mike; Downie, Bruce

    2013-10-21

    Ocean wave power can be a significant source of large‐scale, renewable energy for the US electrical grid. The Electrical Power Research Institute (EPRI) conservatively estimated that 20% of all US electricity could be generated by wave energy. Ocean Power Technologies, Inc. (OPT), with funding from private sources and the US Navy, developed the PowerBuoy to generate renewable energy from the readily available power in ocean waves. OPT's PowerBuoy converts the energy in ocean waves to electricity using the rise and fall of waves to move the buoy up and down (mechanical stroking) which drives an electric generator. This electricity ismore » then conditioned and transmitted ashore as high‐voltage power via underwater cable. OPT's wave power generation system includes sophisticated techniques to automatically tune the system for efficient conversion of random wave energy into low cost green electricity, for disconnecting the system in large waves for hardware safety and protection, and for automatically restoring operation when wave conditions normalize. As the first utility scale wave power project in the US, the Wave Power Demonstration Project at Reedsport, OR, will consist of 10 PowerBuoys located 2.5 miles off the coast. This U.S. Department of Energy Grant funding along with funding from PNGC Power, an Oregon‐based electric power cooperative, was utilized for the design completion, fabrication, assembly and factory testing of the first PowerBuoy for the Reedsport project. At this time, the design and fabrication of this first PowerBuoy and factory testing of the power take‐off subsystem are complete; additionally the power take‐off subsystem has been successfully integrated into the spar.« less

  16. Biomass power for rural development. Technical progress report, October 1--December 31, 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neuhauser, E.

    The focus of the DOE/USDA sponsored biomass power for rural development project is to develop commercial energy crops for power generation by the year 2000. The New York based Salix Consortium project is a multi-partner endeavor, implemented in three stages. Phase-1, Final Design and Project Development, will conclude with the preparation of construction and/or operating permits, feedstock production plans, and contracts ready for signature. Field trials of willow (Salix) have been initiated at several locations in New York (Tully, Lockport, King Ferry, La Fayette, Massena, and Himrod) and co-firing tests are underway at Greenidge Station (NYSEG) and Dunkirk Station (NMPC).more » Phase-2 of the project will focus on scale-up of willow crop acreage, construction of co-firing facilities at Dunkirk Station (NMPC), and final modifications for Greenidge Station. Cofiring willow is also under consideration for GPU`s Seward Station where testing is underway. There will be an evaluation of the energy crop as part of the gasification trials occurring at BED`s McNeill Power Station. Phase-3 will represent fullscale commercialization of the energy crop and power generation on a sustainable basis. During the fourth quarter of 1997 the Consortium submitted a Phase-2 proposal. A few of the other more important milestones are outlined below. The first quarter of 1998 will be dominated by pre-planting activity in the spring.« less

  17. 75 FR 14635 - FirstEnergy Nuclear Operating Company, Davis-Besse Nuclear Power Station; Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-26

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-346; NRC-2010-0125] FirstEnergy Nuclear Operating Company, Davis-Besse Nuclear Power Station; Environmental Assessment and Finding of No Significant Impact... 14636

  18. Analysis of electromagnetic interference from power system processing and transmission components for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Barber, Peter W.; Demerdash, Nabeel A. O.; Wang, R.; Hurysz, B.; Luo, Z.

    1991-01-01

    The goal is to analyze the potential effects of electromagnetic interference (EMI) originating from power system processing and transmission components for Space Station Freedom.The approach consists of four steps: (1) develop analytical tools (models and computer programs); (2) conduct parameterization studies; (3) predict the global space station EMI environment; and (4) provide a basis for modification of EMI standards.

  19. Space Station 20-kHz power management and distribution system

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.; Sundberg, Gale R.

    1986-01-01

    During the conceptual design phase a 20-kHz power distribution system was selected as the reference for the Space Station. The system is single-phase 400 VRMS, with a sinusoidal wave form. The initial user power level will be 75 kW with growth to 300 kW. The high-frequency system selection was based upon considerations of efficiency, weight, safety, ease of control, interface with computers, and ease of paralleling for growth. Each of these aspects will be discussed as well as the associated trade-offs involved. An advanced development program has been instituted to accelerate the maturation of the high-frequency system. Some technical aspects of the advanced development will be discussed.

  20. Space station 20-kHz power management and distribution system

    NASA Technical Reports Server (NTRS)

    Hansen, I. G.; Sundberg, G. R.

    1986-01-01

    During the conceptual design phase a 20-kHz power distribution system was selected as the reference for the space station. The system is single-phase 400 VRMS, with a sinusoidal wave form. The initial user power level will be 75 kW with growth to 300 kW. The high-frequency system selection was based upon considerations of efficiency, weight, safety, ease of control, interface with computers, and ease of paralleling for growth. Each of these aspects will be discussed as well as the associated trade-offs involved. An advanced development program has been instituted to accelerate the maturation of the high-frequency system. Some technical aspects of the advanced development will be discussed.

  1. International Space Station Electric Power System Performance Code-SPACE

    NASA Technical Reports Server (NTRS)

    Hojnicki, Jeffrey; McKissock, David; Fincannon, James; Green, Robert; Kerslake, Thomas; Delleur, Ann; Follo, Jeffrey; Trudell, Jeffrey; Hoffman, David J.; Jannette, Anthony; hide

    2005-01-01

    The System Power Analysis for Capability Evaluation (SPACE) software analyzes and predicts the minute-by-minute state of the International Space Station (ISS) electrical power system (EPS) for upcoming missions as well as EPS power generation capacity as a function of ISS configuration and orbital conditions. In order to complete the Certification of Flight Readiness (CoFR) process in which the mission is certified for flight each ISS System must thoroughly assess every proposed mission to verify that the system will support the planned mission operations; SPACE is the sole tool used to conduct these assessments for the power system capability. SPACE is an integrated power system model that incorporates a variety of modules tied together with integration routines and graphical output. The modules include orbit mechanics, solar array pointing/shadowing/thermal and electrical, battery performance, and power management and distribution performance. These modules are tightly integrated within a flexible architecture featuring data-file-driven configurations, source- or load-driven operation, and event scripting. SPACE also predicts the amount of power available for a given system configuration, spacecraft orientation, solar-array-pointing conditions, orbit, and the like. In the source-driven mode, the model must assure that energy balance is achieved, meaning that energy removed from the batteries must be restored (or balanced) each and every orbit. This entails an optimization scheme to ensure that energy balance is maintained without violating any other constraints.

  2. CFD research on runaway transient of pumped storage power station caused by pumping power failure

    NASA Astrophysics Data System (ADS)

    Zhang, L. G.; Zhou, D. Q.

    2013-12-01

    To study runaway transient of pumped storage power station caused by pumping power failure, three dimensional unsteady numerical simulations were executed on geometrical model of the whole flow system. Through numerical calculation, the changeable flow configuration and variation law of some parameters such as unit rotate speed,flow rate and static pressure of measurement points were obtained and compared with experimental data. Numerical results show that runaway speed agrees well with experimental date and its error was 3.7%. The unit undergoes pump condition, brake condition, turbine condition and runaway condition with flow characteristic changing violently. In runaway condition, static pressure in passage pulses very strongly which frequency is related to runaway speed.

  3. Wind for Schools Project Power System Brief

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2007-08-01

    This fact sheet provides an overview of the system components of a Wind Powering America Wind for Schools project. Wind Powering America's (WPA's) Wind for Schools project uses a basic system configuration for each school project. The system incorporates a single SkyStream(TM) wind turbine, a 70-ft guyed tower, disconnect boxes at the base of the turbine and at the school, and an interconnection to the school's electrical system. A detailed description of each system component is provided in this document.

  4. Solar Thermal Power Systems parabolic dish project

    NASA Technical Reports Server (NTRS)

    Truscello, V. C.

    1981-01-01

    The status of the Solar Thermal Power Systems Project for FY 1980 is summarized. Included is: a discussion of the project's goals, program structure, and progress in parabolic dish technology. Analyses and test results of concentrators, receivers, and power converters are discussed. Progress toward the objectives of technology feasibility, technology readiness, system feasibility, and system readiness are covered.

  5. ESBWR response to an extended station blackout/loss of all AC power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrett, A. J.; Marquino, W.

    2012-07-01

    U.S. federal regulations require light water cooled nuclear power plants to cope with Station Blackouts for a predetermined amount of time based on design factors for the plant. U.S. regulations define Station Blackout (SBO) as a loss of the offsite electric power system concurrent with turbine trip and unavailability of the onsite emergency AC power system. According to U.S. regulations, typically the coping period for an SBO is 4 hours and can be as long as 16 hours for currently operating BWR plants. Being able to cope with an SBO and loss of all AC power is required by internationalmore » regulators as well. The U.S. licensing basis for the ESBWR is a coping period of 72 hours for an SBO based on U.S. NRC requirements for passive safety plants. In the event of an extended SBO (viz., greater than 72 hours), the ESBWR response shows that the design is able to cope with the event for at least 7 days without AC electrical power or operator action. ESBWR is a Generation III+ reactor design with an array of passive safety systems. The ESBWR primary success path for mitigation of an SBO event is the Isolation Condenser System (ICS). The ICS is a passive, closed loop, safety system that initiates automatically on a loss of power. Upon Station Blackout or loss of all AC power, the ICS begins removing decay heat from the Reactor Pressure Vessel (RPV) by (i) condensing the steam into water in heat exchangers located in pools of water above the containment, and (ii) transferring the decay heat to the atmosphere. The condensed water is then returned by gravity to cool the reactor again. The ICS alone is capable of maintaining the ESBWR in a safe shutdown condition after an SBO for an extended period. The fuel remains covered throughout the SBO event. The ICS is able to remove decay heat from the RPV for at least 7 days and maintains the reactor in a safe shutdown condition. The water level in the RPV remains well above the top of active fuel for the duration of the SBO

  6. Projected power iteration for network alignment

    NASA Astrophysics Data System (ADS)

    Onaran, Efe; Villar, Soledad

    2017-08-01

    The network alignment problem asks for the best correspondence between two given graphs, so that the largest possible number of edges are matched. This problem appears in many scientific problems (like the study of protein-protein interactions) and it is very closely related to the quadratic assignment problem which has graph isomorphism, traveling salesman and minimum bisection problems as particular cases. The graph matching problem is NP-hard in general. However, under some restrictive models for the graphs, algorithms can approximate the alignment efficiently. In that spirit the recent work by Feizi and collaborators introduce EigenAlign, a fast spectral method with convergence guarantees for Erd-s-Renyí graphs. In this work we propose the algorithm Projected Power Alignment, which is a projected power iteration version of EigenAlign. We numerically show it improves the recovery rates of EigenAlign and we describe the theory that may be used to provide performance guarantees for Projected Power Alignment.

  7. Concentrating Solar Power Projects by Technology | Concentrating Solar

    Science.gov Websites

    ) technology from the list below. You can then select a specific project and review a profile covering project basics, participating organizations, and power plant configuration data for the solar field, power block

  8. Mid and long-term optimize scheduling of cascade hydro-power stations based on modified GA-POA method

    NASA Astrophysics Data System (ADS)

    Li, Jiqing; Yang, Xiong

    2018-06-01

    In this paper, to explore the efficiency and rationality of the cascade combined generation, a cascade combined optimal model with the maximum generating capacity is established, and solving the model by the modified GA-POA method. It provides a useful reference for the joint development of cascade hydro-power stations in large river basins. The typical annual runoff data are selected to calculate the difference between the calculated results under different representative years. The results show that the cascade operation of cascaded hydro-power stations can significantly increase the overall power generation of cascade and ease the flood risk caused by concentration of flood season.

  9. Concentrating Solar Power Projects - Majadas I | Concentrating Solar Power

    Science.gov Websites

    : March 20, 2017 Project Overview Project Name: Majadas I Country: Spain Location: Majadas de Tiétar (Cà comments? Background Technology: Parabolic trough Status: Operational Country: Spain City: Majadas de Tià : Biphenyl/Diphenyl oxide Solar-Field Outlet Temp: 393°C Power Block Turbine Capacity (Gross): 50.0 MW

  10. Power system monitoring and source control of the Space Station Freedom DC power system testbed

    NASA Technical Reports Server (NTRS)

    Kimnach, Greg L.; Baez, Anastacio N.

    1992-01-01

    Unlike a terrestrial electric utility which can purchase power from a neighboring utility, the Space Station Freedom (SSF) has strictly limited energy resources; as a result, source control, system monitoring, system protection, and load management are essential to the safe and efficient operation of the SSF Electric Power System (EPS). These functions are being evaluated in the DC Power Management and Distribution (PMAD) Testbed which NASA LeRC has developed at the Power System Facility (PSF) located in Cleveland, Ohio. The testbed is an ideal platform to develop, integrate, and verify power system monitoring and control algorithms. State Estimation (SE) is a monitoring tool used extensively in terrestrial electric utilities to ensure safe power system operation. It uses redundant system information to calculate the actual state of the EPS, to isolate faulty sensors, to determine source operating points, to verify faults detected by subsidiary controllers, and to identify high impedance faults. Source control and monitoring safeguard the power generation and storage subsystems and ensure that the power system operates within safe limits while satisfying user demands with minimal interruptions. System monitoring functions, in coordination with hardware implemented schemes, provide for a complete fault protection system. The objective of this paper is to overview the development and integration of the state estimator and the source control algorithms.

  11. Power system monitoring and source control of the Space Station Freedom dc-power system testbed

    NASA Technical Reports Server (NTRS)

    Kimnach, Greg L.; Baez, Anastacio N.

    1992-01-01

    Unlike a terrestrial electric utility which can purchase power from a neighboring utility, the Space Station Freedom (SSF) has strictly limited energy resources; as a result, source control, system monitoring, system protection, and load management are essential to the safe and efficient operation of the SSF Electric Power System (EPS). These functions are being evaluated in the dc Power Management and Distribution (PMAD) Testbed which NASA LeRC has developed at the Power System Facility (PSF) located in Cleveland, Ohio. The testbed is an ideal platform to develop, integrate, and verify power system monitoring and control algorithms. State Estimation (SE) is a monitoring tool used extensively in terrestrial electric utilities to ensure safe power system operation. It uses redundant system information to calculate the actual state of the EPS, to isolate faulty sensors, to determine source operating points, to verify faults detected by subsidiary controllers, and to identify high impedance faults. Source control and monitoring safeguard the power generation and storage subsystems and ensure that the power system operates within safe limits while satisfying user demands with minimal interruptions. System monitoring functions, in coordination with hardware implemented schemes, provide for a complete fault protection system. The objective of this paper is to overview the development and integration of the state estimator and the source control algorithms.

  12. NASA Systems Autonomy Demonstration Project - Development of Space Station automation technology

    NASA Technical Reports Server (NTRS)

    Bull, John S.; Brown, Richard; Friedland, Peter; Wong, Carla M.; Bates, William

    1987-01-01

    A 1984 Congressional expansion of the 1958 National Aeronautics and Space Act mandated that NASA conduct programs, as part of the Space Station program, which will yield the U.S. material benefits, particularly in the areas of advanced automation and robotics systems. Demonstration programs are scheduled for automated systems such as the thermal control, expert system coordination of Station subsystems, and automation of multiple subsystems. The programs focus the R&D efforts and provide a gateway for transfer of technology to industry. The NASA Office of Aeronautics and Space Technology is responsible for directing, funding and evaluating the Systems Autonomy Demonstration Project, which will include simulated interactions between novice personnel and astronauts and several automated, expert subsystems to explore the effectiveness of the man-machine interface being developed. Features and progress on the TEXSYS prototype thermal control system expert system are outlined.

  13. Space station WP-04 power system preliminary analysis and design document, volume 3

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Rocketdyne plans to generate a system level specification for the Space Station Electric Power System (EPS) in order to facilitate the usage, accountability, and tracking of overall system level requirements. The origins and status of the verification planning effort are traced and an overview of the Space Station program interactions are provided. The work package level interfaces between the EPS and the other Space Station work packages are outlined. A trade study was performed to determine the peaking split between PV and SD, and specifically to compare the inherent total peaking capability with proportionally shared peaking. In order to determine EPS cost drivers for the previous submittal of DRO2, the life cycle cost (LCC) model was run to identify the more significant costs and the factors contributing to them.

  14. Performance Assessment of a Solar powered Air Quality and Weather Station Placed on a School Rooftop in Hong Kong

    EPA Science Inventory

    Summary of compact, roof version of a Village Green Project station installed on a secondary school rooftop in Hong Kong. Preliminary comparison of the station's data against nearby regulatory monitors are summarized.

  15. Knowledge Sources and Opinions of Prospective Social Studies Teachers about Possible Risk and Benefit Analysis: Nuclear Energy and Power Stations

    ERIC Educational Resources Information Center

    Yazici, Hakki; Bulut, Ramazan; Yazici, Sibel

    2016-01-01

    In this study, it was aimed to determine the trust status of prospective social studies teachers regarding various knowledge sources related to nuclear energy and power stations regarded as a controversial socio-scientific issue and their perceptions on the possible risks and benefits of nuclear energy and power stations. Target population of the…

  16. Output power distributions of mobile radio base stations based on network measurements

    NASA Astrophysics Data System (ADS)

    Colombi, D.; Thors, B.; Persson, T.; Wirén, N.; Larsson, L.-E.; Törnevik, C.

    2013-04-01

    In this work output power distributions of mobile radio base stations have been analyzed for 2G and 3G telecommunication systems. The approach is based on measurements in selected networks using performance surveillance tools part of the network Operational Support System (OSS). For the 3G network considered, direct measurements of output power levels were possible, while for the 2G networks, output power levels were estimated from measurements of traffic volumes. Both voice and data services were included in the investigation. Measurements were conducted for large geographical areas, to ensure good overall statistics, as well as for smaller areas to investigate the impact of different environments. For high traffic hours, the 90th percentile of the averaged output power was found to be below 65% and 45% of the available output power for the 2G and 3G systems, respectively.

  17. Accident at the Fukushima Dai-ichi Nuclear Power Stations of TEPCO —Outline & lessons learned—

    PubMed Central

    TANAKA, Shun-ichi

    2012-01-01

    The severe accident that broke out at Fukushima Dai-ichi nuclear power stations on March 11, 2011, caused seemingly infinite damage to the daily life of residents. Serious and wide-spread contamination of the environment occurred due to radioactive materials discharged from nuclear power stations (NPSs). At the same time, many issues were highlighted concerning countermeasures to severe nuclear accidents. The accident is outlined, and lessons learned are extracted with respect to the safety of NPSs, as well as radiation protection of residents under the emergency involving the accident. The materials of the current paper are those released by governmental agencies, academic societies, interim reports of committees under the government, and others. PMID:23138450

  18. Implications of Climate Change on the Heat Budget of Lentic Systems Used for Power Station Cooling: Case Study Clinton Lake, Illinois.

    PubMed

    Quijano, Juan C; Jackson, P Ryan; Santacruz, Santiago; Morales, Viviana M; García, Marcelo H

    2016-01-05

    We use a numerical model to analyze the impact of climate change-in particular higher air temperatures-on a nuclear power station that recirculates the water from a reservoir for cooling. The model solves the hydrodynamics, the transfer of heat in the reservoir, and the energy balance at the surface. We use the numerical model to (i) quantify the heat budget in the reservoir and determine how this budget is affected by the combined effect of the power station and climate change and (ii) quantify the impact of climate change on both the downstream thermal pollution and the power station capacity. We consider four different scenarios of climate change. Results of simulations show that climate change will reduce the ability to dissipate heat to the atmosphere and therefore the cooling capacity of the reservoir. We observed an increase of 25% in the thermal load downstream of the reservoir, and a reduction in the capacity of the power station of 18% during the summer months for the worst-case climate change scenario tested. These results suggest that climate change is an important threat for both the downstream thermal pollution and the generation of electricity by power stations that use lentic systems for cooling.

  19. Implications of climate change on the heat budget of lentic systems used for power station cooling: Case study Clinton Lake, Illinois

    USGS Publications Warehouse

    Quijano, Juan C; Jackson, P. Ryan; Santacruz, Santiago; Morales, Viviana M; Garcia, Marcelo H.

    2016-01-01

    We use a numerical model to analyze the impact of climate change--in particular higher air temperatures--on a nuclear power station that recirculates the water from a reservoir for cooling. The model solves the hydrodynamics, the transfer of heat in the reservoir, and the energy balance at the surface. We use the numerical model to (i) quantify the heat budget in the reservoir and determine how this budget is affected by the combined effect of the power station and climate change and (ii) quantify the impact of climate change on both the downstream thermal pollution and the power station capacity. We consider four different scenarios of climate change. Results of simulations show that climate change will reduce the ability to dissipate heat to the atmosphere and therefore the cooling capacity of the reservoir. We observed an increase of 25% in the thermal load downstream of the reservoir, and a reduction in the capacity of the power station of 18% during the summer months for the worst-case climate change scenario tested. These results suggest that climate change is an important threat for both the downstream thermal pollution and the generation of electricity by power stations that use lentic systems for cooling.

  20. Assessment of environmental effects on Space Station Freedom Electrical Power System

    NASA Technical Reports Server (NTRS)

    Lu, Cheng-Yi; Nahra, Henry K.

    1991-01-01

    Analyses of EPS (electrical power system) interactions with the LEO (low earth orbit) environment are described. The results of these analyses will support EPS design so as to be compatible with the natural and induced environments and to meet power, lifetime, and performance requirements. The environmental impacts to the Space Station Freedom EPS include aerodynamic drag, atomic oxygen erosion, ultraviolet degradation, VXB effect, ionizing radiation dose and single event effects, electromagnetic interference, electrostatic discharge, plasma interactions (ion sputtering, arcing, and leakage current), meteoroid and orbital debris threats, thermal cycling effects, induced current and voltage potential differences in the SSF due to induced electric field, and contamination degradation.

  1. Southeast Regional Experiment Station

    NASA Astrophysics Data System (ADS)

    1994-08-01

    This is the final report of the Southeast Regional Experiment Station project. The Florida Solar Energy Center (FSEC), a research institute of the University of Central Florida (UCF), has operated the Southeast Regional Experiment Station (SE RES) for the US Department of Energy (DOE) since September 1982. Sandia National Laboratories, Albuquerque (SNLA) provides technical program direction for both the SE RES and the Southwest Regional Experiment Station (SW RES) located at the Southwest Technology Development Institute at Las Cruces, New Mexico. This cooperative effort serves a critical role in the national photovoltaic program by conducting system evaluations, design assistance and technology transfer to enhance the cost-effective utilization and development of photovoltaic technology. Initially, the research focus of the SE RES program centered on utility-connected PV systems and associated issues. In 1987, the SE RES began evaluating amorphous silicon (a-Si) thin-film PV modules for application in utility-interactive systems. Stand-alone PV systems began receiving increased emphasis at the SE RES in 1986. Research projects were initiated that involved evaluation of vaccine refrigeration, water pumping and other stand-alone power systems. The results of this work have led to design optimization techniques and procedures for the sizing and modeling of PV water pumping systems. Later recent research at the SE RES included test and evaluation of batteries and charge controllers for stand-alone PV system applications. The SE RES project provided the foundation on which FSEC achieved national recognition for its expertise in PV systems research and related technology transfer programs. These synergistic products of the SE RES illustrate the high visibility and contributions the FSEC PV program offers to the DOE.

  2. [Cytogenetic characteristics of seed offspring of leafy tree plants from one-kilometer zone of Novovoronezh nuclear power station].

    PubMed

    Artiukhov, V G; Kalaev, V N; Sen'kevich, E V; Vakhtel', V M; Savko, A D

    2004-01-01

    Cytogenetic characteristics (mitotic activity, level and spectrum of pathological mitoses, nucleoly characteristics) of seed offspring of Quercus robur L. and Betula pendula Roth from Novovoronezh nuclear power station's 1-kilometer zone have been studied. It has been shown the change of time of passing though mitotic stages by cells, the increasing of bridges frequency occur in spectrum of mitotic aberrations (that shows activation of reparation systems), the change in nucleoly characteristics (the part of polynucleolaris cells increase in case of oak and decrease in case of birch, the rase of surface square of single nucleolies). The phenomena, mean above, probably, induced by synergic effects of Novovoronezh nuclear power station and environment pollutants. The most contaminated territories of 1-kilometer zone of Novovoronezh nuclear power station have been discovered by means of methods of cluster analysis of total cytogenetic characteristics of tree plants seed offspring.

  3. 47 CFR 74.783 - Station identification.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., AUXILIARY, SPECIAL BROADCAST AND OTHER PROGRAM DISTRIBUTIONAL SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.783 Station identification. (a) Each low power TV and TV translator station not..., whose signal is being rebroadcast, to identify the translator station by transmitting an easily readable...

  4. Internal services simulation control in 220/110kV power transformer station Mintia

    NASA Astrophysics Data System (ADS)

    Ciulica, D.; Rob, R.

    2018-01-01

    The main objectives in developing the electric transport and distribution networks infrastructure are satisfying the electric energy demand, ensuring the continuity of supply to customers, minimizing electricity losses in the transmission and distribution networks of public interest. This paper presents simulations in functioning of the internal services system 400/230 V ac in the 220/110 kV power transformer station Mintia. Using simulations in Visual Basic, the following premises are taken into consideration. All the ac consumers of the 220/110 kV power transformer station Mintia will be supplied by three 400/230 V transformers for internal services which can mutual reserve. In case of damaging at one transformer, the others are able to assume the entire consumption using automatic release of reserves. The simulation program studies three variants in which the continuity of supply to customers are ensured. As well, by simulations, all the functioning situations are analyzed in detail.

  5. Review of the environmental effects of the Space Station Freedom photovoltaic power module

    NASA Technical Reports Server (NTRS)

    Nahra, Henry K.

    1989-01-01

    An overview is provided of the environment in the low Earth orbit (LEO), the interaction of this environment with the Photovoltaic (PV) Power system of the Space Station Freedom is reviewed, and the environmental programs are described that are designed to investigate the interactions of the LEO environment with the photovoltaic power system. Such programs will support and impact the design of the subsystems of the PV module in order to survive the design lifetime in the LEO natural and induced environment.

  6. Integrated Power and Attitude Control Systems for Space Station

    NASA Technical Reports Server (NTRS)

    Oglevie, R. E.; Eisenhaure, D. B.

    1985-01-01

    Integrated Power and Attitude Control Systems (IPACS) studies performed over a decade ago established the feasibility of simultaneously storing electrical energy in wheels and utilizing the resulting momentum for spacecraft attitude control. It was shown that such a system possessed many advantages over other contemporary energy storage and attitude control systems in many applications. More recent technology advances in composite rotors, magnetic bearings, and power control electronics have triggered new optimism regarding the feasibility and merits of such a system. The paper presents the results of a recent study whose focus was to define an advanced IPACS and to evaluate its merits for the Space Station application. A system and component design concept is developed to establish the system performance capability. A system level trade study, including life-cycle costing, is performed to define the merits of the system relative to two other candidate systems. It is concluded that an advanced IPACS concept is not only feasible, but offers substantial savings in mass, and life-cycle cost.

  7. Concentrating Solar Power Projects - Gemasolar Thermosolar Plant |

    Science.gov Websites

    Concentrating Solar Power | NREL Gemasolar Thermosolar Plant This page provides information on Gemasolar Thermosolar Plant, a concentrating solar power (CSP) project, with data organized by background , participants, and power plant configuration. Gemasolar is the first high-temperature solar receiver with molten

  8. Wind for Schools: A Wind Powering America Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2007-12-01

    This brochure serves as an introduction to Wind Powering America's Wind for Schools Project, including a description of the project, the participants, funding sources, and the basic configurations of the project.

  9. Solar-Assisted Electric Vehicle Charging Station Interim Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lapsa, Melissa Voss; Durfee, Norman; Maxey, L Curt

    2011-09-01

    Oak Ridge National Laboratory (ORNL) has been awarded $6.8 million in the Department of Energy (DOE) American Recovery and Reinvestment Act (ARRA) funds as part of an overall $114.8 million ECOtality grant with matching funds from regional partners to install 125 solar-assisted Electric Vehicle (EV) charging stations across Knoxville, Nashville, Chattanooga, and Memphis. Significant progress has been made toward completing the scope with the installation of 25 solar-assisted charging stations at ORNL; six stations at Electric Power Research Institute (EPRI); and 27 stations at Nissan's Smyrna and Franklin sites, with three more stations under construction at Nissan's new lithium-ion batterymore » plant. Additionally, the procurement process for contracting the installation of 34 stations at Knoxville, the University of Tennessee Knoxville (UTK), and Nashville sites is underway with completion of installation scheduled for early 2012. Progress is also being made on finalizing sites and beginning installations of 30 stations in Nashville, Chattanooga, and Memphis by EPRI and Tennessee Valley Authority (TVA). The solar-assisted EV charging station project has made great strides in fiscal year 2011. A total of 58 solar-assisted EV parking spaces have been commissioned in East and Middle Tennessee, and progress on installing the remaining 67 spaces is well underway. The contract for the 34 stations planned for Knoxville, UTK, and Nashville should be underway in October with completion scheduled for the end of March 2012; the remaining three Nissan stations are under construction and scheduled to be complete in November; and the EPRI/TVA stations for Chattanooga, Vanderbilt, and Memphis are underway and should be complete by the end of March 2012. As additional Nissan LEAFs are being delivered, usage of the charging stations has increased substantially. The project is on course to complete all 125 solar-assisted EV charging stations in time to collect meaningful data

  10. Biomass power for rural development. Technical progress report, July 1--September 30, 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neuhauser, E.

    The focus of the DOE/USDA sponsored biomass power for rural development project is to develop commercial energy crops for power generation by the year 2000. The New York based Salix Consortium project is a multi-partner endeavor, implemented in three stages. Phase-1, Final Design and Project Development, will conclude with the preparation of construction and/or operating permits, feedstock production plans, and contracts ready for signature. Field trials of willow (Salix) have been initiated at several locations in New York (Tully, Lockport, King Ferry, La Fayette, Massena, and Himrod) and co-firing tests are underway at Greenidge Station (NYSEG) and Dunkirk Station (NMPC).more » Phase-2 of the project will focus on scale-up of willow crop acreage, construction of co-firing facilities at Dunkirk Station (NMPC), and final modifications for Greenidge Station. Cofiring willow is also under consideration for GPU`s Seward Station where testing is underway. There will be an evaluation of the energy crop as part of the gasification trials occurring at BED`s McNeill power station. Phase-3 will represent fullscale commercialization of the energy crop and power generation on a sustainable basis. During the third quarter of 1997, much of the Consortium`s effort has focused on outreach activities, continued feedstock development, fuel supply planning, and fuel contract development, and preparation for 1998 scale-up activities. The Consortium also submitted a Phase-1 extension proposal during this period. A few of the more important milestones are outlined below. The fourth quarter of 1997 is expected to be dominated by Phase-II proposal efforts and planning for 1998 activities.« less

  11. Concentrating Solar Power Projects - Rayspower Yumen 50MW Thermal Oil

    Science.gov Websites

    Trough project | Concentrating Solar Power | NREL Rayspower Yumen 50MW Thermal Oil Trough project Status Date: January 31, 2017 Project Overview Project Name: Rayspower Yumen 50MW Thermal Oil . Plant Configuration Solar Field Heat-Transfer Fluid Type: Thermal oil Power Block Turbine Capacity

  12. Puerto Rico`s EcoElectrica LNG/power project marks a project financing first

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lammers, R.; Taylor, S.

    1998-02-23

    On Dec. 15, 1997, Enron International and Kenetech Energy Services achieved financial close on the $670 million EcoElectrica liquefied natural gas terminal and cogeneration project proposed for Puerto Rico. The project involves construction of a liquefied natural gas terminal, cogeneration plant, and desalination unit on the southern coast of Puerto Rico, in the Penuelas/Guayanilla area. EcoElectrica will include a 500-mw, combined-cycle cogeneration power plant fueled mainly by LNG imported from the 400 MMcfd Atlantic LNG project on the island of Trinidad. Achieving financial close on a project of this size is always a time-consuming matter and one with a numbermore » of challenges. These challenges were increased by the unique nature of both the project and its financing--no project financing had ever before been completed that combined an LNG terminal and power plant. The paper discusses the project, financing details and challenges, key investment considerations, and integrated project prospects.« less

  13. Concentrating Solar Power Projects - La Risca | Concentrating Solar Power |

    Science.gov Websites

    ) project, with data organized by background, participants, and power plant configuration. Status Date : 350 Annual O&M Jobs: 31 PPA/Tariff Date: January 2010 PPA/Tariff Type: Real Decreto 661/2007 PPA

  14. European questions related to satelite power systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kassing, D.

    1983-01-01

    A number of problems which have been identified in recent European studies related to satellite power systems are addressed. Based on energy demand and supply projections for Europe, developed by the International Institute for Applied Systems Analysis, the potential of power satellites in a future energy mix is discussed. A few major constraints are presented which may restrict power transmission to European receiving sites, e.g., orbital limitations, siting problems of the ground station, and economic and institutional issues. Conceptual designs for the structure of ground receiving stations located offshore near the European coastlines are described.

  15. Sustainable Mining Land Use for Lignite Based Energy Projects

    NASA Astrophysics Data System (ADS)

    Dudek, Michal; Krysa, Zbigniew

    2017-12-01

    This research aims to discuss complex lignite based energy projects economic viability and its impact on sustainable land use with respect to project risk and uncertainty, economics, optimisation (e.g. Lerchs and Grossmann) and importance of lignite as fuel that may be expressed in situ as deposit of energy. Sensitivity analysis and simulation consist of estimated variable land acquisition costs, geostatistics, 3D deposit block modelling, electricity price considered as project product price, power station efficiency and power station lignite processing unit cost, CO2 allowance costs, mining unit cost and also lignite availability treated as lignite reserves kriging estimation error. Investigated parameters have nonlinear influence on results so that economically viable amount of lignite in optimal pit varies having also nonlinear impact on land area required for mining operation.

  16. Heavy metals in Parmelia sulcata collected in the neighborhood of a coal-fired power station.

    PubMed

    Freitas, M C

    1994-01-01

    The epiphytic lichen Parmelia sulcata was collected in the neighborhood of a Portuguese coal-fired power station (Sines coal power station) as monitor for heavy metal air pollution. A study of the metal contents variability along 1991 and 1992 was performed. The heavy metals Ag, As, Br, Co, Cr, Fe, Hg, Sb, Se, and Zn were determined by k0-based instrumental neutron activation analysis. The concentrations found in 1991 and 1992 show an accumulating process of Co and Fe (approximately 5%/mo) and of Cr and Sb (approximately 7%/mo). Low accumulation is observed for Ag, Se, and Zn (approximately 2%/mo), and no concentration variation is observed for As, Br, and Hg. It is concluded that the metal accumulation observed is the result of the nearby ash and coal deposits.

  17. Analysis of shadowing effects on spacecraft power systems

    NASA Technical Reports Server (NTRS)

    Fincannon, H. J.

    1995-01-01

    This paper describes the Orbiting Spacecraft Shadowing Analysis (OSSA) computer program that was developed at NASA Lewis Research Center in order to assess the shadowing effects on various power systems. The algorithms, inputs and outputs are discussed. Examples of typical shadowing analyses that have been performed for the International Space Station Freedom, International Space Station Alpha and the joint United States/Russian Mir Solar Dynamic Flight Experiment Project are covered. Effects of shadowing on power systems are demonstrated.

  18. WVU Hydrogen Fuel Dispensing Station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, William

    2015-09-01

    The scope of this project was changed during the course of the project. Phase I of the project was to construct a site similar to the site at Central West Virginia Regional Airport in Charleston, WV to show that duplication of the site was a feasible method of conducting hydrogen stations. Phase II of the project was necessitated due to a lack of funding that was planned for the development of the station in Morgantown. The US Department of Energy determined that the station in Charleston would be dismantled and moved to Morgantown and reassembled at the Morgantown site. Thismore » necessitated storage of the components of the station for almost a year at the NAFTC Headquarters which caused a number of issues with the equipment that will be discussed in later portions of this report. This report will consist of PHASE I and PHASE II with discussions on each of the tasks scheduled for each phase of the project.« less

  19. The NASA Advanced Space Power Systems Project

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Hoberecht, Mark A.; Bennett, William R.; Lvovich, Vadim F.; Bugga, Ratnakumar

    2015-01-01

    The goal of the NASA Advanced Space Power Systems Project is to develop advanced, game changing technologies that will provide future NASA space exploration missions with safe, reliable, light weight and compact power generation and energy storage systems. The development effort is focused on maturing the technologies from a technology readiness level of approximately 23 to approximately 56 as defined in the NASA Procedural Requirement 7123.1B. Currently, the project is working on two critical technology areas: High specific energy batteries, and regenerative fuel cell systems with passive fluid management. Examples of target applications for these technologies are: extending the duration of extravehicular activities (EVA) with high specific energy and energy density batteries; providing reliable, long-life power for rovers with passive fuel cell and regenerative fuel cell systems that enable reduced system complexity. Recent results from the high energy battery and regenerative fuel cell technology development efforts will be presented. The technical approach, the key performance parameters and the technical results achieved to date in each of these new elements will be included. The Advanced Space Power Systems Project is part of the Game Changing Development Program under NASAs Space Technology Mission Directorate.

  20. Concentrating Solar Power Projects - Golden Tower 100MW Molten Salt project

    Science.gov Websites

    | Concentrating Solar Power | NREL Golden Tower 100MW Molten Salt project Status Date Turbine Capacity: Net: 100.0 Gross: 100.0 Status: Under development Do you have more information , corrections, or comments? Background Technology: Power tower Status: Under development Country: China City

  1. Brentwood Lessons Learned Project Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivkin, Carl H.; Caton, Melanie C.; Ainscough, Christopher D.

    The purpose of this report is to document lessons learned in the installation of the hydrogen fueling station at the National Park Service Brentwood site in Washington, D.C., to help further the deployment of hydrogen infrastructure required to support hydrogen and other fuel cell technologies. Hydrogen fueling is the most difficult infrastructure component to build and permit. Hydrogen fueling can include augmenting hydrogen fueling capability to existing conventional fuel fueling stations as well as building brand new hydrogen fueling stations. This report was produced as part of the Brentwood Lessons Learned project. The project consisted of transplanting an existing modularmore » hydrogen fueling station from Connecticut to the National Park Service Brentwood site. This relocation required design and construction at the Brentwood site to accommodate the existing station design as well as installation and validation of the updated station. One of the most important lessons learned was that simply moving an existing modular station to an operating site was not necessarily straight-forward - performing the relocation required significant effort and cost. The station has to function at the selected operating site and this functionality requires a power supply, building supports connecting to an existing alarm system, electrical grounding and lighting, providing nitrogen for purging, and providing deionized water if an electrolyzer is part of the station package. Most importantly, the station has to fit into the existing site both spatially and operationally and not disrupt existing operations at the site. All of this coordination and integration requires logistical planning and project management. The idea that a hydrogen fueling station can be simply dropped onto a site and made immediately operational is generally not realistic. Other important lessons learned include that delineating the boundaries of the multiple jurisdictions that have authority over a

  2. Concentrating Solar Power Projects - NOOR I | Concentrating Solar Power |

    Science.gov Websites

    ) project, with data organized by background, participants, and power plant configuration. Status Date Cost (approx): 1,042 € million PPA/Tariff Date: November 19, 2012 PPA/Tariff Rate: 1.62 Dirhams per

  3. Reliability Measurement for Mixed Mode Failures of 33/11 Kilovolt Electric Power Distribution Stations

    PubMed Central

    Alwan, Faris M.; Baharum, Adam; Hassan, Geehan S.

    2013-01-01

    The reliability of the electrical distribution system is a contemporary research field due to diverse applications of electricity in everyday life and diverse industries. However a few research papers exist in literature. This paper proposes a methodology for assessing the reliability of 33/11 Kilovolt high-power stations based on average time between failures. The objective of this paper is to find the optimal fit for the failure data via time between failures. We determine the parameter estimation for all components of the station. We also estimate the reliability value of each component and the reliability value of the system as a whole. The best fitting distribution for the time between failures is a three parameter Dagum distribution with a scale parameter and shape parameters and . Our analysis reveals that the reliability value decreased by 38.2% in each 30 days. We believe that the current paper is the first to address this issue and its analysis. Thus, the results obtained in this research reflect its originality. We also suggest the practicality of using these results for power systems for both the maintenance of power systems models and preventive maintenance models. PMID:23936346

  4. Technical Feasible Study for Future Solar Thermal Steam Power Station in Malaysia

    NASA Astrophysics Data System (ADS)

    Bohari, Z. H.; Atira, N. N.; Jali, M. H.; Sulaima, M. F.; Izzuddin, T. A.; Baharom, M. F.

    2017-10-01

    This paper proposed renewable energy which is potential to be used in Malaysia in generating electricity to innovate and improve current operating systems. Thermal and water act as the resources to replace limited fossil fuels such as coal which is still widely used in energy production nowadays. Thermal is also known as the heat energy while the water absorbs energy from the thermal to produce steam energy. By combining both of the sources, it is known as thermal steam renewable energy. The targeted area to build this power station has constant high temperature and low humidity which can maximize the efficiency of generating power.

  5. A regenerative fuel cell system for modular space station integrated electrical power.

    NASA Technical Reports Server (NTRS)

    Wynveen, R. A.; Schubert, F. H.

    1973-01-01

    A regenerative fuel cell system (RFCS) for energy storage aboard the Modular Space Station (MSS) was selected over the battery technique because of lower cost, lower launch weight, lower required solar array area, and its ability to be integrated into the station's reaction control and environmental control and life support subsystems in addition to the electrical power subsystem. The total MSS energy storage requirement was met by dividing it into four equal modular RFCSs, each made up of a fuel cell subsystem, a water electrolysis subsystem, a gas accumulator subassembly, and a water tank subassembly. The weight of each of the four RFCSs varied from 4000 to 7000 lb with the latter being a more maintainable design. The specific energy ranged between 5.6 to 9.4 watt-hr/lb.

  6. Fuel cell energy storage for Space Station enhancement

    NASA Technical Reports Server (NTRS)

    Stedman, J. K.

    1990-01-01

    Viewgraphs on fuel cell energy storage for space station enhancement are presented. Topics covered include: power profile; solar dynamic power system; photovoltaic battery; space station energy demands; orbiter fuel cell power plant; space station energy storage; fuel cell system modularity; energy storage system development; and survival power supply.

  7. Environmental Assessment for the Warren Station externally fired combined cycle demonstration project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-04-01

    The proposed Penelec project is one of 5 projects for potential funding under the fifth solicitation under the Clean Coal Technology program. In Penelec, two existing boilers would be replaced at Warren Station, PA; the new unit would produce 73 MW(e) in a combined cycle mode (using both gas-fired and steam turbines). The project would fill the need for a full utility-size demonstration of externally fire combined cycle (EFCC) technology as the next step toward commercialization. This environmental assessment was prepared for compliance with NEPA; its purpose is to provide sufficient basis for determining whether to prepare an environmental impactmore » statement or to issue a finding of no significant impact. It is divided into the sections: purpose and need for proposed action; alternatives; brief description of affected environment; environmental consequences, including discussion of commercial operation beyond the demonstration period.« less

  8. 75 FR 16523 - FirstEnergy Nuclear Operating Company; Davis-Besse Nuclear Power Station; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-01

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-346; NRC-2010-0125] FirstEnergy Nuclear Operating Company; Davis-Besse Nuclear Power Station; Exemption 1.0 Background FirstEnergy Nuclear Operating Company..., letter from R.W. Borchardt, NRC, to M.S. Fertel, Nuclear Energy Institute). The licensee's request for an...

  9. Concentrating Solar Power Projects - Shangyi 50MW DSG Tower CSP project |

    Science.gov Websites

    Concentrating Solar Power | NREL Shangyi 50MW DSG Tower CSP project Status Date: September 27 : 50.0 MW Gross: 50.0 MW Status: Under development Do you have more information, corrections, or comments ? Background Technology: Power tower Status: Under development Country: China City: Shangyi Region: Hebei

  10. 47 CFR 74.709 - Land mobile station protection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Translator, and TV Booster Stations § 74.709 Land mobile station protection. (a) Stations in the Land Mobile... caused by low power TV or TV translator stations, and low power TV and TV translator stations must accept... translator station application will not be accepted if it specifies a site that is within the protected...

  11. Power-plant modernization program in Latvia. Desk Study Report No. 1. Export trade information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-08-01

    The Government of Latvia has requested the U.S. Trade and Development Program's (TDP's) assistance in financing the cost of a feasibility study to develop a modernization program for its thermal power stations aimed at improving their performance and efficiency. The consultant will work with engineers and managers of Latvenergo, Latvia's power utility, to review the performance of the country's two thermal power stations and carry out a detailed study for the rehabilitation and modernization of the TEC-2 thermal power station in Riga. The overall goal of the program will be to maximize the output capacity of the country's two powermore » stations through the implementation of economically efficient rehabilitation projects.« less

  12. Combined Heat and Power Protocol for Uniform Methods Project | Advanced

    Science.gov Websites

    Manufacturing Research | NREL Combined Heat and Power Protocol for Uniform Methods Project Combined Heat and Power Protocol for Uniform Methods Project NREL developed a protocol that provides a ; is consistent with the scope and other protocols developed for the Uniform Methods Project (UMP

  13. Fuel inspection and reconstitution experience at Surry Power Station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brookmire, T.A.

    Surry Power Station, located on the James River near Williamsburg, Virginia, has two Westinghouse pressurized water reactors. Unit 2 consistently sets a high standard of fuel performance (no indication of fuel failures in recent cycles), while unit 1, since cycle 6, has been plagued with numerous fuel failures. Both Surry units operate with Westinghouse standard 15 x 15 fuel. Virginia Power management set goals to reduce the coolant activity, thus reducing person-rem exposure and the associated costs of high coolant activity. To achieve this goal, extensive fuel examination campaigns were undertaken that included high-magnification video inspectionsa, debris cleaning, wet andmore » vacuum fuel sipping, fuel rod ultrasonic testing, and eddy current examination. In the summer of 1985, during cycle 8 operation, Kraftwerk Union reconstituted (repaired) the damage, once-burned assemblies from cycles 6 and 7 by replacing failed fuel rods with solid Zircaloy-4 rods. Currently, cycle 9 has operated for 5 months without any indication of fuel failure (the cycle 9 core has two reconstituted assemblies).« less

  14. Analysis of Shadowing Effects on Spacecraft Power Systems

    NASA Technical Reports Server (NTRS)

    1995-01-01

    As part of an ongoing effort within the NASA Lewis Research Center's Power Systems Project Office to assist in the design and characterization of future space-based power systems, analyses have been performed to assess the effects of shadowing on the capabilities of various power systems on the International Space Station and the Russian MIR.

  15. Tandem concentrator photovoltaic array applied to Space Station Freedom evolutionary power requirements

    NASA Technical Reports Server (NTRS)

    Fisher, Edward M., Jr.

    1991-01-01

    Additional power is required to support Space Station Freedom (SSF) evolution. Boeing Defense and Space Group, LeRC, and Entech Corporation have participated in the development of efficiency gallium arsenide and gallium antimonide solar cells make up the solar array tandem cell stacks. Entech's Mini-Dome Fresnel Lens Concentrators focus solar energy onto the active area of the solar cells at 50 times one solar energy flux. Development testing for a flight array, to be launched in Nov. 1992 is under way with support from LeRC. The tandem cells, interconnect wiring, concentrator lenses, and structure were integrated into arrays subjected to environmental testing. A tandem concentrator array can provide high mass and area specific power and can provide equal power with significantly less array area and weight than the baseline array design. Alternatively, for SSF growth, an array of twice the baseline power can be designed which still has a smaller drag area than the baseline.

  16. 77 FR 20440 - Independent Spent Fuel Storage Installation, Virginia Electric and Power Company, Surry Power...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-04

    ... and 2 AGENCY: Nuclear Regulatory Commission. ACTION: Issuance of an environmental assessment and finding of no significant impact. FOR FURTHER INFORMATION CONTACT: Jennie Rankin, Project Manager... reactors, Surry Power Station Units 1 and 2, located in Surry County, Virginia. II. Environmental...

  17. 47 CFR 74.783 - Station identification.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Booster Stations § 74.783 Station identification. (a) Each low power TV and TV translator station not... suffix “-LP.” (f) TV broadcast booster station shall be identified by their primary stations by...

  18. 47 CFR 74.783 - Station identification.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Booster Stations § 74.783 Station identification. (a) Each low power TV and TV translator station not... suffix “-LP.” (f) TV broadcast booster station shall be identified by their primary stations by...

  19. 47 CFR 74.783 - Station identification.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Booster Stations § 74.783 Station identification. (a) Each low power TV and TV translator station not... suffix “-LP.” (f) TV broadcast booster station shall be identified by their primary stations by...

  20. Connecticut Biodiesel Power Generation Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grannis, Lee; York, Carla R.

    Sabre will continue support of the emissions equipment and VARS issues to ensure all are resolved and the system is functioning as expected. The remote data collection to become more automated. Final project reports for data collection and system performance to be generated. Sabre continued to support the emissions equipment and VARS issues to ensure all are resolved and the system is functioning as expected. The remote data collection became more automated. Final project reports for data collection and system performance were generated and are part of this final report. Some Systems Sensors were replaced due to a lightning strike.more » Sample data charts are shown at the end of the report. During the project, Sabre Engineering provided support to the project team with regarding to troubleshooting technical issues and system integration with the local power utility company. The resulting lessons learned through Sabre’s participation in the project have been valuable to the integrity of the data collected as well as in providing BioPur Light & Power valuable insights into future operations and planning for possible expansion. The system monitoring and data collection system has been operating as designed and continues to provide relevant information to the system operators. The information routinely gathered automatically by the system also contributes to the REN and REC validations which are required to secure credit for these items. During the quarter, the remaining work on the operations and safety manual were completed and released for publication after screen shots were verified. The goal of this effort to provide an accurate set of precautions and procedures for the technology system that can be replicated to other similar system.« less

  1. Concentrating Solar Power Projects - Yumen 50MW Thermal Oil Trough CSP

    Science.gov Websites

    project | Concentrating Solar Power | NREL Thermal Oil Trough CSP project Status Date : September 28, 2016 Project Overview Project Name: Yumen 50MW Thermal Oil Trough CSP project Country: China : Thermal Oil Power Block Turbine Capacity (Gross): 50.0 MW Turbine Capacity (Net): 50.0 MW Output Type

  2. Replacement of SSE with NASA's POWER Project GIS-enabled Web Data Portal

    Atmospheric Science Data Center

    2018-04-30

    Replacement of SSE with NASA's POWER Project GIS-enabled Web Data Portal Friday, March ... 2018 Replacement of SSE (Release 6) with NASA's Prediction of Worldwide Energy Resource (POWER) Project GIS-enabled Web ... Worldwide Energy Resource (POWER) Project funded largely by NASA Earth Applied Sciences program.   The new POWER web portal ...

  3. Concentrating Solar Power Projects - Morón | Concentrating Solar Power |

    Science.gov Websites

    , 2018 Project Overview Project Name: Morón Country: Spain Location: Morón de la Frontera (Seville ? Background Technology: Parabolic trough Status: Operational Country: Spain City: Morón de la Frontera Region NREL Morón This page provides information on Morón, a concentrating solar power (CSP) project

  4. Control-structure interaction study for the Space Station solar dynamic power module

    NASA Technical Reports Server (NTRS)

    Cheng, J.; Ianculescu, G.; Ly, J.; Kim, M.

    1991-01-01

    The authors investigate the feasibility of using a conventional PID (proportional plus integral plus derivative) controller design to perform the pointing and tracking functions for the Space Station Freedom solar dynamic power module. Using this simple controller design, the control/structure interaction effects were also studied without assuming frequency bandwidth separation. From the results, the feasibility of a simple solar dynamic control solution with a reduced-order model, which satisfies the basic system pointing and stability requirements, is suggested. However, the conventional control design approach is shown to be very much influenced by the order of reduction of the plant model, i.e., the number of the retained elastic modes from the full-order model. This suggests that, for complex large space structures, such as the Space Station Freedom solar dynamic, the conventional control system design methods may not be adequate.

  5. Reliability measurement for mixed mode failures of 33/11 kilovolt electric power distribution stations.

    PubMed

    Alwan, Faris M; Baharum, Adam; Hassan, Geehan S

    2013-01-01

    The reliability of the electrical distribution system is a contemporary research field due to diverse applications of electricity in everyday life and diverse industries. However a few research papers exist in literature. This paper proposes a methodology for assessing the reliability of 33/11 Kilovolt high-power stations based on average time between failures. The objective of this paper is to find the optimal fit for the failure data via time between failures. We determine the parameter estimation for all components of the station. We also estimate the reliability value of each component and the reliability value of the system as a whole. The best fitting distribution for the time between failures is a three parameter Dagum distribution with a scale parameter [Formula: see text] and shape parameters [Formula: see text] and [Formula: see text]. Our analysis reveals that the reliability value decreased by 38.2% in each 30 days. We believe that the current paper is the first to address this issue and its analysis. Thus, the results obtained in this research reflect its originality. We also suggest the practicality of using these results for power systems for both the maintenance of power systems models and preventive maintenance models.

  6. Childhood cancers near German nuclear power stations: the ongoing debate.

    PubMed

    Fairlie, Ian

    2009-01-01

    In late 2007, the significant KiKK study (Kinderkrebs in der Umgebung von KernKraftwerken = Childhood Cancer in the Vicinity of Nuclear Power Plants) in Germany reported a 1.6-fold increase in all cancers and a 2.2-fold increase in leukaemias, among children living within 5 km of all German nuclear power stations. The KiKK study by Kaatsch et al. was extensively described in a recent edition of Medicine Conflict and Survival. It has triggered much discussion as to the cause(s) of these increased cancers. This article reports on recent developments on the KiKK study, including responses by German radiation agencies, and recent epidemiological studies near United Kingdom and French nuclear installations. It reflects the current debate and concludes with advice to policy-makers on radiation risks on the relative merits of the KiKK study. An accompanying article outlines a possible explanation for the increased cancers and makes recommendations for future research.

  7. Central station applications planning activities and supporting studies. [application of photovoltaic technology to power generation plants

    NASA Technical Reports Server (NTRS)

    Leonard, S. L.; Siegel, B.

    1980-01-01

    The application of photovoltaic technology in central station (utility) power generation plants is considered. A program of data collection and analysis designed to provide additional information about the subset of the utility market that was identified as the initial target for photovoltaic penetration, the oil-dependent utilities (especially muncipals) of the U.S. Sunbelt, is described along with a series of interviews designed to ascertain utility industry opinions about the National Photovoltaic Program as it relates to central station applications.

  8. Solar Resource & Meteorological Assessment Project (SOLRMAP): Sun Spot Two; Swink, Colorado (Data)

    DOE Data Explorer

    Wilcox, S.; Andreas, A.

    2010-11-10

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  9. Power Grid Construction Project Portfolio Optimization Based on Bi-level programming model

    NASA Astrophysics Data System (ADS)

    Zhao, Erdong; Li, Shangqi

    2017-08-01

    As the main body of power grid operation, county-level power supply enterprises undertake an important emission to guarantee the security of power grid operation and safeguard social power using order. The optimization of grid construction projects has been a key issue of power supply capacity and service level of grid enterprises. According to the actual situation of power grid construction project optimization of county-level power enterprises, on the basis of qualitative analysis of the projects, this paper builds a Bi-level programming model based on quantitative analysis. The upper layer of the model is the target restriction of the optimal portfolio; the lower layer of the model is enterprises’ financial restrictions on the size of the enterprise project portfolio. Finally, using a real example to illustrate operation proceeding and the optimization result of the model. Through qualitative analysis and quantitative analysis, the bi-level programming model improves the accuracy and normative standardization of power grid enterprises projects.

  10. Load-Following Power Timeline Analyses for the International Space Station

    NASA Technical Reports Server (NTRS)

    Fincannon, James; Delleur, Ann; Green, Robert; Hojnicki, Jeffrey

    1996-01-01

    Spacecraft are typically complex assemblies of interconnected systems and components that have highly time-varying thermal communications, and power requirements. It is essential that systems designers be able to assess the capability of the spacecraft to meet these requirements which should represent a realistic projection of demand for these resources once the vehicle is on-orbit. To accomplish the assessment from the power standpoint, a computer code called ECAPS has been developed at NASA Lewis Research Center that performs a load-driven analysis of a spacecraft power system given time-varying distributed loading and other mission data. This program is uniquely capable of synthesizing all of the changing spacecraft conditions into a single, seamless analysis for a complete mission. This paper presents example power load timelines with which numerous data are integrated to provide a realistic assessment of the load-following capabilities of the power system. Results of analyses show how well the power system can meet the time-varying power resource demand.

  11. Project Dawdler: a Proposal in Response to a Low Reynolds Number Station Keeping Mission

    NASA Technical Reports Server (NTRS)

    Bartilotti, Rich; Coakley, Jill; Golla, Warren; Scamman, Glenn; Tran, Hoa T.; Trippel, Chris

    1990-01-01

    In direct response to Request for Proposals: Flight at very low Reynolds numbers - a station keeping mission, the members of Design Squad E present Project Dawdler: a remotely-piloted airplane supported by an independently controlled take-off cart. A brief introduction to Project Dawdler's overall mission and design, is given. The Dawdler is a remotely-piloted airplane designed to fly in an environmentally-controlled closed course at a Reynolds number of 10(exp 5) and at a cruise velocity of 25 ft/s. The two primary goals were to minimize the flight Reynolds number and to maximize the loiter time. With this in mind, the general design of the airplane was guided by the belief that a relatively light aircraft producing a fairly large amount of lift would be the best approach. For this reason the Dawdler utilizes a canard rather than a conventional tail for longitudinal control, primarily because the canard contributes a positive lift component. The Dawdler also has a single vertical tail mounted behind the wing for lateral stability, half of which is used as a rudder for yaw control. Due to the fact that the power required to take-off and climb to altitude is much greater than that required for cruise flight and simple turning maneuvers, it was decided that a take-off cart be used. Based on the current design, there are two unknowns which could possibly threaten the success of Project Dawdler. First, the effect of the fully-movable canard with its large appropriation of total lift on the performance of the plane, and secondly, the ability of the take-off procedure to go as planned are examined. These are questions which can only be answered by a prototype.

  12. Military space station implications. Study project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bourne, G.D.; Skirvin, G.D.; Wilson, G.R.

    1987-03-23

    Justifying the relevancy of a Manned Military Space Station (MMSS) and subsequently proposing its deployment to capitalize upon the United States' national security interests is the essence and purpose of this group study project. The MMSS is intended to perform a two-fold purpose: (1) facilitate military peacetime operations while simultaneously supporting and promoting civilian space initiatives; and, (2) act as a force multiplier for space and terrestrial force operations in the event of conventional, theater nuclear, and/or strategic nuclear war. Data to support the future value of the MMSS was obtained from individual and group research using unclassified sources suchmore » as professional journals, books, US Air Force Staff College reference material, and information from the US Air Force space coordinating staff in Washington, DC. The importance of space to our future and especially of a MMSS by America's national leaders and its people has yet to be fully appreciated and/or realized. The significance of space and its nexus to the United States' national security has been growing dramatically in importance since the launching of the Sputnik in 1957 by Russian. Space, as the forth dimension, cannot and should not be understated in importance as it relates to commercialism, deterrence to war, and to the stability of world order.« less

  13. Project Dragonfly: A feasibility study of interstellar travel using laser-powered light sail propulsion

    NASA Astrophysics Data System (ADS)

    Perakis, Nikolaos; Schrenk, Lukas E.; Gutsmiedl, Johannes; Koop, Artur; Losekamm, Martin J.

    2016-12-01

    Light sail-based propulsion systems are a candidate technology for interplanetary and interstellar missions due to their flexibility and the fact that no fuel has to be carried along. In 2014, the Initiative for Interstellar Studies (i4is) hosted the Project Dragonfly Design Competition, which aimed at assessing the feasibility of sending an interstellar probe propelled by a laser-powered light sail to another star system. We analyzed and designed a mission to the Alpha Centauri system, with the objective to carry out science operations at the destination. Based on a comprehensive evaluation of currently available technologies and possible locations, we selected a lunar architecture for the laser system. It combines the advantages of surface- and space-based systems, as it requires no station keeping and suffers no atmospheric losses. We chose a graphene-based sandwich material for the light sail because of its low density. Deceleration of the spacecraft sufficient for science operations at the target system is achieved using both magnetic and electric sails. Applying these assumptions in a simulation leads to the conclusion that 250 kg of scientific payload can be sent to Alpha Centauri within the Project Dragonfly Design Competition's constraints of 100 year travel duration and 100 GW laser beam power. This is only sufficient to fulfill parts of the identified scientific objectives, and therefore renders the usefulness of such a mission questionable. A better sail material or higher laser power would improve the acceleration behavior, an increase in the mission time would allow for larger spacecraft masses.

  14. 77 FR 47622 - TransCanada Hydro Northeast Inc.; FirstLight Power Resources; Notice of Environmental Site Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-09

    ....; FirstLight Power Resources; Notice of Environmental Site Review In anticipation of the filing of a... Project No. 1904), and two projects owned and operated by FirstLight Power Resources in Massachusetts.... Location: Vernon Station, 152 Governor Hunt Road, Vernon VT 05354. FirstLight's Projects FirstLight will...

  15. Yeager Airport Hydrogen Vehicle Test Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Williams

    The scope of this project was changed during the course of the project. Phase I of the project was designed to have the National Alternative Fuels Training Consortium (NAFTC), together with its partners, manage the Hydrogen Vehicle Test Project at the Yeager Airport in conjunction with the Central West Virginia Regional Airport Authority (CWVRAA) in coordination with the United States Department of Energy National Energy Technology Laboratory (U.S. DOE NETL). This program would allow testing and evaluation of the use of hydrogen vehicles in the state of West Virginia utilizing the hydrogen fueling station at Yeager Airport. The NAFTC andmore » CWVRAA to raise awareness and foster a greater understanding of hydrogen fuel and hydrogen-powered vehicles through a targeted utilization and outreach and education effort. After initial implementation of the project, the project added, determine the source(s) of supply for hydrogen powered vehicles that could be used for the testing. After completion of this, testing was begun at Yeager Airport. During the course of the project, the station at Yeager Airport was closed and moved to Morgantown and the West Virginia University Research Corporation. The vehicles were then moved to Morgantown and a vehicle owned by the CWVRAA was purchased to complete the project at the new location. Because of a number of issues detailed in the report for DE-FE0002994 and in this report, this project did not get to evaluate the effectiveness of the vehicles as planned.« less

  16. International Space Station Medical Projects - Full Services to Mars

    NASA Technical Reports Server (NTRS)

    Pietrzyk, R. A.; Primeaux, L. L.; Wood, S. J.; Vessay, W. B.; Platts, S. H.

    2018-01-01

    The International Space Station Medical Projects (ISSMP) Element provides planning, integration, and implementation services for HRP research studies for both spaceflight and flight analog research. Through the implementation of these two efforts, ISSMP offers an innovative way of guiding research decisions to meet the unique challenges of understanding the human risks to space exploration. Flight services provided by ISSMP include leading informed consent briefings, developing and validating in-flight crew procedures, providing ISS crew and ground-controller training, real-time experiment monitoring, on-orbit experiment and hardware operations and facilitating data transfer to investigators. For analog studies at the NASA Human Exploration Research Analog (HERA), the ISSMP team provides subject recruitment and screening, science requirements integration, data collection schedules, data sharing agreements, mission scenarios and facilities to support investigators. The ISSMP also serves as the HRP interface to external analog providers including the :envihab bed rest facility (Cologne, Germany), NEK isolation chamber (Moscow, Russia) and the Antarctica research stations. Investigators working in either spaceflight or analog environments requires a coordinated effort between NASA and the investigators. The interdisciplinary nature of both flight and analog research requires investigators to be aware of concurrent research studies and take into account potential confounding factors that may impact their research objectives. Investigators must define clear research requirements, participate in Investigator Working Group meetings, obtain human use approvals, and provide study-specific training, sample and data collection and procedures all while adhering to schedule deadlines. These science requirements define the technical, functional and performance operations to meet the research objectives. The ISSMP maintains an expert team of professionals with the knowledge and

  17. The controlled ecological life support system Antarctic analog project: Analysis of wastewater from the South Pole Station, Antarctica, volume 1

    NASA Technical Reports Server (NTRS)

    Flynn, Michael T.; Bubenheim, David L.; Straight, Christian L.; Belisle, Warren

    1994-01-01

    The Controlled Ecological Life Support system (CELSS) Antarctic Analog Project (CAAP) is a joint National Science Foundation (NSF) and NASA project for the development, deployment and operation of CELSS technologies at the Amundsen-Scott South Pole Station. NASA goals are operational testing of CELSS technologies and the conduct of scientific studies to facilitate technology selection and system design. The NSF goals are that the food production, water purification, and waste treatment capabilities which will be provided by CAAP will improve the quality of life for the South Pole inhabitants, reduce logistics dependence, and minimize environmental impacts associated with human presence on the polar plateau. This report presents an analysis of wastewater samples taken from the Amundsen-Scott South Pole Station, Antarctica. The purpose of the work is to develop a quantitative understanding of the characteristics of domestic sewage streams at the South Pole Station. This information will contribute to the design of a proposed plant growth/waste treatment system which is part of the CELSS Antarctic Analog Project (CAAP).

  18. Orientation of Space Station Freedom electrical power system in environmental effects assessment

    NASA Technical Reports Server (NTRS)

    Lu, Cheng-Yi

    1990-01-01

    The orientation effects of six Space Station Freedom Electrical Power System (EPS) components are evaluated for three environmental interactions: aerodynamic drag, atomic oxygen erosion, and orbital debris impact. Designers can directly apply these orientation factors to estimate the magnitude of the examined environment and the environmental effects for the EPS component of interest. The six EPS components are the solar array, photovoltaic module radiator, integrated equipment assembly, solar dynamic concentrator, solar dynamic radiator, and beta gimbal.

  19. Concentrating Solar Power Projects - Gujarat Solar One | Concentrating

    Science.gov Websites

    Solar Power | NREL Gujarat Solar One This page provides information on Gujarat Solar One, a configuration. Status Date: February 12, 2014 Project Overview Project Name: Gujarat Solar One Country: India

  20. 78 FR 11904 - Zion Nuclear Power Station, Units 1 and 2; ZionSolutions, LLC; Consideration of Indirect Transfer

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-20

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. 50-295 and 50-304; NRC-2013-0034] Zion Nuclear Power Station, Units 1 and 2; ZionSolutions, LLC; Consideration of Indirect Transfer AGENCY: Nuclear Regulatory... the indirect transfer of Facility Operating License Nos. DPR-39 and DPR-48 for Zion Nuclear Power...

  1. 75 FR 63766 - Digital Low Power Television, Television Translator, and Television Booster Stations and Digital...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-18

    ... Displacement Application. Form Numbers: FCC Form 346. Type of Review: Revision of a currently approved... Displacement Application. The Commission proposes to require all low power station with facilities on out-of- core channels (channels 52-59) to submit a digital displacement (FCC Form 346) application proposing an...

  2. Battery charging stations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bergey, M.

    1997-12-01

    This paper discusses the concept of battery charging stations (BCSs), designed to service rural owners of battery power sources. Many such power sources now are transported to urban areas for recharging. A BCS provides the opportunity to locate these facilities closer to the user, is often powered by renewable sources, or hybrid systems, takes advantage of economies of scale, and has the potential to provide lower cost of service, better service, and better cost recovery than other rural electrification programs. Typical systems discussed can service 200 to 1200 people, and consist of stations powered by photovoltaics, wind/PV, wind/diesel, or dieselmore » only. Examples of installed systems are presented, followed by cost figures, economic analysis, and typical system design and performance numbers.« less

  3. Alternative Fuels Data Center: Arkansas Launches Natural Gas-Powered Buses

    Science.gov Websites

    and Refueling StationA> Arkansas Launches Natural Gas-Powered Buses and Refueling Station to a great opportunity for [Rock Region METRO] to continue to meet the needs of our customers with the Cities Coalition (ACCC). Before RRM's board of directors would approve the CNG transition project, they

  4. Dispatchable Solar Power Plant Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, Henry

    As penetration of intermittent renewable power increases, grid operators must manage greater variability in the supply and demand on the grid. One result is that utilities are planning to build many new natural gas peaking power plants that provide added flexibility needed for grid management. This report discusses the development of a dispatchable solar power (DSP) plant that can be used in place of natural gas peakers. Specifically, a new molten-salt tower (MST) plant has been developed that is designed to allow much more flexible operation than typically considered in concentrating solar power plants. As a result, this plant canmore » provide most of the capacity and ancillary benefits of a conventional natural gas peaker plant but without the carbon emissions. The DSP system presented was designed to meet the specific needs of the Arizona Public Service (APS) utility 2017 peaking capacity request for proposals (RFP). The goal of the effort was to design a MST peaker plant that had the operational capabilities required to meet the peaking requirements of the utility and be cost competitive with the natural gas alternative. The effort also addresses many perceived barriers facing the commercial deployment of MST technology in the US today. These include MST project development issues such as permitting, avian impacts, visual impacts of tower CSP projects, project schedule, and water consumption. The DSP plant design is based on considerable analyses using sophisticated solar system design tools and in-depth preliminary engineering design. The resulting DSP plant design uses a 250 MW steam power cycle, with solar field designed to fit on a square mile plot of land that has a design point thermal rating of 400 MWt. The DSP plant has an annual capacity factor of about 16% tailored to deliver greater than 90% capacity during the critical Arizona summer afternoon peak. The table below compares the All-In energy cost and capacity payment of conventional combustion

  5. End-to-End Data System Architecture for the Space Station Biological Research Project

    NASA Technical Reports Server (NTRS)

    Mian, Arshad; Scimemi, Sam; Adeni, Kaiser; Picinich, Lou; Ramos, Rubin (Technical Monitor)

    1998-01-01

    The Space Station Biological Research Project (SSBRP) Is developing hardware referred to as the "facility" for providing life sciences research capability on the International Space Station. This hardware includes several biological specimen habitats, habitat holding racks, a centrifuge and a glovebox. An SSBRP end to end data system architecture has been developed to allow command and control of the facility from the ground, either with crew assistance or autonomously. The data system will be capable of handling commands, sensor data, and video from multiple cameras. The data will traverse through several onboard and ground networks and processing entities including the SSBRP and Space Station onboard and ground data systems. A large number of onboard and ground (,entities of the data system are being developed by the Space Station Program, other NASA centers and the International Partners. The SSBRP part of the system which includes the habitats, holding racks, and the ground operations center, User Operations Facility (UOF) will be developed by a multitude of geographically distributed development organizations. The SSBRP has the responsibility to define the end to end data and communications systems to make the interfaces manageable and verifiable with multiple contractors with widely varying development constraints and schedules. This paper provides an overview of the SSBRP end-to-end data system. Specifically, it describes the hardware, software and functional interactions of individual systems, and interface requirements among various entities of the end-to-end system.

  6. Overview of Materials and Power Applications of Coated Conductors Project

    NASA Astrophysics Data System (ADS)

    Shiohara, Yuh; Taneda, Takahiro; Yoshizumi, Masateru

    2012-01-01

    There are high expectations for coated conductors in electric power applications such as superconducting magnetic energy storage (SMES) systems, power cables, and transformers owing to their ability to contribute to stabilizing and increasing the capacity of the electric power supply grid as well as to reducing CO2 emission as a result of their high critical-current characteristics. Research and development has been performed on wires/tapes and electric power devices worldwide. The Materials and Power Applications of Coated Conductors (M-PACC) Project is a five-year national project in Japan started in 2008, supported by the Ministry of Economy, Trade and Industry (METI) and the New Energy and Industrial Technology Development Organization (NEDO), to develop both coated conductors that meet market requirements and basic technologies for the above-mentioned power applications using coated conductors. In this article, research and development results are reviewed and compared with the interim/final targets of the project, and future prospects are discussed.

  7. 47 CFR 74.682 - Station identification.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Station identification. 74.682 Section 74.682... Stations § 74.682 Station identification. (a) Each television broadcast auxiliary station operating with a transmitter output power of 1 watt or more must, when actually transmitting programs, transmit station...

  8. Alternative strategies for space station financing

    NASA Technical Reports Server (NTRS)

    Walklet, D. C.; Heenan, A. T.

    1983-01-01

    The attributes of the proposed space station program are oriented toward research activities and technologies which generate long term benefits for mankind. Unless such technologies are deemed of national interest and thus are government funded, they must stand on their own in the market place. Therefore, the objectives of a United States space station should be based on commercial criteria; otherwise, such a project attracts no long term funding. There is encouraging evidence that some potential space station activities should generate revenues from shuttle related projects within the decade. Materials processing concepts as well as remote sensing indicate substantial potential. Futhermore, the economics and thus the commercial feasibility of such projects will be improved by the operating efficiencies available with an ongoing space station program.

  9. Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); Milford, Utah (Data)

    DOE Data Explorer

    Wilcox, S.; Andreas, A.

    2010-07-14

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  10. Tongonani geothermal power development, Philippines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minson, A.A.C.; Fry, T.J.; Kivell, J.A.

    1985-01-01

    This paper describes the features, design and construction of a 112 MWe geothermal power project, representing the first stage development of the substantial geothermal resources of the central Philippine region. The project has been undertaken by the Philippine Government. The National Powe Corporation is responsible for generation and distribution facilities and the Philippine National Oil Company Energy Development Corporation is responsible for controlled delivery of steam to the powe station.

  11. Some operational aspects of a rotating advanced-technology space station for the year 2025

    NASA Technical Reports Server (NTRS)

    Queijo, M. J.; Butterfield, A. J.; Cuddihy, W. F.; King, C. B.; Stone, R. W.; Wrobel, J. R.; Garn, P. A.

    1988-01-01

    The study of an Advanced Technology Space Station which would utilize the capabilities of subsystems projected for the time frame of the years 2000 to 2025 is discussed. The study includes tradeoffs of nuclear versus solar dynamic power systems that produce power outputs of 2.5 megawatts and analyses of the dynamics of the spacecraft of which portions are rotated for artificial gravity. The design considerations for the support of a manned Mars mission from low Earth orbit are addressed. The studies extend to on-board manufacturing, internal gas composition effects, and locomotion and material transfer under artificial gravity forces. The report concludes with an assessment of technology requirements for the Advanced Technology Space Station.

  12. Artificial neural network application for space station power system fault diagnosis

    NASA Technical Reports Server (NTRS)

    Momoh, James A.; Oliver, Walter E.; Dias, Lakshman G.

    1995-01-01

    This study presents a methodology for fault diagnosis using a Two-Stage Artificial Neural Network Clustering Algorithm. Previously, SPICE models of a 5-bus DC power distribution system with assumed constant output power during contingencies from the DDCU were used to evaluate the ANN's fault diagnosis capabilities. This on-going study uses EMTP models of the components (distribution lines, SPDU, TPDU, loads) and power sources (DDCU) of Space Station Alpha's electrical Power Distribution System as a basis for the ANN fault diagnostic tool. The results from the two studies are contrasted. In the event of a major fault, ground controllers need the ability to identify the type of fault, isolate the fault to the orbital replaceable unit level and provide the necessary information for the power management expert system to optimally determine a degraded-mode load schedule. To accomplish these goals, the electrical power distribution system's architecture can be subdivided into three major classes: DC-DC converter to loads, DC Switching Unit (DCSU) to Main bus Switching Unit (MBSU), and Power Sources to DCSU. Each class which has its own electrical characteristics and operations, requires a unique fault analysis philosophy. This study identifies these philosophies as Riddles 1, 2 and 3 respectively. The results of the on-going study addresses Riddle-1. It is concluded in this study that the combination of the EMTP models of the DDCU, distribution cables and electrical loads yields a more accurate model of the behavior and in addition yielded more accurate fault diagnosis using ANN versus the results obtained with the SPICE models.

  13. Thermal power systems small power systems applications project. Volume 2: Detailed report

    NASA Technical Reports Server (NTRS)

    Marriott, A. T.

    1979-01-01

    Small power system technology as applied to power plants up to 10 MW in size was considered. Markets for small power systems were characterized and cost goals were established for the project. Candidate power plant system design concepts were selected for evaluation and preliminary performance and cost assessments were made. Breakeven capital costs were determined for leading contenders among the candidate systems. The potential use of small power systems in providing part of the demand for pumping power by the extensive aqueduct system of California, was studied. Criteria and methodologies were developed for the ranking of candidate power plant system design concepts. Experimental power plant concepts of 1 MW rating were studied to define a power plant configuration for subsequent detail design construction, testing and evaluation. Site selection criteria and ground rules were developed.

  14. 47 CFR 74.15 - Station license period.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... it is used. (d) Initial licenses for low power TV, TV translator, and FM translator stations will... date determined in accordance with § 73.1020 of this chapter. Lower power TV and TV translator station and FM translator station licenses will ordinarily be renewed for 8 years. However, if the FCC finds...

  15. The potential impact of new power system technology on the design of a manned space station

    NASA Technical Reports Server (NTRS)

    Fordyce, J. S.; Schwartz, H. J.

    1984-01-01

    Larger, more complex spacecraft of the future such as a manned Space Station will require electric power systems of 100 kW and more, orders of magnitude greater than the present state of the art. Power systems at this level will have a significant impact on the spacecraft design. Historically, long-lived spacecraft have relied on silicon solar cell arrays, a nickel-cadmium storage battery and operation at 28 V dc. These technologies lead to large array areas and heavy batteries for a Space Station application. This, in turn, presents orbit altitude maintenance, attitude control, energy management and launch weight and volume constraints. Size (area) and weight of such a power system can be reduced if new higher efficiency conversion and lighter weight storage technologies are used. Several promising technology options including concentrator solar photovoltaic arrays, solar thermal dynamic and ultimately nuclear dynamic systems to reduce area are discussed. Also, higher energy storage systems such as nickel-hydrogen and the regenerative fuel cell (RFC) and higher voltage power distribution which add system flexibility, simplicity and reduce weight are examined. Emphasis is placed on the attributes and development status of emerging technologies that are sufficiently developed so that they could be available for flight use in the early to mid 1990's.

  16. The potential impact of new power system technology on the design of a manned Space Station

    NASA Technical Reports Server (NTRS)

    Fordyce, J. S.; Schwartz, H. J.

    1984-01-01

    Larger, more complex spacecraft of the future such as a manned Space Station will require electric power systems of 100 kW and more, orders of magnitude greater than the present state of the art. Power systems at this level will have a significant impact on the spacecraft design. Historically, long-lived spacecraft have relied on silicon solar cell arrays, a nickel-cadmium storage battery and operation at 28 V dc. These technologies lead to large array areas and heavy batteries for a Space Station application. This, in turn, presents orbit altitude maintenance, attitude control, energy management and launch weight and volume constraints. Size (area) and weight of such a power system can be reduced if new higher efficiency conversion and lighter weight storage technologies are used. Several promising technology options including concentrator solar photovoltaic arrays, solar thermal dynamic and ultimately nuclear dynamic systems to reduce area are discussed. Also, higher energy storage systems such as nickel-hydrogen and the regenerative fuel cell (RFC) and higher voltage power distribution which add system flexibility, simplicity and reduce weight are examined. Emphasis placed on the attributes and development status of emerging technologies that are sufficiently developed so that they could be available for flight use in the early to mid 1990's.

  17. Feasibility Study of a Satellite Solar Power Station

    NASA Technical Reports Server (NTRS)

    Glaser, P. E.; Maynard, O. E.; Mackovciak, J. J. R.; Ralph, E. I.

    1974-01-01

    A feasibility study of a satellite solar power station (SSPS) was conducted to: (1) explore how an SSPS could be flown and controlled in orbit; (2) determine the techniques needed to avoid radio frequency interference (RFI); and (3) determine the key environmental, technological, and economic issues involved. Structural and dynamic analyses of the SSPS structure were performed, and deflections and internal member loads were determined. Desirable material characteristics were assessed and technology developments identified. Flight control performance of the SSPS baseline design was evaluated and parametric sizing studies were performed. The study of RFI avoidance techniques covered (1) optimization of the microwave transmission system; (2) device design and expected RFI; and (3) SSPS RFI effects. The identification of key issues involved (1) microwave generation, transmissions, and rectification and solar energy conversion; (2) environmental-ecological impact and biological effects; and (3) economic issues, i.e., costs and benefits associated with the SSPS. The feasibility of the SSPS based on the parameters of the study was established.

  18. Space station common module power system network topology and hardware development

    NASA Technical Reports Server (NTRS)

    Landis, D. M.

    1985-01-01

    Candidate power system newtork topologies for the space station common module are defined and developed and the necessary hardware for test and evaluation is provided. Martin Marietta's approach to performing the proposed program is presented. Performance of the tasks described will assure systematic development and evaluation of program results, and will provide the necessary management tools, visibility, and control techniques for performance assessment. The plan is submitted in accordance with the data requirements given and includes a comprehensive task logic flow diagram, time phased manpower requirements, a program milestone schedule, and detailed descriptions of each program task.

  19. Power processing systems for ion thrusters.

    NASA Technical Reports Server (NTRS)

    Herron, B. G.; Garth, D. R.; Finke, R. C.; Shumaker, H. A.

    1972-01-01

    The proposed use of ion thrusters to fulfill various communication satellite propulsion functions such as east-west and north-south stationkeeping, attitude control, station relocation and orbit raising, naturally leads to the requirement for lightweight, efficient and reliable thruster power processing systems. Collectively, the propulsion requirements dictate a wide range of thruster power levels and operational lifetimes, which must be matched by the power processing. This paper will discuss the status of such power processing systems, present system design alternatives and project expected near future power system performance.

  20. ISSA/TSS power preliminary design

    NASA Technical Reports Server (NTRS)

    Main, John A.

    1996-01-01

    A projected power shortfall during the initial utilization flights of the International Space Station Alpha (ISSA) has prompted an inquiry into the use of the Tethered Satellite System (TSS) to provide station power. The preliminary design of the combined ISSA/TSS system is currently underway in the Preliminary Design Office at the Marshall Space Flight Center. This document focuses on the justification for using a tether system on space station, the physical principles behind such a system, and how it might be operated to best utilize its capabilities. The basic components of a simple DC generator are a magnet of some type and a conductive wire. Moving the wire through the magnetic field causes forces to be applied to the electric charges in the conductor, and thus current is induced to flow. This simple concept is the idea behind generating power with space-borne tether systems. The function of the magnet is performed by the earth's magnetic field, and orbiting a conductive tether about the earth effectively moves the tether through the field.

  1. EMTP based stability analysis of space station electric power system in a test bed environment

    NASA Technical Reports Server (NTRS)

    Dravid, Narayan V.; Kacpura, Thomas J.; Oconnor, Andrew M.

    1992-01-01

    The Space Station Freedom Electric Power System (EPS) will convert solar energy into electric energy and distribute the same using an 'all dc', Power Management and Distribution (PMAD) System. Power conditioning devices (dc to dc converters) are needed to interconnect parts of this system operating at different nominal voltage levels. Operation of such devices could generate under damped oscillations (instability) under certain conditions. Criteria for instability are examined and verified for a single device. Suggested extension of the criteria to a system operation is examined by using the EMTP model of the PMAD DC test bed. Wherever possible, data from the test bed is compared with the modeling results.

  2. EMTP based stability analysis of Space Station Electric Power System in a test bed environment

    NASA Technical Reports Server (NTRS)

    Dravid, Narayan V.; Kacpura, Thomas J.; O'Connor, Andrew M.

    1992-01-01

    The Space Station Freedom Electric Power System (EPS) will convert solar energy into electric energy and distribute the same using an 'all dc', Power Management and Distribution (PMAD) System. Power conditioning devices (dc to dc converters) are needed to interconnect parts of this system operating at different nominal voltage levels. Operation of such devices could generate under damped oscillations (instability) under certain conditions. Criteria for instability are examined and verified for a single device. Suggested extension of the criteria to a system operation is examined by using the EMTP model of the PMAD dc test bed. Wherever possible, data from the test bed is compared with the modeling results.

  3. Space Station Module Power Management and Distribution System (SSM/PMAD)

    NASA Technical Reports Server (NTRS)

    Miller, William (Compiler); Britt, Daniel (Compiler); Elges, Michael (Compiler); Myers, Chris (Compiler)

    1994-01-01

    This report provides an overview of the Space Station Module Power Management and Distribution (SSM/PMAD) testbed system and describes recent enhancements to that system. Four tasks made up the original contract: (1) common module power management and distribution system automation plan definition; (2) definition of hardware and software elements of automation; (3) design, implementation and delivery of the hardware and software making up the SSM/PMAD system; and (4) definition and development of the host breadboard computer environment. Additions and/or enhancements to the SSM/PMAD test bed that have occurred since July 1990 are reported. These include: (1) rehosting the MAESTRO scheduler; (2) reorganization of the automation software internals; (3) a more robust communications package; (4) the activity editor to the MAESTRO scheduler; (5) rehosting the LPLMS to execute under KNOMAD; implementation of intermediate levels of autonomy; (6) completion of the KNOMAD knowledge management facility; (7) significant improvement of the user interface; (8) soft and incipient fault handling design; (9) intermediate levels of autonomy, and (10) switch maintenance.

  4. GULF OF MEXICO SEAFLOOR STABILITY AND GAS HYDRATE MONITORING STATION PROJECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Robert Woolsey; Thomas M. McGee; Robin C. Buchannon

    The gas hydrates research Consortium (HRC), established and administered at the University if Mississippi's Center for Marine Research and Environmental Technology (CMRET) has been active on many fronts in FY 03. Extension of the original contract through March 2004, has allowed completion of many projects that were incomplete at the end of the original project period due, primarily, to severe weather and difficulties in rescheduling test cruises. The primary objective of the Consortium, to design and emplace a remote sea floor station for the monitoring of gas hydrates in the Gulf of Mexico by the year 2005 remains intact. However,more » the possibility of levering HRC research off of the Joint Industries Program (JIP) became a possibility that has demanded reevaluation of some of the fundamental assumptions of the station format. These provisions are discussed in Appendix A. Landmark achievements of FY03 include: (1) Continuation of Consortium development with new researchers and additional areas of research contribution being incorporated into the project. During this period, NOAA's National Undersea Research Program's (NURP) National Institute for Undersea Science and Technology (NIUST) became a Consortium funding partner, joining DOE and Minerals Management Service (MMS); (2) Very successful annual and semiannual meetings in Oxford Mississippi in February and September, 2003; (3) Collection of piston cores from MC798 in support of the effort to evaluate the site for possible monitoring station installation; (4) Completion of the site evaluation effort including reports of all localities in the northern Gulf of Mexico where hydrates have been documented or are strongly suspected to exist on the sea floor or in the shallow subsurface; (5) Collection and preliminary evaluation of vent gases and core samples of hydrate from sites in Green Canyon and Mississippi Canyon, northern Gulf of Mexico; (6) Monitoring of gas activity on the sea floor, acoustically and

  5. Environmental review of Potomac Electric Power Company's proposed Station H Element I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-04-01

    The report has been conducted to evaluate the potential impacts to environmental and cultural resources from the proposed construction and operation of Element I (the combustion turbine portion) of the Station H power plant facility at Potomac Electric Power Company's Dickerson site. This review also presents an evaluation of air quality impacts of Elements I and II (combustion turbine and combined cycle components of the facility) and an assessment of compliance with state and Federal air quality regulations (primarily the ambient air quality standards and the air quality impact requirements of PSD regulations). Results of the Environmental Review analysis aremore » used as the basis for establishing preliminary recommended licensing conditions for operating the proposed facility. These recommendations are also included in the report.« less

  6. A Global Perspective: NASA's Prediction of Worldwide Energy Resources (POWER) Project

    NASA Technical Reports Server (NTRS)

    Zhang, Taiping; Stackhouse, Paul W., Jr.; Chandler, William S.; Hoell, James M.; Westberg, David; Whitlock, Charles H.

    2007-01-01

    The Prediction of the Worldwide Energy Resources (POWER) Project, initiated under the NASA Science Mission Directorate Applied Science Energy Management Program, synthesizes and analyzes data on a global scale that are invaluable to the renewable energy industries, especially to the solar and wind energy sectors. The POWER project derives its data primarily from NASA's World Climate Research Programme (WCRP)/Global Energy and Water cycle Experiment (GEWEX) Surface Radiation Budget (SRB) project (Version 2.9) and the Global Modeling and Assimilation Office (GMAO) Goddard Earth Observing System (GEOS) assimilation model (Version 4). The latest development of the NASA POWER Project and its plans for the future are presented in this paper.

  7. Space Station

    NASA Image and Video Library

    1986-08-01

    In response to President Reagan's directive to NASA to develop a permanent marned Space Station within a decade, part of the State of the Union message to Congress on January 25, 1984, NASA and the Administration adopted a phased approach to Station development. This approach provided an initial capability at reduced costs, to be followed by an enhanced Space Station capability in the future. This illustration depicts a configuration with enhanced capabilities. It builds on the horizontal boom and module pattern of the revised baseline. This configuration would feature dual keels, two vertical spines 105-meters long joined by upper and lower booms. The structure carrying the modules would become a transverse boom of a basically rectangular structure. The two new booms, 45-meters in length, would provide extensive accommodations for attached payloads, and would offer a wide field of view. Power would be increased significantly, with the addition if a 50-kW solar dynamic power system.

  8. Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); Kalaeloa Oahu, Hawaii (Data)

    DOE Data Explorer

    Wilcox, S.; Andreas, A.

    2010-03-16

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  9. Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); Los Angeles, California (Data)

    DOE Data Explorer

    Stoffel, T.; Andreas, A.

    2010-04-26

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  10. Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); Cedar City, Utah (Data)

    DOE Data Explorer

    Wilcox, S.; Andreas, A.

    2010-07-13

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  11. Safety research of insulating materials of cable for nuclear power generating station

    NASA Technical Reports Server (NTRS)

    Lee, C. K.; Choi, J. H.; Kong, Y. K.; Chang, H. S.

    1988-01-01

    The polymers PE, EPR, PVC, Neoprene, CSP, CLPE, EP and other similar substances are frequently used as insulation and protective covering for cables used in nuclear power generating stations. In order to test these materials for flame retardation, environmental resistance, and cable specifications, they were given the cable normal test, flame test, chemical tests, and subjected to design analysis and loss of coolant accident tests. Material was collected on spark tests and actual experience standards were established through these contributions and technology was accumulated.

  12. Solar Technology Acceleration Center (SolarTAC): Solar Resource & Meteorological Assessment Project (SOLRAMP)

    DOE Data Explorer

    Andreas, Afshin; Wilcox, Steve

    2016-03-14

    Located in Colorado, near Denver International Airport, SolarTAC is a private, member-based, 74-acre outdoor facility where the solar industry tests, validates, and demonstrates advanced solar technologies. SolarTAC was launched in 2008 by a public-private consortium, including Midwest Research Institute (MRI). As a supporting member of SolarTAC, the U.S. Department of Energy National Renewable Energy Laboratory (NMREL) has established a high quality solar and meteorological measurement station at this location. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar powered projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  13. 77 FR 50493 - Sam Rayburn Dam Project Power Rate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-21

    ...-purpose reservoir projects with hydroelectric power facilities constructed and operated by the U.S. Army... Corporate Operations, Southwestern Power Administration, One West Third, Tulsa, OK 74103, (918) 595-6680 or...

  14. The TACIS Nuclear Programme: Assistance in Upgrading Russian Nuclear Power Stations - An Overview of the Individual Projects in the Internet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bieth, Michel; Schoels, Hubert

    2006-07-01

    The European Union' TACIS1 programme has been established for the New Independent States (NIS), among them in the Russian Federation since 1991. One priority of TACIS funding is Nuclear Safety. The European Commission has made available a total of 944 Million Euros for nuclear safety programmes covering the period 1991-2003. The TACIS nuclear safety programme is devoted to the improvement of the safety of Soviet designed nuclear installations in providing technology and safety culture transfer. JRC is carrying out works in the following areas: On-Site Assistance for TACIS operating Nuclear Power Plants; Design Safety and Dissemination of TACIS results; Reactormore » Pressure Vessel Embrittlement for VVER; Regulatory Assistance; Industrial Waste Management; Nuclear Safeguards; All TACIS projects, dealing with these areas of activity are now available in so called Project Description Sheets (PDS) or Project Results Sheets (PRS) in the Internet for everybody. JRC has created in the Internet an easy to open and to browse database which contains the result of works in relation to the above mentioned nuclear activities. This presentation gives an on-line overview of the app. 430 projects which have been implemented so far since the outset of the TACIS Nuclear Programme in the Russian Federation, which is representative to the other CIS countries, benefiting from the TACIS. The presentation will mainly consist of an on-line-demonstration of the TACIS Nuclear WEB Page, created by JRC. (authors)« less

  15. Probabilistic Physics-Based Risk Tools Used to Analyze the International Space Station Electrical Power System Output

    NASA Technical Reports Server (NTRS)

    Patel, Bhogila M.; Hoge, Peter A.; Nagpal, Vinod K.; Hojnicki, Jeffrey S.; Rusick, Jeffrey J.

    2004-01-01

    This paper describes the methods employed to apply probabilistic modeling techniques to the International Space Station (ISS) power system. These techniques were used to quantify the probabilistic variation in the power output, also called the response variable, due to variations (uncertainties) associated with knowledge of the influencing factors called the random variables. These uncertainties can be due to unknown environmental conditions, variation in the performance of electrical power system components or sensor tolerances. Uncertainties in these variables, cause corresponding variations in the power output, but the magnitude of that effect varies with the ISS operating conditions, e.g. whether or not the solar panels are actively tracking the sun. Therefore, it is important to quantify the influence of these uncertainties on the power output for optimizing the power available for experiments.

  16. Concentrating Solar Power Projects - Urat 50MW Fresnel CSP project |

    Science.gov Websites

    Concentrating Solar Power | NREL 50MW Fresnel CSP project Status Date: September 29, 2016 Turbine Capacity: Net: 50.0 MW Gross: 50.0 MW Status: Under development Do you have more information , corrections, or comments? Background Technology: Linear Fresnel reflector Status: Under development Country

  17. Wind for Schools: A Wind Powering America Project (Brochure)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baring-Gould, I.

    2009-08-01

    This brochure provides an overview of Wind Powering America's Wind for Schools Project, including a description of the project, the participants, funding sources, the basic configurations, and how interested parties can become involved.

  18. Implementation strategies for load center automation on the space station module/power management and distribution testbed

    NASA Technical Reports Server (NTRS)

    Watson, Karen

    1990-01-01

    The Space Station Module/Power Management and Distribution (SSM/PMAD) testbed was developed to study the tertiary power management on modules in large spacecraft. The main goal was to study automation techniques, not necessarily develop flight ready systems. Because of the confidence gained in many of automation strategies investigated, it is appropriate to study, in more detail, implementation strategies in order to find better trade-offs for nearer to flight ready systems. These trade-offs particularly concern the weight, volume, power consumption, and performance of the automation system. These systems, in their present implementation are described.

  19. Research on H2 speed governor for diesel engine of marine power station

    NASA Astrophysics Data System (ADS)

    Huang, Man-Lei

    2007-09-01

    The frequency stability of a marine power system is determined by the dynamic characteristic of the diesel engine speed regulation system in a marine power station. In order to reduce the effect of load disturbances and improve the dynamic precision of a diesel engine speed governor, a controller was designed for a diesel engine speed regulation system using H2 control theory. This transforms the specifications of the system into a standard H2 control problem. Firstly, the mathematical model of a diesel engine speed regulation system using an H2 speed governor is presented. To counter external disturbances and model uncertainty, the design of an H2 speed governor rests on the problem of mixed sensitivity. Computer simulation verified that the H2 speed governor improves the dynamic precision of a system and the ability to adapt to load disturbances, thus enhancing the frequency stability of marine power systems.

  20. Use of satellites to determine optimum locations for solar power stations

    NASA Technical Reports Server (NTRS)

    Hiser, H. W.; Senn, H. V.

    1976-01-01

    Ground measurements of solar radiation are too sparse to determine important mesoscale differences that can be of major significance in solar power station locations. Cloud images in the visual spectrum from the SMS/GOES geostationary satellites are used to determine the hourly distribution of sunshine on a mesoscale in the continental United States excluding Alaska. Cloud coverage and density as a function of time of day and season are considered through the use of digital data processing techniques. Low density cirrus clouds are less detrimental to solar energy collection than other types; and clouds in the morning and evening are less detrimental than those during midday hours of maximum insolation. The seasonal geographic distributions of sunshine are converted to Langleys of solar radiation received at the earth's surface through the use of transform equations developed from long-term measurements of these two parameters at 18 widely distributed stations. The high correlation between measurements of sunshine and radiation makes this possible. The output product will be maps showing the geographic distribution of total solar radiation on the mesoscale which is received at the earth's surface during each season.

  1. A Spanish ''Power Tower'' solar system: Project CESA-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torralbo, A.M.; Gonzalvez, M.; Lacal, J.A.

    1984-02-01

    Like many other countries and organizations, Spain has been developing a program to investigate the economic viability of new sources of energy. Among these, it should be pointed out, is included the large solar power systems. Within this investigation program, ''Centro de Estudios de la Energia'', an organization dependent on ''Ministerio de Industria y Energia'', is carrying out the CESA-1 Project, which consists of design, construction, start-up, and operation of a 1.2-MW Pilot Solar Power Plant. If the current technical uncertainties are removed and the power tower concept demonstrates its economical viability, Spain will be one of the most appropriatemore » countries in the world for a full-scale implementation of this technology. For this reason, the ''Ministerio de Industria y Energia'' reached the conclusion in mid-1977 that it would be of interest to explore this technology using the domestic industrial potential. The project was approved by the Council of Ministers in June 1977 and the project begun in early 1978. The management of the Project is the direct responsibility of ''El Centro de Estudios de la Energia'' and was helped by the engineering firms Initec and Sener to attain the adequate organization to carry out the project.« less

  2. 47 CFR 74.706 - Digital TV (DTV) station protection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Translator, and TV Booster Stations § 74.706 Digital TV (DTV) station protection. (a) For purposes of this... chapter. (b)(1) An application to construct a new low power TV or TV translator station or change the... translator or TV booster station field strength is calculated from the proposed effective radiated power (ERP...

  3. Biomass power for rural development. Technical progress report, May 1, 1996--December 31, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neuhauser, E.

    Developing commercial energy crops for power generation by the year 2000 is the focus of the DOE/USDA sponsored Biomass Power for Rural Development project. The New York based Salix Consortium project is a multi-partner endeavor, implemented in three stages. Phase-I, Final Design and Project Development, will conclude with the preparation of construction and/or operating permits, feedstock production plans, and contracts ready for signature. Field trials of willow (Salix) have been initiated at several locations in New York (Tully, Lockport, King Ferry, La Facette, Massena, and Himrod) and co-firing tests are underway at Greenidge Station (NYSEG). Phase-II of the project willmore » focus on scale-up of willow crop acreage, construction of co-firing facilities at Dunkirk Station (NMPC), and final modifications for Greenidge Station. There will be testing of the energy crop as part of the gasification trials expected to occur at BED`s McNeill power station and potentially at one of GPU`s facilities. Phase-III will represent full-scale commercialization of the energy crop and power generation on a sustainable basis. Willow has been selected as the energy crop of choice for many reasons. Willow is well suited to the climate of the Northeastern United States, and initial field trials have demonstrated that the yields required for the success of the project are obtainable. Like other energy crops, willow has rural development benefits and could serve to diversify local crop production, provide new sources of income for participating growers, and create new jobs. Willow could be used to put a large base of idle acreage back into crop production. Additionally, the willow coppicing system integrates well with current farm operations and utilizes agricultural practices that are already familiar to farmers.« less

  4. Wind for Schools: A Wind Powering America Project

    ERIC Educational Resources Information Center

    US Department of Energy, 2007

    2007-01-01

    The U.S. Department of Energy's (DOE's) Wind Powering America program (based at the National Renewable Energy Laboratory) sponsors the Wind for Schools Project to raise awareness in rural America about the benefits of wind energy while simultaneously educating college seniors regarding wind energy applications. The three primary project goals of…

  5. Temporal variations in Global Seismic Stations ambient noise power levels

    USGS Publications Warehouse

    Ringler, A.T.; Gee, L.S.; Hutt, C.R.; McNamara, D.E.

    2010-01-01

    Recent concerns about time-dependent response changes in broadband seismometers have motivated the need for methods to monitor sensor health at Global Seismographic Network (GSN) stations. We present two new methods for monitoring temporal changes in data quality and instrument response transfer functions that are independent of Earth seismic velocity and attenuation models by comparing power levels against different baseline values. Our methods can resolve changes in both horizontal and vertical components in a broad range of periods (∼0.05 to 1,000 seconds) in near real time. In this report, we compare our methods with existing techniques and demonstrate how to resolve instrument response changes in long-period data (>100 seconds) as well as in the microseism bands (5 to 20 seconds).

  6. Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); La Ola Lanai, Hawaii (Data)

    DOE Data Explorer

    Wilcox, S.; Andreas, A.

    2009-07-22

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  7. 47 CFR 74.781 - Station records.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Booster Stations § 74.781 Station records. (a) The licensee of a low power TV, TV translator, or TV booster station shall maintain adequate station records, including the current instrument of authorization... other suitable place, in one of the communities of license of the translator or booster, except that the...

  8. 47 CFR 74.781 - Station records.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Booster Stations § 74.781 Station records. (a) The licensee of a low power TV, TV translator, or TV booster station shall maintain adequate station records, including the current instrument of authorization... other suitable place, in one of the communities of license of the translator or booster, except that the...

  9. 47 CFR 74.781 - Station records.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Booster Stations § 74.781 Station records. (a) The licensee of a low power TV, TV translator, or TV booster station shall maintain adequate station records, including the current instrument of authorization... other suitable place, in one of the communities of license of the translator or booster, except that the...

  10. 47 CFR 74.781 - Station records.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Booster Stations § 74.781 Station records. (a) The licensee of a low power TV, TV translator, or TV booster station shall maintain adequate station records, including the current instrument of authorization... other suitable place, in one of the communities of license of the translator or booster, except that the...

  11. System design analyses of a rotating advanced-technology space station for the year 2025

    NASA Technical Reports Server (NTRS)

    Queijo, M. J.; Butterfield, A. J.; Cuddihy, W. F.; Stone, R. W.; Wrobel, J. R.; Garn, P. A.; King, C. B.

    1988-01-01

    Studies of an advanced technology space station configured to implement subsystem technologies projected for availability in the time period 2000 to 2025 is documented. These studies have examined the practical synergies in operational performance available through subsystem technology selection and identified the needs for technology development. Further analyses are performed on power system alternates, momentum management and stabilization, electrothermal propulsion, composite materials and structures, launch vehicle alternates, and lunar and planetary missions. Concluding remarks are made regarding the advanced technology space station concept, its intersubsystem synergies, and its system operational subsystem advanced technology development needs.

  12. Solar photovoltaic power stations

    NASA Technical Reports Server (NTRS)

    Chowaniec, C. R.; Pittman, P. F.; Ferber, R. R.; Marshall, B. W.

    1977-01-01

    The subsystems of a solar photovoltaic central power system are identified and the cost of major components are estimated. The central power system, which would have a peak power capability in the range of 50 to 1000 MW, utilizes two types of subsystems - a power conditioner and a solar array. Despite differences in costs of inverters, the overall cost of the total power conditioning subsystem is about the same for all approaches considered. A combination of two inverters operating from balanced dc buses as a pair of 6-pulse groups is recommended. A number of different solar cell modules and tracking array structures were analyzed. It is concluded that when solar cell costs are high (greater than $500/kW), high concentration modules are more cost effective than those with low concentration. Vertical-axis tracking is the most effective of the studied tracking modes. For less expensive solar cells (less than $400/kW), fixed tilt collector/reflector modules are more cost effective than those which track.

  13. 47 CFR 15.216 - Disclosure requirements for wireless microphones and other low power auxiliary stations capable...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) Any person who manufactures, sells, leases, or offers for sale or lease, low power auxiliary stations... following disclosure requirements: (1) Such persons must display the consumer disclosure text, as specified... or lease and clearly associated with the model to which it pertains. (2) If such persons offer such...

  14. Analysis of debt leveraging in private power projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kahn, E.P.; Meal, M.; Doerrer, S.

    1992-08-01

    As private power has grown to become a significant part of the electricity system, increasing concern about its financial implications has arisen. In many cases, the source of this concern has been the substantial reliance of these projects on debt financing. This study examines debt leveraging in private power projects. The policy debate on these issues has typically been conducted at a high level of generality. Critics of the private power industry assert that high debt leveraging confers an unfair competitive advantage by lowering the cost of capital. This leveraging is only possible because risks are shifted to the utility.more » Further, debt leveraging is claimed to be a threat to reliability. On the opposite side, it is argued that debt leveraging imposes costs and obligations not borne by utilities, and so there is no financial advantage. The private producers also argue that on balance more risk is shifted away from utilities than to them, and that incentives for reliability are strong. In this study we examine the project finance mechanisms used in private power lending in detail, relying on a sample of actual loan documents. This review and its findings should be relevant to the further evolution of this debate. State regulatory commissions are likely to be interested in it, and Federal legislation to amend the Public Utility Holding Company Act (PUHCA) could require states to consider the implications of debt leveraging in relation to their oversight of utility power purchase programs.« less

  15. Analysis of debt leveraging in private power projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kahn, E.P.; Meal, M.; Doerrer, S.

    1992-08-01

    As private power (non-utility generation) has grown to become a significant part of the electricity system, increasing concern about its financial implications has arisen. In many cases, the source of this concern has been the substantial reliance of these projects on debt financing. This study examines debt leveraging in private power projects. The policy debate on these issues has typically been conducted at a high level of generality. Critics of the private power industry assert that high debt leveraging confers an unfair competitive advantage by lowering the cost of capital, and that this leveraging is only possible because risks aremore » shifted to the utility. Further, debt leveraging is claimed to be a threat to reliability. On the opposite side, it is argued that debt leveraging imposes costs and obligations not home by utilities, and so there is no financial advantage. The private producers also argue that on balance more risk is shifted away from utilities than to them, and that incentives for reliability are strong. In this study we examine the project finance mechanisms used in private power lending in detail, relying on a sample of actual loan documents. This review and its findings should be relevant to the further evolution of this debate. State regulatory commissions are likely to be interested in it, and Federal legislation to amend the Public Utility Holding Company Act (PUHCA) could require states to consider the implications of debt leveraging in relation to their oversight of utility power purchase programs.« less

  16. Computer-aided modeling and prediction of performance of the modified Lundell class of alternators in space station solar dynamic power systems

    NASA Technical Reports Server (NTRS)

    Demerdash, Nabeel A. O.; Wang, Ren-Hong

    1988-01-01

    The main purpose of this project is the development of computer-aided models for purposes of studying the effects of various design changes on the parameters and performance characteristics of the modified Lundell class of alternators (MLA) as components of a solar dynamic power system supplying electric energy needs in the forthcoming space station. Key to this modeling effort is the computation of magnetic field distribution in MLAs. Since the nature of the magnetic field is three-dimensional, the first step in the investigation was to apply the finite element method to discretize volume, using the tetrahedron as the basic 3-D element. Details of the stator 3-D finite element grid are given. A preliminary look at the early stage of a 3-D rotor grid is presented.

  17. A modernized high-pressure heater protection system for nuclear and thermal power stations

    NASA Astrophysics Data System (ADS)

    Svyatkin, F. A.; Trifonov, N. N.; Ukhanova, M. G.; Tren'kin, V. B.; Koltunov, V. A.; Borovkov, A. I.; Klyavin, O. I.

    2013-09-01

    Experience gained from operation of high-pressure heaters and their protection systems serving to exclude ingress of water into the turbine is analyzed. A formula for determining the time for which the high-pressure heater shell steam space is filled when a rupture of tubes in it occurs is analyzed, and conclusions regarding the high-pressure heater design most advisable from this point of view are drawn. A typical structure of protection from increase of water level in the shell of high-pressure heaters used in domestically produced turbines for thermal and nuclear power stations is described, and examples illustrating this structure are given. Shortcomings of components used in the existing protection systems that may lead to an accident at the power station are considered. A modernized protection system intended to exclude the above-mentioned shortcomings was developed at the NPO Central Boiler-Turbine Institute and ZioMAR Engineering Company, and the design solutions used in this system are described. A mathematical model of the protection system's main elements (the admission and check valves) has been developed with participation of specialists from the St. Petersburg Polytechnic University, and a numerical investigation of these elements is carried out. The design version of surge tanks developed by specialists of the Central Boiler-Turbine Institute for excluding false operation of the high-pressure heater protection system is proposed.

  18. The shallow water equations as a hybrid flow model for the numerical and experimental analysis of hydro power stations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ostermann, Lars; Seidel, Christian

    2015-03-10

    The numerical analysis of hydro power stations is an important method of the hydraulic design and is used for the development and optimisation of hydro power stations in addition to the experiments with the physical submodel of a full model in the hydraulic laboratory. For the numerical analysis, 2D and 3D models are appropriate and commonly used.The 2D models refer mainly to the shallow water equations (SWE), since for this flow model a large experience on a wide field of applications for the flow analysis of numerous problems in hydraulic engineering already exists. Often, the flow model is verified bymore » in situ measurements. In order to consider 3D flow phenomena close to singularities like weirs, hydro power stations etc. the development of a hybrid fluid model is advantageous to improve the quality and significance of the global model. Here, an extended hybrid flow model based on the principle of the SWE is presented. The hybrid flow model directly links the numerical model with the experimental data, which may originate from physical full models, physical submodels and in-situ measurements. Hence a wide field of application of the hybrid model emerges including the improvement of numerical models and the strong coupling of numerical and experimental analysis.« less

  19. 47 CFR 74.781 - Station records.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., AUXILIARY, SPECIAL BROADCAST AND OTHER PROGRAM DISTRIBUTIONAL SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.781 Station records. (a) The licensee of a low power TV, TV translator, or TV... other suitable place, in one of the communities of license of the translator or booster, except that the...

  20. Project Exodus

    NASA Technical Reports Server (NTRS)

    Bryant, Rodney (Compiler); Dillon, Jennifer (Compiler); Grewe, George (Compiler); Mcmorrow, Jim (Compiler); Melton, Craig (Compiler); Rainey, Gerald (Compiler); Rinko, John (Compiler); Singh, David (Compiler); Yen, Tzu-Liang (Compiler)

    1990-01-01

    A design for a manned Mars mission, PROJECT EXODUS is presented. PROJECT EXODUS incorporates the design of a hypersonic waverider, cargo ship and NIMF (nuclear rocket using indigenous Martian fuel) shuttle lander to safely carry out a three to five month mission on the surface of Mars. The cargo ship transports return fuel, return engine, surface life support, NIMF shuttle, and the Mars base to low Mars orbit (LMO). The cargo ship is powered by a nuclear electric propulsion (NEP) system which allows the cargo ship to execute a spiral trajectory to Mars. The waverider transports ten astronauts to Mars and back. It is launched from the Space Station with propulsion provided by a chemical engine and a delta velocity of 9 km/sec. The waverider performs an aero-gravity assist maneuver through the atmosphere of Venus to obtain a deflection angle and increase in delta velocity. Once the waverider and cargo ship have docked the astronauts will detach the landing cargo capsules and nuclear electric power plant and remotely pilot them to the surface. They will then descend to the surface aboard the NIMF shuttle. A dome base will be quickly constructed on the surface and the astronauts will conduct an exploratory mission for three to five months. They will return to Earth and dock with the Space Station using the waverider.