Science.gov

Sample records for power stations sistema

  1. Space station power system

    NASA Technical Reports Server (NTRS)

    Baraona, Cosmo R.

    1987-01-01

    The major requirements and guidelines that affect the space station configuration and power system are explained. The evolution of the space station power system from the NASA program development-feasibility phase through the current preliminary design phase is described. Several early station concepts are described and linked to the present concept. Trade study selections of photovoltaic system technologies are described in detail. A summary of present solar dynamic and power management and distribution systems is also given.

  2. Power Station Design

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Kuljian Corporation provides design engineering and construction management services for power generating plants in more than 20 countries. They used WASP (Calculating Water and Steam Properties), a COSMIC program to optimize power station design. This enabled the company to substantially reduce lead time and software cost in a recent design project.

  3. Solar power station

    SciTech Connect

    Wenzel, J.

    1982-11-30

    Solar power station with semiconductor solar cells for generating electric power is described, wherein the semiconductor solar cells are provided on a member such as a balloon or a kite which carries the solar cells into the air. The function of the balloon or kite can also be fulfilled by a glider or airship. The solar power station can be operated by allowing the system to ascend at sunrise and descend at sunset or when the wind is going to be too strong in order to avoid any demage.

  4. International Space Station Power Systems

    NASA Technical Reports Server (NTRS)

    Propp, Timothy William

    2001-01-01

    This viewgraph presentation gives a general overview of the International Space Station Power Systems. The topics include: 1) The Basics of Power; 2) Space Power Systems Design Constraints; 3) Solar Photovoltaic Power Systems; 4) Energy Storage for Space Power Systems; 5) Challenges of Operating Power Systems in Earth Orbit; 6) and International Space Station Electrical Power System.

  5. The space station power system

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The requirements for electrical power by the proposed Space Station Freedom are discussed. The options currently under consideration are examined. The three power options are photovoltaic, solar dynamic, and a hybrid system. Advantages and disadvantages of each system are tabulated. Drawings and artist concepts of the Space Station configuration are provided.

  6. Space Station Power System issues

    NASA Technical Reports Server (NTRS)

    Forestieri, A. F.

    1985-01-01

    A number of attractive options are available for the Space Station Power System. These include a photovoltaic system or solar dynamic system for power generation, batteries or fuel cells for energy storage and ac or dc for power management and distribution. These options are being explored during the present preliminary design and definition phase of the Space Station Program. Final selections are presently targeted for January 1986.

  7. Space Station Photovoltaic power modules

    NASA Technical Reports Server (NTRS)

    Tatro, Charles A.

    1988-01-01

    Silicon cell Photovoltaic (PV) power modules are key components of the Space Station Electrical Power System (EPS) scheduled to begin deployment in 1994. Four PV power modules, providing 75 KWe of user ac power, form the cornerstone of the EPS; which is comprised of Photovoltaic (PV) power modules, Solar Dynamic (SD) power modules, and the Power Management and Distribution (PMAD) system. The PV modules are located on rotating outboard sections of the Space Station (SS) structure and each module incorporates its own nickel-hydrogen energy storage batteries, its own thermal control system, and some autonomous control features. The PV modules are a cost-effective and technologically mature approach for providing reliable SS electrical power and are a solid base for EPS growth, which is expected to reach 300 KWe by the end of the Space Station's 30-year design lifetime.

  8. Space Station power system selection

    NASA Technical Reports Server (NTRS)

    Rice, R. R.

    1986-01-01

    The Space Station power system selection process is described with attention given to management organization and technical considerations. A hybrid power system was chosen because of the large life cycle cost savings. The power management and distribution system that was chosen was the 400 Hz system.

  9. Solar photovoltaic power stations

    NASA Technical Reports Server (NTRS)

    Chowaniec, C. R.; Pittman, P. F.; Ferber, R. R.; Marshall, B. W.

    1977-01-01

    The subsystems of a solar photovoltaic central power system are identified and the cost of major components are estimated. The central power system, which would have a peak power capability in the range of 50 to 1000 MW, utilizes two types of subsystems - a power conditioner and a solar array. Despite differences in costs of inverters, the overall cost of the total power conditioning subsystem is about the same for all approaches considered. A combination of two inverters operating from balanced dc buses as a pair of 6-pulse groups is recommended. A number of different solar cell modules and tracking array structures were analyzed. It is concluded that when solar cell costs are high (greater than $500/kW), high concentration modules are more cost effective than those with low concentration. Vertical-axis tracking is the most effective of the studied tracking modes. For less expensive solar cells (less than $400/kW), fixed tilt collector/reflector modules are more cost effective than those which track.

  10. Space Station power system issues

    NASA Technical Reports Server (NTRS)

    Giudici, R. J.

    1985-01-01

    Issues governing the selection of power systems for long-term manned Space Stations intended solely for earth orbital missions are covered briefly, drawing on trade study results from both in-house and contracted studies that have been conducted over nearly two decades. An involvement, from the Program Development Office at MSFC, with current Space Station concepts began in late 1982 with the NASA-wide Systems Definition Working Group and continued throughout 1984 in support of various planning activities. The premise for this discussion is that, within the confines of the current Space Station concept, there is good reason to consider photovoltaic power systems to be a venerable technology option for both the initial 75 kW and 300 kW (or much greater) growth stations. The issue of large physical size required by photovoltaic power systems is presented considering mass, atmospheric drag, launch packaging and power transmission voltage as being possible practicality limitations. The validity of searching for a cross-over point necessitating the introduction of solar thermal or nuclear power system options as enabling technologies is considered with reference to programs ranging from the 4.8 kW Skylab to the 9.5 gW Space Power Satellite.

  11. Space station power semiconductor package

    NASA Technical Reports Server (NTRS)

    Balodis, Vilnis; Berman, Albert; Devance, Darrell; Ludlow, Gerry; Wagner, Lee

    1987-01-01

    A package of high-power switching semiconductors for the space station have been designed and fabricated. The package includes a high-voltage (600 volts) high current (50 amps) NPN Fast Switching Power Transistor and a high-voltage (1200 volts), high-current (50 amps) Fast Recovery Diode. The package features an isolated collector for the transistors and an isolated anode for the diode. Beryllia is used as the isolation material resulting in a thermal resistance for both devices of .2 degrees per watt. Additional features include a hermetical seal for long life -- greater than 10 years in a space environment. Also, the package design resulted in a low electrical energy loss with the reduction of eddy currents, stray inductances, circuit inductance, and capacitance. The required package design and device parameters have been achieved. Test results for the transistor and diode utilizing the space station package is given.

  12. Status of space station power system

    NASA Technical Reports Server (NTRS)

    Baraona, Cosmo R.; Sheibley, Dean W.

    1987-01-01

    The major requirements and guidelines that affect the manned space station configuration and the power systems are explained. The evolution of the space station power system from the NASA program development feasibility phase through the current preliminary design phase is described. Several early station concepts are described and linked to the present concept. The recently completed phase B tradeoff study selections of photovoltaic system technologies are described. The present solar dynamic and power management and distribution systems are also summarized for completeness.

  13. Space Station Freedom solar dynamic power generation

    NASA Technical Reports Server (NTRS)

    Springer, T.; Friefeld, Jerry M.

    1990-01-01

    Viewgraphs on Space Station Freedom solar dynamic power generation are presented. Topics covered include: prime contract activity; key solar dynamic power module requirements; solar dynamic heat receiver technology; and solar concentrator advanced development.

  14. Space Station Freedom solar dynamic power generation

    NASA Technical Reports Server (NTRS)

    Springer, T.; Friefeld, Jerry M.

    1990-01-01

    Viewgraphs on Space Station Freedom solar dynamic power generation are presented. Topics covered include: prime contract activity; key solar dynamic power module requirements; solar dynamic heat receiver technology; and solar concentrator advanced development.

  15. Space station electrical power system technology

    SciTech Connect

    Sorensen, A.A.

    1984-08-01

    NASA is beginning the development of both a permanently manned space station and of unmanned space platforms. Although the exact requirements have not been defined, the initial space station will likely require a considerable amount of electrical power. There are many options available for the source, storage and distribution of power/energy. Some of these technologies are better developed and more likely to be applied to the initial systems. This paper describes the results of power system technology studies as applied to manned space stations, and includes tradeoffs for power distribution selection. Sizing and cost factors are provided for the more probable combinations of power sources, storage and distribution approaches.

  16. A new Space Station power system

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    1988-01-01

    A new concept for a Space Station power system is proposed which reduces the drag effect of the solar panels and eliminates eclipsing by the Earth. The solar generator is physically separated from the Space Station, and power transmitted to the station by a microwave beam. The power station can thus be placed high enough that drag is not a significant factor. For a resonant orbit where the ratio of periods s:p is a ratio of odd integers, and the orbital planes nearly perpendicular, an orbit can be chosen such that the line of sight is never blocked if the lower orbit has an altitude greater than calculatable mininum. For the 1:3 resonance, this minimum altitude is 0.5 r(e). Finally, by placing the power station into a sun-synchronous orbit, it can be made to avoid shadowing by the Earth, thus providing continuous power.

  17. 35. SITE BUILDING 004 ELECTRIC POWER STATION CONTROL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. SITE BUILDING 004 - ELECTRIC POWER STATION - CONTROL ROOM OF ELECTRIC POWER STATION WITH DIESEL ENGINE POWERED ELECTRIC GENERATION EQUIPMENT IN BACKGROUND. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  18. Power electronic applications for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Pickrell, Roy L.; Lazbin, Igor

    1990-01-01

    NASA plans to orbit a permanently manned space station in the late 1990s, which requires development and assembly of a photovoltaic (PV) power source system to supply up to 75 kW of electrical power average during the orbital period. The electrical power requirements are to be met by a combination of PV source, storage, and control elements for the sun and eclipse periods. The authors discuss the application of power electronics and controls to manage the generation, storage, and distribution of power to meet the station loads, as well as the computer models used for analysis and simulation of the PV power system. The requirements for power source integrated controls to adjust storage charge power during the insolation period current limiting, breaker interrupt current values, and the electrical fault protection approach are defined. Based on these requirements, operating concepts have been defined which then become drivers for specific system and element design.

  19. Silicon solar photovoltaic power stations

    NASA Technical Reports Server (NTRS)

    Chowaniec, C. R.; Ferber, R. R.; Pittman, P. F.; Marshall, B. W.

    1977-01-01

    Modular design of components and arrays, cost estimates for modules and support structures, and cost/performance analysis of a central solar photovoltaic power plant are discussed. Costs of collector/reflector arrays are judged the dominant element in the total capital investment. High-concentration solar tracking arrays are recommended as the most economic means for producing solar photovoltaic energy when solar cells costs are high ($500 per kW generated). Capital costs for power conditioning subsystem components are itemized and system busbar energy costs are discussed at length.

  20. Silicon solar photovoltaic power stations

    NASA Technical Reports Server (NTRS)

    Chowaniec, C. R.; Ferber, R. R.; Pittman, P. F.; Marshall, B. W.

    1977-01-01

    Modular design of components and arrays, cost estimates for modules and support structures, and cost/performance analysis of a central solar photovoltaic power plant are discussed. Costs of collector/reflector arrays are judged the dominant element in the total capital investment. High-concentration solar tracking arrays are recommended as the most economic means for producing solar photovoltaic energy when solar cells costs are high ($500 per kW generated). Capital costs for power conditioning subsystem components are itemized and system busbar energy costs are discussed at length.

  1. Themis - A solar power station

    NASA Astrophysics Data System (ADS)

    Hillairet, J.

    The organization, goals, equipment, costs, and performance of the French Themis (Thermo-helio-electric-MW) project are outlined. The program was begun for both the domestic energy market and for export. The installation comprises a molten eutectic salt loop which receives heat from radiators situated in a central tower. The salt transfers the heat to water for steam generation of electricity. A storage tank holds enough molten salt to supply one day's reserve of power, 40 MWh. A field of heliostats directs the suns rays for an estimated 2400 hr/yr onto the central receiver aperture, while 11 additional parabolic concentrators provide sufficient heat to keep the salt reservoir at temperatures exceeding 200 C. In a test run of several months during the spring of 1982 the heliostats directed the sun's rays with an average efficiency of 75 percent, yielding 2.3 MW of power at a system efficiency of 20.5 percent in completely automatic operation.

  2. Photovoltaic Power Station with Ultracapacitors for Storage

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.; Kolacz, John S.; Soltis, Richard F.; Tavernelli, Paul F.

    2003-01-01

    A solar photovoltaic power station in which ultracapacitors, rather than batteries, are used to store energy is discussed. Developments in the semiconductor industry have reduced the cost and increased the attainable efficiency of commercially available photovoltaic panels; as a result, photovoltaic generation of power for diverse applications has become practical. Photovoltaic generation can provide electric power in remote locations where electric power would otherwise not be available. Photovoltaic generation can also afford independence from utility systems. Applications include supplying power to scientific instruments and medical equipment in isolated geographical regions.

  3. Space Station Power System Advanced Development

    NASA Technical Reports Server (NTRS)

    Forestieri, A. F.; Baraona, C. R.; Valgora, M. E.

    1985-01-01

    The objectives of the Space Station Advanced Development Program are related to the development of a set of design options and/or new capabilities to support Space Station development and operation, taking into account also a quantification of the performance and risk of key state-of-the-art technologies, and a reduction of the cost and schedule risk in Space Station development. Attention is given to the photovoltaic power system, a solar dynamic system, and aspects of power management and distribution. A major issue will be the selection of the power generation system. In view of the advantages of the solar dynamic system, it is attempted to resolve issues associated with this system.

  4. Operations research investigations of satellite power stations

    NASA Technical Reports Server (NTRS)

    Cole, J. W.; Ballard, J. L.

    1976-01-01

    A systems model reflecting the design concepts of Satellite Power Stations (SPS) was developed. The model is of sufficient scope to include the interrelationships of the following major design parameters: the transportation to and between orbits; assembly of the SPS; and maintenance of the SPS. The systems model is composed of a set of equations that are nonlinear with respect to the system parameters and decision variables. The model determines a figure of merit from which alternative concepts concerning transportation, assembly, and maintenance of satellite power stations are studied. A hybrid optimization model was developed to optimize the system's decision variables. The optimization model consists of a random search procedure and the optimal-steepest descent method. A FORTRAN computer program was developed to enable the user to optimize nonlinear functions using the model. Specifically, the computer program was used to optimize Satellite Power Station system components.

  5. Tethered nuclear power for the Space Station

    NASA Technical Reports Server (NTRS)

    Bents, D. J.

    1985-01-01

    A nuclear space power system the SP-100 is being developed for future missions where large amounts of electrical power will be required. Although it is primarily intended for unmanned spacecraft, it can be adapted to a manned space platform by tethering it above the station through an electrical transmission line which isolates the reactor far away from the inhabited platform and conveys its power back to where it is needed. The transmission line, used in conjunction with an instrument rate shield, attenuates reactor radiation in the vicinity of the space station to less than one-one hundredth of the natural background which is already there. This combination of shielding and distance attenuation is less than one-tenth the mass of boom-mounted or onboard man-rated shields that are required when the reactor is mounted nearby. This paper describes how connection is made to the platform (configuration, operational requirements) and introduces a new element the coaxial transmission tube which enables efficient transmission of electrical power through long tethers in space. Design methodology for transmission tubes and tube arrays is discussed. An example conceptual design is presented that shows SP-100 at three power levels 100 kWe, 300 kWe, and 1000 kWe connected to space station via a 2 km HVDC transmission line/tether. Power system performance, mass, and radiation hazard are estimated with impacts on space station architecture and operation.

  6. Tethered nuclear power for the space station

    NASA Technical Reports Server (NTRS)

    Bents, D. J.

    1985-01-01

    A nuclear space power system the SP-100 is being developed for future missions where large amounts of electrical power will be required. Although it is primarily intended for unmanned spacecraft, it can be adapted to a manned space platform by tethering it above the station through an electrical transmission line which isolates the reactor far away from the inhabited platform and conveys its power back to where it is needed. The transmission line, used in conjunction with an instrument rate shield, attenuates reactor radiation in the vicinity of the space station to less than one-one hundredth of the natural background which is already there. This combination of shielding and distance attenuation is less than one-tenth the mass of boom-mounted or onboard man-rated shields that are required when the reactor is mounted nearby. This paper describes how connection is made to the platform (configuration, operational requirements) and introduces a new element the coaxial transmission tube which enables efficient transmission of electrical power through long tethers in space. Design methodology for transmission tubes and tube arrays is discussed. An example conceptual design is presented that shows SP-100 at three power levels 100 kWe, 300 kWe, and 1000 kWe connected to space station via a 2 km HVDC transmission line/tether. Power system performance, mass, and radiation hazard are estimated with impacts on space station architecture and operation.

  7. Lunar Base Thermoelectric Power Station Study

    SciTech Connect

    Determan, William; Frye, Patrick; Mondt, Jack; Fleurial, Jean-Pierre; Johnson, Ken; Stapfer, Gerhard; Brooks, Michael; Heshmatpour, Ben

    2006-01-20

    Under NASA's Project Prometheus, the Nuclear Space Power Systems Program, the Jet Propulsion Laboratory, Pratt and Whitney Rocketdyne, and Teledyne Energy Systems have teamed with a number of universities, under the Segmented Thermoelectric Multicouple Converter (STMC) Task, to develop the next generation of advanced thermoelectric converters for space reactor power systems. Work on the STMC converter assembly has progressed to the point where the lower temperature stage of the segmented multicouple converter assembly is ready for laboratory testing, and promising candidates for the upper stage materials have been identified and their properties are being characterized. One aspect of the program involves mission application studies to help define the potential benefits from the use of these STMC technologies for designated NASA missions such as a lunar base power station where kilowatts of power would be required to maintain a permanent manned presence on the surface of the moon. A modular 50 kWe thermoelectric power station concept was developed to address a specific set of requirements developed for this particular mission concept. Previous lunar lander concepts had proposed the use of lunar regolith as in-situ radiation shielding material for a reactor power station with a one kilometer exclusion zone radius to minimize astronaut radiation dose rate levels. In the present concept, we will examine the benefits and requirements for a hermetically-sealed reactor thermoelectric power station module suspended within a man-made lunar surface cavity. The concept appears to maximize the shielding capabilities of the lunar regolith while minimizing its handling requirements. Both thermal and nuclear radiation levels from operation of the station, at its 100-m exclusion zone radius, were evaluated and found to be acceptable. Site preparation activities are reviewed as well as transport issues for this concept. The goal of the study was to review the entire life cycle of

  8. Lunar Base Thermoelectric Power Station Study

    NASA Astrophysics Data System (ADS)

    Determan, William; Frye, Patrick; Mondt, Jack; Fleurial, Jean-Pierre; Johnson, Ken; Stapfer, Gerhard; Brooks, Michael; Heshmatpour, Ben

    2006-01-01

    Under NASA's Project Prometheus, the Nuclear Space Power Systems Program, the Jet Propulsion Laboratory, Pratt & Whitney Rocketdyne, and Teledyne Energy Systems have teamed with a number of universities, under the Segmented Thermoelectric Multicouple Converter (STMC) Task, to develop the next generation of advanced thermoelectric converters for space reactor power systems. Work on the STMC converter assembly has progressed to the point where the lower temperature stage of the segmented multicouple converter assembly is ready for laboratory testing, and promising candidates for the upper stage materials have been identified and their properties are being characterized. One aspect of the program involves mission application studies to help define the potential benefits from the use of these STMC technologies for designated NASA missions such as a lunar base power station where kilowatts of power would be required to maintain a permanent manned presence on the surface of the moon. A modular 50 kWe thermoelectric power station concept was developed to address a specific set of requirements developed for this particular mission concept. Previous lunar lander concepts had proposed the use of lunar regolith as in-situ radiation shielding material for a reactor power station with a one kilometer exclusion zone radius to minimize astronaut radiation dose rate levels. In the present concept, we will examine the benefits and requirements for a hermetically-sealed reactor thermoelectric power station module suspended within a man-made lunar surface cavity. The concept appears to maximize the shielding capabilities of the lunar regolith while minimizing its handling requirements. Both thermal and nuclear radiation levels from operation of the station, at its 100-m exclusion zone radius, were evaluated and found to be acceptable. Site preparation activities are reviewed as well as transport issues for this concept. The goal of the study was to review the entire life cycle of the

  9. 78 FR 46616 - Virginia Electric and Power Company; North Anna Power Station, Units 1 and 2; Surry Power Station...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-01

    ... COMMISSION Virginia Electric and Power Company; North Anna Power Station, Units 1 and 2; Surry Power Station... (Surry) for Renewed Facility Operating License Nos. DPR-32 and DPR-37, issued to Virginia Electric and Power Company (the licensee), for operation of NAPS and Surry located in Louisa County, Virginia, and...

  10. Space Station power requirements and issues

    SciTech Connect

    Huckins, E.; Ahlf, P.

    1994-12-01

    This paper provides an overview of the space station configuration and summarizes the requirements, architecture, and significant challenges associated with the Electrical Power System (EPS). The space station configuration was baselined during the Systems Design Review (SDR) process in March, 1994. The current configuration includes the addition of Russia as an international partner, resulting in major changes to the assembly sequence, pressurized module complement, and overall power architecture. The Russian contributions to the power system architecture, as well as an overview and development status of the US provided elements is presented. Finally, a planned flight demonstration of solar dynamic power system on the Mir as part of the first phase of US/Russian cooperation in human space flight is described.

  11. Lunar base thermoelectric power station study

    NASA Technical Reports Server (NTRS)

    Determan, William; Frye, Patrick; Mondt, Jack; Fleurial, Jean-Pierre; Johnson, Ken; Stapfer, G.; Brooks, Michael D.; Heshmatpour, Ben

    2006-01-01

    Under NASA's Project Prometheus, the Nuclear Systems Program, the Jet Propulsion Laboratory, Pratt & Whitney Rocketdyne, and Teledyne Energy Systems have teamed with a number of universities, under the Segmented Thermoelectric Multicouple Converter (STMC) program, to develop the next generation of advanced thermoelectric converters for space reactor power systems. Work on the STMC converter assembly has progressed to the point where the lower temperature stage of the segmented multicouple converter assembly is ready for laboratory testing and the upper stage materials have been identified and their properties are being characterized. One aspect of the program involves mission application studies to help define the potential benefits from the use of these STMC technologies for designated NASA missions such as the lunar base power station where kilowatts of power are required to maintain a permanent manned presence on the surface of the moon. A modular 50 kWe thermoelectric power station concept was developed to address a specific set of requirements developed for this mission. Previous lunar lander concepts had proposed the use of lunar regolith as in-situ radiation shielding material for a reactor power station with a one kilometer exclusion zone radius to minimize astronaut radiation dose rate levels. In the present concept, we will examine the benefits and requirements for a hermetically-sealed reactor thermoelectric power station module suspended within a man-made lunar surface cavity. The concept appears to maximize the shielding capabilities of the lunar regolith while minimizing its handling requirements. Both thermal and nuclear radiation levels from operation of the station, at its 100-m exclusion zone radius, were evaluated and found to be acceptable. Site preparation activities are reviewed and well as transport issues for this concept. The goal of the study was to review the entire life cycle of the unit to assess its technical problems and technology

  12. Lunar base thermoelectric power station study

    NASA Technical Reports Server (NTRS)

    Determan, William; Frye, Patrick; Mondt, Jack; Fleurial, Jean-Pierre; Johnson, Ken; Stapfer, G.; Brooks, Michael D.; Heshmatpour, Ben

    2006-01-01

    Under NASA's Project Prometheus, the Nuclear Systems Program, the Jet Propulsion Laboratory, Pratt & Whitney Rocketdyne, and Teledyne Energy Systems have teamed with a number of universities, under the Segmented Thermoelectric Multicouple Converter (STMC) program, to develop the next generation of advanced thermoelectric converters for space reactor power systems. Work on the STMC converter assembly has progressed to the point where the lower temperature stage of the segmented multicouple converter assembly is ready for laboratory testing and the upper stage materials have been identified and their properties are being characterized. One aspect of the program involves mission application studies to help define the potential benefits from the use of these STMC technologies for designated NASA missions such as the lunar base power station where kilowatts of power are required to maintain a permanent manned presence on the surface of the moon. A modular 50 kWe thermoelectric power station concept was developed to address a specific set of requirements developed for this mission. Previous lunar lander concepts had proposed the use of lunar regolith as in-situ radiation shielding material for a reactor power station with a one kilometer exclusion zone radius to minimize astronaut radiation dose rate levels. In the present concept, we will examine the benefits and requirements for a hermetically-sealed reactor thermoelectric power station module suspended within a man-made lunar surface cavity. The concept appears to maximize the shielding capabilities of the lunar regolith while minimizing its handling requirements. Both thermal and nuclear radiation levels from operation of the station, at its 100-m exclusion zone radius, were evaluated and found to be acceptable. Site preparation activities are reviewed and well as transport issues for this concept. The goal of the study was to review the entire life cycle of the unit to assess its technical problems and technology

  13. Space Station Freedom growth power requirements

    NASA Technical Reports Server (NTRS)

    Meredith, B. D.; Ahlf, P. R.; Saucillo, R. J.

    1990-01-01

    Options and scenarios for the evolution of Space Station Freedom beyond the current baseline have been established and analyzed at NASA Langley Research Center to identify growth requirements for the program's Preliminary Requirements Review (PRR). Time-phase requirements for electrical power and other critical resources were determined based upon the future needs of the science, technology and commercial users. In addition, impacts and resource growth were determined for the utilization of station as a transportation node in support of human exploration initiatives to the moon and/or Mars. The set of requirements chosen for the PRR were selected on the basis of their adequacy in accommodating each of the evolution options and scenarios within each option, thereby maximizing future flexibility. In the case of electrical power, growth to 275 kW (average) was determined to be adequate for evolutionary missions and station housekeeping growth, given projections of future earth-to-orbit transportation capabilities.

  14. Space Station Freedom primary power wiring requirements

    NASA Astrophysics Data System (ADS)

    Hill, Thomas J.

    1994-09-01

    The Space Station Freedom (SSF) Program requirements are a 30 year reliable service life in low Earth orbit in hard vacuum or pressurized module service without detrimental degradation. Specific requirements are outlined in this presentation for SSF primary power and cable insulation. The primary power cable status and the WP-4 planned cable test program are also reviewed along with Rocketdyne-WP04 prime insulation candidates.

  15. Water turbine technology for small power stations

    NASA Astrophysics Data System (ADS)

    Salovaara, T.

    1980-02-01

    The paper examines hydro-power stations and the efficiency and costs of using water turbines to run them. Attention is given to different turbine types emphasizing the use of Kaplan-turbines and runners. Hydraulic characteristics and mechanical properties of low head turbines and small turbines, constructed of fully fabricated steel plate structures, are presented.

  16. The Power Station Game: A Study.

    ERIC Educational Resources Information Center

    Millar, J. W. L.

    1979-01-01

    Presents a description of the power station game as a simulation exercise topic in physics and society, namely the making of a decision which involves many aspects of technical knowledge. Discusses the results of evaluation of students' attitudes toward the game, and attributes that make simulation an attractive teaching option. (GA)

  17. 75 FR 75706 - Dresden Nuclear Power Station, Units 2 and 3 and Quad Cities Nuclear Power Station, Unit Nos. 1...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-06

    ... Power Station, Units 2 and 3 and Quad Cities Nuclear Power Station, Unit Nos. 1 and 2; Notice of... Nuclear Power Station, Units 2 and 3, respectively, located in Grundy County, Illinois, and to Renewed Facility Operating License Nos. DPR-29 and DPR-30 for Quad Cities Nuclear Power Station, Unit Nos. 1 and 2...

  18. Power plant of high safety for underground nuclear power station

    SciTech Connect

    Dolgov, V.N.

    1993-12-31

    An ecologically pure, reliable, and economic nuclear power station is based on the use of nuclear power plants with the liquid-metal coolant. This plant with the inherent safety is protected from external influences due to the underground accommodations in geologically stable formations such as granites, cambrian clays, and salt deposits. The design features of this underground plant are described.

  19. BIOMASS COGASIFICATION AT POLK POWER STATION

    SciTech Connect

    John McDaniel

    2002-05-01

    Part of a closed loop biomass crop was recently harvested to produce electricity in Tampa Electric's Polk Power Station Unit No.1. No technical impediments to incorporating a small percentage of biomass into Polk Power Station's fuel mix were identified. Appropriate dedicated storage and handling equipment would be required for routine biomass use. Polk Unit No.1 is an integrated gasification combined cycle (IGCC) power plant. IGCC is a new approach to generating electricity cleanly from solid fuels such as coal, petroleum coke, The purpose of this experiment was to demonstrate the Polk Unit No.1 could process biomass as a fraction of its fuel without an adverse impact on availability and plant performance. The biomass chosen for the test was part of a crop of closed loop Eucalyptus trees.

  20. 36. SITE BUILDING 004 ELECTRIC POWER STATION CLOSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. SITE BUILDING 004 - ELECTRIC POWER STATION - CLOSE UP VIEW OF 1200 HORSEPOWER STANDBY POWER DIESEL ENGINE/GENERATOR SETS. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  1. 37. SITE BUILDING 004 ELECTRIC POWER STATION ELEVATED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. SITE BUILDING 004 - ELECTRIC POWER STATION - ELEVATED VIEW OF FIVE (5) 1200 HORSEPOWER STANDBY - POWER DIESEL ENGINE/GENERATOR SETS. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  2. 77 FR 18271 - Terrestrial Environmental Studies for Nuclear Power Stations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-27

    ... COMMISSION Terrestrial Environmental Studies for Nuclear Power Stations AGENCY: Nuclear Regulatory Commission... revision to Regulatory Guide (RG) 4.11, ``Terrestrial Environmental Studies for Nuclear Power Stations... environmental studies and analyses supporting licensing decisions for nuclear power reactors. ADDRESSES: Please...

  3. Toluene stability Space Station Rankine power system

    NASA Technical Reports Server (NTRS)

    Havens, V. N.; Ragaller, D. R.; Sibert, L.; Miller, D.

    1987-01-01

    A dynamic test loop is designed to evaluate the thermal stability of an organic Rankine cycle working fluid, toluene, for potential application to the Space Station power conversion unit. Samples of the noncondensible gases and the liquid toluene were taken periodically during the 3410 hour test at 750 F peak temperature. The results obtained from the toluene stability loop verify that toluene degradation will not lead to a loss of performance over the 30-year Space Station mission life requirement. The identity of the degradation products and the low rates of formation were as expected from toluene capsule test data.

  4. Space station electrical power system availability study

    NASA Technical Reports Server (NTRS)

    Turnquist, Scott R.; Twombly, Mark A.

    1988-01-01

    ARINC Research Corporation performed a preliminary reliability, and maintainability (RAM) anlaysis of the NASA space station Electric Power Station (EPS). The analysis was performed using the ARINC Research developed UNIRAM RAM assessment methodology and software program. The analysis was performed in two phases: EPS modeling and EPS RAM assessment. The EPS was modeled in four parts: the insolar power generation system, the eclipse power generation system, the power management and distribution system (both ring and radial power distribution control unit (PDCU) architectures), and the power distribution to the inner keel PDCUs. The EPS RAM assessment was conducted in five steps: the use of UNIRAM to perform baseline EPS model analyses and to determine the orbital replacement unit (ORU) criticalities; the determination of EPS sensitivity to on-orbit spared of ORUs and the provision of an indication of which ORUs may need to be spared on-orbit; the determination of EPS sensitivity to changes in ORU reliability; the determination of the expected annual number of ORU failures; and the integration of the power generator system model results with the distribution system model results to assess the full EPS. Conclusions were drawn and recommendations were made.

  5. Solar dynamic power for space station freedom

    NASA Technical Reports Server (NTRS)

    Labus, Thomas L.; Secunde, Richard R.; Lovely, Ronald G.

    1989-01-01

    The Space Station Freedom Program is presently planned to consist of two phases. At the completion of Phase 1, Freedom's manned base will consist of a transverse boom with attached manned modules and 75 kW of available electric power supplied by photovoltaic (PV) power sources. In Phase 2, electric power available to the manned base will be increased to 125 kW by the addition of two solar dynamic (SD) power modules, one at each end of the transverse boom. Power for manned base growth beyond Phase 2 will be supplied by additional SD modules. Studies show that SD power for the growth eras will result in life cycle cost savings of $3 to $4 billion when compared to PV-supplied power. In the SD power modules for Space Station Freedom, an offset parabolic concentrator collects and focuses solar energy into a heat receiver. To allow full power operation over the entire orbit, the receiver includes integral thermal energy storage by means of the heat of fusion of a salt mixture. Thermal energy is removed from the receiver and converted to electrical energy by a power conversion unit (PCU) which includes a closed brayton cycle (CBC) heat engine and an alternator. The receiver/PCU/radiator combination will be completely assembled and charged with gas and cooling fluid on Earth before launch to orbit. The concentrator subassemblies will be pre-aligned and stowed in the orbiter bay before launch. On orbit, the receiver/PCU/radiator assembly will be installed as a unit. The pre-aligned concentrator panels will then be latched together and the total concentrator attached to the receiver/PCU/radiator by the astronauts. After final electric connections are made and checkout is complete, the SD power module will be ready for operation.

  6. Solar dynamic power for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Labus, Thomas L.; Secunde, Richard R.; Lovely, Ronald G.

    1989-01-01

    The Space Station Freedom Program is presently planned to consist of two phases. At the completion of Phase 1, Freedom's manned base will consist of a transverse boom with attached manned modules and 75 kW of available electric power supplied by photovoltaic (PV) power sources. In Phase 2, electric power available to the manned base will be increased to 125 kW by the addition of two solar dynamic (SD) power modules, one at each end of the transverse boom. Power for manned base growth beyond Phase 2 will be supplied by additional SD modules. Studies show that SD power for the growth eras will result in life cycle cost savings of $3 to $4 billion when compared to PV-supplied power. In the SD power modules for Space Station Freedom, an offset parabolic concentrator collects and focuses solar energy into a heat receiver. To allow full power operation over the entire orbit, the receiver includes integral thermal energy storage by means of the heat of fusion of a salt mixture. Thermal energy is removed from the receiver and converted to electrical energy by a power conversion unit (PCU) which includes a closed brayton cycle (CBC) heat engine and an alternator. The receiver/PCU/radiator combination will be completely assembled and charged with gas and cooling fluid on earth before launch to orbit. The concentrator subassemblies will be pre-aligned and stowed in the orbiter bay before launch. On orbit, the receiver/PCU/radiator assembly will be installed as a unit. The pre-aligned concentrator panels will then be latched together and the total concentrator attached to the receiver/PCU/radiator by the astronauts. After final electric connections are made and checkout is complete, the SD power module will be ready for operation.

  7. Numerical flow analysis of hydro power stations

    NASA Astrophysics Data System (ADS)

    Ostermann, Lars; Seidel, Christian

    2017-07-01

    For the hydraulic engineering and design of hydro power stations and their hydraulic optimisation, mainly experimental studies of the physical submodel or of the full model at the hydraulics laboratory are carried out. Partially, the flow analysis is done by means of computational fluid dynamics based on 2D and 3D methods and is a useful supplement to experimental studies. For the optimisation of hydro power stations, fast numerical methods would be appropriate to study the influence of a wide field of optimisation parameters and flow states. Among the 2D methods, especially the methods based on the shallow water equations are suitable for this field of application, since a lot of experience verified by in-situ measurements exists because of the widely used application of this method for the problems in hydraulic engineering. As necessary, a 3D model may supplement subsequently the optimisation of the hydro power station. The quality of the results of the 2D method for the optimisation of hydro power plants is investigated by means of the results of the optimisation of the hydraulic dividing pier compared to the results of the 3D flow analysis.

  8. Growing the Space Station's electrical power plant

    NASA Technical Reports Server (NTRS)

    Sundberg, Gale R.

    1990-01-01

    For over a decade NASA LeRC has been defining, demonstrating, and evaluating power electronic components and multi-kilowatt, multiply redundant, electrical power systems as part of OAST charter. Whether one considers aircraft (commercial transport/military), Space Station Freedom, growth station, launch vehicles, or the new Human Exploration Initiative, the conclusions remain the same: high frequency AC power distribution and control is superior to all other approaches for achieving a fast, smart, safe, versatile, and growable electrical power system that will meet a wide range of mission options. To meet the cost and operability goals of future aerospace missions that require significantly higher electrical power and longer durations, we must learn to integrate multiple technologies in ways that enhance overall system synergisms. The way NASA is doing business in space electric power is challenged and some approaches for evolving large space vehicles and platforms in well constructed steps to provide safe, ground testable, growable, smart systems that provide simple, replicative logic structures, which enable hardware and software verification, validation, and implementation are proposed. Viewgraphs are included.

  9. Growing the Space Station's electrical power plant

    NASA Technical Reports Server (NTRS)

    Sundberg, Gale R.

    1990-01-01

    For over a decade NASA LeRC has been defining, demonstrating, and evaluating power electronic components and multi-kilowatt, multiply redundant, electrical power systems as part of OAST charter. Whether one considers aircraft (commercial transport/military), Space Station Freedom, growth station, launch vehicles, or the new Human Exploration Initiative, the conclusions remain the same: high frequency AC power distribution and control is superior to all other approaches for achieving a fast, smart, safe, versatile, and growable electrical power system that will meet a wide range of mission options. To meet the cost and operability goals of future aerospace missions that require significantly higher electrical power and longer durations, we must learn to integrate multiple technologies in ways that enhance overall system synergisms. The way NASA is doing business in space electric power is challenged and some approaches for evolving large space vehicles and platforms in well constructed steps to provide safe, ground testable, growable, smart systems that provide simple, replicative logic structures, which enable hardware and software verification, validation, and implementation are proposed. Viewgraphs are included.

  10. Thermodynamic power stations at low temperatures

    NASA Astrophysics Data System (ADS)

    Malherbe, J.; Ployart, R.; Alleau, T.; Bandelier, P.; Lauro, F.

    The development of low-temperature thermodynamic power stations using solar energy is considered, with special attention given to the choice of the thermodynamic cycle (Rankine), working fluids (frigorific halogen compounds), and heat exchangers. Thermomechanical conversion machines, such as ac motors and rotating volumetric motors are discussed. A system is recommended for the use of solar energy for irrigation and pumping in remote areas. Other applications include the production of cold of fresh water from brackish waters, and energy recovery from hot springs.

  11. Power station oil spill risk assessment

    SciTech Connect

    Hayes, R.H.

    1996-11-01

    This paper describes a simple evaluation method to prioritize oil spill risk in a fossil power station. The method was developed and tested on several units. This method is based on the oil reservoir size, number of drain paths and a reasonability factor. The prioritized list can assist a plant in determining the risk of an oil spill and the most likely source. This efforts and capital for prevention measures can be directed toward the area of highest risk.

  12. Space Station Freedom secondary power wiring requirements

    NASA Technical Reports Server (NTRS)

    Sawyer, C. R.

    1994-01-01

    Secondary power is produced by DDCU's (direct current to direct current converter units) and routed to and through secondary power distribution assemblies (SPDA's) to loads or tertiary distribution assemblies. This presentation outlines requirements of Space Station Freedom (SSF) EEE (electrical, electronic, and electromechanical) parts wire and the approved electrical wire and cable. The SSF PDRD (Program Definition and Requirements Document) language problems and resolution are reviewed. The cable routing to and from the SPDA's is presented as diagrams and the wire recommendations and characteristics are given.

  13. Space Station Freedom secondary power wiring requirements

    NASA Astrophysics Data System (ADS)

    Sawyer, C. R.

    1994-09-01

    Secondary power is produced by DDCU's (direct current to direct current converter units) and routed to and through secondary power distribution assemblies (SPDA's) to loads or tertiary distribution assemblies. This presentation outlines requirements of Space Station Freedom (SSF) EEE (electrical, electronic, and electromechanical) parts wire and the approved electrical wire and cable. The SSF PDRD (Program Definition and Requirements Document) language problems and resolution are reviewed. The cable routing to and from the SPDA's is presented as diagrams and the wire recommendations and characteristics are given.

  14. Polk power station syngas cooling system

    SciTech Connect

    Jenkins, S.D.

    1995-01-01

    Tampa Electric Company (TEC) is in the site development and construction phase of the new Polk Power Station Unit No. 1. This will be the first unit at a new site and will use Integrated Gasification Combined Cycle (IGCC) Technology. The unit will utilize Texaco`s oxygen-blown, entrained-flow coal gasification, along with combined cycle power generation, to produce nominal 260MW. Integral to the gasification process is the syngas cooling system. The design, integration, fabrication, transportation, and erection of this equipment have provided and continue to provide major challenges for this project.

  15. System for a displaying at a remote station data generated at a central station and for powering the remote station from the central station

    NASA Technical Reports Server (NTRS)

    Perry, J. C. (Inventor)

    1980-01-01

    A system for displaying at a remote station data generated at a central station and for powering the remote station from the central station is presented. A power signal is generated at the central station and time multiplexed with the data and then transmitted to the remote station. An energy storage device at the remote station is responsive to the transmitted power signal to provide energizing power for the circuits at the remote station during the time interval data is being transmitted to the remote station. Energizing power for the circuits at the remote station is provided by the power signal itself during the time this signal is transmitted. Preferably the energy storage device is a capacitor which is charged by the power signal during the time the power is transmitted and is slightly discharged during the time the data is transmitted to energize the circuits at the remote station.

  16. 38. SITE BUILDING 004 ELECTRIC POWER STATION AT INTERIOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    38. SITE BUILDING 004 - ELECTRIC POWER STATION AT INTERIOR - OBLIQUE VIEW AT FLOOR LEVEL SHOWING DIESEL ENGINE/GENERATOR SET NUMBER 5. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  17. 14. SITE BUILDING 004 ELECTRIC POWER STATION VIEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. SITE BUILDING 004 - ELECTRIC POWER STATION - VIEW IS LOOKING NORTH 70 EAST AT SW CORNER OF BUILDING. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  18. 7. VIEW NORTHEAST, Interior of Power Station, upper level showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VIEW NORTHEAST, Interior of Power Station, upper level showing windows on east and north elevations - Bay City Traction & Electric Company, Power Station, 301 Washington Street, Bay City, Bay County, MI

  19. 9. VIEW SOUTHEAST, Interior of Power Station, upper level showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. VIEW SOUTHEAST, Interior of Power Station, upper level showing windows on east and south elevations - Bay City Traction & Electric Company, Power Station, 301 Washington Street, Bay City, Bay County, MI

  20. Comparative analyses of space-to-space central power stations

    NASA Technical Reports Server (NTRS)

    Holloway, P. F.; Garrett, L. B.

    1981-01-01

    The technological and economical impact of a large central power station in Earth orbit on the performance and cost of future spacecraft and their orbital transfer systems are examined. It is shown that beaming power to remote users cannot be cost effective if the central power station uses the same power generation system that is readily available for provision of onboard power and microwave transmission and reception of power through space for use in space is not cost competitive with onboard power or propulsion systems. Laser and receivers are required to make central power stations feasible. Remote power transmission for propulsion of orbital transfer vehicles promises major cost benefits. Direct nuclear pumped or solar pumped laser power station concepts are attractive with laser thermal and laser electric propulsion systems. These power stations are also competitive, on a mass and cost basis, with a photovoltaic power station.

  1. Solar dynamic power systems for space station

    NASA Technical Reports Server (NTRS)

    Irvine, Thomas B.; Nall, Marsha M.; Seidel, Robert C.

    1986-01-01

    The Parabolic Offset Linearly Actuated Reflector (POLAR) solar dynamic module was selected as the baseline design for a solar dynamic power system aboard the space station. The POLAR concept was chosen over other candidate designs after extensive trade studies. The primary advantages of the POLAR concept are the low mass moment of inertia of the module about the transverse boom and the compactness of the stowed module which enables packaging of two complete modules in the Shuttle orbiter payload bay. The fine pointing control system required for the solar dynamic module has been studied and initial results indicate that if disturbances from the station are allowed to back drive the rotary alpha joint, pointing errors caused by transient loads on the space station can be minimized. This would allow pointing controls to operate in bandwidths near system structural frequencies. The incorporation of the fine pointing control system into the solar dynamic module is fairly straightforward for the three strut concentrator support structure. However, results of structural analyses indicate that this three strut support is not optimum. Incorporation of a vernier pointing system into the proposed six strut support structure is being studied.

  2. Electrical Power Station Theory. A Course of Technical Information for Electrical Power Station Wireman Apprentices. Revised Edition.

    ERIC Educational Resources Information Center

    Lane Community Coll., Eugene, OR.

    This third-year course for electrical power station wirer apprentices is a foundation for the study of all aspects of installation and maintenance of power station equipment. It also provides a good technical background as well as the general knowledge essential to power station operator trainees. The course is intended to be equivalent to a…

  3. Radiological characterization of Yankee Nuclear Power Station

    SciTech Connect

    Bellini, F.X.; Cumming, E.R.; Hollenbeck, P. )

    1993-01-01

    The Yankee nuclear power station located in Rowe, Massachusetts, permanently ceased power operations on February 26, 1992, after 31 yr of operation. Yankee has since initiated decommissioning planning activities. A significant component of these activities is the determination of the extent of radiological contamination of the Yankee site. This paper describes the site radiological characterization program that has been implemented for decommissioning the Yankee plant. Radiological scoping surveys were completed to support submittal of a decommissioning plan to the U.S. Nuclear Regulatory Commission (NRC) by October 1, 1993. These surveys were designed to provide sufficient detail to estimate the extent of contamination, volume of radiological waste, activity of radiological waste, and personnel dose estimates for removal activities. Surveys were conducted both inside and on the grounds outside of the Yankee plant buildings. Survey results were combined with analytical evaluations to characterize the Yankee site.

  4. Determining Yankee Nuclear Power Station neutron activation

    SciTech Connect

    Heider, K.J.; Morrissey, K.J. )

    1993-01-01

    The Yankee nuclear power station located in Rowe, Massachusetts, permanently ceased power operations on February 26, 1992, after 31 yr of operation. Yankee has since initiated decommissioning planning activities. A significant component of these activities is a determination of the extent of radiological contamination of the Yankee site. Included in this effort was determination of the extent of neutron activation of plant components. This paper describes the determination of the neutron activation of the Yankee reactor vessel, associated internals, and surrounding structures. The Yankee reactor vessel is a 600-MW(thermal) stainless steel-lined, carbon steel vessel with stainless steel internal components designed by Westinghouse. The reactor vessel is surrounded and supported by a carbon steel neutron shield tank that was filled with chromated water during plant operation. A 5-ft-thick concrete biological shield wall surrounds the neutron shield tank. A project is under way to remove the reactor vessel internals from the reactor vessel.

  5. Solar Powered Radioactive Air Monitoring Stations

    SciTech Connect

    Barnett, J. Matthew; Bisping, Lynn E.; Gervais, Todd L.

    2013-10-30

    Environmental monitoring of ambient air for radioactive material is required as stipulated in the PNNL Site radioactive air license. Sampling ambient air at identified preferred locations could not be initially accomplished because utilities were not readily available. Therefore, solar powered environmental monitoring systems were considered as a possible option. PNNL purchased two 24-V DC solar powered environmental monitoring systems which consisted of solar panels, battery banks, and sampling units. During an approximate four month performance evaluation period, the solar stations operated satisfactorily at an on-site test location. They were subsequently relocated to their preferred locations in June 2012 where they continue to function adequately under the conditions found in Richland, Washington.

  6. Commentary: childhood cancer near nuclear power stations

    PubMed Central

    2009-01-01

    In 2008, the KiKK study in Germany reported a 1.6-fold increase in solid cancers and a 2.2-fold increase in leukemias among children living within 5 km of all German nuclear power stations. The study has triggered debates as to the cause(s) of these increased cancers. This article reports on the findings of the KiKK study; discusses past and more recent epidemiological studies of leukemias near nuclear installations around the world, and outlines a possible biological mechanism to explain the increased cancers. This suggests that the observed high rates of infant leukemias may be a teratogenic effect from incorporated radionuclides. Doses from environmental emissions from nuclear reactors to embryos and fetuses in pregnant women near nuclear power stations may be larger than suspected. Hematopoietic tissues appear to be considerably more radiosensitive in embryos/fetuses than in newborn babies. Recommendations for advice to local residents and for further research are made. PMID:19775438

  7. Baseline Testing of the Ultracapacitor Enhanced Photovoltaic Power Station

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.; Kolacz, John S.; Tavernelli, Paul F.

    2001-01-01

    The NASA John H. Glenn Research Center is developing an advanced ultracapacitor enhanced photovoltaic power station. Goals of this effort include maximizing photovoltaic power generation efficiency and extending the life of photovoltaic energy storage systems. Unique aspects of the power station include the use of a solar tracker, and ultracapacitors for energy storage. The photovoltaic power station is seen as a way to provide electric power in remote locations that would otherwise not have electric power, provide independence form utility systems, reduce pollution, reduce fossil fuel consumption, and reduce operating costs. The work was done under the Hybrid Power Management (HPM) Program, which includes the Hybrid Electric Transit Bus (HETB), and the E-Bike. The power station complements the E-Bike extremely well in that it permits the charging of the vehicle batteries in remote locations. Other applications include scientific research and medical power sources in isolated regions. The power station is an inexpensive approach to advance the state of the art in power technology in a practical application. The project transfers space technology to terrestrial use via nontraditional partners, and provides power system data valuable for future space applications. A description of the ultracapacitor enhanced power station, the results of performance testing and future power station development plans is the subject of this report. The report concludes that the ultracapacitor enhanced power station provides excellent performance, and that the implementation of ultracapacitors in the power system can provide significant performance improvements.

  8. Concept development for a space solar power station

    NASA Astrophysics Data System (ADS)

    Sysoev, V. K.; Pichkhadze, K. M.; Feldman, L. I.; Arapov, E. A.; Luzyanin, A. S.

    2012-12-01

    This paper introduces a concept for the development of a space solar power station, starting from the manufacture of a photoemissive panel to the creation of a prototype of an industrial power plant. Balloon systems play a special role both in the testing of the power plant and in the operation of prototypes of solar power stations.

  9. 47 CFR 25.204 - Power limits for earth stations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Power limits for earth stations. 25.204 Section... SATELLITE COMMUNICATIONS Technical Standards § 25.204 Power limits for earth stations. (a) In bands shared... transmitted in any direction towards the horizon by an earth station, other than an ESV, operating...

  10. Utility and technology for a space central power station

    NASA Technical Reports Server (NTRS)

    Holloway, P. F.; Garrett, L. B.

    1982-01-01

    The technological and economical impacts of a large central power station in Earth orbit on the performance and cost of future spacecraft and their orbital-transfer systems are examined. It is shown that beaming power to remote users cannot be cost-effective if the central power station uses the same power generation system that would be readily available for provision of on-board power. Laser transmitters/receivers to make central power stations feasible are considered. The cost-effectiveness of meeting Earth-orbiting spacecraft electrical demands from a central power station was analyzed, indicating that this application cannot justify the investment required for the central station. Key technology needs which must be met to enable a viable central power station in the future are identified.

  11. Nuclear power station main control room habitability

    SciTech Connect

    Paschal, W.B.; Knous, W.S. )

    1989-01-01

    The main control room at a nuclear power station must remain habitable during a variety of plant conditions and postulated events. The control room habitability requirement and the function of the heating, ventilating, air-conditioning, and air treatment system are to control environmental factors, such as temperature, pressure, humidity, radiation, and toxic gas. Habitability requirements provide for the safety of personnel and enable operation of equipment required to function in the main control room. Habitability as an issue has been gaining prominence with the Advisor Committee of Reactor Safeguards and the Nuclear Regulatory Commission since the incident at Three Mile Island. Their concern is the ability of the presently installed habitability systems to control the main control room environment after an accident. This paper discusses main control room HVAC systems; the concern, requirements, and results of NRC surveys and notices; and an approach to control room habitability reviews.

  12. Configuration management; Operating power station electrical systems

    SciTech Connect

    Beavers, R.R.; Sumiec, K.F. )

    1989-01-01

    Increasing regulatory and industry attention has been focused on properly controlling electrical design changes. These changes can be controlled by using configuration management techniques. Typically, there are ongoing modifications to various process systems or additions due to new requirements at every power plant. Proper control of these changes requires that an organized method be used to ensure that all important parameters of the electrical auxiliary systems are analyzed and that these parameters are evaluated accurately. This process, commonly referred to as configuration management, is becoming more important on both fossil and nuclear plants. Recent NRC- and utility-initiated inspections have identified problems due to incomplete analysis of changes to electrical auxiliary systems at nuclear stations.

  13. Space Station Freedom electric power system evolutionary energy storage

    NASA Technical Reports Server (NTRS)

    Domeniconi, Mike

    1990-01-01

    Viewgraphs on Space Station Freedom electric power system evolutionary energy storage are presented. Topics covered include: system requirements evolution; Space Station Freedom timeline; development of technologies selection criteria; and candidate technologies.

  14. Space power facility readiness for Space Station power system testing

    NASA Astrophysics Data System (ADS)

    Smith, Roger L.

    1995-02-01

    This document provides information which shows that the NASA Lewis Research Center's Space Power Facility (SPF) will be ready to execute the Space Station electric power system thermal vacuum chamber testing. The SPF is located at LeRC West (formerly the Plum Brook Station), Sandusky, Ohio. The SPF is the largest space environmental chamber in the world, having an inside horizontal diameter of 100 ft. and an inside height at the top of the hemisphere of 122 ft. The vacuum system can achieve a pressure lower than 1 x 10(exp -5) Torr. The cryoshroud, cooled by gaseous nitrogen, can reach a temperature of -250 F, and is 80 ft. long x 40 ft. wide x 22 ft. high. There is access to the chamber through two 50 ft. x 50 ft. doors. Each door opens into an assembly area about 150 ft. long x 70 ft. wide x 80 ft. high. Other available facilities are offices, shop area, data acquisition system with 930 pairs of hard lines, 7 megawatts of power to chamber, 245K gal. liquid nitrogen storage, cooling tower, natural gas, service air, and cranes up to 25 tons.

  15. Space Power Facility Readiness for Space Station Power System Testing

    NASA Technical Reports Server (NTRS)

    Smith, Roger L.

    1995-01-01

    This document provides information which shows that the NASA Lewis Research Center's Space Power Facility (SPF) will be ready to execute the Space Station electric power system thermal vacuum chamber testing. The SPF is located at LeRC West (formerly the Plum Brook Station), Sandusky, Ohio. The SPF is the largest space environmental chamber in the world, having an inside horizontal diameter of 100 ft. and an inside height at the top of the hemisphere of 122 ft. The vacuum system can achieve a pressure lower than 1 x 10(exp -5) Torr. The cryoshroud, cooled by gaseous nitrogen, can reach a temperature of -250 F, and is 80 ft. long x 40 ft. wide x 22 ft. high. There is access to the chamber through two 50 ft. x 50 ft. doors. Each door opens into an assembly area about 150 ft. long x 70 ft. wide x 80 ft. high. Other available facilities are offices, shop area, data acquisition system with 930 pairs of hard lines, 7 megawatts of power to chamber, 245K gal. liquid nitrogen storage, cooling tower, natural gas, service air, and cranes up to 25 tons.

  16. 76 FR 50274 - Terrestrial Environmental Studies for Nuclear Power Stations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-12

    ... COMMISSION Terrestrial Environmental Studies for Nuclear Power Stations AGENCY: Nuclear Regulatory Commission... Environmental Studies for Nuclear Power Stations.'' This guide provides technical guidance that the NRC staff... nuclear power reactors. DATES: Submit comments by October 11, 2011. Comments received after this date will...

  17. Automated electric power management and control for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Dolce, James L.; Mellor, Pamela A.; Kish, James A.

    1990-01-01

    A comprehensive automation design is being developed for Space Station Freedom's electric power system. It strives to increase station productivity by applying expert systems and conventional algorithms to automate power system operation. An integrated approach to the power system command and control problem is defined and used to direct technology development in: diagnosis, security monitoring and analysis, battery management, and cooperative problem-solving for resource allocation. The prototype automated power system is developed using simulations and test-beds.

  18. 15. SITE BUILDING 004 ELECTRIC POWER STATION VIEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. SITE BUILDING 004 - ELECTRIC POWER STATION - VIEW IS LOOKING SOUTH 55° EAST AT FIVE DIESEL ENGINE/ GENERATOR SILENCER SYSTEM EXHAUST STACKS. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  19. 1. RUINS OF THE ELECTRIC POWER STATION (NOTE PART OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. RUINS OF THE ELECTRIC POWER STATION (NOTE PART OF THE CONTROL PANEL VISIBLE THROUGH THE DOORWAY), VIEW TO THE NORTHWEST). - Foster Gulch Mine, Electric Power Station Ruins, Bear Creek 1 mile Southwest of Town of Bear Creek, Red Lodge, Carbon County, MT

  20. Space station power management and distribution

    NASA Technical Reports Server (NTRS)

    Teren, F.

    1985-01-01

    The power system architecture is presented by a series of schematics which illustrate the power management and distribution (PMAD) system at the component level, including converters, controllers, switchgear, rotary power transfer devices, power and data cables, remote power controllers, and load converters. Power distribution options, reference power management, and control strategy are also outlined. A summary of advanced development status and plans and an overview of system test plans are presented.

  1. Electric power management for the International Space Station experiment racks

    SciTech Connect

    Burcham, M.; Darty, M.A.; Thibodeau, P.E.; Coe, R.; Dunn, M.

    1995-12-31

    An intelligent, all solid state, electric power management system for International Space Station experiment racks is described. This power system is implemented via redundant internal microcomputers, controlling hybridized solid state power controllers in response to 1553B data bus commands. The solid state power controllers are programmable for current trip level and for normally-open or normally-closed operation.

  2. 47 CFR 74.793 - Digital low power TV and TV translator station protection of broadcast stations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Digital low power TV and TV translator station... DISTRIBUTIONAL SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.793 Digital low power TV and TV translator station protection of broadcast stations. (a) An application to construct a new digital low...

  3. 47 CFR 74.793 - Digital low power TV and TV translator station protection of broadcast stations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Digital low power TV and TV translator station... DISTRIBUTIONAL SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.793 Digital low power TV and TV translator station protection of broadcast stations. (a) An application to construct a new digital low...

  4. 47 CFR 74.793 - Digital low power TV and TV translator station protection of broadcast stations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Digital low power TV and TV translator station... DISTRIBUTIONAL SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.793 Digital low power TV and TV translator station protection of broadcast stations. (a) An application to construct a new digital low...

  5. 47 CFR 74.793 - Digital low power TV and TV translator station protection of broadcast stations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Digital low power TV and TV translator station... DISTRIBUTIONAL SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.793 Digital low power TV and TV translator station protection of broadcast stations. (a) An application to construct a new digital low...

  6. The US space station and its electric power system

    NASA Technical Reports Server (NTRS)

    Thomas, Ronald L.

    1988-01-01

    The United States has embarked on a major development program to have a space station operating in low earth orbit by the mid-1990s. This endeavor draws on the talents of NASA and most of the aerospace firms in the U.S. Plans are being pursued to include the participation of Canada, Japan, and the European Space Agency in the space station. From the start of the program these was a focus on the utilization of the space station for science, technology, and commercial endeavors. These requirements were utilized in the design of the station and manifest themselves in: pressurized volume; crew time; power availability and level of power; external payload accommodations; microgravity levels; servicing facilities; and the ability to grow and evolve the space station to meet future needs. President Reagan directed NASA to develop a permanently manned space station in his 1984 State of the Union message. Since then the definition phase was completed and the development phase initiated. A major subsystem of the space station is its 75 kW electric power system. The electric power system has characteristics similar to those of terrestrial power systems. Routine maintenance and replacement of failed equipment must be accomplished safely and easily and in a minimum time while providing reliable power to users. Because of the very high value placed on crew time it is essential that the power system operate in an autonomous mode to minimize crew time required. The power system design must also easily accommodate growth as the power demands by users are expected to grow. An overview of the U.S. space station is provided with special emphasis on its electrical power system.

  7. 28. CONTEXT VIEW OF BUILDING 229 (ELECTRIC POWER STATION) IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. CONTEXT VIEW OF BUILDING 229 (ELECTRIC POWER STATION) IN ASSEMBLY AREA WITH BUILDING 227 (FIRE STATION) IMMEDIATELY TO THE LEFT. - Loring Air Force Base, Weapons Storage Area, Northeastern corner of base at northern end of Maine Road, Limestone, Aroostook County, ME

  8. Evolutionary growth for Space Station Freedom electrical power system

    NASA Technical Reports Server (NTRS)

    Marshall, Matthew F.; Mclallin, Kerry L.; Zernic, Michael J.

    1989-01-01

    Over an operational lifetime of at least 30 yr, Space Station Freedom will encounter increased space station user requirements and advancing technologies. The space station electrical power system is designed with the flexibility to accommodate these emerging technologies and expert systems and is being designed with the necessary software hooks and hardware scars to accommodate increased growth demand. The electrical power system is planned to grow from the initial 75 kW up to 300 kW. The Phase 1 station will utilize photovoltaic arrays to produce the electrical power; however, for growth to 300 kW, solar dynamic power modules will be utilized. Pairs of 25 kW solar dynamic power modules will be added to the station to reach the power growth level. The addition of solar dynamic power in the growth phase places constraints in the initial space station systems such as guidance navigation and control, external thermal, truss structural stiffness, computational capabilities and storage which must be planned-in in order to facilitate the addition of the solar dynamic modules.

  9. Evolutionary growth for Space Station Freedom electrical power system

    NASA Technical Reports Server (NTRS)

    Marshall, Matthew Fisk; Mclallin, Kerry; Zernic, Mike

    1989-01-01

    Over an operational lifetime of at least 30 yr, Space Station Freedom will encounter increased Space Station user requirements and advancing technologies. The Space Station electrical power system is designed with the flexibility to accommodate these emerging technologies and expert systems and is being designed with the necessary software hooks and hardware scars to accommodate increased growth demand. The electrical power system is planned to grow from the initial 75 kW up to 300 kW. The Phase 1 station will utilize photovoltaic arrays to produce the electrical power; however, for growth to 300 kW, solar dynamic power modules will be utilized. Pairs of 25 kW solar dynamic power modules will be added to the station to reach the power growth level. The addition of solar dynamic power in the growth phase places constraints in the initial Space Station systems such as guidance, navigation, and control, external thermal, truss structural stiffness, computational capabilities and storage, which must be planned-in, in order to facilitate the addition of the solar dynamic modules.

  10. ORIGINAL 1912 STATION POWER TRANSFORMERS IN HIGHTENSION ROOM, SW CORNER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ORIGINAL 1912 STATION POWER TRANSFORMERS IN HIGH-TENSION ROOM, SW CORNER OF THE POWERHOUSE. PHOTO BY JET LOWE, HAER, 1995. - Elwha River Hydroelectric System, Elwha Hydroelectric Dam & Plant, Port Angeles, Clallam County, WA

  11. 30. EAST CORNER OF BUILDING 229 (ELECTRIC POWER STATION) IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. EAST CORNER OF BUILDING 229 (ELECTRIC POWER STATION) IN ASSEMBLY AREA. - Loring Air Force Base, Weapons Storage Area, Northeastern corner of base at northern end of Maine Road, Limestone, Aroostook County, ME

  12. 29. SOUTHEAST FRONT ELEVATION OF BUILDING 229 (ELECTRIC POWER STATION) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. SOUTHEAST FRONT ELEVATION OF BUILDING 229 (ELECTRIC POWER STATION) IN ASSEMBLY AREA. - Loring Air Force Base, Weapons Storage Area, Northeastern corner of base at northern end of Maine Road, Limestone, Aroostook County, ME

  13. WEAPONS STORAGE AREA, LOOKING TOWARD ELECTRIC POWER STATION BUILDING (BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    WEAPONS STORAGE AREA, LOOKING TOWARD ELECTRIC POWER STATION BUILDING (BUILDING 3583), STORAGE BUILDING (BUILDING 3584)NIGHT AND SECURITY POLICE ENTRY CONTROL (BUILDING 3582)LEFT. VIEW TO NORTHEAST - Plattsburgh Air Force Base, U.S. Route 9, Plattsburgh, Clinton County, NY

  14. Space Station Freedom power management and distribution system design

    NASA Technical Reports Server (NTRS)

    Teren, Fred

    1989-01-01

    The design is described of the Space Station Freedom Power Management and Distribution (PMAD) System. In addition, the significant trade studies which were conducted are described, which led to the current PMAD system configuration.

  15. Satellite nuclear power station: An engineering analysis

    NASA Technical Reports Server (NTRS)

    Williams, J. R.; Clement, J. D.; Rosa, R. J.; Kirby, K. D.; Yang, Y. Y.

    1973-01-01

    A nuclear-MHD power plant system which uses a compact non-breeder reactor to produce power in the multimegawatt range is analyzed. It is shown that, operated in synchronous orbit, the plant would transmit power safely to the ground by a microwave beam. Fuel reprocessing would take place in space, and no radioactive material would be returned to earth. Even the effect of a disastrous accident would have negligible effect on earth. A hydrogen moderated gas core reactor, or a colloid-core, or NERVA type reactor could also be used. The system is shown to approach closely the ideal of economical power without pollution.

  16. Satellite nuclear power station: An engineering analysis

    NASA Technical Reports Server (NTRS)

    Williams, J. R.; Clement, J. D.; Rosa, R. J.; Kirby, K. D.; Yang, Y. Y.

    1973-01-01

    A nuclear-MHD power plant system which uses a compact non-breeder reactor to produce power in the multimegawatt range is analyzed. It is shown that, operated in synchronous orbit, the plant would transmit power safely to the ground by a microwave beam. Fuel reprocessing would take place in space, and no radioactive material would be returned to earth. Even the effect of a disastrous accident would have negligible effect on earth. A hydrogen moderated gas core reactor, or a colloid-core, or NERVA type reactor could also be used. The system is shown to approach closely the ideal of economical power without pollution.

  17. Design of photovoltaic central power station concentrator array

    SciTech Connect

    Not Available

    1984-02-01

    A design for a photovoltaic central power station using tracking concentrators has been developed. The 100 MW plant is assumed to be located adjacent to the Saguaro Power Station of Arizona Public Service. The design assumes an advanced Martin Marietta two-axis tracking fresnel lens concentrator. The concentrators are arrayed in 5 MW subfields, each with its own power conditioning unit. The photovoltaic plant output is connected to the existing 115 kV switchyard. The site specific design allows detailed cost estimates for engineering, site preparation, and installation. Collector and power conditioning costs have been treated parametrically.

  18. Electrical power system design for the US space station

    NASA Technical Reports Server (NTRS)

    Nored, Donald L.; Bernatowicz, Daniel T.

    1986-01-01

    The multipurpose, manned, permanent space station will be our next step toward utilization of space. A multikilowatt electrical power system will be critical to its success. The power systems for the space station manned core and platforms that have been selected in definition studies are described. The system selected for the platforms uses silicon arrays and Ni-H2 batteries. The power system for the manned core is a hybrid employing arrays and batteries identical to those on the platform along with solar dynamic modules using either Brayton or organic Rankine engines. The power system requirements, candidate technologies, and configurations that were considered, and the basis for selection, are discussed.

  19. Solar dynamic power system on the International Space Station

    SciTech Connect

    Davis, J.M.; Wanhainen, J.S.

    1996-12-31

    The International Space Station (ISS) Program Office has requested that initial studies be conducted to assess the feasibility of using a solar dynamic (SD) power system on ISS. This effort will include analyses to determine technical and cost benefits of using solar dynamic power systems on the station. Final products from this activity will be presented to the International Space Station Program Office in 1997. This paper provides a brief description of the solar dynamic technology, ISS and project chronology of events, a description of the products and major work elements, project schedule, and a summary of up-to-date findings.

  20. 78 FR 61400 - Entergy Nuclear Operations, Inc., Pilgrim Nuclear Power Station, Issuance of Director's Decision

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-03

    ... COMMISSION Entergy Nuclear Operations, Inc., Pilgrim Nuclear Power Station, Issuance of Director's Decision... and ML102210411, respectively), concerns the operation of Pilgrim Nuclear Power Station (Pilgrim... (non- EQ) inaccessible cables at Pilgrim Nuclear Power Station (Pilgrim) are capable of...

  1. 77 FR 76541 - Entergy Nuclear Operations, Inc.; Pilgrim Nuclear Power Station

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-28

    ... Nuclear Operations, Inc.; Pilgrim Nuclear Power Station AGENCY: Nuclear Regulatory Commission. ACTION... Nuclear Operations, Inc. (the licensee), for operation of the Pilgrim Nuclear Power Station (Pilgrim... Renewal of Nuclear Plants Regarding Pilgrim Nuclear Power Station, Final Report- Appendices,'' published...

  2. Utility of and technology for a space central power station

    NASA Technical Reports Server (NTRS)

    Holloway, P. F.; Garrett, L. B.

    1981-01-01

    The technological and economic impact of a large central power station in earth orbit on the cost and performance of future spacecraft and their orbital-transfer systems are examined. The three systems considered for the space central power station are a photovoltaic array, a direct nuclear-pumped laser and a direct solar-pumped laser. It is noted that laser transmitters/receivers will be required to make central power stations feasible. While the remote transmission of power solely to meet the needs of earth orbiting satellites will not be cost-effective in the near future, the remote-power transmission for propulsion of orbital-transfer vehicles promises many cost benefits.

  3. Study of Environmental Impact by Coal-Fired Power Station

    NASA Astrophysics Data System (ADS)

    Yoshizumi, Koji; Ogaki, Mituharu; Motonaka, Junko; Yabutani, Tomoki

    The Tachibana-wan coal-fired power station was constructed on land that was reclaimed using the soil that came from cutting through half of a small island while balancing the amount of soil. The power station has been generating for three years. When the electric utility provider projected the power station, it must have conducted an environmental impact assessment, and studied the environmental preservation measures. Moreover, after the power generation began, an environmental investigation was done as a follow up survey to study the environmental impact by the power station based on its construction and use. To study the environmental impact with smoke, the environmental density of sulfur dioxide around the power station was investigated. It fell below the environmental standards at all the environmental measurement points during this investigation. Moreover, a big difference was not seen before and after the beginning of the power generation and the change in these data was in the normal range. As a result of the environmental impact assessment, the contribution density of the power station was near the quantitative limit and a low value. To study the environmental impact with warm wastewater, the water temperature in the bay was investigated. A big difference was not generally seen before and after the beginning of the power generation though the water temperature slowly rose at the discharge point of the warm wastewater but the change of these data was in the normal range. As for the environmental impact, a clear judgment was difficult only from the environmental investigation. It is necessary to set a new environmental indicator to judge the environmental impact. Moreover, as for a new environmental assessment system, it is necessary to introduce a strategic environmental assessment.

  4. Power conditioning subsystems for photovoltaic central-station power plants - Technology and performance

    NASA Technical Reports Server (NTRS)

    Krauthamer, S.; Das, R.; Bulawka, A.

    1985-01-01

    Central-Station (CS) Photovoltaic (PV) systems have the potential of economically displacing significant amounts of centrally generated electricity. However, the technical viability and, to some extent, the economic viability of central-station PV generation technology will depend upon the availability of large power conditioners that are efficient, safe, reliable, and economical. This paper is an overview of the technical and cost requirements that must be met to develop economically viable power conditioning subsystems (PCS) for central-station power plants. The paper also examines various already commercially available PCS hardware that may be suitable for use in today's central PV power stations.

  5. Photovoltaic power modules for NASA's manned space station

    NASA Technical Reports Server (NTRS)

    Tatro, Charles A.

    1987-01-01

    The capability and the safety of manned spacecraft are largely dependent upon reliable electric power systems. Two similar space power systems able to survive the low Earth orbit environment, are being considered for NASA's Manned Space Station (SS), scheduled to begin operation in the mid 1990's. The Space Station Electric Power System (EPS) is composed of Photovoltaic (PV) Power Modules, Solar Dynamic (SD) Power Modules, and the Power Management and Distribution (PMAD) System. One EPS configuration will deliver 37.5 kW of PV based, utility grade, ac power to SS users. A second 75 kWe PV based EPS option is also being considered for SS deployment. The two EPS options utilize common modules and differ only in the total number of PV Power Modules used. Each PV Power Module supplies 18.75 kWe of ac power and incorporates its own energy storage and thermal control. The general requirements and the current preliminary design configuration of the Space Station PV Power Modules are examined.

  6. Photovoltaic power modules for NASA's manned Space Station

    NASA Technical Reports Server (NTRS)

    Tatro, C. A.

    1988-01-01

    The capability and the safety of manned spacecraft are largely dependent upon reliable electric power systems. Two similar space power systems able to survive the low earth orbit environment, are being considered for NASA's Manned Space Station (SS), scheduled to begin operation in the mid 1990's. The Space Station Electric Power System (EPS) is composed of Photovoltaic (PV) Power Modules, Solar Dynamic (SD) Power Modules, and the Power Management and Distribution (PMAD) System. One EPS configuration will deliver 37.5 kW of PV based, utility grade, ac power to SS users. A second 75 kWe PV based EPS option is also being considered for SS deployment. The two EPS options utilize common modules and differ only in the total number of PV Power Modules used. Each PV Power Module supplies 18.75 kWe of ac power and incorporates its own energy storage and thermal control. The general requirements and the current preliminary design configuration of the Space Station PV Power Modules are examined.

  7. Modeling of Space Station electric power system with EMTP

    NASA Technical Reports Server (NTRS)

    Tam, Kwa-Sur; Yang, Lifeng; Dravid, Narayan V.

    1990-01-01

    The authors provide an introduction to using the electromagnetic transients (EMTP) program to model aerospace power system components. A brief general overview of EMTP is presented. The modeling of the dc/dc converter unit in the space station electric power system is described as an illustration.

  8. 75 FR 33238 - Basin Electric Power Cooperative: Deer Creek Station

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-11

    ...; ] DEPARTMENT OF AGRICULTURE Rural Utilities Service Basin Electric Power Cooperative: Deer Creek Station AGENCY... Basin Electric Power Cooperative's (Basin Electric) application for a RUS loan and a Western... Office, 314 6th Avenue, Brookings, SD. SUPPLEMENTARY INFORMATION: Basin Electric's proposed Project is to...

  9. 75 FR 8895 - Basin Electric Power Cooperative: Deer Creek Station

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-26

    ...; ] DEPARTMENT OF AGRICULTURE Rural Utilities Service Basin Electric Power Cooperative: Deer Creek Station AGENCY... potential environmental impacts of and alternatives to Basin Electric Power Cooperative's (Basin Electric...: (202) 690-0649, or e-mail: lauren.mcgee @wdc.usda.gov. SUPPLEMENTARY INFORMATION: Basin Electric's...

  10. 75 FR 43915 - Basin Electric Power Cooperative: Deer Creek Station

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-27

    ... Rural Utilities Service Basin Electric Power Cooperative: Deer Creek Station AGENCY: Rural Utilities... environmental impacts of and alternatives to Basin Electric Power Cooperative's (Basin Electric) application for...://www.usda.gov/rus/water/ees/eis.htm . SUPPLEMENTARY INFORMATION: Basin Electric's proposed Project is...

  11. Space Station Freedom power - A reliability, availability, and maintainability assessment of the proposed Space Station Freedom electric power system

    NASA Technical Reports Server (NTRS)

    Turnquist, S. R.; Twombly, M.; Hoffman, D.

    1989-01-01

    A preliminary reliability, availability, and maintainability (RAM) analysis of the proposed Space Station Freedom electric power system (EPS) was performed using the unit reliability, availability, and maintainability (UNIRAM) analysis methodology. Orbital replacement units (ORUs) having the most significant impact on EPS availability measures were identified. Also, the sensitivity of the EPS to variations in ORU RAM data was evaluated for each ORU. Estimates were made of average EPS power output levels and availability of power to the core area of the space station. The results of assessments of the availability of EPS power and power to load distribution points in the space stations are given. Some highlights of continuing studies being performed to understand EPS availability considerations are presented.

  12. 47 CFR 74.793 - Digital low power TV and TV translator station protection of broadcast stations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Digital low power TV and TV translator station protection of broadcast stations. 74.793 Section 74.793 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... DISTRIBUTIONAL SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.793 Digital low power TV and...

  13. Power Factor Improvement for Pumping Stations using Capacitor Banks

    NASA Astrophysics Data System (ADS)

    Mohamad, M. M.; Abd El-gawad, Amal F.; Ramadan, H. S.

    2016-10-01

    One of the fundamental problems affects the performance of pumping stations is its relative high operational cost. As three-phase induction motors are the main prime mover of pumping stations and considered the most widely used electrical motors due to their reliability, ease of maintenance. However, its major problem is the low power factor which results in high electric energy consumption. Energy will be saved when power factor is improved. The main objective of this paper is studying the power factor improvement in El sadaa Pumping Station because of its low operating efficiency which goes from 20 % to 25 %and calculating penalty, ponus and savings in each cases. The correction is achieved by the addition of capacitor banks in parallel with the connected motor circuits and can be applied to the starter, applied at the switchboard or the distribution panel. A model of this station is created using MatlabTM Simulink. Then the determination of induction motor parameters is performed. The station model is discussed. From the simulation results, the power factor enhancement of the pumping station is highlighted.

  14. 75 FR 53984 - Virginia Electric and Power Company North Anna Power Station, Unit Nos. 1 and 2 Surry Power...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-02

    .... DPR-32 and DPR-37, issued to Virginia Electric and Power Company (the licensee), for operation of NAPS... COMMISSION [Docket Nos. 50-338 and 50-339, Docket Nos. 50-280 and 50-281, NRC- 2010-0283] Virginia Electric and Power Company North Anna Power Station, Unit Nos. 1 and 2 Surry Power Station, Unit Nos. 1 and 2...

  15. Central-station solar hydrogen power plant.

    SciTech Connect

    Diver, Richard B., Jr.; Siegel, Nathan Phillip; Kolb, Gregory J.

    2005-04-01

    Solar power towers can be used to make hydrogen on a large scale. Electrolyzers could be used to convert solar electricity produced by the power tower to hydrogen, but this process is relatively inefficient. Rather, efficiency can be much improved if solar heat is directly converted to hydrogen via a thermochemical process. In the research summarized here, the marriage of a high-temperature ({approx}1000 C) power tower with a sulfuric acid/hybrid thermochemical cycle was studied. The concept combines a solar power tower, a solid-particle receiver, a particle thermal energy storage system, and a hybrid-sulfuric-acid cycle. The cycle is 'hybrid' because it produces hydrogen with a combination of thermal input and an electrolyzer. This solar thermochemical plant is predicted to produce hydrogen at a much lower cost than a solar-electrolyzer plant of similar size. To date, only small lab-scale tests have been conducted to demonstrate the feasibility of a few of the subsystems and a key immediate issue is demonstration of flow stability within the solid-particle receiver. The paper describes the systems analysis that led to the favorable economic conclusions and discusses the future development path.

  16. Solar dynamic power for the Space Station

    NASA Technical Reports Server (NTRS)

    Archer, J. S.; Diamant, E. S.

    1986-01-01

    This paper describes a computer code which provides a significant advance in the systems analysis capabilities of solar dynamic power modules. While the code can be used to advantage in the preliminary analysis of terrestrial solar dynamic modules its real value lies in the adaptions which make it particularly useful for the conceptualization of optimized power modules for space applications. In particular, as illustrated in the paper, the code can be used to establish optimum values of concentrator diameter, concentrator surface roughness, concentrator rim angle and receiver aperture corresponding to the main heat cycle options - Organic Rankine and Brayton - and for certain receiver design options. The code can also be used to establish system sizing margins to account for the loss of reflectivity in orbit or the seasonal variation of insolation. By the simulation of the interactions among the major components of a solar dynamic module and through simplified formulations of the major thermal-optic-thermodynamic interactions the code adds a powerful, efficient and economic analytical tool to the repertory of techniques available for the design of advanced space power systems.

  17. PV powering a weather station for severe weather

    SciTech Connect

    Young, W. Jr.; Schmidt, J.

    1997-12-31

    A natural disaster, such as Hurricane Andrew, destroys thousands of homes and businesses. The destruction from this storm left thousands of people without communications, potable water, and electrical power. This prompted the Florida Solar Energy Center to study the application of solar electric power for use in disasters. During this same period, volunteers at the Tropical Prediction Center at the National Hurricane Center (NHC), Miami, Florida and the Miami Office of the National Weather Service (NWS) were working to increase the quantity and quality of observations received from home weather stations. Forecasters at NHC have found surface reports from home weather stations a valuable tool in determining the size, strength and course of hurricanes. Home weather stations appear able to record the required information with an adequate level of accuracy. Amateur radio, utilizing the Automatic Packet Report System, (APRS) can be used to transmit this data to weather service offices in virtually real time. Many weather data collecting stations are at remote sites which are not readily serviced by dependable commercial power. Photovoltaic (solar electric) modules generate electricity and when connected to a battery can operate as a stand alone power system. The integration of these components provides an inexpensive standalone system. The system is easy to install, operates automatically and has good communication capabilities. This paper discusses the design criteria, operation, construction and deployment of a prototype solar powered weather station.

  18. Hybrid Power System for Remote Communications Stations

    DTIC Science & Technology

    1993-09-01

    nuclear isotopes [Ref.8:p.694]. The use of these radioisotopes can result in a generator that is able to be operated for extremely long periods of time ...a backup power supply, thermoelectric generators would remain dormant for long periods of time , thereby minimizing operating costs and fuel...as they are reliable, have the ability to be started automatically, and can be dormant for long periods of time with no detrimental affects to their

  19. Space Station electric power system requirements and design

    NASA Technical Reports Server (NTRS)

    Teren, Fred

    1987-01-01

    An overview of the conceptual definition and design of the Space Station Electric Power System (EPS) is given. Responsibilities for the design and development of the EPS are defined. The EPS requirements are listed and discussed, including average and peak power requirements, contingency requirements, and fault tolerance. The most significant Phase B trade study results are summarized, and the design selections and rationale are given. Finally, the power management and distribution system architecture is presented.

  20. 17. Station Power Center 1 and Load Center 1, view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. Station Power Center 1 and Load Center 1, view to the northwest. The power center is the cabinet on the right and the load center is the cabinet on the left of the photograph. A door to the generator barrel of Unit 1 is visible in the background. - Washington Water Power Clark Fork River Cabinet Gorge Hydroelectric Development, Powerhouse, North Bank of Clark Fork River at Cabinet Gorge, Cabinet, Bonner County, ID

  1. Space station electric power system requirements and design

    NASA Technical Reports Server (NTRS)

    Teren, Fred

    1987-01-01

    An overview of the conceptual definition and design of the space station Electric Power System (EPS) is given. Responsibilities for the design and development of the EPS are defined. The EPS requirements are listed and discussed, including average and peak power requirements, contingency requirements, and fault tolerance. The most significant Phase B trade study results are summarized, and the design selections and rationale are given. Finally, the power management and distribution system architecture is presented.

  2. The importance of upgrading power stations with numerical protection relays

    NASA Astrophysics Data System (ADS)

    Vilceanu, Radu-Constantin; Surianu, Flavius-Dan

    2016-06-01

    In this paper we present the importance of upgrading power stations with numerical protection relays. We will study the gravity and the economic impact of a power system fault when it appears and it is not cleared by old protection devices. Also we will compare how an old protection scheme works when it clears a power fault with how modern numerical protection relays work. The trip decision and the actual circuit breaker open times will be compared and analyzed.

  3. Lewis Research Center space station electric power system test facilities

    NASA Technical Reports Server (NTRS)

    Birchenough, Arthur G.; Martin, Donald F.

    1988-01-01

    NASA Lewis Research Center facilities were developed to support testing of the Space Station Electric Power System. The capabilities and plans for these facilities are described. The three facilities which are required in the Phase C/D testing, the Power Systems Facility, the Space Power Facility, and the EPS Simulation Lab, are described in detail. The responsibilities of NASA Lewis and outside groups in conducting tests are also discussed.

  4. Regen compressors power Capo Bon trans-med station

    SciTech Connect

    de Biasi, V.

    1981-11-01

    It is expected that Algeria will begin deliveries of natural gas from the Hassi-R'Mel gasfield in the Sahara Desert to Italy by the end of 1981 or early 1982. The main station for the Trans-Med natural gas pipeline, powered by five regenerative M5322R gas turbines, has a design throughput of some 1.6 million m/sup 3//hr and serves as the boost station for the submarine section of the pipeline.

  5. GHG PSD Permit: Cheyenne Light, Fuel & Power / Black Hills Power, Inc. – Cheyenne Prairie Generating Station

    EPA Pesticide Factsheets

    This page contains the final PSD permit for the Cheyenne Light, Fuel & Power / Black Hills Power, Inc. Cheyenne Prairie Generating Station, located in Laramie, Wyoming, and operated by Black Hills Service Company.

  6. A photovoltaic power system and a low-power satellite earth station for Indonesia

    NASA Technical Reports Server (NTRS)

    Delombard, Richard; Everson, Kent

    1985-01-01

    A photovoltaic power system and a low-power, two-way satellite earth station have been installed at Wawotobi, Sulawesi, Indonesia to provide university classroom communications for audio teleconferencing and video graphics. This project is a part of the Agency for International Development's Rural Satellite Program. The purpose of this program is to demonstrate the use of satellite communications for development assistance applications. The purpose of the photovoltaic power system is to demonstrate the suitability of a hybrid photovoltaic/engine-generator power system for a remote satellite earth station. This paper describes the design, installation and initial operation of the photovoltaic power system and the earth station.

  7. A photovoltaic power system and a low-power satellite earth station for Indonesia

    NASA Astrophysics Data System (ADS)

    Delombard, Richard; Everson, Kent

    A photovoltaic power system and a low-power, two-way satellite earth station have been installed at Wawotobi, Sulawesi, Indonesia to provide university classroom communications for audio teleconferencing and video graphics. This project is a part of the Agency for International Development's Rural Satellite Program. The purpose of this program is to demonstrate the use of satellite communications for development assistance applications. The purpose of the photovoltaic power system is to demonstrate the suitability of a hybrid photovoltaic/engine-generator power system for a remote satellite earth station. This paper describes the design, installation and initial operation of the photovoltaic power system and the earth station.

  8. A photovoltaic power system and a low-power satellite earth station for Indonesia

    NASA Technical Reports Server (NTRS)

    Delombard, Richard; Everson, Kent

    1985-01-01

    A photovoltaic power system and a low-power, two-way satellite earth station have been installed at Wawotobi, Sulawesi, Indonesia to provide university classroom communications for audio teleconferencing and video graphics. This project is a part of the Agency for International Development's Rural Satellite Program. The purpose of this program is to demonstrate the use of satellite communications for development assistance applications. The purpose of the photovoltaic power system is to demonstrate the suitability of a hybrid photovoltaic/engine-generator power system for a remote satellite earth station. This paper describes the design, installation and initial operation of the photovoltaic power system and the earth station.

  9. Yankee nuclear power station license renewal assessment

    SciTech Connect

    Hinkle, W.D. )

    1992-01-01

    Nuclear power plants are initially licensed to operate for 40 years. Recent changes to US Nuclear Regulatory Commission regulations allow licenses to be renewed for up to 20 additional years. The new regulations require a comprehensive plant assessment to ensure continued effective aging management of equipment important to license renewal (ILR). Under the industry's lead plant program, Yankee Atomic Electric Company (YAEC) has assisted with development and demonstration of a generic license renewal assessment process. The generic assessment process developed under the lead plant program is the Nuclear Management and Resources Council methodology.

  10. International Space Station Alpha electric power system performance degradation

    NASA Astrophysics Data System (ADS)

    Lu, Cheng-Yi; Hague, Lisa; Padhye, Vidya; Hill, Robert

    1995-07-01

    Performance of the International Space Station Alpha (ISSA) United States On-Orbit Segment (USOS) Electric Power System (EPS) will be degraded through the mission life of the station. The power generation photovoltaic array and thermal control radiator will be directly exposed to the natural environment and the environment induced after the station is built. These environmental effects result in lower array current and voltage output as well as lower radiator heat rejection capability. Aging is the major cause for the energy storage nickel-hydrogen (NiH2) battery performance degradation. Over time, there is an increase in the internal impedance, which results in a decreased efficiency as the battery ages. Design of the ISSA EPS takes into consideration the various equipment degradation modes, to make it compatible with the environments and to meet power, lifetime, and performance requirements.

  11. Modelling of the Installed Capacity of Landfill Power Stations

    NASA Astrophysics Data System (ADS)

    Blumberga, D.; Kuplais, Ģ.; Veidenbergs, I.; Dāce, E.; Gušča, J.

    2009-01-01

    More and more landfills are being developed, in which biogas is produced and accumulated, which can be used for electricity production. Currently, due to technological reasons, electricity generation from biogas has a very low level of efficiency. In order to develop this type of energy production, it is important to find answers to various engineering, economic and ecological issues. The paper outlines the results obtained by creating a model for the calculations of electricity production in landfill power stations and by testing it in the municipal solid waste landfill "Daibe". The algorithm of the mathematical model for the operation of a biogas power station consists of four main modules: • initial data module, • engineering calculation module, • tariff calculation module, and • climate calculation module. As a result, the optimum capacity of the power station in the landfill "Daibe" is determined, as well as the analysis of the landfill's economic data and cost-effectiveness is conducted.

  12. Focus on coal power station installations and population health.

    PubMed

    Valenti, Marco; Masedu, Francesco; Tiberti, Sergio

    2011-01-01

    Damage to health associated with emissions from coal power stations can vary greatly from one location to another depending on the size of the plant, location and the characteristics of the population. Population-based studies conducted by independent groups in different locations around the world show effects on health in populations at higher risk, but failed to definitely demonstrate direct effects on morbidity and mortality, to be exclusively attributed to the presence of active power stations. However, evidence on the role of micropollutants from power station activities suggests that a complete and thorough analysis should be made on the environmental cycle. Therefore danger should in any case be assessed as carefully as possible while assuming, at most, that all micropollutants may come into direct contact with man through the various potential pathways throughout their entire lifetime, regardless of the factors that reduce their presence.

  13. Milliwatt radioisotope power supply for the PASCAL Mars surface stations

    NASA Astrophysics Data System (ADS)

    Allen, Daniel T.; Murbach, Marcus S.

    2001-02-01

    A milliwatt power supply is being developed based on the 1 watt Light-Weight Radioisotope Heater Unit (RHU), which has already been used to provide heating alone on numerous spacecraft. In the past year the power supply has been integrated into the design of the proposed PASCAL Mars Network Mission, which is intended to place 24 surface climate monitoring stations on Mars. The PASCAL Mars mission calls for the individual surface stations to be transported together in one spacecraft on a trajectory direct from launch to orbit around Mars. From orbit around Mars each surface station will be deployed on a SCRAMP (slotted compression ramp) probe and, after aerodynamic and parachute deceleration, land at a preselected location on the planet. During descent sounding data and still images will be accumulated, and, once on the surface, the station will take measurements of pressure, temperature and overhead atmospheric optical depth for a period of 10 Mars years (18.8 Earth years). Power for periodic data acquisition and transmission to orbital then to Earth relay will come from a bank of ultracapacitors which will be continuously recharged by the radioisotope power supply. This electronic system has been designed and a breadboard built. In the ultimate design the electronics will be arrayed on the exterior surface of the radioisotope power supply in order to take advantage of the reject heat. This assembly in turn is packaged within the SCRAMP, and that assembly comprises the surface station. An electrically heated but otherwise prototypical power supply was operated in combination with the surface station breadboard system, which included the ultracapacitors. Other issues addressed in this work have been the capability of the generator to withstand the mechanical shock of the landing on Mars and the effectiveness of the generator's multi-foil vacuum thermal insulation. .

  14. Space station automation of common module power management and distribution

    NASA Technical Reports Server (NTRS)

    Miller, W.; Jones, E.; Ashworth, B.; Riedesel, J.; Myers, C.; Freeman, K.; Steele, D.; Palmer, R.; Walsh, R.; Gohring, J.

    1989-01-01

    The purpose is to automate a breadboard level Power Management and Distribution (PMAD) system which possesses many functional characteristics of a specified Space Station power system. The automation system was built upon 20 kHz ac source with redundancy of the power buses. There are two power distribution control units which furnish power to six load centers which in turn enable load circuits based upon a system generated schedule. The progress in building this specified autonomous system is described. Automation of Space Station Module PMAD was accomplished by segmenting the complete task in the following four independent tasks: (1) develop a detailed approach for PMAD automation; (2) define the software and hardware elements of automation; (3) develop the automation system for the PMAD breadboard; and (4) select an appropriate host processing environment.

  15. A Renewably Powered Hydrogen Generation and Fueling Station Community Project

    NASA Technical Reports Server (NTRS)

    Lyons, Valerie J.; Sekura, Linda S.; Prokopius, Paul; Theirl, Susan

    2009-01-01

    The proposed project goal is to encourage the use of renewable energy and clean fuel technologies for transportation and other applications while generating economic development. This can be done by creating an incubator for collaborators, and creating a manufacturing hub for the energy economy of the future by training both white- and blue-collar workers for the new energy economy. Hydrogen electrolyzer fueling stations could be mass-produced, shipped and installed in collaboration with renewable energy power stations, or installed connected to the grid with renewable power added later.

  16. Bioremediation for coal-fired power stations using macroalgae.

    PubMed

    Roberts, David A; Paul, Nicholas A; Bird, Michael I; de Nys, Rocky

    2015-04-15

    Macroalgae are a productive resource that can be cultured in metal-contaminated waste water for bioremediation but there have been no demonstrations of this biotechnology integrated with industry. Coal-fired power production is a water-limited industry that requires novel approaches to waste water treatment and recycling. In this study, a freshwater macroalga (genus Oedogonium) was cultivated in contaminated ash water amended with flue gas (containing 20% CO₂) at an Australian coal-fired power station. The continuous process of macroalgal growth and intracellular metal sequestration reduced the concentrations of all metals in the treated ash water. Predictive modelling shows that the power station could feasibly achieve zero discharge of most regulated metals (Al, As, Cd, Cr, Cu, Ni, and Zn) in waste water by using the ash water dam for bioremediation with algal cultivation ponds rather than storage of ash water. Slow pyrolysis of the cultivated algae immobilised the accumulated metals in a recalcitrant C-rich biochar. While the algal biochar had higher total metal concentrations than the algae feedstock, the biochar had very low concentrations of leachable metals and therefore has potential for use as an ameliorant for low-fertility soils. This study demonstrates a bioremediation technology at a large scale for a water-limited industry that could be implemented at new or existing power stations, or during the decommissioning of older power stations.

  17. Space station freedom photovoltaic power module design status

    SciTech Connect

    Jimenez, A.P.; Hoberecht, M.A.

    1989-01-01

    Electric power generation for Space Station Freedom will be provided by four photovoltaic (PV) power modules using silicon solar cells during Phase 1 operation. Each PV power module requires two solar arrays with 32,800 solar cells generating 18.75 kW of dc power for a total of 75 kW. A portion of this power will be stored in nickel-hydrogen batteries for use during eclipse, and the balance will be processed and converted to 20 kHz ac power for distribution to end users through the power management and distribution system. The design incorporates an optimized thermal control system, pointing and tracking provision with the application of gimbals, and the use of orbital replacement units (ORU's) to achieve modularization. Design status of the PV power module, as derived from major trade studies, is discussed at hardware levels ranging from component to system. Details of the design are presented where appropriate.

  18. Space Station Freedom photovoltaic power module design status

    NASA Technical Reports Server (NTRS)

    Jimenez, Amador P.; Hoberecht, Mark A.

    1989-01-01

    Electric power generation for Space Station Freedom will be provided by four photovoltaic (PV) power modules using silicon solar cells during Phase 1 operation. Each PV power module requires two solar arrays with 32,800 solar cells generating 18.75 kW of dc power for a total of 75 kW. A portion of this power will be stored in nickel-hydrogen batteries for use during eclipse, and the balance will be processed and converted to 20 kHz ac power for distribution to end users through the power management and distribution system. The design incorporates an optimized thermal control system, pointing and tracking provision with the application of gimbals, and the use of orbital replacement units (ORU's) to achieve modularization. Design status of the PV power module, as derived from major trade studies, is discussed at hardware levels ranging from component to system. Details of the design are presented where appropriate.

  19. Space Station Freedom photovoltaic power module design status

    NASA Technical Reports Server (NTRS)

    Jimenez, Amador P.; Hoberecht, Mark A.

    1989-01-01

    Electric power generation for the Space Station Freedom will be provided by four photovoltaic (PV) power modules using silicon solar cells during phase I operation. Each PV power module requires two solar arrays with 32,800 solar cells generating 18.75 kW of dc power for a total of 75 kW. A portion of this power will be stored in nickel-hydrogen batteries for use during eclipse, and the balance will be processed and converted to 20 kHz ac power for distribution to end users through the power management and distribution system. The design incorporates an optimized thermal control system, pointing and tracking provision with the application of gimbals, and the use of orbital replacement units to achieve modularization. The design status of the PV power module, as derived from major trade studies, is discussed at hardware levels ranging from component to system. Details of the design are presented where appropriate.

  20. Nevada Power: Clark Station; Las Vegas, Nevada (Data)

    DOE Data Explorer

    Stoffel, T.; Andreas, A.

    2006-03-27

    A partnership with the University of Nevada and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.

  1. Engineering approach to the development of geothermal power stations

    NASA Astrophysics Data System (ADS)

    Iwamizu, T.

    Measurements are studied for a hot-water type geothermal discharge, and the well characteristics are defined. These investigations, it is pointed out, formed the basis for an engineering approach to the development of the world's first 50 MW geothermal power station with a double-flash-cycle system.

  2. System performance predictions for Space Station Freedom's electric power system

    NASA Technical Reports Server (NTRS)

    Kerslake, Thomas W.; Hojnicki, Jeffrey S.; Green, Robert D.; Follo, Jeffrey C.

    1993-01-01

    Space Station Freedom Electric Power System (EPS) capability to effectively deliver power to housekeeping and user loads continues to strongly influence Freedom's design and planned approaches for assembly and operations. The EPS design consists of silicon photovoltaic (PV) arrays, nickel-hydrogen batteries, and direct current power management and distribution hardware and cabling. To properly characterize the inherent EPS design capability, detailed system performance analyses must be performed for early stages as well as for the fully assembled station up to 15 years after beginning of life. Such analyses were repeatedly performed using the FORTRAN code SPACE (Station Power Analysis for Capability Evaluation) developed at the NASA Lewis Research Center over a 10-year period. SPACE combines orbital mechanics routines, station orientation/pointing routines, PV array and battery performance models, and a distribution system load-flow analysis to predict EPS performance. Time-dependent, performance degradation, low earth orbit environmental interactions, and EPS architecture build-up are incorporated in SPACE. Results from two typical SPACE analytical cases are presented: (1) an electric load driven case and (2) a maximum EPS capability case.

  3. 3. DISTANT VIEW (TO THE NORTHEAST) OF THE POWER STATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. DISTANT VIEW (TO THE NORTHEAST) OF THE POWER STATION (FAR LEFT, WOOD SHED, AND CHANGE HOUSE (CENTER). THE SMALLER ATTACHED SECTION ON THE CHANGE HOUSE SERVED AS THE MINE OFFICE AND RECORDS STORAGE ROOM. - Foster Gulch Mine, Bear Creek 1 mile Southwest of Town of Bear Creek, Red Lodge, Carbon County, MT

  4. FUEL CELL OPERATION ON LANDFILL GAS AT PENROSE POWER STATION

    EPA Science Inventory

    This demonstration test successfully demonstrated operation of a commercial phosphoric acid fuel cell (FC) on landfill gas (LG) at the Penrose Power Station in Sun Valley, CA. Demonstration output included operation up to 137 kW; 37.1% efficiency at 120 kW; exceptionally low sec...

  5. Prospects for solving environmental problems pertinent to thermal power stations

    NASA Astrophysics Data System (ADS)

    Tumanovskii, A. G.; Kotler, V. R.

    2007-06-01

    Possible ways to protect the atmosphere and water basin against harmful emissions and effluent waters discharged from thermal power stations are considered. Data on the effectiveness of different methods for removing NO x , SO2, and ash particles, as well as heavy metals and CO2, from these emissions and discharges are presented.

  6. FUEL CELL OPERATION ON LANDFILL GAS AT PENROSE POWER STATION

    EPA Science Inventory

    This demonstration test successfully demonstrated operation of a commercial phosphoric acid fuel cell (FC) on landfill gas (LG) at the Penrose Power Station in Sun Valley, CA. Demonstration output included operation up to 137 kW; 37.1% efficiency at 120 kW; exceptionally low sec...

  7. Communication Studies and the Extended Power Station Game.

    ERIC Educational Resources Information Center

    Marshall, Stewart

    1981-01-01

    An engineering case study is used as the focal point of a communications course. Communications theory and practical exercises are structured around the case study described, an adaptation and extension of the power station game developed in the early 1970s. Includes outline of and sample student activities. (JN)

  8. 47 CFR 74.6 - Licensing of broadcast auxiliary and low power auxiliary stations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... low power auxiliary stations. Applicants for and licensees of remote pickup broadcast stations, aural broadcast auxiliary stations, television broadcast auxiliary stations, and low power auxiliary stations... 47 Telecommunication 4 2013-10-01 2013-10-01 false Licensing of broadcast auxiliary and low...

  9. 47 CFR 74.6 - Licensing of broadcast auxiliary and low power auxiliary stations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... low power auxiliary stations. Applicants for and licensees of remote pickup broadcast stations, aural broadcast auxiliary stations, television broadcast auxiliary stations, and low power auxiliary stations... 47 Telecommunication 4 2014-10-01 2014-10-01 false Licensing of broadcast auxiliary and low...

  10. 47 CFR 74.6 - Licensing of broadcast auxiliary and low power auxiliary stations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... low power auxiliary stations. Applicants for and licensees of remote pickup broadcast stations, aural broadcast auxiliary stations, television broadcast auxiliary stations, and low power auxiliary stations... 47 Telecommunication 4 2011-10-01 2011-10-01 false Licensing of broadcast auxiliary and low...

  11. 47 CFR 74.6 - Licensing of broadcast auxiliary and low power auxiliary stations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... low power auxiliary stations. Applicants for and licensees of remote pickup broadcast stations, aural broadcast auxiliary stations, television broadcast auxiliary stations, and low power auxiliary stations... 47 Telecommunication 4 2012-10-01 2012-10-01 false Licensing of broadcast auxiliary and low...

  12. Battersea Power Station and environmental issues 1929-1989

    NASA Astrophysics Data System (ADS)

    Bowler, Catherine; Brimblecombe, Peter

    From inception (1920s) to partial demolition (1980s) London's Battersea Power Station provoked public concern over environmental impacts. Adverse reaction during the early stages concerned siting and the effects of air pollutants on the urban surroundings. Potential air pollution problems resulted in a restrictive 'condition' being inserted in the consent for Battersea which required smoke and sulphur dioxide to be controlled. The 'condition' did not reassure either the public or special interest groups who campaigned against the construction of the station. However plans were too advanced to be halted and the official response focused on ensuring successful implementation of flue gas desulphurization. Though the subsequent effectiveness of emission control during the station's working life is arguable, the building itself rapidly became a popular London landmark and an architectural symbol of the fascination that surrounds technology. Objections to its decommissioning and demolition in the 1980s once again placed Battersea Power Station at the centre of public protest. Reactions to the station illustrate the rapidity with which our perception of environmental threats may change.

  13. 77 FR 63342 - Virginia Electric and Power Company, Surry Power Station Units 1 and 2 and North Anna Power...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-16

    ... COMMISSION Virginia Electric and Power Company, Surry Power Station Units 1 and 2 and North Anna Power....S. Nuclear Regulatory Commission (NRC or the Commission) has granted the request of Virginia Electric and Power Company (the licensee) to withdraw its September 29, 2012, application for proposed...

  14. Space station WP-04 power system. Volume 2: Study results

    NASA Technical Reports Server (NTRS)

    Hallinan, G. J.

    1987-01-01

    Results of the phase B study contract for the definition of the space station Electric Power System (EPS) are presented in detail along with backup information and supporting data. Systems analysis and trades, preliminary design, advanced development, customer accommodations, operations planning, product assurance, and design and development phase planning are addressed. The station design is a hybrid approach which provides user power of 25 kWe from the photovoltaic subsystem and 50 kWe from the solar dynamic subsystem. The electric power is distributed to users as a utility service; single phase at a frequency of 20 kHz and voltage of 440VAC. The solar array NiH2 batteries of the photovoltaic subsystem are based on commonality to those used on the co-orbiting and solar platforms.

  15. Yankee Nuclear Power Station - analysis of decommissioning costs

    SciTech Connect

    Lessard, L.P.

    1996-12-31

    The preparation of decommissioning cost estimates for nuclear power generating stations has received a great deal of interest in the last few years. Owners are required by regulation to ensure that adequate funds are collected for the timely decommissioning of their facilities. The unexpected premature shutdown of several facilities and uncertainties associated with radioactive waste disposal and long-term spent-fuel storage, when viewed in the light of a deregulated electric utility industry, has caused many companies to reevaluate their decommissioning cost estimates. The decommissioning of the Yankee Nuclear Power Station represents the first large-scale project involving the complete decontamination and dismantlement of a commercial light water nuclear power generation facility in the United States. Since this pressurized water reactor operated for 32 yr at a respectable 74% lifetime capacity factor, the actual costs and resources required to decommission the plant, when compared with decommissioning estimates, will yield valuable benchmarking data.

  16. Thermal control system for Space Station Freedom photovoltaic power module

    NASA Technical Reports Server (NTRS)

    Hacha, Thomas H.; Howard, Laura

    1994-01-01

    The electric power for Space Station Freedom (SSF) is generated by the solar arrays of the photovoltaic power modules (PVM's) and conditioned, controlled, and distributed by a power management and distribution system. The PVM's are located outboard of the alpha gimbals of SSF. A single-phase thermal control system is being developed to provide thermal control of PVM electrical equipment and energy storage batteries. This system uses ammonia as the coolant and a direct-flow deployable radiator. The description and development status of the PVM thermal control system is presented.

  17. Space station WP-04 power system. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Hallinan, G. J.

    1987-01-01

    Major study activities and results of the phase B study contract for the preliminary design of the space station Electrical Power System (EPS) are summarized. The areas addressed include the general system design, man-tended option, automation and robotics, evolutionary growth, software development environment, advanced development, customer accommodations, operations planning, product assurance, and design and development phase planning. The EPS consists of a combination photovoltaic and solar dynamic power generation subsystem and a power management and distribution (PMAD) subsystem. System trade studies and costing activities are also summarized.

  18. Thermal control system for Space Station Freedom photovoltaic power module

    NASA Technical Reports Server (NTRS)

    Hacha, Thomas H.; Howard, Laura S.

    1992-01-01

    The electric power for Space Station Freedom (SSF) is generated by the solar arrays of the photovoltaic power modules (PVM's) and conditioned, controlled, and distributed by a power management and distribution system. The PVM's are located outboard of the alpha gimbals of SSF. A single-phase thermal control system is being developed to provide thermal control of PVM electrical equipment and energy storage batteries. This system uses ammonia as the coolant and a direct-flow deployable radiator. This paper presents the description and development status of the PVM thermal control system.

  19. Simulation test beds for the Space Station electrical power system

    NASA Technical Reports Server (NTRS)

    Sadler, Gerald G.

    1988-01-01

    NASA Lewis Research Center and its prime contractor are respnsible for developing the electrical power system on the Space Station. The power system will be controlled by a network of distributed processors. Control software will be verified, validated, and tested in hardware and software test beds. Current plans for the software test bed involve using real time and nonreal time simulations of the power system. This paper will discuss the general simulation objectives and configurations, control architecture, interfaces between simulator and controls, types of tests, and facility configurations.

  20. Simulation test beds for the space station electrical power system

    NASA Technical Reports Server (NTRS)

    Sadler, Gerald G.

    1988-01-01

    NASA Lewis Research Center and its prime contractor are responsible for developing the electrical power system on the space station. The power system will be controlled by a network of distributed processors. Control software will be verified, validated, and tested in hardware and software test beds. Current plans for the software test bed involve using real time and nonreal time simulations of the power system. This paper will discuss the general simulation objectives and configurations, control architecture, interfaces between simulator and controls, types of tests, and facility configurations.

  1. Space Station Freedom power management and distribution design status

    NASA Technical Reports Server (NTRS)

    Javidi, S.; Gholdston, E.; Stroh, P.

    1989-01-01

    The design status of the power management and distribution electric power system for the Space Station Freedom is presented. The current design is a star architecture, which has been found to be the best approach for meeting the requirement to deliver 120 V dc to the user interface. The architecture minimizes mass and power losses while improving element-to-element isolation and system flexibility. The design is partitioned into three elements: energy collection, storage and conversion, system protection and distribution, and management and control.

  2. Environmental interactions of the Space Station Freedom electric power system

    NASA Technical Reports Server (NTRS)

    Nahra, Henry K.; Lu, C. Y.

    1991-01-01

    The Space Station Freedom will be operating in the Low Earth Orbit (LEO) environment. LEO environment operation results in different potential interactions with the Space Station systems including the Electric Power Systems (EPS). These potential interactions result in environmental effects which include neutral species effects such as atomic oxygen erosion, effects of micrometeroid and orbital debris impacts, plasma effects, ionizing radiation effects, and induced contamination degradation effects. The EPS design and its interactions with the LEO environment are described. The results of analyses and testing programs planned and performed thus far to resolve the environmental concerns related to the EPS and its function in the LEO environment are discussed.

  3. Solar photovoltaic power system for a radio station

    SciTech Connect

    Nichols, B. E.

    1980-12-01

    Under sponsorship of the US Department of Energy, Massachusetts Institute of Technology Lincoln Laboratory has developed a concept for a small photovoltaic power system. Of simple construction, the system uses low-cost, prefabricated, transportable units for easy, fast installation and requires minimal site preparation. The first application of this experimental system began operation in August 1979 at daytime AM radio station WNBO in Bryan, Ohio. The project was jointly undertaken by the Laboratory and the radio station. The photovoltaic system described holds promise for a wide range of applications and economic feasibility by the mid- to late-1980s.

  4. Environmental interactions of the Space Station Freedom electric power system

    NASA Technical Reports Server (NTRS)

    Nahra, Henry K.; Lu, C. Y.

    1991-01-01

    The Space Station Freedom will be operating in the Low Earth Orbit (LEO) environment. LEO environment operation results in different potential interactions with the Space Station systems including the Electric Power Systems (EPS). These potential interactions result in environmental effects which include neutral species effects such as atomic oxygen erosion, effects of micrometeroid and orbital debris impacts, plasma effects, ionizing radiation effects, and induced contamination degradation effects. The EPS design and its interactions with the LEO environment are described. The results of analyses and testing programs planned and performed thus far to resolve the environmental concerns related to the EPS and its function in the LEO environment are discussed.

  5. Environmental interactions of the Space Station Freedom electric power system

    NASA Technical Reports Server (NTRS)

    Nahra, Henry K.; Lu, Cheng-Yi

    1991-01-01

    The Space Station Freedom operates in a low earth orbit (LEO) environment. Such operation results in different potential interactions with the Space Station systems including the Electric Power System (EPS). These potential interactions result in environmental effects which include neutral species effects such as atomic oxygen erosion, effects of micrometeoroid and orbital debris impacts, plasma effects, ionizing radiation, and induced contamination degradation effects. The EPS design and its interactions with the LEO environment are briefly described and the results of analyses and testing programs planned and performed thus far to resolve environmental concerns related to the EPS and its function in LEO environment.

  6. 47 CFR 74.6 - Licensing of broadcast auxiliary and low power auxiliary stations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Licensing of broadcast auxiliary and low power... low power auxiliary stations. Applicants for and licensees of remote pickup broadcast stations, aural broadcast auxiliary stations, television broadcast auxiliary stations, and low power auxiliary...

  7. Tampa Electric Company Polk Power Station IGCC project: Project status

    SciTech Connect

    McDaniel, J.E.; Carlson, M.R.; Hurd, R.; Pless, D.E.; Grant, M.D.

    1997-12-31

    The Tampa Electric Company Polk Power Station is a nominal 250 MW (net) Integrated Gasification Combined Cycle (IGCC) power plant located to the southeast of Tampa, Florida in Polk County, Florida. This project is being partially funded under the Department of Energy`s Clean Coal Technology Program pursuant to a Round II award. The Polk Power Station uses oxygen-blown, entrained-flow IGCC technology licensed from Texaco Development Corporation to demonstrate significant reductions of SO{sub 2} and NO{sub x} emissions when compared to existing and future conventional coal-fired power plants. In addition, this project demonstrates the technical feasibility of commercial scale IGCC and Hot Gas Clean Up (HGCU) technology. The Polk Power Station achieved ``first fire`` of the gasification system on schedule in mid-July, 1996. Since that time, significant advances have occurred in the operation of the entire IGCC train. This paper addresses the operating experiences which occurred in the start-up and shakedown phase of the plant. Also, with the plant being declared in commercial operation as of September 30, 1996, the paper discusses the challenges encountered in the early phases of commercial operation. Finally, the future plans for improving the reliability and efficiency of the Unit in the first quarter of 1997 and beyond, as well as plans for future alternate fuel test burns, are detailed. The presentation features an up-to-the-minute update on actual performance parameters achieved by the Polk Power Station. These parameters include overall Unit capacity, heat rate, and availability. In addition, the current status of the start-up activities for the HGCU portion of the plant is discussed.

  8. Determining the power performance effect from modernization of power equipment and process systems at a nuclear power station

    NASA Astrophysics Data System (ADS)

    Khomenok, L. A.; Kruglikov, P. A.; Smolkin, Yu. V.; Sokolov, K. V.

    2012-05-01

    The main stages of a calculation and experimental analysis of measures aimed at achieving better power performance of a nuclear power station and a procedure for carrying out such analysis are considered. The results of a calculated and experimental assessment of the power-performance effect from modernization of the moisture separators-steam superheaters used in turbine generators Nos. 7 and 8 of Unit 4 at the Leningrad nuclear power station are presented.

  9. Efficient ways for setting up the operation of nuclear power stations in power systems in the base load mode

    NASA Astrophysics Data System (ADS)

    Aminov, R. Z.; Shkret, A. F.; Burdenkova, E. Yu.; Garievskii, M. V.

    2011-05-01

    The results obtained from studies of efficient ways and methods for organizing the operation of developing nuclear power stations in the base load mode are presented. We also show comparative efficiency of different scenarios for unloading condensing thermal power stations, cogeneration stations, combined-cycle power plants, nuclear power stations, and using off-peak electric energy for electricity-intensive loads: pumped-hydroelectric storage, electric-powered heat supply, and electrolysis of water for producing hydrogen and oxygen.

  10. Electrical power system for the U.S. space station

    NASA Technical Reports Server (NTRS)

    Nored, D. L.; Hallinan, G. J.

    1986-01-01

    The Space Station Electrical Power System presents many interesting challenges. It will be much larger than previous space power systems, and it must be designed for on-orbit maintenance and replacement, along with having a growth capability. The power generation, energy storage, and power management and distribution (PMAD) subsystems comprise the primary elements of the overall system. Each was analyzed by NASA Lewis Research Center and its two contractors -- Rocketdyne and TRW -- in the definition studies of the program to determine the optimum approach to minimize initial costs and life cycle costs. For the PMAD subsystem, a ring bus architecture operating at 440 V, 20 kHz, single phase, was selected. Photovoltaic and solar dynamic power generation subsystems were both studied. Major tradeoffs were made for each subsystem and for the overall system, and a hybrid system (both photovoltaic and solar dynamic) was selected.

  11. Electrical power system for the U.S. Space Station

    NASA Technical Reports Server (NTRS)

    Nored, D. L.; Hallinan, G. J.

    1986-01-01

    The Space Station Electrical Power System presents many interesting challenges. It will be much larger than previous space power systems, and it must be designed for on-orbit maintenance and replacement, along with having a growth capability. The power generation, energy storage, and power management and distribution (PMAD) subsystems comprise the primary elements of the overall system. Each was analyzed by NASA Lewis Research Center and its two contractors Rocketdyne and TRW - in the definition studies of the program to determine the optimum approach to minimize initial costs and life cycle costs. For the PMAD subsystem, a ring bus architecture operating at 440 V, 20 kHz, single phase, was selected. Photovoltaic and solar dynamic power generation subsystems were both studied. Major tradeoffs were made for each subsystem and for the overall system, and a hybrid system (both photovoltaic and solar dynamic) was selected.

  12. A 20 kiloHertz space station power system

    NASA Technical Reports Server (NTRS)

    Hansen, I. G.; Wolff, F. J.

    1986-01-01

    The space station represents the next major U.S. commitment in space. The efficient delivery of power to multiple user loads is key to that success. In 1969, NASA Lewis Research Center began a series of studies with component and circuit developments that led to the high frequency, bi-directional, four quadrant resonant driven converter. Additional studies and subsequent developments into the early 1980's have shown how the high frequency ac power system could provide overall advantages to many aerospace power systems. Because of its wide versatility, it also has outstanding advantages for the Space Station Program and its wide range of users. High frequency ac power provides higher efficiency, lower cost, and improved safety. The 20 kHz power system has exceptional flexibility, is inherently user friendly, and is compatible with all types of energy sources - photovoltaic, solar dynamic, rotating machines or nuclear. Lewis has recently completed development under contract a 25 kW, 20 kHz ac power distribution system testbed. The testbed demonstrates flexibility, versatility, and transparency to user technology as well as high efficiency, low mass, and reduced volume.

  13. (Shippingport Atomic Power Station). Quarterly operating report, third quarter 1980

    SciTech Connect

    Zagorski, J. F.

    1980-01-01

    At the beginning of the third quarter of 1980, the Shippingport Atomic Power Station was operating with the 1A, 1B, 1C, and 1D reactor coolant loops and the 1AC and 1BD purification loops in service. During the quarter, the Station was operated for Duquesne Light Company System grid including base load and swing load operation. Twelve (12) planned swing load operations were performed on the LWBR Core this quarter to complete the LWBR operating plan of fifty (50) during this operating phase. The Station was shutdown on September 12 for the Fall 1980 Shutdown and remained in this mode through the end of the quarter. The LWBR Core has generated 18,297.98 EFPH from start-up through the end of the quarter. There were no radioactive liquid discharges from the Radioactive Waste Processing System to the river this quarter. The radioactive liquid waste effluent line to the river remained blanked off to prevent inadvertent radioactive liquid waste discharges. During the quarter, approximately 0.001 curies of Xe 133 activity were released from the station. The radioactivity released from Shippingport Station is far too small to have any measurable effect on the general background environmental radioactivity outside the plant.

  14. Space station experiment definition: Advanced power system test bed

    NASA Technical Reports Server (NTRS)

    Pollard, H. E.; Neff, R. E.

    1986-01-01

    A conceptual design for an advanced photovoltaic power system test bed was provided and the requirements for advanced photovoltaic power system experiments better defined. Results of this study will be used in the design efforts conducted in phase B and phase C/D of the space station program so that the test bed capabilities will be responsive to user needs. Critical PV and energy storage technologies were identified and inputs were received from the idustry (government and commercial, U.S. and international) which identified experimental requirements. These inputs were used to develop a number of different conceptual designs. Pros and cons of each were discussed and a strawman candidate identified. A preliminary evolutionary plan, which included necessary precursor activities, was established and cost estimates presented which would allow for a successful implementation to the space station in the 1994 time frame.

  15. Radiator selection for Space Station Solar Dynamic Power Systems

    NASA Technical Reports Server (NTRS)

    Fleming, Mike; Hoehn, Frank

    1987-01-01

    A study was conducted to define the best radiator for heat rejection of the Space Station Solar Dynamic Power System. Included in the study were radiators for both the Organic Rankine Cycle and Closed Brayton Cycle heat engines. A number of potential approaches were considered for the Organic Rankine Cycle and a constructable radiator was chosen. Detailed optimizations of this concept were conducted resulting in a baseline for inclusion into the ORC Preliminary Design. A number of approaches were also considered for the CBC radiator. For this application a deployed pumped liquid radiator was selected which was also refined resulting in a baseline for the CBC preliminary design. This paper reports the results and methodology of these studies and describes the preliminary designs of the Space Station Solar Dynamic Power System radiators for both of the candidate heat engine cycles.

  16. (Shippingport Atomic Power Station). Quarterly operating report, fourth quarter 1980

    SciTech Connect

    Not Available

    1980-01-01

    At the beginning of the fourth quarter of 1980, the Shippingport Atomic Power Station remained shutdown for the normally planned semiannual maintenance and testing program, initiated September 12, 1980. Operational testing began on November 7. Maximum power was achieved November 28 and was maintained throughout the remainder of the quarter except as noted. The LWBR Core has generated 19,046.07 EFPH from start-up through the end of the quarter. During this quarter, approximately 0.000025 curies of Xe 133 activity were released from the station. During the fourth quarter of 1980, 1081 cubic feet of radioactive solid waste was shipped out of state for burial. These shipments contained 0.037 curies of radioactivity.

  17. 47 CFR 74.707 - Low power TV and TV translator station protection.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Low power TV and TV translator station... SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.707 Low power TV and TV translator station protection. (a)(1) A low power TV or TV translator will be protected from interference from other...

  18. 47 CFR 74.707 - Low power TV and TV translator station protection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Low power TV and TV translator station... SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.707 Low power TV and TV translator station protection. (a)(1) A low power TV or TV translator will be protected from interference from other...

  19. 47 CFR 74.707 - Low power TV and TV translator station protection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Low power TV and TV translator station... SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.707 Low power TV and TV translator station protection. (a)(1) A low power TV or TV translator will be protected from interference from other...

  20. 47 CFR 74.792 - Digital low power TV and TV translator station protected contour.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Digital low power TV and TV translator station... SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.792 Digital low power TV and TV translator station protected contour. (a) A digital low power TV or TV translator will be protected...

  1. 47 CFR 74.710 - Digital low power TV and TV translator station protection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Digital low power TV and TV translator station... SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.710 Digital low power TV and TV... protect an authorized digital low power TV or TV translator station or an application for such...

  2. 47 CFR 74.792 - Digital low power TV and TV translator station protected contour.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Digital low power TV and TV translator station... SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.792 Digital low power TV and TV translator station protected contour. (a) A digital low power TV or TV translator will be protected...

  3. 47 CFR 74.710 - Digital low power TV and TV translator station protection.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Digital low power TV and TV translator station... SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.710 Digital low power TV and TV... protect an authorized digital low power TV or TV translator station or an application for such...

  4. 47 CFR 74.710 - Digital low power TV and TV translator station protection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Digital low power TV and TV translator station... SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.710 Digital low power TV and TV... protect an authorized digital low power TV or TV translator station or an application for such...

  5. 47 CFR 74.710 - Digital low power TV and TV translator station protection.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Digital low power TV and TV translator station... SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.710 Digital low power TV and TV... protect an authorized digital low power TV or TV translator station or an application for such...

  6. 47 CFR 74.792 - Digital low power TV and TV translator station protected contour.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Digital low power TV and TV translator station... SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.792 Digital low power TV and TV translator station protected contour. (a) A digital low power TV or TV translator will be protected...

  7. 47 CFR 74.792 - Digital low power TV and TV translator station protected contour.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Digital low power TV and TV translator station... SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.792 Digital low power TV and TV translator station protected contour. (a) A digital low power TV or TV translator will be protected...

  8. 20 kHz Space Station power system

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.; Wolff, Fredrick J.

    1986-01-01

    The Space Station represents the next major U.S. commitment in space. The efficient delivery of power to multiple user loads is key to that success. In 1969, NASA Lewis Research Center began a series of studies with component and circuit developments that led to the high frequency bi-directional, four quadrant resonant driven converter. Additional studies and subsequent developments into the early 1980's have shown how the high frequency ac power system could provide overall advantages to many aerospace power systems. Because of its wide versatility, it also has outstanding advantages for the Space Station Program and its wide range of users. High frequency ac power provides higher efficiency, lower cost, and improved safety. The 20 kHz power system has exceptional flexibility, is inherently user friendly, and is compatible with all types of energy sources - photovoltaic, solar dynamic, rotating machines or nuclear Lewis distribution system testbed. The testbed demonstrates flexibility, versatility, and transparency to user technology as well as high efficiency, low mass, and reduced volume.

  9. Solar dynamic power system development for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The development of a solar dynamic electric power generation system as part of the Space Station Freedom Program is documented. The solar dynamic power system includes a solar concentrator, which collects sunlight; a receiver, which accepts and stores the concentrated solar energy and transfers this energy to a gas; a Brayton turbine, alternator, and compressor unit, which generates electric power; and a radiator, which rejects waste heat. Solar dynamic systems have greater efficiency and lower maintenance costs than photovoltaic systems and are being considered for future growth of Space Station Freedom. Solar dynamic development managed by the NASA Lewis Research Center from 1986 to Feb. 1991 is covered. It summarizes technology and hardware development, describes 'lessons learned', and, through an extensive bibliography, serves as a source list of documents that provide details of the design and analytic results achieved. It was prepared by the staff of the Solar Dynamic Power System Branch at the NASA Lewis Research Center in Cleveland, Ohio. The report includes results from the prime contractor as well as from in-house efforts, university grants, and other contracts. Also included are the writers' opinions on the best way to proceed technically and programmatically with solar dynamic efforts in the future, on the basis of their experiences in this program.

  10. Space Power Facility at NASA’s Plum Brook Station

    NASA Image and Video Library

    1969-02-21

    Exterior view of the Space Power Facility at the National Aeronautics and Space Administration’s (NASA) Plum Brook Station in Sandusky, Ohio. The $28.4-million facility, which began operations in 1969, is the largest high vacuum chamber ever built. The chamber is 100 feet in diameter and 120 feet high. It produces a vacuum deep enough to simulate the conditions at 300 miles altitude. The facility can sustain a high vacuum; simulate solar radiation via a 4-megawatt quartz heat lamp array, solar spectrum by a 400-kilowatt arc lamp, and cold environments. The Space Power Facility was originally designed to test nuclear power sources for spacecraft during long durations in a space atmosphere, but it was never used for that purpose. The facility’s first test in 1970 involved a 15 to 20-kilowatt Brayton Cycle Power System for space applications. Three different methods of simulating solar heat were employed during the Brayton tests. The facility was also used for jettison tests of the Centaur Standard Shroud. The shroud was designed for the new Titan-Centaur rocket that was scheduled to launch the Viking spacecraft to Mars. The new shroud was tested under conditions that simulated the time from launch to the separation of the stages. Test programs at the facility include high-energy experiments, shroud separation tests, Mars Lander system tests, deployable Solar Sail tests and International Space Station hardware tests.

  11. 75 FR 2164 - Entergy Nuclear Operations, Inc.; Pilgrim Nuclear Power Station; Environmental Assessment and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-14

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Entergy Nuclear Operations, Inc.; Pilgrim Nuclear Power Station; Environmental Assessment and...), for operation of Pilgrim Nuclear Power Station (Pilgrim), located in Plymouth County, MA. Therefore...

  12. Solid radwaste characterization at surry and North Anna Power Stations

    SciTech Connect

    Lippard, D.W.

    1987-01-01

    This paper describes a characterization of the solid radwaste generated at Virginia Power's North Anna and Surry power stations. The primary focus of this characterization was dry active waste (DAW). The characterization, covering the 21-month period from January 1985 through September 1986, was based on information in the station's health physics procurement records, radwaste shipping records, and from interviews with station personnel. The procurement records were the principal source of information for DAW. They were reviewed to determine the quantities of various materials, purchased during the study period, that were expected to become DAW. This provides an upper limit on the quantity in the waste for several major DAW components and a basis for the total amount of other components in the waste. The approach to characterizing DAW discussed in this paper could be implemented and regularly updated by utilizing a computerized procurement records system. If a use code (i.e., contaminated or noncontaminated) is associated with each stock requisition, a characterization could be performed by a computer run. This approach would help track minimization effort effectiveness and would refine the characterization of DAW considerably.

  13. International Space Station Electric Power System Performance Code-SPACE

    NASA Technical Reports Server (NTRS)

    Hojnicki, Jeffrey; McKissock, David; Fincannon, James; Green, Robert; Kerslake, Thomas; Delleur, Ann; Follo, Jeffrey; Trudell, Jeffrey; Hoffman, David J.; Jannette, Anthony; hide

    2005-01-01

    The System Power Analysis for Capability Evaluation (SPACE) software analyzes and predicts the minute-by-minute state of the International Space Station (ISS) electrical power system (EPS) for upcoming missions as well as EPS power generation capacity as a function of ISS configuration and orbital conditions. In order to complete the Certification of Flight Readiness (CoFR) process in which the mission is certified for flight each ISS System must thoroughly assess every proposed mission to verify that the system will support the planned mission operations; SPACE is the sole tool used to conduct these assessments for the power system capability. SPACE is an integrated power system model that incorporates a variety of modules tied together with integration routines and graphical output. The modules include orbit mechanics, solar array pointing/shadowing/thermal and electrical, battery performance, and power management and distribution performance. These modules are tightly integrated within a flexible architecture featuring data-file-driven configurations, source- or load-driven operation, and event scripting. SPACE also predicts the amount of power available for a given system configuration, spacecraft orientation, solar-array-pointing conditions, orbit, and the like. In the source-driven mode, the model must assure that energy balance is achieved, meaning that energy removed from the batteries must be restored (or balanced) each and every orbit. This entails an optimization scheme to ensure that energy balance is maintained without violating any other constraints.

  14. 75 FR 32516 - Virginia Electric and Power Company; North Anna Power Station, Unit Nos. 1 and 2; Surry Power...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-08

    ... Station, Unit Nos. 1 and 2 (NAPS) and Surry Power Station, Unit Nos. 1 and 2 (SPS) located in Lake Anna...% nitrogen at SPS and NAPS. The licensee's letter dated November 24, 2009, contains proprietary information... model Firehawk 7 Air Mask SCBA with a gas mixture of 35% oxygen and 65% nitrogen at SPS and NAPS,...

  15. 75 FR 12311 - Entergy Nuclear Operations, Inc; Vermont Yankee Nuclear Power Station Environmental Assessment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-15

    ... COMMISSION Entergy Nuclear Operations, Inc; Vermont Yankee Nuclear Power Station Environmental Assessment and... Nuclear Operations, Inc. (Entergy or the licensee), for operation of Vermont Yankee Nuclear Power Station... Statement for Vermont Yankee Nuclear Power Station, Docket No. 50-271, dated July 1972, as supplemented...

  16. 76 FR 82201 - General Site Suitability Criteria for Nuclear Power Stations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-30

    ... Power Stations AGENCY: Nuclear Regulatory Commission. ACTION: Draft regulatory guide; request for... regulatory guide DG-4021, ``General Site Suitability Criteria for Nuclear Power Stations.'' This guide... for nuclear power stations. DATES: Submit comments by February 25, 2012. Comments received after this...

  17. Data acquisition system for sorbent injection test program at Virginia Power Yorktown Power Station Unit 2

    SciTech Connect

    Francis, C.; Scharpf, G.H. Jr.

    1995-06-01

    Virginia Power has installed an ABB Boiler Performance Optimization System (BPOS) at their Yorktown Power Station Unit 2, in conjunction with an in-furnace, sorbent injection, sulfur dioxide emissions reduction test program., This system was selected as offering lower cost and long-term benefits to the station than using dedicated test equipment and personnel for the test program. In addition to providing data acquisition and storage functions for characterization of the effect of sorbent injection on boiler performance, sorbent injection equipment performance, and emissions reduction, the system performs on-line plant heat rate and controllable losses calculations. The BPOS included the following advanced features: (1) Access to test and operating results for station operators, station engineering staff and sorbent injection project staff at their own work spaces at the station and at remote locations. (2) Boiler section surface cleanliness models to aid the boiler operators with soot blowing and to assess the impact of sorbent injection on individual boiler surfaces. (3) Interfaces to the station`s distributed control system (DCS), the sorbent injection system`s programmable logic controller (PLC), and to a data logger used for test instrumentation. (4) Model-based calculations for sorbent injection system control setpoints implemented in BPOS computer system. (5) On-line continuous calculation of sorbent injection system performance indices.

  18. Contamination effects on Space Station Freedom electric power system performance

    NASA Technical Reports Server (NTRS)

    Lu, Cheng-Yi; Aronoff, Irene

    1991-01-01

    One design issue for Space Station Freedom (SSF) is the potential performance decrease of the electric power system (EPS) solar arrays and radiators as a result of contamination on sensitive surfaces. The authors discuss SSF potential contamination sources and contamination effects on the solar array and radiator performance due to these sources. With these contamination consideration, the SSF EPS is designed for the induced contamination environment at an optimal cost. The efforts on contamination protection and control are undergoing continual update because of the changes in the SSF configuration and in the contamination requirements, and observations from recent flight and laboratory test data are continuously being incorporated into the design.

  19. The Electric Power System of the International Space Station: A Platform for Power Technology Development

    NASA Technical Reports Server (NTRS)

    Gietl, Eric B.; Gholdston, Edward W.; Manners, Bruce A.; Delventhal, Rex A.

    2000-01-01

    The electrical power system developed for the International Space Station represents the largest space-based power system ever designed and, consequently, has driven some key technology aspects and operational challenges. The full U.S.-built system consists of a 160-Volt dc primary network, and a more tightly regulated 120-Volt dc secondary network. Additionally, the U.S. system interfaces with the 28-Volt system in the Russian segment. The international nature of the Station has resulted in modular converters, switchgear, outlet panels, and other components being built by different countries, with the associated interface challenges. This paper provides details of the architecture and unique hardware developed for the Space Station, and examines the opportunities it provides for further long-term space power technology development, such as concentrating solar arrays and flywheel energy storage systems.

  20. 75 FR 16521 - Virginia Electric and Power Company Surry Power Station, Unit Nos. 1 and 2; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-01

    ... COMMISSION Virginia Electric and Power Company Surry Power Station, Unit Nos. 1 and 2; Exemption 1.0 Background The Virginia Electric and Power Company, (the licensee) is the holder of Facility Operating License Nos. DPR-32 and DPR-37, which authorize operation of the Surry Power Station, Unit Nos. 1 and...

  1. Performance of International Space Station Alpha electric power systems

    SciTech Connect

    Hill, R.; Lu, C.Y.; Padhye, V.; Hajela, G.; Hague, L.

    1995-12-31

    The International Space Station Alpha (ISSA) will be an Earth-orbiting laboratory in space. It will house experimental payloads, distribute resource utilities, and support human habitation for conducting research and science experiments in a microgravity environment. Electrical power is a major utility to support successful achievement of the mission goal. The ISSA United States On-Orbit Segment (USOS) Electric Power System (EPS) power generation capability will vary with orbital parameters, natural and induced environment, and hardware aging/replacement throughout the ISSA life. Power capability will be further restricted by various assembly configurations during ISSA buildup, by various flight attitudes, by shadowing on the solar arrays, by EPS operational constraints, such as pointing accuracy, battery charging, as well as operating voltage setpoints, and by ISSA operational constraints either to avoid long-term solar array shadowing from the adjacent solar array or to accommodate ISSA maneuver during proximity operations with other space vehicles, mating, and departing. Design of the ISSA USOS EPS takes into consideration the various equipment degradation modes, operation constraints, and orbital conditions to make it compatible with the environments and to meet power, lifetime, and performance requirements.

  2. High-frequency ac power distribution in Space Station

    NASA Technical Reports Server (NTRS)

    Tsai, Fu-Sheng; Lee, Fred C. Y.

    1990-01-01

    A utility-type 20-kHz ac power distribution system for the Space Station, employing resonant power-conversion techniques, is presented. The system converts raw dc voltage from photovoltaic cells or three-phase LF ac voltage from a solar dynamic generator into a regulated 20-kHz ac voltage for distribution among various loads. The results of EASY5 computer simulations of the local and global performance show that the system has fast response and good transient behavior. The ac bus voltage is effectively regulated using the phase-control scheme, which is demonstrated with both line and load variations. The feasibility of paralleling the driver-module outputs is illustrated with the driver modules synchronized and sharing a common feedback loop. An HF sinusoidal ac voltage is generated in the three-phase ac input case, when the driver modules are phased 120 deg away from one another and their outputs are connected in series.

  3. NASA chooses hybrid power system for Space Station

    SciTech Connect

    Holt, D.J.

    1986-06-01

    The hybrid solar power system being developed for the Space Station is characterized. Major components of the 75-kW system required for the initial operational phase of the Station are 25-kW photovoltaic arrays (with Ni-H storage batteries for eclipse-phase power and some means of conversion to ac for distribution) and a 50-kW solar dynamic system comprising a reflecting concentrator, a thermal-energy storage unit, and a heat engine based either on an organic Rankine cycle (described by Holt, 1985) or on a closed Brayton cycle. The design and operating principle of a Brayton-cycle engine using an He-Xe mixture as the working fluid, gas-foil journal bearings, an LiF/MgF2 thermal-storage unit, and a 95-percent-effectiveness plate-fin-type recuperator are described and illustrated with drawings. This engine is designed to operate at 25,000-50,000 rpm with overall day/night cycle efficiency 27.6 percent for 95-min orbits, and to be restartable under zero-g conditions.

  4. System impacts of solar dynamic and growth power systems on space station

    NASA Technical Reports Server (NTRS)

    Farmer, J. T.; Cuddihy, W. F.; Lovelace, U. M.; Badi, D. M.

    1986-01-01

    Concepts for the 1990's space station envision an initial operational capability with electrical power output requirements of approximately 75 kW and growth power requirements in the range of 300 kW over a period of a few years. Photovoltaic and solar dynamic power generation techniques are contenders for supplying this power to the space station. A study was performed to identify growth power subsystem impacts on other space station subsystems. Subsystem interactions that might suggest early design changes for the space station were emphasized. Quantitative analyses of the effects of power subsystem mass and projected area on space station controllability and reboost requirements were conducted for a range of growth station configurations. Impacts on space station structural dynamics as a function of power subsystem growth were also considered.

  5. Space Station Freedom electric power system availability study

    NASA Technical Reports Server (NTRS)

    Turnquist, Scott R.

    1990-01-01

    The results are detailed of follow-on availability analyses performed on the Space Station Freedom electric power system (EPS). The scope includes analyses of several EPS design variations, these are: the 4-photovoltaic (PV) module baseline EPS design, a 6-PV module EPS design, and a 3-solar dynamic module EPS design which included a 10 kW PV module. The analyses performed included: determining the discrete power levels that the EPS will operate at upon various component failures and the availability of each of these operating states; ranking EPS components by the relative contribution each component type gives to the power availability of the EPS; determining the availability impacts of including structural and long-life EPS components in the availability models used in the analyses; determining optimum sparing strategies, for storing space EPS components on-orbit, to maintain high average-power-capability with low lift-mass requirements; and analyses to determine the sensitivity of EPS-availability to uncertainties in the component reliability and maintainability data used.

  6. Space Station module Power Management And Distribution (PMAD) system

    NASA Technical Reports Server (NTRS)

    Walls, Bryan

    1990-01-01

    This project consists of several tasks which are unified toward experimentally demonstrating the operation of a highly autonomous, user-supportive power management and distribution system for Space Station Freedom (SSF) habitation/laboratory modules. This goal will be extended to a demonstration of autonomous, cooperative power system operation for the whole SSF power system through a joint effort with NASA's Lewis Research Center, using their Autonomous Power System. Short term goals for the space station module power management and distribution include having an operational breadboard reflecting current plans for SSF, improving performance of the system communications, and improving the organization and mutability of the artificial intelligence (AI) systems. In the middle term, intermediate levels of autonomy will be added, user interfaces will be modified, and enhanced modeling capabilities will be integrated in the system. Long term goals involve conversion of all software into Ada, vigorous verification and validation efforts and, finally, seeing an impact of this research on the operation of SSF. Conversion of the system to a DC Star configuration is now in progress, and should be completed by the end of October, 1989. This configuration reflects the latest SSF module architecture. Hardware is now being procured which will improve system communications significantly. The Knowledge-Based Management System (KBMS) is initially developed and the rules from FRAMES have been implemented in the KBMS. Rules in the other two AI systems are also being grouped modularly, making them more tractable, and easier to eventually move into the KBMS. Adding an intermediate level of autonomy will require development of a planning utility, which will also be built using the KBMS. These changes will require having the user interface for the whole system available from one interface. An Enhanced Model will be developed, which will allow exercise of the system through the interface

  7. 78 FR 784 - Entergy Nuclear Operations, Inc.; Pilgrim Nuclear Power Station; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-04

    ... COMMISSION Entergy Nuclear Operations, Inc.; Pilgrim Nuclear Power Station; Exemption 1.0 Background Entergy..., which authorizes operation of the Pilgrim Nuclear Power Station (PNPS). The license provides, among... with the Vermont Yankee Nuclear Power Plant and Seabrook Nuclear Power Plant, on February 9, 2011...

  8. Enhancement of NRC station blackout requirements for nuclear power plants

    SciTech Connect

    McConnell, M. W.

    2012-07-01

    The U.S. Nuclear Regulatory Commission (NRC) established a Near-Term Task Force (NTTF) in response to Commission direction to conduct a systematic and methodical review of NRC processes and regulations to determine whether the agency should make additional improvements to its regulatory system and to make recommendations to the Commission for its policy direction, in light of the accident at the Fukushima Dai-ichi Nuclear Power Plant. The NTTF's review resulted in a set of recommendations that took a balanced approach to defense-in-depth as applied to low-likelihood, high-consequence events such as prolonged station blackout (SBO) resulting from severe natural phenomena. Part 50, Section 63, of Title 10 of the Code of Federal Regulations (CFR), 'Loss of All Alternating Current Power,' currently requires that each nuclear power plant must be able to cool the reactor core and maintain containment integrity for a specified duration of an SBO. The SBO duration and mitigation strategy for each nuclear power plant is site specific and is based on the robustness of the local transmission system and the transmission system operator's capability to restore offsite power to the nuclear power plant. With regard to SBO, the NTTF recommended that the NRC strengthen SBO mitigation capability at all operating and new reactors for design-basis and beyond-design-basis external events. The NTTF also recommended strengthening emergency preparedness for prolonged SBO and multi-unit events. These recommendations, taken together, are intended to clarify and strengthen US nuclear reactor safety regarding protection against and mitigation of the consequences of natural disasters and emergency preparedness during SBO. The focus of this paper is on the existing SBO requirements and NRC initiatives to strengthen SBO capability at all operating and new reactors to address prolonged SBO stemming from design-basis and beyond-design-basis external events. The NRC initiatives are intended to

  9. SOARCA Peach Bottom Atomic Power Station Long-Term Station Blackout Uncertainty Analysis: Knowledge Advancement.

    SciTech Connect

    Gauntt, Randall O.; Mattie, Patrick D.; Bixler, Nathan E.; Ross, Kyle; Cardoni, Jeffrey N; Kalinich, Donald A.; Osborn, Douglas M.; Sallaberry, Cedric Jean-Marie; Ghosh, S. Tina

    2014-02-01

    This paper describes the knowledge advancements from the uncertainty analysis for the State-of- the-Art Reactor Consequence Analyses (SOARCA) unmitigated long-term station blackout accident scenario at the Peach Bottom Atomic Power Station. This work assessed key MELCOR and MELCOR Accident Consequence Code System, Version 2 (MACCS2) modeling uncertainties in an integrated fashion to quantify the relative importance of each uncertain input on potential accident progression, radiological releases, and off-site consequences. This quantitative uncertainty analysis provides measures of the effects on consequences, of each of the selected uncertain parameters both individually and in interaction with other parameters. The results measure the model response (e.g., variance in the output) to uncertainty in the selected input. Investigation into the important uncertain parameters in turn yields insights into important phenomena for accident progression and off-site consequences. This uncertainty analysis confirmed the known importance of some parameters, such as failure rate of the Safety Relief Valve in accident progression modeling and the dry deposition velocity in off-site consequence modeling. The analysis also revealed some new insights, such as dependent effect of cesium chemical form for different accident progressions. (auth)

  10. Control/structure interaction methods for space station power systems

    NASA Technical Reports Server (NTRS)

    Blelloch, Paul

    1989-01-01

    The Structural Dynamics Research Corporation and the NASA Lewis Research Center have been working together to develop tools and methods for the analysis of control/structure interaction problems related to the space station power systems. Flexible modes of the solar arrays below 0.1 Hz, suggest that even for relatively slow control systems, the potential for control/structure interaction exists. The emphasis of the effort has been to develop tools which couple NASTRAN's powerful capabilities in structural dynamics with EASY5's powerful capabilities in control systems analysis. One product is an interface software package called CO-ST-IN for COntrol-STructure-INteraction. CO-ST-IN acts to translate data between NASTRAN and EASY5, facilitating the analysis of complex coupled problems. Interfaces to SDRC I-DEAS and MATRIXx are also offered. Beside transferring standard modal information, CO-ST-IN implements a number of advanced methods. These include a modal ordering algorithm that helps eliminate uncontrollable or unobservable modes from the analysis, an implementation of the more accurate mode acceleration algorithm for recovery of element forces and stresses directly in EASY5 and an implementation of fixed interface modes in NASTRAN, which reduces the error in the closed-loop model due to the use of truncated mode sets.

  11. (Shippingport Atomic Power Station). Quarterly operating report, first quarter 1982

    SciTech Connect

    Not Available

    1982-01-01

    At the beginning of the first quarter of 1982, the Shippingport Atomic Power Station remained shutdown for the planned 1981 to 1982 Winter Shutdown, initiated December 11, 1981. The station was in a cooldown condition at approximately 150/sup 0/F and 280 psig with a steam bubble maintained in the pressurizer and the reactor coolant pumps in slow speed. The reactor plant cooldown heat exchanger was in service to maintain coolant temperature. The 1A, 1B, 1C, and 1D reactor coolant loops and the 1AC and 18D purification loops remained in service. The 1A, 1B, and 1C 991 psig self-actuated steam relief valves remained gagged during the quarter to prevent leakage through the valve seats. The 1D steam relief valve was removed during the Spring 1980 Shutdown for repairs and a blind flange was installed in its place. Gagging and/or removing of redundant relief valves is permitted by ASME Code and approved operating procedures. During the first quarter of 1982, a total of 1028 cubic feet of radioactive solid waste was shipped out of state for burial. The shipments contained 0.032 curies of radioactivity.

  12. Rotary air preheaters on power-station boilers

    SciTech Connect

    Chew, P.E.

    1985-01-01

    Rotary air heaters on fossil-fuel power stations perform the important tasks of recovering low-grade heat from the combustion gases and preheating the air supplied for combustion. The paper describes main aspects of the operation and performance of Ljungstrom type heaters on coal-fired plant, covering the areas of thermal performance, pressure losses of the air and gas streams and leakage of air into the gas stream. The degradation of thermal performance due to fluid by-passing the heat exchange elements and flow maldistribution is discussed, and means of improving thermal performance are referred to. A major incidence of severe fouling is described, together with measures adopted to overcome the problem. Reference is made to a new method for off-load cleaning of air heaters. Engineering developments and theoretical approaches aimed at reducing air cross leakage are outlined.

  13. Installation for a nuclear power station with staggered swimming pools

    SciTech Connect

    Gigou, R.

    1982-12-28

    In an installation for a nuclear power station comprising a ''reactor building'' with a first swimming pool for handling of fuel units and a fuel building with a second swimming pool for the transfer, storage and deactivation of the units, the second swimming pool is located at a lower level than that of the first and is connected to the first by an intermediate auxiliary chamber filled with water and located under the first swimming pool. The auxiliary chamber is connected by a vertical pipeline to the first swimming pool and by a horizontal connecting pipeline to the second swimming pool. Each of the pipelines is provided with a shut-off valve, with interlocking means which prevents the simultaneous opening of the two valves. There is negligible dead space around a conveyor basket for fuel units when it is in the vertical or horizontal pipelines.

  14. Optical measurements pertaining to Space Station solar dynamic power systems

    NASA Technical Reports Server (NTRS)

    Holly, S.; Springer, T.; Jefferies, K. S.

    1987-01-01

    The Space Station solar dynamic power system is a hybrid of solar photovoltaic and solar dynamic systems, the latter of which uses a parabolic reflector to collect solar energy. This paper describes analytical results of an off-axis solar illumination on the intensity distribution in arbitrary target planes perpendicular to the axis of a parabolic reflector. Such computational capability would make it possible to predict optical intensity distributions resulting from off-axis angles of incident radiation on such target planes. To validate the computer code, experimental optical measurements were performed on the multifaceted paraboloidal collecor at the Solar Dynamic Test Facility at Rockedyne's Santa Susana Field Laboratory. The experimental data compared reasonably well with the calculated values.

  15. Feedwater heater life optimization at Peach Bottom Atomic Power Station

    SciTech Connect

    Thomas, D.S.; Catapano, M.C.

    1996-08-01

    This paper illustrates a complete inspection, testing, and maintenance program implemented at PECO Energy`s Peach Bottom Atomic Power Station (PBAPS). Concerns that tubes may have been too conservatively plugged due to insufficient data justified a program that included: removal of previously installed plugs; videoprobe inspection of failed areas; extraction of tube samples for further analysis; eddy current testing of selected tubes; evaluation of the condition of insurance plugged tubes for return to service; hydrostatic testing of selected tubes; final repair plan based on the results of the above program. This paper concludes that no single method of inspection or testing should be solely relied upon in establishing: the extent of actual degraded conditions; the source(s) of failure mechanisms; and the details of repair. It is a combination of all gathered data that affords the best chance in arresting problems and optimizing feedwater heater life.

  16. Containment venting analysis for the Peach Bottom Atomic Power Station

    SciTech Connect

    Hanson, D.J.; Blackman, H.S.; Nelson, W.R.; Wright, R.E.; Leonard, M.T.; DiSalvo, R.

    1986-12-01

    The extent to which containment venting is an effective means of preventing or mitigating the consequences of overpressurization during severe accidents was evaluated for the Peach Bottom Atomic Power Station Units 2 and 3 (boiling water reactors with Mark I containments). Detailed analyses were conducted on operator performance, equipment performance, and the physical phenomenology for three severe accident sequences currently identified as being important contributors to risk. The results indicate that containment venting can be effective in reducing risk for several classes of severe accidents but, based on procedures in draft form and equipment in place at the time of the analyses, has limited potential for further reducing the risk for severe accidents currently identified as being important contributors to the risk for Peach Bottom.

  17. Temporal variations in Global Seismic Stations ambient noise power levels

    USGS Publications Warehouse

    Ringler, A.T.; Gee, L.S.; Hutt, C.R.; McNamara, D.E.

    2010-01-01

    Recent concerns about time-dependent response changes in broadband seismometers have motivated the need for methods to monitor sensor health at Global Seismographic Network (GSN) stations. We present two new methods for monitoring temporal changes in data quality and instrument response transfer functions that are independent of Earth seismic velocity and attenuation models by comparing power levels against different baseline values. Our methods can resolve changes in both horizontal and vertical components in a broad range of periods (∼0.05 to 1,000 seconds) in near real time. In this report, we compare our methods with existing techniques and demonstrate how to resolve instrument response changes in long-period data (>100 seconds) as well as in the microseism bands (5 to 20 seconds).

  18. 76 FR 11680 - Digital Low Power Television, Television Translator, and Television Booster Stations and Digital...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-03

    ... From the Federal Register Online via the Government Publishing Office FEDERAL COMMUNICATIONS COMMISSION 47 CFR Parts 73 and 74 Digital Low Power Television, Television Translator, and Television Booster Stations and Digital Class A Television Stations AGENCY: Federal Communications Commission. ACTION:...

  19. [Medical and psychological aspects of safety measures maintenance among nuclear and power station personnel].

    PubMed

    Ipatov, P L; Sorokin, A V; Basov, V I

    2004-01-01

    The article deals with 15-year experience of medical and psychophysiologic service in Medical and Sanitary Establishment No. 156 and Balakovo nuclear power station on providing reliability of occupational activities for the station personnel.

  20. Power transmission cable development for the Space Station Freedom electrical power system

    NASA Technical Reports Server (NTRS)

    Schmitz, Gregory V.; Biess, John J.

    1989-01-01

    Power transmission cable is presently being evaluated under a NASA Lewis Research Center advanced development contract for application in the Space Station Freedom (SSF) electrical power system (EPS). Evaluation testing has been performed by TRW and NASA Lewis Research Center. The results of this development contract are presented. The primary cable design goals are to provide (1) a low characteristic inductance to minimize line voltage drop at 20 kHz, (2) electromagnetic compatibility control of the 20-kHz ac power current, (3) a physical configuration that minimizes ac resistance and (4) release of trapped air for corona-free operation.

  1. Power transmission cable development for the Space Station Freedom electrical power system

    NASA Technical Reports Server (NTRS)

    Schmitz, Gregory V.; Biess, John J.

    1989-01-01

    Power transmission cable is presently being evaluated under a NASA Lewis Research Center advanced development contract for application in the Space Station Freedom (SSF) electrical power system (EPS). Evaluation testing has been performed by TRW and NASA Lewis Research Center. The results of this development contract are presented. The primary cable design goals are to provide (1) a low characteristic inductance to minimize line voltage drop at 20 kHz, (2) electromagnetic compatibility control of the 20-kHz ac power current, (3) a physical configuration that minimizes ac resistance and (4) release of trapped air for corona-free operation.

  2. Power conditioning subsystems for photovoltaic central-station power plants - State-of-the-art and advanced technology

    NASA Technical Reports Server (NTRS)

    Bulawka, A.; Krauthamer, S.; Das, R.

    1986-01-01

    An overview is given of the technical and near-term cost requirements that must be met to develop economically viable power conditioning subsystems (PCS) for large-scale, central photovoltaic power stations. Various commercially available PCS hardware suitable for use in today's central photovoltaic power stations are also surveyed. Federal and industrial activities in the research and development of advanced PCSs that will contribute to the attainment of fully competitive, large-scale photovoltaic power stations are reviewed. The status of the DOE central station PCS program is discussed.

  3. The Satellite Nuclear Power Station - An option for future power generation.

    NASA Technical Reports Server (NTRS)

    Williams, J. R.; Clement, J. D.

    1973-01-01

    A new concept in nuclear power generation is being explored which essentially eliminates major objections to nuclear power. The Satellite Nuclear Power Station, remotely operated in synchronous orbit, would transmit power safely to the ground by a microwave beam. Fuel reprocessing would take place in space and no radioactive materials would ever be returned to earth. Even the worst possible accident to such a plant should have negligible effect on the earth. An exploratory study of a satellite nuclear power station to provide 10,000 MWe to the earth has shown that the system could weigh about 20 million pounds and cost less than $1000/KWe. An advanced breeder reactor operating with an MHD power cycle could achieve an efficiency of about 50% with a 1100 K radiator temperature. If a hydrogen moderated gas core reactor is used, its breeding ratio of 1.10 would result in a fuel doubling time of a few years. A rotating fluidized bed or NERVA type reactor might also be used. The efficiency of power transmission from synchronous orbit would range from 70% to 80%.

  4. The Satellite Nuclear Power Station - An option for future power generation.

    NASA Technical Reports Server (NTRS)

    Williams, J. R.; Clement, J. D.

    1973-01-01

    A new concept in nuclear power generation is being explored which essentially eliminates major objections to nuclear power. The Satellite Nuclear Power Station, remotely operated in synchronous orbit, would transmit power safely to the ground by a microwave beam. Fuel reprocessing would take place in space and no radioactive materials would ever be returned to earth. Even the worst possible accident to such a plant should have negligible effect on the earth. An exploratory study of a satellite nuclear power station to provide 10,000 MWe to the earth has shown that the system could weigh about 20 million pounds and cost less than $1000/KWe. An advanced breeder reactor operating with an MHD power cycle could achieve an efficiency of about 50% with a 1100 K radiator temperature. If a hydrogen moderated gas core reactor is used, its breeding ratio of 1.10 would result in a fuel doubling time of a few years. A rotating fluidized bed or NERVA type reactor might also be used. The efficiency of power transmission from synchronous orbit would range from 70% to 80%.

  5. Integrated Power and Attitude Control Systems for Space Station

    NASA Technical Reports Server (NTRS)

    Oglevie, R. E.; Eisenhaure, D. B.

    1985-01-01

    Integrated Power and Attitude Control Systems (IPACS) studies performed over a decade ago established the feasibility of simultaneously storing electrical energy in wheels and utilizing the resulting momentum for spacecraft attitude control. It was shown that such a system possessed many advantages over other contemporary energy storage and attitude control systems in many applications. More recent technology advances in composite rotors, magnetic bearings, and power control electronics have triggered new optimism regarding the feasibility and merits of such a system. The paper presents the results of a recent study whose focus was to define an advanced IPACS and to evaluate its merits for the Space Station application. A system and component design concept is developed to establish the system performance capability. A system level trade study, including life-cycle costing, is performed to define the merits of the system relative to two other candidate systems. It is concluded that an advanced IPACS concept is not only feasible, but offers substantial savings in mass, and life-cycle cost.

  6. Integrated Power and Attitude Control Systems for Space Station

    NASA Technical Reports Server (NTRS)

    Oglevie, R. E.; Eisenhaure, D. B.

    1985-01-01

    Integrated Power and Attitude Control Systems (IPACS) studies performed over a decade ago established the feasibility of simultaneously storing electrical energy in wheels and utilizing the resulting momentum for spacecraft attitude control. It was shown that such a system possessed many advantages over other contemporary energy storage and attitude control systems in many applications. More recent technology advances in composite rotors, magnetic bearings, and power control electronics have triggered new optimism regarding the feasibility and merits of such a system. The paper presents the results of a recent study whose focus was to define an advanced IPACS and to evaluate its merits for the Space Station application. A system and component design concept is developed to establish the system performance capability. A system level trade study, including life-cycle costing, is performed to define the merits of the system relative to two other candidate systems. It is concluded that an advanced IPACS concept is not only feasible, but offers substantial savings in mass, and life-cycle cost.

  7. International Space Station power module thermal control system hydraulic performance

    SciTech Connect

    Goldberg, V.

    1997-12-31

    The International Space Station (ISS) uses four photovoltaic power modules (PVMs) to provide electric power for the US On-Orbit Segment. The PVMs consist of photovoltaic arrays (PVAs), orbit replaceable units (ORUs), photovoltaic radiators (PVRs), and a thermal control system (TCS). The PVM TCS function is to maintain selected PVM components within their specified operating ranges. The TCS consists of the pump flow control subassembly (PFCS), piping system, including serpentine tubing for individual component heat exchangers, headers/manifolds, fluid disconnect couplings (FQDCs), and radiator (PVR). This paper describes the major design requirements for the TCS and the results of the system hydraulic performance predictions in regard to these requirements and system component sizing. The system performance assessments were conducted using the PVM TCS fluid network hydraulic model developed for predicting system/component pressure losses and flow distribution. Hardy-Cross method of iteration was used to model the fluid network configuration. Assessments of the system hydraulic performance were conducted based on an evaluation of uncertainties associated with the manufacturing and design tolerances. Based on results of the analysis, it was concluded that all design requirements regarding system performance could be met. The hydraulic performance range, enveloping possible system operating parameter variations was determined.

  8. 47 CFR 74.710 - Digital low power TV and TV translator station protection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Digital low power TV and TV translator station protection. 74.710 Section 74.710 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST... SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.710 Digital low power TV and...

  9. 47 CFR 74.792 - Digital low power TV and TV translator station protected contour.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Digital low power TV and TV translator station protected contour. 74.792 Section 74.792 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED... SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.792 Digital low power TV and...

  10. 75 FR 76498 - Firstenergy Nuclear Operating Company, Davis-Besse Nuclear Power Station; Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-08

    ... COMMISSION Firstenergy Nuclear Operating Company, Davis-Besse Nuclear Power Station; Environmental Assessment... Company (FENOC, the licensee), for operation of the Davis-Besse Nuclear Power Station, Unit 1 (DBNPS... nuclear power reactors provide adequate margins of safety during any condition of normal...

  11. 47 CFR 74.780 - Broadcast regulations applicable to translators, low power, and booster stations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... PROGRAM DISTRIBUTIONAL SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.780 Broadcast... TV translator, low power TV, and TV booster stations: Section 73.653—Operation of TV aural and visual... non-network program arrangements. Part 73, Subpart G—Emergency Broadcast System (for low power TV...

  12. 47 CFR 74.780 - Broadcast regulations applicable to translators, low power, and booster stations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... PROGRAM DISTRIBUTIONAL SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.780 Broadcast... TV translator, low power TV, and TV booster stations: Section 73.653—Operation of TV aural and visual... non-network program arrangements. Part 73, Subpart G—Emergency Broadcast System (for low power TV...

  13. 47 CFR 74.780 - Broadcast regulations applicable to translators, low power, and booster stations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... PROGRAM DISTRIBUTIONAL SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.780 Broadcast... TV translator, low power TV, and TV booster stations: Section 73.653—Operation of TV aural and visual... non-network program arrangements. Part 73, Subpart G—Emergency Broadcast System (for low power TV...

  14. 76 FR 41532 - Yankee Atomic Electric Company, Yankee Nuclear Power Station (Yankee-Rowe); Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-14

    ... COMMISSION Yankee Atomic Electric Company, Yankee Nuclear Power Station (Yankee-Rowe); Notice of... indirect transfer of the Facility Operating License No. DPR-3 for the Yankee Nuclear Power Station (Yankee... Officer Powers, and General Hearing Management for NRC Adjudicatory Hearings,'' of 10 CFR part 2....

  15. 76 FR 39134 - ZIONSOLUTIONS, LLC; Zion Nuclear Power Station, Units 1 and 2 Exemption From Recordkeeping...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-05

    ... COMMISSION ZIONSOLUTIONS, LLC; Zion Nuclear Power Station, Units 1 and 2 Exemption From Recordkeeping Requirements 1.0 Background Zion Nuclear Power Station (ZNPS or Zion), Unit 1, is a Westinghouse 3250 MWt... licensing basis requirements previously applicable to the nuclear power units and associated systems...

  16. 75 FR 14208 - Entergy Nuclear Operations, Inc.; Pilgrim Nuclear Power Station; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-24

    ... COMMISSION Entergy Nuclear Operations, Inc.; Pilgrim Nuclear Power Station; Exemption 1.0 Background Entergy..., which authorizes operation of the Pilgrim Nuclear Power Station (Pilgrim). The license provides, among..., ``Requirements for physical protection of licensed activities in nuclear power reactors against radiological...

  17. 75 FR 14209 - Entergy Nuclear Operations, Inc.; Vermont Yankee Nuclear Power Station; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-24

    ... COMMISSION Entergy Nuclear Operations, Inc.; Vermont Yankee Nuclear Power Station; Exemption 1.0 Background.... DPR-28, which authorizes operation of the Vermont Yankee Nuclear Power Station (VY). The license....55, ``Requirements for physical protection of licensed activities in nuclear power reactors against...

  18. Comparison and evaluation of power plant options for geosynchronous power stations. Part 1: Synchronous solar power

    NASA Technical Reports Server (NTRS)

    Williams, J. R.

    1973-01-01

    The present state-of-the-art is described for the development of solar power generators in far out synchronous orbit for power generation. Concepts of geosynchronous solar power satellites are discussed including photovoltaic arrays for power satellites, solar-thermal power satellites, and power transmission to earth.

  19. Gas-turbine expander power generating systems for internal needs of compressor stations of gas-main pipelines

    NASA Astrophysics Data System (ADS)

    Shimanov, A. A.; Biryuk, V. V.; Sheludko, L. P.; Shabanov, K. Yu.

    2017-08-01

    In the framework of this paper, there have been analyzed power station building methods to construct a power station for utilities for gas-main pipelines compressor stations. The application efficiency of turbo expanders in them to expand the power gas of compressor stations' gas compressor units has been shown. New schemes for gas-turbine expander power generating systems have been proposed.

  20. DC-DC power converter research for Orbiter/Station power exchange

    NASA Technical Reports Server (NTRS)

    Ehsani, M.

    1993-01-01

    This project was to produce innovative DC-DC power converter concepts which are appropriate for the power exchange between the Orbiter and the Space Station Freedom (SSF). The new converters must interface three regulated power buses on SSF, which are at different voltages, with three fuel cell power buses on the Orbiter which can be at different voltages and should be tracked independently. Power exchange is to be bi-directional between the SSF and the Orbiter. The new converters must satisfy the above operational requirements with better weight, volume, efficiency, and reliability than is available from the present conventional technology. Two families of zero current DC-DC converters were developed and successfully adapted to this application. Most of the converters developed are new and are presented.

  1. Space Station Freedom electric power system photovoltaic power module integrated launch package

    NASA Technical Reports Server (NTRS)

    Nathanson, Theodore H.; Clemens, Donald D.; Spatz, Raymond R.; Kirch, Luke A.

    1990-01-01

    The launch of the Space Station Freedom solar power module requires a weight efficient structure that will include large components within the limited load capacity of the Space Shuttle cargo bay. The design iterations to meet these requirements have evolved from a proposal concept featuring a separate cradle and integrated equipment assembly (IEA), to a package that interfaces directly with the Shuttle. Size, weight, and cost have been reduced as a result.

  2. Space Station Freedom electric power system photovoltaic power module integrated launch package

    NASA Technical Reports Server (NTRS)

    Nathanson, Theodore H.; Clemens, Donald D.; Spatz, Raymond R.; Kirch, Luke A.

    1990-01-01

    The launch of the Space Station Freedom solar power module requires a weight efficient structure that will include large components within the limited load capacity of the Space Shuttle cargo bay. The design iterations to meet these requirements have evolved from a proposal concept featuring a separate cradle and integrated equipment assembly (IEA), to a package that interfaces directly with the Shuttle. Size, weight, and cost have been reduced as a result.

  3. Measurements and Modelling of Base Station Power Consumption under Real Traffic Loads †

    PubMed Central

    Lorincz, Josip; Garma, Tonko; Petrovic, Goran

    2012-01-01

    Base stations represent the main contributor to the energy consumption of a mobile cellular network. Since traffic load in mobile networks significantly varies during a working or weekend day, it is important to quantify the influence of these variations on the base station power consumption. Therefore, this paper investigates changes in the instantaneous power consumption of GSM (Global System for Mobile Communications) and UMTS (Universal Mobile Telecommunications System) base stations according to their respective traffic load. The real data in terms of the power consumption and traffic load have been obtained from continuous measurements performed on a fully operated base station site. Measurements show the existence of a direct relationship between base station traffic load and power consumption. According to this relationship, we develop a linear power consumption model for base stations of both technologies. This paper also gives an overview of the most important concepts which are being proposed to make cellular networks more energy-efficient. PMID:22666026

  4. Measurements and modelling of base station power consumption under real traffic loads.

    PubMed

    Lorincz, Josip; Garma, Tonko; Petrovic, Goran

    2012-01-01

    Base stations represent the main contributor to the energy consumption of a mobile cellular network. Since traffic load in mobile networks significantly varies during a working or weekend day, it is important to quantify the influence of these variations on the base station power consumption. Therefore, this paper investigates changes in the instantaneous power consumption of GSM (Global System for Mobile Communications) and UMTS (Universal Mobile Telecommunications System) base stations according to their respective traffic load. The real data in terms of the power consumption and traffic load have been obtained from continuous measurements performed on a fully operated base station site. Measurements show the existence of a direct relationship between base station traffic load and power consumption. According to this relationship, we develop a linear power consumption model for base stations of both technologies. This paper also gives an overview of the most important concepts which are being proposed to make cellular networks more energy-efficient.

  5. Launch packaging options for the PV power module cargo element. [for space station power supplies

    NASA Technical Reports Server (NTRS)

    Hoberecht, Mark A.; Vogt, Scott T.

    1989-01-01

    NASA recently embarked on the Space Station Freedom program, which will utilize the Shuttle Orbiter for transportation to orbit. Each flight is unique in terms of the hardware that is manifested and the method by which it is integrated to form viable cargo elements. Various constraints determine the packaging options for the three PV power module combined assemblies. Several packaging options for the PV power module cargo element are presented. These options are discussed in terms of their impact on the overall flight hardware manifest as determined by the various constraints.

  6. 75 FR 8153 - Nebraska Public Power District; Cooper Nuclear Station Environmental Assessment and Finding of No...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-23

    ... COMMISSION Nebraska Public Power District; Cooper Nuclear Station Environmental Assessment and Finding of No... District (NPPD, the licensee), for operation of the Cooper Nuclear Station (CNS), located in Nemaha County... Statement for the Cooper Nuclear Station dated February 1973. Agencies and Persons Consulted In...

  7. Feasibility Study of a Satellite Solar Power Station

    NASA Technical Reports Server (NTRS)

    Glaser, P. E.; Maynard, O. E.; Mackovciak, J. J. R.; Ralph, E. I.

    1974-01-01

    A feasibility study of a satellite solar power station (SSPS) was conducted to: (1) explore how an SSPS could be flown and controlled in orbit; (2) determine the techniques needed to avoid radio frequency interference (RFI); and (3) determine the key environmental, technological, and economic issues involved. Structural and dynamic analyses of the SSPS structure were performed, and deflections and internal member loads were determined. Desirable material characteristics were assessed and technology developments identified. Flight control performance of the SSPS baseline design was evaluated and parametric sizing studies were performed. The study of RFI avoidance techniques covered (1) optimization of the microwave transmission system; (2) device design and expected RFI; and (3) SSPS RFI effects. The identification of key issues involved (1) microwave generation, transmissions, and rectification and solar energy conversion; (2) environmental-ecological impact and biological effects; and (3) economic issues, i.e., costs and benefits associated with the SSPS. The feasibility of the SSPS based on the parameters of the study was established.

  8. The Fukushima Nuclear Power Station incident and marine pollution.

    PubMed

    Chang, Yen-Chiang; Zhao, Yue

    2012-05-01

    Based on the facts relating to the radioactive wastewater discharged by the Fukushima Nuclear Power Station in Japan, this paper intends to explore the international legal obligations for Japan from three perspectives, namely, the immediate notification, the prevention of transboundary harm and the prevention of dumping. Furthermore, this article defines and compares two types of international legal liabilities, the traditional state responsibility and the responsibility for transboundary harm. Through comparison, the international legal liability of Japan is discussed. After detailed analysis, the conclusion is that Japan should be responsible for the obligation of immediate notification and since Japan unilaterally discharge the wastes without prior specific permits of other contracting countries, it should also be responsible for the violation of prevention of dumping. Since so far, no material injury has emerged and there would appear to be no culpability as regards the prevention of transboundary harm. Finally, this paper stresses the necessity to develop a worldwide agreement concerning the liability for transboundary harm and to establish an institutional framework for the enforcement of a state's obligations, and also the great significance of international cooperation between nations and organisations in relation to marine environmental protection. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Climatographic analysis of the Zion Nuclear Power Station site

    SciTech Connect

    Miller, C.W.; Whitcomb, R.C. ); Lyons, W.A.; Venne, M.G.; Keen, C.S.

    1989-01-01

    The computerized emergency response dose assessment codes (ERDACs) used in the nuclear industry commonly rely on Gaussian plume dispersion techniques. In coastal zones, particularly within 15 km of the shoreline, complex four-dimensional mesoscale meteorological regimes often violate some of the basic assumptions of Gaussian dispersion. For example a land breeze will initially advect materials offshore into unpopulated areas. Such effluents may pool over water only to return to land in the next morning's onshore flow, but in locations and concentrations unknown and undeterminable from on-site data and standard Gaussian modeling techniques. Improving the performance of ERDACs for a given coastal site requires a climatographic inventory of that site and its surroundings. This involves identifying the coastal mesoscale regimes (CMRs) that affect the site, including their annual frequencies of occurrence and the meteorological conditions that characterize them. Such a climatographic analysis has been performed for the Zion nuclear power station (NPS), which is located just north of Chicago, Illinois, on the western shore of southern Lake Michigan. The purpose of this papers is to summarize the results of this study and its implications for radiological emergency response activities. A conceptual framework for allocating resources in developing an adequate emergency response system includes three major factors: (1) frequency of the mesoscale regimes; (2) extent to which the regime can result in high concentrations/doses; (3) ease with which it can be modeled, with due consideration given for input data requirements.

  10. Climatographic analysis of the Zion nuclear power station site

    SciTech Connect

    Lyons, W.A.; Venne, M.G.; Keen, C.S.; Miller, C.W.; Whitcomb, R.C.

    1989-01-01

    The computerized emergency response dose assessment codes (ERDACs) used in the nuclear industry commonly rely on Gaussian plume dispersion techniques. In coastal zones, particularly within 15 km of the shoreline, complex four-dimensional mesoscale meteorological regimes often violate some of the basic assumptions of Gaussian dispersion. For example, a land breeze will initially advect materials offshore into unpopulated areas. Such effluents may pool over water only to return to land in the next morning's onshore flow, but in locations and concentrations unknown and undeterminable from on-site data and standard Gaussian modeling techniques. Improving the performance of ERDACs for a given coastal site requires a climatographic inventory of that site and its surroundings. This involves identifying the coastal mesoscale regimes (CMRs) that affect the site, including their annual frequencies of occurrence and the meteorological conditions that characterize them. Such a climatographic analysis has been performed for the Zion nuclear power station (NPS), which is located just north of Chicago, Illinois, on the western shore of southern Lake Michigan. The purpose of this paper is to summarize the results of this study and its implications for radiological emergency response activities.

  11. Adaptive Modeling of the International Space Station Electrical Power System

    NASA Technical Reports Server (NTRS)

    Thomas, Justin Ray

    2007-01-01

    Software simulations provide NASA engineers the ability to experiment with spacecraft systems in a computer-imitated environment. Engineers currently develop software models that encapsulate spacecraft system behavior. These models can be inaccurate due to invalid assumptions, erroneous operation, or system evolution. Increasing accuracy requires manual calibration and domain-specific knowledge. This thesis presents a method for automatically learning system models without any assumptions regarding system behavior. Data stream mining techniques are applied to learn models for critical portions of the International Space Station (ISS) Electrical Power System (EPS). We also explore a knowledge fusion approach that uses traditional engineered EPS models to supplement the learned models. We observed that these engineered EPS models provide useful background knowledge to reduce predictive error spikes when confronted with making predictions in situations that are quite different from the training scenarios used when learning the model. Evaluations using ISS sensor data and existing EPS models demonstrate the success of the adaptive approach. Our experimental results show that adaptive modeling provides reductions in model error anywhere from 80% to 96% over these existing models. Final discussions include impending use of adaptive modeling technology for ISS mission operations and the need for adaptive modeling in future NASA lunar and Martian exploration.

  12. Power system monitoring and source control of the Space Station Freedom dc-power system testbed

    NASA Technical Reports Server (NTRS)

    Kimnach, Greg L.; Baez, Anastacio N.

    1992-01-01

    Unlike a terrestrial electric utility which can purchase power from a neighboring utility, the Space Station Freedom (SSF) has strictly limited energy resources; as a result, source control, system monitoring, system protection, and load management are essential to the safe and efficient operation of the SSF Electric Power System (EPS). These functions are being evaluated in the dc Power Management and Distribution (PMAD) Testbed which NASA LeRC has developed at the Power System Facility (PSF) located in Cleveland, Ohio. The testbed is an ideal platform to develop, integrate, and verify power system monitoring and control algorithms. State Estimation (SE) is a monitoring tool used extensively in terrestrial electric utilities to ensure safe power system operation. It uses redundant system information to calculate the actual state of the EPS, to isolate faulty sensors, to determine source operating points, to verify faults detected by subsidiary controllers, and to identify high impedance faults. Source control and monitoring safeguard the power generation and storage subsystems and ensure that the power system operates within safe limits while satisfying user demands with minimal interruptions. System monitoring functions, in coordination with hardware implemented schemes, provide for a complete fault protection system. The objective of this paper is to overview the development and integration of the state estimator and the source control algorithms.

  13. Power system monitoring and source control of the Space Station Freedom DC power system testbed

    NASA Technical Reports Server (NTRS)

    Kimnach, Greg L.; Baez, Anastacio N.

    1992-01-01

    Unlike a terrestrial electric utility which can purchase power from a neighboring utility, the Space Station Freedom (SSF) has strictly limited energy resources; as a result, source control, system monitoring, system protection, and load management are essential to the safe and efficient operation of the SSF Electric Power System (EPS). These functions are being evaluated in the DC Power Management and Distribution (PMAD) Testbed which NASA LeRC has developed at the Power System Facility (PSF) located in Cleveland, Ohio. The testbed is an ideal platform to develop, integrate, and verify power system monitoring and control algorithms. State Estimation (SE) is a monitoring tool used extensively in terrestrial electric utilities to ensure safe power system operation. It uses redundant system information to calculate the actual state of the EPS, to isolate faulty sensors, to determine source operating points, to verify faults detected by subsidiary controllers, and to identify high impedance faults. Source control and monitoring safeguard the power generation and storage subsystems and ensure that the power system operates within safe limits while satisfying user demands with minimal interruptions. System monitoring functions, in coordination with hardware implemented schemes, provide for a complete fault protection system. The objective of this paper is to overview the development and integration of the state estimator and the source control algorithms.

  14. Power system monitoring and source control of the Space Station Freedom dc-power system testbed

    NASA Technical Reports Server (NTRS)

    Kimnach, Greg L.; Baez, Anastacio N.

    1992-01-01

    Unlike a terrestrial electric utility which can purchase power from a neighboring utility, the Space Station Freedom (SSF) has strictly limited energy resources; as a result, source control, system monitoring, system protection, and load management are essential to the safe and efficient operation of the SSF Electric Power System (EPS). These functions are being evaluated in the dc Power Management and Distribution (PMAD) Testbed which NASA LeRC has developed at the Power System Facility (PSF) located in Cleveland, Ohio. The testbed is an ideal platform to develop, integrate, and verify power system monitoring and control algorithms. State Estimation (SE) is a monitoring tool used extensively in terrestrial electric utilities to ensure safe power system operation. It uses redundant system information to calculate the actual state of the EPS, to isolate faulty sensors, to determine source operating points, to verify faults detected by subsidiary controllers, and to identify high impedance faults. Source control and monitoring safeguard the power generation and storage subsystems and ensure that the power system operates within safe limits while satisfying user demands with minimal interruptions. System monitoring functions, in coordination with hardware implemented schemes, provide for a complete fault protection system. The objective of this paper is to overview the development and integration of the state estimator and the source control algorithms.

  15. Solar array pointing control for the International Space Station electrical power subsystem to optimize power delivery

    SciTech Connect

    Hill, R.C.

    1998-07-01

    Precise orientation control of the International Space Station (ISS) Electrical Power System (EPS) photovoltaic (PV) solar arrays is required for a number of reasons, including the optimization of power delivery to ISS system loads and payloads. To maximize power generation and delivery in general, the PV arrays are pointed directly at the sun with some allowance for inaccuracies in determination of where to point and in the actuation of pointing the PV arrays. Control of PV array orientation in this sun pointing mode is performed automatically by onboard hardware and software. During certain conditions, maximum power cannot be generated in automatic sun tracking mode due to shadowing of the PV arrays cast by other ISS structures, primarily adjacent PV arrays. In order to maximize the power generated, the PV arrays must be pointed away from the ideal sun pointing targets to reduce the amount of shadowing. The amount of off-pointing to maximize power is a function of many parameters such as the physical configuration of the ISS structures during the assembly timeframe, the solar beta angle and vehicle attitude. Thus the off-pointing cannot be controlled automatically and must be determined by ground operators. This paper presents an overview of ISS PV array orientation control, PV array power performance under shadowed and off-pointing conditions, and a methodology to maximize power under those same conditions.

  16. 75 FR 9618 - Virginia Electric and Power Company Surry Power Station, Unit Nos. 1 and 2 Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-03

    ... COMMISSION Virginia Electric and Power Company Surry Power Station, Unit Nos. 1 and 2 Environmental...-37, issued to Virginia Electric and Power Company (the licensee), for operation of the Surry Power... involve any physical changes to the reactor, fuel, plant structures, support structures, water, or land at...

  17. First results from operation of the Adler thermal power station equipped with two PGU-180 combined-cycle power units

    NASA Astrophysics Data System (ADS)

    Radin, Yu. A.; Lenev, S. N.; Nikandrov, O. N.; Rudenko, D. V.

    2013-09-01

    We present technical characteristics of the equipment used in the PGU-180 power units of the Adler thermal power station (a branch of OGK-2) commissioned in November 2012 after the entire power plant had successfully passed an integrated test, including qualification of the entire power plant's capacity and tests aimed at determining the guaranteed characteristics.

  18. 77 FR 35080 - Entergy Nuclear Operations, Inc., Pilgrim Nuclear Power Station; Record of Decision and Issuance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-12

    ... fossil fuel generation, renewable energy sources, demand-side measures such as energy conservation, and... COMMISSION Entergy Nuclear Operations, Inc., Pilgrim Nuclear Power Station; Record of Decision and Issuance... Operations Inc. (the licensee), the operator of the Pilgrim Nuclear Power Station (PNPS). Renewed...

  19. Using plasma-fuel systems at Eurasian coal-fired thermal power stations

    NASA Astrophysics Data System (ADS)

    Karpenko, E. I.; Karpenko, Yu. E.; Messerle, V. E.; Ustimenko, A. B.

    2009-06-01

    The development of plasma technology for igniting solid fuels at coal-fired thermal power stations in Russia, Kazakhstan, China, and other Eurasian countries is briefly reviewed. Basic layouts and technical and economic characteristics of plasma-fuel systems installed in different coal-fired boiles are considered together with some results from using these systems at coal-fired thermal power stations.

  20. 78 FR 45984 - Yankee Atomic Electric Company, Yankee Nuclear Power Station

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-30

    ... COMMISSION Yankee Atomic Electric Company, Yankee Nuclear Power Station AGENCY: Nuclear Regulatory Commission... Atomic Electric Company (YAEC) is the holder of Possession-Only License DPR-3 for the Yankee Nuclear Power Station (YNPS) facility. The license, issued pursuant to the Atomic Energy Act of 1954, as amended...

  1. 47 CFR 74.780 - Broadcast regulations applicable to translators, low power, and booster stations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... PROGRAM DISTRIBUTIONAL SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.780 Broadcast... TV translator, low power TV, and TV booster stations: Part 5—Experimental authorizations. Section 73.653—Operation of TV aural and visual transmitters. Section 73.658—Affiliation agreements and network...

  2. 47 CFR 74.780 - Broadcast regulations applicable to translators, low power, and booster stations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... PROGRAM DISTRIBUTIONAL SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.780 Broadcast... TV translator, low power TV, and TV booster stations: Part 5—Experimental authorizations. Section 73.653—Operation of TV aural and visual transmitters. Section 73.658—Affiliation agreements and network...

  3. The hydraulic design of pump turbine for Xianyou pumped storage power station

    NASA Astrophysics Data System (ADS)

    Zheng, J. S.; Liu, W. C.; Fu, Z. Y.; Shi, Q. H.

    2012-11-01

    This paper presents the hydraulic design of pump turbines for Xianyou pumped storage power station. The method of improving the hydraulic performance of pump turbine with CFD analysis is given. The results of model test indicate that the final hydraulic design of pump turbine for Xianyou pumped storage power station is of high efficiencies, good

  4. 76 FR 12140 - Clinton Power Station Notice of Withdrawal of Application for Amendment to Facility Operating...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-04

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Clinton Power Station Notice of Withdrawal of Application for Amendment to Facility Operating... Operating License No. NPF-62 for the Clinton Power Station, Unit 1, located in DeWitt County, Illinois....

  5. 77 FR 47680 - Entergy Nuclear Operations, Inc.; Pilgrim Nuclear Power Station Receipt of Request for Action

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-09

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Entergy Nuclear Operations, Inc.; Pilgrim Nuclear Power Station Receipt of Request for Action... (NRC or the Commission) take action with regard to the Pilgrim Nuclear Power Station (Pilgrim). The...

  6. 76 FR 44376 - Vermont Yankee Nuclear Power Station; Notice of Withdrawal of Application for Amendment to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-25

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Vermont Yankee Nuclear Power Station; Notice of Withdrawal of Application for Amendment to... request of Vermont Yankee Nuclear Power Station (the licensee) to withdraw its August 19, 2010...

  7. International lunar observatory / power station: from Hawaii to the Moon

    NASA Astrophysics Data System (ADS)

    Durst, S.

    Astronomy's great advantages from the Moon are well known - stable surface, diffuse atmosphere, long cool nights (14 days), low gravity, far side radio frequency silence. A large variety of astronomical instruments and observations are possible - radio, optical and infrared telescopes and interferometers; interferometry for ultra- violet to sub -millimeter wavelengths and for very long baselines, including Earth- Moon VLBI; X-ray, gamma-ray, cosmic ray and neutrino detection; very low frequency radio observation; and more. Unparalleled advantages of lunar observatories for SETI, as well as for local surveillance, Earth observation, and detection of Earth approaching objects add significant utility to lunar astronomy's superlatives. At least nine major conferences in the USA since 1984 and many elsewhere, as well as ILEWG, IAF, IAA, LEDA and other organizations' astronomy-from-the-Moon research indicate a lunar observatory / power station, robotic at first, will be one of the first mission elements for a permanent lunar base. An international lunar observatory will be a transcending enterprise, highly principled, indispensable, soundly and broadly based, and far- seeing. Via Astra - From Hawaii to the Moon: The astronomy and scie nce communities, national space agencies and aerospace consortia, commercial travel and tourist enterprises and those aspiring to advance humanity's best qualities, such as Aloha, will recognize Hawaii in the 21st century as a new major support area and pan- Pacific port of embarkation to space, the Moon and beyond. Astronomical conditions and facilities on Hawaii's Mauna Kea provide experience for construction and operation of observatories on the Moon. Remote and centrally isolated, with diffuse atmosphere, sub-zero temperature and limited working mobility, the Mauna Kea complex atop the 4,206 meter summit of the largest mountain on the planet hosts the greatest collection of large astronomical telescopes on Earth. Lunar, extraterrestrial

  8. Autonomous power expert fault diagnostic system for Space Station Freedom electrical power system testbed

    NASA Technical Reports Server (NTRS)

    Truong, Long V.; Walters, Jerry L.; Roth, Mary Ellen; Quinn, Todd M.; Krawczonek, Walter M.

    1990-01-01

    The goal of the Autonomous Power System (APS) program is to develop and apply intelligent problem solving and control to the Space Station Freedom Electrical Power System (SSF/EPS) testbed being developed and demonstrated at NASA Lewis Research Center. The objectives of the program are to establish artificial intelligence technology paths, to craft knowledge-based tools with advanced human-operator interfaces for power systems, and to interface and integrate knowledge-based systems with conventional controllers. The Autonomous Power EXpert (APEX) portion of the APS program will integrate a knowledge-based fault diagnostic system and a power resource planner-scheduler. Then APEX will interface on-line with the SSF/EPS testbed and its Power Management Controller (PMC). The key tasks include establishing knowledge bases for system diagnostics, fault detection and isolation analysis, on-line information accessing through PMC, enhanced data management, and multiple-level, object-oriented operator displays. The first prototype of the diagnostic expert system for fault detection and isolation has been developed. The knowledge bases and the rule-based model that were developed for the Power Distribution Control Unit subsystem of the SSF/EPS testbed are described. A corresponding troubleshooting technique is also described.

  9. The Environment Friendly Power Source for Power Supply of Mobile Communication Base Stations

    NASA Astrophysics Data System (ADS)

    Rudenko, N. V.; Ershov, V. V.; Evstafiev, V. V.

    2017-05-01

    The article describes the technical proposals to improve environmental and resource characteristics of the autonomous power supply systems of mobile communication base stations based on renewable energy sources, while ensuring the required reliability and security of power supply. These include: the replacement of diesel-generator with clean energy source - an electrochemical generator based on hydrogen fuel cells; the use of wind turbines with a vertical axis; use of specialized batteries. Based on the analysis of the know technical solutions, the structural circuit diagram of the hybrid solar-wind-hydrogen power plant and the basic principles of the algorithm of its work were proposed. The implementation of these proposals will improve the environmental and resource characteristics.

  10. Feedwater heater life optimization at Peach Bottom Atomic Power Station

    SciTech Connect

    Catapano, M.C.; Thomas, D.S.

    1995-12-01

    Many papers published over the last 15 years have strongly emphasized the need for an ongoing program of inspection and testing with subsequent failure cause analysis of feedwater heaters. With deregulation of the electric utility industry in various phases of implementation, utilities must decrease costs, both O&M and capital, while optimizing plant efficiency. In order to accomplish this coal, utility engineers must monitor feedwater heater performance in order to recognize degradation, correct/eliminate failure mechanisms, and prevent in-service failures while optimizing availability. Periodic tube plugging without complete analysis of the degraded/failed area resolves the immediate need for return for service, however, heater life will not be graded/failed area resolves optimized. This paper illustrates a complete inspection, testing, and maintenance program implemented at PECO Energy`s Peach Bottom Atomic Power Station (PBAPS). Concerns that tubes may have been too conservatively plugged due to insufficient data justified a program that included: (1) Removal of previously installed plugs. (2) Videoprobe inspection of failed areas. (3) Extraction of tube samples for further analysis. (4) Eddy current testing of selected tubes. (5) Evaluation of the condition of {open_quotes}insurance{close_quotes} plugged tubes for return to service. (6) Hydrostatic testing of selected tubes. (7) Final repair plan based on the results of the above program. This paper concludes that no single method of inspection or testing should solely be relied upon in establishing: (1) The extent of actual degraded conditions, (2) The source(s) of failure mechanisms, (3) The details of repair. It is a combination of all gathered data that affords the best chance in arresting problems and optimizing feedwater heater life.

  11. Photocatalytic degradation of pollutants from Elcogas IGCC power station effluents.

    PubMed

    Durán, A; Monteagudo, J M; San Martín, I; García-Peña, F; Coca, P

    2007-06-01

    The aim of this work is to improve the quality of water effluents coming from Elcogas IGCC power station (Puertollano, Spain) with the purpose of fulfilling future more demanding normative, using heterogeneous photocatalytic oxidation processes (UV/H(2)O(2)/TiO(2) or ZnO). The efficiency of photocatalytic degradation for the different catalysts (TiO(2) and ZnO) was determined from the analysis of the following parameters: cyanides, formates and ammonia content. In a first stage, the influence of two parameters (initial concentration of H(2)O(2) and amount of catalyst) on the degradation kinetics of cyanides and formates was studied based on a factorial experimental design. pH was always kept in a value >9.5 to avoid gaseous HCN formation. The degradation of cyanides and formates was found to follow pseudo-first order kinetics. Experimental kinetic constants were fitted using neural networks (NNs). The mathematical model reproduces experimental data within 90% of confidence and allows the simulation of the process for any value of parameters in the experimental range studied. Moreover, a measure of the saliency of the input variables was made based upon the connection weights of the neural networks, allowing the analysis of the relative relevance of each variable with respect to the others. Results showed that the photocatalytic process was effective, being the degradation rate of cyanides about five times higher when compared to removal of formates. Finally, the effect of lowering pH on the degradation of formates was evaluated after complete cyanides destruction was reached (10 min of reaction). Under the optimum conditions (pH 5.2, [H(2)O(2)]=40 g/l; [TiO(2)]=2g/l), 100% of cyanides and 92% of initial NH(3) concentration are degraded after 10 min, whereas 35 min are needed to degrade 98% of formates.

  12. Station Keeping of Small Outboard-Powered Boats

    NASA Technical Reports Server (NTRS)

    Fisher, A. D.; VanZwieten, J. H., Jr.; VanZwieten, T. S.

    2010-01-01

    Three station keeping controllers have been developed which work to minimize displacement of a small outboard-powered vessel from a desired location. Each of these three controllers has a common initial layer that uses fixed-gain feedback control to calculate the desired heading of the vessel. A second control layer uses a common fixed-gain feedback controller to calculate the net forward thrust, one of two algorithms for controlling engine angle (Fixed-Gain Proportional-integral-derivative (PID) or PID with Adaptively Augmented Gains), and one of two algorithms for differential throttle control (Fixed-Gain PID and PID with Adaptive Differential Throttle gains), which work together to eliminate heading error. The three selected controllers are evaluated using a numerical simulation of a 33-foot center console vessel with twin outboards that is subject to wave, wind, and current disturbances. Each controller is tested for its ability to maintain position in the presence of three sets of environmental disturbances. These algorithms were tested with current velocity of 1.5 m/s, significant wave height of 0.5 m, and wind speeds of 2, 5, and 10 m/s. These values were chosen to model conditions a small vessel may experience in the Gulf Stream off of Fort Lauderdale. The Fixed-gain PID controller progressively got worse as wind speeds increased, while the controllers using adaptive methodologies showed consistent performance over all weather conditions and decreased heading error by as much as 20%. Thus, enhanced robustness to environmental changes has been gained by using an adaptive algorithm.

  13. The effects of nonlinear loading upon the Space Station Freedom 20 kHz power system

    NASA Technical Reports Server (NTRS)

    Leskovich, R. Thomas; Hansen, Irving G.

    1989-01-01

    The Space Station Freedom power distribution system, which consists of dual redundant 20-kHz, 440-V RMS, single-phase power systems, is discussed. The effect of a typical space station nonlinear load on the measurement of RMS current and voltage at various points in the space station power system has been investigated using the Electromagnetic Transients Program (EMTP). The load current distortion at the user interface, its effect on the distribution system, and its relationship to power factor have been studied. Modeling results are compared to test data. The differences under nonlinear loading are evaluated and presented as a measure of distribution voltage distortion and current measurement accuracy.

  14. Photovoltaic power system for satellite Earth stations in remote areas: Project status and design description

    NASA Technical Reports Server (NTRS)

    Delombard, R.

    1984-01-01

    A photovoltaic power system which will be installed at a remote location in Indonesia to provide power for a satellite Earth station and a classroom for video and audio teleconferences are described. The Earth station may also provide telephone service to a nearby village. The use of satellite communications for development assistance applications and the suitability of a hybrid photovoltaic engine generator power system for remote satellite Earth stations are demonstrated. The Indonesian rural satellite project is discussed and the photovoltaic power system is described.

  15. Influence of Mobile Users' Density Distribution on the CDMA Base Station Power

    NASA Astrophysics Data System (ADS)

    Lebl, Aleksandar; Mitić, Dragan; Popović, Miroslav; Markov, Žarko; Mileusnić, Mladen; Matić, Vladimir

    2016-12-01

    In this paper we analyze the influence of users' density distribution in one cell of CDMA mobile network (ie adjusted power control on the forward link) on base station emission power. This influence is analyzed for different circles radii around base station within which same emission power is generated for all mobile users, and for different values of propagation loss coefficient. It is proved that emission power in this cell must be increased comparing to the similar cell, which uses complete power control. The power increase is greater when greater number of users are situated near base station, and for greater values of propagation loss coefficient. The results are presented, illustrated by numerical examples and verified by simulation for three users' density distributions: uniform, decreasing and increasing density from the base station to the cell rim. The simulation process, which is based on random traffic process, is presented briefly.

  16. Dynamic characteristics of power-tower space stations with 15-foot truss bays

    NASA Technical Reports Server (NTRS)

    Dorsey, J. T.

    1986-01-01

    A power tower space station concept which generates power with photovoltaic arrays and where the truss structure has a bay size of 15 ft is described. Rigid body and flexible body dynamic characteristics are presented for a 75-kW Initial Operating Capability (IOC) and 150-kW and 300-kW growth stations. The transient response of the IOC and 300-kW growth stations to shuttle dock, orbit reboost, and mobile remote manipulator system translation loads are studied. Displacements, accelerations, and bending moments at various locations on the IOC and 300-kW growth stations are presented.

  17. CFD research on runaway transient of pumped storage power station caused by pumping power failure

    NASA Astrophysics Data System (ADS)

    Zhang, L. G.; Zhou, D. Q.

    2013-12-01

    To study runaway transient of pumped storage power station caused by pumping power failure, three dimensional unsteady numerical simulations were executed on geometrical model of the whole flow system. Through numerical calculation, the changeable flow configuration and variation law of some parameters such as unit rotate speed,flow rate and static pressure of measurement points were obtained and compared with experimental data. Numerical results show that runaway speed agrees well with experimental date and its error was 3.7%. The unit undergoes pump condition, brake condition, turbine condition and runaway condition with flow characteristic changing violently. In runaway condition, static pressure in passage pulses very strongly which frequency is related to runaway speed.

  18. Hybrid power system for remote communications stations. Master's thesis

    SciTech Connect

    Pietras, C.R.

    1993-09-01

    Distress Network. The VHF-FM Search and Rescue sites are powered by a primary power system consisting of a thermoelectric generator. Thermoelectric generators are very inefficient devices which consume vast quantities of propane to create electricity. The upgrade necessitates added power requirements on the power supply system at the remote sites. These requirements compel the redesign and/or upgrade of the power system. If thermoelectric generators continue to be utilized as the primary power system, additional helicopter visits to the sites to deliver propane will be required. These helicopter flights are costly and sometimes hazardous due to severe weather. This thesis investigates a variety of power system options capable of providing electrical power to the communications sites. Specifically, this thesis addresses three objectives. The first is a discussion of current alternative energy source technology available to supply the required power. The second is an analysis of the specific power system requirements and constraints. The third objective and major thrust of the research, is the design of a reliable hybrid power system for this application, capable of utilizing the inexhaustible natural energy available at the remote sites. The engineering parameters for a hybrid power system were studied and calculations made based on commercially available components. The difficulties in the design due to extreme weather conditions and unavailability of natural power resource information at specific sites are addressed. This thesis presents the groundwork associated with hybrid power system designs for use at remote communications sites. Hybrid power system, Solar power system, Wind Power system, Photovoltaic.

  19. Common station system for voltage and reactive power regulation at the Mosenergo TETs-27 heating and electric power plant

    SciTech Connect

    Krasnova, M. E.

    2009-05-15

    The system for common station regulation of the voltage and reactive power at the Mosenergo TETs-27 heating and electric power plant is described briefly. Features of the algorithms for this system, which uses programs and instrumentation from the automatic control system for the electrical equipment in the 450 MW power generation unit No. 3, are examined.

  20. Source terms released into the environment for a station blackout severe accident at the Peach Bottom Atomic Power Station

    SciTech Connect

    Carbajo, J.J.

    1995-07-01

    This study calculates source terms released into the environment at the Peach Bottom Atomic Power Station after containment failure during a postulated low-pressure, short-term station blackout severe accident. The severe accident analysis code MELCOR, version 1.8.1, was used in these calculations. Source terms were calculated for three different containment failure modes. The largest environmental releases occur for early containment failure at the drywell liner in contact with the cavity by liner melt-through. This containment failure mode is very likely to occur when the cavity is dry during this postulated severe accident sequence.

  1. Mission Analysis for LEO Microwave Power-Beaming Station in Orbital Launch of Microwave Lightcraft

    NASA Technical Reports Server (NTRS)

    Myrabo, L. N.; Dickenson, T.

    2005-01-01

    A detailed mission analysis study has been performed for a 1 km diameter, rechargeable satellite solar power station (SPS) designed to boost 20m diameter, 2400 kg Micr,oWave Lightcraft (MWLC) into low earth orbit (LEO) Positioned in a 476 km daily-repeating oi.bit, the 35 GHz microwave power station is configured like a spinning, thin-film bicycle wheel covered by 30% efficient sola cells on one side and billions of solid state microwave transmitter elements on the other, At the rim of this wheel are two superconducting magnets that can stor,e 2000 G.J of energy from the 320 MW, solar array over a period of several orbits. In preparation for launch, the entire station rotates to coarsely point at the Lightcraft, and then phases up using fine-pointing information sent from a beacon on-board the Lightcraft. Upon demand, the station transmits a 10 gigawatt microwave beam to lift the MWLC from the earth surface into LEO in a flight of several minutes duration. The mission analysis study was comprised of two parts: a) Power station assessment; and b) Analysis of MWLC dynamics during the ascent to orbit including the power-beaming relationships. The power station portion addressed eight critical issues: 1) Drag force vs. station orbital altitude; 2) Solar pressure force on the station; 3) Station orbital lifetime; 4) Feasibility of geo-magnetic re-boost; 5) Beta angle (i..e., sola1 alignment) and power station effective area relationship; 6) Power station percent time in sun vs, mission elapsed time; 7) Station beta angle vs.. charge time; 8) Stresses in station structures.. The launch dynamics portion examined four issues: 1) Ascent mission/trajecto1y profile; 2) MWLC/power-station mission geometry; 3) MWLC thrust angle vs. time; 4) Power station pitch rate during power beaming. Results indicate that approximately 0 58 N of drag force acts upon the station when rotated edge-on to project the minimum frontal area of 5000 sq m. An ion engine or perhaps an electrodynamic

  2. Mission Analysis for LEO Microwave Power-Beaming Station in Orbital Launch of Microwave Lightcraft

    NASA Technical Reports Server (NTRS)

    Myrabo, L. N.; Dickenson, T.

    2005-01-01

    A detailed mission analysis study has been performed for a 1 km diameter, rechargeable satellite solar power station (SPS) designed to boost 20m diameter, 2400 kg Micr,oWave Lightcraft (MWLC) into low earth orbit (LEO) Positioned in a 476 km daily-repeating oi.bit, the 35 GHz microwave power station is configured like a spinning, thin-film bicycle wheel covered by 30% efficient sola cells on one side and billions of solid state microwave transmitter elements on the other, At the rim of this wheel are two superconducting magnets that can stor,e 2000 G.J of energy from the 320 MW, solar array over a period of several orbits. In preparation for launch, the entire station rotates to coarsely point at the Lightcraft, and then phases up using fine-pointing information sent from a beacon on-board the Lightcraft. Upon demand, the station transmits a 10 gigawatt microwave beam to lift the MWLC from the earth surface into LEO in a flight of several minutes duration. The mission analysis study was comprised of two parts: a) Power station assessment; and b) Analysis of MWLC dynamics during the ascent to orbit including the power-beaming relationships. The power station portion addressed eight critical issues: 1) Drag force vs. station orbital altitude; 2) Solar pressure force on the station; 3) Station orbital lifetime; 4) Feasibility of geo-magnetic re-boost; 5) Beta angle (i..e., sola1 alignment) and power station effective area relationship; 6) Power station percent time in sun vs, mission elapsed time; 7) Station beta angle vs.. charge time; 8) Stresses in station structures.. The launch dynamics portion examined four issues: 1) Ascent mission/trajecto1y profile; 2) MWLC/power-station mission geometry; 3) MWLC thrust angle vs. time; 4) Power station pitch rate during power beaming. Results indicate that approximately 0 58 N of drag force acts upon the station when rotated edge-on to project the minimum frontal area of 5000 sq m. An ion engine or perhaps an electrodynamic

  3. Retrofitting the Strogino district heat supply station with construction of a 260-MW combined-cycle power plant (Consisting of two PGU-130 combined-cycle power units)

    NASA Astrophysics Data System (ADS)

    Aleksandrov, V. F.

    2010-02-01

    The retrofitting carried out at the Strogino district heat supply station and the specific features of works accomplished in the course of constructing the thermal power station based on a combined-cycle power plant at the station site are described; the layout solutions for the main building and turbine building are presented, and a comparison of the retrofitted station with the Kolomenskoe and Vnukovo gas turbine-based power stations is given.

  4. Mathematical modeling of vibrations in turbogenerator sets of Sayano-Shushenskaya Hydroelectric Power Station

    NASA Astrophysics Data System (ADS)

    Leonov, G. A.; Kuznetsov, N. V.; Solovyeva, E. P.

    2016-02-01

    Oscillations in turbogenerator sets, which consist of a synchronous generator, a hydraulic turbine, and an automatic speed regulator, are investigated. This study was motivated by the emergency that took place at the Sayano-Shushenskaya Hydroelectric Power Station in 2009. During modeling of the parameters of turbogenerator sets of the Sayano-Shushenskaya Hydroelectric Power Station, the ranges corresponding to undesired oscillation regimes were determined. These ranges agree with the results of the full-scale tests of the hydropower units of the Sayano-Shushenskaya Hydroelectric Power Station performed in 1988.

  5. Microinstruments for a Low Power, Low Mass Weather Station

    NASA Technical Reports Server (NTRS)

    Hoenk, M. E.; Zandt, T. R. Van; Kaiser, W. J.; Crisp, D.; Tillman, J.

    1993-01-01

    Advances in electronics and instrument technology over the past thirty years have enabled a new concept for NASA missions, an evolution from large Voyager-class spacecraft to smaller, less costly Discovery and Explorer missions. By taking advantage of micromachining and micro-instrumentation, this reduction in size can be accomplished without requiring a sacrifice in performance. In some cases, the small payload will enable new types of missions which would be otherwise inconceivable. A microweather station is envisioned as an enabling technology for a network of weather stations on Mars for measuring wind, temperature, pressure, humidity, and aerosol concentration in the Martian planetary boundary layer...

  6. 47 CFR 73.6019 - Digital Class A TV station protection of low power TV, TV translator, digital low power TV and...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Digital Class A TV station protection of low power TV, TV translator, digital low power TV and digital TV translator stations. 73.6019 Section 73... BROADCAST SERVICES Class A Television Broadcast Stations § 73.6019 Digital Class A TV station protection...

  7. 47 CFR 73.6019 - Digital Class A TV station protection of low power TV, TV translator, digital low power TV and...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Digital Class A TV station protection of low power TV, TV translator, digital low power TV and digital TV translator stations. 73.6019 Section 73... BROADCAST SERVICES Class A Television Broadcast Stations § 73.6019 Digital Class A TV station protection...

  8. 47 CFR 73.6019 - Digital Class A TV station protection of low power TV, TV translator, digital low power TV and...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Digital Class A TV station protection of low power TV, TV translator, digital low power TV and digital TV translator stations. 73.6019 Section 73... BROADCAST SERVICES Class A Television Broadcast Stations § 73.6019 Digital Class A TV station protection...

  9. 47 CFR 73.6019 - Digital Class A TV station protection of low power TV, TV translator, digital low power TV and...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Digital Class A TV station protection of low power TV, TV translator, digital low power TV and digital TV translator stations. 73.6019 Section 73... BROADCAST SERVICES Class A Television Broadcast Stations § 73.6019 Digital Class A TV station protection...

  10. Space station program phase B definition: Nuclear reactor-powered space station cost and schedules

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Tabulated data are presented on the costs, schedules, and technical characteristics for the space station phases C and D program. The work breakdown structure, schedule data, program ground rules, program costs, cost-estimating rationale, funding schedules, and supporting data are included.

  11. 75 FR 10517 - Nebraska Public Power District, Cooper Nuclear Station; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-08

    ... compliance date for all operating nuclear power plants, but noted that the Commission's regulations provide... COMMISSION Nebraska Public Power District, Cooper Nuclear Station; Exemption 1.0 Background Nebraska Public... licensed activities in nuclear power reactors against radiological sabotage,'' published in the Federal...

  12. Power line anomalies as they affect the operation of a DSN station: Overview

    NASA Technical Reports Server (NTRS)

    Potter, T. L.

    1980-01-01

    The problem of providing a sufficiently stable and reliable power source for the equipment in a DSN station is addressed. The potential for the occurrence of damaging commercial power variations is considered with respect to the need for a more precise power source.

  13. 75 FR 76055 - Nebraska Public Power District Cooper Nuclear Station; Notice of Issuance of Renewed Facility...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-07

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Docket No. 50-298; NRC-2008-0617] Nebraska Public Power District Cooper Nuclear Station; Notice of... operator of the Cooper Nuclear Station (CNS). Renewed facility operating license No. DPR-46...

  14. 47 CFR 74.707 - Low power TV and TV translator station protection.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... low power TV or TV translator stations, or TV booster stations within the following predicted contours... not furnish sufficient data required to calculate the above contours by April 15, 1983 are assigned protected contours having the following radii: Up to 0.001 kW VHF/UHF—1 mile (1.6 km) from transmitter...

  15. 76 FR 72849 - Digital Low Power Television, Television Translator, and Television Booster Stations and To Amend...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-28

    ... From the Federal Register Online via the Government Publishing Office FEDERAL COMMUNICATIONS COMMISSION 47 CFR Parts 73 and 74 Digital Low Power Television, Television Translator, and Television Booster Stations and To Amend Rules for Digital Class A Television Stations AGENCY: Federal...

  16. Analysis of electromagnetic interference from power system processing and transmission components for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Barber, Peter W.; Demerdash, Nabeel A. O.; Wang, R.; Hurysz, B.; Luo, Z.

    1991-01-01

    The goal is to analyze the potential effects of electromagnetic interference (EMI) originating from power system processing and transmission components for Space Station Freedom.The approach consists of four steps: (1) develop analytical tools (models and computer programs); (2) conduct parameterization studies; (3) predict the global space station EMI environment; and (4) provide a basis for modification of EMI standards.

  17. NASA Growth Space Station missions and candidate nuclear/solar power systems

    NASA Technical Reports Server (NTRS)

    Heller, Jack A.; Nainiger, Joseph J.

    1987-01-01

    A brief summary is presented of a NASA study contract and in-house investigation on Growth Space Station missions and appropriate nuclear and solar space electric power systems. By the year 2000 some 300 kWe will be needed for missions and housekeeping power for a 12 to 18 person Station crew. Several Space Station configurations employing nuclear reactor power systems are discussed, including shielding requirements and power transmission schemes. Advantages of reactor power include a greatly simplified Station orientation procedure, greatly reduced occultation of views of the earth and deep space, near elimination of energy storage requirements, and significantly reduced station-keeping propellant mass due to very low drag of the reactor power system. The in-house studies of viable alternative Growth Space Station power systems showed that at 300 kWe a rigid silicon solar cell array with NiCd batteries had the highest specific mass at 275 kg/kWe, with solar Stirling the lowest at 40 kg/kWe. However, when 10 year propellant mass requirements are factored in, the 300 kWe nuclear Stirling exhibits the lowest total mass.

  18. NASA Growth Space Station missions and candidate nuclear/solar power systems

    NASA Technical Reports Server (NTRS)

    Heller, Jack A.; Nainiger, Joseph J.

    1987-01-01

    A brief summary is presented of a NASA study contract and in-house investigation on Growth Space Station missions and appropriate nuclear and solar space electric power systems. By the year 2000 some 300 kWe will be needed for missions and housekeeping power for a 12 to 18 person Station crew. Several Space Station configurations employing nuclear reactor power systems are discussed, including shielding requirements and power transmission schemes. Advantages of reactor power include a greatly simplified Station orientation procedure, greatly reduced occultation of views of the earth and deep space, near elimination of energy storage requirements, and significantly reduced station-keeping propellant mass due to very low drag of the reactor power system. The in-house studies of viable alternative Growth Space Station power systems showed that at 300 kWe a rigid silicon solar cell array with NiCd batteries had the highest specific mass at 275 kg/kWe, with solar Stirling the lowest at 40 kg/kWe. However, when 10 year propellant mass requirements are factored in, the 300 kWe nuclear Stirling exhibits the lowest total mass.

  19. Key points of condenser refurbishment illustrated by our experience on Russian technology nuclear power stations

    SciTech Connect

    Somville, C.

    1998-07-01

    In 1990, the refurbishment of the condensers of the VVER 440 MW LOVIISA 2 Finnish power station was the first reference of GEC ALSTHOM Delas on a Russian type nuclear power station, covering the optimization studies, technical and-economical choices, manufacture and site operations. The current contract for the condenser renovation of the 4 units of the VVER 440 MW PAKS Hungarian power station goes even further through an investment of this company in a local manufacturing installation and a significant participation of the local industry. Their expertise has helped reducing site operation times from 28 days for one condenser of one Loviisa unit, to 26 days for two condensers of one Paks unit. This paper describes the various aspects and the improvements brought for both operations and highlights the technical and economical key advantages of a condenser renovation (quick return on investment, better performances, reliability and life extension of the power station).

  20. Condensers of large steam turbines for thermal and nuclear power stations

    NASA Astrophysics Data System (ADS)

    Nazarov, V. V.; Zaekin, L. P.

    2007-10-01

    Designs and technical characteristics of the condensers of large steam turbines for thermal and nuclear power stations operating in Russia and abroad are described. New technical solutions used in designing them are considered.

  1. 77 FR 33004 - Exelon Generation Company, LLC; Clinton Power Station, Unit 1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-04

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Exelon Generation Company, LLC; Clinton Power Station, Unit 1 AGENCY: Nuclear Regulatory... request for partial site release to Facility Operating License No. NPF-62 issued to Exelon...

  2. Tracy Power Station -- Unit No. 4, Pinon Pine Power Project Public Design Report

    SciTech Connect

    1994-12-01

    This Public Design Report describes the Pinon Pine Project which will be located at the Sierra Pacific Power Company`s (SPPCO) Tracy Station near Reno, Nevada. The integrated gasification combined-cycle (IGCC) plant is designed to process 880 tones per day (TPD) of bituminous coal producing approximately 107 gross megawatts of electric power (MWe). This project is receiving cost-sharing from the US Department of Energy (DOE) in accordance with DOE Cooperative Agreement DE-FC2192MC29309. The plant incorporates the Kellogg-Rust-Westinghouse (KRW) fluidized bed gasification technology which produces a low-Btu gas which is used as fuel in a combined cycle power plant which has been modified to accommodate the fuel gas produced by an air-blown gasifier. The gasification system also includes hot gas removal of particulates and sulfur compounds from the fuel gas resulting in a plant with exceptionally low atmospheric emissions. Desulfurization is accomplished by a combination of limestone injection into the KRW fluidized bed gasifier and by a transport reactor system. Particulate removal is accomplished by high efficiency cyclones and a barrier filter. The Pinon Pine Project Schedule is divided into three phases. Phase I includes permitting and preliminary design. Phase II, which overlaps Phase I, covers detailed design, procurement, and construction. Phase III will cover the initial operation and demonstration portion of the project.

  3. Development of an HTS hydroelectric power generator for the hirschaid power station

    NASA Astrophysics Data System (ADS)

    Fair, Ruben; Lewis, Clive; Eugene, Joseph; Ingles, Martin

    2010-06-01

    This paper describes the development and manufacture of a 1.7MW, 5.25kV, 28pole, 214rpm hydroelectric power generator consisting of superconducting HTS field coils and a conventional stator. The generator is to be installed at a hydro power station in Hirschaid, Germany and is intended to be a technology demonstrator for the practical application of superconducting technology for sustainable and renewable power generation. The generator is intended to replace and uprate an existing conventional generator and will be connected directly to the German grid. The HTS field winding uses Bi-2223 tape conductor cooled to about 30K using high pressure helium gas which is transferred from static cryocoolers to the rotor via a bespoke rotating coupling. The coils are insulated with multi-layer insulation and positioned over laminated iron rotor poles which are at room temperature. The rotor is enclosed within a vacuum chamber and the complete assembly rotates at 214rpm. The challenges have been significant but have allowed Converteam to develop key technology building blocks which can be applied to future HTS related projects. The design challenges, electromagnetic, mechanical and thermal tests and results are presented and discussed together with applied solutions.

  4. Thermionic reactor power system: Effects of radiation on integration with Manned Space Station

    NASA Technical Reports Server (NTRS)

    Gietzen, A. J.; Heath, C. A.; Perry, L. W.

    1972-01-01

    The application of a thermionic reactor power system to the modular space station is described. The nominal net power is 40 kWe, with the power system designed to be applicable over the power range from 25 to 60 kWe. The power system is designed to be launched by the space shuttle. Radiation protection is provided by LiH neutron shielding and W gamma shielding in a shaped 4 pion configuration, i.e., the reactor is shielded on all sides but not to equal extent. Isodose contours are presented for the region around the modular space station. Levels and spectral distribution of radiation are given for later evaluation of effects on space station experiments. Parametric data on the effects of separation distance on power system mass are presented.

  5. Design of a photovoltaic central power station: flat-plate array

    SciTech Connect

    Not Available

    1984-02-01

    A design for a photovoltaic central power station using fixed flat-panel arrays has been developed. The 100 MW plant is assumed to be located adjacent to the Saguaro Power Station of Arizona Public Service. The design assumes high-efficiency photovoltaic modules using dendritic web cells. The modules are arranged in 5 MW subfields, each with its own power conditioning unit. The photovoltaic output is connected to the existing 115 kV utility switchyard. The site specific design allows detailed cost estimates for engineering, site preparation, and installation. Collector and power conditioning costs have been treated parametrically.

  6. Using MapReduce to Improve the Power Generation of the International Space Station

    NASA Astrophysics Data System (ADS)

    Marchetto, William R., II

    The International Space Station (ISS) spends approximately 98% of its time in orbits that experience Earth eclipse. Since the station's solar arrays produce no power when in Earth's shadow, the total power generated decreases substantially, lowering the power budget available to experimental payloads. Therefore, increasing the power output during these eclipsed orbits would be of great benefit to the space station's scientific endeavors. The ISS's current solar array configuration tracks the Sun throughout each orbit, keeping each of its 16 solar panels perpendicular to the Sun at all times. While this is the optimal orientation for solar panels with unobstructed views of the Sun, the space station's solar arrays experience shadowing from the spacecraft's structure as well as from the other solar panels. Deviating from the Sun-tracking scheme at strategic points in certain orbits can provide an increase in power output. The goal of this research was to provide a programmatic solution that increases the power generation capabilities of the ISS in orbits experiencing Earth-eclipse without requiring any physical modifications to the space station's structure. To achieve this goal, a simulator was developed to model the ISS-Earth-Sun environment and calculate the power output of the station's solar arrays based on each panel's orientation and shadowing. Many combinations of array configurations were analyzed, taking into account the physical constraints of the gimbals responsible for rotating the solar panels. The power output of the ISS was improved for the subset of Earth-eclipsed orbits that experience a high degree of shadowing from the station's structure, resulting in an average energy increase of 1.08 kWh per orbit. The power gains were achieved by quickly rotating the solar arrays through the points in each orbit that experienced the highest degree of shadowing.

  7. Application of Hybrid Optimization-Expert System for Optimal Power Management on Board Space Power Station

    NASA Technical Reports Server (NTRS)

    Momoh, James; Chattopadhyay, Deb; Basheer, Omar Ali AL

    1996-01-01

    The space power system has two sources of energy: photo-voltaic blankets and batteries. The optimal power management problem on-board has two broad operations: off-line power scheduling to determine the load allocation schedule of the next several hours based on the forecast of load and solar power availability. The nature of this study puts less emphasis on speed requirement for computation and more importance on the optimality of the solution. The second category problem, on-line power rescheduling, is needed in the event of occurrence of a contingency to optimally reschedule the loads to minimize the 'unused' or 'wasted' energy while keeping the priority on certain type of load and minimum disturbance of the original optimal schedule determined in the first-stage off-line study. The computational performance of the on-line 'rescheduler' is an important criterion and plays a critical role in the selection of the appropriate tool. The Howard University Center for Energy Systems and Control has developed a hybrid optimization-expert systems based power management program. The pre-scheduler has been developed using a non-linear multi-objective optimization technique called the Outer Approximation method and implemented using the General Algebraic Modeling System (GAMS). The optimization model has the capability of dealing with multiple conflicting objectives viz. maximizing energy utilization, minimizing the variation of load over a day, etc. and incorporates several complex interaction between the loads in a space system. The rescheduling is performed using an expert system developed in PROLOG which utilizes a rule-base for reallocation of the loads in an emergency condition viz. shortage of power due to solar array failure, increase of base load, addition of new activity, repetition of old activity etc. Both the modules handle decision making on battery charging and discharging and allocation of loads over a time-horizon of a day divided into intervals of 10

  8. Application of Hybrid Optimization-Expert System for Optimal Power Management on Board Space Power Station

    NASA Technical Reports Server (NTRS)

    Momoh, James; Chattopadhyay, Deb; Basheer, Omar Ali AL

    1996-01-01

    The space power system has two sources of energy: photo-voltaic blankets and batteries. The optimal power management problem on-board has two broad operations: off-line power scheduling to determine the load allocation schedule of the next several hours based on the forecast of load and solar power availability. The nature of this study puts less emphasis on speed requirement for computation and more importance on the optimality of the solution. The second category problem, on-line power rescheduling, is needed in the event of occurrence of a contingency to optimally reschedule the loads to minimize the 'unused' or 'wasted' energy while keeping the priority on certain type of load and minimum disturbance of the original optimal schedule determined in the first-stage off-line study. The computational performance of the on-line 'rescheduler' is an important criterion and plays a critical role in the selection of the appropriate tool. The Howard University Center for Energy Systems and Control has developed a hybrid optimization-expert systems based power management program. The pre-scheduler has been developed using a non-linear multi-objective optimization technique called the Outer Approximation method and implemented using the General Algebraic Modeling System (GAMS). The optimization model has the capability of dealing with multiple conflicting objectives viz. maximizing energy utilization, minimizing the variation of load over a day, etc. and incorporates several complex interaction between the loads in a space system. The rescheduling is performed using an expert system developed in PROLOG which utilizes a rule-base for reallocation of the loads in an emergency condition viz. shortage of power due to solar array failure, increase of base load, addition of new activity, repetition of old activity etc. Both the modules handle decision making on battery charging and discharging and allocation of loads over a time-horizon of a day divided into intervals of 10

  9. Automation of the space station core module power management and distribution system

    NASA Technical Reports Server (NTRS)

    Weeks, David J.

    1988-01-01

    Under the Advanced Development Program for Space Station, Marshall Space Flight Center has been developing advanced automation applications for the Power Management and Distribution (PMAD) system inside the Space Station modules for the past three years. The Space Station Module Power Management and Distribution System (SSM/PMAD) test bed features three artificial intelligence (AI) systems coupled with conventional automation software functioning in an autonomous or closed-loop fashion. The AI systems in the test bed include a baseline scheduler/dynamic rescheduler (LES), a load shedding management system (LPLMS), and a fault recovery and management expert system (FRAMES). This test bed will be part of the NASA Systems Autonomy Demonstration for 1990 featuring cooperating expert systems in various Space Station subsystem test beds. It is concluded that advanced automation technology involving AI approaches is sufficiently mature to begin applying the technology to current and planned spacecraft applications including the Space Station.

  10. Status of 20 kHz space station power distribution technology

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.

    1988-01-01

    Power Distribution on the NASA Space Station will be accomplished by a 20 kHz sinusoidal, 440 VRMS, single phase system. In order to minimize both system complexity and the total power coversion steps required, high frequency power will be distributed end-to-end in the system. To support the final design of flight power system hardware, advanced development and demonstrations have been made on key system technologies and components. The current status of this program is discussed.

  11. Solar Power Stations for Remote Sites: An Economic Analysis.

    DTIC Science & Technology

    1981-01-01

    From Ascension AAF 17 2 Average Daily Extraterrestial Radiation, MJ/m 2 26 3 Capital Cost Breakdown, Annual Capacity Factor = 0.55 29 4 Capital Cost...are costs that recur throughout the system’s life and includes such items as maintenance, operations, and fuel costs. The capital costs can easily be...form of power plant. Or, second, the present power plant has useful life remaining, but it is desirable to reduce the cost of or dependence on fossil

  12. Measuring efficiency in modern gas turbine power stations

    SciTech Connect

    Parmar, J.; Gilmartin, D.

    1998-07-01

    The United Kingdom Government's decision to put the publicly-owned Electricity Supply Industry into the hands of private investors paved the way for the creation of a competitive electricity market, and encouraged the entry of Independent Power Producers (IPP). Competition in electricity generation has increased as new entrants have taken advantage of the latest Combined Cycle Gas Turbine (CCGT) technology, which offers rapid build times, low construction cost, and high cycle efficiency, as well as lower environmental emissions. It is of paramount importance that suitable Guarantees are in place before investing in either new build or existing power plant projects. There will be Guarantees within all of the contracts that provide the framework for a viable power project, from the power purchase agreement (PPA), and fuel supply agreement (FSA), to the turnkey contract (Engineer, Procure and Construct). The Plant Performance Guarantees, especially on module power output and heat rate, have a major impact on a project's economic viability, and although they are included within the turnkey construction contract, they may also be passed through to the PPA and FSA. This paper details the Performance Guarantee Tests that are carried out jointly by the Owner-Operator and the Plant Constructor on a large CCGT plant in the UK, though the Tests are as valid for international sites. The methodology of the Performance Test is described, along with the applicable International Standards. On-line efficiency monitoring at one of National Power's CCGT plant is also briefly outlined. A set of typical power and heat rate correction curves is provided in Appendix 1 for reference, while Appendix 2 contains an example calculation of turbine inlet temperature as per DIN 4341. Appendix 3 is a flow diagram for an online efficiency calculation cycle, using the EfficiencyMap{trademark} Performance Monitoring system.

  13. The TOMAS software system for approximate analysis of emergency situations at nuclear power stations

    NASA Astrophysics Data System (ADS)

    Zhukavin, A. P.

    2009-05-01

    The TOMAS software system for carrying out prompt analysis of different emergency situations in power units of nuclear power stations equipped with VVER-1000 and RBMK-1000 reactors is described. This software system can be used by experts of crisis centers for evaluating various situations, as well as for teaching students in higher schools specializing in the appropriate disciplines.

  14. Microprocessor-based control of the photovoltaic solar power system for an AM radio station

    SciTech Connect

    Much, C. H.; Rothenheber, P. J.

    1980-01-01

    A microprocessor-based controller for a 15 kW photovoltaic power system powering an AM radio station keeps dc bus voltage between desired limits, governs battery operation, monitors safety conditions, and provides status reporting. The microprocessor also facilitates complicated algorithms that improve performance. The first three months of system operation are presented.

  15. Environmental Assessment for the Power Plant Upgrade, Construct Fuel Farm, Cavalier Air Force Station, North Dakota

    DTIC Science & Technology

    2013-06-01

    Air Force) conducted an assessment of the potential environmental consequences of upgrading the Power Plant and constructing a Fuel Farm . This...Environmental Assessment (EA), Upgrade Power Plant and Construct Fuel Farm , Cavalier Air Force Station, North Dakota, incorporated by reference in this

  16. Magnetic sensing for microstructural assessment of power station steels: Magnetic Barkhausen noise and minor loop measurements

    NASA Astrophysics Data System (ADS)

    Wilson, J. W.; Karimian, N.; Yin, W.; Liu, J.; Davis, C. L.; Peyton, A. J.

    2013-06-01

    There are currently no techniques available to monitor the microstructural condition of power station steel components in-service (at elevated temperatures). Electromagnetic (EM) inspection methods have the potential to provide a solution to this problem. Tests have been carried out on power generation steel (P9 and T22) samples with different microstructural states using major and minor B-H loop measurements and correlations established between EM properties and material properties such as Vickers hardness. These correlations will be used to develop a field deployable tool for the quantification of degradation in power station steels.

  17. Prognostic Modeling of Valve Degradation within Power Stations

    DTIC Science & Technology

    2014-10-02

    run to failure (Heng, Tan, Mathew, Montgomery, Banjevic, & Jardine , 2009). Within power generation, implementation of prognostic methods would...Tan, A. C. C., Mathew, J., Montgomery, N, Banjevic, D. & Jardine , A. K. S., (2009), Intelligent Condition-Based Prediction of Machinery

  18. In situ monitoring of animal micronuclei before the operation of Daya Bay Nuclear Power Station

    SciTech Connect

    Y.N. Cai; H.Y. He; L.M. Qian; G.C. Sun; J.Y. Zhao

    1994-12-31

    Daya Bay Nuclear Power Station, a newly-built nuclear power station in southern mainland China, started its operation in 1993. We examined micro-nucleated cells of Invertibrate (Bivalves) and Vertibrate (Fish and Amphibia) in different spots within the 50km surroundings of the Power Station during 1986-1993. This paper reports the results of the investigation carried out in Dong Shan, a place 4.7km to the Power Station:Bivalves; Pteria martensil 5.1(1986),4.8(1988),4.8(1991),5,0(1993),Mytilus smardinus 4.7(1987),4.6(1988); Chamys nobilis 4.9(1987);4.9(1991),4.5(1992),4.5(1993). Fish; Therapon jarbua 0.48(1991),0.67(1992),0.47(1993). Amphibia; Bufo melanostictus 0.29 (1987), 0.34(1988),0.39(1992),0.39(1993). These results showed that the environmental situation, estimated by using the frequencies of micronucleated cells, was stable-there was no obvious chromosome damage in the animals studied. It was found that the incidence of micronucleated cells of Bivalves was higher than that of Fish and Amphibia, suggesting the epithelial cells to be more sensitive than peripheral erythrocytes to environmental genotoxic effects. The results of our studies for other spots will be reported afterward. These data can be used as the original background information to monitor the environment when the Nuclear Power Station is in operation.

  19. Pipeline transport of power station ash as a high mass concentration slurry

    SciTech Connect

    Bunn, T.F.; Chambers, A.J.

    1993-12-31

    This paper describes the results of continuing operation of the Dense Phase Ash Slurry (DPAS) Plant located at Vales Point Power Station in N.S.W. Australia. The DPAS plant was constructed to demonstrate the feasibility of hydraulically conveying, in a dense phase mode, power station ash over long distances. The intention was to pump a mixture of fly ash and water at the highest possible concentration. The fly ash is conveyed to a mechanical mixer using an air slide. The fly ash is conveyed to a mechanical mixer using an air slide. The fly ash is mixed with water in a twin screw mixer, mounted directly to the pump sunction. The pump is a twin screw mixer, mounted directly to the pump suction. The pump is a twin cylinder hydraulically driven positive displacement Putzmeister with a {open_quotes}S transfer tube{close_quotes} discharge system, capable of delivering 46 m{sup 3}h{sup -1} at a pressure of 10 MPa. The pump discharge into a 150 mm diameter 1740 m long pipeline which discharges to the ash dam Vales Point Power Station. Approximately 15,000 tonnes of ash slurry from Vales Point Power Station and 1,270 tonnes of ash slurry from ash trucked from Bayswater Power Station have been hydraulically conveyed using the DPAS plant.

  20. TROUBLE 3: A fault diagnostic expert system for Space Station Freedom's power system

    NASA Technical Reports Server (NTRS)

    Manner, David B.

    1990-01-01

    Designing Space Station Freedom has given NASA many opportunities to develop expert systems that automate onboard operations of space based systems. One such development, TROUBLE 3, an expert system that was designed to automate the fault diagnostics of Space Station Freedom's electric power system is described. TROUBLE 3's design is complicated by the fact that Space Station Freedom's power system is evolving and changing. TROUBLE 3 has to be made flexible enough to handle changes with minimal changes to the program. Three types of expert systems were studied: rule-based, set-covering, and model-based. A set-covering approach was selected for TROUBLE 3 because if offered the needed flexibility that was missing from the other approaches. With this flexibility, TROUBLE 3 is not limited to Space Station Freedom applications, it can easily be adapted to handle any diagnostic system.

  1. Central station applications planning activities and supporting studies. [application of photovoltaic technology to power generation plants

    NASA Technical Reports Server (NTRS)

    Leonard, S. L.; Siegel, B.

    1980-01-01

    The application of photovoltaic technology in central station (utility) power generation plants is considered. A program of data collection and analysis designed to provide additional information about the subset of the utility market that was identified as the initial target for photovoltaic penetration, the oil-dependent utilities (especially muncipals) of the U.S. Sunbelt, is described along with a series of interviews designed to ascertain utility industry opinions about the National Photovoltaic Program as it relates to central station applications.

  2. Analysis of electromagnetic interference from power system processing and transmission components for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Barber, Peter W.; Demerdash, Nabeel A. O.; Hurysz, B.; Luo, Z.; Denny, Hugh W.; Millard, David P.; Herkert, R.; Wang, R.

    1992-01-01

    The goal of this research project was to analyze the potential effects of electromagnetic interference (EMI) originating from power system processing and transmission components for Space Station Freedom. The approach consists of four steps: (1) developing analytical tools (models and computer programs); (2) conducting parameterization (what if?) studies; (3) predicting the global space station EMI environment; and (4) providing a basis for modification of EMI standards.

  3. The U.S. Army Yuma Proving Ground 900-kVa photovoltaic power station

    SciTech Connect

    Ducey, R.; Chapman, R.; Edwards, S.

    1997-12-31

    In the early spring of 1997, a 900-kVA, utility-tied photovoltaic power station was installed at the US Army Yuma Proving Ground (YPG), in the southwest corner of Arizona. The system will be used to offset peak demand and serve as an emergency power system for PYG`s water treatment plant. The power station includes 450-kWp of Siemens M-55 modules, 5600-kWh of C and D motive power batteries, and a 900-kVA power processing and control system from Trace Technologies. Enhanced by the battery load leveling system, the power station has the capacity to reliably provide from 450- up to 825-kVA to YPG`s utility grid during the summer peak demand season. The YPG system has three basic operating modes: (1) daytime utility-tied, (2) nighttime utility-tied, and (3) stand-alone. The amount of power delivered to the grid is governed by either available power from the PV array or by a power level defined by the user, whichever is greater.

  4. Current status, architecture, and future directions for the international space station electric power system

    SciTech Connect

    Gholdston, E.; Hartung, J.; Friefeld, J.

    1995-12-31

    The Electric Power System (EPS) on the International Space Station Alpha has undergone several significant changes over the last year, as major design decisions have been made for the overall station. While the basic topology and system elements have remained as they were under the Freedom program, there are important differences in connectivity, assembly sequence, and start-up. The key drivers for these changes in architecture have been the goal to simplify verification, and most significantly, the introduction of extensive Russian participation in the program. Having the Russians join the international community in this project has resulted in an expanded station size, larger crew, and almost doubled the observable surface of the earth covered by the station. For the power system it has meant additional interfaces for power transfer, and new challenges for solar tracking at the higher inclination orbit. This paper reviews the current architecture and emphasizes the new features that have evolved, as the design for the new, larger station has developed. Additionally, the possible application of developing technology to the station, and other future missions is considered.

  5. Space Station Freedom electric power system evolution analysis status

    NASA Technical Reports Server (NTRS)

    Zernic, Michael J.

    1991-01-01

    The ability is examined of the SSF baselined EPS to transition to operate at a greater system capacity beyond the SSF Permanent Manned Capability PMC) milestone. Specifically, a status of a current analysis is discussed concerning additions, modifications, changeout, or combination thereof of baseline EPS hardware and/or software needed to accomplish the power generation, distribution, operation, and use needed to meet evolving SSF mission objectives. This discussion results in several EPS architectural options that facilitate the addition or substitution of new technologies.

  6. NO sub x reduction at Zolling power station

    SciTech Connect

    Jaerschky, R.; Merz, A. )

    1990-01-01

    In 1985 the West German utility Isar-Amperwerke AG placed a modern 450 MW coal-fired power plant unit into commercial operation. This paper describes systems for pollution control incorporated in its design. These systems include: high efficiency through, for example, operation at supercritical steam pressure; extraction of process heat and district heating; attractive architectural design; a modern flue-gas desulfurization system with wet limestone scrubber; and equipment for nitrogen oxide (NO{sub x}) abatement. This paper focuses on this equipment.

  7. Ultrafiltration treatment for liquid laundry wastes from nuclear power stations

    SciTech Connect

    Kichik, V.A.; Maslova, M.N.; Svittsov, A.A.; Kuleshov, N.F.

    1988-03-01

    The authors conduct a comprehensive analysis of the waste constituents--radioactive and organic--of the laundry water resulting from the on-site laundering and decontamination of clothing worn in nuclear power plants. The primary isotope contaminants consist of niobium and zirconium 95, manganese 54, cobalt 60, iron 59, and cesium 134 and 137. A variety of filter and adsorbent materials used in an ultrafiltration process are comparatively tested for their effectiveness in removing not only these isotopes but also the organic contaminants in the process of recycling the water. Those materials consist of copper hexacyanoferrate, polyacrylophosphonic acid, and several metal-polymer complexes.

  8. A novel design project for space solar power station (SSPS-OMEGA)

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Zhang, Yiqun; Duan, Baoyan; Wang, Dongxu; Li, Xun

    2016-04-01

    The space solar power station (SSPS) capable of providing earth with primary power has been researched for 50 years. The SSPS is a tremendous design involving optics, mechanics, electromagnetism, thermology, control, and other disciplines. This paper presents a novel design project for SSPS named OMEGA. The space segment of the proposed GEO-based SSPS is composed of four main parts, such as spherical solar power collector, hyperboloid photovoltaic (PV) cell array, power management and distribution (PMAD) and microwave transmitting antenna. Principle of optics, structure configuration, wired and wireless power transmissions are presented.

  9. Utilization of artificial intelligence techniques for the Space Station power system

    NASA Technical Reports Server (NTRS)

    Evatt, Thomas C.; Gholdston, Edward W.

    1988-01-01

    Due to the complexity of the Space Station Electrical Power System (EPS) as currently envisioned, artificial intelligence/expert system techniques are being investigated to automate operations, maintenance, and diagnostic functions. A study was conducted to investigate this technology as it applies to failure detection, isolation, and reconfiguration (FDIR) and health monitoring of power system components and of the total system. Control system utilization of expert systems for load scheduling and shedding operations was also researched. A discussion of the utilization of artificial intelligence/expert systems for Initial Operating Capability (IOC) for the Space Station effort is presented along with future plans at Rocketdyne for the utilization of this technology for enhanced Space Station power capability.

  10. Utilization of artificial intelligence techniques for the Space Station power system

    NASA Technical Reports Server (NTRS)

    Evatt, Thomas C.; Gholdston, Edward W.

    1988-01-01

    Due to the complexity of the Space Station Electrical Power System (EPS) as currently envisioned, artificial intelligence/expert system techniques are being investigated to automate operations, maintenance, and diagnostic functions. A study was conducted to investigate this technology as it applies to failure detection, isolation, and reconfiguration (FDIR) and health monitoring of power system components and of the total system. Control system utilization of expert systems for load scheduling and shedding operations was also researched. A discussion of the utilization of artificial intelligence/expert systems for Initial Operating Capability (IOC) for the Space Station effort is presented along with future plans at Rocketdyne for the utilization of this technology for enhanced Space Station power capability.

  11. Space power stations - Space construction, transportation, and pre-development, space project requirements

    NASA Technical Reports Server (NTRS)

    Piland, R.

    1977-01-01

    Several features of solar energy space power stations are discussed. An end-to-end analysis of a system using silicon solar cells is reviewed, and the merits of construction in low earth orbit and in geosynchronous orbit are compared. A suggested space construction procedure, described in detail, would use a 'beam builder', an automated machine, to fabricate the first sublevel truss structural members from strip stock material that is stored on reels. An assembly jig would then be used to position a number of beam builders in the proper location and to support the beams as they are produced to facilitate joining them to form the final space power station structure. Space projects for evaluating the construction concept are proposed, and a possible space construction sequence is considered. Space transportation that would be required in conjunction with the space power station is described.

  12. Low earth orbit environmental effects on the Space Station photovoltaic power generation systems

    NASA Technical Reports Server (NTRS)

    Nahra, H. K.

    1988-01-01

    A summary of the low earth orbital environment, its impact on the photovoltaic power systems of the Space Station and the solutions implemented to resolve the environmental concerns or issues are described. Low earth orbital environment (LEO) presents several concerns to the photovoltaic power systems of the Space Station. These concerns include atomic oxygen interaction with the polymeric substrate of the solar arrays, ionized environment effects on the array operating voltage, the effects of the meteoroids and debris impacts and penetration through the different layers of the solar cells and their circuits, and the high energy particle and radiation effects on the overall solar array performance. Potential solutions to some of the degrading environmental interactions that will provide the photovoltaic power system of the Space Station with the desired life are also summarized.

  13. Space power stations - Space construction, transportation, and pre-development, space project requirements

    NASA Technical Reports Server (NTRS)

    Piland, R.

    1977-01-01

    Several features of solar energy space power stations are discussed. An end-to-end analysis of a system using silicon solar cells is reviewed, and the merits of construction in low earth orbit and in geosynchronous orbit are compared. A suggested space construction procedure, described in detail, would use a 'beam builder', an automated machine, to fabricate the first sublevel truss structural members from strip stock material that is stored on reels. An assembly jig would then be used to position a number of beam builders in the proper location and to support the beams as they are produced to facilitate joining them to form the final space power station structure. Space projects for evaluating the construction concept are proposed, and a possible space construction sequence is considered. Space transportation that would be required in conjunction with the space power station is described.

  14. Low Earth orbit environmental effects on the space station photovoltaic power generation systems

    NASA Technical Reports Server (NTRS)

    Nahra, Henry K.

    1987-01-01

    A summary of the Low Earth Orbital Environment, its impact on the Photovoltaic Power systems of the space station and the solutions implemented to resolve the environmental concerns or issues are described. Low Earth Orbital Environment (LEO) presents several concerns to the Photovoltaic power systems of the space station. These concerns include atomic oxygen interaction with the polymeric substrate of the solar arrays, ionized environment effects on the array operating voltage, the effects of the meteoroids and debris impacts and penetration through the different layers of the solar cells and their circuits, and the high energy particle and radiation effects on the overall solar array performance. Potential solutions to some of the degrading environmental interactions that will provide the photovoltaic power system of the space station with the desired life are also summarized.

  15. Power considerations for an early manned Mars mission utilizing the space station

    SciTech Connect

    Valgora, M.E.

    1987-01-01

    Power requirements and candidate electrical power sources were examined for the supporting space infrastructure for an early (2004) manned Mars mission. This two-year mission (60-day stay time) assumed a single six crew piloted vehicle with a Mars lander for four of the crew. The transportation vehicle was assumed to be a hydrogen/oxygen propulsion design with or without large aerobrakes and assembled and checked out on the LEO Space Station. The long transit time necessitated artificial gravity of the crew by rotating the crew compartments. This rotation complicates power source selection. Candidate power sources were examined for the Lander, Mars Orbiter, supporting Space Station, co-orbiting Propellant Storage Depot, and alternatively, a co-orbiting Propellant Generation (water electrolysis) Depot. Candidates considered were photovoltaics with regenerative fuel cells or batteries, solar dynamics, isotope dynamics, and nuclear power.

  16. Power considerations for an early manned Mars mission utilizing the space station

    NASA Technical Reports Server (NTRS)

    Valgora, Martin E.

    1987-01-01

    Power requirements and candidate electrical power sources were examined for the supporting space infrastructure for an early (2004) manned Mars mission. This two-year mission (60-day stay time) assumed a single six crew piloted vehicle with a Mars lander for four of the crew. The transportation vehicle was assumed to be a hydrogen/oxygen propulsion design with or without large aerobrakes and assembled and checked out on the LEO Space Station. The long transit time necessitated artificial gravity of the crew by rotating the crew compartments. This rotation complicates power source selection. Candidate power sources were examined for the Lander, Mars Orbiter, supporting Space Station, co-orbiting Propellant Storage Depot, and alternatively, a co-orbiting Propellant Generation (water electrolysis) Depot. Candidates considered were photovoltaics with regenerative fuel cells or batteries, solar dynamics, isotope dynamics, and nuclear power.

  17. Natural Disasters and Safety Risks at Nuclear Power Stations

    NASA Astrophysics Data System (ADS)

    Tutnova, T.

    2012-04-01

    In the aftermath of Fukushima natural-technological disaster the global opinion on nuclear energy divided even deeper. While Germany, Italy and the USA are currently reevaluating their previous plans on nuclear growth, many states are committed to expand nuclear energy output. In China and France, where the industry is widely supported by policymakers, there is little talk about abandoning further development of nuclear energy. Moreover, China displays the most remarkable pace of nuclear development in the world: it is responsible for 40% of worldwide reactors under construction, and aims at least to quadruple its nuclear capacity by 2020. In these states the consequences of Fukushima natural-technological accident will probably result in safety checks and advancement of new reactor technologies. Thus, China is buying newer reactor design from the USA which relies on "passive safety systems". It means that emergency power generators, crucial for reactor cooling in case of an accident, won't depend on electricity, so that tsunami won't disable them like it happened in the case of Fukushima. Nuclear energy managed to draw lessons from previous nuclear accidents where technological and human factors played crucial role. But the Fukushima lesson shows that the natural hazards, nevertheless, were undervalued. Though the ongoing technological advancements make it possible to increase the safety of nuclear power plants with consideration of natural risks, it is not just a question of technology improvement. A necessary action that must be taken is the reevaluation of the character and sources of the potential hazards which natural disasters can bring to nuclear industry. One of the examples is a devastating impact of more than one natural disaster happening at the same time. This subject, in fact, was not taken into account before, while it must be a significant point in planning sites for new nuclear power plants. Another important lesson unveiled is that world nuclear

  18. Automating security monitoring and analysis for Space Station Freedom's electric power system

    NASA Technical Reports Server (NTRS)

    Dolce, James L.; Sobajic, Dejan J.; Pao, Yoh-Han

    1990-01-01

    Operating a large, space power system requires classifying the system's status and analyzing its security. Conventional algorithms are used by terrestrial electric utilities to provide such information to their dispatchers, but their application aboard Space Station Freedom will consume too much processing time. A new approach for monitoring and analysis using adaptive pattern techniques is presented. This approach yields an on-line security monitoring and analysis algorithm that is accurate and fast; and thus, it can free the Space Station Freedom's power control computers for other tasks.

  19. Automating security monitoring and analysis for Space Station Freedom's electric power system

    NASA Technical Reports Server (NTRS)

    Dolce, James L.; Sobajic, Dejan J.; Pao, Yoh-Han

    1990-01-01

    Operating a large, space power system requires classifying the system's status and analyzing its security. Conventional algorithms are used by terrestrial electric utilities to provide such information to their dispatchers, but their application aboard Space Station Freedom will consume too much processing time. A novel approach for monitoring and analysis using adaptive pattern techniques is presented. This approach yields an on-line security monitoring and analysis algorithm that is accurate and fast; and thus, it can free the Space Station Freedom's power control computers for other tasks.

  20. Static analysis of rectifier cabinet for nuclear power generating stations based on finite element method

    NASA Astrophysics Data System (ADS)

    Yin, Qiang; Chen, Tian-jin; Li, Wei-yang; Xiong, Ze-cheng; Ma, Rui

    2017-09-01

    In order to obtain the deformation map and equivalent stress distribution of rectifier cabinet for nuclear power generating stations, the quality distribution of structure and electrical are described, the tensile bond strengths of the rings are checked, and the finite element model of cabinet is set up by ANSYS. The transport conditions of the hoisting state and fork loading state are analyzed. The deformation map and equivalent stress distribution are obtained. The attentive problems are put forward. It is a reference for analysis method and the obtained results for the transport of rectifier cabinet for nuclear power generating stations.

  1. Space Station Freedom electrical power system hardware commonality with the United States Polar Platform

    NASA Technical Reports Server (NTRS)

    Rieker, Lorra L.; Haraburda, Francis M.

    1989-01-01

    Information is presented on how the concept of commonality is being implemented with respect to electric power system hardware for the Space Station Freedom and the U.S. Polar Platform. Included is a historical account of the candidate common items which have the potential to serve the same power system functions on both Freedom and the Polar Platform. The Space Station program and objectives are described, focusing on the test and development responsibilities. The program definition and preliminary design phase and the design and development phase are discussed. The goal of this work is to reduce the program cost.

  2. Space Station Freedom electrical power system hardware commonality with the United States Polar Platform

    NASA Technical Reports Server (NTRS)

    Rieker, Lorra L.; Haraburda, Francis M.

    1989-01-01

    The National Aeronautics and Space Administration has adopted the policy to achieve the maximum practical level of commonality for the Space Station Freedom program in order to significantly reduce life cycle costs. Commonality means using identical or similar hardware/software for meeting common sets of functionally similar requirements. Information on how the concept of commonality is being implemented with respect to electric power system hardware for the Space Station Freedom and the U.S. Polar Platform is presented. Included is a historical account of the candidate common items which have the potential to serve the same power system functions on both Freedom and the Polar Platform.

  3. Automating security monitoring and analysis for Space Station Freedom's electric power system

    NASA Technical Reports Server (NTRS)

    Dolce, James L.; Sobajic, Dejan J.; Pao, Yoh-Han

    1990-01-01

    Operating a large, space power system requires classifying the system's status and analyzing its security. Conventional algorithms are used by terrestrial electric utilities to provide such information to their dispatchers, but their application aboard Space Station Freedom will consume too much processing time. A novel approach for monitoring and analysis using adaptive pattern techniques is presented. This approach yields an on-line security monitoring and analysis algorithm that is accurate and fast; and thus, it can free the Space Station Freedom's power control computers for other tasks.

  4. Space Station Freedom electrical power system hardware commonality with the United States Polar Platform

    NASA Technical Reports Server (NTRS)

    Rieker, Lorra L.; Haraburda, Francis M.

    1989-01-01

    Information is presented on how the concept of commonality is being implemented with respect to electric power system hardware for the Space Station Freedom and the U.S. Polar Platform. Included is a historical account of the candidate common items which have the potential to serve the same power system functions on both Freedom and the Polar Platform. The Space Station program and objectives are described, focusing on the test and development responsibilities. The program definition and preliminary design phase and the design and development phase are discussed. The goal of this work is to reduce the program cost.

  5. An atmosphere protection subsystem in the thermal power station automated process control system

    NASA Astrophysics Data System (ADS)

    Parchevskii, V. M.; Kislov, E. A.

    2014-03-01

    Matters concerned with development of methodical and mathematical support for an atmosphere protection subsystem in the thermal power station automated process control system are considered taking as an example the problem of controlling nitrogen oxide emissions at a gas-and-oil-fired thermal power station. The combined environmental-and-economic characteristics of boilers, which correlate the costs for suppressing emissions with the boiler steam load and mass discharge of nitrogen oxides in analytic form, are used as the main tool for optimal control. A procedure for constructing and applying environmental-and-economic characteristics on the basis of technical facilities available in modern instrumentation and control systems is presented.

  6. 75 FR 4591 - Virginia Electric and Power Company; North Anna Power Station, Unit Nos. 1 and 2; Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-28

    ... Power Station, Unit Nos. 1 and 2 (NAPS). In accordance with 10 CFR 51.21, ``Criteria for and... action would exempt the NAPS from the required implementation date of March 31, 2010, for several new requirements of 10 CFR part 73. Specifically, NAPS would be granted an exemption from being in full...

  7. 78 FR 22347 - GPU Nuclear Inc., Three Mile Island Nuclear Power Station, Unit 2, Exemption From Certain...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-15

    ... COMMISSION GPU Nuclear Inc., Three Mile Island Nuclear Power Station, Unit 2, Exemption From Certain Security... Facility Operating License No. DPR-73 issued for Three Mile Island Nuclear Power Station (TMI), Unit 2... protection of licensed activities in nuclear power reactors against radiological sabotage,'' ] states,...

  8. 76 FR 72007 - ZionSolutions, LLC; Zion Nuclear Power Station, Units 1 and 2; Exemption From Certain Security...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-21

    ... COMMISSION ZionSolutions, LLC; Zion Nuclear Power Station, Units 1 and 2; Exemption From Certain Security Requirements 1.0 Background Zion Nuclear Power Station (ZNPS or Zion), Unit 1, is a Westinghouse 3250 MWt... activities in nuclear power reactors against radiological sabotage,'' paragraph (b)(1) states, ``The licensee...

  9. 75 FR 3639 - Revisions to Rules Authorizing the Operation of Low Power Auxiliary Stations in the 698-806 MHz...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-22

    ... 698-806 MHz Band; Public Interest Spectrum Coalition, Petition for Rulemaking Regarding Low Power... Power Auxiliary Stations in the 698-806 MHz Band; Public Interest Spectrum Coalition, Petition for... Operation of Low Power Auxiliary Stations in the 698-806 MHz Band; Public Interest Spectrum...

  10. Personal cooling in nuclear power stations. Final report

    SciTech Connect

    Kamon, E.

    1983-03-01

    Two approaches to personal, non-restrictive cooling of workers exposed to high-temperature work environments in nuclear power plants were evaluated. Both approaches involved a cooling garment designed to be worn under the protective clothing donned in penetration into radiation areas. One garmet was developed to cool by direct body contact with small packets of frozen water enclosed in the pockets of a shirt. The other garmets cooled by circulating a cooled liquid through capillaries in a vest and head cap (System A) or a vest (System B). Testing was conducted in a laboratory simulation of high ambient temperature (55/sup 0/C) and moderate metabolic heat production (200 to 300 kcal/h). Exposure time without cooling (control) was 52 minutes (Group 1) for the workloads demanding 200 kcal/h (48 minutes for Group 2). A long garmet with 7.2 kg of frozen water (LFWG) increased mean exposure time over the control by 242% (163% for the same garmet with 6.2 kg of frozen water). A short-version garmet with 3.8 kg of frozen water (SFWG) increased the stay time by 115%. The circulating-liquid garmets increased mean exposure time 35% (System A) and 27% (System B) over the control. In field observation, the LFWG with 6.2 kg of frozen water improved stay time by 125%.

  11. Decontamination of control rod housing from Palisades Nuclear Power Station.

    SciTech Connect

    Kaminski, M.D.; Nunez, L.; Purohit, A.

    1999-05-03

    Argonne National Laboratory has developed a novel decontamination solvent for removing oxide scales formed on ferrous metals typical of nuclear reactor piping. The decontamination process is based on the properties of the diphosphonic acids (specifically 1-hydroxyethane-1,1-diphosphonic acid or HEDPA) coupled with strong reducing-agents (e.g., sodium formaldehyde sulfoxylate, SFS, and hydroxylamine nitrate, HAN). To study this solvent further, ANL has solicited actual stainless steel piping material that has been recently removed from an operating nuclear reactor. On March 3, 1999 ANL received segments of control rod housing from Consumers Energy's Palisades Nuclear Plant (Covert, MI) containing radioactive contamination from both neutron activation and surface scale deposits. Palisades Power plant is a PWR type nuclear generating plant. A total of eight segments were received. These segments were from control rod housing that was in service for about 6.5 years. Of the eight pieces that were received two were chosen for our experimentation--small pieces labeled Piece A and Piece B. The wetted surfaces (with the reactor's pressurized water coolant/moderator) of the pieces were covered with as a scale that is best characterized visually as a smooth, shiny, adherent, and black/brown in color type oxide covering. This tenacious oxide could not be scratched or removed except by aggressive mechanical means (e.g., filing, cutting).

  12. Scheduled Operation of PV Power Station Considering Solar Radiation Forecast Error

    NASA Astrophysics Data System (ADS)

    Takayama, Satoshi; Hara, Ryoichi; Kita, Hiroyuki; Ito, Takamitsu; Ueda, Yoshinobu; Saito, Yutaka; Takitani, Katsuyuki; Yamaguchi, Koji

    Massive penetration of photovoltaic generation (PV) power stations may cause some serious impacts on a power system operation due to their volatile and unpredictable output. Growth of uncertainty may require larger operating reserve capacity and regulating capacity. Therefore, in order to utilize a PV power station as an alternative for an existing power plant, improvement in controllability and adjustability of station output become very important factor. Purpose of this paper is to develop the scheduled operation technique using a battery system (NAS battery) and the meteorological forecast. The performance of scheduled operation strongly depends on the accuracy of solar radiation forecast. However, the solar radiation forecast contains error. This paper proposes scheduling method and rescheduling method considering the trend of forecast error. More specifically, the forecast error scenario is modeled by means of the clustering analysis of the past actual forecast error. Validity and effectiveness of the proposed method is ascertained through computational simulations using the actual PV generation data monitored at the Wakkanai PV power station and solar radiation forecast data provided by the Japan Weather Association.

  13. Time averaged transmitter power and exposure to electromagnetic fields from mobile phone base stations.

    PubMed

    Bürgi, Alfred; Scanferla, Damiano; Lehmann, Hugo

    2014-08-07

    Models for exposure assessment of high frequency electromagnetic fields from mobile phone base stations need the technical data of the base stations as input. One of these parameters, the Equivalent Radiated Power (ERP), is a time-varying quantity, depending on communication traffic. In order to determine temporal averages of the exposure, corresponding averages of the ERP have to be available. These can be determined as duty factors, the ratios of the time-averaged power to the maximum output power according to the transmitter setting. We determine duty factors for UMTS from the data of 37 base stations in the Swisscom network. The UMTS base stations sample contains sites from different regions of Switzerland and also different site types (rural/suburban/urban/hotspot). Averaged over all regions and site types, a UMTS duty factor for the 24 h-average is obtained, i.e., the average output power corresponds to about a third of the maximum power. We also give duty factors for GSM based on simple approximations and a lower limit for LTE estimated from the base load on the signalling channels.

  14. Time Averaged Transmitter Power and Exposure to Electromagnetic Fields from Mobile Phone Base Stations

    PubMed Central

    Bürgi, Alfred; Scanferla, Damiano; Lehmann, Hugo

    2014-01-01

    Models for exposure assessment of high frequency electromagnetic fields from mobile phone base stations need the technical data of the base stations as input. One of these parameters, the Equivalent Radiated Power (ERP), is a time-varying quantity, depending on communication traffic. In order to determine temporal averages of the exposure, corresponding averages of the ERP have to be available. These can be determined as duty factors, the ratios of the time-averaged power to the maximum output power according to the transmitter setting. We determine duty factors for UMTS from the data of 37 base stations in the Swisscom network. The UMTS base stations sample contains sites from different regions of Switzerland and also different site types (rural/suburban/urban/hotspot). Averaged over all regions and site types, a UMTS duty factor F ≈ 0.32 ± 0.08 for the 24 h-average is obtained, i.e., the average output power corresponds to about a third of the maximum power. We also give duty factors for GSM based on simple approximations and a lower limit for LTE estimated from the base load on the signalling channels. PMID:25105551

  15. Automation in the Space Station module power management and distribution Breadboard

    NASA Technical Reports Server (NTRS)

    Walls, Bryan; Lollar, Louis F.

    1990-01-01

    The Space Station Module Power Management and Distribution (SSM/PMAD) Breadboard, located at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama, models the power distribution within a Space Station Freedom Habitation or Laboratory module. Originally designed for 20 kHz ac power, the system is now being converted to high voltage dc power with power levels on a par with those expected for a space station module. In addition to the power distribution hardware, the system includes computer control through a hierarchy of processes. The lowest level process consists of fast, simple (from a computing standpoint) switchgear, capable of quickly safing the system. The next level consists of local load center processors called Lowest Level Processors (LLP's). These LLP's execute load scheduling, perform redundant switching, and shed loads which use more than scheduled power. The level above the LLP's contains a Communication and Algorithmic Controller (CAC) which coordinates communications with the highest level. Finally, at this highest level, three cooperating Artificial Intelligence (AI) systems manage load prioritization, load scheduling, load shedding, and fault recovery and management. The system provides an excellent venue for developing and examining advanced automation techniques. The current system and the plans for its future are examined.

  16. Mathematical modelling of thermal-plume interaction at Waterford Nuclear Power Station

    SciTech Connect

    Tsai, S.Y.H.

    1981-01-01

    The Waldrop plume model was used to analyze the mixing and interaction of thermal effluents in the Mississippi River resulting from heated-water discharges from the Waterford Nuclear Power Station Unit 3 and from two nearby fossil-fueled power stations. The computer program of the model was modified and expanded to accommodate the multiple intake and discharge boundary conditions at the Waterford site. Numerical results of thermal-plume temperatures for individual and combined operation of the three power stations were obtained for typical low river flow (200,000 cfs) and maximum station operating conditions. The predicted temperature distributions indicated that the surface jet discharge from Waterford Unit 3 would interact with the thermal plumes produced by the two fossil-fueled stations. The results also showed that heat recirculation between the discharge of an upstream fossil-fueled plant and the intake of Waterford Unit 3 is to be expected. However, the resulting combined temperature distributions were found to be well within the thermal standards established by the state of Louisiana.

  17. Energy storage and thermal control system design status. [for space station power supplies

    NASA Technical Reports Server (NTRS)

    Simons, Stephen N.; Willhoite, Bryan C.; Van Ommering, Gert

    1989-01-01

    The Space Station Freedom electric power system (EPS) will initially rely on photovoltaics for power generation and Ni/H2 batteries for electrical energy storage. The current design for the development status of two major subsystems in the PV Power Module is discussed. The energy storage subsystem comprised of high capacity Ni/H2 batteries and the single-phase thermal control system that rejects the excess heat generated by the batteries and other components associated with power generation andstorage is described.

  18. Environmental radionuclide concentrations in the vicinity of the Peach Bottom Atomic Power Station: 1991--1994

    SciTech Connect

    Stanek, M.A.; Jones, T.S.; Frithsen, J.B.; McLean, R.I.

    1997-02-01

    The Maryland Power Plant Research Program monitors concentrations of natural, weapons, and power plant produced radionuclides in environmental samples collected from the Susquehanna River-Chesapeake Bay system in the vicinity of Peach Bottom Atomic Power Station (PBAPS). The purpose of this monitoring is to determine the fate, transport, and potential effects of power plant produced radionuclides. This report contains a description of monitoring activities and data collected during the period 1991 through 1994 and is the fifth in a series reporting monitoring results initiated at PBAPS in 1979.

  19. On the possibility of generation of cold and additional electric energy at thermal power stations

    NASA Astrophysics Data System (ADS)

    Klimenko, A. V.; Agababov, V. S.; Borisova, P. N.

    2017-06-01

    A layout of a cogeneration plant for centralized supply of the users with electricity and cold (ECCG plant) is presented. The basic components of the plant are an expander-generator unit (EGU) and a vapor-compression thermotransformer (VCTT). At the natural-gas-pressure-reducing stations, viz., gas-distribution stations and gas-control units, the plant is connected in parallel to a throttler and replaces the latter completely or partially. The plant operates using only the energy of the natural gas flow without burning the gas; therefore, it can be classified as a fuelless installation. The authors compare the thermodynamic efficiencies of a centralized cold supply system based on the proposed plant integrated into the thermal power station scheme and a decentralized cold supply system in which the cold is generated by electrically driven vapor-compression thermotransformers installed on the user's premises. To perform comparative analysis, the exergy efficiency was taken as the criterion since in one of the systems under investigation the electricity and the cold are generated, which are energies of different kinds. It is shown that the thermodynamic efficiency of the power supply using the proposed plant proves to be higher within the entire range of the parameters under consideration. The article presents the results of investigating the impact of the gas heating temperature upstream from the expander on the electric power of the plant, its total cooling capacity, and the cooling capacities of the heat exchangers installed downstream from the EGU and the evaporator of the VCTT. The results of calculations are discussed that show that the cold generated at the gas-control unit of a powerful thermal power station can be used for the centralized supply of the cold to the ventilation and conditioning systems of both the buildings of the power station and the neighboring dwelling houses, schools, and public facilities during the summer season.

  20. Accumulation of /sup 137/Cs in commercial fish of the Belyarsk nuclear power station cooling supply

    SciTech Connect

    Trapeznikova, V.N.; Kulikov, N.V.; Trapeznikov, A.V.

    1984-07-01

    Results are presented of a comparative study of the accumulation of /sup 137/Cs in basic species of commercial fish of the Beloyarsk reservoir which is used as the cooling supply for the Beloyarsk nuclear power station. Possible reasons for interspecies differences in accumulation of the radionuclide are indicated, and the increased accumulation of /sup 137/Cs by free-living fish in the zone of heated water effluent from the station and the reduced accumulation of the emitter in carp, which are cultivated on artificial food in cages, are noted. Levels of the content of the radionuclide are compared in roach and farm carp from the cooling supplies of the Beloyarsk station and the Reftinsk power plant in the Urals.

  1. Review of the environmental effects of the Space Station Freedom photovoltaic power module

    NASA Technical Reports Server (NTRS)

    Nahra, Henry K.

    1989-01-01

    An overview is provided of the environment in the low Earth orbit (LEO), the interaction of this environment with the Photovoltaic (PV) Power system of the Space Station Freedom is reviewed, and the environmental programs are described that are designed to investigate the interactions of the LEO environment with the photovoltaic power system. Such programs will support and impact the design of the subsystems of the PV module in order to survive the design lifetime in the LEO natural and induced environment.

  2. A simulation model for reliability evaluation of Space Station power systems

    NASA Technical Reports Server (NTRS)

    Singh, C.; Patton, A. D.; Kumar, Mudit; Wagner, H.

    1988-01-01

    A detailed simulation model for the hybrid Space Station power system is presented which allows photovoltaic and solar dynamic power sources to be mixed in varying proportions. The model considers the dependence of reliability and storage characteristics during the sun and eclipse periods, and makes it possible to model the charging and discharging of the energy storage modules in a relatively accurate manner on a continuous basis.

  3. Overview of the regulatory framework applying to nuclear power stations of France

    SciTech Connect

    Astolfi, J.F.

    1993-12-31

    The achievement of French nuclear power plants, because France has not yet issued a specific nuclear law and is tied to a very complex regulatory structure, is submitted to a large number of prior authorizations, which are issued either at a national level or by local authorities according to their goals and importance. This report will outline the regulatory framework applying to nuclear power stations in France.

  4. Review of the environmental effects on the Space Station Freedom photovoltaic power module

    NASA Technical Reports Server (NTRS)

    Nahra, Henry K.

    1989-01-01

    An overview is provided of the environment in the low earth orbit (LEO), the interaction of this environment with the photovoltaic (PV) power system of the Space Station Freedom is reviewed, and the environmental programs are described that are designed to investigate the interaction of the LEO environment with the photovoltaic power system. Such programs will support and impact the design of the subsystems of the PV module in order to survive the design lifetime in the LEO natural and induced environment.

  5. 75 FR 63766 - Digital Low Power Television, Television Translator, and Television Booster Stations and Digital...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-18

    ...: On occasion reporting requirement; one time reporting requirement; third party disclosure requirement... to require all low power station with facilities on out-of- core channels (channels 52-59) to submit a digital displacement (FCC Form 346) application proposing an in-core channel (channels...

  6. 75 FR 6065 - Dominion Energy Kewaunee, Inc.; Kewaunee Power Station; Notice of Availability of the Draft...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-05

    ... COMMISSION Dominion Energy Kewaunee, Inc.; Kewaunee Power Station; Notice of Availability of the Draft.... Possible alternatives to the proposed action (license renewal) include no action and reasonable alternative energy sources. The draft Supplement 40 to the GEIS is publicly available at the NRC Public Document Room...

  7. 75 FR 52375 - Dominion Energy Kewaunee, Inc. Kewaunee Power Station; Notice of Availability of the Final...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-25

    ... alternatives to the proposed action (license renewal) include no action and reasonable alternative energy... Energy Kewaunee, Inc. Kewaunee Power Station; Notice of Availability of the Final Supplement 40 to the... energy-planning decision makers. This recommendation is based on: (1) The analysis and findings in the...

  8. [Risk of electromagnetic fields in electric power stations and substations of a petrochemical plant].

    PubMed

    Castagnoli, A; Fabri, G; Romeo, A

    2003-01-01

    Authors evaluate electromagnetic field exposure in the low-frequency range (5-30,000 Hz) in electric power stations and substations of petroleum processing plant. According to the measured values and the reference exposure limits considered, they conclude that operators should be exposed without adverse effects.

  9. 75 FR 80549 - FirstEnergy Nuclear Operating Company, Davis-Besse Nuclear Power Station; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-22

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION FirstEnergy Nuclear Operating Company, Davis-Besse Nuclear Power Station; Exemption 1.0 Background FirstEnergy Nuclear Operating Company (FENOC, the licensee) is the holder of Facility Operating...

  10. 75 FR 16523 - FirstEnergy Nuclear Operating Company; Davis-Besse Nuclear Power Station; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-01

    ... COMMISSION FirstEnergy Nuclear Operating Company; Davis-Besse Nuclear Power Station; Exemption 1.0 Background FirstEnergy Nuclear Operating Company (FENOC, the licensee) is the holder of Facility Operating License... M.S. Fertel, Nuclear Energy Institute). The licensee's request for an exemption is...

  11. 75 FR 38147 - FirstEnergy Nuclear Operating Company; Davis-Besse Nuclear Power Station; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-01

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION FirstEnergy Nuclear Operating Company; Davis-Besse Nuclear Power Station; Exemption 1.0 Background FirstEnergy Nuclear Operating Company (FENOC, the licensee) is the holder of Facility Operating...

  12. Restorative repair of unit 10 at the Reftinsk district power station. Part 2

    NASA Astrophysics Data System (ADS)

    Ermolaev, V. V.; Shklyar, A. I.; Astanin, O. G.; Velikovich, M. V.; Kosarim, A. N.; Shchedrolyubov, V. L.; Gofman, Yu. M.; Predein, V. L.

    2010-10-01

    Specific features relating to organization and performance of restorative repairs to elements of the 500-MW turbine set carried out in the cell of Unit 10 at the Reftinsk district power station are described. Defects occurred in the main assemblies and systems and the methods used to rectify them are described.

  13. 75 FR 80855 - Dominion Energy Kewaunee, Inc.; Kewaunee Power Station; Environmental Assessment and Finding of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-23

    ... COMMISSION Dominion Energy Kewaunee, Inc.; Kewaunee Power Station; Environmental Assessment and Finding of No... Facility Operating License No. DPR-43, issued to Dominion Energy Kewaunee, Inc. (DEK, the licensee), for... providing responses on the Web page. Entry into the database is protected so that only the licensee and...

  14. A simulation model for reliability evaluation of space station power systems

    SciTech Connect

    Singh, C.; Patton, A.D.; Kumar, M. ); Wagner, H. )

    1991-03-01

    This paper presents a detailed simulation model for reliability evaluation of space station electrical power systems. Dependence of reliability and storage characteristics during the sun and eclipse periods is considered. The charging and discharging of energy storage modules is included on a continuous basis. Sample system studies are also presented.

  15. 76 FR 17162 - Entergy Nuclear Operations, Inc.; Vermont Yankee Nuclear Power Station; Notice of Issuance of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-28

    ... COMMISSION Entergy Nuclear Operations, Inc.; Vermont Yankee Nuclear Power Station; Notice of Issuance of... Renewed Facility Operating License No. DPR-28 to Entergy Nuclear Vermont Yankee, LLC (Entergy VY), and Entergy Nuclear Operations, Inc. (ENO), (licensee), the operator of the Vermont Yankee Nuclear...

  16. The NASA-Lewis terrestrial photovoltaics program. [solar cell power system for weather station

    NASA Technical Reports Server (NTRS)

    Bernatowicz, D. T.

    1973-01-01

    Research and technology efforts on solar cells and arrays having relevance to terrestrial uses are outline. These include raising cell efficiency, developing the FEP-covered module concept, and exploring low cost cell concepts. Solar cell-battery power systems for remote weather stations have been built to demonstrate the capabilities of solar cells for terrestrial applications.

  17. Fatigue life prediction of mooring chains for a floating tidal current power station

    NASA Astrophysics Data System (ADS)

    Jing, Fengmei; Zhang, Liang; Yang, Zhong

    2012-06-01

    As a kind of clean and renewable energy, tidal current energy is becoming increasingly popular all over the world with the shortage of energy and environmental problems becoming more and more severe. A floating tidal current power station is a typical type of tidal current power transformers which can sustain the loads of wind, waves, and current, and even the extreme situation of a typhoon. Therefore, the mooring system must be reliable enough to keep the station operating normally and to survive in extreme situations. The power station examined in this paper was installed at a depth of 40 m. A 44 mm-diameter R4-RQ4 chain was chosen, with a 2 147 kN minimum break strength and 50 kN pretension. Common studless link chain was used in this paper. Based on the Miner fatigue cumulative damage rule, S-N curves of chains, and MOSES software, a highly reliable mooring system was designed and analyzed. The calculation results show that the mooring system designed is reliable throughout a 10-year period. It can completely meet the design requirements of American Petroleum institution (API). Therefore, the presented research is significant for advancing the design of this kind of power station.

  18. A new universal formula for efficiency: sensitivity to cooling conditions of nuclear and conventional power stations

    SciTech Connect

    Haidar, N.H.

    1984-10-01

    A new approximate formula is derived for the sensitivity of the net efficiency of fissile- and fossil-fueled condensing power stations to incremental variations in the design temperature of the cooling water or air. It is universal for the three basic modes (open circuit, wet tower, and dry tower) of turbine condenser cooling and incorporates nearly all of the decisive design parameters involved.

  19. Evaluating the thermodynamic efficiency of hydrogen cycles at wet-steam nuclear power stations

    NASA Astrophysics Data System (ADS)

    Aminov, R. Z.; Egorov, A. N.

    2013-04-01

    Various schematic solutions for implementing a hydrogen cycle on the basis of thermal and nuclear power stations are discussed. Different approaches to construction of cooling systems for the combustion chambers used in hydrogen-oxygen steam generators are described. An example of solution is given in which the combustion chamber is cooled by steam, which is the most efficient one in the thermodynamic respect. Results from an assessment of the thermodynamic efficiency of hydrogen cycles organized on the basis of the power unit of a wet-steam nuclear power station equipped with a K-1000-60/1500 turbine are presented. The thermodynamic efficiency of different schematic and parametric versions of implementing a hydrogen cycle, including those with a satellite turbine operating on displaced steam, is carried out. It is shown that the use of satellite turbines allows the power output and efficiency of the power unit of a wet-steam nuclear power station to be upgraded in a reliable and effective manner.

  20. Analysis of the Use of Wind Energy to Supplement the Power Needs at McMurdo Station and Amundsen-Scott South Pole Station, Antarctica (Poster)

    SciTech Connect

    Baring-Gould, E. I.; Robichaud, R.; McLain, K.

    2005-05-01

    This poster summarizes the analysis of the inclusion of wind-driven power generation technology into the existing diesel power plants at two U.S. Antarctic research stations, McMurdo and Amundsen-Scott South Pole Station. Staff at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) conducted the analysis. Available data were obtained on the wind resources, power plant conditions, load, and component cost. We then used NREL's Hybrid2 power system modeling software to analyze the potential and cost of using wind turbine generators at the two aforementioned facilities.

  1. 75 FR 9113 - Revisions to Rules Authorizing the Operation of Low Power Auxiliary Stations in the 698-806 MHz...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-01

    ... Stations in the 698-806 MHz Band; Public Interest Spectrum Coalition, Petition for Rulemaking Regarding Low... Authorizing the Operation of Low Power Auxiliary Stations in the 698-806 MHz Band; Public Interest Spectrum... Auxiliary Stations in the 698-806 MHz Band; Public Interest Spectrum Coalition, Petition for...

  2. The AP1000{sup R} nuclear power plant innovative features for extended station blackout mitigation

    SciTech Connect

    Vereb, F.; Winters, J.; Schulz, T.; Cummins, E.; Oriani, L.

    2012-07-01

    Station Blackout (SBO) is defined as 'a condition wherein a nuclear power plant sustains a loss of all offsite electric power system concurrent with turbine trip and unavailability of all onsite emergency alternating current (AC) power system. Station blackout does not include the loss of available AC power to buses fed by station batteries through inverters or by alternate AC sources as defined in this section, nor does it assume a concurrent single failure or design basis accident...' in accordance with Reference 1. In this paper, the innovative features of the AP1000 plant design are described with their operation in the scenario of an extended station blackout event. General operation of the passive safety systems are described as well as the unique features which allow the AP1000 plant to cope for at least 7 days during station blackout. Points of emphasis will include: - Passive safety system operation during SBO - 'Fail-safe' nature of key passive safety system valves; automatically places the valve in a conservatively safe alignment even in case of multiple failures in all power supply systems, including normal AC and battery backup - Passive Spent Fuel Pool cooling and makeup water supply during SBO - Robustness of AP1000 plant due to the location of key systems, structures and components required for Safe Shutdown - Diverse means of supplying makeup water to the Passive Containment Cooling System (PCS) and the Spent Fuel Pool (SFP) through use of an engineered, safety-related piping interface and portable equipment, as well as with permanently installed onsite ancillary equipment. (authors)

  3. Childhood cancer mortality in relation to the St Lucie nuclear power station.

    PubMed

    Boice, John D; Mumma, Michael T; Blot, William J; Heath, Clark W

    2005-09-01

    An unusual county-wide excess of childhood cancers of brain and other nervous tissue in the late 1990s in St Lucie County, Florida, prompted the Florida Department of Health to conduct a case-control study within the county assessing residential chemical exposures. No clear associations were found, but claims were then made that the release of radioactive substances such as strontium 90 from the St Lucie nuclear power station, which began operating in 1976, might have played a role. To test the plausibility of this hypothesis, we extended by 17 years a previous study of county mortality conducted by the National Cancer Institute. Rates of total cancer, leukaemia and cancer of brain and other nervous tissue in children and across all ages in St Lucie County were evaluated with respect to the years before and after the nuclear power station began operation and contrasted with rates in two similar counties in Florida (Polk and Volusia). Over the prolonged period 1950-2000, no unusual patterns of childhood cancer mortality were found for St Lucie County as a whole. In particular, no unusual patterns of childhood cancer mortality were seen in relation to the start-up of the St Lucie nuclear power station in 1976. Further, there were no significant differences in mortality between the study and comparison counties for any cancer in the time period after the power station was in operation. Relative rates for all childhood cancers and for childhood leukaemia were higher before the nuclear facility began operating than after, while rates of brain and other nervous tissue cancer were slightly lower in St Lucie County than in the two comparison counties for both time periods. Although definitive conclusions cannot be drawn from descriptive studies, these data provide no support for the hypothesis that the operation of the St Lucie nuclear power station has adversely affected the cancer mortality experience of county residents.

  4. Observations of Earth space by self-powered stations in Antarctica.

    PubMed

    Mende, S B; Rachelson, W; Sterling, R; Frey, H U; Harris, S E; McBride, S; Rosenberg, T J; Detrick, D; Doolittle, J L; Engebretson, M; Inan, U; Labelle, J W; Lanzerotti, L J; Weatherwax, A T

    2009-12-01

    Coupling of the solar wind to the Earth magnetosphere/ionosphere is primarily through the high latitude regions, and there are distinct advantages in making remote sensing observations of these regions with a network of ground-based observatories over other techniques. The Antarctic continent is ideally situated for such a network, especially for optical studies, because the larger offset between geographic and geomagnetic poles in the south enables optical observations at a larger range of magnetic latitudes during the winter darkness. The greatest challenge for such ground-based observations is the generation of power and heat for a sizable ground station that can accommodate an optical imaging instrument. Under the sponsorship of the National Science Foundation, we have developed suitable automatic observing platforms, the Automatic Geophysical Observatories (AGOs) for a network of six autonomous stations on the Antarctic plateau. Each station housed a suite of science instruments including a dual wavelength intensified all-sky camera that records the auroral activity, an imaging riometer, fluxgate and search-coil magnetometers, and ELF/VLF and LM/MF/HF receivers. Originally these stations were powered by propane fuelled thermoelectric generators with the fuel delivered to the site each Antarctic summer. A by-product of this power generation was a large amount of useful heat, which was applied to maintain the operating temperature of the electronics in the stations. Although a reasonable degree of reliability was achieved with these stations, the high cost of the fuel air lift and some remaining technical issues necessitated the development of a different type of power unit. In the second phase of the project we have developed a power generation system using renewable energy that can operate automatically in the Antarctic winter. The most reliable power system consists of a type of wind turbine using a simple permanent magnet rotor and a new type of power

  5. Observations of Earth space by self-powered stations in Antarctica

    NASA Astrophysics Data System (ADS)

    Mende, S. B.; Rachelson, W.; Sterling, R.; Frey, H. U.; Harris, S. E.; McBride, S.; Rosenberg, T. J.; Detrick, D.; Doolittle, J. L.; Engebretson, M.; Inan, U.; Labelle, J. W.; Lanzerotti, L. J.; Weatherwax, A. T.

    2009-12-01

    Coupling of the solar wind to the Earth magnetosphere/ionosphere is primarily through the high latitude regions, and there are distinct advantages in making remote sensing observations of these regions with a network of ground-based observatories over other techniques. The Antarctic continent is ideally situated for such a network, especially for optical studies, because the larger offset between geographic and geomagnetic poles in the south enables optical observations at a larger range of magnetic latitudes during the winter darkness. The greatest challenge for such ground-based observations is the generation of power and heat for a sizable ground station that can accommodate an optical imaging instrument. Under the sponsorship of the National Science Foundation, we have developed suitable automatic observing platforms, the Automatic Geophysical Observatories (AGOs) for a network of six autonomous stations on the Antarctic plateau. Each station housed a suite of science instruments including a dual wavelength intensified all-sky camera that records the auroral activity, an imaging riometer, fluxgate and search-coil magnetometers, and ELF/VLF and LM/MF/HF receivers. Originally these stations were powered by propane fuelled thermoelectric generators with the fuel delivered to the site each Antarctic summer. A by-product of this power generation was a large amount of useful heat, which was applied to maintain the operating temperature of the electronics in the stations. Although a reasonable degree of reliability was achieved with these stations, the high cost of the fuel air lift and some remaining technical issues necessitated the development of a different type of power unit. In the second phase of the project we have developed a power generation system using renewable energy that can operate automatically in the Antarctic winter. The most reliable power system consists of a type of wind turbine using a simple permanent magnet rotor and a new type of power

  6. Regional Calibration of Seismic Stations Using High-power Vibrators: A Technique, First Outcomes, Future Prospects

    NASA Astrophysics Data System (ADS)

    Seleznev, V. S.; Emanov, A. F.; Soloviev, V. M.; Glinsky, B. M.; Kashun, V. N.

    The outcomes of work under the IRC project 1067 "Creation of calibration technology of seismic stations and seismic traces with use of high-power seismic vibrators", which was fulfilled by the Institute of Computational Mathematics and Mathematical Geo- physics SB RAS, Altai-Sayan Experimental Seismological Expedition SB RAS and Research Institute of Impulse Engineering of Russia Minatom, are given. The project is connected to problems of station calibration of an international system of monitor- ing of the Agreement of Mutual Ban of Nuclear Tests and provided for a research of wave fields of high-power vibrators and industrial explosions Within the realization of the project plan the researches on recording a high-power 100-ton fixed vibrator (located on a proving ground of Novosibirsk) on the areal aperture on distances to 400 km have been carried out. From recording results is shown that from a high-power vibrator of a vertical force reference waves from the interfaces in the Earth's crust (di- rect Pg-, Sg-, reflected PkP-, SkS-waves) and the Moho discontinuity (Pn-, Sn-, PmP-, SmS-waves) are stably recorded. The comparison of wave fields from a vibrator and industrial explosions has been made and the perspective scheme of station calibration (international and local network) with use of high-power fixed and movable vibrators has been developed. Basic outcomes of the project can be formulated as follows: 1) the perspective scheme of seismic station calibration of the international network on distances of 1500-2000 km using of vibrators of the increased power (more than 1000 tons of a force) has been grounded; 2) the calibration of seismic stations on distances of 500 - 1500 km has been developed and tested on practical examples on basis of combined method with use of data from vibrators of an average power (60-100-ton of a force) and information from seismological networks of earthquakes and indus- trial explosions; 3) from movable vibrators of low power (40

  7. Verification of Space Station Secondary Power System Stability Using Design of Experiment

    NASA Technical Reports Server (NTRS)

    Karimi, Kamiar J.; Booker, Andrew J.; Mong, Alvin C.; Manners, Bruce

    1998-01-01

    This paper describes analytical methods used in verification of large DC power systems with applications to the International Space Station (ISS). Large DC power systems contain many switching power converters with negative resistor characteristics. The ISS power system presents numerous challenges with respect to system stability such as complex sources and undefined loads. The Space Station program has developed impedance specifications for sources and loads. The overall approach to system stability consists of specific hardware requirements coupled with extensive system analysis and testing. Testing of large complex distributed power systems is not practical due to size and complexity of the system. Computer modeling has been extensively used to develop hardware specifications as well as to identify system configurations for lab testing. The statistical method of Design of Experiments (DoE) is used as an analysis tool for verification of these large systems. DOE reduces the number of computer runs which are necessary to analyze the performance of a complex power system consisting of hundreds of DC/DC converters. DoE also provides valuable information about the effect of changes in system parameters on the performance of the system. DoE provides information about various operating scenarios and identification of the ones with potential for instability. In this paper we will describe how we have used computer modeling to analyze a large DC power system. A brief description of DoE is given. Examples using applications of DoE to analysis and verification of the ISS power system are provided.

  8. Characteristics of neurological status and the electroencephalogram in nuclear power station control operators.

    PubMed

    Laskova, I V; Tret'yakova, E E

    2010-05-01

    A total of 105 control operators at the Kursk nuclear power station were studied: 45 after working shifts (study group) and 60 on rest days (reference group). These investigations showed that operators' work shifts had significant influences on the functional state of the nervous system, promoting the appearance or exacerbation of autonomic dysfunction. In some cases, work shifts increased arterial blood pressure to risk levels for the development of cerebrovascular disease. The effects of nuclear power station operators' work shifts on brain bioelectrical activity included a decrease in the proportion of unaltered EEG traces, along with increases in the spectral power densities of the alpha rhythm in the parietal leads and the theta rhythm in the posterior temporal and parietal leads. The origin of these changes may be related to both fatigue and the effects of adverse industrial factors. It is suggested that clinical observation of power station operators should be supplemented by assessments of autonomic dysfunction and measurement of the spectral power densities of the alpha and theta rhythms in the parietal and posterior temporal leads.

  9. Sodium coolant purification systems for a nuclear power station equipped with a BN-1200 reactor

    NASA Astrophysics Data System (ADS)

    Alekseev, V. V.; Kovalev, Yu. P.; Kalyakin, S. G.; Kozlov, F. A.; Kumaev, V. Ya.; Kondrat'ev, A. S.; Matyukhin, V. V.; Pirogov, E. P.; Sergeev, G. P.; Sorokin, A. P.; Torbenkova, I. Yu.

    2013-05-01

    Both traditional coolant purification methods (by means of traps and sorbents for removing cesium), the use of which supported successful operation of nuclear power installations equipped with fast-neutron reactors with a sodium coolant, and the possibility of removing oxygen from sodium through the use of hot traps are analyzed in substantiating the purification system for a nuclear power station equipped with a BN-1200 reactor. It is shown that a cold trap built into the reactor vessel must be a mandatory component of the reactor plant primary coolant circuit's purification system. The use of hot traps allows oxygen to be removed from the sodium coolant down to permissible concentrations when the nuclear power station operates in its rated mode. The main lines of works aimed at improving the performance characteristics of cold traps are suggested based on the results of performed investigations.

  10. Implicit attitudes toward nuclear power and mobile phone base stations: support for the affect heuristic.

    PubMed

    Siegrist, Michael; Keller, Carmen; Cousin, Marie-Eve

    2006-08-01

    The implicit association test (IAT) measures automatic associations. In the present research, the IAT was adapted to measure implicit attitudes toward technological hazards. In Study 1, implicit and explicit attitudes toward nuclear power were examined. Implicit measures (i.e., the IAT) revealed negative attitudes toward nuclear power that were not detected by explicit measures (i.e., a questionnaire). In Study 2, implicit attitudes toward EMF (electro-magnetic field) hazards were examined. Results showed that cell phone base stations and power lines are judged to be similarly risky and, further, that base stations are more closely related to risk concepts than home appliances are. No differences between experts and lay people were observed. Results of the present studies are in line with the affect heuristic proposed by Slovic and colleagues. Affect seems to be an important factor in risk perception.

  11. Allowable Residual Contamination Levels in soil for decommissioning the Shippingport Atomic Power Station site

    SciTech Connect

    Kennedy, W.E. Jr.; Napier, B.A.; Soldat, J.K.

    1983-09-01

    As part of decommissioning the Shippingport Atomic Power Station, a fundamental concern is the determination of Allowable Residual Contamination Levels (ARCL) for radionuclides in the soil at the site. The ARCL method described in this report is based on a scenario/exposure-pathway analysis and compliance with an annual dose limit for unrestricted use of the land after decommissioning. In addition to naturally occurring radionuclides and fallout from weapons testing, soil contamination could potentially come from five other sources. These include operation of the Shippingport Station as a pressurized water reactor, operations of the Shippingport Station as a light-water breeder, operation of the nearby Beaver Valley reactors, releases during decommissioning, and operation of other nearby industries, including the Bruce-Mansfield coal-fired power plants. ARCL values are presented for 29 individual radionculides and a worksheet is provided so that ARCL values can be determined for any mixture of the individual radionuclides for any annual dose limit selected. In addition, a worksheet is provided for calculating present time soil concentration value that will decay to the ARCL values after any selected period of time, such as would occur during a period of restricted access. The ARCL results are presented for both unconfined (surface) and confined (subsurface) soil contamination. The ARCL method and results described in this report provide a flexible means of determining unrestricted-use site release conditions after decommissioning the Shippingport Atomic Power Station.

  12. Modeling of a horizontal steam generator for the submerged nuclear power station concept

    SciTech Connect

    Palmrose, D.E.; Herring, J.S.

    1993-01-01

    A submerged nuclear power station has been proposed as an alternative power station with a relatively low environmental impact for use by both industrialized and developing countries. The station would be placed 10 m above the seabed at a depth of 30--100 m and a distance of 10--30 km from shore. The submerged nuclear power station would be manufactured and refueled in a central facility, thus gaining the economies of factoryfabrication and the flexibility of short-lead-time deployment. To minimize the size of the submerged hull, horizontal steam generators are proposed for the primary-to-secondary heat transfer, instead of the more traditional vertical steam generators. The horizontal steam generators for SNPS would be similar in design to the horizontal steam generators used in the N-Reactors except the tube orientation is horizontal (the tube's inlet and outlet connection points on the tubesheet are at the same elevation). Previous RELAP5 input decks for horizontal steam generators have been either very simplistic (Loviisa PWR) or used a vertical tube orientation (N-Reactor). This paper will present the development and testing of a RELAP5 horizontal steam generator model, complete with a simple secondary water level control system, that accounts for the dynamic flow conditions which exist inside horizontal steam generators.

  13. Modeling of a horizontal steam generator for the submerged nuclear power station concept

    SciTech Connect

    Palmrose, D.E.; Herring, J.S.

    1993-05-01

    A submerged nuclear power station has been proposed as an alternative power station with a relatively low environmental impact for use by both industrialized and developing countries. The station would be placed 10 m above the seabed at a depth of 30--100 m and a distance of 10--30 km from shore. The submerged nuclear power station would be manufactured and refueled in a central facility, thus gaining the economies of factoryfabrication and the flexibility of short-lead-time deployment. To minimize the size of the submerged hull, horizontal steam generators are proposed for the primary-to-secondary heat transfer, instead of the more traditional vertical steam generators. The horizontal steam generators for SNPS would be similar in design to the horizontal steam generators used in the N-Reactors except the tube orientation is horizontal (the tube`s inlet and outlet connection points on the tubesheet are at the same elevation). Previous RELAP5 input decks for horizontal steam generators have been either very simplistic (Loviisa PWR) or used a vertical tube orientation (N-Reactor). This paper will present the development and testing of a RELAP5 horizontal steam generator model, complete with a simple secondary water level control system, that accounts for the dynamic flow conditions which exist inside horizontal steam generators.

  14. The effects of solar-geomagnetically induced currents on electrical systems in nuclear power stations

    SciTech Connect

    Subudhi, M.; Carroll, D.P.; Kasturi, S.

    1994-01-01

    This report presents the results of a study to evaluate the potential effects of geomagnetically induced currents (GICs) caused by the solar disturbances on the in-plant electrical distribution system and equipment in nuclear power stations. The plant-specific electrical distribution system for a typical nuclear plant is modeled using the ElectroMagnetic Transient Program (EMTP). The computer model simulates online equipment and loads from the station transformer in the switchyard of the power station to the safety-buses at 120 volts to which all electronic devices are connected for plant monitoring. The analytical model of the plant`s electrical distribution system is studied to identify the transient effects caused by the half-cycle saturation of the station transformers due to GIC. This study provides results of the voltage harmonics levels that have been noted at various electrical buses inside the plant. The emergency circuits appear to be more susceptible to high harmonics due to the normally light load conditions. In addition to steady-state analysis, this model was further analyzed simulating various plant transient conditions (e.g., loss of load or large motor start-up) occurring during GIC events. Detail models of the plant`s protective relaying system employed in bus transfer application were included in this model to study the effects of the harmonic distortion of the voltage input. Potential harmonic effects on the uniterruptable power system (UPS) are qualitatively discussed as well.

  15. Development Status: Automation Advanced Development Space Station Freedom Electric Power System

    NASA Technical Reports Server (NTRS)

    Dolce, James L.; Kish, James A.; Mellor, Pamela A.

    1990-01-01

    Electric power system automation for Space Station Freedom is intended to operate in a loop. Data from the power system is used for diagnosis and security analysis to generate Operations Management System (OMS) requests, which are sent to an arbiter, which sends a plan to a commander generator connected to the electric power system. This viewgraph presentation profiles automation software for diagnosis, scheduling, and constraint interfaces, and simulation to support automation development. The automation development process is diagrammed, and the process of creating Ada and ART versions of the automation software is described.

  16. EMTP based stability analysis of Space Station Electric Power System in a test bed environment

    NASA Technical Reports Server (NTRS)

    Dravid, Narayan V.; Kacpura, Thomas J.; O'Connor, Andrew M.

    1992-01-01

    The Space Station Freedom Electric Power System (EPS) will convert solar energy into electric energy and distribute the same using an 'all dc', Power Management and Distribution (PMAD) System. Power conditioning devices (dc to dc converters) are needed to interconnect parts of this system operating at different nominal voltage levels. Operation of such devices could generate under damped oscillations (instability) under certain conditions. Criteria for instability are examined and verified for a single device. Suggested extension of the criteria to a system operation is examined by using the EMTP model of the PMAD dc test bed. Wherever possible, data from the test bed is compared with the modeling results.

  17. EMTP based stability analysis of space station electric power system in a test bed environment

    NASA Technical Reports Server (NTRS)

    Dravid, Narayan V.; Kacpura, Thomas J.; Oconnor, Andrew M.

    1992-01-01

    The Space Station Freedom Electric Power System (EPS) will convert solar energy into electric energy and distribute the same using an 'all dc', Power Management and Distribution (PMAD) System. Power conditioning devices (dc to dc converters) are needed to interconnect parts of this system operating at different nominal voltage levels. Operation of such devices could generate under damped oscillations (instability) under certain conditions. Criteria for instability are examined and verified for a single device. Suggested extension of the criteria to a system operation is examined by using the EMTP model of the PMAD DC test bed. Wherever possible, data from the test bed is compared with the modeling results.

  18. Space Station Power Upgrade on This Week @NASA – January 6, 2017

    NASA Image and Video Library

    2017-01-06

    On Jan. 6, Expedition 50 Commander Shane Kimbrough and Flight Engineer Peggy Whitson of NASA conducted the first of two planned spacewalks outside the International Space Station to upgrade the station’s power system. Kimbrough and Whitson began installation of adapter plates and completing electrical connections for six new lithium-ion batteries, which arrived in December. Kimbrough will venture outside the station again on Jan. 13 with Flight Engineer Thomas Pesquet of ESA (European Space Agency) to continue and complete the upgrade. Also, New Discovery Missions, NASA Astrophysics Mission Discussed at AAS, and Tracing the 2017 Solar Eclipse!

  19. Technology for Space Station Evolution. Volume 4: Power Systems/Propulsion/Robotics

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA's Office of Aeronautics and Space Technology (OAST) conducted a workshop on technology for space station evolution on 16-19 Jan. 1990. The purpose of this workshop was to collect and clarify Space Station Freedom technology requirements for evolution and to describe technologies that can potentially fill those requirements. These proceedings are organized into an Executive Summary and Overview and five volumes containing the Technology Discipline Presentations. Volume 4 consists of the technology discipline sections for Power, Propulsion, and Robotics. For each technology discipline, there is a Level 3 subsystem description, along with the papers.

  20. 47 CFR 73.6012 - Protection of Class A TV, low power TV and TV translator stations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Protection of Class A TV, low power TV and TV... of Class A TV, low power TV and TV translator stations. An application to change the facilities of an existing Class A TV station will not be accepted if it fails to protect other authorized Class A TV, low...

  1. 47 CFR 73.6012 - Protection of Class A TV, low power TV and TV translator stations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Protection of Class A TV, low power TV and TV... of Class A TV, low power TV and TV translator stations. An application to change the facilities of an existing Class A TV station will not be accepted if it fails to protect other authorized Class A TV, low...

  2. 47 CFR 15.216 - Disclosure requirements for wireless microphones and other low power auxiliary stations capable...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... microphones and other low power auxiliary stations capable of operating in the core TV bands. 15.216 Section... wireless microphones and other low power auxiliary stations capable of operating in the core TV bands. (a... capable of operating in the core TV bands (channels 2-51, excluding channel 37) is subject to the...

  3. 47 CFR 15.216 - Disclosure requirements for wireless microphones and other low power auxiliary stations capable...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... microphones and other low power auxiliary stations capable of operating in the core TV bands. 15.216 Section... wireless microphones and other low power auxiliary stations capable of operating in the core TV bands. (a... capable of operating in the core TV bands (channels 2-51, excluding channel 37) is subject to the...

  4. 47 CFR 73.6012 - Protection of Class A TV, low power TV and TV translator stations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Protection of Class A TV, low power TV and TV... of Class A TV, low power TV and TV translator stations. An application to change the facilities of an existing Class A TV station will not be accepted if it fails to protect other authorized Class A TV, low...

  5. 47 CFR 73.6012 - Protection of Class A TV, low power TV and TV translator stations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Protection of Class A TV, low power TV and TV... of Class A TV, low power TV and TV translator stations. An application to change the facilities of an existing Class A TV station will not be accepted if it fails to protect other authorized Class A TV, low...

  6. 47 CFR 15.216 - Disclosure requirements for wireless microphones and other low power auxiliary stations capable...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... microphones and other low power auxiliary stations capable of operating in the core TV bands. 15.216 Section... wireless microphones and other low power auxiliary stations capable of operating in the core TV bands. (a... capable of operating in the core TV bands (channels 2-51, excluding channel 37) is subject to the...

  7. 47 CFR 15.216 - Disclosure requirements for wireless microphones and other low power auxiliary stations capable...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... microphones and other low power auxiliary stations capable of operating in the core TV bands. 15.216 Section... wireless microphones and other low power auxiliary stations capable of operating in the core TV bands. (a... capable of operating in the core TV bands (channels 2-51, excluding channel 37) is subject to the...

  8. 47 CFR 73.6012 - Protection of Class A TV, low power TV and TV translator stations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Protection of Class A TV, low power TV and TV... of Class A TV, low power TV and TV translator stations. An application to change the facilities of an existing Class A TV station will not be accepted if it fails to protect other authorized Class A TV, low...

  9. 76 FR 25378 - Exelon Generation Company, LLC; PSEG Nuclear, LLC; Peach Bottom Atomic Power Station, Units 2 and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-04

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Exelon Generation Company, LLC; PSEG Nuclear, LLC; Peach Bottom Atomic Power Station, Units 2 and... Nos. DPR-44 and DPR-56 for the Peach Bottom Atomic Power Station (PBAPS), Units 2 and 3, located in...

  10. 75 FR 6071 - Exelon Generation Company, LLC; PSEG Nuclear, LLC; Peach Bottom Atomic Power Station Units 2 and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-05

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Exelon Generation Company, LLC; PSEG Nuclear, LLC; Peach Bottom Atomic Power Station Units 2 and 3... Operating License Nos. DPR-44 and DPR-56 for the Peach Bottom Atomic Power Station (PBAPS), Units 2 and 3...

  11. 75 FR 10833 - In the Matter of Entergy Nuclear Operations; Vermont Yankee Nuclear Power Station; Demand for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-09

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION In the Matter of Entergy Nuclear Operations; Vermont Yankee Nuclear Power Station; Demand for.... The license authorizes the operation of the Vermont Yankee Nuclear Power Station (Vermont Yankee) in...

  12. Space station electrical power distribution analysis using a load flow approach

    NASA Technical Reports Server (NTRS)

    Emanuel, Ervin M.

    1987-01-01

    The space station's electrical power system will evolve and grow in a manner much similar to the present terrestrial electrical power system utilities. The initial baseline reference configuration will contain more than 50 nodes or busses, inverters, transformers, overcurrent protection devices, distribution lines, solar arrays, and/or solar dynamic power generating sources. The system is designed to manage and distribute 75 KW of power single phase or three phase at 20 KHz, and grow to a level of 300 KW steady state, and must be capable of operating at a peak of 450 KW for 5 to 10 min. In order to plan far into the future and keep pace with load growth, a load flow power system analysis approach must be developed and utilized. This method is a well known energy assessment and management tool that is widely used throughout the Electrical Power Utility Industry. The results of a comprehensive evaluation and assessment of an Electrical Distribution System Analysis Program (EDSA) is discussed. Its potential use as an analysis and design tool for the 20 KHz space station electrical power system is addressed.

  13. SOARCA Peach Bottom Atomic Power Station Long-Term Station Blackout Uncertainty Analysis: Convergence of the Uncertainty Results

    SciTech Connect

    Bixler, Nathan E.; Osborn, Douglas M.; Sallaberry, Cedric Jean-Marie; Eckert-Gallup, Aubrey Celia; Mattie, Patrick D.; Ghosh, S. Tina

    2014-02-01

    This paper describes the convergence of MELCOR Accident Consequence Code System, Version 2 (MACCS2) probabilistic results of offsite consequences for the uncertainty analysis of the State-of-the-Art Reactor Consequence Analyses (SOARCA) unmitigated long-term station blackout scenario at the Peach Bottom Atomic Power Station. The consequence metrics evaluated are individual latent-cancer fatality (LCF) risk and individual early fatality risk. Consequence results are presented as conditional risk (i.e., assuming the accident occurs, risk per event) to individuals of the public as a result of the accident. In order to verify convergence for this uncertainty analysis, as recommended by the Nuclear Regulatory Commission’s Advisory Committee on Reactor Safeguards, a ‘high’ source term from the original population of Monte Carlo runs has been selected to be used for: (1) a study of the distribution of consequence results stemming solely from epistemic uncertainty in the MACCS2 parameters (i.e., separating the effect from the source term uncertainty), and (2) a comparison between Simple Random Sampling (SRS) and Latin Hypercube Sampling (LHS) in order to validate the original results obtained with LHS. Three replicates (each using a different random seed) of size 1,000 each using LHS and another set of three replicates of size 1,000 using SRS are analyzed. The results show that the LCF risk results are well converged with either LHS or SRS sampling. The early fatality risk results are less well converged at radial distances beyond 2 miles, and this is expected due to the sparse data (predominance of “zero” results).

  14. Analysis and design of a 10 to 30 kW grid-connected solar power system for the JPL fire station and first aid station

    NASA Technical Reports Server (NTRS)

    Josephs, R. H.

    1982-01-01

    The design and performance of a modestly sized utility-connected power conditioning system and its supporting photovoltaic collector are described and estimated. Utility preparations and guidelines to conform with the output of a small generating station with that of a large power network are examined.

  15. 47 CFR 73.6019 - Digital Class A TV station protection of low power TV, TV translator, digital low power TV and...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Digital Class A TV station protection of low power TV, TV translator, digital low power TV and digital TV translator stations. 73.6019 Section 73.6019 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES...

  16. Space station WP-04 power system preliminary analysis and design document, volume 3

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Rocketdyne plans to generate a system level specification for the Space Station Electric Power System (EPS) in order to facilitate the usage, accountability, and tracking of overall system level requirements. The origins and status of the verification planning effort are traced and an overview of the Space Station program interactions are provided. The work package level interfaces between the EPS and the other Space Station work packages are outlined. A trade study was performed to determine the peaking split between PV and SD, and specifically to compare the inherent total peaking capability with proportionally shared peaking. In order to determine EPS cost drivers for the previous submittal of DRO2, the life cycle cost (LCC) model was run to identify the more significant costs and the factors contributing to them.

  17. Output power distributions of mobile radio base stations based on network measurements

    NASA Astrophysics Data System (ADS)

    Colombi, D.; Thors, B.; Persson, T.; Wirén, N.; Larsson, L.-E.; Törnevik, C.

    2013-04-01

    In this work output power distributions of mobile radio base stations have been analyzed for 2G and 3G telecommunication systems. The approach is based on measurements in selected networks using performance surveillance tools part of the network Operational Support System (OSS). For the 3G network considered, direct measurements of output power levels were possible, while for the 2G networks, output power levels were estimated from measurements of traffic volumes. Both voice and data services were included in the investigation. Measurements were conducted for large geographical areas, to ensure good overall statistics, as well as for smaller areas to investigate the impact of different environments. For high traffic hours, the 90th percentile of the averaged output power was found to be below 65% and 45% of the available output power for the 2G and 3G systems, respectively.

  18. An integrated and modular digital modeling approach for the space station electrical power system development

    NASA Technical Reports Server (NTRS)

    Gombos, Frank J.; Dravid, Narayan

    1988-01-01

    An electrical power system for the Space Station was designed, developed and built. This system provides for electrical power generation, conditioning, storage, and distribution. The initial configuration uses photovoltaic power generation. The power system control is based on a hierarchical architecture to support the requirements of automation. In the preliminary design and technology development phase of the program, various modeling techniques and software tools were evaluated for the purpose of meeting the Space Station power system modeling requirements. Rocketdyne and LeRC jointly selected the EASY5 simulation software, developed by Boeing Computer Services, as a system level modeling tool. The application of the selected analytical modeling approach to represent the entire power system is described. Typical results of model predictions are also summarized. The equipment modeled includes solar arrays, dc to ac converters, resonant inverters, battery storage system, alternator, transmission line, switch gear, and system level microprocessor controls. During the advanced development phase of this program, several models were developed using this approach.

  19. An integrated and modular digital modeling approach for the Space Station electrical power system development

    NASA Technical Reports Server (NTRS)

    Gombos, Frank J.; Dravid, Narayan

    1988-01-01

    An electrical power system for the Space Station was designed, developed and built. This system provides for electrical power generation, conditioning, storage, and distribution. The initial configuration uses photovoltaic power generation. The power system control is based on a hierarchical architecture to support the requirements of automation. In the preliminary design and technology development phase of the program, various modeling techniques and software tools were evaluated for the purpose of meeting the Space Station power system modeling requirements. Rocketdyne and LeRC jointly selected the EASY5 simulation software, developed by Boeing Computer Services, as a system level modeling tool. The application of the selected analytical modeling approach to represent the entire power system is described. Typical results of model predictions are also summarized. The equipment modeled includes solar arrays, dc to ac converters, resonant inverters, battery storage system, alternator, transmission line, switch gear, and system level microprocessor controls. During the advanced development phase of this program, several models were developed using this approach.

  20. Accident at the Fukushima Dai-ichi nuclear power stations of TEPCO--outline & lessons learned.

    PubMed

    Tanaka, Shun-ichi

    2012-01-01

    The severe accident that broke out at Fukushima Dai-ichi nuclear power stations on March 11, 2011, caused seemingly infinite damage to the daily life of residents. Serious and wide-spread contamination of the environment occurred due to radioactive materials discharged from nuclear power stations (NPSs). At the same time, many issues were highlighted concerning countermeasures to severe nuclear accidents. The accident is outlined, and lessons learned are extracted with respect to the safety of NPSs, as well as radiation protection of residents under the emergency involving the accident. The materials of the current paper are those released by governmental agencies, academic societies, interim reports of committees under the government, and others.

  1. Solar-assisted MED treatment of Eskom power station waste water

    NASA Astrophysics Data System (ADS)

    Roos, Thomas H.; Rogers, David E. C.; Gericke, Gerhard

    2017-06-01

    The comparative benefits of multi-effect distillation (MED) used in conjunction with Nano Filtration (NF), Reverse Osmosis (RO) and Eutectic Freeze Crystallization (EFC) are determined for waste water minimization for inland coal fired power stations for Zero Liquid Effluent Discharge (ZLED). A sequence of technologies is proposed to achieve maximal water recovery and brine concentration: NF - physico-chemical treatment - MED - EFC. The possibility of extending the concentration of RO reject arising from minewater treatment at the Lethabo power station with MED alone is evaluated with mineral formation modelling using the thermochemical modelling software Phreeq-C. It is shown that pretreatment is essential to extend the amount of water that can be recovered, and this can be beneficially supported by NF.

  2. Magnetic sensing for microstructural assessment of power station steels: Differential permeability and magnetic hysteresis

    NASA Astrophysics Data System (ADS)

    Karimian, N.; Wilson, J. W.; Yin, W.; Liu, J.; Davis, C. L.; Peyton, A. J.

    2013-06-01

    Failure of power station steel components can have severe economic impacts and also present significant risks to life and the environment. Currently components are inspected during costly shut-downs as no in-situ technique exists to monitor changes in microstructure of in-service steel components. Electromagnetic inspection has the potential to provide information on microstructure changes in power station steels in-situ. In this paper, tests have been carried out on pipe and tube samples in different microstructural conditions, using a lab-based closed magnetic circuit and impedance measurement systems. EM properties have been identified with correlations to material properties, which can quantify degradation in-situ and at elevated temperatures.

  3. 47 CFR 74.707 - Low power TV and TV translator station protection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Low power TV and TV translator station... protected contours having the following radii: Up to 0.001 kW VHF/UHF—1 mile (1.6 km) from transmitter site Up to 0.01 kW VHF; up to 0.1 k/W UHF—2 miles (3.2 km) from transmitter site Up to 0.1 kW VHF; up to...

  4. Orientation of Space Station Freedom electrical power system in environmental effects assessment

    NASA Technical Reports Server (NTRS)

    Lu, Cheng-Yi

    1990-01-01

    The orientation effects of six Space Station Freedom Electrical Power System (EPS) components are evaluated for three environmental interactions: aerodynamic drag, atomic oxygen erosion, and orbital debris impact. Designers can directly apply these orientation factors to estimate the magnitude of the examined environment and the environmental effects for the EPS component of interest. The six EPS components are the solar array, photovoltaic module radiator, integrated equipment assembly, solar dynamic concentrator, solar dynamic radiator, and beta gimbal.

  5. An attempt for modeling the atmospheric transport of 3H around Kakrapar Atomic Power Station.

    PubMed

    Patra, A K; Nankar, D P; Joshi, C P; Venkataraman, S; Sundar, D; Hegde, A G

    2008-01-01

    Prediction of downwind tritium air concentrations in the environment around Kakrapar Atomic Power Station (KAPS) was studied on the basis of Gaussian plume dispersion model. The tritium air concentration by field measurement [measured tritium air concentrations in the areas adjacent to KAPS] were compared with the theoretically calculated values (predicted) to validate the model. This approach will be useful in evaluating environmental radiological impacts due to pressurised heavy water reactors.

  6. [The mosquito fauna (Diptera: Culicidae) of the environs of the Sayan-Shushenskoe hydroelectric power station].

    PubMed

    Gornostaeva, R M

    1999-01-01

    Among females and larvae of mosquitoes collected in 1969, 1981-1984 in the area of the Sayan-Shushenskoe hydroelectric power station (140 km up the Yenisei River from the Abakan city) 5 genera and 30 species were recorded. Based on recent collections and reference data (Gornostaeva e. a., 1969; Gornostaeva, Danilov, 1986) the fauna of the region in question includes 31 species of mosquitoes (Anopheles--1, Culiseta--2, Coquillettidia--1, Aedes--22, Culex--5).

  7. [Evaluating psychophysiologic adaptation state in operators of Bilibino nuclear power station].

    PubMed

    Isaeva, N A; Torubarov, F S; Denisova, E A; Zvereva, Z F; Koronotova, M A

    2014-01-01

    The study revealed that 60% operators of Bilibino nuclear power station suffer from psychosomatic diseases, 41.7% of them are assigned to occupational group of workers, and major part of the examinees with psychosomatic diseases (45.82%) are aged 41-50, high integral level ofpsychophysiologic adaptation is revealed in 5 examinees (12.5%), medium integral level--in 12 examinees (30%). Lower integral level of psychophysiologic adaptation manifested in decrease in psychophysiologic and physiologic levels.

  8. Orientation of Space Station Freedom electrical power system in environmental effects assessment

    NASA Technical Reports Server (NTRS)

    Lu, Cheng-Yi

    1990-01-01

    The orientation effects of six Space Station Freedom Electrical Power System (EPS) components are evaluated for three environmental interactions: aerodynamic drag, atomic oxygen erosion, and orbital debris impact. Designers can directly apply these orientation factors to estimate the magnitude of the examined environment and the environmental effects for the EPS component of interest. The six EPS components are the solar array, photovoltaic module radiator, integrated equipment assembly, solar dynamic concentrator, solar dynamic radiator, and beta gimbal.

  9. Stability of large DC power systems using switching converters, with application to the International Space Station

    SciTech Connect

    Gholdston, E.W.; Karimi, K.; Lee, F.C.; Rajagopalan, J.; Panov, Y.; Manners, B.

    1996-12-31

    As space direct current (dc) power systems continue to grow in size, switching power converters are playing an ever larger role in power conditioning and control. When designing a large dc system using power converters are playing an ever larger role in power conditioning and control.When designing a large dc system using power converters of this type, special attention must be placed on the electrical stability of the system and of the individual loads on the system. In the design of the electric power system (EPS) of the International Space Station (ISS), the National Aeronautics and Space Administration (NASA) and its contractor team led by Boeing Defense and Space Group has placed a great deal of emphasis on designing for system and load stability. To achieve this goal, the team has expended considerable effort deriving a clear concept on defining system stability in both a general sense and specifically with respect to the space station. The ISS power system presents numerous challenges with respect to system stability, such as high power, complex sources and undefined loads. As a result, the program has derived an impedance specification approach for system stability. This approach is based on the significant relationship between source and load impedances and the effect of this relationship on system stability. This approach is limited in its applicability by the theoretical and practical limits on component designs as presented by each system segment. As a result, the overall approach to system stability implemented by the ISS program consists of specific hardware requirements coupled with extensive system analysis and hardware testing.

  10. Analysis to support power operation with inoperable MSSVs at Seabrook Station

    SciTech Connect

    Ladieu, A.E.; Bergeron, P.A.

    1996-11-01

    Seabrook Station Technical Specification 3.7.1.1 specifies the maximum Power Range Neutron Flux--High reactor trip setpoints with 1, 2, or 3 inoperable Main Steam Safety Valves (MSSVs). The basis for these setpoints is to ensure that the Secondary Side pressure will be limited to within 110% (1,320 psia) of its design pressure of 1,200 psia during the most severe anticipated system operational transient as required by the ASME Boiler and Pressure Vessel Code. The maximum required reliving capacity is associated with a postulated turbine trip coincident with an assumed loss of condenser heat sink. In 1994, Westinghouse notified its customers via a Nuclear Safety Advisory Letter that the trip setpoints supplied in the Technical Specifications (T.S.) may not comply with the basis. In response to the Westinghouse notification, Yankee Atomic Electric Company (Yankee), in cooperation with Seabrook Station engineering/licensing staff, applied safety analysis methodology to support revised Power Range Neutron Flux. High reactor trip setpoints for operation of Seabrook Station with inoperable MSSVs. The methodology was also used to demonstrate that previous power operation complied with the basis to T.S. 3.7.1.1 and to support revised MSSV setpoints. The revised setpoints allow optimal use of MSSVs to mitigate postulated overpressure transients. The methodology is demonstrated in this paper using the optimized MSSV setpoints.

  11. Prospects for using the technology of circulating fluidized bed for technically refitting Russian thermal power stations

    NASA Astrophysics Data System (ADS)

    Ryabov, G. A.; Folomeev, O. M.; Litun, D. S.; Sankin, D. A.; Dmitryukova, I. G.

    2009-01-01

    The present state and development of circulating fluidized bed (CFB) technology around the world are briefly reviewed. Questions of increasing the capacity of single boiler units and raising the parameters of steam are discussed. CFB boilers for 225- and 330-MW power units are described and their parameters are estimated as applied to the conditions of firing different Russian fuels. Indicators characterizing CFB boilers and pulverized-coal boilers are given. Capital outlays and operational costs for new coal-fired units are compared, and the results from this comparison are used to show the field of the most promising use of the CFB technology during technical refitting of Russian thermal power stations.

  12. Tampa Electric Company`s Polk Power Station Integrated Gasification Combined Cycle Project

    SciTech Connect

    Jenkins, S.D.; Shafer, J.R.

    1994-12-31

    Tampa Electric Company (TEC) is in the construction phase for the new Polk Power Station, Unit {number_sign}1. This will be the first unit at a new site and will use Integrated Gasification Combined Cycle (IGCC) technology for power generation. The unit will utilize oxygen-blown entrained-flow coal gasification, along with combined cycle technology, to provide nominal net 26OMW of generation. As part of the environmental features of this process, the sulfur species in the coal will be recovered as a commercial grade sulfuric acid by-product. The sulfur will be removed from the synthesis gas utilizing a cold gas clean-up system (CGCU).

  13. Estimating the efficiency from using hydrogen toppings at nuclear power stations

    NASA Astrophysics Data System (ADS)

    Portyankin, A. V.; Khrustalev, V. A.

    2011-09-01

    A low-cost version of modernizing a nuclear power station is considered in which the main profile (standard size) of the power unit is retained and insignificant changes are made in the turbine unit's operational parameters. These changes consist in that steam supplied to the high-pressure cylinder is subjected to slight initial superheating, and that that the design superheating of steam upstream of the low-pressure cylinder is increased to some extent. In addition, different versions that can be used for heating the working steam to the required temperatures in the H2/O2 steam generator's mixing chamber are analyzed.

  14. Assessment of environmental effects on Space Station Freedom Electrical Power System

    NASA Technical Reports Server (NTRS)

    Lu, Cheng-Yi; Nahra, Henry K.

    1991-01-01

    Analyses of EPS (electrical power system) interactions with the LEO (low earth orbit) environment are described. The results of these analyses will support EPS design so as to be compatible with the natural and induced environments and to meet power, lifetime, and performance requirements. The environmental impacts to the Space Station Freedom EPS include aerodynamic drag, atomic oxygen erosion, ultraviolet degradation, VXB effect, ionizing radiation dose and single event effects, electromagnetic interference, electrostatic discharge, plasma interactions (ion sputtering, arcing, and leakage current), meteoroid and orbital debris threats, thermal cycling effects, induced current and voltage potential differences in the SSF due to induced electric field, and contamination degradation.

  15. Assessment of environmental effects on Space Station Freedom Electrical Power System

    NASA Technical Reports Server (NTRS)

    Lu, Cheng-Yi; Nahra, Henry K.

    1991-01-01

    Analyses of EPS (electrical power system) interactions with the LEO (low earth orbit) environment are described. The results of these analyses will support EPS design so as to be compatible with the natural and induced environments and to meet power, lifetime, and performance requirements. The environmental impacts to the Space Station Freedom EPS include aerodynamic drag, atomic oxygen erosion, ultraviolet degradation, VXB effect, ionizing radiation dose and single event effects, electromagnetic interference, electrostatic discharge, plasma interactions (ion sputtering, arcing, and leakage current), meteoroid and orbital debris threats, thermal cycling effects, induced current and voltage potential differences in the SSF due to induced electric field, and contamination degradation.

  16. Development of low head Kaplan turbine for power station rehabilitation project

    NASA Astrophysics Data System (ADS)

    Lim, S. M.; Ohtake, N.; Kurosawa, S.; Suzuki, T.; Yamasaki, T.; Nishi, H.

    2012-11-01

    This paper presents the latest Kaplan turbine rehabilitation project for Funagira Power Station in Japan completed by J-POWER Group in collaboration with Toshiba Corporation. Area of rehabilitation was restricted to guide vane and runner. The main goal of the rehabilitation project was to expand the operating range of the existing turbine in terms of discharge and power with high operational stability, low noise as well as high cavitation performance. Computational Fluids Dynamics and model test were used to optimize the shape of guide vane and runner in development stage. Finally, field tests and runner inspection were carried out to confirm the performance of the new turbine. It was found that the new turbine has excellent performance in efficiency, power output, operational stability compared with existing turbine. Moreover, no sign of cavitation on the runner blade surface was observed after 5078 hours of operation near 100% load.

  17. Tandem concentrator photovoltaic array applied to Space Station Freedom evolutionary power requirements

    NASA Technical Reports Server (NTRS)

    Fisher, Edward M., Jr.

    1991-01-01

    Additional power is required to support Space Station Freedom (SSF) evolution. Boeing Defense and Space Group, LeRC, and Entech Corporation have participated in the development of efficiency gallium arsenide and gallium antimonide solar cells make up the solar array tandem cell stacks. Entech's Mini-Dome Fresnel Lens Concentrators focus solar energy onto the active area of the solar cells at 50 times one solar energy flux. Development testing for a flight array, to be launched in Nov. 1992 is under way with support from LeRC. The tandem cells, interconnect wiring, concentrator lenses, and structure were integrated into arrays subjected to environmental testing. A tandem concentrator array can provide high mass and area specific power and can provide equal power with significantly less array area and weight than the baseline array design. Alternatively, for SSF growth, an array of twice the baseline power can be designed which still has a smaller drag area than the baseline.

  18. Stability of large DC power systems using switching converters, with application to the international space station

    NASA Technical Reports Server (NTRS)

    Manners, B.; Gholdston, E. W.; Karimi, K.; Lee, F. C.; Rajagopalan, J.; Panov, Y.

    1996-01-01

    As space direct current (dc) power systems continue to grow in size, switching power converters are playing an ever larger role in power conditioning and control. When designing a large dc system using power converters of this type, special attention must be placed on the electrical stability of the system and of the individual loads on the system. In the design of the electric power system (EPS) of the International Space Station (ISS), the National Aeronautics and Space Administration (NASA) and its contractor team led by Boeing Defense & Space Group has placed a great deal of emphasis on designing for system and load stability. To achieve this goal, the team has expended considerable effort deriving a dear concept on defining system stability in both a general sense and specifically with respect to the space station. The ISS power system presents numerous challenges with respect to system stability, such as high power, complex sources and undefined loads. To complicate these issues, source and load components have been designed in parallel by three major subcontractors (Boeing, Rocketdyne, and McDonnell Douglas) with interfaces to both sources and loads being designed in different countries (Russia, Japan, Canada, Europe, etc.). These issues, coupled with the program goal of limiting costs, have proven a significant challenge to the program. As a result, the program has derived an impedance specification approach for system stability. This approach is based on the significant relationship between source and load impedances and the effect of this relationship on system stability. This approach is limited in its applicability by the theoretical and practical limits on component designs as presented by each system segment. As a result, the overall approach to system stability implemented by the ISS program consists of specific hardware requirements coupled with extensive system analysis and hardware testing. Following this approach, the ISS program plans to begin

  19. A 50-kW Module Power Station of Directly Solar-Pumped Iodine Laser

    NASA Technical Reports Server (NTRS)

    Choi, S. H.; Lee, J. H.; Meador, W. E.; Conway, E. J.

    1997-01-01

    The conceptual design of a 50 kW Directly Solar-Pumped Iodine Laser (DSPIL) module was developed for a space-based power station which transmits its coherent-beam power to users such as the moon, Martian rovers, or other satellites with large (greater than 25 kW) electric power requirements. Integration of multiple modules would provide an amount of power that exceeds the power of a single module by combining and directing the coherent beams to the user's receiver. The model developed for the DSPIL system conservatively predicts the laser output power (50 kW) that appears much less than the laser output (93 kW) obtained from the gain volume ratio extrapolation of experimental data. The difference in laser outputs may be attributed to reflector configurations adopted in both design and experiment. Even though the photon absorption by multiple reflections in experimental cavity setup was more efficient, the maximum secondary absorption amounts to be only 24.7 percent of the primary. However, the gain volume ratio shows 86 percent more power output than theoretical estimation that is roughly 60 percent more than the contribution by the secondary absorption. Such a difference indicates that the theoretical model adopted in the study underestimates the overall performance of the DSPIL. This fact may tolerate more flexible and radical selection of design parameters than used in this design study. The design achieves an overall specific power of approximately 5 W/kg and total mass of 10 metric tons.

  20. Water chemistry of the secondary circuit at a nuclear power station with a VVER power reactor

    NASA Astrophysics Data System (ADS)

    Tyapkov, V. F.; Erpyleva, S. F.

    2017-05-01

    Results of implementation of the secondary circuit organic amine water chemistry at Russian nuclear power plant (NPP) with VVER-1000 reactors are presented. The requirements for improving the reliability, safety, and efficiency of NPPs and for prolonging the service life of main equipment items necessitate the implementation of new technologies, such as new water chemistries. Data are analyzed on the chemical control of power unit coolant for quality after the changeover to operation with the feed of higher amines, such as morpholine and ethanolamine. Power units having equipment containing copper alloy components were converted from the all-volatile water chemistry to the ethanolamine or morpholine water chemistry with no increase in pH of the steam generator feedwater. This enables the iron content in the steam generator feedwater to be decreased from 6-12 to 2.0-2.5 μg/dm3. It is demonstrated that pH of high-temperature water is among the basic factors controlling erosion and corrosion wear of the piping and the ingress of corrosion products into NPP steam generators. For NPP power units having equipment whose construction material does not include copper alloys, the water chemistries with elevated pH of the secondary coolant are adopted. Stable dosing of correction chemicals at these power units maintains pH25 of 9.5 to 9.7 in the steam generator feedwater with a maximum iron content of 2 μg/dm3 in the steam generator feedwater.

  1. Analysis of the Use of Wind Energy to Supplement the Power Needs at McMurdo Station and Amundsen-Scott South Pole Station, Antarctica

    SciTech Connect

    Baring-Gould, I.; Robichaud, R.; McLain, K.

    2005-05-01

    This report summarizes an analysis of the inclusion of wind-driven power generation technology into the existing diesel power plants at two U.S. Antarctic research stations, McMurdo and Amundsen-Scott South Pole Station. Staff at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) conducted the analysis. Raytheon Polar Services, which currently holds the private sector support contract for the two research stations, was a major contributor to this report. To conduct the analysis, available data were obtained on the wind resources, power plant conditions, load, and component cost. Whenever possible, we validated the information. We then used NREL's Hybrid2 power system modeling software to analyze the potential and cost of using wind turbine generators at the two aforementioned facilities. Unfortunately, the power systems and energy allocations at McMurdo and South Pole Station are being redeveloped, so it is not possible to validate future fuel use. This report is an initial assessment of the potential use of wind energy and should be followed by further, more detailed analysis if this option is to be considered further.

  2. [Water-soluble anions of atmosphere on Tianwan nuclear power station].

    PubMed

    Zhao, Heng-Qiang; He, Ying; Zheng, Xiao-Ling; Chen, Fa-Rong; Pang, Shi-Ping; Wang, Cai-Xia; Wang, Xiao-Ru

    2010-11-01

    Three major water-soluble anions (Cl-, SO4(2-) and NO3-) in the atmosphere of the Tianwan nuclear power station in Lianyungang were determined by ion chromatography from June 2005 to May 2006. The results showed that the annual average concentration of Cl-, SO4(2-) and NO3- in the atmosphere of Tianwan nuclear power station was (33.12 +/- 53.63) microg x m(-3), (53.34 +/- 30.34) microg x m(-3) and (8.34 +/- 4.47) microg x m(-3), respectively. The concentrations of the three water-soluble anions showed evident trend of seasonal variation. The concentrations of Cl-, SO4(2-) reached the highest level in summer and the lowest level in winter, while the concentration of NO3- in autumn and winter was higher than those in summer and spring. Meteorological parameters such as wind direction, wind speed, temperature and relative humidity were studied and showed definite influence to the anions concentration of the atmosphere. This is the first simultaneous monitoring of corrosive anions in the atmosphere of Chinese coastal nuclear power plant, and it will provide basis for the prevention of marine atmospheric corrosion, which will ensure the safely operating of our nuclear power industry.

  3. Potential impact of new power system technology on the design of a manned space station

    SciTech Connect

    Fordyce, J.S.; Schwartz, H.J.

    1984-01-01

    Large, more complex spacecraft of the future such as a manned Space Station will require electric power systems of 100 kW and more, orders of magnitude greater than the present state of the art. Power systems at this level will have a significant impact on the spacecraft design. Historically, long-lived spacecraft have relied on silicon solar cell arrays, a nickel-cadium storage battery and operation at 28 V dc. These technologies lead to large array areas and heavy batteries for a Space Station application. This, in turn, presents orbit altitude maintenance, attitude control, energy management and launch weight and volume constraints. Size (area) and weight of such a power system can be reduced if new higher efficiency conversion and lighter weight storage technologies are used. Several promising technology options including concentrator solar photovoltaic arrays, solar thermal dynamic and ultimately nuclear dynamic systems to reduce area are discussed. Also higher energy storage systems such as nickel-hydrogen and the regenerative fuel cell (RFC) and higher voltage power distribution which add system flexibility, simplicity and reduce weight are examined. Emphasis is placed on the attributes and development status of emerging technologies that are sufficiently developed that they could be available for flight use in the early to mid 1990's.

  4. Alternate space station freedom configuration considerations to accommodate solar dynamic power

    NASA Technical Reports Server (NTRS)

    Deryder, L. J.; Cruz, J. N.; Heck, M. L.; Robertson, B. P.; Troutman, P. A.

    1989-01-01

    The results of a technical audit of the Space Station Freedom Program conducted by the Program Director was announced in early 1989 and included a proposal to use solar dynamic power generation systems to provide primary electrical energy for orbital flight operations rather than photovoltaic solar array systems. To generate the current program baseline power of 75 kW, two or more solar concentrators approximately 50 feet in diameter would be required to replace four pairs of solar arrays whose rectangular blanket size is approximately 200 feet by 30 feet. The photovoltaic power system concept uses solar arrays to generate electricity that is stored in nickel-hydrogen batteries. The proposed concept uses the solar concentrator dishes to reflect and focus the Sun's energy to heat helium-xenon gas to drive electricity generating turbines. The purpose here is to consider the station configuration issues for incorporation of solar dynamic power system components. Key flight dynamic configuration geometry issues are addressed and an assembly sequence scenario is developed.

  5. The potential impact of new power system technology on the design of a manned Space Station

    NASA Technical Reports Server (NTRS)

    Fordyce, J. S.; Schwartz, H. J.

    1984-01-01

    Larger, more complex spacecraft of the future such as a manned Space Station will require electric power systems of 100 kW and more, orders of magnitude greater than the present state of the art. Power systems at this level will have a significant impact on the spacecraft design. Historically, long-lived spacecraft have relied on silicon solar cell arrays, a nickel-cadmium storage battery and operation at 28 V dc. These technologies lead to large array areas and heavy batteries for a Space Station application. This, in turn, presents orbit altitude maintenance, attitude control, energy management and launch weight and volume constraints. Size (area) and weight of such a power system can be reduced if new higher efficiency conversion and lighter weight storage technologies are used. Several promising technology options including concentrator solar photovoltaic arrays, solar thermal dynamic and ultimately nuclear dynamic systems to reduce area are discussed. Also, higher energy storage systems such as nickel-hydrogen and the regenerative fuel cell (RFC) and higher voltage power distribution which add system flexibility, simplicity and reduce weight are examined. Emphasis placed on the attributes and development status of emerging technologies that are sufficiently developed so that they could be available for flight use in the early to mid 1990's.

  6. The potential impact of new power system technology on the design of a manned Space Station

    NASA Technical Reports Server (NTRS)

    Fordyce, J. S.; Schwartz, H. J.

    1984-01-01

    Larger, more complex spacecraft of the future such as a manned Space Station will require electric power systems of 100 kW and more, orders of magnitude greater than the present state of the art. Power systems at this level will have a significant impact on the spacecraft design. Historically, long-lived spacecraft have relied on silicon solar cell arrays, a nickel-cadmium storage battery and operation at 28 V dc. These technologies lead to large array areas and heavy batteries for a Space Station application. This, in turn, presents orbit altitude maintenance, attitude control, energy management and launch weight and volume constraints. Size (area) and weight of such a power system can be reduced if new higher efficiency conversion and lighter weight storage technologies are used. Several promising technology options including concentrator solar photovoltaic arrays, solar thermal dynamic and ultimately nuclear dynamic systems to reduce area are discussed. Also, higher energy storage systems such as nickel-hydrogen and the regenerative fuel cell (RFC) and higher voltage power distribution which add system flexibility, simplicity and reduce weight are examined. Emphasis placed on the attributes and development status of emerging technologies that are sufficiently developed so that they could be available for flight use in the early to mid 1990's.

  7. The potential impact of new power system technology on the design of a manned space station

    NASA Technical Reports Server (NTRS)

    Fordyce, J. S.; Schwartz, H. J.

    1984-01-01

    Larger, more complex spacecraft of the future such as a manned Space Station will require electric power systems of 100 kW and more, orders of magnitude greater than the present state of the art. Power systems at this level will have a significant impact on the spacecraft design. Historically, long-lived spacecraft have relied on silicon solar cell arrays, a nickel-cadmium storage battery and operation at 28 V dc. These technologies lead to large array areas and heavy batteries for a Space Station application. This, in turn, presents orbit altitude maintenance, attitude control, energy management and launch weight and volume constraints. Size (area) and weight of such a power system can be reduced if new higher efficiency conversion and lighter weight storage technologies are used. Several promising technology options including concentrator solar photovoltaic arrays, solar thermal dynamic and ultimately nuclear dynamic systems to reduce area are discussed. Also, higher energy storage systems such as nickel-hydrogen and the regenerative fuel cell (RFC) and higher voltage power distribution which add system flexibility, simplicity and reduce weight are examined. Emphasis is placed on the attributes and development status of emerging technologies that are sufficiently developed so that they could be available for flight use in the early to mid 1990's.

  8. Comparison and evaluation of nuclear power plant options for geosynchronous power stations

    NASA Technical Reports Server (NTRS)

    Williams, J. R.

    1975-01-01

    The suitability of eleven types of nuclear fission reactors in combination with five potential energy conversion systems for use in geosynchronous power plants is evaluated. Gas turbine, potassium Rankine liquid metal MHD, and thermionic energy conversion systems are considered. The existing technology of reactors in near-term, intermediate-term, and long-term classes is discussed, together with modifications for use in large-scale power production in space. Unless the temperature is high enough for MHD, reactors which heat gases are generally more suitable for use with gas turbines. Those which heat liquid metals will be more useful for potassium Rankine or liquid metal MHD conversion systems.

  9. Comparison and evaluation of nuclear power plant options for geosynchronous power stations

    NASA Technical Reports Server (NTRS)

    Williams, J. R.

    1975-01-01

    The suitability of eleven types of nuclear fission reactors in combination with five potential energy conversion systems for use in geosynchronous power plants is evaluated. Gas turbine, potassium Rankine liquid metal MHD, and thermionic energy conversion systems are considered. The existing technology of reactors in near-term, intermediate-term, and long-term classes is discussed, together with modifications for use in large-scale power production in space. Unless the temperature is high enough for MHD, reactors which heat gases are generally more suitable for use with gas turbines. Those which heat liquid metals will be more useful for potassium Rankine or liquid metal MHD conversion systems.

  10. Technical assessment and environmental improvement of Almaty No. 1 heat and power station

    SciTech Connect

    Chang, P.S.; Myers, P.T.

    1996-12-31

    Almaty No. 1 Heat and Power Station (BPS) supplies steam for industrial customers and heat and electricity to the residents of Almaty, the capital city of Kazakhstan. Feasibility studies performed by local technical institutes concluded that the aging boilers were soon reaching their end of life. Prior to approval of a loan to Kazakhstan for replacement of two of the boilers, the Asian Development Bank contracted the Tennessee Valley Authority to perform a technical and financial assessment of the power station to determine if continued operation was justified and to recommend a program of boiler equipment rehabilitation and/or replacement to reduce the high level of air pollution in the city. The assessment determined the city had a shortage of 480 Gcal/hr heating supply and a 125 MW deficit in electrical supply. Continued operation of Almaty No. 1 Heat and Power Station (UPS) was justified due to the strategic location of the heat and steam supply, high efficiency of the combined heating and power supply, and the low cost of the investment. The existing plant equipment had exceeded its original design life but the rehabilitation of the existing boilers is not a cost-effective option because of the very stringent emission requirements, low-cost and low-quality coal burning, and the derating requirements. Based on stringent air emission criteria, the most technically and economically viable solution is to replace the existing boiler Nos. 7 and 8 with a single circulating fluidized bed (CFB) boiler with limestone feed and a baghouse or electrostatic precipitator. The CFB boiler would allow Almatyenergo to burn the low-cost, low-quality coal and meet all the emission requirements.

  11. In-orbit assembly mission for the Space Solar Power Station

    NASA Astrophysics Data System (ADS)

    Cheng, ZhengAi; Hou, Xinbin; Zhang, Xinghua; Zhou, Lu; Guo, Jifeng; Song, Chunlin

    2016-12-01

    The Space Solar Power Station (SSPS) is a large spacecraft that utilizes solar power in space to supply power to an electric grid on Earth. A large symmetrical integrated concept has been proposed by the China Academy of Space Technology (CAST). Considering its large scale, the SSPS requires a modular design and unitized general interfaces that would be assembled in orbit. Facilities system supporting assembly procedures, which include a Reusable Heavy Lift Launch Vehicle, orbital transfer and space robots, is introduced. An integrated assembly scheme utilizing space robots to realize this platform SSPS concept is presented. This paper tried to give a preliminary discussion about the minimized time and energy cost of the assembly mission under best sequence and route This optimized assembly mission planning allows the SSPS to be built in orbit rapidly, effectively and reliably.

  12. System studies of coal fired-closed cycle MHD for central station power plants

    NASA Technical Reports Server (NTRS)

    Zauderer, B.

    1976-01-01

    This paper presents a discussion of the closed-cycle MHD results obtained in a recent study of various advanced energy-conversion power systems. The direct coal-fired MHD topping-steam bottoming cycle was established as the current choice for central station power generation. Emphasis is placed on the background assumptions and the conclusions that can be drawn from the closed-cycle MHD analysis. It is concluded that closed-cycle MHD has efficiencies comparable to that of open-cycle MHD. Its cost will possibly be slightly higher than that of the open-cycle MHD system. Also, with reasonable fuel escalation assumptions, both systems can produce lower-cost electricity than conventional steam power plants. Suggestions for further work in closed-cycle MHD components and systems are made.

  13. Life cycle assessment of sewage sludge co-incineration in a coal-based power station.

    PubMed

    Hong, Jingmin; Xu, Changqing; Hong, Jinglan; Tan, Xianfeng; Chen, Wei

    2013-09-01

    A life cycle assessment was conducted to evaluate the environmental and economic effects of sewage sludge co-incineration in a coal-fired power plant. The general approach employed by a coal-fired power plant was also assessed as control. Sewage sludge co-incineration technology causes greater environmental burden than does coal-based energy production technology because of the additional electricity consumption and wastewater treatment required for the pretreatment of sewage sludge, direct emissions from sludge incineration, and incinerated ash disposal processes. However, sewage sludge co-incineration presents higher economic benefits because of electricity subsidies and the income generating potential of sludge. Environmental assessment results indicate that sewage sludge co-incineration is unsuitable for mitigating the increasing pressure brought on by sewage sludge pollution. Reducing the overall environmental effect of sludge co-incineration power stations necessitates increasing net coal consumption efficiency, incinerated ash reuse rate, dedust system efficiency, and sludge water content rate.

  14. System studies of coal fired-closed cycle MHD for central station power plants

    NASA Technical Reports Server (NTRS)

    Zauderer, B.

    1976-01-01

    This paper presents a discussion of the closed-cycle MHD results obtained in a recent study of various advanced energy-conversion power systems. The direct coal-fired MHD topping-steam bottoming cycle was established as the current choice for central station power generation. Emphasis is placed on the background assumptions and the conclusions that can be drawn from the closed-cycle MHD analysis. It is concluded that closed-cycle MHD has efficiencies comparable to that of open-cycle MHD. Its cost will possibly be slightly higher than that of the open-cycle MHD system. Also, with reasonable fuel escalation assumptions, both systems can produce lower-cost electricity than conventional steam power plants. Suggestions for further work in closed-cycle MHD components and systems are made.

  15. Seismic margin review of the Maine Yankee Atomic Power Station: Fragility analysis

    SciTech Connect

    Ravindra, M. K.; Hardy, G. S.; Hashimoto, P. S.; Griffin, M. J.

    1987-03-01

    This Fragility Analysis is the third of three volumes for the Seismic Margin Review of the Maine Yankee Atomic Power Station. Volume 1 is the Summary Report of the first trial seismic margin review. Volume 2, Systems Analysis, documents the results of the systems screening for the review. The three volumes are part of the Seismic Margins Program initiated in 1984 by the Nuclear Regulatory Commission (NRC) to quantify seismic margins at nuclear power plants. The overall objectives of the trial review are to assess the seismic margins of a particular pressurized water reactor, and to test the adequacy of this review approach, quantification techniques, and guidelines for performing the review. Results from the trial review will be used to revise the seismic margin methodology and guidelines so that the NRC and industry can readily apply them to assess the inherent quantitative seismic capacity of nuclear power plants.

  16. A study of some features of ac and dc electric power systems for a space station

    NASA Technical Reports Server (NTRS)

    Hanania, J. I.

    1983-01-01

    This study analyzes certain selected topics in rival dc and high frequency ac electric power systems for a Space Station. The interaction between the Space Station and the plasma environment is analyzed, leading to a limit on the voltage for the solar array and a potential problem with resonance coupling at high frequencies. Certain problems are pointed out in the concept of a rotary transformer, and further development work is indicated in connection with dc circuit switching, special design of a transmission conductor for the ac system, and electric motors. The question of electric shock hazards, particularly at high frequency, is also explored. and a problem with reduced skin resistance and therefore increased hazard with high frequency ac is pointed out. The study concludes with a comparison of the main advantages and disadvantages of the two rival systems, and it is suggested that the choice between the two should be made after further studies and development work are completed.

  17. Application of enhanced modern structured analysis techniques to Space Station Freedom electric power system requirements

    NASA Technical Reports Server (NTRS)

    Biernacki, John; Juhasz, John; Sadler, Gerald

    1991-01-01

    A team of Space Station Freedom (SSF) system engineers are in the process of extensive analysis of the SSF requirements, particularly those pertaining to the electrical power system (EPS). The objective of this analysis is the development of a comprehensive, computer-based requirements model, using an enhanced modern structured analysis methodology (EMSA). Such a model provides a detailed and consistent representation of the system's requirements. The process outlined in the EMSA methodology is unique in that it allows the graphical modeling of real-time system state transitions, as well as functional requirements and data relationships, to be implemented using modern computer-based tools. These tools permit flexible updating and continuous maintenance of the models. Initial findings resulting from the application of EMSA to the EPS have benefited the space station program by linking requirements to design, providing traceability of requirements, identifying discrepancies, and fostering an understanding of the EPS.

  18. Control-structure interaction study for the Space Station solar dynamic power module

    NASA Technical Reports Server (NTRS)

    Cheng, J.; Ianculescu, G.; Ly, J.; Kim, M.

    1991-01-01

    The authors investigate the feasibility of using a conventional PID (proportional plus integral plus derivative) controller design to perform the pointing and tracking functions for the Space Station Freedom solar dynamic power module. Using this simple controller design, the control/structure interaction effects were also studied without assuming frequency bandwidth separation. From the results, the feasibility of a simple solar dynamic control solution with a reduced-order model, which satisfies the basic system pointing and stability requirements, is suggested. However, the conventional control design approach is shown to be very much influenced by the order of reduction of the plant model, i.e., the number of the retained elastic modes from the full-order model. This suggests that, for complex large space structures, such as the Space Station Freedom solar dynamic, the conventional control system design methods may not be adequate.

  19. Economics of a conceptual 75 MW hot dry rock geothermal electric power station

    NASA Astrophysics Data System (ADS)

    Murphy, H. D.; Drake, R. H.; Tester, J. W.; Zyvoloski, G. A.

    1984-01-01

    Man made, Hot Dry Rock (HDR) geothermal energy reservoirs are investigated. An economic modeling study is conducted for a conceptual 75 MW(e) generation station. The reservoir required for 75 MW(e), equivalent to 550 MW of thermal energy, uses at least 9 wells drilled to 4.3 km and the temperature of the water produced should average 230(0)C. Thermodynamic considerations indicate that a binary cycle should result in optimum electricity generation and the best organic fluids are refrigerants R-22, R-32, R-115 or R-600a (Isobutane). The break-even bus bar cost of HDR electricity is computed by the levelized life-cycle method, and found to be competitive with most alternative electric power stations in the US.

  20. Year Round Operation of Autonomous, Low Power Geophysical Stations in Antarctica

    NASA Astrophysics Data System (ADS)

    Beaudoin, B. C.; White, S.; Bonnett, B.; Parker, T.; Johns, B.; Anderson, K. R.

    2009-12-01

    Year round operation of autonomous, low power geophysical stations in Antarctica presents both technical and logistical challenges. Prior to 2005, few if any autonomous seismic or GPS stations operated continuously throughout the austral winter. There are two basic environmental challenges in Antarctica beyond the logistical challenge: the margins with relatively mild temperatures but extreme winds and the Polar Plateau with extreme temperatures but relatively little wind. Large caches of lead-acid batteries can operate stations on the Antarctic margins where temperatures are relatively high, but are logistically expensive and will not survive the extreme temperatures of the Polar Plateau. Primary lithium thionyl chloride batteries have been proven to be successful and economical for use in the extreme plateau environment. These technical and logistical challenges were the focus of an IRIS/PASSCAL-UNAVCO collaboration to design power and communications for a < 5W system capable of continuous operation without intervention for two years. This collaboration has resulted in the successful operation of close to 100 GPS and seismic stations on several IPY projects with better than 80% data return. Our systems were designed to challenging logistical constrains for increased efficiency in polar operations. These year-round systems can now be deployed in a single twin otter flight. The IRIS/PASSCAL-UNAVCO collaboration has resulted in deployable systems backed by facilities with proven track records of longevity of technical field support. Our expertise and sustained engineering has resulted in a robust community product. We have significantly lowered the barriers of entry to scientists who desire year-round autonomous data collection in the Polar regions. A transparent development process with broad community support and input has resulted in a new generation of GPS and seismic systems fielded on several major IPY projects. The challenge now is how to keep the development

  1. Biodosimetry of restoration workers for the Tokyo Electric Power Company (TEPCO) Fukushima Daiichi nuclear power station accident.

    PubMed

    Suto, Yumiko; Hirai, Momoki; Akiyama, Miho; Kobashi, Gen; Itokawa, Masanari; Akashi, Makoto; Sugiura, Nobuyuki

    2013-10-01

    The biological dose of nuclear workers engaged in emergency response tasks at Tokyo Electric Power Company (TEPCO) Fukushima Daiichi Nuclear Power Station was estimated in the present study. As the national core center for radiation emergency medical preparedness in Japan, the National Institute of Radiological Sciences (NIRS) received all individuals who were suspected of being overexposed to acute radiation. In the course of health examinations at NIRS, biological dosimetry was performed by the dicentric chromosome assay (DCA). Twelve individuals were examined from 21 March-1 July 2011. The results indicated that the estimated exposure doses for all individuals were lower than 30 mGy, with the mean value of about 101 mGy. These results by DCA were in accordance with those obtained by physical dosimetry based on personal dosimeter recording assessment. The results corroborate the fact that no acute radiation syndrome was observed among the workers examined.

  2. The dynamics of a turbine-driven reactor feedwater pump and identification of related parameters in the Kuosheng power station

    SciTech Connect

    Shihjen Wang; Chunsheng Chien ); Suhchyn Jeng )

    1993-09-01

    In the Kuosheng nuclear power station, a turbine-driven reactor feedwater pump (TDRFP) is used to drive feedwater to the reactor pressure vessel (RPV). The performance of the TDRFP plays an important role in the safe operation of the nuclear power station as it governs the water inventory in the RPV. The dynamics of the TDRFP in the Kuosheng nuclear power station are simulated, and related parameters are identified by the simplex search method. A reactor feedwater pump (RFP) trip test was performed during the startup test of the Kuosheng nuclear power station. This RFP trip transient was selected for this study because it simplifies the identification process. The ratio of rated torque to moments of inertia, parameters related to the characteristic H-Q curve, and parameters related to the characteristic T-Q curve are verified.

  3. 75 FR 7628 - Davis-Besse Nuclear Power Station; Notice of Consideration of Issuance of Amendment to Facility...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-22

    ... COMMISSION Davis-Besse Nuclear Power Station; Notice of Consideration of Issuance of Amendment to Facility Operating License, Proposed No Significant Hazards Consideration Determination, and Opportunity for a... determination that the amendment request involves no significant hazards consideration. Under the...

  4. [Comparative assessment of radiation and chemical risks for cancer in the areas in vicinity of an atomic power station].

    PubMed

    Petoian, I M

    2008-01-01

    The estimated cancer risks due to radioactive and chemical factors are assessed and compared. Their possible contribution to malignancy mortality in the population living at the areas in the vicinity of an operating atomic power station is also estimated.

  5. 75 FR 6316 - Revisions to Rules Authorizing the Operation of Low Power Auxiliary Stations in the 698-806 MHz...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-09

    ... 698-806 MHz Band; Public Interest Spectrum Coalition, Petition for Rulemaking Regarding Low Power... Stations in the 698-806 MHz Band; Public Interest Spectrum Coalition, Petition for Rulemaking Regarding...

  6. Methane Emissions from Permafrost Regions using Low-Power Eddy Covariance Stations

    NASA Astrophysics Data System (ADS)

    Burba, G.; Sturtevant, C.; Schreiber, P.; Peltola, O.; Zulueta, R.; Mammarella, I.; Haapanala, S.; Rinne, J.; Vesala, T.; McDermitt, D.; Oechel, W.

    2012-04-01

    result, spatial coverage of eddy covariance methane flux measurements remains limited. Remote permafrost wetlands of Arctic tundra, northern boreal peatlands of Canada and Siberia, and other highly methanogenic ecosystems have few eddy covariance methane measurement stations. Those existing are often located near grid power sources and roads rather than in the middle of the methane-producing ecosystem, while those that are placed appropriately may require extraordinary efforts to build and maintain them, with large investments into man-power and infrastructure. Alternatively, open-path approach allows methane flux measurements at ambient pressure without the need for a pump. As a result, the measurements can be done with very low-power (e.g. 5-10 Watts), light (5 .2 kg) instruments permitting solar- and wind- powered remote deployments in hard-to-reach sites from permanent, portable or mobile stations, and cost-effective additions of a methane measurement to the present array of CO2 and H2O measurements. The low-power operation and light weight of open-path eddy covariance stations is important for a number of ecosystems (rice fields, landfills, wetlands, cattle yards), but it is especially important for permafrost regions where grid power and access roads are generally not available, and the logistics of running the experiments are particularly expensive. Emerging research on methane flux measurements using low-power stations equipped with LI-7700 open-path methane analyzer (LI-COR Biosciences) are presented from several permafrost ecosystems with contrasting setups, and weather conditions. Principles of operation, station characteristics and requirements are also discussed.

  7. Reliability measurement for mixed mode failures of 33/11 kilovolt electric power distribution stations.

    PubMed

    Alwan, Faris M; Baharum, Adam; Hassan, Geehan S

    2013-01-01

    The reliability of the electrical distribution system is a contemporary research field due to diverse applications of electricity in everyday life and diverse industries. However a few research papers exist in literature. This paper proposes a methodology for assessing the reliability of 33/11 Kilovolt high-power stations based on average time between failures. The objective of this paper is to find the optimal fit for the failure data via time between failures. We determine the parameter estimation for all components of the station. We also estimate the reliability value of each component and the reliability value of the system as a whole. The best fitting distribution for the time between failures is a three parameter Dagum distribution with a scale parameter [Formula: see text] and shape parameters [Formula: see text] and [Formula: see text]. Our analysis reveals that the reliability value decreased by 38.2% in each 30 days. We believe that the current paper is the first to address this issue and its analysis. Thus, the results obtained in this research reflect its originality. We also suggest the practicality of using these results for power systems for both the maintenance of power systems models and preventive maintenance models.

  8. Reliability Measurement for Mixed Mode Failures of 33/11 Kilovolt Electric Power Distribution Stations

    PubMed Central

    Alwan, Faris M.; Baharum, Adam; Hassan, Geehan S.

    2013-01-01

    The reliability of the electrical distribution system is a contemporary research field due to diverse applications of electricity in everyday life and diverse industries. However a few research papers exist in literature. This paper proposes a methodology for assessing the reliability of 33/11 Kilovolt high-power stations based on average time between failures. The objective of this paper is to find the optimal fit for the failure data via time between failures. We determine the parameter estimation for all components of the station. We also estimate the reliability value of each component and the reliability value of the system as a whole. The best fitting distribution for the time between failures is a three parameter Dagum distribution with a scale parameter and shape parameters and . Our analysis reveals that the reliability value decreased by 38.2% in each 30 days. We believe that the current paper is the first to address this issue and its analysis. Thus, the results obtained in this research reflect its originality. We also suggest the practicality of using these results for power systems for both the maintenance of power systems models and preventive maintenance models. PMID:23936346

  9. Environmental radiological studies in 1989 near the Rancho Seco Nuclear Power Generating Station

    SciTech Connect

    Robison, W.L.; Wong, Kai M.; Jones, H.E.

    1990-11-01

    In December 1988, the Sacramento Municipal Utilities District (SMUD) asked the Lawrence Livermore National Laboratory's (LLNL) Environmental Sciences Division (ENV) to collect sediment, water,and fish samples downstream from the Rancho Seco Nuclear Power Generating Station for analysis of radionuclides to compare with results from earlier surveys in 1984 through 1987 (1--8). ENV was, however, asked to reduce the total number of sample collections to a minimum in this study because of financial constraints. The proposal ENV submitted for the 1989 Environmental Radiological Studies downstream of the Rancho Seco Nuclear Power Generating Station reflected this reduction, but we believe, nevertheless, the 1989 efforts do allow us to make some meaningful comparisons with the previous studies. Cesium-137 is the most significant radionuclide still observed downstream from the Rancho Seco Nuclear Power Plant. Only occasionally is {sup 134}Cs or {sup 60}CO observed. In 1989, the concentration of {sup 137}Cs in the water and fish decreased with distance from the plant to the same level that is was in 1987, and was lower than it had been from 1984 through 1986. The concentration ratio (CR) for {sup 137}Cs in fish is between 1000 and 1500, which is below the NRC default value of 2000. Physical mixing in the creek environment has moved the {sup 137}Cs deeper into the sediment column, thereby reducing the concentration in the top 12 cm relative to that in previous years. 8 refs., 18 figs., 9 tabs.

  10. Electrical power system failure detection, isolation and recovery on the International Space Station Alpha

    SciTech Connect

    Aghabarari, E.; Varney, J.

    1995-12-31

    The problem of how to detect, isolate, and recover from failures on the International Space Station Alpha (ISSA) is currently under study and development by NASA and a number of contractors including Rocketdyne Division of Rockwell International. The effort is planned to provide an advanced real-time failure detection system for the station. The autonomous power system project is designed to demonstrate the abilities of integrated intelligent diagnosis, control and scheduling techniques to space power distribution hardware. In this paper the latest failure detection, isolation, and recovery (FDIR) design, which provides an autonomous FDIR for the Electric Power System (EPS), will be described. The ISSA Concept of Operations and Utilization (COU) defines the ability of the vehicle to ``survive 24 hours of operation without crew or ground intervention``. This results in a necessity to design and develop automatic failure detection techniques to accomplish such autonomous operation without routine commanding. This paper addresses the current EPS FDIR design concept and concentrates on how to resolve the FDIR issues and come up with a robust design to recover from abnormal behavior.

  11. Semi-quantitative characterisation of ambient ultrafine aerosols resulting from emissions of coal fired power stations.

    PubMed

    Hinkley, J T; Bridgman, H A; Buhre, B J P; Gupta, R P; Nelson, P F; Wall, T F

    2008-02-25

    Emissions from coal fired power stations are known to be a significant anthropogenic source of fine atmospheric particles, both through direct primary emissions and secondary formation of sulfate and nitrate from emissions of gaseous precursors. However, there is relatively little information available in the literature regarding the contribution emissions make to the ambient aerosol, particularly in the ultrafine size range. In this study, the contribution of emissions to particles smaller than 0.3 mum in the ambient aerosol was examined at a sampling site 7 km from two large Australian coal fired power stations equipped with fabric filters. A novel approach was employed using conditional sampling based on sulfur dioxide (SO(2)) as an indicator species, and a relatively new sampler, the TSI Nanometer Aerosol Sampler. Samples were collected on transmission electron microscope (TEM) grids and examined using a combination of TEM imaging and energy dispersive X-ray (EDX) analysis for qualitative chemical analysis. The ultrafine aerosol in low SO(2) conditions was dominated by diesel soot from vehicle emissions, while significant quantities of particles, which were unstable under the electron beam, were observed in the high SO(2) samples. The behaviour of these particles was consistent with literature accounts of sulfate and nitrate species, believed to have been derived from precursor emissions from the power stations. A significant carbon peak was noted in the residues from the evaporated particles, suggesting that some secondary organic aerosol formation may also have been catalysed by these acid seed particles. No primary particulate material was observed in the minus 0.3 mum fraction. The results of this study indicate the contribution of species more commonly associated with gas to particle conversion may be more significant than expected, even close to source.

  12. Satellite Remote Sensing of the Thermal Plume from the Daya Bay Nuclear Power Station, China

    NASA Astrophysics Data System (ADS)

    Tang, D.; Kester, D.; Wang, Z.; Lian, J.

    The 1800 megawatt Daya Bay Nuclear Power Station (DBNPS), China's first nuclear power station, is located on the coast of the South China Sea. DBNPS discharges 29 million m3 y -1 of warm water from its cooling system into Daya Bay, which could have ecological consequences. This study examines satellite sea surface temperature data and shipboard water column measure ments from Daya Bay. Sea surface temperatures were derived from the Advanced Very High Resolution Radiometer (AVHRR) onboard National Oceanic and Atmospheric Administration (NOAA) polar orbiting satellites during November 1997 to February 1999. A total of 2,905 images were examined. Among those images, 342 have sufficient quality for quantitative analysis. Water temperature, salinity, dissolved oxygen, ammonia, and chlorophyll data from ship surveys were also examined. The AVHRR data show a seasonal pattern of thermal plumes in Daya Bay. During the winter months (December to March), the thermal plume is localized to an area within a few km of the power plant, and the temperature difference between the plume and non-plume areas is about 1.5 oC. During the summer and fall months (May to November), there is a larger thermal plume extending 8 10 km south along the coast from DBNPS, and the temperature- change is about 1.0 oC. These results are consistent with field observations at 12 sampling stations in Daya Bay. The strong seasonal difference in the thermal plume is related to vertical mixing of the water column in winter and stratification in summer. Further investigations are needed to determine if there are biological effects of the Daya Bay thermal plume.

  13. Safety research of insulating materials of cable for nuclear power generating station

    NASA Technical Reports Server (NTRS)

    Lee, C. K.; Choi, J. H.; Kong, Y. K.; Chang, H. S.

    1988-01-01

    The polymers PE, EPR, PVC, Neoprene, CSP, CLPE, EP and other similar substances are frequently used as insulation and protective covering for cables used in nuclear power generating stations. In order to test these materials for flame retardation, environmental resistance, and cable specifications, they were given the cable normal test, flame test, chemical tests, and subjected to design analysis and loss of coolant accident tests. Material was collected on spark tests and actual experience standards were established through these contributions and technology was accumulated.

  14. Selection of alternative central-station technologies for the Satellite Power System (SPS) comparative assessment

    NASA Technical Reports Server (NTRS)

    Samsa, M.

    1980-01-01

    An important effort is the Satellite Power System (SPS) comparative Assessment is the selection and characterization of alternative technologies to be compared with the SPS concept. The ground rules, criteria, and screening procedure applied in the selection of those alternative technologies are summarized. The final set of central station alternatives selected for comparison with the SPS concept includes: (1) light water reactor with improved fuel utilization, (2) conventional coal combustion with improved environmental controls, (3) open cycle gas turbine with integral low Btu gasifier, (4) terrestrial photovoltaic, (5) liquid metal fast breeder reactor, and (6) magnetic confinement fusion.

  15. Review of Cytogenetic analysis of restoration workers for Fukushima Daiichi nuclear power station accident.

    PubMed

    Suto, Yumiko

    2016-09-01

    Japan faced with the nuclear accident of the Fukushima Daiichi Nuclear Power Station (NPS) caused by the combined disaster of the Great East Japan Earthquake and the subsequent tsunamis on 11 March 2011. National Institute of Radiological Sciences received all nuclear workers who were engaged in emergency response tasks at the NPS and suspected of being overexposed to acute radiation. Biological dosimetry by dicentric chromosome assay was helpful for medical triage and management of the workers. © World Health Organisation 2016. All rights reserved. The World Health Organization has granted Oxford University Press permission for the reproduction of this article.

  16. Investigation on Main Radiation Source at Operation Floor of Fukushima Daiichi Nuclear Power Station Unit 4

    NASA Astrophysics Data System (ADS)

    Hirayama, Hideo; Kondo, Kenjiro; Suzuki, Seishiro; Hamamoto, Shimpei; Iwanaga, Kohei

    2017-09-01

    Pulse height distributions were measured using a LaBr3 detector set in a 1 cm lead collimator to investigate main radiation source at the operation floor of Fukushima Daiichi Nuclear Power Station Unit 4. It was confirmed that main radiation source above the reactor well was Co-60 from the activated steam dryer in the DS pool (Dryer-Separator pool) and that at the standby area was Cs-134 and Cs-137 from contaminated buildings and debris at the lower floor. Full energy peak count rate of Co-60 was reduced about 1/3 by 12mm lead sheet placed on the floor of the fuel handling machine.

  17. Design tradeoffs for a Space Station solar-Brayton power system

    NASA Technical Reports Server (NTRS)

    Klann, J. L.; Staiger, P. J.

    1985-01-01

    Mass, area, and station-keeping propellant needs have been estimated for a typical system. And, although important criteria such as cost, Shuttle packaging, and erection/deployment schemes were not considered, the documented trends should aid in many of the design choices to be made. Effects on system characteristics were examined for: three heat storage salts with melting temperatures from 743 to 1121 K; parabolic and Cassegrainian mirrors; module power levels of 20 and 40 kW; and, alternate pumped-loop, tube-and-fin radiator configurations, with and without micrometeoroid armoring.

  18. Design tradeoffs for a Space Station solar-Brayton power system

    NASA Technical Reports Server (NTRS)

    Klann, J. L.; Staiger, P. J.

    1985-01-01

    Mass, area, and station-keeping propellant needs have been estimated for a typical system. And, although important criteria such as cost, Shuttle packaging, and erection/deployment schemes were not considered, the documented trends should aid in many of the design choices to be made. Effects on system characteristics were examined for: three heat storage salts with melting temperatures from 743 to 1121 K; parabolic and Cassegrainian mirrors; module power levels of 20 and 40 kW; and, alternate pumped-loop, tube-and-fin radiator configurations, with and without micrometeoroid armoring.

  19. Space station common module power system network topology and hardware development

    NASA Technical Reports Server (NTRS)

    Landis, D. M.

    1985-01-01

    Candidate power system newtork topologies for the space station common module are defined and developed and the necessary hardware for test and evaluation is provided. Martin Marietta's approach to performing the proposed program is presented. Performance of the tasks described will assure systematic development and evaluation of program results, and will provide the necessary management tools, visibility, and control techniques for performance assessment. The plan is submitted in accordance with the data requirements given and includes a comprehensive task logic flow diagram, time phased manpower requirements, a program milestone schedule, and detailed descriptions of each program task.

  20. Safety research of insulating materials of cable for nuclear power generating station

    NASA Technical Reports Server (NTRS)

    Lee, C. K.; Choi, J. H.; Kong, Y. K.; Chang, H. S.

    1988-01-01

    The polymers PE, EPR, PVC, Neoprene, CSP, CLPE, EP and other similar substances are frequently used as insulation and protective covering for cables used in nuclear power generating stations. In order to test these materials for flame retardation, environmental resistance, and cable specifications, they were given the cable normal test, flame test, chemical tests, and subjected to design analysis and loss of coolant accident tests. Material was collected on spark tests and actual experience standards were established through these contributions and technology was accumulated.

  1. International remote monitoring project Argentina Nuclear Power Station Spent Fuel Transfer Remote Monitoring System

    SciTech Connect

    Schneider, S.; Lucero, R.; Glidewell, D.

    1997-08-01

    The Autoridad Regulataria Nuclear (ARN) and the United States Department of Energy (DOE) are cooperating on the development of a Remote Monitoring System for nuclear nonproliferation efforts. A Remote Monitoring System for spent fuel transfer will be installed at the Argentina Nuclear Power Station in Embalse, Argentina. The system has been designed by Sandia National Laboratories (SNL), with Los Alamos National Laboratory (LANL) and Oak Ridge National Laboratory (ORNL) providing gamma and neutron sensors. This project will test and evaluate the fundamental design and implementation of the Remote Monitoring System in its application to regional and international safeguards efficiency. This paper provides a description of the monitoring system and its functions. The Remote Monitoring System consists of gamma and neutron radiation sensors, RF systems, and video systems integrated into a coherent functioning whole. All sensor data communicate over an Echelon LonWorks Network to a single data logger. The Neumann DCM 14 video module is integrated into the Remote Monitoring System. All sensor and image data are stored on a Data Acquisition System (DAS) and archived and reviewed on a Data and Image Review Station (DIRS). Conventional phone lines are used as the telecommunications link to transmit on-site collected data and images to remote locations. The data and images are authenticated before transmission. Data review stations will be installed at ARN in Buenos Aires, Argentina, ABACC in Rio De Janeiro, IAEA Headquarters in Vienna, and Sandia National Laboratories in Albuquerque, New Mexico. 2 refs., 2 figs.

  2. Preferential Magnetospheric Power Excitation by Rising Frequency Ramps from 1986 Siple Station Data

    NASA Astrophysics Data System (ADS)

    Li, J.; Spasojevic, M.; Harid, V.; Golkowski, M.; Carpenter, D. L.; Inan, U.

    2013-12-01

    Controlled experiments using ground-based ELF/VLF transmitters are invaluable in studying nonlinear wave growth and triggered emissions resulting from gyroresonant interactions between whistler mode waves and energetic electrons in the magnetosphere. Typical studies have focused on the narrowband and discrete features present in the received signal and triggered emissions, but have not considered the potential total power excited during the interaction in the magnetosphere. Here, we develop a metric for estimating the total magnetospheric power excited in the propagation ducts and apply this metric to data transmitted from Siple Station, Antarctica. The transmitted STACO format in 1986 includes a series of ascending and descending ramp and staircase elements, allowing for a quantitative comparison of total power excited by frequency ramps of different orientations. We find that rising frequency ramps result in preferentially higher power excitation and that higher noise measurements in the duct correspond to significantly higher measures of power excitation by the transmitted signal. These results provide insight into the structure of the background cold plasma and the distribution of the hot plasma and the conditions favorable for nonlinear wave amplification and triggering. Portion of the STACO transmissions format on 8/18/1986 at 12:21:00 UT, illustrating the differences in magnetospheric amplification and generation for ascending and descending ramp segments.

  3. Study of variations of radiofrequency power density from mobile phone base stations with distance.

    PubMed

    Ayinmode, B O; Farai, I P

    2013-10-01

    The variations of radiofrequency (RF) radiation power density with distance around some mobile phone base stations (BTSs), in ten randomly selected locations in Ibadan, western Nigeria, were studied. Measurements were made with a calibrated hand-held spectrum analyser. The maximum Global System of Mobile (GSM) communication 1800 signal power density was 323.91 µW m(-2) at 250 m radius of a BTS and that of GSM 900 was 1119.00 µW m(-2) at 200 m radius of another BTS. The estimated total maximum power density was 2972.00 µW m(-2) at 50 m radius of a different BTS. This study shows that the maximum carrier signal power density and the total maximum power density from a BTS may be observed averagely at 200 and 50 m of its radius, respectively. The result of this study demonstrates that exposure of people to RF radiation from phone BTSs in Ibadan city is far less than the recommended limits by International scientific bodies.

  4. European legislation in the United Kingdom: a threat to coal-fired power station product utilization?

    SciTech Connect

    Sear, K.A.

    2006-07-01

    The author considers that the European Union has not taken the approach adopted in the USA where environmental regulators are keen to promote the use of coal-fired power station ash by-product and recycled materials. The United Kingdom has seen, with some dismay, the effects EU legislation is having on the ash industry. This article outlines only some of the problems being tackled. The Waste Framework Directive is difficult to interpret and fails to define critical aspects of the problem. This directive is discussed at some length in the article. A total of nine directives effect the operation of coal-fired power plant. Many are imprecise and open to interpretation and cause a deal of frustration, delays and confusion to the ash supplier and contractor. This is causing markets to suffer.

  5. Space station 20-kHz power management and distribution system

    NASA Technical Reports Server (NTRS)

    Hansen, I. G.; Sundberg, G. R.

    1986-01-01

    During the conceptual design phase a 20-kHz power distribution system was selected as the reference for the space station. The system is single-phase 400 VRMS, with a sinusoidal wave form. The initial user power level will be 75 kW with growth to 300 kW. The high-frequency system selection was based upon considerations of efficiency, weight, safety, ease of control, interface with computers, and ease of paralleling for growth. Each of these aspects will be discussed as well as the associated trade-offs involved. An advanced development program has been instituted to accelerate the maturation of the high-frequency system. Some technical aspects of the advanced development will be discussed.

  6. Seismic margin review of the Maine Yankee Atomic Power Station: Summary report

    SciTech Connect

    Prassinos, P.G.; Murray, R.C.; Cummings, G.E.

    1987-03-01

    This Summary Report is the first of three volumes for the Seismic Margin Review of the Maine Yankee Atomic Power Station. Volume 2 is the Systems Analysis of the first trial seismic margin review. Volume 3 documents the results of the fragility screening for the review. The three volumes demonstrate how the seismic margin review guidance (NUREG/CR-4482) of the Nuclear Regulatory Commission (NRC) Seismic Design Margins Program can be applied. The overall objectives of the trial review are to assess the seismic margins of a particular pressurized water reactor, and to test the adequacy of this review approach, quantification techniques, and guidelines for performing the review. Results from the trial review will be used to revise the seismic margin methodology and guidelines so that the NRC and industry can readily apply them to assess the inherent quantitative seismic capacity of nuclear power plants.

  7. The counter effects of the accident at Fukushima Dai-ichi nuclear power station

    NASA Astrophysics Data System (ADS)

    Murakami, Kenta

    2017-01-01

    The counter effects of the accident at the Fukushima Dai-ichi Nuclear Power Station are discussed in this paper. Though decommission and remediation have been conducted in the facility and surrounding area, ninety thousand residences near the facility are still under the evacuation order. Four nuclear power units have already restarted under the new regulatory framework, but two of them in Fukui prefecture stop the operation due to the provisional disposition declared by Ohtsu district court in Shiga prefecture. Reinforcement of the latter layer of the defense in depth has been improved in many ways. The improvement of decision-making process is very important in latter layers of the defense in depth, in contrast the plant behaviors are automatically decided based on their design in the prior layers.

  8. New modulation techniques for low-cost power and bandwidth efficient satellite earth stations

    NASA Astrophysics Data System (ADS)

    Le-Ngoc, T.; Pham van, H.

    1982-01-01

    New power and bandwidth efficient modulation techniques, named intersymbol interference and jitter-free (IJF)-QPSK and IJF-OQPSK, are presented. The properties of the IJF-QPSK and IJF-OQPSK signals in linear and nonlinear earth-station-satellite systems are studied. A finite-state Markov chain model is used to calculate power spectra of hard-limited IJF-QPSK and IJF-OQPSK. The results indicate that the IJF-OQPSK modulated signal exhibits much less spectrum spreading than QPSK, OQPSK, and MSK. The error probability performance of IJF-QPSK and IJF-OQPSK in an additive white Gaussian noise and adjacent-channel interference environment is evaluated. The results show that the error probability performance of the IJF-OQPSK is superior to that of QPSK, OQPSK, and MSK in narrow-band nonlinear channels.

  9. Environmental review of Potomac Electric Power Company's proposed Station H Element I

    SciTech Connect

    Not Available

    1990-04-01

    The report has been conducted to evaluate the potential impacts to environmental and cultural resources from the proposed construction and operation of Element I (the combustion turbine portion) of the Station H power plant facility at Potomac Electric Power Company's Dickerson site. This review also presents an evaluation of air quality impacts of Elements I and II (combustion turbine and combined cycle components of the facility) and an assessment of compliance with state and Federal air quality regulations (primarily the ambient air quality standards and the air quality impact requirements of PSD regulations). Results of the Environmental Review analysis are used as the basis for establishing preliminary recommended licensing conditions for operating the proposed facility. These recommendations are also included in the report.

  10. Performance estimates for the Space Station power system Brayton Cycle compressor and turbine

    NASA Technical Reports Server (NTRS)

    Cummings, Robert L.

    1989-01-01

    The methods which have been used by the NASA Lewis Research Center for predicting Brayton Cycle compressor and turbine performance for different gases and flow rates are described. These methods were developed by NASA Lewis during the early days of Brayton cycle component development and they can now be applied to the task of predicting the performance of the Closed Brayton Cycle (CBC) Space Station Freedom power system. Computer programs are given for performing these calculations and data from previous NASA Lewis Brayton Compressor and Turbine tests is used to make accurate estimates of the compressor and turbine performance for the CBC power system. Results of these calculations are also given. In general, calculations confirm that the CBC Brayton Cycle contractor has made realistic compressor and turbine performance estimates.

  11. [Hygienic assessment of working conditions and functional resistance in electric power station workers].

    PubMed

    Terekhov, I A

    2007-01-01

    The exceeding maximum permissible levels, the parameters of electromagnetic fields and radiations, an electrostatic field, noise, and vibration are the leading adverse factors of the industrial environment for basic professional groups of Stavropol district electric power station workers. According to the degree of harmfulness and hazard, the working conditions are referred to as Class 3 ("hazardous") in 93.7% of the personnel. The significant tension of adaptive mechanisms is typical of most patients (76.3%). Based on the multivariate analysis of the results of a psychophysiological follow-up, the authors have developed a procedure for the integral evaluation of the functional state of the workers' organism, which may be used in the sociohygienic monitoring system in the electric power system of Russia.

  12. A modernized high-pressure heater protection system for nuclear and thermal power stations

    NASA Astrophysics Data System (ADS)

    Svyatkin, F. A.; Trifonov, N. N.; Ukhanova, M. G.; Tren'kin, V. B.; Koltunov, V. A.; Borovkov, A. I.; Klyavin, O. I.

    2013-09-01

    Experience gained from operation of high-pressure heaters and their protection systems serving to exclude ingress of water into the turbine is analyzed. A formula for determining the time for which the high-pressure heater shell steam space is filled when a rupture of tubes in it occurs is analyzed, and conclusions regarding the high-pressure heater design most advisable from this point of view are drawn. A typical structure of protection from increase of water level in the shell of high-pressure heaters used in domestically produced turbines for thermal and nuclear power stations is described, and examples illustrating this structure are given. Shortcomings of components used in the existing protection systems that may lead to an accident at the power station are considered. A modernized protection system intended to exclude the above-mentioned shortcomings was developed at the NPO Central Boiler-Turbine Institute and ZioMAR Engineering Company, and the design solutions used in this system are described. A mathematical model of the protection system's main elements (the admission and check valves) has been developed with participation of specialists from the St. Petersburg Polytechnic University, and a numerical investigation of these elements is carried out. The design version of surge tanks developed by specialists of the Central Boiler-Turbine Institute for excluding false operation of the high-pressure heater protection system is proposed.

  13. Martensitic 11% CrMoNiNb steel for turbine rotors in geothermal power stations

    SciTech Connect

    Schoenfeld, K.H.; Levacher, R.; Manning, M.P.; Murley, P.F.

    1997-12-31

    Turbine rotors in a geothermal power station were required in high alloyed 12% Cr steel. After some preliminary investigations it was found that a modified 11% CrMoNiNb steel will fulfill the required mechanical properties as well as a sufficient resistance to corrosion. Two LP rotors with approximately 1,295 mm (51 in.) premachined diameter and ungashed weight of approximately 31 mt were manufactured. The steel was melted in a 125 mt electric arc furnace and subsequently remelted into a 113 mt ESR ingot with 2,300 mm (90 in.) diameter. After forging and preliminary heat treatment the rotors were quality heat treated to a yield strength (0.2% and 0.02%) of approximately 600 MPa (87 ksi) and approximately 550 MPa (80 ksi) respectively and tensile strength of approximately 780 MPa (113 ksi). This resulted in a FATT of approximately 16 C (60 F). Low hardness is important to susceptibility to stress corrosion. It was achieved to approximately 20 HRC. The results have met the assumption with respect to this steel for application as rotor material for geothermal power stations.

  14. A feasibility assessment of nuclear reactor power system concepts for the NASA Growth Space Station

    NASA Technical Reports Server (NTRS)

    Bloomfield, H. S.; Heller, J. A.

    1986-01-01

    A preliminary feasibility assessment of the integration of reactor power system concepts with a projected growth Space Station architecture was conducted to address a variety of installation, operational, disposition and safety issues. A previous NASA sponsored study, which showed the advantages of Space Station - attached concepts, served as the basis for this study. A study methodology was defined and implemented to assess compatible combinations of reactor power installation concepts, disposal destinations, and propulsion methods. Three installation concepts that met a set of integration criteria were characterized from a configuration and operational viewpoint, with end-of-life disposal mass identified. Disposal destinations that met current aerospace nuclear safety criteria were identified and characterized from an operational and energy requirements viewpoint, with delta-V energy requirement as a key parameter. Chemical propulsion methods that met current and near-term application criteria were identified and payload mass and delta-V capabilities were characterized. These capabilities were matched against concept disposal mass and destination delta-V requirements to provide a feasibility of each combination.

  15. A feasibility assessment of nuclear reactor power system concepts for the NASA Growth Space Station

    NASA Technical Reports Server (NTRS)

    Bloomfield, H. S.; Heller, J. A.

    1986-01-01

    A preliminary feasibility assessment of the integration of reactor power system concepts with a projected growth Space Station architecture was conducted to address a variety of installation, operational, disposition and safety issues. A previous NASA sponsored study, which showed the advantages of Space Station - attached concepts, served as the basis for this study. A study methodology was defined and implemented to assess compatible combinations of reactor power installation concepts, disposal destinations, and propulsion methods. Three installation concepts that met a set of integration criteria were characterized from a configuration and operational viewpoint, with end-of-life disposal mass identified. Disposal destinations that met current aerospace nuclear safety criteria were identified and characterized from an operational and energy requirements viewpoint, with delta-V energy requirement as a key parameter. Chemical propulsion methods that met current and near-term application criteria were identified and payload mass and delta-V capabilities were characterized. These capabilities were matched against concept disposal mass and destination delta-V requirements to provide a feasibility of each combination.

  16. Lichens as biomonitors around a coal-fired power station in Israel.

    PubMed

    Garty, Jacob; Tomer, Sharon; Levin, Tal; Lehr, Haya

    2003-03-01

    In the present study epiphytic lichens were applied as biomonitors of air pollution to determine the environmental impact of a coal-fired power station. Thalli of the lichen Ramalina lacera (With.) J.R. Laund. growing on carob twigs (Ceratonia siliqua L.) were collected with their substrate in July 2000 in a relatively unpolluted forest near HaZorea, Ramoth Menashe, Northeast Israel, and transplanted to 10 biomonitoring sites in the vicinity of the coal-fired power station Oroth Rabin near the town of Hadera. The lichens were retrieved in January 2001. We examined the following parameters of lichen vitality: (a) potential quantum yield of photosynthesis expressed as fluorescence ratio F(v)/F(m), (b) stress-ethylene production, and (c) electric conductivity expressing integrity of cell membranes. Following an exposure of 7 months, the lichens were retrieved and physiological parameters and data of elemental content were analyzed comparatively. Electric conductivity values correlated positively with B, Fe, Mg, Mn, Na, Pb, S, Sn, and Ti content. Concentrations of stress-ethylene correlated positively with Al, Ba, Pb, S, and V content and negatively with Cu and Sn. F(v)/F(m) ratios correlated negatively with S content. Some of the heavy metals reached lower levels than those reported in the relevant literature despite a wind regime that should have blown pollutants toward the biomonitoring sites.

  17. Differential permeability behaviour of P9 and T22 power station Steels

    NASA Astrophysics Data System (ADS)

    Karimian, N.; Wilson, J. W.; Peyton, A. J.; Yin, W.; Liu, J.; Davis, C. L.

    2014-02-01

    Analysis of the electromagnetic (EM) properties of power station steels, measured using a non-contact magnetic sensor, is of significance as such properties are indicative of the microstructure of the material and can be potentially exploited for non-destructive testing. In this paper, we present EM measurements of cylindrical power station steel samples (P9 and T22 grades) with different microstructures: normalised and tempered (representative of the initial condition), as normalised and after service exposure. In order to obtain the magnetic properties the B-H curves of these samples were measured. Cylindrical air-cored and printed circuit board (PCB) coil integrated sensors were used to measure the incremental permeability. Analytical and numerical methods (Finite Elements Methods) were employed to calculate the sensor response of these samples. The electromagnetic properties of the different steels were inferred by fitting the finite element models to the measured results. In addition, sensitivity and error analysis were carried out to evaluate the accuracy of the method.

  18. Combining Meteorological Stations and Satellite data to Evaluate the Offshore Wind Power Resource of Southeastern Brazil

    NASA Astrophysics Data System (ADS)

    Pimenta, F. M.; Kempton, W.; Garvine, R. W.

    2007-12-01

    Wind is strong and steady over the ocean, but on-site marine meteorological data are sparse. Here we draw on meteorological station, satellite data (QuikSCAT), and both theoretical and practical measures of wind turbine performance. The meteorological stations give high time resolution direct measurements at a few points and provide validation and adjustment of the satellite data. The satellite data provide near-complete area coverage at lower time resolution. For the southern coast of Brazil, we use both data sets to evaluate the location, timing, and availability of the resource. Then, using bathymetry and the properties of current wind-electric technology, we develop maps of wind speed, wind power density, and practical turbine output in power units (GW). In the shallower waters of south Brazil, along only one coastal area situated between 28°S and 33°S we find a total resource of 102 GW average electrical production. The potential electrical output of this one coastal region based on current technology is near today's average electric demand for the country.

  19. Artificial neural network application for space station power system fault diagnosis

    NASA Technical Reports Server (NTRS)

    Momoh, James A.; Oliver, Walter E.; Dias, Lakshman G.

    1995-01-01

    This study presents a methodology for fault diagnosis using a Two-Stage Artificial Neural Network Clustering Algorithm. Previously, SPICE models of a 5-bus DC power distribution system with assumed constant output power during contingencies from the DDCU were used to evaluate the ANN's fault diagnosis capabilities. This on-going study uses EMTP models of the components (distribution lines, SPDU, TPDU, loads) and power sources (DDCU) of Space Station Alpha's electrical Power Distribution System as a basis for the ANN fault diagnostic tool. The results from the two studies are contrasted. In the event of a major fault, ground controllers need the ability to identify the type of fault, isolate the fault to the orbital replaceable unit level and provide the necessary information for the power management expert system to optimally determine a degraded-mode load schedule. To accomplish these goals, the electrical power distribution system's architecture can be subdivided into three major classes: DC-DC converter to loads, DC Switching Unit (DCSU) to Main bus Switching Unit (MBSU), and Power Sources to DCSU. Each class which has its own electrical characteristics and operations, requires a unique fault analysis philosophy. This study identifies these philosophies as Riddles 1, 2 and 3 respectively. The results of the on-going study addresses Riddle-1. It is concluded in this study that the combination of the EMTP models of the DDCU, distribution cables and electrical loads yields a more accurate model of the behavior and in addition yielded more accurate fault diagnosis using ANN versus the results obtained with the SPICE models.

  20. Artificial neural network application for space station power system fault diagnosis

    NASA Technical Reports Server (NTRS)

    Momoh, James A.; Oliver, Walter E.; Dias, Lakshman G.

    1995-01-01

    This study presents a methodology for fault diagnosis using a Two-Stage Artificial Neural Network Clustering Algorithm. Previously, SPICE models of a 5-bus DC power distribution system with assumed constant output power during contingencies from the DDCU were used to evaluate the ANN's fault diagnosis capabilities. This on-going study uses EMTP models of the components (distribution lines, SPDU, TPDU, loads) and power sources (DDCU) of Space Station Alpha's electrical Power Distribution System as a basis for the ANN fault diagnostic tool. The results from the two studies are contrasted. In the event of a major fault, ground controllers need the ability to identify the type of fault, isolate the fault to the orbital replaceable unit level and provide the necessary information for the power management expert system to optimally determine a degraded-mode load schedule. To accomplish these goals, the electrical power distribution system's architecture can be subdivided into three major classes: DC-DC converter to loads, DC Switching Unit (DCSU) to Main bus Switching Unit (MBSU), and Power Sources to DCSU. Each class which has its own electrical characteristics and operations, requires a unique fault analysis philosophy. This study identifies these philosophies as Riddles 1, 2 and 3 respectively. The results of the on-going study addresses Riddle-1. It is concluded in this study that the combination of the EMTP models of the DDCU, distribution cables and electrical loads yields a more accurate model of the behavior and in addition yielded more accurate fault diagnosis using ANN versus the results obtained with the SPICE models.